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Preface

The Web is a huge information resource depository all around the world and the
huge amount of information on the Web is getting larger and larger every day.
Nowadays the Web is the most important means for people to acquire and publish
information. Against this context, it has become very crucial to exchange and
share data on the Web. Being the de facto standard for data representation and
exchange over the Web, Extensible Markup Language (XML) has emerged and
extensively applied in many business, service, and multimedia applications. As a
result, a large volume of data is managed today directly in XML format.

XML and related standards allow the easy development of applications that
exchange data over the Web. This creates a new set of data management
requirements involving XML, such as the needs of constructing, storing, querying,
reasoning, and integrating XML documents. For the purpose of XML data man-
agement, it is necessary to integrate XML and databases. Various database models,
including relational, object-oriented, and object-relational database models as well
as conceptual data models, have been used for mapping to and from XML model
so that XML model can be extracted from the database models or/and reengi-
neered into the database models. Through reengineering XML model into the
relational or object-oriented database model, XML documents can be stored in
databases for XML data processing based on database technologies. Through
extracting XML model from the relational or object-oriented database model,
XML documents can automatically be constructed from databases for database
data exchange and share on the Web. Note that XML lacks sufficient power in
modeling real-world data and their complex interrelationships in semantics, and
the conceptual data models with powerful data abstraction contain clear and rich
semantics and do not have data type limitation. Through reengineering XML
model into the conceptual data models, XML document integration can be carried
out based on the conceptual data models. Through extracting XML model from the
conceptual data models, XML documents can conceptually be designed with the
conceptual data models.

With the wide and in-depth utilization of XML in diverse application domains,
some particularities of data management in concrete applications emerge, which
challenge current XML technology. In data- and knowledge-intensive applica-
tions, one of the challenges can be generalized as the need to handle imprecise and
uncertain information in XML data management. Imprecise and uncertain data can
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be found, for example, in the integration of data sources and data generation with
nontraditional means (e.g., automatic information extraction and data acquirement
by sensor and RFID). So it is crucial for Web-based intelligent information sys-
tems to explicitly represent and process imprecise and uncertain XML data.

Fuzzy logic has been applied in a large number and in a wide variety of
applications and has been a crucial means of implementing machine intelligence.
So, in order to bridge the gap between human-understandable soft logic and
machine-readable hard logic, fuzzy logic cannot be ignored because none of the
usual logical requirements can be guaranteed: there is no centrally defined format
for data, no guarantee of truth for assertions made, and no guarantee for consis-
tency. Fuzzy logic has been introduced into databases for fuzzy data management.
It can be believed that fuzzy logic can play an important and positive role in XML
data management. Currently the researches of fuzzy logic in XML data manage-
ment are attracting increased attention.

This book goes to great depth concerning the fast growing topic of technologies
and approaches of fuzzy XML data management. The topics of this book include
representation of fuzzy XML, query of fuzzy XML, fuzzy database models,
extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy
XML into fuzzy database models, and reasoning of fuzzy XML. Concerning the
representation of fuzzy XML, the fuzziness in XML documents, fuzzy XML
representation model, and fuzzy XML algebraic operations are discussed. Con-
cerning the query of fuzzy XML, querying fuzzy XML with AND, OR, and NOT
predicates is proposed, respectively, and building the index on fuzzy XML query is
investigated. Concerning the fuzzy database models, three kinds of fuzzy database
models are introduced, which are the fuzzy UML data models, fuzzy relational
database models, and fuzzy object-oriented database models. Concerning the
extraction of fuzzy XML, extracting fuzzy XML from the fuzzy UML data models,
fuzzy relational database models, and fuzzy object-oriented database models is
proposed, respectively. Concerning the reengineering of fuzzy XML, reengineer-
ing fuzzy XML into the fuzzy UML data models, fuzzy relational database models,
and fuzzy object-oriented database models is presented, respectively. Concerning
the reasoning of fuzzy XML, reasoning on fuzzy XML with fuzzy Description
Logic and fuzzy ontology are investigated.

This book aims to provide a single record of current research in the fuzzy data
management with XML. The objective of the book is to provide the state-of-the-art
information to researchers, practitioners, and graduate students of the Web intel-
ligence and at the same time serve the data and knowledge engineering profes-
sional faced with nontraditional applications that make the application of
conventional approaches difficult or impossible. Researchers, graduate students,
and information technology professionals interested in XML and fuzzy data pro-
cessing will find this book a starting point and a reference for their study, research,
and development.

We would like to acknowledge all of the researchers in the area of databases,
XML, and fuzzy databases. Based on both their publications and the many dis-
cussions with some of them, their influence on this book is profound. The materials
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in this book are the outgrowth of research conducted by the authors in recent years.
The initial research work was supported by the National Natural Science Foun-
dation of China (60873010, 61370075, 61073139, 61202260), and in part by the
Program for New Century Excellent Talents in University (NCET-05-0288). We
are grateful for the financial support from the National Natural Science Founda-
tion of China and the Ministry of Education of China through research grant funds.
Additionally, the assistance and facilities of Northeastern University, China, are
deemed important and highly appreciated. Special thanks go to Janusz Kacprzyk,
the series editor of Studies in Fuzziness and Soft Computing, and Thomas Ditz-
inger, the Senior Editor of Applied Sciences and Engineering of Springer-Verlag,
for their advice and help to propose, prepare, and publish this book. This book
would not be completed without the support from them.

Shenyang, September 2013 Li Yan
Zongmin Ma
Fu Zhang
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Chapter 1
Databases and XML for Data
Management

Abstract A large number of data appears in various real-world application
domains, and how to manage the data is particularly important. Databases are
created to operate large quantities of data by inputting, storing, retrieving, and
managing that data. Over the years, various database models, including conceptual
data models (e.g., entity-relationship (ER) model, enhanced entity-relationship
(EER) model, and UML data model) and logical database models (e.g., relational
database model and object-oriented database model), are developed for informa-
tion modeling and data management. Moreover, with the popularity of Web-based
applications, the requirement for data management has been put on the exchange
and share of data over the Web. The eXtensiable Markup Language (XML) pro-
vides a Web friendly and well-understood syntax for the exchange of data and
impacts on data definition and share on Web. This is creating a new set of data
management requirements involving XML. Currently, databases and XML play
important roles for data management and have become the main means to realize
the data management. In this chapter, databases and XML techniques for data
management will be introduced.

1.1 Introduction

With the emergency of a large number of data, the concept of “Data Management”
accordingly arose in the 1980s as technology moved from sequential processing
(first cards, then tape) to random access processing. As applications moved more
and more into real-time, interactive applications, it became particularly important
to manage data so that the data would be used in applications conveniently and
effectively.

The evolution of databases was initially driven by the requirements of data
processing. A database is an organized collection of data. The data is typically
organized to model relevant aspects of reality, in a way that supports processes
requiring this information. Databases have become the key to data management.
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2 1 Databases and XML for Data Management

Information modeling in databases can be carried out at two different levels:
conceptual data modeling and logical database modeling. Basically, the concep-
tual data models are used for information modeling at a high level of abstraction
and at the level of data manipulation, i.e., a low level of abstraction. The entity-
relationship (ER) conceptual data model, which was proposed by Chen (1976), has
played a crucial role in database design and information systems analysis. Further,
in order to overcome its incapability of ER modeling complex objects and
semantic relationships. Several new conceptual data models (e.g., the enhanced
entity-relationship (EER) model and UML model) are developed. The logical
database model is used for information modeling. Database modeling generally
starts from the conceptual data models and then the developed conceptual data
models are mapped into the logical database models. A logical database model
determines the logical structure of a database and fundamentally determines in
which manner data can be stored, organized, and manipulated. A database man-
agement system (DBMS) is a suite of computer software providing the interface
between users and a database or databases.

The development of database technology can be divided into several eras:
navigational, relational, and post-relational. Hierarchical and network database
models were adopted by DBMSs as navigational database models in the 1960s and
1970s. The hierarchical and network database models have the drawbacks that
they couple with the need for a formally based database model, which clearly
separate the physical and logical model. Therefore, for enhancing the hierarchical
and network database models, relational database model is hereby developed. The
relational database model put forward by Codd (1970), has a simple structure and
a solid mathematical foundation. It is made up of ledger-style tables, each used for
a different type of entity. It rapidly replaced the hierarchical and network database
models and became the dominant database model for commercial database sys-
tems. Although there has been great success in using the relational databases for
transaction processing, with the breadth and depth of database uses in many
emerging areas as diverse as biology and genetics, artificial intelligence, and
geographical information systems, it was realized that the relational database
model, had semantic and structured drawbacks when it came to modeling of such
specialized applications. For example, the data type is very restricted and the data
semantics is not rich in the relational database model. In this case, several non-
traditional database models (Abiteboul et al. 1995; Elmasri and Navathe 1994,
Kim and Lochovsky 1989; Abiteboul and Hull 1987; Hammer and McLeod 1981)
were developed in succession to enlarge the application area of databases since the
end of the 1970s, and they are called post-relational database models. In partic-
ular, object-oriented database model is a popular one of the post-relational data-
base models. In object-oriented database models, all real-world entities can be
simulated as objects, objects with the same attributes, methods and constraints can
be incorporated into classes, and the classes form class hierarchical structures.

Moreover, currently much data is unstructured and is in the form of Web
documents, and thus does not fit well into databases such as relational or object-
oriented databases. In particular, with the prompt development of Web, the
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requirement of managing information based on the Web has attracted much
attention both from academia and industry. The eXtensible Markup Language
(XML) is emerging and gradually accepted as the de facto standard for data
description and exchange between various systems and databases over the Internet.
This is creating a new set of data management requirements involving XML, such
as the need to store and query XML documents. Also, lots of translation techniques
have been devised to publish large amounts of existing data in databases (such as g
relational and object-oriented databases) in XML format.

Based on the observations above, databases and XML have become the key
means to realize the data management. In this chapter, we discuss some common
database models, including the logical database models (relational database model
and object-oriented database model) and the conceptual data models (ER/EER
model and UML data model). Also the XML model will be introduced.

1.2 Logical Database Models

The evolution of database systems was initially driven by the requirements of
traditional data processing. Hierarchical and network data models were adopted by
database management systems (DBMS) as database models in the 1960s and
1970s. The hierarchical and network data models have the drawbacks that the data
models couple with the need for a formally based database model, which clearly
separate the physical and logical model. Relational database model, put forward by
Codd (1970), has a simple structure and a solid mathematical foundation. It rapidly
replaced the hierarchical and network database models and became the dominant
database model for commercial database systems.

With the breadth and depth of database uses in many emerging areas as diverse
as biology and genetics, artificial intelligence, computer aided design, and geo-
graphical information systems, it was realized that the relational database model as
defined by Codd, had semantic and structured drawbacks when it came to mod-
eling of such specialized applications. The next evolution of database models took
the form of rich data models such as the object-oriented data model (Abiteboul
et al. 1995; Elmasri and Navathe 1994; Kim and Lochovsky 1989) and the
semantic data models (Abiteboul and Hull 1987; Elmasri and Navathe 1994,
Hammer and McLeod 1981).

Relational database model and object-oriented database model are typical the
representatives of the logical database models. Based on these two basic database
models, there exists a kind of hybrid database model called object-relational
database model. In addition, new developments in artificial intelligence and pro-
cedure control have resulted in the appearances of deductive databases, active
databases, temporal databases, and spatial databases. These databases generally
adopt either one of the above-mentioned two basic database models or a hybrid
database model. In this subchapter, several logical database models including
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relational database model, nested relational database model, and object-oriented
database model will be introduced.

1.2.1 The Relational Database Model

Relational database model introduced first by Codd (1970) is the most successful
one and relational databases have been extensively applied in most information
systems in spite of the increasing populations of object-oriented databases.
A relational database is a collection of relations.

1.2.1.1 Attributes and Domains

The representations for some features are usually extracted from real-world things.
The features of a thing are called attributes. For each attribute, there exists a range
that the attribute takes values, called domain of the attribute. A domain is a finite
set of values and every value is an atomic data, the minimum data unit with
meanings.

1.2.1.2 Relations and Tuples

Let Ay,A,,...,A, be attribute names and the corresponding attribute domains be
D\,D;,...,D, (or Dom(4;), 1 <i < n), respectively. Then relational schema R is
represented as

R = (D1/A,D1/As,...,Dy/Ay)
or
R = (A17A21 e '7An)a

where n is the number of attributes and is called the degree of relation.

The instances of R, expressed as r or r (R), are a set of n-tuples and can be
represented as v = {t1, %, ..., 1m }. Atuple fcanbe expressedast = (vi,va,...,Vvq),
where v € D; (1<i<n),ie.,t € Dy X Dy X --- x D,. The quantity r is therefore a
subset of Cartesian product of attribute domains, i.e., ¥ C Dy X Dy X - -+ X Dy.
Viewed from the content of a relation, a relation is a simple table, where tuples are its
rows and attributes are its columns. Note that there is no complex data in relational
table. The value of a tuple 7 on attribute set S is generally written 7 [S], where S < R.
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1.2.1.3 Keys

If an attribute value or the values of an attribute group in a relation can solely
identify a tuple from other tuples, the attribute or attribute group is called a super
key of the relation. If any proper subsets of a super key are not a super key, such
super key is called a candidate key or shortly key.

For a relation, there may be several candidate keys. One chooses one candidate
as the primary key, and other candidates are called alternate key. It is clear that the
values of primary key of all tuples in a relation are different and are not null. The
attributes included in a candidate key are called prime attributes and not included
in any candidate key called non-prime attributes. If an attribute or an attribute
group is not a key of relation r but it is a key of relation s, such attribute (group) is
called foreign key of relation r.

1.2.1.4 Constraints

There are various constraints in the relational databases. We identify these con-
straints as follows.

(a) Domain integrity constraints The basic contents of domain integrity con-
straints are that attribute values should be the values in the domains. In
addition, domain integrity constraints are also prescribed if an attribute value
could be null.

(b) Entity integrity constraints Every relation should have a primary key and the
value of the primary key in each tuple should be sole and cannot be null.

(c) Referential integrity constraints Let a relation r have a foreign key FK and the
foreign key value of a tuple ¢ in r be ¢ [FK]. Let FK quote the primary key PK
of relation 7 and ¢ be a tuple in /. Referential integrity constraint demands
that ¢ [FK] comply with the following constraint: ¢ [FK] = ¢ [PK]/null.

(d) General integrity constraints In addition to the above-mentioned three kinds
of integrity constraints that are most fundamental in relational database model,
there are other integrity constraints related to data contents directly, called
general integrity constraints. Because numbers of them are very large, only a
few of them are considered in current relational DBMSs. Among these con-
straints, functional dependencies (FD) and multivalued dependencies (MVD)
are more important in relational database design theory and widely
investigated.

The functional dependencies (FD) in relational databases represent the
dependency relationships among attribute values in relation. In the relational
databases, functional dependencies can be described as follows.

For a relation r (R), in which R denotes the schema, its attribute set is denoted
by U, and X, Y < U, we say r satisfies the functional dependency FD: X — Y, if
Vien(Vser ¢[X]=s[X]=1t[Y]=s[YD.
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Based on the concept of functional dependency, the partial/full functional
dependencies and the transitive functional dependency can be described as follows.
For a relation r (R), in which R denotes the schema, its attribute set is denoted by
U,and X, Y = U, wesay Yis fully functionally dependent on X, denoted by X — Y,
if and only if X — Y and there does not exit X’ C X (X' # @) such that X' — Y.If
such X’ exits, then Y is partially functionally dependent on X, denoted by X — , Y.

The notion of keys can consequently be described in terms of FDs.

For a relation r (R), in which R denotes the schema, its attribute set is denoted
by U, and K = U, we say K is a candidate key of R if and only if K — , U.

Multivalued dependencies (MVD) originated by Fagin (1977) are another
important data dependencies that are imposed on the tuples of relational databases,
relating an attribute value or a set of attribute values to a set of attribute values,
independent of the other attributes in the relation. In classical relational databases,
multivalued dependencies can be described as follows.

For a relation r (R), in which R denotes the schema, its attribute set is denoted
by U,X,Y < U,and Z = U — XY, we say r satisfies the multivalued dependency
MVD: X - - Y, if VNternn(Vsern (@[ X]=s[X]= @uer) uw[X]=t[X]A
uYl=1[YI NulZ] =s[Z]).

In the relational databases, the functional and multivalued dependencies satisfy
the inference rules, namely, the axiom systems (Armstrong 1974; Beeri et al.
1977). For the functional dependency, for example, the Armstrong axioms (1974)
can be used to derive all possible FDs implied by a given set of dependencies. Let
r (R) be a relation on schema R, its attribute set be denoted by U and X, Y,
Z < U. Then the following is a set of Armstrong axioms.

(a) Inclusion rule: if X 2 Y, then X — Y.
(b) Transitivity rule: if X - Yand Y — Z, then X —» Z.
(c) Augmentation rule: If X - Y, then XU Z —» YU Z.

1.2.1.5 The Relational Algebra

Relational database model provides some operations, called the relational algebra
operations. These operations can be subdivided into two classes:

(a) the operations for relations only (select, project, join, and division) and
(b) the set operations (union, difference, intersection, and Cartesian product).

In addition, some new operations such as outerjoin, outerunion and aggregate
operations are developed for database integration or statistics and decision support.
By using these operations, one can query or update relations.

Union (U)

Union is a binary set operation on two relations that are union-compatible. That
means they have the same number of attributes with the same domains pairwisely.
Formally let r and s be two union-compatible relations on the scheme R(A;, A,
.. Ap). Then
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rUs= {fitervtesy}

It is clear that the result of » U s is a relation on the schema R that includes all
tuples which are either in r or in s or in both r and s. Of course, duplicate tuples, if
any, must be eliminated.

Difference (—)

Difference is a binary set operation on two relations that are union-compatible.
Formally let r and s be two union-compatible relations on the scheme
R(A] ,Az, .. .7An). Then

r—s={tltrernt¢s}

It can be seen that the result of r — s is a relation on the schema R that includes
the tuples which are only in r but not in s.

Cartesian product (X)

Cartesian product is a binary set operation on two relations. Formally let r and
s be two fuzzy relations on schema R and S, respectively. Then

rxs= {t(RUS)|t[R] € r Nt]S] € s}

That is, the result of » x s is a relation on the schema R U S, in which a tuple is
a combination of a tuple from r and a tuple from s. So |r x s| = |r| x |s|. Here I
denotes the number of tuples in r.

Projection (I1)

Projection is a unary operation on a relation. Formally let r be relation on the
scheme R(A;, Az, . . .,Aq). Then the projection of r over attribute subset S (S C R) is
defined as follows.

s(r) = {t($)I(Vx) (x € r($) At = x[S])}-

In other words, the result of Ilg (r) is a relation on the schema S that only
includes the columns of relational table r which are given in S. It should noticed
that, if the attributes in S are all non-key attributes of r (R), duplicate tuples may
appear in Ilg (r) and must be eliminated.

Selection (o)

Selection is a unary operation on a relation. Formally let r be relation on the
scheme R(A;,A,,...,A,). Then the selection of r based on a selection condition
P specified by a Boolean expression in forms of a single or composite predicate is
defined as follows.

op(r) = {t|t € r ANP(1)}.

Clearly, the result of op (7) is a relation on the schema R that only includes the
tuples in r which satisfy the given selection condition P.

The five relational operations given above are called the primitive operations in
the relational databases. In addition, there are three additional relational opera-
tions, namely, intersection, join (and natural join), and division. But the three
operations can be defined by the primitive operations.
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Intersection (N)

Intersection is a binary set operation on two relations that are union-compatible.
Formally let r and s be two union-compatible relations on the scheme
R(A1,A;, ... Ay). Then

rOs={ffterntestorrnNns=r—(r—-s)

The result of » N s is a relation on the schema R that includes the tuples which
are both in r and in s.

Join (<)

Join is a binary set operation on two relations. Formally let r (R) and s (S) be
any two relations. Let P be a conditional predicate in the form of A 6 B, where 0 €
{> < >,<,= #}, where A € R, and B € S. Then

re<kps={t(RUS)It[Rlernt[S]esAP([R],t[S])} or
ro<ps =ap (r X s)

The result of r b<ip s is a relation on the schema R U S, in which a tuple is a
combination of a related tuple from r and a related tuple from s. Not being the
same as the Cartesian product operation, the two combined tuples respectively
from r and s must satisfy the given condition.

When attributes A and B are identical and “0” takes =, the join operation
becomes the natural join operation, denoted r > s. Let Q = R N S. Then

ras={t(RU(S— Q)] (3x) (Iy) (x(R) Ny € 5(S) Ax[Q] = y[Q] A 1[R]
= x[R] A 1S — Q] = y[S — O]}
Division (=)
Division, referred to quotient operation sometimes, is used to find out the sub-

relation r + s of a relation r, containing sub-tuples of » which have for comple-
ments in r all the tuples of a relation s. Then the division operation is defined by

ras = {1 (Vu) (u € s A (nu) € 1)},

where u is a tuple of s and ¢ is a sub-tuple of r such that (7, u) is a tuple of r.
Alternatively, let  (R) and s (S) be two relations, where S C R. Let Q = R — S.
Then the division of  and s can be defined as follows.

r+s = 1Iq(r) — Tg(r(Q) x s — 1)

1.2.1.6 Relational Database Design

1. Overall Design of Databases

The objective of database design is to capture the essential aspects of some real-
world enterprise for which one wishes to construct a database (Petry 1996).
Figure 1.1 shows a simplified description of the database design process (Elmasri
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Fig. 1.1 Database design
process
Requirements
Collection & Analysis

v

Conceptual Data Mod-
eling

v

Logical Database Model

v

Physical Database
Model

and Navathe 1994). Then four major steps are applied for the database design
process, which are the requirements collection and analysis, conceptual data
modeling, logical database model, and physical database model, respectively.

In the first step, the database designers collect and analyze the data require-
ments from prospective database users. As a result of this step, a concisely written
set of users’ requirements is formed.

In the second step, the conceptual data models (e.g., ER/EER and UML) are
used to create a conceptual schema for the database. Here, the conceptual schema
is a concise descriptions of the data requirements of the users and includes detailed
descriptions of the data types, relationships, constraints, and etc. But there are no
any implementation details in the conceptual schema. So it should be easy to share
the conceptual schema with non-technical users. It is worth mentioning that a
complex database is generally designed cooperatively by a design group and each
member of the group may have different background. So using multiple conceptual
data models to create the conceptual schema can facilitate the database designers
with different background to design their conceptual data schemas easily by using
one of the conceptual data models they are familiar with. But finally all these
conceptual schemas designed by different members should be converted into a
union conceptual schema. There are already some efforts for converting different
conceptual schemas (Cherfi et al. 2002).

vww . allitebooks.con
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In the third step, the logical database model is designed through mapping the
conceptual schema represented by the conceptual data model. The result of this
step is perhaps a relational or object-oriented database model. In Teorey et al.
(1986), for example, relational databases were logically designed using the ER
model.

Finally, in the fourth step, the physical database model is design. Of course, this
step is mostly already formulated with a commercial DBMS.

2. Relational Database Design Theory

In the context of relational databases, the relational database model should be
designed in terms of a set of good schemas such that update anomalies and data
redundancy are minimized. Here update anomalies mean that the undesired con-
sequences occur when updating the data in the relational databases (e.g., inserting,
deleting or modifying the tuples). The reason is that there exist certain undesired
dependency relationships between the attributes of a relation.

The relational database design theory has been developed for minimizing
update anomalies and data redundancy, which core is the normalization theory.
The process of normalization is the process of relation schema decomposition so
that certain undesired dependency relationships are removed to lead to certain
normal forms (NFs).

Let r (R) be a relation on schema R, U be the attribute set of R, and X, K,
A < U. Here K is the candidate key of R. Then we have the following major NFs
in the relational databases.

(a) The first normal form (INF): R is in INF, denoted by R € INF, if and only if
every attribute value in r (R) is atomic.

(b) The second normal form (2NF): R is in 2NF, denoted by R € 2NF, if and only
if R € INF and for any non-prime attribute A, K — ;A.

(c) The third normal form (3NF): R is in 3NF, denoted by R € 3NF, if and only if
R € INF and for any X — A (A € X), either X is a superkey of R or A is a set
of prime attributes.

(d) The Boyce-Codd normal form (BCNF): R is in BCNF, denoted by R € BCNF,
if and only if R € INF and for any X — A (A & X), either X is a superkey of R.

A lower NF can be normalized into a higher NF through relation schema
decomposition (via projection). Figure 1.2 shows the details (Chen 1999).

It should be noticed that the schema decomposition should satisfy the following
properties:

(a) lossless-join It means that the relation reconstructed from the resultant rela-
tions of the decomposition will be the same as the original relation with
respect to information contents.

(b) dependency-preservation It means that the functional dependencies in the
original relation are preserved by the resultant relations of the decomposition.

The four NFs discussed above are based on the functional dependency. In
addition, there are other kinds of normal forms such as the fourth normal form
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Fig. 1.2 Normal forms INF

based on functional

dependencies l removing partial FDs of non-prime attributes on keys
2NF

l removing transitive FDs of non-prime attributes on keys

3NF

l removing partial and transitive FDs of prime attributes on (other) keys

BCNF

(4NF) and the fifth normal form (5NF), which are related with multivalued
dependency and join dependency, respectively.

1.2.2 The Nested Relational Database Model

The normalization, being one kind of constraints, is proposed in traditional rela-
tional databases. Among various normalized forms, first normal form (INF) is the
most fundamental one, which assumes that each attribute value in a relational
instance must be atomic. As we know, the real-world applications are complex,
and data types and their relationships are rich as well as complicated. The 1NF
assumption limits the expressive power of traditional relational database model.
Therefore, some attempts to relax 1NF limitation are made and one kind of data
model, called non-first normal (or nested) relational database model have been
introduced.

The first attempt to relax first-normal formal limitation is made by Makinouchi
(1977), where, attribute values in the relation may be atomic or set-valued. Such
relation is thereby called non-first normal form (NF2) one. After Makinouchi’s
proposal, NF” database model is further extended (Ozsoyoglu et al. 1987; Schek
and Scholl 1986). The NF? database model in common sense now means that
attribute values in the relational instances are either atomic or set-valued and even
relations themselves. So NF? databases are called nested relational databases also.
Here, we do not differentiate these two notions. NF? relational schema can be
described as follows.

An attribute A; is a structured attribute if its schema appears on the left-hand
side of a rule; otherwise it is simple. An NF? relational schema may contain any
combination of simple or structured attributes on the right-hand side of the rules.
Formally,

Schema:: Simple_attributelSimple_attribute, Structured_attributes
Structured_attributes:: Simple_attributelSimple_attribute, Structured_attributes
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A schema is called flat if and only if all of its attributes are simple. It is clear
that a classical schema, namely, a flat relational schema, is a special case of a
nested relational schema. Two nested schemas are called union-compatible,
meaning the ordered attributes have the same nesting structure, if and only if the
corresponding simple attributes and structured attributes are union-compatible.

Let a relation r have schema R = (A,Ay,...,A,) and let Dy, Ds,..., D, be
corresponding domains from which values for attributes (A, A,,..., A,) are
selected. A tuple of an NF® relation is an element in r and denoted
as (ay,as, ... ay) consisting of n components. Each component g; (1 <j < n)
may be an atomic or null value or another tuple. If A; is a structured attribute, then
the value g; need not be a single value, but an element of the subset of the
Cartesian product of associated domains Dj;, Dj,..., Djm.

Based on the NF? database model, the ordinary relational algebra has been
extended. In addition, two new restructuring operators, called the Nest and Unnest
(Ozsoyoglu et al. 1987; Roth et al. 1987) [as well as Pack and Unpack (Ozsoyoglu
et al. 1987)], have been introduced. The Nest operator can gain the nested relation
including complex-valued attributes. The Unnest operator is used to flatten the
nested relation. That is, it takes a relation nested on a set of attributes and
desegregates it, creating a “flatter” structure. The formal definitions and the
properties of these operators as well as the ordinary relational algebra for the NF?
data model have been given (Colby 1990; Venkatramen and Sen 1993).

1.2.3 The Object-Oriented Database Model

Although there has been great success in using the relational databases for
transaction processing, the relational databases have some limitations in some non-
transaction applications such as computer-aided design and manufacturing (CAD/
CAM), knowledge-based systems, multimedia, and GIS. Such limitations include
the following.

(a) The data type is very restricted.

(b) The data structure based on the record notion may not match the real-world
entity.

(c) Data semantics is not rich, and the relationships between two entities cannot be
represented in a natural way.

Therefore, some non-traditional data models were developed in succession to
enlarge the application area of databases since the end of the 1970s. Since these
non-traditional data models appeared after the relational data model, they are
called post-relational database models. Object-oriented database model is one of
the post-relational database models.

Object-oriented (OO) data model is developed by adopting some concepts of
semantic data models and knowledge expressing models, some ideas of object-
oriented program language and abstract data type in data structure/programming.
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1.2.3.1 Objects and Identifiers

All real-world entities can be simulated as objects, which have no unified and
standard definition. Viewing from the structure, an object consists of attributes,
methods and constraints. The attributes of an object can be simple data and other
objects. The procedure that some objects constitute a new object is called
aggregation. A method in an object contains two parts: signature of the method
that illustrates the name of the method, parameter type, and result type; imple-
mentation of the method.

In general, attributes, methods and constraints in an object are encapsulated as
one unit. The state of an object is changed only by passing message between
objects. Encapsulation is one of the major features in OO data models.

In OO data models, each object has a sole and constant identifier, which is
called object identifier (OID). For two objects with same attributes, methods and
constraints, they are different objects if they have a different OID. The OID of an
object is generated by system and cannot be changed by the user.

The OID generated by system can be divided into two kinds, i.e., logical object
identifier and physical object identifier. Logical object identifier is mapped into
physical one when an object is used because only physical object identifier con-
cerns the storage address of the object.

1.2.3.2 Classes and Instances

In OO data models, objects with the same attributes, methods and constraints can
be incorporated into a class, where objects are called instances. In a class, attri-
butes, methods and constraints should be declared. Note that the attributes in a
class can be classified into two kinds: instance variables and class variables.
Instance variables are the attributes for which values are different in different
objects of the class, while class variables are the attributes for which values are the
same in different objects of the class.

In fact, classes can also be regarded as objects. Then, classes can be incorpo-
rated into another new class, called meta class. The instances of a meta class are
classes. Therefore, objects are distinguished into instance objects and class
objects.

1.2.3.3 Class Hierarchical Structure and Inheritance

A subset of a class, say A, can be defined as a class, say B. Class B is called a
subclass and class A is called superclass. A subclass can further be divided into
new subclasses. A class hierarchical structure is hereby formed, in which it is
possible that a subclass may have multiple direct or indirect superclasses. The
relationship between superclass and subclass is called IS-A relationship, which
represents a specialization from top to bottom and a generalization from bottom to
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top. Because one subclass can have several direct superclasses, a class hierarchical
structure is not a tree but a class lattice.

Because a subclass is a subset of its superclass, the subclass inherits the attri-
butes and methods in its all superclasses. Besides inheritance, a subclass can define
new attributes and methods or can modify the attributes and methods in the
superclasses. If a subclass has several direct superclasses, the subclass inherits the
attributes and methods from these direct superclasses. This is called multiple
inheritance.

When inheriting, the naming conflict may occur, which should be resolved.

(a) Conflict among superclasses. If several direct superclasses of a subclass have
the same name of attributes or methods, the conflict among superclasses
appear. The solution is to declare the superclass order inherited, or to be
illustrated by user.

(b) Conflict between a superclass and a subclass. When there are conflicts between
a subclass and a superclass, the definition of attributes and methods in subclass
would override the same definition in the superclass.

Note that a naming method may have a different meaning in different classes.
The feature that a name has a multiple meaning is called polymorphism. The
method with polymorphism is called overloading. Because the method in an object
is polymorphism, the procedure corresponding to the method name cannot be
determined while compiling program and do while running program. The later
combination of the method name and implementing procedure of a method is
called late binding.

1.3 Conceptual Data Models

Database systems are the key to implementing information modeling. Information
modeling in databases can be carried out at two different levels: conceptual data
modeling and logical database modeling. Correspondingly, we have conceptual
data models and logical database models for information modeling. Generally the
conceptual data models are used for information modeling at a high level of
abstraction and at the level of data manipulation, i.e., a low level of abstraction, the
logical database model is used for information modeling. Database modeling
generally starts from the conceptual data models and then the developed con-
ceptual data models are mapped into the logical database models.

The logical database models have been introduced in Sect. 1.2. In this section,
we present several common conceptual data models. We briefly introduce the
entity-relationship (ER) model, the enhanced (extended) entity-relationship (EER)
model, and the class model of the Unified Modeling Language (UML).
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1.3.1 Entity-Relationship and Enhanced ER Models

The entity-relationship (ER) model was incepted by Chen (1976) and has played a
crucial role in database design and information systems analysis. In spite of its
wide applications, the ER model suffers from its incapability of modeling complex
objects and semantic relationships. So a number of new concepts have been
introduced into the ER model by various researchers (dos Santos et al. 1979;
Elmasri et al. 1985; Gegolla and Hohenstein 1991; Scheuermann et al. 1979) to
enrich its usefulness and expressiveness, forming the notion of the enhanced
entity-relationship (EER) model.

1.3.1.1 ER Model

The ER data model proposed by Chen (1976) can represent the real world semantics
by using the notions of entities, relationships, and attributes. ER data schema
described by the ER data model is generally represented by the ER diagram.

1. Entity

Entity is a concrete thing or an abstract notion that can be distinguishable and
can be understood. A set of entities having the same characteristics is called an
entity set. A named entity set can be viewed as the description of an entity type,
while each entity in an entity set is an instance of that entity type. For example,
“Car” is an entity set. The descriptions of the features of a car belong to the entity
type, while an actual model car, for example, “Honda Civic DX, is an instance of
the car entity. Sometimes entity type is called entity for short.

2. Attribute and key

The characteristics of an entity are called attributes of the entity. Each attribute
has a range of values, called a value set. Value sets are essentially the same as
attribute domains in relational databases.

Attributes in entities, however, can be not only simple attributes having one
value set but also complex attributes having several value sets, called a composite
attribute. For example, attributes “name” and “post address” of a person are a
simple attribute and a complex attribute, respectively. In addition, an attribute can
be single-valued or multivalued. For example, the attributes “Age” and “Email
address” for a person are single-valued and multivalued attributes, respectively.

Like relational databases, a minimal set of attributes of an entity that can
uniquely identify the entity is called a key of the entity. An entity may have more
than one keys and one of them is designated as the primary key.

3. Relationship

Let ej,ez,...,e, be entities. A relationship among them is represented as
r(ey, ez, ..., ey). The relationship is 2-ary if n = 2 and is multiple-ary if n > 2. The
set that consists of the same type of relationship is called relationship set.
A relationship set can be viewed as a relationship among entity sets.
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R(E\,Ey, ..., E,) denotes the relationship set defined on entity sets Ey, Ea, . . ., Ey.
Relationship set is the type description of the entity relationship and a relationship
among concrete entities is an instance of the corresponding relationship set. The
same entity set can appear in a relationship set several times. A named relationship
set can be viewed as the description of a relationship type. Sometimes relationship
type is called relationship for short.

In the ER data model, a 2-ary relationship can be one-to-one, one-to-many, or
many-to-many relationships. This classification can be applied to n-ary relation-
ships as well. The constraint of a relationship among entities is called cardinality
ratio constraint. In the ER data model there is an important semantic constraint
called participation constraint, which stipulates the way that entities participate in
the relationship. The concept participation degree is used to express the minimum
number and maximum number of an entity participating in a relationship,
expressed as (min, max) formally, where max > min > 0 and max > 1. When
min = 0, the way an entity participates in a relationship is called partial partic-
ipation, and is called total participation otherwise. The cardinality ratio constraint
and participation constraint are, sometimes, referred to as the structure constraint.

Note that relationships in the ER data model also have attributes, called the
relationship attributes.

There is a special relationship in the real world, which represents the ownership
among entities and is called the identifying relationship. Such a relationship has
two characteristics:

(a) The entity owned by another entity depends on an owning entity, and does not
exist separately, which must totally participate in relationship.
(b) The entity owned by another entity may not be the entity key of itself.

Because the entity owned by another entity has such characteristics, it is called
the weak entity. A weak entity can be regarded as an entity as well as a complex
attribute of its owning entity.

4. ER diagram

In the ER diagram, entities, attributes and relationships should be represented,
where a rectangle denotes an entity set, a rectangle with double lines denotes a
weak entity set, and a diamond denotes a relationship. Rectangles and rhombus are
linked by arcs and the cardinality ratios of relationships are given. If an arc is a
single line, it represents that the entity is a partial participation. If an arc is a
double line, it represents that the entity is a total participation. Participation
degrees may be given if necessary.

In the ER diagram, a circle represents an attribute and it is linked to the
corresponding entity set with an edge. If an attribute is an entity key or a part of the
entity key, it is pointed out that in the ER diagram by underlining the attribute
name or adding a short vertical line on the edge. If an attribute is complex, a tree
structure will be formulated in the ER diagram.

Figure 1.3 shows ER diagram notations.
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Fig. 1.3 ER diagram notations
1.3.1.2 EER Model

The ER model based on entities, relationships and attributes is called the basic ER
model. In order to model the complex semantics and relationships in the appli-
cations such as CAD/CAM, CASE, GIS, and so on, some new concepts have been
introduced in the ER model and the enhanced (extended) entity-relationship (EER)
data model is formed. In the EER model, the following notions are introduced.

1. Specialization and generalization

Generalization can summarize several entity types with some common features
to an entity type and define a superclass. Specialization can divide an entity type
into several entity types according to a particular feature and define several
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subclasses. For example, entity type “Automobile” is specialized into several
subclasses such as “Car” and “Truck” while entity types “Faculty”, “Techni-
cian”, and “Research Associate” are generalized into a superclass “Staff”.

Symbolically, a superclass E and several subclasses Sy, S, ..., S, satisfy the
relationship S US, U---US, CE. Let F=U; S; (1 <i<n). Then if F =E,
F is a total specialization of E, or it is a partial one. In addition, F is a disjoint if
SiNS; = ® (G # j), oritis overlapping with G = U; §; (1 < i < n). It should be
noted that a subclass may not only inherit all attributes and relationships of its
superclasses, but also have itself attributes and relationships.

In order to represent specialization and generalization in the ER diagram, the
ER diagram should be extended and some new symbols are introduced into the
EER diagram as shown in Fig. 1.4.

2. Category

A category is a subclass of the union of the superclasses with different entity
types. For example, entity type “Account” may be entity types “Personal” or
“Business”. Symbolically, a category E and the supclasses S, S, ..., S, satisfy the
relationship £ C §1 U S, U --- U S,. The difference between the category and the
subclass with more than one superclass should be noticed. Let E be a subclass and
S1, So, ..., S, be its superclasses. One has then E C S, NS, N---NS,.

Figure 1.5 shows the category in the EER diagram.

3. Aggregation

A number of entity types, say Sy, S», ..., Sy, are aggregated to form an entity
type, say E. In other words, E consists of S, S5, ..., and S,. For example, an
entity type “Automobile” is aggregated from some entity types such as
“Engine”, “Gearbox”, and “Interior”, where “Interior” consists of “Seat” and
“Dashboard”. Here, S; (i =1, 2, ..., n) can be viewed as a kind of composite
attribute, but it is not a simple attribute, which is an entity type consisting of
simple attributes or other entity types. Therefore, the aggregation abstract is
proposed in object-oriented modeling as an abstract means. Being not the same as

Total Partial
Specialization Specialization

Overlapping DisjqinF ‘
Specialization Specialization

Subclass ‘ \M ‘ Subclass ‘ ‘ Subclass

Fig. 1.4 EER diagram of the specialization
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Fig. 1.5 EER diagram of the
category Sy S, ... Sh

Fig. 1.6 EER diagram of the e '
aggregation

specialization/generalization abstract, aggregated entity and all component enti-
ties belong to different entity types.
Figure 1.6 shows the aggregation in the EER diagram.

1.3.2 UML Class Model

The Unified Modeling Language (UML) (Booch et al. 1998; OMG 2001) is a set of
OO modeling notations that has been standardized by the Object Management
Group (OMG). The power of the UML can be applied for many areas of software
engineering and knowledge engineering (Mili et al. 2001). The complete develop-
ment of relational and object relational databases from business requirements can be
described by the UML. The database itself traditionally has been described by
notations called entity relationship (ER) diagrams, using graphic representation that
is similar but not identical to that of the UML. Using the UML for database design
has many advantages over the traditional ER notations (Naiburg 2000). The UML is
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based largely upon the ER notations, and includes the ability to capture all infor-
mation that is captured in a traditional data model. The additional compartment in
the UML for methods or operations allows you to capture items like triggers,
indexes, and the various types of constraints directly as part of the diagram. By
modeling this, rather than using tagged values to store the information, it is now
visible on the modeling surface, making it more easily communicated to everyone
involved. So more and more, the UML is being applied to data modeling (Ambler
2000a, b; Blaha and Premerlani 1999; Naiburg 2000). More recently, the UML has
been used to model XML conceptually (Conrad et al. 2000).

From the database modeling point of view, the most relevant model is the class
model. The building blocks in this class model are those of classes and relationships.

1.3.2.1 Class

Being the descriptor for a set of objects with similar structure, behavior, and
relationships, a class represents a concept within the system being modeled.
Classes have data structure and behavior and relationships to other elements.

A class is drawn as a solid-outline rectangle with three compartments separated
by horizontal lines. The top name compartment holds the class name and other
general properties of the class (including stereotype); the middle list compartment
holds a list of attributes; the bottom list compartment holds a list of operations.
Either or both of the attribute and operation compartments may be suppressed.
A separator line is not drawn for a missing compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elements
in it. Figure 1.7 shows a class.

1.3.2.2 Relationships

Another main structural component in the class diagram of the UML is relation-
ships for the representation of relationship between classes or class instances.
UML supports a variety of relationships.

(a) Aggregation and composition An aggregation captures a whole-part relation-
ship between an aggregate, a class that represent the whole, and a constituent
part. An open diamond is used to denote an aggregate relationship. Here the
class touched with the white diamond is the aggregate class, denoting the
“whole”. Figure 1.8 shows an aggregation relationship.

Fig. 1.7 The class icon of Class name
the UML

Attributes

Operations
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Fig. 1.8 An aggregation
relationship in the UML Car

Fig. 1.9 A generalization
relation in the UML Vehicle

(b)
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Engine Interior Chassis

T

Car Truck

Aggregation is a special case of composition where constituent parts directly
dependent on the whole part and they cannot exist independently. Composition
mainly applies to attribute composition. A composition relationship is repre-
sented by a black diamond.

Generalization Generalization is used to define a relationship between classes
to build taxonomy of classes: one class is a more general description of a set of
other classes. The generalization relationship is depicted by a triangular
arrowhead. This arrowhead points to the superclass. One or more lines proceed
from the superclass of the arrowhead connecting it to the subclasses. Figure 1.9
shows a generalization relationship.

(c) Association Associations are relationships that describe connections among

(d)

Fig.
relation in UML CD Player g Car

class instances. An association is a more general relationship than aggregation
or generalization. A role may be assigned to each class taking part in an
association, making the association a directed link. An association relationship
is expressed by a line with an arrowhead drawn between the participating
classes. Figure 1.10 shows an association relationship.

Dependency A dependency indicates a semantic relationship between two
classes. It relates the classes themselves and does not require a set of instances
for its meaning. It indicates a situation in which a change to the target class
may require a change to the source class in the dependency. A dependency is
shown as a dashed arrow between two classes. The class at the tail of the arrow
depends on the class at the arrowhead. Figure 1.11 shows a dependency
relationship.

1.10 An association installing
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Fig. 1.11 A dependency
relationship in the UML Dependent = ======- -»| Employee

1.4 XML Models

Besides the logical and conceptual data models, with the popularity of Web-based
applications, the requirement has been put on the exchange and share of data over
the Web. The eXtensiable Markup Language (XML) provides a Web-friendly and
well-understood syntax for the exchange of data and impacts on data definition and
share on Web (Seligman and Rosenthal 2001). So this subchapter will briefly
present the XML.

The eXtensible Markup Language (XML) (Bray et al. 1998), a data formatting
recommendation proposed by the W3C as a simplified form of the Standard
Generalized Markup Language (SGML), is becoming the de facto standard for
data description and exchange between various systems and databases over the
Internet. As a new markup language, XML supports user-defined tags, encourages
the separation of document content from its presentation, and is able to automate
web information processing. This is creating a new set of data management
requirements involving XML, such as the need to store and query XML
documents.

1.4.1 XML Documents

An XML document has a logical and a physical structure (Bray et al. 1998). The
physical structure is consists of entities that are ordered hierarchically. The logical
structure is explicitly described by markups that comprise declarations, elements,
comments, character references, and processing instructions.

XML documents that conform to the rules of XML mark-up are called “well-
formed”; for example, each document must have a single top-level (root) element,
and all tags must be correctly nested. A number of additional instructions arc
permitted, such as comments, processing instructions, unparsed character data and
entity references. Tags can also contain attributes in the form of name and values
pairs, with the values enclosed in quotation marks. Figure 1.12 (Bourret 2004)
shows an example XML document.

Essentially, XML documents can be associated with and validated against a
schema specification in terms of a document type definition (DTD) (Bray et al.
1998) or by using the more powerful XML Schema language (Thompson et al.
2001; Biron and Malhotra 2001). In the following, we only focus on the DTD.
Then XML document structure consists of an optional document type declaration
containing the DTD and a document instance. The purpose of a DTD is to provide
a grammar for a class of documents. DTDs consist of markup declarations.
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<SalesOrder SONumber="12345">
<Customer CustNumber="543">
<CustName>ABC Industries</CustName>
<Street>123 Main St.</Street>
<City>Chicago</City>
<State>IL</State>
<PostCode>60609</PostCode>
</Customer>
<OrderDate>981215</OrderDate>
<Item ItemNumber="1">
<Part PartNumber="123">
<Description>
<p><b>Turkey wrench:</b><br/>
Stainless steel, one-piece construction, lifetime guaran-
tee.</p>
</Description>
<Price>9.95</Price>
</Part>
<Quantity>10</Quantity>
</Item>
<Item ItemNumber="2">
<Part PartNumber="456">
<Description>
<p><b>Stuffing separator:<b><br/>
Aluminum, one-year guarantee.

</p>
</Description>
<Price>13.27</Price>
</Part>
<Quantity>5</Quantity>
</Item>
</SalesOrder>

Fig. 1.12 Sales order XML document

1.4.2 XML DTD Constructs

According to the XML specification, DTDs consist of markup declarations namely
element declarations, attribute-list declarations, entity declarations, notation dec-
larations, processing instructions, and comments (Bray et al. 1998). As for these
declarations, they are the elementary building blocks on which a DTD can be
designed.
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1. Element Type and Attribute-list Declarations

Element type and attribute-list declarations make up the core of DTDs and
declare the valid structures of a document instance, namely, the nested element
tags with their additional attributes. An elements type declaration associates the
element content. XML provides a variety of facilities for the construction of the
element content, namely, sequence of elements, choice of elements, cardinality
constructors (?, *, +), the types of EMPTY, ANY, #PCDATA, and mixed content.
Sequence requires elements to have a fixed order, whereas choice expresses ele-
ment alternatives. An EMPTY element has no content, whereas ANY indicates
that the element can contain data of type #PCDATA or any other element defined
in the DTD. Mixed is useful when elements are supposed to obtain character data
(#PCDATA), optionally interspersed with child elements.

The name of attribute list must match the name of the corresponding element.
The list of attribute declaration consists of the attribute names, their types and
default declarations.

2. Entity Declarations

Entity declarations serve the reuse of DTD fragments and text as well as the
integration of unparsed data. An entity declaration binds an entity to an identifier.
Being external entities, unparsed entities always have notation references.

3. Notation Declarations

Notation Declarations provide a name for the format of an unparsed entity.
They might be used as reference in entity declarations, and in attribute-list dec-
laration as well as in attribute specification.

4. Processing Instructions

Processing instructions play an important role while checking integrity con-
straints of valid document instances. They have to be checked while parsing a
document instance. The XML parse validates the document instance first and
consumes the processing instructions known to XML. Then an application can
handle more specific processing instructions.

A simple DTD of the XML document in Fig. 1.12 is given in Fig. 1.13 as
follows.

It should be noted that, however, XML lacks sufficient power in modeling real-
world data and their complex inter-relationships in semantics. Hence, it is
necessary to use other methods to describe data paradigms and develop a true
conceptual data model, and then transform this model into an XML encoded
format, which can be treated as a logical model (Lee et al., 2001). Figure 1.14
depicts such a procedure to integrate conceptual data models and XML, making it
easier to create, manage and retrieve XML documents.

