
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

James Ferreira

SECOND EDITION

Google Apps Script

www.allitebooks.com

http://www.allitebooks.org

Google Apps Script, Second Edition

by James Ferreira

Copyright © 2014 James Ferreira. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler

Production Editor: Nicole Shelby

Copyeditor: Becca Freed

Proofreader: Rachel Head

Indexer: Judy McConville

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

March 2014: Second Edition

Revision History for the Second Edition:

2014-03-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491946183 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The picture of a Black-throated Blue Warbler, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-94618-3

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491946183
http://www.allitebooks.org

Table of Contents

Preface. vii

Part I. Understanding Google Apps Script

1. First Steps in Google Apps Script. 3
Google Apps Script Is… 3
What You Will Get from This Book 4
Getting Started 5

Looking Around the Editor 6
Three Ways to Create a UI 10

Hello Container-Bound Apps 11
Hello Web App 16
Hello, Google Sites 20

Web App Versus Container-Bound 22
Up and Walking 23

2. Setting Up Your Development Environment. 25
How to Debug and Test 26

Handling Errors and Breaks 26
Break and Report 27

Production Error Logging 28
Logging the Backend 28
Logging HTML Frontends 29

Wrapping Up 32

3. Building an Interface. 33
What’s in a UI? 33
It Starts with doGet 33
Contact Me 35

iii

www.allitebooks.com

http://www.allitebooks.org

Getting Started 35

4. Adding Actions. 41
Handling User Actions 41
Anatomy of a Handler 41
The Concept of the Callback 43
Functions Are Where the Action Happens 46
Storing the Values 46

Storing in a Spreadsheet 47
Setting Up the Spreadsheet 47
Setting Up the Data 49

Part II. Building Enterprise Applications

5. Dynamic Details: A Sites App Using HTML, CSS, and jQuery. 53
Fighting Clutter 53
What You Will Learn 55
Supplies 55
Application Overview 55
Image File Repository 55

Setting Up the Database 56
Loading the Database 57

Creating Pages from a Spreadsheet 59
Using the Public Google Apps Script Objects Class 59
Using JavaScript Objects 60
Installing an Open Source Library 60
Creating Pages and Filling the Spreadsheet 62

Creating the Products UI 67
Displaying Products 68
Creating the Products Table 70
Adding Action 72
Mousing Around 73

Delivering the Application 77
Final Code 78

6. Automate Your Forms and Templates: A Web App for Drive. 81
What You Will Learn 82
Supplies 82
Application Overview 82
Setting Up the Template 82
Building the Script 84

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

UI Setup 85
Selecting the Template 87
Getting the Keys 89
Generating the Form 90
Submitting the Completed Form 92
Copying the Template and Adding Responses 92
Final Code 94

7. Collecting Data: A UiApp-Style Web App. 99
The Installed App Has Died 99
What You Will Learn 100
Supplies 100
Application Overview 100
Setting Up 102
Building the Foundation 103

Main Panel 103
Headers Grid 104
Branding 104
Search Component 105
Navigation Component 107
Content Area 108
Search View 109
Creating the Data Store 111

Configuring Fusion Tables Access 112
Getting Data from a Fusion Table 114
Loading the Data in the UI 115
Adding Client-Side Handlers 118

Viewing a Record 119
Fetching the Correct Record 119
Custom Formatting 122
Formatting a listBox 123

Editing a Record 125
Saving Changes 127
Inserting a New Record 128
Deleting a Record 131
Full Code 132

8. Document Workflows. 141
Building a Modern Email Workflow 142
What You Will Learn 142
Supplies 142
Application Overview 142

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Creating the Menus 143
Loading the Sidebar 145
Starting the Workflow 147

Start Workflow HTML 147
Start Workflow JavaScript 150
Using ScriptDB 151
Adding Approvers 152
Loading the Approvers 153
Removing Approvers 155
Pressing Start 156

Recording Approvals 158
Approval Status 162
Audit History 166
Resetting Everything 168
Deploying Using Add-ons 171
Finishing Up 171
Full Code 171

9. Mashup. 183
Directing Email Using Google Forms 183
Charts in Sites 187

FinanceApp Chart 187
Chart from a Spreadsheet 191

Index. 195

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

If you are reading this book, there is a good chance you have heard of Google and its
powerful office productivity suite, Google Apps. Google offers search, email, word pro‐
cessing, and hundreds of other cloud applications and services that are available to
individuals but can scale all the way up to serve massive corporations and governments.
As one of Google’s most popular services, Google Apps offers some of the best online
office products available; they’re an excellent example of web-based applications that
outperform legacy desktop software.

This book is about Google Apps Script, which is a service that runs from Google Apps,
like Sites and Documents. Google Apps Script is extremely powerful when automating
many of the tasks required by day-to-day spreadsheet operations, but it also scales up
to provide a complete application platform. If you are coming from a Microsoft Office
environment, you can think of it as the macros for Google Docs, but unlike simple
macros in MS Office, Google Apps Script has a mature online editor with all the features
one would expect in a development platform. Unleash Google Script’s user interface
capability and you can create entire data-driven websites and applications that run
across most modern browsers, including mobile ones.

In addition to the integrated development environment (IDE), Google Apps Script
comes with a manager for organizing scripts, built-in debugging, automatic code com‐
pletion, timed event triggers, and automated revisioning, to name a few features. What
really caught this author’s attention was that everything is web-based. There is no need
to download and configure a code editor or transport development files from computer
to computer, wasting time resynchronizing files and reconnecting libraries. Simply sign
into your Google account and start creating. Google Apps Scripts are written in Java‐
Script, so there is no need to compile the code, making application development very
fast.

With its own set of libraries, Google Apps Script can interact with most of the services
provided by Google, making it the “Swiss Army knife” behind the main products. Other
application-building methods for accessing Google products, such as App Engine and

vii

www.allitebooks.com

http://www.allitebooks.org

the gData APIs (offered in many different languages), all require a place for you to
develop and deploy your code. With Google Apps Script, you are building the code into
the existing Google platform, and that provides a robust experience where your products
inherit Google’s legendary 99.9 percent availability. Because there is no need to have
anything more than a basic Internet-connected browser, development on this platform
is something anyone can get started with, without any up-front expense. Google Apps
Script is not locked inside Google, where it can only talk to Google servers; rather, it

can communicate through JDBC, JSON, and SOAP, and it has a urlFetch method,
making it very versatile when communicating across the Web.

At Google I/O 2012 a new feature called HTML Service was unveiled, giving Google
Apps Script programmers the ability to build custom user interfaces that can run inside
a spreadsheet window as a Google gadget or completely independently in a browser.
Talk about earth-shattering: a cloud programing platform that can access just about any
web-based service and has the ability to create AJAX-style web pages? That is notewor‐
thy. To date, Google Apps Script is the only way to gain full access to Gmail at the message
level, and more services are added every year.

This book will focus on teaching you how to build powerful web applications using
Google Apps Script. It is laid out in sections that explain how the different parts of
Google Apps Script work and puts all these together in a series of fully functional ap‐
plications that you can put to work right away.

Who Should Read This Book
This book is perfect for anyone who wants to extend what can be done with Google
Apps but is not ready to dive into the complicated world of the Google Web Toolkit and
Java APIs. You don’t have to be a webmaster or programmer to grasp the concepts in
this book. Google Apps Script takes care of server configuration, gives you a place to
save your projects, and allows you to start developing immediately. This book is ap‐
proachable by anyone with basic coding skills and a fundamental understanding of
JavaScript. If you have never used JavaScript, I recommend having a copy of Head First
JavaScript (O’Reilly) close at hand to help you through concepts like variables, arrays,
and objects. All the application examples have highly detailed explanations, so if you
are a Google Apps power user, you should not have difficulty grasping the content in
this book and writing incredible applications using Google Apps Script.

What You Will Need
You will need a web browser (I recommend Chrome) and any type of Google account.
That’s it! Google Apps Script is a completely web-based solution that is free and ready
for you to start programming today.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
At the end of each chapter you will find the full code used to create that chapter’s project.
In addition, you may access all the files used to create this book in the book’s Drive folder.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does

Preface | ix

http://goo.gl/zqy3VQ

not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Google Apps Script by James Ferreira
(O’Reilly). Copyright 2014 James Ferreira, 978-1-491-94618-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/google-script.

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/google-script

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Understanding Google Apps Script

CHAPTER 1

First Steps in Google Apps Script

What is Google Apps Script and why should you use it to build applications? Simply
put, Google Apps Script is an easy way to figuratively glue Google and other web services
together to form one powerful, interactive web application. Just ahead, you’ll get a more
in-depth explanation of Google Apps Script and how to use it to enhance existing Google
Apps. You will also learn the basics of building an application. This first chapter should
get your feet firmly planted on the ground floor of the Google Apps Script development
platform and demystify its usage.

Google Apps Script Is…
Google Apps Script is a coding and application development platform built into Google
Apps, enabling you to add functionality to spreadsheets, Gmail, Sites, and other services
from Google. For example, if your spreadsheet needs a menu item in the toolbar for
creating a pivot table, you can write a Google Apps Script that adds it to the menu and
performs the task. Google Apps Scripts can be created as standalone files in Drive, inside
a document or spreadsheet (these are known as container-bound), or in a Google Site.

This book will focus extensively on the concept of using Google Apps Script to build
applications that present themselves as web services running independently of other
interfaces. You will learn how to use Google Apps Script to build apps that run from a
spreadsheet, in a browser window, or within a Google Site; from the user’s perspective,
they will appear to be complete applications such as you might expect when using a web
service like Picasa or Gmail.

There are some real advantages to having your scripts (i.e., applications) stored in one
of the Google Apps services. Primarily, security is already built in, meaning you do not
need to worry about implementing that component in your application as you would
if it were running on a legacy web server needing patches and constant monitoring for
malicious attacks. As part of Google Apps, Google Apps Script also offers you the same

3

collaborative development abilities that are part of the Apps suite. What is truly exciting
about Google Apps Script is that it is a 100 percent web development environment that
requires no transferring of files from computer to computer, backups, revision control,
uploads to a production server, updating of development software, or many of the other
tedious aspects of development that get in the way of actually writing applications. These
parts are all built in, allowing you to focus on creating products for your business, school
or club, or anything else that needs to run on the Web.

If you are an advanced developer coming from Google App Engine,
don’t worry; there is a plug-in for Eclipse that will allow you to work
on the files locally, and they will automatically be pushed up to Google.

There are three ways to create user interfaces (UIs) in Google Apps Script: with the older
UiApp Service, as gadgets for Google Sites, and using the HTML Service. The UiApp
Service, which stands for User Interface App, was released in early 2010 as a way to allow
developers to collect user input that could be sent back to a script for processing. UiApp
uses the Google Web Toolkit (GWT) widget set as the framework for building an in‐
terface. Widgets allow you to create things like text boxes and submit buttons, as well
as more complex items like flex tables and listboxes. Everything you see in a Google
Apps Script UI is a widget cleverly arranged within a frame in the page. The only other
elements—panels—are the containers that hold all your widgets…and that is truly all
there is to the visual part of a Google Apps Script UI. If you are familiar with GWT, you
will be right at home creating UIs in Google Apps Script using UiApp.

At the 2013 Google I/O, Google Apps Script received a major update to the way UIs are
presented. The new HTML Service uses standard HTML, Cascading Style Sheets (CSS),
and JavaScript to display pages. This means you don’t need to worry about learning the
intricacies of GWT, and you can use many existing JavaScript libraries, like jQuery. As
of this writing Google is using Caja, which will limit some of the functionality you might
get out of an advanced library like Bootstrap, so beware.

Google has not officially deprecated UiApp, but it will not be receiv‐
ing much in the way of updates in the future. Google strongly rec‐
ommends converting to the HTML Service.

What You Will Get from This Book
By the time you get to the back cover of this book, you will have learned all the necessary
elements that go into building web applications using Google Apps Script. With this
knowledge under your belt, you will be able to create your own applications and take

4 | Chapter 1: First Steps in Google Apps Script

http://jquery.com/
https://developers.google.com/caja/
http://getbootstrap.com/

full advantage of your Google-hosted services. Your apps will have the ability to recog‐
nize and authenticate users and carry out tasks such as displaying custom data from a
spreadsheet, data entry, sending emails, and so much more. Have a look at Part II to see
the kinds of applications we will be building and let your imagination flow.

Getting Started
Enough preamble—let’s dig in!

For the most part, we will be building our scripts in the Google Drive Service. To get
started with the examples in this chapter load up Google Drive. From here, click the
“Create” button and choose “Script.” If you don’t have the Script App, it can be installed
by clicking the “Connect more apps” button at the bottom of the “Create” menu and
searching for “Apps Script.” You can also get started by simply going to the Google Apps
Script start page and clicking the “Start Scripting” button (Figure 1-1).

Figure 1-1. All scripts are saved in your Google Drive

The Google Script Editor will open as a new window. It gives you the option to create
your project from a template as well as to access some useful tutorials (see Figure 1-2).

Getting Started | 5

http://drive.google.com
http://www.google.com/script/start
http://www.google.com/script/start

Figure 1-2. Templates are working examples to help you get started

Looking Around the Editor
Before writing your first script, let’s take a look at some of the features in the Google
Script Editor. First off you will notice that it looks much like what you already know
from Google Docs.

Under the File menu are the typical Save, Delete, Rename, New, etc. (Figure 1-3). And
as with many of the other Google Apps services, Google Apps Script has a Manage
Versions feature that will allow you to turn back the clock to a point when your code
was working. Not that we ever need such features… But seriously, we often go down
the wrong road during development, and revisions can save you hours of trying to get
back to a known good point. When launched, a pop-up Revisions box will show what
the code looked like in the version you selected.

6 | Chapter 1: First Steps in Google Apps Script

www.allitebooks.com

http://www.allitebooks.org

Figure 1-3. Saving is not automatic

When you have the Revisions box open, you can select and copy parts
of the code. This is handy when you may have gone down two dif‐
ferent paths and want to roll back one part without losing the other.

In the File menu there are some very important options. Project properties make it
possible to store a limited amount of information in key/value pairs for use by your
script at runtime. Properties can be edited in the box that pops up after clicking the
Properties option in the File menu, or by using the Properties Service right in your code.
Many of the apps in this book will need to sign into non-Google services, and Script
Properties is a great place to store something like a password.

The “Manage versions” selection is used for applications you deploy as web apps or
libraries and gives you a way to control the version your users are accessing. This feature
allows you to update your existing production application without disturbing your
users. Once you are ready to move everyone to the latest version, you simply change
the version.

There’s nothing very exciting in the Edit menu, other than “Find and replace”
(Figure 1-4). The replace functionality is a good way to globally change the name of a
variable. Figure 1-4

Getting Started | 7

Figure 1-4. The Edit menu

On the View menu, shown in Figure 1-5, there are some important options: “execution,”
“transcript,” and “logs.” When a script is run from the editor or by you as the user from
a web interface or container, the execution transcript will list each command as it is run.
Using the execution transcript, you can see the order that the code is executed in, which
is helpful in debugging. Logs are used along with the Logger Service and allow the
writing of information and other notes as a way to track information. This was partic‐
ularly useful before the Debugger was added and is a big help when testing code. I want
to reiterate that these features only work from the Script Editor and will not be of much
use debugging in the UiApp and HTML Services when your application is run from the
browser. Don’t worry, there is a whole section in this book to help you debug like a pro.

Figure 1-5. The View menu

Learn by doing is how I figure this stuff out, so let’s jump in and give the Logger a try.
Add the following line of code into the Script Editor:

function myFunction(){

 Logger.log('A test of the Log');

}

Click Run (you might be asked to name your file), and then check the Logs under the
View menu (Figure 1-6).

8 | Chapter 1: First Steps in Google Apps Script

Figure 1-6. Log output

The Publish menu is where you will find the “Deploy as web app” option, which makes
displaying a UI possible. This is also the place for distributing your application on the
Google Chrome Web Store. We will be covering these features in great detail later in the
book.

The Resources menu provides access to triggers (see Figure 1-7), which are the auto‐
mation component that can run a script at specified times or after certain events, like
upon the submission of a form or when the spreadsheet is edited. Triggers are very
useful for tasks such as backing up information at 1 a.m., so you get credit for working
hard while fast asleep. Also in the Resources menu you will find libraries. These are
scripts that are written by other developers and can be added using the script’s special
key, found under File→“Project properties.” A library is typically a set of functions that
extend or fill gaps in the platform. For example, you may want to access YouTube, but
until December 2013, Google Apps Script did not have a YouTube Service. Before the
Google connector was available, someone (hint: your author) wrote and offered a You‐
Tube App Library to help developers easily work with the YouTube API, without having
to figure out the details of parsing XML necessary when using Google APIs directly.

Getting Started | 9

http://bit.ly/youtube-ex
http://bit.ly/youtube-ex

Figure 1-7. The Resources menu

You don’t need to be an important public official to have your own
library in Google Apps Script. In fact, anyone can create a library—
and the more developers provide excellent libraries, the better Goo‐
gle Apps Script will be. Have a look at the Google Apps Script Exam‐
ples page for several helpful libraries.

That’s about it for the menus. Figure 1-8 shows a few buttons that explain themselves
and make for easier access to the most commonly used features.

Figure 1-8. Buttons make for easy access to common tasks

The “Debug” button (the bug) next to the “Run” button (the arrow) will bring up a
window at the bottom of the code window and show the values of your code as it is
executed. It has features for setting breakpoints and stepping in and over parts of code,
and it will make developing non-UI parts of your code much easier. The user docu‐
mentation on the Google Apps Script website goes into detail on using the Debugger.

Three Ways to Create a UI
There are three ways to create and display a user interface (UI) in Google Apps Script.
The first way is in a spreadsheet, as a pop-up window or sidebar; the second, as a web
page; and the third as a gadget in a Google Sites page.

As you work through this chapter, please note that some of the code in each type of UI
is the same and will only be described once, as it is first introduced. It would be a good
idea to go through all the different UI types to avoid any confusion and to gain an
understanding of when and why a certain UI type would work better for your
application.

10 | Chapter 1: First Steps in Google Apps Script

http://bit.ly/useful-lib
http://bit.ly/useful-lib
http://bit.ly/gas-overview

Hello Container-Bound Apps
Now that you know your way around the Script Editor, it is time to write your first script.
The first type of UI is called container-bound because it is going to display as a pop-up
window or sidebar in your spreadsheet or document. The term “container-bound”
comes from requiring a spreadsheet or document to display the UI, but this does not
mean that any certain type of UI is more or less integrated than another. A script con‐
tained in a document can display a web page or pop-up, and scripts created in Drive
can access spreadsheets. I am simply giving you a reference for what we are discussing
because the code to display each type differs slightly.

The UiApp Service

From a spreadsheet, click Tools and select “Script editor.” The Script Editor will open.
Dismiss the getting started pop-up, delete all of the example code, and add the following
code:

function helloWorldUiApp() {

 var ss = SpreadsheetApp.getActiveSpreadsheet();

 var app = UiApp.createApplication().setTitle(<Your Title>);

 app.add(app.createLabel('Hello World'));

 //TODO add your code here

 ss.show(app);

}

Click “Save,” and name your project “Hello World Container Bound” (see Figure 1-9).

Figure 1-9. Naming your project

Now click “Run.” We are using SpreadsheetApp, so the first thing you will see is a request
for you to authorize the app (Figure 1-10).

Three Ways to Create a UI | 11

Figure 1-10. Authorization required

Next, you will see another screen telling you which parts of Google your app would like
to access. If you agree to let your app access your spreadsheet, click Accept (Figure 1-11).
Remember, when you build apps that other people use, they will also see this screen.

Figure 1-11. Granting access

12 | Chapter 1: First Steps in Google Apps Script

Google is always working to make the authorization process better,
so in the future you may not need to go through as many screens
asking you the same questions.

A status message will appear at the top of the editor letting you know the script is being
run (Figure 1-12).

Figure 1-12. Script is running

Once the run operation completes, switch your browser window to the spreadsheet,
and you will see a pop-up window that says “Hello World” (Figure 1-13).

Figure 1-13. “Hello World” spreadsheet

Three Ways to Create a UI | 13

The HTML Service

If you remember, there was a warning a few pages back that said the UiApp Service is
not the direction Google is going in. Well, let’s now learn the new way we build UIs in
Google Apps Script. The rest of the book will focus mainly on the HTML Service, so
please take the time here to understand the components and how they work together.

We could redo the UiApp spreadsheet example from before, but I don’t want you to get
bored. I also want to show you one of the other new features: the sidebar in Docs. This
example will require a Google Doc, so go ahead and create a new doc in Drive. Next,
click “Tools” and select “Script editor.”

Replace the default code with the following:

function helloWorldHtmlService() {

 var ui = DocumentApp.getUi();

 var html = HtmlService.createTemplateFromFile('sideBar').evaluate()

 .setTitle('Sidebar Example').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

The HTML Service is, just as it says, built using HTML. Normally when you are working
in Google Apps Script you are using .gs (Google Script) file types to write your code.
Now you can also write standard HTML files that use the common things you would
find on any modern web page, like jQuery and CSS. To create an HTML file, click File
and select New, then “Html file” (see Figure 1-14). You will be asked to name your file.
Name it “sideBar,” as this is the file we are referring to in the code.gs file.

Figure 1-14. Creating an HTML file

For this example we will use the basic structure of a web page, including head and body
tags. Copy the following code into the new sideBar.html file:

<html>

 <head>

 </head>

 <body>

 <div>Hello World</div>

 </body>

</html>

14 | Chapter 1: First Steps in Google Apps Script

The result is two files of the types .gs and .html (Figure 1-15).

Figure 1-15. Two files

Click the “Save” button and switch back to the code.gs file by clicking its tab. Now run

helloWorldHtmlService. Once the script completes, switch to the Document tab in
your web browser to see the new sidebar open, as shown in Figure 1-16.

Figure 1-16. The amazing sidebar

Three Ways to Create a UI | 15

Diving into the HTML Service code

Now that you see how it works, let’s break down the components so you can understand

them. In the code.gs file we have used the custom function helloWorldHtmlService to
wrap the code in; you can name these functions whatever you like within the JavaScript
naming rules. Several other functions have names that are specific to Google Apps

Script. I want to stop for a second to mention doGet, which is used to load web apps
after you publish them. More on that later.

The function names doGet, doPost, onEdit, onInstall, and onOp

en are special, reserved names and should not be used as names of
any custom functions of yours that do not perform these specific
operations.

Next we will need to get the document, so we can use the DocumentApp Service to work
with the sidebar or dialog windows:

var ui = DocumentApp.getUi();+ We use the method +getUi

The DocumentApp UI object is saved in the variable ui so we can add stuff to it.

The next long line is where we load up the HTML file sideBar.html. I have added several

methods to set the width, give it a title at the top of the page, and force SandboxMode,
which will make the UI load faster:

var html = HtmlService.createTemplateFromFile('sideBar').evaluate()

 .setTitle('Sidebar Example').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

The HTML Service has two different methods of displaying the content from your
HTML file, which we cover in “It Starts with doGet” on page 33.

The last part is where we add the rendered HTML to the document UI that we stored

earlier in the ui variable. The showSidebar method also opens the sidebar in the docu‐
ment:

ui.showSidebar(html);

Hello Web App
The second type of UI application is referred to as a web app because the UI is accessed
from a special URL hosted in Google’s cloud. There is no need for a spreadsheet or
document container to use the web app, but you can build this type of UI in a container
or in any of the Google services where the Script Editor is available. The URL can be
made public, allowing DNS mapping to your domain; for example, http://
Your_Great_App.domain.com.

Time to build your first web app!

16 | Chapter 1: First Steps in Google Apps Script

www.allitebooks.com

http://bit.ly/docu-service
http://bit.ly/html-service
http://www.allitebooks.org

Go to Google Drive and click the “Create” button. In the Create menu click the “Script”
icon (Figure 1-17).

Figure 1-17. The Create menu

You may not see the Script icon in your Create menu. In this case,
click the “Connect more apps” button at the bottom of the menu and
add it.

After the Script Editor opens, replace the myFunction code with:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('Web App').setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

The first difference from the container version is that we must have a doGet function
for Google to grab when the special Google URL for our app is loaded in a browser. This

is analogous to the entry point you might use in GWT. doGet is the starting point for
loading visible elements in the web app UI.

Now click “File” and select “New,” then “Html file.” You will be asked to name your file.
Call the file “index” and insert the following code:

<html>

 <head>

 </head>

Three Ways to Create a UI | 17

 <body>

 <div>Hello Web App</div>

 </body>

</html>

Now save both files, and let’s get ready to publish.

Publishing options

In the Script Editor, click Publish and select “Deploy as web app.” The “Deploy as web
app” dialog opens (Figure 1-18).

Figure 1-18. The “Deploy as web app” dialog

Because this is the first time you have published this script, you will see a “Product
version” box. You don’t need to type anything in the box, but you do need to click the
“Save New Version” button to set the first version. The next time you come back to this
menu, this section will be a drop-down selection.

The next time you publish this app, you will need to save a new version
by going to File and clicking “Manage versions.” Versioning will be
covered in Chapter 3.

There are a few important choices here. “Execute the app as” allows you to select how
the app runs: as you or as the person running the app. You’ll have to weigh the options

18 | Chapter 1: First Steps in Google Apps Script

to decide which is best. If you’re building apps that you will distribute to others to run
for enhancing their Google Apps, then you will want your app to run as them and access
their data. On the other hand, you might want the users to do something like enter
values on your spreadsheet from a form UI but not have access to the spreadsheet itself.
When the app runs as you, it accesses your data. Unforunately, it’s one way or the other,
and if your app needs access to both your information and the user’s… well, it gets a bit
more complex. Don’t worry—we will cover how to handle this later in the book.

For this example you can leave the execution setting as yourself.

The “yada yada” Google refers to is a serious warning. When you
build a standalone application, it will run as you and it will have
access to anything you have given it permission to see. For exam‐
ple, be careful not to publish the contents of your email inbox to
everyone on the Web.

Now that you know how the app will run, you will need to set who can use it. These
settings are similar to what you expect to see in most Google services. Note that your
choice applies to the web app, not the script, which is set from the blue button in the
Script Editor. The setting “Anyone, even anonymous” will allow your app to run without
the user signing into a Google account. If your app is just showing text or running as
you this may be a good choice, but it is not going to go well for the user if your app
accesses her Google Drive. Be careful to think through these two settings and what your
app needs to do; but don’t worry, you can change them at any time.

Leave the selection set to “Only myself ” and click the “Deploy” button. Now for the
drumroll: a new window pops up (Figure 1-19).

Figure 1-19. Getting the current web app URL

This box contains the current web app URL, which will be where you can send all your
friends to see the great things you’re learning. This is what we refer to as the production

Three Ways to Create a UI | 19

link, because it will always be running the version you set in the previous window. If
you look just below the box you will see a “latest code” link, which opens a URL that
ends in /dev. This is the development version and reflects the code as it is in the editor
every time you save. You will use this link a lot, because saving a new version and
republishing every time you made a change would drive you nuts!

This special URL is for the page where the app is being hosted on Google’s servers. If
you forget it, simply open the Publish dialog and copy it again. Click OK and open a
new tab in your browser. Paste the URL into the address bar and load the page. You
should now see your app displaying the text from the HTML you created earlier
(Figure 1-20).

Figure 1-20. First HTML Service UI

Congratulations! You have just created your first Google Apps Script UI web app. Not
much of an “app” yet, but as you can see, it takes very little effort to get an application
pushed out to a web interface. You might feel tht you have missed a few steps here, which
can be a good thing. For starters, you did not need to set up Apache, or figure out how
to FTP to a web server somewhere to upload files. For that matter, you didn’t need to
purchase and install a Web server or buy a domain name. Google Apps Script lets you
write your application entirely on the web and then takes care of the rest of the details.
I don’t want to say it gets easier from here, but this is the foundation. After this, the

functionality of providing a service has more to do with adding div tags and filling them
with data; there is no more that needs to be done to create the UI service or web page.
Maintenance, access, and version tracking are integrated, which means you can focus
on the code.

Hello, Google Sites
To this point, we’ve been using Google Docs to work with the Script Editor and create
UIs. However, the editor is also available in the Google Sites service, allowing UI scripts
to be inserted as gadgets appearing on the pages in your sites. This is tremendously

20 | Chapter 1: First Steps in Google Apps Script

exciting for Google Sites users because it means having the ability to create complex
interactions that would normally require code hosted on a server somewhere else. For
example, a business could feature products with color options that the user can change
to see a different look, an HR department application might allow training signup pages
that bring back live calendar results, or a school could host an educational game for
students. These are just a few examples, but the options are virtually limitless. Chap‐
ter 5 is about making gadgets for Google Sites in Google Apps Script; for now let’s focus
on the basics.

First you are going to need a Google Site, then go and click that red “Create” button on
the left side. Now name your site and click once more on the “Create” button. Voilà,
you have a site.

Google Apps Script UIs run as gadgets in Google Sites, and you can even write and
manage the code from within the site’s management console. In your site’s page, click
on More and select “Manage site.” In the left-side menu, click “Apps Scripts” to open the
Script Manager, as seen in Figure 1-21.

Figure 1-21. Script Manager window in Sites

Clicking the “Add new script” button opens the Script Editor you have seen all along.
Go ahead and name your script “Script Gadget,” then paste in the following code:

Three Ways to Create a UI | 21

http://sites.google.com

function doGet() {

 var html = HtmlService.createHtmlOutput('<h2>Hello World</h2>');

 return html;

}

Go through the deployment process described in “Publishing options” on page 18, and
you’ll be ready to add the gadget to the home page.

Go over to your Sites page and click the “Edit Page” button. Now, from the Insert menu
choose “Apps Script” to get the script chooser menu (Figure 1-22).

Figure 1-22. Selecting a script

Click your “Script Gadget” file and then the “Select” button. There are some options
next, but you can pretty much skip through three “Save” buttons to get back out to your
home page. After a few seconds your UI will display.

You can also use any published UI as the URL for the gadget by using
the box at the bottom of the Insert window.

Web App Versus Container-Bound
One of the most exciting features of the HTML Service is that it can run all by itself
without the need of a container. This is accomplished by publishing the script, which
creates an access point through a special Google URL. There are several options when

22 | Chapter 1: First Steps in Google Apps Script

publishing, such as restricting access to just you or opening up the app so anyone visiting
the URL can run it. Publishing does not, however, allow visitors access to your code;
that is controlled by the sharing settings in the Script Editor or container if publishing
from there. This means you can create your application and the code will stay safely
secured.

One important thing to remember is that a script running as a pub‐
lished web service can run as you and will have access to the serv‐
ices to which you have granted access. Therefore, if your script lists
all the emails in your Gmail Inbox and you make it public, anyone
visiting the URL will see your Inbox. Settings are also available to
make your script run as the user of the app. Just make sure you have
the right settings before publishing.

Running the script as your account can be a benefit because you can set the spreadsheet
sharing to limit access and then control what data a UI viewer sees while still allowing
input into the spreadsheet. There will be more on this concept later when we start putting
together real-world apps in Part II.

One limitation to having the script run as you, the creator, is that you will not be able
to directly access a user’s account from the built-in classes. For example, if your appli‐
cation needs to access the user’s Google Contacts, it will not work that way. You don’t
have that user-to-user access in Google Apps, so it does not work in Google Apps Script
either. Later in the book we will cover how to handle this problem using multiple scripts
that talk to each other.

While I present these differences between the styles as hurdles, there are some very good
reasons to have access restricted in this way. Fortunately, these security features don’t
limit us in building apps, but they add certain complexities that need to be considered.

Up and Walking
Here we are at the end of Chapter 1, and a lot of ground has been covered. We started
with a description of where to find the Google Script Editor and what one might use it
for, then progressed on to creating a new script. After that, you learned how to make
your UI appear integrated into a Google Sheet, next a sidebar in a Google Doc, and lastly
as an independent web page. Wow, that’s a bunch of new stuff, but you should now have
your feet under you and be able to find your way around the Google Apps Script service.

In Chapter 2, you will continue mastering Google Apps Script by learning about helpful
ways to arrange your development environment and how to debug UI code.

Up and Walking | 23

CHAPTER 2

Setting Up Your Development Environment

When developing a UI in Google Apps Script, you will often load the UI in a browser
to see how code is rendered on the page. Among the several ways of displaying the UI
during development, it is best to use the web app page and the “latest code” link described
in “Publishing options” on page 18. The reason is that each time a change is made in
the script, proofing that change only requires saving your script and reloading the page
showing the development version of your app (or the “dev page”).

The Script Editor has a built-in debugger that can help when you are working up the
processing elements. For example, say you would like to retrieve some data from a SOAP
service and parse the XML. The debugger will allow you to set breakpoints so you can
step through the code and review values throughout the process.

