
www.allitebooks.com

http://www.allitebooks.org

What Readers Are Saying About Grails: A Quick-Start Guide

This book, like Grails, is common sense distilled. You’ll be productive

in Grails in no time.

Scott Davis

Founder, ThirstyHead.com

This book stands heads and shoulders above other Groovy and Grails

books available today. Dave’s practical, hands-on approach will teach

you the nuts and bolts of the language and framework and then lead

you through a project, step-by-step. This mix of instruction and prac-

tice is the perfect introduction to both Groovy and Grails.

Jared Richardson

Consultant, Agile Artisans.com

The Grails web framework is all about productivity, and so is Grails: A

Quick-Start Guide. Dave Klein builds a serious application through-

out the chapters, as if you were working with a colleague teaching

you new technology. This guide will get you productive in hours, not

weeks, and thanks to Dave’s humor, you’re really going to enjoy learn-

ing Grails. If you need to dive into Grails for your next project, this

book is for you!

Guillaume Laforge

Groovy project manager, SpringSource

Dave Klein’s book is an enjoyable read that presents an efficient path

to get from Grails novice to productive programmer. Anyone develop-

ing a web application to run on a JVM should read this book.

Steven Harris

Director of engineering, Terracotta

www.allitebooks.com

http://www.allitebooks.org

This book was an excellent guide for me as a first-time user of Grails

as well as Groovy. Building an entire project while learning is a big

asset: it is one thing to read and learn; it is another to learn by exam-

ple. The book presents the subject matter creatively and simplifies it.

It is definitely a recommended guide to those beginners who are ready

to take on a challenge with Grails and Groovy.

Amer Ghumrawi

Programmer/analyst, WinWholesale, Inc.

I’ve always believed that a good programmer finds the information

they need when they need it. Nothing could be more true to that state-

ment than with this book. I am new to Grails development and was

looking for a good book/reference guide. I found it in Grails: A Quick-

Start Guide. Even after reading it, I found myself referring to it often

to help me along. It was not written at a level that assumes the reader

is an expert Java developer or familiar with the popular frameworks.

I found it easy to understand, and the code examples were excellent

in displaying the ease with which a relative newcomer can become a

Groovy developer using Grails. I highly recommend this book for any-

one who is just starting to develop Grails applications.

Doug Burns

Programmer/analyst

I’ve read several books on the Grails framework, and this is the first

that explained things enough that I felt confident building something

from scratch. If you know Ruby on Rails, you should definitely look at

this framework, and this book really helps you get your feet wet.

Brian Hogan

Rails consultant and trainer

Great book! Dave does a fantastic job of presenting the framework in

an easy-to-follow and very accessible way. Excellent!

Jeff Brown

Core Grails developer

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Grails
A Quick-Start Guide

Dave Klein

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-46-8

ISBN-13: 978-1-934356-46-3

Printed on acid-free paper.

P1.0 printing, October 2009

Version: 2009-10-19

www.allitebooks.com

http://www.allitebooks.org

Contents
1 Introduction 10

1.1 Let Me Tell You About Grails. 10

1.2 How Does Grails Do It? 11

1.3 Why This Book? . 12

1.4 Who Should Read This Book 13

1.5 Source Code . 13

1.6 Enough Groovy to Be Dangerous 14

1.7 Groovy Syntax Compared to Java 14

1.8 Groovy Strings . 16

1.9 Groovy Closures . 17

1.10 Groovy Collections . 18

1.11 Where to from Here? . 22

1.12 Acknowledgments . 23

2 Our Project 25

2.1 Introducing TekDays.com 26

2.2 Meet Our Customer . 26

2.3 Iteration Zero . 28

2.4 Summary . 34

3 Laying the Foundation 35

3.1 Creating a Domain Class 35

3.2 More About Domain Classes 37

3.3 Testing Our Domain Class 38

3.4 Taking Control of Our Domain 41

3.5 Modifying Code That Doesn’t Exist 42

3.6 Bootstrapping Some Test Data 45

3.7 Summary . 49

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 8

4 Building Relationships 53

4.1 The TekUser Domain Class 53

4.2 One-to-One Relationships 55

4.3 One-to-Many Relationships 60

4.4 Collections of Simple Data Types 62

4.5 Adding a Sponsor Class 64

4.6 Many-to-Many Relationships 66

4.7 Finishing Up the Domain Model 71

4.8 Summary . 73

5 Beyond Scaffolding 75

5.1 Generating Scaffolding Code 75

5.2 Anatomy of a Grails Controller 76

5.3 Grails Views with Groovy Server Pages 83

5.4 Configuring a Database 94

5.5 Summary . 97

6 Getting Things Done 98

6.1 Changing All Our Views at Once 98

6.2 Modifying the Scaffolded Views 99

6.3 Event Task List . 106

6.4 Grails Service Classes 108

6.5 Integration Testing . 111

6.6 Modifying the Task Class 113

6.7 Summary . 114

7 Forum Messages and UI Tricks 116

7.1 Restricting Messages to an Event 116

7.2 Of Templates and Ajax 122

7.3 Display Message Threads with a Custom Tag 128

7.4 Summary . 133

8 Knock, Knock: Who’s There? Grails Security 135

8.1 Grails Security Options 135

8.2 Logging In . 136

8.3 Filters . 139

8.4 Logging Out . 142

8.5 Summary . 144

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 9

9 Big-Picture Views 146

9.1 Home Page Makeover . 146

9.2 Creating a New Controller 149

9.3 Designing the Dashboard View 150

9.4 Adding the Dashboard Action 156

9.5 Adding a Menu . 158

9.6 Linking to the Dashboard 160

9.7 Summary . 162

10 Seek, and You Shall Find 163

10.1 Search Using Dynamic Finders 163

10.2 Hibernate Criteria Builder 166

10.3 The Big Guns: The Searchable Plug-In 170

10.4 Summary . 177

11 Icing on the Cake 178

11.1 The Grails UI Plug-In . 178

11.2 The Twitter Plug-In . 183

11.3 Making the Event Page Customizable with the Blurb

Plug-In . 189

11.4 User-Friendly URLs . 193

11.5 Summary . 196

12 Deployment and Beyond 198

12.1 Using a JNDI Data Source 198

12.2 Creating and Deploying a WAR 200

12.3 Next Steps . 201

12.4 Parting Thoughts . 202

A Additional CSS Rules 203

B Resources 205

B.1 Online Resources . 205

B.2 Meet the G3 Community 206

B.3 Other Resources . 210

B.4 IDE Support . 211

C Bibliography 213

Index 214

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

Introduction
1.1 Let Me Tell You About Grails. . .

Web development is a very rewarding experience. Building an applica-

tion that can run from anywhere in the world is pretty awesome. Even

in a corporate environment, you can deliver new features to your users,

no matter where they are located, without ever touching their computer.

It’s a beautiful thing. Consider also what you can build: the potential

for creativity on the Web is unlimited.

The Java platform brings even more power to the party. The Java Serv-

let API and the plethora of libraries and frameworks in the Java ecosys-

tem make it possible to include almost any feature you could want in a

web application. It is an exciting time to be a web developer. However,

it’s not all sweetness and light.

With all this power comes a level of complexity that can be daunting.

With most Java-based web frameworks, there are multiple XML config-

uration files to deal with, along with classes to extend and interfaces

to implement. As a project grows, this complexity seems to increase

exponentially.

Many web application frameworks have been created to address this

problem. So many Java web frameworks have been developed that

you might ask, “Why Grails? Why another framework?” That was my

thought when I first heard about Grails.

I was at a conference that featured sessions on an array of Java-related

technologies and was planning to attend several talks on JavaServer

Faces (JSF), which is what I was working with at the time. During one

of the time slots where there was nothing JSF-related, I wandered into

www.allitebooks.com

http://www.allitebooks.org

HOW DOES GRAILS DO IT? 11

a session on Grails by Scott Davis. And I have to say, I was impressed.

But not convinced.

In the past, I had worked with so-called rapid application development

tools on the desktop and had seen the trade-off that you had to make to

get these “applications in minutes.” As soon as you needed to do more

than the tool was designed for, you were stuck. I didn’t want to go down

that road again. Still, Grails did look like it would be a good choice for

small applications. So, I gave it a try.

After using Grails to build a website for our local Java user group, I was

hooked. By day, I was struggling with JSF and Enterprise JavaBeans

(EJB); by night, I was having a blast building a website with Grails. I

began to look for ways to take advantage of the brilliant simplicity of

Grails in my day job. After all, I worked in a Java shop, and Grails is a

fully compliant JEE1 framework. It would produce a standard .war file,

which could be deployed on our commercial JEE application server.

Finally, an opportunity presented itself.

It was a small but important public-facing web application, planned as

a six-week JSF/EJB project. With Grails, it was done in three weeks—

and it turned out to be a little less trivial than we thought, because

we needed to integrate with an existing EJB server. We found that the

Grails “magic” was great for most of the application and provided sig-

nificant productivity boosts. We also found that when we needed to do

something Grails didn’t handle “out of the box,”2 it was easy to dip into

the underlying technologies and do what we needed. There were no

black boxes or brick walls. It wasn’t “the Grails way or the highway.”

We went on to use Grails to rescue another, much larger project that

was in trouble, with similar results. Grails is definitely not just for small

applications!

1.2 How Does Grails Do It?

Grails takes a set of successful frameworks, each of which has made its

own strides toward addressing the complexity of building web applica-

tions, and makes them all simpler, easier to use, and ultimately more

powerful.

1. Java Enterprise Edition.
2. I use this term with some hesitation—see http://dave-klein.blogspot.com/2008/08/out-of-box.html.

WHY THIS BOOK? 12

Grails bundles Spring, Hibernate, Sitemesh, HSQLDB, Jetty, and a

host of other battle-hardened frameworks, and following the principle

of “convention over configuration,”3 it removes the complexity for most

use cases. And it uses the dynamic Groovy programming language to

magically give us easy access to the combined power of these tools.

Recall from my story that on the projects I was involved in, Grails was

a replacement for both JSF and EJB. JSF, like Struts before it and

JSP before that, is intended to address the web tier (the front end).

EJB was the framework we were using to provide persistence, trans-

actions, and various other services (the back end). Grails addresses

the whole application, and more important, it allows us to address the

whole application. Using the frameworks mentioned earlier, Grails gives

us a complete, seamless MVC4 framework that is really more of a web

application platform than just another framework.

1.3 Why This Book?

The idea for this book came about while working on the projects I men-

tioned earlier. I had been working with Grails for a while, but four other

developers were working with me, and we really could have used a book

to help bring them up to speed quickly. They didn’t need a reference

book yet but something more than a collection of articles and blog posts

(as helpful as those are).

As Grails’ exposure and acceptance continues to grow and as more and

more developers have their “wow!” moments, it will become even more

important to have a resource to help them get started quickly. That’s

the goal of this quick-start guide. It is not intended to be a reference

or the only Grails book on your shelf. In this book, I’ll help you get

started and become productive with Grails, but you will no doubt want

to go beyond that. To help you dig deeper, I’ve included lists of books,

websites, blogs, and other helpful resources from the Groovy/Grails

community in Appendix B, on page 205.

This book is, however, intended to be more than a cursory introduc-

tion. We will cover all the basics of Grails and a few advanced topics

as well. When we have finished our time together here, you will under-

stand Grails well enough to use it in real projects. In fact, you will have

3. See http://en.wikipedia.org/wiki/Convention_over_Configuration.
4. Model View Controller. See http://en.wikipedia.org/wiki/Model-view-controller.

WHO SHOULD READ THIS BOOK 13

already used it in a real project, because that is what we are going to

do together. More on that later.

1.4 Who Should Read This Book

This book is aimed at web developers looking for relief from the pain

brought on by the complexity of modern web development. If you dream

in XML and enjoy juggling multiple layers of abstraction at a time or if

you are in a job where your pay is based on the number of lines of code

you write, then Grails may not be for you. If, on the other hand, you are

looking for a way to be more productive, a way to be able to focus on the

heart of your applications instead of all the technological bureaucracy,

then you’re in the right place.

I am assuming an understanding of web application development, but

you don’t need to be an expert to benefit from Grails and from this

book. An understanding of Java or another object-oriented program-

ming language would be helpful. If you have experience with Spring and

Hibernate, you are ahead of the curve, but if you’ve never even heard

of them, you’ll do fine. You can go quite far with Grails and be using

Spring and Hibernate extensively without even realizing it. Finally, the

language of Grails is Groovy. I won’t assume that you have any experi-

ence with Groovy, and you won’t need a great deal of it to get going with

Grails. However, some knowledge of Groovy syntax and constructs will

be helpful, so we’ll now embark on a brief tutorial.

1.5 Source Code

The code for the project in this book is available for download. You can

find a link to the source code on the book’s home page: http://pragprog.

com/titles/dkgrails. At the top of most code listings, there is a gray box

that shows where this code can be found in the source code repository.

In the PDF version of the book, this is a link directly to the code file.

You’ll notice that the path shown in these boxes is different from the

one suggested in the text; this is because we have multiple snapshots

of the project at different stages, one for each chapter.

Grails Versions

The examples in this book have been tested with Grails 1.1.1. Grails

1.2 is in the works and will be bringing several new features. Keep an

ENOUGH GROOVY TO BE DANGEROUS 14

eye on the Grails: A Quick-Start Guide blog (http://gquick.blogspot.com)

for any potential breaking changes and workarounds.

1.6 Enough Groovy to Be Dangerous

Groovy is a dynamic language for the Java Virtual Machine (JVM). Of

all the JVM languages, Groovy has the best integration with Java and

probably the lowest barrier to entry for Java developers. Java is con-

sidered by many to be in the “C family” of languages; that is to say that

its syntax borrows heavily from the C language. Other languages in this

family are C++, C#, and, by its close relationship to Java, Groovy. With-

out getting into a debate on whether that syntax family is a good one,

it is one that millions of developers are familiar with. That means that

millions of developers can quickly pick up Groovy!

Groovy—like Spring, Hibernate, and the other frameworks used in

Grails—is included in the Grails install. You do not need to install

Groovy to use Grails. However, Groovy is a great multipurpose lan-

guage, and I encourage you to download it and take it for a spin. You

will quickly become more productive in areas like XML processing,

database access, file manipulation, and more. You can download the

Groovy installation and find more information on the Groovy website.5

Some excellent books are available on Groovy such as Venkat Subra-

maniam’s Programming Groovy [Sub08], Scott Davis’s Groovy Recipes:

Greasing the Wheels of Java [Dav08], and Groovy in Action [Koe07] by

Dierk König and friends.

We’re going to discuss the Groovy features that are most often used in

a Grails application. But first, for the benefit of Java developers, we’ll

look at some of the differences between Java and Groovy.

1.7 Groovy Syntax Compared to Java

Despite the overall syntactic similarities, there are some differences

between Groovy and Java that are worth noting. The first thing you’ll

notice in a block of Groovy code is the lack of semicolons; in Groovy,

semicolons are optional. Return statements are also optional. If there is

no return statement in a method, then the last statement evaluated is

returned. Sometimes this makes sense, especially in the case of small

5. http://groovy.codehaus.org

GROOVY SYNTAX COMPARED TO JAVA 15

methods that simply return a value or perform a single calculation.

Other times it can be confusing. That’s the beauty of the word optional.

When return makes code more readable, use it; when it doesn’t, don’t.

Parentheses for method calls are optional in most cases, the exception

being when calling a method without any arguments. Here are some

examples:

x = someMethodWithArgs arg1, arg2, arg3

y = someMethodWithoutArgs()

Methods without arguments need the parentheses so that Groovy can

tell them apart from properties. Groovy provides “real” properties.6 All

fields in a Groovy class are given getters and setters at compile time.

When you access a field of a Groovy class, it may look like you are

directly accessing the field, but behind the scenes, the getter or setter

is being called. If you’re not convinced, you can call them explicitly.

They’ll be there even though you didn’t code them.

Download introduction/get_property.groovy

class Person {

String name

}

def person = new Person()

person.name = 'Abigail'

assert person.getName() == 'Abigail'

person.setName('Abi')

assert person.name == 'Abi'

If you explicitly declare a get or set method for a property, it will be used

as expected.

Download introduction/explicit_set_property.groovy

class Person {

String name

void setName(String val){

name = val.toUpperCase()

}

}

def person = new Person(name:'Sarah')

assert person.name == 'SARAH'

6. Joe Nuxoll provides a good explanation of the concept of properties at

http://blogs.sun.com/joe/resource/java-properties-events.pdf.

GROOVY STRINGS 16

The previous snippet shows a few other differences in Groovy. First,

all Groovy classes automatically get a named-args constructor. This is

a constructor that takes a Map and calls the set method for each key

that corresponds to a property.7 You can easily see how this might save

several lines of code with larger classes. Grails takes advantage of this

feature to assign the values from a web page to a new object instance.

Second, in Groovy, types are optional. Instead of giving a variable an

explicit type, we can use the def keyword to designate that this vari-

able will be dynamically typed. The third difference is the use of == in

the assert statements. In Groovy, == is the same as calling the equals()

method on the left operand.

Now, the toUpperCase() method we just used is the same as in Java.

But for a little fun, we can modify that last example to try one of the

many methods that Groovy adds to the String class.8

Download introduction/reverse.groovy

class Person {

String name

void setName(String val){

name = val.toUpperCase().reverse()

}

}

Person p = new Person(name:'Hannah')

assert p.name == 'HANNAH'

It worked. Trust me.

Not only does Groovy enhance the java.lang.String class, but it also adds

an entirely new one.

1.8 Groovy Strings

Groovy adds a new string known as a GString. A GString can be created by

declaring a literal with double quotes; a string literal with single quotes

is a java.lang.String. A GString can be used in place of a Java String. If

7. Any elements in the map that do not correspond to a property are ignored by the

named-args constructor.
8. You can find more goodies in the API docs at

http://groovy.codehaus.org/groovy-jdk/java/lang/String.html.

GROOVY CLOSURES 17

a method is expecting a String and is given a GString, it will be cast at

runtime.

The beauty and power of the GString is its ability to evaluate embedded

Groovy expressions. Groovy expressions can be designated in two ways.

For simple values that are not directly adjacent to any plain text, you

can just use a dollar sign, like this:

"Hello $name"

For more involved expressions, you can use the dollar sign and a pair

of curly braces:

"The 5th letter in 'Encyclopedia' is ${'Encyclopedia'[4]}"

There can be any number of expressions in a given GString, and single

quotes can be embedded without any escaping. This comes in handy

when generating HTML, as we’ll see later. For now, let’s take a look at

the GString in action.

Download introduction/hello_groovy_string.groovy

def name = 'Zachary'

def x = 3

def y = 7

def groovyString = "Hello ${name}, did you know that $x x $y equals ${x*y}?"

assert groovyString == 'Hello Zachary, did you know that 3 x 7 equals 21?'

1.9 Groovy Closures

A Groovy closure, in simple terms, is an executable block of code that

can be assigned to a variable, passed to a method, and executed.9 Many

of the enhancements Groovy has made to the standard Java libraries

involved adding methods that take a closure as a parameter.

A closure is declared by placing code between curly braces. It can be

declared as it is being passed to a method call, or it can be assigned

to a variable and used later. A closure can take parameters by listing

them after the opening curly brace and separating them from the code

with a dash-rocket (->), like so:

def c = {a, b -> a + b}

9. There has been much discussion and some confusion over the definition of a “closure”

in programming languages. Some argue that what Groovy defines as a closure isn’t. If

you’re ever in town, we can discuss it over a cup of coffee, but for our purposes, we’ll be

referring to closures as defined at http://groovy.codehaus.org/Closures.

GROOVY COLLECTIONS 18

If no parameters are declared in a closure, then one is implicitly pro-

vided: it’s called it. Take a look at the following example:

Download introduction/closure_times.groovy

def name = 'Dave'

def c = {println "$name called this closure ${it+1} time${it > 0 ? 's' : ''}"}

assert c instanceof Closure

5.times(c)

There’s a fair bit of new stuff in these three lines of code. Let’s start at

the top. The variable name is available when the closure is executed.

Anything that is in scope when the closure is created will be available

when it is executed, even if it is being executed by code in a differ-

ent class. The closure is being assigned to the variable c and has no

declared parameters. It does have and use the implicit parameter it.

The code in this closure takes advantage of another Groovy shortcut.

What would be in Java System.out.println() is now just println(). When

you look at the text of the GString that follows, it becomes obvious that

this code will work only if whatever calls this closure passes it a single

parameter that is a number. That’s just what the times() method, which

Groovy adds to Integer, does. The parentheses are not required for the

times() method, but I added them to emphasize that the closure was

being passed in as a parameter. The output from this code looks like

this:

Dave called this Closure 1 time

Dave called this Closure 2 times

Dave called this Closure 3 times

Dave called this Closure 4 times

Dave called this Closure 5 times

There is much more to the Groovy closure than we can cover here, and

I highly recommend the coverage of this topic in Programming Groovy

[Sub08]. We will see more examples of Closures in action as we look at

Groovy collection classes.

1.10 Groovy Collections

Groovy offers many enhancements to the standard Java collection clas-

ses. We’ll take a look at the three collection types that are most used

in Grails. The List, Map, and Set are powerful tools, and Groovy gives

them a new edge. I know—technically Map is not a Collection; that is,

it does not implement the Collection interface. But for our purposes, it

is a collection in that it holds objects. So, leaving semantic sensitivities

aside, let’s look at what Groovy has done for these classes.

GROOVY COLLECTIONS 19

List

One of the first interesting things to learn about the List in Groovy is

that it can be created with a literal declaration.

Download introduction/groovy_list.groovy

def colors = ['Red', 'Green', 'Blue', 'Yellow']

def empty = []

assert colors instanceof List

assert empty instanceof List

assert empty.class.name == 'java.util.ArrayList'

A comma-separated list inside square brackets is an initialized List. It

can contain literal numbers, strings, or any other objects. This is a

good time to point out that in Groovy everything is an object. Even

simple data types such as int or boolean are autoboxed objects. (That’s

why we were able to call the times() method on the literal 5 in our ear-

lier example.) The last line of this example shows that the default List

implementation in Groovy is a java.util.ArrayList.

Groovy has also added a host of helpful methods to the List interface.

One of the most useful is each(). This method is actually added to all

objects in Groovy, but it is most useful with collection types. The each()

method on List takes a closure as a parameter and calls that closure

for each element in the List, passing in that element as the single “it”

parameter.

Download introduction/groovy_list.groovy

def names = ['Nate', 'Matthew', 'Craig', 'Amanda']

names.each{

println "The name $it contains ${it.size()} characters."

}

This example will print the following output to the console:

The name Nate contains 4 characters.

The name Matthew contains 7 characters.

The name Craig contains 5 characters.

The name Amanda contains 6 characters.

Two handy methods added by Groovy are min() and max():

Download introduction/groovy_list.groovy

assert names.min() == 'Amanda'

assert names.max() == 'Nate'

GROOVY COLLECTIONS 20

Groovy also provides a few easy ways to sort a List. The simple sort() will

provide a natural sort of the elements in the List. The sort() method can

also take a closure. If the closure has no explicit parameters, then the

implied it parameter can be used in an expression to sort on. You can

also give the closure two parameters to represent two List elements and

then use those parameters in a comparison expression. Here are some

examples:

Download introduction/groovy_list.groovy

def sortedNames = names.sort()

assert sortedNames == ['Amanda','Craig','Matthew','Nate']

sortedNames = names.sort{it.size()}

assert sortedNames == ['Nate','Craig','Amanda','Matthew']

sortedNames = names.sort{obj1, obj2 ->

obj1[2] <=> obj2[2]

}

assert sortedNames == ['Craig','Amanda','Nate','Matthew']

The first example performs a natural sort on the names. The second

example uses a closure to sort the names based on their size(). The last

example, though admittedly contrived, is the more interesting one. In

that example, we pass a closure to the sort(). This closure takes two

parameters that represent two objects to be compared. In the body of

the closure, we use the comparison operator10 to compare some aspect

of the two objects; in this case, and this is the contrived part, we com-

pare the third character in the name with [2]. This type of sort would

make more sense when the List elements are a more complex type and

you need to sort on a combination of properties or a more complex

expression—but you get the point.

Another useful feature of List is that the left shift operator (<<) can be

used in place of the add() method:

Download introduction/groovy_list.groovy

names << 'Jim'

assert names.contains('Jim')

10. <=> is a shortcut for the compareTo() method.

www.allitebooks.com

http://www.allitebooks.org

GROOVY COLLECTIONS 21

Map

The Map class contains a collection of key/value pairs. It also can be

created with a literal declaration, like so:

Download introduction/groovy_map.groovy

def family = [boys:7, girls:6, Debbie:1, Dave:1]

def empty = [:]

assert family instanceof Map

assert empty instanceof Map

assert empty.getClass().name == 'java.util.LinkedHashMap'

The Map class in Groovy also has the each() method. When it is given

a closure without any parameters, the implicit it will be a Map.Entry

containing key and value properties. The more common approach is to

give the closure two parameters. The first parameter will hold the key,

and the second parameter will hold the value.

Download introduction/groovy_map.groovy

def favoriteColors = [Ben:'Green',Solomon:'Blue',Joanna:'Red']

favoriteColors.each{key, value ->

println "${key}'s favorite color is ${value}."

}

The output from this code would be as follows:

Ben's favorite color is Green.

Solomon's favorite color is Blue.

Joanna's favorite color is Red.

In Groovy, Map entries can be accessed using dot notation, as if they

were properties. You may have noticed that in our first Map exam-

ple, we had to use empty.getClass().name instead of the Groovy shortcut

empty.class.name. That’s because empty.class would have looked for a key

in empty called class. Other than a few edge cases like that, this is the

preferred way to access Map values.

Download introduction/groovy_map.groovy

assert favoriteColors.Joanna == 'Red'

There is no overridden left shift operator for Map, but adding an element

is still a snap. Assigning a value to a key that doesn’t exist will add that

key and value to the Map.

Download introduction/groovy_map.groovy

favoriteColors.Rebekah = 'Pink'

assert favoriteColors.size() == 4

assert favoriteColors.containsKey('Rebekah')

WHERE TO FROM HERE? 22

Set

The Set class also implements the Collection interface, so most of what

we saw with List applies to it as well. Set is the default type for one-to-

many associations in Grails, so we’ll be working with it often. There are

a couple of notable differences between Set and List. First, a Set can’t

contain duplicates, and second, it can’t be accessed with the subscript

operator ([]). This last difference can be a hindrance, but it is easy to

overcome with the toList() method.

Download introduction/groovy_set.groovy

def employees = ['Susannah','Noah','Samuel','Gideon'] as Set

Set empty = []

assert employees instanceof Set

assert empty instanceof Set

assert empty.class.name == 'java.util.HashSet'

employees << 'Joshua'

assert employees.contains('Joshua')

println employees.toList()[4]

In this example, we create a Set with four names in it. Since we didn’t

declare employees with a type, we need to cast it as a Set. (The default

type for a literal declaration like this is ArrayList.) We could have just

declared the type explicitly, as we do with empty on the next line. Then

we add another item to the Set using the handy left shift operator and

assert() that it is there. Finally, we show that there are now five items by

printing the fifth one with println employees.toList()[4]. This is the output

from the last line of that example: Samuel. This brings up another point

about Set: you have no control of the order in which elements are stored.

If you need to specify an order, either sorted or creation order, you can

use a SortedSet or List.

Many more methods are added to these classes that we don’t have

space to cover here. To become more productive in Groovy (and to have

more “wow!” moments), check out the Groovy JDK docs at http://groovy.

codehaus.org/groovy-jdk.

1.11 Where to from Here?

Now that you have some Groovy basics under your belt, we are ready

to get into Grails. Over the next 11 chapters, we will be exploring most

ACKNOWLEDGMENTS 23

areas of the Grails framework. We won’t spend a great deal of time

on any one feature, and we may not cover every aspect of Grails. The

goal is to give you the knowledge and experience necessary to start

working effectively and productively with Grails and to point you to the

resources you’ll need as you continue.

“Experience?” you say. “How do I get experience from a book?” This

book is meant not only to be read but to be used. In the Groovy tutorial,

I showed some code snippets and explained them. In the rest of the

book, we will be working together on a real project. By the time you

finish this book, you will have developed and deployed your first full-

featured web application with Grails.

Finally, at the end of the book, there is an appendix containing re-

sources (websites, blogs, mailing lists) available in the thriving Groovy

and Grails community.

Let’s get started.

1.12 Acknowledgments

First, and most of all, I thank my creator and savior, Jesus Christ.

Without Him I could do nothing, and I know that every good thing

I have comes from Him (James 1:17). I am also very grateful to the

many individuals who helped bring this book about and/or make it

better. This book has been a family project, but there wasn’t room on

the cover to put all of our names. My wonderful wife, Debbie, and our

crew: Zachary, Abigail, Benjamin, Sarah, Solomon, Hannah, Joanna,

Rebekah, Susanna, Noah, Samuel, Gideon, and Joshua all helped in

various ways from proofreading/editing to just cheering me up and

keeping me going. Thank you, and I love you all very much.

The technical reviewers, beta readers, and others who provided feed-

back have made this book much better than I ever could have done on

my own. Aitor Alzola, Jeff Brown, Doug Burns, Frederick Daoud, Scott

Davis, Paolo Foletto, Amer Ghumrawi, Bill Gloff, Brian Grant, Steve

Harris, Brian Hogan, Dmitriy Kopylenko, Guillaume Laforge, Shih-gian

Lee, John Penrod, Jared Richardson, Nathaniel Schutta, Ken Sipe, Dan

Sline, Matt Stine, Venkat Subramaniam, and Ray Tayek: thank you all

so much for your help and encouragement!

ACKNOWLEDGMENTS 24

Writing a book for the Pragmatic Programmers has been an awesome

experience, and I am very grateful to them for giving me this opportu-

nity. Dave, Andy, Colleen, Jackie, and Susannah: working with you has

been an honor, a privilege, and a lot of fun! I can’t wait to do it again!

Many others helped bring this book about in various ways, though

they may not know it. I’d like to thank the gang at the Culver’s in

Portage, Wisconsin, for their cheerful faces, for their free wireless, and

for not chasing me out even after closing time. To the speakers on

the NoFluffJustStuff symposium tour and Jay Zimmerman, their ring-

leader: thank you for your inspiration, encouragement, and example!

Matthew Porter, Craig McElroy, and the rest of the gang at Contegix:

thank you for giving me the opportunity to spend some time at such an

exciting company and for your continued support of the Grails commu-

nity. I’d also like to thank my former co-worker (and the best program-

mer in the world) Nate Neff for attempting to temper my enthusiasm

(it’s not gonna work).

Finally, I’d like to thank the Grails development team and the Grails

community for making web development so much fun.

Tell me and I forget. Teach me and I remember. Involve me

and I learn.

Benjamin Franklin

Chapter 2

Our Project
When you’re learning a new tool or language, you might start with a

“Hello World” example or perhaps work through a few exercises in a

book. Those steps can help you become acquainted with the tool, but

that’s as far as they’ll take you. If you want to become productive in

a tool or even proficient, you need use it in a real project. So, that’s

what we’re going to do. We’ll work together to build a cool new web

application—one that will actually go live. As our application comes

together, we’ll explore Grails in a thorough, practical way. This strategy

will provide us with the context that is so valuable in understanding

and becoming productive with a new framework.

We’ll be working through a series of iterations, covering about one iter-

ation per chapter. This means that some features of Grails will be used

in more than one chapter. We want to build a real application, and the

repetition that comes with that is a good thing. This is a quick-start

guide, but we don’t want it to be a false-start guide. When our time

together is over, you’ll be able to go on to your second Grails project

with confidence.

One concern with this method of discovery is that we’re going to run

into more advanced features of Grails, perhaps before we are ready.

We’ll handle this potential problem by developing our application in an

incremental manner. In other words, our application will start simple,

thereby exercising the simple features in Grails, and gradually get more

complex.

INTRODUCING TEKDAYS.COM 26

2.1 Introducing TekDays.com

The decision about what kind of project to take on in our quest to

learn Grails is an important one. We want something that is substantial

enough to exercise the framework in ways that will stick in our minds

but not something that is so daunting that we are unable to finish

it. We’re also aiming for something useful and interesting. After all,

you may need something more than my charm and wit to keep your

attention.

Here’s an issue many developers encounter: the rapid pace of techno-

logical innovation today is making it more difficult and, at the same

time, increasingly important to keep our skills as developers up-to-

date. One great way to keep on top of innovations and advances is

to attend technical conferences, but with tightening training budgets at

many companies and more developers working as freelancers or inde-

pendent contractors, it is often hard to afford these events. Some devel-

opers have taken to organizing local, nonprofit mini-conferences to help

address the problem. You may have heard of these events, such as the

Houston Tech Fest, Silicon Valley Code Camp, or the bar camps that are

springing up all over.1 Wouldn’t it be great if there was an online appli-

cation to help individuals connect and put on these types of events?

Well, when we’re done here, there will be.

TekDays.com is going to be a site where people can announce, plan,

and promote local, grassroots technical conferences. It will all start

when visionary individuals suggest an event in their city. Then, as oth-

ers hear about it and register their interest and/or support, we’ll pro-

vide tools to help them organize the event: a to-do list, an organizer’s

dashboard (to keep track of volunteers, sponsors, and potential atten-

dees), a discussion forum, and, finally, a customizable event page to

help with promotion. This may sound like a tall order, but Grails can

make it happen.

2.2 Meet Our Customer

One of the major benefits of Grails is its ability to provide rapid feed-

back. In minutes, we can have new features up and running and ready

for our customers to try. But that benefit is hard to realize if we don’t

1. For more information on these events, see http://www.houstontechfest.com,

http://www.siliconvalley-codecamp.com, and http://en.wikipedia.org/wiki/BarCamp.

MEET OUR CUSTOMER 27

have a customer around. And this application is about building com-

munity: making connections, sharing ideas, and working together to

build a solution. This application is going to production; in fact, I’m

going to use it to organize a real tech conference, so I’ll be joining you

on the dev team as well as playing the role of on-site customer—and

first end user. Don’t worry; I have experience wearing multiple hats. As

we work on TekDays, you can show me what you’ve done, and I’ll let

you know what I think about it. Fair enough?

Application Requirements

As your customer, I want to give you a good idea of what I am looking

for in this application. I am trying to attract conference organizers to

this site—preferably many of them. I am convinced of the value of these

types of conferences to individual developers, communities, and the

industry as a whole. The application should make it easy for those

visionary individuals to get started by simply proposing a conference.

Then it has to provide real help in bringing their vision to fruition.

As an end user, I am hoping to use this application to organize a tech-

nical conference in St. Louis, Missouri. This is a big undertaking, and

I know that I can’t do it alone, so I need this application to make it

easy for others to volunteer, or to at least let me know that they are

interested in attending. Some type of workflow to guide me through the

process would make this whole endeavor much less daunting.

After this introduction and a follow-up discussion with our customer

and user (me and myself, respectively), we have come up with the fol-

lowing feature list for our application:

• Create new events

• Display event details

• Edit event details

• Create users/organizers

• Allow users to volunteer to help

• Add users to events

• Allow anonymous users to register interest

• Create sponsors

• Add sponsors to events

ITERATION ZERO 28

• Have default list of tasks

• Add/remove tasks

• Assign tasks to users

• Post forum message

• Reply to forum message

• Display forum message threads

• Customize event page

• Allow access to event home page with simple URL

This list gives us a good idea of the scope of the project. When we’re

done here, people will be able to propose conferences, volunteer to help,

or add their support. Organizers will be able to assign tasks to volun-

teers to spread the load, and questions can be asked and answered in

the forums to keep the communication flowing. As a conference begins

to take shape, we’ll provide the tools needed to promote it successfully.

Businesses will be able to bring their resources to bear to help make it

all happen. This is getting exciting!

We will, of course, need to flesh these out more as we go along. Dur-

ing each iteration, we’ll design and implement two or three features.

Along the way, we (or our customer) may come up with new features or

changes. That’s OK. Grails can handle it, and so can we.

2.3 Iteration Zero

Before we get started building our application, we’ll take a few moments

to set the stage.

Installing Grails

First off, let’s get Grails installed and set up. There are a few different

ways to install Grails, with installers on one end of the spectrum and

building the source out of SVN on the other. We’ll use that happy middle

ground and download the compressed binaries. They are at http://grails.

org/download and come in either zip or tar/gz versions. Once we have

them, follow these steps:

1. Expand the archive to a directory on your computer.

2. Set your GRAILS_HOME environment variable to this directory.

ITERATION ZERO 29

3. Add GRAILS_HOME/bin to your path.

4. Ensure that you have a JAVA_HOME environment variable pointing

to a JDK version 1.5 or higher.

To test our installation, run the following command:

$ grails help

If this returns something like the following output, then we’re good to

go:

Welcome to Grails 1.1 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: /opt/grails/current

Base Directory: /Users/dave/dev

Running script /opt/grails/current/scripts/Help_.groovy

Environment set to development

Usage (optionals marked with *):

grails [environment]* [target] [arguments]*

Examples:

grails dev run-app

grails create-app books

Available Targets (type grails help 'target-name' for more info):

grails bootstrap

grails bug-report

grails clean

grails compile

grails console

grails create-app

grails create-controller

grails create-domain-class

grails create-filters

grails create-integration-test

...

If you don’t see this output, verify that your GRAILS_HOME and JAVA_

HOME environment variables are valid and that GRAILS_HOME/bin is on

your path. You can do this easily with echo:

$ echo $GRAILS_HOME

$ echo $JAVA_HOME

$ echo $PATH

On Windows, this would be as follows:

> echo %GRAILS_HOME%

> echo %JAVA_HOME%

> echo %PATH%

ITERATION ZERO 30

Grails Scripts

Grails comes with more than forty built-in scripts that can be run with

the grails command. These scripts are used for creating applications and

application artifacts, as well as to run tests or to run the application.