Conceptual data modeling of XML schema [here XML schema refers to XML
DTD or XML Schema, while XML Schema refers to the XML schema language
proposed by W3C (Thompson et al. 2001; Biron and Malhotra 2001)] has been
studied in the recent past. In Conrad et al. (2000), UML was used for designing
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<!ELEMENT SaleOrder (Customer®, OrderDate, Item*)>
<!ATTLIST SaleOrder SONumber IDREF #REQUIRED>

<!ELEMENT Customer (CustName?, Street?, City?, State?, PostCode?)>
<!ATTLIST Customer CustNumber IDREF #REQUIRED>
<!ELEMENT CustName (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT PostCode (#PCDATA)>
<!ELEMENT OrderDate (#PCDATA)>
<!ELEMENT Item (Part*, Quantity)>
<!ATTLIST Item ItemNumber IDREF #REQUIRED>
<!ELEMENT Part (Description?, Price?)>
<!ATTLIST Part PartNumber IDREF #REQUIRED>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>

Fig. 1.13 The DTD of the XML document in Fig. 1.12

Conceptual Da- mapping XML
ta Models DTD

Fig. 1.14 Transformation from conceptual data models to XML DTD

XML DTD. The idea is to use essential parts of static UML to model XML DTD.
The mapping between the static part of UML (i.e., class diagrams) and XML
DTDs was developed. To take advantage of all facets that DTD concepts offer, the
authors further extended the UML language in an UML-compliant way. Focusing
on conceptual modeling at XML Schema level instead of XML DTD level, Xiao
et al. (2001) introduced a solution for modeling XML and the transformation from
object-oriented (OO) conceptual models to XML Schema, where the OO features
are more general and are not limited to UML. Also in Mani et al. (2001), a set of
features found in various XML schema languages (e.g., XML DTD and XML
Schema) was formalized into XGrammar and the conversion between an
XGrammar and EER model was presented. The EER was also used in Elmasri
et al. (2002) to generate customized hierarchical views and then further create
XML schemas from the hierarchical views. In Psaila (2000), the ER model was
extended to ERX so that one can represent a style sheet and a collection of
documents conforming to one DTD in ERX model. But order was represented in
ERX model by an additional order attribute.
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XML DTDs can also be converted to conceptual models. In dos Santos Mello
and Heuser (2001), a semi-automatic process for converting an XML DTD to a
schema in a canonical conceptual model based on ORM/NIAM and extended ER
models was described. A set of conversion rules, which was the core of this
process, was hereby developed.

1.4.3 XML Databases

It is crucial for Web-based applications to model, storage, manipulate, and manage
XML data documents. XML documents can be classified into data-centric docu-
ments and document-centric documents (Bourret 2004).

1. Data-Centric Documents

Data-centric documents are characterized by fairly regular structure, fine-grained
data (i.e., the smallest independent unit of data is at the level of a PCDATA-only
element or an attribute), and little or no mixed content. The order in which sibling
elements and PCDATA occurs is generally not significant, except when validating
the document. Data-centric documents are documents that use XML as a data
transport. They are designed for machine consumption and the fact that XML is used
at all is usually superfluous. That is, it is not important to the application or the
database that the data is, for some length of time, stored in an XML document.

As a general rule, the data in data-centric documents is stored in a traditional
database, such as a relational (Kappel et al. 2000; Lee and Chu 2000), object-
oriented (Chung et al. 2001), object-relational (Surjanto et al. 2000), or hierar-
chical database. The data can also be transferred from a database to a XML
document (Vittori et al. 2001; Shanmugasundaram et al. 2001; Carey et al. 2000).

For the transfers between XML documents and databases, the mapping rela-
tionships between their architectures as well as their data should be created (Lee
and Chu 2000; Surjanto et al. 2000). Note that it is possible to discard some
information such as the document and its physical structure when transferring data
between them. It must be pointed out, however, that the data in data-centric
documents such as semistructured data can also be stored in a native XML
database, in which a document-centric document is usually stored.

The sales order XML document shown in Fig. 1.12 is data-centric.

2. Document-Centric Documents

Document-centric documents are characterized by less regular or irregular
structure, larger grained data (that is, the smallest independent unit of data might
be at the level of an element with mixed content or the entire document itself), and
lots of mixed content. The order in which sibling elements and PCDATA occurs is
almost always significant. Document-centric documents are usually documents
that are designed for human consumption. As a general rule, the documents in
document-centric documents are stored in a native XML database or a content
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<Product>

<Intro> The <ProductName>Turkey Wrench</ProductName> from <Developer>Full
Fabrication Labs, Inc.</Developer> is <Summary>like a monkey wrench,

but not as big.</Summary> </Intro>

<Description>

<Para>The turkey wrench, which comes in <i>both right- and left-

handed versions (skyhook optional)</i>, is made of the <b>finest

stainless steel</b>. The Readi-grip rubberized handle quickly adapts

to your hands, even in the greasiest situations. Adjustment is

possible through a variety of custom dials.</Para>

<Para>You can:</Para>

<List>

<Item><Link URL="Order.html">Order your own turkey wrench</Link></Item>
<Item><Link URL="Wrenches.htm">Read more about wrenches</Link></Item>
<Item><Link URL="Catalog.zip">Download the catalog</Link></Item>

</List>

<Para>The turkey wrench costs <b>just $19.99</b> and, if you

order now, comes with a <b>hand-crafted shrimp hammer</b> as a bonus gift.</Para>
</Description>

</Product>

Fig. 1.15 The document-centric XML document of product description

management system (an application designed to manage documents and built on
top of a native XML database). Native XML databases are databases designed
especially for storing XML documents. The only difference of native XML dat-
abases from other databases is that their internal model is based on XML and not
something else, such as the relational model.

In practice, however, the distinction between data-centric and document-centric
documents is not always clear. So the above-mentioned rules are not of a certainty.
Data, especially semistructured data, can be stored in native XML databases and
documents can be stored in traditional databases when few XML-specific features
are needed. Furthermore, the boundaries between traditional databases and native
XML databases are beginning to blur, as traditional databases add native XML
capabilities and native XML databases support the storage of document fragments
in external databases. The following product description given in Fig. 1.15 is
document-centric (Bourret 2004).

1.5 Summary

How to manage a large number of data in various real-world application domains
is particularly important. Databases and eXtensible Markup Language (XML) play
essential roles for realize data management and information modeling. Various
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database models have been developed to operate and manage large quantities of
data. Also, the XML is emerging and gradually considered as the de facto standard
for data description and exchange between various systems and databases over the
Internet. In this chapter, we introduce several common database models, including
conceptual data models (entity-relationship (ER) model, enhanced entity-
relationship (EER) model, and UML data model) and logical database models
(relational database model and object-oriented database model). Also we discuss
the data management requirements involving XML.

However, the traditional database models and XML feature limitations, mainly
with what can be said about fuzzy information that is commonly found in many
application domains. In order to provide the necessary means to handle and
manage such information there are today a huge number of proposals for fuzzy
extensions to database models and XML. In particular, Zadeh’s fuzzy set theory
(Zadeh 1965) has been identified as a successful technique for modelling the fuzzy
information in many application areas, especially in the databases and XML. In
Chap. 2, we will briefly introduce the fuzzy set theory and fuzzy database models.
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Chapter 2
Fuzzy Sets and Fuzzy Database Models

Abstract Information imprecision and uncertainty exist in many real-world
applications, and for this reason fuzzy data modeling has been extensively
investigated in various database models. In particular, Zadeh’s fuzzy set theory has
been identified as a successful technique for modeling imprecise and uncertain
information in various database models. This has resulted in numerous contribu-
tions, mainly with respect to the popular fuzzy conceptual data models (fuzzy ER/
EER model, fuzzy UML data model, and etc.) and fuzzy logical database models
(fuzzy relational database model, fuzzy object-oriented database model, and etc.).
Also, it is shown that fuzzy set theory is very useful in Web-based business
intelligence. Therefore, topics related to the modeling of fuzzy data are considered
very interesting in XML since it is the current standard data representation and
exchange format over the Web. In particular, to manage fuzzy XML data, it is
necessary to integrate fuzzy XML and various fuzzy databases, and various fuzzy
database models (fuzzy relational database model and fuzzy object-oriented
database model) need to be used for mapping to and from the fuzzy XML models.
Therefore, in this chapter, we mainly introduce several fuzzy database models,
including fuzzy UML data model, fuzzy relational database model, and fuzzy
object-oriented database model. Before that, we briefly introduce some notions of
fuzzy set theory.

2.1 Introduction

Information is often imprecise and uncertain in many real-world applications, and
many sources can contribute to the imprecision and uncertainty of data or infor-
mation. Therefore, it has been pointed out that we need to learn how to manage
data that is imprecise or uncertain (Dalvi and Suciu 2007).

Unfortunately, the classical data management techniques such as databases and
XML as introduced in Chap. 1 often suffer from their incapability of representing
and manipulating imprecise and uncertain data information. On this basis, since
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the early 1980s, Zadeh’s fuzzy logic (Zadeh 1965) has been introduced into var-
ious database models in order to enhance the classical models such that uncertain
and imprecise information can be represented and manipulated. Over the past 30
years, a significant body of research in the area of fuzzy database modeling has
been developed and tremendous gain is hereby accomplished in this area. Various
fuzzy database models have been proposed, and some major issues related to these
models have been investigated. In particular, fuzzy information has been exten-
sively investigated in the context of the relational model (Petry 1996; Chen 1999).
Recent efforts have extended these results to object-oriented databases by intro-
ducing the related notions of classes, generalization/specialization, and inheritance
(de Caluwe 1998; Ma 2005a). In addition, fuzzy data modeling has been inves-
tigated in the context of the conceptual data models such as ER (Zvieli and Chen
1986), EER (Chen and Kerre 1998) and UML (Ma and Yan 2007; Ma et al. 2011;
Haroonabadi and Teshnehlab 2007, 2009; Sicilia et al. 2002). More recently, XML
data management is increasingly receiving attention due to the extensive use of
Internet. Fuzzy information modeling in XML is hereby one of the foundations of
implementing Web-based intelligent information processing (Ma 2005b).

In general, being similar to the classical database models, two kinds of database
models can be identified, which are fuzzy conceptual data models (e.g., fuzzy ER
(entity-relationship)/EER (enhanced/extended entity-relationship) models and
fuzzy UML data model) and fuzzy logical database models (fuzzy relational
database model and fuzzy object-oriented database model). Fuzzy conceptual data
models for conceptual data modeling provide the designers with powerful mech-
anisms in generating the most complete specification from the real world. Fuzzy
logical database models are often created through mapping fuzzy conceptual data
models into fuzzy logical database models.

In this chapter, we mainly introduce several fuzzy database models, including
fuzzy UML conceptual data model, fuzzy relational and fuzzy object-oriented
logical database models. These models can be used for mapping to and from the
fuzzy XML models in order to realize the fuzzy data management in many areas,
such as database and Web-based application domains. Before that, we briefly
introduce some notions of fuzzy set theory.

2.2 Imperfect Information and Fuzzy Sets

In real-world applications, information is often imperfect. Zadeh’s fuzzy set theory
has been identified as a successful technique for modeling imprecise and uncertain
information in many application areas. Fuzzy set theory (Zadeh 1965), which is also
interchangeably referred as fuzzy logic, is a generalization of the set theory and
provides a means for the representation of imprecision and vagueness. One of the
important areas of research in data management has been the continuous effort to
enrich existing data management techniques (e.g., databases and XML) with a more
extensive collection of semantic concepts. One of the semantic needs not adequately
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addressed by traditional models is that of imprecision and uncertainty. Traditional
models assume the database model and XML to be a correct reflection of the world
being captured and assume that the data stored is known, accurate, and complete. It
is rarely the case in real life that all or most of these assumptions are met. Different
fuzzy database models and fuzzy XML have been proposed to handle different
categories of data quality (or lack thereof) with fuzzy set theory. Therefore, in this
section, we briefly introduce some notions of fuzzy sets and possibility theory.

2.2.1 Imperfect Information

In order to satisfy the need for modeling fuzzy information, there have been some
attempts at classifying various possible kinds of imperfect information. Inconsis-
tency, imprecision, vagueness, uncertainty, and ambiguity are five basic kinds of
imperfect information (Bosc and Prade 1993; Motor 1990; Motor and Smets 1997,
Ma and Yan 2008; Smets 1997).

(a) Inconsistency is a kind of semantic conflict, meaning the same aspect of the
real world is irreconcilably represented more than once in a database or in
several different databases. For example, the age of George is stored as 34 and
37 simultaneously.

(b) Intuitively, imprecision and vagueness are relevant to the content of an
attribute value, and it means that a choice must be made from a given range
(interval or set) of values but it is not known exactly which one to choose per
se. For example, between 20 and 30 years old and young for the attribute Age
are imprecise and vague values, respectively. In general, vague information is
represented by linguistic terms.

(c) Uncertainty is related to the degree of truth of its attribute value, meaning that
we can apportion some, but not all, of our belief to a given value or group of
values. For example, the possibility that the age of Chris is 35 right now
should be 0.98. The random uncertainty, described using probability theory, is
not considered here.

(d) Ambiguity means that some elements of the model lack complete semantics,
leading to several possible interpretations.

In general, several different kinds of imperfect information can co-exist with
respect to the same piece of information. In addition, imprecise values generally
denote a set of values in the form of [ail, ai2, ..., aim] or [ail, ai2] for the discrete
and continuous universe of discourse, respectively, meaning that exactly one of the
values is the true value for the single-valued attribute, or at least one of the values
is the true value for the multivalued attribute. So, imprecise information here has
two interpretations: disjunctive information and conjunctive information.

One kind of imprecise information that has been studied extensively is the well-
known null values (Codd 1986, 1987; Motor 1990; Parsons 1996; Zaniolo 1984),
which were originally called incomplete information. The possible interpretations
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of null values include: (a) existing but unknown, (b) nonexisting or inapplicable,
and (c) no information. A null value on a multivalued object, however, means an
“open null value” (Gottlob and Zicari 1988), i.e., the value may not exist, has
exactly one unknown value, or has several unknown values. Null values with the
semantics of “existent but unknown” can be considered as the special type of
partial values that the true value can be any one value in the corresponding
domain, i.e., an applicable null value corresponds to the whole domain.

The notion of a partial value is illustrated as follows (Grant 1979). A partial
value on a universe of discourse U corresponds to a finite set of possible values in
which exactly one of the values in the set is the true value, denoted by {a;, a,
..., apy} for discrete U or [a;, a,] for continua U, in which {ay, a», ..., an,} S Uor
[a;, a,] < U. Let n be a partial value, then sub (1) and sup (1) are used to
represent the minimum and maximum in the set.

Note that crisp data can also be viewed as special cases of partial values. A
crisp data on discrete universe of discourse can be represented in the form of {p},
and a crisp data on continua universe of discourse can be represented in the form
of [p, p]. Moreover, a partial value without containing any element is called an
empty partial value, denoted by L. In fact, the symbol L means an inapplicable
missing data (Codd 1986, 1987). Null values, partial values, and crisp values are
thus represented with a uniform format.

2.2.2 Fuzzy Sets

The fuzzy set was originally presented by Zadeh (1965). Since then fuzzy set has
been infiltrating into almost all branches of pure and applied mathematics that are
set-theory-based. This has resulted in a vast number of real applications crossing
over a broad realm of domains and disciplines. Over the years, many of the
existing approaches dealing with imprecision and uncertainty are based on the
theory of fuzzy sets.

Let U be a universe of discourse. A fuzzy value on U is characterized by a fuzzy
set Fin U. A membership function

up U —[0,1]

is defined for the fuzzy set F, where ux (u), for each u € U, denotes the degree of
membership of u in the fuzzy set F. For example, ur (u) = 0.8 means that u is
“likely” to be an element of F by a degree of 0.8. For ease of representation, a
fuzzy set F over universe U is organized into a set of ordered pairs:

F= {pp(w)/wy; pp(u) /ua, - - i (un) [t}

When the membership function px (1) above is explained to be a measure of the
possibility that a variable X has the value u in this approach, where X takes values
in U, a fuzzy value is described by a possibility distribution 7y (Zadeh 1978).
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nx = {nx (i) /ur, mx(up) [uz, - 7x () /an }

Here, nx (u;), u; € U, denotes the possibility that u; is true.

In addition, a fuzzy data is represented by similarity relations in domain ele-
ments (Buckles and Petry 1982), in which the fuzziness comes from the similarity
relations between two values in a universe of discourse, not from the status of an
object itself. Similarity relations are thus used to describe the degree similarity of
two values from the same universe of discourse. A similarity relation Sim on the
universe of discourse U is a mapping: U x U — [0, 1] such that:

(1) for V x e U, Sim (x, x) = 1, (reflexivity);
(i) for V x,y e U, Sim (x, y) = Sim; (y, x), (symmetry); and
(iii) for V x, y, z € U, Sim (x, z) > max, (min (Sim (x, y), Sim (y, 2))),
(transitivity).

Moreover, the following notions related to fuzzy sets can be defined.
Support The set of the elements that have non-zero degrees of membership in
F is called the support of F, denoted by

supp(F) = {u | u € Uand pz(u) > 0}.

Kernel The set of the elements that completely belong to F is called the kernel
of F, denoted by

ker(F) = {u|u € U and pup(u) = 1}.

o-Cut The set of the elements which degrees of membership in F are greater
than (greater than or equal to) o, where 0 < « < 1 (0 < o < 1), is called the strong
(weak) a-cut of F, respectively denoted by

Fyy = {u|u€Uand pp(u) > o} and
Fy={u|ueUand up(u)>oa}.

In addition, to manipulate fuzzy sets and possibility distributions, several
common set operations are defined. The usual set operations (such as union,
intersection and complementation) have been extended to deal with fuzzy sets
(Zadeh 1965). Let A and B be fuzzy sets on the same universe of discourse U with
the membership functions 4 and g, respectively. Then we have

Union The union of fuzzy sets A and B, denoted A U B, is a fuzzy set on U with
the membership function p,5: U — [0, 1], where

Vi € U, g (u) = max(py (), pup(u))-

Intersection The intersection of fuzzy sets A and B, denoted A N B, is a fuzzy set
on U with the membership function usqg: U — [0, 1], where

Vi € U, panp(u) = min(py (), pp(u)).
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Complementation The complementation of fuzzy set A, denoted by A, is a fuzzy
set on U with the membership function pz: U — [0, 1], where

Vi € U, uilu) = 1 — py(u).

Based on these definitions, the difference of the fuzzy sets B and A can be
defined as:

B—A=BnNA.

Also, most of the properties that hold for classical set operations, such as
DeMorgan’s Laws, have been shown to hold for fuzzy sets. The only law of
ordinary set theory that is no longer true is the law of the excluded middle, i.e.,

ANA#PandAUA #£ U.

Let A, B and C be fuzzy sets in a universe of discourse U. Then the operations
on fuzzy sets satisfy the following conditions:

e Commutativity laws: AUB=BUA,ANB=BNA

e Associativity laws: (AUB)UC =AU (BUC),  ANB)NC=AN(BNC)

e Distribution laws: (AUB)NC= (ANC)U(BNC), ANB)UC= (AUC)
N(BUC)

e Absorption laws: (AUB)NA =A, (ANB)UA=A

e Idempotency laws: AUA =A,ANA=A

e de Morgan laws: AUB=ANB, ANB=AUB

Given two fuzzy sets A and B in U, B is a fuzzy subset of A, denoted by B < A, if
up(u) <py(u) for allu e U.

Two fuzzy sets A and B are said to be equal if A = B and B < A.

In order to define Cartesian product of fuzzy sets, let U = U; x U, x -+ x U,
be the Cartesian product of n universes and Ay, A,, ..., A, be fuzzy sets in U;, U,,
..., Uy, respectively. The Cartesian product A; x A, X --- X A, is defined to be a
fuzzy subset of U; x U, X - -+ x U,, where

Batscscan (M1 - ) = min(uy (1), ., fg o (Un))

anduy; € U,i=1, ..., n.

2.3 Fuzzy UML Data Models

Databases are the key to implementing data management. The conceptual data
models play an important role in conceptual data modeling and database con-
ceptual design. In general, the conceptual data models are used for information
modeling at a high level of abstraction and at the level of data manipulation, i.e., a
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low level of abstraction. Database modeling generally starts from the conceptual
data models and then the developed conceptual data models are mapped into the
logical database models. Therefore, the conceptual data modeling may be the basic
for data management. However, classical data models often suffer from their
incapability to represent and manipulate imprecise and uncertain information that
may occur in many applications in the real world.

In order to deal with complex objects and imprecise and uncertain information in
conceptual data modeling, one needs fuzzy extension to conceptual data models,
which allow imprecise and uncertain information to be represented and manipulated
at a conceptual level. Various fuzzy conceptual data models have been proposed in
the literature such as fuzzy ER model, fuzzy EER model, fuzzy IFO model, and
fuzzy UML data model (Ma and Yan 2010). Note that, among these fuzzy con-
ceptual data models, the fuzzy UML data model has the relatively strong expression.
The fuzzy UML data model is a fuzzy extension of UML (Unified Modeling Lan-
guage), which is a set of OO (object-oriented) modeling notations that has been
standardized by the Object Management Group (OMG). In recent years, fuzzy UML
data models were widely investigated for modeling imprecise and uncertain
information (Ma and Yan 2007; Ma et al. 2011; Haroonabadi and Teshnehlab 2007,
2009; Sicilia et al. 2002). In this section, we focus on the fuzzy UML data model.

2.3.1 Fuzzy Class

An object, which is an entity of the real world, is fuzzy because of a lack of
information. Formally, objects that have at least one attribute whose value is a
fuzzy set are fuzzy objects. The objects with the same structure and behavior are
grouped into a class, and classes are organized into hierarchies. Theoretically, a
class can be considered from two viewpoints:

e An extensional class, where the class is defined by a list of its object instances;
e An intensional class, where the class is defined by a set of attributes and their
admissible values.

In a fuzzy UML data model, a class is fuzzy because of the following several
reasons (Ma and Yan 2007):

e A class is extensionally defined, where some objects with similar properties are
fuzzy ones. The class defined by these objects may be fuzzy, and these objects
belong to the class with degree of [0, 1].

e When a class is intensionally defined, the domains of some attributes may be
fuzzy, and thus a fuzzy class is formed.

e The subclass produced by a fuzzy class by means of specialization, and the
superclass produced by some classes (in which there is at least one class who is
fuzzy) by means of generalization, are fuzzy.
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Figure 2.1 shows a fuzzy UML class Old-Employee, where a fuzzy class is
denoted by using a dashed-outline rectangle to differentiate a classical class. Here:

e A fuzzy keyword FUZZY is appeared in front of an attribute indicating the
attribute may take fuzzy values. For example, FUZZY Age or FUZZY Email.

e For an attribute a of type T in a class C, an optional multiplicity [i...j] for
a specifies that a associates to each instance of C at least i and most j instances
of T. When the multiplicity is missing, [1...1] is assumed, i.e., the attribute is
single-valued. For example, the attribute “FUZZY Email [1...00]” in Fig. 2.1
means that each object instance of the class Old-Employee has at least one
email, and possibly more.

e The method IsDepartment():String denotes the dynamic aspect of fuzzy UML data
models. It returns a possibility distribution value. The type of the parameter is null.

e An additional attribute u# € [0, 1] in the class is defined for representing the
object instance membership degree to the class.

2.3.2 Fuzzy Association

An association is a relation between the instances of two or more classes. Names
of associations are unique in a fuzzy UML data model. An association has a related
association class that describes properties of the association. Three kinds of
fuzziness can be identified in an association relationship:

(i) The association is fuzzy itself, it means that the association relationship
fuzzily exists in n classes, namely, this association relationship occurs with a
degree of possibility.

(i) The association is not fuzzy itself, i.e., it is known that the association
relationship must occur in n classes. But it is not known for certain if n class
instances (i.e., n objects) respectively belonging to the n classes have the
given association relationship.

(iii)) The association is fuzzy caused by such fact that (i) and (ii) occur in the
association relationship simultaneously.

A Fuzzy Association relationship is an association relationship with a degree of
possibility. We introduce a symbol f3, as shown in Fig. 2.2, into a fuzzy UML data
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Date: String
[ String

Fig. 2.2 Representation of a fuzzy association (class) in a fuzzy UML data model

model to denote the degree of possibility of a Fuzzy Association, and the calcu-
lating methods of f with respect to the three kinds of fuzziness above have been
introduced in Ma et al. (2004).

Figure 2.2 shows a Fuzzy Association class Use between two classes Old-
Employee and New-Computer. A single line with an arrowhead is used to denote a
Fuzzy Association, and the association class is connected with the association by a
dashed-outline. Here:

e Date is an attribute of the association class Use, which describes the start date
that an Old-Employee uses a New-Computer.

e The additional symbol f denotes the membership degree of the Fuzzy Associ-
ation occurring in several classes as mentioned above.

e The participation of a class in a Fuzzy Association is called a role which has a
unique name. For example, Uby and Uof in Fig. 2.2.

e The cardinality constraint (i, n) on an association S specifies that each instance
of the class Cj can participate at least m times and at most n times to S. For
example, in Fig. 2.2, (1, 1) and (1, 2) denote that each Old-Employee can use at
least 1 and at most 2 New-Computers and each New-Computer can be used by
exactly one Old-Employee.

2.3.3 Fuzzy Generalization

The concept of generalization is one of the basic building blocks of the fuzzy
UML data model. A generalization is a taxonomic relationship between a more
general classifier named superclass and a more specific classifier named subclass.
The subclass is produced from the superclass by means of inheriting all attributes
and methods of the superclass, overriding some attributes and methods of the
superclass, and defining some attributes and methods.

However, a class produced from a fuzzy class must be fuzzy. If the former is
still called subclass and the later superclass, the subclass/superclass relationship is
fuzzy. In other words, a class is a subclass of another class with membership
degree of [0, 1] at this moment. We have the following criteria to determine the
fuzzy subclass/superclass relationship.
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(a) For any (fuzzy) object, say e, let the membership degree that it belongs to the
subclass, say B, be ug (e) and the membership degree that it belongs to the
superclass, say A, be u4 (e). Then ug (e) < pa (e).

(b) Assume that a threshold, say f5, is given. Then ug (¢) > f. Here B, e, and up
(e) are the same as the above.

The subclass B is then a subclass of the superclass A with a membership degree.
This membership degree is the minimum of the membership degrees to which
these objects belong to the subclass. Here the given threshold is used for a com-
putational threshold to avoid propagating infinitesimal degrees. Formally, we have
the definition for fuzzy subclass-superclass relationship.

Let A and B be two (fuzzy) classes with object membership functions w4 and
Uup, respectively. Let f§ be a given threshold. We say B is a subclass of A if

(Ve) (B < up(e) <pale)).

The membership degree that B is a subclass of A should be minyg () > p (U8
(e)). Here, e is object instance of A and B in the universe of discourse, and pia
(e) and up (e) are membership degrees of e to A and B, respectively.

It should be noted, however, that in the above-mentioned fuzzy generalization
relationship, we assume that classes A and B can only have the second level of
fuzziness. It is possible that classes A or B are the classes with membership degree
denoted by scalar, namely, with the first level of fuzziness.

Let two classes A and B be A WITH degree_A DEGREE and B WITH
degree_B DEGREE. Here, degree_A and degree_B are the scalars of membership
degree. Let uy and pp be the object membership functions of A and B, respectively.
Then B is a subclass of A if

(Ve) (p<pgle) <us(e)) A ((f <degree_B <degree_A).

That means that B is a subclass of A only if, in addition to the condition that the
membership degrees of all objects to A and B must be greater than or equal to the
given threshold, and the membership degree of any object to A must be greater than
or equal to the membership degree of this object to B, the membership degrees of
A and B must be greater than or equal to the given threshold, and the membership
degree of A must be greater than or equal to the membership degree of B.

Consider a fuzzy superclass A and its fuzzy subclasses B;, B», ..., B, with
object membership functions s, Ugi, sz, ..., and ug,, respectively, which may
also have the scalars of membership degree degree_A, degree_B,, degree_B,,
..., and degree_B,, respectively. Then the following relationship is true:

(Ve) (max(up (e), upy(e), - -, upy(e)) < pale))
A (max(degree_By,degree_B,, ... degree_B,) <degree_A)

It can be seen that we can assess fuzzy subclass/superclass relationships by
utilizing the inclusion degree of objects to the class. Clearly such an assessment is
based on the extensional viewpoint of class. When classes are defined with the
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intensional viewpoint, there is no object available. Therefore, the method given
above cannot be used. At this point, we can use the inclusion degree of a class with
respect to another class to determine the relationships between fuzzy subclass and
superclass. The basic idea is that, since any object belonging to the subclass should
belong to the superclass, the common attribute domains of the superclass should
include the common attribute domains of the subclass.

Let A and B be (fuzzy) classes and the degree that B is the subclass of A be
denoted by u (A, B). For a given threshold f§, we say B is a subclass of A if

1(A,B) > B.

Here, u (A, B) is a scalar and used to calculate the inclusion degree of B with
respect to A according to the inclusion degree of the attribute domains of B with
respect to the attribute domains of A as well as the weight of attributes.

To figure out or estimate the inclusion degree of two classes, one needs to know
the (fuzzy) attribute domains of the two classes and the weight of the attributes.
The problem of evaluating the inclusion degree is outside the scope of the current
paper. One can refer to Ma et al. (2004), where the methods for evaluating the
inclusion degree of fuzzy attribute domains and further evaluating the inclusion
degree of a subclass with respect to the superclass are discussed in detail.

Now let us consider the situation that classes A or B are the classes with scalars
of membership degree, namely, with the first level of fuzziness.

Let two classes A and B be A WITH degree_A DEGREE and B WITH
degree_B DEGREE. Here, degree_A and degree_B are the scalars of membership
degree. Then B is a subclass of A if

(u(A,B) > ) AN((B<degree_B <degree_A).

That means that B is a subclass of A only if, in addition to the condition that the
inclusion degree of A with respect to B must be greater than or equal to the given
threshold, the scalars of membership degree of A and B must be greater than or
equal to the given threshold, and the scalar of the membership degree of A must be
greater than or equal to the scalar of the membership degree of B.

In subclass-superclass hierarchies, a critical issue is multiple inheritance of
class. Ambiguity arises when more than one of the superclasses have common
attributes, and the subclass does not explicitly declare the class from which the
attribute is inherited. Exactly which conflicting attribute in the superclasses is
inherited by the subclass depends on their weights to the corresponding super-
classes (Liu and Song 2001). Also, it should be noted that in fuzzy multiple
inheritance hierarchy, the subclass has different degrees with respect to different
superclasses, not being the same as the situation in classical object-oriented dat-
abases (Ma et al. 2004).

Several generalizations can be grouped together to form a class hierarchy as
shown in Fig. 2.3. Figure 2.3 shows a fuzzy generalization relationship, where a
dashed triangular arrowhead is used to represent a fuzzy generalization rela-
tionship. The disjointness and completeness constraints, which are optional, can be
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Fig. 2.3 Representation of a | |
fuzzy generalization in a | Employee |
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enforced on a class hierarchy. The disjointness means that all the specific classes
are mutually disjoint, and completeness means that the union of the more specific
classes completely covers the more general class. That is, the union of object
instances of several subclasses completely covers the object instances of the
superclass, and the membership degree that any object belongs to the subclass
must be less than or equal to the membership degree that it belongs to the
superclass.

2.3.4 Fuzzy Aggregation

An aggregation captures a whole-part relationship between a class named aggre-
gate and a group of classes named constituent parts. The constituent parts can exist
independently. Aggregate class Car, for example, is aggregated by constituent part
classes Engine, Interior, and Chassis. Each object of an aggregate can be projected
into a set of objects of constituent parts. Formally, let A be an aggregation of

constituent parts By, B, ..., and B,. For e € A, the projection of e to B; is denoted
by e|p;. Then we have
(elpr) €By, (elpy) €By, ..., and (elp,) € By.

A class aggregated from fuzzy constituent parts must be fuzzy. If the former is
still called an aggregate, the aggregation is fuzzy. At this point, a class is an
aggregation of constituent parts with membership degree of [0, 1]. We have the
following criteria to determine the Fuzzy Aggregation relationship:

(a) For any (fuzzy) object, say e, let the membership degree that it belongs to the
aggregate, say A, be p4 (e). Also, let the projections of e to the constituent parts,
say By, B, ..., and By, be e| 5, el 52, ..., and e g,. Let the membership degrees
that these projections belong to By, B,, ..., and B, be up| (elp1), iz (elp2),
..., and gy (el g), respectively. Then us (e) < g (elp1), pa (€) < g (elpo),
(R ] and Ha (6) = Upn (ean)~

(b) Assume that a threshold, say f, is given. Then p, (e) > f. Here, A, e, and
Ua (e) are the same as the above.
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Then A is the aggregate of By, B, ..., and B,, with the membership degree min
(us1 (els1), s (elpo), ..., ten (elpn))). It is clear that uy, (e) cannot have a bigger
value than any g, (elp1), tp2 (elpa), ..., and up, (elpn). And pp; (elp1), ugs
(elmo), ..., and up, (elp,) are not aggregated into 1 except that ug, (elg1), Up
(elpn), ..., and ug, (elp,) are equal to 1. Formally, we have the following defi-
nition for the fuzzy aggregation relationship.

Let A be a fuzzy aggregation of fuzzy class sets By, B, ..., and B,,, which object
membership functions are pa, tp1, Upo, ..., and Ug,, respectively. Let § be a given
threshold. Then

(Ve) (e € AN B<py(e) <min (up (elp), tpr(elp)s - - s tpn(elpn)))-

That means a fuzzy class A is the aggregate of a of group fuzzy classes By, By,
..., and B, if, for any (fuzzy) object instance, the scalar of the membership degree
that it belongs to class A is less than or equal to the scalar of the member degree to
which its projection to any of By, By, ..., and B, say B; (1 <i < n), belongs to
class B;. Meanwhile, for any (fuzzy) object instance, the scalar of the membership
degree that it belongs to class A is greater than or equal to the given threshold.

Now let us consider the first level of fuzziness in the above-mentioned classes
A, By, B,, ..., and B,; namely, they are the fuzzy classes with membership degrees.
Let A WITH degree_A DEGREE, B; WITH degree_B; DEGREE, B, WITH
degree_B, DEGREE, ..., B, WITH degree_B, DEGREE be classes. Here
degree_A, degree_B,, degree_B,, ..., and degree_B, are the scalars of member-
ship degree. Let pa, tp1, Up2s - .., and pg, be the object membership functions of A,
By, By, ..., and B, respectively. Then A is an aggregate of By, B,, ..., and B, if

(Ve) (e € AN B < py(e) <min(up(elp); upa(elp), - - - tpn(elpn))
A degree_A <min(degree_By,degree_B,, ... ,degree_B,)).

Here f is a given threshold.

It should be noted that the assessment of fuzzy aggregation relationships given
above is based on the extensional viewpoint of class. Clearly, these methods
cannot be used if the classes are defined with the intensional viewpoint because
there is no object available. In the following, we state how to determine the fuzzy
aggregation relationship using the inclusion degree developed in Ma et al. (2004).

Let A be a fuzzy aggregation of fuzzy class sets By, B, ..., and B, and f be a
given threshold. Also, let the projection of A to B; be denoted by A|p;. Then

min(tu(BlvAlBl)v :u(BZaAlBZL ce ru(BmAan)) > ﬁ

Being the same as the fuzzy generation, here u (B, Al ) (1 < i < n) means the
membership degree to which B; semantically includes A|g;.. The membership
degree that A is an aggregation of By, By, ..., and B, is min (u(Bi,Alp),
:u(B27AlB2)7 ) :u(anAan))'

Furthermore, the expression above can be extended for the situation that A, By,
B,, ..., and B, may have the first level of fuzziness, namely, they may be the fuzzy
classes with membership degrees.
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Fig. 2.4 Representation of a fuzzy aggregation in a fuzzy UML data model

Let f be a given threshold and A WITH degree_A DEGREE, B; WITH
degree_B, DEGREE, B, WITH degree_B, DEGREE, ..., B, WITH degree_B,
DEGREE be classes. Then A is an aggregate of By, B, ..., and B, if

mln(.u(Bl vAlBl )7 iu(BzaAlBZ)a LS :u(Bl’laAan))
> [ Adegree_A <min(degree_B\,degree_B,, ... ,degree_By)).

Figure 2.4 shows a fuzzy aggregation relationship, where a dashed open dia-
mond is used to denote a fuzzy aggregation relationship. Here:

e The class New CPU box is a fuzzy class, and thus the class New-Computer
aggregated by Monitor, New CPU box, and Keyboard is also fuzzy.

e The multiplicity [m;, n;] specifies that each instance of the aggregate class
consists of at least m; and at most n; instances of the i-th constituent class. For
example, a New-Computer may contain at least one Monitor, and possibly more.

2.3.5 Fuzzy Dependency

A dependency, which is a relationship between a source class and a target class,
denotes that the target class exists dependently on the source class. In addition, the
dependency between the source class and the target class is only related to the
classes themselves and does not require a set of instances for its meaning.
Therefore, the second level of fuzziness and the third level of fuzziness in class do
not affect the dependency relationship.

A fuzzy dependency relationship is a dependency relationship with a degree of
possibility # as shown in Fig. 2.5, which can be indicated explicitly by the
designers or be implied implicitly by the source class based on the fact that the
target class is decided by the source class.

Figure 2.5 shows a fuzzy dependency relationship, which is denoted by a
dashed line with an arrowhead. 1t is clear that Employee Dependent is dependent
on fuzzy class Employee with membership degree 1 € [0, 1].
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Fig. 2.5 Representation of a fuzzy dependency in a fuzzy UML data model

2.3.6 An Example of Fuzzy UML Data Model

Figure 2.6 shows a graphic fuzzy UML data model Fymr, which models the
situation at a company. The detailed instruction about the fuzzy UML data model
FuwmL is as follows:

e A fuzzy class is denoted by using a dashed-outline rectangle to differentiate a
classical class, e.g., Old-Employee as shown in Fig. 2.6. A fuzzy class may
contain four parts, i.e., crisp attributes, fuzzy attributes, methods, or an addi-
tional attribute u as shown in Fig. 2.6, where:

— A fuzzy keyword FUZZY is appeared in front of an attribute indicating the
attribute may take fuzzy values. For example, FUZZY Age or FUZZY Email.
Moreover, the multiplicity [1...00] of the attribute “FUZZY Email [1...c0]”
means that each object instance of the fuzzy class Old-Employee has at least
one email, and possibly more.

— An additional attribute u € [0, 1] in a fuzzy class is defined for representing an
object membership degree to the fuzzy class.

— The method IsDepartment(): String returns a possibility distribution value
{Department/u;}, which denotes that an Old-Employee works in the
Department with degree u; € [0, 1]. The type of the parameter is null.

o A fuzzy generalization is denoted by using a dashed triangular arrowhead, e.g.,
the class Employee is a generalization of classes Young-Employee and Old-
Employee, and two classes Young-Employee and Old-Employee are disjoint and
the union of them completely covers the class Employee.

T LWITH n DEGREE _~ 7T |

| Employee b -1 Employee Dependent } 7777777777
L __ . L7
AN } Computer !
{disjointness, completeness } e G
o ‘ 77777 N J777777777 ] fﬁf*l 77777 [N
} Young-Employee } } Old-Employee r % New-Computer ‘V
,,,,,,,,,,, ] [
] |
I ID: String | ComlID: String
I Name: String Brand: String

Year: Integer
u : Real

crisp attributes

I

|
| |
fi tribut | FUZZY Age: Integer }
uzzy attributes —»

Juy | FUZZY Email [1..e0]: String |
|
|
|
|
|

B :Real !

method (operation) ’} FUZZY IsDepartment (): String
additional attribute\"‘ u : Real

Fig. 2.6 A graphic fuzzy UML data model Fymr.
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e A fuzzy dependency is denoted by using a dashed line with an arrowhead, e.g.,
there is a fuzzy dependency relationship between the target class Employee
Dependent and the source class Employee.

o A fuzzy association is denoted by using a single line with an arrowhead and the
association class is connected with the association by a dashed-outline, e.g., Use
is a fuzzy association class between two classes Old-Employee and New-
Computer. Here:

— Date is an attribute of the association class Use, which describes the start date
that an Old-Employee uses a New-Computer.

— The additional attribute § denotes the degree of possibility that an association
relationship occurs in n classes.

— The participation of a class in a fuzzy association is called a role which has a
unique name. For example, Uby and Uof. The cardinality constraints (1, 1)
and (1, 2) denote that each Old-Employee can use at least 1 and at most 2
New-Computers and each New-Computer can be used by exactly one Old-
Employee.

— A fuzzy aggregation is denoted by using a dashed open diamond, e.g., the
class New-Computer is aggregated by Monitor, New CPU box, and Keyboard.
The multiplicity [m;, n;] specifies that each instance of the aggregate class
consists of at least m; and at most »; instances of the i-th constituent class. For
example, a New-Computer may contain at least one Monitor, and possibly
more.

2.4 Fuzzy Relational Database Models

In order to manage fuzzy data in the databases, fuzzy set theory has been exten-
sively applied to extend various database models and resulted in numerous con-
tributions, mainly with respect to the popular relational model or to some related
form of it. In general, several basic approaches can be classified: (i) one of fuzzy
relational databases is based on possibility distribution (Chaudhry et al. 1999;
Prade and Testemale 1984; Umano and Fukami 1994); (ii) the other one is based
on the use of similarity relation (Buckles and Petry 1982), proximity relation
(De et al. 2001; Shenoi and Melton 1999), resemblance relation (Rundensteiner
and Bic 1992), or fuzzy relation (Raju and Majumdar 1988); (iii) another possible
extension is to combine possibility distribution and similarity (proximity or
resemblance) relation (Chen et al. 1992; Ma et al. 2000; Ma and Mili 2002).
Currently, some major questions have been discussed and answered in the liter-
ature of the fuzzy relational databases, including representations and models,
semantic measures and data redundancies, query and data processing, data
dependencies and normalizations, implementation, and etc. For a comprehensive
review of what has been done in the development of fuzzy relational databases,
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please refer to Chen (1999), Ma (2005b), Ma and Yan (2008), Petry (1996), and
Yazici and George (1999). In this section, we briefly introduce some basic notions
of fuzzy relational databases based on possibility distributions.

2.4.1 Fuzzy Relational Database Models

Basically, a fuzzy relational database (FRDB) is based on the notions of fuzzy
relational schema, fuzzy relational instance, tuple, key, and constraints, which are
introduced briefly as follows:

o A fuzzy relational database consists of a set of fuzzy relational schemas and a set
of fuzzy relational instances (i.e., simply fuzzy relations).

e The set of fuzzy relational schemas specifies the structure of the data held in a
database. A fuzzy relational schema consists of a fixed set of attributes with
associated domains. The information of a domain is implied in forms of sche-
mas, attributes, keys, and referential integrity constraints.

e The set of fuzzy relations, which is considered to be an instance of the set of
fuzzy relation schemas, reflects the real state of a database. Formally, a fuzzy
relation is a two-dimensional array of rows and columns, where each column
represents an attribute and each row represents a tuple.

e Each tuple in a table denotes an individual in the real world identified uniquely
by primary key, and a foreign key is used to ensure the data integrity of a table.
A column (or columns) in a table that makes a row in the table distinguishable
from other rows in the same table is called the primary key. A column (or
columns) in a table that draws its values from a primary key column in another
table is called the foreign key. As is generally assumed in the literature, we
assume that the primary key attribute is always crisp and all fuzzy relations are
in the third normal form.

e An integrity constraint in a schema is a predicate over relations expressing a
constraint; by far the most used integrity constraint is the referential integrity
constraint. A referential integrity constraint involves two sets of attributes S
and S, in two relations R; and R,, such that one of the sets (say S;) is a key for
one of the relations (called primary key). The other set is called a foreign key if
R, [S>] is a subset of R; [S{]. Referential integrity constraints are the glue that
holds the relations in a database together.

In summary, in a fuzzy relational database, the structure of the data is repre-
sented by a set of fuzzy relational schemas, and data are stored in fuzzy relations
(i.e., tables). Each table contains rows (i.e., tuples) and columns (i.e., attributes).
Each tuple is identified uniquely by the primary key. The relationships among
relations are represented by the referential integrity constraints, i.e., foreign
keys. Moreover, here, two types of fuzziness are considered in fuzzy relational
databases, one is the fuzziness of attribute values (i.e., attributes may be fuzzy),
which may be represented by possibility distributions; another is the fuzziness of a
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tuple being a member of the corresponding relation, which is represented by a
membership degree associated with the tuple.

Formally, a fuzzy relational database FRDB = <FS, FR> consists of a set of
fuzzy relational schemas FS and a set of fuzzy relations FR, where:

e Each fuzzy relational schema FS can be represented formally as FR (A/D;, A,/
D,, ..., Ay/D,, urr/Drg), which denotes that a fuzzy relation FR has attributes
Ay, Ay, ..., A, and pgg with associated data types Dy, D», ..., D, and Dgg. Here,
Urg 1s an additional attribute for representing the membership degree of a tuple
to the fuzzy relation.

e Each fuzzy relation FR on a fuzzy relational schema FR (A/Dy, A2/D, ..., A,/
D,, urr/Drg) is a subset of the Cartesian product of Dom (A;) x Dom
(A3) x -+ x Dom (A,) x Dom (ugg), where Dom (A;) may be a fuzzy subset or
even a set of fuzzy subset and Dom (urg) € (0, 1]. Here, Dom (A;) denotes the
domain of attribute A;, and each element of the domain satisfies the constraint of
the datatype D;. Formally, each tuple in FR has the form t = <may, Ta, .., Ta;,
.evs Tan, Upp>, Where the value of an attribute A; may be represented by a
possibility distribution 7,;, and ugg € (0, 1].

Moreover, a resemblance relation Res on Dom (A;) is a mapping: Dom
(A;)) x Dom (A;) — [0, 1] such that (i) for all x in Dom (4;), Res (x, x) =1
(reflexivity) (ii) for all x, y in Dom (4;), Res (x, y) = Res (y, x) (symmetry).

To provide the intuition on the fuzzy relational database we show an example.
The following gives a fuzzy relational database modeling parts of the reality at a
company, including fuzzy relational schemas in Table 2.1 and fuzzy relations in
Table 2.2. The detailed introduction is as follows:

e The attribute underlined stands for primary key PK. The foreign key (FK) is
followed by the parenthesized relation called referenced relation. A relation can
have several candidate keys from which one primary key, denoted PK, is
chosen.

e An ‘f next to an attribute means that the attribute is fuzzy.

e In Table 2.1, there are the inheritance relationships Chief-Leader “is-a” Leader
and Young-Employee “is-a” Employee. There is a I-many relationship between
Department and Young-Employee. The relation Supervise is a relationship
relation, and there is many—-many relationship between Chief-Leader and
Young-Employee.

e Note that, a relation is different from a relationship. A relation is essentially a
table, and a relationship is a way to correlate, join, or associate the two tables.

2.4.2 Fuzzy Relational Algebra Operations

In the following, we introduce the fuzzy relational operations in relational algebra
(Ma and Mili 2002), which can be used to query and update fuzzy relational
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Table 2.1 The fuzzy relational schemas of a fuzzy relational database

Relation name Attribute and datatype Foreign key and referenced
relation

Leader lealD (String), INumber (String), urr No
(Real)

Employee emplD (String), eNumber (String), ftrg No
(Real)

Chief-Leader lealD (String), cIName (String), f_clAge lealD (Leader (lealD))
(Integer), prr (Real)

Young-Employee  emplD (String), yeName (String), emplD (Employee (emplD))
f_yeAge (Integer), f_yeSalary dept_ID (Department
(Integer), dep_ID (String), urr (Real) (depID))

Supervise supID (String), lea_ID (String), emp_ID  lea_ID (Chief-Leader (lealD))
(String), urg (Real) emp_ID (Young-Employee

(emplD))

Department depID (String), dName (String), urr No

(Real)

databases. It will be shown that the fuzzy relational operations, being similar to the
conventional relational databases, are complete and sound. Before introducing the
fuzzy relational algebra operations, we will first introduce the notion of the
semantic measure of fuzzy data.

The semantics of a fuzzy data represented by possibility distribution corre-
sponds to the semantic space and the semantic relationship between two fuzzy data
can be described by the relationship between their semantic spaces (Rundensteiner
et al. 1989). The semantic inclusion degree is then employed to measure semantic
inclusion and thus measure semantic equivalence of fuzzy data.

Let ma and mg be two fuzzy data, and their semantic spaces be SS (7,) and SS
(mg), respectively. Let SID (ms, mg) denotes the degree that m, semantically
includes ng. Then

SID (TCA,TEB) = (SS (TCB) NSS (TCA))/SS (TL’B)

For two fuzzy data m, and 7y, the meaning of SID (74, 7g) is the percentage of
the semantic space of mg which is wholly included in the semantic space of mx.
Therefore, the concept of equivalence degree can be easily drawn as follows.

Let np and 7y be two fuzzy data and SID (ms, mg) be the degree that mp
semantically includes ng. Let SE (A, mg) denote the degree that m, and ng are
equivalent to each other. Then

SE (7a, ) = min(SID (ma, 7g), SID (7, 7a))

On this basis, based on possibility distribution and resemblance relation, the
notion for calculating the semantic inclusion degree of two fuzzy data is given as
follows.

