
www.allitebooks.com

http://www.allitebooks.org


Getting Started with  
Twitter Flight

Build scalable, modular JavaScript applications  
with the Twitter Flight framework

Tom Hamshere

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Getting Started with Twitter Flight

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-095-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Tom Hamshere

Reviewers
Cameron Hunter

Katsuya Noguchi 

Andrey Popp

Simon Smith

Veturi JV Subramanyeswari

Acquisition Editors
Sam Birch

Andrew Duckworth

Commissioning Editor
Subho Gupta

Technical Editors
Pratik More

Anusri Ramchandran

Project Coordinator
Amey Sawant

Proofreader
Jonathan Todd

Indexer
Hemangini Bari

Graphics
Yuvraj Mannari

Production Coordinator 
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org


Foreword

You might not be able to tell by using it but the frontend of twitter.com is incredibly 
complex. Back in 2011, this complexity was growing at an exponential rate as we 
added features. Our client- side code was essentially a proto MVC application, built 
long before frameworks such as Backbone.js and Ember.js had become popular, so 
was far from spaghetti code but, nevertheless, the multitude of relationships between 
these models, views, and controllers was almost impossible for one engineer to fully 
understand.

In order to make a change in one part of the code base, our engineers needed 
to understand every reference made to that piece of code in the application. If 
JavaScript was statically typed, we’d have been able to rely on that to help us, as 
it was all too easy to make a trivial update to one part of the application but later, 
much, much later, we discovered that this had broken a seemingly unrelated part  
of the code base. I’m sure you’ve been there, done that, and lost your mind more 
than once.

This was the situation that inspired us to create Flight.js. We wanted to be able to 
create the complex client-side interactions that power great web applications while 
retaining the simplicity of our code. Flight.js has massively improved the testability, 
robustness, and maintainability of many of our web applications and now, with the 
help of this book, we think you can, maybe, hopefully, save a little bit of sanity too.

Dan Webb
Web Core Engineering Manager at Twitter

www.allitebooks.com

http://www.allitebooks.org


About the Author

Tom Hamshere is based in North London and has been a frontend developer since 
1998, working on a wide variety of projects. He has been a part of the Twitter UK flock 
since May 2012, focusing primarily on TweetDeck, an awesome JavaScript Twitter 
client. He was the first developer to implement Flight outside of www.twitter.com, 
and is responsible for a number of Flight-related open source projects, including 
jasmine-flight and flight-keyboard-shortcuts.

When not hacking away at the codeface, Tom enjoys gardening, cooking, skiing,  
and traveling.

I'd like to thank the whole team at TweetDeck for their insights on 
JavaScript and application development, and the Flight team at 
Twitter HQ, not only for producing Flight (which is a pleasure to 
work with) but also for giving me their support and the opportunity 
to write this book.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Cameron Hunter is a developer hailing from Belfast, Northern Ireland. An advocate 
for the web as an open platform, he spends his time building products on Twitter's 
web team internally, and creating and contributing to open source projects externally. 
His work ranges across the frontend/backend scale from JavaScript and CSS to Scala 
and Java, the latter of which he worked with in his previous life at Amazon.

When away from glowing screens, Cameron dedicates time to pints of craft beer, 
climbing rocks, and geeking out on board games.

Katsuya Noguchi is a software engineer living in the San Francisco Bay area. 
After obtaining an MSc in Computer Science from Oxford, he started his career with 
Twitter, Inc., where he worked on a variety of projects, including internationalization, 
translation reputation system, user suggestion system, and tweet translation service. 
He now works at Gumroad, Inc. At Gumroad, he focuses on frontend operation, where 
he gained significant experience in Twitter Flight by refactoring entire frontend code 
to make it more maintainable, scalable, and testable. He also has a few open source 
contributions, such as activerecord-reputation-system and jQuery.bank.

Andrey Popp is a software hacker based in Moscow, Russia. While not hacking 
on a new computing architecture he is busy experimenting with human-computer 
interaction paradigms and contributing to open source software projects.

www.allitebooks.com

http://www.allitebooks.org


Simon Smith lives and works in London and has been a frontend developer for 
more than six years. When not drinking copious amounts of tea, he can be found 
obsessing over mobile first responsive design and JavaScript.

He has worked with companies large and small, most notably for the BBC  
where he led frontend development on a rebuild of the Radio Times website.

Simon writes about various frontend-related topics at www.simonsmith.io.

Veturi JV Subramanyeswari is currently working as a Solution Architect at a 
well-known software consulting MNC in India. Prior to joining this company, she 
served a few Indian MNCs, many startups, and R&D sectors in various roles such 
as programmer, tech lead, research assistant, and Architect. She has around 10 years 
of working experience in delivering a diverse variety of projects, utilizing the latest 
cutting-edge technologies in web/mobile areas covering media and entertainment, 
retail, publishing, healthcare, enterprise architecture, manufacturing, public sector, 
defense communication, gaming, and so on. She has reviewed other tech books 
including:

• Drupal Rules
• DevOps
• Twitter Bootstrap
• Salesforce CRM
• Drupal 7 Multi Sites Configuration
• Building Powerful and Robust Websites with Drupal 6
• Drupal 6 Module development
• PHP Team Development
• Drupal-6-site-blueprints
• Drupal 6 Attachment Views
• Drupal E-Commerce with Ubercart 2.x
• Drupal 7: First Look
• Drupal SEO

I would like to thank my family and friends who supported me in 
completing my reviews on time with good quality.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books. 

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: What is Flight? 7

Who made Flight? 7
How does Flight work? 8

Event-driven interfaces 8
Scalable architecture 9

No parent-child relationships 9
No spaghetti code 9
Promoting reusability with well-defined interfaces 10

The missing model 10
Simplification 10
Reducing boilerplate 10

Summary 11
Chapter 2: The Advantages of Flight 13

Simplicity 13
Efficient complexity management 14
Reusability 15
Agnostic architecture 15
Improved Performance 16
Well-organized freedom 16
Summary 17

Chapter 3: Flight in the Wild 19
Flight at Twitter 19

Better performance 19
A manageable codebase 20

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Quotes from developers 20
On refactoring 20
On Flight's component architecture 21

Open source Flight projects 21
TodoMVC 21
Components for web applications 21

Extending Flight with two-way data binding 22
Summary 22

Chapter 4: Building a Flight Application 23
Scaffolding a Flight application with Yo 23

Installing Yo 23
Understanding the application structure 24
Running the application 25

Creating custom applications 26
Using Flight without a module loader 26
Troubleshooting 26
Debugging 26
Summary 27

Chapter 5: Components 29
What is a component? 29
Component types 29

Mixins 30
Creating your first component 30

Attaching components to the DOM 31
Performing actions on component initialization 32

Summary 33
Chapter 6: UI Components 35

Attaching components to existing HTML 35
Listening for browser events 37

Attaching event handlers 37
Defining event handlers 37

Finding DOM nodes 38
Setting default attributes 38
Using attributes to select nodes 39
Triggering custom events in Flight 40
Triggering events on specific elements 41
Event names 41
Event data 41

Modifying the DOM 42
Summary 43



Table of Contents

[ iii ]

Chapter 7: Data Components 45
What is a data component? 45
Attaching data components 46
Naming data events 46
Creating a data component 46
Listening for UI events 48
Event handlers 48
Triggering data events 49
Completing the task_data component 49

handleNeedsTask 50
handleNeedsTasks 50
handleTaskCompleted 50

Error handling 51
Handling data events 51
Summary 52

Chapter 8: Event Naming 53
The importance of event names 53
Events are not instructions 53
Suggested naming conventions 54
Summary 55

Chapter 9: Mixins 57
What are mixins? 57
When to use mixins 57
How do mixins work? 58
Creating mixins 58
Using mixins 58
Mixin priority 59
Creating your first mixin 59

Mixing storage into taskData 60
Initializing the task list from storage 62
Extending existing methods 62

before and after 63
around 63

Advice priority for components and mixins 64
Mixing mixins into mixins 64
Summary 65

Chapter 10: Templating and Event Delegation 67
Generating template objects from DOM nodes 67
Constructing templates in components 68
Creating a templating mixin 70



Table of Contents

[ iv ]

Server-side compilation 71
Using HTML to determine state 72
Working with dynamic HTML – event delegation 72
Adding delegated events to task_list 74

Completing a task 74
Summary 75

Chapter 11: Web Application Performance 77
Reducing time to page load 77

Deferred loading 78
Server-side rendering 78
Using the DOM to determine state 78
Using request type to determine response 78
Perceived performance 79

Applying perceived performance in Flight 79
Summary 80

Chapter 12: Testing 81
What does a test look like? 81
Testing the interface 81
Obtaining a reference to a component instance 82
Instantiating standalone mixins 83
Triggering browser events 84
Allowing for refactoring 84
Testing teardown 85
Testing component instantiation 85
Extending Jasmine for Flight 86

Jasmine and AMD 86
Event assertions 89
Testing whether methods have been called 90

Summary 90
Chapter 13: Complexities of Flight Architecture 91

The danger of nested components 91
Teardown 91
Atomic components 92
Testing 92

Creating a flat component structure 92
Mixins versus components 92

Working with components 95
Working with mixins 96

Summary 97



Table of Contents

[ v ]

Appendix: Flight API Reference 99
Components 99

Component definition 99
Mixin definition 100
Using mixins 100
Instantiating components 101
Methods available on a component instance 102

Advice 102
defaultAttrs 103
select 103
Events 103
teardown 105

Using Flight's registry 105
findInstanceInfoByNode 105
findInstanceInfo 105
allInstances 105

Index 107





Preface
JavaScript development has come a long way in recent years, emerging from  
a miasma of inline scripts and a chain of callbacks to embrace application-level 
programming, through a variety of frameworks that have managed to corral its 
unruly nature, imposing structure where seemingly none existed.

However, these frameworks often seem to subtract from the experience of 
JavaScript, providing heavy APIs and requiring extensive boilerplate code.

Flight, with the same goal in mind, takes a different path. It builds on a structure 
that forms the heart of any web page or application: the DOM. Flight provides 
atomic components that are joined together as an infinite lattice, adding 
functionality without increasing complexity, and allowing for truly scalable 
applications.

In this book, I aim to provide a working knowledge of Flight to both seasoned 
application developers and novices coming from a traditional JavaScript 
development background.

I was able to write this book from a unique perspective, having been given the 
opportunity to work with Flight on a major JavaScript application (TweetDeck) 
before its initial open source release, and as a part of the Twitter organization,  
with direct access to those responsible for designing Flight, the Twitter Web  
Core team.

Their ongoing support, advice, and understanding of the intentions behind Flight 
has hopefully led this book to be more than just a technical manual, allowing me  
to dig deep into how to design applications that conform to Flight's ideals.



Preface

[ 2 ]

Thanks go to Dan Webb, Angus Kroll, Todd Kloots, and Kenneth Kufulk for their 
help and advice, and also to Sol Plant who was my partner in introducing Flight 
to TweetDeck; to Nicolas Gallagher for his work on the Yo Flight Generator; to 
Cameron Hunter, Katsuya Noguchi, Simon Smith, and Andrey Popp for helping to 
review the book; and to Emma Dingle for being there when the going got tough.

What this book covers
Chapter 1, What is Flight?, covers the basics of how Flight works and the problems it 
aims to solve.

Chapter 2, The Advantages of Flight, details Flight's advantages over other frameworks. 
This includes its shallow-learning curve, reliability, reusability, agnostic architecture, 
performance, and the idea of well-organized freedom.

Chapter 3, Flight in the Wild, captures Flight's use in the real world before and after its 
release, by providing examples of applications and open source projects using Flight.

Chapter 4, Building a Flight Application, explains how to scaffold a Flight application 
with the Yeoman Flight Generator and walks through the resulting application 
structure.

Chapter 5, Components, aims to provide an overview of what components are and 
how to build them.

Chapter 6, UI Components, provides examples on how to listen for browser events, 
how to access elements within a component, and the use of defaults and settings 
within components.

Chapter 7, Data Components, deals with how data components differ from UI 
components, how to create them, attach them to the DOM, and how to handle  
UI events and trigger data events.

Chapter 8, Event Naming, discusses the importance of good event names, what an 
event really is, and also provides an example naming convention.

Chapter 9, Mixins, focusses on what mixins are, when to use them, and how to create 
them. It also covers Advice, a mechanism used to override or extend existing methods.

Chapter 10, Templating and Event Delegation, discusses various templating approaches 
in Flight, providing examples of DOM node templating, client-side templating with 
Hogan, and server-side templating with Grunt. Also covered is how to use generated 
HTML to determine state and event-delegation for dynamic HTML.



Preface

[ 3 ]

Chapter 11, Web Application Performance, shows how Flight can be used to render 
pages efficiently and how to work around latency in Ajax requests.

Chapter 12, Testing, provides an example BDD test written in Jasmine, explains 
what to focus on while testing components, how to gain references to component 
instances, and how to extend existing test frameworks to handle components, 
mixins, and events.

Chapter 13, Complexities of Flight Architecture, deals with the problems with nesting 
components and how to better define components to avoiding nesting.

Appendix, Flight API Reference, gives an overview of the essential API methods 
including how to create components and mixins, how to use Advice, listen for  
and trigger events, and define default attributes.

What you need for this book
To follow the examples in this book, you should have a working computer and a  
text editor. All the software required for installing and running Flight is covered 
within the book.

Who this book is for
This book is for anyone who wants to build Flight components, mixins, and 
applications. No previous knowledge of Flight or other application frameworks  
is required. A good understanding of JavaScript is required and any knowledge  
of jQuery and AMD will help, though is not essential.

Conventions
In this book, you will find a number of styles of text that distinguishes between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Generally, data components only  
trigger a single data event, for example, dataTask, dataTags."

A block of code is set as follows:

define(function (require) {
  // import dependencies
  var defineComponent = require('flight/lib/component');



Preface

[ 4 ]

  // export component constructor
  return defineComponent(helloWorld);
  // component definition
  function helloWorld () {};
});

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

define(function (require) {
  var defineComponent = require('flight/lib/component');
  var withTextUtils = require('component/with_text_utils');
  // mixin other mixins
  var withLocalStorage = function() {
compose.mixin(this, [withTextUtils]);
  };
});

Any command-line input or output is written as follows:

mkdir flight-example && cd $_

yo flight example

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Press cmd 
/ Ctrl + Alt + J to open Console in Chrome."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.



Preface

[ 5 ]

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org




What is Flight?
Flight is an open source, lightweight, component-based JavaScript framework, 
designed to create elegant JavaScript applications.

Who made Flight?
Flight was created at Twitter by Angus Croll, Dan Webb, and Kenneth Kufluk, along 
with other members of the Twitter Web Core team. A full list of the team involved  
in the development of the open source project is available on Flight's GitHub page  
at https://github.com/flightjs/flight.

Flight was created to provide a reliable, extensible framework for web applications, 
specifically to address performance and maintenance issues on the twitter.com 
website.

It is designed to obviate the need for a rigid model or view and the boilerplate that 
entails, allowing rapid development without sacrificing maintainability.



What is Flight?

[ 8 ]

How does Flight work?
Flight piggybacks on DOM to provide application structure and utilizes DOM events 
to act as an interface between components. A simple API provides constructors for 
components and mixins and access to DOM nodes and events.

Data
Component

DOCUMENT

BODY

FORM

UL

LI UI Component

UI Component

UI Component

Event-driven interfaces
Component instances are attached to DOM nodes (known as the component's root 
node). Events triggered within a component are initiated on the component's root 
node and bubble up the tree using the standard HTML event model.