We’ll learn about many of these as we work on TekDays. If you want

to explore the others, you can do that with grails help. As we saw in the

previous section, grails help will show you a list of the scripts that come

with the framework. To find out more about any one of them, run grails

help followed by the name of the script. For example:

$ grails help run-app

Although we will be using the built-in scripts only to get TekDays ready

for production, it’s worth noting that other scripts can be used with the

grails command; some plug-ins install new scripts, and it’s also possible

to write your own scripts for Grails.

Setting Up Our Workspace

In other web frameworks that I’ve used—especially Java-based frame-

works—starting a new project is an ordeal. If you’re lucky, there might

be a wizard, or perhaps there’s a template project you can copy and

customize. Even with those aids, getting everything set up and in the

right place can be a drag. Grails has a solution to this problem, in the

form of a script called create-app. We’ll use this script to get TekDays

off the ground.

From the directory that will be the parent of our project directory, enter

the following command:

$ grails create-app TekDays

The output of this script shows us that Grails is creating a bunch of

directories and files for our project. In just a bit, we’ll take a closer look

at the directories that are created and what they are used for.

The TekDays project is now ready to go. In fact, we can even run it

already:

$ cd TekDays

$ grails run-app

Here’s a summarized view of the output from the run-app script:

Base Directory: /Users/dave/dev/TekDays

Running script /opt/grails/current/scripts/RunApp.groovy

Environment set to development

Running Grails application..

Server running. Browse to http://localhost:8080/TekDays

www.allitebooks.com

http://www.allitebooks.org

ITERATION ZERO 31

Figure 2.1: We start with a working application.

Grails gives us some directory information and then tells us that the

environment is set to development. development is the default of the

three standard Grails environments. Running in the development envi-

ronment (or in development mode, as it is often called) gives us auto-

reloading (we can change most aspects of the application while it’s run-

ning and see the changes immediately) and an in-memory database to

make that rapid feedback even more rapid. These types of productivity-

enhancing features can be added to most other frameworks via external

tools and libraries, but Grails bakes them right in. The other two envi-

ronments are test and prod. We’ll return to these other environments

later when we get to testing and deployment. For now, keep in mind

that these are only defaults and can be changed if needed. The last

line of output tells us where to go to see our application in action. In

Figure 2.1, we can see what we get by browsing to that location.

It may not look like much yet, but having a working application from

the very beginning is just powerful. It gives us an excellent feedback

loop. We’ll be maintaining that runnable state, and, consequently, that

feedback loop, right through to deployment.

ITERATION ZERO 32

Starting with All Windows Intact

In their book The Pragmatic Programmer [HT00], Dave Thomas
and Andy Hunt discuss the “Broken Window” theory as it relates
to software development. This theory holds that if a building has
a broken window that is left unrepaired, its chances of further
vandalism are increased. Dave and Andy point out that if soft-
ware is left in a partially broken state (failing tests or ignored
bugs), it will continue to degenerate.

With many development tools and frameworks, we start out
with broken windows; nothing works until multiple pieces are
in place. This makes it easier to get started and keep cod-
ing without taking the time to see whether what we have
works. With Grails we start out with a running application; as we
make changes, we get immediate feedback that lets us know
whether we’ve broken something.

With some other web frameworks, we would have had to create one or

two source files, an index page, and a handful of XML files to get this

far. All it took in Grails was a single command.

Anatomy of a Grails Project

Now that we’ve seen our application run, let’s take a look at what’s

under the hood. When we ran the create-app script, several files and

directories were generated for us. (See Figure 2.2, on the following

page.) The files that were created have default code and configuration

information that we can change as needed. The directories are partic-

ularly important because they are at the heart of Grails’ “convention

over configuration” strategy. Each directory has a purpose, and when

files are placed in these directories and meet certain other conventions,

magical things will happen. We will look at most of these in more detail

when we begin to work with them. For now, here’s a brief overview:

• grails-app: The main application directory. It contains the following

directories:

– conf: Contains Grails configuration files and directories for

optional Hibernate and Spring configuration files2

2. Most Grails applications will not need Spring or Hibernate configuration files.

ITERATION ZERO 33

Figure 2.2: The files and directories of a Grails application

– controllers: Holds the controller classes, the entry points into a

Grails application

– domain: Holds domain classes, representing persistent data

– i18n: Holds message property files for internationalization

– services: Holds service classes, which are Spring-managed

beans

– taglib: Holds Groovy Server Pages (GSP) custom tag libraries

– utils: Holds codec classes3

– views: Holds the GSP views

• lib: Contains any external .jar files we may need to include (such

as JDBC drivers).

• scripts: Can contain custom Groovy scripts to be used in the

application.

• src: Contains directories for other Java and Groovy source files.

Files in this directory are available to the application at runtime.

• test: Contains directories for unit and integration tests.

• web-app: Contains directories for images, CSS, and JavaScript.

3. See http://www.grails.org/Dynamic+Encoding+Methods.

SUMMARY 34

There are also a few files shown in Figure 2.2, on the previous page.

Most of them are there to make it easier to work with a Grails project

using other tools, which you may or may not choose to explore. The

application.properties file holds our application’s name and version, along

with a list of plug-ins used. The default version for a new Grails appli-

cation is 0.1; we can change this in application.properties.

Speaking of other tools, the support for Groovy and Grails in most of the

popular development tools is good and getting better all the time. Inte-

grated development environments (IDEs) such as Eclipse, NetBeans,

and IntelliJ IDEA are a big help in managing a multitude of configura-

tion files or for dealing with verbose and redundant language syntax,

but with Grails’ use of “convention over configuration” and the clean,

concise syntax of Groovy, I find myself turning to an IDE less and less.

If you really feel the need for an IDE, you can find more information

about what’s available in Appendix B, on page 205. As we work on Tek-

Days, we will be using the command line for interacting with Grails,

but coding can be done in an editor or IDE.

2.4 Summary

We’re off to a good start. We have Grails installed. Our project require-

ments are clear and achievable. Our new application is prepped, ready,

and running.

In the next chapter, we’ll begin our first development iteration. To get

ourselves acclimated, we’ll reach for some low-hanging fruit and work

on the first three features on our list. At the end of Chapter 3, we will

be able to create, display, and edit an event.

Chapter 3

Laying the Foundation
In this chapter, we’ll implement the first three features on the TekDays

feature list. We’ll add the ability to create, view, and modify new tech-

nical conferences (or code camps or what have you). We will refer to all

of these as events. These events are the core of our application. Each

event that is created here has the potential to become an actual gath-

ering of dozens, if not hundreds, of developers, designers, architects,

and maybe even project managers, all learning, sharing, and generally

advancing our craft.

The three features that we’ll be implementing are very closely related;

they’re so close, in fact, that we will be implementing them all at once!

Grails dynamically adds the ability to create, read, update, and delete

data from a domain class. We will take advantage of this to get us

started, but we won’t stop there.

3.1 Creating a Domain Class

The heart of a Grails application is its domain model, that is, the set of

domain classes and their relationships.

A domain class represents persistent data and, by default, is used to

create a table in a database. We’ll talk more about this shortly when we

create our first domain class. For creating domain classes, Grails pro-

vides a convenience script called (unsurprisingly)1 create-domain-class.

1. The designers of Grails followed the principle of least surprise; most names in Grails

are common sense and therefore easy to remember.

CREATING A DOMAIN CLASS 36

String city
String name
TekUser organizer
String venue
Date startDate
Date endDate
String description

TekEvent

Figure 3.1: Diagram of the TekEvent class

Just as the domain model is the heart of a Grails application, the

TekEvent class will be the heart of the TekDays domain model. TekEvent

is the name of the class that we will use to represent an event (or con-

ference or code camp or tech fest). If we were to sit down and put our

heads together to come up with a design for the TekEvent class, we’d

probably end up with something similar to what we see in Figure 3.1.

To create our TekEvent class, run the following command:

$ grails create-domain-class TekEvent

The output from this command has a few lines of introductory text and

then these two lines:

Created DomainClass for TekEvent

Created Tests for TekEvent

Grails created two files for us: the domain class and a unit test class.

This is an example of the way that Grails makes it easier for us to do

the right thing. We still need to add tests, but having this test class

already created for us gives us a little nudge in the right direction.

In Grails, a domain class is a Groovy class located in grails-app/domain.

Let’s take a look:

class TekEvent {

static constraints = {

}

}

Pretty anemic, huh? Grails is powerful but not omniscient. (Maybe in

the next release....) We have to write a little code to make our TekEvent

class useful. We’ll use Groovy properties (see Section 1.7, Groovy Syntax

MORE ABOUT DOMAIN CLASSES 37

Compared to Java, on page 14.) to flesh out our domain class. It’s time

to fire up your trusty editor and add the following properties to the

TekEvent class:

Download foundation/TekDays/grails-app/domain/TekEvent.groovy

String city

String name

String organizer

String venue

Date startDate

Date endDate

String description

We may need to come back to this class later and add or change things.

In fact, I know we will. Notice that we gave our organizer property a type

of String, but our diagram shows a User. That’s because we don’t have

a User class yet. A look at our feature list shows us we will need one.

But don’t worry: refactoring a Grails application, especially in the early

stages, is a breeze.

While you have your editor out, why not add a toString() method to

TekEvent too? I find that this always comes in handy, since it gives us an

easy way to represent an instance of our domain class as a String. We’ll

see later that Grails takes advantage of the toString() in the views that

it generates, and if we don’t create our own, we’ll get Grails’ default,

which is not all that informative or user friendly.

Groovy makes this very easy to do. Add the following code after the

properties we just added:

Download foundation/TekDays/grails-app/domain/TekEvent.groovy

String toString(){

"$name, $city"

}

This toString() method will return the name and city of the TekEvent sepa-

rated by a comma. For a refresher on what’s going on here, take another

look at Section 1.7, Groovy Syntax Compared to Java, on page 14 and

Section 1.8, Groovy Strings, on page 16.

3.2 More About Domain Classes

Now we have a persistent TekEvent class. We can create instances of

this class and save them to the database. We can even find exist-

ing instances by their id or by their properties. You might be won-

dering how that can be—where is the code for all this functionality?

TESTING OUR DOMAIN CLASS 38

Joe Asks. . .

If Groovy Is a Dynamic Language, Why Are We Specifying
the Types of Our Properties?

That’s an excellent question. If you were creating a persistent
class, why might you want to have data types on the proper-
ties? If your answer had something to do with the database
schema, move to the head of the class! Groovy is a dynamic
language, and our properties could be declared with the def

keyword rather than a type, but by using types, Grails is able
to tell our database what data type to use when defining
columns. Grails also uses type information to choose default
HTML elements for our views.

We’ll learn more about that when we start using these features, but

the short answer is that Grails dynamically adds powerful behavior to

our domain classes. As we get further in developing our application,

we’ll see that we can call methods like TekEvent.save(), TekEvent.list(), and

TekEvent.findAllByStartGreaterThan(new Date() - 30), even though we’ve never

written any code to implement those methods.

Because domain classes are such an integral part of a Grails applica-

tion, we will be coming back to them frequently as we work on TekDays,

learning a bit more each time. There is, however, one more feature

we should discuss before we continue. Along with dynamically adding

several methods and nonpersistent properties to our domain classes,

Grails adds two persistent properties: id and version. These properties

are both Integers. The id property is the unique key in the table that is

created, and the version is used by Grails for optimistic concurrency.2

3.3 Testing Our Domain Class

As I mentioned earlier, Grails makes it easy for us to do the right thing

by generating test classes for us, but we still have to write the tests. So,

let’s add a test for our TekEvent class.

2. Optimistic concurrency is a way of keeping a user’s changes from getting stomped on

by another user changing the same data at the same time. It’s outside the scope of this

book, but see http://en.wikipedia.org/wiki/Optimistic_concurrency_control for more information.

TESTING OUR DOMAIN CLASS 39

Testing and Dynamic Languages

Writing automated tests for our code is always a good idea, but
it becomes even more important when working with a dynamic
language such as Groovy. In some situations, it’s possible for
a simple typo that would be caught by the Java compiler to
sneak through and cause havoc at runtime. Automated unit
tests can prevent that and much more. A compiler will verify
that our code is syntactically correct, but a well-written test will
verify that it works! As Stuart Halloway once said, “In five years,
we will view compilation as a really weak form of unit testing.”

Fortunately, writing unit tests in Groovy is much easier than it
would be in a language such as Java or C#. See Chapter 16,
“Unit Testing and Mocking,” in Programming Groovy [Sub08]
for more information on applying the power of Groovy to unit
testing.

Grails includes the JUnit testing framework wrapped in Groovy good-

ness. By default Grails provides two types of testing, unit and integra-

tion.3 Since the goal of a unit test is to test a single class in isolation,

Grails unit tests do not provide access to any of the dynamic behavior

that would otherwise be available.

At this point, most of the functionality of the TekEvent class is dynamic.

However, we can write a test for the toString() method. Open TekDays/test/

unit/TekEventTests.groovy. You should see something like this:

import grails.test.*

class TekEventTests extends GrailsUnitTestCase {

protected void setUp() {

super.setUp()

}

protected void tearDown() {

super.tearDown()

}

void testSomething() {

}

}

3. We’ll learn more about integration tests in Section 6.5, Integration Testing, on

page 111.

TESTING OUR DOMAIN CLASS 40

Grails gives us one stubbed-out test called testSomething(). We can add

as many tests as we want to a GrailsUnitTestCase; any method that begins

with the word test will be treated as a test. We are currently adding

only one test, so we will just replace testSomething() with a testToString()

method. Modify the test class to look like this:

Download foundation/TekDays/test/unit/TekEventTests.groovy

import grails.test.*

class TekEventTests extends GrailsUnitTestCase {

protected void setUp() {

super.setUp()

}

protected void tearDown() {

super.tearDown()

}

void testToString() {

def tekEvent = new TekEvent(name: 'Groovy One',

city: 'San Francisco, CA',

organizer: 'John Doe',

venue: 'Moscone Center',

startDate: new Date('6/2/2009'),

endDate: new Date('6/5/2009'),

description: 'This conference will cover all...')

assertEquals 'Groovy One, San Francisco, CA', tekEvent.toString()

}

}

Our test code is simple enough. We are creating a new TekEvent using

the named-args constructor, assigning it to the variable tekEvent, and

asserting that tekEvent.toString() is equal to the expected value.

Grails provides a script called test-app that will, by default, run all of

our application’s unit and integration tests. We can use the -unit flag to

tell it to run only unit tests. This is helpful since we want to run our

tests frequently and unit tests are much faster than integration tests.

Let’s use it now to run our test:

$ grails test-app -unit

In the output from this command, we see the following lines:

Running 1 Unit Test...

Running test TekEventTests...

testToString...SUCCESS

Unit Tests Completed in 409ms ...

...

Tests PASSED - view reports in .../iteration_1/TekDays/test/reports.

www.allitebooks.com

http://www.allitebooks.org

TAKING CONTROL OF OUR DOMAIN 41

Each TestCase is shown, and each individual test is listed with its result.

The result will be either SUCCESS, FAILURE, or ERROR. FAILURE means that

the test ran with one or more assertion failures. ERROR means that an

exception occurred. In the event of a FAILURE or ERROR, you will find very

helpful information in the HTML reports that Grails produces. The final

line of output from test-app gives the location of these reports.

3.4 Taking Control of Our Domain

The next step in implementing our first features is to give our users a

way to create TekEvent instances. To do this, we will need a controller

class. Controller classes are the dispatchers of a Grails application. All

requests from the browser come through a controller. We will do quite

a bit of work with controller classes later, but for now all we need is a

blank one. Once again, Grails has a script to produce this:

$ grails create-controller TekEvent

This will create the files grails-app/controllers/TekEventController.groovy and

test/unit/TekEventControllerTests.groovy. (We won’t be using the TestCase yet

since we currently have virtually no code to test.) Let’s open the TekEvent-

Controller in our editor and take a look:

class TekEventController {

def index = { }

}

The line that we see in this otherwise empty controller—def index = {

}—is called an action. Specifically, the index action. We will eventually

have controllers full of actions, but for now we will take advantage of a

powerful Grails feature called dynamic scaffolding. Dynamic scaffolding

will generate a controller with a set of actions and corresponding views

(pages), which we will discuss shortly. To get all this magic, let’s change

the TekEventController to look like this:

Download foundation/TekDays/grails-app/controllers/TekEventController.groovy

class TekEventController {

def scaffold = TekEvent

}

Now when we run our application, we see a link titled TekEventCon-

troller on the index page. This link takes us to the list view. This is

MODIFYING CODE THAT DOESN’T EXIST 42

Figure 3.2: The scaffolded list view

the first of four views that are made available by the dynamic scaffold-

ing; the others are create, edit, and show. Run the application, navigate

to http://localhost:8080/TekDays, and click the TekEventController link. You

should see something like Figure 3.2.

The list is (obviously) empty, since we haven’t created any events yet. In

the menu bar of the list view, there is a button labeled New TekEvent.

This button will take us to the create view. (See Figure 3.3, on the next

page.) We’ll have to tweak these views a bit, but first let’s see what our

customer thinks.

3.5 Modifying Code That Doesn’t Exist

I put on my customer hat, and, after getting over my shock at how fast

you got this much done, I found the following issues with these views:

• List view:

– The Grails logo, while very cool, is not the logo I had in mind

for TekDays.

– The id column is not something that I or other users need to

see.

MODIFYING CODE THAT DOESN’T EXIST 43

Figure 3.3: The scaffolded create view

– What’s with the order of the columns? I would prefer to see

Name, City, Description, Organizer, Venue, and so on.

• Create view:

– The logo and field order issues apply here too.

– There is definitely not enough room in the Description field to

enter any meaningful content.

– I don’t need to enter the minutes and seconds of an event’s

start and end dates.

MODIFYING CODE THAT DOESN’T EXIST 44

Some of these issues will have to wait until we generate code that we

can modify.4 Currently we are using dynamic scaffolding, which allows

us to make changes to our domain model and quickly see the effects

of those changes but doesn’t provide us with any code that we can

customize. However, we can fix some of the issues the customer brought

up by modifying our TekEvent class.

Constraining Our Domain

Grails uses our domain classes to make some decisions about the scaf-

folding. For example, property types are used to determine which HTML

elements to use. To go further, we can add constraints to our domain

class. Constraints are a way of telling Grails more about the properties

of our domain class. They are used for validation when saving, for deter-

mining some aspects of database schema generation, and for laying out

scaffolded views. We’ll look at those first two uses of constraints later

(see the sidebar on page 74), but that last one is what we’re going to

take advantage of now. Open TekDays/grails-app/domain/TekEvent.groovy

in your trusty editor, and add the following code:

Download foundation/TekDays/grails-app/domain/TekEvent.groovy

static constraints = {

name()

city()

description(maxSize:5000)

organizer()

venue()

startDate()

endDate()

}

The constraints consist of a code block, which is a Groovy closure.5

Inside this block, we list each of our properties, followed by parenthe-

ses. Inside the parentheses, we can include one or more key/value pairs

that represent rules for that property. The order of the properties in the

constraints block will be used to determine the display order in the

scaffolded views. The maxSize constraint that we added to the description

property will affect how that property is displayed in the views and will

also affect the database schema generation. For example, in MySQL,6

4. Grails does provide a way to make more significant changes to dynami-

cally scaffolded views with the install-templates script. You can read about it at

http://grails.org/Artifact+and+Scaffolding+Templates.
5. See Section 1.9, Groovy Closures, on page 17.
6. See http://dev.mysql.com.

BOOTSTRAPPING SOME TEST DATA 45

Figure 3.4: List view with constraints

the description field will be of type TEXT, whereas nonconstrained String

properties will render fields of VARCHAR(255).

When we run the application and navigate to the list view, we see that

it looks more like Figure 3.4. In this view, we corrected only the order

of the properties, but if we click the New TekEvent button, we see that

the create page looks significantly better. (See Figure 3.5, on the next

page.) The order of the properties is correct, and we get a text area for

entering a description instead of an input field. We haven’t addressed

all the issues yet, but we’re moving in the right direction, and we’ll

continue to make small corrections as we go.

3.6 Bootstrapping Some Test Data

To get a better feel for how TekDays is coming along, we can enter

some data and check out the various views. We’ve seen the list and

create views, but there’s also the show and edit views.

The problem with entering test data now is that it would all be lost

as soon as we restarted the application. We’re working with an in-

memory database at this point. Eventually, we will point TekDays at

a real database, but for now, the in-memory HSQL database is pretty

handy—that is, it would be if we didn’t lose our data.

BOOTSTRAPPING SOME TEST DATA 46

Figure 3.5: Create view with constraints

BOOTSTRAPPING SOME TEST DATA 47

This dilemma’s answer is in TekDays/grails-app/conf/BootStrap.groovy. The

file has an init() code block, which is executed by our application at

start-up. If we create TekEvent instances there, they will be preloaded for

us every time we run the application. (Once we do set up a persistent

database, we’ll tweak this code to make sure we don’t get duplicates.)

Give it a try. Open TekDays/grails-app/conf/BootStrap.groovy, and modify it

to look similar to the following code. You can make up your own event.

Be creative. It makes the learning process more fun.

Download foundation/TekDays/grails-app/conf/BootStrap.groovy

class BootStrap {

def init = { servletContext ->

def event1 = new TekEvent(name: 'Gateway Code Camp',

city: 'Saint Louis, MO',

organizer: 'John Doe',

venue: 'TBD',

startDate: new Date('9/19/2009'),

endDate: new Date('9/19/2009'),

description: '''This conference will bring coders from

across platforms, languages, and industries

together for an exciting day of tips, tricks,

and tech! Stay sharp! Stay at the top of your

game! But, don't stay home! Come an join us

this fall for the first annual Gateway Code

Camp.''')

if (!event1.save()){

event1.errors.allErrors.each{error ->

println "An error occured with event1: ${error}"

}

}

def event2 = new TekEvent(name: 'Perl Before Swine',

city: 'Austin, MN',

organizer: 'John Deere',

venue: 'SPAM Museum',

startDate: new Date('9/1/2009'),

endDate: new Date('9/1/2009'),

description: '''Join the Perl programmers of the Pork Producers

of America as we hone our skills and ham it up

a bit. You can show off your programming chops

while trying to win a year's supply of pork

chops in our programming challenge.

Come and join us in historic (and aromatic),

Austin, Minnesota. You'll know when you're

there!''')

BOOTSTRAPPING SOME TEST DATA 48

if (!event2.save()){

event2.errors.allErrors.each{error ->

println "An error occured with event2: ${error}"

}

}

}

def destroy = {

}

}

Notice the triple single quotes (”’) surrounding the description values in

our new TekEvent instances. This is a Groovy way to declare a multiline

String, which allows us to enter text on multiple lines without joining

them with + signs. (It’s yet another way that Groovy helps us keep our

code cleaner.)

By assigning our new TekEvent instances to a variable and then saving

them in a separate step, we’re able to do a little error checking in case

we mistyped something; when a domain class instance fails to save, its

errors property will be populated with one or more Error objects, which

will give us some clues as to what went wrong.

Once you’ve saved those changes, run the application again. When we

navigate to the list view, it should look more like Figure 3.6, on page 50.

If your new data doesn’t show up, check your console output to see

whether anything was reported by our sophisticated error-handling

system.

if (!event1.save()){

event1.errors.allErrors.each{error ->

println "An error occured with event1: ${error}"

}

}

Now that we have some data to look at, I’d like to point out a couple

more features of the default list view. The id property in the first column

is, by default, a link that will bring up the selected item in the show

view. We will change this once we have generated code to work with,

but for now it’s an easy way to get around. The other feature is difficult

to show on a printed page: all the columns in the table are sortable by

clicking the column header. The sort order will toggle between ascend-

ing and descending as you would expect. Not bad for the amount of

code we had to write!

SUMMARY 49

Joe Asks. . .

Why Not Just Use a “Real” Database from the Beginning?

When your Grails application is hooked up to a persistent
database, it becomes a little more difficult to make changes
to the domain model. Grails will make some updates to your
database; for example, it will add new columns based on new
properties. But it won’t drop columns.

Using the in-memory database for development makes it eas-
ier to share your project with other developers, since they don’t
have to create a database to run your project locally. And if
you’re working on a team, using the in-memory database with
test data loaded in BootStrap.groovy can prevent issues with tests
passing on one machine and not another because of data
differences.

If you prefer to not use the in-memory database for devel-
opment, you can jump ahead to Section 5.4, Configuring
a Database, on page 94 for information on hooking up to
a MySQL database, in which case you can skip the Boot-

Strap.groovy code altogether.

3.7 Summary

We’re off to a great start. We have the basics of the first three features

working: we can create new events, we can edit them (see Figure 3.8,

on page 52), and we can display them (see Figure 3.7, on page 51). Our

customer is still a little skeptical about how the views look, but we’ll

smooth things over. In the meantime, let’s press on with the next two

features. In the next chapter, we’re going to add users and allow them

to volunteer for events.

SUMMARY 50

Figure 3.6: List view with sample data

www.allitebooks.com

http://www.allitebooks.org

SUMMARY 51

Figure 3.7: TekEvent show view

SUMMARY 52

Figure 3.8: TekEvent edit view

Chapter 4

Building Relationships
In this iteration, we will be adding more domain classes and defining

the relationships between them.

The event is key to the TekDays application, but we can’t have an event

without that visionary individual who steps up to organize it and the

enthusiastic volunteers who help bring it about. Organizers and volun-

teers are two roles that users of TekDays will play. The same user can

be an organizer of one event and a volunteer on one or more others.

The TekDays domain model will have to reflect these relationships, but

it takes more than one to form a relationship. So, we’ll start by adding

another domain class.

4.1 The TekUser Domain Class

Some databases consider User to be a reserved word, so we’ll call our

class TekUser. (Kind of catchy, huh?) Our TekUser class diagram looks like

this:

String fullName
String userName
String password
String email
String website
String bio

TekUser

THE TEKUSER DOMAIN CLASS 54

To create this class, we’ll run the create-domain-class script like so:

$ grails create-domain-class TekUser

Now open TekDays/grails-app/domain/TekUser.groovy, and edit it to look like

this:

Download model/TekDays/grails-app/domain/TekUser.groovy

class TekUser {

String fullName

String userName

String password

String email

String website

String bio

String toString(){ fullName }

static constraints = {

fullName()

userName()

email()

website()

bio(maxSize:5000)

}

}

We added the constraints and toString() method right away this time.

Next, we’ll create the controller and enable dynamic scaffolding for our

TekUser class. Go ahead and run grails create-controller:

$ grails create-controller TekUser

Now let’s enable the scaffolding:

Download model/TekDays/grails-app/controllers/TekUserController.groovy

class TekUserController {

def scaffold = TekUser

}

This gives us scaffolded views, like the ones we saw for TekEvent. Before

we look at those, let’s go ahead and add some test data to make them

more interesting. Open TekDays/grails-app/conf/BootStrap.groovy, and add

the following code to the init block immediately after the code we added

in the previous chapter:

Download model/TekDays/grails-app/conf/BootStrap.groovy

new TekUser(fullName: 'John Doe',

userName: 'jdoe',

password: 't0ps3cr3t',

email: 'jdoe@johnsgroovyshop.com',

ONE-TO-ONE RELATIONSHIPS 55

website: 'blog.johnsgroovyshop.com',

bio: '''John has been programming for over 40 years. He has worked

with every programming language known to man and has settled

on Groovy. In his spare time, John dabbles in astro physics

and plays shuffleboard.''').save()

new TekUser(fullName: 'John Deere',

userName: 'tractorman',

password: 't0ps3cr3t',

email: 'john.deere@porkproducers.org',

website: 'www.perl.porkproducers.org',

bio: '''John is a top notch Perl programmer and a pretty good

hand around the farm. If he can't program it he can

plow it!''').save()

This code is similar to our test data for TekEvent, so we won’t spend

much time on it.

Now when we run TekDays and navigate to the index page, we see a

new link for the TekUserController. Follow this link to see the list view, as

shown in Figure 4.1, on the following page.

The generated list views don’t show all the properties of our class; by

default, the Grails scaffolding produces list views with six columns. The

first column will always be the id property, which Grails added to our

domain. The rest of the columns are chosen based on the current order-

ing of properties. (Remember that the property ordering is alphabetical

by default but can be changed by adding constraints, as we discussed

in Section 3.5, Constraining Our Domain, on page 44.)

Now that we have two domain classes, we can see how Grails handles

domain relationships.

4.2 One-to-One Relationships

In Figure 3.1, on page 36, the organizer property is shown as a TekUser,

but in our current TekEvent, it’s still a String. Now that we have a TekUser,

we can fix this discrepancy. Let’s open TekDays/grails-app/domain/

TekEvent.groovy and change the organizer from a String to a TekUser:

Download model/TekDays/grails-app/domain/TekEvent.groovy

String city

String name

TekUser organizer

String venue

Date startDate

Date endDate

String description

ONE-TO-ONE RELATIONSHIPS 56

Figure 4.1: TekUser list view

We have now joined the TekEvent and TekUser classes in a one-to-one rela-

tionship. Each TekEvent instance can have exactly one TekUser. That was

simple enough; however, if we save this and try to run our application,

we’ll get a lovely (and long) error stacktrace. The problem is that we are

still assigning a String (’John Doe’ or ’John Deere’) to the organizer prop-

erty of the TekEvent instances that we created in BootStrap.groovy. This

will be easy to fix, but we will need to do a bit more coding.

In the init block of BootStrap.groovy, we are creating two TekEvent in-

stances and two TekUser instances. We are creating them anonymously

and then saving them to the database so that they are available to the

rest of the application. Let’s take advantage of this: we can retrieve

the TekUser objects from the database and assign them to the organizer

property of our TekEvent instances. For this to work, we’ll also have to

rearrange our code so that the TekUser instances are created first. Here’s

an abbreviated version of what this should look like:

Download model.1/TekDays/grails-app/conf/BootStrap.groovy

def init = { servletContext ->

new TekUser(fullName: 'John Doe',

userName: 'jdoe',

password: 't0ps3cr3t',

email: 'jdoe@johnsgroovyshop.com',

ONE-TO-ONE RELATIONSHIPS 57

website: 'blog.johnsgroovyshop.com',

bio: 'John has been programming for over 40 years. ...').save()

new TekUser(fullName: 'John Deere',

userName: 'tractorman',

password: 't0ps3cr3t',

email: 'john.deere@porkproducers.org',

website: 'www.perl.porkproducers.org',

bio: 'John is a top notch Perl programmer and a ...').save()

new TekEvent(name: 'Gateway Code Camp',

city: 'Saint Louis, MO',

organizer: TekUser.findByFullName('John Doe'),

venue: 'TBD',

startDate: new Date('9/19/2009'),

endDate: new Date('9/19/2009'),

description: 'This conference will bring coders ...').save()

new TekEvent(name: 'Perl Before Swine',

city: 'Austin, MN',

organizer: TekUser.findByFullName('John Deere'),

venue: 'SPAM Museum',

startDate: new Date('9/1/2009'),

endDate: new Date('9/1/2009'),

description: 'Join the Perl programmers of the ...').save()

}

Introducing GORM

What we just did is almost trivial as far as code goes but very interesting

behind the scenes. To set the value for the organizer property of each

TekEvent, we are calling the method TekUser.findByFullName(). This method

doesn’t actually exist. I mentioned earlier that Grails adds methods to

our domain classes at runtime. This is not one of them. Instead, what

Grails is doing here is synthesizing behavior at runtime. When a method

call beginning with findBy is made on one of our domain classes, Grails

will parse the rest of the method name to see whether it matches any of

the properties of the class. Then it executes the behavior that we would

expect if a method with that name and parameters did exist. This is

called a dynamic finder, and it is part of one of Grails’ core components

called Grails Object Relational Mapping (GORM).

Any time we save, retrieve, or relate any of our domain class instances,

we are using GORM. GORM removes the need for much of the boil-

erplate, repetitive code that we would have to write to work with other

ORM systems or JDBC.1 We’ll learn more about GORM and take advan-

tage of more of its features as we continue working on TekDays.

1. Java Database Connectivity.

ONE-TO-ONE RELATIONSHIPS 58

Dynamic Finders

Grails takes advantage of Groovy’s metaprogramming capa-
bilities to synthesize finders for our domain class properties at
runtime.∗ We can call methods that begin with findBy, find-
AllBy, or countBy, followed by up to two properties and optional
operators.

Some examples will make this clearer. All of these would be
valid methods on a TekEvent instance:

• countByCity(’New York’)

• findAllByStartDateGreaterThan(new Date())

• findByCityAndDescriptionLike("Minneapolis", "%Groovy%")

Properties in dynamic finders can be joined by And or Or. The
following are some of the operators that can be used:

• LessThan

• Between

• IsNotNull

• Like

For the complete list of operators, see http://www.grails.org/

OperatorNamesInDynamicMethods.

∗. For more information about metaprogramming in Groovy, see
http://groovy.codehaus.org/Dynamic+Groovy.

The code we added hooks up TekEvent and TekUser in a unidirectional

one-to-one relationship. A TekEvent has a TekUser, but the TekUser doesn’t

know anything about the TekEvent.

Now that we have a domain relationship, let’s take a look at it. Run the

application, and follow the TekEventController link. Then click the id of

one of the rows to bring up the show view. It should look similar to what

is shown in Figure 4.2, on the next page. Notice that the organizer’s full

name now appears as a link. This link takes us to the TekUser show view.

Keeping Our Tests Updated

If we’ve been running our tests frequently with grails test-app (and we

should be), we will see that our TekEventTests fails.

ONE-TO-ONE RELATIONSHIPS 59

Figure 4.2: TekEvent show view with link to TekUser

That’s because the test code still expects TekEvent.organizer to be a String.

Let’s fix that before we move on.

We don’t really want to include the TekUser class in the unit test for

TekEvent, so instead, we’ll mock the organizer with a Map. Open Tek-

Days/test/unit/TekEventTests.groovy, and change the organizer property, as

shown here:

Download model.1/TekDays/test/unit/TekEventTests.groovy

import grails.test.*

class TekEventTests extends GrailsUnitTestCase {

protected void setUp() {

super.setUp()

}

protected void tearDown() {

super.tearDown()

}

ONE-TO-MANY RELATIONSHIPS 60

void testToString() {

def tekEvent = new TekEvent(name: 'Groovy One',

city: 'San Francisco, CA',

organizer: [fullName:'John Doe'] as TekUser,

venue: 'Moscone Center',

startDate: new Date('6/2/2009'),

endDate: new Date('6/5/2009'),

description: 'This conference will cover all...')

assertEquals 'Groovy One, San Francisco, CA', tekEvent.toString()

}

}

Groovy allows us to coerce a Map to a class or interface with the as

operator. We’re giving the Map a firstName element for clarity, but we

could just as well have used an empty Map, since we’re not referring to

any of the organizer’s properties in our test.

Now our tests pass. All is well.

4.3 One-to-Many Relationships

A TekEvent will have one organizer but will need more than one volunteer

to be successful. A volunteer is also a TekUser, and we just set up a

relationship between TekEvent and TekUser. We’re going to set up another

relationship between these two classes, but this time it will be a one-

to-many relationship. A TekEvent will have zero or more volunteers.

Grails uses a static property called hasMany to declare one-to-many

relationships. hasMany is a Map, with the key being the name of the

collection in the owning class and the value being the type of the child

class. Let’s see how that looks in our TekEvent. Open TekDays/grails-app/

domain/TekEvent.groovy, and add the hasMany declaration, as shown in

the following code:

Download model/TekDays/grails-app/domain/TekEvent.groovy

Date endDate

String description

static hasMany = [volunteers : TekUser]

String toString(){

"$name, $city"

}

That line of code—static hasMany = [volunteers : TekUser]—gives us a Col-

lection of TekUser objects, along with methods to add and remove them.

Grails’ dynamic scaffolding will automatically pick up this change and

modify our views. To demonstrate this, let’s add some more bootstrap

www.allitebooks.com

http://www.allitebooks.org

ONE-TO-MANY RELATIONSHIPS 61

code. Open TekDays/grails-app/conf/BootStrap.groovy, and add the follow-

ing code to the bottom of the init block:

Download model/TekDays/grails-app/conf/BootStrap.groovy

def g1 = TekEvent.findByName('Gateway Code Camp')

g1.addToVolunteers(new TekUser(fullName: 'Sarah Martin',

userName: 'sarah',

password: '54321',

email: 'sarah@martinworld.com',

website: 'www.martinworld.com',

bio: 'Web designer and Grails afficianado.'))

g1.addToVolunteers(new TekUser(fullName: 'Bill Smith',

userName: 'Mr_Bill',

password: '12345',

email: 'mrbill@email.com',

website: 'www.mrbillswebsite.com',

bio: 'Software developer, claymation artist.'))

g1.save()

With this code, we retrieve a TekEvent by calling TekEvent.findByName().

Then we add new TekUser instances with the TekEvent.addToVolunteers()

method, which Grails dynamically synthesizes for us. Finally, we save

our TekEvent, which also saves its TekUser instances.

When we navigate to the show view for this event, we see that it contains

a list of volunteer’s names. Each name links to the TekUser show view

for that user. (See Figure 4.3, on the following page.)

Grails also supports bidirectional one-to-many relationships with cas-

cading deletes using the static belongsTo2 property, which is declared in

the child class, like so:

class Parent {

...

static hasMany = [children:Child]

}

class Child {

...