Let U = {uy, us, ..., u,} be the universe of discourse. Let m, and 7g be two
fuzzy data on U based on possibility distribution and 7w, (u;), u; € U, denote the
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Table 2.2 The fuzzy relations of a fuzzy relational database

Leader

lealD [INumber WER
L001 001 0.7
L002 002 0.9
L003 003 0.8
Employee

emplD eNumber UrR
E001 001 0.8
E002 002 0.9
Chief-Leader

lealD cIName f.clAge UER
LO001 Chris {35/0.8, 39/0.9} 0.65
L003 Billy 37 0.7

Young-Employee

emplID yeName  f_yeAge f_yeSalary dep_ID UER
E001 John {24/0.7, 25/0.9} {2000/0.3, 3000/0.4} D001 0.75
E002 Mary 23 {4000/0.5, 4500/0.7, 5000/1.0} D003 0.85
Department

depID dName UER
D001 HR 0.8
D002 Finance 0.9
D003 Sales 0.7
Supervise

suplD lea_ID emp_ID UER
S001 L001 E001 0.78
S002 L001 E002 0.8

S002 L003 E002 0.9

possibility that u; is true. Let Res be a resemblance relation on domain U, and «
(1 < o < n) be a threshold corresponding to Res. SID (74, 7g) is then defined by

n
SIDOC(TEA7 TEB) =
i=1

min
u;,u; €U and Resy (u;,u5) > o

(ms (u;),ma (u5)) /Z”B (u;)

i=1

The notion of the semantic equivalence degree of attribute values can be
extended to the semantic equivalence degree of tuples. Let t, = <a;, aj,

.evy Q> and 5 = <aj1, ajp, ..
r over schema FR (A, A,, ..

., ajp> be two tuples in fuzzy relational instance
., Ap). The semantic equivalence degree of tuples #;
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and 1§ is denoted SE (z;, lj) = min {SE (#; [A{], 5 [A:]D, SE (¢ [A2], L [A5]), ..., SE
(ti [An], tj [An])}

Following the semantic inclusion degree of fuzzy data, two kinds of fuzzy data
redundancies can be classified and evaluated, which are inclusion redundancy and
equivalence redundancy. Being different from the classical set theory, the condi-
tion SS (A) = SS (B) or SS (A) = SS (B) is essentially the particular case of
fuzzy data due to the fuzziness of the data. In general, the threshold should be
considered when evaluating the semantic relationship between two fuzzy data.

Let 7 and 7g be two fuzzy data and f be a threshold. If SID (wp, 7g) > f3, g
is said to be inclusively redundant to ma. If SE (7a, mg) > f, it is said that 7, and
ng are equivalently redundant to each other.

It is clear that equivalence redundancy of fuzzy data is a particular case of
inclusion redundancy of fuzzy data. Considering the effect of resemblance relation
in evaluation of semantic inclusion degree and equivalence degree, two fuzzy data
na and wp are considered equivalently «-f-redundant if and only if SE, (7ma,
ng) > . If SID, (ma, mg) > f and SID, (7g, ma) < f, g are inclusively o-f-
redundant to 7a.

If mo and mg are inclusively redundant or equivalently redundant, the removal
of redundancy can be achieved by merging n and mg and producing a new fuzzy
data nc. Following Zadeh’s extension principle (Zadeh 1975), the operation with
an infix operator “6” on 7w, and 7y can be defined as follows.

a0 mg = {ma(ui)/ui | ui € UN1<i<n}O0{ng(vj)/vj|vje UN1<j<n}
= {max(min(ma (u;), 78 (vj)) /ui0vj) | ui,vi € UA1<i,j<n}

Assume that w, and 7 are o-f-redundant to each other, the elimination of
duplicate could be achieved by merging n, and ng and producing a new fuzzy data
nc, where ma, g and 7c are three fuzzy data on U = {uy, us, ..., u,} based on
possibility distribution and there is a resemblance relation Res;; on U. Then the
following three merging operations are defined:

(@) nc = A Urmig = {mc Ww | (3 ma (u)u;) 3 wg (V)/vy)) (mc (W) = max (ma
(), mg (V) A (W = i | TTc ) = zA @i) ¥V W = Vj | Tic (wy = =B ) N\ Resy (s,
V]) >a A Ui, vj eUAN1 < l,] < n) vV (El UIN (ui)/ui) (V B (VJ)/V]) (ﬂfc (W) = TA
() Aw = u; AResy (ug, vi) > a Au, vie UNT < 1,j < n) V(3 g (v)/(vy) (¥
A (/) (me (W) = mg (vj)) Aw = vj A Resy (u;, v) = o Auj, vyje UNT < i,
j=m},

(b) nc = ma — g = {mc W)W | (3 Ta (W)/wy) (3 g (v))/vj) (e (W) = max (mp
() — g (v, ) Aw = u; A Resy (u;, vi) > a Aug, vye UNT < i,j <n)V (3
A Wlu;) (V g (/) (me W) = ma (u)) Aw = u; A Resy (wi, vy) < o Az, vj
eUNI1<1ij<n)}, and

(©) mc = ma Nr g = {mc W)W | (3 o W)/uy) (3 g (v)/v)) (mc (W) = min (T
(), T8 (VD)) A (W = i | TTe () = na iy YV W = Vj | T ) = =B () A Resy (u;,
VJ)EOC/\Mi,VjEU/\lfi,jSI’l)}.
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Let o = {1.0/a, 0.95/b, 0.9/c, 0.2/f} and g = {0.95/a, 0.9/b, 1.0/d, 0.3/e} be
two fuzzy data on domain U = {a, b, c, d, e, f}. Resy is a resemblance relation on
U given in the following, where threshold « = 0.9.

Resy a b c d e f
a 1.0 0.1 0.4 0.3 0.1 0.1
b 1.0 0.2 0.3 0.2 0.2
c 1.0 0.95 0.5 0.3
d 1.0 0.3 0.1
e 1.0 0.4
f 1.0
Then:

SID, (ms, 7g) = (0.95 + 0.9 + 0.9)/(0.95 + 0.9 + 1.0 + 0.3) = 0.873,
SID, (mtg, 7a) = (0.95 4+ 0.9 + 0.9)/(1.0 + 0.95 + 0.9 + 0.2) = 0.902, and thus
SE, (7, 7)) = min (SID (na, 7g), SID (7g, 7)) = min (0.873, 0.902) = 0.873.

If a threshold S = 0.85 is given, ms and ng are considered redundant to each
other. Utilizing the merging operations above, one has the following results.

na Uy g = {1.0/a, 0.95/b,1.0/d, 0.3/e, 0.2/f},
na — mg = {0.05/a, 0.05/b, 0.2/f}, and
nia Ny g = {0.95/a, 0.9/b, 0.9/c}.

The processing of fuzzy value redundancy can be extended to that of fuzzy tuple
redundancy. In a similar way, fuzzy tuple redundancy can be classified into
inclusion redundancy and equivalence redundancy of tuples.

Let r be a fuzzy relation on the schema FR (A, A,, ..., Ay). Let t = (na1, 71,
ooy Tap) and 7 = (may, TAo', ..., Tan') be two tuples in r. Let o € [0, 1] and S € [0,
1] be two thresholds. The tuple 7' is inclusively a-f-redundant to ¢ if and only if
min (SID,, (7a;, 7ai)) > B holds true (1 < i < n). The tuples t and t' are equiv-
alently o-f-redundant if and only if min (SE,, (%a;, ®a;)) > f holds (1 <i < n).

Based on the notion of the semantic measure of fuzzy data above, in the
following we introduce several common fuzzy relational algebra operations.

Union Let r and s be two union-compatible fuzzy relations on the scheme FR
(A, Ay, ..., AY). Let o = {o5 1 a; € [0, 1] A 1 <i < n} be the threshold of the
resemblance relations on attribute domains and f € [0, 1] be a given threshold.
Then the union of these two relations is defined as follows. It is clear that fuzzy
union is essentially a o-f-union.

rUs={t|](Vy) y €sAter=SE,(t,y) <)V (¥x)(x ErAtes
= SE,(1,x) <B) vV ((3x) 3y) (x € rAy € s = SE4(x,y) 2 A1 =xUsy)}
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Difference Let r and s be the same as the above. Their difference is defined as
follows.

r—s={t|(Vy)(y €sAt€rASE,(t,y) <)V ((Tx)(Ty)(xerAy
€ sASE,(x,y) > At=x—;y)}

Cartesian Product The Cartesian product of fuzzy relations is the same as one
under classical relational databases. Let r and s be two fuzzy relations on schema
R and S, respectively. Then

rxs= {ffRUS]|(Vx) (Vy) (x e r Ay € s At[R] = x[R] A t[S] = y[S])}

Selection Let r (R) be a fuzzy relation and P be a predicate denoted selection
condition. In classical relational databases, a predicate is formed through com-
bining the basic clause X 0 Y as operands with operators —, A, and V, where 0 €
{> <, = #,>,<}, and X and Y may be constants, attributes, or expressions
which are formed through combining constants, attributes or expressions with
arithmetic operations. Under a fuzzy relational database environment, the predi-
cate P may be fuzzy, denoted Py, to implement fuzzy query for fuzzy databases. In
Py, the constants and attributes may be fuzzy, so the expressions may also be
fuzzy. The evaluation of a fuzzy expression can be conducted by using Zadeh’s
extension principle. Based on the same consideration, the “0” should be fuzzy
comparison operations g, <p, >=p, <p, ~p, and &g, in Py where f is a
threshold. Let w4 and 7 be two fuzzy data over U = {uy, uy, ..., u,} and o be the
threshold of the resemblance relation on U. Then

(@) ma ~p g if SE, (ma, 78) > B,

(b) ma & mg if SE, (n4, g) < B,

(¢c) mp =p g if ma * p mg and max (supp (7)) > max (supp (ng)),

(d) mp =p g if Iy X p Mg OF T > p T,

(e) ma <p mp if o # p mp and max (supp (7)) < max (supp (rmg)), and
() ma <Xp 7p if o Fp M OF A <p Tg.

Then the selection on r for P; is defined as follows.
opr(r) = {t|terAP(t)}

Projection Let r (R) be a fuzzy relation and attribute subset S C R. The pro-
jection of r on § is defined as follows.

g(r) = {t|(Vx) (x e r ANt =Usx)}

The five operations above are called primitive operations in relational dat-
abases. There are three additional operation intersection, join, and division, which
can be defined by the primitive operations.

Intersection Let r and s be two union-compatible fuzzy relations. Then fuzzy
intersection of these two relations can be defined in terms of fuzzy difference
operation as:
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rNs=r—(r—s).

Join Let r (R) and s (S) be any two fuzzy relations. P¢is a conditional predicate
in the form of A 0 B, where 0 € {>p, <3, Zp, <p, ~p, ¥p}, A€ R, and B €
S. Then fuzzy join of these two relations can be defined in terms of fuzzy selection
operation as:

ri<pr s = apr(r X s).

when attributes A and B are identical and “0” takes = g, fuzzy join becomes fuzzy
natural join, denoted » > 5. Being the special case of fuzzy join, fuzzy natural join
can be evaluated with the definition above. In the following, the definition of fuzzy
natural join is given directly. Let Q = R N S. Then

ro<s = {t{(R—Q)US]|(3x) (3y) (x € r Ay € s ASE(x[Q],¥[0]) > B A 1[R — Q)]
=x[R = QA 1[S = 0] = y[S — Q] A 1[0] = (0] 1y ¥[0]) }

Division Division, referred to quotient operation sometimes, is used to find out
the sub-relation » + s of a relation r, containing sub-tuples of » which have for
complements in r all the tuples of a relation s. In classical relational databases, the
division operation is defined by

res={t](Yu) (e s (u) €N},

where u is a tuple of s and ¢ a sub-tuple of r such that (7, u) is a tuple of r. Let
r (R) and s (S) be two fuzzy relations, where S C R. Let Q = R — S. Then the
fuzzy division of r and s can be defined as:

r+s=1Ily(r) —p(Q(r) xs—r).

The rename and outerunion are the other relational operations in addition to the
eight operation defined above. Their definitions are given as follows.

Rename This operation is used to change the names of some attributes of a
relation. Let » (R) be a fuzzy relation, and let A and B be two attributes satisfying
A eRand B ¢ R, where A and B have the same domain. Let S = (R — {A}) U {B}.
Then r with A renamed to B is defined as

pacp(r) = {1[S]| (vy) (y € r A1[S — Bl = y[R — A] A1[B] = y[A])}.

Outerunion The common union operation requires two source relations be
union-compatible. In order to integrate heterogeneous multiple relations, outer-
union operation has widely been used in relational databases. Here, the definition
of fuzzy outerunion operation is given so that heterogeneous fuzzy data resources
can be integrated.

Let r (K, A, X) and s (K, A, Y) be two fuzzy relations, where K is primary key.
The outerunion of r and s, denoted by r U s, is defined as

rUs={[KAXY] 1 Qu @v)werAvesAt[Kl=ulK]l=vI[K] A
(V) ESeANSI=ulSTUvISDATIXI = ulXIAT[YD) =vI[YDV @ u (V)
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wernNvesNt[Kl=ulKINt[Al=u[AlANt[X]=u[XIANt[Y]=0¢ A
vIKl 2t KDV @vNVu@vesAhuerANt[K]l=vI[K]At[A] =v[A] A
tX]=v[YIAt[X]=¢ AulK] # t[K]D}.

Now we discuss several properties of the fuzzy relational algebra. Being similar
to the conventional relational databases, the proposed fuzzy relational algebra is
sound. In other words, it is closed. It means that the results of all operations are
valid relations. In detail, the result relations produced by fuzzy relational opera-
tions satisfy the following three criteria:

(a) the attribute values must come from an appropriate attribute domain,
(b) there are no duplicate tuples in a relation, and
(c) the relation must be a finite set of tuples.

Projection, division, and selection take out a part from the source relation in
either column direction or row direction. Because the attribute values in source
relation must belong to the appropriate attribute domain, the attribute values in
these three result relations must come from the appropriate attribute domain.
Union, difference, and intersection operations are conducted under union-com-
patible condition, which satisfies the first criterion. In join and Cartesian product,
the attribute values in result relations come from two source relations, respec-
tively, and they must be within the appropriate attribute domains. It is clear that
rename operation satisfies the first criterion. As to outerunion operation, it is
similar to natural join and thus the first criterion can also be satisfied.

For selection and rename, if there are no redundant tuples in ordinary relation,
there are no redundant tuples in the result relations. There exist no redundant
tuples in the result relations of union, difference, intersection, join, Cartesian
product, division, projection, and outerunion. This can be ensured by the defini-
tions of those operations because the removal of redundancies has been consid-
ered. Therefore, the second criterion is satisfied.

Now let us look at the satisfactory situation of the third criterion. Let » and s be
two fuzzy relations, and let |r| and |s| denote the numbers of tuples in r and s,
respectively. It is easy to see that 0< |op/(r)| <|r| for fuzzy selection. This
implies that when no any tuple in r satisfies the selection condition, the tuple
number in the result relation is 0, and that when all tuples in r satisfy the selection
condition, one obtains |O'Pf(r)’ = |r|. When part of the tuples in r satisfy the

selection condition, opf(r)} must be greater than 0 and less than |r|. For projection
IIs (r), if all tuples in r are redundant after projecting, then |IIs(r)| = 1; if there is
not any redundancy in r after projecting, then |IIs(r)| = |r|. In the other situations,
[TIs(r)| must be greater than 1 and less than |r|, i.e., 1 <|IIs(r)| < |r|. Addition-
ally, |r U s| must not be greater than |r| + |s|, |[r — s|, |r N s| and |r = 5| must not
be greater than |r|, and |r ><ps s| and | x s| must not be greater than |r| x |s|. In
addition, |p,. g(r)| = |r| and | O % o| <|r| +|s| and |r Us| <|r|+ |s|. Since the
number of tuples in the result relation is closely related with the source relations
and the source relations are finite, the result relations must be finite.
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In addition, fuzzy set operations in relational algebra have the same properties
as those of classical set operations. Let r, s, and u be three union-compatible fuzzy
relations. Then

(@ rUs=sUrand rNs=sNr, (commutativity)

(b) rUr=randrNr=r, (idempotence)

(c) rn(rUs)=rand r U (rNs)=r, (absorption)

d rUs)Uu=rU(sUuw and (rNs)Nu=rnN(sN u), (associativity)

@rnNnEuUuw=rns)yUdU@EnNs)yandrU sNuw=>CFUs) NF&U.s),
(distributivity)

) rus=rU@GG—randrnNs=r— (r—ys).

The following properties are also held in fuzzy operations in relational algebra.
Let r and s be two fuzzy relations on schema R and u be a fuzzy relation on schema
Q. Let P; be a selection predicate involving attributes of R. Then

@ur(rus)=@<xxrnU@me<ts)and u< (r —s) = (ud<r) — (uv<s),
(b) apr(rUs) = opp(r) Uapp(s)and app (r — 5) = app (1) — ops (s), and
(©) app(uD<ir) = u<aps(r).

These properties can be proven by the definitions of fuzzy operations in rela-
tional algebra.

2.5 Fuzzy Object-Oriented Database Models

In some real-world applications (e.g., CAD/CAM, multimedia and GIS), they
characteristically require the modeling and manipulation of complex objects and
semantic relationships. It has been proved that the object-oriented paradigm lends
itself extremely well to the requirements. Since classical relational database model
and its extension of fuzziness do not satisfy the need of modeling complex objects
with imprecision and uncertainty, currently many researches have been concen-
trated on fuzzy object-oriented database models in order to deal with complex
objects and uncertain data together. Zicari and Milano (1990) first introduced
incomplete information, namely, null values, where incomplete schema and
incomplete objects can be distinguished. From then on, the incorporation of
imprecise and uncertain information in object-oriented databases has increasingly
received attention. A fuzzy object-oriented database model was defined in
Bordogna and Pasi (2001) based on the extension of a graphs-based object model.
Based on similarity relationship, uncertainty management issues in the object-
oriented database model were discussed in George et al. (1996). Based on possi-
bility theory, vagueness and uncertainty were represented in class hierarchies in
Dubois et al. (1991). In more detail, also based on possibility distribution theory,
Ma et al. (2004) introduced fuzzy object-oriented database models, some major
notions such as objects, classes, objects-classes relationships and subclass/super-
class relationships were extended under fuzzy information environment.
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Moreover, other fuzzy extensions of object-oriented databases were developed. In
Marin et al. (2000, 2001), fuzzy types were added into fuzzy object-oriented
databases to manage vague structures. The fuzzy relationships and fuzzy behavior
in fuzzy object-oriented database models were discussed in Cross (2001),
Gyseghem and Caluwe (1995). Several intelligent fuzzy object-oriented database
architectures were proposed in Koyuncu and Yazici (2003), Ndouse (1997), and
Ozgur et al. (2009). The other efforts on how to model fuzziness and uncertainty in
object-oriented database models were done in Lee et al. (1999), Majumdar et al.
(2002), and Umano et al. (1998). The fuzzy and probabilistic object bases
(Cao and Rossiter 2003; Nam et al. 2007), fuzzy deductive object-oriented
databases (Yazici and Koyuncu 1997), and fuzzy object-relational databases
(Cubero et al. 2004) were also developed. In addition, an object-oriented database
modeling technique was proposed based on the level-2 fuzzy sets in de Tré and de
Caluwe (2003), where the authors also discussed how the object Data Management
Group (ODMG) data model can be generalized to handle fuzzy data in a more
advantageous way. Also, the other efforts have been paid on the establishment of
consistent framework for a fuzzy object-oriented database model based on the
standard for the ODMG object data model (Cross et al. 1997). More recently, how
to manage fuzziness on conventional object-oriented platforms was introduced in
Berzal et al. (2007). Yan and Ma (2012) proposed the approach for the comparison
of entity with fuzzy data types in fuzzy object-oriented databases. Yan et al. (2012)
investigated the algebraic operations in fuzzy object-oriented databases, and
discussed fuzzy querying strategies and gave the form of SQL-like fuzzy querying
for the fuzzy object-oriented databases. In the section, the basic notions of fuzzy
object-oriented database (FOODB) models, including fuzzy object, fuzzy class,
fuzzy inheritance, and algebraic operations are introduced.

2.5.1 Fuzzy Objects

Objects model real-world entities or abstract concepts. Objects have properties that
may be attributes of the object itself or relationships also known as associations
between the object and one or more other objects. An object is fuzzy because of a
lack of information. For example, an object representing a part in preliminary
design for certain will also be made of stainless steel, moulded steel, or alloy steel
(each of them may be connected with a possibility, say, 0.7, 0.5 and 0.9,
respectively). Formally, objects that have at least one attribute whose value is a
fuzzy set are fuzzy objects.

2.5.2 Fuzzy Classes

The fuzzy classes in fuzzy object-oriented databases are similar to the notion of the
fuzzy classes in fuzzy UML data models as introduced in Sect. 2.3.



58 2 Fuzzy Sets and Fuzzy Database Models

The objects having the same properties are gathered into classes that are
organized into hierarchies. Theoretically, a class can be considered from two
different viewpoints (Dubois et al. 1991): (a) an extensional class, where the class
is defined by the list of its object instances, and (b) an intensional class, where the
class is defined by a set of attributes and their admissible values. In addition, a
subclass defined from its superclass by means of inheritance mechanism in the
object-oriented database (OODB) can be seen as the special case of (b) above.

Therefore, a class is fuzzy because of the following several reasons. First, some
objects are fuzzy ones, which have similar properties. A class defined by these
objects may be fuzzy. These objects belong to the class with membership degree of
[0, 1]. Second, when a class is intensionally defined, the domain of an attribute
may be fuzzy and a fuzzy class is formed. For example, a class Old equipment is a
fuzzy one because the domain of its attribute Using period is a set of fuzzy values
such as long, very long, and about 20 years. Third, the subclass produced by a
fuzzy class by means of specialization and the superclass produced by some
classes (in which there is at least one class who is fuzzy) by means of general-
ization are also fuzzy.

The main difference between fuzzy classes and crisp classes is that the
boundaries of fuzzy classes are imprecise. The imprecision in the class boundaries
is caused by the imprecision of the values in the attribute domain. In the FOODB,
classes are fuzzy because their attribute domains are fuzzy. The issue that an object
fuzzily belongs to a class occurs since a class or an object is fuzzy. Similarly, a
class is a subclass of another class with membership degree of [0, 1] because of the
class fuzziness. In the OODB, the above-mentioned relationships are certain.
Therefore, the evaluations of fuzzy object-class relationships and fuzzy inheritance
hierarchies are the cores of information modeling in the FOODB.

2.5.3 Fuzzy Object-Class Relationships

In the FOODB, the following four situations can be distinguished for object-class
relationships.

(a) Crisp class and crisp object. This situation is the same as the OODB, where the
object belongs or not to the class certainly. For example, the objects Car and
Computer are for a class Vehicle, respectively.

(b) Crisp class and fuzzy object. Although the class is precisely defined and has
the precise boundary, an object is fuzzy since its attribute value(s) may be
fuzzy. In this situation, the object may be related to the class with the special
degree in [0, 1]. For example, the object which position attribute may be
graduate, research assistant, or research assistant professor, is for the class
Faculty.
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(c) Fuzzy class and crisp object. Being the same as the case in (b), the object may
belong to the class with the membership degree in [0, 1]. For example, a Ph.D.
student is for Young student class.

(d) Fuzzy class and fuzzy object. In this situation, the object also belongs to the
class with the membership degree in [0, 1].

The object-class relationships in (b), (c) and (d) above are called fuzzy object-
class relationships. In fact, the situation in (a) can be seen the special case of fuzzy
object-class relationships, where the membership degree of the object to the class
is one. It is clear that estimating the membership of an object to the class is crucial
for fuzzy object-class relationship when classes are instantiated.

In the OODB, determining if an object belongs to a class depends on if its
attribute values are respectively included in the corresponding attribute domains of
the class. Similarly, in order to calculate the membership degree of an object to the
class in a fuzzy object-class relationship, it is necessary to evaluate the degrees that
the attribute domains of the class include the attribute values of the object. However,
it should be noted that in a fuzzy object-class relationship, only the inclusion degree
of object values with respect to the class domains is not accurate for the evaluation
of membership degree of an object to the class. The attributes play different role in
the definition and identification of a class. Some may be dominant and some not.
Therefore, a weight w is assigned to each attribute of the class according to its
importance by designer. Then the membership degree of an object to the class in a
fuzzy object-class relationship should be calculated using the inclusion degree of
object values with respect to the class domains, and the weight of attributes.

Let C be a class with attributes {A;, A,, ..., A,}, o be an object on attribute set
{A, A,, ..., A}, and o (A)) denote the attribute value of o on A; (1 <i < n).In
C, each attribute A; is connected with a domain denoted dom (A;). The inclusion
degree of o (A;) with respect to dom (A;) is denoted ID (dom (A;), o (A;)). In the
following, we investigate the evaluation of ID (dom (A;), o (A;)). As we know,
dom (A)) is a set of crisp values in the OODB and may be a set of fuzzy subsets in
fuzzy databases. Therefore, in a uniform OODB for crisp and fuzzy information
modeling, dom (A;) should be the union of these two components, dom
(A;) = cdom (A;) U fdom (A;), where cdom (A;) and fdom (A;) respectively denote
the sets of crisp values and fuzzy subsets. On the other hand, o (A;) may be a crisp
value or a fuzzy value. The following cases can be identified for evaluating ID
(dom (Aj), o (A).

Case 1 o (A is a fuzzy value. Let fdom (A) = {fi, f>, ..., fm}, Where f;
(1 <j < m)is a fuzzy value, and cdom (A;) = {cy, ¢, ..., ¢}, Where ¢
(1 <1 < k) is a crisp value. Then
ID (dom (A;), o (A;)) = max (ID (cdom (A;), o (Ay), ID (fdom (A)),
o0 (Ay))) = max (SID ({1.0/cy, 1.0/cy, ..., 1.0/ck}, o (Ay)), max; (SID (f;,
o (A)))),
where SID (x, y) is used to calculate the degree that fuzzy value x include
fuzzy value y.
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Case 2 o (A)) is a crisp value. Then

ID (dom (Ay), 0 (A) = 1 if 0 (A} € cdom (A)) else
ID (dom (Ay), 0 (A) = ID (fdom (A)), {1.0/0 (A)}).

Consider a fuzzy class Young students with attributes Age and Height, and two
objects 0; and 0,. Assume cdom (Age) = {5 — 20}, fdom (Age) = {{1.0/20,
1.0/21, 0.7/22, 0.5/23}, {0.4/22, 0.6/23, 0.8/24, 1.0/25, 0.9/26, 0.8/27, 0.6/28},
{0.6/27, 0.8/28, 0.9/29, 1.0/30, 0.9/31, 0.6/32, 0.4/33, 0.2/34}}, and dom
(Height) = cdom (Height) = [60, 210]. Let o, (Age) = 15, 0, (Age) = {0.6/25,
0.8/26, 1.0/27, 0.9/28, 0.7/29, 0.5/30, 0.3/31}, and o, (Height) = 182. According
to the definition above, we have

ID (dom (Age), 0, (Age)) =1,

ID (dom (Height), 0, (Height)) = 1,

ID (cdom (Age), o0, (Age)) = SID ({1.0/5, 1.0/6, ..., 1.0/19, 1.0/20},
0, (Age)) = 0, and

ID (fdom (Age), o, (Age)) = max (SID ({1.0/20, 1.0/21, 0.7/22, 0.5/23},
0, (Age)), SID {0.4/22, 0.6/23, 0.8/24, 1.0/25, 0.9/26, 0.8/27, 0.6/28},
0, (Age)), SID ({0.6/27, 0.8/28, 0.9/29, 1.0/30, 0.9/31, 0.6/32, 0.4/33,
0.2/34}, 0, (Age))) = max (0, 0.58, 0.60) = 0.60.

Therefore,

ID (dom (Age), 0, (Age)) = max (ID (cdom (Age), 0, (Age)), ID (fdom (Age), 0,
(Age))) = 0.60.

Now, we define the formula to calculate the membership degree of the object
o to the class C as follows, where w (A; (C)) denotes the weight of attribute A; to
class C.

n

ST ID(dom (A;),0 (A;)) x w (A;{(C))

i=1

He (0) = n
5:21 w (A;(C))

Consider the fuzzy class Young students and object o, above. Assume w (Age
(Young students)) = 0.9 and w (Height (Young students)) = 0.2. Then

Hyougstudents (02) = (0.9 x 0.6+ 0.2 x 1.0)/(0.9 + 0.2) = 0.67.

In the above-given determination that an object belongs to a class fuzzily, it is
assumed that the object and the class have the same attributes, namely, class C is
with attributes {Aj, A,, ..., A,} and object o is on {Aj, Ay, ..., A,} also. Such an
object-class relationship is called direct object-class relationship. As we know,
there exist subclass/superclass relationships in the OODB, where subclass inherits
some attributes and methods of the superclass, overrides some attributes and
methods of the superclass, and define some new attributes and methods. Any
object belonging to the subclass must belong to the superclass since a subclass is
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the specialization of the superclass. So we have one kind of special object-class
relationship: the relationship between superclass and the object of subclass. Such
an object-class relationship is called indirect object-class relationship. Since the
object and the class in indirect object-class relationship have different attributes, in
the following, we present how to calculate the membership degree of an object to
the class in an indirect object-class relationship.

Let C be a class with attributes {A;, A,, ..., Ay, A4t ..., Am} and o be an

object on attributes {A;, Ay, ..., A, A'xyr,..., A'n, Anst, ..., Ay}, Here attri-
butes A'y,q,...,and A’ are overridden from Ay, ..., and A,, and attributes
Apntts ..., and A, are special. Then we have
k m
> ID(dom (A;),0 (A)) x w (A(C)) + > ID(dom (A;),0 (Aj)) x w (A(C))
i=1 j=k+1
He (0) = m =
2w (Ai(C))
i=1

Based on the direct object-class relationship and the indirect object-class
relationship, now we focus on arbitrary object-class relationship. Let C be a class

with attributes {Aj, Ay, ..., Ak, Agsts ---5 Ams Amsts ---» Ap} and o be an object on
attributes  {A;, Az, ..., Ay, A'vii,..., A'm, Bmss ..., Bp}. Here attributes
A1, .. .,and A’ are overridden from Ay, ..., and A, or Ay, ..., and A,, are
overridden from A’,,,...,and A’,,. Attributes A,,,, ..., and A, and B,,.,1, ..., B,
are special in {Aq, Ay, ..., Ak, Aksls - Ams Amets --- An} and {Aq, Ay, ..., Ay,
A'kir, ..oy A'm, Bisis ..., Bp), respectively. Then we have
k m
S ID(dom (A;),0 (A))) x w (A;{(C)) + > ID(dom (Aj),o (Aj)) X W (AJ-(C))
=1 ki1
He (0) = n =
>ow (A(C))
i=1

Since an object may belong to a class with membership degree in [0, 1] in fuzzy
object-class relationship, it is possible that an object that is in a direct object-class
relationship and an indirect object-class relationship simultaneously belongs to the
subclass and superclass with different membership degrees. This situation occurs
in fuzzy inheritance hierarchies, which will be investigated in next section. Also
for two classes that do not have subclass/superclass relationship, it is possible that
an object may belong to these two classes with different membership degrees
simultaneously. This situation only arises in fuzzy object-oriented databases. In the
OODB, an object may or may not belong to a given class definitely. If it belongs to
a given class, it can only belong to it uniquely (except for the case of subclass/
superclass).

The situation where an object belongs to different classes with different
membership degrees simultaneously in fuzzy object-class relationships is called
multiple membership of object in this chapter. Now let us focus on how to handle
the multiple membership of object in fuzzy object-class relationships. Let C; and
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C, be (fuzzy) classes and « be a given threshold. Assume there exists an object
o. If pucy (0) = o and uco (0) > a, the conflict of the multiple membership of
object occurs, namely, o belongs to multiple classes simultaneously. At this
moment, which one in C; and C, is the class of object o dependents on the
following cases.

Case 1 There exists a direct object-class relationship between object o and one
class in C; and C;.
Then the class in the direct object-class relationship is the class of
object o.

Case 2 There is no direct object-class relationship but only an indirect object-
class relationship between object o and one class in C; and C,, say Cj.
And there exists such subclass C/l of C, that object 0 and C’I are in a direct
object-class relationship.
Then class C, is the class of object o.

Case 3 There is neither direct object-class relationship nor indirect object-class
relationship between object o and classes C; and C,. Or there exists only
an indirect object-class relationship between object o and one class in C;
and C,, say Cj, but there is not such subclass C/] of C, that object 0 and C/]
are in a direct object-class relationship.
Then class C; is considered as the class of object o if uc; (0) > uc> (0),
else class C, is considered as the class of object o.

It can be seen that in Case 1 and Case 2, the class in direct object-class
relationship is always the class of object o and the object and the class have the
same attributes. In Case 3, however, object o and the class that is considered as the
class of object o, say Cy, have different attributes. It should be pointed out that
class C; and object o are definitely defined, respectively, viewed from their
structures. For the situation in Case 3, the attributes of C; do not affect the
attributes of o and the attributes of o do not affect the attributes of C; also. There
should be a class C and C and o are in direct object-class relationship. But class
C is not available so far. That C; is considered as the class of object o, compared
with C,, only means that C; is more similar to C than C,. Class C is the class of
object o once C is available.

Consider three fuzzy classes Cy with {A, B}, C, with {A, B, D}, and C; with {A,
F}. There exists a fuzzy object o on {A, B, E}. Here, B’ is overridden from B and
D # E # F. According to the definitions above, we have

(0) ID(dom(A),0(A)) x w(A(C1)) + ID(dom(B),0(B')) x w(B(C}))
Ha w(A(C1)) + w(B(C1)) ’
e, (o) — TDdom(4),0(A) X W(A(C) + ID(dom(B). o()) x w(B(C2)
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e (o) — [Dldom(4). o4)) X wA(Cy)
(& w(A(C3)) + W(F(C3)) .

Assume

w(A(C)) =w (A () =w (A (C3)),
w (B (C)) = w (B (()), and
w (B (C) +w (D (G) =w (F (C3)).

Also assume pc; (0) > o, pcy (0) > o, and pcs (0) > «, where o is a given
threshold. Then object o belongs to classes Cy, C, and C5 simultaneously. The
conflict of the multiple membership of object occurs. It can be seen that the
relationship between o and C, is an indirect object-class relationship. But the
relationship between o and C,, which is the subclass of class Cy, is not a direct
object-class relationship. So class C, is not the class of object o. It can also be seen
that ey (0) > pcs (0) = ues (0). So Cy is considered as the class of object o. But
in fact, there should be a new class C with {A, B’, E}, which is the class in the
direct object-class relationship of o and C. That pc; (0) > ucs (0) > pcs (o) only
means that C; with {A, B} is more similar to C with {A, B, E} than C, with {A, B,
E} and C; with {A, F}. When class C is not available right now, class C; is
considered as the class of object o.

2.5.4 Fuzzy Inheritance Hierarchies

In the OODB, a new class, called subclass, is produced from another class, called
superclass by means of inheriting some attributes and methods of the superclass,
overriding some attributes and methods of the superclass, and defining some new
attributes and methods. Since a subclass is the specialization of the superclass, any
one object belonging to the subclass must belong to the superclass. This charac-
teristic can be used to determine if two classes have subclass/superclass
relationship.

In the FOODB, however, classes may be fuzzy. A class produced from a fuzzy
class must be fuzzy. If the former is still called subclass and the later superclass,
the subclass/superclass relationship is fuzzy. In other words, a class is a subclass of
another class with membership degree of [0, 1] at this moment. Correspondingly,
the method used in the OODB for determination of subclass/superclass relation-
ship is modified as

(a) for any (fuzzy) object, if the member degree that it belongs to the subclass is
less than or equal to the member degree that it belongs to the superclass, and

(b) the member degree that it belongs to the subclass is great than or equal to the
given threshold.
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The subclass is then a subclass of the superclass with the membership degree,
which is the minimum in the membership degrees to which these objects belong to
the subclass.

Let C; and C, be (fuzzy) classes and f§ be a given threshold. We say C, is a
subclass of C; if

(Vo) (B < ca(0) <t (0))-

The membership degree that C is a subclass of C; should be minyc; (o) > g (Hc2
(0)).

It can be seen that by utilizing the inclusion degree of objects to the class, we
can assess fuzzy subclass/superclass relationships in the FOODB. 1t is clear that
such assessment is indirect. If there is no any object available, this method is not
used. In fact, the idea used in evaluating the membership degree of an object to a
class can be used to determine the relationships between fuzzy subclass and
superclass. We can calculate the inclusion degree of a (fuzzy) subclass with
respect to the (fuzzy) superclass according to the inclusion degree of the attribute
domains of the subclass with respect to the attribute domains of the superclass as
well as the weight of attributes. In the following, we give the method for evalu-
ating the inclusion degree of fuzzy attribute domains.

Let C, and C; be (fuzzy) classes with attributes {Aj, As, ..., Ax, Axsts -oos Am}
and {A}, Ay, ..., A, A'kir, .. A, Anes .., Ay, respectively. It can be seen
that in Cj, attributes A;, A, ..., and Ay are directly inherited from A;, A,, ..., and
Ay in Cy, attributes A’y 1, ...,and A}, are overridden from Ay, |, ..., and A, in C|,
and attributes A1, ..., and A, are special. For each attribute in C; or C,, say A;,
there is a domain, denoted dom (A;). As shown above, dom (A;) should be dom
(A;)) = cdom (A;) U fdom (A;), where cdom (A;) and fdom (A;) denote the sets of
crisp values and fuzzy subsets, respectively. Let A; and A; be attributes of C; and
C,, respectively. The inclusion degree of dom (A;) with respect to dom (A;) is
denoted by ID (dom (A;), dom (A;)). Then we identify the following cases and
investigate the evaluation of ID (dom (A;), dom (A;)):

(a) wheni # jand 1 <i,j <k, ID (dom (A;), dom (A))) =0,

(b) wheni=jand 1 <i,j <k, ID (dom (A;), dom (A;)) = 1, and

(c) wheni=jand k + 1 < i, j < m, ID (dom (A;), dom (A;)) = ID (dom (A)),
dom (A'}))) = max (ID (dom (A;), cdom (A'y)), ID (dom (A;), fdom (A))).

Now we respectively define ID (dom (A,), cdom (A’})) and ID (dom (A;), fdom
(A)). Let fdom (A"}) = {f1, o, ..., fm}, Where f; (1 < j < m) is a fuzzy value, and
cdom (A'}) = {cy, ¢, ..., ¢}, where ¢ (1 <1 <k) is a crisp value. We can
consider {cy, ¢, ..., ¢k} as a special fuzzy value {1.0/cy, 1.0/c,, ..., 1.0/cy}. Then
we have the following:

ID (dom (A;), cdom (A'})) = ID (dom (A;), {1.0/cy, 1.0/c,, ..., 1.0/cy)).
ID (dom (A;), fdom (A';)) = max; (ID (dom (Ay), f).
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Based on the inclusion degree of attribute domains of the subclass with respect
to the attribute domains of its superclass as well as the weight of attributes, we can
define the formula to calculate the degree to which a fuzzy class is a subclass of
another fuzzy class. Let C; and C, be (fuzzy) classes with attributes {Aj,
A2, ceey Ak, Ak+1, ceey Am} and {Alv A2, N Ak, Alk+1, vy A/m, Am+1a ey An},
respectively, and w (A) denote the weight of attribute A. Then the degree that C, is
the subclass of Cy, written u (Cy, C,), is defined as follows.

m

> ID(dom (A;(C))),dom (A;i(C2))) x w (4A;)

u(Cy, Cy) = =

m

;W (A;)

In subclass-superclass hierarchies, a critical issue is multiple inheritance of
class. Ambiguity arises when more than one of the superclasses have common
attributes and the subclass does not declare explicitly the class from which the
attribute was inherited.

Let class C be a subclass of classes C; and C,. Assume that the attribute A; in
C,, denoted by A; (C;), is common to the attribute A; in C,, denoted by A; (C»). If
dom (A; (Cy)) and dom (A; (C,)) are identical, there does not exist a conflict in the
multiple inheritance hierarchy and C inherits attribute A; directly. If dom (A; (C))
and dom (A; (C,)) are not identical, however, the conflict occurs. At this moment,
which one in A; (Cy) and A; (C3) is inherited by C dependents on the following
rule:

If ID (dom (A; (Cy)), dom (A; (C2))) x w (A; (C1))>ID (dom (A; (C2)), dom (A;
(Cy))) x w (A; (C5)), then A; (C;) is inherited by C, else A; (C,) is inherited by C.

Note that in fuzzy multiple inheritance hierarchy, the subclass has different
degrees with respect to different superclasses, not being the same as the situation in
classical object-oriented database systems.

2.5.5 Algebraic Operations in Fuzzy Object-Oriented
Databases

In algebraic operations, a basic task is to determine the semantic relationship
between two objects and assess if they are duplicate. Therefore, in the following
we first introduce how to assess and deal with fuzzy object redundancies (Yan
et al. 2012).

The notion of the semantic inclusion degree and equivalence degree of attribute
data introduced in Sect. 2.4.2 can be extended to fuzzy objects. Let o; = <ay,
iy, ..., &ip, Mi> and o] = <aj;, ap, ..., 8j, U> be two objects in fuzzy class
C which contains attribute set {A;, A,, ..., A,, 4}. In class C, attribute name A is
used to denote its membership attribute. As a result, y; in o; is the membership
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degree that o; belongs to C, and y; in o is the membership degree that o; belongs to
C. We use o; [An] (1 <m < n) to denote the attribute value of object o; on
attribute A,,. It is clear that o; [A,] = aj, and o; [A] = 1 (0 <m < 1). The
semantic inclusion degree of objects o; and o; is denoted

SID (0i,0j) = SID (0i[A1],0i{A1]) x wi + SID (0i[A2], 0j[Az]) X w2 + ...
+ SID (0i[A4], 0j[An]) X Wy.

The semantic equivalence degree of objects o; and o; is denoted

SE (Oi,Oj) = SE (Oi[Al},Oj[Al]) x w; + SE (01[A2],0j[A2D X Wy + ...
+ SE (Oi[An],Oj [An]) X Wp.

It can be seen that, in order to calculate the inclusion degree and equivalence
degree of these two objects, except for the membership attribute, we need to
compare each pair of other attribute values of two objects on the same attributes.

As we know, in the object-oriented databases, the attribute values of objects
may be complex values and even be other objects. For such a pair of values on an
attribute, say Ay, (I < m < n), we cannot calculate SID (0; [Anl, 0 [An]) by
applying the definition of SID (w4, mg) above. But complex values are eventually
consisted of some simple values. For these simple values, we can directly calculate
their inclusion degrees and then can obtain the inclusion degree of complex values
by combining the inclusion degrees of these simple values. Suppose that o; [Ap,]
and o; [Ap,] are fuzzy complex values, in which 0; [Ay] = <@imi, Qim2, -..5 Aim>,
0j [Am] = <ajm1, Qjm2, --., &jmi>, and aj, and ajy (1 < [ < k) are simple values.
Then we can directly calculate SID (ajp,, ajmi) and finally have

SID (0i[An), 0j[Am]) = min(SID (aimi; ajmi1), SID (im2; @jm2), - -, SID (Qimk, ajmk))

Based on the inclusion degree and equivalence degree of two fuzzy objects, we
can deal with fuzzy object redundancy. The processing of fuzzy value redundancy
can also be extended to that of fuzzy object redundancy. In a similar way, fuzzy
object redundancy can be classified into inclusion redundancy and equivalence
redundancy of fuzzy objects.

Let C be a fuzzy class with attribute set {A, Ay, ..., Ay, A}. Let 0; = <a;y, ajp,
.-os i, > and 0 = <ajy, ajp, ..., Ajn, K> be two objects in C. Then with a given
threshold f € [0, 1], object o is inclusively S-redundant to object o; if and only if
SID (0;, 0;) = B holds true, and objects o; and o; are equivalently fS-redundant if
and only if SE (o0;, 0) > f holds true.

When o; and o; are inclusively redundant or equivalently redundant, the
removal of redundancy can be achieved by merging o; and o; and producing a new
fuzzy class o. Being similar to the merging of fuzzy data above, we have three
kinds of merging operations for fuzzy objects in order to meet different require-
ments of object manipulations.
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0 = mergey(0i,05) = <mergey(0i[A1], 05[A1]), merge,(0i[As], 0j[As]), .. .,
mergey,(0i[A], 0j[Ar]), max (oi[A], o5[A]) >

0 = merge_(0,0;) = <merge_(0i[A1],0j[A]), merge_(0i[As], 0i[Az]), ...,
merge_(0i[An), 0j[An]), max(o;[A] — 0j[A], 0) >

0 = mergen(0;,0i) = <mergen(0i[Ai], 0i[A]), mergen(0i[Az], 0i[As)), ...,
mergen(0i[Ay], 0j[Aq]), min(oi[A], 0[A]) >

Based on the notion of the fuzzy object redundancies above, next we describe
the fuzzy algebraic operations (Yan et al. 2012). After referring to the fuzzy
algebraic operations in the fuzzy relational databases (Umano and Fukami 1994;
Ma and Mili 2002), we classify the fuzzy algebraic operations of the fuzzy object-
oriented databases into two types: algebraic operations for fuzzy classes and
algebraic operations for fuzzy objects.

In order to define the algebraic operations for fuzzy objects and fuzzy classes,
we first introduce some notations being used below. Let C be a (fuzzy) class and
Attr (C) be its attribute set. Then we have Att7’ (C) which is obtained from Attr
(C) through removing the membership degree attributes from Attr (C). We use A¢
to represent the membership degree attribute of C. It is clear that Attr' (C) = Attr
(C) — {Ac}. So At (C) actually contains all general attribute of class C, say {A;,
A,, ..., Ay}, not including its membership degree attribute /A¢. Class C contains a
set of (fuzzy) objects, denoted C = {04, 0y, ..., 0n}. We use o (C) to present an
object o of C. For a general attribute in C, say A; (1 <i < n), o [A{] is used to
represent the value of o on A;. The value of 0 on Ac is o [A¢c], which is the
membership degree that o belongs to C. Generally pc (0) is used to represent the
membership degree that o belongs to C.

2.5.5.1 Algebraic Operation for Fuzzy Objects

The algebraic operation for fuzzy objects is eventual the fuzzy selection (o). A
selection operation refers to such a procedure that the objects of the classes sat-
isfying a given selection condition are selected. The major issue here is how to
determine if an object satisfies the selection condition. We start with the syntax of
selection condition for fuzzy object selection.

In the classical relational databases, a predicate P denoted the selection con-
dition is formed through combining the basic clause “X 6 Y” as operands with
operators —, A, and V, in which 0 € {>, <, =, #, >, <}, X is an attribute, and Y
may be a constant, an attributes or an expression which is formed through com-
bining constants, attributes or expressions with arithmetic operations. For the
fuzzy databases, in “X 0 Y”, the attribute and constant may be fuzzy, and also the
“0” may be fuzzy comparison operations such as > B =g Fp Xp ~p,and Fp,
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where f§ is a given threshold. A basic fuzzy expression is hereby formed and used
to further form a fuzzy predicate, denoted Py, as a fuzzy selection condition.

To evaluate the fuzzy expressions, it is necessary to discuss the semantics of
fuzzy “X 0 Y”. Let ms and 7y be two fuzzy data over U = {uy, us, ..., u,}. Then

(a) ma ~p mp if SE (na, mg) > B,

(b) ma #p mg if SE (ma, mp) < B,

(¢) ma »p mp if mA # g mg and max (supp (7)) > max (supp (mg)),

(d) ma Zp g if o R p Mg OF A =p TR,

(e) ma <p mp if Mo *p mg and max (supp (7)) < max (supp (mg)), and
) ma <[; 7ig if Tu FEp g OF Tp <p TB.

Here “supp (m,)” is used to define the support set of the possibility distribution
na. Let T be a fuzzy data on U based on possibility distribution and np (u), u € U,
denote the possibility degree that u is true. The set of the elements that have non-
zero possibility degrees in 7, is called the support of m,. Formally

supp (ma) = {u|u € U and ma(u) > 0}

The fuzzy comparison operations =g, <p, =5, Xp, X, and # g have the same
properties as the classical comparison operations >, <, >, <, =, and #. For
example, mn <y 7p is equivalent to (s <p mg) V (mA X 7g) and to — (ma =p
7TB).

Let C be a fuzzy class and P¢ be a fuzzy predicate denoted the selection
condition. Then the selection on C for P; is defined as follows.

ar(C) = {o(C) [ o(C) A Pr(0)}

For example, suppose that we have a fuzzy class C’, in which Awtr’ (C') = {ID,
Department, Age, Degree, Nationality, Office}, and

o'y (C") = <ID: 9106, Department: CS, Age: {(18, 0.5), (19, 0.9), (20, 0.7)},
Degree: M. Phil, Nationality: USA, Office: Y1101, Ac;: 0.8 >,

0’5 (C") = <ID: 9107, Department: CS, Age: {(20, 0.4), (21, 0.3), (22, 0.6)},
Degree: M. Phil, Nationality: Canada, Office: Y1101, Ac;: 0.9 >,

0’3 (C") = <ID: 9705, Department: IS, Age: {(24, 0.2), (25, 0.9), (26, 1.0)},
Degree: M. Phil, Nationality: France, Office: B6280, Ac;: 0.8 >,

o'y (C") = <ID: 9706, Department: IS, Age: {(28, 0.2), (29, 0.7), (30, 0.6)},
Degree: Ph.D., Nationality: Italy, Office: B6280, Ac;: 0.7 >, and

0's (C') = <ID: 9707, Department: IS, Age: {(29, 0.6), (30, 0.7), (31, 0.2)},
Degree: Ph.D., Nationality: France, Office: B6280, Ac;: 0.6 >.

