
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Meteor.js
JavaScript Framework

Develop modern web applications in Meteor, one of the
hottest new JavaScript platforms

Isaac Strack

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Meteor.js JavaScript Framework

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1201212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-082-3

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Isaac Strack

Reviewers
Arturas Lebedevas

Gabriel Manricks

Acquisition Editor
Wilson D'souza

Commissioning Editor
Ameya Sawant

Technical Editors
Veronica Fernandes

Dipesh Panchal

Lubna Shaikh

Project Coordinator
Amigya Khurana

Proofreader
Chris Smith

Indexer
Monica Ajmera Mehta

Graphics
Aditi Gajjar

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Isaac Strack, as a Design Technologist for Adobe Systems, actively researches,
develops, and contributes to emerging device and Internet technologies,
incorporating these new technologies into the Adobe Digital Media and Digital
Marketing product lines. He is on the board of directors for the Wasatch Institute of
Technology, a computer science high school located in Utah that is changing the face
of education through an Agile-based teaching methodology, which emphasizes
real-life technology skills and STEM education.

Isaac worked for the Service Technologies group at eBay for over 11 years, where he
was on the forefront of AJAX, .NET, and web-related technologies. While at eBay, he
earned a web technology patent, and is one of the original developers of the Listing
Violation Inspection System (LVIS), used to monitor and regulate auctions and
member-to-member transactions.

Isaac has a passion for technology and design, and conveys that passion through
his contributions online and in his local community. Despite his experiences to the
contrary, he's still naive enough to believe what Steve Jobs said, "If you have a good
idea and a little moxie, you can change the world."

I want to thank my four wonderful daughters, for teaching me
what true, unconditional love is, and for making me feel young and
happy, even on cold winter days. I want to thank my wife, Kirsten,
for encouraging me to never give up on my stupid, stupid dreams,
and for being so supportive and sacrificing during the making of
this book. I'm grateful to my employer, Adobe Systems, and my
manager, Joel Den Engelsen, who continually support me, and have
given me my dream job. Lastly, I want to thank my Heavenly Father,
for my talents and blessings, and for the love/passion I have for
learning new, amazing things. I truly am better than I deserve, and
I am grateful for the peace in my heart, despite my best efforts to
ruin everything.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Arturas Lebedevas is a Software Developer who has been working on various
projects in both Lithuania and Ireland. Previously, he was the co-founder and CTO
of an Irish legal startup LawSimply, where he used Node.js extensively along with
MongoDB.

Currently he is doing software consultancy focusing mainly on using Meteor
framework, and has been an active member of the Meteor framework community
contributing to Stack Overflow.

I would like to thank to my mother who supports me in all my
decisions.

Gabriel Manricks is a Software/Web Developer born in Montreal, Canada.
He learned his first programming language at the age of 12 (C++), and went on
to graduate in programming science.

In addition to programming, Gabriel's hobbies include electronics and crafts;
basically anything involving taking things apart, seeing how they work, and
putting them back together.

Currently Gabriel is a Staff Writer for NetTuts+, where he enjoys learning and
teaching cutting-edge web technologies.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Setup and Installation 7

Installing with curl 7
Loading an example application 9

Selecting your file location 9
Loading the example application 10
Starting the example application 10
Previewing the application 10
Help! I made too many changes! 11

Making code changes 12
Changing from todos to items 12

Summary 14
Chapter 2: Reactive Programming… It's Alive! 15

Creating the Lending Library 15
Creating the base application 16
Creating a collection 18
Fun with the browser console 19
Adding some data 20
Displaying collections in HTML 21
Cleaning up 25

Creating a reaction 28
Multiple clients 29
Summary 30

Chapter 3: Why Meteor Rocks! 31
Modern web applications 31

The origin of the web app (client/server) 31
The rise of the machines (MVC) 32
The browser grows up (MVVM) 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

A giant Meteor appears! 35
Cached and synchronized data (the model) 35
Templated HTML (the view) 37
Meteor's client code (the View-Model) 39

Let's create some templates 40
Summary 46

Chapter 4: Templates 47
A new HTML template 47
Gluing it all together 51

Our items View-Model 51
Additional view states 54
Adding events 57
Model updates 61
Style updates 64

Summary 67
Chapter 5: Data, Meteor Style! 69

Document-oriented storage 69
But why not use a relational database 70
MongoDB 71
Using direct commands 72

Broadcasting changes 75
Published events 75

Configuring publishers 76
Turning off autopublish 77
Listing categories 78
Listing items 81
Checking your streamlined data 82

Summary 84
Chapter 6: Application and Folder Structure 85

Client and server folders 85
Public folder 89

Security and accounts 91
Removing insecure 91
Adding an admin account 92
Granting admin permissions 95

Customizing results 98
Modifying Meteor.publish() 98
Adding owner privileges 99
Enabling multiple users 100

Summary 102

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 7: Packaging and Deploying 103
Third-party packages 103

Listing available packages 103
Bundling your application 105
Deploying to Meteor's servers 106

Updating Meteor's servers 107
Using your own hostname 107

Deploying to a custom server 107
Server setup 108
Deploying your bundle 108

Optional – different platform 109
Running your application 109

Summary 111
Index 113

www.allitebooks.com

http://www.allitebooks.org

Preface
We live in amazing times. Advances in medicine, communication, physics,
and all other scientific fields provide us with opportunities to create things
that were literally impossible to create only a short while ago.

And yet, we aren't easily amazed. We've come to expect wondrous advances, and
therefore what was once amazing becomes…well…expected. It's a rare thing, indeed,
to find something that takes us by surprise. Something that renews that childhood
sense of wonder we all secretly want back, because it was stolen from us.

Well, prepare to regain some of that wonder. A dedicated group of computer
scientists who are determined to make something wondrous have created a
new JavaScript platform called Meteor. You may be thinking, "A new JavaScript
platform? That's nothing special." And if that's all Meteor was, you'd be correct,
but fortunately for you, that's not the end of the story.

Meteor is a reactive, simple, and powerful application platform, capable of
producing sophisticated, robust web applications with just a few lines of code.

In the context of web applications, it is state-of-the-art. Using established, proven
development design patterns, Meteor takes all the difficult and mundane parts of
building a web application and does them all for you. You get to focus on building
a solid application with all the latest innovations such as reactive programming,
templates, plugins, and client-side caching/synchronization. You get to do all of this
without getting bogged down in the usual time-wasting activities, such as writing
yet-another-database-interface, or learning a new templating engine.

And the best part is, it's simple to learn. Amazingly simple. You will see an application
come to life right before your eyes, and when you look back at the number of lines of
code it took to create, and compare it to the traditional methods of development, you
may actually find yourself saying "wow" or "how did they do that?"

Preface

[2]

This book will walk you through the major features of Meteor, and show you how
to create an application from scratch. By the end of the book, you will have created
a working, useful application, and you will have a solid understanding of what makes
Meteor different. It may sound like hyperbole, but if you're open to the idea that
something innovative and unexpected can qualify as amazing, then prepare to
be amazed!

What this book covers
Chapter 1, Setup and Installation, gets you up and running with Meteor in just
a few minutes, and shows how quickly and easily you can build a fully functional,
useful application.

Chapter 2, Reactive Programming… It's Alive!, teaches you all about reactive
programming, and how you can leverage reactivity in Meteor to create amazing,
responsive applications.

Chapter 3, Why Meteor Rocks!, helps you to gain an understanding of the design
patterns Meteor uses, and shows examples of these powerful patterns in action.

Chapter 4, Templates, teaches you about Meteor templates in depth, and how to use
templates to lay the groundwork for your Lending Library application.

Chapter 5, Data, Meteor Style!, helps you to discover how Meteor handles data,
making an enterprise-level application incredibly simple and robust. It also helps
you to implement Meteor's data handling quickly and effectively in your application.

Chapter 6, Application and Folder Structure, shows what changes you can make
to the default configuration to make your application more secure, extensible,
and user-friendly.

Chapter 7, Packaging and Deploying, helps you to become an expert on Meteor's
packaging system, including how to include many popular third-party frameworks.
Learn how to deploy a Meteor application to your development, testing, and
production environments.

What you need for this book
To run the examples in the book, the following software will be required:

• Operating System:
 ° Mac: OS X 10.6 and above (http://www.apple.com)

Preface

[3]

 ° Linux: x86 or x86_64, Debian (http://www.debian.org) and Red
Hat-based systems (http://www.redhat.com)

• Meteor: Version 0.5.0 or above (http://docs.meteor.com/#quickstart)

Who this book is for
This book is for an application developer, designer, or analyst with a decent
understanding of HTML and JavaScript, and who wants to learn about Meteor,
and the new movement inside the JavaScript community towards fully-functional,
robust web applications.

If you are looking for a step-by-step approach to understanding how and when
to use one of the latest and most innovative web technologies in your application
development projects, this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We've already created our categories
through the use of the categories template."

A block of code is set as follows:

<body>
 <div id="lendlib">
 <div id="categories-container">
 {{> categories}}
 </div>
 <div id="list">
 {{> list}}
 </div>
 </div>
</body>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<body>
 <div id="lendlib">
 <div id="categories-container">

Preface

[4]

 {{> categories}}
 </div>
 <div id="list">
 {{> list}}
 </div>
 </div>
</body>

Any command-line input or output is written as follows:

> meteor remove autopublish

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Before we celebrate, go ahead and click on the Clothes category."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setup and Installation
Under the hood, Meteor is really just a bunch of files and scripts, designed to make
the building of a web application easier. That's a terrible way to describe something
so elegant, but it helps us better understand what we're using.

After all, Mila Kunis is really just a bunch of tissue wrapped around bone, with some
vital organs inside. I know you hate me now for that description, but you get the
point. She's beautiful. So is Meteor. But it doesn't do us any good to just leave it at
that. If we want to reproduce that type of beauty on our own, we have to understand
what's really going on.

So, files and scripts… We're going to walk through how to get the Meteor package
properly installed on your Linux or Mac OS X system, and then see that package of
files and scripts in action. Note that Windows support is coming, but as of the time
of this writing, only the Linux and Mac versions are available.

In this chapter, you will learn:

• Downloading and installing Meteor via curl
• Loading an example application
• Making changes and watching Meteor in action

Installing with curl
There are several ways to install a package of files and scripts. You can manually
download and transfer files, you can use a pretty installation wizard/package with
lots of "next" buttons, or you can do what real developers do, and use the command
line. It puts hair on your chest. Which, now that I think about it, may not be a very
desirable thing. Okay, no hair; I lied. But still, you want to use the command line,
trust me. Trust the person that just lied to you.

Setup and Installation

[8]

curl (or cURL if you want to get fancy) is a command-line tool used to transfer files
and run scripts, using standard URL locations. You probably already knew that, or
you probably don't care. Either way, we've described it and we're now moving on to
using it.

Open a terminal window or the command line, and enter the following:

$ curl https://install.meteor.com | /bin/sh

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit http://
www.PacktPub.com/support and register to have the files
e-mailed directly to you.

This will install Meteor on your system. curl is the command to go and fetch the
script. https://install.meteor.com is the URL/location of the script, and /bin/sh
is, of course, the location of the script interpreter "Shell", which will run the script.

Once you've run this script, assuming you have an Internet connection and the
proper permissions, you will see the Meteor package download and install:

The key thing we're looking for in the preceding installation text is the location
of Meteor:

Installing Meteor to /usr/local/meteor

Chapter 1

[9]

This location will vary depending on if you're running this in Linux or Mac OS X,
but it puts Meteor into a location where you can then access the Meteor script from
anywhere else. This will become important in a minute. For now, let's see what kind
of friendly message we get when the Meteor installation is finished:

Meteor installed! To get started fast:

 $ meteor create ~/my_cool_app

 $ cd ~/my_cool_app

 $ meteor

Or see the docs at:

 docs.meteor.com

Great! You've successfully installed Meteor, and you're on your way to creating your
first Meteor web application!

You should bookmark http://docs.meteor.com as an invaluable
reference moving forward.

Loading an example application
The wonderful people at Meteor have included several example applications, which
you can quickly create and play with, helping you get a better idea of what Meteor is
capable of.

For the application we will build, the todos example is the closest fit, so we'll go
ahead and build off of that example. We'll be using the command line again, so
awesome news if you still have it open! If not, open a terminal window, and follow
these steps.

Selecting your file location
So we can remember where they are later, we'll put all the files for this book
in the ~/Documents/Meteor folder. We need to create that folder:

$ mkdir ~/Documents/Meteor

Now, we want to be in that directory:

$ cd ~/Documents/Meteor

www.allitebooks.com

http://www.allitebooks.org

Setup and Installation

[10]

Loading the example application
We can now use the Meteor create command with the --example parameter
to create a local copy of the todos example application:

$ meteor create –-example todos

As with the Meteor installation itself, the create command script has a friendly
success message:

todos: created.

To run your new app:

 cd todos

 meteor

How handy, there are even instructions on what to do next! Let's go ahead and do
what our good command-line friend is telling us.

Starting the example application
To start up a Meteor application, we need to be in the application directory itself.
This is because Meteor is looking for the startup files, HTML, and JavaScript needed
to run the application. Those are all found in the application folder, so let's go there:

$ cd todos

This puts us in the ~/Documents/Meteor/todos folder, and we're ready to run
the application:

$ meteor

Yes, that's it. Meteor takes care of everything for us, reading all the files and scripts,
and setting up the HTTP listener:

[[[[[~/Documents/Meteor/todos]]]]]

Running on: http://localhost:3000/

We can now take the URL we've been given (http://localhost:3000/), and check
out the example application in a web browser.

Previewing the application
Open your favorite web browser (we'll be using Chrome, but any modern, updated
browser will work) and navigate to http://localhost:3000/.

Chapter 1

[11]

You should see the following screen, with a few todo lists already added:

You can go ahead and poke around the application if you'd like. Add a new item to
a list, change lists, add a new tag, or mark items as complete. Go nuts, friend! Any
changes we make in the future won't match exactly what you will have on your
screen if you make a lot of changes, but you'll be able to follow along just fine.

Help! I made too many changes!
Do you fear change, and want your screens to look exactly like our sample screens?
No problem, just start with a clean instance.

1. At the command line:
Ctrl + C

2. This stops the running application. Now go up one directory:
$ cd ..

3. Remove the todos application:
$ rm –R todos

4. Create the todos example application again:
$ meteor create --example todos

5. Change to the new directory, start Meteor, and you're good to go:
$ cd todos

$ meteor

Setup and Installation

[12]

Making code changes
Okay, we've got our application up and running in the browser, and we now want
to see what happens when we make some code changes.

One of the best features of Meteor is reactive programming and hot code pushes.

The following is from http://docs.meteor.com/#reactivity:

Meteor embraces the concept of reactive programming. This means
that you can write your code in a simple imperative style, and the
result will be automatically recalculated whenever data changes that
your code depends on.

Put even more simply, this means that any changes you make to the HTML,
JavaScript, or database are automatically picked up and propagated.

You don't have to restart the application or even refresh your browser. All changes
are incorporated in real time, and the application reactively accepts those changes.

Let's see an example.

Changing from todos to items
As we learn the ins and outs of Meteor, we want to build a working application:
something useful, and complex enough so that we can experience all the major
features of Meteor. We will be building a Lending Library, where we can keep track
of what items we have (for example, Mad Men Season 1), organize these items into
categories (for example, DVDs), and keep track of the people to whom we have lent
the items.

To see the beginnings of this, let's change the lists of todos to lists of items, and let's
change the word list to category, because that sounds much more awesome.

First, make sure the application is up and running. You can do this by having an
open browser window, pointing to http://localhost:3000/. If the app is running,
you'll see your todos application. If your application isn't up and running, make
sure to follow the steps previously given in the section Starting the example application.

Now, we need to open and edit the todos.html file. With your favorite text/code
editor, open ~/Documents/Meteor/todos/client/todos.html.

Chapter 1

[13]

1. Change title in the head section:
<head>
 <title>Items</title>
</head>

2. Go ahead and save the file, and look at your web browser. The page
will automatically refresh, and you'll see the title change from Todos:

The title will now display the word Items:

This is Meteor in action! It's monitoring any changes to files, and when it sees that
a file has changed, it's telling your browser that a change has been made, and that it
should refresh itself to get the latest version.