Parent parent

static belongsTo = Parent

}

2. belongsTo is used to show that another class is the owning side of a relationship. It is

used for one-to-many and many-to-many relationships.

COLLECTIONS OF SIMPLE DATA TYPES 62

Figure 4.3: TekEvent show view with volunteers

4.4 Collections of Simple Data Types

We’ve added an organizer and a collection of volunteers to our TekEvent.

That takes care of three more features from our list. We have some

time left in this iteration, so let’s take on another feature. We’ll add the

ability for anonymous users to register interest in an event.

On second thought, a completely anonymous show of interest isn’t very

valuable. Let’s say that a person can show an interest by registering to

be notified when there are updates to the event. It will still be somewhat

anonymous, in that the user has to give only an email address. From

an application viewpoint, this is also simpler; we won’t have to create

another domain class to represent this information. For the end user,

we’ll try to make it as simple as subscribing to a mailing list.

Grails provides a great way for us to associate these addresses with

a TekEvent: we can use the hasMany property with a simple data type

COLLECTIONS OF SIMPLE DATA TYPES 63

instead of a domain class. We already used hasMany to set up a collec-

tion of TekUser instances named volunteers. This time we will be setting

up a String collection containing email addresses.

We need to give a meaningful name to the collection of email addresses.

I think emails is a bit too generic. Sure, these are email addresses, but

they represent individuals who have responded to let us know they are

interested in an event. We’ll go with respondents.

Let’s make it so, as they say. Modify the hasMany property in TekDays/

grails-app/domain/TekEvent.groovy to look like this:

static hasMany = [volunteers:TekUser, respondents:String]

With this code in place, our TekEvent now has a collection of respon-

dents’ email addresses. This change will be reflected in our scaffolded

views, but that will be easier to see with some data in place. Open

TekDays/grails-app/conf/BootStrap.groovy, and add a few calls to TekEvent.()

addToRespondents(). It should look something like this:

Download model.1/TekDays/grails-app/conf/BootStrap.groovy

g1.addToVolunteers(new TekUser(fullName: 'Bill Smith',

userName: 'Mr_Bill',

password: '12345',

email: 'mrbill@email.com',

website: 'www.mrbillswebsite.com',

bio: 'Software developer and claymation artist.'))

g1.addToRespondents('ben@grailsmail.com')

g1.addToRespondents('zachary@linuxgurus.org')

g1.addToRespondents('solomon@bootstrapwelding.com')

g1.save()

This code is similar to the call to TekEvent.addToVolunteers() also shown

here. The difference is that we are not creating new domain class in-

stances to pass into the method—we are passing Strings instead. In Fig-

ure 4.4, on the next page, we see how the scaffolding automatically

picks up this new relationship and displays it in a reasonable manner.

(It’s reasonable but not very fashionable. Remember we are focusing on

functionality now. We’ll spruce it up a bit later.)

ADDING A SPONSOR CLASS 64

Figure 4.4: TekEvent show view with respondents

4.5 Adding a Sponsor Class

TekDays is geared toward community-driven technical conferences,

and one of the keys to a successful community-driven conference is

low cost to attendees. This can be difficult to accomplish, considering

the cost of meeting space, A/V rental, food, and so on. One way to have

all these necessities and still keep the registration fees low is to involve

sponsors; in other words, companies involved in the technology or tech-

nologies featured are often willing to contribute toward the cost of the

conference in exchange for a bit of exposure.

It sounds like it’s time for a new domain class. We’ll call our new class

Sponsor. (See Figure 4.5, on the following page.) From our project’s root

directory, run the following:

$ grails create-domain-class Sponsor

ADDING A SPONSOR CLASS 65

String name
String website
String description
byte[] logo

Sponsor

Figure 4.5: The Sponsor class

Open the newly created TekDays/grails-app/domain/Sponsor.groovy. Enter

the following code:

Download model.2/TekDays/grails-app/domain/Sponsor.groovy

class Sponsor {

String name

String website

String description

byte[] logo

String toString(){

name

}

static constraints = {

name(blank:false)

website(blank:false)

description(nullable:true, maxSize:5000)

logo(nullable:true, maxSize:1000000)

}

}

There are two new things to point out in this code, both having to do

with the logo property. The first is the type: byte[]. The logo property

will hold an image of the sponsor’s logo, which will be stored as an

array of bytes. The second is the constraint for logo. We added a maxSize

constraint to this property in order to let the database know to use

a BLOB (or other appropriate data type). Without this, many database

systems would produce a field that wouldn’t hold anything bigger than

an icon.

MANY-TO-MANY RELATIONSHIPS 66

We also need to create a controller to enable dynamic scaffolding. We’ll

do this exactly as we did for TekEvent and TekUser, but for a refresher,

here it is:

$ grails create-controller Sponsor

Next, open the generated controller TekDays/grails-app/controllers/Sponsor-

Controller.groovy, and modify it like so:

Download model.2/TekDays/grails-app/controllers/SponsorController.groovy

class SponsorController {

def scaffold = Sponsor

}

When we run TekDays now, we see a new SponsorController link. Fol-

low that link to the empty list view, and then click New Sponsor to

open the create view. In Figure 4.6, on the next page, we see that the

logo property is rendered as a file input element. But Grails goes beyond

that: full file upload functionality is baked right in. When we save a new

Sponsor, the file we’ve chosen for the logo will automatically be uploaded

and stored in the database. After we save, we can see that the show view

doesn’t look that great, but we’ll work on that later.

4.6 Many-to-Many Relationships

One of the concerns about bringing in a sponsor for a technical event

is that the whole thing might turn into a commercial for a vendor. That

becomes much less of a concern if there are multiple sponsors for an

event. On the other hand, a single company might be interested in

sponsoring more than one event. So, should a TekEvent have a collec-

tion of Sponsor instances, or should Sponsor have a collection of TekEvent

instances? The short answer is both. The longer answer, which we’ll get

to shortly, is neither.

The relationship between TekEvent and Sponsor is a many-to-many rela-

tionship. Grails supports many-to-many relationships implicitly by

having each class include the other in its hasMany block. In this ar-

rangement, each class will have a collection of the other, but one side

has to be declared as the owning side. For this, Grails uses the static

variable belongsTo.

MANY-TO-MANY RELATIONSHIPS 67

Figure 4.6: Sponsor create view

Here’s an example:

class TekEvent {

...

static hasMany=[..., sponsors:Sponsor]

}

class Sponsor {

...

static hasMany=[events:TekEvent]

static belongsTo=TekEvent

}

This code would create the relationships, or links, between a TekEvent

and its collection of Sponsor instances, as well as between a Sponsor

and its collection of TekEvent instances. What it wouldn’t do is tell us

anything about the relationship itself. When our users are organizing

an event, it’s great that they’re able to see who their sponsors are, but

it would also be helpful to know what each sponsor is contributing.

MANY-TO-MANY RELATIONSHIPS 68

TekEvent event
Sponsor sponsor
String contributionType
String description
String notes

Sponsorship

Figure 4.7: The Sponsorship class

Are they providing the meeting space, A/V equipment, food, T-shirts (a

critical piece of a successful event), or a cash contribution? If they are

contributing cash, how much?

To store this type of information, we will need an intermediary class.

We’ll call this class Sponsorship. (See Figure 4.7.) This class will have a

reference to a single TekEvent and a single Sponsor, with fields to tell us

more about what the sponsor is providing for the event. Let’s go ahead

and create this class:

$ grails create-domain-class Sponsorship

We’ll implement this class with the following code:

Download model.3/TekDays/grails-app/domain/Sponsorship.groovy

class Sponsorship {

TekEvent event

Sponsor sponsor

String contributionType

String description

String notes

static constraints = {

event(nullable:false)

sponsor(nullable:false)

contributionType(inList:["Other", "Venue", "A/V", "Promotion", "Cash"])

description(nullable:true, blank:true)

notes(nullable:true, blank:true, maxSize:5000)

}

}

In this class, we’re using a new constraint. The inList constraint takes as

its value a list of Strings. Only values matching one of the items in the

list will be allowed; any other values will cause a constraint violation

when saving. But wait, there’s more. Grails will also use this constraint

to render an HTML <select> element in the scaffolded views. We’ll take

a look at that shortly, but first we have a little more plumbing to do.

MANY-TO-MANY RELATIONSHIPS 69

We need to modify TekEvent and Sponsor so that they each have a col-

lection of Sponsorship instances. Open TekDays/grails-app/domain/Sponsor.

groovy, and add a hasMany property. Then add a new constraint to the

constraint block, like so:

Download model.3/TekDays/grails-app/domain/Sponsor.groovy

static hasMany=[sponsorships:Sponsorship]

static constraints = {

name(blank:false)

website(blank:false)

description(nullable:true, maxSize:5000)

logo(nullable:true, maxSize:1000000)

sponsorships(nullable:true)

}

Repeat those steps with TekDays/grails-app/domain/TekEvent.groovy:

Download model.2/TekDays/grails-app/domain/TekEvent.groovy

static hasMany = [volunteers:TekUser,

respondents:String,

sponsorships:Sponsorship]

static constraints = {

name()

city()

description(maxSize : 5000)

organizer()

venue()

startDate()

endDate()

volunteers(nullable : true)

sponsorships(nullable : true)

}

One last step: let’s add some sponsorship data in our BootStrap so that

we’ll have something to look at. Open TekDays/grails-app/conf/BootStrap.

groovy, and add the following code to the bottom of the init block:

Download model.2/TekDays/grails-app/conf/BootStrap.groovy

def s1 = new Sponsor(name:'Contegix',

website:'contegix.com',

description:'Beyond Managed Hosting for your Enterprise'

).save()

def s2 = new Sponsor(name:'Object Computing Incorporated',

website:'ociweb.com',

description:'An OO Software Engineering Company'

).save()

def sp1 = new Sponsorship(event:g1,

sponsor:s1,

contributionType:'Other',

description:'Cool T-Shirts')

MANY-TO-MANY RELATIONSHIPS 70

Figure 4.8: TekEvent show view with sponsorships

def sp2 = new Sponsorship(event:g1,

sponsor:s2,

contributionType:'Venue',

description:'Will be paying for the Moscone')

s1.addToSponsorships(sp1)

s1.save()

s2.addToSponsorships(sp2)

s2.save()

g1.addToSponsorships(sp1)

g1.addToSponsorships(sp2)

g1.save()

When we run the application and navigate to the TekEvent show view, we

see something like Figure 4.8. Notice that the Sponsorship instances are

shown as Sponsorship:1. This is because we did not define a toString()

for the Sponsorship class. If you’re following along (and I do hope you

are), you may also notice that clicking the Sponsorship link leads to

an error page. This is because we haven’t created a SponsorshipController

www.allitebooks.com

http://www.allitebooks.org

FINISHING UP THE DOMAIN MODEL 71

String title
String description
TekUser assignedTo
Date dueDate
TekEvent event

Task
String subject
String content
Message parent
TekEvent event
TekUser author

Message

Figure 4.9: The Task and Message classes

to enable the scaffolding. We’ll be addressing this soon. Also, as we

go about cleaning up our user interface, we’ll have different ways to

display a Sponsorship, depending on the context; but for now, this serves

to show us that the one-to-many relationship is established correctly.

Well done!

4.7 Finishing Up the Domain Model

Looking again at our feature list, we can see that we’ll need two more

domain classes. We’re going to have a list of tasks that need to be done

to prepare for an event. That will require a Task class. We’re also going

to have a simple forum that the organizer and volunteers can use to

communicate throughout the process. For this, we will need a Message

class. For a view of these classes, see Figure 4.9.

We’ll create the Task class first. Run grails create-domain-class Task, and

add the following code to TekDays/grails-app/domain/Task.groovy:

Download model.2/TekDays/grails-app/domain/Task.groovy

class Task {

String title

String notes

TekUser assignedTo

Date dueDate

TekEvent event

static constraints = {

title(blank:false)

notes(blank:true, nullable:true, maxSize:5000)

assignedTo(nullable:true)

dueDate(nullable:true)

}

static belongsTo = TekEvent

}

FINISHING UP THE DOMAIN MODEL 72

Next we’ll create the Message class and add the following code to

TekDays/grails-app/domain/Message.groovy:

Download model.2/TekDays/grails-app/domain/Message.groovy

class Message {

String subject

String content

Message parent

TekEvent event

TekUser author

static constraints = {

subject(blank:false)

content(blank:false, maxSize:2000)

parent(nullable:true)

author(nullable:false)

}

static belongsTo = TekEvent

}

There’s not much to look at in these classes other than the belongsTo.

You’ll notice that both of these classes have the following line: belongsTo

= TekEvent. This is because these classes will be involved in bidirec-

tional one-to-many relationships with the TekEvent class and we want

cascading deletes. For example, we know that a Message will belong to

only one TekEvent, and if that TekEvent goes away, there is no reason to

keep the Message. To complete these relationships, we will need to once

again modify our TekEvent. We’ll modify the hasMany property and add

two more constraints to TekDays/grails-app/domain/TekEvent.groovy. Note

the highlighted lines.

Since we’ve made so many changes to this class, we’ll show the whole

thing here for the sake of clarity:

Download model.3/TekDays/grails-app/domain/TekEvent.groovy

class TekEvent {

String city

String name

TekUser organizer

String venue

Date startDate

Date endDate

String description

String toString(){

"$name, $city"

}

SUMMARY 73

static hasMany = [volunteers:TekUser,

respondents:String,

sponsorships:Sponsorship,

tasks:Task,

messages:Message]

static constraints = {

name()

city()

description(maxSize : 5000)

organizer()

venue()

startDate()

endDate()

volunteers(nullable : true)

sponsorships(nullable : true)

tasks(nullable : true)

messages(nullable : true)

}

}

4.8 Summary

In this iteration, we created our domain model, defined and discussed

the relationships between various classes in our model, and set up

bootstrap data that we can use to bring our model to life during devel-

opment.

Now that we have our domain model set up the way we want, we are

ready to generate the code that will enable us to make more signifi-

cant changes in our application. In the next chapter, we’ll generate and

review the code behind all of the functionality we’ve seen so far.

SUMMARY 74

Constraints and Validation

Constraints are used in generating scaffolded views for a
domain class as well as for hints in generating the database
schema. But the real power of constraints is the part they play
in validation. When we call save() or validate() on one of our
domain class instances, Grails will try to validate the instance
against any constraints we have assigned. If any of the con-
straints are not met, the save() or validate() call will fail, and
appropriate error information will be stored in the instance’s
errors∗ property.

Grails provides several handy constraints that we can take
advantage of, but it also gives us the ability to define custom
constraints, so the possibilities are endless. Here are some of the
more useful built-in constraints:

• blank (true/false): Allows an empty string value.

• nullable (true/false): Allows null values.

• max: Maximum value.

• min: Minimum value.

• vsize: Takes a Groovy range to determine bounds.

• maxSize: The maximum size of a String or Collection.

• minSize: The minimum size of a String or Collection.

• inList: Value must be included in the supplied listv

• matches: Value must match a regular expression.

• unique (true/false): Enforces uniqueness in the database.

• url (true/false): Value must be a valid URL.

• email (true/false): Value must be a valid email address.

• creditCard (true/false): Value must be a valid credit card
number.

• validator: Takes a closure for custom validation. The first
parameter is the value, and the second (optional) param-
eter is the instance being validated.

∗. Error details can be found by calling errors.allErrors.each{//iterate over errors}.

Chapter 5

Beyond Scaffolding
So far, our TekDays application contains six persistent domain classes,

three controllers, and twelve views—and all with less than 130 lines of

code. Now, Grails uses the Groovy programming language, and Groovy

is known for its conciseness, but even in Groovy, this much function-

ality takes more than 130 lines of code. In fact, it’s Grails’ dynamic

scaffolding that is creating all this for us at runtime. Scaffolding is a

great feature; we’ve been taking advantage of it to gradually build and

tweak our domain model, and all the while we’ve been able to see the

effects in our views. However, it’s time to remove the training wheels

and start taking control of our code.

5.1 Generating Scaffolding Code

Grails gives us an easy way to generate the code that does what the

dynamic scaffolding has been doing for us. We won’t see any changes to

the application, but we will have the code necessary to make changes.

To get started, we will use the grails generate-all script.

The generate-all script can be called in a few different ways. If you call

it with no arguments, you will be prompted for a name. (By conven-

tion, this would be a domain class name.) For the more argumentative

types, you can call generate-all with a name as the argument. Both of

these approaches generate a controller and four views (.gsp files). This

second method is what I usually use after creating a new domain class,

but since we have several domain classes for which we want to generate

ANATOMY OF A GRAILS CONTROLLER 76

corresponding controllers and views, we will use a third option. Some-

times referred to as uber-generate-all, this modification to the generate-

all script was contributed by Marcel Overdijk.1 Let’s try it:

$ grails generate-all "*"

Once this script gets going, it will prompt you to confirm the replace-

ment of the controllers that we created earlier. Go ahead and let them

be replaced. We won’t need the old ones anymore. When it’s done, you’ll

see the statement Finished generation for domain classes.

If we run the application now, we will have all the features that we had

before we generated the code and then some. You may recall that we

created controllers and enabled dynamic scaffolding for only three of

our domain classes (TekEvent, TekUser, and Sponsor). We now have con-

trollers for Sponsorship, Task, and Message. We may not end up keeping

all of this generated code, but it makes a great learning tool, and these

files can serve as stubs to which we can add custom code. Let’s take a

closer look at the code we’ve generated.

5.2 Anatomy of a Grails Controller

Let’s examine the TekEventController first: what is it doing for us, and

what else we can do with it? Open TekDays/grails-app/controllers/TekEvent-

Controller.groovy, and follow along as we take a look at it in chunks:

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

class TekEventController {

def index = { redirect(action:list,params:params) }

// the delete, save and update actions only accept POST requests

static allowedMethods = [delete:'POST', save:'POST', update:'POST']

def list = {

params.max = Math.min(params.max ? params.max.toInteger() : 10, 100)

[tekEventInstanceList: TekEvent.list(params),

tekEventInstanceTotal: TekEvent.count()]

}

The first thing we see is the class declaration. A Grails controller is a

plain Groovy class. There is nothing to extend, and there are no inter-

faces to implement. Controllers serve as the entry points into a Grails

application.

1. http://marceloverdijk.blogspot.com/

ANATOMY OF A GRAILS CONTROLLER 77

The work done by a controller is done in an action. Actions are clo-

sure properties of the controller.2 Every closure declared in a con-

troller is an action and can be accessed via a URL in the pattern: /app-

name/controllerBaseName/action. The first letter of the controller’s name

will be lowercased, and the word Controller will be left off.

There are three options to properly exit a controller action. We can call

the render() method, which is added to all controllers and takes the

name of a view along with a Map containing any data the view needs.

We can call the redirect() method (which is also added to all controllers)

to issue an HTTP redirect to another URL. (We’ll look at this method

more closely in the next section.) And we can return null, or a Map con-

taining data, which is referred to as a model. In this last case, Grails

will attempt to render a view with the same name as the action. It will

look for this view in a directory named after the root name of the con-

troller; for example, returning from the list action of the TekEventController

will cause Grails to render the view /grails-app/views/tekEvent/list.gsp.

The Index Action

The index action is the default action that is called when we navigate

to this controller. For example, if we follow the link on the default

home page for the TekEventController, we’ll be calling http://localhost:8080/

TekDays/tekEvent. This will call the index action. By default, this action

just redirects to the list action using the redirect() method we mentioned

earlier. The redirect() method takes a Map as a parameter; this allows

it to take several optional parameters as entries in the Map. The ones

we’ll use most often are controller, action, and params. (If the controller

is not specified, the current controller will be used, and if the action is

not specified, the index action will be used.) The params is also a Map,

which holds any request parameters. The redirect() method issues an

HTTP redirect to a URL constructed from these parameters.

The List Action

The first line of the list closure is working with the params property,

which, as we saw earlier, is a Map containing all the parameters of the

incoming request. Since it is a Groovy Map, any element to which we

assign a value will be added if it doesn’t exist.

2. One nice thing about actions being closures is that we can safely declare methods in

a controller without worrying about them also being accessible via a URL.

ANATOMY OF A GRAILS CONTROLLER 78

Take a look at the following line:

params.max = Math.min(params.max ? params.max.toInteger() : 10, 100)

In this code, we see the max element being added to the params. The

value that is being set is the return value of the Math.min() method.

Math.min() is being passed the existing max value, if there is one, or

the default of 10, along with the constant of 100. This is just a bit of

protection that Grails gives us against trying to pull too many items

at once. If we tried to access this view with http://localhost:8080/TekDays/

tekEvent/list?max=1000, we would get only 100 results (assuming we had

that many events entered—why not think big?).

The last two lines make up a single statement that declares and returns

a Map with two elements: tekEventInstanceList and tekEventInstanceTotal.

The tekEventInstanceList is being loaded with a call to TekEvent.list().3 The

list() is being passed the params map, from which it will pull any

parameters that it can use.4 The tekEventInstanceTotal is loaded with

TekEvent.count(). This value will be used in the pagination built into the

list view, which we will look at shortly.

The end result of the list action is that the list view is rendered using

the data in the Map that’s returned from this action. This is done using

the conventions we discussed earlier. It’s important to note that this

feature is not limited to the generated actions and views. As we’ll see

in Chapter 9, Big-Picture Views, on page 146, we can create custom

actions and views, and if we follow the conventions, it will just work!

The Show Action

The show action expects an id parameter. Since many of the scaffolded

actions expect an id parameter, Grails provides a URL mapping that

enables the id to be part of the URL.5 If we navigate to the show view

of one of our events, our browser address bar will show something like

this: http://localhost:8080/TekDays/tekEvent/show/1.

3. list() is one of the dynamic methods added to our domain classes. See Section 3.2,

More About Domain Classes, on page 37.
4. This brings up another powerful feature of Grails. Many methods in Grails take a Map

as a parameter. These methods will look in the Map for the elements they need and ignore

the rest. That means that in one action we can pass the params Map to several different

methods, and each will just take from it what it needs. Pretty cool, huh?
5. We’ll discuss URL mapping in Section 11.4, User-Friendly URLs, on page 193.

ANATOMY OF A GRAILS CONTROLLER 79

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def show = {

def tekEventInstance = TekEvent.get(params.id)

if(!tekEventInstance) {

flash.message = "TekEvent not found with id ${params.id}"

redirect(action:list)

}

else { return [tekEventInstance : tekEventInstance] }

}

The first line of the show action calls the TekEvent.get() method to retrieve

the TekEvent referred to by the id parameter. Then there is some nifty

built-in error checking.

If no domain class instance exists with the id passed in, an error mes-

sage is stored in the flash Map, and the user is redirected to the list

view.6 This gets even better, as we will soon see, in that the list view is

already set up to display this message.

If a TekEvent instance is found with the id passed in, it is returned in a

Map with the key of tekEventInstance. Finally, the show action will render

the show view.

The Delete Action

The delete action is available, by default, in the edit and show views. It

must be called via a POST method. Going back to the beginning of our

TekEventController listing, we see the allowedMethods property. This is a

Map containing actions and the HTTP methods that can be used to call

them. This prevents a user from entering something like http://localhost:

8080/TekDays/tekEvent/delete/1 and deleting our event.

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def delete = {

def tekEventInstance = TekEvent.get(params.id)

if(tekEventInstance) {

try {

tekEventInstance.delete()

flash.message = "TekEvent ${params.id} deleted"

redirect(action:list)

}

6. flash is often referred to as a scope. I think it’s more accurate to refer to it as a Map

that exists in a special scope. Values stored in flash are available for this request and one

following request, which allows us to store a message before redirecting and have that

message be available to the redirected view.

ANATOMY OF A GRAILS CONTROLLER 80

catch(org.springframework.dao.DataIntegrityViolationException e) {

flash.message = "TekEvent ${params.id} could not be deleted"

redirect(action:show,id:params.id)

}

}

else {

flash.message = "TekEvent not found with id ${params.id}"

redirect(action:list)

}

}

The delete action starts out much like the show action. It attempts to

retrieve a TekEvent instance and redirects to the list view if it can’t find

one. That’s where the similarities end.

If an instance is found, we enter a try/catch block, where we try to delete

the instance. If the deletion is successful, we store a message in flash

and redirect to the list view. If there is an exception, we store a different

message in flash and redirect to the show view. There is no delete view,

for obvious reasons.

The Edit Action

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def edit = {

def tekEventInstance = TekEvent.get(params.id)

if(!tekEventInstance) {

flash.message = "TekEvent not found with id ${params.id}"

redirect(action:list)

}

else {

return [tekEventInstance : tekEventInstance]

}

}

The edit action doesn’t do any editing itself: that’s left up to the update

action. Instead, edit loads up the necessary data and passes it to the

edit view. Except for the name (which determines the view rendered),

the edit action is identical to the show action.

The Update Action

The update action steps up to bat when changes from the edit view are

submitted.

ANATOMY OF A GRAILS CONTROLLER 81

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def update = {

def tekEventInstance = TekEvent.get(params.id)

if(tekEventInstance) {

if(params.version) {

def version = params.version.toLong()

if(tekEventInstance.version > version) {

tekEventInstance.errors.rejectValue("version",

"tekEvent.optimistic.locking.failure",

"Another user has updated this TekEvent " +

"while you were editing.")

render(view:'edit',model:[tekEventInstance:tekEventInstance])

return

}

}

tekEventInstance.properties = params

if(!tekEventInstance.hasErrors() && tekEventInstance.save()) {

flash.message = "TekEvent ${params.id} updated"

redirect(action:show,id:tekEventInstance.id)

}

else {

render(view:'edit',model:[tekEventInstance:tekEventInstance])

}

}

else {

flash.message = "TekEvent not found with id ${params.id}"

redirect(action:edit,id:params.id)

}

}

Like earlier actions, update tries to retrieve a TekEvent instance with the

id parameter. In this case, the id will be coming from a hidden field in

the edit view. If an instance is found, we perform some optimistic con-

currency checking.7 If all that goes well, we come to a very interesting

step.

With a single line, we will assign all the values from the edit view to the

appropriate property of the TekEvent instance, including any necessary

data conversion!

tekEventInstance.properties = params

This is Grails data binding in action, and it’s a beautiful thing. Just

think of how many lines of code that would take in most other web

development tools. You gotta love it!

7. See http://en.wikipedia.org/wiki/Optimistic_concurrency_control.

ANATOMY OF A GRAILS CONTROLLER 82

Once all the incoming values have been set, we check to make sure

the instance is valid and if it can be saved to the database. If both of

those steps are successful, we receive a “success” message in flash and

are directed to the show view. If either step fails, a “failure” message is

stored in flash, and we get directed back to the edit view.

The Create Action

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def create = {

def tekEventInstance = new TekEvent()

tekEventInstance.properties = params

return ['tekEventInstance':tekEventInstance]

}

The create action creates a new TekEvent instance and then assigns the

params to its properties property. (We’ll see why this is done shortly.)

Then it returns that instance in a Map with the key of tekEventInstance.

Finally, it renders the create view.

The Save Action

Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def save = {

def tekEventInstance = new TekEvent(params)

if(!tekEventInstance.hasErrors() && tekEventInstance.save()) {

flash.message = "TekEvent ${tekEventInstance.id} created"

redirect(action:show,id:tekEventInstance.id)

}

else {

render(view:'create',model:[tekEventInstance:tekEventInstance])

}

}

}

The save action is called from the create view. It correlates to the update

action and does pretty much the same thing, minus the concurrency

check (which isn’t an issue when creating new records). If all is well,

the show view is rendered with the newly created instance. If there

are problems, the user is redirected to the create action. (This is why

the params are assigned to the tekEventInstance.properties in the create

action.)

So, that’s a tour of the generated actions of a Grails controller. We

looked at only one of the six controllers generated by the generate-all

script, but they all have the same code with different domain classes.

GRAILS VIEWS WITH GROOVY SERVER PAGES 83

Feel free to browse the rest of them. It should all look very familiar. Now

we’ll see what Grails gives us for views.

5.3 Grails Views with Groovy Server Pages

Grails uses Groovy Server Pages (GSP) for its view layer. If you’ve ever

worked with JavaServer Pages, well, you have my sympathy, but GSP

will seem familiar—only easier to work with. Grails also uses SiteMesh,8

the page decoration framework from OpenSymphony, to assist in the

page layout. SiteMesh will merge each of our .gsp files into a file called

main.gsp. This is what gives a consistent look to all of our pages, as we

saw with the dynamic scaffolding. We’ll begin our tour of the generated

views with main.gsp, followed by the four views generated for the TekEvent

class. Then we’ll look at a couple of the other views that take advantage

of additional Grails features.

Exploring main.gsp

Download beyond/TekDays/grails-app/views/layouts/main.gsp

<html>

<head>

<title><g:layoutTitle default="Grails" /></title>

<link rel="stylesheet"

href="${resource(dir:'css',file:'main.css')}" />

<link rel="shortcut icon"

href="${resource(dir:'images',file:'favicon.ico')}"

type="image/x-icon" />

<g:layoutHead />

<g:javascript library="application" />

</head>

<body>

<div id="spinner" class="spinner" style="display:none;">

</div>

<div class="logo">

</div>

<g:layoutBody />

</body>

</html>

main.gsp starts out with a <title> in the <head> section. This tag con-

tains a <g:layoutTitle> tag, which will substitute the <title> from the

8. http://opensymphony.com/sitemesh

GRAILS VIEWS WITH GROOVY SERVER PAGES 84

Figure 5.1: TekEvent list view

view that is being merged. Next, it links in a style sheet and favicon9

that will be used by all views. Then there is the <g:layoutHead> tag.

This will merge in the contents of the target view’s <head> section. The

<body> section contains a spinner image, an application logo, and a

<g:layoutBody> tag, which merges in the <body> contents of the tar-

get view.

As you can see, this file gives us a convenient place to make some major

improvements to our application. And that’s just what we’re going to do,

as soon as we finish our tour. As we discuss the four generated views,

we will be looking at only portions of them, for the sake of space. I’ll

give you the name and path for each file so you can open each one on

your system and follow along.

The List View

The TekEvent list view is shown in Figure 5.1. You can refer to that

image as we look at the GSP code behind it. You’ll find this code in

TekDays/grails-app/views/tekEvent/list.gsp.

9. http://en.wikipedia.org/wiki/Favicon

GRAILS VIEWS WITH GROOVY SERVER PAGES 85

Home

<g:link class="create" action="create">New TekEvent</g:link>

This code creates the button bar just below the Grails logo. We can see

two ways that Grails provides for creating links. The resource() method

takes a relative path and creates a URL, which is assigned to the href

attribute of an anchor tag. The <g:link> tag creates an anchor tag using

the values of the controller, action, and id attributes (if they’re provided).

If a controller is not provided, the current controller is assumed. In this

case, a link to the create action of the TekEventController will be created.

<g:if test="${flash.message}">

<div class="message">${flash.message}</div>

</g:if>

This code doesn’t show up in Figure 5.1, on the previous page, but

it is important to take note of. Recall that during our discussion of

controllers, we often had code that would store text in the message

element of flash. This is where that text will show up. The <g:if> tag

checks for the existence of flash.message and, if found, displays it.

<g:sortableColumn property="name" title="Name" />

<g:sortableColumn property="city" title="City" />

<g:sortableColumn property="description" title="Description" />

<th>Organizer</th>

<g:sortableColumn property="venue" title="Venue" />

The <g:sortableColumn> tag is what Grails uses to provide sorting on

our list view. Note that, by default, this works only with regular prop-

erties, not object references or collections. That is why we see a <th>

tag used for the organizer property.

<g:each in="${tekEventInstanceList}" status="i"

var="tekEventInstance">

<tr class="${(i % 2) == 0 ? 'odd' : 'even'}">

<td>

<g:link action="show" id="${tekEventInstance.id}">

${fieldValue(bean:tekEventInstance, field:'id')}

</g:link></td>

<td>${fieldValue(bean:tekEventInstance, field:'name')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'city')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'description')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'organizer')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'venue')}</td>

</tr>

</g:each>

GRAILS VIEWS WITH GROOVY SERVER PAGES 86

This code is the heart of the list view. We start with the <g:each> tag,

which iterates over the list that we passed in from the controller. Each

item in the list is assigned to the tekEventInstance variable. The body

of the <g:each> tag fills in the table row with the properties of the

tekEventInstance. Notice that a Groovy expression is used to determine

the CSS class of the <tr>—powerful stuff! Inside the <td> tags, the

fieldValue() method is used to render the value of each TekEvent prop-

erty. We’ll learn more about the fieldValue() method when we look at the

create view.

<div class="paginateButtons">

<g:paginate total="${tekEventInstanceTotal}" />

</div>

The final portion of the list.gsp we’ll look at is another one that we can’t

see in Figure 5.1, on page 84. The <g:paginate> tag would cause pag-

ination buttons to show up at the bottom of the list view if we had

enough events displayed to warrant it. This tag uses the total that we

passed in from the controller’s list action.

The Show View

The show view, pictured in Figure 5.2, on the next page, is in TekDays/

grails-app/views/tekEvent/show.gsp. Open this file now as we look at a few

interesting sections:

<tr class="prop">

<td valign="top" class="name">Id:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'id')}

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Name:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'name')}

</td>

</tr>

This code shows a couple of examples of how Grails displays text prop-

erties. Notice the CSS class hierarchy. The <tr> tag has a prop class,

and the <td> tags can have a name or value class.

GRAILS VIEWS WITH GROOVY SERVER PAGES 87

Figure 5.2: TekEvent show view

<tr class="prop">

<td valign="top" class="name">Organizer:</td>

<td valign="top" class="value">

<g:link controller="tekUser" action="show"

id="${tekEventInstance?.organizer?.id}">

${tekEventInstance?.organizer?.encodeAsHTML()}

</g:link>

</td>

</tr>

Here we have an example of the way Grails displays a related object.

The organizer property is rendered as a link to the TekUser show view. The

<g:link> tag has its controller and action attributes set accordingly. The

id is set to a Groovy expression that reads the id property of the organizer

property of the tekEventInstance that we passed in from the controller.

Notice the ? after the tekEventInstance and organizer references; this is

GRAILS VIEWS WITH GROOVY SERVER PAGES 88

Groovy’s safe navigation operator. When this expression is evaluated, if

either of these items is null, the whole expression evaluates to null, and

no exception is thrown. This operator has saved the world from untold

numbers of if blocks!

<tr class="prop">

<td valign="top" class="name">Start Date:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'startDate')}

</td>

</tr>

The startDate is a Date type, and yet it is rendered the same way as a

text property. Grails handles the conversion from Date to String for us.

<tr class="prop">

<td valign="top" class="name">Volunteers:</td>

<td valign="top" style="text-align:left;" class="value">

<g:each var="v" in="${tekEventInstance.volunteers}">

<g:link controller="tekUser" action="show" id="${v.id}">

${v?.encodeAsHTML()}

</g:link>

</g:each>

</td>

</tr>

The Grails scaffolding renders one-to-many relationships as an un-

ordered list. Here we see the volunteers property being displayed using

a <g:each> tag inside a tag. Another thing to notice here is the

use of the encodeAsHTML() method. This method is added to all String

objects and prevents any HTML code from being processed while the

page is rendering. This is helpful in defending against cross-site script-

ing attacks.10

<tr class="prop">

<td valign="top" class="name">Respondents:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'respondents')}

</td>

</tr>

Rounding out the show view, we have the respondents collection. This

property is a collection of String objects containing email addresses. This

type of collection is rendered as if it were a single String field.

10. http://en.wikipedia.org/wiki/Cross-site_scripting

GRAILS VIEWS WITH GROOVY SERVER PAGES 89

Figure 5.3: TekEvent create view

Grails handles converting it to a comma-separated list, as we can see

in Figure 5.2, on page 87. If we wanted to, we could use a <g:each> tag

to show these as a list or in a table.

The Create View

We can see the create view in Figure 5.3. The code for this view is in

TekDays/grails-app/views/tekEvent/create.gsp. Open this file, and we’ll see

what new and exciting things it has in store for us:

<g:hasErrors bean="${tekEventInstance}">

<div class="errors">

<g:renderErrors bean="${tekEventInstance}" as="list" />

</div>

</g:hasErrors>

GRAILS VIEWS WITH GROOVY SERVER PAGES 90

Figure 5.4: Built-in error handling

In Section 5.3, The List View, on page 84, we saw how messages that

we set in the controller are displayed in the view. Here we see another

type of message block. When a domain instance fails to save, errors are

stored in an errors property. The <g:hasErrors> tag is a conditional tag

that examines the domain instance assigned to its bean attribute and

renders its body if errors are found. In the body of the tag, we find the

<g:renderErrors> tag, which will display the errors in a list at the top

of the page. (See Figure 5.4.)

<g:form action="save" method="post" >

The <g:form> tag sets up an HTML form. This tag has controller, action,

and id attributes, which will result in the URL to submit the form to. In

this case, we’re using only the action attribute.

<tr class="prop">

<td valign="top" class="name">

<label for="name">Name:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'name','errors')}">

<input type="text"

id="name"

name="name"

value="${fieldValue(bean:tekEventInstance,field:'name')}"/>

</td>

</tr>

GRAILS VIEWS WITH GROOVY SERVER PAGES 91

The create view uses the same two-column table layout as the show

view. The difference is that here the second column contains HTML

input elements. Notice how the <g:hasErrors> tag is used in a Groovy

expression to determine the CSS class to use. It doesn’t look like a tag,

does it? All GSP tags can also be called as methods. How’s that for

versatile?

Next, the value attribute of the input element is set to another Groovy

expression using the fieldValue() method. This is where this method

really shines.