Now for a given threshold f = 0.8 and a given selection condition Pg:
Department = “IS” N Age ~ “{1.0/25, 0.9/26, 0.3/27}”, we can draw that o3
(C’) satisfies the selection condition and is returned, in which

SE (0’3 [Department], “IS”) =1 > f and SE (03 [Age], {1.0/25, 0.9/26,
0.3/27}) = 0.82 > .
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2.5.5.2 Algebraic Operation for Fuzzy Classes

We can identify two kinds of algebraic operations for fuzzy classes: one is for
single class and another is for multiple classes. The latter actually contains several
combination operations of the fuzzy classes, which combine several (fuzzy)
classes into a new class. Depending on the relationships between the attribute sets
of the combining classes, five kinds of combination operations can be identified:
Jfuzzy product (x), fuzzy join (<), fuzzy union (U), fuzzy difference (—) and fuzzy
Intersection (N). The algebraic operation for single fuzzy class is eventual the
fuzzy projection (I1). In the following, we give the formal definitions of fuzzy
product, fuzzy join, fuzzy union, fuzzy intersection, fuzzy difference and fuzzy
projection operations.

Fuzzy product The fuzzy product of C; and C, is a new class C, which is
composed of these general attributes in C; and C, as well as a membership
attribute. Generally it is required that A’ (C;) N Autr’ (Cy) = @ in the fuzzy
product. The objects of C are created by the composition of objects from C; and
C,, in which C contains attributes Aft’ (C;) and Attr’ (C,) as well as Ac.

C=C x G = {o(C) | (VYor) (Vo) (01(C1) A 02(Ca) N olAttr' (Cy)]
= o1[Attr' (C1)] A olAttr' (Cy)] = oa]Attr' (Cy)] A o[ Ac]
= op(o1[4ci], 02 [A2])) }

Here, op (01 [Ac1], 02 [Ac2]) may be defined as min (0 [Acq], 02 [Acz]) or may
be defined as 0 [Ac1] X 05 [Aca].

Fuzzy join The join operation is to join two classes together by combining every
pair of objects in two classes, which satisfy the given conditions. For two fuzzy
classes C; and C, and a fuzzy conditional predicate Py, their join Cy b<pr C, forms
a new class C. Here P; is a fuzzy conditional predicate in the form of “A 6 B”,
where 0 € {>p5 <5 Zp <p Xp Fp), A € A’ (Cy), and B € Antr’ (Cy).
According to Py as well as the relationship between Azt (C;) and Attr’ (C,), we
can identify several different fuzzy join operation.

(a) Art’ (C)) N Art’ (C,) = @: it means that there is not common attribute in C,
and C,.
At this point, the fuzzy join operation is actually a kind of conditional product:
only the objects which are respectively from C; and C, and satisfy Py are
combined together. The new class C contains attributes Az’ (C;) and Asr’/
(Cy) as well as Ac. The fuzzy join operation is defined as follows.

C = C1 > pr C2

10(C) | Gon) (3o
= o[Artr’ (C)] Ao
= oy[Attr' (Cy)] Ao

2) 01(C1) A 02(C2) A Pf(Ol, 02) A O[Altr/ (Cl)}
[Attr (Cy)]
[Ac]= op(o1[Aci], 02[Ac2])) }

Actually C = C] D<]pf C2 = 0pf (C] X Cz)
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(b) Ant¥ (C)) NAtr (C,) # ®: it means that there are some common attribute in
C] and C2.

At this point, we can further identify two cases:

(i) In Py, A and B do not belong to Astr’ (Cy) N Attr’ (C,) simultaneously and Aztr’
(Cy) # At (Cy). Then Attr (C) = At (C)) U (Att¥ (C,) — (At (C)) N
ArtY (C,))) U {Ac} and we have

C=CiapCs

= {0(C) | (301) (F02) (01(C1) A 02(C2) A Pt(01,02) A o[Attr’ (C)
— (Attr' (C1) N Aty (C))] = o1 [Attr (C1) — (Arer’ (Cr) N Aty (C2))]
Ao[Antr' (Cy) N Aty (Cy)]

= mergen(o1[Attr' (C1) NAwtr' (Cy)], 02]Attr' (Cy) NAttr' (C2)])
Ao[Arty (Cy) — (Artr' (Cy) N At (Cy)))

= oy[Attr' (Cy) — (Attr' (Cy) N Aty (Cy))] A o[ Ac]

= op(o1[Aci], 02[4c2]))}

(ii) In P;, A and B belong to At (C) N Aty (C,) simultaneously and A 0 B is
A =~ g B. Then the fuzzy join becomes the fuzzy natural join (i.e., the fuzzy
equi-join), denoted C = C; <1 C,, and Attr (C) = Antr’ (Cy) U (At (Cy) —
(At (Cy) N At (C,))) U {Ac}. The objects of C are created by the com-
position of objects from C; and C,, which are semantically equivalent on Arzr’
(C)) N Aty (C,) under the given thresholds. It should be noted that, however,
Aty (C)) N Aty (C,) # @ implies C; and C, have the same weights of
attributes for the attributes in Azt (C;) N At (C,). This is an additional
requirement to be met in the case of the fuzzy join operation. Let 5 be the
given threshold. Then we have

C=CiapC
= {0 (Jo1) (302) (01(C1) A 02(C2) A SE (oy[Attr' (Cy)
NAttr' (Cy)], 02[Attr’ (Cy) NAwr' (Cy)]) > B A olAttr’ (Cy) — (Awtr' (Cy)
NAtr' (Gy))]
= o1[Attr’ (Cy) — (At (Cy) NAttr' (Co))][Artr’ (Cy) N Aty (Cy)]
= mergen(o1[Attr' (Cy) NAntr' (C,)], 02[Attr’ (Cy) NAnr' (Cy)))[Aner (C)
— (Antr’ (C1) NAntr (Cy))]
ox|Attr' (Cy) — (Autr’ (Cy) NAntr (Cy))] A o] Ac]
op(o1[Aci], 02[Ac2])) }

For example, suppose that we have two fuzzy classes C; and C,, in which Azrr’/
(C)) = {ID, Department, Age} and Art’ (C,) = {Name, Degree, Age}. For C,
we have



2.5 Fuzzy Object-Oriented Database Models 71

o011 (Cy) = <ID: 9107, Department: ME, Age: {(21, 0.8), (22, 0.7)}, Ac:
0.7> and

012 (Cy) = <ID: 9712, Department: ME, Age: {(32, 0.8), (33, 0.9), (34, 0.6)},
ACl: 0.8>.

For C,, we have

021 (Cy) = <Name: Tom, Degree: Ph.D., Age: {(21, 1.0), (22, 0.7)}, Acz:
0.6> and

02, (Cy) = <Name: Jack, Degree: Ph.D., Age: {(32, 0.7), (33, 1.0), (34, 0.7)},
Acz: 0.7>.

For a given threshold f = 0.8 and C, ><ig C5, we have A#tr (C) = {ID, Name,
Department, Degree, Age, A} and

01 (C) = <ID: 9107, Name: Tom, Department: ME, Degree: Ph.D., Age: {(21,
0.8), (22, 0.7)}, A: 0.6> and

0, (C) = <ID: 9712, Name: Jack, Department: ME, Degree: Ph.D., Age: {(32,
0.7), (33, 0.9), (34, 0.6)}, A: 0.7>.

Fuzzy union The fuzzy union of C; and C, requires Antr’ (Cy) = Aur’ (C»),
which implies that all corresponding attributes in C; and C, have the same
weights. Let a new class C be the fuzzy union of C; and C,. Then the objects of
C are composed of three kinds of objects:

(a) The first two kinds of objects are such objects that directly come from one
component class (e.g., C;) and are not redundant with any object in another
component class (e.g., C,) under the given threshold.

(b) The last kind of objects is such objects that are the results of merging the
redundant objects from two component classes under the given threshold.

Let f be the given threshold. Then we have

C C] U/; C2 = {O(C) | (VOQ) (301) (02(C2) N 01(C1) A SE (01,02) <ﬁ Ao
=01) V (Yo1) (F02) (01(C1) N 02(C2) ASE (02,01) <P Ao
02) V (Fo1) (F02) (01(C1) A 02(C2) ASE (01,02) > Ao

= mergeu(ol, 02))}

For example, suppose that we have two fuzzy classes C, and C», in which A7’
(C)) = Attr’ (C,) = {ID, Department, Age}. For C;, we have

011 (Cy) = <ID: 9106, Department: CS, Age: {(19, 0.3), (20, 0.8), (21, 0.7)}, Acy:
0.7>,

012 (C) = <ID: 9107, Department: CS, Age: {(30, 0.6), (31, 0.9), (32, 0.7)}, Ac;:
0.7>, and

013 (Cy) = <ID: 9711, Department: ME, Age: {(32, 0.5), (33, 0.7), (34, 0.6)},
ACI: 0.9>.
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For C,, we have

031 (Cy) = <ID: 9106, Department: CS, Age: {(20, 0.8), (21, 0.7)}, Acs: 0.6>,

025 (C5) = <ID: 9108, Department: CS, Age: {(32, 0.5), (33, 0.8), (34, 0.6)}, Ac»:
0.8>, and

023 (Cy) = <ID: 9711, Department: ME, Age: {(32, 0.8), (33, 0.6), (34, 0.7)},
Acs: 0.8>.

Then for a given threshold f=0.8 and C = C; Uy C,, we have Aur
(C) = {ID, Department, Age, A} and

01 (C) = <ID: 9106, Department: CS, Age: {(19, 0.3), (20, 0.8), (21,0.7)}, A: 0.7>,

0, (C) = <ID: 9107, Department: CS, Age: {(30, 0.6), (31,0.9), (32,0.7)}, A: 0.7>,

03 (C) = <ID: 9108, Department: CS, Age: {(32, 0.5), (33, 0.8), (34, 0.6)}, A:
0.8>, and

04(C) = <ID: 9711, Department: ME, Age: {(32,0.8), (33,0.7),(34,0.7)}, A: 0.9>.

Fuzzy difference The fuzzy difference of C; and C, also requires Aftr’
(C)) = At/ (C») and all corresponding attributes in C; and C, have the same
weights. Let a new class C be the fuzzy difference of C; and C,, and let f§ be the
given threshold. Then we have

C=Ci_pC, = {0(C)|(Yoz) (F01) (02(C2) ANo1(Ci) ASE (01,00) <f Ao
= 01) V (3(01) (3;))2}) (ol(Cl) A\ 02(C2) A SE (01702) >f Ao
= merge_(01, 02

For example, suppose that we have the same C; and C, shown in the example
above. Then for a given threshold f = 0.8 and C = C,_p C,, we have Attr
(C) = {ID, Department, Age, A} and

01 (C) = <ID: 9106, Department: CS, Age: {(19, 0.3)}, 4: 0.1>,

0, (C) = <ID: 9107, Department: CS, Age: {(30, 0.6), (31, 0.9), (32, 0.7)}, A:
0.7>, and

03 (C) = <ID: 9711, Department: ME, Age: {(33, 0.1)}, A: 0.1>.

Fuzzy intersection The fuzzy intersection of C; and C, is to combine the
common objects of these two classes, which requires Astr’ (Cy) = Asntr’ (C,) and all
corresponding attributes in C; and C, have the same weights also. Let a new class
C be the fuzzy intersection of C; and C,, and let f§ be the given threshold. Then we
have

€ = €1 1y €2 = {o(C)| (Bor) (303) (01(C1) A 02(C2) ASE (01,02) 2 f Ao
=mergen(01,02))}

For example, suppose that we have the same C; and C, shown in the example
above. Then for a given threshold f = 0.8 and C = C; Ng C,, we have Artr
(C) = {ID, Department, Age, A} and
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01 (C) = <ID: 9106, Department: CS, Age: {(20, 0.8), (21, 0.7)}, A: 0.6> and
0, (C) = <ID: 9711, Department: ME, Age: {(32, 0.5), (33, 0.6), (34, 0.6)},
A: 0.8>.

Fuzzy projection For a given class (say C') and a given subset of attributes (say
S) the class, the projection of C’ on S is to remove attributes Astr (C') — S from C’
and only remain attributes S in C’, forming a new class C. It is clear that S C Arr
(C") and Artr (C) = S. Since only attributes S in C’ are remained, each object in C’
becomes a new object without attribute values on A#tr (C') — S. There may be
redundancies among these new objects. After removing possible redundancies, the
new objects constitute class C. The projection of C’' on S is defined as follows.

C =TI5(C") = {o(C)| (Vo) (o'(C") No[S] ='[S] Ao
= mergey(0[8]))}

For example, suppose that we have the same C’ shown in the example in Sect. 2.5.5.1.
Then for a given threshold = 0.8 and C = Ilipep;, Age) (C), we have Attr
(C) = {Department, Age} and

01 (C) = <Department: CS, Age: {(18, 0.5), (19, 0.9), (20, 0.7)}>,

0, (C) = <Department: CS, Age: {(20, 0.4), (21, 0.8), (22, 0.6)}>,

03 (C) = <Department: IS, Age: {(24, 0.2), (25, 0.9), (26, 1.0)}>, and

04 (C) = <Department: IS, Age: {(28, 0.2), (29, 0.7), (30, 0.6), (31, 0.2)}>.

Note that there exists object redundancy after projecting 0’4 (C") and 0’5 (C") of C'
on attributes { Department, Age}. The result of redundancy removal forms o4 of C.

2.5.5.3 Other Algebraic Operation

In addition to the major algebraic operations introduced above, there are also
several algebraic operations are useful for fuzzy object and class operations. In the
following, we discuss two operations: renaming operation and outerunion
operation.

Renaming This operation is used to change the names of some attributes of a
class. Let C be a fuzzy class, and A and B be two attributes satisfying A e Artr
(C) and B & Attr (C), where A and B have the same domain. Now we rename A
into B and form a new class C'. It is clear that Artr (C') = Antr (C) — {A} U {B}.
Then class C with A renamed to B is defined as

C' = pp_p(C) ={(C")| (Vo) (o(C) N o' [Attr(C") — B] = o[Attr(C) — A]
Ao’ [B] = o[A])}.
It means that when attribute A in class C is renamed into B, the objects of C are

not changed at all. These objects constitute class C' which is formed after
renaming A in C into B.
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The renaming operation above is defined for renaming a single attribute. The
operation for renaming several attributes (i.e., a set of attributes) follows the same
processing.

Outerunion The general union operation requires two classes union-compatible.
That is two classes have the same attributes. But sometimes it is needed to
combine two classes with different attributes with union operations. For example,
we integrate heterogeneous multiple classes. At this point, we need a kind of
outerunion operation.

Let C; and C, be two fuzzy classes and let Artr’ (C)) # Art¥' (C,). Let
Z = Aty (C)) NAnY (Cy), X = Attr (C)) — Antr’ (Cy) and Y = Antr (Cy) — At/
(Cy). Tt is possible that X = @ or Y = ® but it is not possible that X = @ and
Y = @, or At (C)) = Artr’ (C,) and the operation turns to the general union
operation. Without loss of generality, it is assumed that X # ®and Y # ®. Then

the outerunion of C; and C,, denoted by C, O C,, forms a new class C with Attr
(C) = ZXY A. Let f§ be the given threshold and then we have

C= C1U~bC2 = {0(C)|(V02) (3() ) (02(C2) A ()1(C1) A SE (01[2],02[2])

<BlZ] = a1[Z] No[X] = 01[X] A o[Y] = @[]
= 01[Ac1]) V (Vo1) (J02) (01(C1) A 02(C2) A SE(01[Z], 02[Z])
<BAolZ] = osr[Z] No[X] = @ No[Y] = 02[Y] Ao[4]

] =
= 02[/1(:2]) (301) (302) (Ol(Cl) AN 02(C2) A SE (01[2], 02[2])
> B A olZ] = merge,(01[Z],02]Z]) A o[X] = 01[X] Ao[Y]

= 0[Y] A o[A4] = max (o1 [Ac1], 02[Ac2])) }

Being similar to the general union operation, the objects of the above C are
composed of three kinds of objects:

(a) The first kind of objects originally comes from C;, which are not redundant
with any object of C, on attributes Z. These objects have null values, which
are expressed by ¢, on attributes Y in C.

(b) The second kind of objects originally comes from C,, which are not redundant
with any object of C; on attributes Z. These objects have null values, which
are expressed by ¢, on attributes X in C.

(c) The last kind of objects originally comes from C; and C, simultaneously,
which are redundant each other on attributes Z. On attributes Z in C, these
objects are combined using the merging operation under the given threshold.

As mentioned above, the outerunion operation turns to the general union
operation when two classes have the same attributes. The outerunion operation
turns to the product operation when two classes have completely different attri-
butes, i.e., the intersection of the attribute sets of two classes is empty.

For example, suppose that we have two fuzzy classes Cy and C,, in which Aztr
(Cy) = {ID, Office, Age, Ac,} and Attr (C,) = {ID, Degree, Age, Ac>}. For Cj,
we have
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011 (Cy) = <ID: 9106, Office: Y1415, Age: {(19, 0.3), (20, 0.8), (21, 0.7)}, Ac;:
0.6> and

01> (Cy) = <ID: 9107, Office: B6280, Age: {(30, 0.6), (31, 0.9), (32, 0.7)}, Ac::
0.8>.

For C,, we have

051 (C») = <ID: 9106, Degree: {(BE, 0.7), (MPh, 0.5)}, Age: {(19, 0.3), (20, 0.8),
1, 0.7)}, Aca: 0.7> and

02, (C») = <ID: 9108, Degree: {(MPh, 0.6), (Ph.D., 0.8)}, Age: {(32, 0.5),
(33, 0.9), (34, 0.7)}, Aca: 0.9>.

Then for a given threshold f =09 and C = C; Oﬁ C,, we have Attr
(C) = {ID, Office, Degree, Age, A}, and

01 (C) = <ID: 9106, Office: Y1415, Degree: {(BE, 0.7), (MPh, 0.5)}, Age:
{(19, 0.3), (20, 0.8), (21, 0.7)}, A: 0.7>,

0, (C) = <ID: 9107, Office: B6280, Degree: ¢, Age: {(30, 0.6), (31, 0.9),
(32, 0.7)}, A: 0.8>, and

03 (C) =<ID: 9108, Office: ¢, Degree: {(MPh, 0.6), (Ph.D., 0.8)}, Age:
{(32, 0.5), (33, 0.9), (34, 0.7)}, A: 0.9>.

2.5.5.4 SQL-like Fuzzy Querying

Query processing in the object-oriented databases refers to such a procedure that the
objects satisfying a given condition are selected and then they are delivered to the
user according to the required formats. These format requirements include which
attributes appear in the result and if the result is grouped and ordered over the given
attribute(s). So a query can be seen as comprising two components, namely, a
boolean query condition and some format requirements. For the sake of the simple
illustration, some format requirements are ignored in the following discussion. An
Structured Query Language (SQL) like query syntax is represented as

SELECT <attribute list> FROM <class names> WHERE < query condition>.

Here <attribute list> is the list of attributes separated by commas: Aftribute,,
Attribute,, ..., Attribute,. At least one attribute name must be specified
in <attribute list>. Attributes that take place in <attribute list> are selected from
the associated classes which are specified in the FROM statement. <class
names> contains the class names separated by commas: Class,, Class,
..., Class,, from which the attributes are selected with the SELECT statement.

Classical databases suffer from a lack of flexibility to query. The given query
condition and the contents of the database are all crisp. A query is flexible if the
query condition is imprecise and uncertain and/or the databases contain imprecise
and uncertain information. In the fuzzy object-oriented databases, it is shown
above that an object may belong to a given class with a membership degree [0, 1].
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In addition, an object satisfies the given query condition also with membership
degree [0, 1] because fuzzy information occur in the query condition and/or in the
object. For these reasons, the query processing in the fuzzy object-oriented data-
base model refers to such a procedure that some objects are chosen from the
classes, which first belong to the classes under the given threshold and then satisfy
the given condition under the given threshold. So the queries for the fuzzy object-
oriented databases are threshold-based ones. The SQL-like query syntax based on
the fuzzy object-oriented database model is represented as follows.

SELECT <attribute list> FROM <Class, WITH threshold,, ..., Class,, WITH thresh-
old,,> WHERE < query condition WITH threshold>

Here, <query condition> is a fuzzy condition and all thresholds are crisp
numbers in [0, 1]. With the SQL-like queries, one can get such objects that belong
to the classes under the given thresholds and also satisfy the query condition under
the given thresholds at the same time. The fuzzy selection operation defined above
can be used for the fuzzy queries in the fuzzy object-oriented databases. Note that
the item WITH threshold can be omitted when the threshold is exactly 1.

Assume we have a fuzzy class Young Students as follows.

CLASS Young Students WITH DEGREE OF 1.0
INHERITS Students WITH DEGREE OF /.0
ATTRIBUTES
ID: TYPE OF string WITH DEGREE OF 1.0
Name: TYPE OF string WITH DEGREE OF 7.0
Age: FUZZY DOMAIN {very young, young, old, very old}: TYPE
OF integer WITH DEGREE OF 1.0
Height: DOMAIN /60, 210]: TYPE OF real WITH DEGREE OF
1.0
Membership_Attribute name
WEIGHT
w (ID)=10.1
w (Name) = 0.1
w (Age) = 0.9
w (Height) = 0.2
METHODS

END

And a SQL-like fuzzy query based on the class may be

SELECT Young Students.Height FROM Young Students WITH 0.5 WHERE Young
Students.Age = very young WITH 0.8.

This query is to get some objects of young students from the class. These
objects first must belong to the class with the membership degrees equal to or
greater than 0.5, and then must have very young age with a membership degree
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equal to or greater than 0.8. The height values of the selected objects are finally
provided to the users. Assume that we now have three objects of Young Students:
01, 0, and o3 and they have membership degrees 0.4, 0.6, and 0.7, respectively. It
is clear that for the query above, o, does not satisfy the query because its mem-
bership degree to Young Students is 0.4, which is less than the given threshold 0.5.
Objects 0, and 03 may or may not satisfy the query, depending on if their ages are
very young under the given threshold 0.8.

An important issue in database queries is the complexity of queries. Among the
algebraic operations, fuzzy join is an important and expensive one, and its efficient
evaluation is more difficult than that of an ordinary join (Zhang and Wang 2000).
So in the following, we discuss the time complexity of a SQL-like fuzzy equi-join
query in a fuzzy object-oriented database. The computation of the semantic
equivalence degree is the key to the meaning of the fuzzy equi-join. Suppose that
we would determine if 0; [A,] and o; [A,] are equivalent. Here o; and o; are two
fuzzy objects and A, is an attribute. We can identify two kinds of attribute A;:
simple one and complex one. For simple attribute A, let the universe of discourse
contain n simple values. Then the time complexity of computing if 0; [Ay,] and o;
[A..] are equivalent should be O (n”) at most. For complex attribute A, let the
universe of discourse contain #» complex values and each complex value contains
m simple values at most. Then the time complexity of computing if 0; [Ap,] and o;
[A,] are equivalent should be O (n*m?) at most. It is clear that the time complexity
of a SQL-like fuzzy equi-join query in a fuzzy object-oriented database mainly
depends on object composition in the corresponding attributes. It should be noted
that in the time complexity analysis above, we assume that the query is a flat one.
It is possible that a SQL-like fuzzy equi-join query in a fuzzy object-oriented
database is a nested query. At this point, the time complexity of a SQL-like fuzzy
equi-join query in a fuzzy object-oriented database is also influenced by the
concrete nested composition in addition to the object composition in the corre-
sponding attributes.

For the fuzzy object-oriented databases, the contents of the databases may be
fuzzy and the query conditions may be fuzzy also. So the queries only make a
qualitative distinction between the returned objects and the ignored objects in the
classes. The ignored objects do not satisfy the given query conditions definitely
and the returned objects satisfy the given query conditions indefinitely. Here, a
problem exists in fuzzy queries, i.e., the strength of query answers to the queries is
unknown. Such information is very useful for ranking the query answers.

2.6 Summary

In real-world applications, information is often imprecise or uncertain. For mod-
elling fuzzy information in the area of databases, Zadeh’s fuzzy logic (Zadeh
1965) is introduced into databases to enhance the classical databases such that
uncertain and imprecise information can be represented and manipulated. This
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resulted in numerous contributions, mainly with respect to the popular fuzzy
conceptual data models and fuzzy logical database models. In this chapter, we
mainly introduce several popular fuzzy database models, including fuzzy UML
conceptual data model, fuzzy relational database model and fuzzy object-oriented
database model. Based on the widespread studies and the relatively mature tech-
niques of fuzzy databases, it is not surprising that fuzzy databases have been the
key means for providing some technique supports for managing fuzzy data.

Besides the conceptual and logical database models, with the popularity of
Web-based applications, the requirement has been put on the exchange and share
of data over the Web. The XML (eXtensiable Markup Language) has become the
de facto standard for data description and exchange between various systems and
databases over the Internet. However, XML is not able to represent and process
imprecise and uncertain data. On this basis, topics related to the modelling of fuzzy
data can be considered very interesting in XML as will be introduced in the
following chapter.
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Chapter 3
Fuzzy XML Data Models

Abstract Information is often imprecise and uncertain in many real-world
applications, and thus fuzzy data modeling has been extensively investigated in
various database models as introduced in Chap. 2. Currently, huge amounts of
electronic data are available on the Internet, and XML has been the de facto
standard of information representation and exchange over the Web. Unfortunately,
XML is not able to represent and process imprecise and uncertain data. To rep-
resent and manage the imprecise and uncertain data, Zadeh’s fuzzy set theory has
been introduced into XML to extend XML such that uncertain and imprecise
information can be represented and manipulated. The extended XML model
together with the fuzzy database models introduced in Chap. 2 are the key tech-
niques for managing fuzzy data. In this chapter, we mainly introduce fuzzy XML
data model.

3.1 Introduction

As introduced in Chap. 2, fuzzy data modeling has been extensively investigated in
various database models. However, the fuzzy conceptual data models and the
fuzzy logical database models are not enough to represent and handle the huge
amounts of electronic data which are available on the Internet. With the wide
utilization of the Web and the availability of huge amounts of electronic data,
information representation and exchange over the Web becomes important, and
eXtensible Markup Language (XML) has been the de facto standard (Bray et al.
1998). XML and related standards are technologies that allow the easy develop-
ment of applications that exchange data over the Web such as e-commerce (EC)
and supply chain management (SCM). Unfortunately, although it is the current
standard for data representation and exchange over the Web, XML is not able to
represent and process imprecise and uncertain data. In fact, the fuzziness in EC
and SCM has received considerable attentions and fuzzy set theory has been used
to implement web-based business intelligence. Therefore, topics related to the
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modeling of fuzzy data can be considered very interesting in the XML data con-
text. Regarding modeling fuzzy information in XML, Turowski and Weng (2002)
extended XML DTDs with fuzzy information to satisfy the need of information
exchange. Lee and Fanjiang (2003) studied how to model imprecise requirements
with XML DTDs and developed a fuzzy object-oriented modeling technique
schema based on XML. Ma and Yan (2007) and Ma (2005) proposed a fuzzy XML
model for representing fuzzy information in XML documents. Tseng et al. (2005)
presented an XML method to represent fuzzy systems for facilitating collabora-
tions in fuzzy applications. Moreover, aimed at modeling fuzzy information in
XML Schemas, Gaurav and Alhajj (2006) incorporated fuzziness in an XML
document extending the XML Schema associated to the document and mapped
fuzzy relational data into fuzzy XML. In detail, Oliboni and Pozzani (2008)
proposed an XML Schema definition for representing different aspects of fuzzy
information. Kianmehr et al. (2010) described a fuzzy XML schema model for
representing a fuzzy relational database. In addition, XML with incomplete
information (Abiteboul et al. 2001) and probabilistic data in XML (Nierman and
Jagadish 2002; Senellart and Abiteboul 2007) were presented in research papers.

In this chapter, we introduce some basic notions of fuzzy XML models,
including fuzziness in XML documents, fuzzy XML representation model, and
fuzzy XML algebraic operations (Ma and Yan 2007; Ma et al. 2010).

3.2 Fuzziness in XML Documents

Being similar to classical XML documents, the main part of a fuzzy XML docu-
ment consists of a start tag, the matching end tag, and everything in between is
called an element, which can have associated attributes. An element may be a leaf
element or a non-leaf element.

The fuzziness in an XML document is similar with the fuzziness in a relational
database. In a fuzzy relational database, there may be two kinds of fuzziness as
introduced in Sect. 2.4: one is the fuzziness in tuples, i.e., a possibility degree
associated with a tuple represents the possibility of the tuple being a member of the
corresponding relation; the other is the fuzziness in attributes, i.e., we do not know
the crisp value of an attribute, and the value of the attribute may be represented by
a possibility distribution.

Similar to the fuzziness in a relational database, in a fuzzy XML document, two
kinds of fuzziness occur:

o the fuzziness in elements, and using membership degrees associated with such
elements. The membership degree associated with an element represents the
possibility of this element (including itself and the sub-elements rooted at it)
belonging to its parent element. Now let us interpret what a membership degree
associated with an element means, given that the element can nest under other
elements, and more than one of these elements may have an associated
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membership degree. The existential membership degree associated with an ele-
ment should be the possibility that the state of the world includes this element and
the sub-tree rooted at it. For an element with the sub-tree rooted at it, each node in
the sub-tree is not treated as independent but dependent upon its root-to-node
chain. Each possibility in the source XML document is assigned conditioned on
the fact that the parent element exists certainly. In other words, this possibility is a
relative one based upon the assumption that the possibility the parent element
exists is exactly 1.0. In order to calculate the absolute possibility, we must con-
sider the relative possibility in the parent element. In general, the absolute pos-
sibility of an element e can be obtained by multiplying the relative possibilities
found in the source XML along the path from e to the root. Of course, each of these
relative possibilities will be available in the source XML document. By default,
relative possibilities are therefore regarded as 1.0. Consider a chain A —
B — C from the root node A. Assume that the source XML document contains the
relative possibilities Poss (CIB), Poss (BlA), and Poss (A), associated with the
nodes C, B, and A, respectively. Then we have Poss (B) = Poss (BIA) x Poss
(A) and Poss (C) = Poss (CIB) x Poss (BIA) x Poss (A). Here, Poss (C|B), Poss
(BIA), and Poss (A) can be obtained from the source XML document.

e the fuzziness in attribute values of elements, and using possibility distributions
to represent the values of the attributes. Furthermore, attributes are classified
into two types:

single value attributes: some data items are known to have a single unique value,
e.g., the age of a person in years is a unique integer, and if such a value is
unknown so far, we can use the following possibility distribution: {23/0.9, 25/
0.7, 27/0.6}. This is called disjunctive possibility distribution.
multiple value attributes: XML restricts attributes to a single value, but it is
often the case that some data item is known to have multiple values-these values
may be unknown completely and can be specified with a possibility distribution.
For example, the e-mail address of a person may be multiple character strings
because he or she has several e-mail addresses available simultaneously. In case
we do not have complete knowledge of the e-mail address for “Tom Smith”, we
may say that the e-mail address may be “TSmith@yahoo.com” with possibility
0.6 and “Tom_Smith@hotmail.com” with possibility 0.85. This is called con-
Jjunctive possibility distribution.
For ease of understanding, we interpret the above two kinds of fuzziness with a
simple fuzzy XML document d; in Fig. 3.1. In Fig. 3.1, we talk about the uni-
versities in an area of a given city, say, Detroit, Michigan, in the USA.

(a) Wayne State University is located in downtown Detroit, and thus the possi-
bility that it is included in the universities in Detroit is 1.0. For pair <Val
Poss = 1.0> --- </Val> is omitted (see Lines 50-51).

(b) Oakland University, however, is located in a nearby county of Michigan,
named Oakland. Whether Oakland University is included in the universities in
Detroit depends on how to define the area of Detroit, the Greater Detroit Area
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1. <universities>

2 <university UName = “Oakland University”’>

3 <Val Poss = 0.8>

4. <department DName = “Computer Science and Engineering”>
S. <employee FID = “85431095”>

6 <Dist type = “disjunctive”>

7 <Val Poss = 0.8>

8 <fname>Frank Yager</name>

9. <position>Associate Professor</position>

10. <office>B1024</office>

11. <course>Advances in Database Systems</course>
12. </Val >

13. <Val Poss = 0.6>

14. <fname>Frank Yager</name>

15. <position>Professor</position>

16. <office>B1024</office>

17. <course>Advances in Database Systems</course>
18. </Val >

19. </Dist>

20. </employee>

21. <student SID = “96421027”>

22, <sname>Tom Smith</name>

23. <age>

24, <Dist type = “disjunctive”>

25. <Val Poss = 0.4>23</Val>

26. <Val Poss = 0.6>25</Val>

27. <Val Poss = 0.8>27</Val>

28. <Val Poss = 1.0>29</Val>

29. <Val Poss = 1.0>30</Val>

30. <Val Poss = 1.0>31</Val>

31. <Val Poss = 0.8>33</Val>

32. <Val Poss = 0.6>35</Val>

33. <Val Poss = 0.4>37</Val>

34, </Dist>

35. </age>

36. <sex>Male</sex>

37. <email>

38. <Dist type= “conjunctive”>

39. <Val Poss = 0.60>TSmith@yahoo.com</Val>
40. <Val Poss = 0.85>Tom_Smith@yahoo.com</Val>
41. <Val Poss = 0.85>Tom_Smith@hotmail.com</Val>
42. <Val Poss = 0.55>TSmith@hotmail.com</Val>
43. <Val Poss = 0.45>TSmith@msn.com</Val>
44. </Dist>

45. </email>

46. </student>

47. </department >

48. </Val>

49.  </university>

50. <university Uname = “Wayne State University”’>

51. </university>

52. </universities >

Fig. 3.1 A fragment of a fuzzy XML document d;
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or only the City of Detroit. Assume that it is unknown and the possibility that
Oakland University is included in the universities in Detroit is assigned 0.8
(see Line 3). The cases 1-2 are the fuzziness in elements. The degree associ-
ated with such an element represents the possibility that a university is
included in universities in Detroit.

(c) For the student Tom Smith, if his age is unknown so far, i.e., he has fuzzy value in
the attribute age. Since age is known to have a single unique value, we can use
the disjunctive possibility distribution to represent such value (see Lines 23-35).

(d) The e-mail address of Tom Smith may be multiple character strings because he
has several e-mail addresses simultaneously. If we do not know his exact e-mail
addresses, and we use the conjunctive possibility distribution to represent such
information and may say that the e-mail address may be “TSmith@yahoo.com”
with possibility 0.6 and “TSmith@msn.com” with possibility 0.45 (see Lines
37-45). Note that, the cases 3—4 are the fuzziness in attribute values of elements.
In an XML document, it is often the case that some values of attributes may be
unknown completely and can be specified with possibility distributions.

3.3 Fuzzy XML Representation Models and Formalizations

In the following, we introduce fuzzy XML representation models, including the
representation of fuzzy data in the XML document, and two fuzzy XML document
structures fuzzy DTD and fuzzy XML Schema.

3.3.1 Representation of Fuzzy Data in the XML Document

In order to represent the fuzzy data in XML documents, it is shown in the previous
part that several fuzzy constructs (such as Poss, Val and Dist) are introduced:

1. A possibility attribute called Poss, which takes a value of [0, 1], is introduced.
The attribute Poss is applied together with a fuzzy construct Val to specify the
possibility of an element existing in the fuzzy XML document (see Line 3 in
Fig. 3.1).

2. Another fuzzy construct called Dist, which specifies a possibility distribution, is
introduced. Based on pair <Val Poss> and </Val>, possibility distribution for
an element can be expressed. Also, possibility distribution can be used to
express fuzzy element values. For this purpose, we introduce another fuzzy
construct called Dist to specify a possibility distribution. Typically, a Dist
element has multiple Val elements as children, each with an associated pos-
sibility. Since we have two types of possibility distribution, the Dist construct
should indicate the type of a possibility distribution being disjunctive or con-
junctive. (see Lines 24-34 and Lines 38—44 in Fig. 3.1)
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Again consider Fig. 3.1. Lines 24-34 are the disjunctive Dist construct for the age
of student “Tom Smith”. Lines 38-44 are the conjunctive Dist construct for the
email of student “Tom Smith”. It should be noted, however, that the possibility
distributions in Lines 24—-34 and Lines 38—44 are all for leaf nodes in the ancestor—
descendant chain. In fact, we can also have possibility distributions and values over
non-leaf nodes. Observe the disjunctive Dist construct in Lines 6—19, which express
the two possible statuses for the employee with ID 85431095. In these two employee
values, Lines 7—12 are with possibility 0.8, and Lines 13—18 with possibility 0.6.

The structure of an XML document can be described by Document Type
Definition (DTD) or XML Schema (Antoniou and van Harmelen 2004). A DTD,
which defines the valid elements and their attributes and the nesting structures of
these elements in the instance documents, is used to assert the set of “rules” that
each instance document of a given document type must conform to. XML Sche-
mas provide a much more powerful means than DTDs by which to define your
XML document structure and limitations. It has been shown that the XML doc-
ument must be extended for fuzzy data modeling. As a result, several fuzzy
constructs have been introduced. In order to accommodate these fuzzy constructs,
it is clear that the DTD or XML Schema of the source XML document should be
correspondingly modified. In the following sub-chapters, we focus on DTD and
XML Schema modification for fuzzy XML data modeling.

3.3.2 Fuzzy DTD

In the following, we define DTD modification (i.e., fuzzy DTD) for representing
the structure of the fuzziness in XML document as introduced in Sect. 3.3.1.

Firstly, we define the basic elements in a fuzzy DTD as follows:

<IELEMENT element, (element, ?, *, +)>
/lelement, contains element,, and the appearance times of element, are
restricted by the cardinalities: ? denotes O or 1 time; * denotes O or
n times; + denotes 1 or n times; No cardinality operator means exactly

once
<IELEMENT element, (element,, elements, ...)>
/lelement, contains element,, elements, ... in order

<!ELEMENT element, (element, | elements | ...)>

/lelement, contains either element, or elements, ...

<!ELEMENT element, (#PCDATA)>
/I#PCDATA, which is the only atomic type for elements, denotes
element; may have any content

<!ELEMENT element, (empty)>

/lelement, is an empty element
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Moreover, the attributes of an element element; can be represented as follows:

<!ELEMENT element; ...>
<!ATTLIST element; AttName AttType ValType>

Here AttName is the name of the attribute, AttType is the type of the
attribute, and ValType is the value type which can be #REQUIRED,
#IMPLIED, #FIXED “value”, and “value” (Antoniou and van
Harmelen 2004).

Then, we define Val and Dist elements as follows:

<!ELEMENT Val (#PCDATA | basic_definition)>
<!ATTLIST Val Poss CDATA “1.0”>

/Ibasic_definition represents any case of the basic element definitions
above
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctivelconjunctive) “disjunctive”>

Finally, based on the Val and Dist elements, we modify the basic element
definitions above so that all of the elements can use possibility distributions (Dist).
In summary, the basis elements can be classified into two types, i.e., the leaf
element and the non-leaf element:

o for the leaf element which only contains #PCDATA, say leafElement, its defi-
nition is modified from <!ELEMENT leafElement (#PCDATA)> to

<!ELEMENT leafElement (#PCDATA | Dist)>.

That is, a leaf element may be fuzzy and takes a value represented by a
possibility distribution.

e for the non-leaf element which contains the other elements, say nonleafElement,
its definition is modified from <!ELEMENT nonleafElement (basic_defini-
tion)> to

<!ELEMENT nonleafElement (basic_definition | Val+ | Dist)>

That is, a non-leaf element may be crisp, e.g., student in Fig. 3.1, and thus the
non-leaf element student can be defined as

<!ELEMENT student (sname?, age?, sex?, email?)>.

Also, a non-leaf element may be fuzzy and takes a value represented by a
possibility distribution. We differentiate two cases: the first one is the element
takes a value connected with a possibility degree, e.g., university in Fig. 3.1,
which can be defined as

<!ELEMENT university (Val+)>
and the second one is the element takes a set of values and each value is
connected with a possibility degree, e.g., age of student in Fig. 3.1, which can be
defined as

<!ELEMENT age (Dist)>.
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Based on the above modified fuzzy DTD definitions, Fig. 3.2 gives the fuzzy
DTD D, w.r.t. the fuzzy XML document d; in Fig. 3.1.

3.3.3 Fuzzy XML Schema

Being similar to the fuzzy DTD , in the following, we define the XML Schema
modification (i.e., fuzzy XML Schema) for representing the structure of the
fuzziness in XML document as introduced in Sect. 3.3.1.

<!ELEMENT universities (university*)>
<!ELEMENT university (Val+)>
<!ATTLIST university UName IDREF #REQUIRED>
<!ELEMENT Val (department®)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT department (employee*, student*)>
<!ATTLIST department DName IDREF #REQUIRED>
<!ELEMENT employee (Dist)>
<!ATTLIST employee FID IDREF #REQUIRED>
<!ELEMENT Val (fname?, position?, office?, course?)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT student (sname?, age?, sex?, email?)>
<!ATTLIST student SID IDREF #REQUIRED>
<!ELEMENT fname (#PCDATA)>
<!ELEMENT position (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT course (#PCDATA)>
<!ELEMENT sname (#PCDATA)>
<IELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT sex (#PCDATA)>
<!ELEMENT email (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (conjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

Fig. 3.2 The fuzzy DTD D; w.r.t. the fuzzy XML document d; in Fig. 3.1
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First we define Val element as follows:

<xs:element name="“Val” type=‘“valtype”/>

<xs:complexType name="“valtype”>

<xs:sequence>
<xs:element name=*“original-definition” minOccurs=“0" maxOccurs=
“unbounded” />
<xs:attribute name="Poss” type=“xs:fuzzy” minOccurs=“0" maxOccurs=
“unbounded” default="1.0"/>

</xs:sequence>

</xs:complexType>

Then we define Dist element as follows:

<xs:element name="“Dist” type="“disttype”/>

<xs:complexType name="“disttype” >

<xs:element name="“Val” type="“valtype” minOccurs=“1" maxOccurs="“unbounded”/>
<xs:attribute values=“disjunctive conjunctive” default="disjunctive”/>
</xs:complexType>

Now we modify the element definition in the classical Schema so that all of the
elements can use possibility distributions (Dist). For a sub-element that only
contains leaf elements, its definition in the Schema is as follows.

<xs:element name="leafElement” type="‘leafelementtype”/>
<xs:complexType name="‘leafelementtype” >
<Xxs:sequence>
<xs:element name="‘original-definition” type=“xs:type” minOccurs=“0"
maxOccurs="*“unbounded” />
<xs:element name=“Dist” type="“disttype” minOccurs=“0" maxOccurs=
“unbounded” />
</xs:sequence>
</xs:complexType>

For an element that contains leaf elements without any fuzziness, its definition in
the Schema is as follows.

<xs:element name=*“original-definition” type=“xs:type” minOccurs=“0"
maxOccurs=“unbounded”/>

For an element that contains leaf elements with fuzziness, its definition in the
Schema is as follows.

<xs:element name="“leafElement” type="*leafelementtype”/>
<xs:complexType name="leafelementtype”>
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<xs:element name=“Dist” type=“disttype” minOccurs=“0" maxOccurs=
“unbounded”/>
</xs:complexType>

For a sub-element that does not contain any leaf elements, its definition in the
Schema is as follows.

<xs:element name="‘"nonleafElement” type=*‘“nonleafelementtype”/>
<xs:complexType name="“nonleafelementtype”>
<xs:sequence>
<xs:element name="‘original-definition” type="“xs:type” minOccurs=“0"
maxOccurs=“unbounded”/>
<xs:element name=“Dist” type=“disttype” minOccurs=“0" maxOccurs=
“unbounded”/>
<xs:element name=*“Val” type="“valtype” minOccurs=“0" maxOccurs=
“unbounded” />
</xs:sequence>
</xs:complexType>

For an element that does not contain leaf elements without any fuzziness, its
definition in the Schema is as follows.

<xs:element name="nonleafElement” type=‘nonleafelementtype”/>
<xs:complexType name=‘nonleafelementtype”>

<xs:element name=“original-definition” type="“xs:type” minOccurs=“0"
maxOccurs="“unbounded”/>

</xs:complexType>

For a sub-element that does not contain leaf elements but a fuzzy value, its
definition in the Schema is as follows.

<xs:element name="nonleafElement” type="nonleafelementtype”/>
<xs:complexType name="“nonleafelementtype”>

<xs:element name=“Val” type=“valtype” minOccurs=“0" maxOccurs=
“unbounded”/>

</xs:complexType>

For a sub-element that does not contain leaf elements but a set of fuzzy values, its
definition in the Schema is as follows.

<xs:element name="nonleafElement” type=‘“nonleafelementtype”/>
<xs:complexType name="“nonleafelementtype”>

<xs:element name=“Dist” type="“disttype” minOccurs=“0" maxOccurs=
“unbounded”/>

</xs:complexType>
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The fuzzy XML Schema w.r.t. the fuzzy XML document in Fig. 3.1 is shown as
follows:

<? xml version="1.0"7 >

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”>
<xs:element name="universities”>

<xs:complexType>

<xs:element name="“university” type=‘“universityype” minOccurs=“0"
maxOccurs=*“unbounded” />

</xs:complexType>

</xs:element>

<xs:complexType name="‘‘universityype” >

<xs:element name=“Val” type=“valtype” minOccurs=“1"
maxQOccurs=*“unbounded” />

<xs:attribute name="“UName” type=‘“xs:IDREF”
use=“REQUIRED”/>

</xs:complexType>

<xs:complexType name="valtype”>

<xs:sequence>

<xs:element name="department” type="“worktype” minOccurs=“0"
maxOccurs="“unbounded”/>

<xs:element name="fhame” type="“xs:string” minOccurs=“0"
maxOccurs=“1"/>

<xs:element name="“position” type=‘“xs:string” minOccurs=“0"
maxOccurs=*“1"/>

<xs:element name="office” type="xs:string” minOccurs=“0"
maxOccurs=“1"/>

<xs:element name="“course” type="“xs:string” minOccurs=“0"
maxOccurs=“1"/>

</xs:sequence>

<xs:attribute name="“Poss” type="xs:fuzzy” minOccurs=“0"
maxOccurs="“unbounded” default="1.0"/>

</xs:complexType>

<xs:complexType name="“worktype” >

<xs:sequence>

<xs:element name="“employee” type=‘“employeetype” minOccurs=“0"
maxOccurs="“unbounded”/>

<xs:element name="student” type="‘studenttype” minOccurs=“0"
maxOccurs=“unbounded”/>

</xs:sequence>

<xs:attribute name="“DName” type="xs:IDREF”
use=“REQUIRED”/>

</xs:complexType>

<xs:complexType name="“employeetype” >

<xs:element name=“Dist” type="‘“disttype”/>
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<xs:attribute name=“FID” type=“xs:IDREF” use=“REQUIRED”/>
</xs:complexType>

<xs:complexType name="“disttype” >

<xs:element name=“Val” type=*“valtype” minOccurs=*“1"
maxOccurs="“unbounded”/>

<xs:attribute values=“disjunctive conjunctive”
default="disjunctive”/>

</xs:complexType>

<xs:complexType name="“studenttype” >

<xs:sequence>

<xs:element name="sname” type="“xs:string” minOccurs=“0"
maxOccurs=“1"/>

<xs:element name="“age” type=*“agetype” minOccurs=“0"
maxOccurs=*“1"/>

<xs:element name="sex” type="‘xs:string” minOccurs=“0"
maxOccurs=“1"/>

<xs:element name="“email” type=“emailtype” minOccurs=“0"
maxOccurs=“1"/>

</xs:sequence>

<xs:attribute name="“SID” type=“xs:IDREF” use=“REQUIRED”/>
</xs:complexType>

<xs:complexType name="‘agetype” >

<xs:element name=“Dist” type="“disttype”/>
</xs:complexType>

<xs:complexType name="“emailtype”>

<xs:element name="Dist” type="disttype”/>

<xs:attribute values=“conjunctive”/>

</xs:complexType>

</xs:schema>

3.3.4 Formalization of Fuzzy XML Models

Being similar to the classical XML document, a fuzzy XML document can be
intuitionally seen as a syntax tree. Figure 3.3 shows a fragment of the fuzzy XML
document d; in Fig. 3.1 and its tree representation.

Based on the tree representation of the fuzzy XML document, in the following
we define the formalization of fuzzy XML models in Ma et al. (2010), Zhang et al.
(2013).

It can be found from Fig. 3.2 that a fuzzy DTD is made up of element type
definitions, and each element may have associated attributes. Each element type
definition has the form E — («, A), where E is the defined element type (e.g.,
university and student), o, called the content model such as university (UName,
Val+), and A are attributes of E.
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<university>

<UName>Oakland University</UName>
<Val Poss = 0.87>

<student>
<sname>Tom Smith</sname>
<age>
<Dist type = “disjunctive”>
<Val Poss = 0.9>
<age_value>23</age_value>
</Val>
</Dist>
</age>
</student>
</university>

Fig. 3.3 A fragment of the fuzzy XML document and its tree representation

For the sake of simplicity, we assume that the symbol T denotes the atomic types
of elements and attributes such as ##CDATA and CDATA, E denotes the set of
elements including the basic elements (e.g., university and student) and the special
elements (e.g., Val and Dist), A denotes the set of attributes, and S = T U E.

Definition 3.1 (fuzzy DTDs) A fuzzy DTD D is a pair (P, r), where P is a set of
element type definitions, and r € E is the root element type, which uniquely
identifies a fuzzy DTD. Each element type definition has the form E — («, A),
constructed according to the following syntax:

on=S8|empty | (oq|on) | (or,00) | 2? | & | a+ | any
A ::= empty |(AN, AT, VT)

Here:

1. S = T UE; empty denotes the empty string; “I” denotes union, and *“,” denotes
concatenation; o. can be extended with cardinality operators “?”, “*” and “+”,
where “?” denotes 0 or 1 time, “*” denotes O or »n times, and “+” denotes 1 or
n times; the construct any stands for any sequence of element types defined in
the fuzzy DTD;

2. AN € A denotes the attribute names of the element E; AT denotes the attribute
types; and VT is the value types of attributes which can be #REQUIRED,
#IMPLIED, #FIXED “value”, “value”, and disjunctive/conjunctive possibility
distribution.
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The formal definition of fuzzy XML Schemas can be analogously given fol-
lowing the procedure above. Next, we give a formal definition of the fuzzy XML
documents.