Once you start using interactive elements in the UI, such as a click handler, you will not
be able to use the debugger. This is because the frontend of the UI is loaded into the
browser and is therefore independent of the Script Editor. Later in this chapter, we will
introduce an error-catching method that will help you find problems in your code.

Most developers like to have an arrangement of code, live view, and console output like
what’s available in the Eclipse IDE. Figure 2-1 shows a layout of three browser windows
that effectively creates an IDE look for Google Apps Script.

To create this setup, open a new window for the Script Editor, a spreadsheet to be used
for error checking (see “Production Error Logging” on page 28), and the web app page.
Now move and size them. You can get some more space by hiding toolbars that you
don’t need. When working with the HTML Service it will also be useful to open the
JavaScript Console, which can be found in the Tools menu using Google Chrome.

25

Figure 2-1. Arranging windows on your desktop can save time during development

How to Debug and Test
Each time you save a script, Google will run through the code and make sure there are
no syntax errors. That does not mean the Script Editor will tell you if a variable is not
defined or a web service could not be reached. It will tell you that you forgot a closing
bracket or added an extra quote. This error checking is displayed at the top of the page
in red with the error and line number where the issue occurs. When you run the script
from the editor, the same notification will show runtime errors such as undefined vari‐
ables.

Web apps must run on the client side in a browser window, spreadsheet, or gadget, which
means that runtime errors can’t be shown in the Script Editor. Next we will look at three
ways of displaying errors for development and production.

Handling Errors and Breaks
Like most object-oriented programing languages, Google Apps Script uses the try/

catch statement to work with errors at runtime. It is important to know that the browser

will return errors as well; however, one can get more detail using try/catch.

26 | Chapter 2: Setting Up Your Development Environment

www.allitebooks.com

http://www.allitebooks.org

Let’s see this in practice: make a copy of the script you made in “Hello Web App” on
page 16, rename it “Errors,” and then publish the UI as explained in Chapter 1.

Copy and paste the following buggy code into your “Errors” script’s index.html file:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('Web App').setSandboxMode(HtmlService.SandboxMode.NATIVE);

 var x=t;

 return html;

}

Now reload the UI page and note the error: ReferenceError: "t" is not defined.
Not much of a problem in our six lines of code to see where the problem is, but what if
our code was 5,000 lines long?

Let’s try that again using a try/catch statement and a UI element to display it:

function doGet() {

 try{

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('Web App').setSandboxMode(HtmlService.SandboxMode NATIVE);

 var x=t;

 }catch(e){

 html.setContent(e.name + ' on line: ' + e.lineNumber + ' -> ' +

 e.message);

 }

 return html;

}

Reload the UI again, and we have a new message: ReferenceError on line: 5: "t"

is not defined.

We have created a known stable wrapper for any code we insert between the try and

catch that will give detailed information about errors that occur at runtime. Next we
will extend this container and set breakpoints to help us understand what is happening
during a run.

Break and Report
Sometimes you need to test out what a service or other operation is returning in order
to build the UI. Other times an error may be because of the values being fed to the failing
code. When we talk about “breaking the code,” we mean that you will stop the run at a
certain point so you have an opportunity to see what values exist at that point.

Following the preceding example, let’s test the value of x before setting it to the undefined

t value. Replace the code between the try/catch with the following:

...

 var x=5;

 html.setContent("Value of x is: " + x);

How to Debug and Test | 27

 return html;

 var x=t;

...

Remember that JavaScript is a top-down language. Therefore, each line runs one after
the other. Certainly you can run a function that may be at the very end of the code and
then come back to the top, but the order of execution will always be line by line: there
is no “go-to line 9” in JavaScript.

In the new code, the value of x is set to 5. Next we will output the message of what x is

now. The error of t not being defined still exists, but that code will not be executed
because the service is returned (breaks) before that line runs. Therefore, we will only

see the message: Value of x is: 5. You might ask, why not just use Logger.log and
read it in the Script Editor? That’s a good idea as long as you’re accessing the app as you,
and running it yourself. If the app is being run by someone else, you will not see logs.
Next we will talk about dealing with that issue from a production standpoint.

Production Error Logging
Debugging is essential during development, but keep in mind it will only catch what
you expect, and your users will always find ways to use your product in ways you would
not have thought possible. This section will discuss how to keep track of problems in
your apps that are out in the wild, untamed user realm.

Logging the Backend
The concept is simple: use a try/catch statement like the one in “Handling Errors and
Breaks” on page 26, but with the twist of logging each error in a spreadsheet. I would
like to note that if you are the twitchy type, you can also have errors emailed directly to
you as they occur. I don’t recommend this, because it is hard to sift through emails and
detect patterns when a spreadsheet lists the failures in the order they occurred. If you
want an email to let you know things have gone awry, you can always set the spreadsheet
notification feature to send an email.

Here’s the setup:

1. Create a new spreadsheet and rename the first sheet “errors.”

This will be the place for logging errors. You must make sure that the account
running the script has editor permissions to your spreadsheet.

2. Get the spreadsheet ID from the URL, which will look something like this:

https://spreadsheets0.google.com/a/example.com/spreadsheet/ccc?key=0Aq1-

MXh5T0c3NVE&hl=en_US#gid=0

The 0Aq1-MXh5T0c3NVE part is your spreadsheet’s ID.

28 | Chapter 2: Setting Up Your Development Environment

3. Modify the code from “Handling Errors and Breaks” on page 26 by inserting the
following code. Be sure to insert your unique spreadsheet ID:

 }catch(error){

 var errorSheet = SpreadsheetApp.openById('<Your Spreadsheet ID>')

 .getSheetByName('errors');

 var cell = errorSheet.getRange('A1').offset(errorSheet.getLastRow(),0);

 cell.setValue(new Date() + " function doGet: " + error);

 }

Because you are now accessing the Spreadsheet Service, you need to

select the doGet function and click “Run” so you can grant permis‐
sion. If you don’t, in the web app page you will see “Authorization is
required to perform that action.” Any time you see this it should be
a cue to run the app from the editor once.

Now when you run the script, errors will be written to the spreadsheet row by row (see
Figure 2-2). Adding timestamps also helps identify why something may be failing.

Figure 2-2. Spreadsheet for recording errors

Logging HTML Frontends
When we run an application in the UiApp Service or as code in the editor, we are mainly
doing server-side execution. We have lots of tools for debugging and error tracking
when we run the script from the editor. However, when we start running the HTML
Service, that code is run in the client’s browser rather than on the Google server, where
we can check the logs to see if something has gone wrong. Yes, you can run the code in
your browser to test, and use some of the great tools like the JavaScript Console to figure
out problems. The question becomes, what will you do to diagnose problems when they
arise after you release your application to the world?

I would like to show you a method that should help you find out two things about your
app: one, whether your deployed app is failing in some way, and two, where to look for

Production Error Logging | 29

the problem. Let’s start by copying the script from “Hello Web App” on page 16. This
will give us a basic working example.

Go ahead and run through publishing the script and getting the dev version loaded in
a new window. Now open the JavaScript Console so you will be able to see the error we
are going to induce. Open the index.html file in the Script Editor, and add this line

between the script tags:

hiUser("Welcome guest!");

The entire file should now look like this:

<html>

 <head>

 <script>

 hiUser("Welcome guest!");

 </script>

 </head>

 <body>

 <div>Hello Web App</div>

 </body>

</html>

Go to the web app’s page and reload the page. Now you will see an error like the one
shown in Figure 2-3.

Figure 2-3. An error in the JavaScript Console

This is telling us that there is a problem with an undefined that thinks it’s a function.

That is true; we never created a function called hiUser. OK, we know what is wrong,
and I’m sure all our users will be overjoyed to send detailed reports of what they’ve
found in the JavaScript Console. Trust me, some will: however, we should know there
is a problem and be dealing with it before users get involved.

As of this writing the HTML Service is using Caja, which makes a
mess of the output and seems to strip out a few tools. One of those is

error.line, which is available in most browsers. Currently the only

thing you will get is error.message.

30 | Chapter 2: Setting Up Your Development Environment

What we are going to do is write this error to the spreadsheet we used in “Logging the
Backend” on page 28. Open the Code.gs file and append this code:

function logErrors(e){

 var errorSheet = SpreadsheetApp.openById('<Your Spreadsheet ID>')

 .getSheetByName('errors');

 var cell = errorSheet.getRange('A1').offset(errorSheet.getLastRow(),0);

 cell.setValue(new Date() + " : " + e);

}

This is a function that does the same thing we did earlier in the chapter and takes one
argument, the error. To implement this we need to go to the index.html file and add a

special Google Apps Script call inside the script tags as well, and wrap the error in a

try/catch. Here is what the whole code block will look like:

<html>

 <head>

 <script>

 try{

 hiUser("Welcome guest!");

 }catch(e){

 google.script.run.logErrors(e.toString());

 }

 </script>

 </head>

 <body>

 <div>Hello Web App</div>

 </body>

</html>

We use google.script.run.<functionName> to do things on the server side. We will
get into this much more as we start building apps later in the book. For now, know that

we are simply passing the error e to the function created in Code.gs.

When you pass a value in the argument using

google.script.run.<functionName> it must be a string, or you will

get an error similar to this in the JavaScript Console: TypeError:

Failed due to illegal value in property: 0. If you do need to

pass something like an object, use JSON.stringify(value) and, in

the Code.gs file, JSON.parse(text) to turn it back into an object.

Go to your web app page and reload it. There should be no errors in the JavaScript
Console now, and if you open your “errors” spreadsheet, you will see that a new line has
been written that looks like what’s shown in Figure 2-4.

Production Error Logging | 31

Figure 2-4. Frontend error log in a spreadsheet

Wrapping Up
In this chapter, you learned several ways to debug your code and keep track of problems
in your script after deployment. Remember that users like to have useful information
to give you when things have gone wrong. A generic error at the top of the page, or
worse, seemingly nothing at all, will only frustrate the user and lessen the usefulness of
your app. Often the best solution is to have the error reported to you so you can already
have a plan in place before your users come looking for you.

You should always keep an eye out for places in your code where several things need to

be processed and a failure would kill the whole run. Employ the try/catch in these
cases, so that one failure is reported while the remaining tasks complete.

32 | Chapter 2: Setting Up Your Development Environment

CHAPTER 3

Building an Interface

What’s in a UI?
A user interface, or UI, is what you see when you turn on a computer. It may be an

action-packed blockbuster movie or a single flashing green >, but one thing is for sure,
this is the way you interact with the machine. When we talk about building a UI, we are
typically speaking of the part that your user will need to interact with your application.
Text to read, pictures to look at, boxes to type in, and buttons to push are what we call
elements. We create our pages using standard HTML, and while we won’t discuss HTML
in depth here, O’Reilly has an excellent book covering the subject: Elisabeth Robson
and Eric Freeman’s Head First HTML and CSS.

When we build a UI in Google Apps Script, there are three ways to present the UI to
the user: in a container such as a Google Doc or Sheet, in a Google Site as a gadget, or
as a web page, which we call a web app. Please see Chapter 1 for a detailed description
of each UI display type. For this chapter, the focus will be on the web app UI.

When you publish your web app UI, it gets a Google-hosted URL that looks something
like https://script.google.com/a/macros/<unique> where you can access your HTML and
JavaScript.

It Starts with doGet
In order to display a UI in your web app or Google Sites gadget, you must have a function

called doGet that returns some HTML. When using a spreadsheet-integrated UI, you
can call your function anything you like because of the way Google has done the wrapper.

We use the HTML Service to create HTML to display on the page. The output from the
HTML Service can be written in as a string and requires only a few lines of code:

function doGet() {

 var html = HtmlService.createHtmlOutput('<h2>Hello World</h2>');

33

http://bit.ly/hf-html-css-2e
http://bit.ly/html-service

 return html;

}

However, we have been in an HTML world for quite a long time, and creating HTML
content as one long string would be extremely tedious. Lucky for us, Google has added
the ability to create HTML pages as files in the Google Apps Script service. These pages
are exactly like what you have always used, and with the exception of Caja limitations,
most HTML can be dropped right in and run.

To call on one of these files, you must use the method createTemplateFromFile(<File

Name>) or createHtmlOutputFromFile(<FileName>). I would say use the former most
of the time, because it allows you to interact in much the same way you might use PHP
to call on a backend server. If you know that everything is going to happen up front on
the client side, then go ahead and use the latter. Here is what the whole thing looks like
calling on a file named index:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('Web App').setSandboxMode(HtmlService

 .SandboxMode.NATIVE);

 return html;

}

There is a funny part on the end of the code above, setSandboxMode(HtmlService.Sand

boxMode.NATIVE), which, according to Google, makes the HTML Service load faster. It
is a good idea to always add it on, but at some point it may become the default.

Now that you know how to display a file, let’s actually put one together and talk about
some of the things you can do inside it. In the Script Editor, go to File→“New file”→
“Html file.” Name it index and you will be ready to create some HTML, as shown in
Figure 3-1.

Now add some HTML inside the div tags:

<div>

 <h2>Hello World</h2>

</div>

Save all your files, publish the app as shown in “Publishing options” on page 18, and
load the dev page.

There you have it: the basics of presenting some objects to the user. Next up, we will
build a real interface like those you have probably used on many web pages.

34 | Chapter 3: Building an Interface

Figure 3-1. Only what’s inside the body tags is required

Contact Me
Sales just called; they want you to add a Contact Me form on the website so the company
can email news updates when something big happens. You could simply fire up the
built-in form tool from Google Docs and insert one question with a text box, but there
are a few things you don’t like about that option. First, the Google form has extra in‐
formation about it being a Google form, taking up extra space on the page. Second, you
don’t want the full-page “submitted” notification to pop up, because it takes the customer
away from the site.

Thinking about your UI, you decide there will need to be a label to tell the users what
to do, a text box for them to enter an email address, and a button to submit the form.
You would like to verify that they’ve entered an email address and provide some kind
of feedback if they did not. Finally, it would be nice to display that something has hap‐
pened when they push the button by saying “Thank you.”

In this chapter, we will create the UI, and in Chapter 4 we will implement the backend
that performs the work once the submit button is clicked. Your company has gone
Google, so you will need a Google Site to complete this example. Google Sites is open
to all, so you have everything you need to get started.

Getting Started
You can build on the example we just completed or create a duplicate copy from the File
menu. At the end of the chapter we will be inserting this app into a Google Sites page,
so you can also build this script from the Manage menu in Google Sites, as shown in
“Hello, Google Sites” on page 20.

Contact Me | 35

The Code.gs file is already doing what it should, so leave it alone for now and let’s focus
on index.html. Basically, you need a form element, which is common HTML.

Google claims faster load times if you don’t use <head> and <body>
tags, so we will not be using those, unlike what you might see on a
normal HTML page.

In your index.html file, insert the following code:

<div id="subscribe_form">

 <form>

 <input type="email" name="email" id="email" placeholder="Enter your email">

 <input type="submit" value="Subscribe">

 </form>

</div>

We know that it’s an email address that we want to get from the user, and normally that
would require doing some sort of validation using JavaScript. However, that can get
really complicated. Save yourself a headache and go with HTML5. Yes, you’re in luck,
most HTML5 is supported in the HTML Service. This means that form validation for

something like an email address simply requires using the type="email" property.

Now do a quick test by loading up your latest code in a browser window and typing in
part of an email address, as shown in Figure 3-2, then clicking the Subscribe button.
Yeah HTML5!

Figure 3-2. Email validation

Next you will need an element to thank the user for making the effort to sign up for
your great stuff. This can be accomplished in many ways, but in this case we can use a

span element just inside the closing div, as shown in the following snippet:

 ...

 Thank you!

</div>

If you reload the dev page, you now have the thank you message showing just under
the input box. In the next chapter we will add the code that is going to show that thank
you, and later in this chapter we will hide it, but first we need to add some style.

36 | Chapter 3: Building an Interface

www.allitebooks.com

http://www.allitebooks.org

Adding style

Your UI looks OK… well, actually it is a bit ugly, so let’s add some style to it by creating
a CSS file. In the Editor menu, click “File”→ “New file”→“Html file” and name the file
“CSS.” I know you might be thinking that it’s not really an HTML file, but don’t worry:
it will work fine for us.

To load this file on the page, we can call on the Google Apps Script HTML Service by

using scriptlets that look like this: <?= your_code ?>. There are two different types of
scriptlets: printing, which use the equals sign, and nonprinting, without. What’s the
difference? Importing our CSS file will be a perfect example. When you use a printing
scriptlet, it writes on the HTML page and will act just like you typed out the same thing
on the page itself.

Here is the code to pull in the code from the CSS.html file. Put it under the closing div
in the index.html file:

<?!= HtmlService.createHtmlOutputFromFile('CSS').getContent(); ?>

When you want to add style to an HTML page, you surround the CSS in <style> tags.
It is also this way with our CSS.html file, and after reading the last few paragraphs the
pieces should be coming together. Here is the CSS to put in the CSS.html file:

<style>

div {

 width:300px;

 margin: 50px auto;

 background-color: #fff;

 border:1px solid #000;

 padding:10px;

 text-align:center;

}

#thank_you {

 font-family: Verdana, sans-serif;

 font-size:30px;

 color: #0000FF;

}

</style>

Reload the page and you will see a much improved look, as shown in Figure 3-3.

Contact Me | 37

Figure 3-3. “Thank you” with style

The last part of code we need is to hide the thank you. We do this with a simple attribute

added to the span element, hidden="true".

Here is the final code for the index.html file:

<div>

 <form id="email_subscribe">

 <input type="email" name="email" id="email" placeholder="Enter your email">

 <input type="submit" value="Subscribe">

 </form>

 Thank you!

</div>

<?!= HtmlService.createHtmlOutputFromFile('CSS').getContent(); ?>

The last part of the UI is to add it to the Google Sites page. So far we have been using
the dev version, but in order to display to your users you will need to publish a new
version of your app. In the Script Editor, click “File”→“Manage versions.” This opens
the Manage Versions window so you can snapshot the latest changes (Figure 3-4).

Click the “Save New Version” button. You can put in a reason for the new version, but
it’s not required. After the window closes, click “Publish”→“Deploy as web app” and
change the project version to the latest build. Click the “Update” button to make that
version live. On the next screen, copy the contents of the “Current web app URL” field.

38 | Chapter 3: Building an Interface

Figure 3-4. The Manage Versions window

Inserting the gadget into your site is really very easy. Open the home page of your site
and click the Edit icon (a pencil). In the menu bar that appears, choose “Insert”→“Apps
Script.” Paste your web app URL in the box at the bottom and click the Select button.
Save a few times to get back out to the live page, and you’re done.

The “Manage Versions” feature gives you the power to roll out an
update and, if things go badly, very quickly go right back to a work‐
ing version.

There you have it: a form with email validation ready to start taking in data—well,
almost. Now that you do have a form, in the next chapter we will learn how to use jQuery
and sever-side functions to actually record the data.

Contact Me | 39

CHAPTER 4

Adding Actions

In Chapter 3, you began creating an application to collect email addresses from visitors
who would like you to contact them. The only problem is that clicking your “Subscribe”
button doesn’t do anything yet. In this chapter, we will add actions to that button to
store the visitors’ email addresses, thank them if they entered an email address, and send
them an email verification.

Handling User Actions
In order to work, a button needs an event handler. However, buttons are not the only

elements that can have handlers, and click is not the only handler type. For example,
a text box may have a handler that responds to the user pressing the Enter key, or a
listbox sometimes needs to fill a second list for situations like choosing a city after the

state has been selected. In such a case, we might use an onChange handler. In more

advanced UIs, mouse handlers like over and off can create rich user interaction by
displaying information before a selection is made. It’s also important to note that an
element can have more than one handler. When you have a process that may take some
time, like receiving data from a web service or uploading files from the hard drive, it’s
a good idea to show a progress indicator to the user after he has clicked, and an additional
handler may take care of that detail.

In this chapter, we will keep things simple and only work with the submit handler to
provide action for our simple form.

Anatomy of a Handler
Google Apps Script allows us to use jQuery, which is the preferred technique in HTML
programing to date. I highly recommend learning as much jQuery as possible. In the
long run, it will save you countless hours of trying to figure out how to write something

41

in pure JavaScript—because that thing has already been included in jQuery and can be
accomplished by simply pasting in a single command.

Let’s start where we left off in Chapter 3 by opening our existing Contact Me code. The
first thing we need to do is import the jQuery library into our index.html file. You can
import the jQuery library in a number of different ways, such as by saving a copy on
your server or in Google Drive. There are quite a few publicly available custom versions,
but because Google Apps Script uses Caja and can be very picky about any imported
code, I recommend using a particular version provided by Google.

To import this version of jQuery, add the following line of code to the end of your
index.html file:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

Now that we have installed jQuery, let’s add an event to the “submit” button. We want
the page to always display as quickly as possible, and we want to avoid any issues with
a browser that might try to load things in a strange order. When we want to add an event
to any object on the page, that object must be there to attach to, or the process will fail.

The safest way to accomplish this is to use the jQuery ready method, which will watch
for the page to be fully loaded before it starts executing JavaScript.

The ready method looks like this:

$(document).ready(function() {

 console.log("ready!");

});

To attach our event handler to the button, we will use the submit method because it will
detect a mouse click or Enter keypress. Again, this is one of those examples where jQuery
saves us a line of code to take care of a simple task.

Add the following code to the end of your index.html file:

<script>

 $(document).ready(function() {

 $("#email_subscribe").submit(function() {

 $("#thank_you").show();

 });

 });

</script>

Now let’s break that down. After the page is loaded and ready, we use the jQuery $ to
get the Document Object Model (DOM), which you can think of as all the code on the
page, to get the form element by its ID. If you look in the HTML section of the in‐

dex.html code, we used <form id="email_subscribe"> to identify the form itself. Now
we can call on it by name:

$("#email_subscribe")

42 | Chapter 4: Adding Actions

Calling Elements
jQuery uses CSS style tags to identify the elements, which has the
dual purpose of making it easy to use and allowing you to style and
use elements with less code. However, when you call on an ele‐

ment you must use the form id=<name> and . for class=<name>.

This way jQuery knows what it’s looking for and why you see the #

to access ("#email_subscribe").

Next we attach the submit method to the form. This method takes a function to perform
tasks, and we will be unhiding the “Thank you” message by again using jQuery to get

the #thank_you span element and asking jQuery to show it.

Save your work and give it a test by loading the “latest code” dev link. You now have a
working “submit” button, and we are performing actions on the page. In the next section
we will start working with server-side callbacks in order to process the data to a spread‐
sheet.

Here is the full code for index.html so far:

<div>

 <form id="email_subscribe">

 <input type="email" name="email" id="email" placeholder="Enter your email">

 <input type="submit" value="Subscribe">

 </form>

 Thank you!

</div>

<?!= HtmlService.createHtmlOutputFromFile('CSS').getContent(); ?>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 $("#email_subscribe").submit(function() {

 $("#thank_you").show();

 });

 });

</script>

The Concept of the Callback
When your app needs to do something—like update information on the screen, add
data to a spreadsheet, or send an email—it performs what is known as a remote procedure
call, or RPC for short. An RPC includes sending code to the server for processing,
referred to as a call, and having the server send back the results, known as a callback. I
am sure that Java developers are pulling their hair out at this simplistic definition of
RPCs, but for what you need to know in Google Apps Script, this about covers it.

The Concept of the Callback | 43

In our case, we will want to get the input from the text box and write it to a spreadsheet.
This means we need to construct a call from our index.html file and pass our text box
value to a function in the Code.gs file, which we can consider as our server. To make it
a little easier to understand, let’s get the server-side part started, so there is something
to refer to when making the call.

Open up the Code.gs file and add this function:

function addEmail(form){

 Logger.log(form.email);

 return 200;

}

This is a simple function that will let us know that we are indeed getting a response from
the server. Remember that you will only be able to check the log if you run the app, but

for our case we are going to return the value 200, which is the web standard for a
successful execution.

You can pass JavaScript and other elements in the server request.
Google Apps Script is smart enough to know that the elements in a
form can be converted to object properties. In this example we will
pass the form element, which means we can access the child ele‐

ments by calling form.<name>.

Now, back in the index.html file, it’s time to make the call by modifying the submit
function. Google Apps Script has a few special ways to run an RPC, but the one we will
use most of the time looks like this:

google.script.run.withSuccessHandler(serverResponseFunction).serverFunction-

Name();

What we are doing is calling a server function in one of our .gs files; if it does not send
back an error, we run a function here on the client side to process whatever the server
returned.

If the server does find an error, then it will log it in the JavaScript

Console. You can change this behavior by using .withFailureHan

dler and then doing something to notify the user.

Replace $("#thank_you").show(); within the submit method function with the
following code:

google.script.run.withSuccessHandler(function(ret){

 console.log(ret);

 }).addEmail(this);

44 | Chapter 4: Adding Actions

Here we are asking to run a function called addEmail on the server, which we will pass

the whole form: i.e., this. If you look back at the submit handler, you’ll see that we

attached it to the form so that when the button is clicked this represents the form. If
the server call is successful, when we get the callback we will run the function within

the withSuccessHandler arguments. Because we expect a return value, we add the ar‐

gument ret to represent what’s returned. It can be just about any JavaScript element.

Just to check out the functionality, we will give a little output to the JavaScript Console.
Be sure you know how to open the JavaScript Console on your browser, because we use
it a bunch when building frontends.

At this point you can save your work and reload the dev page. In the JavaScript Console

you will see a 200, as shown in Figure 4-1.

Figure 4-1. Logging in the JavaScript Console

Believe it or not, the frontend and user actions are almost done. All we need now is to

hide the form and display the “Thank you” with a little style. Just above the con

sole.log line, add:

 $("#thank_you").show("slow");

 $("#email_subscribe").slideUp();

Now give it a whirl, and you have finished the user experience side of this application
(see Figure 4-2).

Figure 4-2. The final user view

That was a lot to cover, so here is what the entire code for index.html looks like:

<div>

 <form id="email_subscribe">

 <input type="email" name="email" id="email" placeholder="Enter your email">

The Concept of the Callback | 45

 <input type="submit" value="Subscribe">

 </form>

 Thank you!

</div>

<?!= HtmlService.createHtmlOutputFromFile('CSS').getContent(); ?>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 $("#email_subscribe").submit(function() {

 google.script.run.withSuccessHandler(function(ret){

 $("#thank_you").show("slow");

 $("#email_subscribe").slideUp();

 console.log(ret);

 }).addEmail(this); //"this" is the form element

 });

 });

</script>

Functions Are Where the Action Happens
Applications built on the server side in Google Apps Script have four basic types of

functions: doGet, which you are familiar with; doPost, which you will learn about later;
functions that return values directly; and functions that are intended to be used via a
trigger. They aren’t really that different; however, when you use them can be important.

For example, you always need doGet to display the UI in a gadget or web app, and if you

are using a form from a different service, you will likely need a doPost function.

When you operate a function using an event handler and your intent is to send some

information to the server, you must use google.script.run.

Storing the Values
I have saved the best for last—or maybe the easiest part, depending on how you look at
it. The app you have been building has all the features needed to interact with the user,
but we are lacking the most important thing: a place to store the data and a way to get
it there. Not to worry: Google has provided us with several data-storage options that
should work for most applications. One great option is a spreadsheet, and this is typically
where you would store data like this. Next, there is ScriptDB, which we will get to later
in the book. Another option for very important or very large sets of data is Cloud SQL.
This is an excellent service and requires payment, but the cost is small given all the
features.

46 | Chapter 4: Adding Actions

www.allitebooks.com

http://www.allitebooks.org

Storing in a Spreadsheet
If you have been following along, your script is living on a Google Site, and you have
been accessing it through the published URL. What we need to do now is write the
visitor’s email address to a spreadsheet. First, we will need a spreadsheet, so please open
Google Sheets and make one. You can name it anything you like.

Setting Up the Spreadsheet
The top row of our spreadsheet will be the column names, so we know what the data is.
(Yes, it is obvious for such a small app, but you know how things can grow.) In column
A1 (top left), name the column “Time Stamp.” Next, name B1 “Email.” See Figure 4-3
for an example.

Figure 4-3. Spreadsheets can be set up for storing values much like one would use a da‐
tabase

Heading back to your script, you will need to add the code to open your new spreadsheet
in the script so you can write the email values to it.

In the Code.gs file, above the line Logger.log(form.email);, insert:

var ss = SpreadsheetApp.openByUrl('<YourSpreadsheetUrlGoesHere>')

.getSheets()[0];

Here we are creating a variable, ss, that will represent the first sheet in our spreadsheet.
SpreadsheetsApp is a Google Apps Script service, like the HTML Service. Having built-
in services that we can call on in the same script makes using Google Apps Script so

easy. Next we will use the openByUrl method to get the sheet where we need to write
data. Simply skip over to your spreadsheet and copy the URL from the address bar.

Storing the Values | 47

What is a spreadsheet ID, you may be asking yourself? In Google Docs, everything—
including pictures, PDFs, presentations, and spreadsheets—has a unique ID by which
it can be tracked. Fortunately, these IDs are very easy to find. Select your spreadsheet

and look in the address bar where the URL is. Find key=. The long string from there up

to # is the unique ID. When you want to open a document or spreadsheet you can

use .openById and this unique ID. Alternatively, you can use .openByUrl, as we have
done here. It should look something like this, with the URL in quotes:

.openByUrl("https://docs.google.com/a/apps4gaaps.com/spreadsheet/ccc?key=0Aq1-

 C9Nl4dO-dHzM9fdXlLV1E#gid=0")

The last part of the code string, .getSheets()[0], simply gets the sheet furthest to the

left, or the first one. Note that this is a zero-based call because .getSheets returns an
array of the sheets in the spreadsheet. This is an application built to do just one thing,
and it will have only one sheet, but if you are concerned that your sheet may move to a

different place, it would be a good idea to use .getSheetByName(name). This way it
doesn’t matter where the sheet is, just as long as the name stays the same.

It can be useful to know when a visitor submitted a request, so we will need to create a
timestamp to go along with the email. When using Google Apps Script, it’s always good
to look for ways to make your code more efficient. One of the best ways to do this is to
minimize the number of calls you make to any of the other services, inside or outside
of Google. While you can certainly write the data to a spreadsheet one cell at a time, you
will likely run into timeout issues, and it’ll take forever.

The next thing we need to do is get the range of cells where we want to write our values.

When accessing a spreadsheet you get the cells with the getRange method. There are
several constructors for the method, such as using “A1” notation, where the column
letter and row number are used much the same way they are in spreadsheet formulas
(as in A1 or A1:C6). Letters can get confusing, so there is also a constructor that accepts

numbers in place of the column letters. We will use .getRange(<row>, <column>,

<numRows>, <numColumns>):

var range = ss.getRange(ss.getLastRow()+1, 1, 1, 2);

ss.getLastRow returns the number of the last row of data. We want to write our new

submission to the row after that, so we simply add one (+1). Next, we want to start a

column, so <column> is represented by a 1. There is only one row of data to write, but

with the date, it is going to be two columns wide, hence the 1 and 2 at the end of the set.

When converting columns from letters to numbers, the first col‐
umn is number one, A=1. However, after you get the values, they
will be in a JavaScript array that is zero-based, meaning column A is
now zero, not one.

48 | Chapter 4: Adding Actions

Setting Up the Data
The data will need to be placed in what is known as a 2D array, so that we only need to

write to the spreadsheet once. Here is how that looks: [[row1 column1, row1 col

umn2] , [row2 column1, row2 column2]], and so on, as shown in Figure 4-4. Any
amount of consecutive rows and columns can be written simultaneously in this way.

Figure 4-4. The getRange method creates a 2D array

Because we only have one row, the data looks like this:

var values = [[new Date(), form.email]];

Now that we have the range of cells and the data in a matching configuration, all that is
left is to write it:

range.setValues(values);

Save your work and then click the “Run” button in the “Script Editor.” You need to grant
access to the SpreadsheetApp Service or face the wrath of an Auth error in the UI. Now
load up the web app dev page. Remember that you need to use an email address in the
form or the validation will trigger. After pressing the “submit” button, you should receive
a “Thank you” message. In the spreadsheet, you will see the results of all your hard work
over the last two chapters (Figure 4-5). Please refer to Chapter 1 for a refresher on placing
the web app as a gadget in your site.

Here’s the final code for the Code.gs file:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('Ch4 Contact Me')

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

function addEmail(form){

 var ss = SpreadsheetApp.openByUrl('<YourSpreadsheetUrlGoesHere>')

 .getSheets()[0];

 var range = ss.getRange(ss.getLastRow()+1, 1, 1, 2);

 var values = [[new Date(), form.email]];

 range.setValues(values);

 Logger.log(form.email);

Storing the Values | 49

 return 200;

}

Figure 4-5. Each entry is saved in the spreadsheet and timestamped.

We have covered all the basics of displaying web apps and interacting with the Google
Apps Script server, not to mention jQuery, CSS, and Google Sites. Take a deep breath

and pat yourself on the back, then go grab some coffee. I recommend a Star

bucks.Grande().Black(). In the next section of the book we will start creating some
pretty complex applications: good luck to you, new Google Apps Script Developer!