By default, a component listens to events on its root node. As all events received 
on that node must have come from either the component's root node or from nodes 
within its DOM subtree, it can be sure that the event is relevant to itself (that is, all 
events triggered on nodes within a particular form element would be relevant to  
the component controlling the form).

Components may listen to events on specific nodes within the component's DOM 
subtree, but outside of that, it can only listen to events on either the document or  
the window and has no knowledge of the rest of the DOM.



Chapter 1

[ 9 ]

Scalable architecture
If a component was to trigger an event on its root node, components attached to 
nodes further down the DOM tree would not hear that event. Thus, if we were to 
attach a component to a specific input element (child) within a form (parent), the 
input would not receive events triggered on the form, making it difficult to keep  
the child informed.

The best solution to this problem is to rethink the whole parent-child concept. In 
Flight, components are not intended to instantiate other components. Application 
structure in Flight is almost entirely flat with no parent-child relationships.

No parent-child relationships
This may seem counterintuitive at first, but is in fact a major feature in making  
Flight scalable. By preventing parent-child structures, each component becomes  
truly independent and reusable. No component relies on another to do its job.

No spaghetti code
Whether through a parent-child relationship or through a direct use of an exposed API, 
referencing one module's methods from within another is a major cause of problems 
when refactoring large applications. It is all too easy to end up with spaghetti code,  
a complex web of interdependent modules, as seen in the following figure:

Module A

Module D Module B

Module C

For example, a theoretical module named TaskManager may provide a method, 
get, to return a specific task. TaskManager.get() might make sense, but think 
about what happens when you change the input/output of the get method. How 
do you find every reference to it? How many other methods named get are there? 
Is it clear that a particular method belongs to the TaskManager module? This can 
become especially problematic when instances are assigned inconsistent variable 
names such as taskManager, taskMan, tm.



What is Flight?

[ 10 ]

It is possible to obviate some of these problems with good method naming and a 
good IDE but these are by no means ideal solutions.

Flight offers an alternative.

Promoting reusability with well-defined interfaces
In Flight, each component has a clear, well-defined interface and is essentially 
unaware of the existence of the rest of the application. A component acts as an 
independent entity and will continue to work as intended if all other components  
on the site are removed.

These simple, well-defined interfaces can be exhaustively tested, ensuring that 
each component behaves in a predictable manner. This makes it possible to rapidly 
develop new features by reusing existing components and mixins, safe in the 
knowledge that they will behave as expected in their new environment.

The missing model
Generally, JavaScript frameworks employ a strict data model to facilitate reliable 
transfer of data from the data store to the UI. The data store, data processors, and 
the view are all dependent on knowledge of this rigid structure. In an attempt to 
create a neat separation of model and view, the two have, in fact, been inextricably 
intertwined.

Simplification
In Flight, there is no concept of a model or view. Instead, data components manage the 
interaction between the data store and the UI, listening for UI events, and producing 
data events containing only what the UI requires.

UI components in Flight can be thought of as behavioral templates. In the same way 
that a Mustache template renders HTML, UI components render behavior.

Reducing boilerplate
The data required to determine behavior comes in the form of simple object literals 
with no classes and no rigid structure. This results in considerably less boilerplate 
code than equivalent frameworks and a total separation of data from behavior.

The missing model is not a hardship but rather an ideal.



Chapter 1

[ 11 ]

Summary
Flight offers a minimal API, uses the DOM to provide structure, and DOM events  
as an interface between components. It uses a flat structure to reduce complexity  
and create scalable applications. It avoids rigid model-view relationships, reducing 
the amount of boilerplate code required.

Flight gives developers the freedom to use a variety of best practice approaches in  
a well-organized environment.

In the next chapter, we will see why Twitter developed Flight and also take a look  
at why you may want to use it on a project.





The Advantages of Flight
The number of JavaScript frameworks available today can be overwhelming, and 
when it comes to choosing one on which to base your application, you need to make 
the right decision. So, why choose Flight?

This chapter details Flight's advantages over other frameworks. This includes its 
shallow-learning curve, reliability, reusability, agnostic architecture, performance, 
and the idea of well-organized freedom. At the end of the chapter, you can find  
some specific scenarios such as single-page apps and classic web pages.

Simplicity
First and foremost, Flight is simple. Most frameworks provide layouts, data models, 
and utilities that tend to produce big and confusing APIs. Learning curves are steep.

In contrast, you'll probably only use 10 Flight methods ever, and three of those are 
almost identical.

All components and mixins follow the same simple format. Once you've learned one, 
you've learned them all.

Take a look at the "Hello, World!" example component in Chapter 5, Components, to see what 
a simple component might look like.

Simplicity means fast ramp-up times for new developers who should be able to come 
to understand individual components quickly.



The Advantages of Flight

[ 14 ]

Efficient complexity management
In most frameworks, the complexity of the code increases almost exponentially with 
the number of features. Dependency diagrams often look like a set of trees, each with 
branches and roots intermingling to create a dense thicket of connections. A simple 
change in one place could easily create an unforeseen error in another or a chain of 
failures that could easily take down the whole application.

Flight applications are instead built up from reliable, reusable artifacts known as 
components. Each component knows nothing of the rest of the application, it simply 
listens for and triggers events. Components behave like cells in an organism. They 
have well-defined input and output, are exhaustively testable, and are loosely coupled.

listens for
events

triggers
events

interacts
with the
DOM

component

A component's cellular nature means that introducing more components has almost 
no effect on the overall complexity of the code, unlike traditional architectures. The 
structure remains flat, without any spaghetti code.



Chapter 2

[ 15 ]

This is particularly important in large applications. Complexity management is 
important in any application, but when you're dealing with hundreds or thousands 
of components, you need to know that they aren't going to have unforeseen knock-
on effects.

This flat, cellular structure also makes Flight well-suited to large projects with large or 
remote development teams. Each developer can work on an independent component, 
without first having to understand the architecture of the entire application.

Reusability
Flight components have well-defined interfaces and are loosely coupled, making it 
easy to reuse them within an application, and even across different applications.

This separates Flight from other frameworks such as Backbone or AngularJS,  
where functionality is buried inside layers of complexity and is usually impossible  
to extract.

Not only does this make it easier and faster to build complex applications in Flight 
but it also offers developers the opportunity to give back to the community.

There are already a lot of useful Flight components and mixins being open  
sourced. Try searching for "flight-" on Bower or GitHub, or check out the list  
at http://flight-components.jit.su/.

Twitter has already been taking advantage of this reusability factor within the 
company, sharing components such as Typeahead (Twitter's search autocomplete) 
between Twitter.com and TweetDeck, something which would have been 
unimaginable a year ago.

Agnostic architecture
Flight has agnostic architecture. For example, it doesn't matter which templating 
system is used, or even if one is used at all. Server-side, client-side, or plain old  
static HTML are all the same to Flight.

Flight does not impose a data model, so any method of data storage and processing 
can be used behind the scenes.

This gives the developer freedom to change all aspects of the stack without affecting 
the UI and the ability to introduce Flight to an existing application without conflict.

www.allitebooks.com

http://www.allitebooks.org


The Advantages of Flight

[ 16 ]

Improved Performance
Performance is about a lot more than how fast the code executes, or how efficient  
it is with memory. Time to first load is a very important factor. When a user loads  
a web page, the request must be processed, data must be gathered, and a response 
will be sent. The response is then rendered by the client. Server-side processing  
and data gathering is fast. Latency and interpretation makes rendering slow.

One of the largest factors in response and rendering speed is the sheer amount of 
code being sent over the wire. The more code required to render a page, the slower 
the rendering will be. Most modern JavaScript frameworks use deferred loading 
(for example, via RequireJS) to reduce the amount of code sent in the first response. 
However, all this code is needed to be able to render a page, because layout and 
templating systems only exist on the client.

Flight's architecture allows templates to be compiled and rendered on the server, so 
the first response is a fully-formed web page. Flight components can then be attached 
to existing DOM nodes and determine their state from the HTML, rather than having 
to request data over XMLHttpRequest (XHR) and generate the HTML themselves.

Performance, server-side rendering, and using the DOM to determine state are 
covered in more detail in Chapter 11, Web Application Performance.

Well-organized freedom
Back in the good old days of JavaScript development, it was all a bit of a free for  
all. Everyone had their own way of doing things. Code was idiosyncratic rather  
than idiomatic. In a lot of ways, this was a pain, that is, it was hard to onboard  
new developers and still harder to keep a codebase consistent and well-organized.

On the other hand, there was very little boilerplate code and it was possible to get 
things done without having to first read lengthy documentation on a big API.

jQuery built on this ideal, reduced the amount of boilerplate code required. It 
made JavaScript code easier to read and write, while not imposing any particular 
requirements in terms of architecture.

What jQuery failed to do (and was never intended to do) was provide an application-
level structure. It remained all too easy for code to become a spaghetti mess of callbacks 
and anonymous functions.



Chapter 2

[ 17 ]

Flight solves this problem by providing much needed structure while maintaining a 
simple, architecture-agnostic approach. Its API empowers developers, helping them 
to create elegant and well-ordered code, while retaining a sense of freedom.

Put simply, it's a joy to use.

Summary
The Flight API is small and should be familiar to any jQuery user, producing a 
shallow learning-curve. The atomic nature of components makes them reliable  
and reusable, and creates truly scalable applications, while its agnostic architecture 
allows developers to use any technology stack and even introduce Flight into 
existing applications.

In the next chapter, we take a look at how Flight is already being used to build 
applications and extended to create new frameworks.





Flight in the Wild
This chapter covers Flight's use in the real world before and after its release.  
It also provides examples of applications and open source projects using Flight  
in an attempt to show what is possible with this flexible framework.

Flight at Twitter
Flight is used by Twitter on two high-profile products: twitter.com and TweetDeck. 
Despite outward appearances, both these products are great examples of single-page 
applications. twitter.com gives the impression of a multipage site, but underneath 
that facade lies a JavaScript application, creating the appearance of pages while 
maintaining continuous data layer at the document level.

Flight was originally created to solve an interesting problem on twitter.com. The 
site had recently switched from a multipage, HTML-driven site to a single-page, 
JavaScript-driven application, and was suffering from a variety of problems as  
a result, including slow load times, poor accessibility, and high maintenance costs.

TweetDeck was much in the same boat. A rapid development process and a growing 
development team had led to a variety of coding styles being implemented, making 
the application hard to understand and develop on.

So, why was Flight the answer?

Better performance
Poor performance in single-page applications is a result of various factors including 
time to first load, template rendering, memory leaks, and plain old bad code.



Flight in the Wild

[ 20 ]

Flight provided twitter.com with a fast, lightweight, efficient framework  
that allowed pages to load faster using server-side rendering, and by allowing  
components to be torn down cleanly between pages avoided hogging of memory.

A manageable codebase
With a development team as large as Twitter's, creating consistent, maintainable 
code is a must. With a well-organized code structure, well-tested interfaces, and 
consistent style, it becomes possible to rapidly onboard new developers, refactor 
existing code, and have everyone understand how things work.

Flight components can be exhaustively tested, have clearly defined interfaces, and are 
easy to read, making them ideal for the job. The lack of complex interdependencies 
between components creates a simple, reliable structure that is easy to maintain.

Quotes from developers
The following quotes are taken from various developers discovering Flight:

On refactoring
"…one of the great things about Flight: ease of refactoring. One piece of advice I can 
offer is to not worry too much about getting everything right the first time around.

We spent quite some time at the outset considering how … components would 
behave,... (but) we realised we needn't have bothered. It's desperately easy to  
alter a component to be a mixin, or the other way around. It's simple to change  
the way a component works internally because nothing else cares. It's dead simple 
to break up a data component into lots of little components because nothing is 
talking to it directly."

—TweetDeck Blog

"We are a very small team and didn't want to spend too much time refactoring 
existing code. Before deciding to use Flight, we tried a few other alternatives. Flight 
ended up being the most appealing to us because 1) it is very lightweight, and 2) it 
is agnostic towards client-server communication. The latter property allowed us to 
refactor our JavaScript code without changing any server-side code, which would 
have taken us much longer."

—Gumroad Blog



Chapter 3

[ 21 ]

On Flight's component architecture
"Flight is also inherently modular;  this leads to code getting very organized 
without any effort at all. It is also strongly in accordance with the DRY philosophy; 
Flight components can be attached to multiple DOM elements, Flight mixins can 
be added to multiple components, A single Flight component can have multiple 
mixins added to it."

—Ameya Karve, developer of Icarus

Open source Flight projects
A number of open source projects based on Flight have sprung up since its release. 
Presented here are a few that show Flight's flexibility and potential:

TodoMVC
The first question I get asked when talking about Flight is whether there's a 
TodoMVC implementation. In case you've not heard of it, TodoMVC provides 
examples of the same todo app written with various frameworks. Thanks to  
Michal Kulkis, one is available at:

http://todomvc.com/dependency-examples/flight/

Components for web applications
Developers have already created some useful, open source Flight components,  
ready for you to drop into your own projects. Here are a few examples from  
Cameron Hunter, Andy Hume, and myself:

• Manage device orientation with flight-orientation available at:  
https://github.com/cameronhunter/flight-orientation.

• Access the HTML5 geolocation API with flight-geolocation available  
at: https://github.com/cameronhunter/flight-geolocation.

• flight-storage uses various methods to store data including the  
Local Storage, HTML attributes, and cookies. It is also available  
at https://github.com/cameronhunter/flight-storage.



Flight in the Wild

[ 22 ]

• Create click traps for modals with flight-click-trap which is available  
at: https://github.com/ahume/flight-click-trap.

• Manage keyboard shortcuts including sequences and combos with  
flight-keyboard-shortcuts. Have a look at:  
https://github.com/tbrd/flight-keyboard-shortcuts.

Extending Flight with two-way data 
binding
A number of recent JavaScript frameworks, including Ember.js and AngularJs,  
use two-way data binding. This refers to the binding of UI and data object together: 
making a change on the UI immediately updates the data, and vice versa.

There are various ways of achieving this in Flight. One early implementation is 
Icarus by Ameya Karve, an extension of the Flight framework that adds two-way 
binding functionality using Laces.js. Have a look at the following site and the  
quote that follows by Ameya Karve: https://github.com/ameyakarve/Icarus

"…The philosophy behind writing Icarus was to combine the best of both worlds. 
Icarus components are completely independent, and can communicate with one 
another, and with themselves using events. Icarus components also provide Models, 
which are similar to Models used in typical MV* frameworks…"

Summary
Flight has already proven itself in large applications. The teams at TweetDeck  
and Twitter are both very positive about the experience of developing for Flight  
and their enthusiasm for it seems to be spreading.

Flight's flexibility offers developers the opportunity to easily hack on top of the 
framework as well as develop with it, feeding back into the community.

In the next chapter, we get down to the nitty-gritty of Flight: creating Flight 
applications.



Building a Flight Application
Deciding which framework you are going to use is only one step in designing  
an application. This chapter explains how to scaffold a Flight application with the 
Yeoman Flight generator and walks through the resulting application structure.

Scaffolding a Flight application with Yo
Yeoman is a workflow for modern web apps. It includes Yo, a system that allows 
a developer to write generators which can create scaffolds for applications and 
packages with a single command. Yo generators have been created for a wide  
variety of structures such as jQuery plugins, Node servers, and (of interest to us) 
Flight applications.