Definition 3.2 (fuzzy XML documents) A fuzzy XML document d over a fuzzy
DTD D is a tuple d = (N, <, 4, , r), where:

e N is a set of nodes in a fuzzy XML document tree.

e < denotes the child relation between nodes, i.e., for two nodes v;, v; € N, if
vi < vj, then vj is the parent node of vj.

e i: N > E U A is a labeling function for distinguishing elements and attributes
(where E and A are the sets of elements and attributes in Definition 3.1, and
attributes are preceded by a “@” to distinguish them from elements) such that if
A (v) = e € E, we say that v is an element type; if 1 (v) = @a € A, then v is an
attribute @a.

e : N X N — dom is a function for mapping attributes to values (where dom is a
set of values satisfying the constraints of attribute value types in Definition 3.1)
such that for each pair nodes v;, vj € N with v; <, if 4 (vj) = @q; € A, then 5
(vi, vj) = d; € dom. In particular, if / (vj) = e € Nis a leaf element node E, then
n (v, vj) = dj € dom.

e r is the root node of a fuzzy XML document tree.

In the following, we further give the formalization of fuzzy XML data models,
which is defined based on the characteristic of the tree structure of fuzzy XML data
models as mentioned above.

In short, the basic structure of a fuzzy XML data model is a tree. Let N be a
finite set (of vertices), E € N x N be a set (of edges) and A: E — L be a mapping
from edges to a set L of strings called labels. The triple G = (N, E, 1) is an edge
labeled directed graph. It should be noted that the tree structure only briefly
describes the characteristic of fuzzy XML data models, and ignores a number of
fuzzy XML features. Here, we further provide a more detailed formal definition of
fuzzy XML tree.

Definition 3.3 A fuzzy XML tree f can be a tuple t = (N, a, 4, 11, p, 7, =<):

N = {Ny, ..., N,} is a set of vertices.

o C {(N;, Ny) | N;, N; € N}, (N, o) is a directed tree.

{: N - (LU {NULLY}), where L a set of strings called labels. For n € N and
l e L, A (n, ) specifies the set of objects that may be children of n with label /.
n — T, where T is a set of fuzzy XML types (Oliboni and Pozzani 2008).

p is a mapping from the set of objects v € V to local possibility functions. It
defines the possibility of a set of children of an object existing given that the
parent object exists.

e 7y associates with n € N, each label [ € L, and an integer-valued interval function,
ie., v (n, ) = [min, max]. y is used to define the cardinality constrains of
children with a label.
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e oc is a possibly empty partial order on N. Here, a relation “o<” is a partial order
on a set N if the following three characteristics hold: (1) reflexivity: 0 o< 0 for all
0 € N; (2) antisymmetry: 0 «< @ and w o 0 implies w = 0; (3) transitivity:
0 < w and w < ¢ implies 0 o< &.

3.4 Fuzzy XML Algebraic Operations

As evidenced by the database management systems, a formal algebra is essential
for applying database-style optimization to query processing. Similarly, along the
fuzzy XML model as introduced in the previous chapters, the fuzzy XML alge-
braic operations should be defined for supporting fuzzy XML queries. As men-
tioned in Hung et al. (2003), an extension of the relational algebra, which is based
on probabilistic instance names and path expressions to handle probabilistic semi-
structured data, is investigated. It should be noted that the XML data are order
sensitive, and their studies may be more reasonable if they had considered the
order problem. In this section, we introduce a general algebraic framework for
supporting imprecise and uncertain XML queries (Ma et al. 2010). The algebra
serves as a target language for translation from declarative user oriented query
language for fuzzy XML. It is user-friendly and can provide a concise represen-
tation of query execution. The algebra also supports order-sensitive fuzzy queries,
which has been ignored in most of algebras. In particular, it is not only designed to
integrate with tuple operators but also supports fuzzy tree patterns queries. In the
following, we introduce several common fuzzy XML algebraic operators.

Union Given two fuzzy XML trees t; = (Ny, 01, A1, 11, P15 V1, 1) and 1, = (N,
G2, A2y N2, P2, V2, °<2), and #; and 2, are isomorphic, the union U can be defined as:

o ot Uh) =Ny UNy 01 U0, 41 Uds, 1 Ui, pr U po, 1 U po, oo U ocp)
e f(rhUn)e{slsep(t)orsef ()}

Based on fuzzy set theory, we have p,, = Max (p;, p2), where p, is the
membership degree of fuzzy union result.

Intersection Given two fuzzy XML trees t; = (Ny, 01, 41, 11, P1, V1, °<1) and
ty = (N, G, 22, N2, P2, V2, °<2), and t; and ¢, are isomorphic, the union N can be
defined as:

o oty Nt =Ny NNy oy Nop, Ay N Ao, 11 N K2, 10 P2, Y1 N Y2, 0 N o<y)
e f(tyNt)e(slsef(t)andse f (1)}

Further, we have p;, = Min(p;, p,), where p;. is the membership degree of
fuzzy union result.

Difference Given two fuzzy XML trees t; = (N, 01, 41, §1, P1, V1, 1) and
ty = (N, 02, A2, N2, P2, V2, <), and t; and t, are isomorphic, the union—can be
defined as:
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o oty — ) = (Ny — No, 0y — 02, A1 — Ao, 1 — Moy P1 — P2, V1 — V2, <1 — o)
* f(rh — ) e{slsef(t)ands & f (1)}

Further, we have pg, = Min(p;, p5/), po’ = 1 — p, is the complement of p,,
where pg, is the membership degree of fuzzy difference result.

Cartesian product Given two fuzzy XML trees t; = (Ny, 61, 41, 41, P1> V1> °<1)
and t, = (Na, 02, Ao, W2, P2, Y2, °<2), and t; and ¢, are isomorphic, the Cartesian
product ® can be defined as:

e 0t @) =Ny @ Ny, 01 ® 02, 41 @ o, 1 @ Mo, P1 @ P2, V1 @ V2,061 @ o<p)
e B(ty ®t) e {(s1,5) s, €p(t)and s, € f (1)}

Further, we have p.. = Min (p;, p,), Where py; is the of fuzzy cartesian product
result.

Selection Given a fuzzy XML trees t = (N, o, 4, n, p, 7, <), if there is a
predicate 0, then we have the definition of Selection: ¢s5 (f) = {s | s < ¢ N tr (9,
s)}, where function #r (d, s) is used to extract the pattern from 9.

The selection operator ¢ filters the fuzzy trees using a special predicate that can
be any combination of logical operators and simple qualifications (specified via a
pattern). It accepts a set of data trees ¢ as input. The output is the entire set of the
matching witness trees for all input trees, which is not only the content of right
result, but also the structure of objective trees.

Projection Given a fuzzy XML trees t = (N, o, 4, 1, p, }, =), ( is a fuzzy
projection function, then we have the definition of Projection: Y (f) = {{(s) |
s € t}.

The projection operator i is used to eliminate objects. In the substructure
resulting from node elimination, we would expect the hierarchical relationships
between surviving objects that existed in the input trees to be preserved.

Join Given two fuzzy XML trees t; = (Ny, 01, 41, §1, P1, ¥1> 1) and t, = (N,
G2, A2, N2, P2, V2, <2), and a condition predicate J, the join @ can be defined as:

o a(t; Bs 1) = ault) ®; 1)
o Bty D5 1) S {Bs5 (1) @5 12)}

The join operator @ is a mixed of Cartesian product and F-Selection, and joins
trees on a predicate.

Grouping Given a fuzzy XML trees t = (N, o, 4, 1, p, 7, «<), and g(t, 0) is a
function that represents sub-tree equivalence object over ¢ under predicate o
condition, then we have the definition of the grouping ¢:

GO ={ | slseny

s€g(t,9)

The grouping operator ¢ is to split a collection into subsets of trees and rep-
resent each subset as an ordered tree in some meaningful way.
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Ordering Given a fuzzy XML trees t = (N, a, 4, 1, p, 7, ), if there is an
ordering rule yu: @ — w, then we have the definition of the ordering v:

o(t, ) = {5 | s € t and p(s, x, ) < u(s, x, )}

Bind Given a fuzzy XML trees t = (N, a, 4, 11, p, 7, <), and a function ¢ (¢, 0)
which can extract y from ¢ with the restriction ¢, if there is arule : @ — w, then we
have the definition of the Bind 7:

n(t) = Z {s|s€tand u(s,w) < u(s,w)}
o(1,0)

The Bind operation 7 is to extract information from an input tree according to a
given filter, and produce a structure, which comparable to a —1NF relation.
Moreover, the Tree operation is an inverse operation to Bind, which can be used to
generate a new nested XML structure.

3.5 Summary

In real-world applications, information is often imprecise or uncertain. The fuzzy
conceptual data models and fuzzy logical database models mentioned in Chap. 2
are not enough to represent and handle the huge amounts of electronic data which
are available on the Internet. Currently, XML has been the de facto standard of
information representation and exchange over the Web. Unfortunately, XML is not
able to represent and process imprecise and uncertain data, although the databases
with imprecise and uncertain information have been extensively discussed.
Therefore, topics related to the modelling of fuzzy data are considered very
interesting in the XML data context. In this chapter, we introduced fuzzy XML
models, including fuzziness in XML documents, fuzzy XML representation
model, and fuzzy XML algebraic operations

In order to meet the needs of practical application, just providing the modelling
technology of fuzzy XML is not enough, fuzzy XML query is also very necessary.
How to query XML with imprecise or uncertain information has raised certain
concerns as will be introduced in the following chapter.
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Chapter 4
Fuzzy XML Queries and Index

Abstract Huge amounts of electronic data are available on the Internet, and XML
has been the de-facto standard of information representation and exchange over the
Web. The basic structure of XML is tree, and an XML query is often formed as a
twig pattern with predicates additionally imposed on the contents or attribute
values of the tree nodes. Also, the XML query technique based on index mech-
anism is developed to further improve the query efficiency. However, the XML fall
short in their ability to handle imprecise and uncertain information in many real-
world applications, and also the relevant XML query techniques cannot support
twig pattern query in fuzzy XML. Currently, fuzzy XML data modeling has been
extensively investigated as introduced in Chap. 3. Therefore, topics related to the
querying of fuzzy XML can be considered very interesting in the fuzzy XML data
context. In this chapter, we focus on the methods of fuzzy XML complex twig
queries with predicates and of building index mechanism on fuzzy XML query.

4.1 Introduction

Information imprecision and uncertainty exist in many real-world applications and
for this reason fuzzy XML data modeling has been extensively investigated as
introduced in Chap. 3. Currently, as we have known, fruitful achievements about
classic XML query have being done, and the XML query is usually formed as a
twig pattern with predicates additionally imposed on the contents or attribute
values of the tree nodes. However, the existing query methods cannot be applied to
the fuzzy XML query directly. In order to meet the needs of practical application,
it is not enough to only provide the modeling technology of fuzzy XML and fuzzy
XML query is very necessary. Some efforts have been made in processing the
incomplete and probabilistic XML data queries. Abiteboul and Senellart (2006)
presented a model for representing probabilistic information in a semi-structured
(XML) database, and studied the querying and updating probabilistic information
in XML. Hung et al. (2003) proposed a model for probabilistic semi-structured
data (PSD) and developed an extension of the relational algebra to handle
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probabilistic semi-structured data and described efficient algorithms for answering
queries that use this algebra. Kimelfeld and Sagiv (2007) presented an algorithm
for evaluating twig queries with projections over probabilistic XML documents.
Other efforts on handling incomplete and probabilistic XML were done in
Kimelfeld et al. (2008), Li et al. (2009) and Senellart and Abiteboul (2007). At
present, the research about fuzzy twig query is relatively less. Liu et al. (2009)
proposed a method to deal with fuzzy XML AND-logic query based on a twig
pattern. Ma et al. (2011) presented the fuzzy query method of processing AND/OR
logic with twig pattern, and this method is based on range encoding and uses the
stack structure to store intermediate results. But, it should be noted that, in
practical application, there are a lot of AND, OR and NOT logical predicates in the
user’s query conditions. Currently, only little research is being done about the
fuzzy XML query including logic predicate twig, and the existing methods need a
mass of computations, which may reduce the query efficiency because of the
frequent I/O operations and the CPU consumption. Therefore, fuzzy XML query
containing predicates is still an important topic in XML data management, and it is
full of practical significance.

Moreover, in order to improve the efficiency of querying XML, many
researchers suggest building index on the query algorithm. In the recent researches
on XML twig pattern query, path index and sequence index are two methods of
building index on XML data. The basic idea of path index is to transform XML
documents into XML data graph, and then obtain path index figure by scanning
XML data graph. Path index can be classified into three categories: classical path
index, schema based path index and flattened structural path index. At present, the
main classical path indexes of XML is DataGuide, 1-Index, D(k), and etc. (André
et al. 2005; Chung et al. 2002). Sequence index is different and its main idea is to
translate structure query into sequence matching. This can avoid time-consuming
and complicated structural join operations in query. Wang et al. (2003) developed
ViST, a dynamic indexing method for XML documents. The method supports
structural XML queries by converting XML documents into sequences. The
indexing method supports efficient non-contiguous sequence matching. A similar
technique is used for weighted-subsequence matching and pattern discovery. The
method also unifies structure indexes and value indexes into a single index that
relies solely on B+Trees through a dynamic labeling method. The other efforts on
building index on XML data can be found in Li and Moon (2001), Lu et al. (2011),
Rao and Moon (2004) and Bruno et al. (2002). However, the research on fuzzy
XML query based on the index mechanism is relatively less. Thus, building index
for fuzzy XML data to improve the performance of query processing have received
attention recently.

In this chapter, we focus on fuzzy XML queries and index. We present methods
of fuzzy XML complex twig queries with AND, OR and NOT predicates, and
investigate the problem of fuzzy XML query based on index.
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4.2 Fuzzy XML Queries with Predicates

The fuzzy XML query containing logical predicates AND, OR and NOT is an
important topic in the fuzzy XML data management. In this section, we present
methods of fuzzy XML twig queries with AND, OR and NOT predicates. Before
that, we first introduce fuzzy extended Dewey encoding, which is the basis of
querying fuzzy XML data.

4.2.1 Fuzzy Extended Dewey Encoding

With the rapidly increasing popularity of XML for data representation, there is a
lot of interest in query processing over data that conforms to a tree-structured data
model. XML twig pattern matching is a key issue for XML query processing.
XML documents can be modeled as ordered trees. Queries in XML query lan-
guages make use of twig patterns to match relevant portions of data in an XML
database. The encoding of XML document tree is to assign a unique code to each
node in the XML tree according to the certain rules. The purpose is to determine
whether the two nodes are with ancestor/descendant, parent/child relationship or
not, this process is done by the coding of any two nodes. So it can support the
index and query of XML date more efficiently (Lu et al. 2005a, b).

At present, there are several types of encoding methods, such as range encoding
and prefix encoding. Range encoding is a triple (start, end, depth), where “start”
means the sequence code of the first visit to the node of the XML document tree in a
depth-first traversal way, “end” means the sequence code of the second visit, and
“depth” means the hierarchy value of the node in the XML document tree. Prefix
encoding is known as the coding method based on path. An important prefix
encoding way is the Dewey coding (Tatarinov et al. 2002). With Dewey Order, each
node is assigned a vector that represents the path from the document’s root to the
node. Each component of the path represents the local order of an ancestor node.
Dewey Order is “lossless” because each path uniquely identifies the absolute
position of the node within the document. However, based on the original Dewey,
we cannot know the element names along a path. To answer a twig query, we need
to access the labels of all query nodes. Considering the fact that prefix comparison
is less efficient than integer comparison, the performance of algorithm with the
original Dewey is usually worse than that with region encoding. Further, Lu et al.
(2005a) proposed an extension of Dewey encoding scheme, called extended
Dewey. The extended Dewey label of each element can be efficiently generated by
a depth-first traversal of the XML tree. Each extended Dewey label is considered as a
vector of integers. We use label (1) to denote the extended Dewey label of element u.
For each u, label (u) is defined as label (s):x, where s is the parent of u. The
computation method of integer x in extended Dewey is a little more involved than
that in the original Dewey. Assuming that CT(t) = {to, t1,..., t,_1} is the child
names clue of tag t, for any element u# with parent s in an XML tree, it follows:
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1. If u is a text value, then x = —1;

2. Otherwise, assume that the element name of u is the kth tag in CT(¢,) (k = 0,
1,..., n — 1), where, f; denotes the tag of element s.

(a) If u is the first child of s, then x = k;

(b) Otherwise assume that the last component of the label of the left sibling of u is
y (at this point, the left sibling of u has been labeled), then

EJ en-+k if(y modn)<k

X = i
h_‘ en+k otherwise

Here n denotes the size of CT().

The detailed introduction of the extended Dewey encoding can be found in Lu
et al. (2005a). Note that the encoding methods mentioned above are just for classic
XML document, and they cannot be directly applied to the fuzzy XML encoding.
The encoding method cannot represent fuzzy information of fuzzy node, and also
cannot effectively distinguish between vague nodes and precise nodes. Therefore,
the coding scheme cannot support queries of fuzzy XML twig pattern. In the
following, in order to support the encoding in the fuzzy XML document, we
extend the method of the extended Dewey encoding. We add a new attribute called
FuzzySequence on the basis of the original code, and it is an orderly collection that
is used to store the membership degrees of the fuzzy nodes from the root node to
the current node. That is, the fuzzy extended Dewey coding is a binary tuple
(Extended Dewey, FuzzySquence). If there does not exist any fuzzy node from the
root node to the current node, then we can say FuzzySequence is null. Figure 4.1
shows a practical application of the fuzzy extended Dewey coding, here we only
intercept the first three layers of a fuzzy XML document.

It is shown in Fig. 4.1 that the fuzzy extended Dewey encoding still has a series
of properties of the extended Dewey encoding (Lu et al. 2005a), and it further adds
the membership degrees between the elements. Regarding the calculation of the

&

bib
009 10.6
book book

0.0090.7 030903 040905 050906 100606 110609 1206028
author author title chapter author title chapter

Fig. 4.1 The fuzzy extended Dewey coding of a fragment of fuzzy XML document
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membership degrees, many of the existing approaches dealing with fuzzy infor-
mation are based on the theory of fuzzy sets (Zadeh 1965). The Zadeh’s minimum
and maximum operations can be used to calculate the intersection and union of the
memberships. However, in the process of applying to fuzzy XML twig query, the
results of fuzzy intersection and fuzzy union obtained by Zadeh’s method is
unsuitable.

Let us look at an example. Suppose that there is the following membership
information of a path: 6 (@ —» b) = 0.4, 0 (a —» ¢) = 0.7, 6 (a > d) = 0.8. Then
when we use the Zadeh’s method to calculate it, we can get 6 (a — b,
a - c¢) =0 (a — b,a > d)= 0.4. But, in practice, two results above should be
different. Also, if there are conditions: 0 (@ > b, a > ¢)=0.4 and o
(a — b) = 0.4, then by the reverse operation of the Zadeh’s method, we cannot
obtain the specific value of d (¢ — ¢), and only can get a ballpark range.

Therefore, here we use the product of f-norm instead of Zadeh’s logical
product. In this case, the intersection of the membership degrees is calculated as
follows: din; = 6; x ;. We use dx (k =1, 2,..., n) to denote the relative mem-
bership degree of a fuzzy XML fragment F and use Jdypole to denote the absolute
membership degree of F. Then we have dynole = =1, ,0x. Moreover, suppose
0 (Q) is the threshold for a given user query. Then we have

1. if 5whole > 0 (Q)7 then 5k > o (Q)7

2. if 51( > 0 (Q)7 then HI:I ..... mél = 5whule/Ht:m+1,4..‘n5t'

In addition, because in the process of the OR-logical twig query, as long as one
of the OR branches meets the query condition, the query will be executed. At this
point, the maximum operation of Zadeh’s method can satisfy the demand well, and
thus the union of membership degrees can be defined as follows: d; ; = max (4;, J;).
Based on the fuzzy extended Dewey encoding, in the following we introduce fuzzy
XML twig queries with AND, OR and NOT predicates.

4.2.2 Fuzzy XML Twig Query with AND-Logic

Regarding the twig query O, we define several node functions as follows: IsLeaf
(n): Node — Bool, determining whether the node 7 is a leaf node; IsBranching (n):
Node — Bool, determining whether the node n is the branch node; LeafNodes (n):
tNode — {Node}, returning a collection of leaf nodes whose roots are the node
n in twig pattern query Q; dbl (n): Node — {Node}, returning the branch node
b and leaf node f'satisfying the conditions: (1) the roots of b and f are the node » in
twig pattern query Q; (2) there is no any node from the path n to b or f. Moreover,
in fuzzy XML document tree, there is a list 7; associated with each leaf node f,
which includes the fuzzy extended Dewey coding of the elements whose labels are f.
Several operations can be executed to the list 7%, such as current (1), advance (T¢)
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and eof (Ty). The function current (T;) returns the fuzzy extended Dewey coding of
the current element. We can obtain the fuzzy extended Dewey coding of the
current element through current (Ty).number, and obtain the path information of
the current element through current (T¢).fs. The function advance (Ty) points to a
new current element which is the next element of the current element. The
function eof (T) is to test whether it is the footer. For an element e in fuzzy XML
documents, there are two operation functions: ancestors (e) and descendants (e),
which return the ancestor elements and the descendant elements of e respectively.
In addition, the stack structure is also used in the algorithm. Each branch node
b associates with a collection of Sy, and any a pair of elements in Sy, is either the
ancestor/descendant relationship or the parent/child relationship.

Now we introduce an algorithm of fuzzy XML twig query with AND-logic,
called FATJFast, which is the extension of the existing TJFast algorithm (Lu et al.
2005a, b). The algorithm is a query matching method based on path. Given the
fuzzy extended Dewey coding of a node, according to the characteristic of
the visibility of its ancestor’ name, it is easy to decide whether the single path from
the root node to the node meets the path corresponding to the twig query.
Therefore, the key problem of query is the integration between the single path and
the other single paths of meeting the query conditions, and after the integration we
can obtain the final twig matching results. Moreover, a filter is applied in the
algorithm: the first layer is to decide whether the fuzzy information of a single path
meets the requirement of the user’s query threshold; the second filter is to check
whether the whole membership degree of the integrated matching results meets the
requirement of the user’s query threshold.

Definition 4.1 (model of query path Py Given a query node f of the query twig,
the names of the query nodes from the root node to the node f and the structure
relationships of the query nodes are called a model of the query path of f, marked
as Py.

Definition 4.2 (associated element) Given a query node fin the query twig and an
element e in a fuzzy XML document, if their labels are consistent, namely, Label
(f) = Label (e), and the element e meets the query path model P¢, we say that e is
the associated element of f.

Definition 4.3 (subquery (n;, n;)) Given a sub-path query subquery (n;, n;) and an
element ¢; in a fuzzy XML document D, we say that e; satisfies subquery (n;, n;), if

1. the element ¢; has the same label name with the node n;;

2. one of the following two conditions holds: (a) i = j; or (b) edge (n;, ni,;) is an
ancestor/descendant relationship (or parent/child relationship) edge, and there
exists an element e;,; in D such that the edge(e;, ;1) is ancestor/descendant
relationship (or parent/child relationship) and the element e;,; satisfies sub-
query (ni., n;); and

3. the membership degree of the path meets the requirement of the user’s query
threshold, i.e., d¢i_ej > 0q.
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Fig. 4.2 Twig query
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Definition 4.4 Given a twig query Q and a fuzzy XML document D, e is the
associated element of the branch node b in Q. For Vn; € dbl (n) and its corre-
sponding associated elements e;, if the following conditions hold, then we say that
e has the expansion of the solution w.r.t. the branch node b:

1. n; is a leaf node and e; meets twig query subquery (n, n;); or
2. n; is a branch node, e¢; meets twig query subquery (n, n;), and e; has the
expansion of the solution w.r.t. ;.

The twig query without branch nodes is called path query. If the associated
element meets the sub-path twig query of its corresponding node, then we say that
it has the expansion of the solution. In our FATJFast algorithm, we always check
the elements in the flow of leaf nodes, calculate and determine the membership
degrees of their corresponding paths in the process of matching, and determine the
whole membership degree of the matching results in the integration stage of the
paths.

For example, given a query twig in (a) and an XML document in (b) of Fig. 4.2
(for simplicity, the fuzzy information in the XML document is omitted here), when
the inspection elements of the query nodes are ay, by, ¢y, d, ey, fi, and gy, since b,
¢ € dbl (a) and b is the leaf node, the b meets the sub-path query; Next, we further
check the twig nodes c, f, g € dbl (c), since f; and e; meet the sub-path queries
subquery (c, f) and subquery (c, g) respectively, the element c; has the expansion
of the solution w.r.t. the twig node c. Based on the observation above, the element
ay has the expansion of the solution w.r.t. the branch node a. When the inspection
elements are a,, by, c», di, ey, fi, and g, the element ¢, does not have the
expansion of the solution w.r.t. the branch node c.

The following is the FATJFast algorithm. The algorithm includes two main
stages: the first stage (lines 1-9) finds the path matching results of querying leaf
nodes; and the second stage (line 10) gets the final match results by integrating all
the single path results.
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FATJFast algorithm

1: for each f € leafNodes (root)

2: locateMatchedLabel (f)

3: end for

4: while( —end (root)) do

S: Jact= getNext (topBranchingNode)
6.

7

8

outputSolutions (ficr)
advance (Tf;)

: locateMatchedLabel (f;.()
9: end while
10: mergeAllPathSolutions ()

Procedure locateMatchedLabel (f)

1: while —((ni/ny/.../n matches pattern py) A (m, matches f) A (6pr>u)) do
2: advance (Ty)

3: end while

Function end (n)
1: Return V f € leafNodes (n) — eof (Ty)

Procedure outputSolution (f)

1: Output the path solutions of the current (Ty) to pattern p; such that in
each solution s, V e € s, the element e matches a branching node b — e
(S Sb.

Procedure mergeAllPathSolutions ()
1: for each QO
if(&whole (Q) 2 é)
for each path answer p;
add p; to the corresponding list
end for

end for

3
4
5:
6: end if
7:
8: extend all the answers in the topBranchingNode’s list to the final answers

In lines 1-3, in each stream of leaf nodes, the function locateMatchedLabel can
find the first element which satisfies the path pattern of the leaf nodes. In line 5, we
identify the next stream T, which will be processed by invoking getNext (top-
BranchingNode), where topBranchingNode is the branch node at the highest level,
i.e., the ancestor of all other branch nodes. In line 6, we output some path matching
solutions, in which each element is in the corresponding branch node set Sy. In
lines 7 and 8, the function advance (Ty,,) can locate the next matching element,
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and then the procedures in lines 1-3 are repeated. In the procedure of locate-
MatchedLabel, the labels and structures of the single path elements will be mat-
ched based on the feature of the visibility of the ancestors’ names in fuzzy
extended Dewey coding. Also the query threshold of the single path should be
satisfied, i.e., 5pf > u, where 5pf denotes the membership degree of the path
solutions of the leaf node f. Note that, J, is the product of the membership degrees
of all the elements in query paths, and the membership degree of each element can
be obtained from the attribute FuzzySequence in the fuzzy extended Dewey cod-
ing. In locateMatchedLabel, according to the requirement of the user’s threshold,
we can quickly skip the elements that cannot form the final solution, and thus
avoid a lot of unnecessary operations. For the procedure of mergeAllPathSolu-
tions, inspired by the idea of the blocking techniques in Lu et al. (2005b), we
create two lists associated with each element » in the sets of branch notes, i.e.,
(S)elf-list, which stores the blocked solutions whose root elements are n, and
(Dnherit-list, which stores the blocked solutions whose root elements are the
descendant nodes of n. At any point of the algorithm, we do not directly output the
path solution of an element, but add it into the Self-list of the nearest branching
node corresponding to the element. Moreover, the core operation getNext () in line
5 in the FATJFast algorithm is as follows.

Function getNext () in the FATJFast algorithm
: if (isLeaf (n)) then

1
2: return n

3: else

4: for each n; € dbl (n) do
5: fi= getNext (n;)
6
7
8

if (isBranching (n;) A empty (Sn;))
return f;
: e;=max {p|p € MB (n;, n)}
9: end for
10: max = maxarg; {e;}
11: min = minarg {e;}
12: for each n; € dbl (n) do
13: if (V e € MB(n;, n):e ¢ ancestors (emax))
14: return f;
15: end if
16: end for
17: for each e € MB (nyin, 1)
18: if (e € ancestors (en,x)) updateSet (Sn, e)
19: end for
20: return fiin
21: end else
22: end if
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Function MB (n, b)

: if (isBranching (n)) then

. let e be the maximal element in set Sn

:else

: let e = current (Tn)

cend if

: Return a set of element a that is an ancestor of e such that @ can match
node b in the path solution of e to path pattern p,

AN B W N =

Procedure clearest (S, e)
1: Delete any element «a in the set S such that a ¢ ancestors (e) and a ¢ des
cendants (e)

Procedure updateSet (S, e)
1: clearest(S, e)
2: Add e to set S

The function getNext is the core of the FATJFast algorithm, and it includes two
main parts. For the first part, the function getNext (r) is to identify the next file
stream to be processed, and return the query leaf node f according to the following
recursive procedures:

1. if n is a leaf node, then #n is returned (line 2);
2. if n is a branch node, then for each node n; € dbl (n), the following three
operations are executed:

(a) if the current element in the file stream Ty does not match the sub-tree
whose root is the branch node n;, i.e., there is not the extension of the
solution, f; is returned (line 7);

(b) if the current element in the file stream 7 does not merge with the elements
in the other file streams to form the final matching result, f; is returned (line
14); otherwise,

(c) if the element has the extension of the solution, the node f,;, is returned, in
which the element e, corresponding to fi,;, has the minimal coding by
lexicographical order (line 20).

Moreover, the function MB (n;, n) (where n; € dbl (n)) is to find the set of
elements that meet the subquery (n, n;), and it is an important auxiliary function to
judge whether two paths can integrate to form the final matching result. The
second part of the function getNext is to update the set S;, associated with the
branch node b.

In the following, we provide an example to illustrate the FATJFast algorithm.
Given a query twig as shown in Fig. 4.3a and the corresponding fuzzy XML
document in (b). In the fuzzy XML document, there are four branch structures
conforming to the twig query, and each branch has the different membership
degrees. Assume that the query threshold given by the user is 0.2, the first branch
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meets the structure requirement and the membership degree also meets the user’s
threshold requirement. The second branch meets the structure requirement, but the
membership degree does not meet the user’s requirement. The membership degree
in the third one does not meet the requirement of the threshold. The structure in the
forth one does not meet the first layer of the filter.

In Fig. 4.3, there are two input lists, T, and Tjy. First, for the node c, the element
c; meets the structure matching of the path, and the membership degree
Ope = 0.9 x 0.8 = 0.72 meets the requirement of threshold. Thus the element ¢,
is positioned in the file stream of c. Similarly, the element d; also meets the
requirements of the structure and the threshold. The function getNext (b) recur-
sively calls getNext (c¢) and getNext (d), and ¢ and d are leaf nodes. So getNext
(c¢) = ¢ and getNext (d) = d. Then, getNext (b) is executed and we have MB
(¢, b) = {b;}, MB (d, b) = {b,}, and e,;, = €max = b. Next, b, is inserted into
the stack S, corresponding to the node b. When b is inserted into the stack Sy, the
whole membership degree of the single paths <b;, c;> and <b;, d;> will be
calculated. If the whole membership degree dynole (P1) meets the requirement of
the threshold, the block technology will be used, and the paths <b;, c;> and
<by, di> will be pressured into the list Self-list of b; and considered as the final
output. Further, the node ¢ corresponding to the smallest coding element node ¢, is
retuned. In this case, the pointer of the file stream 7 points to the next element c,
(line 7) and then the path is matched. Since the structure matching path is
(@ = b — c¢) and the path membership degree J,. = 0.4 meets the requirement of
user’s threshold, the algorithm goes into the second round of getNext processing.

The process of the second round is similar to the first round above. First, MB (c, b)
= {b2}, MB (d, D) = {b1}, emin = b1, €max = b2, and enn ¢ ancestors (emax)s
therefore, the leaf node d is returned. Then, the file stream 7y points to the next
element d;, and the algorithm turns into the third round of getNext. Next, the

(a) @

(®)
© @

01
ap

(b) /\

0.00.9 0.10.8 0.20.6 0.30.1
b, b, bs by
0.0.0090.8 0.0.1090.7 0.1.00.80.5 0.1.10.804 02.00.602 02.10.60.3 0.3.00.10.9 03.10.10.7

| dy 3 [ c3 ds cy dy

Fig. 4.3 A query example of the FATJFast algorithm. a A twig query. b A fuzzy XML
document
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Fig. 4.4 The final matching
result of the query in Fig. 4.3

element b, is pressed into the stack and b; is popped from the stack. Note that the
whole membership degree of the paths <b;, ¢c;> and <b,, d,> does not meet
the requirement of the threshold, so the <b,, c;> and <b,, d,> will not
pressured into the list Self-list of b,. Finally, all of the file streams are handled and
we get the final matching result (ay, by, ¢y, d;) as shown in Fig. 4.4.

Note that, due to the visible feature of the ancestors in fuzzy extended Dewey
encoding, our algorithm FATJFast only needs to access the data streams corre-
sponding to the leaf nodes instead of accessing all of the data streams of the query
nodes, which may reduce the frequency of the I/O operations and improve the
efficiency of querying. Regarding the complexity of the algorithm, for a fuzzy
XML document D and a twig query Q, there are only the ancestor/descendant
relationships between the branch nodes and its son nodes in Q. At worst, the I[/O
complexity has the linear relationship with the size of input and output lists. The
worst-case space complexity is O(d* * 1bl 4+ d * Ifl), here Ifl denotes the number of
leaf nodes, 1ol the number of the branch nodes in Q, and d the length of the coding
of the longest element in the input list.

4.2.3 Fuzzy XML Twig Query with AND/OR-Logic

In this section, we propose a fuzzy XML twig query with AND/OR-logic. If we
use the method in Sect. 4.2.2 to deal with the fuzzy XML twig query containing
OR-logic, a direct way is to decompose the original twig pattern with OR-logic
into multiple twig patterns without OR-logic. However, there is a drawback in the
procedure, e.g., some elements need to be repeatedly processed. For example,
given a twig query pattern R/A//[B OR E] in Fig. 4.5, which is broken down into
two branches R/A//B and R/A//E. Obviously, the leaf nodes B and E have common
ancestor path, so it needs to match twice.

Based on the observation above, to improve the efficiency of querying fuzzy
XML twig with AND/OR-logic, instead of using the method of fuzzy XML twig
query with AND-logic in Sect. 4.2.2, we present a fuzzy XML twig query with
AND/OR-logic. Before that, we introduce several notions. Firstly, we mark the
nodes in the twig query as follows:
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Fig. 4.5 Transformation from a twig pattern with OR-logic to the twig patterns with AND-logic

e the AND-logic nodes in the query tree are marked as Anode;
e the OR-logic nodes in the query tree are marked as ONode;
o the other query node is marked as QNode.

Then, the following specific principles in the twig query are defined:

e if a Anode node or ONode node n has a child node n; with the same type, then n;
can be removed and all child nodes of n; are connected to the node n as the child
nodes of n as shown from (c) to (d) in Fig. 4.6.

e if a query node ONode n has the Anode node n; as its child node, then n; can be
removed and all child nodes of n; are considered as the child nodes of n as
shown from (a) to (b) in Fig. 4.6.

Moreover, we define a function gNode(n): Node — Node, if n is QNode, it
returns Label(n); otherwise, n is a predicate node, it returns the tag of the parent
node of n.

In the following, we give a fuzzy XML twig query algorithm with AND/OR-
logic, called FA/OTJFast. In the algorithm FA/OTJFast, the function locate-
MatchedLabel () is still used to filter the leaf elements as mentioned in the
FATIJFast algorithm in Sect. 4.2.2.

(@) goip (b) goip (©) dblp (d) dblp
pa‘per pa‘per paper pdper
and Xhor titﬂedr author author K author
title year Xl‘\/[L 2()‘03 tltle tltle year cont
‘XML 20‘03 XML year conf XML 2003 %lgmod
2()03 slgmod

Fig. 4.6 Normalization of the twig query with AND/OR-logic predicates
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FA/OTJFast algorithm

1: for each f € leafNodes (root)
2: locateMatchedLabel (f)
3: end for
4: while (—end (root)) do
: 2t = A/OgetNext (topBranchingNode)
outputSolutions (f,.)
advance (T )
: locateMatchedLabel (f;()
9: end while
10: mergeAllPathSolutions ()

98 X1 O th

Procedure locateMatchedLabel (f)
1: while —((n)/.../n matches pattern pg) A (n matches f) A (dpr > u)) do
2: advance (Ty)

Function end (1)
1: Return V f € leafNodes (n) — eof (Ty)

Procedure outputSolution (f)
1: Output the path solutions of the current (Ty) to pattern p; such that in each
solution s, V e € s, the element e matches a branching node b—e € Sy,

Procedure mergeAllPathSolutions ()

1: for each O

2: lf (5whole (Q) 2 5)

3: for each path answer p;

4: add p; to the corresponding list

S: end for

6: end for

7: extend answers in the topBranchingNode’s list to the final answers
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The core function A/OgetNext () in the FA/OTJFast algorithm is as follows:

A/OgetNext ()

1: if (isLeaf (n)) then

2: return n

3: else

4. for each n; € dbl (n) do

5: fi = getNext (n;)

6: if (isBranching (n;) A empty (Sn;))

7 return f;

8: e;=max{p |p € MB (n;, n)}

9: end for

10: if (n is an ONode)

11: for each e € MB (1, ) do updateStack(Sn, e)
12: min = minarg {e;}

13: for each n; € dbl (n) do

14: if(V e € MB (nin, 1), V €; € MB (n;, n): e € ancestors (¢;))
15: 5i = 5n~>ni

16: max = maxarg; {J;}

17: return fiax

18: end for

19: else

20: max = maxarg; {e;}

21: min = minarg {e;}

22: for each n; € dbl (n) do

23: if (V e € MB (n;, n): e ¢ ancestors (€pax))
24: return f;

25: end if

26: end for

27: for each e € MB (nn, 1)

28: if (e € ancestors (e,,x)) updateSet (Sn, e)
29: end for

30: return foin

31: end else

32:end if

115
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Function MB (n, b)

: if (@QNode (b) == qNode (n)) then return the set of elements in set Sn

: if (isBranching (n)) then

: Let e be the maximal element in set Sn

s else

: Let e = current (Tn)

: Return « that is an ancestor of e , such that a can match qNode (b) in the
path solution of e to path pattern p,

AN N AN~

Procedure clearSet (S, e)

1: Delete any element a in set S such that a ¢ ancestors (e) and a ¢
descendants (e)

Procedure updateSet (S, e)
if (e is in )

: return

: else

: clearSet (S, e)

: Add gqNode (e) to set S

[ S R S R

The function A/OgetNext is an extension of the function getNext () mentioned
in the algorithm FATJFast in Sect. 4.2.2. The function A/OgetNext is still to
complete two tasks: one is to determine the next pending file stream; and another is
to update the stack S, corresponding to the branch node b. For the first part, the
function A/OgetNext (n) is to identify the next file stream to be processed, and
returns query leaf nodes f according to the following recursive procedures:

1. if n is a leaf node, then #n is returned (line 2);
2. if n is a branch node, then for each node n; € dbl (n), the following four
operations are executed:

(a) if the current element in the file stream Ty does not match the sub-tree
whose root is the branch node n;, f; is returned (line 7);

(b) if n is a ONode node, then there is a node which has the smallest coding and
the expansion of the solution w.r.t. gNode (n). In this case, in all of the
branches of the node, the leaf node f;,.x which has the largest membership
degree is returned (line 17);

(c) if nis a ANode or QNode node, and the current element in the file stream T
does not merge with the elements in the other file streams to form the final
matching result, f; is returned (line 24); otherwise,

(d) the node f;,;, is returned, here the element e ,,;, corresponding to f;,;, has the
minimal coding by lexicographical order (line 30).

Moreover, the function MB (n;, n) (where n; € dbl (n)) in the FATJFast algorithm
is further extended. In the extended MB (n;, n), according to the associated ele-
ments of the query node n;, it can find a set of elements of matching with the node
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n in the query path Py;. Due to the specificity of the OR predicate nodes, when n; is
a ONode node, i.e., gNode (n;) = n (n is the direct branch node of n;), the extended
function MB (n;, n) directly returns the elements in the branch node stack Sn.

In the following, we give an example to illustrate the FA/OTJFast algorithm.
Given a query twig with AND/OR-logic as shown in Fig. 4.7a and a fuzzy XML
document in (b). Assume that the query threshold given by the user is 0.1. At first,
the function A/OgetNext (a) recursively calls A/OgetNext (OR) and A/OgetNext
(e) [where OR , e € dbl (a)]. Since e is a leaf node, it returns A/OgetNext (e) = e;
OR is a branch node, A/OgetNext (OR) recursively calls A/OgetNext (b) and A/
OgetNext (d), it returns A/OgetNext (b) = b, A/OgetNext (d) = d. Then, the
algorithm calculates MB (n,, n) = a;, presses the element a, into the stack S,
inserts the path result (a; — b;) into the list Self-list of the branch node a, and
returns the leaf node under the OR branch which has the largest membership
degree, i.e., A/OgetNext (OR) = b. Next, the algorithm continues to getNext
(a) and computes MB (OR, a) = {a;} and MB {e, b} = {a,}. After that, the
algorithm inserts a; into the stack S,, pressures the path structure (a; — e;) into
the list Self-list of a, and calculates the whole membership degree dypoe = 0.504,
which meets the threshold requirement. Finally, we get the final solutions
(a; — ey) and (a3 — e3) as shown in Fig. 4.8.

(a)

00.9 10.8 20.6 30.5
al a2 a3 ad
0.0090.8 0.1090.1 02090.71.30.805 160.80.7 200609 220.603 3.00509 3.1050.7

bl d1 el cl e2 b2 e3 b3 d2

Fig. 4.7 A query example of the FA/OTJFast algorithm. a A twig query with AND/OR logic
predicates. b A fuzzy XML document

Fig. 4.8 The final query a a
matching results
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4.2.4 Fuzzy XML Twig Query with NOT-Logic

In this section, we extend the Ntjfsat— algorithm (Garakani et al. 2007) to resolve
the fuzzy XML twig query containing NOT-logic predicate, and propose a fuzzy
XML twig query with NOT-Logic algorithm, called FNTJFast.

Every twig query has the corresponding query nodes and the structural rela-
tionships among query nodes. A twig query Q containing NOT-logical predicate is
a set of query nodes <nj, na,..., ny>, the node n; is connected with its ancestor
node by edge edge(n;, n;). Due to the specificity of the NOT predicate, the rela-
tionships among nodes are divided into the following four types:

e the positive parent—child relationships, connected by single lines ‘I’;

o the positive ancestor—descendant relationships, connected by double lines ‘II’;
e the negative parent—child relationships, connected by ‘—I’;

e the negative ancestor—descendant relationships, connected by ‘—ll’.

Definition 4.5 (output node, non-output node, output leaf node, leaf node) A node
n; in a path query is regarded as an output node if there is no any negative edges
from the root node to the node n;; otherwise, it is a non-output node. The output
node with the maximum level is also called the output leaf node. The last node in a
path query is also referred to as the leaf node.

On this basis, we give the definition of fuzzy XML twig query containing NOT-
logic predicate.

Definition 4.6 (subquery matching) Given a twig query Q containing NOT-logic
and a fuzzy XML document D, a query node n in the twig, and an element e, in
D having the same label with the node n, if the following conditions are satisfied,
we say that e, meets the subquery whose root is n:

1. nis a query leaf node of Q, and the fuzzy information of e, meets the threshold
requirement, i.e., ée, > dq;
2. Each child node n; of n in Q should satisfy the following conditions:

e if n; is the positive child node of n, then there is an element e,,; in D which is the
child node of e,, and the element e,,; meets the subquery whose root is n;, and the
membership degree of the parent—child relationship meets the threshold
requirement, namely deyi_.e, > dq;

o if p; is the positive descendant node of #n, then there is an element e,,; in D which
is the descendant node of e,, and the element e,; meets the subquery whose root
is n;, and the membership degree of the parent—child relationship meets the
threshold requirement, namely de,; e, > 0q;

e if n; is the negative child node of n, then there is no any element e,; in D which
is the child node of e,, and the node e,; meets the subquery whose root is #;;

e if n; is the negative descendant node of n, then there is no any element e,; in
D which is the descendant node of e,, and the node e,; meets the subquery
whose root is n;;
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3. For the matching results of meeting the conditions of (1) and (2), the whole
membership degree Jypole meets the threshold requirement, namely
5whole = 5Q~

Definition 4.7 (output element of NOT-logic twig query) Given a twig query
0 and a fuzzy XML document D, there are k output nodes <ny, n,,..., ;> in Q, if
a set of elements <ey, e,,..., e,>in D satisfies the following conditions, we say that
<ey, €s,..., e> is the output element of the final matching query result:

1. the element ¢; and query node n; have the same tag name;
2. each output element ey should meet the subquery whose root is ny.

Here we take Fig. 4.9 as an example to illustrate the definitions above, and for
simplify we don’t consider the membership degrees of the elements.

In Fig. 4.9, there is a descendant element C; under B; such that C; meets the
subquery C//D whose root is C, but B, does not meet the subquery whose root is B,
so <Aj, B> is not the output element, and only <A;, B> is the output element.

In the following, we give the fuzzy XML twig query with NOT-logic, called
FNTIJFast. In the process of matching, the algorithm only accesses the positive leaf
nodes that may be the final match results and the negative leaf nodes that can help
to filter the final results. Compared with the existed twig matching algorithms, the
algorithm FNTJFast may effectively shorten the matching time and reduce the
number of accessing elements. The algorithm first extracts the leaf nodes
(including the positive leaf nodes and the negative leaf nodes) in the query twig Q,
and then according to the finite state transducer FST of fuzzy XML documents (Lu
et al. 2005a, b), finds the file streams in all levels that have the same tag names
with the leaf nodes and simultaneously filters some file streams which cannot
merge with the other path results to form the final positive matching results.
Finally, as the requirement of the membership degree, the algorithm returns the
final matching results.

Fig. 4.9 An XML document (@) (b)
and a path query with NOT- A A
logic predicate ‘
/B\ b
C, B, C
D, E, C, D
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The FNTJFast algorithm

1 while (—end (root))

2 for each f; € Pos_leafNodes (root)

3 Locate Tf;

4. for each f; € Pos_leafNodes (root)

5. locateMatchedLevel (f;, fi+1)

6 if(avhole >= 50)

7 add answer to Output

8. if (there is neg_extention)

9. for each nf; € Neg_leafNodes (root)

10. for each element nf'in Tnf;

11. for each answer in Output

12. if (n.prefix (Lyg, ans) == answer.prefix (Lyg, ans))
13. remove the answer from Output

Procedure Locate Tf;

1.

locate Tf; for leaf node f; that can merge with other paths in the twig

Function locateMatchedLevel (f;, fi11)

L.
2.
3.

flag = true
while (flag)

if (current (Tf;).number.prefix (L;, 1+) <
current (Tf;;;).number.prefix (L;, i11))
advance (Tf))
else if (current (Tf;).number.prefix (L;, j+) >
current (Tf;;).number.prefix (L;, i+1))
advance (Tf)
else
if (5path7ﬁ < é‘Q)
advance(Tf)
flag = true
if (Oparn sir1 < &)
advance (Tf;1)
flag = true
if (Swhole >= &)
add answer to Output

In the following, we illustrate the FNTJFast algorithm with a query example.
Given the finite state transducer FST of a fuzzy XML document in (a) of Fig. 4.10
and a query twig in (b) of Fig. 4.10.

Assume that the query threshold given by the user is 0.3. The positive leaf
nodes in the twig is {D, A}, and the two positive query paths are //B//C//D and B//
C//A. The file streams A and A, of the leaf nodes do not meet the path query B//C//A.
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D

Fig. 4.10 A query example of the FNTJFast algorithm. a The finite state transducer FST of a
fuzzy XML document. b A query twig with NOT-logic

Although the file stream D, of the leaf node D meets the path query //B//C//D, it
cannot integrate in the twig node C with the file stream of the node A to form the
matching results, so the algorithm skips the file streams A;, A, and D, in the
process of Locating. Moreover, the file streams D, and A3 not only meet the path
query but also can integrate to form the final match results. The codes of D, and A3
are as follows:

D2 = {(1.1.1.0 0.8 0.6 0.2) (1.4.1.2 0.8 0.7 0.9) (1.4.2.4 0.8 0.9 0.8) ...}
A3 = {(1.1.2.1 0.8 0.6 0.6) (1.4.2.3 0.8 0.9 0.8) (1.4.2.5 0.7 0.6 0.5) ...}
L=3

We further examine the elements in D, and A3 one by one. The third element in
D, is D,[2], which has the same code with A3[1] in the first three layers. Then, we
calculate the membership degrees of their paths: 0.576 and 0.576, and we can see
that the two degrees are bigger than the query threshold 0.3. Further, we calculate
the whole membership degree dypoe = (0.8 x 0.9) x 0.8 x 0.8 = 0.4608, which
meets the threshold requirement. Therefore, we store the extension of Dewey
coding {<(1.4.2.4), (1.4.2.3)>}. Next, we locate the file streams D3 and A4. The
codes of D5 and A, are as follows:
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D3 = {(1.2.1.2.20.6 0.8 0.5 0.4) (1.2.2.0.0 0.9 1 0.7 0.8) (1.5.1.4.2 0.8 0.7 1 0.9)
.
A3 = {(1.2.2.0.1 091 0.7 09) (1.5.14.1 0.8 0.7 1 0.7) (1.5.2.2.3 0.6 0.9 1 0.8)
o)
L=4

The query results that meet the requirements of structure and threshold are
{<(1.2.2.0.0), (1.2.2.0.1)>, <(1.5.1.4.2), (1.5.1.4.1)>}.