50 | Chapter 4: Adding Actions

PART II

Building Enterprise Applications

CHAPTER 5

Dynamic Details: A Sites App Using
HTML, CSS, and jQuery

Monday morning, finishing your last drops of coffee, you begin contemplating how
there always seems to be a direct relationship between the power button on a computer
and resolved help desk service tickets. Suddenly, Frank, the middle manager with a
propensity for last-minute drama about any project requiring more than a paper clip,
bursts into your cubicle, breathless and ranting. Between his wheezes, you discern that
there is a problem with the new product information pages. “Too wordy, too cluttered,
and too darn difficult to understand” are the sharper points of his reproach. Most of all,
“the others”—his euphemism meaning the rest of the sales world—have fantastic look‐
ing pages. “How could we have let this slide, and why didn’t we see it coming?” he
laments. With a few gentle words, you calm Frank to a point of incoherent babbling and
send him back to his office with a promise that you will do something to fight off those
meanies and save the company from utter destruction.

Fighting Clutter
As more and more information is added to a web page, it becomes a jumble of images
and text that flow together, losing the reader in a jungle of clutter, slashing away with
the mouse pointer in an attempt to find that one key fact. We all want to keep the
customers coming back for more, and that requires us to ensure they have a great ex‐
perience when visiting our sites. While we want to provide abundant information to
persuade the customers that they are dealing with a knowledgeable supplier, too much
information can cause them to miss what they are seeking.

Customers are visual browsers when it comes to choosing products. After all, a catalog
is worthless without pictures of products, and your website is an online catalog. Often,
the better visual presentation you make for a product, the more sales it will generate. A
good way to gauge what you present to customers is by comparing it with big media

53

providers like Netflix and YouTube. These megaretailers have discovered that they can
pack more items on a web page by moving the description and purchasing mechanism
to a pop-up panel, thus gaining more product impressions per page view. Figure 5-1
shows an example of displaying six items where a traditional web page would only have
room for two.

Figure 5-1. An optimized web page, showing more content to the viewer than a tradi‐
tional layout

When shopping on the Web, we naturally look for the picture of an item first; it’s likely
hard-wired into our hunter-gatherer genes to do so. For example, have you ever begun
a web search for “beautiful sunset pictures” by reading descriptions about sunsets? No,
you go to the images straight away. I know you also read reviews about products, but if
something strikes your fancy, your next thought is most likely, “What does it look like?”
Displaying more items on a page becomes very important to the user’s experience, and
that is what this chapter is all about. As you work through this chapter, keep in mind
that there are three major components: the image repository, the database, and the
products gadget, which is embedded into the Google Site.

54 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

What You Will Learn
You will learn how to:

• Use script gadgets in Google Sites

• Work with CSS

• Dynamically add elements to the page

• Work with the Google Sites Service

• Build powerful visual effects

• Create JavaScript data objects

• Use public classes

Supplies
You will need:

• A Google Site

• Product images

• Product descriptions

Application Overview
Your task is to help Frank keep his sanity by building an application that can be em‐
bedded into the company’s Google Site and maximizing page space, showing as many
products as possible to the customers while supplying them the information they need
to make a wise purchase. A complete working example of this project is available online.

Image File Repository
There are as many ways to keep a product list as there are websites listing products, so
if you already have your system in place, you will need to do some research on how web
service–friendly it is. Google Apps Script gives you the ability to connect to databases
and to SOAP and WSDL services, like the Amazon Web Services client, JSON, and all
of the Google API services. To keep things simple and get you developing right away,
we will use all Google services to set up your products page.

Load up your Google Site or create a new one, and create a new file cabinet page called
“Products.” Figure 5-2 shows an example of the Products image repository. This is where
you will store the image files for each product, so get busy with the “Add file” button.

What You Will Learn | 55

http://goo.gl/eGjEUc

Figure 5-2. File cabinet pages are a convenient way to store files on the Web

Keep in mind that we will be setting the dimensions of the images in the UI, but it is a
good idea to size all of your product images at nearly the same dimensions, and at the
largest settings you will use to display them. This way you can avoid ugly pixelated
images that will cause your boss to fume and customers to avert their eyes in disgust.
You don’t need to add descriptions here in the image repository, but they can be helpful
when identifying what you are working with months from now.

Setting Up the Database
Whether you are a web designer by trade or the designated IT geek in the office, you
are likely too busy to keep up with and maintain every aspect of the company’s website.
In the past, it took a webmaster and her secret ways to make every change required to
keep the website current. In the fast-changing Web of today, that is simply more work
than any one person should be tasked with. What if you get sick or go on vacation? Will
you teach someone to hardcode each product into the website? Heck no, and this is why
you need a database that is easy for staff to understand, simple to update, and able to
automatically roll out changes to the website. Surprisingly, a spreadsheet is an excellent
choice for this task because there is little to no training required to use it.

There are four main product elements you need to share with your customers: the image,
the title, the description, and the link to more information. Certainly additional ele‐
ments, such as customer ratings, similar products, and category information, are also
excellent options to consider, and I encourage you to add them; you will have the skills
for that soon.

Open a new spreadsheet and name it “Product Database.” Name the columns “ID,”
“Title,” “Description,” “Image URL,” and “Product Page,” as shown in Figure 5-3.

56 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

www.allitebooks.com

http://www.allitebooks.org

Figure 5-3. Spreadsheet set up as a database for the image repository

You now have an image repository and a database. Next you will make entries in the
database that represent each product.

Loading the Database
A very good reason for using a spreadsheet for your database is because they are familiar
to most office workers, which means you can delegate maintaining the products page
to anyone, even people outside of IT-like sales. A spreadsheet is easy to use, and in the
case of a Google spreadsheet, you will be able to update the website from anywhere,
including your cell phone. This brings me to another point: there is a two-step process
going on here, where pictures are loaded to a site and then the spreadsheet is updated.
I have set it up this way to keep the content of this chapter at a reasonable level, but later
on in the book you will learn techniques for building a UI that uploads files and allows
for describing them, essentially reducing the two steps in this chapter to one.

The ID column contains the product’s unique identifier, meaning the same number
should never appear more than once in that column. Skip over this for now, as we have
something special ahead.

Next, the Title column contains the name of the product. It should be short, one word
if possible, so that it fits well in our scheme. The title will appear in two places in the
UI: once under the image and again in the pop-up information panel. The size of the
text will be much different for each instance of the title, and that will be accomplished
using CSS.

For the description, you will want a paragraph that is concise and provides just enough
information for the customer to decide if this is the product he is looking for. One of
the problems with the traditional web page is that each time you click a product, you
are taken to a different page. Depending on connection speed, this can get monotonous
and frustrate customers who have to constantly move up to the back arrow immediately
after making a selection. The effect you are seeking will use mouseovers to show and
hide each product’s details. This approach allows the customer to quickly zero in on the
specific item he is looking for and allows you to reap the benefits of his happy return to
find more merchandise.

Image File Repository | 57

The simplest way to get the image URL is by right-clicking on the view link in the

repository and selecting “Copy link address.” At the end of the URL you may see ?

attredirects=0. This can be removed or left alone, as it will not affect the outcome.

The last column of this example is the Product Page column: it contains a URL that will
take the user to more information, an opportunity to make a purchase, or both. There
are several ways the product link can be used. For example, the mouseover image on
the product listing page could use this link if the customer is certain she wants that item
and would like to go directly to its page; a button on the pop-up panel gives her a second
opportunity to click through. You will create these pages in the next section.

The order of the products is not important but the ID column values are; they must be
unique, so the correct item can be selected later.

This handy function will help you create random numbers in the A column of your
“Product Database” spreadsheet after you have filled out the other columns; just add it
and give it a quick run to add the IDs:

function randomString() {

 var ss = SpreadsheetApp.getActiveSheet();

 var randomArray = new Array();

 var chars = "ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz";

 var string_length = 10;

 var lastRow = ss.getLastRow()-1;

 for (var j=0; j<lastRow; j++){

 var randomstring = '';

 for (var i=0; i<string_length; i++) {

 var rnum = Math.floor(Math.random() * chars.length);

 randomstring += chars.substring(rnum,rnum+1);

 }

 randomArray.push([randomstring]);

 }

 ss.getRange(2, 1, lastRow, 1).setValues(randomArray);

}

This function will not check to see if the IDs generated are unique, but the odds of
coming up with the same ID in a 10-character string taken from 52 choices is…well,
let’s just say if you do get a duplicate, go buy a lottery ticket now.

If you are completely paranoid about ensuring you have truly unique values, insert a

temporary column to the left of A and insert this formula in cell A1: =unique(B2:B<our

last row number>). If you have the same total row values in column A as in column
B, they are all unique. Delete the temporary column A.

The spreadsheet is now ready to go with all the data and unique IDs (Figure 5-4).

58 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

Figure 5-4. Product information has been entered

Creating Pages from a Spreadsheet
You have your unique IDs generated and your titles, descriptions, and image URLs
entered in the “Product Database” spreadsheet. Now it is time to create all those indi‐
vidual web pages where the customer will go when he wants all the juicy details. You
could begin the laborious process of creating each page one at a time from the Sites
management service, but what if you have 100 or more products? This task would take
days of tedious, repetitive work to complete. Wait a minute—Google Apps Script is built
to automate Google products! Next, you will learn how to use Google Apps Script to
create web pages and fill them with HTML content from a spreadsheet.

Using the Public Google Apps Script Objects Class
There are some tasks in Google Apps Script, like creating an object from a range of data
in a spreadsheet, that use the same code regardless of the application you are writing.
This is where open source libraries can be very handy. If you have done any JavaScript
programming, you are likely familiar with jQuery, one of the most popular open source
libraries for that language.

Creating Pages from a Spreadsheet | 59

Google Apps Script is a young language, and there are not many
references out there. In writing this book, the author felt it would be
helpful to shorten your production time by creating several libraries
to take care of the minutiae of coding common tasks. Having com‐
mon, generic, open source code in one place is what makes languag‐
es great. You can find information about these open source classes on
the Script Examples website and the source code.

In JavaScript, a library is typically saved as a .js file on your server and loaded using:

<script src="jquery.js"></script>

Because Google Apps Script is cloud-based, you will be storing the library code on
Google’s servers instead of your own. What’s more, you can create and install libraries
using the Scripts special key. Google has done a great job of explaining how to create
your own library, so we won’t go into that here. If contributing to the open source
community is your thing, and I hope it is, then please read more about this subject under
“Managing Libraries” in the Google Apps Script Development Environment Guide.

Using JavaScript Objects
One of the tasks we need to accomplish is turning the spreadsheet’s rows of data into
JavaScript objects to make them easier to use. Here is a comparison:

var spreadsheetData = [[firstName, LastName],[James, Ferreira],

 [Homer, Simpson]]

spreadsheetData[1][1] //= Ferreira

//as an object

spreadsheetData[0].LastName //= Ferreira

You can see that converting our spreadsheet data to JavaScript objects they become a
better option for performing operations later in the code.

Installing an Open Source Library
Start by creating a new script in the “Product Database” spreadsheet.

The library we need to install will make it easy to create our JavaScript objects; it can be
found at ObjService on the Google Script Examples site.

In the Script Editor, click “Resources” and select “Manage libraries” (Figure 5-5).

60 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

http://bit.ly/useful-libs
http://goo.gl/n8mQZa
http://bit.ly/gas-libs
http://bit.ly/objservice

Figure 5-5. Installing an open source library

Paste the product key (MTeYmpfWgqPbiBkVHnpgnM9kh30YExdAc) into the “Find a Li‐
brary” box and click the Select button. Now choose the latest version from the Version
listbox. Clicking the Save button installs the library (Figure 5-6). Now that you have
installed the library, note that it has the identifier ObjApp, which is how we will call the
service from the code.

Figure 5-6. Library options

The title of the library is a link that will allow you to view the differ‐
ent methods included in that library and how it works.

Creating Pages from a Spreadsheet | 61

To test the installation of the library, type ObjApp. in the Script Editor. When you hit
the period key, the built-in autocomplete will show you what the library can do (see
Figure 5-7).

Figure 5-7. Autocomplete works in public libraries

Creating Pages and Filling the Spreadsheet
Creating a Google Sites page from Google Apps Script is easy because of the built-in
Sites Service, which gives you access to create and change every aspect of a site. Auto‐
matically updating content, changing permissions, and pushing up new pages from
custom templates that you design in the Sites manager are possible using the Sites Ser‐
vice.

To get our product pages automatically built, we will use a generic web page template,
but if you are working from a site that is already built, feel free to look at the documen‐
tation and add the pages using a custom template.

The first thing we need to do is get the Google Site we want to work with. The following
code gets the site as an object we can work with:

function createPages(){

 var site = SitesApp.getSiteByUrl('<Your Site URL>');

}

The createWebPage(title, name, html) method is what you use to create pages in a

site. The title argument is what you will see at the top of the page and in the navigation

links. Don’t confuse title with name, which is the page URL name. In the “Product
Database” spreadsheet there is a column named “Title,” which is what we want to display
on our pages; in this simple use case, the URL might as well match the title. This may

62 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

http://bit.ly/sites-serv
http://bit.ly/class-page

be fine in a real-world scenario depending on the titles you use, but spaces and special
characters are not going to work well in a page URL, and the Script Editor will complain

about invalid page names if you try to run it like that. Here is where ObjApp’s camel

String(String) method can help us out.

Throughout this book you will be pulling column headers, widget names, and IDs into
your scripts. For this to work, they will need to be JavaScript-safe—more commonly
referred to as camelCase. This means removing spaces, special characters, numbers at
the beginning, and anything else that JavaScript might find obnoxious. To convert a
string to camelCase, use:

ObjApp.camelString('Title');

Now that you know how to make the title, name, and description arguments safe, it’s
time to create pages by iterating through the rows of data in the spreadsheet. Well, sort

of. There is one more problem: when you call getRange on a spreadsheet it will bring

the data back just as it appeared in the spreadsheet, but in an array: [[ID, Title,

Description, Image URL, Product Page], [aLHeBRCUtT, JavaScript Patterns,

Now…]]. This way you can call out values as you would in any array.

Spreadsheets start with 1, but arrays in your script are zero-based,

meaning they start with 0. For example, consider rangeArray[row]

[column]. To get the value for row 2, column 2, you would write

rangeArray[1][1].

To get the title from column B, count A=0, B=1. This is fine in a very short script when
you will be the only user, but let’s say a friendly coworker comes along and rearranges
your columns. The problem here with making an enterprise application is that it will
be used every day and by many different people. You need to plan for some user-created
issues. Furthermore, sooner or later you will run into an application that has columns
CD, CE, etc., and out comes the calculator: 26*2+4… the headache continues. To solve
this problem and keep your script from breaking, you need a way to get the values by
asking for them by name and not the ambiguous column they are in.

JavaScript objects are something that it takes time to get your head around, but don’t
worry: the ObjApp library will do the work, allowing you to use the data without the
fuss of figuring out how to create it. Here is how it works: get the data range that you

want from the spreadsheet and use rangeToObjects(range) on the data array. Add the

following lines to the bottom of your code, inside the closing }:

 var ss = SpreadsheetApp.getActiveSheet();

 var productDetails = ObjApp.rangeToObjects(ss.getDataRange().getValues());

Now what you have is an array of JavaScript objects that looks like this: [aLHeBRCUtT,

title=JavaScript Patterns, …,{…}]. Each element in the array is an object with

Creating Pages from a Spreadsheet | 63

property names made from the column headers (in camelCase, of course) that contains
the values from each column. If you would like to get the title of the item in the third
spreadsheet row, use:

 productDetails[1].title //don't forget arrays are zero-based

 //and the header row has been removed

Keep in mind that the array is zero-based and that you are starting with the data rows,
excluding the headers that are in row 1 (see Figure 5-8). Spreadsheet Row 1=headers,

Row 2=first data row. Therefore, productDetails[0] is the first row of data.

Figure 5-8. toDataObjects returns an array of row objects

Not only is this much easier to understand, it also solves the problems of moving col‐
umns around and counting up the alphabet. Don’t forget that the object property rep‐
resenting the column header is in camelCase. If you are having problems figuring out

what your column name has turned into, just run it through Logger.log(camel

String("Test Value")).

The ObjApp library has methods for creating JavaScript objects that
are not in camelCase if you have certain needs that fall outside this

use case. Remember you will need to access these values as jav

aObj[<Your Header>], not in the dot notation javaObj.<yourHead

er>.

To create the pages, you will iterate through the productDetails object and build each

page row by row. We have covered the title and page URL (name) arguments, but there

is also the opportunity to create page content in the html argument. Because these are
products and you have already stored the images, why not get a big head start on the
detailed pages by automatically inserting the images and description text? If you use an
additional “page template” argument, elements like purchasing, advertising, and other
aspects could be applied too, giving you a finished presentation in this step. Save that
for your homework; for now we will focus on the basics of creating a default web page
and adding the content we have in the “Product Database” spreadsheet.

64 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

When writing the HTML page content, only focus on what would normally be inside

the <body></body> tags. It is possible to add a variety of content this way, but with some
limitations on scripting processes, which Google will kindly strip out. A script using an
HTML template containing replaceable keys could achieve very complex effects. For
the product pages you will use a very basic template that is built into the script and adds
the image tags and descriptions.

Following is the for loop that creates the pages. It will be inserted after the last line of
code in your script:

 for (var i=0; i<productDetails.length; i++){

 var page = site.createWebPage(productDetails[i].title,

 ObjApp.camelString(productDetails[i].title),

 '<img src="'+productDetails[i].imageUrl+

 '" align="left"/><p>'+

 productDetails[i].description);

 productDetails[i].productPage = page.getUrl();

 }

The productDetails object contains an entry representing each row in the data range.

You iterate it by getting its length with productDetails.length and running the loop

until the iterator i is larger than the length.

Next, create a variable page that will represent the web page returned by calling

site.createWebPage. You could simply call on the Sites Service directly without a vari‐
able, but the database needs to know the page URL for each product, and you get that
from the returned page object after the page is created. The arguments are filled in as

discussed using the productDetails[i].<column header>.

The last line in the for loop works opposite to the others and inserts the page URL value

into the productDetails[i].productPage property. This means that the productDe

tails object now contains new information that will need to be written back to the
spreadsheet after the loop completes.

Why not write to the spreadsheet in the loop? Keep in mind that an
RPC callback has to execute every time you write to the spread‐
sheet. Depending on how much data you have and the number of
writes, this could take a very long time, and from the user’s point of
view it may appear that the application has become unresponsive.
Always limit or group calls together for better performance.

The last step in the script will write the changed values back to the “Product Database”
spreadsheet. Start by getting the headers: you never know, they might have changed in

the last few milliseconds. In the next line, use the method objToArray from the ObjApp

library to turn your productDetails object back into a spreadsheet range array:

Creating Pages from a Spreadsheet | 65

 var headers = ss.getRange(1,1,1,ss.getLastColumn()).getValues()[0];

 var values = ObjApp.objectToArray(headers, productDetails);

 ss.getRange(2, 1, values.length, values[0].length).setValues(values);

All that’s left to do is write the values back to the spreadsheet. Because you used the
spreadsheet headers to recreate the values, everything will line up in the correct column
—how cool is that?

Save and run the script. You will see that the page URLs have filled in, and clicking one
will open the product page, complete with an image and description, as shown in
Figure 5-9.

Figure 5-9. Automating page creation can save hours of time

Half a chapter later and you don’t have a UI yet. Hang in there: before you can build a
castle you need a solid foundation, and that is what you have built. The image repository,
database, and product pages are ready to feed into the UI, which is where we are going
next.

Here is the full code for the last section:

function createPages(){

 var site = SitesApp

 .getSiteByUrl(

 'https://sites.google.com/a/simpleappssolutions.com/chapter-5-dynamic-

details'

);

 var ss = SpreadsheetApp.getActiveSheet();

 var productDetails = ObjApp.rangeToObjects(ss.getDataRange().getValues());

 for (var i=0; i<productDetails.length; i++){

 if (productDetails[i].productPage != "") continue;

 var page = site.createWebPage(productDetails[i].title,

 ObjApp.camelString(productDetails[i].title),

 '<img src="'+productDetails[i].imageUrl+

 '" align="left"/><p>'+

66 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

 productDetails[i].description);

 productDetails[i].productPage = page.getUrl();

 }

 var headers = ss.getRange(1,1,1,ss.getLastColumn()).getValues()[0];

 var values = ObjApp.objectToArray(headers, productDetails);

 ss.getRange(2, 1, values.length, values[0].length).setValues(values);

}

function randomString() {

 var ss = SpreadsheetApp.getActiveSheet();

 var randomArray = new Array();

 var chars = "ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz";

 var string_length = 10;

 var lastRow = ss.getLastRow()-1;

 for (var j=0; j<lastRow; j++){

 var randomstring = '';

 for (var i=0; i<string_length; i++) {

 var rnum = Math.floor(Math.random() * chars.length);

 randomstring += chars.substring(rnum,rnum+1);

 }

 randomArray.push([randomstring]);

 }

 ss.getRange(2, 1, lastRow, 1).setValues(randomArray);

}

Creating the Products UI
One feature of the Products UI is that items can be added to or removed from the
database without needing to recode any of the components. Simply reloading the web
page will cause the UI to reflect the changes. This makes it possible for you, the developer,
to step away and allow less technical people to perform the data entry.

The script you built earlier to create pages can handle figuring out

which pages are already done, to avoid making duplicates. Add an if

statement just inside the for loop to check the “empty” value in the
Product Page column:

if (productDetails[i].productPage != "")

 continue;

The continue will simply skip to the next round in the loop if any value is found.

You can create a system that lets anyone manage your site’s content from a spreadsheet.
That way, those comfortable with spreadsheets but with little or no training on Google
Sites will be able to control the information flow to the public.

Creating the Products UI | 67

Displaying Products
When beginning to develop a complex UI, it is helpful to break it down into smaller
parts and build them one at a time. This modular approach is also helpful when you
need to upgrade parts of the code. Breaking down this UI, there are product images to
display with a certain number across the page and in rows continuing down. The title
will go under each image and link to the product page. The next part happens when the
mouse passes over the image. This will require a couple of handlers: one to display more
information and another to hide the information when the mouse moves away from
the image. You need something to display; therefore, building an information panel will
be the next part. Finally, it will require CSS to get the whole page looking good and your
information panel hovering over the other content.

For this section, the script will be written in the Sites Script Editor, allowing you to easily
insert the UI as a gadget in any page.

Open your Products Site and create a new script.

As you work through the development steps, you can preview the UI using the web app
dev page. You might also think about making a copy of our example from “Hello Web
App” on page 16, which will have you ready to go in just a few minutes. Go ahead and
publish the app so you can confirm that everything is working. If there are no errors,
you can get started.

The next step will be to add the Object Service, as shown in “Installing an Open Source

Library” on page 60. Here is the doGet function in the Code.gs file:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('05 Dynamic Details')

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

Products will be listed in rows down the page, and we may not know how many products
are going to be in the database at any given time. Therefore, we will need to add the
products dynamically.

The first thing we need to do is get the products from the spreadsheet so we can display
them in a table on the page. To accomplish this, we will use the special Google Apps
Script Scriptlet language.

Switch over to the index.html page and add these first lines of code:

<title>Chapter 5 Dynamic Details</title>

<? var data = getImages(); ?>

The first line is just the title of the page, but that second line is an interesting bit of code.

As you learned in Chapter 1, the <? ?> tags enclose code we want to run directly on the

68 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

page. In this case we want to load all the data from the spreadsheet as objects that we
can use later. Anything inside the scriptlets will run as if it was part of the code in the

Code.gs file. You probably noticed a function; in there (getImages), which we will need
to create.

We could access the Spreadsheets Service from within the scriptlets,
but later we will use the same function to return specific records. That
requires sending information to the server, which can’t be done in a
scriptlet.

Now switch back to the Code.gs file, and we will build the function that handles retrieving
data from the spreadsheet. Here is the whole function: we will go though each part so
you can understand how it goes together:

function getImages(id){

 var ss = SpreadsheetApp.openByUrl('<Your Spreadsheet URL>').getSheets()[0];

 var data = ObjApp.rangeToObjects(ss.getDataRange().getValues());

 if(id){

 for (var i in data){

 if(data[i].id == id){

 return data[i];

 }

 }

 }else{

 return data;

 }

}

We know we need to do two things with this function. The first is to return all the data
so we can list all the products on the home page. The second is to return just one specific

record by its ID. For now, just create an id argument for the getImages function.

Recall that when we created the product pages on the Google Site we got the data from
the spreadsheet and then turned it into JavaScript objects—that’s how we get started
here (see “Creating Pages and Filling the Spreadsheet” on page 62).

Someone might want to move your sheets around, which will break
your script. If you feel this might happen, name the sheet and

use .getSheetByName(name) in place of .getSheets()[0]. You will
still need to tell people not to change the name, so it’s a tossup as to
which approach will be most effective.

When our getImages function runs, it can take the argument id. If we want just one

image, we pass the image ID in the argument, as in getImages(imageidnumber123). If

we want all the images we can leave out the argument (getImages()), and this will cause

Creating the Products UI | 69

the value of id within the function to be undefined. if(id) will be true when an ID is

supplied. Back in the index.html file, we used getImages(), which had no argument.

Now we know that this is going to be false in our if statement, so we close this if

statement with else and return all the data.

We will get to calling a specific record from the index.html page soon, but for now let’s
get the backend code done, so we don’t need to come back here.

If there was a value passed in the argument, the if statement will be true. We are in

control of what does get passed, and it will be one of those unique IDs. We use a for
loop to iterate though the data, and when we match the record number we return just
that record.

That’s it for the Code.gs file. Now we can get started showing our products in the UI.

Creating the Products Table
The products are loaded into an object using the getImages method. Back in the in‐

dex.html file we now have the data loaded into the data variable, and we can iterate
through that to build a table to hold all the information.

Insert the following code at the end of the index.html file, and then we will go through
it:

<? var j = 0;?>

<table cellpadding="20">

 <tr>

 <? for (var i = 0; i < data.length; i++) { ?>

 <?if(j==3){ ?>

 </tr><tr>

 <? j=0

 }else{

 j++

 } ?>

 <td>

 <div><img id="<?=data[i].id?>" class="selector"

 src="<?=data[i].imageUrl?>"

 height="250" width="175"></div>

 <div class="book-titles"> <?= data[i].title ?></div>

 </td>

 <?} ?>

 </tr>

</table>

I know that having the scriptlets in there makes the code harder to read, but try to see
past that. We want to have three products across the page and however many rows down
until there is no more data. Going three wide is a bit of a trick that requires a variable
to let us know when we get to three. There are a bunch of ways to do this in HTML, but

70 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

I chose using a table to show off some of the complexity that can be accomplished using
scriptlets.

Create a table and the first row, then we’ll start iterating. The first thing our code will
run into is a check to see if our width variable has gotten to three. If it has, we start a

new row and reset the width counter j to zero. If it hasn’t, we will increment it.

Now we can add our first td, a.k.a. column. Inside the cell we will have an image and a
title (see Figure 5-10).

Figure 5-10. Product layout

We will display more information using a pop-up dialog when the user mouses over the
product image, but to know what information to dynamically load, we will need to know

which product the user is over. Because the data object contains the unique product

ID, what better reference could there be to use? In the image tag, set the id attribute

using data[i].id. Similarly, use data[i].imageUrl to set the source. Getting the idea
why we convert to JavaScript objects?

We will control the size here, so everything is the same size on the page, and lastly set

the title. We keep adding to the table until there is no more data in the data object and
then close off the table.

There is one more item we haven’t added: the pop-up dialog. It’s just a div with the id

attribute dialog. Later we will be using jQuery UI to make it come alive:

<div id="dialog"></div>

Save your work and load the dev URL in your browser; your products will magically
jump into place. At this point you have a typical database-driven products page like
those common on the Web (Figure 5-11).

Creating the Products UI | 71

Figure 5-11. Products table

Adding Action
There are several event types: click events, for buttons and links; keypress events, which
are useful in detecting the Enter key in a text box; and mouse events that will run when
the mouse moves over or off your element. There are several more events, but for this

application, the jQuery mouseover and mouseleave are used. I guess this would be a
good time to load up Google’s special versions of jQuery and jQuery UI:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js">

</script>

The rest of the code for the index.html page will be inside script tags, so add a few of
those in which we can build the rest of the code. No worries—the whole file will be at
the end of the chapter if you get lost. We also need a function to make jQuery work:

72 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

<script>

 $(function() {

 //replace with more code

 });

</script>

Let’s start by setting up the dialog box. jQuery UI has the dialog element, which takes
care of many things for us, like creating a pop-up panel, positioning, and handling
collisions.

Add the following inside the function you just created:

$("#dialog").dialog({

 autoOpen: false,

 height: 500,

 width: 400,

 modal: true,

 dialogClass: 'book-dialog',

 show: {

 effect: "blind",

 duration: 400

 },

 hide: {

 effect: "blind",

 duration: 400

 }

});

There are a bunch of options here, and I encourage you to read the docs on jQuery
UI as these little widgets can save you hours of trouble. It’s mostly self-explanatory, and
you may notice there are some cool animations you can do when showing and hiding
the dialog.

Mousing Around
Now we will add functionality to the images that executes when a user mouses over
them. Here is the code to add the mouseover functionality. It’s a little convoluted, so
look it over and then I will break it down:

$(".selector").mouseover(function() {

 $("#dialog").dialog({

 position: {

 my: "left top",

 of: this,

 collision: "flip"

 }

 });

 google.script.run.withSuccessHandler(function(ret){

 $("#dialog").html('<p id="dialog-title">'+ret.title+'</p>'+

 '<hr>'+

Creating the Products UI | 73

http://bit.ly/jq-modal
https://jqueryui.com/
https://jqueryui.com/

 '<div class="dialog-content"><img src="'+ret.imageUrl+'"

 height="200" width="150"></div>'+

 '<div class="dialog-content">'+ret.description+'</div>'+

 'More info...');

 }).getImages(this.id);

 $("#dialog").dialog("open");

 });

When we added the images to the table we gave them all the class="selector" at‐

tribute. Now we can add a mouseover event to all the elements in the selector class.

Each time the mouseover event happens we will run a function. We want the dialog to
pop up close to the image that was moused over, so the first thing we want to do is set

that position. We say we want it at the top left of this, which is the element from which

the mouseover event was fired. Lastly, the collision setting means that if our dialog
pops up off the page or collides with something, jQuery will adjust its placement for us.

Now that we have the box where we want it, we need to fill it with the right information.
We need to pass the ID to our backend Code.gs so it will return the specific record.

Contacting the backend works like this:

google.script.run.withSuccessHandler(function(returnedValues){

 //do stuff in here

}).yourFunction(someArgument);

When we built the table and added the images, we used the id attribute to store the
unique ID for each product. Because of this we know that the element that we used to
trigger the event also holds the key to getting the correct information, and we can get

that value by simply calling this.id.

Now we pass the unique ID in the server function argument as getImages(this.id).
Remember, we are going to get back just one product from the server, and it is stored

in the ret argument in the calling function. The whole thing looks a bit odd, so take the
time to see how things flow here.

The content of the dialog box can be set as HTML—it’s just a div, after all—so we will

use jQuery to get the dialog box and the html method to add content. Because we already

have all the information for the product saved in ret, we use the same technique we did
in building the table earlier to create the different elements. You can get as fancy as you
like here, but what I like to do is give things some CSS class or ID and work from the
style section.

Everything is loaded for that specific product, and now all we need to do is show the

dialog. Again, jQuery makes this a snap with $("#dialog").dialog("open").

Now that the dialog is open, we need to close it. Add this close call next:

74 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

 $("#dialog").mouseleave(function() {

 $("#dialog").dialog("close");

 });

This tells the app to close the dialog when the mouse leaves the dialog area. jQuery has
also taken care of closing and opening if you mouse over a different element, even if
you never move over and leave the dialog.

It’s getting close now, and if you saved and loaded the dev version, it would actually
work. However, there are some things that are not going to look right: for example, the
dialog box is transparent, so your text gets lost in the page images. What we need now
is some CSS magic.

After the closing script tag, add this style:

<style>

.ui-dialog-titlebar-close{

 display: none;

}

.ui-dialog.book-dialog {

 font-family: Verdana,Arial,sans-serif;

 font-size: .8em;

 border-style:solid;

 border-width:1px;

 padding: 5px;

}

.ui-dialog{

 background: #F8F8F8;

}

#dialog-title {

 font-family: Verdana,Arial,sans-serif;

 font-size: 1.8em;

}

.dialog-content {

 width: 200px;

 float: left;

}

</style>

Save your work and reload the dev page. The images load as expected, but now when
you hover over each image the dialog appears with the additional information, as shown
in Figure 5-12. Moving off the image hides the dialog.