The Flight generator (created by Nicolas Gallagher) can scaffold out Flight 
applications, components, mixins, and standalone packages in a matter of seconds. 
It even sets up a test runner using Karma and Jasmine Flight. We'll look at testing 
Flight in detail in Chapter 12, Testing.

Installing Yo
Yo uses Node.js and the Node Package Manager (NPM) to operate. Follow the 
installation instructions at http://nodejs.org/. The Flight generator requires 
Bower, a JavaScript package manager.

If you are working with other projects that depend on the older 
version of grunt, you can use the Node Version Manager (NVM) 
to install multiple versions of Node alongside one another.



Building a Flight Application

[ 24 ]

You should now be able to install Yo, Bower, and the Flight generator using the 
following command:

npm install -g bower yo generator-flight

If you're unfamiliar with npm, the –g option indicates that these packages should be 
installed globally, so they'll be available from any directory. Once installed, you're 
ready to scaffold your application:

mkdir flight-example && cd $_

yo flight example

You will be asked if you want to use Normalize and Bootstrap. Answer Yes for both 
to get some useful CSS.

Visit http://necolas.github.io/normalize.css/ 
and http://getbootstrap.com/ for more information.

This will create an application structure under flight-example and install all the 
required dependencies (including Flight itself) with Bower.

Understanding the application structure
In the root of flight-example, you'll find a lot of configuration files, a node_modules 
directory, and a test directory; none of which you don't have to worry about, for now. 
In fact, all that's important right now is the app directory.

In there, you'll see some basic application files, such as 404, index, robots, and 
favicon, which should be familiar to you.

In addition, there will be a few directories:

• bower_components contain the application's Bower dependencies  
(including Flight and jQuery).

• css, img, and js, are also quite familiar. In the js folder, you'll find:
 ° main.js, the application's initialization script (loaded from  

index.html).
 ° component, which in time will contain your Flight components.
 ° page, which holds default.js, which will be used to instantiate 

your components.



Chapter 4

[ 25 ]

Running the application
Opening index.html in a browser should be enough; though, due to security  
issues, it may not be possible to do this in your browser without running a server. 
The simple http-server (which does exactly what it says on the tin) is available 
through npm.

npm install –g http-server

cd app

http-server –c-1 –p 8000

open http://localhost:8000

And behold! Your application lives! Here's what it should look like in Chrome with 
the console open (press cmd / Ctrl + Alt + J to open Console in Chrome).

You're now ready to flesh out the application scaffold. Feel free to skip ahead to the 
next chapter, or read on for information on creating your own Flight applications.

www.allitebooks.com

http://www.allitebooks.org


Building a Flight Application

[ 26 ]

Creating custom applications
It may be the case at some point that you want to create a Flight application which 
does not conform to the structure generated by the Flight generator. This will almost 
always be true, if you're introducing Flight to a pre-existing application.

To create your own unique structure, you will have to install Flight manually.

There are a number of ways to do this, but the recommended method is Bower. Have 
a look at http://bower.io for installation instructions. Once Bower is installed, Flight 
and its dependencies can be installed from the command line with a single command:

bower install flight

Alternatively, you can download Flight from GitHub, or import it as a git submodule. 
If you download the files, you will also have to manually install the dependencies such 
as jQuery, es5-shim, and RequireJS.

Using Flight without a module loader
It is possible to use Flight as a standalone package without RequireJS. Instructions on 
how to do this are available in the Flight docs on GitHub.

Have a look at the full Flight documentation at  
http://flightjs.github.io/ for more information.

Troubleshooting
As you work through the examples, you are no doubt going to make mistakes, 
whether through spelling errors, syntax errors, or misunderstandings. The first 
step in mitigating this would be to get hold of a good editor that provides syntax 
highlighting and autocomplete.

Debugging
Flight provides some useful tools to aid in debugging your code. As Flight is event-
driven, a logger is provided that reports on when events are bound, unbound, and 
triggered. Logs are output to the browser console (for example, Chrome Dev Tools).



Chapter 4

[ 27 ]

In the previous application generated, DEBUG is turned on and logs all events. As you 
work through the example, you may find that you want to change the logging level. 
You can do so with the following commands:

DEBUG.events.logAll(); //log everything

DEBUG.events.logByAction('trigger'); //only log event triggers 

DEBUG.events.logByName('click'); //only log events named 'click' -  
  accepts * as wildcard

DEBUG.events.logNone(); //log nothing

Once your code is ready for production, you can turn the DEBUG mode off entirely by 
removing the following line from app/js/main.js:

debug.enable(true);

Summary
The Yeoman Flight generator is a great starting point for any Flight project. Flight is 
also available in various forms, if you want to roll your own or introduce Flight to  
an existing application.

In the next chapter, you will start to flesh out the example application by creating 
your first Flight component.





Components
Flight is a component-based framework. This chapter aims to provide an overview  
of components and how to build them. By the end of this chapter, you will have 
created a component that will, when instantiated, print "Hello, World!" to the 
browser console. 

What is a component?
A component is a constructor function. It declares properties and methods that 
describe its behavior.

Flight provides each component with a set of utilities, such as event handling  
and DOM node selection. These make up most of Flight's API, and are covered  
in subsequent chapters.

A component constructor is used to create instances of the component. Each instance 
is attached to a DOM node.

A component instance interacts with DOM through the node it is attached to, and 
with other component instances through events.

Components do not inherit from other components. Functionality can be extended 
and shared through mixins.

Component types
Components are generally broken up in to two types: User Interface (UI) and Data, 
although the distinction between the two is purely conceptual; all components are 
essentially the same.



Components

[ 30 ]

All components, both Data and UI, are attached to a specific DOM node. They are 
then able to trigger and handle events, interrogate and alter the DOM on their root 
node and its subtree.

The difference lies in their behavior: only UI components should modify the DOM  
or listen to user-initiated events, while Data components manage data storage, 
requests, and manipulation.

This separation is not a hard-and-fast rule, and you should feel free to build 
components in any style you wish, though keeping the separation helps keep  
your components small, well-defined, and reusable. The examples in this book 
attempt to maintain a clear separation between UI and Data.

Mixins
Mixins are an alternative to the classic object-based inheritance. It is useful to think  
of them as a form of multiple inheritance, which allows components to share a set  
of common functionalities.

A mixin has the same structure as a component, and methods provided by the mixin 
are available as first-class citizen component instances.

Creating your first component
Every programming tutorial needs its "hello world" moment. Here, you are going to 
create a component that writes "Hello, World!" to the console when the component  
is initialized.

All Flight components are AMD modules. Create a new JavaScript file, app/js/
component/hello_world.js, and add a basic AMD module using the CommonJS 
format: 

define(function (require) {
  // import dependencies
  var defineComponent = require('flight/lib/component');
  
  // export component constructor
  return defineComponent(helloWorld);

  // component definition
  function helloWorld () {};
});



Chapter 5

[ 31 ]

The flight/lib/component module exports a method, defineComponent,  
which mixes Flight's component utilities into a component definition and  
returns a component constructor function. This is the first step in creating  
any component.

Attaching components to the DOM
All component constructors have a single exposed method, attachTo, which attaches 
an instance of the component to a DOM node.

In the example application, RequireJS loads main.js, which in turn 
loads an AMD module, /app/js/page/default.js. Pages are a 
special type of component, neither UI nor data. Their sole purpose is 
to instantiate other components. In a single-page application such as 
this one, default.js will probably be the only page.

Open the default page component, app/js/page/default.js. You'll need to require 
the Hello World component you just created in the module dependencies section:

/**
 * Module dependencies
 */
var HelloWorld = require('component/hello_world);

The RequireJS configuration in main.js specifies the path 
component as app/js/component. Thus the module loaded 
will be app/js/component/hello_world.js. For more 
information on paths, see the RequireJS documentation.

Then attach the component to the document DOM node in the initialize section:

/**
 * Module function
 */

function initialize() {
  HelloWorld.attachTo(document);
}



Components

[ 32 ]

The attachTo method accepts HTML elements, CSS selectors, or 
jQuery collections as its first parameters. In the latter two cases, it is 
possible that multiple DOM nodes may be represented; an instance 
of the component will be attached to every node. For example, 
HelloWorld.attachTo('div') would attach an instance 
of Hello World to every DIV element on the page. The console 
message would appear once for every instance of the component.

Performing actions on component 
initialization
One of the methods mixed into components by defineComponent is initialize. 
However, this method is used internally by Flight in the attachTo process and 
should not be called directly, nor should it be overridden. Flight instead provides  
a mechanism for doing something after another method is called.

The after method accepts two arguments: a method name and a callback.  
The callback will be executed immediately after the named method is called.

Within the component definition, the current context (this) always refers to the 
component instance. Utilities mixed in by defineComponent are first-class citizens  
of the component and can thus be accessed via the this keyword:

define(function (require) {
// import dependencies
  var defineComponent = require('flight/lib/component');
  
  // export component constructor
  return defineComponent(taskManager);

  // component definition
  function taskManager () {
// execute some code after initialization
this.after('initialize', function () {
console.log('Hello, world!');
});
    };
});



Chapter 5

[ 33 ]

Now, whenever an instance of Hello World is attached to the DOM, the 
after:initialize callback will be executed and Hello, World! will be  
written to the console. Go ahead and reload the application now to see it  
in action. Here's what it will looks like in Chrome:

The after method is one of the three methods (before, 
after, and around) which together are known as Advice, 
which is covered in more detail in Chapter 9, Mixins.

Summary
Components are constructors, defined using the AMD CommonJS format. They are 
used by pages to attach component instances to the DOM. Each instance has access 
to a set of core Flight functionalities including after, which allows callback hooks  
to be added to other methods.





UI Components
This chapter provides examples on how to listen for browser events, how to access 
elements within a component, and the use of defaults and settings within components. 
By the end of the chapter, you will have created a component that handles form submit 
events and triggers a custom event containing sanitized input.

Attaching components to existing HTML
In the previous chapter, you learned how to attach components to the document. 
However, most UI components are attached not to the document but to elements 
such as forms, buttons, and lists.

What with this app being a task manager, it helps if a user can create tasks.  
Go ahead and replace the Hello World text in index.html with an add task  
form. This form has a single input (the task description) and a Submit button.

<form class="js-add-task form-inline">
    <label class="control-label">Add a task</label>
    <div class="controls">
        <input type="text" placeholder="description" 
          class="js-add-task-description" />
        <input type="submit" class="js-add-task-submit btn btn- 
          primary" />
    </div>
</form>

Classes using the js- prefix are intended for use as JavaScript 
hooks and do not have any CSS associated with them. For clarity, 
js- classes are always the first class in a class attribute. 

www.allitebooks.com

http://www.allitebooks.org


UI Components

[ 36 ]

To handle form submissions, we will create a component (Add Task) and attach it to 
the form element.

Create a new component file, /app/js/component/add_task.js, and add the 
following code:

define(function (require) {
  var defineComponent = require('flight/lib/component');

  return defineComponent(addTask);

   function addTask () {
        // initialize
        this.after('initialize', function () {
            console.log('Initializing Add Task form');
  });
    };
});

All UI components follow the same format, so this should already be starting to look 
familiar. You can skip the console log in the initialization method if you like—it's 
only there to aid in debugging.

AddTask then needs to be imported in default.js and attached to the DOM. You can 
replace the HelloWorld references with AddTask, as shown in the following code:

var AddTask = require('component/add_task');
…
function initialize() {
AddTask.attachTo(document);
}

This will attach AddTask to the document. However, we want to attach it to the  
form element itself. To do this, we can pass a CSS selector to the attachTo method, 
as shown in the following code:

function initialize() {
  AddTask.attachTo('.js-add-task');
}

Now, we need to set up Add Task to listen for submit events.



Chapter 6

[ 37 ]

Listening for browser events
When the user submits the form, a submit event will be fired in the browser.  
The Add Task component needs to listen for that event.

Attaching event handlers
Flight's .on() method attaches event handlers to DOM nodes. It is very similar to 
jQuery's method of the same name, though has some differences in syntax. As with 
jQuery's .on() method, it also has the matching methods off and trigger. However, 
the Flight versions also provide a little extra magic. Event listeners attached with 
Flight's on method are automatically removed when the component is torn down, so 
you don't have to remember to do it yourself. Less boilerplate makes for cleaner code.

Events are attached to a component's root node, unless otherwise specified. Go ahead 
and add an event handler for the submit event in Add Task.

this.after('initialize', function () {
    this.on('submit', this.handleSubmit);
});

You haven't yet created the handleSubmit method, so if you reload the app now, 
you'll see Flight throwing an error in the console as it is being asked to attach a 
handler that doesn't exist.

Defining event handlers
Event handlers (and all other component methods) are declared within the 
component definition as first-class citizens of the object:

define(function (require) {
  var defineComponent = require('flight/lib/component');
  return defineComponent(addTask);

  function addTask () {

    // declare handleSubmit method
    this.handleSubmit = function (event) {
    event.preventDefault();
    };



UI Components

[ 38 ]

    // initialize
    this.after('initialize', function () {
      this.on('submit', this.handleSubmit);
    });

  }
});

As with standard jQuery events, the first parameter passed to the handler is a 
jQuery.Event object.

The next step is to get the description from the text input element. 

Finding DOM nodes
A component's root node (the node it was attached to) can be accessed from within 
the component using this.$node.

The $ prefix is used throughout the example application 
to indicate that the value of a variable or attribute is a 
jQuery collection.

Although it is possible to use jQuery methods to find elements within this.$node, 
Flight provides a neater method, this.select, which uses CSS selectors defined as  
an attribute on the component.

this.select requires the use of named CSS selectors, which we will define using 
default attributes.

Setting default attributes
defaultAttrs is used to define default attributes for a component; to define  
its default configuration. These attributes can then be referenced from within  
a component definition, as shown in the following code:

function helloWorld () {
this.defaultAttrs({
  welcomeText: 'Hello, world!',
  backgroundColor: 'blue'
});
this.after('initialize', function () {
  console.log(this.attr.welcomeText);



Chapter 6

[ 39 ]

  this.$node.style('background-color', this.attr.backgroundColor);
});
});

Attributes can be used to store any serializable data but also have one special use 
case in Flight: defining named CSS selectors.

Later, we will use defaultAttrs to define a CSS selector, which in turn will be  
used to locate the text input field.

It's best to keep defaultAttrs at the top of a component 
definition for the sake of clarity.

Using attributes to select nodes
Once a selector has been declared as an attribute, this.select can be used to find 
nodes within the component root matching the selector (essentially the equivalent 
of this.$node.find(selector)). In the following example, $descriptionInput 
would contain any nodes within the component root with the class name js-add-
task-description.

this.defaultAttrs({
    descriptionSelector: '.js-add-task-description'
});
var $descriptionInput = this.select('descriptionSelector');

To see this in action, update Add Task to use defaultAttrs to declare the CSS 
selector for the input element, and select to get a reference to it in handleSubmit, 
then retrieve the value.

define(function (require) {
  var defineComponent = require('flight/lib/component');
  return defineComponent(addTask);

function addTask () {
        this.defaultAttrs({
            descriptionSelector: '.js-add-task-description'
        });

        this.handleSubmit = function (event) {
            // don't actually submit the form
            event.preventDefault();



UI Components

[ 40 ]

            // get the input element
            var $description = this.select('descriptionSelector');
            var description = $description.val();

            // trim whitespace
            description = $.trim(description);
   console.log(description);
 };

        this.after('initialize', function () {
            // listen for submit events
            this.on('submit', this.handleSubmit);
        });

    };
});

Reload your page (http://localhost:8080), type test in the input field, and hit 
Submit. You should see the following output in the console:

Triggering custom events in Flight
Now that handleSubmit has the event description, it needs to tell the rest of the 
application that the user wants to add a task with that description. To do this, it  
will trigger a custom event named uiAddTask. See Chapter 8, Event Naming, for 
details on the event name.