We can see from the structure of the FST in Fig. 4.10, the query results above
have the extension of negative twig, so we need to test the elements in the file
streams of the negative leaf nodes. The code of the file stream E is as follows:

E, = {(1.2.1.1 0.6 0.8 0.7) (1.2.2.1 1, 0.8 0.9) (0.6 0.9 0.8 1.5.2.3)...}
L=3

The code of the element E; [0] is 1.2.1.1. There is no common ancestor in the
first three layers in the Output, the pointer moves down, and finally we get the
matching result is {<(1.5.1.4.2), (1.5.1.4.1)>}.

In order to deal with the fuzzy XML twig query with logic predicates, the
methods of dealing with fuzzy twig query containing AND/OR/NOT-logic pred-
icates are presented in this section, and also some analyses and query examples are
provided. In the following section, we further discuss how to introduce the Index
mechanism to improve the query efficiency.

4.3 Fuzzy XML Queries with Index

In order to improve the efficiency of querying XML, many researchers suggest to
build Index on the algorithm. Many efforts on building index on classical XML
can be found as introduced in Sect. 4.1. In this section, we introduce a fuzzy twig
pattern query matching algorithm and further build index on the algorithm.

4.3.1 Fuzzy XML Twig Pattern Query Matching

Before we develop a fuzzy XML twig pattern query matching algorithm called
FTwigStack, we first introduce some notions which will be used in the later algorithms.

Let Q be a twig pattern query and its root node is g. In general, ¢ is used to
indicate the twig pattern query whose root node is g also. The stack and data
stream corresponding to the query node ¢ in the twig pattern query are Sy and T,
respectively. Moreover, regarding to the twig pattern query Q, the following node
functions are defined:

1. isLeaf: Node Bool,
2. isRoot: Node Bool;
3. Parent: Node Node;
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. children: Node {Node};

. subtreeNodes: Node {Node};
. getLastF: Node Double;

. getSubPathF: Node Double;
. getMergeF: Node Double.

0NN n A

Here, subtreeNodes (g) returns node g and all its descendants. getLastF ()
returns the relative membership degree between the current node and its father
node. getSubPathF () returns the whole membership degree of the path from the
current node to the root of the query tree. getMergeF () returns the whole mem-
bership degree of the current query tree. Regarding to the stream 7q, the following
functions are defined: eof, advance, next, nextL and nextR. Among them, next (7q)
gets the next node of the current node in the stream 7q; advance (Tq) makes the
pointer of the stream 7q point to the next node; nextL (7q) and nextR (1q) func-
tions respectively return L and R region coding value of the next node in 74q.
Regarding to the stack Sq, the following functions are defined: empty, pop, push,
topL and topR. Here the last two functions respectively return the L and R region
coding value of the top node in the stack. For an arbitrary query node g in query Q,
its parent node in the query Q is parent (q) whose stack is Sparent (q).

Based on the existing fuzzy XML query algorithms in Liu et al. (2009) and Ma
et al. (2011), the FTwigStack algorithm executes triple filtering in the process of
getNext. It does not generate intermediate redundant nodes and each returned node
forms the final solutions. When FTwigStack algorithm is used to query fuzzy twig
with branches, the following three aspects should be considered:

1. determining whether the single path meets the requirements;

2. determining whether the whole path meets the requirements after the braches
are combined, and the triple filtering will be done;

3. the output single path should be merged.

The algorithm FTwigStack is as follows.

The FTwigStack algorithm

1. While not end (gq)

2. Jact= getNext (¢);

if (! isRoot (gacr))
cleanStack ( parent (gac), nextL (qacr))

if (iSROOt (qact) or !empty (Sparent(qact))
cleanStack (¢, nextL (gac))
moveStreamToStack (Tgact, Sqact» pointer to top (Sparent(qact)))

if (isLeaf (gact)

9. showSolutionFromStack (Sqact, 0)

10. pop (Sqact)

1. else advance (Tgucr)

12. mergeAllPathSolutions ()

® NN AW




124 4 Fuzzy XML Queries and Index

The FTwigStack algorithm can be divided into two main stages. The first stage
(lines 1-11) outputs all eligible nodes in twig pattern query in the order from the
root to the leaves. Note that, although the output is a single path, each bifurcation
node is processed through triple filtering. The first layer of filtering is to determine
whether the membership degree between parent/child nodes meets the threshold
requirement, the second layer of filtering is to determine whether the whole
membership degree from the root node to the current node meets the threshold
requirement, and the third layer of filtering is to determine whether the bifurcate
nodes meet the threshold requirement after merging. All of these are handled
through the getNex function. The second stage (line 12) merges the results
obtained from the first stage and then gets the matching results satisfying the query
conditions. Moreover, the getNext function is used so that each returned node has
the extension of solution. Suppose the getNext (¢) function returns a node ¢’ in the
query whose root is g. Then the following conditions must be satisfied:

1. it must have at least one extension of solution;
2. if ¢ has sibling nodes, then its sibling nodes must also have the extension of
solution, and ¢’ is the node whose left value is the smallest in all sibling nodes.

The following is the function getNext ().

The getNext () function

1. if (isLeaf (¢))

2 while (getLastF (g) <w or getSubPathF (¢) <w)
3 advance (q)

4. return g

5. while (getLastF (g) <w or getSubPathF (¢) <w)

6

7

8

advance (q)
for (g; in children (q))
. n; = getNext (¢;)

9. If (n; = gq;) return »;
10. i, = min arg,nextL (Ty;)
11. 1y = max arg,nextL (Ty;)
12. while (nextR (Tg;) < nextL (Tymax) || getMergeF (Tq) <w)
13. advance (T,)
14. if (nextL (T,) < nextL (Tymin)) return g
15. else return 7,

In the function getNext (g), lines 1-4 first determine whether ¢ is leaf node. If
so, a eligible leaf node is searched and returned. Lines 5-6 conduct the first and
second layers of filtering to the node ¢ so that the first node which satisfies the first
and second layer filter conditions can be found. Lines 7-9 recurrently call getNext ()
to return the eligible nodes in child nodes of the node g, in which it is ensured that
every child has the extension of the solution. Lines 10-13 judge the file stream
corresponding to the node g and find a node which satisfies the third filter con-
ditions. In line 14, g is returned if ¢ is the father of all child nodes returned.
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Otherwise, a child node whose left value is smallest in child nodes is found as
return (line 15).

We use an example to illustrate the FTwigStack algorithm. Figure 4.11 shows
an XML document tree and query tree. The input of the FTwigStack algorithm is
the file streams of the nodes a, b, ¢ and d. The stacks S,, Sy, S. and Sy are created
for these four nodes. In these stacks, the elements are saved in a S-tuple: left
location, right location, depth, the result of calling the function subMerge (), and
the pointer pointing to the parent node. Here we assume that the threshold given
by the user is 0.2. First, we call getNext () to determine whether there is a solution
for a. Because a is not a leaf node, the values of the functions gerLastF () and
getSubPathF () of the node a; need to be judged. Since a; is the root node, both of
the values of the two functions are 1 and the given conditions are satisfied. Next,
we call getNext () for each child of a. Similarly, in getNext (b), we need to judge
the values of the functions getLastF () and getSubPathF () of the current node b, in
the file stream b. Both of the values are 0.9 and the first and second layers of
filtering are met. Then it is needed to call getNex () for each child node of b,. In
getNext (c¢), since c is a leaf node, we need to find and return such a node that its
values of the functions getLastF () and getSubPathF () meet conditions. Here the
node ¢; meets the conditions. For getNext (d), since d is a leaf node, we also need
to find a node in the file stream of d, which meets the conditions. Here d; meets the
conditions. Finally, the node a, is pushed into the stack. The process of calling
getNext in the second round is similar to the first round above, and b, is pushed
into the stack. The third and fourth rounds return ¢ and d;, respectively. Because
¢y and d; are leaf nodes, we output their path solutions [ay, by, ¢;] and [ay, by, d4].
The algoritm repeats until all the file streams move to the end. Finally, we get a
solution (a;, by, cy, dy) as shown in Fig. 4.12.

3:43090.8 9:1030.80.5 15:163 0.6 0.2 21:2230.109
5:630.90.7 11:1230.80.4 17:183 0.6 0.3 23:2430.10.7

Fig. 4.11 A query example of the FTwigStack algorithm
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Fig. 4.12 The final query
result of the example in

Fig. 4.11

4.3.2 Fuzzy XML Twig Pattern Query with Index

The algorithm FTwigStack developed in Sect. 4.3.1 can deal with the fuzzy XML
twig pattern query matching under the fuzzy XML environment. However, the
FTwigStack algorithm must process all nodes in each file stream and does not
make full use of the tree structure feature of XML. Assume that, for example, we
know a node does not form the final solution in the structure. Then in the subtree
whose root node is this given node, the nodes which have the same name as the
given node do not form the final solution also. At this point, these nodes can be
skipped directly and further process such as calculation and judgement are not
needed. Therefore, we aim at further building the index on the FTwigStack
algorithm in this section, and propose a fuzzy XML twig pattern query algorithm
with index, called FTwigStackXB algorithm. According to the index mechnism, it
can be determined that which nodes can be skipped directly and which parts need
to be further processed, and thus the speed of query processing may be improved.

The FTwigStackXB algorithm is to build index on the FTwigStack algorithm.
The building of index in fuzzy XML is based on the B-tree and the region
encoding. Each node in fuzzy XML document is represented as [DocID, LeftPos:
RightPos, LevelNum, Fuzzysequence]. DocID represents which XML documents
the node belongs to. LeftPos: RightPos represents the code of the node in the
document. LevelNum represents which XML layer the node in.

Every node in the XB-tree is a page of data. The data in leaf nodes of XB-tree is
the real data in the XML document tree, and it is stored as [LeftPos: RightPos,
LevelNum, Fuzzysequence]. The storage mode of the nodes located in the middle
of XB tree is [LeftPos: RightPos, N.page]. LeftPos: RightPos represents a range N,
N.page is a pointer which points to a child node of the node [LeftPos: RightPos,
N.page] in XB-tree, and all the encoding of data in the child node is in the range of
[LeftPos, RightPos]. Moreover, each node P has a pointer P.Parent and an integer
P.Parentlndex. P.Parent points to the father node of the node. P.Parentindex
points to a data in the father node, and the pointer of the data points to the current
node back. The data in each node of XB-tree are sorted by the value of LeftPos in
ascending order. In addition, a pointer actPointer = (actPage, actlndex) is used to
record the location of the current file stream. The two operations used in the XB-
tree 1s:
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1. advance () operation

If the current pointer actPointer = (actPage, actlndex) does not point to the
last data of the current node, the algorithm just moves actindex forward. Otherwise
it is needed to use (actPage.parent, actPage.parentlndex) instead of actPointer
and do an advance operation.

2. drilldown () operation

If actPage in the current pointer actPointer = (actPage, actlndex) is not a leaf
node of XB-tree and N is the actlndexth node, it is needed to replace actPointer
with (N.page, 0) and the current pointer points to the first child of N.Page.

Based on the FTwigStack algorithm, the FTwigStackXB algorithm builds index
in the XML data stream. It can filter out more nodes that won’t form the final
solution, which further improves the efficiency of querying. When using the
FTwigStackXB algorithm to process the twig pattern query, each node goes
through triple filtering, and the node that the function getNext returns may not be a
node in the final solution. It may be a data in XB-tree intermediate node. If so, the
advance () or drilldown () operations may be proceed. The FTwigStackXB
algorithm is given as follows.

The FTwigStackXB Algorithm

1. While not end (¢q)
2. Gact = getNext (¢);

3. if (isPlainValue (Tguc)

4. if (! isRoot (gaer)

5. cleanStack (parent (qac), nextL (gac))

6. if (iSROOt (qact) or !empty (Sparent(qact)))

7. cleanStack (gae, nextL (qae) )

8. moveStreamToStack (Tqact, Sqact, pointer to top

(Sparem(qacl))

9. if (isLeaf (gac))

10. showSolutionFromStack (Sqact, 0)

1 l pop (Sqact)

12. else advance (Tg,)

13. else if (!isRoot (¢a) and empty (Sparent(qact)) OF
nextL (Tparent(qact)) > nextR (Tqact))

14. advance (T gcr)

15. else drilldown (Tguc)

16. mergeAllPathSolutions ()

The algorithm FTwigStackXB mainly includes two stages: (1) lines 1-15
mainly work out the path solution conforming to the conditions. If the current node
is the data of leaf nodes in XB-tree, then the current data node belongs to the nodes
in final solution. Lines 4-8 do the operations of clearing and pushing the stack.
Lines 9-12 output the path solution of the current node or move the pointer
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forward. Lines 13—14 mainly skip out the nodes that don’t meet the conditions: if
the current node isn’t the root node and the parent node stack is empty, or the L of
the current stream node of the father node is greater than the R of the current
stream node, namely both of the current node and the nodes under the current node
are unlikely to form final solutions, then skipping out them directly. Therefore,
when building index, we should try to filter out more nodes through the line 14 of
the main algorithm rather than turn into lines 4-12 and line 15 to judge. If the line
15 doesn’t meet the conditions of the line 13, then move the current node down.
(2) Line 16 mainly merges the path solutions derived from the first stage.

The getNext function in the algorithm FTwigStackXB is to return a node. If the
node is a data of XB-tree intermediate nodes, i.e., it is not a node in final solution,
then the lines 13—15 of the main algorithm are executed. If the node is a data of
XB-tree leaf nodes, then the lines 4-12 of the main algorithm are executed. If the
node is a data of leaf nodes, then the node has been triply filtered. The following is
the function getNext ().

The getNext () Function

if (isLeaf (g))
while (getLastF (¢) <w or getSubPathF (¢) < w) advance (q)
return g
while (getLastF (¢) < w or getSubPathF (g) <w)
advance (q)
for ¢; in children (q)
n;= getNext (g;)
if (¢ != n; or lisPlainValue (T,;)) return n;
9. Ny = min arg;nextL (Ty)
10.  npax = max argpnextL (Ty;)
11. while (nextR (T,) <nextL (Tyma) || getMergeF (T,) <w)
12. advance (T)
13. if (nextL (T,) < nextL (Tymin)) return g
14. else return 7.y,

S A o

In the function getNext (), if the current node is a leaf node, then we filter out
those nodes that don’t satisfy the first and second layers of filter conditions, and
return the first eligible leaf node (lines 1-3). If the current node isn’t a leaf node,
then we filter out those nodes that don’t meet the first and second layers of filter
conditions (lines 4-5). Next, each child of the current node recursively calls
getNext (), if the returned result is not the current child node or the function is
PlainValue () returns false, then we return the nodes that the file stream pointer
points to (lines 6-8). Moreover, in lines 11-12, according to the scopes and the
membership degrees of the child nodes of the current node, we filter out the nodes
that don’t meet the conditions. Also in line 13, if the current node is the father node
of all child nodes, then the current node is returned, otherwise, the node whose left
value is minimum in child nodes is returned.
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In the following we provide an example to illustrate the differences between
index and non-index in query. In brief, the FTwigStackXB algorithm can skip
parts of data streams directly, but the FTwigStack algorithm needs to judge each
data to determine whether it is one of the final solution. Figure 4.13 shows a fuzzy
XML document and a query example.

For FTwigStack and FTwigStackXB algorithms, the input of the algorithms are
the data stream file of each node in the query tree. The difference is when the
FTwigStackXB algorithm executes the query, the algorithm builds B-tree index in
the data stream file of each node. For the query tree and the fuzzy XML data file in
Fig. 4.13, an XB-tree model can be created after building B-tree index in the data
stream file of each node as shown in Fig. 4.14.

In Fig. 4.14, the four figures are the XB-index tree models building on the file
streams of the nodes A, B, C, and D, respectively. At the beginning of the algo-
rithm, the pointer of each file stream is as follows: actA = [12:25 pointer],
actB = [3:10 pointer], actC = [4:21 pointer], and actD = [16:23 pointer]. When
calling the getNext (A) function in round 1, the getNext (B) will be invoked, and
the getNext (B) will continue to call getNext (C) and getNext (D). When calling
the getNext (C), since C is a leaf node, actC = [4:21 pointer] will be returned.
Moreover, because actC is not the data of the leaf nodes, actC will be returned to

@ 3:1030.90.8

6:940.90.80.7

@ 14:1540.80.7 0.6 20:2140.80.70.5
16:174 0.8 0.7 0.8 20:2340.80.70.1

7:850.90.80.70.6

4:54090.80.7

) ()

Fig. 4.13 A query example of the FTwigStackXB algorithm. a A fuzzy XML document with
index. b A query tree
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3:10 pointer 13:24 pointer

12:25 pointer

Pointer index Pointer index
Pointer index 3:103090.8 13:1830.8 0.7
12:2520.8 6:94090.80.7 19:2430.80.7

4:21 pointer

4:9 pointer 14:21 pointer

16:23 pointer

Pointer index Pointer index Pointer index
4:540.90.80.7 14:1540.80.7 0.6 16:1740.80.7 0.8
7:850.90.80.70.6 | | 20:21 4 0.80.7 0.5 22:2340.80.70.1

Fig. 4.14 An XB-tree model with B-tree index

the third line of the main function. Further, it can be found that the actC does not
meet the condition in line 3, thus the operation in line 14 will be executed directly,
and the current pointer of C index tree will be moved down to [4:9 pointer]. Then,
the next rounds 2—10 will repeat the process of the round 1 above. Next, the round
11 calls getNext (A) to push the current node actC into stack and output the path
solution [a;, b3, c3]. The round 12 calls getNext (A) to push the node actD into
stack and output the path solution [a;, b3, d;], and then the pointer of the node
D will be moved to [22:23 4 0.8 0.7 0.1]. Similarly, in the round 13, the getNext
(A) and getNext (B) are called, and then the getNext (C) and getNext (D) also are
called. When calling getNext (C), the node actC is returned. When calling getNext
(D), since the node actD does not meet the first layer of filter conditions, the
pointer of the node D will be moved to null directly. Because the getNext
(D) doesn’t return any useful D data stream for getNext (B), the node B also has no
solution. In this case, the node B will be moved forward to null, and C will also be
moved forward to null in the same way. Now the whole process is finished. The
final result is shown in Fig. 4.15.

Fig. 4.15 The query result of a
the example in Fig. 4.13
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4.4 Summary

The fuzzy XML data modelling has been extensively investigated as introduced in
Chap. 3. Accordingly, how to query the fuzzy XML data is essential in order to
meet the needs of practical applications. In particular, there are a lot of AND, OR
and NOT logical predicates in the users’ query conditions. So fuzzy XML query
containing predicates becomes an important issue to be solved for fuzzy XML data
management. Besides, how to ensure high efficiency is always the core problem of
querying. Building index for fuzzy XML query can filter out the nodes which do
not form final solutions and greatly improve the efficiency of querying. To this
end, in this chapter, we present the methods of fuzzy XML twig queries with AND,
OR and NOT predicates. Also we investigate the problem of fuzzy XML query
based on index and built index on a fuzzy twig pattern query matching algorithm.
The corresponding query examples are provided to well illustrate the proposed
algorithms.

Besides the querying of fuzzy XML data, with the popularity of Web-based
applications, the requirement has been put on the exchange and share of data
among various applications. For example, currently there is an increasing need to
effectively publish fuzzy structured data in fuzzy database models (such as fuzzy
relational database models and fuzzy object-oriented database models) as fuzzy
XML documents for Web-based applications or reengineer fuzzy XML data into
fuzzy database models to satisfy the needs of storing fuzzy XML data in fuzzy
databases. All of these will be introduced in the later chapters.
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Chapter 5

Fuzzy XML Extraction from Fuzzy
Database Models

Abstract Nowadays most of data are modeled by database modes such as UML,
relational and object-oriented database models as introduced in Chap. 1. Then
database administrators are faced with the challenge of ensuring their databases to
interface with other heterogeneous systems using XML, which is the de facto
standard for publishing and exchanging data on the Web. However, information is
often imprecise and uncertain in many real-world applications, and thus fuzzy
database models and fuzzy XML have been extensively investigated as introduced
in Chaps. 2 and 3. Accordingly, there is an increasing need to automate the process
of extracting fuzzy XML models containing information from existing fuzzy
database models. In this chapter, we introduce how to extract fuzzy XML from
several typical fuzzy database models, including fuzzy UML data models, fuzzy
relational database models, and fuzzy object-oriented database models.

5.1 Introduction

As introduced in Chap. 1, databases and XML are the important techniques for
manage data in real-world applications. In particular, XML has become the de
facto standard for publishing and exchanging data on the Web. Currently, most of
the data are stored in databases such as relational and object-oriented databases.
Thus in order to realize the full potential of XML, it is of significance to extract the
XML documents from existing databases (Ferndndez et al. 2000). Liu et al. (2006)
provided a constraint preserving transformation from relational schema to XML
schema. Fong and Cheung (2005) proposed an approach for transforming a
relational schema into an XML Schema definition for creating an XML database.
Lo et al. (2010) presented a method to query and integrate relational databases to
produce XML documents and the corresponding schemas. Naser et al. (2009)
presented a novel approach for mapping an existing object-oriented database
into XML and vice versa. Wang et al. (2005) developed a system named
COCALEREX (converting relational to XML) to handle the transformation
process for both catalog-based and legacy relational databases.

L. Yan et al., Fuzzy XML Data Management, Studies in Fuzziness 133
and Soft Computing 311, DOI: 10.1007/978-3-642-44899-7_5,
© Springer-Verlag Berlin Heidelberg 2014
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In many real-world applications, information is often imprecise and uncertain,
and thus fuzzy data modeling has been extensively investigated in various database
models, which has resulted in numerous contributions, mainly with respect to the
popular fuzzy conceptual data models (fuzzy ER/EER model, fuzzy UML model,
and etc.) and fuzzy logical database models (fuzzy relational database model, fuzzy
object-oriented database model, and etc.) as introduced in Chap. 2. Also, topics
related to the modeling of fuzzy data can be considered very interesting in the XML
data context, and fuzzy XML models have been developed as introduced in Chap. 3.
As such, there is an increasing need to effectively publish fuzzy structured data in
fuzzy database models as fuzzy XML documents for Web-based applications. Ma
and Yan (2007) investigated the formal conversions from the fuzzy UML model to
the fuzzy XML model and developed the fuzzy UML data model to design the fuzzy
XML model conceptually. Yan et al. (2011) proposed a formal conversion approach
from the fuzzy relational databases to the fuzzy XML model, which is established by
introducing a series of mapping rules, and demonstrated the validity of the proposed
approach by using a practical case. The conversions from the fuzzy relational
databases to the fuzzy XML model lay a theoretical foundation for establishing the
overall management system of fuzzy XML data. Liu and Ma (2013) studied how to
automatically generate fuzzy XML documents containing information from existing
fuzzy object-oriented databases. In this chapter, we introduce how to extract fuzzy
XML from fuzzy database models including fuzzy UML data models, fuzzy rela-
tional database models, and fuzzy object-oriented database models.

5.2 Fuzzy XML Extraction from Fuzzy UML
Data Models

In order to extract fuzzy XML from fuzzy UML data models, Ma and Yan (2007)
investigated the formal conversions from the fuzzy UML data model to the fuzzy
XML model and developed the fuzzy UML data model to design the fuzzy XML
model conceptually. For the transformation approach, relevant constructs are the
fuzzy extensions of those of UML’s Static View, consisting of the fuzzy classes
and their relationship such as fuzzy association, fuzzy generalization, and various
kinds of fuzzy dependencies as introduced in Sect. 2.3. We develop the transfor-
mation of these constructs into DTD fragments.

5.2.1 Extraction of Fuzzy Classes

UML classes are transformed into XML element type declarations (Conrad et al.
2000). Here, the class names become the names of the element types and the attri-
butes are transformed into element content description. It is noted that, in the UML,
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attribute names are mandatory, whereas the attribute types are optional. In contrast,
an element content only consists of type names in the XML. As aresult, it is assumed
that attribute names imply their attribute type names (Conrad et al. 2000). When
there is no class representing a suitable declaration for an attribute type, the attribute
type is assumed to be an element whose content type is #PCDATA. In addition,
multiplicity specifications of attributes are mapped into cardinality specifications
with specifiers ?, *, and +, which are used for element content construction.
In the fuzzy UML model, four kinds of classes can be identified, which are

(a) classes without any fuzziness at the three levels,
(b) classes with fuzziness only at the third level,
(c) classes with fuzziness at the second level, and
(d) classes with fuzziness at the first level.

For the classes in case (a), they can be transformed following the approach
developed in Conrad et al. (2000). The transformation of the classes with the third
and second levels of fuzziness is of particular concern. Instead of formal defini-
tions, in the following we utilize some examples to illustrate how to transform the
classes with the third and second levels of fuzziness into XML DTD.

First, let us look at class “student” in Fig. 5.1.

It is clear that this class has two attributes, “age” and “e-mail,” taking fuzzy
values representing various possible distributions. In other words, the class has the
third level of fuzziness. While the class name becomes the name of the element
type, and the attributes are transformed into element content description, these two
attributes cannot be directly transformed into the element content description with
content type #PCDATA. We should use

<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

rather than use
<!ELEMENT age (#PCDATA)>.
Similarly, we use

<!ELEMENT email (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (conjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

in place of

<!ELEMENT e-mail (#PCDATA)>.
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<!ELEMENT student (sname?, age?, sex?, email?)>
<!ATTLIST student SID IDREF #REQUIRED>

<!ELEMENT sname (#PCDATA)>
<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctive)>
<!ELEMENT sex (#PCDATA)>
<!ELEMENT email (Dist)>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (conjunctive)>
<!ELEMENT Val #PCDATA)>

<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT employee (Dist)>
<!ATTLIST employee FID IDREF #REQUIRED>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (fname?, position?, office?, course?)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT fname (#PCDATA)>
<IELEMENT position (#PCDATA)>
<!ELEMENT office (#PCDATA)>
<!ELEMENT course (#PCDATA)>

Fig. 5.1 Transformation of the classes in the fuzzy UML to the fuzzy XML

Now let us focus on class “employee” in Fig. 5.1. This class has the second
level of fuzziness. That means that the class instances belong to the class with
membership degrees. For such a class, when its class name becomes the name of
the element type, the attributes cannot be transformed into element content
description directly. We should use

<!ELEMENT employee (Dist)>
<!ATTLIST employee FID IDREF #REQUIRED>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (fname?, position?, office?, course?)>
<!ATTLIST Val Poss CDATA “1.0”>

rather than directly use

<!ELEMENT employee (fname?, position?, office?, course?)>
<!ATTLIST employee FID IDREF #REQUIRED>.
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Figure 5.1 depicts the details transforming classes “student” and “employee”
into the fuzzy XML. An aggregation represents a whole-part relationship between
an aggregate and a constituent part. We can treat all constituent parts as the special
attributes of the aggregate. Then we can transform the aggregations using the
approach to the transformation of classes.

5.2.2 Extraction of Fuzzy Generalizations

The generalization in the UML defines a subclass/superclass relationship between
classes: one class, called superclass, is a more general description of a set of other
classes, called subclasses. Following the same transformation of classes given
above, the superclass and each subclass are all transformed into the element types
in the XML, respectively. Here the element type originating from the superclass is
called a superelement and the element type originating from a subclass is called a
subelement in Conrad et al. (2000). Note that a superelement must receive an
additional ID attribute stated #REQUIRED, and each subelement must be aug-
mented by a #REQUIRED IDREEF attribute in addition to the transformations that
the class names become the names of the element types and the attributes are
transformed into element content description.

Now consider the fuzziness in the generalization in the fuzzy UML model.
Assume that the superclass and subclasses involved in the generalization may have
fuzziness at the type/instance level (the second level) and/or at the attribute value

<!ELEMENT Youth (Dist)>

<IATTLIST Youth yid ID #REQUIRED>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctive)>
Y <!ELEMENT Val (name)>

<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT name (#PCDATA)>

______________

AY
[ <!ELEMENT Student (course)>
<IATTLIST Student sid IDREF #REQUIRED>

Student Young Faculty <!ELEMENT Young Faculty (age)>
<IATTLIST Young Faculty yfid IDREF REQUIRED>
<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

course FUZZY age

Fig. 5.2 Transformation of the generalizations in the fuzzy UML to the fuzzy XML
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level (the third level). The transformation of such superclass and subclasses can be
finished according to the transformation of fuzzy classes developed above.
Meanwhile, the created superelement and each subelement must be associated
with ID #REQUIRED and IDREF #REQUIRED, respectively. Figure 5.2 depicts
the transformation of the fuzzy generalization.

5.2.3 Extraction of Fuzzy Associations

Associations are relationships that describe connections among class instances. An
association is a more general relationship than aggregation or generalization. So
basically we can transform the associations in the UML using the approach to the
transformation of generalizations given above. That is, first the class names

Pmmmm e ———— e |
Youth | New Car \
like . \ |

1% 1. .
name " >| maker !
FUZZY age |~~~ "~~~ -===77=7=°7°7°7°% ! model I
|
: year I
|
o |
! |

<!ELEMENT Youth (name, age)>
<!ATTLIST Youth ncid IDREF #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>

<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT New Car (Dist)>
<!ATTLIST New Car yid ID #REQUIRED>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (maker, model, year)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT make (#PCDATA)>
<!ELEMENT model (#PCDATA)>
<!ELEMENT year (#PCDATA)>

Fig. 5.3 Transformation of the associations in the fuzzy UML to the fuzzy XML
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become the names of the element types and the attributes are transformed into
element content description. Then each element transformed must be augmented
by a #REQUIRED IDREF attribute (ISIS XML/EDI Project 2001), which is an
artificial one and from another class involved in the association.

Since, in the fuzzy UML data model, each class involved in an association may
have fuzziness at the type/instance level (the second level) and/or at the attribute
value level (the third level), its transformation must be carried out according to the
transformation of fuzzy classes developed above. Utilizing this approach, Fig. 5.3
depicts the transformation of the fuzzy association.

5.3 Fuzzy XML Extraction from Fuzzy Relational
Database Models

For managing fuzzy XML data, Yan et al. (2011) investigated the formal con-
versions from the fuzzy relational databases to the fuzzy XML model, which is
established by introducing a series of mapping rules. By using a practical case, we
finally demonstrated the validity of the proposed approach. The conversions from
the fuzzy relational databases to the fuzzy XML model lay a theoretical foundation
for establishing the overall management system of fuzzy XML data.

In order to realize the transformation of relational database into XML, Lee et al.
(2001) defined the nest operator, which can transform the relational database into
the non-1NF nesting relational database. The nest operator is defined: Let r be a
n-ary table with column set C,A € C and A € C — A. For each (n — 1)-tuple
r € [[4(r), defining an n-tuple 7 as follows:

/
/A] = {S[zg][ﬁ}E rt/\ S = 1) } then, nesta(r) = {/'|t € Tx(r)}

After nest, (r), if the attibute A has only a set with single value {v}, then we say
that nesting failed and treat {v} and v interchangeably, i.e., {v} = v. Therefore,
when nesting failed, the following is true: nests (r) = r. Otherwise, if the attibute
A has a set with multiple values {vy,..., v} (kK > 2), we say that nesting sucessful.

The conversions from the fuzzy relational databases to the fuzzy XML model
are completed through two steps: the first is to transform the relational database
into the XML DTD regardless of the existence of fuzzy information, and then
modify the DTD based on the fuzzy information in the relational tables. The
conversions are established by a series of mapping rules as follows.

Rule 1: for a relational database schema, a root node is created in XML and the
corresponding DTD is described as:

<!ELEMENT root (element*)>.
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Rule 2: for each relation, creating a non-leaf element node in DTD.
Rule 3: for a primary key, it is declared as:
<!ATTLIST Ename Aname ID...>.
Rule 4: for a foreign key, if the foreign key refers to the single ID, it is declared as:
<!ATTLIST Ename Aname IDREF...>;
Otherwise, if the foreign key refers to multiple IDs, it is declared as:
<!ATTLIST Ename Aname IDREFS...>.

Rule 5: for the attribute columns which are not the primary keys and foreign
keys, they are declared as:

<!ELEMENT Ename (original-definition)>
Rule 6: for the constraint “NOT NULL” of the attribute value, it is represented by:
<!ALLIST Ename Aname original-definition #REQUIRED>

Rule 7: for a relation whose primary key does not include foreign keys or whose
primary key includes at least two foreign keys, a DTD declaration is created below
the root element:

<!ELEMENT root (element*)>

Rule 8: for a relation r; whose primary key includes a foreign key and its parent
relation is r,, the relation r; is transformed into the sub-relation of r,:

<!ELEMENT element, (element;*)>

Rule 9: for the relations ry and r,, if there is only a N — 1 relation between r;
and r,, the relation r; is transformed into the sub-relation of r:

<!ELEMENT element, (element;*)>

Rule 10: if there are multiple N — 1 relations from the relation ry to the rela-
tions ry,..., ry, the relation rg is transformed into the sub-relation of r,..., r,
respectively:

<!ELEMENT element; (elementy*)>

<!ELEMENT element, (elementy*)>

Rule 11: If there is a N — N relation between two relations r; and r,, the
relations r; and r, are transformed into the sub-element of the root element:

<!ELEMENT root (element;*, element,*)>

And then we use the attribute declarations ID and IDREF as introduced above
to describe element; and element,.
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Rule 12: if there is a N — N relation in ry, the relation r; is transformed into the
sub-element of the root element:

<!ELEMENT root (element;*)>

And then we use the attribute declaration ID to describe element;.

Rule 13: for a relation r, it is represented as r (Ay,..., Ax_1, A,..., A,) after the
nest operator, where the attribute (A,..., Ax_1) is a nesting structure. If k = 1, i.e.,
there are not nesting relations, the attribute columns are transformed into sub-
elements:

<!ELEMENT Ename (original-definition)>;
If k > 1, i.e., there are nesting relations, then:

e for each attribute A; (1 < i < k — 1), if A; may be null, the element content can
be represented as A;* or A+, i.e.,

<!ELEMENT Ename (Aname;*, Aname,+,...)>

e for each attribute A; (k < j < n), if A; may be null, the element content can be
represented as A;? or 4;, i.e.,

<!ELEMENT Ename (..., Aname;?, Aname,)>
Rule 14: for the constraint “default” of the attribute, it is represented by:
<!ALLIST element Aname original-definition “default”>

By using the 14 rules above, the relational databases can be transformed into
XML DTD. The transformation algorithm is briefly given as follows:

(a) Regarding to the attribute columns not containing fuzzy information, the nest
operator is defined on the other attribute columns in the relation;

(b) By applying Rule 1, the root element of the DTD tree is created;

(c) By applying the Rules 2 and 7, a suitable relation called r; is found to create
the sub-elements of the root node;

(d) For the attribute columns of the relation ry, the corresponding DTD declara-
tions are created with the Rules 3, 4, 5, 6, 13 and 14,

(e) For the relations r»,..., r, which refer to the relation ry, the corresponding sub-
elements of r; are created with the Rules 8, 9, 10, 11, and 12;

(f) The rest relations are traversed recursively and the corresponding parent ele-
ments are found with the Rules 8, 9, 10, 11, and 12.

Next we consider the fuzzy information in the relations. At this point it may be
needed to modify the created DTD above. When the relation r contains the fuzzy
information, the following rules are used.

Rule 15: for the relation containing the attribute u € (0, 1], which represents the
membership degree of a tuple belonging to the relation, it is transformed as
follows:
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e creating a non-leaf node within the DTD sub-element corresponding to the relation
r, 1.e., Val sub-element node, and the number of occurrences of the element is
defined as +:

<!ELEMENT element (Val+)>

e creating the content of the attribute columns of the relation » within the Val sub-
element, which can be similarly processed with the transformations without
fuzzy value, and the default value of Val is 1.0:

<!ELEMENT Val (element;*, element,+, element,?, element,,...)>
<!ATTLIST Val Poss CDATA “1.0”>

Rule 16: for the relation whose attribute values are represented by possibility
distributions, if the created DTD is the leaf node sub-elements, it is transformed
as follows:

e creating a sub-element node Dist within the DTD sub-element corresponding to
the relation r:

<!ELEMENT element (Dist)>

e creating the sub-element Val within the sub-element node Dist, and the number
of occurrences of the element is defined as +:

<!ELEMENT Dist (Val+)>

e creating the content of the attribute columns of the relation » within the Val sub-
element, which can be similarly processed with the transformations without
fuzzy value, and the default value of Val is 1.0:

<!ELEMENT Val (original-definition)>
<!ATTLIST Val Poss CDATA “1.0”>

Rule 17: for the relation whose attribute values are represented by possibility
distributions, if the created DTD is the non-leaf node sub-elements, it is trans-
formed as follows:

e creating a sub-element node Dist within the DTD sub-element corresponding to
the relation r:

<!ELEMENT element (Dist)>

e creating the sub-element Val within the sub-element node Dist, and the number
of occurrences of the element is defined as +:

<!ELEMENT Dist (Val+)>

e creating the content of the attribute columns of the relation » within the Val sub-
element, which can be similarly processed with the transformations without
fuzzy value, and the default value of Val is 1.0:
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<!ELEMENT Val (element,*, element,+, element;?, element;, ...)>
<!ATTLIST Val Poss CDATA “1.0”>

In the following, we provide a transformation example from fuzzy relational
database to fuzzy XML DTD based on the Rules 1-17. Given the relations of
University, Employee, Department and Student as shown in the Tables 5.1, 5.2, 5.3
and 5.4, their primary keys are Uname, Dname, EID and SID, respectively. Also
Uname is the foreign key of the relation Department, and Dname is the foreign key
of the relations Employee and Student. In these tables, the primary keys of the
relations are shown in boldface and the foreign keys are italics.

Firstly, we can create a simple DTD without fuzzy values based on the rules
1-14. After creating the root node element, we find a suitable table in the relation
tables as the sub-element of the root. Here University does not have the foreign
keys and it can be the sub-element of the root node. Then we create the DTD
directly below the root node. Here we take no account of the fuzzy attribute
column PD. Next, we find the table Department which refers to the primary key
Uname in University, and create the corresponding sub-elements below the ele-
ment University. Since the tables Employee and Student refer to the attribute
column Dname in Department, they are transformed as the sub-elements of
Department. The created DTD is as follows:

<!ELEMENT root (university*)>

<!ELEMENT university (address+, department™®)>
<!ATTLIST university Uname ID #REQUIRED>

<!ELEMENT department (location+, employee*, student*)>
<!ATTLIST department Dname ID #REQUIRED>
<!ATTLIST department Uname IDREF #REQUIRED>

<!ELEMENT employee (ename?, position?, office?)>
<!ATTLIST employee EID ID #REQUIRED>
<!ATTLIST employee Dname IDREF #REQUIRED>

<!ELEMENT student (sname?, sex?, age?)>
<!ATTLIST student SID ID #REQUIRED>
<!ATTLIST student Dname IDREF #REQUIRED>

<!ELEMENT address (#PCDATA)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT ename (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT office (#PCDATA)>

<!ELEMENT sname (#PCDATA)>

<!ELEMENT sex (#PCDATA)>

<!ELEMENT age (#PCDATA)>

Then, we further modify the created DTD by considering the fuzzy information
based on the Rules 15-17:
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Table 5.1 A fuzzy relation university
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Uname Address PD
Oakland university Detroit 0.8
Wayne state university Detroit 1.0
Table 5.2 A fuzzy relation employee

EID Dname Ename Position Office PD

85431095 Computer science and engineering Frank Yager Associate professor B1024 0.8

Computer science and engineering Frank Yager Professor

B1024 0.6

Table 5.3 A fuzzy relation department

Dname

Uname Location

Computer science and engineering

Oakland university Oakland county

Table 5.4 A fuzzy relation student

SID Dname

Sname Sex Age

20023056

Computer science and engineering

Tom Smith Male Young

. The fuzzy attribute PD in table University is a single membership degree.
According to Rule 15, we have:

<!ELEMENT university (address+, Val+)>
<!ELEMENT Val (department®)>
<!ATTLIST Val Poss CDATA “1.0”>

. The attribute age in Student is a possibility distribution, and it is a leaf node
sub-element. According to Rule 16, we have:

<IELEMENT age (Dist)>

<IELEMENT Dist (Val+)>

<IELEMENT Val (#PCDATA)>
<IATTLIST Val Poss CDATA “1.0”>

. The fuzzy attribute PD in the table Employee is a multiple membership
degrees, and it is a non-leaf node sub-element. According to Rule 17, we have:

<!ELEMENT element (Dist)>

<!ELEMENT Dist (Val+)>

<!ELEMENT Val (ename?, position?, office?)>
<!ATTLIST Val Poss CDATA “1.0”>

After modifying, the final DTD with fuzzy information is as follows:

<!ELEMENT root (university*)>
<!ELEMENT university (address+, Val*)>
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<!ATTLIST university Uname ID #REQUIRED>

<!ELEMENT Val (department®)>
<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT department (location+, employee*, student*)>
<!ATTLIST department Dname ID #REQUIRED>
<!ATTLIST department Uname IDREF #REQUIRED>

<!ELEMENT employee (Dist)>
<!ATTLIST employee EID ID #REQUIRED>
<!ATTLIST employee Dname IDREF #REQUIRED>

<!ELEMENT Dist (Val+)>

<!ELEMENT Val (ename?, position?, office?)>
<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT student (sname?, sex?, age?)>
<!ATTLIST student SID ID #REQUIRED>
<!ATTLIST student Dname IDREF #REQUIRED>

<!ELEMENT address (#PCDATA)>

<!ELEMENT location (#?CDATA)>

<!ELEMENT ename (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT office (#PCDATA)>

<!ELEMENT sname (#PCDATA)>

<!ELEMENT sex (#PCDATA)>

<!ELEMENT age (Dist)>

<!ELEMENT Dist (Val+)>

<!ELEMENT Val (#PCDATA)>

<!ATTLIST Val Poss CDATA “1.0”>

5.4 Fuzzy XML Extraction from Fuzzy
Object-Oriented Database Models

There are some similarities between the notions in fuzzy object-oriented database
models and fuzzy UML models, e.g., the notions fuzzy classes, fuzzy relationships
and fuzzy inheritance hierarchies in fuzzy object-oriented database models are
similar with the notions fuzzy classes, fuzzy associations and fuzzy generalizations
in fuzzy UML models as mentioned in Chap. 2. Therefore, the approach for
extracting fuzzy XML from fuzzy object-oriented database models may be given
following the similar procedure of extracting fuzzy XML from fuzzy UML models
(Ma and Yan 2007) as introduced in Sect. 5.2. In the following, to publish fuzzy
data in fuzzy object-oriented database models as fuzzy XML documents for
Web-based applications, we introduce how to extract fuzzy XML from fuzzy
object-oriented database models.
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As introduced in Sect. 2.5, in general, a fuzzy object-oriented database
(FOODB) model consists of the basic notions including fuzzy object, fuzzy class,
fuzzy relationship, and fuzzy inheritance. In a FOODB model, an object may
belong to a class with a membership degree of [0, 1] and a class may be the
subclass of another class with membership degree of [0, 1]. Also, a class consists
of a class name, attributes (including a unique object identity OID attribute), and
methods. The domains of some attributes may be fuzzy, and in this case the
attributes are called fuzzy attributes, where a fuzzy keyword FUZZY is appeared in
front of an attribute indicating the attribute may take fuzzy values. In the fol-
lowing, we introduce how to transform the main notions of a FOODB model into
fuzzy XML. Here, the transformed fuzzy XML is represented based on the fuzzy
XML DTD, and the fuzzy XML Schema can be extracted similarly.

5.4.1 Extraction of Fuzzy Classes

A class consists of a class name, attributes, and methods. As mentioned in Conrad
et al. (2000), UML classes are transformed into XML element type declarations.
Based on the idea, a class in a FOODB model is also transformed into a fuzzy XML
element type declaration. In the following, we start by introducing some transfor-
mation rules for extracting fuzzy XML from fuzzy classes in FOODB models.

Rule 1: For each class F'C in a FOODB model, an element type FC is created,
which has the same name with the class name in the FOODB model.

Rule 2: For each attribute FA of a fuzzy class FC, if the attribute is an object
identity attribute, it is transformed into an attribute description of the element type
FC; otherwise, it is transformed into the element content description of the element
FC. Here, the name of an attribute provides the name for the element type in
content description.

Rule 3: For each class FC = [ID, FA,,..., FAy, u] in a FOODB model, ID is a
unique object identity attribute, FA; is an attribute, and p € [0, 1] denotes that a
class instance may belong to the class with a membership degree of [0, 1]. Then
the class name FC becomes the name of the element type, but the attributes cannot
be transformed into element content description directly. The fuzzy class FC is
transformed into the following fuzzy XML DTD elements:

<!ELEMENT FC (Dist)>

<!ATTLIST FC ID ID #REQUIRED>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctivelconjunctive)>
<!ELEMENT Val (FA?,..., FA\)>

<!ATTLIST Val Poss CDATA “1.0”>

Rule 4: For each class FC = [ID, FA,,..., FUZZY FA;, FAi] in a FOODB
model, FUZZY FA; denotes that the attribute FA; is a fuzzy attribute and it may
take fuzzy value, and 1 < i < k. In this case, the content types of the elements
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corresponding to the fuzzy attributes are Dist instead of the element content
description with content type #PCDATA.

For example, given a fuzzy class “Young-Students = [YID, Name, FUZZY Age,
FUZZY Height]” in a FOODB model as mentioned in Sect. 2.5, firstly, an element
type:

<!ELEMENT Young-Students (Name?, Age?, Height?)>
<!ATTLIST Young-Students Y/D IDREF #REQUIRED>

is created. Here the fuzzy class Young-Students in a FOODB model is transformed
into an element type Young-Students in a fuzzy XML DTD with Rule 1, the object
identity attribute ID in the fuzzy class is transformed into an attribute description
of the element Young-Students and the other attributes are transformed into the
element content description of the element Young-Students with Rule 2. Further,
the content type of the crisp attribute “Name” is #PCDATA, i.e., we have:

<!ELEMENT Name (#P#CDATA)>

But it is clear that the two attributes, “Age” and “Height”, take fuzzy values.
Therefore, they cannot be directly transformed into the element content description
with content type #PCDATA. The content type of the fuzzy attribute “Age” is:

<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

Finally, the fuzzy class “Young-Students = [YID, Name, FUZZY Age, FUZZY
Height]” in a FOODB model is transformed into the following fuzzy XML DTD:

<!ELEMENT Young-Students (Name?, Age?, Height?)>
<!ATTLIST Young-Students Y/D IDREF #REQUIRED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT Height (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

Rule 5: For the multiplicity specifications of attributes in a fuzzy class
FC =[..., FA; (m, n),...] in a FOODB model, the optional multiplicity (m, n) for
the attribute FA; specifies that FA; associates to each instance of FC at least m and
most n instances of its type. The multiplicity is transformed into the cardinality
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specifications (with specifies ?, *, +) used for element content construction, e.g.,
[0, 1] is transformed into ?.

5.4.2 Extraction of Fuzzy Relationships

The relationships describe connections among class instances. A relationship is a
more general relation than the inheritance of classes. In general, the relationships
are similar to the associations mentioned in fuzzy UML models in Sect. 5.2.3. In
the following, we transform the relationships of classes in a FOODB model into
fuzzy XML using the approach of transforming the associations in fuzzy UML
models introduced in Sect. 5.2.3.

Rule 6: For each relationship FR between two classes FC; and FC, in a
FOODB model such that FR = [..., FCy: FC,,...] in a FOODB model, FCID, and
FCID, are the unique object identity attributes of FC, and FC,, respectively, and
the fuzzy classes FC, and FC, may have attribute FA; and p as mentioned in the
Rules 3 and 4 above. Then the following fuzzy XML DTD element types are
created:

o the class names FC; and F'C, become the names of the element types, and their
transformations are carried out according to the transformations of fuzzy classes
introduced in the Rules 3 and 4 above:

<IELEMENT FC, (...)>
<IELEMENT FG; (...)>

e cach transformed element must be augmented by a #REQUIRED IDREF
attribute (ISIS XML/EDI Project, 2001), which is an artificial one and from
another class involved in the relationship, i.e., we have:

<!ELEMENT FC, (...)>

<IATTLIST FC, FCID, IDREF #REQUIRED>
<IELEMENT FG; (...)>

<IATTLIST FC, FCID, IDREF #REQUIRED>

Here we provide a transformation example. Given a relationship “fake-
course = [Young-Students: Course]”, where Young-Students = [YID, Name,
FUZZY Age, FUZZY Height] and Course = [CID, Cname, 1], by the Rule 6, the
created fuzzy XML DTD is as follows:

<!ELEMENT Young-Students (Name?, Age?, Height?)>
<!ATTLIST Young-Students Y/D IDREF #REQUIRED>
<!ATTLIST Young-Students CID IDREF #REQUIRED>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Age (Dist)>

<!ELEMENT Dist (Val+)>
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<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>

<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT Height (Dist)>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>

<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT Course (Dist)>

<!ATTLIST Course CID ID #REQUIRED>

<!ATTLIST Course YID IDREF #REQUIRED>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (Cname?)>

<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT Cname (#PCDATA)>

5.4.3 Extraction of Fuzzy Inheritance Hierarchies

In FOODB models, classes may be fuzzy. A class produced from a fuzzy class
must be fuzzy. If the former is still called subclass and the later superclass, the
subclass/superclass relationship is fuzzy. The following rule can transform the
fuzzy inheritance hierarchies into the fuzzy XML DTD element types.