In Section 5.2, The Save Action, on page 82, we saw that if validation

fails, we redirect the user to the create view. In this case, we don’t want

to show the actual values of the tekEventInstance. We want to redisplay

the values that the user has entered. These values are stored as part

of the errors collection, and fieldValue() knows how to get them. If there

are no errors, then the tekEventInstance properties are displayed. This

method also calls encodeAsHTML() for us, since that is almost always

what we want.

<tr class="prop">

<td valign="top" class="name">

<label for="description">Description:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'description','errors')}">

<textarea rows="5" cols="40" name="description">

${fieldValue(bean:tekEventInstance, field:'description')}

</textarea>

</td>

</tr>

For the description property, Grails is using a <textarea> element:

<tr class="prop">

<td valign="top" class="name">

<label for="startDate">Start Date:</label>

</td>

<td valign="top" class="value $

{hasErrors(bean:tekEventInstance,field:'startDate','errors')}">

<g:datePicker name="startDate"

value="${tekEventInstance?.startDate}" >

</g:datePicker>

</td>

</tr>

GRAILS VIEWS WITH GROOVY SERVER PAGES 92

The <g:datePicker> tag renders that series of select elements that we

see in Figure 5.3, on page 89. This tag can be configured to be much

more useful by using the precision and noSelection attributes.11

The Edit View

The last of the scaffolded views is the edit view. See Figure 5.5, on the

following page. You will find the code in TekDays/grails-app/views/tekEvent/

edit.gsp. By now, we’ve seen most areas of interest covered in the pre-

ceding views, but open this one and follow along as we see what nuggets

might be awaiting discovery:

<tr class="prop">

<td valign="top" class="name">

<label for="organizer">Organizer:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'organizer','errors')}">

<g:select optionKey="id" from="${TekUser.list()}"

name="organizer.id"

value="${tekEventInstance?.organizer?.id}" >

</g:select>

</td>

</tr>

Here’s something new. For properties that are references to another

domain class, Grails uses a <g:select> tag, which will render a <select>

element loaded with all the available choices for that class. In this case,

we end up with a list of TekUser instances that can be assigned to the

organizer property.

<tr class="prop">

<td valign="top" class="name">

<label for="volunteers">Volunteers:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'volunteers','errors')}">

<g:select name="volunteers" from="${TekUser.list()}"

size="5" multiple="yes" optionKey="id"

value="${tekEventInstance?.volunteers}" />

</td>

</tr>

Grails also uses a <g:select> tag for unidirectional one-to-many rela-

tionships. In this case, the multiple attribute is set to yes, and the value

11. See http://www.grails.org/doc/1.1/ref/Tags/datePicker.html.

GRAILS VIEWS WITH GROOVY SERVER PAGES 93

Figure 5.5: TekEvent edit view

CONFIGURING A DATABASE 94

attribute is set to the volunteers collection property. This will render

a multiselect listbox loaded with TekUser instances. When submitted,

all the selected instances are automagically added to the volunteers

property.

<tr class="prop">

<td valign="top" class="name">

<label for="sponsorships">Sponsorships:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'sponsorships','errors')}">

<g:each var="s" in="${tekEventInstance?.sponsorships?}">

<g:link controller="sponsorship" action="show"

id="${s.id}">${s?.encodeAsHTML()}</g:link>

</g:each>

<g:link controller="sponsorship"

params="['tekEvent.id':tekEventInstance?.id]"

action="create">

Add Sponsorship

</g:link>

</td>

</tr>

In this block, we can see how the sponsorship collection property is ren-

dered as an unordered list of links. We already saw this in Section 5.3,

The Show View, on page 86. What’s interesting here is that immediately

after the tag is closed, there is a <g:link> tag that will render a

link to the create action of the SponsorshipController. The value in the

params attribute will cause this TekEvent instance to be assigned to the

tekEvent property of the newly created Sponsorship.

And this concludes our tour of the code behind the scaffolded views.

Now that this code is available to us and we have a working understand-

ing of what it is doing, we can see how we could make a few changes to

make our application a little better looking and easier to use. We’ll do

that beginning in the next chapter, but first, let’s see how we can hook

up to a real database so we no longer lose our data changes every time

we restart the application.

5.4 Configuring a Database

The in-memory database that comes with Grails is handy and we have

been making good use of it, but a time comes in the life of any applica-

CONFIGURING A DATABASE 95

tion when you need to have your data stored in a real database. (Let’s

hope this happens before you go to production.) As with most things,

Grails makes this a snap to do.

“Configuration?” You may be wondering what happened to “convention

over configuration.” Well, keep in mind that it’s over, not instead of,

and, besides, no matter how hard Larry Ellison tries, there’s still no

convention for which database to use.12 Also, Grails takes much of the

pain out of the word configuration by allowing us to write all of our

configuration code in Groovy instead of XML. The information about

our database is in TekDays/grails-app/conf/DataSource.groovy. By default,

it looks like this:

dataSource {

pooled = true

driverClassName = "org.hsqldb.jdbcDriver"

username = "sa"

password = ""

}

hibernate {

cache.use_second_level_cache=true

cache.use_query_cache=true

cache.provider_class='com.opensymphony.oscache.hibernate.OSCacheProvider'

}

// environment specific settings

environments {

development {

dataSource {

dbCreate = "create-drop" //one of 'create', 'create-drop','update'

url = "jdbc:hsqldb:mem:devDB"

}

}

test {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:mem:testDb"

}

}

production {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:file:prodDb;shutdown=true"

}

}

}

12. Larry Ellison is the cofounder and CEO of Oracle, maker of the leading enterprise

database. See http://en.wikipedia.org/wiki/Larry_Ellison.

CONFIGURING A DATABASE 96

Along with your basic database information and a bit of Hibernate-

specific options, this file has three environment blocks. These can be

used to configure our application to use different databases for develop-

ment, test, and production. Changing from the default HsqlDb to MySQL

requires changing only five lines and adding a .jar file to our project. For

now, we’ll focus on the development environment. Open TekDays/grails-

app/conf/DataSource.groovy, and change it as indicated here:

Download beyond/TekDays/grails-app/conf/DataSource.groovy

dataSource {

pooled = true

driverClassName = "com.mysql.jdbc.Driver"

username = "dave"

password = "1234"

}

hibernate {

cache.use_second_level_cache=true

cache.use_query_cache=true

cache.provider_class='com.opensymphony.oscache.hibernate.OSCacheProvider'

}

// environment specific settings

environments {

development {

dataSource {

dbCreate = "update"//one of 'create', 'create-drop','update'

url = "jdbc:mysql://localhost:3306/tekdays"

}

}

test {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:mem:testDb"

}

}

production {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:file:prodDb;shutdown=true"

}

}

}

Now we need to copy mysql-connector-java-5.0.7-bin.jar, which we can get

from http://dev.mysql.com/downloads/connector/j/5.0.html, to the TekDays/

lib directory. We also need to create an empty database called tekdays.

Grails will create all the tables for us when we run the application for

the first time.

SUMMARY 97

One last note regarding the database: the first time we run the appli-

cation with a real database, the bootstrap code will execute and create

some initial data for us. Unless we remove it or code around it, this will

happen every time we run the application. So, before we end up with a

ton of duplicate data, it’s a good idea to remove the bootstrap code after

it has been run once or add code to ensure it will run only once. For

example, we could wrap the code in Bootstrap.init() with an if block, like

this:

if (!TekEvent.get(1)){

//bootstrap code goes here...

}

With this code in place, the entire init block will be ignored after the

first time it is run. To help with making changes once an application is

in production, there are plug-ins available that enable database migra-

tions.13

Before we leave this topic, I’ll mention another strategy. Some choose

to leave the development database as an HsqlDB in-memory database

and provide persistent databases for test and production. In this case,

we would make the bootstrap code conditional on environment instead

of data. Here’s an example of how to do this:

import grails.util.GrailsUtil

...

if (GrailsUtil.environment == 'development'){

//bootstrap code goes here...

}

5.5 Summary

Our application is actually in roughly the same state as it was at the

beginning of this chapter, but now we’ve armed ourselves with the

knowledge and the code necessary to begin making major progress. In

the next chapter, we will deal with some of the UI issues that were both-

ering our customer, and then we’ll tackle the next feature on

our list.

13. Autobase is one example of a Grails migration plug-in. Check it out at

http://www.grails.org/plugin/autobase.

Chapter 6

Getting Things Done
In this iteration, we’re going to take advantage of the generated scaf-

folding code to make our views more pleasing to our customer. We’ll

also work on implementing the task list features of TekDays so that

TekDays users can get things done. Along the way, we’ll learn just how

easy it is to modify and extend Grails views.

6.1 Changing All Our Views at Once

We saw in the previous chapter how Grails uses SiteMesh to provide

a consistent look throughout an application. That’s what’s been giving

us that cool Grails logo on all of our views. But that’s not quite what

our customer wants for TekDays. Let’s see what we can do about that.

Open TekDays/grails-app/views/layout/main.gsp, and modify the following

line:

Download things/TekDays/grails-app/views/layouts/main.gsp

<div class="logo">

</div>

Of course, you can substitute your own logo design, or you can down-

load td_logo.png from the book’s website. Talk about low-hanging fruit!

Our new logo will now show up on every page of our application. In

Figure 6.1, on the following page, we get a peek at what our pages will

look like.

That’s not all we can do in this file, but it’s all we need to do for now.

We could go on and add sidebars, a footer, a standard menu, and so

on. But we don’t want to get ahead of ourselves.

MODIFYING THE SCAFFOLDED VIEWS 99

Figure 6.1: TekDays home page with new logo

Let’s look at another file that is shared across all the views in our appli-

cation. Grails puts the CSS code for all of the scaffolded views in web-

app/css/main.css. We can change many aspects of our views by modify-

ing this file. In an effort to keep style code out of our pages, we will be

adding to this file for the small amount of additional CSS that we will

be using in TekDays. The additional style rules that we are using can

be found in Appendix A, on page 203. Now let’s turn our attention to

our scaffolded views.

6.2 Modifying the Scaffolded Views

We’re going to go through the four scaffolded views of the TekEvent class

and make some simple modifications. (The things we change here can

just as easily be done for the other classes’ views.) As we go through

these changes, we can leave the application running and immediately

see the changes by simply refreshing the browser—another example of

how Grails keeps that rapid feedback loop going. This also takes the

pain out of the tweaking process that we so often have to go through to

get a page “just right.”

MODIFYING THE SCAFFOLDED VIEWS 100

The List View

One of the problems our customer pointed out earlier about the list

view was that the id field is not something that the users need to see.

It’s easy enough to remove it, but it happens to also serve as our anchor

for linking to the show view. We’ll see how easy it is to move the anchor

to a more sensible property. While we’re at it, why don’t we also remove

the organizer from the table? It’s not really something users will be

concerned with as they look through a list of events.

Let’s see what these changes look like. Open TekDays/grails-app/views/

tekEvent/list.gsp, and go to the <thead> block. Remove the Id and Orga-

nizer columns. You should be left with this:

Download things/TekDays/grails-app/views/tekEvent/list.gsp

<thead>

<tr>

<g:sortableColumn property="name" title="Name" />

<g:sortableColumn property="city" title="City" />

<g:sortableColumn property="description" title="Description" />

<g:sortableColumn property="venue" title="Venue" />

</tr>

</thead>

This next step is almost as easy. In the <tr> block inside the <g:each>

tag, modify the code as shown here:

Download things/TekDays/grails-app/views/tekEvent/list.gsp

<tr class="${(i % 2) == 0 ? 'odd' : 'even'}">

<td>

<g:link action="show" id="${tekEventInstance.id}">

${fieldValue(bean:tekEventInstance, field:'name')}

</g:link></td>

<td>${fieldValue(bean:tekEventInstance, field:'city')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'description')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'venue')}</td>

</tr>

We removed the organizer column first. Then, in order to preserve the

<g:link> tag around the id, we actually removed the name column and

changed the field attribute in the first column from id to name. Now

when we refresh the page, it will look like Figure 6.2, on the following

page.

MODIFYING THE SCAFFOLDED VIEWS 101

Figure 6.2: Modified TekEvent list view

The Show View

The show view presents several opportunities for improvement. We’ll go

through from top to bottom and fix things up. You can save the file and

refresh after each step, and we’ll show the new view when we’re done.

Open TekDays/grails-app/views/tekEvent/show.gsp, and let’s get started.

Near the top of this file you’ll see an <h1> tag containing the text “Show

TekEvent.” Let’s replace that text with the name of the event:

Download things/TekDays/grails-app/views/tekEvent/show.gsp

<h1>${fieldValue(bean:tekEventInstance, field:'name')}</h1>

This is an example of how we can use Groovy expressions anywhere on

a page.

Next, let’s remove the id property from the main part of the page. Notice

that each property is displayed within a <tr> tag; just remove the open-

ing <tr>, the closing </tr>, and everything in between. Repeat this

process for any other properties you want to remove—for example, the

name property, since we already have it displayed in the heading.

MODIFYING THE SCAFFOLDED VIEWS 102

We’ll leave description alone. We’ll move the organizer down directly before

the volunteers. Then we’ll do something a little more clever for the city

property:

Download things/TekDays/grails-app/views/tekEvent/show.gsp

<tr class="prop">

<td valign="top" class="name">Location:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'venue')},

${fieldValue(bean:tekEventInstance, field:'city')}

</td>

</tr>

We changed the label, which is the value in the first <td>, to “Location,”

and we included the venue in the same line.

Next we’ll tackle the date properties. The way they’re currently being

displayed is not going to cut it. I mean, sure people will want their

events to run on schedule, but I doubt they’re going to worry about the

exact hour, minute, and second that it starts.

Download things/TekDays/grails-app/views/tekEvent/show.gsp

<tr class="prop">

<td valign="top" class="name">Start Date:</td>

<td valign="top" class="value">

<g:formatDate format="MMMM dd, yyyy"

date="${tekEventInstance.startDate}"/>

</td>

</tr>

Here we replaced the fieldValue method call on the startDate property

with the <formatDate> GSP tag.1 Do the same with the endDate prop-

erty.

Download things/TekDays/grails-app/views/tekEvent/show.gsp

<tr class="prop">

<td valign="top" class="name">End Date:</td>

<td valign="top" class="value">

<g:formatDate format="MMMM dd, yyyy"

date="${tekEventInstance.endDate}"/>

</td>

</tr>

Finally, let’s clean up the way the Sponsorship collection is displayed.

Recall from the discussion in Section 4.6, Many-to-Many Relationships,

on page 66, that we did not declare a toString() method because the

1. See http://grails.org/doc/1.1.x/ref/Tags/formatDate.html.

MODIFYING THE SCAFFOLDED VIEWS 103

way we display a Sponsorship will depend on the context. That’s why

it currently shows up as “Sponsorship:1.” Since we’re working on the

TekEvent views, we’ll modify the display with that context in mind.

Download things/TekDays/grails-app/views/tekEvent/show.gsp

<tr class="prop">

<td valign="top" class="name">Sponsored By:</td>

<td valign="top" style="text-align:left;" class="value">

<g:each var="s" in="${tekEventInstance.sponsorships}">

<g:link controller="sponsorship" action="show" id="${s.id}">

${s.sponsor?.encodeAsHTML()}

</g:link>

</g:each>

</td>

</tr>

All we had to do was change the s.encodeAsHTML() to s.sponsor.encodeAs-

HTML(). If this was the Sponsor show view, we would change it to s.event.

encodeAsHTML(). Take a look at Figure 6.3, on the following page, to see

the results of our changes.

The Create View

The create view doesn’t need too much work. One thing we can do is

fix the way date properties are handled. Open TekDays/grails-app/views/

tekEvent/create.gsp, and zero in on the <g:datePicker> tag used for the

startDate property.

Download things/TekDays/grails-app/views/tekEvent/create.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="startDate">Start Date:</label>

</td>

<td valign="top" class="value $

{hasErrors(bean:tekEventInstance,field:'startDate','errors')}">

<g:datePicker name="startDate" precision="day"

value="${tekEventInstance?.startDate}" >

</g:datePicker>

</td>

</tr>

The <g:datePicker> tag can take a precision attribute, which will allow

us to fine-tune the display. The valid values are year, month, day, hour,

and minute. We set ours to day, and you can see the effects in Figure 6.4,

on page 105.

MODIFYING THE SCAFFOLDED VIEWS 104

Figure 6.3: Modified TekEvent show view

The Edit View

The edit view needs only the sponsorship change that we made in the

show view and the precision attribute for the <g:datePicker> tag, as we

did for the create view. See the following code:

Download things/TekDays/grails-app/views/tekEvent/edit.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="startDate">Start Date:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'startDate','errors')}">

<g:datePicker name="startDate" precision="day"

value="${tekEventInstance?.startDate}" >

</g:datePicker>

</td>

</tr>

MODIFYING THE SCAFFOLDED VIEWS 105

Figure 6.4: Modified TekEvent create view

EVENT TASK LIST 106

<tr class="prop">

<td valign="top" class="name">

<label for="endDate">End Date:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'endDate','errors')}">

<g:datePicker name="endDate" precision="day"

value="${tekEventInstance?.endDate}">

</g:datePicker>

</td>

</tr>

Download things/TekDays/grails-app/views/tekEvent/edit.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="sponsorships">Sponsorships:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'sponsorships','errors')}">

<g:each var="s" in="${tekEventInstance?.sponsorships?}">

<g:link controller="sponsorship" action="show"

id="${s.id}">${s.sponsor?.encodeAsHTML()}</g:link>

</g:each>

<g:link controller="sponsorship"

params="['tekEvent.id':tekEventInstance?.id]"

action="create">

Add Sponsorship

</g:link>

</td>

</tr>

The new and improved edit view looks like Figure 6.5, on the following

page.

We may return to some of these views later, but for now things are

looking much nicer. Now that we’ve gotten some things done, we’ll move

on to the next feature in our list. We’ll add a task list to our application

so that our users can get things done.

6.3 Event Task List

According to our feature list, we need to be able to add and remove

tasks, assign tasks, and have a default set of tasks. We already have

the add and remove bit done: we have the same four scaffolded views

EVENT TASK LIST 107

Figure 6.5: Modified TekEvent edit view

GRAILS SERVICE CLASSES 108

for the Task that we have for the TekEvent. They were created when we

ran the generate-all script.

As we see in Figure 6.5, on the previous page, the TekEvent edit view

provides a link labeled “Add Task,” which brings up the Task create

view. The Task edit view already contains a Delete link to remove tasks.

So, we’ll focus on providing a default set of tasks for a new event.

The task list feature will enable users to keep track of the many things

that need to be done to put on a successful technical conference. Tasks

will be assigned to volunteers, but the list will be available to the whole

team. It’s important to keep an eye on those details, or they’ll fall

through the cracks. According to our customer, most of the users will

not have experience organizing an event of this magnitude. The idea

behind the default tasks, then, is to give them some ideas and a start-

ing point.

Our customer has provided us with a set of default tasks. Rather than

listing them here, we’ll practice the DRY principle.2 We’ll list the default

tasks in the code that we write to create them. Now we need to figure

out where to put that code.

6.4 Grails Service Classes

We’re going to write a method that will create several Task instances

and add them to the tasks property of a newly created TekEvent. We will

define this method in a service class. A Grails service class is a Plain

Old Groovy Object (POGO) located in the grails-app/services directory and

with a name ending in Service. By following these conventions, this

plain old Groovy object will be endowed with magical powers.

Service classes are a great way to keep extra code out of our controllers.

When we have application logic that doesn’t fit well in any a domain

class—for example, logic that involves multiple domain classes—it is

tempting to add this code to the controller. Doing this can lead to

bloated controllers that are difficult to read and maintain. To keep our

controller leaner, we can move this type of application logic into service

methods. We can’t give a full treatment of service classes here, but we’ll

2. DRY stands for Don’t Repeat Yourself. This is one of the core principles in The Prag-

matic Programmer [HT00].

GRAILS SERVICE CLASSES 109

discuss some of their features as we put them to use.3 Of course, Grails

provides a convenience script to create a new service class. Let’s try it:

$ grails create-service Task

We called our service TaskService because we’re going to use it to create

Task instances. Before we get started with that, let’s take a look at what

Grails created for us:

Download things/TekDays/grails-app/services/TaskService.groovy

class TaskService {

boolean transactional = true

def serviceMethod() {

}

}

We start with a stubbed-out method called serviceMethod() and a boole-

an transactional property, which is defaulted to true. This property will

cause any method declared in this class to be executed within a trans-

action.4 That’s all we have to do to enable transactions; the rest is han-

dled behind the scenes by Spring and Hibernate. If you’ve ever had to

code transaction handling in a web application, I’ll give you a moment

to get your jaw off the floor.

Now let’s add a method to TaskService called addDefaultTasks(tekEvent).

Open TekDays/grails-app/services/TaskService.groovy, and add the following

code:

Download things/TekDays/grails-app/services/TaskService.groovy

def addDefaultTasks(tekEvent){

if (tekEvent.tasks?.size() > 0)

return //We only want to add tasks to a new event

tekEvent.addToTasks new Task(title:'Identify potential venues')

tekEvent.addToTasks new Task(title:'Get price / availability of venues')

tekEvent.addToTasks new Task(title:'Compile potential sponsor list')

tekEvent.addToTasks new Task(title:'Design promotional materials')

tekEvent.addToTasks new Task(title:'Compile potential advertising avenues')

tekEvent.addToTasks new Task(title:'Locate swag provider (preferably local)')

tekEvent.save()

}

3. You can find more details on Grails service classes at

http://tinyurl.com/grails-service-layer.
4. See http://en.wikipedia.org/wiki/Transaction_(database).

GRAILS SERVICE CLASSES 110

Let’s walk through this code. First, we check to see whether the tekEvent

passed in has anything in its tasks collection. If it does, then we bail.

Otherwise, we begin a series of calls to tekEvent.addToTasks(). This meth-

od is one of the many added dynamically by Grails. (Notice that we’re

taking advantage of the optional parentheses to reduce the noise in our

code.) Finally, we call tekEvent.save(), which will cascade to save all the

Task instances too.

That’s it for our service class, but now we need to use it. The logical

place to do that would be in the save action of the TekEventController;

that way, we can be sure that the default tasks will be added to every

TekEvent that is successfully saved. Open TekDays/grails-app/controllers/

TekEventController.groovy, and add this single property declaration at the

top of the class:

Download things/TekDays/grails-app/controllers/TekEventController.groovy

class TekEventController {

def taskService

def index = { redirect(action:list,params:params) }

All we have to do is to declare a property named after the service class

(with the first letter lowercase), and an instance of that class will be

injected into our controller at runtime. That’s autowiring Grails style,

and it’s pretty awesome! We don’t need to create an instance of TaskSer-

vice and assign it to our controller, and we don’t need to worry about

ensuring that it exists before we call it. It’s all managed for us by Grails,

courtesy of “convention over configuration.”

Now in the save action, we’ll add the call to addDefaultTasks():

Download things/TekDays/grails-app/controllers/TekEventController.groovy

def save = {

def tekEventInstance = new TekEvent(params)

if(!tekEventInstance.hasErrors() && tekEventInstance.save()) {

flash.message = "TekEvent ${tekEventInstance.id} created"

taskService.addDefaultTasks(tekEventInstance)

redirect(action:show,id:tekEventInstance.id)

}

else {

render(view:'create',model:[tekEventInstance:tekEventInstance])

}

}

We put the call after the validation and saving of the TekEvent, so we

don’t waste effort trying to add tasks to a TekEvent that won’t save. If it

does save successfully, we’ll see the default tasks loaded.

INTEGRATION TESTING 111

Figure 6.6: TekEvent show view with default tasks

If we create a new event now, we should see something like Figure 6.6.

Before we move on from here, let’s write a test for our new service

class. Grails has already created a stubbed-out test class for us in Tek-

Days/test/unit/TaskServiceTests.groovy. We will use that file, but first we’ll

move it to the integration test directory: TekDays/test/integration.

6.5 Integration Testing

By putting a test class in the integration test directory, we turn it into

an integration test. An integration test is a JUnit test case, just like a

INTEGRATION TESTING 112

Grails unit test. The difference is in what is available to the test at run-

time. Unit tests are meant to test a unit (class) in isolation, so Grails

doesn’t give unit tests any of its dynamic goodness. Integration tests are

meant to test multiple classes working together. When running integra-

tion tests, Grails adds all of the dynamic behavior that we’re taking

advantage of in our application.

Since the process of adding default tasks to an event involves the TaskSer-

vice, Task, and TekEvent classes, an integration test is a good fit. Let’s

write our test. Open TekDays/test/integration/TaskServiceTests.groovy, and

add the following code:

Download things/TekDays/test/integration/TaskServiceTests.groovy

import grails.test.*

class TaskServiceTests extends GrailsUnitTestCase {

def taskService

protected void setUp() {

super.setUp()

new TekUser(fullName:'Tammy Tester',

userName:'tester',

email:'tester@test.com',

website:'test.com',

bio:'A test person').save()

}

protected void tearDown() {

super.tearDown()

}

void testAddDefaultTasks() {

def e = new TekEvent(name:'Test Event',

city:'TestCity, USA',

description:'Test Description',

organizer:TekUser.findByUserName('tester'),

venue:'TestCenter',

startDate:new Date(),

endDate:new Date() + 1)

taskService.addDefaultTasks(e)

assertEquals e.tasks.size(), 6

}

}

At the top of this file, we declare a taskService property, just like we did

in the TekEventController. Then in the setUp() method, we create and save

a TekUser. We have to do this because the organizer property of TekEvent

does not accept nulls; we need a real TekUser to assign to that prop-

MODIFYING THE TASK CLASS 113

Test Data Source

Integration tests will use the data source for the test environ-
ment. Before running integration tests, you may want to set the
data source for the test environment to a persistent database.
For an example, refer to Section 5.4, Configuring a Database,
on page 94.

erty. Then, in the testAddDefaultTasks() method (the test), we’re creat-

ing a TekEvent and passing it to the taskService.addDefaultTasks() method.

Finally, we assert() that our event’s tasks property contains the same

number of items as our service method is adding.

We can run all of our tests now with grails test-app, and we should see

all our tests pass. That’s a good feeling!

6.6 Modifying the Task Class

Great! We now have default tasks on all new events, users can add

and remove tasks as needed, and tasks can be assigned to users. But

there’s something missing....

Excuse me while I take off my customer hat and smack myself in the

forehead.

We don’t have any way to mark a task as completed! Not to worry—

we’ll just do a quick bit of reworking, and we’ll be good to go. First

we’ll modify the Task class. Open TekDays/grails-app/domain/Task.groovy,

and add a new property and constraint, as shown here:

Download things/TekDays/grails-app/domain/Task.groovy

class Task {

String title

String notes

TekUser assignedTo

Date dueDate

TekEvent event

Boolean completed

static constraints = {

title(blank:false)

notes(blank:true, nullable:true, maxSize:5000)

assignedTo(nullable:true)

SUMMARY 114

dueDate(nullable:true)

completed(nullable:true)

}

static belongsTo = TekEvent

String toString(){

title

}

}

Now that we have a completed property to work with, let’s modify our

views to take advantage of it. Open TekDays/grails-app/views/task/show.gsp,

and add a <tr> block at the bottom of the <tbody>, like so:

Download things/TekDays/grails-app/views/task/show.gsp

<tr class="prop">

<td valign="top" class="name">Completed:</td>

<td valign="top" class="value">

${fieldValue(bean:taskInstance, field:'completed')}

</td>

</tr>

</tbody>

That will allow our users to see when a Task is completed.

Next, open TekDays/grails-app/views/task/edit.gsp, and add the following

<tr> block at the bottom of the <tbody>, as we just did with the show

view:

Download things/TekDays/grails-app/views/task/edit.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="completed">Completed:</label>

</td>

<td valign="top">

<g:checkBox name="completed" value="${taskInstance?.completed}"/>

</td>

</tr>

</tbody>

This will add a checkbox to our edit view so that users can mark a task

as completed (see Figure 6.7, on the following page).

6.7 Summary

Well, this was a productive iteration. We implemented our task-related

features. Along the way, we learned about Grails service classes, inte-

gration testing, and what it takes to modify or extend a Grails domain

SUMMARY 115

Figure 6.7: Task edit view

class after we’ve generated the code. Take a break. You deserve it!

Catch up on some blogs (http://groovyblogs.org would be a good choice)

or email. Next we will work on adding a message forum and see what

we can learn while we’re at it.

Chapter 7

Forum Messages and UI Tricks
A technical event, like any collaborative project, will turn out better if

the communication flows freely. To help facilitate this for our users,

we’re going to include a forum where the organizer and volunteers can

post and reply to messages. Then, to make it easy for new volunteers

to come up to speed on what’s going on, we’ll include a threaded view

of all past messages. That’s the goal of this iteration. While we’re at it,

we’ll learn more about the interaction between controllers and views,

we’ll get an introduction to GSP templates, and we’ll get a look at Ajax,

Grails style.

We won’t have to start from scratch, because Grails has already given

us the list, create, show, and edit views to work with. The create view

(see Figure 7.1, on the next page), for example, gives us everything we

need to create a new message.

We need to change a few things to turn these scaffolded pages into a

usable message forum. Our users should be able to see messages in

a more logical manner than a plain list. They’ll also need the ability

to reply to a message they are reading, preferably without leaving the

page.

7.1 Restricting Messages to an Event

Since we want the messages to constitute a forum for a given event, we

will have to modify the scaffolded views to limit the viewing and creating

of Message instances to the TekEvent that they relate to. It’s important

to note that the relationship between TekEvent and Message is already

RESTRICTING MESSAGES TO AN EVENT 117

Figure 7.1: Scaffolded create view

established in the domain model; we’re just going to make the workflow

match that relationship.

We’ll start by modifying the event show view. Where we currently have

an unordered list of Message instances displayed in this view, we are

going to have a single hyperlink that will lead to the message list view.

Further, we are going to filter the list to show only those Message in-

stances that are related to that TekEvent.

RESTRICTING MESSAGES TO AN EVENT 118

Open TekDays/grails-app/views/tekEvent/show.gsp, and replace the code in

the Messages<tr> tag with the following <g:link> tag:

Download forum/TekDays/grails-app/views/tekEvent/show.gsp

<tr class="prop">

<td valign="top" class="name">Messages:</td>

<td valign="top" style="text-align:left;" class="value">

<g:link controller="message" action="list" id="${tekEventInstance.id}">

View Messages

</g:link>

</td>

</tr>

The <g:link> tag will create a link to the list action of the MessageCon-

troller and will pass a TekEvent.id. If you follow this link now, it will bring

you to the message list, but the TekEvent.id will be ignored.

To fix that, we’ll modify the list action in the MessageController. Open

TekDays/grails-app/controllers/MessageController.groovy, and modify the list

action as follows:

Download forum/TekDays/grails-app/controllers/MessageController.groovy

def list = {

params.max = Math.min(params.max ? params.max.toInteger() : 10, 100)

def list

def count

def event = TekEvent.get(params.id)

if (event){

list = Message.findAllByEvent(event, params)

count = Message.countByEvent(event)

}

else{

list = Message.list(params)

count = Message.count()

}

[messageInstanceList: list, messageInstanceTotal: count, event: event]

}

We first declare list and count variables to be used in the Map at the end

of the action. Then we declare an event variable and attempt to assign

a TekEvent to it, using the id that was passed in from the link in the

event show view. If a TekEvent is found, then we load the list and count

variables using dynamic methods provided by GORM. If event is null, we

fall back to the original means of retrieving the list and count. Finally, we

assign list and count to their appropriate keys in the return Map, and we

add the event:event key/value pair to the Map. This last step will make

the TekEvent instance available to us in the list view.

RESTRICTING MESSAGES TO AN EVENT 119

Now we’ll turn our attention to the message list view. If we navigate to

this view using the link we just modified on the event show view, we’ll

only see messages related to a single event. That’s great, but if we click

the New Message button, we’ll need to explicitly choose the event on

the message create view. We want that to be loaded automatically, and

we can do it by modifying a single line of code. Let’s open TekDays/grails-

app/views/message/list.gsp and modify the New Message <g:link> tag,

like so:

Download forum/TekDays/grails-app/views/message/list.gsp

<g:link class="create" action="create"

params='["event.id":"${event?.id}"]'>New Message

</g:link>

All we did here was add a params attribute to the <g:link> tag. This

attribute is a Map containing parameters to be added to the URL cre-

ated by the <g:link> tag. We then assign event.id to a key of the same

name. (Since the key contains a “.” we had to put it in quotes.) This

will result in a parameter like event.id=2. Grails’ binding will use that to

retrieve a TekEvent instance and assign it to the Message.event property.

All of that and more is done with the following single line. Slick stuff!

messageInstance.properties = params

Open TekDays/grails-app/views/message/create.gsp, and follow along as we

make a few changes, starting with the Message List button. We’ll do the

same thing to that one that we did to the one on the TekEvent show view.

Download forum/TekDays/grails-app/views/message/create.gsp

<g:link class="list" action="list" id="${messageInstance?.event?.id}">

Message List

</g:link>

That will ensure that we stay with this event’s messages if we return to

the list from here.

Now we’ll add the name of the event to the page heading. Modify the

<h1> tag to look like this:

Download forum/TekDays/grails-app/views/message/create.gsp

<h1>${messageInstance?.event?.name} Forum - New Message</h1>

Since we have the event name there and since we don’t want to change

the event from the page, let’s replace the <tr> tag containing the event

RESTRICTING MESSAGES TO AN EVENT 120

property with a hidden <input>. We don’t need to display the event

again, but we do need to have the value in the <form> so that it will be

submitted when we save.

Download forum/TekDays/grails-app/views/message/create.gsp

<input type="hidden" name="event.id" value="${messageInstance?.event?.id}" />

Choosing what message you’re replying to while creating the message

doesn’t make much sense, so let’s remove that <tr> tag too. In its place,

we’ll add a label inside a conditional block; that way, if this is a reply,

we’ll say so. Let’s put this at the top of the page for clarity. Add the

following code immediately after the opening <tbody> tag:

Download forum/TekDays/grails-app/views/message/create.gsp

<g:if test="${messageInstance.parent}">

<tr class="prop">

<td valign="top" class="name">

<label>In Reply to:</label>

</td>

<td valign="top" class="value">

${messageInstance.parent.author}

</td>

</tr>

</g:if>

Here we used a <g:if> tag to prevent this from being rendered unless

the messageInstance has a parent property. The rest of this code just

renders a label and the author of the parent Message. (We won’t see this

feature yet since we don’t yet have a way to create replies, but we’ll get

there soon enough.)

Finally, we’ll use a little CSS to give our users more room to write their

messages. Add class="messageField" to the subject <input> and the con-

tent<textarea>, like so:

Download forum/TekDays/grails-app/views/message/create.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="subject">Subject:</label>

</td>

<td valign="top"

class="value ${hasErrors(bean:messageInstance,field:'subject','errors')}">

<input type="text" class="messageField" id="subject" name="subject"

value="${fieldValue(bean:messageInstance,field:'subject')}"/>

</td>

</tr>

RESTRICTING MESSAGES TO AN EVENT 121

Figure 7.2: Create view 2.0 (so to speak)

<tr class="prop">

<td valign="top" class="name">

<label for="content">Content:</label>

</td>

<td valign="top"

class="value ${hasErrors(bean:messageInstance,field:'content','errors')}">

<textarea class="messageField" rows="5" cols="60" name="content">

${fieldValue(bean:messageInstance, field:'content')}

</textarea>

</td>

</tr>

In Figure 7.2, we see our new create view. That’s much better. Next up:

cleaning up the list and show views.

OF TEMPLATES AND AJAX 122

7.2 Of Templates and Ajax

On second thought, instead of cleaning up the list and show views, let’s

just set them aside and create a new view that will replace them both.

To do that, we’ll take advantage of Grails’ GSP templates.

GSP templates are simply chunks of GSP code in a file that begins with

an underscore (_likethis.gsp). They provide an easy way to share common

code across multiple pages. You can include a GSP template in a GSP

page with the <g:render> tag, like this:

<g:render template="someTemplate" />

This line would render a template called _someTemplate.gsp in the same

directory as the page that it is being called from. To render templates

from a different directory, add the path before the name of the template.

We never include the “_” at the beginning of the template name in the

<g:render> tag.

Another popular use for GSP templates is rendering the response to

Ajax calls; that’s what we’re after here. Before we get too much further,

let me lay out the plan. What we want is a single page with a list of

messages in the upper section, and fields for viewing a single message

in the lower section. When a user selects a message in the list, that

message’s values will display in the fields below, without reloading the

rest of the page. Pretty cool, huh? Our customer sure thought so (if I

do say so myself). Now let’s see how easy this can be with Grails.

To get started, let’s create TekDays/grails-app/views/message/ajaxList.gsp.

As a shortcut, just copy TekDays/grails-app/views/message/list.gsp, and re-

move most of it. Keep the <html> and <head> (with contents), and in

the <body>, keep the first <div>. You should end up with something

that looks like this:

Download forum/TekDays/grails-app/views/message/ajaxList.gsp

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<meta name="layout" content="main" />

<title>Messages</title>

</head>

<body>

<div class="nav">

Home

OF TEMPLATES AND AJAX 123

<g:link class="create" action="create"

params='[eventId:"${event?.id}"]'>New Message

</g:link>

</div>

</body>

</html>

We kept the <head> section from the list because it contains a couple of

<meta> tags that we need. Since this new view is going to replace the

list view, it makes sense to keep the same button bar. Other than that,

we kept only the basic page structure tags.