As with on and off, Flight wraps jQuery's trigger in its own trigger method.

this.trigger([selector, ] eventName [, data]);

trigger accepts up to three arguments. Of these, only the event name is required, 
though in this case we will provide data as well (the description).



Chapter 6

[ 41 ]

Go ahead and add the following code in place of the console log in Add Task.

this.trigger('uiAddTask', {
  task: {
    description: description
  }
});

Triggering events on specific elements
You may provide an optional selector to trigger. This can be a CSS selector string,  
a DOM element, or a jQuery collection. The selector is optional and if no selector  
is provided, the event will be triggered on the root node of the component.

If the selector represents multiple DOM nodes, a unique event will be triggered  
on each node.

CSS selector strings may not behave as you expect when 
triggering events. The selector is applied to the document 
root and not to the component node. To trigger an event 
on a specific node, use select to find the node and pass 
the result to trigger, as shown in the following code:

this.trigger(this.select('addTaskSelector'), 
'resetForm');

Event names
Event naming is a very important aspect of Flight. It helps a great deal if event names 
are descriptive and it is a good idea to lean toward longer rather than shorter event 
names. An event name is generally used in two or three places, so there's no harm in 
making them long, whereas the shorter the name the more likely conflicts will occur, 
and the less obvious the nature of the event will be.

Event naming is covered in detail in Chapter 8, Event Naming. 

Event data
data is the event payload. It is optional, but if used, must always be a serializable 
object. Flight will reject any attempt to use non-serializable objects, such as methods, 
strings, object instances, or DOM nodes, causing runtime errors or invisible failures.



UI Components

[ 42 ]

You can structure your data however you wish, but it is generally a good idea to be 
as clear as possible, even if this means creating what feels like unnecessary structure.

In the case of the task description, it is possible to make data an object that directly 
represents a task with a single attribute, description:

{
  description: 'buy lightbulbs'
}

The event handler would then look like the following:

this.handleAddTaskAction = function(event, task) {
  var description = task.description;
  // do something
}

This might seem efficient until it becomes necessary to pass some data that is not 
part of the task, such as a request ID or source ID (to help determine what fired the 
event). It is not part of a task as such, so the data structure changes:

{
  task: {
    description: 'fit lightbulbs'
},
sourceId: 'addTask'
}

All the event handlers for this event would then have to be altered to handle the  
new data structure.

It is not possible to obviate all such refactoring, but good planning can make a  
huge difference.

Modifying the DOM
The last thing this component needs to do is update the Add Task form so the user 
knows their request is being acted upon. This can be done easily by disabling the 
form input and Submit button, as shown in the following code:

this.defaultAttrs({
  submitSelector: '.js-add-task-submit',
  descriptionSelector: '.js-add-task-description'
});



Chapter 6

[ 43 ]

this.handleSubmit = function(event, data) {
  var $submit = this.select('submitSelector');
  
  $description.attr('disabled', true);
$submit.attr('disabled', true);
});

Currently, the form will always remain disabled. When we start getting responses 
back from the data layer (which we have yet to build), we'll come back to this and 
re-enable the form controls.

Summary
A UI component's scope is limited to the DOM node it was attached to and its children.

A UI component:

• Listens for browser events
• Triggers custom events
• Interrogates the DOM
• Modifies the DOM

Components use custom events delivering simple, serializable data objects to 
communicate with other components.

The next chapter discusses how to process and store data using data components.





Data Components
Data components are generally an interface between the UI and storage layers.  
This chapter explains how data components differ from UI components, how to 
create them, attach them to the DOM, and how to handle UI events and trigger  
data events.

What is a data component?
Flight data components are much the same as UI components. The core difference is 
that data components don't interact with the DOM. Instead, they listen for UI events 
such as requests for data, or user-initiated actions that require data processing.

This separation of interests allows multiple UI components to utilize the same data 
components. It also means that if a change is made to how data is stored or processed, 
it is only done in one place and has no effect on the UI.

For example, the addTask component triggers a UI action event, uiAddTask, which 
provides a task description. It is totally agnostic as to what the rest of the app does 
with that information. It doesn't matter which other components handle that event, 
or even if anyone does anything with it at all.

A data component could, in response to a UI event, make an asynchronous HTTP 
request, store the data in local storage, place it in memory, or just ignore it; it's all  
the same to the UI.

www.allitebooks.com

http://www.allitebooks.org


Data Components

[ 46 ]

Attaching data components
All data components should be attached to the document. This allows them to 
receive UI events from the entire application. This also means that data events  
will be triggered on the document. Data components are agnostic as to the  
document structure.

Data components are instantiated at the page level. UI components should never  
be aware of which data components they are interacting with.

Naming data events
As with UI events, the naming of data events is very important. Events define  
a component's interface with the rest of the application. Event names should be  
clear and descriptive.

Generally, data events describe their payload: dataTask, dataTasks, dataSettings, 
and so on.

Occasionally, it may be necessary to trigger an event that describes an interesting 
moment in the data process. For example, to help an application display a spinner 
while content is loading, a data component might trigger an event such as 
dataWaitingForAsynchronousResponse and dataReceivedAsynchronousResponse 
to allow the UI to show and hide the spinner.

Creating a data component
Create a new file, /app/js/component/task_data.js, and add the basic  
component code:

define(function () {
  var defineComponent = require('flight/lib/component');

  // return a constructor for this component
  return defineComponent(taskData);

  // component definition
  function taskData () {
    // component methods go here
  }
});



Chapter 7

[ 47 ]

This code should look very familiar by now. It is a good idea to use this base as a 
component template so you can add new components more easily. How you do this 
depends on your preference and Integrated Development Environment (IDE), but 
the easiest way is probably to create a new file, / app/js/component/component_
template.js, and just copy and paste as required.

This component needs to be attached to the document during page initialization. In 
default.js, import TaskData as a dependency and attach it to the DOM using the 
attachTo method.

default.js should now look something like this:

define(function (require) {

  'use strict';

  /**
    * Module dependencies
    */

  var AddTask = require('component/add_task');
  var TaskData = require('component/task_data');

  /**
    * Module exports
    */

  return initialize;

  /**
    * Module function
    */

  function initialize() {
    AddTask.attachTo('.js-add-task');
    TaskData.attachTo(document);
  }

});



Data Components

[ 48 ]

Listening for UI events
This is a good time to think about the events TaskData component will consume  
and produce.

TaskData currently only needs to do one thing, handle the addition of new tasks. 
However, it is obvious that it will also need to manage task completion and request 
for task data from the UI (both for single tasks and all tasks).

These requirements correspond to four UI events:

• uiAddTask

• uiTaskCompleted

• uiNeedsTask

• uiNeedsTasks

Let's go ahead and set up event listeners and handlers for each of these events.  
In TaskData, add event listeners for the UI events to after:initialize, and  
create dummy event handlers:

this.handleAddTask = function(e, data) {};
this.handleNeedsTask = function(e, data) {};
this.handleNeedsTasks = function(e, data) {};
this.handleTaskCompleted = function(e, data) {};

this.after('initialize', function() {
  this.on('uiAddTask', this.handleAddTask);
  this.on('uiNeedsTask', this.handleNeedsTask);
  this.on('uiNeedsTasks', this.handleNeedsTasks);
  this.on('uiTaskCompleted', this.handleTaskCompleted);
});

Event handlers
Event handlers in Flight accept two parameters. As seen in TaskData, the first 
parameter is a jQuery event. The second is the data object passed to the trigger 
method.

The data passed with the uiAddTask event looks like this:

{
  task: {
    description: 'Make tea.'
  }
}



Chapter 7

[ 49 ]

TaskData needs to store this data in a way that will be able to retrieve it easily later. 
To do this, each task will be assigned a randomly generated ID and stored in a hash. 
First, we need to initialize the hash in after:initialize:

this.after('initialize', function() {
  this.tasks = {};

Then, in handleAddTask, generate the unique ID and store the task:

this.handleAddTask = function(e, data) {
  // generate ID and store on task object
  data.task.id = Date.now();
  // store task
  this.tasks[data.task.id] = data.task;
}

Triggering data events
Once the task is stored, handleAddTask can trigger an event to announce that the 
process was successful:

this.handleAddTask = function(e, data) {
  data.task.id = Date.now();
  this.tasks[data.task.id] = data.task;

  // trigger event
  this.trigger('dataTaskAdded, {
    task: data.task
});
}

Great! You can now create and store tasks. The task data is only stored in memory at 
the moment, so it will be lost when you reload the app, but we shall do it for the time 
being. We shall look at storing the data more permanently in Chapter 9, Mixins.

Completing the task_data component
It should be quite obvious now how the other handlers are going to work. They're 
included here for the sake of completion, but before you look at the code, first think 
about how you would implement them.

Also ask yourself, "What else might this component need to do?"



Data Components

[ 50 ]

handleNeedsTask
Retrieve a single task corresponding to data.taskId and fire the dataTask event.

It is worth considering what will happen if the requested task is not available. Usually 
the most useful action is to trigger an error event, to let other components know that  
an error occurred. In some cases, it may be acceptable to swallow the error.

this.handleNeedsTask = function(e, data) {
  var task = this.tasks[data.taskId];
  if (task) {
    this.trigger('dataTask', {
      task: task
    });
  }
};

handleNeedsTasks
Retrieve all tasks and fire the dataTasks event.

It's worth considering in what format you would expect the task list to be. An array? 
A hash? Does dataTasks need to provide all information about all tasks, or a subset?

this.handleNeedsTasks = function() {
// convert this.tasks to an array to allow easy iteration in UI // 
components
  var tasks = Object.keys(this.tasks).map(function(key) {
    return this.tasks[key];
  }, this);

  // trigger data event
  this.trigger('dataTasks', {
    tasks: tasks
  });
};

handleTaskCompleted
Handle the uiTaskCompleted event, set task.completed and trigger 
dataTaskCompleted.

This method could result in two possible errors. First, the task may not exist. 
Secondly, the task may already be completed. It's worth considering whether to 
create separate error events for each eventuality, or to have a single error event  
with a different payload. The first option may be clearer, but the second requires  
less boilerplate to maintain.



Chapter 7

[ 51 ]

this.handleTaskCompleted = function(event, data) {
  var task = this.tasks[data.taskId];
  if (task) {
    task.completed = true;
    this.trigger('dataTaskCompleted', {
      task: task
    });
  }
};

Error handling
Each of these examples could be improved by triggering error events, if the task 
doesn't exist in this.tasks:

if (task) {
…
} else {
  this.trigger('dataTaskError', {
    error: 'Task does not exist',
    request: {
      event: event,
      data: data
    }
  });
}

Handling data events
Now that the dataTaskAdded event is being fired, tasks can be added to a task list in 
the UI. For this, we'll need a task list in index.html and a UI component, TaskList, 
to manage the adding and removing of tasks. Go ahead and add a header and a list 
to index.html, under the js-add-task form:

</form>

<h2>Tasks</h2>
      <ul class="js-task-list">
      </ul>

Next, create a new UI component, public/app/ui/task_list.js (using the 
component template you created earlier in the chapter), and add a handler for  
the dataTaskAdded event:

define(function(require) {
  var defineComponent = require('flight/lib/component');



Data Components

[ 52 ]

  return defineComponent(taskList);
  function taskList () {

    this.handleTaskAdded = function(event, data) {
      // render task list item
      var html = '<li>' + data.task.description + '</li>';
      // append to this.$node. It is assumed this will be a UL
      this.$node.append(html);
    };

    this.after('initialize', function () {
      // attach event listeners
      this.on(document, 'dataTaskAdded', this.handleTaskAdded);
    });
  };
    return defineComponent(taskList);
});

Remember, all data events are triggered on the document, so that's where this 
listener needs to be attached.

You'll then need to attach this component to the DOM in ui/default_page:

var TaskList = require('components/task_list');
…
TaskList.attachTo('.js-task-list');

Also, you can now re-enable the AddTask form, as the action completed successfully. 
In AddTask (app/js/component/add_task.js), add an event listener and handler 
for dataTaskAdded and re-enable the form:

this.handleTaskAdded = function (event, data) {
  this.select('submitSelector').attr('disabled', false);
  this.select('descriptionSelector').attr('disabled', false);
};
…
this.on('dataTaskAdded', this.handleTaskAdded);

Summary
Most data components are, as with this example, very straightforward. They define 
clear interfaces with well-named events and rarely do much beyond simple Create 
Read Update Delete (CRUD) tasks.

The key to this simplicity is good planning. By outlining which events a component 
will send and receive before coding starts, clarity can easily be maintained.



Event Naming
This chapter discusses the importance of good event names, what an event really is, 
and provides an example of naming convention.

The importance of event names
Events define the interface between components. Poor event naming can lead to 
confusing interfaces, resulting in a wealth of interesting problems. By setting out 
some good naming conventions early in the design process, it should be possible  
to mitigate issues such as event loops and duplicate names.

While debugging, clear event names can be an enormous aid.

Events are not instructions
Events are created in a void. The component creating the event should not be seen to 
be aware of the rest of the application, thus events should not appear as instructions 
to other components.

For example, it may be tempting to create an event such as uiAddTask, an instruction 
to some other part of the application to create a task. However, if the add_task 
component is unaware of the existence of the rest of the application, this instruction 
makes no sense.

Instead, this event could be named uiTaskAdded, or uiUserAddedTask. It is a 
description of an event that has occurred, not of one that is going to happen.

This might seem like a pointless semantics argument, but, as an application becomes 
more complex, the particulars of event naming can make the difference between a 
well-structured, easy-to-maintain application and a tangled web of confusion.



Event Naming

[ 54 ]

Suggested naming conventions
The conventions presented here are suggestions only, and you are, of course, free 
to use any convention you like. Event names can be any valid string; though it is 
always best to make them human-readable, by avoiding use of jargon, abbreviations, 
and acronyms.

• Data request: This is a request from the UI for data, for example, uiNeedsTask, 
uiNeedsAllTasks. Data requests are handled by data components and 
generally result in data events or interesting moments.

• UI event: This is an event produced by the UI, for example, uiTaskAdded, 
uiTaskDeleted. UI events are handled both in the UI and in data. Other UI 
components may well be interested in the fact that the user just tried to add  
a task (messaging, task list, and so on) and the related data response or error. 
It is tempting to try separate events into user-initiated actions and actions 
performed by UI components. However, it is hard to see where to draw the 
line between the two, as all actions are at some point a result of a user action, 
however indirect.

• Data event: This is an event that contains data. The data prefix is generally 
followed by a description of the payload. Generally, data components only 
trigger a single data event, for example, dataTask, dataTags.

• Data error: This is an event resulting from a data processing or request 
error response such as a 404 or 501. In these cases, a data error event 
will be triggered instead of a data event, for example, dataTaskError, 
dataTagsError. It's good practice to include both the original request  
(the event data payload from a data request or UI event) and the response 
from the server.