Moving forward, we're going to build an application from scratch, so we don't want
to make too many changes to this example application. However, we still want to at
least clean up the other visible references to todo and list.

1. Back in your text editor, make the following change to the <h3> tag
(located approximately around line 20):
<template name="lists">
 <h3>Item Categories</h3>

Save this change, and you'll see the change reflected in your browser. The left
header originally displayed the following text:

Setup and Installation

[14]

It will now have changed to the following:

2. We need to deal with one more area, and we've successfully turned our
todos application into an items application.
If you noticed, in the bottom of the Categories list, the open box currently
says New list:

We need to change this to say New category instead. Make the following
code change on line 39:

<div id="createList">
 <input type="text" id="new-list" placeholder="New category" />
</div>

3. Save your changes, and check your work:

Summary
Great success! In this chapter, you've successfully installed the Meteor framework,
loaded an example application, and made changes to that application, becoming
familiar with file changes and the reactive nature of Meteor. You are now ready
to start building your very own Meteor application, and learn more of the elegant
features and advantages that come from developing with Meteor.

Reactive Programming… It's
Alive!

As you learned in Chapter 1, Setup and Installation, Meteor operates on a reactive
programming model. This means that your client/browser isn't only concerned with
displaying data, but it's also listening for changes to that data, so that it can "react" to
those changes. These areas of data, where your browser looks for changes, are called
reactive contexts.

We will start our Lending Library application in earnest, laying the framework for
future chapters, and using Meteor's built-in reactive contexts to track and propagate
changes to our application to all clients who are listening.

In this chapter, you will learn about:

• Creating your first real application
• Using reactive programming to track and automatically update changes
• Exploring and testing changes to your data from multiple browser windows

Creating the Lending Library
There are two kinds of people in this world. Those who remember who they lent
something to, and those who buy a lot of stuff twice. If you're one of the people that
are on a first-name basis with your UPS delivery driver, this application is for you!

Using Meteor, we're going to build a Lending Library. We'll keep track of all our
stuff, and who we lent it to, so that the next time we can't remember where we put
our linear compression wrench, we can simply look up who we last lent it to, and go
get it back from them.

Reactive Programming… It's Alive!

[16]

And when that same friend says, "are you sure you lent it to me?" we can say, "yeah,
STEVE, I'm sure I lent it to you! I see you're enjoying your digital cable, thanks to my
generous lending of said linear compression wrench. Why don't you go find it so I
too can enjoy the benefits of digital cable in my own home?!"

Okay, okay, maybe Steve forgot too. Maybe he's a dirty liar and he sold your wrench
to pay for his deep-fried Twinkies® habit. Either way, you've got your own custom
Meteor app that gives you proof that you're not going crazy. And if he did sell it for
deep fried carnival food, at least you can make him share his stash with you, while
you watch the game at his house.

Creating the base application
The first thing we want to do is create the base application, which we can then
expand to fit our needs.

1. Start by navigating to your applications folder. This can be anywhere, but as
mentioned, we'll be working out of ~/Documents/Meteor as our root folder:
$ cd ~/Documents/Meteor

2. Now we create our base folder structure for our Lending Library application:
$ meteor create LendLib

3. As usual, we'll get instructions on how to get the application up and
running. Let's go ahead and try that, just to make sure that everything
was created properly:
$ cd LendLib

$ meteor

This navigates to the Lending Library folder ~/Documents/Meteor/LendLib
and runs the application.

4. Open a browser and navigate to http://localhost:3000/. You should see
the following screen:

Chapter 2

[17]

5. Hello World just isn't going to cut it, so let's change that to Lending Library.
Open ~/Documents/Meteor/LendLib/LendLib.html in your favorite editor.
Towards the top (line 9 or so), you'll see the template HTML code snippet
that's responsible for our greeting. Go ahead and change Hello World to
Lending Library:
<template name="hello">
 <h1>Lending Library</h1>
 {{greeting}}
 <input type="button" value="Click" />

</template>

6. Save that change, and the page will refresh:

The welcome message wasn't located in the HTML file, however.
If you noticed, it's found in a template function called greeting:

{{greeting}}

7. Let's change that as well. Open ~/Documents/Meteor/LendLib/LendLib.js
and make the following change to the greeting template function:
if (Meteor.isClient) {
 Template.hello.greeting = function () {
 return "my list.";
 };

Reactive Programming… It's Alive!

[18]

8. Save the change, and your page will update:

Creating a collection
Okay, you've just made a few small changes to static files, but what we really want
to see is some dynamic, reactive programming, and some live HTML!

We need to attach a data source: something that will keep track of our items.
Normally, this would be quite a process indeed, but Meteor makes it easy,
supporting Minimongo (a light version of MongoDB) out of the box.

To learn more about NoSQL databases (and specifically MongoDB, the
default database used inside Meteor) you can visit the following sites:
http://en.wikipedia.org/wiki/NoSQL

http://www.mongodb.org/

http://www.packtpub.com/books/all?keys=mongodb

Let's create our collection. Inside LendLib.js, we want to add the following as the
first line, and then save the change:

var lists = new Meteor.Collection("Lists");

if (Meteor.isClient) {
…

This creates a new collection in MongoDB. Since it comes before anything else in the
LendLib.js file, the collection is available for both the client and server to see. It is
persistent, as we'll see in a moment, and once values are entered into it, they can be
retrieved by any client accessing the page.

To see this persisted object, we'll need to use the console for our web page.

Chapter 2

[19]

Fun with the browser console
The browser console is a debugging tool available in most modern browsers by
default, or as an add-on through plugins.

For a more in-depth tutorial on using the console in Chrome, check
out http://developer.chrome.com/extensions/tut_
debugging.html.

1. Since we're using Chrome, the console is available by default. In a browser
window pointing to http://localhost:3000/ enter the shortcut key
combination [command] + [option] + i or you can right-click anywhere
on the page and select Inspect Element:

This will open our debugging tools. We now want to get into the console.

www.allitebooks.com

http://www.allitebooks.org

Reactive Programming… It's Alive!

[20]

2. Click on the Console icon found at the extreme right of the debugging
menu bar:

You will now have a blinking cursor, and you're ready to check for our
newly-minted collection!

3. Enter the following command in the console and hit Enter:
> lists

You should get a returned object that says Meteor Collection:

Adding some data
This means that our changes were accepted, and we have a new persistent collection!
It's blank, but let's do something about that:

1. Enter the following commands in the browser console to create a couple of
sample categories:
> lists.insert({Category:"DVDs", items: {Name:"Mission Impossible"
,Owner:"me",LentTo:"Alice"}});

> lists.insert({Category:"Tools", items: {Name:"Linear Compression
Wrench",Owner:"me",LentTo: "STEVE"}});

After each command, you'll get a GUID (something like f98c3355-18ce-
47b0-82cc-142696322a06), which is Meteor's way of telling you that the
item was saved properly. Being the natural skeptics that we are, we're going
to check this.

2. Enter the following command:
> lists.findOne({Category: "DVDs"});

You should get back an object, with an expandable icon next to it.

Chapter 2

[21]

3. Click on that icon to expand, and you should have the following:

We could similarly check for our tools collection by entering the command
lists.findOne({Category:"Tools"}) but we don't need to. This time we'll
trust that Meteor entered it correctly. We do, however, want to check to see if
the objects are persistent.
Refresh the web page. Your console will clear, but the categories we entered
have been saved in the persistent Meteor Collection, so we can check again to
see if they're hanging around.

4. Enter the following command in the console:
> lists.find({}).count();

This command finds all records in the lists collection and gives us a total
count. If everything went according to plan, you should have gotten back a
count of 2.

We're on our way! We've created two categories, and we have one item in each
category. We've also verified that the lists collection is being saved from session
to session. Now, let's see how to display this in our page.

Displaying collections in HTML
We're now going to see our collection come to life inside the HTML page we created
when we initialized our project. This page will use templates, which are reactive,
allowing us to have changes made to our collection appear instantly, without a page
refresh. This type of reactive programming, where the DOM for the page can be
instantly updated without a refresh is called Live HTML.

To read more about Live HTML, consult the Meteor documentation
at the following URL:
http://docs.meteor.com/#livehtml

Reactive Programming… It's Alive!

[22]

1. With ~/Documents/Meteor/LendLib/LendLib.html still open, locate the
body tag, and add a new template declaration:
<body>

 {{> hello}}

 <div id="categories-container">

 {{> categories}}

 </div>
</body>

This creates a new div, with the contents being filled by a template
partial named categories.

2. Now, at the very bottom of the page, let's add the skeleton for the categories
template partial:
<template name="categories">

</template>

This won't change the appearance of the page, but we now have a template
partial where we can list our categories.

3. Let's put in our section title:
<template name="categories">

 <div class="title">my stuff</div>

</template>

4. And now let's get our categories in there:
<template name="categories">

 <div class="title">my stuff</div>

 <div id="categories">

 </div>

</template>

Chapter 2

[23]

This creates the categories div, where we can then go through and list all of
our categories. If we only had one record to deal with, the code would look
like this:

<div class="category">

 {{Category}}

</div>

5. But we need to wrap this into a loop (in this case, an #each statement)
so we get all the categories:
<template name="categories">

 <div class="title">my stuff</div>

 <div id="categories">

 {{#each lists}}

 <div class="category">

 {{Category}}

 </div>

 {{/each}}

 </div>

</template>

Notice that we are telling the template "for each record in the lists collection"
with our {{#each lists}} command, and then, "display the category" with
{{Category}}.

6. Save these changes, and look at the web page:

Reactive Programming… It's Alive!

[24]

It doesn't look much different. Yes, we have our header (my stuff), but where
are the categories we just created our template for?
There's one more step we need to complete in order for the categories to
show up. Currently, the template we just created isn't pointed towards
anything. In other words, we have a lists collection, and we have a template,
but we don't have the underlying JavaScript function that hooks them
together. Let's take care of that.
In ~/Documents/Meteor/LendLib/LendLib.js we can see some Template
functions:
Template.hello.greeting = function () {
...

...

Template.hello.events = { ...

These code chunks are hooking up JavaScript functions and objects to
the HTML hello template. Meteor's built-in Template object makes
this possible, and we're going to follow the same pattern to hook up our
categories template.

7. We want to declare to any listening client that the categories template has
a lists collection. We do this by entering the following code, just below
the Template.hello.events = {...} code block:
Template.hello.events = {
...
};

Template.categories.lists = function () {
};

The Template declaration must be inside the if (Meteor.
isClient) {...} code block, so the client will pick up the
change, and the server will ignore it.

8. We've now declared the lists collection for all templates to use, and we
can have the function return the results from a Meteor.Collection query.
We do that using the find() command:

Template.categories.lists = function () {
 return lists.find({}, {sort: {Category: 1}});
};

Chapter 2

[25]

This code will find every record in the lists collection, and will sort the
results by Category (name). Save these changes, and you will now see a
populated list of categories:

Cleaning up
We're fast approaching a working application, and we want it to look super-shiny
and clean. Let's do a bit of cleanup in our code, and add some CSS to make things
more readable:

1. We don't need the greeting anymore. Let's get rid of that. Remove the
following highlighted lines from LendLib.html and save the page:
<body>

 {{> hello}}

 <div id="categories">

 {{> categories}}

 </div>

</body>

<template name="hello">

 <h1>Lending Library</h1>

 {{greeting}}

 <input type="button" value="Click" />

</template>

Reactive Programming… It's Alive!

[26]

<template name="categories">

We'll want to keep the Template.hello declarations in LendLib.js for now,
as a reference. We'll comment them out for now, and remove them later
when they're no longer needed:

/*

Template.hello.greeting = function () {

 ...
};

Template.hello.events = {

 ...
};

*/

2. Now, let's add the Twitter Bootstrap Framework, which gives us a lot of style
without much effort:

1. Using a terminal window, create a client folder in /LendLib/:
$ mkdir ~/Documents/Meteor/LendLib/client

2. Download the latest Bootstrap framework at http://twitter.
github.com/bootstrap/assets/bootstrap.zip and extract the
archive into the ~/Documents/Meteor/LendLib/client folder.
Because Meteor will read and use every file put in to the application
folder, we want to eliminate the redundant files. We don't have to
worry too much about efficiency, but some things are just shameful,
and leaving that much extraneous code lying around is right up there
with enjoying the Twilight movies.

3. Navigate to the bootstrap folder:
$ cd ~/Documents/Meteor/LendLib/client/bootstrap

4. Delete the unneeded files:
$ rm js/bootstrap.js

$ rm css/bootstrap.css

$ rm css/bootstrap-responsive.css

Chapter 2

[27]

If you know what you're doing with Bootstrap, you can just
copy the images, min.js, and min.css files over instead of
following the previous instructions.

After all these changes, your UI should be really clean and simple:

3. Let's quickly make it more distinct and readable. In LendLib.html, let's
change our header from a div tag to an h2 tag:
<template name="categories">

<h2 class="title">my stuff</h2>

4. And let's turn categories into a pretty button group:

<div id="categories" class="btn-group">

 {{#each lists}}

 <div class="category btn btn-inverse">

 {{Category}}

 </div>
 {{/each}}

This gives us a distinct, clean-looking page:

Reactive Programming… It's Alive!

[28]

Creating a reaction
With our basic template and collection created, and with Meteor putting our lists
collection into the reactive context, we can now proceed to watch the reactive
programming model in action.

Navigate to our Lending Library page at http://localhost:3000/ and open the
browser console window.

In the console, enter the following command:

> lists.insert({Category:"Fraggles"});

You will instantly see the page update. But notice that this time, the full page
didn't refresh! That's because under the hood, Meteor is tracking changes to our
reactive context (in this case, the lists collection) and template is being updated
immediately after a change is made.

Let's make a few more changes. Enter the same Fraggles command again:

> lists.insert({Category:"Fraggles"});

Just as before, a new Fraggles button instantly appears:

But we have too many Fraggles categories now. There are a lot of Fraggles, but unless
you're some weirdo collector you don't need two categories. So let's remove them:

> lists.remove({Category:"Fraggles"})

This command finds any records where Category = "Fraggles" and deletes them.

It would probably be better to add a single collection entry for all our collectibles,
so let's do that instead:

> lists.insert({Category:"Collectibles"})

As you can see, the changes are made instantly, with no page refresh.

Chapter 2

[29]

Multiple clients
Good things should be shared. Meteor gets this, and as we're about to see for
ourselves, the reactive programming model allows us to share updates in real time,
across multiple clients.

With your Chrome web page still open to http://localhost:3000/ open a new
browser tab and navigate to the same page.

If you really want to get fancy, you can conduct this same experiment
with multiple browsers (Firefox, Opera, or Safari) – each session is live
and reactive!

You now have two clients open, which are simulating the application being opened
by different people, at different locations, with different computers. Meteor's reactive
model allows you to treat all clients the same, and a change made by one will be
propagated to all the others.

With your eyes on the new second browser, type the following command into the
console on browser #1:

> lists.insert({Category:"Vinyl Records"})

You will notice that the change propagates to both browsers, and again without the
page refreshing:

www.allitebooks.com

http://www.allitebooks.org

Reactive Programming… It's Alive!

[30]

Feel free to make any extra collections, remove or rename, and so on. Experiment a
little, and notice how these changes can be instantly made to every listening client.
Meteor operates under a very powerful paradigm, and in the next chapter, we'll
be able to see exactly why this is such an important and disruptive change to web
application development.

Summary
In this chapter you've successfully created the framework for your new Meteor
application. You've seen firsthand how quickly a new project can be created, and
you've created some major database and template functionality, with just a few lines
of code. You've seen live HTML and reactive programming in action, and you are
now ready to go even deeper into the Meteor engine. You've conquered the tip of
the iceberg, my friend. Take a break, have a cold one, and get ready for even more
Meteor awesomeness!

Why Meteor Rocks!
Meteor is a disruptive (in a good way!) technology. It enables a new type of
web application, using the Model View View-Model (MVVM) design pattern.

This chapter explains how web applications have changed, why it matters,
and how Meteor specifically enables modern web apps through MVVM.