Creating the Products UI | 75

Figure 5-12. It’s alive! The application has become interactive.

The application will now respond to the user, and the data is dynamically loaded for
each product. Now that everything is working, you need to install the app in the Google
Sites home page where you’re storing the product pages. This is only a matter of instal‐
ling the app as a script gadget, as we did in “Hello, Google Sites” on page 20. Figure 5-13
shows how your final project should look.

76 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

Figure 5-13. Final project installed in Google Sites

Delivering the Application
Your application is finished just in time to save the company from sliding into obscurity.
With the new interactive interface, customers are throwing buckets of money into pur‐
chasing your products, and even Frank’s boss is looking to promote you to a VP.

Those are all nice thoughts, but welcome back to reality. The application you have built
certainly looks great, and it allows different styles from the CSS file, meaning a fresh
look requires little work on your part. On the backend, the database is easy for anyone
to use, allowing products to be added or removed with ease and product page templates
to be generated automatically. It is a full system that is portable and can easily be set up
for different product databases.

You have also learned some important techniques, such as loading data from or writing
it to a spreadsheet, working with data objects and server calls, as well as applying CSS
to elements. This knowledge will be useful as you progress to more advanced applica‐
tions.

Up next, you will build an application that goes out into the world to find information
and brings it back for a mashup that will keep you in the know.

Delivering the Application | 77

Final Code
You can find all of the code for the files below on this book’s Google Drive.

Code for index.html:

<title>Chapter 5 Dynamic Details</title>

<? var data = getImages(); ?>

<? var j = 0;?>

<table cellpadding="20" border="1">

 <tr>

 <? for (var i = 0; i < data.length; i++) { ?>

 <?if(j==3){ ?>

 </tr><tr>

 <? j=0

 }else{

 j++

 } ?>

 <td>

 <div><img id="<?=data[i].id?>" class="selector"

 src="<?=data[i].imageUrl?>"

 height="250" width="175"></div>

 <div class="book-titles"> <?= data[i].title ?></div>

 </td>

 <?} ?>

 </tr>

</table>

<div id="dialog"></div>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js">

</script>

<script>

 $(function() {

 $("#dialog").dialog({

 autoOpen: false,

 height: 500,

 width: 400,

 modal: true,

 dialogClass: 'book-dialog',

 show: {

 effect: "blind",

 duration: 400

 },

 hide: {

 effect: "blind",

 duration: 400

 }

 });

78 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

http://bit.ly/ch5-final-code

 $(".selector").mouseover(function() {

 $("#dialog").dialog({

 position: {

 my: "left top",

 of: this,

 collision: "flip"

 }

 });

 google.script.run.withSuccessHandler(function(ret){

 $("#dialog").html('<p id="dialog-title">'+ret.title+'</p>'+

 '<hr>'+

 '<div class="dialog-content"><img src="'+ret.imageUrl+'"

 height="200" width="150"></div>'+

 '<div class="dialog-content">'+ret.description+'</div>'+

 'More info...');

 }).getImages(this.id);

 $("#dialog").dialog("open");

 });

 $("#dialog").mouseleave(function() {

 $("#dialog").dialog("close");

 });

 });

</script>

<style>

.ui-dialog-titlebar-close{

 display: none;

}

.ui-dialog.book-dialog {

 font-family: Verdana,Arial,sans-serif;

 font-size: .8em;

 border-style:solid;

 border-width:1px;

 padding: 5px;

}

.ui-dialog{

 background: #F8F8F8;

}

#dialog-title {

 font-family: Verdana,Arial,sans-serif;

 font-size: 1.8em;

}

.dialog-content {

 width: 200px;

 float: left;

Final Code | 79

}

</style>

Code for Code.gs:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('05 Dynamic Details')

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

function getImages(id){

 var ss = SpreadsheetApp.openByUrl(

 'https://docs.google.com/a/simpleappssolutions.com/

 spreadsheet/ccc?key=0Aq1-C9ZFoxUmc&usp=drive_web#gid=0').getSheets()[0];

 var data = ObjApp.rangeToObjects(ss.getDataRange().getValues());

 if(id){

 for (var i in data){

 if(data[i].id == id){

 return data[i];

 }

 }

 }else{

 return data;

 }

}

80 | Chapter 5: Dynamic Details: A Sites App Using HTML, CSS, and jQuery

CHAPTER 6

Automate Your Forms and Templates:
A Web App for Drive

If your business is like most, it has forms lying around everywhere to get this process
or that request done. Most of the time these forms are the same thing over and over,
with a few things changed. Letters to say thank you for a purchase, patient intake, and
filing with the court are all situations where we might encounter a form. Now I certainly
would like to see everything in tidy data structures, but in reality we need forms to
ground us in that paper, human-readable format—that is not going anywhere soon.

Google Apps gives us a great platform for collaboration, storage, and creation of doc‐
umentation. However, there really is not a way to create forms that generates a nice,
print-style page layout that is easy to distribute.

The Forms feature in Google Sheets is a great way to collect information; it uses a web
page–style form that anyone who has ever used a computer can understand. This feature
fills in a spreadsheet, making it a good tool for collection and analysis, but not for the
output of a document, like your taxes. Another option is to build a template in Google
Docs, leaving blank lines for where you would like certain things filled in. But what
about extra instructions and the worry of a certain field getting missed? You could fire
up Microsoft Word and spend the next week trying to get the form field insert function
to work, and the next year explaining to users how to use it, but you know they will
make copies on their hard drives that will come back to haunt you seven revisions later.

This chapter will go down a new road using Google Docs and Apps Script to form a
system that takes a template and automatically generates a web form for your users to
fill out.

81

What You Will Learn
You will learn how to:

• Edit Google Docs from a script

• Create new documents using the DocsList Service

• Work with template keys

• Generate a web form from text in a document

Supplies
You will need:

• A template document (created during the chapter)

• A script running as a web app

Application Overview
In this chapter, we will use the power of Google Apps Script to add functionality to
Google Drive by building an application that will let you choose a template from your
Drive folders and have the script automatically create a web form from key values you
specify in the document. Not only will your web form be complete with instructions,
but the script is smart enough to remove the instructions from the final copy. Filling
out the form and submitting it will create a copy of the template, replace the template
key fields with the answers on the form, and email the new copy back to you as a PDF.
You can extend it to your whole company or even to the public, allowing for easy creation
of common documents. The script is set up to generate a form for any template you
provide it, so once it’s set up, adding or changing forms is all done in Google Docs and
no further coding is required.

Setting Up the Template
Templates come in every shape and size, and the information that needs to be replaced
usually has some sort of key that tells you to replace it with your information. For
example, if you’ve migrated over to Google Apps, there are documents produced by
Google to help you tell your users what to expect, or to answer frequently asked ques‐
tions. In these documents you will see red text in brackets that says things like “<your
company name>”. We will refer to these as keys, and they’re how our script will figure
out what gets replaced.

82 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

You can create keys any way you like, but for this book {%Your Key%} will be used.

Therefore, if you would like to personalize the salutation, use Dear {%Recipient%}, in
the form. There will also be a special instruction key that is used to display information

to the user about what appears on the screen. Instructions look like this: {%Instruc

tion:This is an automated template example.%}. When the script sees that a key

starts with Instruction, it will know not to create a text box for user input and to remove
that paragraph from the final document. The basic template is shown in Figure 6-1.

Figure 6-1. The basic template

A template for this chapter with formatting is hosted on Google Docs; click “File” and
choose “Make a copy” to use the form.

If you can’t access the document linked above, I’ve provided an example that will work
fine in your own document.

If you have ever been a kid, you’ve likely filled out a Mad Lib. Let’s give that a try in this
template:

{%Instruction: Please fill in the words below for your Mad Lib example.%}

{%Exclamation%}! he said {%Adverb%} as he jumped into his convertible {%Noun%}

and {%Verb%} off with his {%Adjective%} wife.

Setting Up the Template | 83

http://bit.ly/ex-template

{%Instruction:An exclamation is the act of exclaiming; outcry; loud complaint,

or protest. Examples include Ouch and Dang.%}

{%Instruction:A noun is the name of a person, place, or thing. Examples include

umbrella, sidewalk, telephone, and policeman.%}

{%Instruction:An adjective describes someone or something. Examples include cre-

ative, red, ugly, and short.%}

{%Instruction:A verb is an action word. Examples include run, jump, swim, and

fly.%}

{%Instruction:An adverb tells how something is done. It modifies a verb, and

usually ends in "ly." Examples include greedily, rapidly, modestly, and careful-

ly.%}

Make sure each instruction has its own paragraph, because the script will remove them.

You can use any formatting you like, and it will be carried over when the keys are
replaced. This means you can have keys as document headers, in tables, and certainly
in color, bold, italic, etc. Adding formatting really does give a polished look to the final
document.

After you create your template, put it in a collection just for templates. This way, when
you display a drop-down list for the user to choose from, he will only get templates, and
not every other file in your Docs list.

Building the Script
Now that the form is ready to be filled out, it is time to build the script. Create a new
script from the Drive menu, or copy the example script from “Hello Web App” on page
16. As usual, publish the script and, because we will again be working with objects, add
the Object Service as shown in “Installing an Open Source Library” on page 60. The
email function will need to get the user’s information; because Google restricts access,
you will want to choose the “Execute the app as the user” option.

Here is the doGet function in the Code.gs file:

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('06 Automating Forms')

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

You will also want to open up the dev version so you can check your progress as we go
along.

84 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

UI Setup
This will be a basic UI, with very few elements that you need to write in the code;
however, the UI can fill itself with a hundred questions if that is what is in the template.
The code does the work and makes you look like a coding genius.

This app is going to be running as you, and that means you need to create a folder in
Drive that allows you to control access to the templates you want displayed in the UI.
In Drive, create a folder called “Templates Folder.” You will need the folder’s ID, found
in the URL of the address bar; this allows you to get the files from that folder. A specific
folder gives you a place to create templates and update them as needed. The script will
list all Google Docs in that collection, so it is best to think about it as being public. You
can certainly restrict access to the documents there so they can’t be edited, but your
script will run as the user, and the user will need to be able to access your templates.

Now put your template file in the templates folder.

In the Code.jg file, you will need a global variable to hold the ID of your template col‐

lection. Add this line after the closing } of the doGet function:

var FOLDER_ID = '0B61-C9Nl4dO-SEhzOXA0SEZqMFU';

Global variables are created outside of any function and can be ac‐
cessed from anywhere in your script. You can update them as the
script runs, but remember that when the UI is reloaded, they are set
back to the original value.

You can test out the global variable by adding <div><?=FOLDER_ID?></div> to the

index.html file and reloading the dev page. You will see the FOLDER_ID you stored in the
global variable displayed in the web app.

Open the index.html file, and let’s start laying out the page. The following code gives us

a header to identify the app, several divs to hold the content, a section for scripts, and

the page style. Note that the there is a body div that surrounds the other divs. This
allows us to control how the app looks overall, such as adding some padding so that the
text is not shoved all the way to the side of the screen:

<div class="body">

 <div><h2>This App will allow you to create a form from a template

 in Google Docs.</h2></div>

 <hr>

 <div id="options"></div>

 <div id="form-content"></div>

</div>

Building the Script | 85

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">

</script>

<script>

</script>

<style>

.body{

 padding: 10px;

}

</style>

As of this writing, the Google Apps Script team has suggested that we

not use the <body> tag, which is replaced by the Caja service during
processing and may slow load times.

The next element to add is the listbox that will show the files in the templates folder.
Because we only need to get the filenames and IDs, we can use the Google Apps Script
scriptlets feature.

Here are the changes to the options div:

 <div id="options">

 <?var files = DriveApp.getFolderById(FOLDER_ID).getFiles();?>

 <select id='template'>

 <option value="notSel">Select a Template</option>

 <?while (files.hasNext()){

 var file = files.next();?>

 <option value="<?=file.getId()?>"><?=file.getName()?></option>

 <?}?>

 </select>

 </div>

First we get the files contained in the templates folder by accessing the DriveApp Service

and using the folder ID. The getFiles method returns file objects for each file in the
folder.

It’s not likely that you will have more than a few templates to load,
but if you do have, say, hundreds, your app is going to become
unresponsive waiting for Google to return all the files. A better op‐

tion would be to put a “Loading Templates” indicator in the op

tions div, and then do the processing by calling a backend function.

We don’t want to add more stuff to the page than just what’s required, so we will put the
instruction to “Select a Template” right in the select box. Let’s also give it the value

notSel, so if the user selects “Select a Template,” the event handler will simply clear the
page.

86 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

Now we iterate the files object, getting the name and ID of each file and adding that

to the select element’s option tags. The value attribute is used to set the file ID, so that
when the user makes a selection, that’s the value used. This makes it easy for us to get
the right template.

Pop over to the Code.gs file and click Run to grant access for Google Drive. If you don’t
do this, when you load the dev page you will get an “Authorization required” message.
Load up the dev page and try out your listbox (Figure 6-2).

Figure 6-2. Templates listed from your Google Drive

At the time of writing, the Docs Picker was not available in the HTML
Service, but we hope to see it soon. This would allow you to replace
the listbox with a button that opens the picker and creates more of a
traditional file-choosing method.

Selecting the Template
When the user changes the value in the listbox, we want to go and get that template so

we can build the form. To do this, we attach the jQuery change handler to the listbox.

This is done inside the script tags:

<script>

 $(function() {

 $("#template").change(function() {

 //get the data here

 });

 });

</script>

The next step is to go get the template keys and build a form. We don’t really need the
whole template to build the form, as it only consists of the keys. Therefore, we will build
the form in the Code.gs file on the server side, which will take care of all the details like
getting the keys from the template and formatting the data. This means we will need to

do some server-side communications using the google.script.run method.

Building the Script | 87

Here is the whole code block for the change method. As always, we will go through it
line by line

 $("#template").change(function() {

 if($('#template').val()=='notSel')return;

 $("#form-content").append('

 Getting your form...');

 google.script.run.withSuccessHandler(function(ret){

 $("#form-content").html(ret);

 $("#templateForm").submit(processForm);

 }).buildForm($('#template').val());

 });

Remember that we don’t want the app to do anything if the user selects “Select a Tem‐

plate,” so the first we’re are going to run into is a check of the listbox value $('#templa

te').val()=='notSel'. If this is true we return immediately, which gives the effect
that nothing happened.

When we make calls to the backend or other services, it can take time to process the
information, and if we don’t provide some entertainment—like a loading indicator—
the user may wonder if clicking the button did anything.

The next line will add a spinner .gif file, letting the user know something is going on.

To make it disappear we replace the HTML in that div, so it is basically erased. You can
use any image you like, but the animated style is most common (see Figure 6-3).

Figure 6-3. Entertain them!

The user has been stopped from making bad choices, and while she’s distracted we will
call on the backend for the data we need. The first part to run is the end of the statement,

and the function we are going to call in the Code.gs file is buildForm($('#templa

te').val()). template is the ID attribute of our drop-down list and, as you may re‐
member, where we stored the template ID.

We will jump over to Code.gs and build that function in a minute, but first let’s finish
up here with what happens when the server returns:

88 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

 $("#form-content").html(ret);

 $("#templateForm").submit(processForm);

First, we set the form-content div HTML to what we get back from the server. Guess

what? It’s going to be a form and will have the id attribute templateForm. We want to
be able to send the form back to the server after the user fills it out, and later we will

create a function called processForm. We could have put that function right in the

submit method, but I have reached my line-indent quota for the day. Joking aside, it’s
a good idea to move functions to their own objects—it makes your code more man‐
ageable.

Getting the Keys
When you write your templates, you want the template key to help users figure out what
a field is when they are trying to fill it out. However, you also need that key value to
represent a certain text-box name. Recalling the discussion in Chapter 5 on JavaScript-

safe values, you know that Your Email Address will look good in the form but will

cause an error as the name attribute of a text box. Conversely, yourEmailAddress is not,
depending on the user, going to win you points with coworkers as they try to decrypt
your form. Again, we will call on the ever-useful ObjApp to do some cameling for the
attribute IDs when we start making text boxes.

We will need to get the keys several times in our app, so it makes sense to create a separate
function to do this processing. The next function to add in Code.gs will return a set of

keys in an array that looks like this: [{text:'Key One', id:'keyOne'},{...}].

This is done by matching the key’s unique identifiers ({%Key%}) and placing them into
an array. At the same time, the key is cameled by the ObjApp Service, so that it can be
used as a JavaScript name or ID.

Add the following function to your Code.gs file:

function createKeys(fileId){

 var templateTxt = DocumentApp.openById(fileId).getText();

 var templateVars = templateTxt.match(/\{\%[^\%]+\%\}/g);

 var keys = [];

 var oneEach = "";

 for (var i in templateVars) {

 var keyObject = {};

 keyObject.text = templateVars[i].replace(/\{\%|\%\}/g, '');

 keyObject.id = ObjApp.camelString(templateVars[i]);

 if (oneEach.match(keyObject.text) == null){

 keys.push(keyObject);

 }

 oneEach += " " + keyObject.text;

 }

 return keys;

}

Building the Script | 89

When the user makes a selection, we will send the file ID in the argument fileId. This

makes it easy to then use the DocumentApp.openById method to get the right template.

We also use the getText method in this line to give us all of the text in one big, long
string.

The template should contain keys that look like {%Key%}, so we now use the JavaScript

match method to find all the keys. We only want one of each value, in case the template
does something like ask for a person’s name and uses the same key over and over. We
don’t want the form to render a text box for repeated keys; one will do just fine.

We return the keys variable when we are all done looking for keys in the text.

Generating the Form
In the section “Selecting the Template” on page 87, you created the change event handler

to run a function called buildForm. Well, let’s get that function built, so you can start
seeing the web form generate.

Add the following function to your Code.gs file:

function buildForm(fileId){

 var keys = createKeys(fileId);

 if (keys.length == 0){

 return "Your selected template has no Keys";

 }

 var formHtml = '<form id="templateForm">';

 for (var i in keys) {

 var text = (keys[i].text);

 if(/^instruction/i.test(text)){

 formHtml+='<div>'+text.substring(text.indexOf(':')+1)+'</div>';

 }else{

 formHtml+= '<input type="text" name="'+keys[i].id+'" id="'+keys[i].id+'"

 placeholder="'+text+'">
';

 }

 }

formHtml += '<input type="hidden" id="fileId" name="fileId" value="'+fileId+'">'

 formHtml += '
<input type="submit" value="Create"></form>';

 return formHtml;

}

The first thing we do is pass that template file ID into the function and call up the

createKeys function we created in the last section. This function returns an array con‐
taining the keys as text and their matching JavaScript-safe counterparts.

Now that the keys are ready to go, you can build the UI form. What looks like it might
take hours to perform actually boils down to about seven lines of code, but it can make
an endless number of fields to fill out.

90 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

After setting up the variable formHtml with the start of a form tag, start iterating through
the keys array to build the instruction and input elements. To shorten up the typing,

turn the current keys[i].text into a new string, text.

Before creating labels and text boxes, you need to find out if the template key is an

instruction. When the template is created, you have the option of adding Instruc

tion: to the beginning of a key. In the script, we use a regular expression to see if the

key begins with Instruction: in both upper- and lowercase. If the test is true, we will
only make a label, because instructions don’t get answers.

If your templates require other treatment, such as creating multiple-
choice questions or formatting to highlight a section, you can sim‐

ply add more tests and adjust the template. Try out a Section:Ti

tle and add a background for the label using .setStyleAttri

bute('background', '#A0A0A0').

You likely don’t want the label to say “Instruction” at the beginning, so everything before

and including the colon is stripped off using the substring method.

If no special test fits the key, then it must be a regular question, which gets the label/text
box recipe.

When the text box is created, make sure to set the key’s ID as the name of that box. Later

this value will be read from e in the createDoc function for its value.

There are a few different ways to tell the user what a text box means, and in this case I

chose to use the placeholder attribute.

After all the keys have been created, we are going to add one more hidden input where
we will store the file ID. We do this because it’s easy, and when we submit the form it
will be passed along with the data and make it easy for us to retrieve it.

All that’s left is a submit button, and you can return the form.

Test time! Save everything and reload the dev page. Now select a template from the
listbox, and your template should be displayed as a series of instructions and text boxes
(Figure 6-4).

Building the Script | 91

Figure 6-4. Ready to fill out the form

Submitting the Completed Form
Heading back to the index.html file, we need to add the processForm function that was
skipped over earlier.

Put the following code just inside the closing script tag:

 function processForm() {

 $("#form-content").append('

 Building your Document...');

 google.script.run.withSuccessHandler(function(formRet){

 $("#form-content").html(formRet);

 }).createDoc(this);

 };

If you look back in the code, you will see that this is the function that runs when the
user clicks the submit button. Once again, it takes time to create documents, replace
data, and send emails, which is why we have included more user entertainment.

Just like in the last section, where we got back an HTML form from the backend, this

time we will get more HTML and add that to the form-content div.

Copying the Template and Adding Responses
The application is running great and rendering templates as web forms. Changing the
file in the listbox will update the page with a new template. It may seem like we are only
halfway done, but in reality it will only take one more function to wrap everything up.

Hopping back to the Code.gs file, the createDoc function is executed when the submit
button is pressed and is the last function in the application.

Add the following function to Code.gs:

92 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

function createDoc(e){

 Logger.log(e.fileId)

 var keys = createKeys(e.fileId);

 var tempCopy = DriveApp.getFileById(e.fileId).makeCopy('copy'+ e.fileId);

 var doc = DocumentApp.openById(tempCopy.getId());

 var copy = doc.getActiveSection();

 for (var i in keys) {

 var text = keys[i].text;

 if(/^instruction/i.test(text)){

 if (copy.findText(keys[i].text) != null)

 copy.findText(keys[i].text).getElement().removeFromParent();

 }else{

 copy.replaceText('{%'+keys[i].text+'%}', e[keys[i].id]);

 }

 }

 doc.saveAndClose();

 var pdf = tempCopy.getAs("application/pdf");

 var bodyHtml = '<h3>Your document has been created and sent to your Email.

 </h3>
';

 MailApp.sendEmail(Session.getEffectiveUser().getEmail(),

 'Your competed document', 'Your Doc is Attached',

 {attachments: pdf, htmlBody: bodyHtml, name: 'Drive Forms', noReply: true});

 tempCopy.setTrashed(true);

 return bodyHtml;

}

As you did when building the UI, get the keys again from the template. Now get the files
in the templates folder.

We got the ID of the file from fileId and can now create a new document from the
original template, in which we will replace the keys with the user’s answers.

You need to get the active selection of the tempCopy, which at this time is the whole
document. Now iterate over the keys. When a line of text starting with “Instruction”

matches the regular expression in the if statement, that line is removed from the text
string. The standard keys get replaced by the text values from the form using

e[keys[i].id], with the IDs for the keys used to name the text boxes?

That finishes creating the Google Doc and replacing the values; findText and repla

ceText really make short work of it.

We want to email the final filled-out copy of the template back to the user as a PDF, and

we do this with the MailApp. The file conversion is handled by the tempCopy.getAs("ap

plication/pdf") method. Nice!

Click Run to take care of authorizations and reload the dev page.

Select a template, fill out the form, and click the submit button. In a few seconds you
will get an HTML message that the email has been sent (Figure 6-5).

Building the Script | 93

Figure 6-5. The email has been sent—go have a look

Now go to your Gmail. If you have been using the provided template, you should get a
chuckle from the Mad Lib. Figure 6-6 shows that the keys have been replaced and the
instructions removed.

Figure 6-6. Document formatting stays intact after replacing the keys

Final Code
You can find all of the code for the files below on this book’s Google Drive.

Code for Code.gs.

function doGet() {

 var html = HtmlService.createTemplateFromFile('index').evaluate()

 .setTitle('06 Automating Forms')

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 return html;

}

var FOLDER_ID = '0B61-C9Nl4dO-SEhzOXA0SEZqMFU';

function createKeys(fileId){

94 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

http://bit.ly/code-ch6

 var templateTxt = DocumentApp.openById(fileId).getText();

 var templateVars = templateTxt.match(/\{\%[^\%]+\%\}/g);

 var keys = [];

 var oneEach = "";

 for (var i in templateVars) {

 var keyObject = {};

 keyObject.text = templateVars[i].replace(/\{\%|\%\}/g, '');

 keyObject.id = ObjApp.camelString(templateVars[i]);

 if (oneEach.match(keyObject.text) == null){

 keys.push(keyObject);

 }

 oneEach += " " + keyObject.text;

 }

 return keys;

}

function buildForm(fileId){

 var keys = createKeys(fileId);

 if (keys.length == 0){

 return "Your selected template has no Keys";

 }

 var formHtml = '<form id="templateForm">';

 for (var i in keys) {

 var text = (keys[i].text);

 if(/^instruction/i.test(text)){

 formHtml+='<div>'+text.substring(text.indexOf(':')+1)+'</div>';

 }else{

 formHtml+= '<input type="text" name="'+keys[i].id+

 '" id="'+keys[i].id+'" placeholder="'+text+'">
';

 }

 }

 formHtml += '<input type="hidden" id="fileId" name="fileId" value="'+

 fileId+'">'

 formHtml += '
<input type="submit" value="Create"></form>';

 return formHtml;

}

function createDoc(e){

 Logger.log(e.fileId)

 var keys = createKeys(e.fileId);

 var tempCopy = DriveApp.getFileById(e.fileId).makeCopy('copy'+ e.fileId);

 var doc = DocumentApp.openById(tempCopy.getId());

 var copy = doc.getActiveSection();

 for (var i in keys) {

 var text = keys[i].text;

 if(/^instruction/i.test(text)){

 if (copy.findText(keys[i].text) != null)

 copy.findText(keys[i].text).getElement().removeFromParent();

 }else{

 copy.replaceText('{%'+keys[i].text+'%}', e[keys[i].id]);

 }

Building the Script | 95

 }

 doc.saveAndClose();

 var pdf = tempCopy.getAs("application/pdf");

 var bodyHtml = '<h3>Your document has been created and sent to your Email.

 </h3>

 MailApp.sendEmail(Session.getEffectiveUser().getEmail(),

 'Your completed document', 'Your Doc is Attached',

 {attachments: pdf, htmlBody: bodyHtml, name: 'Drive Forms', noReply: true});

 tempCopy.setTrashed(true);

 return bodyHtml;

}

Code for index.html.

<div class="body">

 <div><h2>This App will allow you to create a form from a template in Google

Docs.

 </h2></div>

 <hr>

 <div id="options">

 <?var files = DriveApp.getFolderById(FOLDER_ID).getFiles();?>

 <select id='template'>

 <option value="notSel">Select a Template</option>

 <?while (files.hasNext()){

 var file = files.next();?>

 <option value="<?=file.getId()?>"><?=file.getName()?></option>

 <?}?>

 </select>

 </div>

 <div id="form-content"></div>

</div>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></

script>

<script>

 $(function() {

 $("#template").change(function() {

 if($('#template').val()=='notSel')return;

 $("#form-content").append('

 Getting your form...');

 google.script.run.withSuccessHandler(function(ret){

 $("#form-content").html(ret);

 $("#templateForm").submit(processForm);

 }).buildForm($('#template').val());

 });

 });

 function processForm() {

 $("#form-content").append('

 Building your Document...');

 google.script.run.withSuccessHandler(function(formRet){

96 | Chapter 6: Automate Your Forms and Templates: A Web App for Drive

 $("#form-content").html(formRet);

 }).createDoc(this);

 };

</script>

<style>

.body{

 padding: 10px;

}

#form-content{

 padding:20px;

 font-family: Verdana, Geneva, "sans-serif";

}

</style>

Building the Script | 97

CHAPTER 7

Collecting Data: A UiApp-Style Web App

It was a fine mess they had gotten themselves into. Scattered across the country, data‐
bases in various states of update and version, but not one location knew what the other
was doing or if it could count on the “main hub” to have data that was less than a year
out of date. That’s when they called you.

You are the expert they place all their hope in, who can bring the worn and tired infra‐
structure back from the grave. As you gaze into the endless abyss of rot and decay from
a thousand rickshaw contractors who went for a quick buck by adding another Band-
Aid to the hemorrhaging artery, you realize that the days of the local copy are over—
and you will be the one to usher in a new era.

The Installed App Has Died
Your coworkers will likely never know what goes into making a database work or the
hardship of keeping it running. Fortunately, times are changing, and the days of building
a frontend, installing it, maintaining it, and trying to keep everyone connected are rap‐
idly coming to an end. The internal network has been replaced by the Internet, and
cellular networks extend connections far beyond the reach of copper.

Today’s databases are hosted in massive data centers that rarely fail to serve requests
and cost almost nothing for storage. Frontend “installed” applications have been re‐
placed by a browser, and connections are made globally. The data is always in sync
because it is all in the same place, or appears to be, as the great hosts handle cross-data
center transfers in milliseconds.

Why is this good for your database-building career? Simple: when you get ready to build
your next database, you won’t be thinking about servers and backups—those are covered
by the host. Rather, your thoughts should fall on language support and how well your
application will perform on the next generation of smartphones. Your rollout plan does

99

not need to include installing software or worrying over the type of equipment it runs
on, because if your client has a browser, it will run your software.

This chapter is about building a simple web-based database application. The entire
application will be hosted within Google Drive using Fusion Tables and Google Apps
Script. Because the user interface is hosted on the Web, changes you make are reflected
in real time to everyone.

What You Will Learn
You will learn how to:

• Work with multiple panel views

• Use components

• Retrieve a specific record

• Work with Fusion Tables

• Create a basic database layout

• Use contextual buttons

• Generate OAuth and client authentication

• Use UrlFetchApp

• Automatically generate form fields

• Use Script Properties

Supplies
You will need:

• Google Fusion Tables

• Google Apps Script

Application Overview
This application will use the Google Apps Script web app–style UI and be sized to work
well on smaller screens, like a phone or tablet, but not so small that it looks out of place
when running as a gadget in a Google Site. When the application is loaded in the browser,
the user will be presented with a welcome screen (see Figure 7-1) and options to search
the records or create a new record.

100 | Chapter 7: Collecting Data: A UiApp-Style Web App

Figure 7-1. Users expect to see something when an application loads to let them know
it’s ready

Rather than the HTML Service used in most of this book, this chapter will focus on the
UiApp Service, which is still alive and well in the Google Apps Script ecosystem. If you
want a more extensive look at the UiApp Service, I encourage you to also pick up a copy
of the first edition of this book, also available from O’Reilly.

Searching will connect to a Fusion Table that holds the records and returns the results
as a table to the content area where the welcome image was displayed. There are mouse‐
over effects for the result rows, and clicking a result will open that record for viewing
(with text fields disabled). An “Edit” button will also be added to the menu. Clicking
“Edit” will unlock the fields, and the “Edit” button will be replaced with “Save” and
“Cancel” buttons. “Cancel” resets the fields and goes back to “View Only” mode. Save
writes changes to the Fusion Table. There will also be an “Insert” button that loads a
blank form and an “Insert Record” button.

From the description you can guess that this is a typical database application, with the
only real difference being the hosted web service and data storage. The model we use
will be flexible in that no additional coding is needed to add or remove database fields;
these changes are handled automatically from the Fusion Table. The script will also be
portable, meaning that given a few key search fields, the script can be pointed at any
Fusion Table and will work out of the box.

Application Overview | 101

Setting Up
Big scripts, or applications, can consume thousands of lines of code, so having a plan is
necessary to keep you organized. One of the first things you should create is a file to
hold all of the items that will be used script-wide.

In a Google Apps Script, any variables outside of a function will be
global and accessible anywhere in the script. Best practice says that
because JavaScript is a top-down language, any global variables should
go at the beginning of the script, ensuring they will be available when
called.

You can name your files whatever you like, but always keep in mind that you may need
to come back to your application years from now. Leaving plenty of information about
where things are will save you hours walking back through the code in the future.

Open up a new Google Apps Script; it does not matter where, because this will be a
standalone application. Save the script as “Record Manager” and rename the “Code” file
to “Settings.” If you later decide that was not the name you wanted, it can be changed
from the File menu without causing any problems in the script. Go ahead and delete
the sample code; you won’t be using that. The “Settings” file is a good place to keep things
like button icons and any images you may want. We will be coming back here to add
those soon.

Next, create a file called “CSS” where you will hold the style attributes for the whole
script. You could also put your CSS objects into the “Settings” file, but having a dedicated

file for CSS is handy and what most developers are used to. Copy in the applyCSS
function:

function applyCSS_(element, style){

 for (var key in style){

 element.setStyleAttribute(key, style[key]);

 }

}

You might be wondering what the underscore before the arguments means. In Google
Apps Script, to hide a function from the Run menu in the editor, you use an underscore.
This can go a long way in cleaning up your Run menu options but is not otherwise
needed.