• Interesting moment: Any process has a variety of interesting moments. For 
example, in an animation, interesting moments occur when the animation 
starts, when it stops, and at each step in the process. These are interesting 
because they may affect other parts of the application, for example, 
uiTransitionStart, uiTransitionEnd.
Another example would be when the UI performs an action as a result of 
a UI action (for example, uiShowTaskList). The interesting moments that 
result from this might be uiShowingTaskList and uiTaskListShown.
Interesting moments happen in data, too, for example, dataTaskCreated, 
dataTaskDeleted, or perhaps dataWaitingForAsynchronousResponse, 
and dataReceivedAsynchronousResponse.



Chapter 8

[ 55 ]

Summary
Naming events is entirely up to you. The previous examples do not cover every 
eventuality. However, it does help to maintain consistent event naming within  
an application.

Event names should be descriptive of the event that occurred. If this means creating 
long names, so be it. The more descriptive the name is, the easier it is to understand 
what caused the event and what data is associated with it.

The next chapter discusses mixins, an alternative to class-based inheritance, which 
are used to share functionality between components.

www.allitebooks.com

http://www.allitebooks.org




Mixins
Mixins are Flight's method of sharing functionality among components. A mixin 
extends a component's behavior directly—methods declared in the mixin can be 
used in a component as if they were its own.

This chapter explains what mixins are, when to use them, and how to create them.  
It also covers Advice, a mechanism used to override or extend existing methods.

What are mixins?
Mixins are an alternative to classic class-based inheritance. In the class-based 
inheritance, functionality is added to a base class by extending that class to create  
a new class. For example, both frogs and fleas are subclasses of animal.

Class-based inheritance does have its share of problems. Many animals have similar 
functionality; for example, both frogs and fleas can jump, while their siblings newts 
and beetles do not.

Thus, in the world of classical inheritance, the jump functionality would have to be 
written independently for both frogs and fleas, as well as most other jumping animals, 
as they have no common jumping ancestor.

Mixins allow the jump function to be written once and then shared among any 
component that requires it.

When to use mixins
Mixins should be employed whenever you need to share functionality between 
components. Basic utility methods such as string prettification or more complex 
features, such as search field behavior or API utilities, can be extracted to mixins  
and shared among components.



Mixins

[ 58 ]

How do mixins work?
Methods defined in mixins act as first-class citizens in a component instance.  
For example, a withStringUtils mixin might declare a prettyString method.  
Any component that mixes in with withStringUtils will have access to  
this.prettyString.

Creating mixins
A mixin definition is given in the following example. As you can see, the 
only difference between mixins and components is that mixins don't use 
defineComponent.

define(function() {
  var withJumping = function () {
    this.jump = function(howFar) {
      // perform jump
    });
  };

  return withJumping;
});

Using mixins
A component uses a mixin by passing the mixin as an argument to defineComponent. 
The mixin's methods are immediately accessible from within the component. For 
example, if the path for the mixin defined previously is component/with_example_
mixin.js, it would be imported in a component as shown in the following code:

define(function() {
  var defineComponent = require('flight/lib/component');
var withJumping = require('component/with_jumping');

return defineComponent(frog, withJumping);
  function frog() {
    after('initialize', function(){
      this.on('hasSeenCat', this.jump);
});
  };
});



Chapter 9

[ 59 ]

Note that the methods declared in mixins will override similarly named methods 
declared in a component, which imports that mixin.

Mixins can declare their own defaultAttrs, but unlike with methods, mixins  
cannot override defaultAttrs set on the component. In fact, Flight will throw  
an error if you attempt to do this.

Components can mix in any number of mixins. It's not rare to see component 
definitions like this:

defineComponent(taskList, withTemplating, withSelectAll,  
  withDraggable, …);

Mixin priority
The order in which mixins appear as arguments to defineComponent is important. 
As stated previously, methods declared in a mixin will override methods already 
defined on the component. This includes methods defined in other mixins.

In the previous case, a method declared in withDraggable would override similarly 
named methods in withSelectAll, withTemplating, and taskList.

This also affects defaultAttrs. Attempting to declare the same attr as one which 
has already been declared in a mixin to the left will result in an error.

It's interesting to note that defineComponent only accepts mixins as arguments—
taskList is as much a mixin as withTemplating.

Creating your first mixin
Currently, your Task Manager only stores data in memory. Fine for testing, but not 
much good in an actual app. To fix this, you're going to build a data mixin, which 
uses the browser's local storage API.

Local storage is a very simple key/value structure. As with cookies, local storage 
values must be serializable, so task objects will need to be converted to strings before 
they can be stored.

Many older browsers don't support local storage, or it may 
be disabled. Check if your browser supports local storage, 
and that it is enabled or this example will not work.



Mixins

[ 60 ]

Create a new file, app/js/component/with_storage.js. All mixins have the same 
basic structure, so this may be a good time to create a mixin template.

You may at some point want to break out your mixins into a separate directory to 
reduce clutter, but for now the component directory will do just fine.

Naming conventions
Generally, mixins are prefixed by with to distinguish 
them from components.

This mixin needs to provide two methods, read and write. The following code 
shows these methods being defined in the withStorage mixin:

define(function () {
  return withStorage;
  function withStorage () {
    this.write = function(key) {
var serializedValue = JSON.stringify(value);
      localStorage.set(key, value);

    };

    this.read = function(key, value) {
var value;
  var serializedValue = localStorage.get(key);
if (serializedValue !== undefined) {
value = JSON.parse(serializedValue);
} else {
    value = serializedValue;
}
return value;
    };
  };
});

Mixing storage into taskData
This mixin can now be used by any component, giving it access to localStorage. 
You can mix it into the taskData component, as shown in the following code:

define(function (require) {
  var defineComponent = require('flight/lib/component');
  var withStorage = require('component/with_storage');



Chapter 9

[ 61 ]

  return defineComponent(taskData, withStorage);
  function taskData () {
    …
});
});

Once mixed in, the read and write methods are available to the component as  
first-class citizens and can be used when creating tasks:

this.defaultAttrs({
  taskStorageKey: 'tasks'
});

this.handleAddTask = function(e, data) {
  data.task.id = _.uniqueId('task');
this.tasks[data.task.id] = data.task;
this.write(this.attr.taskStorageKey, this.tasks);
  
// trigger event
this.trigger('dataTaskAdded', {
  task: data.task
});
}

this.handleNeedsTasks = function() {
  this.tasks = this.read(this.attr.taskStorageKey);
  this.trigger('dataTasks', {
tasks: this.tasks
});
});

To minimize data storage access, tasks retrieved from localStorage can be stored 
locally at initialization:

this.after('initialize', function () {
  this.tasks = this.read(this.attr.taskStorageKey) || {};
  …
});



Mixins

[ 62 ]

Initializing the task list from storage
Now that tasks are being stored in local storage, the Task List can show store tasks  
at startup.

In Task List a handler needs to be added for the dataTasks event to write out the  
full Task List. This uses the same rendering code as this.handleTaskCreated,  
so that can be extracted to a new method, this.addTask.

this.addTask = function(task) {
  // render task list item
var html = '<li>' + task.description + '</li>';
// append to task item container
this.$node.append(html);
};
this.handleTaskCreated = function(event, data) {
this.addTask(data.task);
};
this.handleTasks = function(event, data) {
  data.tasks.forEach(this.addTask, this);
};

Note that this needs to be passed to forEach to maintain context.

Extending existing methods
With traditional, class-based inheritance, methods on the parent class can usually be 
executed by calling the super method from within the overriding method.

However, as we have seen, declaring a method in a mixin completely overrides any 
existing method with the same name. 

To achieve behavior similar to super, Flight provides Advice.

We have already seen this.after being used to execute a method after a 
component instance has been initialized (for example, after this.intialize  
has been executed). after is one of three methods, before, after, and around, 
provided by Flight's Advice API.

Advice can be used on any method, not just initialize.

this.after('jump', function() {
// prepare for landing
});



Chapter 9

[ 63 ]

before and after
Before works exactly the same way as after, except the function provided is executed 
before the named method is called. For example, look at the following code:

this.before('addTask, function() {
  console.log('this will happen before addTask is called');
});
this.after('addTask, function() {
  console.log('this will happen after addTask is called');
});

before and after both accept two arguments: a method name (for example, 
addTask) and a callback function.

The callback is called with the same arguments that were passed to the named 
method. In this example, before is used to log all calls to the trigger method:

this.before('trigger', function(selector, eventName, data) {
  console.log(selector, name, data);
});

around
around works slightly differently: named method can be called from within the 
callback function (this is similar to calling super() in class-based languages such  
as Java). If the named method is not called, the callback replaces the method rather  
than wrapping it.

This allows the callback to modify arguments or add logic to decide whether to 
execute the method at all.

The first argument passed to the callback is the named method. The following 
example could be used to wrap a component's content with some pop-up chrome.

this.around('render', function(originalRender, params) {
  var $wrapper = $('<div class="popup" />');
  var $content = this.originalRender(params);
  return $wrapper.append($content);
});



Mixins

[ 64 ]

Advice priority for components and 
mixins
If multiple mixins and their parent component have advice for the same 
named method, the execution order is dictated by the order provided in the 
call to defineComponent. For example, in the following component definition, 
after('initialize') callbacks would be executed first for task component,  
then withLocalStorage, then withCookies, and lastly withMemoryStore.

defineComponent(task, withLocalStorage, withCookies,  
  withMemoryStore);

Be careful with before('initialize')
When a component is initialized, it is attached to the DOM. 
Attempting to do work before initialize will likely result in 
hard-to-trace bugs. In particular, avoid using on, off and 
trigger within before:initialize

Mixing mixins into mixins
Mixins can extend other mixins through Flight's compose utility. Compose is used 
by defineComponent to merge a component with its mixins. It can also be accessed 
from within a mixin, as shown in the following code:

define(function (require) {
  var defineComponent = require('flight/lib/component');
  var withTextUtils = require('component/with_text_utils');
  // mixin other mixins
  var withLocalStorage = function() {
compose.mixin(this, [withTextUtils]);
  };
});

Thus, when a component mixes in withLocalStorage, 
withMemoryStore, and withCookies come along for 
the ride.



Chapter 9

[ 65 ]

Summary
Mixins are a powerful alternative to class-based inheritance. They allow any 
functionality to be re-used in any component.

Methods declared in mixins override existing methods. Advice allows mixins  
and components to extend and conditionally override existing methods.

The next chapter discusses templates, including various methods of managing 
templates in Flight, how to create a templating mixin, and how to handle events  
in dynamically generated HTML.





Templating and Event 
Delegation

This chapter discusses various templating approaches in Flight, providing examples 
of DOM node templating, client-side templating with Hogan, and server-side 
templating with Grunt. Also covered is how to use generated HTML to determine 
state and event-delegation for dynamic HTML.

In the Task List component, new list items are created using string concatenation. In 
this simple case, this technique is relatively easy to read, but is not a scalable solution. 
In the following examples, tables are used to provide a more complex problem.

There are various ways of solving this: generating template objects from existing 
DOM nodes, constructing HTML templates within components and using mixins 
and precompiled templates.

Generating template objects from DOM 
nodes
In the index.html file, add a list with a single, empty list item. When the task_list 
component is attached to the DOM it can create a clone of this node and use it as a 
template. To achieve this, the table row needs to be hidden by default, so it doesn't 
show on first load.

<ul class="js-task-list">
    <li class="js-task-item hide"></li>
  </ul>



Templating and Event Delegation

[ 68 ]

Note that the hide class is provided by bootstrap.css. You may want to use 
style="display:none" instead.

Then, in Task List, create the list item template and use it when rendering tasks.  
Note that the Task List component is intended to be attached to the ul element,  
.js-task-list.

this.defaultAttrs({
  taskItemSelector: '.js-task-item',
…});
this.addTask(task) {
  …
  // render task list item
  var $taskItem = this.$taskItemTemplate.clone();
  $taskItem.text(task.description);
  this.$node.append($taskItem);
};
this.after('initialize', function() {
  // get template
  this.$taskItemTemplate =  
  this.select('taskItemSelector').clone();
  this.select('taskItemSelector').remove();
  …
});

This technique has the advantage that no HTML is rendered by JavaScript, which for 
small templates does make it easy to read. However, in larger templates the amount 
of code required to populate the template grows quickly, and the code itself becomes 
tightly bound to the template.

Templating systems such as Mustache, Hogan, and Handlebars can be employed for 
creating a more scalable solution.

Constructing templates in components
The example application uses Hogan to compile and render Mustache templates. For 
more information on Mustache, check the docs at http://mustache.github.com/
mustache.5.html.

Hogan
Hogan is an open source project by Twitter that reimplements 
Mustache. It is highly optimized for performance (100 percent 
+ faster), adds template inheritance and provides Hulk, a utility 
designed to pre-compile and render templates on the server. 
Find out more at http://twitter.github.com/hogan.js.



Chapter 10

[ 69 ]

First, you'll need to download Hogan. The easiest way to do this is to use bower:

$ bower install hogan

You'll then need to import the Hogan compiler and templater. Add the following 
lines to the head of index.html:

<script src="bower_components/hogan/lib/template.js"></script>
<script src="bower_components/hogan/lib/compiler.js"></script>

This adds Hogan to the global namespace so it can be used in any component. In 
the following example, Hogan is used to construct HTML. Note that the plain text 
template must be compiled before it can be rendered. The compiled template is an 
instance of Hogan.template.

this.addTask = function(task) {
    // render task list item
    var html = this.taskItemTemplate.render(task);
    // append to task item container
    this.select('taskContainerSelector').append(html);
};
this.after('initialize', function () {
    // compile template
    this.taskItemTemplate = 
Hogan.compile('<li>{{description}}</li>');
…

Constructing templates in components is clear and readable, and creates a strong 
connection between the HTML and the component. However, it does create an 
interesting problem.

What happens when the same template needs to be used in other components?  
They have no access to the compiled template in Task List, so would have to  
compile their own version of the template.

Compiling templates is an expensive process. This component only compiles the 
template once, but other components intended to be instantiated multiple times 
would need to compile again for every instance.

This problem can be solved by precompiling templates on the server. In Flight,  
the compiled templates would then be loaded and rendered by a mixin.



Templating and Event Delegation

[ 70 ]

Creating a templating mixin
UI mixins work exactly like data mixins—see Chapter 9, Mixins. This mixin is simply 
a store for templates. The first step is to extract the template compilation to a mixin:

define(function () {
return function withTemplate () {
    this.before('initialize', function() {
      this.taskItemTemplate = Hogan.compile('<li>{{description}}</
li>');
    });
  };
  });

By calling Hogan.compile before initializing, rather than after, it can be ensured that 
the template is available to components and other mixins in the initialize phase.

This mixin could be further improved by making it agnostic to the templating system 
being used. Rather than exposing the compiled templates, it could expose a render 
method that would accept a template name. Although it would still be using Hogan 
internally, the components using it would be entirely unaware of what was going on 
behind the scenes. For example, look at the following code:

define(function () {
return withTemplate;

    function withTemplate () {

        this.defaultAttrs({
            taskItemTemplate: '<li>{{description}}</li>'
        });

        this.render = function (templateName, renderOptions) {
            if (this.templates[templateName]) {
                return this.templates[templateName].
render(renderOptions);
            }
        };

        this.before('initialize', function() {
            this.templates = {};
            this.templates.taskItem =  
  Hogan.compile(this.attr.taskItemTemplate);



Chapter 10

[ 71 ]

        });
    };
 });

Then, in the component:

var html = this.render('taskItem', task);

Server-side compilation
Template compilation can be a costly process, slowing down rendering. Server-side 
compilation can reduce load on the client. Templates are precompiled into JavaScript 
on the server during the build process, or through an automated task. The resulting 
JavaScript file is then loaded as with any other JavaScript file, making the compiled 
templates available immediately.