By the end of this chapter, you will have learned:

• What a modern web application is
• What MVVM means, and how it's different
• How Meteor uses MVVM to create modern web applications
• Templating inside of Meteor – starting to use MVVM

Modern web applications
Our world is changing.

With continual advancements in display, computing, and storage capacities,
what wasn't possible just a few years ago is now not only possible, but critical
to the success of a good application. The Web in particular has undergone
significant change.

The origin of the web app (client/server)
From the beginning, web servers and clients have mimicked the dumb terminal
approach to computing, where a server with significantly more processing power
than a client will perform operations on data (writing records to a database, math
calculations, text searches, and so on), transform the data into a readable format
(turn a database record into HTML, and so on), and then serve the result to the client,
where it's displayed for the user.

Why Meteor Rocks!

[32]

In other words, the server does all the work, and the client acts as more of a display,
or dumb terminal. The design pattern for this is called…wait for it…the client/server
design pattern:

This design pattern, borrowed from the dumb terminals and mainframes of the 60s
and 70s, was the beginning of the Web as we know it, and has continued to be the
design pattern we think of, when we think of the Internet.

The rise of the machines (MVC)
Before the Web (and ever since), desktops were able to run a program such as a
spreadsheet or a word processor without needing to talk to a server. This type
of application could do everything it needed to, right there on the big and beefy
desktop machine.

During the early 90s, desktop computers got faster and better. Even more and more
beefy. At the same time, the Web was coming alive. People started having the idea
that a hybrid between the beefy desktop application (a fat app) and the connected
client/server application (a thin app) would produce the best of both worlds. This
kind of hybrid app – quite the opposite of a dumb terminal – was called a smart app.

There were many business-oriented smart apps created, but the easiest examples
are found in computer games. Massively Multiplayer Online games (MMOs),
first-person shooters, and real-time strategies are smart apps where information
(the data model) is passed between machines through a server. The client in this case
does a lot more than just display the information. It performs most of the processing
(or controls) and transforms the data into something to be displayed (the view).

Chapter 3

[33]

This design pattern is simple, but very effective. It's called the Model View
Controller (MVC) pattern.

The model is all the data. In the context of a smart app, the model is provided by
a server. The client makes requests for the model from the server. Once the client
gets the model, it performs actions/logic on this data, and then prepares it to be
displayed on the screen. This part of the application (talk to the server, modify the
data model, and prep data for display) is called the controller. The controller sends
commands to the view, which displays the information, and reports back to the
controller when something happens on the screen (a button click, for example).
The controller receives that feedback, performs logic, and updates the model.
Lather, rinse, repeat.

Because web browsers were built to be "dumb clients" the idea of using a browser as
a smart app was out of the question. Instead, smart apps were built on frameworks
such as Microsoft .NET, Java, or Macromedia (now Adobe) Flash. As long as you had
the framework installed, you could visit a web page to download/run a smart app.

Sometimes you could run the app inside the browser, sometimes you could
download it first, but either way, you were running a new type of web app,
where the application could talk to the server and share the processing workload.

The browser grows up (MVVM)
Beginning in the early 2000s, a new twist on the MVC pattern started to emerge.
Developers started to realize that, for connected/enterprise "smart apps", there was
actually a nested MVC pattern.

The server (controller) was performing business logic on the database information
(model) through the use of business objects, and then passing that information on to
a client application (a "view").

The client was receiving this information from the server, and treating it as its own
personal "model." The client would then act as a proper controller, perform logic,
and send the information to the view to be displayed on the screen.

Why Meteor Rocks!

[34]

So, the "view" for the server MVC was the "model" for the second MVC.

Then came the thought, "why stop at two?" There was no reason an application
couldn't have multiple nested MVCs, with each view becoming the model for the
next MVC. In fact, on the client side, there's actually a good reason to do so.

Separating actual display logic (such as "this submit button goes here" and "the text
area changed value") from the client-side object logic (such as "user can submit this
record" and "the phone # has changed") allows a large majority of the code to be
reused. The object logic can be ported to another application, and all you have to
do is change out the display logic to extend the same model and controller code
to a different application or device.

From 2004-2005, this idea was refined and modified for smart apps (called the
presentation model) by Martin Fowler and Microsoft (called the Model View
View-Model). While not strictly the same thing as a nested MVC, the MVVM
design pattern applied the concept of a nested MVC to the frontend application.

As browser technologies (HTML and JavaScript) matured, it became possible to
create smart apps that use the MVVM design pattern directly inside an HTML web
page. This pattern makes it possible to run a full-sized application directly from a
browser. No more downloading multiple frameworks or separate apps. You can now
get the same functionality from visiting a URL as you previously could from buying
a packaged product.

Chapter 3

[35]

A giant Meteor appears!
Meteor takes the MVVM pattern to the next level. By applying templating through
handlebars.js (or other template libraries) and using instant updates, it truly enables
a web application to act and perform like a complete, robust smart application.

Let's walk through some concepts of how Meteor does this, and then we'll begin to
apply this to our Lending Library application.

Cached and synchronized data (the model)
Meteor supports a cached-and-synchronized data model that is the same on the
client and the server.

When the client notices a change to the data model, it first caches the change locally,
and then tries to sync with the server. At the same time, it is listening to changes
coming from the server. This allows the client to have a local copy of the data model,
so it can send the results of any changes to the screen quickly, without having to wait
for the server to respond.

Why Meteor Rocks!

[36]

In addition, you'll notice that this is the beginning of the MVVM design pattern,
within a nested MVC. In other words, the server publishes data changes, and treats
those data changes as the "view" in its own MVC pattern. The client subscribes to
those changes, and treats the changes as the "model" in its MVVM pattern.

A code example of this is very simple inside of Meteor (although you can make
it more complex and therefore more controlled if you'd like):

var lists = new Meteor.Collection("lists");

What this one line does is declare that there is a lists data model. Both the
client and server will have a version of it, but they treat their versions differently.
The client will subscribe to changes announced by the server, and update its model
accordingly. The server will publish changes, and listen to change requests from
the client, and update its model (its master copy) based on those change requests.

Wow. One line of code that does all that! Of course there is more to it, but that's
beyond the scope of this chapter, so we'll move on.

Chapter 3

[37]

To better understand Meteor data synchronization, see the Publish
and subscribe section of the Meteor documentation at http://docs.
meteor.com/#publishandsubscribe.

Templated HTML (the view)
The Meteor client renders HTML through the use of templates.

Templates in HTML are also called view data bindings. Without getting too deep,
a view data binding is a shared piece of data that will be displayed differently if the
data changes.

The HTML code has a placeholder. In that placeholder different HTML code will be
placed, depending on the value of a variable. If the value of that variable changes,
the code in the placeholder will change with it, creating a different view.

Let's look at a very simple data binding – one that you don't technically need Meteor
for – to illustrate the point.

In LendLib.html, you will see an HTML (Handlebar) template expression:

<div id="categories-container">

 {{> categories}}

</div>

That expression is a placeholder for an HTML template, found just below it:

<template name="categories">

 <h2 class="title">my stuff</h2>...

So, {{> categories}} is basically saying "put whatever is in the template
categories right here." And the HTML template with the matching name is
providing that.

If you want to see how data changes will change the display, change the h2 tag
to an h4 tag, and save the change:

<template name="categories">

 <h4 class="title">my stuff</h4>...

You'll see the effect in your browser ("my stuff" become itsy bitsy). That's a template
– or view data binding – at work! Change the h4 back to an h2 and save the change.

Why Meteor Rocks!

[38]

Unless you like the change. No judgment here...okay, maybe a little bit of judgment.
It's ugly, and tiny, and hard to read. Seriously, you should change it back before
someone sees it and makes fun of you!!

Alright, now that we know what a view data binding is, let's see how Meteor
uses them.

Inside the categories template in LendLib.html, you'll find even more
Handlebars templates:

<template name="categories">
 <h4 class="title">my stuff</h4>
 <div id="categories" class="btn-group">
 {{#each lists}}
 <div class="category btn btn-inverse">
 {{Category}}
 </div>
 {{/each}}
 </div>

</template>

The first Handlebars expression is part of a pair, and is a for-each statement.
{{#each lists}} tells the interpreter to perform the action below it (in this case,
make a new div) for each item in the lists collection. lists is the piece of data.
{{#each lists}} is the placeholder.

Now, inside the #each lists expression, there is one more Handlebars expression.

{{Category}}

Because this is found inside the #each expression, Category is an implied property
of lists. That is to say that {{Category}} is the same as saying this.Category,
where this is the current item in the for each loop. So the placeholder is saying
"Add the value of this.Category here."

Now, if we look in LendLib.js, we will see the values behind the templates.

Template.categories.lists = function () {
 return lists.find(...

Here, Meteor is declaring a template variable named lists, found inside a template
called categories. That variable happens to be a function. That function is returning
all the data in the lists collection, which we defined previously. Remember this line?

var lists = new Meteor.Collection("lists");

Chapter 3

[39]

That lists collection is returned by the declared Template.categories.lists, so
that when there's a change to the lists collection, the variable gets updated, and the
template's placeholder is changed as well.

Let's see this in action. On your web page pointing to http://localhost:3000,
open the browser console and enter the following line:

> lists.insert({Category:"Games"});

This will update the lists data collection (the model). The template will see this
change, and update the HTML code/placeholder. The for each loop will run one
additional time, for the new entry in lists, and you'll see the following screen:

In regards to the MVVM pattern, the HTML template code is part of the client's
view. Any changes to the data are reflected in the browser automatically.

Meteor's client code (the View-Model)
As discussed in the preceding section, LendLib.js contains the template variables,
linking the client's model to the HTML page, which is the client's view. Any logic
that happens inside of LendLib.js as a reaction to changes from either the view or
the model is part of the View-Model.

www.allitebooks.com

http://www.allitebooks.org

Why Meteor Rocks!

[40]

The View-Model is responsible for tracking changes to the model and presenting
those changes in such a way that the view will pick up the changes. It's also
responsible for listening to changes coming from the view.

By changes, we don't mean a button click or text being entered. Instead, we mean
a change to a template value. A declared template is the View-Model, or the model
for the view.

That means that the client controller has its model (the data from the server) and it
knows what to do with that model, and the view has its model (a template) and it
knows how to display that model.

Let's create some templates
We'll now see a real-life example of the MVVM design pattern, and work on our
Lending Library at the same time. Adding categories through the console has been
a fun exercise, but it's not a long -t term solution. Let's make it so we can do that on
the page instead.

Open LendLib.html and add a new button just before the {{#each lists}}
expression.

<div id="categories" class="btn-group">
<div class="category btn btn-inverse" id="btnNewCat">+</div>
{{#each lists}}

This will add a plus button to the page.

Now, we'll want to change out that button for a text field if we click on it. So let's
build that functionality using the MVVM pattern, and make it based on the value
of a variable in the template.

Chapter 3

[41]

Add the following lines of code:

<div id="categories" class="btn-group">
 {{#if new_cat}}
 {{else}}
 <div class="category btn btn-inverse"
 id="btnNewCat">+</div>
 {{/if}}
{{#each lists}}

The first line {{#if new_cat}} checks to see if new_cat is true or false. If it's
false, the {{else}} section triggers, and it means we haven't yet indicated we want
to add a new category, so we should be displaying the button with the plus sign.

In this case, since we haven't defined it yet, new_cat will be false, and so the
display won't change. Now let's add the HTML code to display, if we want to
add a new category:

<div id="categories" class="btn-group">
 {{#if new_cat}}
 <div class="category">
 <input type="text" id="add-category" value="" />
 </div>
 {{else}}
 <div class="category btn btn-inverse"
 id="btnNewCat">+</div>
 {{/if}}
{{#each lists}}

Here we've added an input field, which will show up when new_cat is true.
The input field won't show up unless it is, so for now it's hidden. So how do we
make new_cat equal true?

Save your changes if you haven't already, and open LendingLib.js. First, we'll
declare a Session variable, just below our lists template declaration.

Template.categories.lists = function () {
 return lists.find({}, {sort: {Category: 1}});
};
// We are declaring the 'adding_category' flag
Session.set('adding_category', false);

Now, we declare the new template variable new_cat, which will be a function
returning the value of adding_category:

// We are declaring the 'adding_category' flag
Session.set('adding_category', false);

Why Meteor Rocks!

[42]

// This returns true if adding_category has been assigned a value
//of true

Template.categories.new_cat = function () {
 return Session.equals('adding_category',true);
};

Save these changes, and you'll see that nothing has changed. Ta-daaa!

In reality, this is exactly as it should be, because we haven't done anything to change
the value of adding_category yet. Let's do that now.

First, we'll declare our click event, which will change the value in our
Session variable.

Template.categories.new_cat = function () {
 return Session.equals('adding_category',true);
};
Template.categories.events({

 'click #btnNewCat': function (e, t) {

 Session.set('adding_category', true);

 Meteor.flush();
 focusText(t.find("#add-category"));
 }
});

Let's take a look at the following line:

Template.categories.events({

This line is declaring that there will be events found in the category template.

Now let's take a look at the next line:

'click #btnNewCat': function (e, t) {

This line tells us that we're looking for a click event on the HTML element with
an id="btnNewCat" (which we already created on LendingLib.html).

Session.set('adding_category', true);

Meteor.flush();
focusText(t.find("#add-category"));

Chapter 3

[43]

We set the Session variable adding_category = true, we flush the DOM
(clear up anything wonky), and then we set the focus onto the input box with
the expression id="add-category".

One last thing to do, and that is to quickly add the helper function focusText().
Just before the closing tag for the if (Meteor.isClient) function, add the
following code:

/////Generic Helper Functions/////

//this function puts our cursor where it needs to be.
function focusText(i) {
 i.focus();

 i.select();

};

} //------closing bracket for if(Meteor.isClient){}

Now when you save the changes, and click on the plus [] button, you'll see the
following input box:

Fancy!

It's still not useful, but we want to pause for a second and reflect on what just
happened. We created a conditional template in the HTML page that will either
show an input box or a plus button, depending on the value of a variable.

Why Meteor Rocks!

[44]

That variable belongs to the View-Model. That is to say that if we change the value
of the variable (like we do with the click event), then the view automatically updates.
We've just completed an MVVM pattern inside a Meteor application!

To really bring this home, let's add a change to the lists collection (also part of
the View-Model, remember?) and figure out a way to hide the input field when
we're done.

First, we need to add a listener for the keyup event. Or to put it another way, we
want to listen when the user types something in the box and hits Enter. When that
happens, we want to have a category added, based on what the user typed. First,
let's declare the event handler. Just after the click event for #btnNewCat, let's add
another event handler:

focusText(t.find("#add-category"));
},
'keyup #add-category': function (e,t){
 if (e.which === 13)
 {
 var catVal = String(e.target.value || "");
 if (catVal)
 {
 lists.insert({Category:catVal});
 Session.set('adding_category', false);
 }
 }
}
});

We add a "," at the end of the click function, and then added the keyup
event handler.

if (e.which === 13)

This line checks to see if we hit the Enter/return key.

var catVal = String(e.target.value || "");
if (catVal)

This checks to see if the input field has any value in it.

lists.insert({Category:catVal});

If it does, we want to add an entry to the lists collection.

Chapter 3

[45]

Session.set('adding_category', false);

Then we want to hide the input box, which we can do by simply modifying the value
of adding_category.

One more thing to add, and we're all done. If we click away from the input box, we
want to hide it, and bring back the plus button. We already know how to do that
inside the MVVM pattern by now, so let's add a quick function that changes the
value of adding_category. Add one more comma after the keyup event handler,
and insert the following event handler:

 Session.set('adding_category', false);
 }
 }
 },
 'focusout #add-category': function(e,t){

 Session.set('adding_category',false);

 }
});

Save your changes, and let's see this in action! In your web browser, on http://
localhost:3000 , click on the plus sign – add the word Clothes and hit Enter.

Your screen should now resemble the following:

Feel free to add more categories if you want. Also, experiment with clicking on the
plus button, typing something in, and then clicking away from the input field.

Why Meteor Rocks!