Rule 7: For each fuzzy inheritance hierarchy such that FC = [FCy,..., FC,] ina
FOODB model, FCy,..., FC, are the subclasses and FC is the superclass. Then the
following fuzzy XML DTD element types are created:

e the class names FC, FC,,..., and FC, become the names of the element types,
and the element type originating from the superclass is called a superelement
and the element type originating from a subclass is called a subelement. The
transformations of these classes are carried out according to the transformations
of fuzzy classes introduced in the Rules 3 and 4 above:

<!ELEMENT FC (...)>
<!ELEMENT FC, (...)>

<IELEMENT FC, (...)>

e the superelement and each subelement must be associated with ID #REQUIRED
and IDREF #REQUIRED, respectively, i.e., we have:

<IELEMENT FC (...)>
<IATTLIST FC FCID ID #REQUIRED>
<IELEMENT FC, (...)>
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<!ATTLIST FC, FCIDref IDREF #REQUIRED>

<IELEMENT FC, (...)>
<IATTLIST FC, FCIDref IDREF #REQUIRED>

In the following we present a transformation example. Given a fuzzy inheri-
tance hierarchy such that Students = [Young-Students, Old-Students] in a FOODB
model, where Students = [SID, Dept], Young-Students = [YID, Name, FUZZY
Age, FUZZY Height], and Old-Students = [OID, Grade], by the Rule 7, the cre-
ated fuzzy XML DTD is as follows:

<!ELEMENT Students (Dept?)>
<!ATTLIST Students SID ID #REQUIRED>
<!ELEMENT Dept (#PCDATA)>

<!ELEMENT Young-Students (Name?, Age?, Height?)>
<!ATTLIST Young-Students YID IDREF #REQUIRED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Age (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>
<!ELEMENT Height (Dist)>
<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT Old-Students (Grade?)>
<!ATTLIST Old-Students OID IDREF #REQUIRED>
<!ELEMENT Grade (#PCDATA)>

5.5 Summary

With the development of various fuzzy database models and the wide utilization of
the Web, there is an increasing need to effectively publish fuzzy data in fuzzy
database models as fuzzy XML documents for Web-based applications. In this
chapter, we considered the extraction of fuzzy XML from several typical fuzzy
database models including fuzzy UML data models, fuzzy relational database
models, and fuzzy object-oriented database models, provided a set of rules which
successfully handles the extraction process, and also introduced the extraction
approaches in detail by illustrating transformation examples.

The transformations from the fuzzy database models to the fuzzy XML models
lay a theoretical foundation for establishing the overall management system of
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fuzzy XML data. Moreover, as being introduced in the following chapter, how to
reengineer fuzzy XML data into fuzzy database models is considered very inter-
esting to satisfy the needs of storing fuzzy XML data in fuzzy databases.
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Chapter 6

Reengineering Fuzzy XML into Fuzzy
Database Models

Abstract Since the simplicity and flexibility of eXtensible Markup Language
(XML), it has become the lingua franca for data exchange on the Web. Also, in
order to deal with imprecise and uncertain information in many real-world
applications, fuzzy XML has been extensively investigated as introduced in
Chap. 3. However, XML brings some limitations, e.g., it may be difficult to store
various data in a semantics way because of the semi-structured characteristic of
XML. As we have known, fuzzy databases such as fuzzy relational databases and
fuzzy object-oriented databases can store a large set of semantic information.
Therefore, there is an increasing need to reengineer fuzzy XML into fuzzy data-
base models, which may satisfy the needs of storing fuzzy XML data in fuzzy
databases. In this chapter, we focus on reengineering fuzzy XML into fuzzy
database models, including fuzzy UML data models, fuzzy relational database
models, and fuzzy object-oriented database models.

6.1 Introduction

With the prompt development of the Internet, the requirement of managing infor-
mation based on the Web has attracted much attention both from academia and
industry. The eXtensible Markup Language (XML) is widely regarded as the next
step in the evolution of the World Wide Web, and has been the de-facto standard. It
aims at enhancing content on the World Wide Web. XML and related standards are
flexible that allow the easy development of applications which exchange data over
the web such as e-commerce (EC) and supply chain management (SCM). However,
this flexibility makes it challenging to develop an XML management system. To
manage XML data, it is necessary to integrate XML and databases (Bertino and
Catania 2001). As we have known, most of the data nowadays reside in databases, it
is important to automate the process of storing or converting XML documents in
databases; this will help in better analysis of the data using the efficient querying
facilities of the existing databases (Naser et al. 2008). Moreover, many applications
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or softwares do not always understand XML and have fixed relational interfaces.
Therefore, you might sometimes find it useful to shred all or some of the data values
of an incoming XML document into rows and columns of relational tables. Also,
the additional motivation to carry out the conversions is the fact that it is necessary
to facilitate platform independent exchange of the content of databases and the need
to store XML in databases (Naser et al. 2008, 2009). Accordingly, many approaches
and tools have been proposed to convert or store XML to databases such as UML,
relational and object-oriented databases. Conceptual data modeling of XML doc-
ument schema (Conrad et al. 2000; Elmasri et al. 2005; Mani et al. 2001; Psaila
2000) and XML Schema (Bernauer et al. 2004) have been studied in the recent past.
In Conrad et al. (2000), for example, UML was used for designing XML DTD
(document type definition). Since the conceptual data models with powerful data
abstraction contain clear and rich semantics and do not have data type limitation,
the information integration based on conceptual data models is more advantageous
than the information integration based on logical database models. For the inte-
gration of XML data, first XML document can be transformed into conceptual
models (dos Santos Mello and Heuser 2001), and then the transformed conceptual
models are integrated together. Moreover, from XML to relational database, some
conversion approaches were developed. Deutsch et al. (1998) made the first
attempts to store XML in relational databases, and used a data mining technique to
find a DTD whose support exceeds the pre-defined threshold and using the DTD,
converted XML documents to relational databases. How to store and query XML
using relational database techniques were investigated in Florescu and Kossmann
(1999), Shanmugasundaram et al. (1999), Dayen (2001), Bourret (1999). Lee and
Chu (2001) developed an approach, where the hidden semantic constraints in DTDs
are systematically found and translated into relational formats. Also, Lee et al.
(2003) discussed the schema conversion methods between XML and relational
models, and gave a brief overview of such techniques. As the mapping from XML
to object-oriented databases is concerned, the work described in Chung et al. (2001)
generates an object-oriented database schema from DTDs, stores it into the object-
oriented database and processes XML queries; it mainly concentrates on repre-
senting the semi-structural part of XML data by inheritance. Also, other efforts on
reengineering XML data into object-oriented databases can be found in Naser et al.
(2008, 2009).

However, in many practical applications, it is difficult to state all information
with one hundred percent certainty, and information imprecision and uncertainty
often exist in these applications. Therefore, in order to handle the imprecise and
uncertain information, fuzzy data modeling has been widely investigated in var-
ious database models, including fuzzy conceptual data models (fuzzy ER/EER
model, fuzzy UML model, and etc.) and fuzzy logical database models (fuzzy
relational database model, fuzzy object-oriented database model, and etc.) as
introduced in Chap. 2. Moreover, information fuzziness has also been investigated
in the context of e-commence (EC) and supply chain management (SCM)
(Petrovic et al. 1999; Yager 2000; Yager and Pasi 2001). It is shown that fuzzy set
theory is very useful in Web-based business intelligence. Unfortunately, although
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it is the current standard for data representation and exchange over the Web, XML
is not able to represent and process imprecise and uncertain data. In this case,
many approaches have been developed to introduce fuzziness in XML documents
as introduced in Chap. 3. But it can be found that the study of reengineering fuzzy
XML in fuzzy database models has received little attention. Fuzzy databases such
as fuzzy relational databases and fuzzy object-oriented databases can store a large
set of semantic information. Therefore, reengineering fuzzy XML into fuzzy
database models may satisfy the needs of storing fuzzy XML data in fuzzy dat-
abases. Hollander and van Keulen (2010) investigated how to store and query
probabilistic XML using a probabilistic relational database. Liu et al. (2013)
presented an approach for reengineering fuzzy XML into fuzzy object-oriented
database models. Ma and Yan (2007) investigated the formal mapping from the
fuzzy XML model to the fuzzy relational databases, where a fuzzy DTD tree is
created from the hierarchical XML DTD, and then the formal mapping from the
fuzzy DTD tree to the fuzzy relational schema is developed. Yan et al. (2009)
investigated the formal conversions from the fuzzy XML model to the fuzzy UML
model. In this chapter, we introduce the issue on reengineering fuzzy XML into
fuzzy database models, including fuzzy UML data model, fuzzy relational data-
base model, and fuzzy object-oriented database model.

6.2 Reengineering Fuzzy XML into Fuzzy
UML Data Models

XML lacks sufficient power in modeling real-world data and their complex inter-
relationships in semantics. So it is necessary to use other methods to describe data
paradigms and develop a true conceptual data model, and then transform this
model into an XML encoded format. Conceptual data models are able to capture
and represent rich and complex semantics at a high abstract level and can be used
for conceptual design of databases as well as XML. Therefore, in this section,
based on the fuzzy UML data model and the fuzzy XML DTD model, we present
the formal approach to mapping the fuzzy DTD model into the fuzzy UML data
model.

To transform the fuzzy XML DTD to the fuzzy UML data model, we need a
fuzzy DTD tree created from the hierarchical fuzzy XML DTD. We first construct
a DTD tree through parsing the given fuzzy DTD model and then map the DTD
tree into the fuzzy UML data model.

Generally, nodes in a DTD tree are element and attributes, in which each
element appears exactly once in the graph, while attributes appear as many time as
they appear in the DTD. The element nodes can be further classified into two
kinds, that is, leaf element nodes and nonleaf element nodes. Thus in the DTD tree,
we have three kinds of nodes, which are attribute nodes, leaf element nodes and
nonleaf element nodes. There exists a special nonleaf element node in the DTD
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tree, namely the root node. We also need to identify such attribute nodes that the
corresponding attributes are associated with ID #REQUIRED or IDREF
#REQUIRED in DTD. We call these attribute nodes key attribute nodes. In
addition, different to the classical DTD tree, the fuzzy DTD tree contains some
new attribute and element types, which are attribute Poss and element Val and Dist
as mentioned in Sect. 3.3.

A fuzzy DTD tree can be constructed when parsing the given fuzzy DTD
following the ensuring processing:

(a) Take the first nonleaf element r of the given hierarchical DTD and create a
DTD tree rooted at r. r’s children come from the attributes and elements
connecting with r. Here, the key attribute(s) should become the primary key
attribute(s) of the created DTD tree.

(b) Take the nonleaf element s of ’s child in the given hierarchical DTD and
create a DTD sub-tree rooted at s. We apply the processing given in (a) to treat
the s’s children.

(c) For other nonleaf elements in the given hierarchical DTD, apply the same
processing given in (b) until all nonleaf elements are transformed.

(d) For all the generated sub-trees, we stitch them together and construct the fuzzy
DTD tree.

According to Ma and Yan (2007), in the fuzzy DTD tree, in addition to (key)
attribute nodes, leaf element nodes, and nonleaf element nodes, there are three
special nodes, which are Poss attribute nodes, Val element nodes, and Dist element
nodes. The Dist element nodes created from Disk elements are used to indicate the
type of a possibility distribution, being disjunctive or conjunctive. In addition, each
Dist element node has a Val element node as its child node, and a nonleaf element
node as its parent node. Also, we can identify four kinds of Val element nodes as
follows:

(a) They do not have any child node except the Poss attribute nodes (type-1).

(b) They only have leaf element nodes as their child nodes except the Poss
attribute nodes (type-2).

(c) They only have nonleaf element nodes as their child nodes except the Poss
attribute nodes (type-3).

(d) They have leaf element nodes as well as nonleaf element nodes as their child
nodes except the Poss attribute nodes (type-4).

In the transformation of the fuzzy DTD tree to the fuzzy UML data model, the
Poss attribute nodes, Val element nodes and Dist element nodes in the fuzzy DTD
tree do not take part in composing the created fuzzy UML data model and only
determine the model of the created fuzzy UML data model.

We take the root node of the given fuzzy DTD tree and create a class. The
attributes of this class first come from the attribute nodes and leaf element nodes
connecting with the root node. Here, the key attribute node(s) should become the
primary key attribute(s) of the created class. Then it is needed to determine if the
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root node has any Val element nodes or Dist element nodes as its child nodes. If
yes, we need to further determine the type of each Val element node (we can
ignore Dist element nodes because each Dist element node must have a Val
element node as its child node only). Note that it is impossible that the Val element
nodes of fype-1 arise in the root node.

1. If it is the Val element node of type-2, all of the leaf element nodes connecting
with the Val element node become the attributes of the created class. An
additional attribute p is also added into the created class.

2. If it is the Val element node of type-3, and the Val element’s children except the
Poss attribute nodes, namely nonleaf element nodes have nonleaf element
nodes as their child, an additional attribute p is added into the created class, and
we leave the nonleaf element nodes for further treatment being discussed
below.

3. If it is the Val element node of type-4, we do the same thing as (2) for the leaf
element nodes and the nonleaf element nodes that only have leaf element nodes
as their child. And we leave the nonleaf element nodes that have nonleaf
element as their child for further treatment being discussed below.

For each nonleaf element node that has nonleaf element as their child con-
necting with the root node, we create a separate class. Its attributes come from the
attribute nodes and leaf element nodes connecting with this nonleaf element node,
and its primary key attribute(s) should come from the key attribute node(s). Fur-
thermore, it is needed to determine if this nonleaf element node has any Val
element nodes or Dist element nodes as its child nodes, and further identify the
type of these nodes, if any. We apply the processing given in (1)—(3) above to treat
the Val element nodes of type-2, type-3, and type-4. For the Val element nodes of
type-1, each of them should become an attribute of the class created from the
parent node of the current nonleaf element. Note that this attribute is one that may
take fuzzy values. For other nonleaf element nodes in the fuzzy DTD tree, we
continue to apply the same processing above until all nonleaf element nodes are
transformed.

Note that, for some elements which are not Dist, Val and leaf element, we may
selectively use separate classes, in which the key attributes of these elements
become the primary attributes of the separate classes. Considering easy mainte-
nance of data in the entity type, we choose a class for one nonleaf element that
only has leaf element nodes as their child.

Now we use an example to illustrate the transformation of the fuzzy XML DTD
to the fuzzy UML data model. Figure 6.1 shows a brief fuzzy DTD tree created
basically from the hierarchical fuzzy XML DTD given in Chap. 3. In this fuzzy
DTD tree, the Dist element nodes created from Dist elements are used to indicate
the type of a possibility distribution, being disjunctive or conjunctive. In addition,
each Dist element node has a Val element node as its child node, and a nonleaf
element node as its parent node.

During the transformation, we first create a class “university”, in which Uname
is the primary key attribute of the class, and the leaf element node address
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Fig. 6.1 A simple fuzzy DTD tree

connecting with the university is a single attribute of the class. For Val element,
according to (2) above, we create an additional attribute p in the class. For the
nonleaf element “department”, we find that it has two children employee and
student, and both of them are nonleaf element. Then we create three classes
“department”, “employee” and “student”. In particular, class “employee” con-
tains five attributes EID, ename, position, office and an additional attribute u, and
class “student” contains four attributes SID, sname, sex and age, in which attribute
age is one that may take fuzzy values.

After transformation, the fuzzy DTD tree in Fig. 6.1 is mapped into the fuzzy
UML data model shown in Fig. 6.2.
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6.3 Reengineering Fuzzy XML into Fuzzy Relational
Database Models

To reengineer fuzzy XML into fuzzy relational database model, Ma and Yan
(2007) investigated the formal mapping from the fuzzy XML model to the fuzzy
relational database. Being similar to the mapping from the fuzzy XML model to
the fuzzy UML data model as introduced in Sect. 6.2, when reengineer fuzzy XML
into fuzzy relational database model, a fuzzy DTD tree is also needed to be created
from the hierarchical XML DTD, and then the formal mapping from the fuzzy
DTD tree to the fuzzy relational schema is developed.

6.3.1 DTD Tree and Mapping to the Relational
Database Schema

The hierarchical XML and the flat relational data models are not fully compliant so
the transformation is not a straightforward task. As introduced in Sect. 6.2, gen-
erally, a DTD tree can be created from the hierarchical XML DTD. Its nodes are
elements and attributes, in which each element appears exactly once in the graph,
while attributes appear as many times as they appear in the DTD. The element
nodes can be further classified into two kinds: leaf element nodes and nonleaf
element nodes. So in the DTD tree, we have three kinds of nodes, which are
attribute nodes, leaf element nodes, and nonleaf element nodes. Note that there
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exists a special nonleaf element node in the DTD tree, i.e., the root node. We also
need to identify such attribute nodes that the corresponding attributes are associ-
ated with ID #REQUIRED or IDREF #REQUIRED in DTD. We call these
attribute nodes key attribute nodes.

A DTD tree can be constructed when parsing the given DTD (Shanmugasundaram
et al. 1999). Figure 6.3 shows a simple DTD tree example.

The created DTD tree is then mapped into the relational schema following the
ensuing processing:

(a) Take the root node of the given DTD tree and create a relational table. Its
attributes come from the attribute nodes and leaf element nodes connecting
with the root node. Here the key attribute node(s) should become the primary
key attribute(s) of the created table.

(b) For each nonleaf element node connecting with the root node, create a separate
relational table. Its attributes come from the attribute nodes and leaf element
nodes connecting with this nonleaf element node, and its primary key attri-
bute(s) will come from the key attribute node(s).

(c) For other nonleaf element nodes in the DTD tree, apply the same processing
given in (b) until all nonleaf element nodes are transformed.

Note that there may be cycles in DTD and element declarations that are ref-
erenced from more than one element declaration as element contents. Then we

university

~ employee @ student ~—

O attribute node @ key attribute node
Q leaf element node nonleaf element node

Fig. 6.3 A simple DTD tree

0

0
-
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university employee

UName address EID ename position office
department student

DName location SID sname sex age

Fig. 6.4 The relational schemas created by the DTD tree in Fig. 6.3

need to link a created relational table to its parent relational table through the
parent table’s primary key.

The DTD tree in Fig. 6.3 is mapped into the relational schemas shown in
Fig. 6.4.

6.3.2 Mapping the Fuzzy XML Model into the Fuzzy
Relational Database Model

Generally speaking, the fuzzy XML DTD presented in Chap. 3 can be transformed
into the fuzzy relational database schema using a similar processing as given
above under a classical environment. That is, we first construct a DTD tree through
parsing the given fuzzy DTD, and then map the DTD tree into the fuzzy relational
database schema. However, the DTD tree here, called the fuzzy DTD tree, is
clearly different from the classical DTD tree above because the fuzzy DTD con-
tains new attribute and element types, which are attribute Poss and elements Val
and Dist. As a result, the transformation of the fuzzy DTD tree to the fuzzy
relational database schema is also different from the transformation of the classical
DTD tree to the classical relational database schema.

In the fuzzy DTD tree, in addition to (key) attribute nodes, leaf element nodes,
and nonleaf element nodes, there are three special nodes, which are Poss attribute
nodes, Val element nodes, and Dist element nodes. Figure 6.1 shows a simple
fuzzy DTD tree that basically comes from the fuzzy DTD given in Chap. 3. In this
fuzzy DTD tree, the Dist element nodes created from Disk elements are used to
indicate the type of a possibility distribution, being disjunctive or conjunctive. In
addition, each Dist element node has a Val element node as its child node, and a
nonleaf element node as its parent node.

Here, we briefly recall the four kinds of Val element nodes in Fig. 6.1 as
mentioned in Sect. 6.2:

(a) They do not have any child node except the Poss attribute nodes (type-1).
(b) They only have leaf element nodes as their child nodes except the Poss
attribute nodes (type-2).
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(c) They only have nonleaf element nodes as their child nodes except the Poss
attribute nodes (type-3).

(d) They have leaf element nodes as well as nonleaf element nodes as their child
nodes except the Poss attribute nodes (type-4).

In the following, we describe the transformation of the fuzzy DTD tree into the
fuzzy relational database schema. Unlike the transformation of the classical DTD
tree to the relational database schema, in the transformation of the fuzzy DTD tree
to the fuzzy relational model, the Poss attribute nodes, Val element nodes, and Dist
element nodes in the fuzzy DTD tree do not take part in composing the created
relational schema and only determine the model of the created fuzzy relational
databases. Being similar to the process in Sect. 6.2, we have the following process:

(a) Take the root node of the given fuzzy DTD tree and create a relational table.
Its attributes first come from the attribute nodes and leaf element nodes con-
necting with the root node. Here, the key attribute node(s) should become the
primary key attribute(s) of the created table. Then determine if the root node
has any Val element nodes or Dist element nodes as its child nodes. If yes, we
need to further determine the type of each Val element node (we also can
ignore Dist element nodes because each Dist element node must have a Val
element node as its child node only).

(1) If it is the Val element node of fype-3, only an additional attribute is
added into the created relational table, representing the possibility degree
of the tuples.

(i) If it is the Val element node of rype-2, all of the leaf element nodes
connecting with the Val element node become the attributes of the
created relational table. An additional attribute is also added into the
created relational table, representing the possibility degree of the tuples.

(i) If it is the Val element node of type-4, we leave the nonleaf element
nodes for further treatment in (b) and do the same thing as (ii) for the leaf
element nodes.

It is impossible that the Val element nodes of fype-I arise in the root node.

(b) For each nonleaf element node connecting with the root node, create a separate
relational table. Its attributes come from the attribute nodes and leaf element
nodes connecting with this nonleaf element node, and its primary key attri-
bute(s) will come from the key attribute node(s). Furthermore, determine if this
nonleaf element node has any Val element nodes or Dist element nodes as its
child nodes, and identify the type of these nodes, if any. We still apply the
processing given in (i)—(iii) of (a) to treat the Val element nodes of type-2, type-3
and type-4. For the Val element nodes of type-1, each of them should become an
attribute of another relational table created from the parent node of the current
nonleaf element. Note that this attribute is one that may take fuzzy values.

(c) For other nonleaf element nodes in the fuzzy DTD tree, apply the same pro-
cessing given in (b) until all nonleaf element nodes are transformed.



6.3 Reengineering Fuzzy XML into Fuzzy Relational Database Models 163

university employee
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Fig. 6.5 The fuzzy relational schemas created by the fuzzy DTD tree in Fig. 6.1

Note that we could alternatively use a single relational table for some elements
which are not the Dist, Val, and leaf ones. In this case, all key attribute nodes from
these elements should become the primary key attributes of the single table.
Considering the high independence and easy maintenance of data in the table as
well as the normalization of relational schema, we generally choose a relational
table for one nonleaf element.

The fuzzy DTD tree in Fig. 6.1 is mapped into the fuzzy relational schemas
shown in Fig. 6.5, in which attribute “age” is one that may take fuzzy values.

6.4 Reengineering Fuzzy XML into Fuzzy
Object-Oriented Database Models

The classical relational database model and its fuzzy extension do not satisfy the
need of modeling complex objects with imprecision and uncertainty. In order to
model uncertain data and complex-valued attributes as well as complex relation-
ships among objects, current efforts have concentrated on the fuzzy object-oriented
databases as introduced in Chap. 2. Therefore, reengineering fuzzy XML into
fuzzy object-oriented database model may satisfy the needs of storing fuzzy XML
data in fuzzy databases and help to the interoperability between fuzzy object-
oriented database model and fuzzy XML. Based on the similar idea in Sects. 6.2
and 6.3, in the following, we introduce how to reengineer fuzzy XML into fuzzy
object-oriented database model, and provide a set of rules for mapping fuzzy XML
into fuzzy object-oriented database model.

As mentioned in Sects. 6.2 and 6.3, a fuzzy XML DTD can be transformed into
a fuzzy DTD tree. In the fuzzy DTD tree, in addition to (key) attribute nodes, leaf
element nodes, and nonleaf element nodes, there are three special nodes, which are
Poss, Val, and Dist. The Dist element nodes created from Dist elements are used to
indicate the type of a possibility distribution, being disjunctive or conjunctive. In
addition, each Dist element node has a Val element node as its child node, and a
nonleaf element node as its parent node. In the transformation of the fuzzy DTD
tree to the fuzzy object-oriented database model, the Poss attribute nodes, Val
element nodes and Dist element nodes in the fuzzy DTD tree do not take part in
composing the mapped fuzzy object-oriented database model and only determine
the model of the created fuzzy object-oriented database model. The following
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mapping rules could reengineer fuzzy XML into fuzzy object-oriented database
model. Given a fuzzy DTD tree, we begin from the root node of the given fuzzy
DTD tree, and then recursively deal with the rest nodes.

Rule 1: For the root node r, we create a class r such that:

r= [ID7 FAyy, .. ->FAleaf]

Here ID is the unique object identity of the class » from the key attribute node
of the root node in the fuzzy DTD tree; FA,, is the attribute of the class » from the
attribute nodes; and FA,.,r is also the attribute of the class r from the leaf element
nodes connecting with the root node.

Then we further check if the root node r has any Val element nodes or Dist
element nodes as its child nodes. If yes, the later Rules 3—6 will be used.

Rule 2: For each nonleaf element node N connecting with the root node, we
create a class N such that:

N = [IDvFAatt; B3] FAleaf]

Here ID is the unique object identity of the class N from the key attribute node
of the nonleaf element node; FA,; and FA,.,s are the attributes of the class N from
the attribute nodes and the leaf element nodes connecting with the nonleaf element
node.

Specially, if the nonleaf element node only includes a Dist element node, and
the Dist element node only includes a Val element node which does not have any
child node except the Poss attribute node, then we do not create the class N for this
nonleaf element node as being introduced in the following Rule 3.

Also, we need to check if this nonleaf element node has any Val element nodes
or Dist element nodes as its child nodes, and then apply the following rules to these
nodes. Here, being similar to the approaches introduced in Sects. 6.2 and 6.3, we
also ignore Dist element nodes because each Dist element node has a Val element
node as its child node only.

Rule 3: For each Val element node which does not have any child node except
the Poss attribute nodes, the nonleaf element node connecting with the Val element
node via a Dist element node becomes a fuzzy attribute, which is the attribute of
the parent node of the nonleaf element node, and a keyword FUZZY followed by
the attribute denotes that it is a fuzzy attribute.

For example (the example is a fragment of the fuzzy DTD D, in Fig. 3.2 in
Chap. 3):

<!ELEMENT student (age?)>

<!ATTLIST student SID IDREF #REQUIRED>
<!ELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (disjunctive)>
<!ELEMENT Val (#PCDATA)>

<!ATTLIST Val Poss CDATA “1.0”>
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In the example, we note that the nonleaf element node age connects with the
Val element node via a Dist element node. According to Rule 3, the fuzzy DTD is
mapped into the class in a fuzzy object-oriented database model as follows:

Student = [SID, FUZZY age],

Here student is a created class, SID is its unique object identity, and FUZZY age
is a fuzzy attribute of the parent node student of the nonleaf element node age and
it may take fuzzy value which represents possibility distributions.

Rule 4: For each Val element node which only has leaf element nodes as its
child nodes except the Poss attribute nodes, all of the leaf element nodes con-
necting with the Val element node become the attributes of the created class. An
additional attribute p is added into the created class.

For example:

<!ELEMENT employee (Dist)>
<!ATTLIST employee FID IDREF #REQUIRED>

<!ELEMENT Val (fname?, position?, office?, course?)>
<!ATTLIST Val Poss CDATA “1.0”>

<!ELEMENT fname (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT office #PCDATA)>

<!ELEMENT course (#PCDATA)>

In the fuzzy DTD, the Val element node has leaf element nodes fname, position,
office, course as its child nodes, according to Rule 4, the fuzzy DTD is mapped into
the class in a fuzzy object-oriented database model as follows:

employee = [FID, fname, position, office, course, u],

Here employee is a created class, FID is its unique object identity, fname,
position, office, course are its attributes, and u € [0, 1] denotes that a class instance
may belong to the class with a membership degree of [0, 1].

Rule 5: For each Val element node which only has nonleaf element nodes as its
child nodes except the Poss attribute nodes, an additional attribute u is added into
the created class.

For example:
<!ELEMENT university (Val+)>

<!ATTLIST university UName IDREF #REQUIRED>
<!ELEMENT Val (department®)>

<!ATTLIST Val Poss CDATA “1.0”>

In the fuzzy DTD, the Val element node has nonleaf element node department
as its child node, according to Rule 5, the fuzzy DTD is mapped into the class in a
fuzzy object-oriented database model as follows:
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university = [UName, u],

Here university is a created class, UName is its unique object identity attribute,
and u € [0, 1] denotes that a class instance may belong to the class with a
membership degree of [0, 1].

Rule 6: For each Val element node which has leaf element nodes as well as
nonleaf element nodes as their child nodes except the Poss attribute nodes, by
jointly using the above rules, the nonleaf element nodes can be done as Rule 2 and
the leaf element nodes can be handled as Rules 1-5.

Based on the rules above, each element node in the fuzzy DTD can be handled
until all element nodes are transformed, and finally the fuzzy XML is reengineered
into a fuzzy object-oriented database model.

6.5 Summary

With the prompt development of the Internet, the requirement of managing
information based on the Web has attracted much attention both from academia
and industry. XML is widely regarded as the next step in the evolution of the
World Wide Web, and has been the de-facto standard. This creates a new set of
data management requirements involving XML, such as the need to construct and
store XML documents. On the other hand, fuzzy sets and possibility theory have
been extensively applied to deal with information imprecision and uncertainty in
the practical applications, and reengineering fuzzy XML into fuzzy database
models is receiving more attention for managing fuzzy XML data. In this chapter,
we proposed some approaches for reengineering fuzzy XML into fuzzy database
models, including fuzzy UML data models, fuzzy relational database models, and
fuzzy object-oriented database models, respectively.

The two-way mappings between the fuzzy database models to the fuzzy XML
models pay an important role for establishing the overall management system of
fuzzy XML data. Moreover, for processing fuzzy XML data intelligently, rea-
soning on the fuzzy XML data would help to check whether a fuzzy XML doc-
ument conforms to a given document structure or two fuzzy XML documents are
compatible, and also may improve the efficiency of query processing as will be
introduced in the following chapter.
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Chapter 7
Fuzzy XML Reasoning

Abstract XML has been the de-facto standard of information representation and
exchange over the web. However, the real world is filled with imprecision and
uncertainty. This creates a new set of data management requirements involving
XML with imprecision and uncertainty, such as the need to reason on and query
fuzzy XML documents and structures. Reasoning on XML with imprecision and
uncertainty would help to check whether a fuzzy XML document conforms to a
given document structure or two fuzzy XML documents are compatible, improve
the precision and efficiency of query processing, etc. In particular, among several
ways to approach knowledge representation and reasoning, Description Logics and
ontologies are gaining privileged places in recent years. Therefore, in this chapter,
we introduce how to reason on fuzzy XML with the knowledge representation
formalisms fuzzy Description Logics and fuzzy ontologies.

7.1 Introduction

With the wide utilization of the Web and the availability of huge amounts of
electronic data, eXtensible Markup Language (XML) has been the de-facto stan-
dard of information representation and exchange over the web (Bray et al. 1998).
With the broad application of XML in real-world domains, this creates data
management requirements involving XML, such as the need to represent, reason,
integrate, and query XML documents and document structures. To this end, some
work has investigated how to represent and reason on XML. The consistency/
conformance problem of XML (i.e., whether an XML document conforms to a
given document structure DTD) was studied in Arenas et al. (2002). Reasoning
about equivalence in XML DTDs was introduced in Wood (1995), i.e., checking
whether two DTDs define the same sets of XML document instances. The other
efforts on how to represent and reason on XML have been carried out in Buneman
et al. (2003), Baader et al. (2003), Wu et al. (2008), Cautis et al. (2007), Libkin
and Sirangelo (2008), Toman and Weddell (2005), Calvanese et al. (1999).
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As mentioned in these researches, representing and reasoning on XML would help
in several tasks related to XML, such as designing and integrating XML docu-
ments, checking reasoning tasks of XML, and providing query optimization.

In particular, among several ways to approach knowledge representation and
reasoning, Description Logics and ontologies are gaining privileged places in
recent years. Description Logics (DLs, for short), which are a family of knowledge
representation languages that can be used to represent the knowledge of a domain
in a structured and formally well-understood way, have been applied to various
fields such as the Semantic Web, software engineering, and databases (Baader
et al. 2003). Ontologies are a formal and explicit specification of a shared con-
ceptualization and can enable semantic interoperability, and their logical foun-
dation are DLs. Recently, based on the high expressive power and effective
reasoning service, the DLs and ontologies have been extensively used to represent
and reason on various data sources (e.g., ER model, UML model, etc.) (Baader
et al. 2003; Borgida 1995; Staab and Studer 2004).

Also, it is not surprising that DLs and ontolgoies are particularly adept at
representing and reasoning on XML. Reasoning on XML (e.g., conformance and
equivalence) is a complex and time-consuming task by hand. Observe that the
known algorithms for checking equivalence of two DTDs are doubly exponential
time (Wood 1995). Therefore, if XML can be translated into DL knowledge bases
or ontologies, the reasoning problems of XML may be reasoned through the
reasoning mechanism of DLs and ontologies. To this end, a DL called DLFD,,
was proposed in Toman and Weddell (2005) to reason on structural equality in
XML. In (Wu et al. 2008), a DL approach to represent and reason on XML was
developed. Moreover, how to establish the relationships between XML and DLs/
ontologies have also been investigated in Baader et al. (2003), Calvanese et al.
(1998, 1999), Euzenat (2001), Drabent and Wilk (2006), Zhang et al. (2011a).

However, imprecise and uncertain information commonly exists in many real-
world applications. In particular, the representation of fuzzy information with
fuzzy set theory has been addressed several decades ago by Zadeh (1965). Over
the years, the fuzzy set theory has been extensively introduced into databases,
information systems, the Semantic Web, and so on (Bosc et al. 2005; Lukasiewicz
and Straccia 2008; Galindo 2008). Also, the problems that emerge are how to
handle fuzzy information within XML, and how to represent these non-crisp data
within XML has received much attention in recent years. Regarding modeling
imprecise and uncertain information in XML, lots of works have been done in
modeling and querying imperfect XML data as have been introduced in the pre-
vious chapters. Accordingly, this also creates a new set of data management
requirements involving XML with imprecision and uncertainty, such as the need
to reason on and query fuzzy XML documents and document structures. Rea-
soning on XML with imprecision and uncertainty would help to check some
reasoning tasks (e.g., whether a fuzzy XML document conforms a given document
structure or two fuzzy XML documents are compatible), integrate fuzzy XML
documents, improve the precision and efficiency of query processing, etc. Fortu-
nately, currently, in order that DLs and ontologies can directly deal with imprecise
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and uncertain knowledge, a variety of fuzzy DLs and fuzzy ontologies have been
proposed. The first effort on fuzzy DL was presented by Yen (1991). In his
extension, explicit membership functions over a domain were used as well as
membership manipulators , such as “very”, in order to alter membership functions
and define new concepts from already defined ones. A later approach was proposed
in Tresp and Molitor (1998), where membership manipulators also appear.
Typically, a fuzzy extension of the ALC language was considered in Straccia
(1998), and the reasoning algorithm based on tableaux calculus was also provided
in Straccia (2001). From them on, the approaches towards more expressive fuzzy
DLs such as fuzzy ALCQ (Sanchez and Tettamanzi 2006), fuzzy ALCIQ (Stoilos
et al. 2008) were presented. Furthermore, by extending the fuzzy ALC with
transitive role axioms (S), inverse roles (/), role hierarchies (H) and number
restrictions (N), Stoilos presented the fuzzy DL f-SHIN (Stoilos et al. 2005). A
fuzzy extension of the corresponding description logic of the ontology description
language OWL DL, called fuzzy SHOIN(D), was proposed in (Straccia 2005). A
more expressive fuzzy DL called f-SROIQ(D) corresponding to a fuzzy extension
of the OWL2 (an extension of OWL) was presented in (Bobillo et al. 2012). For a
comprehensive review of fuzzy DLs, please refer to Lukasiewicz and Straccia
(2008), Ma et al. (2013). Also, in order to represent and reason on fuzzy infor-
mation in ontologies, some approaches have been developed to characterize or
define fuzzy ontologies. Calegari and Ciucci (2007) integrated fuzzy logic in
ontologies and developed a plug-in for the KAON Project in order to introduce
fuzziness in ontologies. Lee et al. (2005) presented a four-layered fuzzy ontology
and applied it to news summarization. Sanchez and Yamanoi (2006) introduced a
fuzzy ontology structure from the aspects of lexicon and knowledge base. Lam
(2006) proposed a fuzzy ontology map by extending the crisp ontology with the
fuzzy theory and graph theory. Also, some efforts were made to construct fuzzy
ontologies from various sources such as fuzzy narrower terms, fuzzy relations, and
fuzzy database models as mentioned in Zhang et al. (2013). Moreover, fuzzy
ontologies are applied to various application domains such as the Semantic Web
(one of the most important applications), information retrieval, data mining, and
context management (Bobillo 2008).

With the wide investigation and development of fuzzy XML, a significant
interest developed regarding the problem of describing fuzzy XML with expres-
sive knowledge representation techniques in recent years, so that some fuzzy XML
issues such as reasoning and querying may be handled intelligently. After repre-
senting fuzzy XML in fuzzy DLs/ontologies, it is now possible to use their
potential reasoning mechanism to reason on the fuzzy XML models. For instance,
the reasoning tasks of fuzzy XML models (e.g., whether a fuzzy XML document
conforms to a given document structure or whether a document structure is con-
tained in another document structure) may be detected automatically through the
reasoning mechanism of fuzzy DLs/ontologies instead of checking them by hand.
Also, the correspondences may contribute to some tasks related to fuzzy XML
models, such as integrating fuzzy XML documents and performing several opti-
mization steps in answering queries over document bases. Therefore, in this
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chapter, we focus on how to reason on fuzzy XML with the knowledge repre-
sentation formalisms fuzzy DLs and fuzzy ontologies, we transform fuzzy XML
into fuzzy DL and fuzzy ontology, respectively, and then reason on fuzzy XML
with the transformed formalisms.

7.2 Fuzzy XML Reasoning with Fuzzy
Description Logic

For reasoning on fuzzy XML with fuzzy DL, a precondition here is that we first
should represent fuzzy XML with fuzzy DL. Therefore, we need a fuzzy DL
which has the good expressive power and reasoning ability for representing and
reasoning on fuzzy XML. Note that the existing fuzzy DLs (e.g., f~ALC, f-SHIN,
and f~ALCIQ as mentioned in Sect. 7.1), which have the limited expressive
power, cannot account for the essential features of fuzzy XML models. In Zhang
et al. (2011b), a fuzzy DL called f~ALCQ,.,., is developed for the specific
purposes of representing and reasoning on fuzzy XML models, where fuzzy
XML models are translated into f~ALCQ,,t,, knowledge bases. Based on the
translated f~ALCQ,,z.,., knowledge bases, how to reason on fuzzy XML models
(e.g., conformance, inclusion, equivalence, and disjointness) through the rea-
soning mechanism of f~ALCQ,,.,., is investigated. Also it is briefly discussed
that how to support query processing over a document base more efficiently
based on the translation and reasoning results above. In the following, we first
introduce the fuzzy DL f~ALCQ,,y. .., Which is then used to represent and reason
on fuzzy XML.

7.2.1 Fuzzy Description Logic f-ALCQ,f . eq

In the following, the syntax, semantics, knowledge base, and reasoning algorithm
are introduced for f~ALCQ,, . c,-

7.2.1.1 The Syntax and Semantics of f-ALCQf.reg

Before introducing the fuzzy DL f~ALCQ,,. e, We first briefly recall and introduce
some basic notions commonly occurring in DLs. In DLs, elementary descriptions
are atomic concepts and atomic roles (also called concept names and role names),
and complex descriptions can be built from them inductively with concept con-
structors and role constructors. The basic fuzzy DL is called f~ALC (Straccia
1998), and many fuzzy DLs are developed based on the further extension of f~ALC.

Let Ny, Nc, and Ny be three disjoint sets: Ny is a set of individual names, N¢ is a
set of fuzzy concept names, and Ny is a set of fuzzy role names. f~ALC-concepts
are defined as follows (where A € N, R € NR):
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C, D - T | (universal concept)

L1 (bottom concept)

Al (atomic concept)

-C | (concept negation)

CnbDI (intersection)

cCubDl (union)

dR.C | (full existential quantification)
VR.C (value restriction)

The semantics of f-ALC is defined by a fuzzy interpretation FI = <A o >
where A" is a nonempty set and ¢/’ is a function which maps every d € N to an
element &7 € AT, maps every A € Nc into a function AL AT [0, 1], and maps
every R € Ny into a function R”": A" x A" - [0, 1]. Furthermore, for any f-ALC-
concepts Cand D, R € Ng, and d, d' € AT we have:

TH(d) =1
1"(d) =0
(=0)"(d) =1 - C"(a)
(cnD)™(d) = min{C"(d),D"(d)}
(CuD)™(d) = max{C"(d), D" (d)}
(VR.C)"(d) = inf,pmr{max{1 — R"(d,d"), C""(d")} }
(3R.C)"™(d) = supycpr {min{R™(d,d'),C""(d')}}.

With the introduction of fuzzy sets into the classical ALC, the form of the
knowledge base is changed accordingly. An f~ALC knowledge base K is composed
of a TBox T and an ABox A:

1. A TBox T is a finite set of terminology axioms of the form C [C D or
C = D. An interpretation FI satisfies C [ D iff for any d € A", C™(d) <
D(d), and similarly for C = D. FI is a model of TBox T iff FI satisfies all
axioms in T.

2. An ABox A is a finite set of assertions of the form <o <t n>, Here <t € {>, >, <,
<}, n € [0, 1], « is either of the form d: C or (d;, d»): R. Especially, in order to
give a uniform format of the ABox, we define: when n = 1, the form <o >1 >
is equivalent to <o = 1 >. Concretely speaking, <d:C>1 > means that
d is determinately an individual of C; <(dy,d,) : R>1 > means that (d;, d>)
determinately has the relationship R. An interpretation FI satisfies <d: C >< n>
iff C™'(d"™) >« n and satisfies <(d,, do): R < n> iff R™(a}’, d5") < n iff R (df",
d’;’) > n. FI is a model of ABox A iff FI satisfies all assertions in A.

A fuzzy interpretation F1 satisfies an f~ALC knowledge base K if it satisfies all
axioms and assertions in K.
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Table 7.1 The syntax of

. Construct Syntax Symbol
fuzzy DL f~ALCQ,feq

Top concept T ALC

Bottom concept L

Atomic concept A

Concept negation -C

Conjunction CnbD

Value restriction VR.C

Exists restriction dR.C

Disjunction cubD

Qualified number restrictions >n R.C Q
<n R.C

Well-founded Wf (R) wf

Atomic role P reg

Role union R, UR,

Role composition R; - R,

Refl. trans. closure R*

Transitive closure R*

Identity id (C)

Based on the fuzzy DL f-ALC, the syntax of f~ALCQ,yz,., is shown in
Table 7.1, the concepts and roles in f~FALCQ,.,., are formed according to the
syntax in Table 7.1. In Table 7.1:

e A denotes an atomic concept, P an atomic role, C, D arbitrary concept
expressions, R an arbitrary role expression, n a non-negative integer.

e The concept construct wf (R) denotes the object that is the initial point of a
sequence of roles.

e The role identity id (C) allows one to build a role that connects each instance of
C to itself.

The semantics of f~ALCQ,r., are provided by a fuzzy interpretation
FI = (A", o), where A™ is a set of objects and o™ is a fuzzy interpretation
function, which maps:

e An individual d to an element d'* € AT,

e A concept C to a membership function ct: AP [0, 1],

e A role R to a membership function R™: AT x AT S (0, 17,
e The semantics is depicted as follows (¢;, d;, x, y, z € AFI):
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(VR.C)™(d) = inf {max{l—R”(d’d,)Cn( >}}

deA’
(3R.C)™(d) = sup,_ym {min{RF’ (d, d’) , CF’( }}
(>nR.C)"(d) = sup AL {min{R7(d,c;),C"(c;)}}
1, scn €A
(<nR.O)™M(d) = inf vt {max{1 - R"(d,c;),C"(c))} }

1 ifVdy,d>, ..., (ad infinitum) 3 i > 0:RF!(d;, d;, ) <

0 else

W (R (o) = {

id(C)"'(d,d) = C™(d)
(R*)FI (RFI) — UnZO(RFI)n
(RN = (RoR)™
(R URy)™ (x,y) = maX{Rfl<x»)’)aR§I(X7Y)}
(Ri o R2)"™ (x,2) = supyey {min{R{" (x,y), R} (v.2)} }

The concept construct wf (R) is interpreted as those objects that are the initial
point of finite R-chains, and membership degree f € (0, 1], which is a threshold
value given according to the need of practical applications, is used to impose
finiteness and acyclicity of all chains of objects. For example, if f = 0.01, then R™
(d;, d;.1) < 0.01 denotes that there is no individual d;; which is a filler of the role
R for d, i.e., d; is the last point of the R-chain. Note that one can eliminate “+”
from a role expression by replacing any occurrence of R* with R o R*.

7.2.1.2 The Knowledge Base of f-ALCQt.rcq

An f-ALCQ,,z.,. Knowledge Base (f-ALCQ,_,KB) consists of the TBox and
the ABox. The Tbox introduces terminology, while the Abox contains assertions
about the individuals.

A TBox T is a finite set of fuzzy axioms: inclusions C [_ D or equalities
C = D, where C and D are concepts. The semantics are interpreted as follows:

e CL D, iff Vd € A™, CP(d™) < D' (d™);
e C =D, iff vd € A™, C*(d") = D"'(d™).
A fuzzy interpretation FI satisfies an f~ALCQ,,.,., TBox T iff it satisfies all

fuzzy concept axioms in T; in this case, we say that F7 is a model of T. Moreover,
a Tbox T is called simple (Straccia 2001; Stoilos et al. 2005) if it neither includes
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cyclic nor general concept inclusions, i.e., axioms are the form A [ CorA = C,
where A is a concept name that is never defined by itself either directly or indi-
rectly, and A appears at most once at the left hand side.

An ABox A is a finite set of fuzzy assertions: concept assertions <C(d) > n>,
and role assertions <R(d;, d,) ><1 n>, where < € {>, >, <, <}, n € [0, 1]. The
semantics are interpreted as follows:

e A fuzzy interpretation FI satisfies <C(d) >< n>, iff C*(d™) > n;
e A fuzzy interpretation FI satisfies <R(d;, d,) b< n>, iff R, d5Y < .

A fuzzy interpretation FI satisfies an f~ALCQ,,.,., ABox A iff it satisfies all
fuzzy assertions in A; in this case, we say that FI is a model of A.

An f~ALCQ,z,., knowledge base X is a pair <T, A >, a fuzzy interpretation
FI satisfies X if FT satisfies all axioms and assertions in X; in this case, FI is called
a model of Z.

7.2.1.3 Reasoning of f-ALCQy.reg

In the following, we first introduce the basic reasoning problems of f~ALCQ,,z .-
Then, we give a reasoning algorithm.

As in the case of fuzzy DLs, the basic tasks we consider when reasoning over an
FALCQ,, 1. knowledge base X = <7, A > are as follows:

o Concept satisfiability: A fuzzy concept C is satisfiable w.r.t. a TBox 7 iff there
exists some model FI of 7 for which there is some d € A™ such that C™'
d™ =n, ne©,1].

e Concept subsumption: A fuzzy concept C is subsumed by a concept D (written
as C C D) w.r.t. aTBox 7 if for every model FI of 7 it holds that, Vd € AFL cH!
@ < D™,

e ABox consistency: An f~ALCQ,,.,., ABox A is consistent w.r.t. a TBox T if
there is a model FI of 7 which is also a model of A.

e Entailment. An f-ALCQ,,. .., knowledge base X entails a fuzzy concept axiom
or a fuzzy assertion ¥, written X F ¥, iff all models of X satisfy V.

In particular, in the presence of only simple TBoxes, all the problems above can
be reduced to ABox consistency w.r.t. an empty TBox (Straccia 2001; Stoilos et al.
2005).

On this basis, the following briefly gives a reasoning algorithm for checking the
f-ALCQ,,., ABox consistency. We first introduce a concept, i.e., conjugated
pairs of fuzzy assertions.

Let i be a fuzzy assertion, with ¢ indicates a conjugate of y (if there exists
one). The conjugated pairs contain 4 forms:
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{<a>n>, <o<m >, n>m},
{<oe>n>, <a<m >, n>m},
{<o>n>, <a<m>, n>m},
{<a>n>, <o<m >, n>m},

where o denotes the assertion form C(d) or R(d,, d»), n, m € [0, 1].