A JavaScript environment is required on the server to compile the templates, but 
this is beyond the scope of this book. If you're familiar with grunt, check out grunt-
contrib-hogan (https://github.com/vanetix/grunt-contrib-hogan), which 
allows you to generate compiled templates as part of your build step, or as a watch 
task. Alternatively, you can use Hogan's build tool, Hulk.

Either way, you'll end up with JavaScript files (for example, templates.js), which 
will contain the compiled versions of all your templates. You'll need to import this  
as a dependency to your templating mixin, or add it to the global namespace.

Adding templates as a dependency in ui/with_template:

define(function () {
  var templates = require('templates'); // path to templates.js
  return withTemplate;
   function withTemplate () {
        this.render = function (templateName, renderOptions) {
            // check template exists
            if (templates[templateName]) {
                // return rendered template
                return templates[templateName].render(renderOptions);
            }
        };
    };
});



Templating and Event Delegation

[ 72 ]

Using HTML to determine state
If you do choose to render HTML on the server, your components will be able to 
read the generated HTML and determine state from it, that is, rather than making 
additional data requests with Ajax, they can read it directly from the generated 
HTML. This doesn't change much about the way code is written, but it is worth 
considering when designing HTML and components.

There are four ways to retrieve data from the HTML:

• Structure: The structure of the HTML can be used to determine state. The 
presence or absence of elements can be used to build up a representation  
of the available data.

• Class names: Class names such as is-selected and has-tags can be used 
to determine the initial state of a component.

• Data attributes: Data attributes can be read using jQuery or HTMLElement.
attr. For example, look at the following code:
var taskId = this.$node.data('task-id');

• Content: Lastly (and perhaps most obviously), state can be read from the  
text content of an element. For example, look at the following code:
var description = $node.text();

Working with dynamic HTML – event 
delegation
When rendering templates in the client, new HTML nodes are inserted into the 
DOM. Using this.on as previously shown, it would be necessary either to attach 
new event listeners to elements after they have been inserted, or attach an event 
listener on the component root and determine the target element programmatically.

A third possibility is to use event delegation, whereby an event listener is attached  
to the root node but is only triggered if the target of the event matches a selector.

In jQuery, on allows the specification of a selector, and event listeners will only be 
called if the source element matches the selector.

Flight's this.on provides the same functionality, though the syntax is a little 
different. To listen for delegated events, the selector must first be declared in this.
attr (or via defaultAttrs). The named selector is then referenced in this.on.



Chapter 10

[ 73 ]

In the following example, handleItemClick would only be called if the user clicks  
on an element with class .js-item.

defaultAttrs({
  itemSelector: '.js-item'
});
this.after('initialize', function () {
this.on('click', {
  itemSelector: this.handleItemClick
});
});

This allows multiple delegated event listeners to be attached in a single statement:

this.on('click', {
  taskItemSelector: this.handleTaskItemClick,
  taskCompleteSelector: this.handleTaskCompleteClick
});

As mentioned previously, another common pattern that achieves the same goal is to 
listen for clicks on the parent and then determine the action based on the attributes 
of the target element. This could be achieved by adding a data-action attribute to the 
element, as shown in the following screenshot:

<li class="js-task- item" data-id="1234">
  <input type="checkbox" data-action="complete" />
   Make tea
</li>

When the event handler is called, it can interrogate the event target to determine the 
required action or task ID:

this.handleClick = function (event) {
  var action = $(event.target).closest('[data- 
  action]').data('action');
  var id = $(event.target).closest('.js-task-item').data('id');
  switch (action) {
  case 'complete':
    // do something
  }
});
this.after('initialize', function() {
  this.on('click', this.handleClick);
});

Both patterns are equally effective and have their places in applications.



Templating and Event Delegation

[ 74 ]

Adding delegated events to task_list
Whichever method you use, you should now be able to generate a task list from a 
template, so it's time to get on and do something with the list. In this section, you can 
see event delegation in action as we tackle the task of marking an item as complete.

Completing a task
The first thing to consider is which events the component will be creating. data/task 
listens for uiTaskCompleted, expecting data in the format:

{
  taskId: 'task id'
}

So, when an item is to be completed, task_list will need to know the ID of the 
selected item. The easiest way to do this is to add a data-id attribute to the table 
row. Event delegation requires a selector, so add a js- class to the table row.  
If you haven't already, add the checkbox too, as shown in the following code:

<li class="js-task-list-item" data-id="{{id}}">
<input type="checkbox" data-action="complete" />
{{description}}
</li>

Next, add a named selector to defaultAttrs, an onclick listener in 
after:initialize and an event handler method:

this.defaultAttrs({
  itemSelector: '.js-task-list-item'
});

this.handleItemClick = function (event) {
  // get target item from event
  var $item = $(event.target).closest(this.attr.itemSelector);
  var id = $item.data('id');
  // get action from target element
  var action = $(event.target).closest([data- 
  action]).data('action');
  if (action === 'complete') {
  this.trigger('uiTaskCompleted', {
    taskId: id
});
}
};



Chapter 10

[ 75 ]

this.after('initialize', function() {
  this.on('click', {
    itemSelector: this.handleItemClick
  });
});

Note that the examples provided don't allow you to mark a completed task as 
incomplete. This can be solved in a few different ways.

One way would be to pass the state of the checkbox along with the taskId with 
uiTaskCompleted, as shown in the following code:

this.trigger('uiTaskCompleted', {
  taskId: id,
  completed: false
});

The state would then have to be handled correctly in data/task.

Another might be to create a separate event, such as uiTaskIncomplete.

Summary
Flight's agnostic architecture allows you to use whichever templating system  
you see fit, and abstract away the particulars of the templating system used.

Thanks to this agnosticism, the same templates can be compiled and rendered  
on the server as in the client, increasing performance by reducing the load on  
the client and the number of round trips made to the server.

this.on provides an event delegation syntax to handle events on dynamically-
generated DOM nodes.

In the next chapter, we will look in detail at how Flight aids in developing  
high-performance applications for high-latency environments.





Web Application Performance
Web applications suffer from poor performance for a variety of reasons. When we 
consider performance, we tend to think first of poor code and memory leaks, but in  
a web application, the most significant issue is generally how long it takes to load 
and interpret the code required to render a page.

This chapter explains how Flight can be used to render pages efficiently and how  
to work around latency in Ajax requests.

Reducing time to page load
Time to page load, the point at which a user can actually start to interact with a 
page, is the most important factor in website performance. When a user first visits 
a website, they are presented with a blank page by the browser while it downloads 
and interprets HTML, CSS, JavaScript, and images.

Two key factors in time to page load are page weight and the number of files being 
loaded (though the latter may be mitigated by using SPDY, an alternative to HTTP 
developed by Google).

The common techniques to reduce these factors are compression and concatenation. 
The aspect that often gets overlooked is the sheer amount of script being sent over 
the wire. With MV frameworks, the entire application has to be downloaded and 
interpreted before any real work can begin, as the view is dependent on the model.



Web Application Performance

[ 78 ]

Deferred loading
By using Asynchronous Module Definition (AMD) frameworks such as RequireJS to 
defer loading of JavaScript until after page load, the amount of JavaScript present at 
first load can be reduced down to the framework and nothing more. A minimalistic 
page is sent first, using empty HTML elements to build a structure.

The asynchronous modules are then loaded and start communicating with the server 
using XMLHttpRequest (XHR) to retrieve data, building up the page piece by piece.

Server-side rendering
Rendering entire pages or chunks of HTML on the server would seem to go against 
all other advice in reducing page weight. Providing more HTML, not less, sounds 
rather counterintuitive.

However, the time to first load isn't just about page weight, it's about how long it 
takes a browser to interpret the code.

Server-side rendering presents an entire page ready for rendering without any 
JavaScript other than a single, tiny file to kick off further loading of modules.  
Page load happens in an instant.

Using the DOM to determine state
Flight components are attached to DOM nodes. Once attached, a component can 
interrogate the state of the DOM to determine application state using classes such  
as is-active, has-filters, is-own-tweet. This allows the user to start interacting 
with that component without waiting for further data requests to be made.

Using request type to determine response
Once an application has loaded, interaction needs to be as fast as possible. Ideally, 
this means no more page loads. However, it also needs to be accessible. Clicking  
on a link should, even if no JavaScript has been loaded, perform the correct action.

Flight provides the option of progressive enhancement by allowing the same 
templates to be rendered on the client or on the server.



Chapter 11

[ 79 ]

The server, on receipt of a request, can determine whether that request was sent over 
XHR (Ajax), or as a standard HTTP request. In the case of an XHR request, it should 
send an XHR response, some JavaScript Object Notation (JSON) data, or an HTML 
snippet rendered on the server. In the case of an HTTP request, it should send a fully 
formed page.

This is very useful when implementing pushState, the same URL works either for 
an entire page or an in-app XHR request, making managing history easy.

Perceived performance
A user's opinion of a web app is often greatly swayed not just by how long it 
takes to process requests but also by the time between a request being made and 
something happening. Web apps are generally asynchronous in nature, using XHR 
to communicate with a server and then waiting for a response. It's all the time spent 
waiting for a response that gives the impression of poor performance.

Many apps show spinners to indicate to the user that the app is waiting for a 
response. This ensures the user is aware that something is happening, but also  
tends to mean that the user sits there waiting for the response to be received and 
processed rather than just getting on with things.

An alternative is to embrace the idea of asking for forgiveness rather than for 
permission and just go ahead and pretend that the request has already been 
completed. In the rare case of a communications or server error, an error message 
can be displayed and the changes made to the UI reversed.

This results in a non-blocking interface, giving the impression of superior performance.

Applying perceived performance in Flight
In the example application, a list of tasks needs to be displayed below the Add Task 
form. Whenever there are edits or deletes, this list should be updated immediately, 
without waiting for a response from the server.

It is also possible to add tasks immediately, though if the user then edits or deletes 
the task before a response is received from the server, the server and application 
states could diverge.



Web Application Performance

[ 80 ]

Summary
A Flight component can render itself or rely on server-side rendering, allowing a 
developer to optimize an application's performance by choosing when and how  
to render HTML, serving up the minimum required data at every point.

By listening for events and acting immediately rather than waiting for a response,  
an application's perceived performance can be improved dramatically.

The next chapter discusses how to test Flight components and mixins by extending 
an existing test framework.



Testing
This chapter provides an example BDD test, which is written in Jasmine, explains 
what to focus on while testing components, how to gain references to component 
instances, and how to extend existing test frameworks to handle components,  
mixins, and events.

What does a test look like?
Which framework you use to test Flight is of course entirely up to you. Currently,  
the most popular options are Jasmine and Mocha, both of which are BDD  
(Behavior-Driven Development) frameworks.

Here's an example Jasmine test using the jasmine-flight extensions (we'll look at 
these in more detail later):

defineComponent('task_list', function () {
it ('should trigger uiNeedsTasks on initialization', function () {
  spyOnEvent(document, 'uiNeedsTasks');
  setupComponent();
  expect('uiNeedsTasks').toHaveBeenTriggeredOn(document);
});
});

Testing the interface
All Flight components interact with one another through events, and UI components 
interact with the DOM. The event interface defines a component's behavior and is  
the only aspect of its functionality that needs to be tested.



Testing

[ 82 ]

For example, in task_data there is no point in testing the results of 
handleTaskCreated directly. The component's interface is the uiAddTask event, not 
the handler (which is private). Thus, what needs to be tested is how the component 
reacts to a uiAddTask event.

How well a test framework manages the testing of events will be a big factor in 
deciding which one to employ.

Twitter has released jasmine-flight, an open source project available at 
http://github.com/flightjs/jasmine-flight. jasmine-flight 
includes all the Jasmine extensions and event utilities in this chapter, as 
well as an example test runner, so if you wish, you can skip most of the 
code in this chapter and just use jasmine-flight.
If you created your project with the Yo Flight Generator, jasmine-flight 
will already be installed in bower_components. Otherwise you can 
install it with bower: $ bower install jasmine-flight.

Obtaining a reference to a component 
instance
Although the event interface is all that needs testing, it remains essential to be able 
to modify the internal state of components so that responses can be predicted. Flight 
makes this seemingly impossible, as no reference to a component is provided.

Fortunately, this isn't entirely true. Although Component.attachTo does not return  
a reference to the component, new Component() does.

This method for creating components should never be used in an 
application code. By keeping a reference to a component in this 
manner, the core tenets of the Flight architecture are broken, as it 
becomes possible to reach in and call component methods directly.

In the case of task_data, a test would need to import the component and attach an 
instance to an empty node. Once created, the internal methods and attributes of the 
component are exposed.

define(function() {
  var TaskData = require('component/task_data');
  var $node = $('<div></div>');
  // create a new instance of the component, attaching it to



Chapter 12

[ 83 ]

// a floating node
  var component = new TaskData($node);
  // set up the component state
  component.tasks = {
    1: {
      id: 1,
      description: 'Make tea'
    }
  };
  var result;
  // expected data
  var expected = {
    requestId: 100,
    task: {
      id: 1,
      description: 'Make tea'
    }
  };
  // listen for events and store data
  $node.on('dataTask', function(event, data) {
    result = data;
  });
  // trigger the uiNeedsTask event
  $node.trigger('uiNeedsTask', {
    taskId: 1,
    requestId: 100
  });
  // assert that result matches expected. How this is done depends
  // on the testing framework used
  assertEqual('dataTask should contain correct task & request id',  
    result, expected);
});

Instantiating standalone mixins
Mixins provide an additional challenge; as to behave as intended they must be mixed 
into a component. The answer is relatively straightforward: create an anonymous 
component, mix the mixin into that, and then create an instance.

When dealing with mixins, the interface is, in fact, a method, not an event, so it may 
be necessary to call a method on the component instance, as shown in the following 
code:

define(function() {
  var withStorage = require('component/with_storage');
  var $node = $('<div></div>');



Testing

[ 84 ]

  var component = defineComponent(function () {}, withStorage);
  // mock local storage
// set response
var result = component.read('tasks');
});

Triggering browser events
Most UI components react to browser events such as click and mouseover.  
These can be simulated easily using jQuery. An event in jQuery is an instance  
of the jQuery.Event object. Passing an event to jQuery's trigger method  
will cause that event to be fired on the document. For example, look at the  
following code:

var clickEvent = new jQuery.Event('click');
component.$node.trigger(clickEvent);

It's also possible to simulate specific keypresses in the same way:

var keypressEvent = new jQuery.Event('keypress');
keypressEvent.which = 27; // escape
component.$node.trigger(keypressEvent);

Allowing for refactoring
When refactoring components, it's needless to say that tests are extremely helpful. 
However, they can also be a hindrance.

For example, the task_list component relies on two selectors, .js-task-list-
item-container and .js-task-list-item. During a refactoring, if it becomes 
necessary to rename these, any tests that use them in fixtures or in assertions  
would fail.

In this case, the failure doesn't indicate that there is something wrong with the 
component, rather that there is something wrong with the test.

This can be solved permanently by using component options to override the 
component's defaultAttrs:

var $fixture = $('<div><div class="js-task-list-item- 
  container"></div></div>');
TaskList.attachTo($fixture, {
  taskContainerSelector: '.js-task-list-item-container',
  itemSelector: '.js-task-list-item'
});



Chapter 12

[ 85 ]

Now, if the selector is changed, the test will continue to work as expected.