To flesh out the body of our new view, add the following code right after

that </div> tag:

Download forum/TekDays/grails-app/views/message/ajaxList.gsp

<div class="body">

<h1>${event?.name} - Forum Messages</h1>

<div id="messageList">

<g:each in="${messageInstanceList}" var="messageInstance">

</g:each>

</div>

<h3>Message Details</h3>

<div id="details">

</div>

</div>

First we added a <div> with class="body" to be consistent with the other

pages in our application, and then we added an <h1> tag, similar to the

one on the create view, using the TekEvent instance that will be passed

in from the controller. Then we added a <div>, with an ID of messageList,

to hold the list of messages. We have a style rule in main.css for this ID

that will provide scrolling if our list gets that long. (See Appendix A, on

page 203.) Inside this <div>, we have a <g:each> tag, which will iterate

over the messageInstanceList. Whatever we put in the body of that tag will

be displayed once for each element in the list. We’ll talk about what to

put there shortly.

Below the list <div>, we added an <h3> tag to serve as a heading to the

message detail portion of the page. Finally, we added a <div> with an

id of details. This is where the message detail template that we are about

to create will be rendered.

OF TEMPLATES AND AJAX 124

Creating the Template

Now we need to create the template that will display an individual

message. This time, just create a blank file called _details.gsp in the

TekDays/grails-app/views/message directory. We’ll borrow the <div>,

<table>, and three <tr> tags from TekDays/grails-app/views/message/

show.gsp. (The three <tr> tags are for the subject, content, and author

properties.) Since this file’s code will be inserted into another page, it

doesn’t need its own <html> or <head> tags.

Download forum/TekDays/grails-app/views/message/_details.gsp

<div class="dialog">

<table>

<tr class="prop">

<td valign="top" class="name">Subject:</td>

<td valign="top" class="value">

${fieldValue(bean:messageInstance, field:'subject')}

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Content:</td>

<td valign="top" class="value">

${fieldValue(bean:messageInstance, field:'content')}

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Author:</td>

<td valign="top" class="value">

<g:link controller="tekUser" action="show"

id="${messageInstance?.author?.id}">

${messageInstance?.author?.encodeAsHTML()}

</g:link>

</td>

</tr>

</table>

<div class="buttons">

<g:link class="create" action="reply" id="${messageInstance?.id}">

Reply

</g:link>

</div>

</div>

You may have noticed that we also added a Reply “button” at the bottom

of the template. This is actually a <g:link> that will be styled to look

like a button. The <g:link> will call the reply action—which we still need

to create. Don’t let me forget to return to that.

OF TEMPLATES AND AJAX 125

Looking at the code for our template, we can see that the only data

element that it will need is a Message instance called (believe it or not)

messageInstance. This is important to note, because when a template

is rendered, the data it requires needs to be passed to it. A template

cannot automatically see the data elements of the page that renders it.

We’ll look at how to provide the data to the template in the next section

as we see how to render our template in response to an Ajax call.

Ajax in Grails

Grails includes several Ajax tags, which we can use to call a controller

action and update a page element with the results. That’s exactly what

we need to do, but before we do it, let’s discuss a bit about the way that

Grails Ajax tags work.

Grails supports a variety of popular JavaScript libraries with regard to

its Ajax tags.1 To use these tags, we need to tell Grails which library we

are using. We do this with the <g:javascript> tag and its library attribute.

This tag is placed in the <head> section of a page. Let’s go back to

TekDays/grails-app/views/message/ajaxList.gsp and add the following line to

the <head>:

Download forum/TekDays/grails-app/views/message/ajaxList.gsp

<g:javascript library="prototype" />

Now we can use one of Grails’ Ajax tags, and it will adapt to use the

Prototype library.2 The tag we’re going to use is <g:remoteLink>.

Let’s see how this looks in our code, and then we’ll discuss what it’s

doing. In TekDays/grails-app/views/message/ajaxList.gsp, add the following

code to the <g:each> body in our list<div>:

Download forum/TekDays/grails-app/views/message/ajaxList.gsp

<g:each in="${messageInstanceList}" var="messageInstance">

<g:remoteLink action="showDetail" id="${messageInstance?.id}"

update="details">

${messageInstance.author.fullName} - ${messageInstance.subject}

</g:remoteLink>

</g:each>

1. See the Grails website for a list of supported libraries: http://www.grails.org/Ajax.
2. Grails handles any differences that might exist in the way different JavaScript

libraries handle the tasks involved in the Ajax tags; the behavior of these tags is the

same regardless of which of the supported libraries we use.

OF TEMPLATES AND AJAX 126

The <g:remoteLink> tag can take controller, action, and id attributes. If

the controller attribute is not provided, then the controller that rendered

the current page will be used by default. Since the ajaxList view will

be rendered by the MessageController, we don’t need to specify it here.

We did give it an action attribute, which points to an action (which we

will create next in the MessageController). Then for the id, we use the

messageInstance variable from the <g:each>. The final attribute that we

set on the <g:remoteLink> tag is update. This attribute contains the ID

of the HTML element on this page that will be updated with the result

of the action—in this case, details.

For the body of the <g:remoteLink>, we used the messageInstance vari-

able to build a string containing the name of the message’s author and

the subject of the message. We’ll see how this looks shortly, but first we

have to create the showDetail action. Open TekDays/grails-app/controllers/

MessageController.groovy, and add the following action:

Download forum/TekDays/grails-app/controllers/MessageController.groovy

def showDetail = {

def messageInstance = Message.get(params.id)

if (messageInstance) {

render(template:"details", model:[messageInstance:messageInstance])

}

else {

render "No message found with id: ${params.id}"

}

}

This action expects the params to contain an id value. The first thing

we do is define a messageInstance variable and retrieve a Message using

the id value in the params. If we have a valid instance, we call the ren-

der() method and pass it the name of a template (“details”) and a model,

which is a Map. The model parameter is used to provide the data that

the template will need. In this case, we have only one object in the

model, but we can include as many objects as our template needs. The

render() method will merge our template with the data in the message-

Instance bean and return the results as HTML. This HTML will then

replace the contents of the <div> on our page.

Now there’s just one thing left to do before we can marvel at our hand-

iwork: we need to provide a way to reach our new view. If we added

an action to the MessageController called ajaxList, it would automatically

render our new view, but it would just be a copy of the list action, and

that wouldn’t be very DRY. So, we’ll use a different approach. The same

OF TEMPLATES AND AJAX 127

render() method that we just used for our details template can be used

to render an entire view. Let’s return to the list action in TekDays/grails-

app/controllers/MessageController.groovy and modify the last line (the line

that returns the Map):

Download forum.1/TekDays/grails-app/controllers/MessageController.groovy

def list = {

params.max = Math.min(params.max ? params.max.toInteger() : 10, 100)

def list

def count

def event = TekEvent.get(params.id)

if (event){

list = Message.findAllByEvent(event, params)

count = Message.countByEvent(event)

}

else{

list = Message.list(params)

count = Message.count()

}

render(view:'ajaxList',

model:[messageInstanceList: list, messageInstanceTotal: count,

event: event])

}

This time, we pass a view parameter instead of a template. We set that

parameter to our new page, and then we pass the existing Map as the

model. Now when the list action is called (for example, when we nav-

igate to http://localhost:8080/TekDays/message/list), our new view will be

rendered.

Wait a minute. We still need to add a reply action to the MessageCon-

troller. OK. The reply action will be very similar to the create action,

except that it will set the parent of the new Message to the current one. I

hope you still have MessageController.groovy open so you can slip in the

following code:

Download forum.1/TekDays/grails-app/controllers/MessageController.groovy

def reply = {

def parent = Message.get(params.id)

def messageInstance = new Message(parent:parent, event:parent.event,

subject:"RE: $parent.subject")

render(view:'create', model:['messageInstance':messageInstance])

}

In this action, we take the id parameter that is passed in on the link

from the ajaxList view and use it to retrieve a Message instance. Then

we create a new Message, setting its parent and subject properties based

on the retrieved instance. Finally, we use the render() method to render

DISPLAY MESSAGE THREADS WITH A CUSTOM TAG 128

the create view with the messageInstance in the model. This will open the

create view, which we will now modify to handle this new responsibility.

When the create view is rendered from the reply action, the message will

have a parent assigned. We’ll change our view slightly and check for the

existence of this property. Open the TekDays/grails-app/views/message/

create.gsp file, and add the following code right after the <tbody> tag:

Download forum.1/TekDays/grails-app/views/message/create.gsp

<g:if test="${messageInstance.parent}">

<input type="hidden" name="parent.id" value="${messageInstance.parent.id}" />

<tr class="prop">

<td valign="top" class="name">

<label>In Reply to:</label>

</td>

<td valign="top" class="value">

${messageInstance.parent.author}

</td>

</tr>

</g:if>

Inside a <g:if> block, we added an “In Reply to:” label and filled in the

subject appropriately. We also added a hidden field to store the mes-

sage.parent value so that it can be passed to the save action to complete

the link between a reply and its parent.

It’s difficult to do justice to this functionality in print, but we’ll try. In

Figure 7.3, on the following page, we can see our new ajaxList view with

a message selected, and in Figure 7.4, on page 130, we can see the

result of clicking the Reply button for that message. If you’ve done any-

thing like this before in another Java web framework, you’re probably

as impressed as I am by how easy it was to do this. I’ve heard that

this sense of awe and amazement wears off after a while. But I’m still

waiting.

7.3 Display Message Threads with a Custom Tag

Now we need to add nesting to our message list in order to visualize

the various threads in our forum. We’ll do this with a custom GSP tag.

If you’ve ever written custom JSP tags or JSF components, come out

from under the table. It’s not like that at all. But just to reassure you,

before we get started on our custom tag, we’ll take a brief look at what

it takes (or more important perhaps, doesn’t take) to create a GSP tag.

DISPLAY MESSAGE THREADS WITH A CUSTOM TAG 129

Figure 7.3: Ajax-enabled message list

A Brief Introduction to GSP Tags

The first step is to create a TagLib. A TagLib is a Groovy class with a name

ending in (surprise, surprise!) TagLib, and it lives in the grails-app/taglib

directory. Grails provides a convenience script to create this for us:

$ grails create-tag-lib TekDays

This script will create TekDays/grails-app/taglib/TekDaysTagLib.groovy and

a corresponding TestCase in TekDays/test/unit/TekDaysTagLibTests.groovy. In

that one class, we can create as many GSP tags as we want, and they

will automatically be available throughout our application. Each tag is

a Groovy closure, with optional attrs and body parameters. For example:

def backwards = {attrs, body ->

out << body().reverse()

}

This is a custom GSP tag that will reverse whatever text is contained

in its body. So, <g:backwards>Hello</g:backwards> will render as olleH.

That’s not very useful but illustrative nonetheless. That’s all there is

DISPLAY MESSAGE THREADS WITH A CUSTOM TAG 130

Figure 7.4: Message create view: reply

to it. There are no TLDs3 to create, no config files to update, and no

supporting classes or interfaces. A TagLib is just a Groovy class, and

each tag is a closure with two optional parameters. The first parameter,

which we call attrs, is a Map containing any attributes the tag needs.

The second, referred to here as body, is a closure. The names given to

these parameters are not important, but the order is. The attributes

Map must always be the first parameter. Notice that our example did

not use the attrs parameter, but it still needed to be there so that we

could include the body.

It is so easy to create custom tags in Grails that there is no excuse

not to. GSP tags can also be bundled into plug-ins to make it easier to

3. Tag library descriptor.

DISPLAY MESSAGE THREADS WITH A CUSTOM TAG 131

share them across projects or to make them available to the public—

but that’s a topic for another book.4

The MessageThread Tag

Our tag will be a bit more complex than the <g:backward> tag but not

all that much more. We are currently using two tags to render our list of

messages as links: the <g:each> tag handles the list traversal, and the

<g:remoteLink> tag renders the link, with all the Ajax magic hidden

inside. Our goal is to replace these with a single tag that will take a

list of Message instances, create the same Ajax link for each one, and

indent replies to provide the nested view of message threads.

If you haven’t already, run the grails create-tag-lib script to create Tek-

Days/grails-app/taglib/TekDaysTagLib.groovy, and then open that file. It will

start looking like this:

Download forum/TekDays/grails-app/taglib/TekDaysTagLib.groovy

class TekDaysTagLib {

}

Add the following code, and then we’ll go over what it’s doing:

Download forum.1/TekDays/grails-app/taglib/TekDaysTagLib.groovy

class TekDaysTagLib {

def messageThread = {attrs ->

def messages = attrs.messages.findAll{msg -> !msg.parent}

processMessages(messages, 0)

}

void processMessages(messages, indent){

messages.each{msg ->

def body = "${msg?.author} - ${msg?.subject}"

out << "<div style='height:30; margin-left:${indent * 20};'>"

out << "${remoteLink(action:'showDetail', id:msg.id, update:'details', body)}"

out << "</div>"

def children = Message.findAllByParent(msg)

if (children){

processMessages(children, indent + 1)

}

}

}

}

4. Grails in Action has an excellent chapter on creating Grails plug-ins.

DISPLAY MESSAGE THREADS WITH A CUSTOM TAG 132

The first thing we have is our tag closure. It is declared just like a

controller action, except for the attrs parameter. The tag closure has only

two lines because we are moving most of the processing to a method

called processMessages().

The tag code’s main responsibility is preparing the starting point for

the recursive process that is required to get the nesting we are after. To

do this, we filter the list that is being passed in the messages attribute,

using the findAll method that Groovy adds to Collection. This method will

pass each element of a collection to the closure that it takes as a param-

eter. It will accept or reject the element based on the Boolean result of

the closure. We are checking for the existence of a parent property in

the Message. The existence of a value evaluates to true in Groovy, so we

can shorten a statement like msg.parent == null to !msg.parent. The end

result of this line is that we have a collection of top-level messages.

The next line passes our filtered collection, along with the number 0,

to the processMessages() method. This method takes a collection of mes-

sages and an indent value; the first time it’s called by the tag, it is

given a collection of top-level messages and the number 0. We use the

each() method to iterate over the messages. Instead of using the default

it parameter for each(), we are explicitly declaring a msg parameter. msg,

then, is a variable that represents each individual message.

Next, we define a body, made up of the message’s author and its sub-

ject, for our link. Then we begin writing out to the response. The first

thing we send to out is a <div>, which will help us with positioning our

links; notice that we use the indent parameter to determine the amount

of left-margin to apply. We next send the <remoteLink> tag to out. There

is no multipass resolution of GSPs, so we can’t write out other tags from

our tag, but we can call other tags from our tag and write out the same

result that they would have written. That’s what we are doing here.

Recall that any GSP tag can be called as a method. The tag name

becomes a method name, and the attributes become named parame-

ters. If there is a body, it becomes the last parameter. (Notice that we

have action:’showDetail’ instead of action="showDetail".) Finally, we close

the <div>. As each message in the collection is processed, these lines

will be written out, and then we will perform a check to see whether

that message has any replies.

We define a children variable, which we load with a call to Message.findAll-

ByParent(). If the message we are working on has any replies, they will be

in this collection. We then pass this collection to the processMessages()

SUMMARY 133

method recursively, with the indent parameter incremented by 1. This

will cause each new level of replies to be indented another 20 pixels

and will ensure that all replies are accounted for, no matter how deeply

they may be nested.

Having this logic in the page would have been a mess, and it would have

been unbearably cumbersome to do it in the controller. A custom tag is

the perfect solution to this problem. Indeed, GSP custom tags are the

perfect solution to many of the UI problems faced by web developers;

that’s why they are my second favorite Grails feature (the first favorite

is GORM, since I am a recovering EJB developer). GSP tags are also a

great way to reuse view code and keep your pages DRY.

Not only does this tag prevent us from adding more code to our page, it

also allows us to remove some. Let’s open TekDays/grails-app/views/mes-

sage/ajaxList.gsp and replace the five lines encompassing the <g:each>

tag with the following single line:

Download forum.1/TekDays/grails-app/views/message/ajaxList.gsp

<div id="messageList">

<g:messageThread messages="${messageInstanceList}" />

</div>

In Figure 7.5, on the following page, we can see what our handiwork

looks like. Not bad.

7.4 Summary

Wow! This was a very productive iteration. We implemented one of the

most critical features of our application; a community-based event-

organizing effort is doomed without good communication. While we

were at it, we learned about three important features of Grails. Grails

templates are a convenient way of sharing common portions of GSP

code and are very helpful when using Ajax. We also learned that Grails

makes working with Ajax a snap, while not locking you into any one

JavaScript library. Then we got an overview and some good practice

with those awesome custom GSP tags.

We’ll be moving into security and related issues next, but now it’s time

for a short break. It’s time to catch up on the latest issue of GroovyMag5

to see what’s new in this thriving community.

5. A monthly e-magazine devoted to Groovy, Grails, and Griffon: http://groovymag.com.

SUMMARY 134

Figure 7.5: Threaded message list

Chapter 8

Knock, Knock: Who’s There?
Grails Security

Our customer keeps asking me when we are going to add security. I

keep telling him, “As soon as we need it.” We were just getting into a

lively debate when my wife started giving me funny looks. But seriously,

as we progress with the TekDays application, it’s going to be very help-

ful to know who’s using the application. Not only would that allow us

to limit access to certain data or areas of the application, but it would

also let us be more intelligent about what we display to users.

Our goal this time around is to implement a simple security system and

see how we can use it to provide a more customized user experience.

8.1 Grails Security Options

Grails provides several options when it comes to security, from rolling

your own with controller interceptors and filters to using plug-ins for the

more popular Java security frameworks out there. As of this writing, the

main Grails plug-in repository has seventeen security-related plug-ins.

There are plug-ins for JSecurity, CAS, Spring Security (two of them),

Atlassian Crowd, and more. There is also the simple yet effective

Authentication plug-in, which doesn’t rely on any external libraries.

There are plug-ins for Captchas, an OpenID plug-in...you get the pic-

ture. For your next Grails application, it would be wise to spend some

time looking at these plug-ins to see whether one or more of them might

LOGGING IN 136

meet your needs.1 For this project, however, we are going to implement

our own solution using Grails filters.

8.2 Logging In

Before we get into creating filters and building our security system,

let’s talk about what we want the system to do. First, we want to know

who is currently using the system; that is, are they an anonymous

user (which is fine), or are they represented by a TekUser instance? Next,

we want to restrict access to certain areas of the application based on

the current user. For example, only organizers should be able to edit a

TekEvent instance, and only organizers or volunteers should be able to

participate in the event’s forum.

For the first step, we will need some sort of login process. We will create

two new actions in the TekUserController: login and logout. Then we will

create a new login view.

Open TekDays/grails-app/controllers/TekUserController.groovy, and add the

following action:

def login = {

}

Interestingly, we don’t need anything in this action; simply having an

action with that name will cause the GSP that we are about to create

to be rendered. Let’s create TekDays/grails-app/views/tekUser/login.gsp and

give it the following code:

Download security/TekDays/grails-app/views/tekUser/login.gsp

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<meta name="layout" content="main" />

<title>Login</title>

</head>

<body>

<g:if test="${flash.message}">

<div class="message">${flash.message}</div>

</g:if>

<g:form action="validate">

<table>

<tr class="prop">

1. http://grails.org/plugins

LOGGING IN 137

<td class="name">

<label for="username">User Name:</label>

</td>

<td class="value">

<input type="text" id="username" name="username" value="">

</td>

</tr>

<tr class="prop">

<td class="name">

<label for="password">Password:</label>

</td>

<td class="value">

<input type="password" id="password" name="password" value="">

</td>

</tr>

<tr>

<td></td>

<td><input type="submit" value="login"/></td>

</tr>

</table>

</g:form>

</body>

</html>

Simple enough. After the standard Grails message block (which we

will need if there are problems during login), we have an HTML form

with fields for username and password, followed by a submit button. This

page will be merged with our standard header because of this line:

<meta name="layout" content="main" />. The final result can be seen in

Figure 8.1, on the next page.

One important point about this code is the action that we’ve assigned

to the <g:form>: validate. This action will be called when we submit the

form. It will reside in the TekUserController and will use the form data

to load an existing TekUser if found. We’ll create this action now. Open

TekDays/grails-app/controllers/TekUserController.groovy, and add the follow-

ing action:

def validate = {

def user = TekUser.findByUserName(params.username)

if (user && user.password == params.password){

session.user = user

redirect(controller:'tekEvent', action:'list')

}

else{

flash.message = "Invalid username and password."

render(view:'login')

}

}

LOGGING IN 138

Figure 8.1: The login page

Joe Asks. . .

We Aren’t Going to Use Plain-Text Passwords, Are We?

Don’t panic, Joe. This is only a simple example. Before we would
put this application in production, we would change this to use
encrypted passwords, using something like the DigestUtils class
of the Apache Commons project.∗ We might also move the
authentication logic to a service class. There are many ways to
enhance the security of our application, all of which would fit
into the basic structure we are using here.

Our goal for this example is to show the use of Grails filters and
to show the structure of a simple authentication system.

∗. See http://commons.apache.org/codec/userguide.html.

FILTERS 139

This action, rather than the login action, does the real work of logging

a user into the system. In the first line, we define the variable user to

which we assign the result of a call to TekUser.findByUserName(params.

username). Next we check to see whether our user has a value and, if so,

whether its password matches params.password. If both of those things

are true, then we’ll stuff this TekUser instance in the session for later use

and call the redirect() method to send the user to the list action of the

TekEvent controller. If either is false, we add a message to flash and call

the render() method to redisplay the login view.

You’ll notice that we used two methods that we didn’t define anywhere.

The redirect() and render() are added to all controller classes at runtime

by Grails. The redirect() method will perform an HTTP redirect. That

is, it will return a response to the client that will cause it to make a

subsequent call to the URL that is created by the controller and action

parameters.

The render() method is very versatile. We used it earlier to respond to

an Ajax call. In that instance, we passed it a template; here we pass it a

view. In both cases, the end result was to send a chunk of text back to

the client. This method can also be used to render XML, JSON, or any

arbitrary text to the client.

In this action, we write to session, which is a Map stored in the Session

scope. Anything we put there will be available as long as this user is

interacting with our application. And since it is a Groovy Map, we can

add new key/value pairs by assigning a value to a nonexistent key.

There was no user key in session, but we added the key and assigned the

value in the following line: session.user = user. We did the same with flash,

which is a Map stored in a special scope that lasts for this request and

the next, after which the values we put in will be cleared out.

Now that we have a login page and a process for logging a user in, let’s

see how we can use filters to prompt the user to login at the appropriate

times.

8.3 Filters

Filters allow us to hook into, or intercept, the processing of a request.

There are interceptors for before, after, and afterView. There are many

uses for filters, and you can have as many filters as you need in an

application. In our case, we’ll use a filter to determine whether a user

is logged in when they try to access a “secure” page.

FILTERS 140

I know this must be sounding like a broken record (does anyone re-

member what that is?), but Grails makes implementing filters a snap.

Create a Groovy class with a name ending in Filters, and place it in

the grails-app/conf directory. In this class, define a code block called

filters, and then include individual filters as if they were methods. Each

filter (method) can take named parameters for controller and action. Calls

to this controller and action pair will be intercepted by this filter. (An

asterisk can be used as a wildcard to represent any controller or action.)

But enough chatter—let’s get to the code.

Create a new file called TekDays/grails-app/conf/SecurityFilters.groovy. Open

this file, and add the following code:

Download security/TekDays/grails-app/conf/SecurityFilters.groovy

class SecurityFilters {

def filters = {

doLogin(controller:'*', action:'*'){

before = {

if (!controllerName)

return true

def allowedActions = ['show', 'index', 'list', 'login', 'validate']

if (!session.user && !allowedActions.contains(actionName)){

redirect(controller:'tekUser', action:'login',

params:['cName': controllerName, 'aName':actionName])

return false

}

}

}

}

}

In our SecurityFilters class, we create a single filter called doLogin with

a before interceptor. We use wildcards for both controller and action

parameters, which means this filter will be called for all actions. We

don’t actually want to require the user to log in for every action, so we

will fine-tune this filter further.

Every filter has certain properties injected into it by Grails; among these

are controllerName and actionName. These represent the original con-

troller and action that the user was trying to access before the filter so

rudely interrupted. We will use the actionName to determine whether we

really want to filter this call. We’ll do this in two steps. In the first step,

we’ll check to see whether we have a controllerName. If we don’t, then

we can assume the user is going to the default home page (index.gsp),

in which case we will return true. For the second step, we define a List

FILTERS 141

variable with the names of actions that we want to allow. Along with the

innocuous actions like show and list, we included the login and validate

actions to avoid unintended login loops. Then in our if comparison, we

check to see whether this list contains the current actionName.

The other thing we check in the if comparison is whether we already

have a user in the session. If we do not have a user and the current

action is not in the allowedActions list, we redirect to the login action of

the TekUserController and pass along the controllerName and actionName

values in the params parameter. (We’ll need them shortly.) In the final

line, we return false, which will prevent any other filters (or the original

action) from being called.

Now to make this all work nicely, we have to go back and make a few

changes to our login view and the two controller actions we added

to TekUserController. We want to take advantage of the controllerName

and actionName values from the filter. When the filter redirects to the

login action, it will pass these values in the params, so we need to

do something with them to keep them available. Open TekDays/grails-

app/controllers/TekUserController.groovy, and modify the empty login action

like so:

Download security/TekDays/grails-app/controllers/TekUserController.groovy

def login = {

if (params.cName)

return [cName:params.cName, aName:params.aName]

}

This code checks to see whether those two values are available in

params and, if so, passes them on to the view in the returned Map. Next,

we’ll modify the view to pass these values on to the validate action. Open

TekDays/grails-app/views/tekUser/login.gsp, and add the following hidden

input elements somewhere inside the <g:form>.

Download security/TekDays/grails-app/views/tekUser/login.gsp

<input type="hidden" name="cName" value="${cName}">

<input type="hidden" name="aName" value="${aName}">

Now when the form is submitted, the controllerName and actionName

values from the filter will be passed on to the validate action. We will

now use these values to redirect the user to their original destination

on successful login.

LOGGING OUT 142

Open TekDays/grails-app/controllers/TekUserController.groovy, and modify

the validate action to look like this:

Download security/TekDays/grails-app/controllers/TekUserController.groovy

def validate = {

def user = TekUser.findByUserName(params.username)

if (user && user.password == params.password){

session.user = user

if (params.cName)

redirect(controller:params.cName, action:params.aName)

else

redirect(controller:'tekEvent', action:'list')

}

else{

flash.message = "Invalid username and password."

render(view:'login')

}

}

What we’re doing here is checking to see whether the controllerName

and actionName (using shortened variables) are available. If they are,

we use them to redirect the user; otherwise, we redirect them to the list

action of the TekEvent as before. We can come back and change that to

the home page later (after we add one).

This feature is a bit tricky to show in screenshots, but go ahead and try

it. Run the application, and go to the default home page. Choose any

of the controller links, and you should come to the list view. Click the

New button, and you should see the login screen shown in Figure 8.1,

on page 138. Log in using the credentials of one of the users we created

earlier, and you should be redirected to the create view that you were

aiming at. Good deal!

8.4 Logging Out

Since we have a method for logging in and because I like—er, I mean

our customer is quite fond of symmetry, we should add a method for

logging out. Don’t worry, it’ll take only a couple lines of code. Go back

to TekDays/grails-app/controllers/TekUserController, and add a logout action,

like so:

Download security/TekDays/grails-app/controllers/TekUserController.groovy

def logout = {

session.user = null

redirect(url:resource(dir:''))

}

LOGGING OUT 143

Since the way that our filter determines whether a user is logged in is

by the existence of a value in the user key, we set that key to null to “log

them out.” We don’t need to check for a user key before we do this; if it

doesn’t exist, it will be created and set to null. Then we redirect to a URL

that we create with the help of the <resource> tag. (Recall that all GSP

tags can be called as methods.) This will send the logged-out user back

to the home page.

Now we can log in and out of the system, but the only way we can

do either directly is to type the appropriate URL into our browser (for

example, http://localhost:8080/TekDays/tekUser/login). That’s not very Web

2.0. It’s more like Web 0.5. What would be great is if we had a login/

logout toggle that we could display where appropriate. Sounds like a

great place for a custom tag.

Go back to our taglib at TekDays/grails-app/taglib/TekDaysTagLib.groovy and

add a new tag closure called loginToggle:

Download security/TekDays/grails-app/taglib/TekDaysTagLib.groovy

def loginToggle = {

out << "<div>"

if (session.user){

out << ""

out << "Welcome ${session.user}."

out << ""

out << ""

out << "Logout "

}

else{

out << ""

out << ""

out << "Login "

}

out << "</div>
"

}

This tag doesn’t need any attributes or a body, so we skip the closure

parameters altogether. We start by writing out an opening <div>. Then

we check to see whether a user exists. If we have a user, we output a

“Welcome” message and a link to allow them to log out. For the mes-

sage, we use ${session.user} inside a GString. (This will lead to a call to

the TekUser.toString() method, which we defined earlier.) For the link we

use a regular anchor tag along with the <createLink> tag, called as a

method. If there is no user, we just output a link to allow the user to

log in. There’s also a little CSS, but that’s not too exciting.

SUMMARY 144

Figure 8.2: The loginToggle tag in action

We’ll use this new tag in TekDays/grails-app/views/layouts/main.gsp, so go

ahead and open that file. Add the <g:loginToggle> tag, as shown here:

Download security/TekDays/grails-app/views/layouts/main.gsp

<div class="logo">

<g:loginToggle />

</div>

We can see how our new custom tag looks in Figure 8.2. Much better.

8.5 Summary

That went quickly! It’s OK—you can use the extra time to do a little

experimenting. Maybe you can try using filters to add logging or some-

thing exciting like that. We now have the beginnings of a workable secu-

rity system in place for TekDays. It’s not as robust as those provided

SUMMARY 145

by the Spring Security or JSecurity plug-ins, but it’ll work for our pur-

poses. We also have a new custom tag in our growing tag library.

Next up, we’ll start tying some of these pieces together with a more

useful home page and a dashboard view for event organizers. We’ll see

how Grails allows us to build much more than single-domain views and

that MVC doesn’t have to be a collection of silos. It just keeps getting

better!

Chapter 9

Big-Picture Views
So far, the views we’ve been building have been focused on a single

domain class. The Grails convention-based MVC architecture allows us

to build these types of views quickly, and they play an important role

in most applications. But most applications—TekDays included—will

also need a way to interact with data from multiple domain classes at

a time.

The person taking on the responsibility of organizing a community tech-

nical event has a big job on their hands; it’s an exciting and rewarding

job, but a big one nonetheless. We’re here to help that hard-working,

visionary individual, and one way we can do that is to provide a more

convenient way for them to see details about their event and to perform

common tasks. In this iteration, we’re going to implement an organizer’s

dashboard view. This view will not be tied to any one domain class but

will interact with most (if not all) of them at one time. We might even

hit data that is not from our domain.

Before we launch into what will arguably be the most complex view of

our application, let’s warm up with another view that needs some work.

Our home page could really use some love. The list of controller links

is getting kind of old, so let’s warm up our GSP muscles with a home

page makeover.

9.1 Home Page Makeover

The application home page can be found in the root views directory:

TekDays/grails-app/views/index.gsp.

HOME PAGE MAKEOVER 147

Let’s open this file now to see what we have to work with:

Download security/TekDays/grails-app/views/index.gsp

<html>

<head>

<title>Welcome to Grails</title>

<meta name="layout" content="main" />

</head>

<body>

<h1 style="margin-left:20px;">Welcome to Grails</h1>

<p style="margin-left:20px;width:80%">

Congratulations, you have successfully started your first Grails application!

At the moment this is the default page, feel free to modify it to either

redirect to a controller or display whatever content you may choose. Below

is a list of controllers that are currently deployed in this application,

click on each to execute its default action:

</p>

<div class="dialog" style="margin-left:20px; width:60%;">

<g:each var="c" in="${grailsApplication.controllerClasses}">

<li class="controller">

<g:link controller="${c.logicalPropertyName}">${c.fullName}</g:link>

</g:each>

</div>

</body>

</html>

We’ll be getting rid of most of this, but it is interesting to see what’s

going on here. The <g:each> tag is iterating over a list of all the con-

trollers in the application and creating a link for each one. Looking at

things like grailsApplication.controllerClasses gives you an idea of the types

of things you can do with Grails as you move on from here. Grails is by

no means a shallow framework!

As interesting as that code is, it doesn’t do what we need right now, so

we’ll get rid of everything in the <body> section. Then in the <head>,

we’ll change the <title> to the name and slogan of our application. We’ll

replace the <body> with a welcome paragraph and a few <div> blocks

to represent the major tasks in TekDays. The end result should look

like this:

Download bigger/TekDays/grails-app/views/index.gsp

<html>

<head>

<title>TekDays - The Community is the Conference!</title>

<meta name="layout" content="main" />

</head>

HOME PAGE MAKEOVER 148

Figure 9.1: The TekDays home page

<body>

<div id="welcome">

<h3>Welcome to TekDays.com</h3>

<p>TekDays.com is a site dedicated to assisting individuals and communities

to organize technology conferences. To bring great minds with common

interests and passions together for the good of greater geekdom!

</p>

</div>

<div class="homeCell">

<h3>Find a Tek Event</h3>

<p>

See if there's a technical event in the works that strikes your fancy.

If there is, you can volunteer to help or just let the organizers know

that you'd be interested in attending. Everybody has a role to play.

</p>

<g:link controller="tekEvent" action="list">Find a Tek Event</g:link>

</div>

CREATING A NEW CONTROLLER 149

<div class="homeCell">

<h3>Organize a Tek Event</h3>

<p>

If you don't see anything that suits your interest and location, then

why not get the ball rolling. It's easy to get started and there may

be others out there ready to get behind you to make it happen.

</p>

<g:link controller="tekEvent" action="create">

Organize a Tek Event

</g:link>

</div>

<div class="homeCell">

<h3>Sponsor a Tek Event</h3>

<p>

If you are part of a business or organization that is involved in

technology then sponsoring a tek event would be a great way to let the

community know that you're there and you're involved.

</p>

<g:link controller="sponsor" action="create">

Sponsor a Tek Event

</g:link>

</div>

</body>

</html>

That’s kind of a long listing, but it’s not very complicated. We broke the

page up into four blocks: an introduction and one section each for the

three main activities users will do in our application. There are other

activities, but they will be branches off of these three—browsing events,

creating an event, or becoming a sponsor.

In Figure 9.1, on the preceding page, we can see our new home page in

all its glory (so to speak).

9.2 Creating a New Controller

Now that we’re all warmed up and ready, we’ll get to work on the new

organizer’s dashboard view. To keep our overall architecture clean and

not confuse the conventions that have proved so helpful to us, we will

create a new controller for the dashboard view and any related views.

We’ll use the create-controller script to do this:

$ grails create-controller Dashboard

DESIGNING THE DASHBOARD VIEW 150

Controllers and Conventions

The Grails convention of naming a controller with a domain
class name followed by Controller, and the way that the
generate-all script takes a domain class and generates a con-
ventionally named controller and standard views in a directory
with the same name, can make it seem like everything must be
based on a domain class. The fact is that aside from the work
of generate-all, there is no link between a domain class and a
controller.

Any domain class can be accessed from any controller. The
static methods that Grails adds to domain classes (get(), list(),
and so on) are available in any controller.

The real convention-based link is between controllers and
views. An action in a controller will, unless directed other-
wise, attempt to render a view named after the action, in
a directory named after the controller. For example, a bar

action in FooController will attempt to render the view in ../grails-

app/views/foo/bar.gsp.

The script creates the file TekDays/grails-app/controllers/DashboardControl-

ler.groovy, along with a corresponding TestCase in TekDays/test/unit/Dash-

boardControllerTests.groovy. It also creates the TekDays/grails-app/views/

dashboard directory, where our new controller will look for views.

This controller will be responsible for rendering the dashboard view and

supplying it with the necessary data. To be clearer about what data we

need, we’ll work on the view first. Once we have that done, we’ll come

back to the DashboardController.

9.3 Designing the Dashboard View

The purpose of the dashboard view is to give event organizers and vol-

unteers an “at-a-glance” view of the most pertinent information regard-

ing their event, with links to get to where they need to go. This will be

their starting place when they come to work on their event.

DESIGNING THE DASHBOARD VIEW 151

We’ll discuss the design more as we go along, but to get started, create

an empty file called TekDays/grails-app/views/dashboard/dashboard.gsp,

and add the following code:

Download bigger/TekDays/grails-app/views/dashboard/dashboard.gsp

<html>

<head>

<title>TekDays - Dashboard</title>

<meta name="layout" content="main" />

</head>

<body>

</body>

</html>

This page will have a good amount of content in it, so in order to keep

it manageable from a coding standpoint, we’ll compose the page out of

a series of templates. Our main dashboard page will consist of several

<g:render> tags, which can easily be rearranged and styled as neces-

sary. We’ll add these tags now and then create the templates they refer

to. In dashboard.gsp, add the following code between the opening and

closing <body> tags:

Download bigger/TekDays/grails-app/views/dashboard/dashboard.gsp

<div id="event" style='margin:10px 10px 10px 10px'>

<g:render template="event" model="${['event':event]}" />

</div>

<div id="tasks" style='margin:10px 10px 10px 10px'>

<g:render template="tasks" model="${['tasks':tasks]}" />

</div>

<div id="volunteers" style='margin:10px 10px 10px 10px'>

<g:render template="volunteers" model="${['volunteers':volunteers]}" />

</div>

<div id="messages" style='margin:10px 10px 10px 10px'>

<g:render template="messages" model="${[messages:messages]}" />

</div>

<div id="sponsors" style='margin:10px 10px 10px 10px'>

<g:render template="sponsors" model="${[sponsorships:sponsorships]}" />

</div>

We added several <div> tags containing <g:render> tags. We can tweak

the styling on these elements or change their order or what have you.