[46]

Summary
In this chapter you've learned about the history of web applications, and seen how
we've moved from a traditional client/server model to a full-fledged MVVM design
pattern. You've seen how Meteor uses templates and synchronized data to make
things very easy to manage, providing a clean separation between our view, our
view logic, and our data. Lastly, you've added more to the Lending Library, making
a button to add categories, and you've done it all using changes to the View-Model,
rather than directly editing the HTML. In the next chapter, we'll really get to work,
and add all kinds of templates and logic, bringing our Lending Library to life!

Templates
We've gotten just a taste of templates so far, and are now ready to dive in, creating a
working application using the MVVM design pattern. This chapter will take us through
the template system in depth, and show us how to implement display logic, add design
considerations to a model (create the View-Model), and take care of data flow.

In this chapter, you will complete the following tasks:

• Completing the Lending Library core functionality
• Creating multiple templates and template logic
• Adding, deleting, and updating entries in the data model
• Seeing reactivity in action and using it in your application

A new HTML template
We've already created our categories through the use of the categories template.
Now, we want to take this to the next level and display the actual items that we
may want to let people (except STEVE!) borrow. So when we click on a category
we should get a list of items.

Let's use that terminology. We need a place to display a list. So, let's modify our
 ~/Documents/Meteor/LendLib/LendLib.html code just a bit at the top:

<body>
 <div id="lendlib">
 <div id="categories-container">
 {{> categories}}
 </div>
 <div id="list">
 {{> list}}
 </div>
 </div>
</body>

Templates

[48]

We did two things by adding this code:

1. We wrapped the div element with id="categories-container" inside of
the div called lendlib. This is for stylistic purposes, so that our list will
more or less line up with the categories template.

2. We added a div with id="list" just below it, and added a call to a new
template: {{> list}}. This is our template/placeholder for the list of
items, which we'll see shortly in the sections that follow.

And there you have it. We've created a very easy-to-maintain structure, with definite
boundaries in the document. We know where our categories are going to go, and
we know where our list of items is going to go.

Now let's see about the list template itself. Not so simple, but still not bad. At the
very end of LendLib.html, below the closing </template> tag for our categories
template, place the following code:

<template name="list">
 <ul id="lending_list">
 {{#each items}}
 <li class="lending_item alert">
 <button type="button" class="close delete_item"
 id="{{Name}}">×</button>

 {{Name}}

 {{#if lendee_editing}}
 <input type="text" id="edit_lendee" class="span2
 pull-right" value=""/>
 {{else}}
 <div class="lendee pull-right label {{LendClass}}">
 {{Lendee}}</div>
 {{/if}}

 {{/each}}
 {{#if list_selected}}
 <li class="alert-success" id="btnAddItem">+
 {{#if list_adding}}
 <input class="span4" id="item_to_add" size="32"
 type="text">
 {{/if}}

 {{/if}}

</template>

Chapter 4

[49]

Let's go through this step by step, so we understand what each line does:

<template name="list">
 <ul id="lending_list">
 {{#each items}}
...

Here we declare the HTML <template> with the name "list", to match the call to
the list template we made in the body. We create an unordered list and give it
an id so we can refer to it later if need be.

Then we start a templated each statement. This time, we're going to iterate through
items. We haven't created the Meteor items template just yet, but we'll get there
soon enough.

 <li class="lending_item alert">
 <button type="button" class="close delete_item"
 id="{{Name}}">×</button>

 {{Name}}

Now, under the each statement, we create an element and give it two class
names. The lending_item class name is added so that we can refer to it in our
View-Model (Meteor template code). The alert class name is for Bootstrap,
so it will display all nice and pretty.

Next, we create a button that we can use, should we choose to delete the item.
Notice, that we give it an ID id="{{Name}}". This will be read from the items
View-Model, and will make our jobs much easier in the future, should we want to
delete the item from our items collection. There are also two class names on this
one. close is added for Bootstrap, and delete_item is added so that we can refer
to it in the View-Model when the time comes.

Now, just below that we have another template placeholder for {{Name}}. This is
so that we can use the title of the item (for example on a DVD item the title could be
"Mission Impossible") inside our display element. We'll see this in action very soon.

Now we begin a series of conditional statements. The first conditional statement has
to do with when we want to edit who is borrowing our item, or the lendee:

 {{#if lendee_editing}}
 <input type="text" id="edit_lendee" class="span2
 pull-right" value=""/>
 {{else}}
 <div class="lendee pull-right label {{LendClass}}">
 {{Lendee}}</div>
 {{/if}}

 {{/each}}

www.allitebooks.com

http://www.allitebooks.org

Templates

[50]

We are first using an if statement to see if our current mode for this item is
lendee_editing. That is to say, if we wanted to edit the lendee, we would be
in "lendee editing" mode, and therefore (in our JavaScript file) Template.list.
lendee_editing would return true. If this is the case, we need a textbox, hence
the inclusion of the <input> element, with its associated id.

Alternately—and this is the default—we just want to display who the lendee is,
if there is one. If there isn't, we'll want to maybe change the color or something,
but we still want it displayed. So, we create a Bootstrap-styled label in the form
of a <div> element.

At the end of the class declarations, we see a template variable: ...{{LendClass}}".
This class addition is stylistic. It will tell our CSS template whether to show it
as "free" (someone can borrow it) or as "lent out." If it's green, it's free, if it's red,
someone has borrowed it. And what CSS class name is used to represent the color
will be determined in LendLib.js, by the item.LendClass property, which we will
create shortly.

Then we have the value inside the div: {{Lendee}} . This is also a property in
LendLib.js, as the item.Lendee property, and it will either display the name of the
lendee, or "free" if no one has borrowed it.

We then have the ending tag, and our each comes to an end with {{/each}}.

Now, we have our second if statement, and this one is actually a nested if. This
one is outside of the each statement, so it's not specific to items. This if statement
displays either a light-green bar with a + sign, or a textbox in the form of an <input>
element, so that we can add items to our list:

 {{#if list_selected}}
 <li class="alert-success" id="btnAddItem">+
 {{#if list_adding}}
 <input class="span4" id="item_to_add" size="32"
 type="text">
 {{/if}}

 {{/if}}

</template>

So we see our first if, which is conditioned on whether we're even displaying
any list items. If we are, that means we have a list selected. Or rather, we are in
the list_selected mode. Keeping track of this is part of the View-Model's job, so
Template.list.list_selected is found inside LendLib.js.

Chapter 4

[51]

We then create an element, style it green with the Bootstrap alert-success
class, and add the + sign.

Next is our nested (second) if. This one is checking to see if we are adding to the list
of items. If we are, we are in list_adding mode, so we'll display a textbox in the
form of an <input> element. If not, we'll just leave the pretty light-green box with
just the + sign in it.

Finally, we end our nested if, our , our parent if, our , and our
</template>.

Gluing it all together
The View-Model (MVVM) or controller (MVC) or presenter (MVP) is considered
the glue of an MV* application model. That's because it "glues" together all the view
items, such as buttons or textboxes, to the model.

Pretty fancy explanation, eh? Well, you try to come up with a better explanation
for what it does. It really does fill in the cracks, and keep the model and the view
together. Someone else invented the term, not us, so let's continue without the Judgy
McJudgerson viewpoint, mmmk?

In this section, we'll go through all the changes step-by-step that need to happen
inside of ~/Documents/Meteor/LendLib/LendLib.js in order to glue the template
and the data model together.

Our items View-Model
In our data model that we created in Chapter 2, Reactive Programming…It's Alive!, we
added some sample items when we created a couple of the lists. We did so, if you
recall, using the browser console, as follows:

> lists.insert({Category:"DVDs", items: [{Name:"Mission
 Impossible",Owner:"me",LentTo:"Alice"}]});

You'll notice that we have a hierarchy in there. Every list in the lists collection
has an items object, which is an array:

Items: [...]

Templates

[52]

We need to represent this items array to our HTML template, but we need a couple
of extra properties, so the view knows what to do with it. Specifically, we need to:

• Return the name of the lendee or return "free" if there is no lendee
(item.Lendee)

• Return the CSS class (red or green), depending on if the item is lent out
(item.LendClass)

So, we're going to get the items collection from the currently selected list, add the
Lendee and LendClass properties, and make the template available.

Open ~/Documents/Meteor/LendLib/LendLib.js.

Immediately after the closing } curly bracket for the function focusText
(..., add the following code:

};//<-----This is the end tag for focusText() -----

Template.list.items = function () {
 if (Session.equals('current_list',null))
 return null;
 else
 {
 var cats = lists.findOne({_id:Session.get('current_list')});
 if (cats&&cats.items)
 {
 for(var i = 0; i<cats.items.length;i++) {
 var d = cats.items[i]; d.Lendee = d.LentTo ? d.LentTo :
 "free"; d.LendClass = d.LentTo ?
 "label-important" : "label-success";
 }
 return cats.items;
 }
 }
};

We'll walk through this step-by-step.

Template.list.items = function () {
if (Session.equals('current_list',null)) return null;

Here we're declaring the Template.list.items function, and checking to see if a
list is selected. If a list is selected, the Session variable current_list will have a
value in it. If it's null, there's no reason to return anything, so we'll just return null.

Chapter 4

[53]

This is the View-Model at work. It is reading the contents of a given
category, and incorporating the current state of the UI, according to
whether the user has selected a list. This is the glue at work.

If something is selected, we need to first find the category. We'll call it cats, because
it's shorter, even though it's not strictly speaking the best naming convention. But
what do we care? We're doing this for fun, and cats are awesome!

else
{
 var cats = lists.findOne({_id:Session.get('current_list')});

We are using the MongoDB command findOne(), and passing the current_list
session parameter as _id in the selector/query. If something is selected, we will get a
single category/list back. Let's check to make sure we do, and that we also get items.

If nothing returns, or there are no items in the category, we don't really need to
figure out the Lendee or the LendClass, do we? So let's create an if statement,
and a for statement inside the if, that will only get executed if we have something
worth iterating over:

 if (cats&&cats.items)
 {
 for(var i = 0; i<cats.items.length;i++) {
 var d = cats.items[i];
 d.Lendee = d.LentTo ? d.LentTo : "free";
 d.LendClass = d.LentTo ? "label-important" : "label-success";
 };
 return cats.items;
 };
 };
};

First, we check to see if cats and cats.items are not undefined/null.

Next, we iterate over all the values in items (items is an array, if you recall).
To make it easier, we declare the variable d = cats.item[i].

Now we add the Lendee property, checking to see if the item is lent to anyone
with the LentTo property. If it isn't (if LentTo doesn't exist), we'll assign the
string "free" instead.

Templates

[54]

Likewise, if LentTo exists, we declare the red Bootstrap label class, label-important
as the LendClass. If the item is not lent out, we'll use the green Bootstrap class,
label-success instead.

Finally, with our new Lendee and LendClass properties assigned, we'll return cats.
items. We didn't save these properties to our model. That's because they're not part
of the model. They're used by the view, so we'll only make them available via the
View-Model template.

Additional view states
We now need to declare the templates for all the different view states. That is, we
need to add properties to the View-Model/session that will let us know what we're
looking at, what we're editing, and what should be hidden/visible. Specifically, we
need to access the state value in four situations:

• Are we looking at a list? (list_selected)
• What list are we looking at? (list_status)
• Are we adding an item to a list? (list_adding)
• Are we updating the lendee? (lendee_editing)

Add the following code, just below our newly-created items template/function in
LendLib.js:

 return cats.items;
 };
 };
}; // <---- ending bracket for Template.list.items function ----

Template.list.list_selected = function() {
 return ((Session.get('current_list')!=null) &&
 (!Session.equals('current_list',null)));
};

Template.categories.list_status = function(){
 if (Session.equals('current_list',this._id))
 return "";
 else
 return " btn-inverse";
};

Template.list.list_adding = function(){

Chapter 4

[55]

 return (Session.equals('list_adding',true));
};

Template.list.lendee_editing = function(){
 return (Session.equals('lendee_input',this.Name));
};

Let's go over each of these template functions.

Template.list.list_selected = function() {
return ((Session.get('current_list')!=null) && (!Session.
equals('current_list',null)));
}

The Session variable current_list can be either undefined or null.
If it's undefined, Session.equals('current_list'),null) will return
true. So we need to check both cases, unfortunately.

Template.categories.list_status = function(){
if (Session.equals('current_list',this._id))
return "";
else
return "btn-inverse";
};

list_status is used to tell the category button whether it should show as selected.
The easiest way to do that is via a CSS class. Bootstrap uses btn-inverse to show
white-on-black text, but that's our default button look and feel. So, because we are
using the exact opposite color scheme, we'll use Bootstrap's regular black-on-white
appearance for the selected category.

In other words, for the current_list, we'll return "" (default button look
and feel). For all the other lists/categories, we'll return "btn-inverse",
to change the CSS style.

You may be wondering about this._id. this, in this instance, refers to the
MongoDB record (technically document cursor), and ._id is the unique MongoDB
identifier for that "record". This is called the context, and in this case when using the
HTML template, the context is implied to be the list/category element from where
the template was called.

Template.list.list_adding = function(){
 return (Session.equals('list_adding',true));
}

Templates

[56]

This one's really straightforward. If the Session variable list_adding is true,
we're adding to the list. If it isn't, we're not.

Template.list.lendee_editing = function(){
 return (Session.equals('lendee_input',this.Name));
}

To check and see if we should be in lendee editing mode, we'll check the Session
variable lendee_input and see a if it has a value, and b if that value is the Name of
the item we just clicked on. Once again, this is the implied context. This time, it's not
the list, it's the item. How do we know this? Because of where this function is called
from. Remember the HTML?

<li class="lending_item alert">
 <button type="button" class="close delete_item"
 id="{{Name}}">×</button>
{{Name}}

{{#if lendee_editing}}

Notice how we use lendee_editing in the if statement, right after we use
{{Name}}. This is showing us the context. this.Name in LendLib.js has the same
context as {{Name}} in LendLib.html. In other words, this.Name is referencing
the same property as {{Name}}.

While we're here in the HTML templates, there's one change we need to make to
the HTML categories template. We waited until now, so that the change would make
sense. When you make the following code change, you'll see how the templates
{{list_status}} and {{_id}} are used, and why the context for this._id
suddenly makes sense.

Locate the following lines in LendLib.html (should be around line 27 or so):

{{#each lists}}
 <div class="category btn btn-inverse">
 {{Category}}
</div>

{{/each}}

And change it to look like the following code snippet:

{{#each lists}}
 <div class="category btn {{list_status}}" id="{{_id}}">
 {{Category}}
 </div>

{{/each}}

Chapter 4

[57]

Adding events
We are now going to hook up all the events. Instead of doing this in the HTML
(our view), we'll do it in the template declarations (our View-Model).

The first one takes place in the Template.categories.events declaration, because
we need to add the event that will change the Session variable current_list.
If you recall, current_list helps us know whether we have a selected list
(list_selected) and what list that is (list_status).

In LendLib.js, between the event declaration for 'focusout #add-category'
and the end }); bracket for the Template.categories.events function, add the
following code:

 Session.set('adding_category', false);
 }
 }
 },
 'focusout #add-category': function(e,t){
 Session.set('adding_category',false);
 },
 'click .category': selectCategory
});

Don't forget the comma (,) right after the 'focusout...
function(e,t){...} code block.

This adds a click event for every button with the CSS class "category", and calls
the function selectCategory(). We'll declare that right now.

Just after the focusText() function and just before the Template.list.items
declaration, add the following code:

function selectCategory(e,t){
 Session.set('current_list',this._id);
}

Template.list.items = function () {
...

Yes, you could have put this anywhere. Yes, you could have just put a generic
function inline with the click event declaration. So why put it here? Because it makes
our code more readable, and we need a section for all the add/delete/update calls
we'll need anyway, so it fits right here.

Templates

[58]

And yes, it's very simple. It just updates the Session variable current_list with
this._id. The context of this here is the category/list, and therefore _id is the
MongoDB-generated ID for the record.