Because there is nothing to apply CSS to yet, let’s move on to the next file: doGet. Every

UiApp needs an entry point, and the doGet function is your starting point in Google
Apps Script UIs. Create a new file and name it “doGet,” then add the create and return
app statements:

function doGet(e) {

 var app = UiApp.createApplication().setTitle('Record Manager');

102 | Chapter 7: Collecting Data: A UiApp-Style Web App

 return app;

}

Publish the script with the settings of your choice and load a new tab with the published
URL. You are now ready to start building the actual application—but first, a few words
on design.

Building the Foundation
Honestly, I don’t always know where a script is going until I’ve written a few hundred
lines of code, but that can lead down some dark alleys, and you can waste time if you
don’t have a clear picture of where you need to go. A good way to stay on track is to
sketch what you think the UI should look like and do. Google Drawings is a quick way
to start working on the visual aspects, but you may also find the GUI Builder works very
well and has the actual elements you will be working with.

Main Panel
Figure 7-2 shows the skeletal layout of the application. At the very bottom of the stack
there will be a vertical panel to hold everything and give you a reference point to call
on if you need access to certain elements.

Figure 7-2. Drawing the application saves time and helps show you what will fit

Add the vertical panel to app, thus creating your application canvas:

Building the Foundation | 103

 var mainPanel = app.createVerticalPanel();

 app.add(mainPanel);

Headers Grid
The topmost element in the application is a header that contains three areas: the logo,
the search function, and buttons to control the application. These options will always
be available to the user, but the context of the buttons will change depending on the
current view. While there are only three areas, nesting widgets will give the application
the flexibility it needs.

Add a one-row, three-column grid to the main panel:

 var headerGrid = app.createGrid(1,3).setId('headerGrid').setWidth('500px');

 mainPanel.add(headerGrid);

Setting the width here in the headerGrid means that this grid will set the width for the
entire application and ensure the header goes all the way across. Don’t forget to ID the
grid: you might need to call on it later.

To add some separation from the rest of the elements, CSS will be used to put a border
on the bottom of the table. This gives the effect of a horizontal line:

 applyCSS_(headerGrid, _headerGrid);

Go back to the CSS file and add an entry for the CSS object _headerGrid. The example
will have a simple look, like what is seen in other Google services, but if you would like
more color, go ahead and add a background entry in the CSS:

 var _headerGrid =

 {

 "border-bottom":"2px solid #404040"

 }

Branding
Branding is important, as it gives the application some grounding. When your users
come to the application, they notice the logo and it helps them feel comfortable that
they are in the right place. You can use any image you want. If you would like to use the
images used to write this chapter, they are available in the code examples.

Go to the “Settings” file and add a link to your logo:

var logoImage = 'https://sites.google.com/site/scriptsexamples/scriptGear.png';

The reason you want to put the link here and not in the doGet code is to make it easier
to reprovision the application. You only need to look in one place to change the icons
and images. That organization will pay off.

104 | Chapter 7: Collecting Data: A UiApp-Style Web App

In the “doGet” file, create a new image widget and set its size. This will keep things under
control if the logo image is changed out:

 var logo = app.createImage(logoImage).setSize('30px', '30px');

Note how the variable logoImage is accessed here even though it is not in the doGet
function. The logo belongs in the upper-left corner of the header, which happens to be
grid cell (0,0):

 headerGrid.setWidget(0,0,logo);

Now that you have a few elements to look at, take a break and reload the published URL.

Search Component
The next part to add to the application is the record-search function. As with any search
box, there will be a text box to type in the search words and a button to click that executes
the search. Additionally, if the user hits the Enter key, the search should also be per‐
formed. These widgets and their handlers are a self-contained chunk of code that can
be thought of as a component.

When building a complex application, finding ways to make components will save time
and make the code easier to read. Think of it as having an engine ready to go for your
car. The car won’t go without the engine, and the engine can’t run without input—gas
—from the car’s tank. Instead of putting all the parts of the engine in the car permanently,
they are added as an engine component that can get swapped out for something with
more power.

In Google Apps Script, it makes sense to store components in files of their own. Create
a new file called “Search Component” and replace the default code with a new function:

function loadSearchBox(app) {

}

Note that the argument app is being passed into the function. This is done in order to

build widgets from the current app object, which has not yet returned to the user.

When the UiApp loads a page, it can’t call on a handler. Therefore,

you must pass the UiApp instance to any function that will be load‐

ing elements on the page. Calling UiApp.getActiveApplication
within a function will not work because the original instance has not
returned to the browser.

The best widget choice for this search component is a grid. This will allow plugging
other widgets into the cells from anywhere in the script if needed. With a component,

you don’t return the app object, but rather the widget that was created. Again, this code

Building the Foundation | 105

could have been completely written in the doGet, so think of it as remotely creating the
object (thinking back to using Java in Eclipse, there was a cool menu function that would
move a chunk of code like this to a method):

 var searchGrid = app.createGrid(1,3).setId('searchGrid');

 return searchGrid;

Figure 7-3 shows the different parts that will need to go into building the component:
there is a text box, and a button or an image if you like.

Figure 7-3. Components are sets of smaller parts that always go together and plug into
the larger application

The text box goes in cell (0,0) of searchGrid and has a handler that fires on each key‐

press. Its function, searchView, will wait for keycode 13 (Enter key), and then load
another component into the content grid (more on that just ahead):

 var searchBox = app.createTextBox()

 searchBox.setName('searchBox')

 .setId('searchBox')

 .addKeyUpHandler(app.createServerKeyHandler('searchView')

 .addCallbackElement(searchBox));

 searchGrid.setWidget(0,0, searchBox);

The text box name and ID are both set so that the value entered by the user can be passed

through the handler in e.parameter. Pressing a key makes an entry when the button is

pressed down, so a keyUpHandler will be used to ensure the input is captured. The
callback is the text box itself, because that is the only thing we need to perform a search.

Most users will hit the Enter key after typing, but if there is not a way to tell the users
what that text box does, they may become confused. The magnifying glass is a well-
known icon for search, and a good choice if you would like to have an image. A button
labeled Search is also effective, and less work to create.

106 | Chapter 7: Collecting Data: A UiApp-Style Web App

Because we want this application to have a nice visual appeal, images designed by the
author will be used for the buttons. You are free to use them in any of your applications.
Switch over to the “Settings” file and add the search icon URL:

var searchIcon = 'https://sites.google.com/site/scriptsexamples/searchicon.png';

Now add the image to cell (0,1) of the searchGrid and add a clickHandler similar to

the keyHandler on the text box. Don’t forget to set the size, as it would be unfortunate
to have a four-inch-tall magnifying glass:

 var searchButton = app.createImage(searchIcon)

 .setSize('25px', '25px')

 .setId('searchButton')

 .addClickHandler(app.createServerClickHandler('searchView')

 .addCallbackElement(searchBox));

 searchGrid.setWidget(0,1, searchButton);

In the “doGet” file, add a line to load the search component into the header grid:

 headerGrid.setWidget(0,1, loadSearchBox(app)); //search component

Modular building can yield the benefit of knowing something works and moving on.
Go ahead and reload the published page to see where you are. Typing in the box or

clicking the button will cause an error because of the missing searchView function, but
you should see that your component has loaded.

Navigation Component
Now that you have built one component, the next one will be a snap. The last cell in the

headerGrid is for the buttons that allow a user to create a new record or edit and save
existing records. Again, a grid is the best tool, because each button can be placed and
replaced if necessary.

Create a new file named “Navigation Component” and add the code to create a grid six
cells wide to accommodate all the buttons:

function loadNavigation(app) {

 var navPanel = app.createGrid(1,6).setId('navPanel');

 var newFileButton = app.createImage(newFileIcon)

 .setSize('25px', '25px')

 .setId('newFileButton')

 .addClickHandler(app.createServerClickHandler('viewRecord'));

 navPanel.setWidget(0,0, newFileButton);

 return navPanel;

}

For now there is just one button, but more will be dynamically added later, depending
on the context of the application. Don’t forget to add a link for the icon in “Settings:”

var newFileIcon =

'https://sites.google.com/site/scriptsexamples/newFileIcon.png';

Building the Foundation | 107

The component is ready to be loaded into the header:

 headerGrid.setWidget(0,2,loadNavigation(app)); //navigation component

Content Area
Now that the header is loaded, it is time to start thinking about the content. What the
users see will depend on what they are doing in the application. For example, when
loading the page, a welcome image should be the first thing they see. Next, they might
search and get several records, where clicking a specific record shows just that record’s
details. These different states can be thought of as views. Therefore, a Search view will
show search results, while a Record view may have many other views, such as Edit and

View Only. These are all going to be displayed in the single-celled contentGrid.

You might be asking yourself, “Why only one cell?” The answer lies in the same concept
used for the header: we can build components and swap them out in the same grid
location to give the user many views in the same space. Another way to think of it is
that when the Search button is clicked, the script builds a search results component and
puts it in the content grid. Then, when the user wants a certain record, the script builds
a record component and puts it in the same cell in the content grid—thus writing over
the previous component.

You can’t use panels to switch out component views, because they only

have add methods and no remove method. If you add a component
to a panel and then add another component to the same panel, it will
not overwrite the first component but rather get stacked on top of the
first component. This is why a grid is used for creating application
views by writing to the same cell.

Creating this magic view manager is simple—just add a 1×1 grid to the main panel:

 var contentGrid = app.createGrid(1,1).setId('contentGrid').setWidth('100%');

 mainPanel.add(contentGrid);

The ID is important, as you can imagine—we will be calling on this grid often—and
setting the width to 100% ensures the area will be as wide as the application.

In this application, the users will always need to decide what to do first, so instead of
having a big blank area, let’s give them a splash screen.

Add an image link in “Settings:”

var startImage = 'https://sites.google.com/site/scriptsexamples/'+

 'RecordsKeeper.png';

Now create the image widget and load it in the contentGrid:

108 | Chapter 7: Collecting Data: A UiApp-Style Web App

 var splash = app.createImage(startImage).setSize('500px', '500px');

 contentGrid.setWidget(0,0, splash);

That is the end of the doGet function and the shell of the application. Figure 7-1 displays
your work up to this point. In the next section you will start pulling data from a Fusion
Table and putting some content views into that shiny new space.

Search View
Now that there are some items to click, it’s time to start wiring up actions and make the
application come to life. The Search button is straightforward: click it and it sends the

content of the textBox to your function. The textBox is a different story, because you
want to know when the user is done entering text and is ready to search (signaled by
hitting “Enter”). On each keypress, the key handler will execute the function, and this
means you must look at the key that was pressed to see if it was the “Enter” key.

Loading the search into the content grid will be much like what was done in the header,
where a component was used. This way the search can be swapped out with other types
of views but without the need to change the page.

Start by creating a new file named “Search View” and a function named searchView,

the name that was specified in the Search button and textBox handlers from the last
section:

function searchView(e){

 var app = UiApp.getActiveApplication();

 return app;

}

The very first thing that must take place is to handle that keypress. Each time a key is
pressed the function will run—not such a good idea unless you are trying to simulate
Google Instant. The problem is that the user experience may not be great if the con‐
nection is slow and results don’t display right after a keypress. We will not attempt instant
results here, but if you are interested, the best way to go about it is to fetch the results
that start with the first letter entered and keep them in an array. Then start providing
results from the array after the third letter is entered.

For our application we need to know if it was the Search button or the textBox that

executed; that is determined by e.parameter.source.

The values passed by a handler carry some very important proper‐

ties. e.parameter.source will tell you the ID of the widget that exe‐

cuted the handler so you know who is calling. e.parameter.key

Code will tell you the keycode for a given key, which is how you find
the Enter key (the Enter keycode is 13, by the way).

Building the Foundation | 109

An if statement helps to figure out what to do given the event that comes into the
function. If the Search button was clicked, we could just go ahead and run the function,

but what if there was no value entered in the textBox? Later in this section you’ll be able
to figure out why this will return all the results in your database, which may not be

desirable. To keep that from happening, check to see if the textBox has a value of nothing

(not “null,” that is different; a textBox with nothing entered has a value of '', also known
as an empty string).

The next check is for the Enter key when the caller is also the textBox. If the conditions

are true, the textBox empty, or the Search box was not sending the Enter key, then we
just return the app. On the user’s side of things, it looks like they are just typing in the
box:

 if (e.parameter.source=='searchBox' && e.parameter.keyCode!=13 ||

 e.parameter.searchBox=='') {

 return app;

 }

After entering this code, try out the UI. Typing in the box, pressing “Enter,” and clicking
the Search button don’t seem to do anything; that is because the app is being returned

with no changes. There is no need to have an else part to the if statement; it is sufficient
to just send back the call and wait on the next.

Once an acceptable condition has made it past the if gatekeeper, we can assume a list
of matching data needs to be returned from the database. For this component you will
build what is almost a mini app inside your application. Create a vertical panel to hold
everything that will be returned and inserted in the content grid. You can set values in

a widget already loaded in the UI using getElementById.

Remember that getElementById is a one-way street; you can set
values but you can’t get them. The only way to get a value is to push
it through a handler.

One way to understand this is to compare it to ordering at a restaurant. You figure out
what you want on the menu and ask the waiter to get it. The waiter heads to the kitchen,
gets a plate, and loads it with the food you asked for, then brings it back to the table for
your consumption. We need to build the plate, along with something to keep the bread
from soaking up all the gravy. When you need to add data to a UI, but you don’t know
how many items there will be, the right tool is a Flex Table. To give things some breathing

room, set the cell padding at 5. Call this variable searchHeader because the user will
need to know what the data returned means. This first Flex Table will contain the headers
for the data that is returned by the search:

110 | Chapter 7: Collecting Data: A UiApp-Style Web App

 var searchPanel = app.createVerticalPanel();

 app.getElementById('contentGrid').setWidget(0,0, searchPanel);

 var searchHeader = app.createFlexTable().setCellPadding(5);

 searchPanel.add(searchHeader);

 applyCSS_(searchHeader, _headerGrid);

Notice that there is CSS applied to the header table. This is the same CSS used to put a
line under the search component and gives a nice consistency. Searching from the UI
will now replace the welcome graphic with a tiny underline where the empty table is.

After the headers comes the data, so make a second Flex Table to hold it and add it to
the search panel. Because the search panel is a vertical panel, the two tables will line up
nicely and appear to be the same table to the user:

 var searchTable = app.createFlexTable().setId('searchTable');

 searchPanel.add(searchTable);

Creating the Data Store
Now that we have a few tables, we need something to fill them, but we don’t have a data
store yet. For this application we are going to use a Google Fusion Table. What is that?
The short answer is that it is a flat, nonrelational database that can hold huge amounts
of data. What makes it attractive is that it has many visualization tools built on top of
it, allowing you to see your data in very creative ways. For example, the application we
are building in this chapter could have a location column that allows a direct export to
Google Maps, so you can see where your customers are being best served. Fusion Tables
has an API, which is how we will connect to it. But what makes it a very interesting
option for developers like you is that it uses SQL-style arguments to interact with the
tables.

You can make a Fusion Table in Google Documents right from the “Create” button
(“Create”→“Table”).

Click “New table” on the left and select “New empty table.” You can change the name
of the table (Edit→“Modify table info”), but what we are really interested in is the ID of

the table. Look in the address bar and find the string after docid=; that number is your
table ID.

The Fusion Tables API will allow you to control the table by adding or removing col‐
umns, setting the names and types of columns, and using all the data access features
you would expect. While you have the new table open, let’s change around some of the
columns so it will be set up for the application we are building in this chapter.

Click “Edit,” choose “Modify table info,” and change the names and data types to match
what you see in Figure 7-4.

If you make a mistake or need to delete or add a row, just go back to the Edit menu and
find the choice to fix the problem.

Building the Foundation | 111

http://bit.ly/g-fusion-t
http://bit.ly/create-gtable

Add a few rows of information to have something to work with while building the
application. Once your columns are set up and a few records entered, make a note of
the table ID and head back over to your script.

Figure 7-4. Modifying the table properties

Configuring Fusion Tables Access
I won’t lie: Google has made this a constantly changing area that is a pain to set up.
Always check the Google Docs on setup if you are seeing errors.

To begin, go to the Google Cloud Console and click the Create Project button
(Figure 7-5).

Figure 7-5. The new Cloud Console

112 | Chapter 7: Collecting Data: A UiApp-Style Web App

http://bit.ly/cloud-console

After the project is created, you will need to click on “APIs & auth” on the left, and then
“APIs.” Go down the page until you find the Fusion Tables API and turn it on
(Figure 7-6).

Figure 7-6. Enabling the Fusion Tables API

Now click on “Registered apps” and click “Service Account-project.” This will open a
screen that has a button to download the JSON (Figure 7-7). Download the file and
open it in TextEdit or a similar program.

Figure 7-7. Getting your client secret

Configuring Fusion Tables Access | 113

After opening the .json file you will need to locate your app’s client_secret and cli

ent_id values.

Now you will need to add FusionTablesApp and ObjApp to your script resources. Here
are the keys:

• MTeYmpfWgqPbiBkVHnpgnM9kh30YExdAc

• MB8gYUxJO6QA4LYpjO7EWjeVJ5jnXUK_T

Add the following code to your Settings.gs file. You will need to use your own values for

the FusionId, ClientId, and ClientSecret:

function setup(){

 FusionTableApp.setFusionId('<YOUR_FUSION_TABLE_ID>');

 FusionTableApp.setClientId('443814946.apps.googleusercontent.com');

 FusionTableApp.setClientSecret('kXmuCqZJBuc19q3JAkL_P');

 Logger.log(FusionTableApp.getFusionHeaders());

}

If all has gone well, you should see a list of your headers in the log.

Getting Data from a Fusion Table
After the Search button is clicked or the Enter key pressed, the script will need to know

the value of the textBox. In the “Search Component” file, the name of the textBox was

set to searchBox, and it can be called from the value passed from the handler in e.pa

rameter:

 var searchKey = e.parameter.searchBox;

The Fusion Tables class has the method searchFusion(target, where). The target
specifies the columns you want to have returned in the search. Each value must be
quoted. It can also take the all-columns argument, *. The only columns we want to
search are the first and last names, so we can trim down the list. The second argument

is a SQL WHERE statement, which completes the query by saying, “Where the column
named First Name contains your search key, return matching records but only the values
in columns First Name and Last Name”:

var arrayResult1 = FusionTablesApp.searchFusion("'First Name', 'Last Name'",

 "'First Name'"+" CONTAINS IGNORING CASE '"+ searchKey+"'");

We want to search both the first and last name, but there is not an OR to the WHERE
statement, meaning a second call must be made:

var arrayResult2 = FusionTablesApp.searchFusion("'First Name', 'Last Name'",

 "'Last Name'"+" CONTAINS IGNORING CASE '"+ searchKey+"'");

The FusionTablesApp.searchFusion(target, where) method returns an array

[[headers],[match row],[match row]…], which is perfect for turning into an object

114 | Chapter 7: Collecting Data: A UiApp-Style Web App

that we can then easily call on for values. The problem is that we need to combine them,

and we only want the first set of headers located at [0] in each array. Taking care of this

requires a few JavaScript tricks and the help of splice and concat:

 arrayResult2.splice(0,1);

 var concatArray = arrayResult1.concat(arrayResult2);

Splice off the first element in array number 2, and then glue the second array onto the

first using concat. If you want to search more columns, just repeat the splice on each

new array. Then, in concat, line up the arrays in the argument, as in (arrayResult2,

arrayResult3, …).

The search array is put together and can be made into an object as follows:

 var fusionSearch = ObjApp.rangeToObjects(concatArray);

As discussed in Chapter 5, rangeToObjects turns the header values into camelCase, so

“First Name” becomes firstName. It also makes an object that can be used as fusion

Search[0].firstName, to get the result to be the First Name value of the first result
returned.

Figure 7-8 shows the relationships between the arrays and objects created in the last
several steps.

Figure 7-8. An example of an array converted to an object that uses key/value pairs

Loading the Data in the UI
The first element in the concatArray is an array of the column names, or the headers.
When the search results are presented to the users they will need to know what the data

is about, and having headers will accomplish the task. Set up a for loop and iterate the

first element in the concatArray using its bracket call, [0].

Configuring Fusion Tables Access | 115

The searchHeader table will hold the header values going across the page; therefore,

when you iterate, set each header value into its cell by using parseInt(i) in the table
column. Note that you don’t have to know what information was in the search; the loop
will take care of anything you hand to it.

Create a label widget to hold the value for each column, which is at [0][i]. Setting the
width will help space things nicely across the application, but you may need to play with
the value:

 for (i in concatArray[0]){

 searchHeader.setWidget(0, parseInt(i), app.createLabel(concatArray[0][i])

 .setWidth('150px'));

 }

A few important points: you could use setText in place of setWidget, which would
make for less coding, but it would also mean that you have less control over setting style
properties for the headers. What if you don’t want to show certain columns? My question
would be, “Why get them in the first place?” However, you might have a use case: let’s
look at that now. Load the UI in the browser, type in a few letters that exist in one of the
records you added earlier, and see what you get. Figure 7-9 shows that the headers have
been returned from the Fusion Table, telling us that everything is working up to this

point and that there is an extra column, rowid, that we didn’t ask for.

Figure 7-9. Sample headers returned from the Fusion Table

In a Fusion Table each row has a unique ID, and this is the only way to update a specific
record. Therefore, having the row ID in your search results is important to working
with a record—but you might not want to show it to the user. To hide it from view, it
needs to not load into the header table. Before the table loads a header value, inspect it

to see if it has the name rowid; if it does, use the continue statement to have the loop
skip to the next value:

 if (concatArray[0][i]=='rowid')

 continue;

Now when you reload the page, it will only show the First and Last Name columns. To

hide more columns, add || (OR) statements to the loop conditions.

116 | Chapter 7: Collecting Data: A UiApp-Style Web App

One reason for using the Fusion Tables class is that it adds the row

id, which is not returned in a typical Fusion request. This simplifies
working with the data.

The next step is to iterate through the results in the fusionSearch array and list out the
values under each column. This could be done by simply adding the results into each

row of the searchTable; however, the user should be able to click anywhere on the row
and have that record open. If you add each value one at a time, you will also need to
attach a click handler to each one. In the next section you’ll see is a trick for highlighting
the whole row that makes the upcoming solution even more attractive.

Remember that a handler can be added to most widgets, and the Flex Table will allow

a click handler. We are going add a Flex Table to each row of the fusionSearch table,
add a handler, and then fill the table in each row with the search results. Figure 7-10
shows the layout of tables in relation to the data they will hold.

Figure 7-10. Example of Flex Tables within Flex Tables

For each element in the fusionSearch array, a new record table is created and a handler

attached, so that clicking anywhere in that row executes the viewRecord function. Most

importantly, each record table that is created will have an ID set to the rowid of the

corresponding record that was returned in the search. When viewRecord runs, it will

look at e.parameter.source to see who called it, and this is how we will know which
record was selected:

 for(j in fusionSearch){

 var record = app.createFlexTable().setId(fusionSearch[j].rowid)

 .setCellPadding(5)

 .addClickHandler(app.createServerClickHandler('viewRecord'));

 applyCSS_(record, _rows);

 //load record here

 searchTable.setWidget(parseInt(j), 0, record);

 }

Configuring Fusion Tables Access | 117

Additionally, CSS is applied to each row to add a line that separates each record. Don’t
forget to add a CSS entry in your “CSS” file:

 var _rows =

 {

 "border-bottom":"2px solid #C0C0C0"

 }

Find the comment in the code that reads //load record here, and replace it with a
loop to iterate the search results. This is done by iterating the number of headers in

concatArray[0] as shown, giving “i” number of columns and also using the row in

fusionSearch[j]. To ensure the right value goes in the correct column, use camel

String(concatArray[0][i]). Written in English, this would read, “Get the first header
name and camel it, then find the matching value in the current row of data from the
search results”:

 for (i in concatArray[0]){

 if (arrayResult1[0][i]=='rowid')

 continue;

 record.setWidget(parseInt(j), parseInt(i),

 app.createLabel(fusionSearch[j][ObjApp

 .camelString(concatArray[0][i])])

 .setWidth('150px')

 //client handlers go here

);

 }

Again, the rowid is skipped over to hide it from the user.

At this point you can load the UI page, do a search, and see results. Clicking a row will

throw an error, reminding you to create the add viewRecord function. There is some‐
thing else amiss as well.

Adding Client-Side Handlers
When you move the mouse over one of the records nothing happens, so the users won’t
know if the item is selectable or even if they are hovering in the right place. The best
way to give them feedback is to add a few mouse handlers to each record that will change
the display. You might be wondering why we are adding these handlers to each label
and not to the Flex Table. The answer is that the Flex Table will not take a mouse handler,
so we need a trick.

Unlike a standard handler that requires a trip to the server and back, the client-side
handlers run from the browser, giving a very fast response time. When the user rolls
over one of the labels, the client handler will find the record with the right ID and change
its text and background colors. Rolling off sets them back to the way they were. Now
the user has positive feedback for the record she would like to select:

118 | Chapter 7: Collecting Data: A UiApp-Style Web App

.addMouseOverHandler(app.createClientHandler()

 .forTargets(app.getElementById(fusionSearch[j].rowid))

 .setStyleAttribute('color', 'blue')

 .setStyleAttribute('background', 'FFFF99'))

.addMouseOutHandler(app.createClientHandler()

 .forTargets(app.getElementById(fusionSearch[j].rowid))

 .setStyleAttribute('color', 'black')

 .setStyleAttribute('background', 'transparent'))

Viewing a Record
The user can search for records in the database; the next step is to focus on one record
to view all of the details. The process is very similar to displaying the search results, but
the columns will be listed down the page with a label on the left and a text box on the
right. Later, certain headers will be picked out to allow special formatting, like a bigger
box for the Notes field.

Figure 7-11 shows an example of how the layout will look using the columns in the
example; however, the columns will be automatically generated to allow for changes in
the database without the need to hardcode what will display.

Figure 7-11. Layout of form elements

The record view will replace the search results in the content screen; therefore, it can
be thought of as a component similar to the others.

Fetching the Correct Record
Create a new file, name it “Record View,” and start off with the component code as
before:

function viewRecord(e) {

 var app = UiApp.getActiveApplication();

 //add code here

Viewing a Record | 119

 return app;

}

If you remember the last section, each row in the searchTable was given the ID of the

rowid from which the record came. This allows us to use e.parameter.source to find
out the name of the called record. It’s handy that the caller is the record ID that we need
to display. Load the ID into a variable to make the code more readable, and use the

searchFusion method to call on a specific record:

var recordId = e.parameter.source;

var arrayResult = FusionTablesApp.searchFusion("*", "'rowid' = '"recordId"'");

var fusionRecord = ObjApp.rangeToObjects(arrayResult)[0];

The arguments say that we want all ("*") columns where the rowid is equal to the

recordId variable. Because each row in a Fusion Table has a unique ID, there will be

only one result. Next, the values need to be paired with each column using the range

ToObjects method. This returns an array even though it is only one element long. To

save some writing, trim down the array to a single object using [0].

Now the correct record has been retrieved and the values loaded into a workable format.
To create the UI, we need a Flex Table to fill with the content from the database:

 var viewRecordTable = app.createFlexTable().setCellPadding(5)

 .setId('viewRecordTable');

 app.getElementById('contentGrid').setWidget(0,0, viewRecordTable);

Unless you have some tricky arrangement for the panels and widg‐
ets, it’s a good idea to get into the habit of adding them to their parent

right after creating them. Even though we added the viewRecordTa

ble to the contentGrid right after creating it, the table can be modi‐
fied and more elements added to it later in the code.

The arrayResult[0] holds the column names from the database; for example, [First

Name, Last Name, Date, Notes, rowid]. Don’t forget that the searchFusion method

always adds the rowid. To fill the viewRecordTable with content, iterate the values in

arrayResult[0]. As discussed in Chapter 5, the elements are arranged three across the
page and in rows continuing down the page for as much content as the database contains.
If that is the look you are going for, a few more loops should get you there. We’ll discuss
getting a specific look or arrangement in the next section.

There are two elements that need to be created: a label for the name of the column and

a textBox to hold the value. The first element in the setWidget method will specify the

row in the Flex Table, and you must use parseInt(i) to ensure that it has been turned
into an integer. Flex Tables are zero-based, so to put the label in the far left column, use

the 0 argument for placing the label. Put the textBox right next to the label, in
position 1:

120 | Chapter 7: Collecting Data: A UiApp-Style Web App

 for (var i in arrayResult[0]){

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setWidth('350px').setEnabled(false)

);

 }

Use arrayResult[0][i] to get the column’s name and create the label. For the text

Box, we want the ID and name values to both be cameled text of the column names.

Widget name and ID values must be JavaScript-safe, or they will

throw errors. The ObjApp.camelString method will make the con‐
version for you.

The value for the column is held in fusionRecord.<columnName>. To ensure you get
the right value for the right column, call on the current column name being iterated and
camel it.

A little increase on the width gives a better presentation, and the textBox is set to

disabled. The reason we set the textBox to disabled is to provide a View Only mode in
the application. We don’t want any changes unless they are intended, right?

Reload the UI page, do a search, and click one of the records. Figure 7-12 shows a specific
record displayed in the content area, organized by rows.

Figure 7-12. View Only mode disables the text boxes to prevent unintended editing

Viewing a Record | 121

Custom Formatting
Having all the details show up for the correct record is a great first step, but what if you

need to hide something or make certain areas different than others? The rowid is not
something your user will care about, and that Notes field is too small to read longer
entries. To solve these issues, we will need to create a way to check if a certain column
is going to be loaded and perform the appropriate action.

One way to check the column is with an if/else if statement. Managing this gets

messy, though, and it’s not very efficient because each if statement must be evaluated
before going on to the next. This would not be a problem for our small database, but if
your application was deployed in research the number of columns could go into the
thousands, and that may make for a sluggish response.

In JavaScript, a better way to handle selecting specific criteria is to use a switch state‐

ment. A switch works by giving it a value and matching that value to a certain case you
define (an optional default case will match if no cases fit the criteria).

Inside the for loop, modify the code to be set up as the default case. The value for the

switch to evaluate is the column value. There’s no need to camel it, as each case can
take a string value as its argument:

 switch (arrayResult[0][i]){

 //add more cases here

 default:

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setWidth('350px').setEnabled(false)

);

 break;

 }

To get started, the Notes section needs to be a text area, not a box. This will give the user
a larger area for display and scroll bars if the text goes beyond the size settings.

Insert the Notes case above the default case:

 case 'Notes':

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextArea()

 .setSize('350px', '100px')

 .setId(ObjApp.camelString(arrayResult[0][i]))

122 | Chapter 7: Collecting Data: A UiApp-Style Web App

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setEnabled(false)

);

 break;

Each case starts with the column name as a quoted string and ends with break;. Change

the textBox to a textArea (.createTextArea()) and use setSize to give the box some
boundaries.

The rowid, while very important to the application, has no meaning to the user. Set a

case for it next, and hide it by setting its visibility to false. Why load it at all? We will

get to that when saving changes (think e.parameter):

 case 'rowid':

 //no label required

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setVisible(false) //hide the row

);

 break;

Formatting a listBox
So far this application has displayed text, but it would be useful to have the user make

a selection from a predefined list. The listBox is the widget that displays as a drop-
down box with selections to choose from; it can be created just like a text box, but a few
more steps are needed to set up the options.

Open your “Settings” file and create an array with the options you would like to appear
in the list:

 var statusValues = ['Open', 'Pending', 'Closed'];

Next, open the Fusion Table and add a new Status column: click “Edit,” choose “Add
column,” type in “Status” as the column name, and use the arrow icon to move it above
the Notes column, as shown in Figure 7-13.

Viewing a Record | 123

Figure 7-13. The format of the column is set in the type drop-down

If you reloaded the UI page now, you would see that the new Status column has been
generated as a text box.

The Status case is similar to the other cases, but it has additional code to add values to

the listBox from the array in the “Settings” file:

 case 'Status':

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 var status = app.createListBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .addItem(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setWidth('100px').setEnabled(true);

 viewRecordTable.setWidget(parseInt(i), 1, status);

 for (k in statusValues){

 if (statusValues[k] != fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 status.addItem(statusValues[k]);

 }

 break;

For a new record, the Status column will be an empty string and will render as a blank
box with a down arrow. That will be fine for this application, but if you need to present

more information to the user, simply add an if statement before the listBox is created
to handle empty strings.

124 | Chapter 7: Collecting Data: A UiApp-Style Web App

After creating the listBox, the for loop loads in the options from the array and includes
a check for an existing value, so it is not displayed twice in the list. Note in the preceding

code that the listBox is enabled so you can click on it. Don’t bother disabling it, because
a variable will be added in “Inserting a New Record” on page 128 to control that.

Reload the UI page and go through the steps to set up a record. Now click the Status

listBox and choose an option.