Now we can address each template on its own, which will help our

discussion (as well as our code) to be more organized. Recall that the

<g:render> tag will insert the final HTML of the designated template

inside the containing element, in this case the <div>. Let’s start with

the template for the basic event information.

DESIGNING THE DASHBOARD VIEW 152

Basic Event Information

In this first template we’ll have information from the TekEvent itself, such

as name, city, dates, and venue. We’ll display the event name and city

at the top center and then build a simple table to display the other data

elements. Create the file TekDays/grails-app/views/dashboard/_event.gsp,

and give it the following code:

Download bigger/TekDays/grails-app/views/dashboard/_event.gsp

<h1>${event}</h1>

<table>

<tr>

<td>

Start Date: <g:formatDate format="MMM/dd/yyyy" date="${event.startDate}"/>

</td>

<td>

<g:if test="${event.endDate}">

End Date: <g:formatDate format="MMM/dd/yyyy" date="${event.endDate}"/>

</g:if>

</td>

</tr>

<tr>

<td>

Venue: ${event.venue}

</td>

<td>

Number of potential attendees: ${event.respondents.size()}

</td>

</tr>

</table>

Notice that we also displayed the number of potential attendees. This

is not a data element itself but is the count of the respondents col-

lection property. This is the type of information that we will want at

a glance; the complete list of respondents’ email addresses would be

overkill here.

Tasks

Next up is the task list. This will be an abbreviated list of the first five

incomplete tasks, with a link to go to the full task list.

DESIGNING THE DASHBOARD VIEW 153

Create TekDays/grails-app/views/dashboard/_tasks.gsp, and add this code:

Download bigger/TekDays/grails-app/views/dashboard/_tasks.gsp

<h3>Things to do</h3>

<table>

<thead>

<tr>

<th>Task Title</th>

<th>Due Date</th>

<th>Assigned To</th>

</tr>

</thead>

<g:each in="${tasks}" var="task">

<tr>

<td>${task.title}</td>

<td><g:formatDate format="MM/dd/yyyy" date="${task.dueDate}" /></td>

<td>${task.assignedTo}</td>

</tr>

</g:each>

</table>

<g:link controller="task" action="list" id="${event.id}">

View all ${event.tasks.size()} tasks for this event.

</g:link>

The template starts out with a heading, followed by a table with three

columns displaying the title, dueDate, and assignedTo properties of each

Task. Then we finish off with a link to the rest of the tasks for this

event. (Notice that we take advantage of the GSP being one big GString

by embedding a Groovy expression in the middle of the <g:link> body.)

Volunteers

For the volunteers template, create TekDays/grails-app/views/dashboard/

_volunteers.gsp, and enter the following code:

Download bigger/TekDays/grails-app/views/dashboard/_volunteers.gsp

<h3>Volunteers</h3>

<table>

<thead>

<tr>

<th>Name</th>

<th>Email Address</th>

<th>Web Site</th>

</tr>

</thead>

<g:each in="${volunteers}" var="volunteer">

<tr>

<td>

<g:link controller="tekUser" action="show" id="${volunteer.id}">

${volunteer.fullName}

</g:link>

</td>

DESIGNING THE DASHBOARD VIEW 154

<td>${volunteer.email}</td>

<td>${volunteer.website}</td>

</tr>

</g:each>

</table>

The volunteers template starts out the same as the tasks template with

a header, a table with three columns, and a row for each volunteer.

One difference is that we are not limiting the list of volunteers; the

whole gang will be there. Some other differences are the links that

we are building in. Notice the <g:link> tag that we use inside the full-

Name<td>. This will create a link to the show action of the TekUser con-

troller with the id of the given volunteer. We also used HTML anchor tags

to turn the volunteer’s email and website into links. Now the organizer

has a quick way to fire off an email to a volunteer.

Messages

Next, we’ll have a top-level list of the messages in the forum. Create

a blank file called TekDays/grails-app/views/dashboard/_messages.gsp, and

code it as follows:

Download bigger/TekDays/grails-app/views/dashboard/_messages.gsp

<h3>Forum Messages</h3>

<table>

<thead>

<tr>

<th>Author</th>

<th>Subject</th>

<th>Content</th>

</tr>

</thead>

<g:each in="${messages}" var="msg">

<tr>

<td>

<g:link controller="tekUser" action="show" id="${msg.author.id}">

${msg.author}

</g:link>

</td>

<td>${msg.subject}</td>

<td>

${msg.content[0..Math.min(msg.content.size() -1, 24)]}

${msg.content.size() > 25 ? '...' : ''}

</td>

</tr>

</g:each>

</table>

<g:link controller="message" action="list" id="${event.id}">

View threaded messages for this event.

</g:link>

DESIGNING THE DASHBOARD VIEW 155

This code is similar to the others: a table with three columns and a

<g:each> tag to iterate over the messages and fill the table. The mes-

sages list will contain only top-level messages (no replies), but this will

be handled in the controller. One interesting thing that we did in this

template is truncate the content if it is more than 25 characters long.

Groovy allows us to retrieve a portion of a String using a range, as in the

following example:

Download bigger/TekDays/scripts/substring_example.groovy

def s = 'Grails is fun!'

assert s[0..5] == 'Grails'

In our template, this line:

${msg.content[0..Math.min(msg.content.size() -1, 24)]}

uses a range to get the first 25 characters of the content property of the

message. To avoid getting an IndexOutOfBounds exception if the content

is shorter than 25 characters, we used Math.min(). In the next line:

${msg.content.size() > 25 ? '...' : ''}

we tacked on an ellipsis, using a Java ternary operator. If we were going

to do this anywhere else, it would be another good candidate for a cus-

tom tag.

Sponsors

This last template will contain a Sponsor list. But as we discussed in

Section 4.6, Many-to-Many Relationships, on page 66, the TekEvent has

no direct relationship with the Sponsor class; we have to work with the

intermediate class Sponsorship. (Our template will actually contain infor-

mation from both Sponsor and Sponsorship.) Create a blank file called

TekDays/grails-app/views/dashboard/_sponsors.gsp, and add the following

code:

Download bigger/TekDays/grails-app/views/dashboard/_sponsors.gsp

<h3>Sponsors</h3>

<table>

<thead>

<tr>

<th>Name</th>

<th>Web Site</th>

<th>Contribution</th>

</tr>

</thead>

ADDING THE DASHBOARD ACTION 156

<g:each in="${sponsorships}" var="s">

<tr>

<td>

<g:link controller="sponsor" action="show" id="${s.sponsor.id}">

${s.sponsor.name}

</g:link>

</td>

<td>${s.sponsor.website}</td>

<td>${s.contributionType}</td>

</tr>

</g:each>

</table>

The <g:each> tag in this template is iterating over a list of Sponsor-

ship instances. Each instance is being stored in the variable s. To get

the sponsor.name and sponsor.website properties, we accessed the sponsor

property of the Sponsorship class like this: ${s.sponsor.name}. The contri-

butionType is a property of the Sponsorship class, so we can access it

directly. We also implemented links to the Sponsor show view and the

sponsor’s website, the same way we did for the volunteers template.

Now we have the basic components of our dashboard page. We will

come back to it later and add some features to make it more useful,

but first we want to close the feedback loop and see this view in action.

To do that, we need to add the controller action that will collect the data

we need and serve up the view.

9.4 Adding the Dashboard Action

We can tell from looking at the code for our dashboard view that it will

need the following data elements when it is rendered: event, tasks, vol-

unteers, messages, and sponsorships. The first of these is a single TekEvent

instance; the rest are collections of related objects.

Some of these collections need to be filtered or limited in some way.

This will also be done in the controller action.

Let’s see how easy this can be. Open TekDays/grails-app/controllers/Dash-

boardController.groovy. The empty index action should already be there.

Right after that, add the dashboard action, as shown on the next page.

ADDING THE DASHBOARD ACTION 157

Download bigger/TekDays/grails-app/controllers/DashboardController.groovy

class DashboardController {

def index = { }

def dashboard = {

def event = TekEvent.get(params.id)

if (event){

if(event.organizer.userName == session.user.userName ||

event.volunteers.collect{it.userName}.contains(

session.user.userName)){

def tasks = Task.findAllByEventAndCompleted(event, false,

[max:5, sort:'dueDate'])

def volunteers = event.volunteers

def messages = Message.findAllByEventAndParentIsNull(event,

[sort:'id',

order:'desc'])

def sponsorships = event.sponsorships

return [event:event, tasks:tasks, volunteers:volunteers,

messages:messages, sponsorships:sponsorships]

}

else{

flash.message = "Access to dashboard for ${event.name} denied."

redirect(controller:'tekEvent', action:'list')

}

}

else{

flash.message = "No event was found with an id of ${params.id}"

redirect(controller:'tekEvent', action:'list')

}

}

}

This action expects an id in the params Map. We first use that value to

retrieve a TekEvent instance, using the TekEvent.get() method. The rest of

the code is wrapped in a couple of if blocks. If the event is null, we add

a message to flash and redirect the user to the TekEvent list. If the event

is not null, then we check to see whether the logged-in user has access

to this view.

This view is for event organizers or volunteers, so we check to see

whether the logged-in user (session.user) is either the organizer or a user

in the list of volunteers. Determining whether the logged-in user is

the organizer is a simple comparison, but determining whether the

logged-in user is among the volunteers is a bit tricky. We use the col-

lect() method on event.volunteers to iterate over the Set and return a list

containing the userName of each volunteer. Then we call the contains()

ADDING A MENU 158

method on that list, passing in the userName of the logged-in user. If

that test is passed, we begin retrieving the rest of the data.

The tasks variable is a list of Task instances associated with this TekEvent.

We could use the tasks property of the TekEvent class, as we will do with

others, but we want to limit the list to the first five incomplete tasks.

Dynamic finders give us an easy way to do this. All the Grails dynamic

finders allow a Map parameter, which can contain the following ele-

ments: offset, max, sort, and order. These values are used for pagination

and sorting, which we get in the scaffolded list views, for example. We

take advantage of max to limit our list to five items and use sort to get

the tasks that are most urgent.

We don’t need to do anything special with the volunteers list, so we just

take the event.volunteers property. The messages list should show the

most recent messages, so we use a dynamic finder again (this time

using the IsNull comparator) and pass in parameters in the Map to do a

descending sort on the id property.

The sponsorships list is also a simple one, so we just use the sponsorships

property of the TekEvent. Once we’ve defined and loaded all of the data

elements our dashboard view needs, we return them in the params Map.

Now, if we log in as the event organizer or a volunteer and navigate to

http://localhost:8080/TekDays/dashboard/dashboard/1, we’re greeted with

the page shown in Figure 9.2, on the following page.

9.5 Adding a Menu

Our dashboard view gives event organizers and volunteers a good look

at most aspects of their event, but it would be nice if they could take

some actions from there, too. We’ll add a menu to the dashboard to

enable that. Open TekDays/grails-app/views/dashboard/dashboard.gsp, and

add the following code to the top of the <body> section:

Download bigger/TekDays/grails-app/views/dashboard/dashboard.gsp

<div class="nav">

Home

<g:link class="create" controller="task" action="create">

Create Task

</g:link>

ADDING A MENU 159

Figure 9.2: TekDays organizer’s dashboard

LINKING TO THE DASHBOARD 160

Figure 9.3: The dashboard menu

<g:link class="create" controller="sponsorship" action="create">

Add Sponsor

</g:link>

<g:link class="list" controller="sponsor" action="list">

All Sponsors

</g:link>

</div>

This code is mostly borrowed from the scaffolded pages that Grails gave

us. We kept the Home menu item and added items to create new tasks

and sponsorships. We also added a menu item to list all sponsors. (This

might be useful to see who else is interested in sponsoring technical

events.) We are using the <g:link> and <g:resource> tags, which we

discussed earlier. One interesting thing here is the CSS classes that we

are using: home, create, and list. These classes are provided by Grails

and can be found in TekDays/web-app/css/main.css.

In Figure 9.3, we can what our dashboard menu looks like.

9.6 Linking to the Dashboard

Now that we have a dashboard view, we need to provide an easy way to

get to it. The TekEvent show view is a logical place to provide a link to

the dashboard. Open TekDays/grails-app/views/tekEvent/show.gsp, and add

the highlighted code to the “menu” <div> near the top of the file.

LINKING TO THE DASHBOARD 161

Figure 9.4: The event show view menu

Download bigger/TekDays/grails-app/views/tekEvent/show.gsp

<div class="nav">

Home

<g:link class="list" action="list">TekEvent List</g:link>

<g:link class="create" action="create">New TekEvent</g:link>

<g:link class="list" controller="dashboard" action="dashboard"

id="${tekEventInstance.id}">Event Dashboard</g:link>

</div>

Again, we just copied the existing menu code and modified the <g:link>

tag to go to the dashboard action of the DashboardController. Notice that

the variable used to represent the TekEvent instance is tekEventInstance

instead of event as we have been using. When modifying an existing

view, we have to use the variable names that are passed to it by the

controller. (To find out what they are, we can just look at the controller

action.)

The new menu on the show view is shown in Figure 9.4.

SUMMARY 162

9.7 Summary

We now have a convenient dashboard view to help event organizers and

volunteers keep an eye on their event, and we have an easy way for

them to get to it. We have security in place so that only authorized

users can get to the dashboard. As a bonus, we have a much friendlier

and more helpful home page. And while we got all that done, we learned

how to create a controller that is not tied to a domain class and use it to

populate and access views that span multiple domain classes. We also

got some good practice working with GSP views and templates. (Our

customer is impressed, too, and that’s always a good thing.)

In the next iteration, we’ll be looking for a good way to add search

capabilities to TekDays. This will introduce us to more of the coolness

that is GORM and to the Grails plug-in architecture.

Chapter 10

Seek, and You Shall Find
Any nontrivial application needs to have some sort of search mecha-

nism. TekDays is no exception. In fact, our customer informed me of

three different places where he wants us to incorporate some sort of

search behavior. Well, actually he wanted more than that, but I had

to take a stand against scope creep. For now, we will implement these

three: first, when a user logs into TekDays, we will find any TekEvent

that has them as the organizer; second, we will also find any TekEvent

for which they are a volunteer (both of these will show up on the home

page); and finally, we will have the traditional search feature where

users can look for a TekEvent based on the properties of the event. As we

implement these new features, we will describe three common ways of

searching and finding objects with Grails.

10.1 Search Using Dynamic Finders

When an event organizer logs into TekDays, we should give them a

direct link to the event, or events, that they are organizing—these folks

are busy; we don’t want to waste their time. Fortunately, this is very

easy to do using Grails’ dynamic finders, introduced in Section 4.2,

Introducing GORM, on page 57.

Here’s the plan. When the user logs in, we will find all the TekEvent

instances that have this user assigned to the organizer property. We will

then display links to the show view for each TekEvent on the home page.

The search part of this feature is pretty simple, but we have to decide

just where to do it and how to display it. Let’s have a brief design ses-

sion to see what we can come up with. We want to show the organizer’s

events on the home page, but the home page, unlike most pages in a

SEARCH USING DYNAMIC FINDERS 164

Grails application, is not rendered from a controller action. That means

that we can’t pass the event list to it in a model (a Map). We could

retrieve the list right from the page with code like this:

<g:each in="${TekEvent.findAllByOrganizer(session.user)}" var="event">

<!-- code to display event here -->

</g:each>

There are a couple problems with this approach. First, we are putting

more code in our page than we should. Second, we would want to do

this only if we have a logged-in user, so we would have to wrap this

code in something like this:

<g:if test="${session.user}">

<!-- each loop and corresponding code goes here -->

</g:if>

This would work, but it’s ugly. So, what would be a good way to load

and display these events every time the page loads for a logged-in event

organizer? If you said “custom tag,” you get a gold star by your name.

This is an excellent case for a custom tag. Let’s open our tag library,

TekDays/grails-app/taglib/TekDaysTagLib.groovy, and add the following code

at the end of the class:

Download seek/TekDays/grails-app/taglib/TekDaysTagLib.groovy

def organizerEvents = {

if (session.user){

def events = TekEvent.findAllByOrganizer(session.user)

if (events){

out << "<div style='margin-left:25px; margin-top:25px; width:85%'>"

out << "<h3>Events you are organizing:</h3>"

out << ""

events.each{

out << "<a href='"

out << "${createLink(controller:'tekEvent',action:'show',id:it.id)}'>"

out << "${it}"

}

out << ""

out << "</div>"

}

}

}

We defined a closure called organizerEvents that creates a tag called

<g:organizerEvents>. This closure takes no parameters, which means

that our new tag will not have a body or any attributes. Inside the clo-

sure, the first thing we do is check to see whether there is a logged-in

SEARCH USING DYNAMIC FINDERS 165

user. (Recall from Chapter 8, Knock, Knock: Who’s There? Grails Secu-

rity, on page 135, that we store the logged-in user in session.user.)

If we have a user, we use the dynamic finder TekEvent.findAllByOrganizer()

to get a list of TekEvent instances. In the next line, we check to see

whether that call returned anything. In Groovy, a collection reference

evaluates to false if it is null or empty. The next few lines set up a <div>

and an .

Next, we used the each() method to iterate over our list of events and

create a and an <a> for each event. Notice how we used ${it} for the

body of the <a> tag; this will call the toString() on the TekEvent, which

returns name and city properties. Finally, we close out the unordered

list and the <div>.

Now we can retrieve the list of events and display them on our home

page by adding a single line of code. In TekDays/grails-app/views/index.gsp,

add the highlighted line:

Download seek/TekDays/grails-app/views/index.gsp

<h3>Welcome to TekDays.com</h3>

<p>TekDays.com is a site dedicated to assisting individuals and communities

to organize technology conferences. To bring great minds with common

interests and passions together for the good of greater geekdom!

</p>

</div>

<g:organizerEvents />

<div class="homeCell">

<h3>Find a Tek Event</h3>

<p>

See if there's a technical event in the works that strikes your fancy.

If there is, you can volunteer to help or just let the organizers know

that you'd be interested in attending. Everybody has a role to play.

</p>

<g:link controller="tekEvent" action="list">Find a Tek Event</g:link>

</div>

Not only have we avoided putting a bunch of business logic in our page,

but we also have a tag that can easily be reused in other pages as

needed. I don’t know about you, but I’ll sure sleep better at night.

Now that we have this nifty feature, let’s make one more change to

make it easier to see it in action. Currently, the validate action of the

TekUserController redirects users to the TekEventController.list action after

a successful login. We want to change that to redirect to the home

HIBERNATE CRITERIA BUILDER 166

page. Open TekDays/grails-app/controllers/TekUserController.groovy, and find

the line in the validate action that looks like this:

redirect(controller:'tekEvent', action:'list')

Change that to look like the following highlighted line:

Download seek/TekDays/grails-app/controllers/TekUserController.groovy

def validate = {

def user = TekUser.findByUserName(params.username)

if (user && user.password == params.password){

session.user = user

if (params.cName)

redirect(controller:params.cName, action:params.aName)

else

redirect(uri:'/')

}

else{

flash.message = "Invalid username and password."

render(view:'login')

}

}

In most cases, the redirect() method will take an action or a controller and

action pair. But it can also take a URL or, as in this case, a URI. Simply

redirecting to a URI of / will return to the home page no matter where

we are in the application. Pretty handy.

In Figure 10.1, on the next page, we can see what this looks like after

our friend John Doe started up a couple more events.

10.2 Hibernate Criteria Builder

Dynamic finders are great, and as you work with Grails, you will find

yourself using them again and again, but they can take you only so

far. Specifically, dynamic finders are limited to searching based on two

properties of a domain class, and they are limited to top-level properties

of the class—you cannot use dynamic finders to search relationships.

Our next search feature is to find TekEvent instances for which a logged-

in user has volunteered. Volunteers for an event are in the volunteers

collection, which is the result of a one-to-many relationship between

TekEvent and TekUser. To search relationships, we must turn to a different

tool in the Grails toolbox.

The Criteria Builder in Grails is a very powerful and flexible tool for

retrieving objects. It is based on the Hibernate Criteria API, so you can

HIBERNATE CRITERIA BUILDER 167

Figure 10.1: TekDays home page with organizer events

dig deeper by studying that technology.1 However, this is Grails we’re

talking about, so you can do plenty with this tool by following some

simple examples.

All Grails domain classes have a static createCriteria() method that re-

turns a HibernateCriteriaBuilder instance. This builder has a list method

that takes a closure. Inside this closure, we can define the criteria for

our search.

1. https://www.hibernate.org/hib_docs/v3/api/org/hibernate/Criteria.html

HIBERNATE CRITERIA BUILDER 168

Here’s an example:

def g3Events = TekEvent.createCriteria.list{

and{

gt('startDate', new Date())

or{

ilike('description', '%groovy%')

ilike('description', '%grails%')

ilike('description', '%griffon%')

}

}

}

This code produces a list of the technical events that you would be

likely to find me attending. More specifically, the g3Events list would

contain any TekEvent that contained the words Groovy, Grails, or Grif-

fon in the description property and whose startDate is still in the future.

Notice how we have an or block nested inside an and block. This type

of nesting of logical blocks can be much clearer and easier to read than

an equivalent SQL statement.

Another nice feature of Criteria Builders is that relationship properties

can easily be searched. This is also done with nested criteria blocks.

Let’s see how this looks:

def contegixEvents = TekEvent.createCriteria.list{

sponsorships{

sponsor{

eq('name', 'Contegix')

}

}

}

This code loads contegixEvents with all TekEvent instances that Contegix

is sponsoring. It does this by searching the sponsorships property, which

is a collection of Sponsorship instances. That is represented by the first

block. A Sponsorship has a sponsor property that is of type Sponsor. That’s

the second block. Then, within the sponsor block, we check for a name

property that is equal to Contegix.

This last technique is the one we will use to find all events that a

logged-in user has volunteered for. Since we want to display this list

on the home page as we did for the organizer’s event list, we will once

again take advantage of Grails’ custom tags. Let’s open TekDays/grails-

app/taglib/TekDaysTagLib.groovy and add the tag code at the top of the

next page.

HIBERNATE CRITERIA BUILDER 169

Download seek/TekDays/grails-app/taglib/TekDaysTagLib.groovy

def volunteerEvents = {

if (session.user){

def events = TekEvent.createCriteria().list{

volunteers{

eq('id', session.user?.id)

}

}

if (events){

out << "<div style='margin-left:25px; margin-top:25px; width:85%'>"

out << "<h3>Events you volunteered for:</h3>"

out << ""

events.each{

out << "<a href='"

out << "${createLink(controller:'tekEvent',action:'show',id:it.id)}'>"

out << "${it}"

}

out << ""

out << "</div>"

}

}

}

Much of the code for our <g:volunteerEvents> tag is the same as the

<g:organizerEvents> tag we created earlier. Let’s take a look at the bits

that are different. The most important difference is that we are using a

Criteria Builder to load the events list. We are searching the volunteers

collection for a TekUser with an id that is equal to the id of the logged-

in user (session.user). The next difference is the heading, which isn’t all

that interesting. And finally, in this tag we are accessing the id of the

session.user instead of the user by itself.

To put this new tag to use, open TekDays/grails-app/views/index.gsp, and

add the highlighted line:

Download seek.1/TekDays/grails-app/views/index.gsp

<h3>Welcome to TekDays.com</h3>

<p>TekDays.com is a site dedicated to assisting individuals and communities

to organize technology conferences. To bring great minds with common

interests and passions together for the good of greater geekdom!

</p>

</div>

<g:organizerEvents />

<g:volunteerEvents />

Now when a user who has volunteered to help out with one or more

events logs in, the home page will look similar to Figure 10.2, on the

following page.

THE BIG GUNS: THE SEARCHABLE PLUG-IN 170

Figure 10.2: TekDays home page with volunteer events

10.3 The Big Guns: The Searchable Plug-In

So far, in this iteration we have implemented internal searches to add

features for our users—and right nice features they are. But we’re hop-

ing that more people than just the organizer and the existing volunteers

will access this site. We want to make it easy for visitors to find an event

in their area or one related to their favorite technology. I know if I stum-

bled upon a site like this, the first thing I’d do is search for Groovy or

Grails. Let’s add this type of search feature to TekDays.

We could create a search form with fields for all the searchable proper-

ties, and then we could use the Criteria Builder to dynamically build a

query based on the user’s input—but that would be kind of lame. What

THE BIG GUNS: THE SEARCHABLE PLUG-IN 171

we’ll do instead is provide a single search field on our home page, and

we’ll search for all possible matches to the value entered in that field.

To do this, we’ll take advantage of one of the most powerful plug-ins in

the Grails ecosystem; the Searchable plug-in2 takes the indexing and

search capabilities of Compass and Lucene and makes them easy to

use. It makes them so easy, in fact, that we call it “Grails-easy.”

Before we dig into this feature, let’s talk about Grails’ plug-ins. At last

check, there are more than 200 plug-ins in the main repository. You can

see what plug-ins are available by running grails list-plugins, and you can

find the documentation for most of them at the main plug-in portal:

http://grails.org/plugin/home. Installing a plug-in is as easy as running

grails install-plugin plugin-name.

Plug-ins seamlessly add features to a Grails application. They can add

new domain classes, controllers, tag libraries, services, and more.

Often, plug-ins wrap an existing Java library or framework like the

Twitter plug-in,3 which wraps the JTwitter API.4

It’s important to note that any library or framework that is provided

by a plug-in could be included directly in your application without the

plug-in. You could include the .jar files and write your code directly

against the APIs. The point of plug-ins and the philosophy that most

plug-in authors have embraced is that these external libraries should

be as easy to work with as Grails itself. Plug-in authors tend to follow

the principle of preferring convention to configuration but allowing con-

figuration when it’s desired. As we’ll see shortly, the Searchable plug-in

is an excellent example of this.

The Searchable plug-in allows us to perform full-text searches on all

of the properties of our domain classes—even relationship properties.

Let’s take it for a spin. Install the plug-in at the command line while in

our application’s root directory:

$ grails install-plugin searchable

As the plug-in is fetched from the repository and installed, you will see

a string of messages.

2. Developed by Maurice Nicholson; see http://grails.org/plugin/searchable.
3. The Twitter plug-in was developed by Burt Beckwith; for more, go to

http://burtbeckwith.com.
4. http://www.winterwell.com/software/jtwitter.php

THE BIG GUNS: THE SEARCHABLE PLUG-IN 172

The final output looks something like this:

Thanks for installing the Grails Searchable Plugin!

Documentation is available at http://grails.org/Searchable+Plugin

Help is available from user@grails.codehaus.org

Issues and improvements should be raised at

http://jira.codehaus.org/browse/GRAILSPLUGINS

If you are upgrading from a previous release,

please see http://grails.org/Searchable+Plugin+-+Releases

Plugin searchable-0.5.4 installed

Plug-in provides the following new scripts:

--

grails install-searchable-config

Take particular notice of that last line. The install-searchable-config script

is what you use if the sensible defaults and conventional configuration

don’t line up with what you need. This script will install a config file

that gives you much greater control over the features of the plug-in.

Now that the Searchable plug-in is installed, we are ready to start mod-

ifying our code to enable search. Let’s start with TekDays/grails-app/do-

main/TekEvent.groovy. Open it, and add the highlighted code:

Download seek.1/TekDays/grails-app/domain/TekEvent.groovy

class TekEvent {

String city

String name

TekUser organizer

String venue

Date startDate

Date endDate

String description

String toString(){

"$name, $city"

}

static searchable = true

static hasMany = [volunteers:TekUser,

respondents:String,

sponsorships:Sponsorship,

tasks:Task,

messages:Message]

THE BIG GUNS: THE SEARCHABLE PLUG-IN 173

static constraints = {

name(blank:false)

city(blank:false)

description(maxSize : 5000)

organizer(nullable:false)

venue(nullable:true)

startDate(nullable:true)

endDate(nullable:true)

volunteers(nullable : true)

sponsorships(nullable : true)

tasks(nullable : true)

messages(nullable : true)

}

}

“What?!” you say—“Only one line?!” That was my initial reaction, too.

But it’s true. That single line of code, static searchable = true, enables

full-text search of all the simple properties of the TekEvent. Let’s put this

newfound power to use by adding a search action to our TekEventCon-

troller. Open TekDays/grails-app/controllers/TekEventController.groovy, and

add the following action:

Download seek.1/TekDays/grails-app/controllers/TekEventController.groovy

def search = {

if(params.query){

def events = TekEvent.search(params.query).results

[events : events]

}

}

In this action, we start off with an if block to protect against a blank

search. Then we have two lines: the first calls the search() method that

the Searchable plug-in has added to the TekEvent class, passing in the

search query (which will come from a form we will be creating shortly).

The search() method returns a SearchResult instance, which contains a

results property that is a List. The next line just returns that list in a Map.

This action will, by convention, attempt to render a view in a file called

search.gsp, so let’s give it one to render.

Create an empty file called TekDays/grails-app/views/tekEvent/search.gsp,

and add the following code:

Download seek.1/TekDays/grails-app/views/tekEvent/search.gsp

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<meta name="layout" content="main" />

<title>Tek Event Search Results</title>

</head>

THE BIG GUNS: THE SEARCHABLE PLUG-IN 174

Joe Asks. . .

What If We Want to Search Associated Objects?

At times, you may need to search for objects based on the
properties of related objects. The Searchable plug-in makes this
easy also. Let’s say, for example, that you want to be able to
search for TekEvent instances based on the properties of its orga-

nizer or volunteers. These are both of type TekUser, so add this line
to the TekUser class:

static searchable = true

Now go to the TekEvent class, and change that searchable dec-
laration to look like this:

static searchable = {
organizer component: true
volunteers component: true

}

All you did was turn TekUser into a searchable class. Then you
used the Searchable plug-in’s mapping DSL to tell it that the
organizer and volunteers properties are searchable components.
Notice that you don’t have searchable = true anywhere in the
TekEvent class; assigning a mapping closure to the searchable

property automatically sets it to true.

There’s a great deal more that can be done with the Search-
able plug-in—much more than we can cover here. Fortunately,
you can find extensive documentation at http://grails.org/plugin/

searchable.

<body>

<div class="nav">

Home

</div>

<div class="body">

<h1>Search Results</h1>

<g:if test="${events}">

<g:each in="${events}" var="event">

<g:link action="show" id="${event.id}">${event}</g:link>

</g:each>

THE BIG GUNS: THE SEARCHABLE PLUG-IN 175

</g:if>

<g:else>

<h3>No Matching Results Found</h3>

</g:else>

</div>

</div>

</body>

</html>

The first part of this view is pretty much a copy of any of the other views

we’ve created so far. After the “Search Results” heading, we create an

unordered list. Next, we check to see whether we have any events. If

we do, we use a <g:each> tag to iterate over the events and create a

hyperlink list item for each one. If we don’t have any events, we render

an appropriate message.

At this point, we could actually run this code and begin searching, but

we could do so only from the browser address bar with something like

this: http:/localhost:8080/TekDays/tekEvent/search?query=perl. That’s rather

stone-age.

Instead, let’s add a proper search field to our home page. Open TekDays/

grails-app/views/index.gsp, and add the highlighted code right after the

“Welcome” paragraph.

Download seek.1/TekDays/grails-app/views/index.gsp

<h3>Welcome to TekDays.com</h3>

<p>TekDays.com is a site dedicated to assisting individuals and communities

to organize technology conferences. To bring great minds with common

interests and passions together for the good of greater geekdom!

</p>

</div>

<div id="homeSearch">

<g:form controller="tekEvent" action="search">

<label>Search:</label>

<input id="query" type="text" name="query" />

<input type=submit value="Go" />

</g:form>

</div>

We are using a <g:form> that will post to the search action of the

tekEvent controller, and we have a single input element called query that

will contain the search value. Finally, we have a submit element to fire

it off. We’re almost done.

THE BIG GUNS: THE SEARCHABLE PLUG-IN 176

Figure 10.3: TekDays home page with search

If we were to run this now, it would work, but we would be prompted to

log in when we tried to perform a search. We want everyone to be able

to find events on our site, so we’ll have to fix this.

The security check is happening in our security filter, so we will modify

it to allow the search action. Open TekDays/grails-app/conf/SecurityFilters.

groovy, and add “search” to the allowedActions list, as shown on the

next page.

SUMMARY 177

Download seek.1/TekDays/grails-app/conf/SecurityFilters.groovy

class SecurityFilters {

def filters = {

doLogin(controller:'*', action:'*'){

before = {

def allowedActions = ['show', 'index', 'list', 'login',

'validate', 'search']

if (!session.user && !allowedActions.contains(actionName)){

redirect(controller:'tekUser', action:'login',

params:['cName': controllerName, 'aName':actionName])

return false

}

}

}

}

}

Great! Now when we load our home page, it looks like Figure 10.3, on

the previous page. Go ahead and try it. You can find events based on

location, venue, name, and description. Our customer can find all the

Groovy, Grails, and Griffon-related conferences that his heart desires.

I’m sure he’ll be happy.

10.4 Summary

In this iteration, we added some useful features for event organizers,

volunteers, and users at large. Along the way, we learned about Criteria

Builder for involved queries and about the Searchable plug-in for full-

text search. We also got some more practice using those awesome Grails

custom tags. The application is starting to look good and perform all

kinds of handy functions. Our customer is anxious to put it to use and

is already preparing some ideas for version 1.1.

In the next chapter, we’ll add event registration and do some general

refactoring based on feedback from our customer. We’ll try more plug-

ins and test some cool tricks with Grails URL mapping.

Chapter 11

Icing on the Cake
We are almost at the end of our project, and it is looking good. The

customer is happy with our work, but he had a couple new feature

requests. It happens. No worries, though. Because of the increased pro-

ductivity of Grails and your own killer coding skills, we are ahead of

schedule, so we should be able to fit these features in. Besides, that

will give us the opportunity to try some more Grails plug-ins.

Let’s take a look at what remains from our original feature list, and then

we’ll see whether we can fit in the extra goodies the customer asked for.

This is all we have left from the first list:

• Customize event page

• Allow access to event home page with simple URL

Those shouldn’t take too long. We should be able to get that done and

also these new features:

• Make it easier for a user to volunteer for an event

• Provide a way for organizers to post news about event

Those sound like good ideas. With most other frameworks, this would

be too much to take on in the time we have left, but with Grails, we can

code boldly.

11.1 The Grails UI Plug-In

The first item on the new list is really just an improvement on one of

the original features. We did provide a way for people to volunteer to

help on events, but it’s not very user friendly. So, we’ll tackle this one

THE GRAILS UI PLUG-IN 179

right away. We’ll add a button to the TekEvent show view that will allow

logged-in users to volunteer to help on this event. When they click it,

we’ll show them a nice confirmation dialog box, and if they confirm,

we’ll add them to the volunteers collection for that event.

We’ll start with the button. At first, that would seem as simple as

adding a <button> tag somewhere on our page. But there is some logic

involved. We don’t want to show the button if the user is not logged

in. Then if they are logged in, we don’t want to show the button if they

are already volunteering for this event. (I hope you can see where I’m

heading with this.) We could do this with a couple of <g:if> tags, but

our guilty consciences might drive us to depression. So instead, we will

put this logic into a custom tag.

Open TekDays/grailsapp/taglib/TekDaysTagLib.groovy, and add the following

tag closure:

Download icing/TekDays/grails-app/taglib/TekDaysTagLib.groovy

def volunteerButton = {attrs ->

if (session.user){

def user = session.user.merge()

def event = TekEvent.get(attrs.eventId)

if (event && !event.volunteers.contains(user)){

out << ""

out << "<button id='volunteerButton' type='button'>"

out << "Volunteer For This Event"

out << "</button>"

out << ""

}

}

}

If a user is logged in, there will be a TekUser in the session called user,

so that’s our first test. If we have a logged-in user, we’ll use the even-

tId attribute to get the TekEvent instance. Then we grab the session.user

and call the merge() method on it. (We need to do this because objects

stored in the session become detached from the Hibernate session.)

Once the user is merged, we can pass it to the contains() method of

the event.volunteers to see whether this user is already a volunteer. If

they are not, we’ll go ahead and write out the button. We start with a

 with a class of menuButton and id of volunteerSpan. Note this id;

it will become important shortly.

Next we write out the <button> with its id and type, followed by the text

of the button. We finish by closing up all our tags.

THE GRAILS UI PLUG-IN 180

Figure 11.1: TekEvent show view menu with volunteer button

Now we’ll drop this tag in the navigation bar on the TekEvent show view,

in TekDays/grails-app/views/tekEvent/show.gsp.

Download icing/TekDays/grails-app/views/tekEvent/show.gsp

<div class="nav">

Home

<g:link class="list" action="list">TekEvent List</g:link>

<g:link class="create" action="create">New TekEvent</g:link>

<g:link class="list" controller="dashboard" action="dashboard"

id="${tekEventInstance.id}">Event Dashboard</g:link>

<g:volunteerButton eventId="${tekEventInstance.id}" />

</div>

When a logged-in user views an event that they are not currently volun-

teering for, the menu bar will look like Figure 11.1. That looks good, but

it doesn’t do anything yet. Let’s fix that next. What we want is a con-

firmation dialog box, followed by a call to an action that will add this

user to the volunteers collection of this TekEvent. Since we don’t want a

boring JavaScript dialog box, we’ll use the Grails UI plug-in to get a

much more attractive one.

The Grails UI plug-in1 wraps several Yahoo! User Interface2 (YUI)

components and thus makes it much easier to use them in a Grails

1. http://grails.org/plugin/grails-ui

2. You can find very detailed documentation on YUI at http://developer.yahoo.com/yui/.

THE GRAILS UI PLUG-IN 181

application. Some of the components included are AutoComplete, Ac-

cordian, DataTable, and the one we’re going to use, Dialog. The Grails

UI plug-in, like Grails itself, brings ease of use to a complicated tech-

nology and still gives you deeper access when you need it. So, if you’re

familiar with the YUI component library, you won’t have to trade power

for simplicity.