Alright, now that we have all the categories events taken care of, let's work on the
items events. At the very end of the if (Meteor.is_client) {... code block,
just inside the closing } bracket, put the following code:

Template.list.lendee_editing = function(){
 ...
}

Template.list.events({
 'click #btnAddItem': function (e,t){
 Session.set('list_adding',true);
 Meteor.flush();
 focusText(t.find("#item_to_add"));
 },
 'keyup #item_to_add': function (e,t){
 if (e.which === 13)
 {
 addItem(Session.get('current_list'),e.target.value);
 Session.set('list_adding',false);
 }
 },
 'focusout #item_to_add': function(e,t){
 Session.set('list_adding',false);
 },
 'click .delete_item': function(e,t){
 removeItem(Session.get('current_list'),e.target.id);
 },
 'click .lendee' : function(e,t){
 Session.set('lendee_input',this.Name);
 Meteor.flush();
 focusText(t.find("#edit_lendee"),this.LentTo);
 },
 'keyup #edit_lendee': function (e,t){
 if (e.which === 13)
 {
 updateLendee(Session.get('current_list'),this.Name,
 e.target.value);
 Session.set('lendee_input',null);
 }
 if (e.which === 27)

Chapter 4

[59]

 {
 Session.set('lendee_input',null);
 }
 }
});

}//<----this is the closing bracket for if(Meteor.is_client) ----

Six events! It looks more monstrous than it is. As usual, let's break it down,
step-by-step.

Template.list.events({
 'click #btnAddItem': function (e,t){
 Session.set('list_adding',true);
 Meteor.flush();
 focusText(t.find("#item_to_add"));
 },

We declare Template.lists.events, and enumerate our events. The first one is for
adding an item. The button to add an item is, funnily enough, named btnAddItem so
all we have to do is add the declaration, and then write our function.

We set list_adding to true. Because we use Session.set(), the change cascades
through our templates. This is a reaction, or reactive programming in action. We
also call Meteor.flush() to ensure the UI is cleaned up, and then, as a courtesy to
our user, we focus the textbox (named item_to_add) so our beloved user can just
start typing.

 'keyup #item_to_add': function (e,t){
 if (e.which === 13)
 {
 addItem(Session.get('current_list'),e.target.value);
 Session.set('list_adding',false);
 }
 },

You can learn more about what Meteor.flush() does in the Meteor
documentation at http://docs.meteor.com/#meteor_flush.

The next event is based on the keyup event for our item_to_add textbox. If we hit
Enter or Return (e.which === 13) we're going to call the addItem() function to
update the data model, and then we're going to hide the textbox. How do we do
that? Set list_adding = false, of course. Again, doing it through Session.set()
will cascade the change through our templates.

www.allitebooks.com

http://www.allitebooks.org

Templates

[60]

Something else that you may have missed: Remember when we manually added
a category/list in Chapter 2, Reactive Programming – It's Alive!, using the console?
The change was instantly reflected in the HTML DOM. The same thing is true here.
When addItem() updates the data model, that change triggers a template refresh
for Template.list.items.

 'focusout #item_to_add': function(e,t){
 Session.set('list_adding',false);
 },

The trigger creates a situation so that if we we change our minds about adding an
item, all we have to do is click away from it. If the textbox item_to_add triggers
the focusout event, we'll set the Session variable list_adding to false, and the
template will cascade.

 'click .delete_item': function(e,t){
 removeItem(Session.get('current_list'),e.target.id);
 },

Remember when we created the little [] button in our HTML lists template?
That button belongs to the CSS class delete_item, and when the user clicks on it,
we will call the removeItem() function, passing the current_list, and the id from
the HTML element that was clicked, which happens to be the item Name (we added
id="{{Name}}" on line 39 of LendingLib.html).

 'click .lendee' : function(e,t){
 Session.set('lendee_input',this.Name);
 Meteor.flush();
 focusText(t.find("#edit_lendee"),this.LentTo);
 },

We now focus on the lendee section/button. If you recall, we set up a <div>
element with the CSS class lendee in LendingLib.html. We are now declaring that
whenever one of those <div> elements is clicked, we'll perform actions very similar
to when we wanted to add an item to a list:

1. Set the Session variable that controls textbox visibility to true
(lendee_input).

2. Refresh the UI (Meteor.flush()).
3. Set focus on the textbox (focusText()).

Chapter 4

[61]

One more event handler:

 'keyup #edit_lendee': function (e,t){
 if (e.which === 13)
 {
 updateLendee(Session.get('current_list'),this.Name,
 e.target.value);
 Session.set('lendee_input',null);
 }
 if (e.which === 27)
 {
 Session.set('lendee_input',null);
 }
 }
});

The textbox with id="edit_lendee" has two keyup conditions attached to it.

If we hit Enter or Return (e.which === 13), we'll update the LentTo property
on the data model using updateLendee(). We'll then hide the textbox by setting
lendee_input to null. Keep in mind that updating the data model, and setting a
Session variable will cause the templates to refresh (reactive programming again).

If we instead decide we don't like the changes, we're going to hit the Esc key
(e.which === 27) in which case, we'll set lendee_input to null and let the
reactive programming hide the textbox.

Model updates
We have two things left to do. We need to take care of making our app pretty
(not just yet, though), and we need to create the addItem(), removeItem() and
updateLendee() functions that we just made references to in the events section.

So let's get to work! In LendingLib.js, in the helpers section (just above Template.
lists.items, on line 68 or so) let's add our addItem() function:

function addItem(list_id,item_name){
 if (!item_name&&!list_id)
 return;
 lists.update({_id:list_id},
 {$addToSet:{items:{Name:item_name}}});
}

Template.list.items = function () {
...

Templates

[62]

addItem() takes two arguments: list_id and item_name.

list_id is used in the selector (the query) portion of the update statement, and
item_name contains the value to be added to the item.Name property of the new
item to be added.

But first, we need to check to make sure we have values for item_name and list_id.
If we don't, we'll just return.

Now, we'll call the MongoDB update() function on the lists collection.
{_id:list_id} is the selector. We're telling MongoDB to find us the record
with an _id = list_id. We then tell MongoDB what kind of update we're going
to perform. In this case, we'll use $addToSet, which will append to an array.
And what are we going to append?

{items:... indicates that we're updating the items[] array. {Name:item_name}
is what we're adding, and it's the Name property. This is equivalent to saying item.
Name = item_name.

Once we add this, as you might have guessed by now, the templates will
automatically update, because a change was made to the data model. Stop for a
second and think about that. In six lines of code, we performed an update query
and propagated the change to our UI. Six lines! Pretty magical, isn't it?

Let's handle removeItem() next:

function removeItem(list_id,item_name){
if (!item_name&&!list_id)
return;
lists.update({_id:list_id},
{$pull:{items:{Name:item_name}}});
}

Template.list.items = function () {
...

Wow, this looks really similar to the addItem() function. We are, in fact, using
the same update() function, just with a different action this time. This time
we'll use $pull, which pulls an element out of the items[] array, where
Name == item_name. Once again, six lines is all we need. The data model
and the UI will both update automatically.

Chapter 4

[63]

Now we tackle updateLendee(), which is a little more complex, but only because
Meteor actually uses minimongo, which is a pared-down version of MongoDB,
and lacks cursor variable support. That means that instead of using something like
items.$.Name, where $ is the cursor location, we instead need to go through the
items[] array, update values, and then call an update where we replace the entire
items[] array with our updated one. Here's how we do it for LendLib.js:

function updateLendee(list_id,item_name,lendee_name){
 var l = lists.findOne({"_id":list_id ,
 "items.Name":item_name});
 if (l&&l.items)
 {
 for (var i = 0; i<l.items.length; i++)
 {
 if (l.items[i].Name === item_name)
 {
 l.items[i].LentTo = lendee_name;
 }
 }
 lists.update({"_id":list_id},{$set:{"items":l.items}});
 }
};

Template.list.items = function () {
...

We get the list_id, the item_name, and the lendee_name, so we can identify the
right record (we use list_id and item_name for that), and then update the LentTo
property with the value in lendee_name.

To save some typing, we declare variable l, using the MongoDB findOne() function.
This takes a two-part selector statement: _id:list_id and "items.Name":item_
name. This selector is basically saying "find me one record where the _id == list_id
and the items[] array has a record where Name == item_name."

If l has a value, and l also has items, we'll go into our for loop. Here we check
specifically for whichever array element had Name == item_name. If we find one,
we'll set the LentTo property to lendee_name.

Once we're done with the for loop, we'll call the MongoDB update() function,
and use the $set action to replace the old items[] array with the new one that is
{"items":l.items}. Automatic updates happen again, and our UI (view) and data
document (model) are in sync again.

Templates

[64]

Style updates
Right now, you can run the application. It will be a visual train wreck, because we
haven't set any CSS styles yet, but let's go ahead and do that real quick. We'd all stare
at a train wreck anyway, just admit it! Make sure your application is running
(> meteor in the console) and navigate to http://localhost:3000:

Click on DVDs, and you should see the one entry for Mission Impossible:

It's not all that bad, besides some width/height issues, but that's because we are
using Bootstrap. Let's go ahead and fix the remaining UI issues.

First, we have one final change in LendLib.js. Change the focusText() function
(located at about line 55):

//this function puts our cursor where it needs to be.
function focusText(i) {
 i.focus();
 i.select();
};

Chapter 4

[65]

It should now be:

//this function puts our cursor where it needs to be.
function focusText(i,val) {
 i.focus();
 i.value = val ? val : "";
 i.select();
};

This change just makes it so that when we go to edit something with a value
already in it (like the lendee), the value will transfer to the textbox. This makes it
easier for the user to see who the current lendee is. The val ? val : "" conditional
statement is necessary, because if val isn't passed or is null, "undefined" gets put
into the textbox.

We now want to update the CSS for all the other visual idiosyncrasies. We won't
be going over the CSS here, as there are probably much better ways to deal with it,
and we're not experts on CSS. So just add the following to ~/Documents/Meteor/
LendLib/LendLib.css, and save the changes:

/* CSS declarations go here */
#lendlib{
 width:535px;
 margin:0 auto;
}
#categorybuttons{
 width:100%;
}
#lending_list{
 list-style:none;
 margin:0;
 padding:0;
}
#lending_list li{
 list-style:none;
 margin:5px;
}
#lending_list li.lending_item:hover{
 background-color:#fc6;
 color:#630;
}
#lending_item{
 vertical-align:middle;
}
#add_item{

Templates

[66]

 padding-left:5px;
}
#btnAddItem{
 padding:10px;
 border-radius:5px;
}
#btnAddItem:hover{
 background-color:#B7F099;
}
#edit_lendee{
 padding-top:0;
 margin-top:-2px;
}

If you kept http://localhost:3000 open, your browser will automatically refresh.
If you didn't, open it backup (make sure Meteor is running) and observe the results:

Don't forget to test all your new functionality! Add new categories, add items to
a list, change the lendee, delete the lendee, delete the items, and so on, and just
get a feel for how fast and clean the updates to the model are.

Chapter 4

[67]

Now, open two browsers, both pointing to http://localhost:3000. You'll notice
that changes you make in one browser are reflected in the other one as well! Just
as before, Meteor is taking care of the data model synching between the client and
server, and any change on one client is propagated to the other clients by the server.

Once you get as many items and lists created as you'd like, move on to the
next chapter.

Summary
In this chapter, you've completed the templates, events, and data model sections
for your Lending Library application. You've created statements to add, delete,
and update your records, and implemented UI state changes. You've seen firsthand
how reactive programming works, and gained a solid understanding of context.
You are now able to create an application from scratch, using the core functionality
of Meteor to develop quickly and with robust functionality. In the next chapter,
you'll dive even deeper into Meteor's data caching and synching methodology,
and harden your application.

Data, Meteor Style!
We've nearly completed the Lending Library application, without having to
worry much about how our data is being stored. Meteor's data caching and
synching methodology is intentionally built to make that part of building the
application as simple as possible, so that instead of spending a lot of time messing
around with database connections, queries, and caching, you can concentrate on
writing a great program.

We do want to go over the methodology, however, and make sure we have a solid
understanding of how Meteor handles data, so we can perform some common
optimizations, and build our applications even more quickly.

In this chapter, you will learn about the following topics:

• MongoDB and document-oriented storage
• Broadcasting changes – how Meteor makes your web application reactive
• Configuring publishers – how to streamline and protect your data

Document-oriented storage
Meteor uses a version of MongoDB (minimongo), to store all of the data from
your models. It's capable of using any other NoSQL/document-oriented database,
but MongoDB comes by default with the Meteor installation. This feature makes
your programs much simpler and easier to write, and works really well for quick,
lightweight data storage.

Data, Meteor Style!

[70]

But why not use a relational database
Traditionally, data is stored using a relational model. The relational model, with
all of its associated rules, relations, logic, and syntax is an integral and invaluable
part of modern computing. The rigid structure of a relational database, with exact
requirements for each record, relation, and association, provides us with quick
searches, scalability, and the possibility for deep analytics.

That type of exactness, however, isn't always necessary. In the case of our Lending
Library, for example, a full-fledged relational database would be overkill. In fact, in
some cases, it's more effective to have a flexible data storage system, one that you can
extend quickly and without significant recoding.

For example, if you wanted to add a new property to your list object, it would
be much simpler to just add the new property and let the database worry about it,
rather than having to refactor your database code, add a new column, update all of
your SQL statements and triggers, and make sure that all previous records have the
new property.

That's where document-oriented storage comes into play. In a document-oriented
storage system, your data store is made up of a bunch of key-value paired
documents. What's the structure of that document? The data store doesn't really care.
It could contain pretty much anything as long as each record has a unique key so that
it can be retrieved.

So in one document entry, you could have a very simple document. Maybe a
key-value pair.

{name:phone_number}

And then in another document entry (in the same data store) you could have a
complex object, with nested arrays, nested objects, and so on.

{ people: [
 {firstname:"STEVE", lastname:"Scuba", phones :[
 {type:cell, number:8888675309},
 {type:home, number:8005322002}]
 },
 {firstname:...
 ...
 }]
}

Heck, it could be the unabridged works of William Shakespeare. It doesn't really
matter. As long as the data store can take that document and assign a unique key
to it, it can be stored.

Chapter 5

[71]

As you may have guessed, the lack of structure can make querying, sorting, and
manipulating those documents less efficient. But that's okay, because our primary
concern is with ease of coding and development speed, not efficiency.

In addition, because our application only has a few core functions, we can quickly
identify what queries we'll be using most often, and optimize our document schema
around that. This makes a document-oriented database actually perform better in
some cases than a traditional relational database.

There are some pretty sophisticated document-oriented storage
solutions out there that some would argue are as efficient or even
more so than a standard relational database, but that discussion is
beyond the scope of this book.

Given the flexible nature of a document-oriented storage system, it is perfect for
making quick changes, and the foundation libraries Meteor provides make it so
that we don't have to worry about the connection or the structure. All we have to
do is have a high-level understanding of how to retrieve, add, and modify those
documents, and we can leave the rest to Meteor.

MongoDB
MongoDB—a play on the word "humongous"—is an open source NoSQL (not only
SQL) database. It provides sophisticated features such as indexing, linking, and
atomic operations, but at its heart it is a document-oriented storage solution.

To learn more about MongoDB, visit the official site
http://www.mongodb.org.

Using simple commands, we can see what records (what documents) are available,
convert those records into JavaScript objects, and then save those changed objects.
Think of MongoDB records as you would think about an actual text document:

1. Locate the document, and open it for editing (Meteor equivalent: lists.
find (...)).

2. Make changes to the document (Meteor equivalent: lists.update({...})).
3. Save the document (automatically done with the .update() function).

It's not as simple as that, and there's a lot of syntax you'll need to learn if you want
to consider yourself an expert in MongoDB, but you can clearly see the simple, clean
document-oriented approach: Find/create a record, make changes, and save/update
the record to the data store.

Data, Meteor Style!

[72]

We need to discuss one final concept to help you better understand how MongoDB
works. It is called a database, but it's easier to conceptualize as a collection of
documents. The collection is indexed and quickly accessible, but it's still a collection,
rather than a group of relational tables/entities. Just like you'd think about a
folder on your hard drive, where you keep all of your text documents, think about
MongoDB as a collection of documents, all of which are accessible and able to be
"opened", changed, and saved.

Using direct commands
To gain a better understanding of how MongoDB works, let's have some fun in the
command line.

1. First, make sure that your application is up and running (open a terminal
window, cd to the ~/Documents/Meteor/LendLib directory, and execute the
meteor command). Next, open a browser to http://localhost:3000.