Editing a Record
Things are looking good. The user has an application that opens with a nice greeting,
searches the database when keywords are entered, and displays specific records. We did
not want to allow a record to be changed while viewing to avoid inadvertent changes,
but now the functionality will be added to make edits. This is actually very easy to do:

simply enable the textBoxes. However, there will need to be a button and method to
perform the task.

Open the “Settings” file and add an Edit icon:

var editIcon = 'https://sites.google.com/site/scriptsexamples/editIcon.png';

An Edit button is created before the return app; line and placed in position (0,1) of

the navPanel. It will call on the editRecord function, yet to be created, and pass the

viewRecordTable in the callback:

 var editButton = app.createImage(editIcon)

 .setVisible(true)

 .setSize('25px', '25px')

 .setId('editButton')

 .addClickHandler(app.createServerClickHandler('editRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0, 1, editButton);

Create a new file and name it “Edit Record.” Write the editRecord function, shown
next, and get/return the active application.

The Fusion Tables class has the getFusionHeaders method, which returns an array of

all the column names. Use camelArray on this and you will have an array of column

names that match the textBox names. Iterate the headers and set each matching element
to enabled:

function editRecord(e){

 var app = UiApp.getActiveApplication();

 var headers = ObjApp.camelArray(getFusionHeaders());

 for (i in headers){

 app.getElementById(headers[i]).setEnabled(true);

 }

Editing a Record | 125

http://bit.ly/fusion-t-ex

 app.getElementById('editButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(false);

 return app;

}

During Edit mode, you don’t want the user to create a new record; you are already
editing, so hide these buttons by setting their visibility.

Save your work and reload the UI. The Edit button will appear when a record is loaded

in View Only mode, and clicking Edit will enable all the textBoxes.

There are two outcomes to editing a record: save the changes, or cancel, which does not
save changes. Let’s deal with cancel first.

Open the “View Record” file and add a Cancel button after the Edit button. The visibility

is set to false, so the Cancel button is not seen when the view is loaded. The function

it calls will be viewRecord. That is interesting because viewRecord was what loaded the
View Only mode. What we are doing here is reloading the view for the same record
without making changes, giving the appearance that the data was reset in the application:

 var cancelButton = app.createImage(cancelIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('cancelButton')

 .addClickHandler(app.createServerClickHandler('viewRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0, 3, cancelButton);

Don’t forget to add a Cancel icon in the “Settings” file:

var cancelIcon = 'https://sites.google.com/site/scriptsexamples/CancelIcon.png';

To make the button show up in the navigation, add a line at the end of the “Edit Record”
file to make it visible:

 app.getElementById('cancelButton').setVisible(true);

If you tried the Cancel button now it would give you an error, because when viewRe

cord runs it uses the name of the caller to find the record. Coming from the search, the

name is a rowid, but coming from the Cancel button, the name is e.parameter.source

= cancelButton. At first this appears to be a huge problem, but remember that view

RecordTable was passed in the cancel handler and that e.parameter.rowid holds the

rowid value. See why we just hid it earlier?

To make the Cancel button work, modify the beginning of the “View Record” file to

check e.parameter.source by replacing the line:

var recordId = e.parameter.source;

with an if/else statement to check if the Cancel button was clicked:

126 | Chapter 7: Collecting Data: A UiApp-Style Web App

 if (e.parameter.source == 'cancelButton'){

 var recordId = e.parameter.rowid;

 app.getElementById('newFileButton').setVisible(true);

 }else{

 var recordId = e.parameter.source;

 }

Reload the UI page and check the operation. When changes like deleting content are
made, clicking Cancel resets the record and places the user back in View Only mode.

Saving Changes
When the user makes changes, they will need to be written to the spreadsheet. First,
create a Save button. As with the Cancel button, an icon is added to the navigation panel.

In this chapter, icons have been used for the buttons to create a cus‐
tom look and feel. However, if you don’t have the time for this or don’t
care to take the time for this, you can use a button widget. By using
CSS to style all the buttons, you can add a creative flair with roun‐
ded corners and other effects.

In the “Settings” file, add a Save icon:

var saveIcon = 'https://sites.google.com/site/scriptsexamples/saveicon.png';

Insert the Save button in the “Record View” file after the Cancel button, so it can join

its friends in the navPanel at location (0,2). The arrangement between the buttons is
not really important—just don’t put two buttons in the same cell, or only the second
one set will show, making for a great deal of confusion and troubleshooting. The handler

will execute the saveRecord function (which we’ll create in a moment) and, like the

Cancel button, it adds the viewRecordTable as the callback, giving access to all the
widgets contained in the table:

 var saveButton = app.createImage(saveIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('saveButton')

 .addClickHandler(app.createServerClickHandler('saveRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,2, saveButton);

You will need to change the visibility of the “Save” button in the “Edit Record” file when
the edit view is loaded by adding one more line before returning the app:

 app.getElementById('saveButton').setVisible(true);

The buttons are now in order, and the Save Record file can be created to handle saving
to the Fusion Table. What it takes to save to the Fusion Table may surprise you:

Saving Changes | 127

function saveRecord(e){

 var app = UiApp.getActiveApplication();

 FusionTablesApp.writeFusionObj(e.parameter);

 return app;

}

I’m joking: it is only one line of code. The reason is that the Fusion Tables class method,

writeFusionObj, uses the values in e.parameter to determine which row needs to be
written to and the correct values for each column.

The user should be notified that the changes were saved, and the best way to do that is
the “Last look” scenario: send the user back to the View Only mode after the save, where
he can check that the values are correct before leaving.

The values are already there in the textBoxes, so disable them and update the visibility
of the buttons:

 for (i in headers){

 app.getElementById(headers[i]).setEnabled(false);

 }

 app.getElementById('cancelButton').setVisible(false);

 app.getElementById('saveButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(true);

 app.getElementById('editButton').setVisible(true);

Inserting a New Record
It may have seemed strange to wait until so late in the application development to start
creating new records, but this is because inserting a record piggybacks on the work that
is already done, and there is no need to add any new files.

The “New File” button has been hanging around in the navigation bar forever, so it is
time to put it to work. Looking back to the “Navigation Component” file where the

button was first created, you will note that it executes the viewRecord function. If you
are having déjà vu, don’t worry, you ran into the same problem with the Cancel button.

Open the “Record View” file and get ready to make a few changes. When viewRecord

runs, all the textBoxes are disabled, and that would mean an extra click to start entering
data. To overcome this limitation, create a variable for enabled status right after the app

is created, and replace the three false values in the setEnabled calls to newRecord.
Right now that will have the exact same effect, but it gives us the option to toggle

newRecord to true and have all the textBoxes live when loading viewRecord:

 var newRecord = false;

128 | Chapter 7: Collecting Data: A UiApp-Style Web App

Reading down the code, skip past the if statement for the Cancel button and create a

new if statement to handle the newFileButton. The e.parameter.source will tell us

that the caller is the newFileButton. The idea is to create an object that is the same as
what would be created by running a search for a specific ID, but with empty values.

Grab the column names with the getFusionHeaders method. You will need to add rowid

by pushing it into the arrayHeaders. To work in the rest of the code, arrayHeaders

needs to be enclosed in brackets and set as the value for arrayResult. The fusionRe

cord can be an empty object because we don’t want any values. This is a new record, so

set newRecord = true.

To preserve the previous function, add an else statement and enclose the two lines that
created the data variables:

 if (e.parameter.source == 'newFileButton'){

 var arrayheaders = FusionTablesApp.getFusionHeaders();

 arrayheaders.push('rowid');

 var arrayResult = [arrayheaders]

 var fusionRecord = new Object();

 newRecord = true;

 }else{

 var arrayResult = FusionTablesApp.searchFusion("*", "'rowid' = '"+

 recordId+"'");

 var fusionRecord = ObjApp.rangeToObjects(arrayResult)[0];

 }

Because the UI is going to load with the textBoxes enabled, there is no need for the
“Edit” button to be showing. To hide it, go to the end of the code before the app returns

and add an if statement to check for the newRecord value and hide the Edit button if

it’s true:

 if(newRecord)

 editButton.setVisible(false);

Reloading the UI page and clicking the Create Record button will now load the form,
ready to accept values as shown in Figure 7-14.

Inserting a record in a Fusion Table is not the same call as saving a record, and requires

a different method. Currently there is no value in the rowid, which could be detected
from a Save button press; however, to add some distinction for the user, an Insert Record
button will be used.

Inserting a New Record | 129

Figure 7-14. The Create Record form is the same as the Edit form, but no record has
been inserted

You know the drill; add an icon in the “Settings” file:

var insertIcon = 'https://sites.google.com/site/scriptsexamples/

 InsertRecordIcon.png';

and add an Insert button after the other buttons in the “Record View” file:

 var insertRecordButton = app.createImage(insertIcon)

 .setVisible(newRecord)

 .setSize('25px', '25px')

 .setId('insertRecordButton')

 .addClickHandler(app.createServerClickHandler('saveRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,4, insertRecordButton);

This will give a different look to inserting over saving.

Moving over to the “Save Record” file, add an if statement to detect the insertRecord

Button press. The insertFusionObj method returns the rowid for the inserted row,

and calling it within the setValue method will set the value into the UI all at the same
time. It looks a bit tricky but is an easy way to combine functions. Wrap up the

writeFusionObj call in an else statement to keep the Save button working:

 if(e.parameter.source == 'insertRecordButton'){

 app.getElementById('rowid')

 .setValue(FusionTablesApp.insertFusionObj(e.parameter).toString())

 .setEnabled(false);

 }else{

 FusionTablesApp.writeFusionObj(e.parameter);

 }

130 | Chapter 7: Collecting Data: A UiApp-Style Web App

After the “Insert” button has been pressed, the user will be returned to “View Only”
mode. This means the Insert button needs to be hidden before returning the app:

 app.getElementById('insertRecordButton').setVisible(false);

Reload the UI page and create a record. After inserting the record, do a search and you
will see the new record in the search results.

Deleting a Record
At this point you could probably guess how to delete a record, but we will go through
the steps one last time so your application is polished and ready to deploy.

Back in the “Settings” file, add a “Delete” icon:

var deleteIcon = 'https://sites.google.com/site/scriptsexamples/killRecord.png';

In the “Record View” file, add the “Delete” button after the others, and set the handler

to execute the deleteRecord function:

 var deleteButton = app.createImage(deleteIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('deleteButton')

 .addClickHandler(app.createServerClickHandler('deleteRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,5, deleteButton);

After saving a file, the “Delete” icon needs to be switched off; that happens at the end
of the “Save Record” file:

 app.getElementById('deleteButton').setVisible(false);

UI details out of the way, create a new “Delete Record” file and add a delete call to the
Fusion Table. The UI will need to be updated with a message that the removal has taken
place and the buttons reset to the beginning state:

function deleteRecord(e){

 var app = UiApp.getActiveApplication();

 FusionTablesApp.deleteFusionRow(e.parameter.rowid);

 app.getElementById('contentGrid')

 .setWidget(0,0, app.createLabel('Record has been Deleted forever!'));

 app.getElementById('cancelButton').setVisible(false);

 app.getElementById('saveButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(true);

 app.getElementById('deleteButton').setVisible(false);

 return app;

}

Deleting a Record | 131

The application is done; take a deep breath. As a final test, reload the UI page and create
a new record. Do a search for the record and press the Edit button. Add some more
information and click Save. Edit again and click Delete.

Where you go from here is a matter of customizing the core functionality you have built
in this chapter.

Full Code
You can find all of the code for the files below on this book’s Google Drive.

Code for settings.gs.

var statusValues = ['Open', 'Pending', 'Closed'];

var logoImage = 'https://sites.google.com/site/scriptsexamples/

scriptGear.png';

var startImage = 'https://sites.google.com/site/scriptsexamples/

RecordsKeeper.png';

//button icons

var searchIcon = 'https://sites.google.com/site/scriptsexamples/

searchicon.png';

var newFileIcon = 'https://sites.google.com/site/scriptsexamples/

newFileIcon.png';

var editIcon = 'https://sites.google.com/site/scriptsexamples/editIcon.png';

var cancelIcon = 'https://sites.google.com/site/scriptsexamples/CancelIcon.png';

var saveIcon = 'https://sites.google.com/site/scriptsexamples/saveicon.png';

var insertIcon = 'https://sites.google.com/site/scriptsexamples/InsertRecordI-

con.png';

var deleteIcon = 'https://sites.google.com/site/scriptsexamples/killRecord.png';

function setup(){

FusionTableApp.setFusionId('1RCEec2uDQXprJTDKurRuR55Xsn2kS4wYJnS4kec');

FusionTableApp.setClientId('434188666232.apps.googleusercontent.com');

FusionTableApp.setClientSecret('IBQwebGJf9xueDJmNzQbgTBg');

Logger.log(FusionTableApp.getFusionHeaders());

}

Code for CSS.gs.

function applyCSS_(element, style){

 for (var key in style){

 element.setStyleAttribute(key, style[key]);

 }

}

 var _headerGrid =

 {

 "border-bottom":"2px solid #404040"

 }

132 | Chapter 7: Collecting Data: A UiApp-Style Web App

http://bit.ly/ch7-code

 var _rows =

 {

 "border-bottom":"2px solid #C0C0C0 "

 }

Code for doGet.gs.

function doGet(e) {

 var app = UiApp.createApplication().setTitle('Record Manager');

 var mainPanel = app.createVerticalPanel();

 app.add(mainPanel);

 var headerGrid = app.createGrid(1,3).setId('headerGrid').setWidth('500px');

 mainPanel.add(headerGrid);

 applyCSS_(headerGrid, _headerGrid);

 var logo = app.createImage(logoImage).setSize('30px', '30px');

 headerGrid.setWidget(0,0,logo);

 headerGrid.setWidget(0,1, loadSearchBox(app)); //search component

 headerGrid.setWidget(0,2,loadNavigation(app)); //navigation component

 var contentGrid = app.createGrid(1,1).setId('contentGrid').setWidth('100%');

 mainPanel.add(contentGrid);

 var splash = app.createImage(startImage).setSize('500px', '500px');

 contentGrid.setWidget(0,0, splash);

 return app;

}

Code for Search Component.gs.

function loadSearchBox(app) {

 var app = UiApp.getActiveApplication();

 var searchGrid = app.createGrid(1,3).setId('searchGrid');

 var searchBox = app.createTextBox();

 searchBox.setName('searchBox')

 .setId('searchBox')

 .addKeyUpHandler(app.createServerHandler('searchView')

 .addCallbackElement(searchBox));

 searchGrid.setWidget(0,0, searchBox);

 var searchButton = app.createImage(searchIcon)

 .setSize('25px', '25px')

 .setId('searchButton')

 .addClickHandler(app.createServerHandler('searchView')

 .addCallbackElement(searchBox));

 searchGrid.setWidget(0,1, searchButton);

 return searchGrid;

}

Full Code | 133

Code for Navigation Component.gs.

function loadNavigation(app) {

 var navPanel = app.createGrid(1,6).setId('navPanel');

 var newFileButton = app.createImage(newFileIcon)

 .setSize('25px', '25px')

 .setId('newFileButton')

 .addClickHandler(app.createServerClickHandler('viewRecord'));

 navPanel.setWidget(0,0, newFileButton);

 return navPanel;

}

Code for Search View.gs.

function searchView(e){

 var app = UiApp.getActiveApplication();

 if (e.parameter.source=='searchBox' && e.parameter.keyCode!=13 ||

 e.parameter.searchBox=='') {

 return app;

 }

 var searchPanel = app.createVerticalPanel();

 app.getElementById('contentGrid').setWidget(0,0, searchPanel);

 var searchHeader = app.createFlexTable().setCellPadding(5);

 searchPanel.add(searchHeader);

 applyCSS_(searchHeader, _headerGrid);

 var searchTable = app.createFlexTable().setId('searchTable');

 searchPanel.add(searchTable);

 var searchKey = e.parameter.searchBox;

 var arrayResult1 = FusionTableApp.searchFusion("'First Name', 'Last Name'",

 "'First Name'"+" CONTAINS IGNORING CASE '"+ searchKey+"'");

 var arrayResult2 = FusionTableApp.searchFusion("'First Name', 'Last Name'",

 "'Last Name'"+" CONTAINS IGNORING CASE '"+ searchKey+"'");

 arrayResult2.splice(0,1);

 var concatArray = arrayResult1.concat(arrayResult2);

 var fusionSearch = ObjApp.rangeToObjects(concatArray);

 for (i in concatArray[0]){

 if (concatArray[0][i]=='rowid')

 continue;

 searchHeader.setWidget(0, parseInt(i), app.createLabel(concatArray[0][i])

 .setWidth('150px'));

 }

 for(j in fusionSearch){

 var record = app.createFlexTable().setId(fusionSearch[j].rowid)

 .setCellPadding(5)

 .addClickHandler(app.createServerClickHandler('viewRecord'));

 applyCSS_(record, _rows);

 for (i in concatArray[0]){

134 | Chapter 7: Collecting Data: A UiApp-Style Web App

 if (arrayResult1[0][i]=='rowid')

 continue;

 record.setWidget(parseInt(j), parseInt(i),

 app.createLabel(fusionSearch[j][ObjApp

 .camelString(concatArray[0][i])])

 .setWidth('150px')

 .addMouseOverHandler(app.createClientHandler()

 .forTargets(app.getElementById(fusionSearch[j].rowid))

 .setStyleAttribute('color', 'blue')

 .setStyleAttribute('background', 'FFFF99'))

 .addMouseOutHandler(app.createClientHandler()

 .forTargets(app.getElementById(fusionSearch[j].rowid))

 .setStyleAttribute('color', 'black')

 .setStyleAttribute('background', 'transparent'))

);

 }

 searchTable.setWidget(parseInt(j), 0, record);

 }

 return app;

}

Code for Record View.gs.

function viewRecord(e) {

 var app = UiApp.getActiveApplication();

 var newRecord = false;

 if (e.parameter.source == 'cancelButton'){

 var recordId = e.parameter.rowid;

 app.getElementById('newFileButton').setVisible(true);

 }else{

 var recordId = e.parameter.source;

 }

 if (e.parameter.source == 'newFileButton'){

 var arrayheaders = FusionTableApp.getFusionHeaders();

 arrayheaders.push('rowid');

 var arrayResult = [arrayheaders]

 var fusionRecord = new Object();

 newRecord = true;

 }else{

 var arrayResult = FusionTableApp.searchFusion("*", "'rowid' = '"+

 recordId+"'");

 var fusionRecord = ObjApp.rangeToObjects(arrayResult)[0];

 }

 var viewRecordTable = app.createFlexTable().setCellPadding(5)

 .setId('viewRecordTable');

Full Code | 135

 app.getElementById('contentGrid').setWidget(0,0, viewRecordTable);

 for (var i in arrayResult[0]){

 switch (arrayResult[0][i]){

 case 'Status':

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 var status = app.createListBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .addItem(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setWidth('100px').setEnabled(newRecord);

 viewRecordTable.setWidget(parseInt(i), 1, status);

 for (k in statusValues){

 if (statusValues[k] != fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 status.addItem(statusValues[k]);

 }

 break;

 case 'Notes':

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 viewRecordTable.setWidget(parseInt(i), 1, app

 .createTextArea()

 .setSize('350px', '100px')

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp.camelString(arrayResult[0][i])])

 .setEnabled(newRecord)

);

 break;

 case 'rowid':

 //no label required but the values need to be passed in e.parameter

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

 .setValue(fusionRecord[ObjApp.camelString(arrayResult[0][i])])

 .setVisible(false) //hide the row

);

 break;

 default:

 viewRecordTable.setWidget(parseInt(i), 0,

 app.createLabel(arrayResult[0][i]));

 viewRecordTable.setWidget(parseInt(i), 1, app.createTextBox()

 .setId(ObjApp.camelString(arrayResult[0][i]))

 .setName(ObjApp.camelString(arrayResult[0][i]))

136 | Chapter 7: Collecting Data: A UiApp-Style Web App

 .setValue(fusionRecord[ObjApp

 .camelString(arrayResult[0][i])])

 .setWidth('350px').setEnabled(newRecord)

);

 break;

 }

 }

 var editButton = app.createImage(editIcon)

 .setVisible(true)

 .setSize('25px', '25px')

 .setId('editButton')

 .addClickHandler(app.createServerClickHandler('editRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0, 1, editButton);

 var cancelButton = app.createImage(cancelIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('cancelButton')

 .addClickHandler(app.createServerClickHandler('viewRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0, 3, cancelButton);

 var saveButton = app.createImage(saveIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('saveButton')

 .addClickHandler(app.createServerClickHandler('saveRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,2, saveButton);

 var insertRecordButton = app.createImage(insertIcon)

 .setVisible(newRecord)

 .setSize('25px', '25px')

 .setId('insertRecordButton')

 .addClickHandler(app.createServerClickHandler('saveRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,4, insertRecordButton);

 var deleteButton = app.createImage(deleteIcon)

 .setVisible(false)

 .setSize('25px', '25px')

 .setId('deleteButton')

 .addClickHandler(app.createServerClickHandler('deleteRecord')

 .addCallbackElement(viewRecordTable));

 app.getElementById('navPanel').setWidget(0,5, deleteButton);

 if(newRecord)

 editButton.setVisible(false);

Full Code | 137

 return app;

}

Code for Edit Record.gs.

function editRecord(e){

 var app = UiApp.getActiveApplication();

 var headers = ObjApp.camelArray(FusionTableApp.getFusionHeaders());

 for (i in headers){

 app.getElementById(headers[i]).setEnabled(true);

 }

 app.getElementById('editButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(false);

 app.getElementById('cancelButton').setVisible(true);

 app.getElementById('saveButton').setVisible(true);

 app.getElementById('deleteButton').setVisible(true);

 return app;

}

Code for Save Record.gs.

function saveRecord(e){

 var app = UiApp.getActiveApplication();

 if(e.parameter.source == 'insertRecordButton'){

 app.getElementById('rowid')

 .setValue(FusionTableApp.insertFusionObj(e.parameter)

 .toString())

 .setEnabled(false);

 }else{

 FusionTableApp.writeFusionObj(e.parameter);

 }

 var headers = ObjApp.camelArray(FusionTableApp.getFusionHeaders());

 for (i in headers){

 app.getElementById(headers[i]).setEnabled(false);

 }

 app.getElementById('cancelButton').setVisible(false);

 app.getElementById('saveButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(true);

 app.getElementById('editButton').setVisible(true);

 app.getElementById('insertRecordButton').setVisible(false);

 app.getElementById('deleteButton').setVisible(false);

 return app;

}

138 | Chapter 7: Collecting Data: A UiApp-Style Web App

Code for Delete Record.gs.

function deleteRecord(e){

 var app = UiApp.getActiveApplication();

 FusionTableApp.deleteFusionRow(e.parameter.rowid);

 app.getElementById('contentGrid')

 .setWidget(0,0, app.createLabel('Record has been Deleted forever!'));

 app.getElementById('cancelButton').setVisible(false);

 app.getElementById('saveButton').setVisible(false);

 app.getElementById('newFileButton').setVisible(true);

 app.getElementById('deleteButton').setVisible(false);

 return app;

}

Full Code | 139

CHAPTER 8

Document Workflows

Back in the day, circa 2007, I was working at the New Mexico Attorney General’s Office,
attempting to streamline the legislative bill analyses we performed each year. It was a
crazy time for the office, with more than 1,000 bills going through the office in 30 days,
legislators calling to get the latest updates, and politics galore. Honestly, to this day I’m
baffled by how it all gets done while keeping the mortality rate so low.

The process starts with a legislator submitting a bill for analysis. The bill is assigned to
different attorneys depending on their area of practice, who write an analysis and send
it off to reviewers, who may send it to others who make edits and send it back or to
someone else, and so on until the final approval, where the analysis is sent back to the
legislator. That sounds simple enough, but add a 24-hour deadline and politically
charged issues, and it’s a recipe for a heart attack. Adding to the mayhem, the team at
the legislative building and the upper management never knew what was being analyzed
or where in the queue something might be. Not the best position to be in when the
chairman is fuming about a delay.

At the time, I thought we could add in a little technology to smooth out the flow of work
—and wouldn’t you know it, we had just installed SharePoint. It had workflows that we
hoped to leverage into an email approval and tracking system. After a few weeks we
eked out a rudimentary system that sort of worked most of the time. The system had a
painful learning curve and was not very flexible in its capabilities. Once a workflow
started, it had to go through until it was done and could not be changed. It only worked
in the office and not at all from BlackBerry devices. When we finally rolled it out, several
early failures caused the staff to lose interest, and they slipped back to the old way of
doing things. Epic project failure.

The good news is that times have changed, and so have the tools available to handle
workflows.

141

Building a Modern Email Workflow
Google Docs and Gmail are powerful tools for creation and collaboration, but they don’t
do workflow in the sense of a series of tasks being tracked and completed by different
people. This is a gap that Google Apps Script can bridge.

These days people are busy and on the go; they can’t be expected to hang out at their
desks all day waiting for something to arrive for signing. Google Docs works on every‐
thing, virtually anywhere, and that is what makes it such a powerful tool. Why shouldn’t
your workflow system be integrated and take advantage of the be-anywhere cloud plat‐
form that Google Apps runs on?

In this chapter, you will create a document workflow builder that has a flexible nature,
which will fit many situations and can be customized on the fly by the users without
any coding on their part. It will take advantage of Google Docs for file management,
Gmail for notifications, and Google Apps Script to give users an interface right in the
document sidebar. The application is robust, meaning workflows can be restarted or
redirected, approvers can be added during runtime, there can be parallel approvers, and
you can add other great workflow features.

What You Will Learn
You will learn about:

• Building a sidebar app

• ScriptDB

• Gmail integration

• Accessing Google Documents

• Deploying as an add-on

Supplies
You will need:

• A Google account

• A good grasp of the concepts and terminology used in Part I

Application Overview
The application will be launched from a custom menu in your Google Doc; then the
owner can add approvers or view other information about the workflow. When the

142 | Chapter 8: Document Workflows

workflow is started, an email is sent to the approvers asking them to come and look at
the document. They will also see the Approvals menu and be able to approve the docu‐
ment (Figure 8-1).

Figure 8-1. Simple yet powerful, a good workflow can smooth out the bumps of the
workday

As part of the workflow, you will have the option to review the entire history, including
approval status changes and approvers who have been added to or removed from the
workflow. This acts as an audit log and will stay with the document for future reference.

Creating the Menus
Our app is going to run from a custom menu item in a Google Doc. Recall that this kind
of app is called a container app because the code itself is held in a document or spread‐
sheet and runs as part of that container.

First, we’ll create a new document and script from the Tools menu. We’ll break this app
into several sections: each choice in the menu will have its own HTML file (this makes
it easier to follow what’s going on in the development). Here are the files we will be
creating:

• Code.gs

• ApproveRejectRequest.html

• StartWorkflow.html

• ApprovalStatus.html

• ViewHistory.html

Creating the Menus | 143

• ResetWorkflow.html

• Styles.html

We start our journey in the Code.gs file by adding the menus:

var ui = DocumentApp.getUi();

function onOpen() {

 ui

 .createMenu('Approvals')

 .addItem('Approve/Reject Request', 'approveRejectRequest')

 .addItem('Start Workflow', 'startWorkflow')

 .addItem('Approval Status', 'approvalStatus')

 .addItem('View History', 'viewHistory')

 .addItem('Reset Workflow', 'resetWorkflow')

 .addToUi();

 }

To add things to the document’s menu and the window itself, we call DocumentApp.ge

tUi(), which is similar to the jQuery $ function but limits what we can access.

In this section we will be calling on the DocumentApp over and over, so we will save it as
a global variable outside any function but available to all.

We want the menu to appear for use when the document is opened, so we will use the

special onOpen function in Google Apps Script to do our work.

onOpen is one of those special built-in triggers that Google Apps Script
uses to run automatically.

Others include:

• onEdit

• onInstall

• onFormSubmit

• doGet

• doPost

Make sure you don’t use these as your function names, or you may
get some unexpected behavior.

You create a menu with createMenu(<Your Menu Title>) and then add submenu items

using addItem(<Submenu Title>, <Function to Run>). There is also an .addSepa

rator method that helps you organize the menu.

144 | Chapter 8: Document Workflows

Once you’re done adding all the submenu items, you use .addToUi; to actually insert
the menu. At this time there is no way to control the order of menus in the Doc, so yours
will always go to the left of “Help” (see Figure 8-2). One other thing to note is that you
can add several menus to the menu bar.

Figure 8-2. Approvals menu installed

Right now, clicking on one of the submenu items doesn’t do anything. In the next section
we will be adding functions to handle each menu request and adding the files that
correspond to the operations.

Loading the Sidebar
Workflows come in many flavors: some are entirely done through email, others send
email notices and have a web interface, and still others are application-specific and do
not communicate outside at all. The Workflow application in this chapter takes the
middle road: a UI in the document for building and managing the workflow, and a
notification system to send emails. The two systems are tightly integrated, but notifi‐
cations will be bolted on after we get the manager section completed.

In the last section you created the menus and added some functions to run when a
particular submenu was clicked. Still working in the Code.gs file, add in the following
functions:

function startWorkflow() {

var html = HtmlService.createTemplateFromFile('startWorkflow').evaluate()

 .setTitle('Start Workflow').setWidth(300).setSandboxMode(

 HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function approveRejectRequest() {

var html = HtmlService.createTemplateFromFile('ApproveRejectRequest').evaluate()

 .setTitle('Approve/Reject Request').setWidth(300).setSandboxMode(

 HtmlService.SandboxMode.NATIVE);

Loading the Sidebar | 145

 ui.showSidebar(html);

}

function approvalStatus() {

var html = HtmlService.createTemplateFromFile('ApprovalStatus').evaluate()

 .setTitle('Approval Status').setWidth(300).setSandboxMode(

 HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function viewHistory() {

var html = HtmlService.createTemplateFromFile('ViewHistory').evaluate()

 .setTitle('View History').setWidth(300).setSandboxMode(

 HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function resetWorkflow() {

var html = HtmlService.createTemplateFromFile('ResetWorkflow').evaluate()

 .setTitle('Reset Workflow').setWidth(300).setSandboxMode(

 HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

By now you should know that this is the HtmlService, which returns HTML. The good
news is that container app UIs can also be built using HTML. In each of these functions

we are using HtmlService to get a file (which you will create from the list of files in the

previous section). To open the sidebar and show the HTML content, we use ui.show

Sidebar(html). When you’re done creating files and adding your code, your editor
should look much like Figure 8-3.

146 | Chapter 8: Document Workflows

Figure 8-3. Files have been created and functions are ready

Starting the Workflow
Now that you have the menu in place, along with functions to load the correct sidebars
and HTML files, it’s time to create the first UI. What better place to start than with the
Start Workflow operation?

Open the startWorkflow.html file, and let’s dig in.

Start Workflow HTML
On this page we want to be able to tell the user what the application does, give a method
for adding and removing approvers as well as list them, and provide a button to start
the workflow process:

<div id="wrapper">

 <div>

 Let's get started with your workflow. First add an approver

 by entering

 their email address in the Approvers box and clicking the add button.

 When you are done adding approvers, click the Start Workflow button.

 </div>

 <div>

 Approvers

 <div id="approvers"></div>

 <div>

 <form id="addApprover">

 <input type="email" id="approver" placeholder="Email Address">

Starting the Workflow | 147

 <input type="submit" class="button blueButton" value="Add">

 </form>

 </div>

 </div>

 <div class="center">

 Start Workflow

 </div>

</div>

When you’re building an app like this, which will have several different user displays,

it’s a good idea to wrap each “page” in a div so that you can change the overall look by

simply changing the CSS file. In this case we use <div id="wrapper"> to enclose the

HTML section, much as you might use a body tag.

Here is the CSS for the wrapper div, which should go in the styles.html file:

#wrapper {

 margin:2px 4px 3px 4px;

 font-family: Verdana, Geneva, sans-serif;

}

The next div is where you put the instructions. For this app there is no specific style for
this section, but you could easily add some CSS tags to get the effect you want.

Now we dig into the dynamic sections, which are going to require tags both for for‐
matting and to add information using jQuery. First is the Approvers section. Because
there will be other sections in the different parts of our app that also use section headers,

we will style them all the same using class="sectionHeader" and its CSS:

.sectionHeader {

 color: #202020 ;

 font-size: 18px;

 text-decoration:underline;

 margin-bottom: 20px;

}

We add <div id="approvers"></div> as a place to load the list of approvers that we
are going to retrieve from our database.