Let’s install the plug-in now. From the TekDays directory, run the follow-

ing command:

$ grails install-plugin grails-ui

When the plug-in installs, it brings along everything it needs, so we are

now ready to add the dialog box component to our TekEvent show view.

You probably still have TekDays/grails-app/views/tekEvent/show.gsp open,

so go ahead and add the highlighted line to the <head> section:

Download icing/TekDays/grails-app/views/tekEvent/show.gsp

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<meta name="layout" content="main" />

<gui:resources components="['dialog']"/>

<title>Show TekEvent</title>

</head>

The <gui:resources> tag is used to tell the plug-in which components

we are using. It takes a list for its components attribute. If we were using

more than one Grails UI component in this page, we would add them

to the list.

Next, we need to add the <gui:dialog> tag that represents the Grails

UI dialog component. Add the following code somewhere in the <body>

section:

Download icing/TekDays/grails-app/views/tekEvent/show.gsp

<gui:dialog

title="${'Volunteer for ' + tekEventInstance.name}"

form="true"

controller="tekEvent"

action="volunteer"

update="volunteerSpan"

triggers="[show:[id:'volunteerButton', on:'click']]">

<input type="hidden" name="id" value="${tekEventInstance.id}" />

Welcome to the team!

Your help will make a huge difference.

</gui:dialog>

THE GRAILS UI PLUG-IN 182

The <gui:dialog> tag takes several parameters and an optional body.

We start with the title, for which we are using good old-fashioned String

concatenation. I would prefer to do something like title="Volunteer for

${tekEventInstance.name}", but the component seems to ignore the space

between the text and the expression. Good thing there are many ways

to accomplish the same thing. Next, we set form to true. This will cause

the dialog box to contain a form, which allows us to add form elements

within the body as we’ll discuss shortly. Since we have a form, we need

to specify where the form should submit to. For this, we’ll use the con-

troller and action attributes. Now when the form/dialog box is submitted,

it will call the TekEvent volunteer action.

Remember the ID that we added to the tag in our taglib? We use

that for the value of the update attribute. When we write the TekEvent vol-

unteer, it will render some text that will replace the button in the volun-

teerSpan.

The last attribute that we are using is triggers. Triggers are elements

that are used to call events on the dialog box. The most common, and

the one we’re using, is show. The triggers value is a Map with the key

being the event name and the value being another Map. This nested

Map contains the id of the element to be used and the event of that

element that will call the trigger. You can also have the component

create the trigger element for you like this: trigger="[show:[type:’button’,

text:’Volunteer For This Event’, on:’click’]]".

In the body of the tag, we have a hidden input that will hold the id of

the current TekEvent. This will be passed by the form to the controller

action so we can know which event the logged-in user is volunteering

for. Then we have some text that will show up as the message of the

dialog box. Finally, we close the <gui:dialog> tag.

OK. Our dialog box is all set up. We could even run this now and it

would show up, but it would get a nasty error if we tried to submit. Let’s

create the volunteer action in TekDays/grails-app/controllers/TekEventControl-

ler.groovy, like so:

Download icing/TekDays/grails-app/controllers/TekEventController.groovy

def volunteer = {

def event = TekEvent.get(params.id)

event.addToVolunteers(session.user)

event.save()

render "Thank you for Volunteering"

}

THE TWITTER PLUG-IN 183

The volunteer action is the heart of this feature, even though it’s only

a few lines of code. First we use the id that was passed in the hidden

input field to get the TekEvent instance. Then we add the logged-in user

(session.user) to the volunteers collection. Next, we save the event, and

finally, we render a text message. This text will replace the button in

the volunteerSpan. This action is a great example of how the productivity

of Grails doesn’t come in scaffolding or code generation; it comes in the

way you are able to accomplish so much with so little code. Scaffolding

helps out as you start a new application, but this ability to enhance and

expand your application quickly is where the real productivity gains

come in.

We have one more thing to do before we see this in action. We need

to tell the plug-in to use a YUI CSS class.3 We’ll do this in the <body>

tag of TekDays/grails-app/views/layouts/main.gsp. Open this file, and modify

the <body> tag, like so:

Download icing/TekDays/grails-app/views/layouts/main.gsp

<body class="yui-skin-sam">

Let’s try it. Log someone in to the application, and navigate to an event

that they haven’t volunteered for. Click the button, and you should see

something like Figure 11.2, on the next page. It’s so easy that no one

has an excuse for not volunteering.

11.2 The Twitter Plug-In

It seems that everyone is on Twitter4 these days—even if they can’t tell

you why. We’ll take advantage of this fact to help our hardworking event

organizers get the word out about their events. If an event’s organizer

creates a Twitter account for their event, we will provide a form on the

dashboard that will enable them to post updates to their event’s Twitter

timeline. To do this, we’ll use the Twitter plug-in I mentioned earlier.

The Twitter plug-in gives us easy access to the JTwitter API.5 We’ll

install it with the install-plugin script:

$ grails install-plugin twitter

3. There are rumors that this requirement will eventually be eliminated. Check the

Grails plug-in portal (http://grails.org/plugins) for updates.
4. http://twitter.com

5. http://www.winterwell.com/software/jtwitter.php

THE TWITTER PLUG-IN 184

Figure 11.2: The volunteer dialog box

This plug-in provides a service class (TwitterService) with a host of meth-

ods that interact with Twitter. We’ll be using only a couple of these

methods, but you can read about the rest of them in the excellent doc-

umentation at http://grails.org/plugin/twitter.

Before we get started with the plug-in, we need to modify the TekEvent

to hold the information that allows the organizer to log in to the event’s

Twitter account.

THE TWITTER PLUG-IN 185

Open TekDays/grails-app/domain/TekEvent.groovy, and add the highlighted

lines:

Download icing/TekDays/grails-app/domain/TekEvent.groovy

class TekEvent {

String city

String name

TekUser organizer

String venue

Date startDate

Date endDate

String description

String twitterId

String twitterPassword

String toString(){

"$name, $city"

}

static searchable = true

static hasMany = [volunteers:TekUser,

respondents:String,

sponsorships:Sponsorship,

tasks:Task,

messages:Message]

static constraints = {

name(blank:false)

city(blank:false)

description(maxSize : 5000)

organizer(nullable:false)

venue(nullable:true)

startDate(nullable:true)

endDate(nullable:true)

volunteers(nullable : true)

sponsorships(nullable : true)

tasks(nullable : true)

messages(nullable : true)

twitterId(nullable:true)

twitterPassword(nullable:true)

}

}

We gave the twitterId and twitterPassword the constraint nullable:true, since

this is an optional feature.

Now we need to provide a way to enter these new properties. We’ll add

two input fields to the create view.

THE TWITTER PLUG-IN 186

Open TekDays/grails-app/views/tekEvent/create.gsp, and add <tr> blocks

for twitterId and twitterPassword, like so:

Download icing/TekDays/grails-app/views/tekEvent/create.gsp

<tr class="prop">

<td valign="top" class="name">

<label for="twitterId">TwitterId / Nickname:</label>

</td>

<td valign="top">

<input type="text"

id="twitterId"

name="twitterId"

value="${fieldValue(bean:tekEventInstance,field:'twitterId')}"/>

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">

<label for="twitterPassword">Twitter Password:</label>

</td>

<td valign="top">

<input type="password"

id="twitterPassword"

name="twitterPassword"

value="${fieldValue(bean:tekEventInstance,field:'twitterPassword')}"/>

</td>

</tr>

We added two input fields, with corresponding labels. Note that we set

the label of the twitterId to “TwitterId / Nickname.” We’ll be using this

property for another purpose shortly. We don’t have to do anything to

the controller for these new properties to be saved; GORM will take care

of that. We do need to add the same fields to the edit view, but we won’t

take space to show that, since it’s exactly the same code.

Now we can start putting the TwitterService to use. We’ll add a new action

to the DashboardController, because we’re going to expose this feature in

the organizer’s dashboard. Open TekDays/grails-app/controllers/Dashboard-

Controller.groovy, and add the following code:

Download icing/TekDays/grails-app/controllers/DashboardController.groovy

class DashboardController {

def twitterService

//Existing dashboard code snipped

def tweet = {

def event = TekEvent.get(params.id)

if (event){

twitterService.setStatus(params.status,

THE TWITTER PLUG-IN 187

[username:event.twitterId,

password:event.twitterPassword])

}

redirect(action:dashboard, id:event.id)

}

}

Note that we are defining a property called twitterService at the top of the

class. When we declare that property using the convention of changing

the first character of the class name to lowercase, Grails will inject a

TwitterService instance into our controller at runtime. Next we add our

tweet action, which starts out by getting the current TekEvent. If we have

a valid instance, we call the setStatus() method of the TwitterService. This

method takes the status to post and a map containing the Twitter cre-

dentials. That’s all there is to it! Most of the other methods of the Twit-

terService are just as simple, and perhaps for version 1.1 we can add

more Twitter integration since it’s so easy to do. But for now, this gives

us just what we need. Finally, we redirect to the dashboard so they can

do it all over again.

Now we’ll add a new section to the dashboard to call this action. Open

TekDays/grails-app/views/dashboard/dashboard.gsp, and add the high-

lighted code:

Download icing/TekDays/grails-app/views/dashboard/dashboard.gsp

<div id="sponsors" style='margin:10px 10px 10px 10px'>

<g:render template="sponsors" model="${[sponsorships:sponsorships]}" />

</div>

<g:if test="${event.twitterId}">

<div id="twitter" style='margin:10px 10px 10px 10px'>

<g:render template="twitter" model="${[event:event]}" />

</div>

</g:if>

</body>

</html>

We’re going to put the specifics of our Twitter feature in a template. In

the dashboard view, we’ll render this template if the TekEvent instance

has a value assigned to its twitterId property. (We’re using a <g:if> tag

for this since it’s only a single test, but I must admit my custom tag

trigger finger is twitching.)

THE TWITTER PLUG-IN 188

Figure 11.3: Section of dashboard view with Twitter form

Now we’ll create the template. Create a blank file called TekDays/grails-

app/views/dashboard/_twitter.gsp, and add the following code:

Download icing/TekDays/grails-app/views/dashboard/_twitter.gsp

<h3>Post Event Updates to ${event.twitterId}'s Twitter Timeline</h3>

<g:form name="twitterForm" action="tweet" id="${event.id}">

(No more than 140 characters)

<textarea name="status" rows="3" columns="50" style="width:100%;height:60">

</textarea>

<input type="submit" value="Post to Twitter" />

</g:form>

We start off our Twitter template with a heading in which we include

the event’s twitterId, using a Groovy expression. Then we use <g:form>

to create a form that will post to the tweet action and pass the event.id.

We have only one input in our form: a <textarea> called status. This will

contain the status message to post to Twitter. We finish with a standard

submit button. Now we’re ready to tweet!

In Figure 11.3, we can see the bottom half of the dashboard view, which

includes our new Twitter section. To test this, you can enter your own

Twitter credentials and post a message starting with @daveklein. I’ll let

you know if it worked.

MAKING THE EVENT PAGE CUSTOMIZABLE WITH THE BLURB PLUG-IN 189

11.3 Making the Event Page Customizable with the Blurb Plug-In

We need to make the TekEvent show view more customizable. Organizers

can already change the name and description, but we’re going to add

the ability to have a section of the page that they can choose to use,

and change easily, or to not use. And since this extra content field will

be optional, we won’t clutter up our domain model with it. Instead, we’ll

use the simple but handy Blurb plug-in.6

The Blurb plug-in provides a domain class called Blurb, which has name

and content properties. It also provides a GSP tag to show the content

of a Blurb by its name property. To get started, we’ll install the plug-in

in the usual way:

$ grails install-plugin blurb

The plug-in also includes a controller and views to work with blurbs,

but we’re not going to use those. We’ll just treat the Blurb as if it were a

domain class in our application. We’ll change the dashboard view and

the DashboardController to allow organizers to view and edit their blurbs,

and we’ll add the <g:blurb> tag to our show view.

Let’s start with the controller. Open TekDays/grails-app/controllers/Dash-

boardController.groovy, and add the highlighted lines to the following

block of code:

Download icing/TekDays/grails-app/controllers/DashboardController.groovy

if (event){

if(event.organizer.userName == session.user.userName ||

event.volunteers.collect{it.userName}.contains(

session.user.userName)){

def tasks = Task.findAllByEventAndCompleted(event, false,

[max:5, sort:'dueDate'])

def volunteers = event.volunteers

def messages = Message.findAllByEventAndParentIsNull(event,

[sort:'id',

order:'desc'])

def sponsorships = event.sponsorships

def blurb = Blurb.findByName("custom_${event.id}")

if (!blurb){

blurb = new Blurb(name:"custom_${event.id}",

content:"").save()

}

return [event:event, tasks:tasks, volunteers:volunteers,

messages:messages, sponsorships:sponsorships,

blurb:blurb]

}

6. http://grails.org/plugin/blurb

MAKING THE EVENT PAGE CUSTOMIZABLE WITH THE BLURB PLUG-IN 190

else{

flash.message = "Access to dashboard for ${event.name} denied."

redirect(controller:'tekEvent', action:'list')

}

}

We first define a variable called blurb and try to retrieve the Blurb for this

event, using a convention that includes the event.id. If we don’t find one,

we create and save one. Note that there is no relationship between the

TekEvent and the Blurb, so we do need to save the Blurb explicitly. Then

we add the blurb to the returned Map. This will make it available to the

dashboard view. We will also need a way to save changes to the Blurb,

so let’s add a new action to the controller:

Download icing/TekDays/grails-app/controllers/DashboardController.groovy

def updateBlurb = {

def blurb = Blurb.get(params.id)

blurb.content = params.content

blurb.save()

redirect(action:'dashboard', id:params.eventId)

}

Here we are retrieving a Blurb instance based on the id parameter passed

in from a form that we will be creating in the dashboard view. We

then assign its content to the content found in the params and save

it. Finally, we redirect back to the dashboard view.

Now let’s turn our attention to the dashboard view. Open TekDays/grails-

app/views/dashboard/dashboard.gsp, and add the highlighted section:

Download icing/TekDays/grails-app/views/dashboard/dashboard.gsp

<div id="event" style='margin:10px 10px 10px 10px'>

<g:render template="event" model="${[event:event]}" />

</div>

<div id="blurb" style='margin:10px 10px 10px 10px'>

<g:render template="blurb" model="${[blurb:blurb, event:event]}" />

</div>

<div id="tasks" style='margin:10px 10px 10px 10px'>

<g:render template="tasks" model="${['tasks':tasks]}" />

</div>

In keeping with our earlier design decision to separate the different

features of the dashboard view into templates, all we will add to this

page is another <div> tag wrapping a <g:render> tag, which will render

the _blurb.gsp template, passing the blurb in the model.

Next we need to create the template. The template will contain a form

with a <textarea> in which event organizers can enter their custom

MAKING THE EVENT PAGE CUSTOMIZABLE WITH THE BLURB PLUG-IN 191

Figure 11.4: Section of dashboard view with blurb form

content. Create a new file called TekDays/grails-app/views/dashboard/

_blurb.gsp, and add the following code:

Download icing/TekDays/grails-app/views/dashboard/_blurb.gsp

<h3>Enter Custom Content for Event Show Page</h3>

<g:form name="blurbForm" action="updateBlurb" id="${blurb?.id}">

<textarea name="content" cols="60" rows="3"

style="width:100%; height:60px">${blurb?.content}</textarea>

<input type="hidden" name="eventId" value="${event?.id}">

<input type="submit" value="Update Content">

</g:form>

Here we have a simple heading, which is a <g:form> tag that will sub-

mit to the updateBlurb action, a <textarea>, and a submit button. If we

look at the dashboard view, now we can see the new custom blurb form,

shown in Figure 11.4.

At this point, we can view and edit the custom content, but we aren’t

using it anywhere. Let’s add the <g:blurb> tag to the TekEvent show

view and clean up the view a bit while we’re there. Open TekDays/grails-

app/views/tekEvent/show.gsp, and let’s take a look at what we have there.

(You can also refer to Figure 9.4, on page 161.) We can see that we are

displaying information about the event that potential attendees, or even

potential volunteers, don’t really need to see. Much of this information

is already available in the dashboard view. So, let’s clean some of that

out. We can see that each property is contained in a <tr> block. This

makes it easy to cleanly remove or rearrange properties as we need.

MAKING THE EVENT PAGE CUSTOMIZABLE WITH THE BLURB PLUG-IN 192

Download icing/TekDays/grails-app/views/tekEvent/show.gsp

<div class="body">

<h1>${fieldValue(bean:tekEventInstance, field:'name')}</h1>

<g:if test="${flash.message}">

<div class="message">${flash.message}</div>

</g:if>

<div class="dialog">

<table>

<tbody>

<tr class="prop">

<td valign="top" class="name">Description:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'description')}

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Location:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'venue')},

${fieldValue(bean:tekEventInstance, field:'city')}

</td>

</tr>

</tr>

<tr class="prop">

<td valign="top" class="name">Start Date:</td>

<td valign="top" class="value">

<g:formatDate format="MMMM dd, yyyy"

date="${tekEventInstance.startDate}"/>

</td>

</tr>

</tr>

<tr class="prop">

<td valign="top" class="name">End Date:</td>

<td valign="top" class="value">

<g:formatDate format="MMMM dd, yyyy"

date="${tekEventInstance.endDate}"/>

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Sponsored By:</td>

<td valign="top" style="text-align:left;" class="value">

<g:each var="s" in="${tekEventInstance.sponsorships}">

<g:link controller="sponsorship" action="show" id="${s.id}">

${s.sponsor?.encodeAsHTML()}

</g:link>

</g:each>

</td>

</tr>

</tbody>

USER-FRIENDLY URLS 193

</table>

<div style="width:100%">

<g:blurb name="custom_${tekEventInstance?.id}" />

</div>

</div>

<div class="buttons">

<g:form>

<input type="hidden" name="id" value="${tekEventInstance?.id}" />

<g:actionSubmit class="edit" value="Edit" />

<g:actionSubmit class="delete"

onclick="return confirm('Are you sure?');" value="Delete" />

</g:form>

</div>

</div>

</body>

The organizer, volunteers, tasks, and messages are already covered in the

dashboard, so let’s get rid of them. Then, just below the <table>, we

added the <g:blurb> tag with the name that is created based on our

convention. If the event doesn’t have a Blurb instance or if it has one

that is blank, nothing will render.

Go ahead and give one of our events some custom content, and see how

it looks. You can get an idea from Figure 11.5, on the next page.

11.4 User-Friendly URLs

Now that we have this nicer-looking and customizable event page, we

need to provide a way to access it using a simple URL. The way it stands

now, once the application is deployed, the URL to a specific event’s

page looks something like this: http://TekDays.com/tekEvent/show/5024753.

(OK, the id might not be quite that large at first, but we’re thinking

positive here.) Our customer would like us to get to something more

like http://TekDays.com/events/MyTekEvent. This will make it easier for the

event organizers and volunteers to plaster links all over the Internet for

their event.

As we have come to expect, Grails provides a simple way to do this.

Every Grails application has a UrlMappings class, which uses a DSL7 to

build URL mappings. The conventional Grails mappings are in there by

7. Domain-specific language.

USER-FRIENDLY URLS 194

Figure 11.5: Customizable event show view

default, and we can add as many different mappings as needed. Let’s

take a look at the default mappings to get an idea of how this works.

Open TekDays/grails-app/conf/UrlMappings.groovy:

class UrlMappings {

static mappings = {

"/$controller/$action?/$id?"{

constraints {

// apply constraints here

}

}

"/"(view:"/index")

"500"(view:'/error')

}

}

USER-FRIENDLY URLS 195

The static mappings block is the heart of the UrlMappings class. Inside

this block we see the mappings for the conventional Grails behavior.

The first value found after the root (/) will be assigned to the controller

variable. The next value will be assigned to the action, and the last one

will be assigned to the id. The first variable, controller, is required; the

other two have a ? on the end, which marks them as optional. What

this means is that any URL with one, two, or three values after the root

will match this mapping and be applied accordingly. For example, /foo

would be mapped to the FooController’s default action, /foo/bar would

be mapped to the bar action of FooController, and /foo/bar/baz would be

mapped to the bar action of FooController with an id parameter of baz.

You get the picture.

Inside the mapping block there is an empty constraints block, where we

can put constraints on the different variables, much as we did earlier

on domain class properties. After this, we have the two other default

mappings. The root mapping, when nothing but the application root is

in the URL, maps directly to the index view. Mapping directly to a view

makes sense for pages that don’t need any data; for example, you might

use this for an About page. Last of all, we have the 500 error mapping.

Let’s add another mapping that will match the URLs that we want to

support. The code should look something like this:

Download icing/TekDays/grails-app/conf/UrlMappings.groovy

"/events/$nickname"{

controller = "tekEvent"

action = "show"

}

The default Grails mapping uses all variables. Our mapping is using

a static value (events) and a variable ($nickname). Since our mapping

does not include variables for controller and action, we need to set those

inside the mapping block. This mapping will match any URL that starts

with the word events and has one more value, which will be assigned to

the variable $nickname. The matched URL will be directed to the show

action of TekEventController with a nickname parameter. So, now we need

to make use of the nickname.

We’re going to modify the show action to use a nickname parameter to

show a TekEvent instance. Before we do that, though, we need to deter-

mine what we are going to use for the nickname. Remember the twitterId

that we added for the Twitter plug-in? We labeled the input field for that

property “TwitterId / Nickname” because we’re going to use it for that

SUMMARY 196

purpose too. It’s quite a good fit, since a Twitter ID is usually something

short and easy to remember. Let’s get to work.

Open TekDays/grails-app/controllers/TekEventController.groovy, and modify

the show action as shown here:

Download icing/TekDays/grails-app/controllers/TekEventController.groovy

def show = {

def tekEventInstance

if (params.nickname){

tekEventInstance = TekEvent.findByTwitterId(params.nickname)

}

else

tekEventInstance = TekEvent.get(params.id)

if(!tekEventInstance) {

if (params.nickname)

flash.message = "TekEvent not found with id ${params.id}"

else

flash.message = "TekEvent not found with nickname ${params.nickname}"

redirect(action:list)

}

else { return [tekEventInstance : tekEventInstance] }

}

This action’s job is to retrieve a TekEvent instance and pass it to the

show view. All we’re doing here is giving it another way of retrieving the

TekEvent. To do this, we first separate the variable declaration from the

assignment. Then we use an if to decide whether to retrieve the instance

by nickname or by id. If there’s a nickname value in the params, we use

the dynamic finder findByTwitterId(). Then, to make our error messages

clearer in case we don’t find an instance, we use another if block to

determine the appropriate error message to display.

I added the twitterId of “GatewayCode” to one of our test events, so now

we can navigate to http://localhost:8080/TekDays/events/GatewayCode and

get something like Figure 11.6, on the following page.

11.5 Summary

We did it! We completed the original feature list for TekDays and even

added a couple of bonus features with the time we saved by using

Grails. We also saw firsthand how powerful and easy to use Grails plug-

ins are. (Be sure to browse the Grails plug-in portal at http://grails.org/

plugin/home to see what others are available.)

SUMMARY 197

Figure 11.6: Customizable event show view

All that’s left to do now is to deploy the application to our server. Before

you start thinking “Ant and Ivy and Maven, oh my!” remember that this

is Grails we’re talking about. Well, you’ll see. Turn the page.

Chapter 12

Deployment and Beyond
We are nearing the end of our project and our time together. We’ve

accomplished quite a bit, and our customer is happy with the results.

He’s also very impressed with how quickly we got it done. He’s just

about ready for us to hand the application over to him, but he wants

us to try deploying it first—sort of as a sanity check.

Up until now, we’ve been running TekDays in Jetty,1 which is an HTTP

server and Java servlet container. Some people also use Jetty for pro-

duction deployment, but usually production will use something a little

more heavy-duty, such as Tomcat,2 or a full-blown JEE3 server, such

as WebLogic, JBoss, or, if they can’t find a way out of it, WebSphere.

Grails applications will run well on any of these. For our purposes (and

for most Grails applications), Tomcat will be a good fit. If you don’t have

Tomcat and would like to follow along, you can download it at http://

tomcat.apache.org/download-60.cgi, or you can use any other standards-

compliant Java servlet container.

12.1 Using a JNDI Data Source

Before packaging our application for deployment, we need to change

our data source. Open TekDays/grails-app/conf/DataSource.groovy.

1. http://www.mortbay.org/jetty

2. http://tomcat.apache.org

3. Java Enterprise Edition

USING A JNDI DATA SOURCE 199

When we last worked on this file, it looked something like this:

dataSource {

pooled = true

driverClassName = "com.mysql.jdbc.Driver"

username = "dave"

password = "1234"

}

hibernate {

cache.use_second_level_cache=true

cache.use_query_cache=true

cache.provider_class='com.opensymphony.oscache.hibernate.OSCacheProvider'

}

// environment specific settings

environments {

development {

dataSource {

dbCreate = "update"//one of 'create', 'create-drop','update'

url = "jdbc:mysql://localhost:3306/tekdays"

}

}

test {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:mem:testDb"

}

}

production {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:file:prodDb;shutdown=true"

}

}

}

Our focus now is on the production block toward the end of the file.

It currently points to an in-memory HSQLDB database. It may seem

obvious, but there have been incidents where applications went into

production this way. It’s not a good thing. So, we’re going to make sure

we get this changed.

Now, we could change the production dataSource to point to a MySQL

instance, as we did for the development dataSource, but in most orga-

nizations it’s considered bad form to include database credentials in

an application configuration file. All JEE servers and virtually all Java

servlet containers support the Java Naming and Directory Interface

(JNDI).4 And at the risk of once again sounding like a broken record,

Grails makes it incredibly easy to use a JNDI data source.

4. http://java.sun.com/products/jndi/

CREATING AND DEPLOYING A WAR 200

Joe Asks. . .

JEE Server, Java Servlet Container: What’s the Difference?

JEE server and Java servlet container are often used almost as
interchangeable terms. They aren’t the same thing, but they
are related. A JEE server is an application server that imple-
ments the JEE specification. This specification includes things
like EJB, JMS, JPA, JTA, JSP, Servlets, JSF, and more. (Don’t worry
if you don’t recognize all of these.)

A Java servlet container usually supports a subset of those JEE
components, such as JSP, Servlets, and JSF—basically the web-
related JEE components. Some servlet containers are gradually
taking on more components, so these lines are beginning to
blur.

A simple way to look at it is that a servlet container is a
lightweight JEE server.

Our customer studied up on the subject at http://tomcat.apache.org/

tomcat-6.0-doc/jndi-resources-howto.html and has configured a JNDI data

source in his Tomcat server named TekDaysDS. To direct our applica-

tion to use that data source, we’ll change the production block of Data-

Source.groovy like this:

Download deploy/TekDays/grails-app/conf/DataSource.groovy

production {

dataSource {

jndiName = "java:comp/env/jdbc/TekDaysDS"

}

}

That’s all there is to it. The exact layout of the JNDI string may vary

with different servers, so if you’re working with something other than

Tomcat, refer to your server’s documentation for more details. The pro-

duction database URL and credentials will now be read from the server.

The default values will still be used for development and test environ-

ments.

12.2 Creating and Deploying a WAR

The standard way to deploy a Java-based web application is as a web

application resource (WAR) file. There are many tools available to help

NEXT STEPS 201

package a web application into a WAR, from IDEs such as Eclipse and

NetBeans to build tools such as Ant and Maven. With Grails, however,

those things are rarely needed. A simple Grails script will do it for us.

$ grails war

That single script will compile our source code, pull in our dependen-

cies, and bundle it all into a standard JEE WAR file. For our project,

the default name for this file is TekDays-0.1.war. Deploying this to Tom-

cat is as simple as copying the file to Tomcat’s webapps directory and

restarting.

Our app deploys successfully on Tomcat. We’re good to go...for now. No

software application is ever really done; TekDays may be ready to start

using, but it can always be improved.

12.3 Next Steps

I’m sure that as we’ve worked on this project, you’ve thought of fea-

tures that would be nice to have in TekDays, or perhaps different ways

to implement features. Go for it! With the rapid feedback and flexible,

dynamic nature of Grails, it’s easy to explore and experiment.

You could look through the list of Grails plug-ins at http://grails.org/

plugin/home and see which ones might be useful—and perhaps add a

regional event calendar, or use the Grails mail plug-in5 to add email

services to the application. Or you may have noticed that we don’t yet

have any facility for speakers or sessions. (Our customer was mostly

interested in organizing open spaces conferences.)

But before you get too carried away with changes to this production

system, there are a couple of things to consider: version control and

database migration.

As I said earlier, Grails makes experimentation fun and easy, but you

don’t want to experiment with production code. You also don’t want to

start making duplicate project directories all over the place. So first of

all, move the project into a version control system such as SVN or Git.

You can find information about using SVN with Grails at http://www.

grails.org/Checking+Projects+into+SVN. Git is a distributed version control

system that is becoming quite popular. (In fact, the Grails source code

5. http://grails.org/plugin/mail

PARTING THOUGHTS 202

has been moved into Git.) There’s a great screencast with Jeff Brown

showing how to use Git with Grails at http://grails.org/Grails+Screencasts.

A database migration tool can help prevent database nightmares as you

begin making changes to the database to implement new features. The

Autobase plug-in6 by Robert Fischer integrates the Liquibase frame-

work with Grails, helping you avoid those nightmares and rest easy as

you migrate your database from version to version.

Feel free to take our application in different directions or to just borrow

ideas from it and start something new. If you want to see where I’m

taking this idea, check out http://TekDays.com or http://gquick.blogspot.

com.

12.4 Parting Thoughts

Now, feeling a bit like Mr. Rogers at the end of the show (am I dating

myself here?), it’s time for me to take off my customer hat, my project

manager hat, and my development team member hat and to put on my

author hat. The goal of this book was to give you, the reader, a hands-

on tutorial of web development with Grails: to demonstrate enough fea-

tures and provide enough practice to get you past the newbie stage and

on your way to mastery. It’s my hope that you’ve learned enough to be

productive with Grails. Even more, I hope that you caught a vision of

the power, productivity, and pleasure of Grails.

Because this was a quick-start guide and not an in-depth reference,

there are areas that I only touched on and where more information

would be helpful. To that end, I’ve included an appendix that lists

books, articles, websites, and blogs that will help you dig deeper. In

the appendix, I’ll also introduce you to the G3 community.7 The com-

munity is truly one of the biggest strengths of these technologies.

Finally, I hope you learned as much and had as much fun working

through this book as I had writing it.

6. http://grails.org/plugin/autobase

7. G3 stands for Groovy, Grails, and Griffon. Griffon (http://griffon.codehaus.org) is an MVC

framework for rich desktop development with Groovy.

Appendix A

Additional CSS Rules
Here are some style rules that we have added to TekDays/web-app/css/

main.css. Please copy these to your project to make it easier to follow

along with the project in the book.

/*Dashboard*/

.dashItem {

margin: 10px;

}

#eventBlurb {

width: 100%;

height: 60px;

}

#dashHeader {

text-align: center;

}

/*Index*/

#homeSearch {

margin-left: 30%;

margin-top: 25px;

width: 40%;

}

#homeSearch label {

font-weight: bold;

}

#welcome {

margin-left: 25px;

margin-top: 25px;

width: 85%;

}

.homeCell {

margin-left: 25px;

margin-top: 25px;

width: 85%;

}

APPENDIX A. ADDITIONAL CSS RULES 204

.homeCell .buttons {

float: right;

margin-right: 30px;

}

/*Message Create*/

.messageField {

width:550px

}

/*Ajaxlist*/

#messageList {

overflow:auto

}

Appendix B

Resources
Now that you’re up and running with Grails, you’ll want to learn more,

and you will undoubtedly have questions. What follows is a Grails re-

source guide, and then some. Since Grails is part of the greater Groovy

community (what I refer to as the G3 Community),1 this guide will point

you to resources beyond Grails alone. These are the resources that I’ve

used and/or that are made available by people who I know and respect;

I trust that you’ll find them useful as well.

B.1 Online Resources

The Internet has more than you’ll ever need to know about most things,

Groovy and Grails included. The following is a (very abbreviated) list of

general websites and mailing lists that are worth checking out.

Grails: A Quick-Start Guide Blog http://gquick.blogspot.com

Additional tips, tricks and tutorials that build on the example from the book.

Official Grails website. .http://grails.org

Official Groovy website . http://groovy.codehaus.org

Official Griffon website. .http://griffon.codehaus.org

The Grails plug-in portal . http://grails.org/plugin/home

A gold mine of plug-in information. Besides a complete list of the plug-ins,

1. G3 stands for Groovy, Grails, and Griffon.

MEET THE G3 COMMUNITY 206

there’s documentation, tutorials, screencasts, and more. Comments and a rat-

ing system help you determine whether a plug-in is right for you and help you

choose between competing plug-ins.

Grails mailing lists . http://grails.org/Mailing+lists

The Grails user and dev lists are quite active and loaded with helpful peo-

ple. Don’t be afraid to ask for help, and as you get more comfortable with the

framework, don’t be afraid to offer help. It’s a great feeling when you go from

just asking questions to answering them too.

Groovy mailing lists http://groovy.codehaus.org/Mailing+Lists

Sometimes your question will be more Groovy language-specific. When this

happens, the folks on this list are quick to help. Also, if you are new to Groovy,

taking some time to read through the threads on this list is a great way to learn

more about the language.

GroovyBlogs. .http://groovyblogs.org

This is an excellent blog aggregator currently covering more than 250 blogs

related to Groovy technologies.

Grails Tutorials . http://grailstutorials.com/home

Loaded with tips, tricks, examples, and of course tutorials, this is another site

to bookmark and check often.

GrailsCrowd. .http://grailscrowd.com

GrailsCrowd is a social networking site for Groovy and Grails developers. You

can connect with hundreds of other developers around the world. You can see

who’s doing what in your area and let the world know about projects you’re

working on.

GroovyTweets. .http://groovytweets.org

Groovy Tweets is a Twitter aggregator and ranking engine. It’s also a great way

to find all the Groovy folks on Twitter. Just go to http://twitter.com/groovytweets

and check out the following list.

B.2 Meet the G3 Community

I’ve heard many people say this, and I wholeheartedly agree: one of

the best things about Groovy, Grails, and Griffon is the community.

The developers involved in these technologies are some of the smartest,

most enthusiastic, and most helpful people I’ve worked with. I’ve had

the pleasure of meeting many of them in person at various conferences;

others I know only through the ether. But I consider it an honor to work

with and be associated with them. Here’s an introduction to some of

your new colleagues.

MEET THE G3 COMMUNITY 207

The Grails Dev Team

Graeme Rocher .http://graemerocher.blogspot.com

Graeme is the Grails project lead and a coauthor of The Definitive Guide to

Grails.

Marc Palmer .http://www.anyware.co.uk

Marc is a Grails committer and author of several Grails plug-ins.

Dierk König.http://www.amazon.com/gp/blog/A368TUB0Q1IE3F

Dierk is a Grails committer and the lead author of Groovy in Action.

Jason Rudolph .http://jasonrudolph.com

Jason is a Grails committer and author of Getting Started with Grails.

Jeff Brown. .http://javajeff.blogspot.com

Jeff is a Grails committer and coauthor of The Definitive Guide to Grails.

Marcel Overdijk . http://marceloverdijk.blogspot.com

Marcel is a Grails committer and author of several Grails plug-ins.

Sergey Nebolsin .http://snebolsin.blogspot.com

Sergey’s a Grails committer and the author of the Quartz plug-in, among others.

Lee Butts .http://www.leebutts.com

Lee is a Grails committer, plug-in contributor, and car buff.

The Grails Podcast Team

Sven and Glen are the hosts of the Grails Podcast. For details, see

Section B.3, Other Media, on page 211.

Sven Haiges. .http://hansamann.wordpress.com

Sven is the founder of the Grails Podcast and the creator of GroovyTweets.org.

Glen Smith . http://blogs.bytecode.com.au/glen

Glen is the creator of GroovyBlogs.org and coauthor of Grails in Action.

Other G3 Bloggers

There are currently over 250 blogs aggregated on GroovyBlogs.org. I’m

not going to list them all here, but these are some members of the

community who have made (and are making) significant contributions.

Their blogs are a rich source of information and experience, as well as

a way to get to know them. When you come across them later on the

mailing list or bump into them at a conference, it’ll be like seeing an old

friend.

Andres Almiray . http://www.jroller.com/aalmiray

Andres is a Groovy committer, a member of the core Griffon development team,

a Grails plug-in developer, and coauthor of the upcoming Griffon in Action.

MEET THE G3 COMMUNITY 208

Burt Beckwith: An Army of Solipsists http://burtbeckwith.com/blog

Burt is a prolific plug-in author and a regular on the Grails mailing lists. Burt

also served as the technical editor for the book Grails in Action.

Luke Daley .http://www.ldaley.com

Luke is a Grails plug-in author and the creator of the TextMate Groovy/Grails

bundle and of the GLDAPO (Groovy LDAP) library.

Hamlet D’Arcy: Behind the Timeshttp://hamletdarcy.blogspot.com

Hamlet is a Groovy committer and AST wizard.

Scott Davis: Musings on Java and Open Source. . .
. . . http://davisworld.org/blojsom/blog/

Scott is a Groovy and Grails trainer, frequent conference speaker, and author

of several books, including Groovy Recipes: Greasing the Wheels of Java.