2. Now, you will want to open an additional terminal window, cd to the ~/
Documents/Meteor/LendLib directory, and run the following command:
meteor mongo

You should see a message similar to the following screenshot:

You have now connected to the running MongoDB database for your Lending
Library application. Let's poke around with a couple of commands.

1. First, let's bring up the help screen. Enter the following command
and hit Enter:
> help

2. You'll get a list of commands, and a brief explanation of what each one does.
One in particular will show us even more commands we can use: db.help().
This will give us a list of database-related commands. Type the following
into your terminal window, and press Enter:
> db.help()

Don't get overwhelmed by the number of possible commands. You don't need
to know all of these, unless you'd like to become an expert on MongoDB. You
only need to know a few, but having a look around never hurt anybody, so
let's proceed.

Chapter 5

[73]

3. As mentioned previously, documents are stored in MongoDB in a logical
grouping called a collection. We can see this firsthand, and take a look at our
lists collection directly in the terminal window. To see a list of all available
collections, enter the following:
> db.getCollectionNames()

4. In the response you will find the name of your Lending Library
collection: lists. Let's go ahead and take a look at the lists
collection. Enter the following:
> db.getCollection('lists')

5. Well, that wasn't very exciting. All we got back was meteor.lists. We want
to be able to perform some queries on that collection. So this time, lets assign
the collection to a variable.
> myLists = db.getCollection('lists')

It appears that we have the same result as last time, but we have a lot more
than that. We've now assigned the lists collection to the variable myLists.
Therefore, we can run commands in the terminal window just like we would
inside our Meteor code.

6. Let's get the Clothes list, which currently doesn't have any items in it,
but still exists. Enter the following command:
> Clothes = myLists.findOne({Category:"Clothes"})

This will return some very basic JSON. If you look closely, you'll be able to
see the empty items array, represented as "items" : []. You'll also notice
an _id key-value, with a long number next to it, similar to the following:
"_id" : "520e4f45-8469-47b9-8621-b41e60723de0",

We didn't add that _id. MongoDB created it for us. It's a unique key, so that
if we know it, we can make changes to that document without disturbing
any of the other documents. We actually use this inside our Lending Library
application, in multiple locations.

If you look inside ~/Documents/Meteor/LendLib/LendLib.js, you'll see the
following function for adding an item to a list:

function addItem(list_id,item_name){
 if (!item_name&&!list_id)
 return;
 lists.update({_id:list_id},
 {$addToSet:{items:{Name:item_name}}});
}

Data, Meteor Style!

[74]

Notice that when we call the lists.update() function, we identify which
document we're going to update by the _id. This ensures that we're not updating
multiple documents accidentally. If, for example, you were to give two lists the
same category name (for example, "DVDs"), and used the category as the selector
({Category:"DVDs"}), you would be taking action on both category lists. If, instead,
you use the _id, it will only update the unique document with that matching _id.

Getting back to the terminal, we now have the variable myLists assigned to our
lists collection, and we've assigned the Clothes variable to the document in our
lists collection that represents the Clothes list.

Take note of what the Clothes list currently looks like in our browser.

Let's go ahead and add our favorite shirt to the Clothes list. We'll do this directly,
in the terminal window. Enter the following command:

>myLists.update({_id:Clothes._id},{$addToSet:{items:
 {Name:"Favorite Shirt"}}})

This command updates myLists, using Clothes._id as the selector, and calls
$addToSet, adding an item with the Name:"Favorite Shirt". It will take a few
seconds for Meteor to update, but you will soon see your favorite shirt now added
to the list.

Chapter 5

[75]

If you re-run the Clothes assignment command Clothes = myLists.
findOne({Category:"Clothes"}) you will now see that the items array
has an entry for your favorite shirt.

We can just as easily update or remove an item, using the .update() function
with different arguments ($pull for removing, $set for updating).

For code examples, review the removeItem() and
updateLendee() functions in LendLib.js.
For a more in-depth tutorial on MongoDB commands, visit
http://mongodb.org and click on TRY IT OUT.

Now that we've gone through some of the commands we can implement directly,
let's revisit some of our LendLib.js code, and discuss the reactive code that tracks
changes to our collection.

Broadcasting changes
Using a publish/subscribe model, Meteor is constantly looking for changes to
collections and to Session variables. When changes are made, a change event is
broadcast (or published). Callback functions are listening (or subscribed) to the
events being broadcast, and the code in a function is activated when the specific
event it's subscribed to is published. Alternatively, the data model can be directly
bound to portions of the HTML/Handlebars templates, so that when a change
occurs, the HTML is re-rendered.

Published events
So, when is an event published? As mentioned previously, events are
broadcast when there's a change in the model. In other words, when a collection
or a variable is modified, Meteor publishes the appropriate change event. If a
document is added to a collection, an event is triggered. If a document already in a
collection is modified and then saved back into the collection, an event is triggered.
Finally, if a Session variable is changed, an event is triggered. Functions and
templates are listening (subscribed) to the specific events, and will process the change
in the data appropriately.

Data, Meteor Style!

[76]

If you recall from Chapter 3, Why Meteor Rocks!, this is the Model View View-Model
pattern at work. In a reactive context, functions and templates react to changes in the
model. In turn, actions from the view will create changes to the model, through the
View-Model logic:

Meteor's MVVM is a clean, concise development pattern:

1. Set up subscribers to model changes (model = collections, documents,
and Session variables).

2. Create logic to handle view events (view events = button click, text input,
and so on).

3. Change the model, when the logic calls for it (changes = published events).

Around and around it goes, with a click on a button causing a model change, which
then triggers an event, listened to by a template. This updates the view based on the
model change. Lather, rinse, repeat.

Configuring publishers
Up to this point, we have been using autopublish. Meaning, we haven't had to code
specific publish events for any events or collections. This is great for testing, but we
want to have a bit more control over what events and documents get published, so
we can improve both performance and security.

If we have a large dataset, we may not want to return the entire collection every time.
If autopublish is being used, the entire collection will return, and that can slow
things down, or it can expose data we don't want to have exposed.

Chapter 5

[77]

Turning off autopublish
The time has come to turn off autopublish. Temporarily stop your Meteor
application (if it's still running) by opening the terminal window you ran the meteor
command from. You can stop it by pressing Ctrl + C. Once it's stopped, enter the
following command:

> meteor remove autopublish

This removes the autopublish library, which is responsible for the automatic
publishing of all events inside of Meteor.

It's considered a best practice to remove autopublish from
your project. autopublish is for developing and debugging,
and should be turned off when you're ready to start using your
application in earnest.

By turning this off, you've effectively made your application do nothing!
Congratulations! You can see your amazing progress by starting up your Meteor
service again (enter the meteor command and press Enter), and opening/navigating
to http://localhost:3000. You will see the following screenshot:

The categories/lists are gone! You can even check in the console if you'd like. Enter
the following command:

> lists.find().count()

Data, Meteor Style!

[78]

You should see a count of 6, but you will instead see a count of 0:

What gives? Well, it's pretty simple, actually. Because we removed the autopublish
library, the server is no longer broadcasting any changes to our model.

Why again did we do this? What's the purpose of breaking our application? Ah!
Because we want to make our application more efficient. Instead of getting every
record automatically, we're going to instead just get the records we need, and the
minimum set of data fields from those records.

Listing categories
In LendLib.js, inside the if(Meteor.isServer) block, create the following
Meteor.publish function:

Meteor.publish("Categories", function() {
 return lists.find({},{fields:{Category:1}});
});

This tells the server to publish a "Categories" event. It will publish this whenever
a change is made to the variables found inside the function. In this case, it's lists.
find(). Whenever a change is made that would affect the results of lists.find(),
Meteor will trigger/publish an event.

If you noticed, the lists.find() call isn't empty. There's a selector:
{fields:{Category:1}}. This selector is telling the lists.find() call to only
return the fields: specified. And only one field is specified –{Category:1}.

This snippet of JSON is telling the selector that we want to get the Category field
(1 = true, 0 = false). Because that is the only field mentioned, and it's set to 1 (true),
Meteor assumes that you want to exclude all other properties. If you had any fields
set to 0 (false), Meteor would assume that you want to include all the other fields you
didn't mention.

For more information on the find() function, consult the MongoDB
documentation at http://www.mongodb.org/display/DOCS/
Advanced+Queries.

Chapter 5

[79]

So, if you save this change, your browser will refresh and... nothing happens
to the display!

Why? As you may have guessed, removing the autopublish library did more than
get rid of the publish events. It also got rid of the listeners/subscribers. We don't
have any subscriber set up to listen on the Categories event channel. So we need to
add a subscriber event that is tuned in to the Categories channel.

Inside the if (Meteor.isClient) function, at the very top, just inside the opening
bracket, enter the following line of code:

Meteor.subscribe("Categories");

Save this change, and you will now see your Categories back where they belong.

Before we celebrate, go ahead and click on the Clothes category.

Our favorite shirt is missing! As you probably figured out by now, this is because the
publish event we set up was very specific. The only field in the Categories channel
being published is the Category field. All the other fields, including our items (and
therefore our favorite shirt) are not being broadcast.

Data, Meteor Style!

[80]

Let's double-check this. Click on the + button inside of the Clothes category in your
browser, type in Red Hooded Sweatshirt, and press Enter. The new entry will
appear for a split second, and then it will disappear. This is because of local caching
and server sync.

When you enter the new item, the local cache contains a copy. That item is
temporarily visible to your client. However, when the sync with the server occurs,
the server update only publishes the Category field, so when the server model
updates the local model, the item is no longer included.

One more test, just for funzies. In your terminal window, stop the Meteor service
(Ctrl + C). Now, in your browser, enter another item in the Clothes category
(we'll use Pumped Up Kicks). Because the service is stopped, no sync happens
with the server, so you're using your local cache, and there is your item.

Now start your server back up. Your client will sync with the server, and poof! your
item is gone again.

Chapter 5

[81]

Listing items
This is no good, because we want to see our items. So, let's add items back in, and
grab the appropriate list of items whenever a Category is selected. In LenLib.cs,
just below our first Meteor.publish() function inside the if(Meteor.isServer)
block, add the following function:

Meteor.publish("listdetails", function(category_id){
 return lists.find({_id:category_id});
});

This publish function will publish on the "listdetails" channel. Any
listener/subscriber will provide the variable category_id, so that our find()
function returns a leaner recordset.

Notice that nothing has changed in our client yet (your items still aren't visible).
That's because we need to create the subscribe function.

Just below our first Meteor.subscribe() function, add the following function:

Meteor.subscribe("Categories");

Meteor.autosubscribe(function() {
 Meteor.subscribe("listdetails",
 Session.get('current_list'));
});

Save your changes, and check out your swag Clothes collection!

Data, Meteor Style!

[82]

Let's look under the hood here for a minute, and figure out what just happened.
Notice that the subscription uses Session.get('current_list'). That is the
variable that gets passed into the publish function. In other words, the value inside
of the Session variable current_list will be used as category_id in the find()
function's selector.

If you remember from Chapter 4, Templates, we have a click event handler set up to
listen for Category changes. When you click on Clothes, for example, an event fires,
and the selectCategory() function inside LendLib.js handles the event, and
changes our Session variable.

function selectCategory(e,t){
 Session.set('current_list',this._id);
}

That Session.set() triggers a publish event. We wrapped the Meteor.
subscribe() function for the "listdetails" channel inside of a Meteor.
autosubscribe() function. We did this because the Session.set() event will
trigger Meteor.autosubscribe(), and we have a Meteor.subscribe() function
in there, specifically for the "listdetails" channel.

In other words:

1. Session.set() triggers an event.
2. Meteor.subscribe() listens to that event because it uses the

Session variable.
3. Meteor resets the subscription listener on the "listdetails" channel

(because it's wrapped inside Meteor.autosubscribe()).
4. Meteor sees that new subscription listener and fires an initial event.
5. Meteor.subscribe() function picks up that event, passes in the

category_id variable, and the UI refreshes because of the model change.

Checking your streamlined data
The display is now no different than when we started this chapter. But underneath
the display, the model is much leaner. With the Clothes category selected, run the
following command in the browser console:

> lists.findOne({Category:"DVDs"})

Chapter 5

[83]

Expand the object, and you'll see that there are no items listed.

The reason there are no items is because our Session variable current_list is
set to Clothes, not DVDs. The find() function only gets the full record for the
current_list.

Now enter the following command in the browser console and press Enter:

> lists.findOne({Category:"Clothes"})

Expand the object, and you'll see your three items in an array.

Click around, add items to categories, add new categories, and check the underlying
data model that's visible on the client. You'll see that your lists are now much less
visible, and therefore more secure and discreet. This probably won't be a problem
for your own personal Lending Library application, but as we expand this out in the
next chapter, so that multiple people can use it, streamlined and discreet data will
really improve performance.

Data, Meteor Style!

[84]

Summary
In this chapter, you've learned what MongoDB is, how a document-oriented
database works, and you've performed direct queries in the command line, becoming
familiar with Meteor's default data repository system. You've also streamlined your
application by removing autopublish, and have gained a firm understanding of the
publish/subscribe design pattern built in to Meteor.

In the next chapter, you'll really tighten up security on your app, allowing multiple
users to keep track of and control their own lists of items, and you'll see how to
further streamline your client and server code through the use of folders.

Application and Folder
Structure

To allow you to jump right in, Meteor creates a default set of libraries, default folder
structure, and default permissions. This default configuration works great for quick
development, testing, and learning-as-you-go. It does not, however, make for a great
production environment.

In this chapter, we'll go over changes you'll want to make to the default configuration,
so that your app will be performant, secure, and easier to manage. Specifically, you
will learn about:

• Separating the client, server, and public files of your application
• Enabling database security and user login
• Tailoring display results to protect privacy

Client and server folders
Up to this point, we've put all of our JavaScript code in one file: LendLib.js.

Inside LendLib.js, we have two sections, separated by if statements.
The client-facing code is found inside the if (Meteor.isClient) {...} block,
and the server-side code is found inside the if (Meteor.isServer) {...} block.

That structure works fine for a very simple application, but when we are writing
a more complex application, or we have multiple people working on the same app,
trying to share one file with conditional statements will quickly turn into a
nightmare situation.

Application and Folder Structure

[86]

Additionally, Meteor will read any and all files in our application folders, and try
to apply JavaScript to both the client and the server. This makes for sort of a strange
situation if we want to use a client-facing JavaScript library (for example, Twitter
Bootstrap or jQuery). If we add the library to the root folder, Meteor will try to
implement that file on both the client and the server. This either creates performance
issues because we're loading files to the server that it doesn't need, or produces
errors because the server doesn't know what to do with display objects (the server
doesn't display anything).

Conversely, if there is server-side code in files accessible to both the client and server,
the client may try to implement that code, which can cause all kinds of problems,
or will at the very least make the code available to the client, which could quickly
become a security issue. There simply are some files and code that we don't want the
client to see or have access to.

Let's see an example of the client code being processed by the server, and then let's
move that code to a place where only the client will try to execute it. Create a new file
in ~/Documents/Meteor/ called LendLibClient.js. Open LendLib.js and cut the
entire client code block from it indicated by the following highlighted code:

var lists = new Meteor.Collection("lists");

if (Meteor.isClient) {
...
}

if (Meteor.isServer){...

You should have cut about 186 lines of code. Make
sure you get the closing } bracket!

Now paste the code you just cut into LendLibClient.js, and save the changes to
both files. You'll notice that this made no visual changes to your running application.
That's because Meteor is processing both files, and the if condition stops the server
from executing the code.

But let's see what happens when we remove the if condition. In LendLibClient.
js, remove the first line, containing the if (Meteor.isClient) { condition.
Additionally, make sure you remove the last line, containing the closing bracket
(}) for the if condition. Save LendLibClient.js and then go take a look at your
console where Meteor is running.

You will see the following error message, or something similar to it:

Chapter 6

[87]

app/LendLibClient.js:21
 Meteor.subscribe("Categories");
 ^
TypeError: Object #<Object> has no method 'subscribe'
 at app/LendLibClient.js:21:11
...
Exited with code: 1
Your application is crashing. Waiting for file change.