Directly after the approvers header is the form that will allow the user to add approvers:

 <form id="addApprover">

 <input type="email" id="approver" placeholder="Email Address">

 <input type="submit" class="button blueButton" value="Add">

 </form>

We use formal form format here, so we can take advantage of the HTML5 email vali‐
dation. We want more of a Google-y look for our buttons, so we round the corners and
such in the CSS. Different buttons will need to be different colors, so we take advantage
of the cascading effect in CSS to make modifications. Lastly, the button should do
something to let the user know it’s interactive; we do that with the hover opacity effect:

148 | Chapter 8: Document Workflows

.button {

 color: #FFFFFF;

 font-size: 12px;

 moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 padding: 3px;

}

.addApprover {

 background-color: #3366FF;

}

.redButton {

 background-color: #C80000;

}

.button:hover{

 opacity:0.7;

}

.center {

 text-align: center;

}

The form will be accessed through its id ("addApprover") when we add event handlers.

The last part of the HTML section is the Start button, which we use the span tag for:

 Start Workflow

It gets the button and redButton CSS classes to make it look just right. That ends the
HTML section of the Start Workflow operation, but in order to make all that CSS work
you will need to import the styles.html sheet:

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

You can now run Start Workflow from the Approvals menu (Figure 8-4).

Starting the Workflow | 149

Figure 8-4. The Start Workflow UI

Start Workflow JavaScript
Now that the UI looks right, we can get started with making it do something. jQuery is
a great way to simplify working in web pages, so let’s add that now:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

It’s always a good idea to wait until everything is loaded on the page before running our

JavaScript, so we use the ready method and grab all the HTML by calling the docu

ment element:

<script>

 $(document).ready(function() {

 //bind click handlers at runtime

 $('#addApprover').submit(addApprover);

 $('#startButton').click(startWorkflow);

 getApprovers();

 });

</script>

When we created the HTML earlier, we gave the “Form” and “Start” buttons unique IDs

that we can now access and assign event handlers to. addApprover is the form, and
because we want to handle both the “Enter” key and someone clicking on the “Add”

button, we use the submit method to run the function addApprover, which we will

create in a few minutes. We’ll create getApprovers after that.

Similarly, we get the startButton, and because it will only be clicked we use the click

event, which will fire the function startWorkflow.

150 | Chapter 8: Document Workflows

The first thing the user will want to do here is to add an approver, so that’s where we
start:

 function addApprover(){

 google.script.run.withSuccessHandler(function() {

 getApprovers();

 $('#approver').val('');

 }).addApprover($("#approver").val());

 }

Using ScriptDB
We are going to be using Google Apps Script’s ScriptDB to store our data, so we can
retrieve it any time the app runs. For this style of application this is a great option and
very easy to use. ScriptDB is a JavaScript object database that uses a JSON (JavaScript
Object Notation) type architecture to store and serve data.

ScriptDB is a perfect solution for small data stores, but it can only
go up to 50 MB per developer. In a nutshell, you have 50 MB for all
your projects. If you think your application will be extremely pop‐
ular, I would recommend using Google’s Cloud SQL for your stor‐
age needs.

Because ScriptDB is a server-side service, we will need to send our approver to a backend

process that uses the google.script.run method and a server function we will create

called addApprover. That’s interesting—two functions with the same name? We can get
away with this because the JavaScript in the HTML page is in a different scope. This is
personal preference: some like things to line up, where others might want to use some‐

thing like addApproverClient and addApproverServer.

The text box IDed as #approver holds the email address, and we get it and send it to
the server like this:

google.script.run.withSuccessHandler(function() {

 }).addApprover($("#approver").val());

We don’t need anything back from the server when it returns, but we do need to do
some things on the client side. One is to clear the email box, and the other is to update
the list of approvers.

Add into the server call function:

getApprovers();

$('#approver').val('');

Starting the Workflow | 151

Adding Approvers
Switch over to the Code.gs file and create an addApprover function. The whole function
looks like this; so you won’t get lost, we’ll break it apart next:

function addApprover(email){

 var db = ScriptDb.getMyDb();

 var docId = DocumentApp.getActiveDocument().getId();

 var ob = {

 docId: docId,

 approverEmail: email,

 status: null,

 emailSent: false

 }

 db.save(ob);

 var history = {

 docId: docId,

 action: 'Added Approver',

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss")

 }

 db.save(history);

}

The function takes one argument, email, which we sent from the form. Every Google

Apps Script comes with a ScriptDB all ready to go called MyDb. This is accessed by calling

ScriptDb.getMyDb, which we store in a variable called db—cryptic, I know. Anyway,
what we need to do next is to build a JSON object and insert it into our database (DB).
Your DB might contain information from several docs, so to keep everything sorted out
you need to get this document’s ID using:

DocumentApp.getActiveDocument().getId();

Now that we have all the information, the object is built like this:

 var ob = {

 docId: docId,

 approverEmail: email,

 status: null,

 emailSent: false

 }

You know about the docId and approverEmail, but what are the other values? One
thing we want to allow users to do is give their approval, but what if they reject the

document? The status property is where we will store this information.

When you start the workflow, all the approvers you’ve added need to get an email asking
them to come and approve or reject your document. If you add more approvers later,
you don’t want to resend the email to those approvers who already got the first email.

152 | Chapter 8: Document Workflows

This property will keep that from happening. Don’t worry: we will add a Send Reminder
button in the Approval Status operation to gently nudge those deadbeats who haven’t
given their two cents.

To save your ob to the DB you use:

db.save(ob);

Having an audit log of everything that happened in the approval process keeps every‐
thing on the up and up, just in case there is a dispute later. It’s simply another entry in

the DB, which we call history.

Because it needs to know what happened, we set action and date properties:

action: 'Added Approver',

...

date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy' 'HH:mm:ss")

That wraps up the addApprover server-side process, and we can now head back to where

we returned back to the addApprover client-side function in the startWorkflow.html
file.

Loading the Approvers
You have seen getApprovers a few times now—and I’m sorry that I keep putting it off
—but before you start retrieving information from the DB, I wanted you to see how it
got there in the first place. Now that you have a method for saving to the DB, let’s go get
that information.

Add the following function inside the closing script tag in the startWorkflow.html file:

function getApprovers(){

 google.script.run.withSuccessHandler(function(approvers) {

 $("#approvers").html('');

 for(var i =0; i < approvers.length; i++){

 $("#approvers").append(

 '<img class="approver" email="'+approvers[i].approverEmail+'"

 title="Click to remove this Approver"'+

 'src="https://googledrive.com/host/0B61-C9Nl4dO-ZEpvTk9SWU5tYnc/

x_ico1.png"

 width="12px"> '+approvers[i].approverEmail+'
'

);

 }

 $('.approver').on('click', function() {

 removeApprover($(this).attr('email'));

 });

 }).getApprovers();

Right off you see we are calling to the server, and if you go down to the end, you see we

have asked for the getApprovers server-side function. Yes, it has an “s” on the end,
meaning it’s a different function than what you just finished creating.

Starting the Workflow | 153

I don’t want to trip you up here, but we really do need to head back over to the Code.gs
file to understand what we are going to send into the return of the server call. I will keep
calling out which file we are in so you don’t get lost.

Switch back to Code.gs and add this function:

function getApprovers(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: db.anyValue()});

 var approvers =[];

 while (result.hasNext()) {

 approvers.push(result.next());

 }

 return approvers;

}

We are going to load up the DB and then run a query for all the entries that match the

docId and have a value in approverEmail. Then we use a while statement to iterate the

result and add all the entries to the approvers array, which will look like this:

[{approverEmail=James@apps4gapps.com, status=null, docId=1ldLP-sewoT8, email-

Sent=false}]

That wasn’t a long detour: now we can return with this function to the startWork‐
flow.html file.

The getApprovers function needs to run when the page is loaded and after adding an

approver to the list. The approver list is written to the approvers div, and we will be

using the jQuery method append. Before we start adding, though, we need to clear that
element, so there are never duplicate entries:

$("#approvers").html('');

When the server returns, we save the value in the approvers argument, and we can now
iterate through that array.

Here is what each line will look like:

'<img class="approver" email="'+approvers[i].approverEmail+'" title="Click to

remove this

Approver"'+'src="https://googledrive.com/host/0B61-C9Nl4dO-ZEpvTk9SWU5tYnc/

x_ico1.png"

width="12px"> '+approvers[i].approverEmail+'
'

We get an image that I’ve saved for you in Drive: an X, the universal sign used to remove

an approver. Then we access the approvers array and the approverEmail to finish the
listing.

You will need to add a click handler to the X image to make it actually do something:

154 | Chapter 8: Document Workflows

 $('.approver').on('click', function() {

 removeApprover($(this).attr('email'));

 });

Did you notice another function firing there? There will be yet another client/server
interaction coming up, but first save all your work and run the Start Workflow menu
item. After the UI loads in the sidebar, add a few emails to the list to test it out. Figure 8-5
shows where you are at this point.

Figure 8-5. Start Workflow is now saving approvers

Removing Approvers
“Rinse and Repeat” would be a good title for the next few sections, as we will continue
to attach events to buttons and then fire off data to the server and process what we get
back.

Remember that X from the last section where we added a click handler? That function

was for removeApprover, and we sent the email address in the arguments. Here is the

code for the removeApprover function, which does not return anything—but it does

reload the approvers div, so the user can see that there was indeed a change in the list.

Add the following code to the startWorkflow.html file:

 function removeApprover(approver){ //client side

 google.script.run.withSuccessHandler(function() {

 getApprovers();

 }).removeApprover(approver);

 }

Starting the Workflow | 155

On the server side we have another removeApprover function, which will query the DB
and completely remove that entry. Wait a minute, though: we said there needs to be an
audit trail of everything that goes on with our approval system. While we are removing

from the approvers, we need to add more information about that change to the histo

ry. The entry for removing an approver is almost exactly the same as that for adding

one to the history, with the exception of the action property, which we set to Removed

Approver.

Here is the addition to the Code.gs file:

function removeApprover(email){ //server side

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: email});

 db.remove(result.next());

 var history = {

 docId: docId,

 action: 'Removed Approver',

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss")

 }

 db.save(history);

}

Pressing Start
At last it’s time to get this workflow started. We attached a click handler to the “Start”
button much earlier in the chapter. Here is the function it runs, which you should add
to startWorkflow.html:

 function startWorkflow(){ //client side

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('OK, I have sent emails to the approvers.

 You can see their responses from the Approval Status menu.')

 }).start();

 }

Not only does it not take any arguments, but it doesn’t return anything either. On the
client side, all it really needs to do is update the UI to let the user know that the workflow

was started. We do this by replacing all the content in the wrapper with a short message.

Back over in the Code.gs file, the seemingly simple function on the client side does a
bunch of processing on the server:

function start(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: db.anyValue()});

156 | Chapter 8: Document Workflows

 while (result.hasNext()) {

 var record = result.next();

 if(record.status == null){

 var doc = DocumentApp.getActiveDocument();

 doc.addEditor(record.approverEmail);

 var url = doc.getUrl();

 MailApp.sendEmail({

 to: record.approverEmail,

 subject: "Please Review my Document",

 htmlBody: 'You have been asked to review and approve a document

'+

 'Please Click here to Open the document. '+

 '

After reviewing click the Approvals menu and select '+

 'Approve/Reject Request',

 });

 record.status = 'Email Sent'

 db.save(record);

 }

 }

}

We start by grabbing all the approvers from the DB using the query approverEmail:

db.anyValue(). Now we can iterate through the results. One thing we don’t want to do
is resend emails about approving the workflow to people who have already been notified.

We do this by checking the status property for a value. If we do need to send an email,

that person will need access to the document, which we accomplish using the addEdi

tor method from the DocumentApp Service.

The approver has been granted access, and now all we need to do is send an email using
Google Apps Script’s MailApp. One of the great features of MailApp is that it lets you
send HTML body text. To dress up our message, we can add an anchor tag to hide the
long document URL.

We have one more thing to do: again, we don’t want multiple emails going to the same

approver, so we now set the status property to Email Sent.

Let’s give it a run and see how it works. Save all your work and reload the app by selecting
Start Workflow from the menu. Make sure you use a valid email address for an account
you can access—the one you are using to build the app will work just fine. Now hit the
Start Workflow button and then check your email. In a few minutes you should receive
the message requesting your approval (Figure 8-6).

Starting the Workflow | 157

Figure 8-6. Approval message

The messages are sent, and now all we need to do is wait for our approvers to come
and… but wait, we haven’t given them a way to actually approve the document. In the
next section you will be adding a new UI sidebar to give your approvers a way to record
their approval status.

Recording Approvals
After receiving your email, the approvers will come and review your document. When
they’re done, they have been directed to select Approve/Reject Request from the Ap‐
provals menu. This will open the sidebar and allow them to select from a list of options
about how they would like to respond (Figure 8-7).

Figure 8-7. Approve this document

158 | Chapter 8: Document Workflows

Jumping right in, we will first work on the HTML in the ApproveRejectRequest.html file.
Following is the HTML section, which is refreshingly short:

<div id="wrapper">

 <div>

 You have been asked to approve this document. Please select your ap-

proval type from the list below. Clicking the Submit button will confirm your

choice and notify the document owner.

 </div>

 <div>

 <select id="status">

 <option>Select Approval Type</option>

 <option>Approve & No Edits</option>

 <option>Approve & Allow Edits</option>

 <option>Needs Work</option>

 <option>Delegate</option>

 <option>Doesn't Need My Approval</option>

 <option>Rejected</option>

 </select>

 </div>

 <div class="center">

 Submit

 </div>

</div>

Essentially, there is a selection element that provides the drop-down box for the approver
to select her choice, and a button to confirm it. You have already done the CSS work,
so making this look like the rest of the app is simply a matter of adding the right tags.

Speaking of CSS, we will add it from the styles.html file and, while we are at it, also add
the jQuery library:

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

Just like in the last section, we use the ready method to start adding functionality:

<script>

 $(document).ready(function() {

 $('#submitButton').click(submit);

 google.script.run.withSuccessHandler(function(approvers) {

 var notListed = true;

 var user = <?=Session.getEffectiveUser().getEmail()?>;

 for(var i =0; i < approvers.length; i++){

 if(user.toLowerCase() == approvers[i].approverEmail.toLowerCase()){

 notListed = false;

 break;

 }

Recording Approvals | 159

 }

 if(notListed){

 $('#wrapper').html('You are not an approver for this Document.')

 }

 }).getApprovers();

 });

</script>

The approver may waffle a bit on her choice and will need to look at what options are
available in the drop-down. With this in mind, we don’t want to record every time that

the approver thinks about this important decision. We therefore attach the click event
to the Submit button, requiring that extra step to truly commit.

We don’t want just anyone making approvals, and the document may be shared with
several people. To take care of this, we will run a check by getting all the approvers using

the getApprovers function from Code.gs, and then iterating through the list. Google

Apps Script has a method called Session.getEffectiveUser().getEmail(), which
lets us get the user’s email address so we can compare it to the list of approvers in the
DB. If the user isn’t on the list, we wipe out the whole UI and give her a message. This
prevents users from improperly approving documents (Figure 8-8).

Figure 8-8. You’re not approved

If the approver is on the list, we will leave the UI up. After she makes her selection and

clicks the Submit button, we need to record the choice. Add the submit function inside

the closing script tag:

 function submit(){

 var email = <?=Session.getEffectiveUser().getEmail()?>;

 var status = $('#status').val();

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('Your Approval Status has been recorded.')

 }).setApproverStatus(email, status);

 }

160 | Chapter 8: Document Workflows

In this function we will be passing both the approver’s email address and her status

choice to a new server function called setApproverStatus. After this function returns,

we proceed as usual and replace the wrapper HTML content with a message (Figure 8-9).

Figure 8-9. Your Doc has been approved

Recording Approvals | 161

Move back over to the Code.gs file and add the setApproverStatus function:

function setApproverStatus(email, status){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var ob = db.query({docId: docId, approverEmail: email}).next();

 if (ob == null)return;

 ob.status = status;

 db.save(ob);

 var history = {

 docId: docId,

 action: 'Changed Status to: '+status,

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss")

 }

 db.save(history);

}

Here we again open the DB and query for the approver’s email, which was sent as an

argument from the client function. We then make a change to the status property,
where we insert the new status, which was also passed as an argument; then we save the
DB.

This was a recordable event, so you will also want to reopen the history and add another
entry about what happened.

At this point you have a working app that lets a user select approvers, automatically
share documents, and send emails on how to approve. The app also provides a way for
approvers to record their choices. In the next section we are going to have a look at the
reporting system that allows us to see the status of the approvers.

Approval Status
The Approval Status dashboard tells us what is going on with this document. We should
be able to see who the approvers are and their statuses. One bonus feature is allowing
the user to send a reminder to any approver who has not yet responded (Figure 8-10).

162 | Chapter 8: Document Workflows

Figure 8-10. The Approval Status dashboard

Open the ApprovalStatus.html file. We will start with the HTML:

<div id="wrapper">

 <div>

 Awaiting Approval

 <div class="spaceAfter" id="notApproved"></div>

 </div>

 <hr>

 <div>

 Approvers with Response

 <div id="responded"></div>

 </div>

 <div>

 Approvers can be added or removed from the Start Workflow menu.

 </div>

</div>

Because most of this UI will be dynamically loaded, the HTML is short: it consists of

two headers with the sections notApproved and responded under them, waiting for the
data.

Now add the CSS and jQuery, then the ready function:

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

Approval Status | 163

<script>

 $(document).ready(function() {

 loadApproverStatus();

 });

</script>

Once the window is ready we will run only one function: loadApproverStatus. Insert

the following inside the closing script tag:

 function loadApproverStatus(){

 google.script.run.withSuccessHandler(function(approvers) {

 for(var i =0; i < approvers.length; i++){

 if(approvers[i].status == null || approvers[i].status =='Email

Sent'){

 $("#notApproved").append(' '+

 approvers[i].approverEmail+' '+

 '

 Send Reminder
');

 }else{

 $("#responded").append(' '+

 approvers[i].approverEmail+'
'+

 ''+approvers[i].status+

 '
');

 }

 }

 $('.reminder').on('click', function() {

 //adds a click handler to each Send Reminder button

 sendReminder($(this).attr('email'));

 $(this).text('Sent');

 });

 }).getApprovers();

 }

Breaking this down, we can see that first we call on the server function getApprovers,
and you know by now that this will return a list of all the approvers.

What else would we do with a list but iterate it and start adding things to placeholders

and the divs we reserved? Right off, we need to know if this approver has made a choice,

and we do that by checking if his approval status is still set to null. If it is, we know he

has not approved and can add him to the notApproved div. We do this by using append

and a span tag that holds the approver’s email address. Additionally, those who have

not responded get a Send Reminder span. Those who have get a status span.

Finally, we add a click handler to all the .reminder class divs, which will run a server-

side function called sendReminder and after turn the reminder button into the text
“Sent.”

A click event means we have a new function to run. Add the following inside the closing

script tag:

164 | Chapter 8: Document Workflows

 function sendReminder(approver){

 google.script.run.withSuccessHandler(function() {

 }).sendReminder(approver);

 }

Let’s wrap up that server function and then add a bit of style to the divs. Open the Code.gs

file and add the sendReminder function:

function sendReminder(approverEmail){

 MailApp.sendEmail({

 to: approverEmail,

 subject: "Please Review my Document",

 htmlBody: 'You have been asked to review and approve a document

'+

 'Please

 Click here to Open the document.

'+

 'After reviewing click the Approvals menu and select '+

 'Approve/Reject Request',

 });

}

This function takes the approver’s email address as the argument and sends an email.

Because we use the withSuccessHandler feature to make our calls,
we don’t need to return anything to let the frontend know there was
an error. Keep in mind that if an error does occur, the users will not
see it, because it is only logged in the console. Instead, they will see
that the feature they used does not work.

We want there to be some color emphasis for who has or has not approved, and we also
need to make a few other tweaks to these sections to make them more appealing.

Open up the styles.html file, and let’s add some more CSS:

.reminder {

 color: #FFFFFF;

 background-color: #3366FF;

 font-size: 10px;

 moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 padding: 3px;

}

.approverEmail {

 font-size: 12px;

 margin-left: 10px;

 color: #383838;

}

.approverEmail.red {

 color: #C80000;

Approval Status | 165

}

.approverEmail.green {

 color: #009900;

}

.status {

 color: #686868;

 font-size: 12px;

 margin-left: 25px;

}

.spaceAfter {

 line-height: 25px;

}

Reload Approval Status from the menu, and you will get a nicely formatted UI listing
of where things stand.

Audit History
At some point someone will ask you about the time an approval was made or dispute
ever getting a request for approval. At times like this, you will want to have your ducks
in a row and be able to provide an accurate record of everything that went on in your
app.

Because there is a menu option for History, we will again use the sidebar and a new UI
to display this information. In the ViewHistory.html file, get started with the HTML
section:

<div id="wrapper">

<div>

 These are the actions that have been taken.

</div>

 <div>

 <div id="approvers"></div>

 </div>

</div>

Is it just me, or are these getting shorter? After doing the last section, you can bet this

one is much the same: we are reading the DB and loading a div (in this case, approv

ers with some custom elements).

Now for the script section:

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

166 | Chapter 8: Document Workflows

<script>

 $(document).ready(function() {

 google.script.run.withSuccessHandler(function(history) {

 $("#approvers").html('');

 for(var i =0; i < history.length; i++){

 $("#approvers").append(

 ''+history[i].date+'
'+

 ''+history[i].email+'
'+

 ''+history[i].action+'
'+

 '<hr>'

);

 }

 }).getHistory();

 });

</script>

The history was saved separately from the approvers, so we need a special server function

called getHistory to return the items. After that, we will iterate through them to create

the look of a chronological history. Different spans are used mainly to make it easy for
us to apply the CSS.

Switch to Code.gs and add the getHistory function:

function getHistory(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, action: db.anyValue()});

 var history =[];

 while (result.hasNext()) {

 history.push(result.next());

 }

 var sorted = history.sort(function(a, b) {

 return a.date.replace(/[^0-9.]/g, "") - b.date.replace(/[^0-9.]/g, "")});

 return sorted.reverse();

}

After calling on ScriptDB, we query for the action property. This is how we know that

the items we get back are history entries rather than approver entries, as approver

entries don’t have an action property.

ScriptDB is a JSON store, and there really isn’t any order to the items
stored in it. This has to do with the object/property relationship in
JavaScript. Just because you put things in there in a certain order
does not mean they come out that way.

If we returned the history items as they came out of ScriptDB, they might be in any
order. While all the events will be listed, the order may be confusing. To solve this, we
create a new array and push all the entries into it. Now we can sort that array with a

Audit History | 167

common a-b sort function where we compare the data properties. That will get every‐
thing in the right order, but from oldest to newest. That might be just the way you like

it, but for this example we will use the reverse method on the array to go from newest
to oldest, so the last thing that happened is right on top. This also looks more like the
revision history in Docs, and we like to have things in our apps look similar to the
containers they run in.

Save everything and try out the View History selection from the Approvals menu
(Figure 8-11).

Figure 8-11. View History

Resetting Everything
Our app does just about everything we set out to accomplish, but what happens if the
user made an error and just wants to start over? In this last section we will give users
one last UI that lets them get a fresh start.

Open the ResetWorkflow.html file and add in this HTML code:

<div id="wrapper" class="center">

 <div>

 Warning!

 You are about to reset this workflow. Clicking the Reset button

 will erase all approval history and approvers.

168 | Chapter 8: Document Workflows

 </div>

 <div>

 You can close this window to cancel the reset.

 Confirm Reset

 </div>

</div>

There’s not much here but a big warning and a red button, so let’s also add the script:

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 $('#resetButton').click(resetWorkflow);

 });

 function resetWorkflow(){

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('<h3>The Workflow has been reset</h3>');

 }).reset();

 }

</script>

It looks like all we are doing here is firing a server-side function called reset and then
presenting a message to the user. We will be going back to the server in just a second,
but first open up the styles.html file and add this last bit of CSS:

.warning {

 color: #C80000;

 font-size: 24px;

}

We really, really don’t want anyone to miss that, now do we? (See Figure 8-12.)

Resetting Everything | 169

Figure 8-12. Warning: you are about to do something important!

Now you can open the Code.gs file and add the final nail to this app’s coffin. Way back
at the beginning of this chapter the Earth was empty, a formless mass cloaked in dark‐
ness… Wait, wrong book. The point is, there was nothing in the DB, so to reset the app
we need to again make the DB empty. You may actually find this function quite handy
anytime you need to clear out a ScriptDB:

function reset(){

 var db = ScriptDb.getMyDb();

 while (true) {

 var result = db.query({});

 if (result.getSize() == 0) {

 break;

 }

 while (result.hasNext()) {

 db.remove(result.next());

 }

 }

}

If you do clear your ScriptDB, there is no way to recover it. Put
another way, the contents are gone forever and ever and ever. Al‐
ways be very careful when running operations like this. If there is any
question that you may need to recover, include some sort of output
before clearing the DB.

The testing you have done so far needs to be deleted so we can start fresh. Go ahead and
click the big red button so you can ensure that the app is completed.

170 | Chapter 8: Document Workflows

Deploying Using Add-ons
The newest thing to hit the Google Apps Script shelves is a feature called Add-ons (see
Figure 8-13). What Add-ons will let you do is distribute container-bound apps like the
one in this chapter to every Google Apps user through a new Add-ons menu in Google
Docs, Sheets, and Forms. Keep an eye out for a book by this author that will walk you
through all the steps of deploying your Google Apps Script applications using Add-ons
or the Google Chrome Web Store.

Figure 8-13. Add-ons

Finishing Up
This has been a long chapter and a large app to sink your teeth into. Hopefully you now
have a good grasp on how to not only work within a container but also use valuable
services like ScriptDB to store information. If nothing else, I’m sure you have taken
away a firm understanding of client/server iteration.

Full Code
You can find all of the code for the files below on this book’s Google Drive.

Code for Code.gs.

var ui = DocumentApp.getUi();

function onOpen() {

 ui

 .createMenu('Approvals')

 .addItem('Approve/Reject Request', 'approveRejectRequest')

 .addItem('Start Workflow', 'startWorkflow')

 .addItem('Approval Status', 'approvalStatus')

 .addItem('View History', 'viewHistory')

 .addItem('Reset Workflow', 'resetWorkflow')

 .addToUi();

 }

Deploying Using Add-ons | 171

http://bit.ly/google-addon
http://bit.ly/ch8-code

function startWorkflow() {

 var html = HtmlService.createTemplateFromFile('startWorkflow').evaluate()

 .setTitle('Start Workflow').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function approveRejectRequest() {

 var html = HtmlService.createTemplateFromFile('ApproveRejectRequest').evalu-

ate()

 .setTitle('Approve/Reject Request').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function approvalStatus() {

 var html = HtmlService.createTemplateFromFile('ApprovalStatus').evaluate()

 .setTitle('Approval Status').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function viewHistory() {

 var html = HtmlService.createTemplateFromFile('ViewHistory').evaluate()

 .setTitle('View History').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

function resetWorkflow() {

 var html = HtmlService.createTemplateFromFile('ResetWorkflow').evaluate()

 .setTitle('Reset Workflow').setWidth(300)

 .setSandboxMode(HtmlService.SandboxMode.NATIVE);

 ui.showSidebar(html);

}

/**

 * This function will create a new entry in the DB with default values

 * @param {String} email The email address for the user you want to add

 * @returns {String} 201 Created, 409 Conflict, 500 Internal Server Error

 */

function addApprover(email){

 var db = ScriptDb.getMyDb();

 var docId = DocumentApp.getActiveDocument().getId();

 var ob = {

 docId: docId,

 approverEmail: email,

 status: null,

 emailSent: false

 }

172 | Chapter 8: Document Workflows

 db.save(ob);

 var history = {

 docId: docId,

 action: 'Added Approver',

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss"),

 }

 db.save(history);

}

/**

 * This function will remove an approver from the DB

 * @param {String} email The email address for the user you want to delete

 * @returns {String} 200 OK, 500 Internal Server Error

 */

function removeApprover(email){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: email});

 db.remove(result.next());

 var history = {

 docId: docId,

 action: 'Removed Approver',

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss"),

 }

 db.save(history);

}

/**

 * This function will return a list of approver objects in the db

 * @returns {Object Array} [{status:null,emailSent:true}, ...]

 */

function getApprovers(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: db.anyValue()});

 var approvers =[];

 while (result.hasNext()) {

 approvers.push(result.next());

 }

 Logger.log(approvers)

 return approvers;

}

/**

Full Code | 173

 * This function will retrieve a single approver from the DB

 * @param {String} email The email address for the user

 * @returns {Object} The Approver Object or null if not found

 */

function getApprover(email){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: email});

 return result.next();

}

/**

 * This function will change an approver's Status

 * @param {String} email The email address for the user

 * @returns {Object} The Approver Object or null if not found

 */

function setApproverStatus(email, status){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var ob = db.query({docId: docId, approverEmail: email}).next();

 if (ob == null)return;

 ob.status = status;

 db.save(ob);

 var history = {

 docId: docId,

 action: 'Changed Status to: '+status,

 email: email,

 date: Utilities.formatDate(new Date(), "GMT", "MM-dd-yyyy'

'HH:mm:ss"),

 }

 db.save(history);

}

function getHistory(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, action: db.anyValue()});

 var history =[];

 while (result.hasNext()) {

 history.push(result.next());

 }

 var sorted = history.sort(function(a, b) {

 return a.date.replace(/[^0-9.]/g, "") - b.date.replace(/[^0-9.]/g, "")});

 return sorted.reverse();

}

function reset(){

 var db = ScriptDb.getMyDb();

 while (true) {

 var result = db.query({});

 if (result.getSize() == 0) {

174 | Chapter 8: Document Workflows

 break;

 }

 while (result.hasNext()) {

 db.remove(result.next());

 }

 }

}

function start(){

 var docId = DocumentApp.getActiveDocument().getId();

 var db = ScriptDb.getMyDb();

 var result = db.query({docId: docId, approverEmail: db.anyValue()});

 while (result.hasNext()) {

 var record = result.next();

 if(record.status == null){

 var doc = DocumentApp.getActiveDocument();

 doc.addEditor(record.approverEmail);

 var url = doc.getUrl();

 MailApp.sendEmail({

 to: record.approverEmail,

 subject: "Please Review my Document",

 htmlBody: 'You have been asked to review and approve '+

 'a document
Please Click here '+

 'to Open the document.

'+

 'After reviewing click the Approvals menu and select '+

 'Approve/Reject Request',

 });

 record.status = 'Email Sent'

 db.save(record);

 }

 }

}

function sendReminder(approverEmail){

 MailApp.sendEmail({

 to: approverEmail,

 subject: "Please Review my Document",

 htmlBody: 'You have been asked to review and approve '+

 'a document
Please <a href="'+

 DocumentApp.getActiveDocument().getUrl()+'">

 Click here to Open the document.

'+

 'After reviewing click the Approvals menu and '+

 'select Approve/Reject Request',

 });

}

Full Code | 175

Code for ApproveRejectRequest.html.

<div id="wrapper">

 <div>

 You have been asked to approve this document.

 Please select your approval type from the list below.

 Clicking the Submit button will confirm your choice and

 notify the document owner.

 </div>

 <div>

 <select id="status">

 <option>Select Approval Type</option>

 <option>Approve & No Edits</option>

 <option>Approve & Allow Edits</option>

 <option>Needs Work</option>

 <option>Delegate</option>

 <option>Doesn't Need My Approval</option>

 <option>Rejected</option>

 </select>

 </div>

 <div class="center">

 Submit

 </div>

</div>

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 $('#submitButton').click(submit);

 google.script.run.withSuccessHandler(function(approvers) {

 var notListed = true;

 var user = <?=Session.getEffectiveUser().getEmail()?>;

 for(var i =0; i < approvers.length; i++){

 if(user.toLowerCase() == approvers[i].approverEmail

 .toLowerCase()){

 notListed = false;

 break;

 }

 }

 if(notListed){

 $('#wrapper').html('You are not an approver for this Document.')

 }

 }).getApprovers();

 });

176 | Chapter 8: Document Workflows

 function submit(){

 var email = <?=Session.getEffectiveUser().getEmail()?>;

 var status = $('#status').val();

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('Your Approval Status has been recorded.')

 }).setApproverStatus(email, status);

 }

</script>

Code for startWorkflow.html.

<div id="wrapper">

 <div>

 Let's get started with your workflow. First add an approver

 by entering their email address in the Approvers box and clicking

 the add button. When you are done adding approvers, click the

 Start Workflow button.