Testing teardown
Sometimes it may be necessary to check whether a component has been successfully 
torn down. When a component is torn down, it is removed from the registry. Flight's 
registry provides a method, findInstanceInfo, which when provided with a 
component instance will return that instance if it is in the registry, or null if it is not.

define(function () {
  var registry = require('flight/lib/registry');
  var TaskList = require('component/task_list');
  var taskList = new TaskList(document);
  console.log(registry.findInstanceInfo(taskList)); // will log  
    instance
  taskList.teardown();
  console.log(registry.findInstanceInfo(taskList)); // will log  
    'null'  });

Testing component instantiation
In the case where a component is instantiated inside a loop or conditional statement, 
it may be necessary to determine if a specific component has been instantiated on a 
specific node.

It's easy enough to check whether a component has been instantiated on a node, using 
registry.findInstanceInfoByNode. However, this doesn't help in determining 
what kind of component has been attached.

To determine whether the instance found on a node is the correct type or not, we can 
use registry.getComponentInfo to find all the instances of a specific component, 
then compare them against the instances returned by findInstantInfoByNode:

define(function () {
var registry = require('flight/lib/registry');
  var TaskList = require('component/task_list');
  var taskList = new TaskList(document);
  var nodeInstances = registry.findInstanceInfoByNode(document);
  var componentInstances =  
    registry.getComponentInfo(taskList).instances;
  var isIntanceOnNode = nodeInstances.some(function(nodeInstance)  
  {



Testing

[ 86 ]

    return componentInstances.some(function(componentInstance) {
      return componentInstance === nodeInstance;
};
  });
  });

Extending Jasmine for Flight
Jasmine is a Behavior-Driven Development test framework. Tests are built up from 
simple statements such as the following statements:

• task_list should fire a uiTaskSelected event when a user clicks on a task
• task_list should listen for dataTaskDeleted events and remove the 

specified task from the task list

This style is very well suited to Flight's architecture. Jasmine also has excellent 
asynchronous features, making it ideal for an event-based architecture.

Jasmine and AMD
Jasmine specs can be loaded as AMD modules, but this immediately causes a 
problem. The spec then needs to load a component file inside the describe method 
call, which is itself inside a require callback. This breaks the AMD dependency chain, 
so the tests will load and execute before the component file has been loaded. For 
example, check task_list_spec.js in the following code:

describe('ui/task_list', function() {
  require('/app/ui/task_list', function(TaskList) {
    // this describe will not be run as part of the test suite,
    // as the callback containing it will not be called until
// after the test suite has executed
    describe('… some test', function() {
      …
    });
});
});

Look at the following code for the test runner:

require('task_list_spec', function() {
  jasmine.getEnv().execute();
});



Chapter 12

[ 87 ]

A neat solution to this is built into Jasmine: the asynchronous waitsFor.

describe('ui/task_list', function () {
  beforeEach(function () {
    this.component = null;
    this.$node = $('<div></div>');
    require(['app/ui/task_list'], function (TaskList) {
      this.component = new TaskList(this.$node);
    }.bind(this));
    waitsFor(function() {
      this.Component !== null;
    });
  });
  describe('should do something', function () {
    …
  });
});

Of course, including this at the top of every spec would be a pain. It's possible to 
extract this out to a wrapper method. This method (describeComponent) loads the 
component definition file and stores the component constructor, as shown in the 
following code:

var describeComponent = function (description, specDefinitions) {
    return jasmine.getEnv().describeComponent(description,  
  specDefinitions);
};

jasmine.Env.prototype.describeComponent = function (componentPath,  
  specDefinitions) {
  describe(componentPath, function () {
    beforeEach(function() {
      this.Component = null;
    var dependencies = [componentPath, 'imports/flight/registry'];
      requirejs(dependencies, function(Component, registry) {
        registry.reset();
      this.Component = Component;
});
waitsFor(function() {
    // when this returns true, Component is available and 
// tests can be run
  this.Component !== null;
});
});



Testing

[ 88 ]

afterEach(function() {
  this.component && this.component.teardown();
});
specDefinitions.apply(this);
  });
};

Now that the spec has access to the component constructor, it can create a 
component instance. A new component instance needs to be created before  
each test. The setupComponent method creates a component and attaches it  
to a DOM node. HTML fixtures can be created by passing an HTML string  
or jQuery object as the first argument. Essentially, it works the same way as 
Component.attachTo.

var setupComponent = function (optionsOrHtml, options) {
    jasmine.getEnv().currentSpec.setupComponent(optionsOrHtml,  
      options);
};

jasmine.Spec.prototype.setupComponent = function (node, options) {
  // node can be a selector, an html string or a jQuery object. 
  if (typeof node === "string") {
    this.$node = $(node);
  } else if (node instanceof jQuery) {
    this.$node = node;
  } else {
    // both node and options are optional. If node is
    // found to be an object but not a jQuery object
    // it can be assumed it is an options object 
    options = node;
  }
  if (!this.$node) { 
    this.$node = $('<div id="fixture"></div>');
  }
  $('body').append(this.$node);
  this.component = new Component(this.$node, options || {});
});

Then in the spec:

describeComponent('app/ui/task_list', function() {
  beforeEach(function() {
    setupComponent({
      itemSelector: '.js-task-list-item',



Chapter 12

[ 89 ]

      taskListContainerSelector: '.js-task-item-container'
    });
  });
  describe('Should do something', function() {
    // this.$node is the component's root node
    // this.component is an instance of the component
  });
});

Event assertions
Out of the box, Jasmine does not include event-based assertions. Flight tests will 
often be of the form assert that event X was fired on node Y with data Z, but it is a 
pain to have to set up listeners and callbacks to test whether events were triggered 
correctly (as seen in the first code example in this chapter).

Luckily, help is at hand in the form of jasmine-jquery, an extension for Jasmine that 
provides event-based assertions and a lot more.

Jasmine and jasmine-jquery are both available on GitHub at the 
following links:

• http://pivotal.github.com/jasmine/
• https://github.com/velesin/jasmine-jquery

The first example now becomes something much more readable.

describeComponent('app/ui/task_list', function() {
  beforeEach(function() {
    setupComponent();
    this.component.tasks = {
    1: {
      id: 1,
      description: 'Make tea'
    }
  };
  });
  describe('should handle uiNeedsTask',function() {
    it('and trigger dataTask', function() {
      var expected = {
    requestId: 100,
    task: {
      id: 1,
      description: 'Make tea'
    }
  };



Testing

[ 90 ]

spyOnEvent(document, 'dataTask');
this.$node.trigger('uiNeedsTask', {
  taskId: 1,
  requestId: 100
});
expect('dataTask').toHaveBeenTriggeredOnAndWith(do 
  cument, expected);
    });
  });
});

Testing whether methods have been called
Although it may be tempting to write a test that checks if a specific method was 
called, or whether the called method is actually of any interest or not. Why it was 
called and what it did is much more interesting.

Often, the reason for testing whether a method was called is that the effect it has is 
otherwise untestable. It doesn't have clear output. If this is the case, then the method  
is a poor one. Change the way it works or (even better) don't write it in the first place.

This advice may seem facetious but is intended with all seriousness. BDD stands for 
Behavioral-Driven Development; the Driven is an important part. What it means is 
that you should write your tests first and let the tests drive the development.

Writing the tests after the fact is how you end up writing tests on methods lacking 
clear output.

The first step for writing any spec is figuring out what the behavior of a component 
should be. Which events is it going to consume? Which events is it going to trigger?

Summary
When testing Flight code, it is important to test component interfaces rather than 
specific methods.

A reference to a component can be gained by using new on the component constructor, 
allowing the component state to be altered.

Flight components and mixins can be effectively tested by extending existing JavaScript 
test frameworks to manage Flight's idiosyncrasies.

The following chapter discusses the peculiarities of Flight application architecture.



Complexities of Flight 
Architecture

Flight application designs should be quite straightforward, but complexities often 
arise due to a misunderstanding of what components are and when mixins should  
be used. This chapter discusses the problems with nesting components, and how  
to design solutions to complex problems while avoiding nested components.

The danger of nested components
It is often tempting to create nested components, where a component attaches 
another component to its DOM tree. Although Flight does not specifically  
prevent nesting, it does not lend itself well to it.

Teardown
When tearing down a component, the components it has instantiated are not 
automatically torn down with it, so it becomes necessary to do this manually.  
As the parent has no reference to the child, it must implement trigger events  
on its child components' root nodes, requesting that they teardown themselves.

This is, surprisingly, tough to manage and just feels wrong. A first thought may  
be that perhaps Flight should do this automatically, but there's a little more to it  
than that.



Complexities of Flight Architecture

[ 92 ]

Atomic components
One of Flight's core tenets is the atomic nature of components. They can (and should) 
be developed and tested in isolation, allowing one component to instantiate another's 
results in a dependency between the two. They are inextricably intertwined. If at any 
point in time a refactor is required, or one of the components needs to be used in a 
different environment, this dependency can be difficult to work around.

Testing
Testing becomes challenging when components instantiate other components, 
because the second component must be instantiated as well.

It is tough to test whether the child component is successfully instantiated, and 
if more fixtures and mocks are required. This means more boilerplate, more 
complexity, and reduced reliability.

Creating a flat component structure
We have already seen an example of flat structure in the Task Manager application. 
The task list component manages all the tasks in the list, rather than creating a 
separate component for each task.

However, in more complex components it can be hard to see exactly how to create 
flat structures.

It helps to have a good understanding of when to use a mixin and when to use a 
component. This tends to be more obvious with data components, so in this chapter 
we will only concern ourselves with the UI.

Mixins versus components
Let's look at a real-world example, TweetDeck's search. NB: TweetDeck is undergoing 
continuous development, so these examples may not reflect the current state of the 
application.

At the top of the navigation bar is the Search input box as shown in the following 
screenshot:



Chapter 13

[ 93 ]

When the Search input has focus, TweetDeck displays a list of recent searches  
using typeahead.



Complexities of Flight Architecture

[ 94 ]

Selecting an item from typeahead or entering a search term and pressing return will 
show search results in place of typeahead.



Chapter 13

[ 95 ]

And then selecting the Users button will switch to the user search results:

Working with components
There are four states that suggest four components:

• search

• typeahead

• search_results

• user_search_results



Complexities of Flight Architecture

[ 96 ]

search would, depending on the current state, instantiate either typeahead or 
search_results. search_results would then create user_search_results  
when required.

However, there is a fair bit of complexity in this structure. For a start, to avoid 
conflicts in event handling, only one of typeahead, search_results, and user_
search_results can exist at any one time, so for transition between them one 
needs to be torn down and the other instantiated. When an item is selected from 
typeahead, it needs to tear itself down and trigger an event to be handled by  
search which then instantiates search_results and triggers a search event.

In addition, when the user closes search_results, search needs to know how to 
use typeahead instead. Of course, if a search comes in from any other route, it needs 
to instantiate search_results. Unless search_results or user_search_results 
is already active, in which case it needs to tear that down but make sure it doesn't get 
confused and instantiate typeahead, or try to teardown search_results twice.

With all the events flying back and forth between these four components, it becomes 
tough to figure out exactly what is happening, or even what should be happening.

As you can see with this example, nested components cause complex event chains to 
arise quickly, and must be carefully thought through to prevent event loops and to 
ensure the correct state is maintained.

Of course, there is a better way…

Working with mixins
A much simpler structure would be to declare search_input, typeahead,  
search_results, and user_search_results as mixins to an all-encompassing  
search component.

defineComponent(search, search_input, typeahead, search_results,  
  user_search_results);

This allows each aspect of the search (typeahead, search results, and so on) to be  
re-used elsewhere in the application. Some complexity remains in determining  
which of typeahead, search_results, and user_search_results is currently 
active, but this could be managed using Booleans on the component attributes:

function search() {
  defaultAttrs({
    isTypeaheadActive: true,
    isSearchResultsActive: false,



Chapter 13

[ 97 ]

    isUserSearchResultsActive: false
});
}

The search component now includes all functionalities related to the search.  
It knows which aspect of the search is supposed to be active, and can call methods  
on the mixins directly.

Summary
Components are atomic. They should not depend on, or even assume the existence 
of, any other component. This precludes the nesting of components.

It is important to consider reusability when creating components and mixins. If part 
of a component should be re-usable, consider extracting it to a mixin.

Nested components are not atomic and therefore are less re-usable and tougher to test.





Flight API Reference
The following sections provide an overview of the essential API methods, including 
how to create components and mixins, how to use Advice, listen for and trigger 
events, and define default attributes.

The complete Twitter API documentation can be found at 
https://github.com/flightjs/flight.

Components
There are three aspects to the component API: component and mixin definition, 
component instantiation, and base component methods. The base component 
methods are available as first-class citizens from within component and mixins 
definitions.

Component definition
Components are AMD modules and should return a defined component. This is an 
example component file:

// AMD module definition
define(function () {
  // require defineComponent
  var defineComponent = require('flight/lib/component');
  // export defined component
  return defineComponent(myComponent);
  // component definition



Flight API Reference

[ 100 ]

  function myComponent () {
    // internal methods
    this.foo = function () {
      // do something
    };
  };
});

Mixin definition
Mixins are AMD modules exactly like components, only they return a component 
definition, rather than a defined component, so don't require defineComponent:

// AMD module definition
define(function () {
  return myMixin;
  // mixin definition
  function myMixin () {
    // internal methods
    this.bar = function () {
      // do something
    };
  };
});

Using mixins
Mixins can be mixed into components, as shown in the following code:

// AMD module definition
define(function () {
  // require defineComponent
  var defineComponent = require('flight/lib/component');
  // require mixins
  var myMixin = require('component/my_mixin');
  // export defined component, adding mixins
  return defineComponent(myComponent, myMixin);
  // component definition
  function myComponent () {
    // internal methods
    this.foo = function () {
      // components have access to mixin methods
      // as first-class citizens



Appendix

[ 101 ]

      this.bar();
    };
  };
});

Mixins can also be mixed into other mixins using compose.mixin within the mixin 
definition. For example, look at the following code:

// AMD module definition
define(function () {
  // require Compose
  var compose = require('flight/lib/compose');
  // require another mixin
  var someOtherMixin = require('component/some_other_mixin');
  
  return myMixin;
  // mixin definition
  function myMixin () {
    compose.mixin(this, [someOtherMixin]);
    // internal methods
    this.bar = function () {
      // do something
    };
  };
});

Instantiating components
The following code example shows a component (component/my_component.js) 
being required and then instantiated in three different ways:

// require component constructor
var MyComponent = require('component/my_component');
// attach component instance to an HTMLElement
MyComponent.attachTo(document);
// attach component instance to all elements matching a css  
  selector
MyComponent.attachTo('.modal');
// attach component instance to a jQuery object
var $div = $('<div />');
MyComponent.attachTo($div);
// pass options to component instance
MyComponent.attachTo($div, {
  defaultText: 'Hello, World!'
});



Flight API Reference

[ 102 ]

Methods available on a component instance
The defineComponent method mixes in Flight's core functionality into a component 
definition. The methods in this section are available to any component within the 
function definition.

Component methods can be broken up into five sections: Advice, Attributes, DOM 
selection, Events, and Teardown.