Removing the if condition has created a situation where the server part of Meteor is
trying to run the client-facing code. It doesn't know what to do with it, so the app is
crashing. We're going to fix the situation by using folder structure.

If you recall, when we implemented Twitter Bootstrap, we created the client folder.
Meteor identifies the client folder, and will run any JavaScript files it finds in there
exclusively as client-facing code, and not on the server side.

Move (cut + paste, click-and-drag, or mv) the LendLibClient.js file from
~/Documents/Meteor/LendLib/ to ~/Documents/Meteor/LendLib/client/.
This will instantly fix our crashing app, and Meteor is happy again! You'll see the
following in the console:

=> Modified -- restarting.

Because we moved LendLibClient.js to the client folder, the if condition is
no longer needed. Because of the file location, Meteor knows that the code is only
intended to be run on the client, so it doesn't try to run it on the server.

You will want to refresh your browser pointing to http://
localhost:3000.
This is because you crashed the application. Repent of your evil
ways, and refresh your page.

Now let's do the same thing with the server code. Create a new folder named
server. You can do this through a Finder window, or directly in the command line
as follows:

$ mkdir ~/Documents/Meteor/LendLib/server

We know we should create our JavaScript file directly in the new server folder, but
we are also pathologically curious and we enjoy breaking things, so we're going to
create it where it can cause problems.

Create a new file named LendLibServer.js in the ~/Documents/Meteor/LendLib
folder. Cut the if (Meteor_is.server) { … } block from LendLib.js, paste it
into LendLibServer.js, and save both files.

http://localhost:3000
http://localhost:3000

Application and Folder Structure

[88]

At this point, there should be only one line of code left in LendLib.js:
var lists = new Meteor.Collection("lists");

As with the move of the client code, nothing adverse will happen at this point, because
we still have the if condition. Let's remove that, and let the app crashing continue!

In LendLibServer.js, remove the first line, containing if (Meteor.isServer) {
and remove the last line, containing the closing bracket (}).

Save your changes, and let's see the carnage!

Huh. No crashes. The app still works fine. What a let down...

Let's check the browser console:

Chapter 6

[89]

Yes! We did do something naughty! The reason this (unfortunately) didn't interfere
with or affect the rest of the application is twofold:

• It's the client side (browser) that threw the error. That won't affect the
server application.

• The only code in LendLibServer.js is the server code. If that code
breaks on the client, no big deal, because it wasn't supposed to run
on the client anyway.

The end user will never know that the error is there, but we will, so let's fix it. Move
LendLibServer.js to ~/Documents/Meteor/LendLib/server/. The error will go
away, and all will be right again in our tiny little Meteor kingdom.

Public folder
It's pretty logical that the client folder will only be processed by the client, and the
server folder will only be processed by the server. But there's one more consideration
we need to make, and that's for assets (images, text/content files, and so on).

Application and Folder Structure

[90]

The assets are only needed in runtime. We don't depend on them for any logic or
processing, and so if we can get them out of the way, the Meteor compiler can ignore
them, which speeds up the processing and delivery of our application.

That's where the public folder comes into play. When Meteor is compiling CSS or
JavaScript for both the client and the server, it ignores anything inside of public.
Then, when all the compiling is done, it will use the public folder to access anything
it may need to deliver.

Let's add a background image to our application. The handsome and generous fellas
over at subtlepatterns.com have quite a few to choose from, and they're all free,
so we'll pick one from there. We'll use Texturetastic Gray, because it seems to fit
our theme. Navigate to http://subtlepatterns.com/texturetastic-gray/ and
download the image.

You can use any background you'd like. Just perform the following
steps with your custom background, and replace the name with your
image name in the CSS when we declare background-image.

Before we can use our downloaded background, we need to make a quick change
to LendLib.css, and create a public folder.

Open LendLib.css (found in ~/Documents/Meteor/LendLib/ unless you moved
it to the client folder, which is totally fine), and add the following CSS declaration:

body {
 background-image: url(/texturetastic_gray.png);
}

Save this change. Nothing will happen (yet) but we'll take care of that right
now. Create the folder ~/Documents/Meteor/LendLib/public. Now, open the
downloaded zip folder texturetastic_gray.zip and copy texturetastic_gray.
png from the zipped folder to our newly created public folder:

Chapter 6

[91]

The background has changed to your background, and we now have
a snazzier interface!

This file is safely tucked away in the public folder, so the Meteor compiler doesn't
have to deal with it, but it's still available and ready to go when it needs to be served
to a client for display purposes.

Other folders exist, which have varying effects and purposes. For
a full explanation, consult the Meteor documentation at http://
docs.meteor.com/#structuringyourapp.

Security and accounts
At this point, our Lending Library app does exactly what we want it to. It keeps
track of all our stuff, and who we've lent items out to. If we were to put this app
into use, however, there are some security issues inside the app itself that we'd
have to deal with.

First and foremost, what's to stop someone from accessing our app and erasing
their name from an item they borrowed? That scumbag STEVE might just keep our
linear compression wrench forever, if he were so inclined, and we'd have no way
of proving whether he still had it or not.

We cannot let such thievery and dishonesty go unpunished! STEVE must be held
accountable! So, we need to implement security. Specifically, we need to perform
two actions:

• Only allow editing in the UI by the owner of the items
• Secure the database so that changes can't be made using the web console

Removing insecure
The first step in accomplishing these two goals is to remove the insecure library
from Meteor. By default, the insecure library is included so that we can go about
building our application without having to worry about security until we've got our
security strategy in place, and most of our code written.

The time has come, we know what we want security-wise, so let's go ahead and get rid
of that library. Stop the Meteor application (press Ctrl + C in the terminal window) and
enter the following command (you need to be in the LendLib directory):

>meteor remove insecure

Application and Folder Structure

[92]

This will generate the following message:

insecure: removed

Our application is now secure. It's actually too secure. Start Meteor again (type meteor
in the terminal and press Enter) and navigate to our app in a browser window, using
http://localhost:3000. Once you're there, try to add a new item; add a lendee, or
even delete an item. We'll try to lend our favorite shirt to our sexy American girlfriend,
but nothing will happen; no deletions, no additions, no changes. Nothing is working
now! If you open the browser console, you'll see that every attempt to update the
database is being met with the message update failed: Access denied:

This message is occurring because we disabled the insecure package. Put another
way, no anonymous changes are allowed anymore. Because we don't yet have a
login account, all of our requests are anonymous, and will therefore fail.

Adding an admin account
To re-enable update functionality, we need to be able to create an admin account,
give the admin account permissions to make changes, and provide the user a way
to recover a lost password.

Chapter 6

[93]

We'll first need to add three built-in Meteor packages. Stop the Meteor application,
and in the terminal window, enter the following three commands:

$ meteor add accounts-base

$ meteor add accounts-password

$ meteor add email

These commands will add the necessary packages to our Meteor application for us to
administer accounts.

Meteor also has a UI package that will create the login logic for us automatically,
so that we don't have to write any custom accounts UI code. Let's add that package
while we're at it:

$ meteor add accounts-ui

Now that we've added the accounts-ui package, we just need to quickly configure
the fields to be displayed, and update our HTML template. Open LendLibClient.js
and append the following code to the very bottom of the file:

Accounts.ui.config({
 passwordSignupFields: 'USERNAME_AND_OPTIONAL_EMAIL'
});

This tells the accounts-ui package that we want to display the username and email
fields in the sign up form, with the email field being optional (we need it to recover
a lost password).

Now open LendLib.html and enter the following code directly below
the <body> tag:

<body>
 <div style="float: right; margin-right:20px;">
 {{loginButtons align="right"}}
 </div>
 <div id="lendlib">

Application and Folder Structure

[94]

This HTML code will add a login link and context menu box to the top right of
our screen. Let's see that in action. Save all your changes, start your Meteor app,
and navigate to http://localhost:3000 in a browser. Notice the top right of the
following screenshot:

Click on Sign in and then click on Create account in the bottom right of the
popup window:

Fill in the create account form, making sure to enter a username for admin, and a
valid e-mail address, so that you can recover your password if needed. Enter and
confirm your new password, and click on Create account:

Chapter 6

[95]

You will now be logged in as admin, and we can proceed with configuring permissions:

Granting admin permissions
Now that we have our admin account, let's allow the account to make any changes
needed in the UI, while at the same time removing the ability to make changes in the
browser console, if the admin account is not logged in.

Our original LendLib.js file currently has only one line of code in it. We will
add some account checking code to it, ensuring that only the admin account
can make changes.

Add the following code to LendLib.js and save your changes:

/*checks to see if the current user making the request to update is
the admin user */

function adminUser(userId) {
 var adminUser = Meteor.users.findOne({username:"admin"});

Application and Folder Structure

[96]

 return (userId && adminUser && userId === adminUser._id);
}

lists.allow({
 insert: function(userId, doc){
 return adminUser(userId);
 },
 update: function(userId, docs, fields, modifier){
 return adminUser(userId);
 },
 remove: function (userId, docs){
 return adminUser(userId);
 }
});

The adminUser function is used in multiple places, so it makes sense to create
a common function, which simply checks to see if the userId making the request
is the same as the _id of the admin account.

lists.allow sets up the conditions upon which operations are allowed, with each
operation having a function that returns true to allow and false to deny. We could,
for example, set the remove function check to always return false if we never
wanted to let anyone (including the admin account) delete categories.

For now, we simply want to make the operations conditional on whether the admin
account is logged in and making the request, so we will set each function to return
adminUser(userId);.

In our browser, we can now test our permissions. Add a new category (anything
you'd like, but we'll add glassware), add a new item, change an owner, and so
on – all operations should now be allowed, provided you're logged in as admin.

Let's make sure that the access is indeed linked to our admin account. Log out of the
app by clicking on admin in the top right corner, and clicking on the Sign out button:

Chapter 6

[97]

Now, in the browser console, enter the following command (or equivalent to the
category you added):

> lists.remove({Category:"glassware"})

You will get an Access denied message:

Log back in as admin, and run the command again. This time the category will be
removed. By setting the permissions and allowed actions on the lists level, using
lists.allow(), we've made it impossible for someone to make changes without
being logged in as admin. Both the UI and the browser console are now secure from
the evil machinations of STEVE, the wrench thief!

Application and Folder Structure

[98]

Customizing results
There is one more consideration we should make when it comes to security and
usability of our app. What if we could enable multiple users to use the Lending
Library, with each user only able to see the items that belong to them? If we did
this, we could stop people from being able to see what kinds of things other people
own, and at the same time we could allow each person to track their own stuff. We
originally set out to just create an app for ourselves, but with a little tweaking, we
can let anyone use it, and they'll think we're awesome and maybe buy us lunch!

Modifying Meteor.publish()
In preparation for multiple people using our application, we need to make sure that no
one can see anyone else's stuff. This is done inside the Meteor.publish() declaration
for Categories. Logically, if we limit the categories that can be seen by a user, that
limitation will cascade to the visible items, because items are found inside categories.

Open LendLibServer.js, and modify the find({}) block, found approximately
around line 6:

Meteor.publish("Categories", function() {
 return lists.find({owner:this.userId},{fields:{Category:1}});
});

Adding the selector owner:this.userId will check each list in our lists repository,
and return the category for each instance where the currently logged in user is
the owner of the list. Save this change, and you'll notice that all of the current
categories disappeared!

That's because the lists we already created don't have any owner, and we're logged
in as admin. We're going to experience similar problems when we try to modify
existing items, because no lists have any owner.

Chapter 6

[99]

We have several options of how to fix this, including manually adding the admin
account as the owner, letting the admin account see all unclaimed lists, or just
starting with a clean slate. Since we only have one item lent out (dangit, STEVE! We
want our wrench back!), now is a good time to clear out our database, and add back
our linear compression wrench, before we forget who has it (yeah, right!).

In your browser console, while logged in as admin, enter the following command:

>lists.remove({})

This will remove all of our lists, and we can start over, once we've added an owner to
newly created lists.

If you want to clear out all users as well, you can do that by
stopping the Meteor application, and running meteor reset in
the terminal window and then restarting the Meteor application.
Be careful! There's no warning, and no takebacks!

Adding owner privileges
Adding an owner to any new category is pretty simple. We just need to update our
lists.insert() function, and add the owner field. Open LendLibClient.js, and
locate the Templates.categories.events declaration. Inside the event delegate for
'keyup #add-category' you will see the lists.insert() function call. Modify
that call as follows:

if (catVal)
{
 lists.insert({Category:catVal,owner:this.userId});
 Session.set('adding_category', false);
}

Now whenever a new list is added, instead of just adding a category field, we
are also adding an owner field. This allows our Meteor.publish() code to work
correctly for any new lists we make.

Application and Folder Structure

[100]

Let's add back the Tools category, enter the item Linear Compression Wrench and
assign the Lendee as STEVE:

There, we're back up and running, and hidden in each list, we now have an owner
property. This becomes important when we enable others to create and maintain
their own lists.

Enabling multiple users
Okay, everything is in place now for us to have a customized, private view of our
own stuff, but currently only the admin account can add lists or items, and assign a
lendee to an item.

We'll fix that by going back to LendLib.js, and adding some logic to check if either
the currently logged in user owns the list, or is an admin. Inside LendLib.js, in the
lists.allow() code block, make the following additions:

lists.allow({
 insert: function(userId, doc){
 return (adminUser(userId) || (userId && doc.owner === userId));
 },
 update: function(userId, docs, fields, modifier){
 return adminUser(userId) ||
 _.all(docs, function(doc) {
 return doc.owner === userId;
 });
 },

Chapter 6

[101]

 remove: function (userId, docs){
 return adminUser(userId) ||
 _.all(docs, function(doc) {
 return doc.owner === userId;
 });
 }
});

Inside insert, we check to see if the current doc.owner is the logged in user.
In update and remove, we iterate through all the records to be updated
(using _.all()) and check if the doc.owner is the logged in user.

You will now want to save your changes, and create a new account on http://
localhost:3000. Add categories and items to your heart's content. You can switch
between users, and add as many more users and lists as you would like.

You'll notice that there's no visibility from one person's lists to another, and
consequently no way for someone to manipulate or delete another person's lists and
records. Now when STEVE finally gets his grubby little hands on your application,
he can only see his stuff (none of which is worth borrowing, by the way!):

Application and Folder Structure

[102]

Summary
In this chapter, you've learned how Meteor compiles and searches for JavaScript
and CSS code, and how to optimize that search. You've learned how to protect your
server code, and keep things running smoothly and efficiently. You've learned how
to secure your database, through the use of Meteor's built-in Accounts packages, and
you've closed all the major security loopholes in your application. Finally, you've
enabled multiple accounts, so anybody can use your Lending Library to keep track of
their items, and you've done so without compromising on privacy for the end user.

In the next chapter you will learn how to deploy a meteor application to a production
environment, and learn techniques to start coding fast, robust, and production-ready
Meteor applications.

Packaging and Deploying
Our application is looking great. We've made it secure, easy to use, and with the
addition of multiple logins, now anybody can use the Lending Library to keep track
of their stuff.

In this final chapter, we'll go over Meteor's amazing package system, which will
speed up future code projects, and we'll talk about options for deploying your
applications. You will learn how to:

• Add and configure third-party packages, such as jQuery, Backbone,
and Bootstrap

• Bundle your entire application, so that it can be deployed
• Deploy your app using Meteor's public servers
• Deploy your app to a custom server

Third-party packages
Meteor is rapidly adding packages for the major JavaScript and preprocessing
libraries. These packages are intelligent, in that they not only contain the base
JavaScript or preprocessing libraries, but they are also configured to interact
directly with the Meteor code base.

What this means for you is that adding your favorite library involves almost no
effort, and you can be confident that it will work with your Meteor application.

Listing available packages
To see a list of the available packages, with a brief description, simply enter the
following command into the terminal, and press Enter:

$ meteor list

Packaging and Deploying

[104]

This will give you a listing of all the packages available with the version of Meteor
that you have installed.

As you can see, there are quite a few of the most popular frameworks available,
including jQuery, Backbone, underscore, and Twitter's Bootstrap! We spent a good
amount of time manually downloading Bootstrap, creating the client folder, and
extracting the Bootstrap files. That was a good exercise in how to manually install a
framework, but now we're going to learn how to install it as a package.