 </div>

 <div>

 Approvers

 <div id="approvers">

 </div>

 <div>

 <form id="addApprover">

 <input type="email" id="approver" placeholder="Email Address">

 <input type="submit" class="button blueButton" value="Add">

 </form>

 </div>

 </div>

 <div class="center">

 Start Workflow

 </div>

</div>

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 //bind click handlers at runtime

 $('#addApprover').submit(addApprover);

 $('#startButton').click(startWorkflow);

 getApprovers();

 });

 function addApprover(){

 google.script.run.withSuccessHandler(function() {

Full Code | 177

 getApprovers();

 $('#approver').val('');

 }).addApprover($("#approver").val());

 }

 function getApprovers(){

 google.script.run.withSuccessHandler(function(approvers) {

 $("#approvers").html('');

 for(var i =0; i < approvers.length; i++){

 $("#approvers").append(

 '<img class="approver" email="'+approvers[i].approverEmail+'"

 title="Click to remove this Approver"'+

 'src="https://googledrive.com/host/0B61-C9Nl4dO-ZEpvTk9SWU5tYnc/x_ico1.png"

 width="12px"> '+approvers[i].approverEmail+'
'

);

 }

 $('.approver').on('click', function() {

 removeApprover($(this).attr('email'));

 });

 }).getApprovers();

 }

 function removeApprover(approver){

 google.script.run.withSuccessHandler(function() {

 getApprovers();

 }).removeApprover(approver);

 }

 function startWorkflow(){

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('OK, I have sent emails to the approvers.

You can see their responses from the Approval Status menu.')

 }).start();

 }

</script>

Code for ApprovalStatus.html.

<div id="wrapper">

 <div>

 Awaiting Approval

 <div class="spaceAfter" id="notApproved"></div>

 </div>

 <hr>

 <div>

 Approvers with Response

 <div id="responded"></div>

 </div>

178 | Chapter 8: Document Workflows

 <div>

 Approvers can be added to or removed from the Start Workflow menu.

 </div>

</div>

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 loadApproverStatus(); //loads the approvers from the data store

 });

 /**

 * This function sends a server request to get the list of approvers

 * @returns null This function loads the UI directly after

 * processing server call

 */

 function loadApproverStatus(){

 google.script.run.withSuccessHandler(function(approvers) {

 for(var i =0; i < approvers.length; i++){

 if(approvers[i].status == null ||

 approvers[i].status =='Email Sent'){

 $("#notApproved").append(' '+

 approvers[i].approverEmail+' '+

 '<span class="reminder" email="'+approvers[i].approverEmail+

 '">Send Reminder
');

 }else{

 $("#responded").append(' '+

 approvers[i].approverEmail+'
'+

 ''+approvers[i].status+

 '
');

 }

 }

 $('.reminder').on('click', function() { //adds a click handler to

 //each Send Reminder button

 sendReminder($(this).attr('email'));

 $(this).text('Sent');

 });

 }).getApprovers();

 }

 /**

 * This function sends a server request to send a reminder email

 * @param {String} approver The email address for the user

 */

 function sendReminder(approver){

 google.script.run.withSuccessHandler(function() {

 }).sendReminder(approver);

Full Code | 179

 }

</script>

Code for ViewHistory.html.

<div id="wrapper">

<div>

 These are the actions that have been taken.

</div>

 <div>

 <div id="approvers"></div>

 </div>

</div>

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 google.script.run.withSuccessHandler(function(history) {

 $("#approvers").html('');

 for(var i =0; i < history.length; i++){

 $("#approvers").append(

 ''+history[i].date+'
'+

 ''+history[i].email+'
'+

 ''+history[i].action+'
'+

 '<hr>'

);

 }

 }).getHistory();

 });

</script>

Code for ResetWorkflow.html.

<div id="wrapper" class="center">

 <div>

 Warning!

 You are about to reset this workflow. Clicking the Reset

 button will erase all approval history and approvers.

 </div>

 <div>

 You can close this window to cancel the reset.

 Confirm Reset

 </div>

</div>

180 | Chapter 8: Document Workflows

<?!= HtmlService.createHtmlOutputFromFile('styles').getContent(); ?>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script>

 $(document).ready(function() {

 $('#resetButton').click(resetWorkflow);

 });

 function resetWorkflow(){

 google.script.run.withSuccessHandler(function() {

 $('#wrapper').html('<h3>The Workflow has been reset</h3>');

 }).reset();

 }

</script>

Code for styles.html.

<style type="text/css">

.sectionHeader {

 color: #202020 ;

 font-size: 18px;

 text-decoration:underline;

 margin-bottom: 20px;

}

.button {

 color: #FFFFFF;

 font-size: 12px;

 moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 padding: 3px;

 border:0;

}

.blueButton {

 background-color: #3366FF;

}

.redButton {

 background-color: #C80000;

}

.button:hover{

 opacity:0.7;

}

.center {

 text-align: center;

}

#wrapper {

Full Code | 181

 margin:2px 4px 3px 4px;

 font-family: Verdana, Geneva, sans-serif;

}

.reminder {

 color: #FFFFFF;

 background-color: #3366FF;

 font-size: 10px;

 moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 padding: 3px;

}

.approverEmail {

 font-size: 12px;

 margin-left: 10px;

 color: #383838;

}

.approverEmail.red {

 color: #C80000;

}

.approverEmail.green {

 color: #009900;

}

.status {

 color: #686868;

 font-size: 12px;

 margin-left: 25px;

}

.spaceAfter {

 line-height: 25px;

}

.warning {

 color: #C80000;

 font-size: 24px;

}

</style>

182 | Chapter 8: Document Workflows

CHAPTER 9

Mashup

In this last chapter, we will build smaller apps that help your users do more with Google.
One of the most requested scripts we hear about is from the IT admin who has his hands
full keeping the router up and running but now also needs to help get the Google web‐
site’s forms submitted to the right department. To take care of this task, we will cover
automating the sending of emails to different people when Google forms are submitted.

Oh and don’t forget, the boss also likes to see pretty charts to demonstrate how well her
department is performing, and that information needs to be a live update. Google Sites
allows you to organize data and create great reports and in this chapter you will learn
how to get data from a spreadsheet and display it as a chart that dazzles your boos and
gets you that raise we know you deserve.

Directing Email Using Google Forms
Google Forms are a very convenient way to quickly get information into a spreadsheet.
Add some Google Apps Scripts, and you can turbocharge those forms to send email
notifications, generate other data in the spreadsheet, and do lots of other things you
might want to do when getting data from a form.

In this section you will learn the basics of getting form information into a Google Apps
Script and sending an email based on a selection from a drop down-list in the Google
Form.

Here are the tools you’ll be using:

• Google Forms

• MailApp

• Event triggers

183

Open a Google spreadsheet and start creating a form. The example we will use is for
routing inquiries to the right department: sales or service. Figure 9-1 shows the form
editor and the drop-down box selection.

Figure 9-1. Google Forms can be inserted into most websites and emailed

After creating the form you can return to the spreadsheet, where you’ll see that the form
fields have become columns (see Figure 9-2).

Figure 9-2. Note that the timestamp is automatically added

184 | Chapter 9: Mashup

Now open the Script Editor (Tools→“Script editor”).

You can delete the default function and start the script with global variables (outside
any function) that will contain the email addresses for the two departments:

var sales = 'sales@example.com';

var service = 'service@example.com';

//add more as needed

Now create a notify function that will be used to send the emails. Don’t forget the e
parameter, which will be used later in this section to pass form-submit values.

Create a variable to hold the selected department. Next, add a JavaScript switch, which

is much more efficient in this case than stacking if statements.

The switch argument is where we need to get the value from the form when it is sub‐

mitted. These values are passed in the parameter e.values, which is a zero-based array

that looks like this: ["2011/11/17 13:00", "James", "555-5555", "custom

er@gmail.com", "Sales", "comments"]. As you may have guessed, the spreadsheet
columns line up with these values in a zero-based array.

If you get confused about which number in the array lines up with a
certain form field, just count from the top on the form. The time‐

stamp, which is not on the form, is always in e.values[0].

Looking at the form, location 4 is the listbox containing the department. Use this in the

switch arguments. In a switch, you use cases with the values you hope to match. Yes,
they are case-sensitive, if you were wondering. All that needs to be done for this simple

script is to set the value of email to the correct department variable. Don’t forget to

break; at the end of each case, or you will run the next case as well:

function notify(e) {

 var email = '';

 switch (e.values[4]){

 case 'Sales':

 email = sales;

 break;

 case 'Service':

 email = service;

 break;

 }

When sending an email to the correct department, it would be great to also add the
details of the request so they don’t need to go to the spreadsheet. You can use HTML in

Directing Email Using Google Forms | 185

the body of the messages you send, which helps you to make a nice presentation for
your staff.

Simply add your field variables to the correct places in the HTML template. If you would
like a more complex template, consider using a template file and key values, as described
in Chapter 6:

 var html =

 '<body>'+

 '<h2>Please contact: '+ e.values[1] +'</h2>'+

 'Comment:
'+

 e.values[5] + '
'+

 '
'+

 'Phone: ' + e.values[2] + '
'+

 'Email: ' + e.values[3] + '
'+

 '</body>';

All that is left is to send the email using the MailApp Service. To customize the subject,

add the type of request using e.values[4] in the second argument:

 MailApp.sendEmail(email, "Information Request: "+e.values[4] ,

 'No plain text body);',

 {htmlBody: html});

}

Save the script and run it once to grant permission for MailApp. Now that the form and
script are ready, it is time to set up a form-submit trigger. In the menu, click Triggers→
“Current script triggers,” and in the pop-up window, select “Click here to add one now.”

Figure 9-3 shows the triggers dialog box, where you will need to select the notify
function and “On form submit” from the listboxes. Click Save.

Figure 9-3. You can also set time-based triggers here

Once again you have added tremendous functionality to your business website and
made the boss proud; certainly you deserve a raise. You can now go to the live web form
and make a submission to check that an email was delivered to the correct department.

This has been a basic example of working with these different services; however, much
more can be done in the processing here. For example, if you have existing customers

186 | Chapter 9: Mashup

somewhere in a database, the script could pull that information and include it in the
email, kick off a workflow from Chapter 8, or even send you a text message if the mail
is from a really important client.

Charts in Sites
Charts are an important way to convey information to coworkers, stakeholders, and
even the general public. Built into Google Apps Script is a complete chart-making service
that parallels what is available in the Google Sheets Service.

In this section we will look at two charts: one generated from stock information and a
second from a spreadsheet. The script will be created as a standalone service so it can
be available in the browser as a single page or inserted in your Google Site as a gadget.

FinanceApp Chart
Maybe you work for a company that has a public stock and you want to display it on
your page, or maybe you’re a trader who needs to quickly display historical stock data
from your phone; in any case, Google Apps Script lets you get that data and dress it up
in a nice graphical chart.

Pop open a new script, create a file, and name it “Finance.” This will hold the code for
retrieving the information from the Finance Service and building a data table used by
the Charts Service to make a graphic.

For purposes of example, this function will return the past year’s worth of weekly quotes
when given a stock symbol.

The end date is today, newDate(), so when your page is loaded two months from now
it will be updated to the latest information with no effort on your part. It takes a few
more methods to tease out the start date, but it is exactly one year before the current
date. Just remember the direction: start is not from now until then; rather, it’s from that
time in the past until now.

FinanceApp.getHistoricalStockInfo will return an array of quote objects given the
time frame. In the arguments we specify the symbol, start date, and end date. The last

parameter is the interval in days that you would like to sample, with 7 meaning every
week.

You will need to create a dataTable object from the Charts Service and add columns
for month and price. Note that the type of data must be set for each column.

The quotes array is in the parameter stockInfo, so we call that into a variable quotes
to avoid typing it all out every time. We iterate through the quotes array, adding a row

to the dataTable for each entry. Arguments in the addRow method are in the same order

as the columns added to the dataTable. The Utilities.formatDate method with an

Charts in Sites | 187

"MMM" argument gets us just the month for the quote, to save some space on the chart.

The second argument in the addRow method is the closing price.

Finally, we issue dataTable.build and return the dataTable. The complete code is
shown here:

/*

* Builds the chart dataTable from a stock symbol

*

* Arguments:

* Name Type Description

* stockSymbol string a valid stock symbol, ie goog

*

* returns DataTable()

*/

function buildFromFinance(stockSymbol) {

 var endDate = new Date();

 var startDate = new Date(new Date(endDate)

 .setFullYear(endDate.getFullYear()-1));

 var stockHist = FinanceApp.getHistoricalStockInfo(stockSymbol,

 startDate, endDate, 7);

 var dataTable = Charts.newDataTable();

 dataTable.addColumn(Charts.ColumnType.STRING, 'Month');

 dataTable.addColumn(Charts.ColumnType.NUMBER, 'Price');

 var quotes = stockHist.stockInfo;

 for (var i in stockHist.stockInfo)

 dataTable.addRow([Utilities

 .formatDate(new Date(stockHist.stockInfo[i].time),

 "EST", "MMM"), stockHist.stockInfo[i].close]);

 dataTable.build();

 return dataTable;

}

Now that we have a dataTable loaded with a year’s worth of stock quotes, we just need
to plug the table into a chart.

Go to the Code.gs file and start the standalone UI function.

The first variable is the symbol, which we make static here, but if you want to jazz things
up, you can add a listbox or other way for the user to choose a certain quote. Next, the

dataTable is built using the function you created before. There are several set param‐
eters to allow you to customize the chart, but the most important steps are: plugging in

the data using the setDataTable method and issuing the build command:

function doGet() {

 var app = UiApp.createApplication().setTitle("Stock Chart");

188 | Chapter 9: Mashup

 var symbol = 'goog';

 var data = buildFromFinance(symbol);

 var chart = Charts.newLineChart()

 .setDimensions(600, 300)

 .setDataTable(data)

 .setColors(['#006400'])

 .setBackgroundColor('transparent')

 .setCurveStyle(Charts.CurveStyle.SMOOTH)

 .setTitle('Last 12 Months for '+symbol.toUpperCase())

 .build();

 var title = app.createLabel('Custom Stock Quotes');

 //style goes here

 app.add(chart);

 app.add(title);

 return app;

}

Add the chart and title to the app, and you are ready to publish the page. Figure 9-4
shows the published page loaded in a new browser window. It looks good, but we can
make it better with the power of CSS.

Figure 9-4. You can put these in an email as well

Open a new file, and name it “CSS.” You will need a function to apply the CSS and three
objects holding the style attributes:

function applyCSS_(element, style){

 for (var key in style){

 element.setStyleAttribute(key, style[key]);

 }

}

Charts in Sites | 189

 var _background =

 {

 "position":"fixed",

 "top":"0px",

 "left":"0px"

 }

 var _chart =

 {

 "position":"fixed",

 "top":"0px",

 "left":"0px"

 }

 var _title =

 {

 "position":"fixed",

 "top":"265px",

 "left":"30px",

 "color":"#0000FF",

 "font-size":"24",

 "font-family":"cursive,Times New Roman"

 }

Using the "position":"fixed" parameter frees widgets from inlining and allows you
to stack them on top of each other.

The order that widgets stack is determined by when they are added
on the page. The first thing added is at the bottom.

Go back to the Code.gs file and add the formatting at the place marker. Choose an image
for the background, and load it on the app as the bottom item:

 var background = app.createImage('https://5079980847011989849-a-'+

 '1802744773732722657-s-sites.googlegroups.com/site/scriptsexamples/'+

 'WallSt%281%29.png');

 background.setSize('600px', '300px');

 app.add(background);

 applyCSS_(background, _background);

 applyCSS_(title, _title);

 applyCSS_(chart, _chart);

Apply the CSS to the widgets, save, and reload the published page. The result is shown
in Figure 9-5.

190 | Chapter 9: Mashup

Figure 9-5. CSS makes an OK chart dazzle

Chart from a Spreadsheet
Wouldn’t it be great to have a spreadsheet with all your data that automatically generates
charts on your Google Site? If that sort of thing is for you, read on: this section will show
you how amazingly easy it is to write a script that can be used on most any spreadsheet
that you want to generate a chart.

The first thing you need is some data and a spreadsheet. In your spreadsheet, make the
normal header section in row 1 to identify each column. In row 2, you will need to
identify what kind of value that column contains: string, number, etc. (see Figure 9-6).

Figure 9-6. Row 2 can easily be added to spreadsheets fed by a form

As in the Finance chart in the last section, a function will be used to create the data table.

Charts in Sites | 191

In the Code.gs file add the function buildFromSpreadsheet, which takes an argument

that is a range of spreadsheet values created by the getValues method from Spread‐
sheetApp.

Create a data-Table object and then start iterating the values in range[0], which is row

1, where the headers are. These values are added to the data table as columns. range[1]

is row 2 and is used in the first argument of .addColumn to set the column types.

The next for loop starts on row 3, in the array index 2, and adds each row. The argument

for addRow is comma-separated by column values, which is how each row is formatted

in range[i].

Build the data table and return it:

function buildFromSpreadsheet(range){

 var dataTable = Charts.newDataTable();

 for (var j in range[0]) //create the columns

 dataTable.addColumn(Charts.ColumnType[range[1][j].toUpperCase()],

 range[0][j]);

 for (var i=2; i< range.length; i++) //create the rows

 dataTable.addRow(range[i]);

 dataTable.build();

 return dataTable;

}

To use this new function, you will get the data range as values from the spreadsheet.

This example uses getDataRange, but you can also use any of the other range calls as
long as the first two rows match the header/column type scheme.

After buildFromSpreadsheet returns your data table, you are ready to build the chart
object. This one is an area chart and has only a few settings to consider. Setting the range
will help the readability, and the title will tell the user what it is:

function doGet() {

 var range = SpreadsheetApp.openById('<YOUR Spreadsheet ID>')

 .getSheetByName('chart').getDataRange().getValues();

 var data = buildFromSpreadsheet(range);

 var chart = Charts.newAreaChart()

 .setDataTable(data)

 .setStacked()

 .setRange(0, 40)

 .setTitle("Sales per Month")

 .build();

192 | Chapter 9: Mashup

 var app = UiApp.createApplication().setTitle("My Chart");

 app.add(chart);

 return uiApp;

}

Create a UiApp instance and add the chart. Publish the script and load up the page.
Figure 9-7 shows the final product. A simple, non-CSS version like this can work very
well inline on a Google Sites page.

Figure 9-7. Try adding several charts built from one set of data

Charts in Sites | 193

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
Add-ons feature, 171
addEmail function, 45
application canvas, 103
approvers

adding, 152
loading, 153
removing, 155

arrays
2D, 49
converted to objects, 115
zero-based, 48, 63

audit logs, 153, 166
authorization, 11, 87

B
<body> tags, 36, 86
branding, 104
breaking the code, 27
breaks, 26
buttons, 41

C
callbacks, 43
camelCase, 63, 115
catalogs, 53
changes, saving, 127

charts
chart-making services, 187
generated from data, 187
generated from spreadsheets, 191

client-side handlers, 118
client_id value, 114
client_secret value, 114
Cloud Console, 113
clutter, 53
Contact Me form

adding style with CSS, 37
building the UI, 35
data storage, 46
functions, 46
handling user actions, 42–45

container-bound apps
UI creation with HTML Service, 14
UI creation with UiApp Service, 11
vs. web apps, 23

content area, 108
controls component, 107
Create menu, 17
createDoc function, 92
createHtmlOutputFromFile(<FileName>), 34
createTemplateFromFile(<FileName>), 34
createWebPage method, 63
customer experience

limiting page clutter, 53
mouseovers vs. page changes, 57

195

product information, 56

D
data storage

choices for, 46
data set up for, 49
file cabinet pages, 55
Google’s Cloud SQL, 151
image repositories, 56

available systems, 55
database loading, 57
database set up, 56
file cabinet pages for, 55
image dimensions/descriptions, 56

installed applications vs. web-based, 99
ScriptDB, 151
spreadsheet set up for, 47
UiApp-style database application

benefits of, 100
deleting records, 131
editing records, 125
foundation for, 103–109
full code for, 132
Fusion Tables, 112–118
inserting records, 128
overview of, 100
saving changes, 127
search view, 109–112
set up for, 102
viewing records, 119–125

debugging
break and report, 27
Debug button, 10
during development, 25
errors and breaks, 26
Execution Transcript, 8
production error logging, 28
syntax checking, 26

development environment
debugging/testing, 26
IDE look for, 25
production error logging, 28

Docs Picker, 87
document workflows, 141

(see also email document workflow app)
doGet function

as starting point, 33
for Google URL, 17
granting permission, 29

special status of, 16, 144
when to use, 46

doPost function
special status of, 16, 144
when to use, 46

E
Eclipse, 4
Edit menu, 7
elements, 33, 43
email document workflow app

approval status, 162
audit history, 166
benefits of, 142
deployment with Add-ons, 171
full code for, 171
menu creation, 143
overview of, 143
recording approvals, 158
reset feature, 168
sidebar loading, 145
Start Workflow operation

adding approvers, 152
JavaScript for, 150
loading approvers, 153
removing approvers, 155
ScriptDB data storage, 151
start button click handler, 156
startWorkflow.html, 147

email notifications
adding details to, 186
basic set up for, 184
trigger set up, 186
using Google Forms, 183

error messages
Authorization is required…, 29, 87
TypeError:Failed due to illegal value…, 31

errors
Fusion Table configuration, 112
in callbacks, 44
production error logging, 28
runtime, 26
try/catch statement, 26

Execution Transcript, 8

F
file cabinet pages, 55
File menu, 6

196 | Index

FinanceApp chart, 187
find/replace, 7
Flex Tables, 110, 117
forms

automatic creation of, 82
element layout in, 119
Forms feature, 81, 183
response forms, 35

functions
basic types of, 46
hiding from Run menu, 102
naming of, 16, 144

Fusion Tables
client-side handlers, 118
configuring access to, 112
creation of, 111
customization of, 111
database application, 100
getting data from, 114
loading data in UI, 115

G
Gadgets, 21, 68
getActiveApplication function, 105
getElementById function, 110
getImages function, 70
getRange method, 48
getSheetByName function, 69
getSheets function, 69
getSheets method, 48
global variables, 85, 102
Gmail, 142
Google App Engine, 4
Google Apps Script

basics of
advantages of, 3, 5
getting started, 5
Manage Versions feature, 6, 18
script editor, 6
UI creation methods, 10
UI creation with Google Sites, 21
UI creation with HTML Service, 4, 14
UI creation with UiApp Service, 4
UI creation with web apps, 16

building a web app UI
callbacks, 43
Contact Me form example, 35
data storage, 46–49
doGet function, 33

elements of, 33
functions, 46
handler anatomy, 42
handling user actions, 41

(see also data storage)
development environment

debugging/testing, 26
IDE look for, 25
production error logging, 28

hiding functions from Run menu, 102
open-source libraries for, 60
Scriptlet language, 68

Google Chrome Web Store, 9
Google Cloud Console, 113
Google Docs

Add-ons feature, 171
form tool, 35
in document workflow, 142
Sidebar feature, 14, 145
templates in, 81
unique IDs, 48

Google Drawings, 103
Google Drive service, 5, 100
Google Forms, 81, 183
Google Script Editor

accessing common tasks, 10
Edit menu, 7
File menu, 6
Find Selection, 7
project creation in, 5
Project properties, 7
Publish menu, 9
publishing options, 18
Resources menu, 9
saving scripts, 6
securing code with sharing, 23
View menu, 8

Google Sheets, 81
Google Sites, 21, 59, 62
Google Web Toolkit (GWT), 4
google.script.run, 31, 46
Google’s Cloud SQL, 151
grids, 104, 106, 108
.gs files, 14
GUI Builder, 103

H
handlers

client-side, 41, 118

Index | 197

UiApp page loading and, 105
values passed by, 109

<head> tags, 36
headers grid, 104
hover display

adding, 73
opacity effect, 148
pop-up panels, 53
product information, 57
selectable items, 118
user interaction through, 41

HTML Service, 4, 14, 37
HTML5 email validation, 148

I
ID values, 121
image file repository

available systems, 55
database loading, 57
database set up, 56
file cabinet pages for, 55
image dimensions/descriptions, 56

J
JavaScript

camelCase text, 63
in email document workflows, 150
top-down language of, 102
zero-based arrays in, 48, 63

JavaScript objects, 60
jQuery, 42, 59

K
key-value pairs, 7, 115
keys, 82, 89

L
libraries

adding, 9, 60
creating, 10, 60
open-source, 60

links, 104
listBox widget, 123
Logger Service, 8
logos, 104
logs

audit, 153, 166

backend, 28
HTML frontend, 29

M
magnifying glass icon, 106
Manage Versions feature, 6, 18
mobile apps, 100
mouse handlers, 41, 73, 118
multiple panels, working with, 103
multiple-choice questions, 91

N
name values, 121
nonprinting scriptlets, 37

O
ObjApp library, 63, 89
off handler, 41
onChange handler, 41
onEdit function, 16, 144
onFormSubmit function, 144
onInstall function, 16, 144
onOpen function, 16, 144
.openById, 48
.openByUrl, 48
over handler, 41

P
page clutter, 53
panels

headers grid, 104
logo placement, 104
main panel, 103
pop-up panels, 53

permissions, 19, 29
printing scriptlets, 37
Product version box, 18
production error logging

backend logging, 28
logging HTML frontends, 29

Production Link, 20
progress indicators, 41
Project properties, 7
Properties option, 7
Properties Service, 7
publishing options, 18

198 | Index

R
random numbers, 58
rangeToObjects, 115
records

custom formatting, 122
deleting, 131
editing, 125
fetching, 119
inserting new, 128
listBox formatting, 123
searching, 105, 109
viewing, 119, 121

Resources menu, 9
response forms, 35
Revisions box, 6
RPC (Remote Procedure Call), 43
Run menu, 102
runtime errors, 26

S
Script Editor

accessing common tasks, 10
Edit menu, 7
File menu, 6
Find Selection, 7
project creation in, 5
Project properties, 7
Publish menu, 9
publishing options, 18
Resources menu, 9
saving scripts, 6
securing code with sharing, 23
View menu, 8

Script icon, 17
Script Properties, 7
ScriptDB, 151
Scriptlet language, 68
scriptlets, 37, 69, 86
search component

data store, 111
loading, 105
search view, 109

searchFusion(target, where) method, 114
security issues

permissions, 19
sharing in Script Editor, 23

setSandboxMode(HtmlService.Sandbox‐
Mode.NATIVE), 34, 145

Sharepoint, 141
Sidebar feature, 14, 145
smartphone displays, 100
Spreadsheet Service, 29, 69
spreadsheets

benefits of, 57, 67
chart generation from, 191
creating pages from

automated HTML filling, 59
Google Apps Script objects class, 59
JavaScript objects, 60
open-source library installation, 60
Sites Service for, 62

data storage in, 47, 56
directing email from, 184
filling with Forms feature, 81
filling with Sites Service, 62
moving, 69

submit handler, 41
syntax errors, 26

T
tablet displays, 100
templates

for project creation, 5
generic vs. custom, 62
in Google Docs, 81
web app example

basic, 83
createDoc function, 92
final code, 94
form generation, 90
form submission, 92
functionality including, 82
script creation, 84
set up, 82
template keys, 89
template selection, 87
UI creation, 85

triggers, 9, 186
try/catch statements, 26

U
UiApp (User Interface App) Service, 4, 11, 99

(see also data storage)
UIs (user interfaces)

creation methods, 10
creation with Google Sites, 21

Index | 199

creation with HTML Service, 4
creation with UiApp Service, 4, 11
creation with web apps, 16
for product presentation

as a gadget, 68
features of, 67
mouseover action, 73
product display, 70
user interaction, 72

unique IDs, 48, 58
user actions, 41
user experience

fighting clutter with pop-up panels, 53
interactive web pages, 76, 148
viewing search results, 109

V
View menu, 8
visual product presentations

application delivery, 77
creating pages from spreadsheets

automated HTML filling, 59
Google Apps Script objects class, 59
JavaScript objects, 60
open-source library installation, 60
Sites Service for, 62

creating UI for
as a gadget, 68

features of, 67
mouseover action, 73
product display, 70
user interaction, 72

example of, 55
image file repository

available systems, 55
database loading, 57
database set up, 56
file cabinet pages, 55

importance of, 54
limiting clutter with pop-up panels, 53
optimized vs. traditional layouts, 54, 57

W
web pages

eliminating clutter on, 54
(see also visual product presentations)

interactive, 76, 148
widgets, 4, 121
withFailureHandler, 44
withSuccessHandler, 45, 165

Y
YouTube App Library, 9

200 | Index

About the Author
James Ferreira managed public communications for two successful state political cam‐
paigns; served as the chief information officer for the New Mexico Office of the Attorney
General; migrated the first government agency to Google Apps; speaks at conferences
across the nation about implementing new technology; wrote software to extend Google
Apps that serves more than half a million users worldwide; and has published numerous
technology articles, including the Google Enterprise blog.

Colophon
The animal on the cover of Google Apps Script, 2nd edition is a Black-throated Blue
Warbler (Setophaga caerulescens). This common songbird is native to North America,
and it prefers areas with large forests or uninterrupted woodland. While the Warbler
population in North America is stable and growing, deforestation threatens its winter
migratory areas and could eventually have a negative impact on the future of the species.

The German naturalist Johann Friedrich Gmelin first described Black-throated Blue
Warblers in 1789; its species name, caerulescens, comes from the Latin meaning “turning
blue.” The male of the species has an inky blue back and head, with a bright white belly
and a black throat. Unfortunately, the female is not so colorfully arrayed: she has an
olive-brown back and pale yellow underparts.

As a species of songbird, the male Warbler attracts a mate through singing; once a female
responds, the two will be monogamous for the breeding season, which runs from May
through July. Due to their diet of insects supplemented by berries and seeds, the Warbler
builds a nest close to the ground. They prefer woodland that is very dense so that their
nests will be better protected from predators by scrub and overgrowth.

After a pair has bonded, the male will often guard the female closely, following her
around as she forages for food and collects materials with which to build the nest. Near
the end of the mating season, males who were able to create offspring will stay with the
nest and sing a special post-breeding song; those that could not find a mate abandon
their areas. This behavior allows the males to demonstrate their success and helps fe‐
males keep track of good nesting and breeding habitats.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://googleenterprise.blogspot.com/

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	What You Will Need
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Understanding Google Apps Script
	Chapter 1. First Steps in Google Apps Script
	Google Apps Script Is…
	What You Will Get from This Book
	Getting Started
	Looking Around the Editor

	Three Ways to Create a UI
	Hello Container-Bound Apps
	Hello Web App
	Hello, Google Sites

	Web App Versus Container-Bound
	Up and Walking

	Chapter 2. Setting Up Your Development Environment
	How to Debug and Test
	Handling Errors and Breaks
	Break and Report

	Production Error Logging
	Logging the Backend
	Logging HTML Frontends

	Wrapping Up

	Chapter 3. Building an Interface
	What’s in a UI?
	It Starts with doGet
	Contact Me
	Getting Started

	Chapter 4. Adding Actions
	Handling User Actions
	Anatomy of a Handler
	The Concept of the Callback
	Functions Are Where the Action Happens
	Storing the Values
	Storing in a Spreadsheet
	Setting Up the Spreadsheet
	Setting Up the Data

	Part II. Building Enterprise Applications
	Chapter 5. Dynamic Details: A Sites App Using HTML, CSS, and jQuery
	Fighting Clutter
	What You Will Learn
	Supplies
	Application Overview
	Image File Repository
	Setting Up the Database
	Loading the Database

	Creating Pages from a Spreadsheet
	Using the Public Google Apps Script Objects Class
	Using JavaScript Objects
	Installing an Open Source Library
	Creating Pages and Filling the Spreadsheet

	Creating the Products UI
	Displaying Products
	Creating the Products Table
	Adding Action
	Mousing Around

	Delivering the Application
	Final Code

	Chapter 6. Automate Your Forms and Templates: A Web App for Drive
	What You Will Learn
	Supplies
	Application Overview
	Setting Up the Template
	Building the Script
	UI Setup
	Selecting the Template
	Getting the Keys
	Generating the Form
	Submitting the Completed Form
	Copying the Template and Adding Responses
	Final Code

	Chapter 7. Collecting Data: A UiApp-Style Web App
	The Installed App Has Died
	What You Will Learn
	Supplies
	Application Overview
	Setting Up
	Building the Foundation
	Main Panel
	Headers Grid
	Branding
	Search Component
	Navigation Component
	Content Area
	Search View
	Creating the Data Store

	Configuring Fusion Tables Access
	Getting Data from a Fusion Table
	Loading the Data in the UI
	Adding Client-Side Handlers

	Viewing a Record
	Fetching the Correct Record
	Custom Formatting
	Formatting a listBox

	Editing a Record
	Saving Changes
	Inserting a New Record
	Deleting a Record
	Full Code

	Chapter 8. Document Workflows
	Building a Modern Email Workflow
	What You Will Learn
	Supplies
	Application Overview
	Creating the Menus
	Loading the Sidebar
	Starting the Workflow
	Start Workflow HTML
	Start Workflow JavaScript
	Using ScriptDB
	Adding Approvers
	Loading the Approvers
	Removing Approvers
	Pressing Start

	Recording Approvals
	Approval Status
	Audit History
	Resetting Everything
	Deploying Using Add-ons
	Finishing Up
	Full Code

	Chapter 9. Mashup
	Directing Email Using Google Forms
	Charts in Sites
	FinanceApp Chart
	Chart from a Spreadsheet

	Index
	About the Author