Peter Delahunty: Delahuntyware http://blog.peterdelahunty.com

Peter has written several Grails plug-ins and blogs frequently about his experi-

ences, among other things.

James Ervin: Iacobus . http://iacobus.blogspot.com

James is the Groovy Eclipse plug-in project lead and the creator of the Groovy

Monkey Eclipse plug-in.

Danno Ferrin: ...And They Shall Know Me by My Speling Errors. . .
. . . http://shemnon.com/speling

Danno is a Groovy committer and a member of the core Griffon development

team. He is also a coauthor of the upcoming book Griffon in Action.

Robert Fischer: Enfranchised Mindhttp://enfranchisedmind.com/blog

Robert is the author of Grails Persistence with GORM and GSQL, a contributor

to GroovyMag, conference speaker, and plug-in author (and all of this while he’s

working on his divinity degree at Duke—definitely an underachiever!).

Andrew Glover: The Disco Blog .http://thediscoblog.com

Andy is the coolest cat in the Groovy community. He is a frequent conference

speaker, coauthor of Groovy in Action, and creator of easyb, the behavior-driven

development framework for the Java platform.

Shawn Hartsock: Thoughts and Ideas http://hartsock.blogspot.com

Shawn is an enterprise Groovy and Grails expert, Grails plug-in author, and

contributor to GroovyMag.

Mike Hugo . http://www.piragua.com

Mike is a Grails plug-in author and contributor to GroovyMag. He has a lot of

helpful info on his blog.

Chris Judd: Judd Solutions http://juddsolutions.blogspot.com

Chris is an author, speaker, trainer, and all-around Groovy guy. He is a coau-

thor of Beginning Groovy and Grails: From Novice to Professional.

MEET THE G3 COMMUNITY 209

Dmitriy Kopylenko: Life Behind Computer Screen. . .
. . . http://dima767.github.com

Dmitriy is the creator of GrailCrowd.com and lead author of the online open

source Grails Internals Handbook.

Ken Kousen: Stuff I’ve Learned Recently.... . .
. . . http://kousenit.wordpress.com

Ken is a Java and Groovy trainer, conference speaker, and coauthor of the

upcoming book Making Java Groovy.

Guillaume Laforge . http://glaforge.free.fr/weblog

Guillaume is the Groovy project manager, a coauthor of Groovy in Action, and a

frequent conference speaker.

Tomás Lin: Programming Brain Dump http://fbflex.wordpress.com

Tomás is a Grails/Flex expert and author of the online book Flex on Grails.

Ted Naleid . http://naleid.com/blog

Ted is a Grails plug-in author and GroovyMag contributor.

Josh Reed: Josh (formerly) in Antartica. . .
. . . http://josh-in-antarctica.blogspot.com

Josh is a desktop Groovy pro and an up-and-coming Griffon power user.

Jim Shingler: Shingler’s Thoughts http://jshingler.blogspot.com

Jim is a coauthor of Beginning Groovy and Grails: From Novice to Professional

and a Griffon plug-in author.

Matt Stine . http://www.mattstine.com

Matt is a Grails plug-in contributor, a Java user group leader, and frequent

Groovy/Grails blogger.

Venkat Subramaniam .http://www.agiledeveloper.com/blog

Venkat is an internationally recognized speaker and trainer and author of Pro-

gramming Groovy: Dynamic Productivity for the Java Developer.

Matthew Taylor: Dangertree Techblog http://weblog.dangertree.net

Matt is a Grails plug-in author extraordinaire and the creator of the Grails

plug-in portal. Along with the interesting and informative articles on his blog,

he has created some cool screencasts on using the GrailsUI plug-in.

James Williams . http://jameswilliams.be

James is a Grails committer and member of the core Griffon development team.

Yours Truly: Kickin’ Down the Cobblestones. . .
. . . http://dave-klein.blogspot.com

You can also reach me at daveklein@usa.net or on Twitter at http://twitter.com/

daveklein.

OTHER RESOURCES 210

B.3 Other Resources

Besides blogs, websites, and mailing lists, there are many other re-

sources available to new Grails developers. There are books, magazines,

podcasts, screencasts, and training organizations.

Books

The shelves are filling up with Groovy and Grails books these days (well,

at least mine are). Here’s some of the more recent titles.

Grails in Action, by Glen Smith and Peter Ledbrook. . .
. . . http://manning.com/gsmith

The Definitive Guide to Grails, Second Edition, by Graeme Rocher

and Jeff Brown. . .
. . . http://www.apress.com/book/view/1590599950

Programming Groovy, by Venkat Subramaniam. . .
. . . http://www.pragprog.com/titles/vslg

Groovy Recipes, by Scott Davis http://www.pragprog.com/titles/sdgrvr

Beginning Groovy and Grails, by Judd, Shingler and Nusairat. . .
. . . http://www.apress.com/book/view/9781430210450

Grails Persistence, by Robert Fischer. . .
. . . http://www.apress.com/book/view/1430219262

Groovy and Grails Recipes, by Bashar Abdul Jawad. . .
. . . http://www.apress.com/book/view/143021600x

Groovy in Action, Second Edition, by Köenig, King, Laforge and

Skeet. . .
. . . http://www.manning.com/koenig2

Griffon in Action, by Almiray, Ferrin and Wielenga. . .
. . . http://www.manning.com/almiray

IDE SUPPORT 211

Other Media

GroovyMag. .http://groovymag.com

A monthly e-magazine devoted to Groovy, Grails and Griffon.

The Grails Podcast . http://grailspodcast.com

Sven Haiges and Glen Smith host a biweekly (or as they say, fortnightly) pod-

cast with news, interviews, and interesting discussions centered around the G3

community and technology.

Grails Screencasts .http://www.grails.org/Grails+Screencasts

Grails.org hosts a growing collection of screencasts on topics ranging from Ajax

to JMX to the Grails Mail plug-in.

Training

Even with all of these resources at our disposal, there are times when

having an experienced instructor there to help you dig in can make a big

difference. Don’t worry; you’re covered there as well. Here are training

opportunities offered by some of the brightest minds in the business.

SpringSource Training http://www.springsource.com/training/grv001

ThirstyHead .http://thirstyhead.com/

GroovyMag Online Training http://www.groovymag.com/training

Groovy Code Camps . http://www.groovycodecamp.com/

B.4 IDE Support

As I mentioned in Section 2.3, Setting Up Our Workspace, on page 30,

many Grails developers find that they don’t need an integrated develop-

ment environment (IDE) as much as they did when working with Java

or other “high-ceremony” languages. In fact, an IDE sometimes gets in

the way. A good text editor, a good browser, and the command line are

often all you need to be productive with Grails. Personally, I use Text-

Mate. My co-worker, who happens to be the best programmer in the

world, uses vi.

That’s not to say that there isn’t support in the major IDEs. It’s just to

let you know that you may not need it once you get going. The three

IDE SUPPORT 212

major Java IDEs—Eclipse, NetBeans, and IntelliJ IDEA—all have vary-

ing degrees of support for Groovy and Grails. NetBeans and IDEA seem

to leapfrog each other as the top G3 IDE, but SpringSource is actively

working on Eclipse’s support, so by the time you read this, they may

have leapt to the front. Here are links to information on the support in

each IDE.

Eclipse

Grails Eclipse integration http://www.grails.org/Eclipse+IDE+Integration

Groovy Eclipse plug-in http://groovy.codehaus.org/Eclipse+Plugin

Groovy Eclipse on Twitterhttp://twitter.com/groovyeclipse

NetBeans

Grails NetBeans integration http://www.grails.org/NetBeans+Integration

Groovy NetBeans integration http://groovy.codehaus.org/NetBeans+Plugin

A helpful blog post by Geertjan Wielenga. . .
. . . http://blogs.sun.com/geertjan/entry/running_groovy_on_the_netbeans

IntelliJ IDEA

Grails IDEA integration http://www.grails.org/IDE+Integration

Groovy IDEA integration. . .
. . . http://groovy.codehaus.org/IntelliJ+IDEA+Plugin+(JetBrains+Edition)

JetBrains Official Groovy/Grails page. . .
. . . http://www.jetbrains.com/idea/features/groovy_grails.html

Appendix C

Bibliography

[Dav08] Scott Davis. Groovy Recipes: Greasing the Wheels of Java.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2008.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Koe07] Dierk Koenig. Groovy In Action. Manning Publications Co.,

Greenwich, CT, 2007.

[Sub08] Venkat Subramaniam. Programming Groovy: Dynamic Pro-

ductivity for the Java Developer. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, 2008.

Index
Symbols
$ (in Groovy), 17

== (in Groovy), 16

<< (in Groovy), 20

A
actionName, 140

Actions, 41

create, 82

dashboard, 156, 161

definition of, 77

delete, 79

edit, 80

exiting a controller action, 77

index, 77

list, 77, 118

login, 136

logout, 136

reply, 127

save, 82

show, 78

showDetail, 126

tweet, 187

update, 80

updateBlurb, 191

validate, 137, 166

see also Events; Views

add(), 20

addDefaultTasks(), 109, 110

addToRespondents(), 63

addToVolunteers(), 63

Ajax

ajaxList view, 126, 127

Grails and Ajax tags, 125

<g:remoteLink> tag, 125

ajaxList.gsp, 122

<g:each> tag, 123, 125

ajaxList view, 126, 127

allowedActions list, 141

allowedMethods property, 79

Ant, 201

application.properties file, 34

as operator, 60

assert(), 113

Atlassian Crowd, 135

attrs parameter, 129

Autobase plug-in, 202

Autowiring, 110

B
belongsTo property, 61, 66, 72

BLOB data type, 65

Blurb plug-in, 189–193

Blurb class, 189

<g:blurb> tag, 189

installing, 189

updateBlurb action, 191

see also Plug-ins (Grails)

_blurb.gsp, 190

body parameter, 129

Bootstrap code, 97

BootStrap.groovy

init(), 47

TekEvent instances, creating, 47

“Broken Window” theory, 32

Brown, Jeff, 201

Button bar, creating, 85

C
CAS, 135

Cascading deletes, 61, 72

Class declaration, 76

Classes (in Groovy), 16

Closures

dash-rocket, 17

declaring, 17

definition of, 17

it parameter, 18

COLLECT() DATABASES

collect(), 157

Compass, 171

completed property, 114

components attribute, 181

Concurrency checking, optimistic, 38,

81

Configuration files (XML)

complexity of, 10

Constraints

built-in, list of, 74

definition of, 44

functions of, 74

properties and their key/value pairs,

44

validation and, 74

contains(), 158, 179

contributionType property, 156

Controller classes

actions, 41, 77

class declaration, 76

definition of, 41

domain classes and controllers, 150

dynamic scaffolding, 41

exiting a controller action, 77

index action, 41

Map class, returning, 77

model, 77

null, returning, 77

redirect(), 77

render(), 77

TekEventController class, 41, 76

views and controllers, 150

see also Domain classes

controllerName, 140

Convention over configuration, 12, 110

count variable, 118

create action, 82

create-app command, 30, 32

create-controller script, 41, 149

createCriteria(), 167

create-domain-class script, 35, 54

create.gsp, 89–92

adding two input fields, 185

<g:if> tag, 128

Message List button, changing, 119

<createLink> tag, 143

create view, 42, 82, 103, 128

Criteria Builder

createCriteria(), 167

events list, 169

g3Events list, 168

HibernateCriteriaBuilder instance, 167

searching relationship properties

with nested criteria blocks, 168

Cross-site scripting attacks, 88

CSS code, changing, 99

Curly braces (in Groovy), 17

D
Dash-rocket (in Groovy), 17

DashboardController class, 150

dashboard action, 156, 161

retrieving the Blurb instance for an

event, 189

twitterService property, 187

DashboardControllerTests class, 150

dashboard.gsp, 151

adding a menu, 158

blurb template (_blurb.gsp), 190

creating the templates for, 151

event template (_event.gsp), 152

<g:link> tag, 160

<g:render> tag, 151

<g:resource> tag, 160

messages template (_messages.gsp),

154

sponsors template (_sponsors.gsp), 155

tasks template (_tasks.gsp), 152

Twitter template (_twitter.gsp), 188

volunteers template (_volunteers.gsp),

153

Data binding, 81

Data types

BLOB, 65

Databases

Autobase plug-in, 202

bootstrap code, 97

configuring, 95–97

data types and database columns,

38

database migration tools, 202

DataSource.groovy, 95–97

development environment, 96

HsqlDb, 45, 96

in-memory database, 45, 49

Liquibase framework, 202

migrating, 97

MySQL, 96

production environment, 96

setting the data source for a test

environment, 113

test environment, 96

DATASOURCE CLASS <G:IF> TAG

using a JNDI data source, 199

DataSource class

changing the production data

source, 199

configuring a JNDI data source in a

Tomcat server, 200

Davis, Scott, 11

def keyword, 16

delete action, 79

_details.gsp, 124

development environment, 31, 96

Dialog component, 181

DigestUtils class, 138

Directories and files, structure of,

32–33

doLogin filter, 140

Domain classes, 35–41

constraints, definition of, 44

create-domain-class script, 35

domain model, definition of, 35

dynamic methods, 38

errors property, 48

id property, 38

persistent data, 35

TekEvent class, 36

test classes, generating, 38

unit test class, creating, 36

version property, 38

see also Controller classes

Dot notation (in Groovy), 21

Downloading Grails, 28

DRY principle, 108

Dynamic finders, 57

limitations of, 166

Map parameter, 158

properties and optional operators, 58

Dynamic methods, 38

Dynamic scaffolding, 41

E
each(), 19, 21, 132

Eclipse, 201

edit action, 80

edit.gsp, 92–94

edit view, 42, 79, 80, 114

encodeAsHTML(), 88, 91

endDate property, 102

Environments, standard, 31

errors collection, 91

errors property, 48, 90

_event.gsp, 152

Events

adding the event’s name to the page

heading, 119

create view, 121

definition of, 35

displaying Message instances related

to a TekEvent, 117

<g:link> tag, 118

list view, 119

Message.event property, 119

modifying the event show view, 117

TekEvent class, 36

see also Actions; Views

events list, 169

event variable, 118

Expressions (in Groovy), 17

F
fieldValue(), 86, 91, 102

File input element, 66

Files and directories, structure of,

32–33

Filters

actionName, 140

allowedActions list, 141

controllerName, 140

doLogin, 140

functions of, 139

interceptors, 139

named parameters for controller and

action, 140

SecurityFilters class, 140

user key, 143

findByTwitterId(), 196

Fischer, Robert, 202

flashMap, 79

flash.message, 85

<formatDate> tag, 102

G
g3Events list, 168

<g:blurb> tag, 189, 193

<g:datePicker> tag, 92, 103

precision attribute, 103

<g:each> tag, 86, 100, 123, 125, 133,

155, 175

generate-all script, 108

getters (in Groovy), 15

<g:form> tag, 90, 137, 175, 188

<g:hasErrors> tag, 90, 91

<g:if> tag, 85, 120, 128

GIT <G:SELECT> TAG

Git

Brown, Jeff, 201

<g:javascript> tag, 125

<g:layoutBody> tag, 84

<g:layoutHead> tag, 84

<g:layoutTitle> tag, 84

<g:link> tag, 85, 87, 94, 100, 118, 119,

124, 153, 154, 160

<g:loginToggle> tag, 143

<g:organizerEvents> tag, 164, 169

GORM (Grails Object Relational

Mapping)

dynamic finders, 57

synthesizing behavior at runtime, 57

<g:paginate> tag, 86

Grails mail plug-in, 201

Grails UI plug-in, 178–183

adding a confirmation dialog box,

180

components attribute, 181

grails install-plugin grails-ui script, 181

<gui:dialog> tag, 181

<gui:resources> tag, 181

installing, 181

triggers, 182

using a YUI CSS class, 183

Yahoo! User Interface (YUI)

components, 181

see also Plug-ins (Grails)

grails-app directory, 32

grails command, 30

grails create-controller command, 54

grails create-service Task script, 109

grails create-tag-lib script, 129

grails generate-all script, 75

grails help command, 30

grails install-plugin grails-ui script, 181

grails install-plugin script, 171

grails install-searchable-config script, 172

grails list-plugins script, 171

grails test-app script, 58, 113

grails war script, 201

<g:remoteLink> tag, 125, 132

list of attributes, 126

messageInstance, 126

update attribute, 126

<g:renderErrors> tag, 90

<g:render> tag, 122, 151, 190

<g:resource> tag, 160

Groovy

$, 17

==, in assert statements, 16

<<, 20

add(), 20

as operator, 60

classes, 16

Closures, definition of, 17

collection classes, 18–22

curly braces, 17

dash-rocket, 17

data types and database columns,

38

def keyword, 16

differences between Java and

Groovy, 14–22

dot notation, 21

download location, 14

each(), 19

expressions, designating, 17

getters, 15

Grails and, 12, 14

Groovy JDK, download location, 22

GString class, 16

integration with Java, 14

it parameter, 18

Java Virtual Machine (JVM), 14

java.lang.String class, 16

java.util.ArrayList class, 19

List class, 19

Map class, 21

max(), 19

min(), 19

named-args constructor, 16

objects in, 19

parentheses and method calls, 15

properties, 15

recommended books on, 14

return statements, 14

semicolons, lack of, 14

Set class, 22

setters, 15

single quotes, 17

sort(), 20

strings, 16

syntax, 14–16

variables, typing of, 16

see also Java; JavaScript; Scripts,

built-in

Groovy Server Pages (GSP)

.gsp files, 83

main.gsp, 83

<g:select> tag, 92

217

<G:SORTABLECOLUMN> TAG JTWITTER API

<g:sortableColumn> tag, 85

GSP tags

calling as a method, 132

displaying message threads with a

custom GSP tag, 128

each(), 132

example of, 129

<g:each> tag, 133

<g:remoteLink> tag, 132

indent parameter, 132

messages attribute, 132

processMessages(), 132, 133

TagLib, 129

TekDaysTagLib class, 131

GSP templates

ajaxList.gsp, 122

creating a template to display a

message, 124

definition of, 122

_details.gsp, 124

<g:link> tag, 124

<g:render> tag, 122

messageInstance, 125

model parameter, 126

rendering templates from a different

directory, 122

rendering the response to Ajax calls,

122

.gsp files, 83

GString class, 16, 143

<gui:dialog> tag, 181

<gui:resources> tag, 181

<g:volunteerEvents> tag, 169

H
hasMany property, 60, 63, 66, 69, 72

Hibernate, 13, 109

Hibernate Criteria API, 167

HibernateCriteriaBuilder instance, 167

HsqlDb, 45, 96

Hunt, Andy, 32

I
id parameter, 78, 81

id property, 38, 48

in-memory database, 45, 49

indent parameter, 132

index action, 41, 77

index.gsp

adding a search field to the home

page, 175

displaying an events list on the home

page, 165

<g:organizerEvents> tag, 169

<g:volunteerEvents> tag, 169

modifying, 146

IndexOutOfBounds exception, 155

init(), 47

inList constraint, 68

Installing and testing Grails, 28–29

Integrated development environments

(IDEs), 34

Integration tests, 39, 111–113

functions of, 112

JUnit test case, 112

setting the data source to a

persistent database, 113

see also Test classes; Unit tests

it parameter, 18

J
Java

differences between Java and

Groovy, 14–22

EJB, 12

java.lang.String class, 16

JSF, 12

servlet containers, 198

ternary operator, 155

using Grails with JSF and EJB, 11

see also Groovy; JavaScript; Scripts,

built-in

Java Naming and Directory Interface

(JNDI)

using a JNDI data source, 199

Java Virtual Machine (JVM)

Groovy and, 14

java.lang.String class, 16

JavaScript

<g:javascript> tag, 125

Grails support for JavaScript

libraries, 125

library attribute, 125

Prototype library, 125

see also Groovy; Java; Scripts,

built-in

java.util.ArrayList class, 19

JBoss, 198

JDBC, 57

Jetty, 198

JSecurity, 135

JTwitter API, 171, 183

JUNIT TEST CASE OVERDIJK

JUnit test case, 112

JUnit testing framework, 39

K
Keywords

def, 16

key, 79

return, 14

L
lib directory, 33

library attribute, 125

Liquibase framework, 202

list action, 77, 118

List class, 19

each(), 19

sort(), 20

list.gsp, 84–86

<g:link> tag, modifying, 119

list variable, 118

list view, 42, 48, 55

removing the Id and Organizer

columns, 100

login action, 136, 141

login.gsp, 136

validate action, 141

Logo design, changing, 98

logo property, 65

logout action, 136, 142

Lucene, 171

M
main.css, 99, 123, 160

additional CSS style rules, 203

main.gsp, 83, 98

<g:layoutBody> tag, 84

<g:layoutHead> tag, 84

<g:layoutTitle> tag, 84

Many-to-many relationships

belongsTo property, 66

establishing the TekEvent to Sponsor

relationship, 66

hasMany property, 66

Map class, 77–79, 82, 126

accessing entries using dot notation,

21

adding the event:event key/value

pair, 118

each(), 21

Map parameter, 158

Math.min(), 78

Maven, 201

max(), 19

maxSize constraint, 65

merge(), 179

Message class, 72

MessageController class

adding a reply action, 127

count variable, 118

event variable, 118

list action, 118

list variable, 118

rendering the new view, 126

showDetail action, 126

Message.event property, 119

messageInstance, 125, 126

messages attribute, 132

_messages.gsp, 154

min(), 19

Model, 77

Model View Controller (MVC), 12

model parameter, 126

MySQL, 96

N
Named-args constructor (in Groovy), 16

NetBeans, 201

New TekEvent button, 42, 45

Null, 77

O
Objects (in Groovy), 19

One-to-many relationships, 88, 92

belongsTo property, 61

bidirectional one-to-many

relationships, 61

declaring, with the hasMany property,

60

setting up a relationship between

TekEvent and TekUser, 60

One-to-one relationships

joining the TekEvent and TekUser

classes, 56

OpenSymphony, 83

Optimistic concurrency checking, 38,

81

organizerEvents closure, 164

organizer property, 85, 87, 92

Overdijk, Marcel, 76

219

PARAMS PROPERTY SET CLASS

P
params property, 77

Parentheses (in Groovy), 15

Persistent data, 35

Plain Old Groovy Object (POGO), 108

Plug-ins (Grails)

authors of, 171

Autobase plug-in, 202

Blurb plug-in, 189–193

Grails mail plug-in, 201

Grails plug-in portal, 196

Grails UI plug-in, 178–183

grails install-plugin script, 171

grails list-plugins script, 171

Searchable plug-in, 171

Twitter plug-in, 171, 183–188

precision attribute, 103

processMessages(), 132, 133

production environment, 31, 96

Programming Groovy (Subramaniam),

18

Properties (in Groovy), 15

properties property, 82

Prototype library, 125

R
redirect(), 77, 139, 166

render(), 77, 126, 127, 139

reply action, 127

resource(), 85

<resource> tag, 143

respondents collection, 63, 88, 152

return statements (in Groovy), 14

root mapping, 195

run-app command, 30

S
Safe navigation operator, 88

save action, 82

Scaffolding

scaffolding code, generating, 75

Scripting attacks, cross-site, 88

Scripts, built-in

create-app, 30, 32

create-controller, 41, 149

create-domain-class, 35, 54

generate-all, 108

grails create-controller, 54

grails create-tag-lib, 129

grails generate-all, 75

grails install-plugin, 171

grails install-plugin grails-ui, 181

grails install-searchable-config, 172

grails list-plugins, 171

grails test-app, 58, 113

grails war, 201

run-app, 30

test-app, 40

see also Groovy; Java; JavaScript

scripts directory, 33

search(), 173

Searchable plug-in, 170–177

grails install-searchable-config script,

172

installing, 171

performing full-text searches, 171

reference documentation, 174

setting searchable classes and

searchable components, 174

see also Plug-ins (Grails)

search.gsp, 173

SearchResult instance, 173

Security

Atlassian Crowd, 135

CAS, 135

creating a login/logout toggle, 143

DigestUtils class, 138

doLogin filter, 140

enhancing, 138

filters, 139–142

JSecurity, 135

logging in, 136–139

logging out, 142–144

login action, 136

login.gsp, 136

logout action, 136

plug-ins for, 135

requirements for an authentication

system, 136

SecurityFilters class, 140, 176

session, 139

Spring Security, 135

Semicolons (in Groovy), 14

service classes, 108–111

advantages of, 108

definition of, 108

grails create-service Task script, 109

serviceMethod(), 109

session, 139

Set class, 22

specifying an order, 22

220

SETSTATUS() TEKDAYS.COM

subscript operator, 22

setStatus(), 187

setters (in Groovy), 15

setUp(), 112

show action, 78

showDetail action, 126

show.gsp, 86–89

adding a button to the TekEventshow

view, 180

<g:blurb> tag, 193

TekEventshow view, 160

show view, 42, 79, 101–103

Single quotes (in Groovy), 17

SiteMesh, 83

sort(), 20

Sponsor class, 64, 155

logo property, 65

maxSize constraint, 65

SponsorController link, 66

sponsor property, 156, 168

_sponsors.gsp, 155

Sponsorship class, 68, 155

contributionType property, 156

inList constraint, 68

sponsor property, 156

toString(), 70

SponsorshipController, 94

sponsorships property, 168

Spring, 13, 109

Spring Security, 135

src directory, 33

startDate property, 102

startDate variable, 88

static mappings block, 195

Strings (in Groovy)

declaring a multiline string, 48

GString class, 16

retrieving part of a String using a

range, 155

Subramaniam, Venkat, 18

Subscript operator, 22

SVN, 201

Synthesizing behavior at runtime, 57

T
TagLib

attrs parameter, 129

body parameter, 129

definition of, 129

grails create-tag-lib script, 129

Task class, 71, 108–110

completed property, 114

edit view, 114

modifying, 113

Taskcreate view, 108

Taskedit view, 108

TaskService class

addDefaultTasks(), 109, 110

serviceMethod(), 109

transactional property, 109

taskService property, 112

TaskServiceTests class

assert(), 113

setUp(), 112

taskService property, 112

testAddDefaultTasks(), 113

_tasks.gsp, 152

Technical conferences, 26

TekDays-0.1.war, deploying, 201

TekDays.com

adding a Sponsor class, 64

adding search features, 163

application requirements and

features list, 27

building community with, 27

collect(), 157

contains(), 158

create-controller script, 149

creating a controller for dynamic

scaffolding, 66

critiquing, 42

CSS code, changing, 99

dashboard view, designing, 150

DashboardController class, 150

DashboardControllerTests class, 150

dashboard.gsp, 151

designing the makeover of the home

page, 146–149

distinguishing organizers from

volunteers, 157

file input element, 66

implementing an organizer’s

dashboard view, 146

index.gsp, 146

introduction to, 26

linking to the dashboard, 160

logo design, changing, 98

main.css, 99

message forum, creating, 116–133

Message class, 72

organizers, volunteers, and users, 53

providing user-friendly URLs, 193

221

TEKDAYSTAGLIB CLASS THOMAS

restricting messages to an event, 116

run-app command, 30

SponsorController link, 66

Sponsorship class, 68

Task class, 71

using dynamic finders for search,

163–166

TekDaysTagLib class, 131

adding a button to the TekEventshow

view, 179

contains(), 179

<g:loginToggle> tag, 143

<g:organizerEvents> tag, 164, 169

<g:volunteerEvents> tag, 169

merge(), 179

organizerEvents closure, 164

retrieving a list of TekEvent instances,

165

TekEvent class, 54, 56

adding properties to, 37

addToRespondents(), 63

addToVolunteers(), 63

cleaning up the Sponsorship collection

display, 102

complete code listing, 72

create view, 103

creating, 36

design of, 36

edit view, 104–106

enabling the Searchable plug-in, 172

endDate property, 102

event task list, requirements of, 108

fieldValue(), 102

<formatDate> tag, 102

<g:datePicker> tag, 103

<g:each> tag, 100

<g:link> tag, 100

hasMany property, 63

instances, creating and saving, 37

list view, 100

modifying for holding Twitter

account information, 184

modifying the four scaffolded views,

99

registering user interest in an event,

62

respondents collection, 63

retrieving the TekUser objects from the

database, 56

search(), 173

search.gsp, 173

SearchResult instance, 173

show view, 101–103

startDate property, 102

Taskcreate view, 108

Taskedit view, 108

TekEventedit view, 108

test classes, generating, 38

toString(), 37

TekEventController class, 41, 76, 110

adding a search action, 173

findByTwitterId(), 196

using a nickname parameter to show

a TekEvent instance, 196

volunteer action, 183

TekEventedit view, 108

tekEventInstance variable, 86

TekEventshow view, 160

customizing, 189

TekEventTests class, 58

TekUser class

adding test data, 54

changing the organizer from a String to

a TekUser, 55

enabling the scaffolding, 54

list view, 55

retrieving the TekUser objects from the

database, 56

structure of, 53

unit tests, updating, 59

volunteers, 63

TekUserController class

login action, 136, 141

logout action, 136, 142

validate action, 137, 166

ternary operator, 155

Test classes

dynamic languages and, 39

generating, 38

integration tests, 39

output results, understanding, 41

test-app script, 40

unit tests, 39

-unit flag, 40

see also Integration tests; Unit tests

testAddDefaultTasks(), 113

test-app script, 40

test directory, 33

test environment, 31, 96

The Pragmatic Programmer (Thomas

and Hunt), 32

Thomas, Dave, 32

222

TOMCAT YAHOO! USER INTERFACE (YUI) COMPONENTS

Tomcat, 198

toString(), 37, 70

writing a test for, 39

Transaction handling, coding, 109

transactional property, 109

triggers

calling, 182

definition of, 182

try/catch block, 80

tweet action, 187

Twitter plug-in, 171, 183–188

installing, 183

JTwitter API, accessing, 183

posting updates to an event’s Twitter

timeline, 183

see also Plug-ins (Grails)

_twitter.gsp, 188

TwitterService class

reference documentation, 184

setStatus(), 187

tweet action, 187

Twitter template, creating, 188

twitterService property, 187

U
Unit tests, 39

creating, 36

functions of, 112

-unit flag, 40

see also Integration tests; Test

classes

update action, 80

updateBlurb action, 191

URL mappings

adding a mapping for a matched

URL, 195

providing user-friendly URLs, 193

root mapping, 195

static mappings block, 195

UrlMappings class, default mappings,

193

user key, 143

V
validate action, 137, 141, 166

Validation

constraints and, 74

Variables (in Groovy)

typing of, 16

Version control systems

Git, 201

SVN, 201

version property, 38

Views

ajaxList, 126, 127

create, 42, 82, 128

edit, 42, 79, 80

list, 42, 55

show, 42, 79

see also Actions; Events

volunteer action, 183

volunteers, 63

_volunteers.gsp, 153

volunteers property, 88, 94

W
WAR (Web Application Resource)

deploying TekDays-0.1.war to a Tomcat

server, 201

grails war script, 201

tools for packaging a web application

into a WAR, 201

Web application frameworks

addressing the front and back ends

together, 12

convention over configuration, 12

Grails, advantages of, 10, 12

Hibernate, 13

Model View Controller (MVC), 12

Spring, 13

web-app directory, 33

WebLogic, 198

WebSphere, 198

Workspace

create-app command, 30, 32

setting up, 30–32

Y
Yahoo! User Interface (YUI) components

Dialog component, 181

223

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of October 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 250

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2009 9781934356494 272

Continued on next page

Title Year ISBN Pages

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Continued on next page

Title Year ISBN Pages

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

The Seed of Hope 2009 9781934356357 280

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

iPhone SDK Development 2009 9781934356258 576

More Fun with Groovy

Programming Groovy
Programming Groovy will help you learn the

necessary fundamentals of programming in Groovy.

You’ll see how to use Groovy to do advanced

programming techniques, including meta

programming, builders, unit testing with mock

objects, processing XML, working with databases

and creating your own domain-specific languages

(DSLs).

Programming Groovy: Dynamic Productivity for

the Java Developer

Venkat Subramaniam

(320 pages) ISBN: 978-1-9343560-9-8. $34.95

http://pragprog.com/titles/vslg

Groovy Recipes
See how to speed up nearly every aspect of the

development process using Groovy Recipes. Groovy

makes mundane file management tasks like

copying and renaming files trivial. Reading and

writing XML has never been easier with XmlParsers

and XmlBuilders. Breathe new life into arrays,

maps, and lists with a number of convenience

methods. Learn all about Grails, and go beyond

HTML into the world of Web Services: REST, JSON,

Atom, Podcasting, and much, much more.

Groovy Recipes: Greasing the Wheels of Java

Scott Davis

(264 pages) ISBN: 978-0-9787392-9-4. $34.95

http://pragprog.com/titles/sdgrvr

Git Yourself Better Tools

Pragmatic Git
There’s a change in the air. High-profile projects

such as the Linux Kernel, Mozilla, Gnome, and

Ruby on Rails are now using Distributed Version

Control Systems (DVCS) instead of the old

stand-bys of CVS or Subversion. This book will get

you started using Git in this new distributed world.

Pragmatic Version Control Using Git

Travis Swicegood

(200 pages) ISBN: 978-1-934356-15-9. $34.95

http://pragprog.com/titles/tsgit

The Definitive ANTLR Reference
This book is the essential reference guide to ANTLR

v3, the most powerful, easy-to-use parser generator

built to date. Learn all about its amazing new LL(*)

parsing technology, tree construction facilities,

StringTemplate code generation template engine,

and sophisticated ANTLRWorks GUI development

environment. Learn to use ANTLR directly from its

author!

The Definitive ANTLR Reference: Building

Domain-Specific Languages

Terence Parr

(384 pages) ISBN: 0-9787392-5-6. $36.95

http://pragprog.com/titles/tpantlr

Debug Your Career

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Land the Tech Job You Love
You’ve got the technical chops—the skills to get a

great job doing what you love. Now it’s time to get

down to the business of planning your job search,

focusing your time and attention on the job leads

that matter, and interviewing to wow your

boss-to-be.

You’ll learn how to find the job you want that fits

you and your employer. You’ll uncover the hidden

jobs that never make it into the classifieds or

Monster. You’ll start making and maintaining the

connections that will drive your future career

moves.

You’ll land the tech job you love.

Land the Tech Job You Love

Andy Lester

(225 pages) ISBN: 978-1934356-26-5. $23.95

http://pragprog.com/titles/algh

Ready to Deploy?

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real-world customers from 100

different countries? Are you ready for a world filled

with flaky networks, tangled databases, and

impatient users?

If you’re a developer and don’t want to be on call at

3 a.m. for the rest of your life, this book will help.

Release It! Design and Deploy Production-Ready

Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragprog.com/titles/mnee

Ubuntu Kung Fu
Award-winning Linux author Keir Thomas gets

down and dirty with Ubuntu to provide over 300

concise tips that enhance productivity, avoid

annoyances, and simply get the most from Ubuntu.

You’ll find many unique tips here that can’t be

found anywhere else.

You’ll also get a crash course in Ubuntu’s flavor of

system administration. Whether you’re new to

Linux or an old hand, you’ll find tips to make your

day easier.

This is the Linux book for the rest of us.

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks

Keir Thomas

(400 pages) ISBN: 978-1-9343562-2-7. $34.95

http://pragprog.com/titles/ktuk

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Grails Quick Start’s Home Page

http://pragprog.com/titles/dkgrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/dkgrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

	Grails - A Quick-Start Guide (October 2009) (ATTiCA)
	Contents
	Introduction
	Let Me Tell You About Grails…
	How Does Grails Do It?
	Why This Book?
	Who Should Read This Book
	Source Code
	Enough Groovy to Be Dangerous
	Groovy Syntax Compared to Java
	Groovy Strings
	Groovy Closures
	Groovy Collections
	Where to from Here?
	Acknowledgments

	Our Project
	Introducing TekDays.com
	Meet Our Customer
	Iteration Zero
	Summary

	Laying the Foundation
	Creating a Domain Class
	More About Domain Classes
	Testing Our Domain Class
	Taking Control of Our Domain
	Modifying Code That Doesn't Exist
	Bootstrapping Some Test Data
	Summary

	Building Relationships
	The TekUser Domain Class
	One-to-One Relationships
	One-to-Many Relationships
	Collections of Simple Data Types
	Adding a Sponsor Class
	Many-to-Many Relationships
	Finishing Up the Domain Model
	Summary

	Beyond Scaffolding
	Generating Scaffolding Code
	Anatomy of a Grails Controller
	Grails Views with Groovy Server Pages
	Configuring a Database
	Summary

	Getting Things Done
	Changing All Our Views at Once
	Modifying the Scaffolded Views
	Event Task List
	Grails Service Classes
	Integration Testing
	Modifying the Task Class
	Summary

	Forum Messages and UI Tricks
	Restricting Messages to an Event
	Of Templates and Ajax
	Display Message Threads with a Custom Tag
	Summary

	Knock, Knock: Who's There? Grails Security
	Grails Security Options
	Logging In
	Filters
	Logging Out
	Summary

	Big-Picture Views
	Home Page Makeover
	Creating a New Controller
	Designing the Dashboard View
	Adding the Dashboard Action
	Adding a Menu
	Linking to the Dashboard
	Summary

	Seek, and You Shall Find
	Search Using Dynamic Finders
	Hibernate Criteria Builder
	The Big Guns: The Searchable Plug-In
	Summary

	Icing on the Cake
	The Grails UI Plug-In
	The Twitter Plug-In
	Making the Event Page Customizable with the Blurb Plug-In
	User-Friendly URLs
	Summary

	Deployment and Beyond
	Using a JNDI Data Source
	Creating and Deploying a WAR
	Next Steps
	Parting Thoughts

	Resources
	Online Resources
	Meet the G3 Community
	Other Resources
	IDE Support

	Additional CSS Rules
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