First, let's remove the existing Bootstrap installation. Navigate to ~/Documents/
Meteor/LendLib/client/ and delete the bootstrap directory. It doesn't matter if
your Meteor app is running or not (remember, Meteor updates dynamically!). Either
start it up and then navigate to http://localhost:3000 or just navigate there if it is
already running. You will see that all of our pretty formatting is gone!

We'll now add the official Meteor Bootstrap package. Again, because Meteor updates
dynamically, we don't have to stop the Meteor app unless we want to. Either open
a new terminal window or temporarily stop your Meteor application, and make
sure you are in the ~/Documents/Meteor/LendLib folder. Once there, enter the
following command:

$ meteor add bootstrap

You will receive a very short message:

bootstrap: UX/UI framework from Twitter

If you used a second terminal window, just head to your browser (you don't even
have to refresh the page). If you stopped your Meteor application, start it up again,
and navigate to http://localhost:3000. You will be able to see that the Bootstrap
formatting is now back, and everything is back to normal:

Chapter 7

[105]

That's literally all there is to it. Using a single command in your terminal, you can
add a library or framework to your project, without having to worry about linking,
downloading, and making sure that the files are in the right location. Just run meteor
add..., and off you go!

You can get a list of the packages that you're already using by entering
the following command in the terminal: meteor list --using.

Because Meteor is adding packages so rapidly, it's a good idea to stay current
with your Meteor installation. From time to time, run the following command
in the terminal:

$ meteor update

If you're on the latest version, it will tell you so, and what version you're running.
If there's a new version, it will download and install it for you.

Bundling your application
In usual Meteor fashion, bundling your application so it can be deployed is
incredibly simple. Stop your Meteor application if it's running, make sure you are
in your application folder (for the Lending Library it is ~/Documents/Meteor/
LendLib) and enter the following command in the terminal:

$ meteor bundle lendlib.tgz

Packaging and Deploying

[106]

This will take a little bit to run, but when it's complete you'll have a lendlib.tgz
tarball in your LendLib folder, and you're ready to deploy it wherever you would
like. This is a complete package/bundle. The machine you deploy this bundle to only
needs to have Node.js and MongoDB installed. Everything else you need is included
in the bundle.

Deploying to Meteor's servers
The folks at Meteor have taken deployment one step further, above and beyond what
you'd expect from even a paid product, much less a free one. Meteor allows you to
deploy your application directly on their deployment servers. Pick a name for your
app (we'll use packt.lendlib, but you'll need to come up with your own) and enter
the following command in the terminal:

$ meteor deploy [your app name].meteor.com

So, in our case, we entered meteor deploy packt.lendlib.meteor.com. The
console will give you status updates as it bundles, uploads, and deploys your
application. Once it's finished, it will give you a message similar the following one:

Now serving at [your app name].meteor.com

If you navigate to that URL in your browser (for example, http://packt.lendlib.
meteor.com), you will see your application deployed and running!

You will probably want to create the admin login before you start using
the application, or telling others about it. You don't want sneaky STEVE
to have control of your app!

Chapter 7

[107]

Updating Meteor's servers
What if you make changes, or you had a bug, and you want to update the code
for your app on the Meteor servers? As you probably guessed, this is super simple.
Just re-run your deploy command:

$ meteor deploy [your app name].meteor.com

This not only updates your app, but it also preserves your data, so you don't have to
start from scratch if you've entered a lot of information already. Pretty slick, right?
The people at Meteor really know what makes developing enjoyable, and they've
gone out of their way to provide an environment where you can just code, play,
and receive instant feedback on your application.

Using your own hostname
But wait, there's more! You can even use one of your own hostnames with an app
that you deploy on the Meteor servers. Set up a CNAME pointing to origin.
meteor.com using your host provider, and you can then deploy to that hostname.
For example, if we had the subdomain meteor.too11.com pointing as a CNAME
to origin.meteor.com, we would run the following command in the terminal:

$ meteor deploy meteor.too11.com

If your CNAME is set up properly, this will deploy just as it would if you were to
deploy directly to [your app name].meteor.com, and will be available with your
customized hostname!

Check with your host provider on setting up a CNAME route.
It varies from provider to provider, but it's pretty easy to do.

Deploying to a custom server
At the time of this writing, deploying a Meteor application to either a hosting service
or to your own personal machine is a pretty hefty task. There are versioning issues
with deployment, and most hosting services are still in the early stages of supporting
Meteor bundles.

With that said, we'll walk through deploying a Meteor application to a custom
server, and leave exploring hosting services (such as Heroku or AppFog) up to you.

Packaging and Deploying

[108]

Server setup
The server you'll be hosting your application from needs two things:

• Node.js, version 0.8 or later
• MongoDB (latest version)

To install Node.js, go to http://nodejs.org/ and follow the instructions for either
Linux or Mac OS X installation.

To install MongoDB, visit http://docs.mongodb.org/manual/installation/ and
follow the instructions for your corresponding OS. Once it is installed, make sure to
set up a database and name it lendlib.

Once these two products are installed and configured, you will have a
default location for your MongoDB. This will be something like mongodb://
localhost:27017/lendlib. You'll need that URI in a future step, so make sure
to write it down or have it available for reference.

Alternatively, you can set up a MongoDB on a remote server, or use a hosting service
like MongoHQ (https://www.mongohq.com). If you do use a remote service, set up
a new database, and note the URI you'll need. An example from MongoHQ is shown
as follows:

Deploying your bundle
If you recall, we created a tarball earlier in this chapter. We now need to extract that
tarball, and make a couple of modifications, then we're ready to turn on our app.
Copy lendlib.tgz to your server, in the directory you'll use for deployment (for
example ~/Sites/LendLib). Once lendlib.tgz is in the right place, extract the
tarball with the following command:

$ tar –zxvf lendlib.tgz && rm lendlib.tgz

Chapter 7

[109]

This will extract the tarball, and you'll have a new folder named bundle.

Optional – different platform
If the machine you developed the application on is different than the machine you
are deploying to, you will need to rebuild the native packages. To do this, enter the
node_modules directory:

$ cd bundle/server/node_modules

Once there, remove the fibers directory:

$ rm –r fibers

Now rebuild fibers, using npm:

$ npm install fibers

This will install the latest fibers version, specific for the platform you're
deploying to. You do not need to do this if the dev machine and deploy
machine are running the same platform.

Running your application
Now that your bundle is properly extracted, you're ready to turn on your
application. You will need the following information to start up your app:

• The root URL (for example, http://lendlib.mydomain.com or
http://localhost)

• The port you want to run the app from (for example, 80)
• Your MongoDB URI (for example, mongodb://<user>:<password>@alex.

mongohq.com:10022/lendlib)

Once you've made your decisions and gathered this information, start Node.js for
your application. Navigate to your root folder (ours is ~/Sites/LendLib) and enter
the following:

$ PORT=80 ROOT_URL=http://localhost MONGO_
URL=mongodb://<user>:<password>@alex.mongohq.com:10022/lendlib node
bundle/main.js

Packaging and Deploying

[110]

Let's break this down:

• PORT sets the port variable, so that NodeJS knows what port you'd like to
serve the application form

• ROOT_URL sets the rootUrl variable, so NodeJS knows what hostname
requests are meant for your application

• MONGO_URL tells NodeJS where it can find our MongoDB
• node is the invoking command
• bundle/main.js is the starting JavaScript file invoked by NodeJS

If all your information is correct, the app will run, and you'll be able to test it
using a browser:

You can go even further into deployment, such as setting up environment variables,
running your app as a daemon/service, and even using remote servers to publicly
host your application. What we've done this far should be sufficient to get you
started, and well on your way to using Meteor in a production environment.

Chapter 7

[111]

Summary
You are now a Meteor expert! Seriously. You know how to build an application
in Meteor from the ground up. You understand the design patterns and database
principles behind Meteor, and you can tailor, optimize, and secure your application to
do anything you want. You can also deploy Meteor to multiple environments. You are
well on your way to writing productive, efficient, and rock-solid web applications.

Because Meteor is so new, there are very few people that possess as much working
knowledge about Meteor as you now possess. That, by definition, makes you an
expert. Now it is up to you to apply that expertise. Suggest using Meteor in your
upcoming development projects, contribute to the Meteor community through code
contribution, answering questions on the forums, and making tutorials of your own.

Meteor is a breakthrough technology, gaining more and more momentum, and you
now have the knowledge and experience to use this breakthrough technology in
your personal and professional development projects, keeping you well ahead of the
curve, and making your life as a developer that much more rewarding.

Index
Symbols
$addToSet 74
$pull 75
$set 75

A
accounts-ui package 93
addItem() function 59, 62
admin account

adding 92, 94
admin permissions

granting 95, 96
adminUser function 96
AppFog 107
application

background image, adding 90
bundling 105, 106
deploying, to custom server 107
deploying, to Meteors servers 106
running 109

autopublish
turning off 77

B
beefy desktop application (fat app) 32
bootstrap directory 104
browser console 19
bundle

deploying 108
bundle/main.js 110

C
callback functions

using 75
categories

about 38
listing 78-80

Categories event channel 79
categories template 47, 48
changes

broadcasting 75
Chrome

console, using 19
web page 29

client folder 85-89
client/server design pattern 32
code changes

creating 12
connected client/server application

(thin app) 32
Console icon 20
context 55
controller 33
controller (MVC) 51
create command 10
curl

installing, with Meteor 7-9
cURL. See curl
current_list session parameter 53
custom server

deploying to 107, 108

[114]

D
deploy command 107
doc.owner 101
document-oriented storage

and MongoDb 69-72
relational database, need for 70, 71

dumb terminal 31

E
each statement 49, 50
events

adding 57-61
published 75, 76

example application
file location, selecting 9
loading 9, 10
previewing 10, 11
starting 10

F
fibers directory

removing 109
find({}) block 98
find() command 24
find() function 78, 83
findOne() function 63
focusText() function 64
for each loop 39
for each statement 38
Fraggles command 28

H
Heroku 107
HTML

collections, displaying 21
template 47

I
if condition 86
if (Meteor.isClient) function 43
if (Meteor.isServer) {...} block 85
if statement 85
insecure library

removing, from Meteor 91, 92
item.LendClass property 50
item.Lendee property 50
items

listing 81, 82

K
keyup event 44

L
LendClass properties 54
Lendee properties 49, 54
lending_item class name 49
Lending Library

base application, creating 16, 17
browser console 19, 20
building 15
code, cleaning up 25-27
collection, creating 18
collections, displaying in HTML 21-25
creating 15, 16
data, adding 20, 21
MongoDB 18
multiple clients 29, 30
page, URL 28

lendlib 48
LendLibClient.js 86
LendLib folder 106
lendlib.tgz 108
LentTo property 63
lists.allow() code block 97, 100
lists collection 21, 24, 28, 39
lists data model 36
lists.find() 78
lists.insert() function 99
list_status 55
lists.update() function 74
Live HTML 21

M
Massively Multiplayer Online games

(MMOs) 32
Meteor

about 7, 31
cached and synchronized data (the model)

[115]

35, 36
client code 39
client code (the View-Model) 39, 40
create command 10
example application 9
installing, with curl 7-9
Templated HTML (the view) 37, 39
third-party packages 103
todos example application 10
URL, for installing 8

Meteor.Collection query 24
Meteor data synchronization

URL 37
Meteor.flush() 59
Meteor.publish() code 99
Meteor.publish() function

about 81, 98
modifying 98, 99

Meteor's servers
deploying to 106
hostname, using 107
updating to 107

Meteor.subscribe() function 81
Minimongo. See MongoDB
model 33, 35, 36
model updates 61, 63
Model View Controller (MVC) pattern 33
Model View View-Model. See MVVM
modern web applications

about 31
browser grows up (MVVM) 33, 34
machines (MVC), rise 32
origin 31, 32

MongoDB
about 18, 69
and document-oriented storage 69-72
direct commands, using 72-74
URL 71
URL, for installing 108
working 72-74

MongoDB documentation
URL 78

MongoDB URI 109
MongoHQ

URL, for installing 108

MONGO_URL 110
multiple users

enabling 100
MVC 32
MVVM 31, 33, 76

N
node 110
Node.js

URL, for installing 108
node_modules directory 109

O
owner privileges

adding 99, 100

P
PORT 110
presentation model 34
presenter (MVP) 51
public folder 89-91
publishers

configuring 76
publish/subscribe model

using 75

R
reactive contexts 15
relational database

need for 70
removeItem() function 60, 61, 75
ROOT_URL 110

S
security

implementing 91
selectCategory() function 82
server folder 85-89
Session.set() triggers 59, 82
Session variable 41, 55, 60, 75
Sign out button 96
style updates 64-67
subscribe function 81

[116]

U
updateLendee() function 61, 75
update() function 62

V
view 34, 37, 38
view data bindings 37
View-Model 39, 40, 51-53
View-Model (MVVM) 51
view states 54

W
web page, chrome 29

T
template

creating 40-45
HTML template 47

Template functions 24
Template.list.items function 52
third-party packages

listing 103, 104
this.Category 38
this submit button 34
todos list

changing, to items list 12-14

Thank you for buying
Getting Started with Meteor.js JavaScript Framework

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Twitter BootStrap Web
Development How-To
ISBN: 978-1-849518-82-6 Paperback: 68 pages

A hands-on introduction to building websites with
Twitter Bootstrap's powerful front-end development
framework

1. Conquer responsive website layout with
Bootstrap’s flexible grid system

 2. Leverage carefully-built CSS styles for
typography, buttons, tables, forms, and more

3. Deploy Bootstrap’s jQuery plugins to create
drop-downs, switchable tabs, and an image
carousel

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-849516-86-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks
for developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

Learning jQuery
ISBN: 978-1-849516-54-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1. Create interactive elements for your web
designs

2. Learn how to create the best user interface for
your web applications

3. Use selectors in a variety of ways to get
anything you want from a page

Learning Modernizr
ISBN: 978-1-782160-22-9 Paperback: 130 pages

Create forward-compatible websites using feature
detection features of Modernizr

1. Build a progressive experience using a vast
array of detected CSS3 features

2. Replace images with CSS based counterparts

3. Learn the benefits of detecting features
instead of checking the name and version
of the browser and serving accordingly

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setup and Installation
	Installing with curl
	Loading an example application
	Selecting your file location
	Loading the example application
	Starting the example application
	Previewing the application
	Help! I made too many changes!

	Making code changes
	Changing from todos to items

	Summary

	Chapter 2: Reactive Programming… It's Alive!
	Creating the Lending Library
	Creating the base application
	Creating a collection
	Fun with the browser console
	Adding some data
	Displaying collections in HTML
	Cleaning up

	Creating a reaction
	Multiple clients
	Summary

	Chapter 3: Why Meteor Rocks!
	Modern web applications
	The origin of the Web app (client/server)
	The rise of the machines (MVC)
	The browser grows up (MVVM)

	A giant Meteor appears!
	Cached and synchronized data (the model)
	Templated HTML (the view)
	Meteor's client code (the View-Model)

	Let's create some templates
	Summary

	Chapter 4: Templates
	A new HTML template
	Gluing it all together
	Our items View-Model
	Additional view states
	Adding events
	Model updates
	Style updates

	Summary

	Chapter 5: Data, Meteor Style!
	Document-oriented storage
	But why not use a relational database
	MongoDB
	Using direct commands

	Broadcasting changes
	Published events

	Configuring publishers
	Turning off autopublish
	Listing categories
	Listing items
	Checking your streamlined data

	Summary

	Chapter 6: Application and Folder Structure
	Client and server folders
	Public folder

	Security and accounts
	Removing insecure
	Adding an admin account
	Granting admin permissions

	Customizing results
	Modifying Meteor.publish()
	Adding owner privileges
	Enabling multiple users

	Summary

	Chapter 7: Packaging and Deploying
	Third-party packages
	Listing available packages

	Bundling your application
	Deploying to Meteor's servers
	Updating Meteor's servers
	Using your own hostname

	Deploying to a custom server
	Server setup
	Deploying your bundle
	Optional – different platform

	Running your application

	Summary

	Index