Advice
Advice allows component and mixin methods to be extended or overridden without 
clobbering the original method using before, after, and around. Advice is also 
used to initialize a component.

before
Execute a method before the named method is executed:

this.before(methodName, callback);

after
Execute a method after the named method is executed:

this.after(methodName, callback);

around
Execute a method before the named method is executed, and optionally call the 
named method:

this.around(methodName, function (originalMethod) {
  // maybe call
originalMethod();
});

Initialization
Use after to initialize a component.

// component definition
function myComponent () {
  this.after('initialize', function () {
    // do initialization
    // this will be called when a component is



Appendix

[ 103 ]

// attached to a DOM node
  });
}

defaultAttrs
Default attributes can be used to configure a component or mixin:

// component definition
function myComponent () {
this.defaultAttrs({
defaultText: "Hello, handsome!"
});
});

Default attributes can be overridden when instantiating a component:

var MyComponent = require('component/my_component');
MyComponent.attachTo(document, {
  defaultText: "Hello, World!"
});

select
Use a selector defined in defaultAttrs to gain a reference to a jQuery collection 
containing elements within the component that match the selector:

this.defaultAttrs({
  listItemSelector: '.list-item'
});
this.getListItems = function () {
var $listItems = this.select(attrKey);
return $listItems;
};

Events
Flight components should attach event listeners and trigger events through Flight's 
event methods:

on
Attach an event listener to the component root:

this.on([selector], eventName, callback);



Flight API Reference

[ 104 ]

In the this example, an event listener is attached to the component's root node:

this.handleTaskData = function (event, data) {
  // do something
};
this.after('initialize', function () {
this.on('dataTask', this.handleTaskData);
});

To attach an event listener to a specific element, a CSS selector, DOM element,  
or jQuery collection can be passed as the first argument to on, as seen in the 
following examples:

this.on('.list-item', 'click', this.handleListItemClick);
this.on($('.list-item'), 'click', this.handleListItemClick);
this.on(document, 'dataTask', this.handleTaskData);

To handle dynamic creation of elements, use the following syntax to provide event 
delegation. attributeKey needs to be defined in defaultAttrs.

this.on(eventName, {
  attributeKey: callback
});

In this example, handleListItemClick will be called when the user clicks on an 
element matching .list-item.

this.defaultAttrs({
  listItemSelector: '.list-item'
});
this.handleListItemClick = function (event) {
  // do something
});
this.after('initialize', function () {
this.on('click' {
    listItemSelector: this.handleListItemClick
});
});

off
Remove an event listener:

this.off([selector, ] eventName [, callback]);

In this example, all listeners listening for dataTask events will be removed.

this.off('dataTask');



Appendix

[ 105 ]

trigger
Trigger an event:

this.trigger([selector, ] eventName [, data]);

This example shows a dataTask event being triggered on the component's  
root node with a data payload.

this.trigger('dataTask', {
  description: 'Make tea'
});

teardown
teardown() destroys the component instance and removes all event handlers  
declared with this.on.

this.teardown();

Using Flight's registry
It is possible to import Flight's registry module to provide access to advanced 
features around component management. The registry keeps track of which 
component is attached to which node. The following are a few useful methods:

findInstanceInfoByNode
Returns an array of all component instances for a given node:

registry.findInstanceInfoByNode(node)

findInstanceInfo
Return a component instance if it exists in the registry, otherwise null:

registry.findInstanceInfo(componentInstance)

allInstances
This is an array of all components in the registry. Here's an example using 
allInstances to tear down all components:

registry.allInstances.forEach(function(i) {
 registry.allInstances[i].instance.teardown();
});





Index
Symbols
.on() method  37

A
add_task component  45
add task form  35
advice section, component methods

about  102
after  102
around  102
before  102
initialization  102

agnostic architecture, Flight  15
allInstances method  105
AngularJS  15, 22
application structure, Flight

about  24
bower_components directory  24
component directory  24
main.js directory  24
page directory  24

Asynchronous Module Definition (AMD) 
frameworks  78

attachTo method  47

B
Backbone  15
boilerplate

reducing  10
Bower

about  15
URL  26

browser events
listening for  37
triggering  84

browser events, listening for
event handlers, attaching  37
event handlers, defining  37, 38

C
complexities, Flight architecture

flat component structure, creating  92
mixins, versus components  92-95
nested components  91

complexity management  14, 15
component interface

testing  81, 82
component API

component definition  99
mixin definition  100

component instance
methods  102
reference, obtaining  82

component instantiation
testing  85

component methods
Advice section  102
Attributes section  103
Events section  103
Teardown section  105

components
about  29
creating  30
instantiating  101
refactoring  84
types  29



[ 108 ]

using  95, 96
component types

Data  29
mixins  30
User Interface (UI)  29

custom applications
creating  26

custom events
triggering, in Flight  40

D
data

retrieving, from HTML  72
data component

about  45
attaching  46
creating  46, 47
data events, handling  51, 52
data events, naming  46
data events, triggering  49
error handling  51
event handlers  48
task_data component, completing  49

data events
dataSettings  46
dataTask  46
dataTasks  46
handling  51, 52
naming  46
triggering  49

dataReceivedAsynchronousResponse  
event  46

dataTask event  105
dataWaitingForAsynchronousResponse 

event  46
debugging

Flight  26, 27
default attributes, DOM nodes

finding  38
setting  38

defaultAttrs  38, 103
default.js  47
defineComponent method  31, 102
delegated events

adding, to task_list  74

DOM
modifying  42
used, for determining state  78

DOM nodes
custom events, triggering in Flight  40
default attributes, setting  38, 39
event data  41, 42
event names  41
events, triggering on specific elements  41
finding  38
selecting, attributes used  39, 40

dynamic HTML
working with  72, 73

E
Ember.js  22
error handling, data component  51
event

about  53
naming convention  53, 54

event delegation
about  72
using  72

event-driven interfaces  8
event handlers

defining  37
event handlers, data component  48
event section, component methods

event listener, attaching  103, 104
event listener, removing  104
event, triggering  105

F
findInstanceInfoByNode method  105
findInstanceInfo method  105
flat component structure

creating  92
Flight

about  7, 19
advantages  13
agnostic architecture  15
architecture  21
components  29
components, for web applications  21
component types  29



[ 109 ]

data component  45
debugging  26
developers quotes  20
efficient complexity management  14, 15
event-driven interfaces  8
extending, with two-way data binding  22
features  19, 20
missing model  10
open source projects  21
performance  16
refactoring  20
registry module  105
reusability  15
scalable architecture  9
simplicity  13
templating  67
testing  81
troubleshooting  26
URL  7
using, without module loader  26
well-organized freedom  16
working  8

Flight application
application structure  24
running  25
scaffolding, with Yo  23

Flight architecture
complexities  91

Flight, at Twitter
about  19
better performance  19
manageable codebase  20

Flight component
actions, performing on component  

initialization  32
attaching, to DOM  31
creating  30

Flight components, for web applications
examples  21

Flight documentation
URL  26

flight/lib/component module  31

G
GitHub  15

H
handleNeedsTask event  50
handleNeedsTasks event  50
handleSubmit method  37
handleTaskCompleted event  50
HTML

used, for determining state  72

I
Icarus  22
Integrated Development  

Environment (IDE)  47

J
Jasmine  86
Jasmine, extending

about  86
event assertions  89
loading, as AMD modules  86-88
method call, checking  90

Jasmine test example  81
JavaScript Object Notation (JSON) data  79

K
Karma and Jasmine Flight  23

L
Laces.js  22

M
methods, component instance

defineComponent method  102
mixins

about  30, 57
advice priority  64
creating  58-60
methods, extending  62
mixing  64
mixin priority  59
storage, mixing into Task Data  60, 61
task list, initializing from storage  62
using  57-59, 96, 97, 100



[ 110 ]

working  58
mixins methods

after  63
around  63
before  63

mixins, versus components  92
Mustache template  10

N
nested components

about  91
atomic components  92
tearing down  91
testing  92

nodejs
URL  23

Node Package Manager (NPM)  23

O
open source Flight components  21
open source projects, Flight

TodoMVC  21

P
parent-child concept  9
perceived performance

about  79
applying  79

performance  16

R
registry module

allInstances  105
findInstanceInfo  105
findInstanceInfoByNode  105

request type
used, for determining response  78

RequireJS  16
reusability  15

S
scalable architecture, Flight

about  9

no parent-child relationships  9
no spaghetti code  9
well-defined interfaces  10

select method, component methods  103
server-side compilation  71
server-side rendering  78
simplicity  13
standalone mixins

instantiating  83

T
task_data component

completing  49
handleNeedsTask  50
handleNeedsTasks  50
handleTaskCompleted  50

TaskManager.get()  9
TaskManager module  9
teardown

testing  85
Teardown, component methods  105
template objects

generating, from DOM nodes  67, 68
templates

constructing, in components  68, 69
templating

about  67
client-side templating  67
delegated events, addig to task_list  74
DOM node templating  67
dynamic HTML, working with  72, 73
HTML, used for determining state  72
server-side compilation  71
server-side templating  67
task, completing  74, 75
template objects, generating from  

DOM modes  67, 68
templates, constructing in  

components  68, 69
templating mixin

creating  70
this.on  72
this.select method  38, 39
TodoMVC  21
trigger method  40



[ 111 ]

troubleshooting
Flight  26

TweetDeck  15, 19
Twitter

Flight, using  19
URL  19

Twitter API documentation
URL  99

Typeahead  15

U
UI components

attaching, to existing HTML  35, 36
UI events, data component

listening for  48
uiAddTask  48
uiNeedsTask  48
uiNeedsTasks  48
uiTaskCompleted  48

W
Web Application performance

about  77
deferred loading  78
DOM, used for determining state  78
perceived performance  79
request type, used for determining  

response  78
server-side rendering  78
time to page load, reducing  77

well-defined interfaces  10

X
XMLHttpRequest (XHR)  16

Y
Yeoman  23
Yo

about  23
installing  23, 24





Thank you for buying  
Getting Started with Twitter Flight

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals  
should be sent to author@packtpub.com. If your book idea is still at an early stage and  
you would like to discuss it first before writing a formal book proposal, contact us; one  
of our commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but  
no writing experience, our experienced editors can help you develop a writing career,  
or simply get some additional reward for your expertise.



jQuery UI 1.8: The User Interface 
Library for jQuery 
ISBN: 978-1-849516-52-5             Paperback: 424 pages

Build highly interactive web applications with  
ready-to-use widgets from the jQuery User  
Interface Library

1. Packed with examples and clear explanations 
of how to easily design elegant and powerful 
frontend interfaces for your web applications

2. A section covering the widget factory including 
an in-depth example on how to build a custom 
jQuery UI widget

3. Updated code with significant changes and 
fixes to the previous edition

jQuery UI Themes Beginner's 
Guide
ISBN: 978-1-849510-44-8           Paperback: 268 pages

Create new themes for your jQuery site with this 
step-by-step guide

1. Learn the details of the jQuery UI theme 
framework by example

2. No prior knowledge of jQuery UI or  
theming frameworks is necessary

3. The CSS structure is explained in an  
easy-to-understand and approachable way

Please check www.PacktPub.com for information on our titles



Twitter Bootstrap Web 
Development How-To 
ISBN: 978-1-849518-82-6            Paperback: 68 pages

A hands-on introduction to building websites with 
Twitter Bootstrap's powerful front-end development 
framework

1. Learn something new in an Instant!  
A short, fast, focused guide delivering 
immediate results

2. Conquer responsive website layout with 
Bootstrap’s flexible grid system

3. Leverage carefully-built CSS styles for 
typography, buttons, tables, forms,  
and more

Instant PhoneGap Social App 
Development
ISBN: 978-1-849696-28-9            Paperback: 78 pages

Consume social network feeds and share social 
network content using native plugins and PhoneGap

1. Learn something new in an Instant!  
A short, fast, focused guide delivering 
immediate results

2. Learn how to consume content using  
Twitter’s JSON API

3. Learn how to use the Twitter Web  
Intents to share content on the Twitter  
social network

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Flight?
	Who made Flight?
	How does Flight work?
	Event-driven interfaces
	Scalable architecture
	No parent-child relationships
	No spaghetti code
	Promote reusability with well-defined interfaces

	The missing model
	Simplify
	Reduce boilerplate


	Summary

	Chapter 2: The Advantages of Flight
	Simplicity
	Efficient complexity management
	Reusability
	Agnostic architecture
	Performance
	Well-organized freedom
	Summary

	Chapter 3: Flight in the Wild
	Flight at Twitter
	Flight offers better performance
	Flight provides a manageable codebase

	Quotes from developers
	On refactoring
	On Flight's component architecture

	Open source Flight projects
	TodoMVC
	Components for web applications

	Extending Flight with two-way data binding
	Summary

	Chapter 4: Building a Flight Application
	Scaffolding a Flight application with Yo
	Installing Yo
	Understanding the application structure
	Running the application

	Creating custom applications
	Using Flight without a module loader
	Troubleshooting
	Debugging
	Summary

	Chapter 5: Components
	What is a component?
	Component types
	Mixins

	Creating your first component
	Attaching components to the DOM
	Performing actions on component initialization

	Summary

	Chapter 6: UI Components
	Attaching components to an existing HTML
	Listening for browser events
	Attaching event handlers
	Defining event handlers

	Finding DOM nodes
	Setting default attributes
	Using attributes to select nodes
	Triggering custom events in Flight
	Triggering events on specific elements
	Event names
	Event data

	Modifying the DOM
	Summary

	Chapter 7: Data Components
	What is a data component?
	Attaching data components
	Naming data events
	Creating a data component
	Listening for UI events
	Event handlers
	Triggering data events
	Completing the task_data component
	handleNeedsTask
	handleNeedsTasks
	handleTaskCompleted

	Error handling
	Handling data events
	Summary

	Chapter 8: Event Naming
	The importance of event names
	Events are not instructions
	Suggested naming conventions
	Summary

	Chapter 9: Mixins
	What are mixins?
	When to use mixins
	How do mixins work?
	Creating mixins
	Using mixins
	Mixin priority
	Creating your first mixin
	Mix storage into Task Data

	Initializing the task list from storage
	Extending existing methods
	Before and after
	Around

	Advice priority for component and mixins
	Mixing mixins into mixins
	Summary

	Chapter 10: Templating and Event Delegation
	Generating template objects from the DOM nodes
	Constructing templates in components
	Creating a templating mixin
	Server-side compilation
	Using HTML to determine state
	Working with dynamic HTML ─ event delegation
	Add delegated events to task_list
	Completing a task

	Summary

	Chapter 11: Web Application Performance
	Reducing time to page load
	Deferred loading

	Server-side rendering
	Using the DOM to determine state
	Using request type to determine response
	Perceived performance
	Applying perceived performance in Flight

	Summary

	Chapter 12: Testing
	What does a test look like?
	Testing the interface
	Obtaining a reference to a component instance
	Instantiating standalone mixins
	Triggering browser events
	Allowing for refactoring
	Testing teardown
	Testing component instantiation
	Extending Jasmine for Flight
	Jasmine and AMD
	Event assertions
	Testing if methods have been called

	Summary

	Chapter 13: Complexities of Flight Architecture
	The danger of nested components
	Teardown
	Atomic components
	Testing

	Creating flat component structure
	Mixins versus Components
	Doing it with components
	Doing it with mixins

	Summary

	Appendix: Flight API Reference
	Components
	Component definition
	Mixin definition
	Using mixins
	Instantiating components
	Methods available on a component instance
	Advice
	defaultAttrs
	select
	Events
	Teardown


	Using Flight's registry
	findInstanceInfoByNode
	findInstanceInfo
	allInstances


	Index