Algorithm The ABox consistency reasoning algorithm.

Input: An f-ALCQ,_,., ABox A

Output: Boolean (true/false).

Suppose: (1) Assuming all concepts C occurring in A to be in negation normal
form (NNF) (Straccia 2001; Stoilos et al. 2005), i.e., negations occur in front of
concept names only; (2) The symbols >< denotes >, >, <, <; > denotes >, >; <
denotes <, <; furthermore, we use symbols ><,, &>, and <, to denote their reflec-
tions, for example the reflection of > is < and that of > is <.

1. Applying the following transformation rules to the A until no more rules apply:

o —pa: (2C)(a)pane A Cla)r<, (1—n) g A— A= AU{C(a) <,
(I=n)k

o> : (CMD)(a)pn € A, Cla)pn & A, Da)pn ¢ A — A= AU{C(a)
>n, D(a) >n};

e a: (CMD)(a)<ne A, Cla)ang A,D(a)<ng A— A= AU{C'},C €
{C(a) <n,D(a) <n};

o Lin: (CUD)(a)pne A, Cla)png A, Da)pn¢g A— A=AU{C},C €
{C(@)>n, D(a) > n};

e Lia: (CuD)(a)ane A,C(a)an g A,D(a)<n¢g A— A=AU{C(a)<n,
D(a) <an};

e V> : VRC(a)bne A, 3b. Yy € A and C(b)>n ¢ A, whereyy = R(a,b)>,
(I1-n)— A=AU{C(b)>n};

e Va:VRC(a)<ne A -3b.R(a,b)<, (1 —n) € AandC(b)<ne A — A
= AU{R(a,b) <, (1 —n),C(b) <n};

e 3p:3R.C(a)>n € A, —3b.R(a,b)>n € AandC(b)pne A — A= AU
{R(a,b)>n,C(b) >n};

e Jq:3dR.C(a)<n e A,Fb.yy* € Aand C(b) an & A, wherey = R(a,b) <n
—- A= AU{C(b) an};

o whi : wfi(R)(bo) = 1 € A, =3by,- by, byy1(n>1).R(bo, br) > €
A,...,R(bnfl,bn)DﬁE.A, R(bn,bn+1)<l3€./4—>A:AU{R(bo,bl)
>f,...,R(by_1,by) > f};

o <p: SkR.C(Cl)Dn S A,Ebl,...,karl(bl #b;... #karl)-lle‘ €A, ...,lﬁ;;Jrl
eACh)png A, .. ,Clbyr)png A, and R(a,b)>, (1 —n) € A,..,R
(a,bes1) >y (1 —n) ¢ A, where y; =R(a,b1)>n, ..., =R(a,bgy1)>n—
A = AU{R(a,b1) >, (1 —n), ... ,R(a,b+1)> (1 —n),C(by)>n, ..., C
(br+1)n};

e >q: >kR.C(a)<an € A — apply < >rule to < (k— 1)R.C(a) < (1 — n);
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o >p: ZkRC(Cl) >ne A, _\Hbl, .. -7bk(b1 75 b;... # bk).R(a,bi) >n e Aand
Chi)pne A— A= AU{R(a,bi)>n,...,C(b)>n},ic {1...k};

o <q: <kR.C(a)<an € A — apply > <rule to > (k + 1)R.C(a) < (1 — n);

e id(C)p<:id(C)(a,a)<n € AandC(a) <n ¢ A — A = AU{C(a) > n};

o R/ :R*(a,b)>an € A, since (R*)" = (R”)" = U, o(R™)" and (R")"
= (Ro R*)FI — R*/* can be done by the following R, and Ry, rules;

e R,>: (RioRy)(a,c)pn e A, —3b.Ri(a,b)>n € AandRy(b,c)>ne A— A
= AU{R(a,b)>n,Ry(b,c)>n};

e Ro<: (RioRy)(a,c)<an € A,—3b.R|(a,b)<n € AandRy(b,c)<ne A — A
= AU{R®}, where R® € {R\(a,b) <n,Ry(b,c) an};

e Ryv: (RiURy))(a,b)pne A Ri(a,b)pn g A Ry(a,b)png A— A
= AU{R"}, where R® € {R;(a,b) >n,Ry(a,b) >n};

e R <: (RiURy)(a,b)<an € A,R((a,b)<n ¢ A, Ry(a,b)ang A— A
= AU{R(a,b) <n,Ry(a,b) <n}.

2. Checking clash: by applying the above rules until no more rules apply, we can
obtain finite sets of fuzzy assertions S = {Ay, ..., Ax} instead of single A. If
there is one of them such that it does not contain clash, then
f-ALCQ,s-,. ABoX A is consistent, and A is inconsistent otherwise. Here, a
set contains a clash if at least one occurs in the following 10 situations, where
C is a fuzzy concept, d € A™:

e The four conjugated pairs above;
e Bottom concept L or top concept T:

{L(d) >n, n> 0},
{L(d) > n, n > 0},
{T(d)<n, n<1},
{T(d)<n, n<l1}.

e {C(d) > 1}, {C(d)<0}.

3. End.

Notice that, the algorithm is given based on the existing reasoning algorithms
for f~ALC (Straccia 2001), f~SHIN (Stoilos et al. 2005), f~ALCIQ (Stoilos et al.
2008), and ALCIQ,., (Giacomo and Lenzerini 1994), while some new rules are
presented in order to handle all f~ALCQ,,.,., concept and role constructors. Here,
the algorithm is a decision procedure for the consistency of fALCQ,,s,., ABox A
which can be drawn following the similar procedures given in Straccia (2001),
Stoilos et al. (2005, 2008), Giacomo and Lenzerini (1994).

Based on the fuzzy DL f~ALCQ,, .., next we introduce how to represent and
reason on fuzzy XML models with f~ALCQ,,fc,.
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7.2.2 Representing Fuzzy XML with Fuzzy Description
Logic f-ALCQ,freq

The precondition for reasoning on fuzzy XML is that we first should represent
fuzzy XML with fuzzy DL. In this section, we introduce how to represent fuzzy
XML with the fuzzy DL f-ALCQ,,..,. We give some rules to transform the fuzzy
XML into fuzzy DL f~-ALCQ,,.,., knowledge bases, and implement a prototype
transformation tool.

7.2.2.1 Transforming Fuzzy XML into f-ALCwa_reg
Knowledge Bases

The following Definition 7.1 gives a formal approach for transforming a fuzzy
XML model into an f~ALCQ,,. ., KB. We now show that the structural aspects of
fuzzy XML document can be captured in f~ALCQ,,,., by defining a translation
function ¢ from the corresponding fuzzy DTD to f~ALCQ,,.,., knowledge base,
then establishing a correspondence between fuzzy document instances and models
of the derived knowledge base. Starting with the construction of atomic fuzzy
concepts and atomic fuzzy roles, the approach induces a set of fuzzy axioms from
the fuzzy XML model.

Definition 7.1 Let (D, d) be a fuzzy XML model, where D = (P, r) is a fuzzy
DTD as mentioned in Definition 3.1 in Chap. 3, P is a set of element type
definitions, r is the root element type, and d is the fuzzy XML document instance
conforming to the fuzzy DTD D. The f~ALCQ,,s.,.; KB ¢ (D) = <FA,FT > can
be defined by function ¢ as follows:

1. The FA of ¢ (D), which is a set of atomic fuzzy concepts and atomic fuzzy roles,
contains the following elements:

e For each element type definition £ — o € P, creating one unique atomic fuzzy
concept Ep. The same element type E in different fuzzy DTDs D; and D,
corresponds to the distinct atomic fuzzy concepts Ep; and Ep,.

e For each element type E € E, creating two atomic fuzzy concepts StartE and
EndE, which represent respectively the start tag and end tag of E. Specially, the
pairs of atomic fuzzy concepts (StartVal, EndVal), (StarPoss, EndPoss),
(StartDist, EndDist), (StartType, EndType), are the particular atomic fuzzy
concepts in FA, which used for the representation of fuzzy data in the fuzzy
XML document and are independent from the specific fuzzy DTD.

e For each terminal T (such as #PCDATA), creating one atomic fuzzy concept 7.

e Creating two extra atomic fuzzy concepts Tag and Terminal, to distinguish
between tags and terminals.

e Creating the extra atomic fuzzy roles f and r.
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2. The FT of ¢ (D), which is a set of fuzzy axioms, contains FTq and FTp in the
following:

o FTq: A set of fuzzy XML document instance axioms, used to restrict the prop-
erties of the fuzzy XML document d.
FT4 is used to capture the general structural properties of fuzzy document
instances, i.e., enforce that every model of FT4 represents a fuzzy document
instance d by means of a tree. We can translate a fuzzy document instance into a
binary tree (i.e., each node of the tree has at most two children nodes) following
the steps (a—c).

(a) The root of the tree, which uniquely specifies a fuzzy XML document
instance, corresponds to the root element of the fuzzy XML document instance
d.

(b) The role f represents the start tag of an element and r represents the other
components of the element.

(c) In detail, for a fuzzy XML document instance d with n components, i.e., <E>
<E\>---</E\>---<E>---</E,> </E>, the start tag is represented by the f-
filler of the root, the first component by the (rof)-filler, ..., the last component
by the (r"of)-filler, and the end tag by the r™*'-filler, which can be illustrated
as follows:

£ r
RS

<

T
A
L f

@,

f

® ]

[ ] element tag node @ terminal node

I\H,

E

n

o: root element ofd 0 i-th component ofd
o,: intermediate variable
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(d) Based on the tree representation of a fuzzy XML document, i.e., (a—c), the set
of fuzzy XML document instance axioms FT4 can be defined as follows:

T=(<HET)N(<1r.T)Nwf(fUr) (7.1)

TagCV(fUr).L (7.2)

StartE [ Tag (7.3)

EndE [ Tag (7.4)

Terminal [ V (fUr).L M — Tag (7.5)

T C Terminal (7.6)

LT (7.7)

{ StartE; f StartE; where the tag names of elements (7.8)

EndE; = EndE; E; and E; are equivalent

{%artEi C —StartE; where the tag names of 'elements (7.9)

ndE; € —EndE; E; and E; are not equivalent

Here, a fuzzy document instance is by definition finite, and hence has a finite
nesting of components. While the well-founded construct wf (R) is interpreted as
those objects that are initial point of only finite R-chains, therefore, we can impose
finiteness and acyclicity of all chains of objects connected by f LI r. Additionally,
T of axiom (7.6) denotes a terminal, the axiom (7.1) ensures us that in every model
of FTq4, every object is the root a tree in which every node has at most one
f successor and one r successor, the axioms (7.2) and (7.5) show that Tag and
Terminal are disjoint, and the instances of Tag and Terminal are leaves of the
tree, the axioms (7.6) and (7.7) impose that two different terminals have disjoint
instances, the axioms (7.3) and (7.4) specify StartE and EndE are subsets of Tag.
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Finally, from (a) to (d), we can know that in all models of FT4 every object
represents a binary tree. The axioms (7.8)—(7.9) capture the equivalence/
inequivalence relation on two elements E; and E; (In real-world applications,
although two elements have the different names such as “Database” and “DB”,
in some cases, they may be considered as the equivalent element). The axiom
(7.8) imposes that the equivalence of all the concepts representing tags of
element types in the same equivalence class, and the axiom (7.9) specifies that
the disjointness of the concepts representing tags of element types belonging to
different equivalence classes.

o FTp: A set of fuzzy DTD axioms, used to restrict the properties of the fuzzy DTD D.

(a) For each element type definition £ — « in the fuzzy DTD D, where o :: =
Slempty| (a1 |o2) | (o1, 02) |07 |o* |0t + | any. We now show that the fuzzy DTD
can be captured in f~ALCQ,, ., by defining a translation ¢ from element type
definition E — « € P in fuzzy DTD D = (P, r) to FTp, for each element type
definition £ — o € P, FTp contains the fuzzy axiom:

Ep = 3f. StartEM 3 (r o ¢(x) ). EndE

where ¢ (o) reflects the structure restrictions about E — o € P and are defined as
follows:

Here, the mapping function f§ (D, S) is used to establish the relationships between
elements in fuzzy DTD such that (S = T UE): if S = E for an element type E € E,
p(D, S) = Ep; if S = T for a terminal Te T, f (D, S) = T.

(b) The following gives the f~ALCQ,,r,., knowledge base derived from a frag-
ment of fuzzy DTD (which is basically from the fuzzy DTD D; mentioned in
Fig. 3.2). Note that the general parts and some axioms are omitted.
Universitiesp = 3f.StartUniversities M 3(r o (id(3f.Universityp) o r)*). End
Universities;

Universityp = 3f.StartUniversity M A(r o id(If.UNamep) o r o id(IHf.Valp;) o
r o (id(3f.Valp,) o r)*). EndUniversity;

UNamep = It .StartUName M A(r o id(If #PCDATA) o r). EndUName;
Valp, = 3f.StartVal M A(r o id(If.Possp) o r o (id(FH.Studentp) o r)*).
EndVal;
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Studenty, = 3If.StartStudent M A(r o (Gd(If.Snamep) o r) Uid(T)) o ((id
(3f.Agep) o r) LI id(T)) o ((d(H.Emailp) o r) U id(T))). EndStudent;
Snamep = If.StartSname M I(r o idAEH#PCDATA) o r). EndSname;

Distpy = Ff.StartDist 1 I(r o id(3f.Typep) o r o id(IH.Valp,) o r o (id
(3. Valp,) o r)*). EndDist,

Email_valuep, = 3IH.StartEmail_value M 3(r o id@FEH#PCDATA) o r). EndEmail_
value.

Based on the Definition 7.1, we realize the formal translation from fuzzy DTD
to f~ALCQ,,z ., knowledge base. Below we prove the correctness of the translation
above, which can be sanctioned by establishing the mappings between the fuzzy
XML document and the model of f~ALCQ,,z,., KB (Theorem 7.1).

Theorem 7.1 For every fuzzy XML model (D, d), where D = (P, r) is a fuzzy
DTD, and d is a fuzzy XML document instance conforming to D. The ¢ (D) is the
corresponding f-ALCQ,.r.,q KB derived by Definition 1.1. There exist mappings p
from the fuzzy XML document instance to the model of ¢ (D), and A from the model
of ¢ (D) to the fuzzy XML document instance, such that:

e For each fuzzy XML document instance d, there is p (d) which is a model of ¢
(D), and for each d € dy g iff 0 € f (D, S where o is the root of p (@),

e For each model FI of ¢ (D), and o € A", there is A (0) which is a fuzzy XML
document instance for D, and for each o € f (D, S)™iff A (0) € dr g

Proof The following briefly gives the proof of Theorem 7.1. Given two alphabets
T (the basic types such as #PCDATA and CDATA) and E (element types), all
fuzzy XML document instances dr g built over T and E can be defined inductively
as follows: (1) If d is a terminal in T, then d; € drx; (2) If d is a sequence of the
form <E >dj,...,di</E >, where E € E is an element type and dj, ..., di €
dy g, then d € dyyg. Firstly, for part 1, let d be a fuzzy XML document, then a

model of o(D)u(d) = (A“ , o >) can be defined inductively:

(a) If d is a terminal T € T, then A*? = "9 = Terminal* ©;
(b) If d is a sequence of the form <E > d,...,d,</E >, then:

AMD = {0, 04,01, .. .,0p, 0.} U Ul ien AM)
StartE" ) = {on} U U] <i<n StartE" ")
EndE") = {o.} U\, _, ., EndE"®
Tag - {0b70e}UUl<1<n s

) {(07017), (01’01> (On, n)} U1<lf#

r”(d) = {(0701)7 (01702)7 ) (onflaon)v (011706 } U U1<i<n rﬂ(di)

where o is the root of d, oy, and o, denote the start and end tags of element E, o;
denotes the i-th component of d, and o;’ is the root of d;, i € {1, ..., n};
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and for part 2, which can be proved similarly for the first part above. Let
FI = (AT, &™) be a model of ¢ (D) and 0 € AT a fuzzy document instance A
(0) for D can be defined:

(a) If 0 € T"' for some terminal T € T, then 4 (o) = T.

(b) If for some E € E, there are some integer n > 0 and objects oy, 0;, 0, and o,
such that oy € StartE™, o, € EndE™, (0,0p), (01,0}), ..., (0n,0}) € ', and
(07 01)7 (OlaOZ)v L] (On—la()n)7 (On,Oe) S rF17 then j’(0) =<E> j‘(0/1)7 LS
A(0)) </E >. O

7.2.2.2 Prototype Translation Tool

Following the proposed approach above, we developed a prototype translation tool
called FXML2DL, which can automatically translate fuzzy XML models into f-
ALCQ,,z,., knowledge bases. In the following, we briefly introduce the design and
implementation of FXML2DL.

The implementation of FXML2DL is based on Java 2 JDK 1.5 platform.
FXML2DL includes three main modules: parsing module, translation module, and
output module. The parsing module parses the fuzzy XML document files and
fuzzy DTDs and stores the parsed results as Java ArrayList classes; The translation
module uses Java class methods to translate fuzzy XML documents and fuzzy
DTDs into f~ALCQ,,.., knowledge bases based on the proposed approach; The
output module produces the resulting f~ALCQ,,s.,., knowledge bases which are
saved as the text files and displayed on the tool screen. The overall architecture of
FXML2DL is shown in Fig. 7.1. It should be noted that FXML2DL cannot auto-
matically extract the fuzzy DTD according to the fuzzy XML document if there is
not a fuzzy DTD in hand.

Here we give an example to show that the proposed approach is feasible and the
tool is efficient. We carried out transformation experiments of some fuzzy XML

Fig. 7.1 The architecture of
FXML2DL

di:lf‘gei(tl\:)Lf < Trarnusllez:tmg > Fuzzy DTD to
> <
ALCQuyf-res KB \/_\ f-ALCQufreg KB

FALCQ,freq KB
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¢ FINLZDL

Filo Fun Parse Holp

Mpunt Fuzzy XML Document anaiaihe
D ) = F-ALC Q00 knowledge base:
Fuzzy XML Docament: = Tag = ¥ilu.i -
<university> = | Terminal & Vifu .4 N+ Tag [
UN Dakland y</UN Dakland University & Terminal
<Val Poss = 0.8> Tom Smith € Terminal
<student> | | TS@yahoo.com < Terminal
<gname>Tom Smith</sname> TS@tom.com < Terminal
<age> Wayne State University < Terminal
<Dist type = “disjunctive™ 0.8 = Terminal : .
<Val Poss - 0.8> 23 € Terminal g et 2
supelem. age 0.1
<age_value>23</age_value> 06 & Terminal supelem_ email | 0.1
«/al> 25 < Terminal concaten_|age [emad
=Vl Poss = 06> = 085 < Terminal
Al 1 P rssnahan com € - TS@tamenm | (15
Inpus Fuzzy DTD Al ]
L i | e rom— = = i.n
Fuzzy DT UniversitiesD = I.S1artUniversities 0 3(r o (i

UniversityD) o r J° J. EndUniversities

UniversityD = 3. StarUniversity 1 30 1o id(@601
a o ld{FLVaID) o r o (id{FVaID1) o r)*). En
UNameD = 3StariName N 3(r o id{3APCD

<|ELEMENT universities  juniversity)>
<IELEMENT wniversity  (UName, Vals)>
<IELEMENT UName WPCDATA)

<IELEMENT Val {Pass, student’)>

<IELEMENT student  fsname?, age?, email7)> S E)- Eniiiag ;

CIELEMENT sname #PCDATA Valll = :Il.hlau‘rva! n3(roid(IHPossDjoro :I:: 5 :suu?lt' i i

<IELEMENT age (Disg)> LSwdentD) o 1) ). EndVal H o Sopalarn. Val h
<IELEMENT Dist (Type, Val+)> StudentD = I.StarSwdent 0 I ro ((EFLSE | Tipe Conjuncive T T
<ELEMENT Typa  (disjunciive)> o) U id(T ) o {(WECAgSD) o 1) Ui} )o (| | Vs supelem_ Foss |

" LEmaill) o r) wid(T) ) ). EndStudent [va SUDRNTL., ]V, |

SIELEMENT Vel (Poss, age_valuj> SnameD = I StartSname 1 I ¢ o id{ILOPCD) | P08 [concatenjemailva_|

<IELEMENT age value  WPCDATA)> R 1 ~| [Foss __|PCOATA

Al | ¥ | ] I ¥| | [email_va_ |PCOATA | [ [ I=|

Fig. 7.2 The screen snapshot of FXML2DL

models using the implemented tool FXML2DL, with a PC (CPU P4/3.0 GHz,
RAM 3.0 GB and Windows XP system). Figure 7.2 shows the screen snapshot of
FXML2DL, which displays the transformation from a fuzzy XML document and
fuzzy DTD mentioned in Chap. 3 to the corresponding f~ALCQ,,,., knowledge
base.

7.2.3 Reasoning on Fuzzy XML with Fuzzy Description
Logic f-ALCQ,f.req

Based on the transformed f-ALCQ,,r.,., KB, in this section we further introduce
how to reason on fuzzy XML models with the transformed f~ALCQ,,.,., KB. The
basic reasoning tasks of fuzzy XML models are briefly introduced, and then the
approach for reasoning on fuzzy XML models with f~ALCQ,,z.,., is developed.

7.2.3.1 Reasoning Problems of Fuzzy XML Models

The familiar reasoning problems considered in fuzzy XML models include con-
formance, inclusion, disjointness, and equivalence. In the following, we give the
formal definitions of these reasoning problems based on the reasoning tasks on
classical XML (Buneman et al. 2003; Baader et al. 2003; Wu et al. 2008;
Cautis et al. 2007; Libkin and Sirangelo 2008; Toman and Weddell 2005;
Calvanese et al. 1999).
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Definition 7.2 (conformance) Let D = (P, r) be a fuzzy DTD, d be a fuzzy XML
document, and d (D) be a set of fuzzy XML documents defined over D. Then
d conforms to D if d € d (D).

Here, the set d (D), which is generated by a set of element type definitions
P starting from a symbol r, is inductively defined:

e If ris a terminal T € T, then d (D) = T.

e If r is an element type £ — o € P, then d (D) is the set of sequences
<E >d,...,d</E >, where di, ..., dy are the document instances gener-
ated by the instances of the content model o.

Definition 7.3 (inclusion) Given two fuzzy DTDs D; and D,. D; is strongly
included in D, (written as D; Sg D,), if d (D;) < d (D).

Definition 7.4 (equivalence) Given two fuzzy DTDs D, and D,. D, is strongly
equivalent to D, (D, =g D»), if d (D) = d (D»).

Definition 7.5 (disjointness) Given two fuzzy DTDs D, and D,. D, is strongly
disjoint from D, (D; ®s D), if d (D1) N d (D,) = &.

Notice that, for determining strong inclusion (equivalence, disjointness)
between fuzzy DTDs, i.e., determining whether two fuzzy DTDs define the
inclusive (same, disjoint) sets of fuzzy XML document instances, the names of
start/end tags of elements in document instances play a key role. For example,
given two fuzzy DTDs (part of elements only):

Dupiversiy <!ELEMENT University (Uname, Position, Val+, ...)>

Dconiege <!ELEMENT College (Cname, Position, Val+, ...)>,

based on the Definitions 7.2-7.5, we know that Dypiversity 1S strongly disjoint from
DCollege~

In real-world applications, it appears that the restriction imposed by strong is
rather limited. In some cases, although the tags of elements in two fuzzy DTDs are
different, we know that the structures of two fuzzy DTDs are related. For example,
if we consider that the tag names University and Uname are equivalent to College
and Cname, respectively, then Dypiversity 18 equivalent t0 Dcoljege-

On this basis, by considering the equivalent/inequivalent relation of tag names,
i.e., certain tag names as equal, and others as different, one can determine the
inclusion (equivalence, etc.) relationships between fuzzy DTDs well, which are
called e-inclusion (e-equivalence, etc.). The strong inclusion (equivalence, etc.) are
just special cases of ¢-inclusion (e-equivalence, etc.).

Therefore, in the following, we consider the reasoning problems of ¢-inclusion
(e-equivalence, etc.) only, and their formal definitions are given as follows.

Definition 7.6 (¢-conformance) Let D = (P, r) be a fuzzy XML DTD, d be a
fuzzy XML document instance, and d.(D) be a set of fuzzy e-document instances
defined over D. Then d &-conforms to D if d € d (D).
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Here, the set d(D) is defined following the similar procedures in Definition 7.2:

o If ris a terminal T € T, then d,(D) = T.

e If r is an element type E — o € P, then d.(D) is the set of sequences
<E >d,...,dg</E >, where E € [E], ([E], denotes the set of equivalence
classes of E), and d, ..., dy are the document instances generated by the
instances of the content model o.

Definition 7.7 (e-inclusion) Given two fuzzy DTDs D; and D,. D is e-included in
D, (written as Dy <, D), if d (D) < d.(D5).

Definition 7.8 (¢-equivalence) Given two fuzzy DTDs D, and D,. D is &-
equivalent to D, (D1 =, D), if d(Dy) = d(D»).

Definition 7.9 (e-disjointness) Given two fuzzy DTDs D; and D». D; is e-disjoint
from D2 (D1 ®s Dz), if dg(Dl) N dp(Dz) = @

7.2.3.2 Reasoning on Fuzzy XML Model with f-ALCQy.reg

The following theorems allow us to reduce reasoning on fuzzy XML models to
reasoning on f~ALCQ,,.,, KB, so that the above reasoning tasks of fuzzy XML
models may be reasoned by means of the reasoning mechanism of f~ALCQ,,z -

Theorem 7.2 (¢-conformance) Let D = (P, r) be a fuzzy DTD, d be a fuzzy XML
document instance, and ¢ (D) be the f-ALCQ,,t.,., KB derived by Definition 7.1.
Then checking whether d e-conforms to D can be reduced to model checking in ¢
(D), i.e., checking whether |\ (d) in Theorem 7.1 is a model of ¢ (D).

It is clear that Theorem 7.2 is an immediate consequence of Definition 7.1 and
Theorem 7.1. The proof of Theorem 7.2 is omitted here, which can be drawn easily
by Theorem 7.1.

In order to determine &-inclusion (e-equivalence, and e-disjointness) between
fuzzy DTDs, in the following, we first need to extend the notion of fFALCQ,,z,ce
KB ¢ (D) in such a way that ¢ (D) is derived from a set of fuzzy DTDs, rather than
a single fuzzy DTD (see Definition 7.10).

Definition 7.10 Given a set D = {Dy, ..., D,} of fuzzy DTDs, the f~FALCQ,f.,cq
KB ¢ (D) is defined as ¢ (D) = ¢ (D) U---U ¢ (D,,) (FTp part only), which can be
derived by Definition 7.1.

Theorem 7.3 (e¢-inclusion) Given a set D = {D,, D,} of fuzzy DTDs, where
Dy = (P, V) and D, = (P,, V'), ¥ and ¥’ are the root element types, ¢ (D) = ¢
(D1) U ¢ (Dy) is the f~ALCQ,,y.,.; KB derived by Definition 7.1, r’D] and ”Z)z are
two atomic fuzzy concepts in ¢ (D). Then Dy C, D, iff ¢ (D) FE 1y, Cri,.
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Proof *“="": If @(D)¥1),C r},, then there is 0 € A" such that o € r},/" and

o & t,F1, where FI = (A", /") is a model of ¢ (D). By the part 2 of Theorem 7.1,
L (o) is a fuzzy XML document instance, and 4(o)€ d,(D;) and
i(0) € dy(Ds), ie.,D; £ D,. Contradiction, so ¢ (D)Fr1p, Crp,.

<. If Dy g D2, then there is a fuzzy XML document instance d with d €
d.(Dy) and d ¢ d.(D,). By the part 1 of Theorem 7.1, p (d) is a model of ¢ (D),

and 1), € (D,S)*¥ and 1}, & B(D,S)"” . ie., ¢ (D)), C r},. Contradic-
tion, so D; <, D». O

Theorem 7.4 (¢-equivalence) Given a set D = {Dy, D,} of fuzzy DTDs, where
Dy = Py, ¥') and D, = (Py, V'), ¥ and ¥' are the root element types. ¢ (D) =
¢ (D1)U @ (Dy) is the f-ALCQ,,z. . KB derived by Definition 7.1, 1}, and r, are
two atomic fuzzy concepts in ¢ (D). Then Dy =, D, iff ¢(D)F1), =r),.

Proof “<”:1If Dy # . D,, then there is a fuzzy XML document instance d with
d € d,(Dy) and d & d.(D,) or d € d.(Dy)and d € d.(D,). By the part 1 of Theo-
rem 7.1, p (d) i 1s a model of ¢ (D), and v, € B(D,S)"? and ), & B(D,S)"

th & B(D,S)* and ry € B(D, S)* ) ie., ¢ (D VET, = 1), Contradlcuon, SO

Dl = Dz.
=": If ¢(D)¥ 1), = r}),, then there is 0 € A™ such that 0 € 1}, 7 and o ¢

t), Morogr,, Mando €r), M, where FI = (A", o'") is a model of ¢ (D). By
the part 2 of Theorem 7.1, A (0) is a fuzzy XML document instance, and (o) €

d:(Dy) and A(o) € d.(D;) or A(0o) &€ d.(Dy) and A(0) € d,(D,), i.e.,D| #; Ds.
Contradiction, so ¢ (D) Erp, = r},. O

Theorem 7.5 (e-disjointness). Given a set D = {Dy, D,} of fuzzy DTDs, where
Dy = Py, ) and D, = (P5, /'), Fand V' are the root element types, ¢ (D) =
¢ (D1) U @ (D) is the f-ALCQ,z..q KB derived by Definition 7.1, 1}, and rjy, are
two atomic fuzzy concepts in ¢ (D). Then Dy ®; Dsiff ¢ (D) Erp, Mrp, L.

Proof “=":1f (D) ¥ 1)), Mr}h, CL, then there is 0 € A™ such that o € 1}, " and

0 € rpy FI where FI = (A", o) is a model of @ (D). By the part 2 of Theorem
7.1, A (0) is a fuzzy XML document instance, and 4 (o) € d.(D;) and 4 (0) €
dy(D»),i.e.,d,(D1),(D>) # . Contradiction, so ¢ (D) FErp, Mrh, CL.

=" If D, is not e-disjoint from D, i.e., d,(D) N d(D,) # J, then there is a
fuzzy XML document instance d with d € d.(D;) and d € d.(D;). By the part 1 of

Theorem 7.1, p (d) is a model of ¢ (D), and rj, € (D, S)““) and h €
B (D,S)”(d>, ie., ¢ (D) ¥ 1), NMrp,C L. Contradiction, so Dy ® , D,. O

In order to illustrate that representation and reasoning of fuzzy XML models
with the fuzzy DL may contribute to some tasks related to fuzzy XML models, for
example, improving the precision and efficiency of query processing over
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document bases, based on the previous translation and reasoning results, the fol-
lowing briefly discusses how to perform several optimization steps in answering
queries over a document base. The detailed introduction about the query of fuzzy
XML documents is not included here.

A document base DCB is a pair DCB = <Dy, d, (D) >, where D is a set of
fuzzy DTDs, and d,(D;) is a set of fuzzy ¢-document instances defined over D,. A
query Q over a document base DCB is simply a fuzzy document type definition
(i.e., a fuzzy DTD), used to retrieve all document instances that ¢-conform to Q,
i.e., Q (DCB) = {dde d/Ds) Nded(Q)}.

The following Rules 1-5 can perform several optimization steps in answering
query Q over a document base DCB.

Firstly, based on our previous work, with the assumption that for each pair
fuzzy DTDs D;, Dj € D, i # j, it is known that whether D; =, D;, D; =, Dj, or
D; ®, Dy; for each pair d € d (D), D; € D, it is known that whether d e-conforms to
D; (i.e., d € dy(D;) or d & d,(Dy)).

Rule 1: If we know that there is a fuzzy DTD D, € D, such that D, =, O (where
D; is selected from Dy such that there is no D, € D, with Dy <, D,), then Q(DCB)
is the set of the document instances that e-conform to Dy;

Rule 2: If we know that there is a fuzzy DTD D, € D such that D; ®, O (where
D, is selected ditto), then we can discard all fuzzy DTDs that are ¢-included in Dy,
and exclude from the answer all document instances that ¢-conform to Dy;

Rule 3: If we know that there is a fuzzy DTD D, € D, such that D; < ,
QO (where D is selected ditto), then each d € d (D)) takes part in the answer to the
query. In addition, each D’ (where D' € D, and D' =, D;) needs not to be con-
sidered anymore and is discarded;

Rule 4: If we know that there is a fuzzy DTD D, € D, such that Q <, D, (where
D; is selected ditto), that is, each d € d,(Q) also satisfies d € d(D,), then we can
discard all document instances that ¢-conform to D' (where D' € Dy and D' ®, D,);

Rule 5: If there are no fuzzy DTD D, € Dy that satisfy the conditions in the
Rules 1-4, then we can remove D; from D.

7.3 Fuzzy XML Reasoning with Fuzzy Ontology

Being similar to the fuzzy XML reasoning with fuzzy Description Logic, in order
to reason on fuzzy XML with fuzzy ontology, a precondition here is also that we
first can represent fuzzy XML with fuzzy ontology. In Zhang et al. (2013), fuzzy
ontologies are constructed from fuzzy XML data resources, and then the con-
structed fuzzy ontologies are used to reason on fuzzy XML. In this section, we
focus on fuzzy XML reasoning with fuzzy ontology.



190 7 Fuzzy XML Reasoning

7.3.1 Representing Fuzzy XML with Fuzzy Ontology

To represent fuzzy XML with fuzzy ontology, here we first briefly introduce some
basic notions about fuzzy ontology. In a more general sense, the short answer for
this question “what is a fuzzy ontology” is: a fuzzy ontology is a shared model of
some domain which is often conceived as a hierarchical data structure containing
all concepts, properties, individual, and their relationships in the domain, where
these concepts, properties and so on may be defined imprecisely. Ontology can be
defined by ontology representation languages such as RDFS, OIL, DAML+OIL, or
OWL. Web Ontology language (OWL), a W3C recommendation, has been the
Semantic Web de-facto standard language for representing ontologies (OWL
2004). OWL has three increasingly expressive sublanguages OWL Lite, OWL DL,
and OWL Full. Description Logics are the main logical foundations of the
ontology OWL. Although OWL is a quite expressive formalism it features limi-
tations, mainly with what can be said about imprecise and uncertain information
that is commonly found in real-world applications. Therefore, the fuzzy extension
of OWL, i.e., fuzzy OWL, was developed. Table 7.2 shows the fuzzy OWL syntax
and the corresponding fuzzy DL syntax. In Table 7.2, C denotes fuzzy class
description (i.e., fuzzy DL concept); D denotes fuzzy data range (i.e., fuzzy DL
concrete datatype); R denotes fuzzy ObjectProperty identifier (i.e., fuzzy DL
abstract role); U denotes fuzzy DatatypeProperty identifier (i.e., fuzzy DL concrete
role), d and o are abstract individuals; v is a concrete individual; n is a nonnegative
integer, #{ } denotes the base of a set {}, and < € {>, >, <, <}. The semantics for
fuzzy OWL is given based on the interpretation of the fuzzy DL f~SHOIN(D)
(Straccia 2005). Briefly, the semantics is provided by a fuzzy interpretation
FI = (A", Ap, o', 0P), where A™ is the abstract domain and Ap, is the datatype
domain (disjoint from AFI), and " and o are two fuzzy interpretation functions,
which map:

e An abstract individual o to an element o™ € A",
e A concrete individual v to an element v° € Ap,
e A concept A to a membership degree function AF' : A™ — [0, 1],

An abstract role R to a membership degree function R™ : AF! x A™ — [0, 1],
e A concrete datatype D to a membership degree function DP : Ap — [0, 1],
e A concrete role U to a membership degree function U™ : A™ x Ap, — [0, 1].

Based on the fuzzy interpretation FI, the complete semantics of fuzzy OWL
abstract syntax can be found in (Zhang et al. 2013).

A fuzzy ontology can be formulated in the fuzzy OWL language. Formally, a
fuzzy ontology FO consists of the fuzzy ontology structure FOg and the corre-
sponding fuzzy ontology instance FO,. FOs is a set of identifiers and fuzzy class/
property axioms, and FOr is a set of fuzzy individual axioms. The following
Definition 7.11 gives a formal definition of fuzzy ontology (Zhang et al. 2013).
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Table 7.2 The fuzzy OWL

. ' Fuzzy OWL syntax The corresponding
syntax and its corresponding

fuzzy DL Syntax

fuzzy Description Logic (DL) —
Fuzzy class descriptions (C)

syntax
A, which is a URIref of a class A
Owl:Thing T
Owl:Nothing 1
IntersectionOf (Cy, ..., Cp) C, n---N Gy
UnionOf (Cy, ..., Cy,) C, U---u G,
ComplementOf (C) -C
Restriction (R allValuesFrom(C)) VR.C
Restriction (R minCardinality(n)) >n R
Restriction (R maxCardinality(n)) <n R
Restriction (R cardinality(rn)) =n R
Restriction (U allValuesFrom(D)) YU.D

Fuzzy class axioms
Class (A partial Cy, ..., Cy)
Class (A complete Cy, ..., Cy)

AL Cn-ncG,
A=C n-1¢c,

SubClassOf (C; C») i C G
EquivalentClasses (Cy, ..., Cy,) Ci=--=0GC,
DisjointClasses (Cy, ..., Cy) G # G
Fuzzy property axioms

DatatypeProperty (U

domain(C))...domain(Cy,) >1U C G;
range(D,)...range(Dy) T C YU.D;
[Functional]) TC <1U
ObjectProperty (R

domain(C))...domain(Cy,) >IRC G
range(Cy)... range(Cy) T C VR.G;
[Functional] TLC <IR
[inverseOf (Ry)]) R = (Ry)~
Fuzzy individual axioms

Individual (o type(Cy) [> my] o: Ci>amy
value(Ry, 0y) [< ki]... (0, 0;): Ry < k;
value(Uy, vy) [ []...) (0, v): Uy [
Samelndividual (o, ..., o,) 01 == 0y,
DifferentIndividuals (o4, ..., 0,) 0; # 0j

Definition 7.11 (fuzzy ontology) A fuzzy ontology is a tuple FO = (FOs, FOy) =

(FID,, FAxiom,), where:

1. FID, = FCID, U FIID, U FDRID, U FOPID, U FDPID, is a finite fuzzy

OWL identifier set partitioned into:

e A subset FCID, of fuzzy class identifiers, include user-defined identifiers plus

two predefined fuzzy classes owl: Thing and owl: Nothing.
e A subset FIID, of individual identifiers.
e A subset FDRID, of fuzzy data range identifiers.
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e A subset FOPID, of fuzzy object property identifiers; fuzzy object properties
link individuals to individuals.

e A subset FDPID, of fuzzy datatype property identifiers; fuzzy datatype
properties link individuals to data values.

2. FAxiomy is a finite fuzzy OWL axiom set partitioned into:

e A subset of fuzzy class/property axioms, used to represent fuzzy ontology
structure.

e A subset of fuzzy individual axioms, used to represent fuzzy ontology
instance.

In brief, a fuzzy ontology FO is a set of fuzzy axioms defined on the identifier,
and we say that a fuzzy interpretation FI is a model of FO iff it satisfies all axioms
in FO.

In order to represent fuzzy XML with fuzzy ontologies, two key steps need to
be done: first, transforming the fuzzy DTD into a fuzzy ontology at structure level;
second, on the basis of the first step, transforming the fuzzy XML document into
the fuzzy ontology at instance level.

As we have known, the DTD and the ontology solve the different problems: the
former provides means to express and constrain the syntax and structure of XML
documents, the latter, in contrast, is intended for modeling the semantic rela-
tionships of a domain. However, there is an interesting overlap between the two, as
both of them have an object-oriented foundation and are based on the notion of
Frames. On this basis, the following introduces how to establish the correspon-
dences between fuzzy DTDs and fuzzy ontologies at conceptual level.

In the following, we propose a formal approach (i.e. a set of rules) for trans-
forming a fuzzy DTD into fuzzy ontology structure. Starting with the construction
of fuzzy identifiers from the symbols in a fuzzy DTD (e.g., element names and
attribute names), the rules further induce a set of fuzzy axioms (i.e., fuzzy class and
property axioms) from the fuzzy DTD. The fuzzy axioms are obtained by mapping
each element type definition £ — (o, A) of the fuzzy DTD in Chap. 3 into the
corresponding fuzzy axioms, where o :: = (S | empty | (olop) | (oq,00) | a? | o |
o+ | any) and A :: = (AN, AT, VT). Moreover, we give the corresponding
example illustrations regarding some key transformation rules to explain the
construction process well.

Given a fuzzy DTD D = (P, r), i.e., a set of element type definitions E — (a,
A) in Definition 3.1 in Chap. 3. The fuzzy ontology structure FOg = ¢
(D) = (FIDy, FAxiomg) can be derived by transformation function ¢ as shown in
the following Rules 1-11:

Rule 1: Each element symbol E in element type definitions £ — (a, A) is mapped
into a fuzzy class identifier ¢ (E) € FCID, € FID,.

For example, the element symbols such as university and UName in the fuzzy
DTD D, of Fig. 3.2 are mapped into fuzzy class identifiers ¢ (university) € FCID
and ¢ (UName) € FCID,, respectively.
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Rule 2: Each type T, i.e., the atomic type for E (such as #PCDATA) or the
attribute type for A (such as CDATA), is mapped into a fuzzy data range identifier
¢ (T) € FDRID, € FID,,.

Rule 3: For each attribute type definition £ — A, where A ::= (AN, AT, V1),
AN is the attribute name, AT is the attribute type, and VT is a symbol “use”,
creating the following elements:

e creating a fuzzy datatype property identifier ¢ (EhasdpAN) € FDPID,, where ¢
(EhasdpAN) = E 4+ “hasdp” + AN, which is used to denote the relationship
between an element E and its associated attribute AN, and “+” denotes the
concatenated operation of strings;

e creating the following fuzzy class and fuzzy datatype property axioms:

Class (¢ (E) partial restriction (¢ (EhasdpAN) allValuesFrom (¢ (AT)) min-
Cardinality (use (V7)) maxCardinality (use (VT)))), where if VI = “#IM-
PLIED”, then use (VT) = 0 or 1; if VT = “#REQUIRED”, then use (VT) = 1;
if VT = #Fixed “value” or “value”, then ¢ (AT) is the “value” and use
(VT) = oo;

DatatypeProperty (¢@(EhasdpAN) domain (¢(E)) range (p(AT))).

Rule 4: For each element type definition E — T, creating the following
elements:

e creating a fuzzy datatype property identifier ¢(EhasdpT) € FDPID,, which is
used to denote the relationship between an element E and its type;
e creating the following fuzzy class and fuzzy datatype property axioms:

Class (@(E) partial restriction (¢@(Fhasdp7) allValuesFrom (¢(7)) cardinality
1)
DatatypeProperty (¢@(EhasdpT) domain (¢(E)) range (¢(7)) [Functional]).

For example, for the element type definition UName — (#PCDATA) in the
fuzzy DTD D, of Fig. 3.2, first we create a fuzzy class identifier ¢ (UName) €
FCID, and a fuzzy data range identifier ¢ (PCDATA) € FDRID,, by using the rules
1 and 2, and then create a fuzzy datatype property identifier ¢ (UNamehas-
dpPCDATA) € FDPID, and the following axioms: Class (¢ (UName) partial
restriction (¢ (UNamehasdpPCDATA) allValuesFrom (¢ (PCDATA)) cardinality
(1))); DatatypeProperty (¢ (UNamehasdpPCDATA) domain (¢ (UName)) range (¢
(PCDATA)) [Functional]).

Rule 5: For each element type definition E — «, creating the following
elements:

e creating a fuzzy object property identifier ¢ (Ehasopa) € FOPID,, where ¢
(Ehasopa) = E + “hasop” + o, which is used to denote the relationship
between an element E and its content model «, and “+” denotes the concate-
nated operation of strings;

e creating the following fuzzy class and fuzzy object property axioms:
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Class (¢ (E) partial restriction (¢ (Ehasopa) allValuesFrom (¢ (o)) Cardinality
(1))
ObjectProperty (¢ (Ehasopo) domain (¢ (E)) range (¢ («)) [Functional]).

Rule 6: For each element type definition E — o?, creating the following
elements:

e creating a fuzzy object property identifier ¢ (Ehasopa) € FOPID,, which is used
to denote the relationship between an element E and its content model «;
e creating the following fuzzy class and fuzzy object property axioms:

Class (¢ (E) partial restriction (¢ (Ehasopo) allValuesFrom (¢ (o)) maxCardi-
nality (1)));
ObjectProperty (¢ (Ehasopoa) domain (¢ (E)) range (¢ («))).

For example, for the element type definition student — sname?... in the fuzzy
DTD D, of Fig. 3.2, first we create two fuzzy class identifiers ¢@(student),
@(sname) € FCID, by using the rule 1, and then create a fuzzy object property
identifier ¢ (studenthasopsname) € FOPID, and the following axioms: Class (¢
(student) partial restriction (¢ (studenthasopsname) allValuesFrom (¢ (sname))
maxCardinality (1)) ...); ObjectProperty (¢ (studenthasopsname) domain (¢
(student)) range (¢ (sname))).

Rule 7: For each element type definition E — o*, creating the following
elements:

e creating a fuzzy object property identifier ¢ (Ehasopa) € FOPID,, which is used
to denote the relationship between an element E and its content model o;
e creating the following fuzzy class and fuzzy object property axioms:

Class (¢ (E) partial restriction (¢ (Ehasopa) allValuesFrom (¢ (x))));
ObjectProperty (¢ (Ehasopa) domain (¢ (E)) range (¢ (@))).

For example, for the element type definition universities — university* in the
fuzzy DTD D, of Fig. 3.2, first we create two fuzzy class identifiers ¢ (univer-
sities), @ (university) € FCID, by using the rule 1, and then create a fuzzy object
property identifier ¢ (universitieshasopuniversity) € FOPID, and the following
axioms: Class (¢ (universities) partial restriction (¢ (universitieshasopuniversity)
allValuesFrom (¢ (university)))); ObjectProperty (¢ (universitieshasopuni versity)
domain (¢ (universities)) range (¢ (university))).

Rule 8: For each element type definition E — o+, creating the following
elements:

e creating a fuzzy object property identifier ¢ (Ehasopa) € FOPID,, which is used
to denote the relationship between an element E and its content model «;
e creating the following fuzzy class and fuzzy object property axioms:

Class (¢ (E) partial restriction (¢ (Fhasopo) allValuesFrom (¢ (o)) minCardi-
nality (1)));
ObjectProperty (¢ (Ehasopa) domain (¢ (E)) range (¢ («))).
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For example, for the element type definition university — (..., Val+) in the
fuzzy DTD D, of Fig. 3.2, first we create two fuzzy class identifiers ¢ (university),
¢ (Val) € FCID, by using the rule 1, and then create a fuzzy object property
identifier ¢ (universityhasopVal) € FOPID, and the following axioms: Class (¢
(university) partial restriction (¢ (universityhasopVal) allValuesFrom (¢ (Val))
minCardinality (1))); ObjectProperty (¢ (universityhasopVal) domain (¢ (uni-
versity)) range (¢ (Val))).

Rule 9: For each element type definition £ — empty, creating the following
fuzzy class axiom:

Class (¢ (E) partial owl:Nothing).

Rule 10: For each element type definition E — (a4lay), creating the following
elements:

e creating two fuzzy object property identifiers ¢ (Ehasopa,) € FOPIDy and ¢
(Ehasopa,) € FOPID,, which are also used to denote the relationships between
an element E and o;;

e creating the following fuzzy class and fuzzy object property axioms:

Class (¢ (E) complete unionOf (intersectionOf (¢ (o) complementOf (¢ (a,)))
intersectionOf (complementOf (¢ (21)) @ (22))));

Class (¢ (E) partial restriction (¢ (Ehasopa) allValuesFrom (¢ («;))) restriction
(¢ (Ehasopa,) allValuesFrom (¢ (¢))));

ObjectProperty (¢ (Ehasopo;) domain (¢ (E)) range (¢ (¢1)));

ObjectProperty (¢ (Ehasopa,) domain (¢ (E)) range (¢ (3))).

For example, for an element type definition lecture — (name | phone) in a
fuzzy DTD (which is not included in the fuzzy DTD D, of Fig. 3.2 and expresses
that a lecturer element contains either a name element or a phone element), first
we create three fuzzy class identifiers ¢ (lecture), ¢ (name), and ¢ (phone) €
FCID, by using the rule 1, and then create two fuzzy object property identifiers ¢
(lecturehasopname), ¢ (lecturehasopphone) € FOPID,, and the following axioms:
Class (¢ (lecture) complete unionOf (intersectionOf (¢ (name) complementOf (¢
(phone))) intersectionOf (complementOf (¢ (name)) ¢ (phone)))); Class (¢ (lec-
ture) partial restriction (¢ (lecturehasopname) allValuesFrom (¢ (name)))
restriction (¢ (lecturehasopphone) allValuesFrom (¢ (phone)))); ObjectProperty
(¢ (lecturehasopname) domain (¢ (lecture)) range (¢ (name))); ObjectProperty (¢
(lecturehasopphone) domain (¢ (lecture)) range (¢ (phone))).

Rule 11: For each element type definition £ — (o,0), creating the following
elements:

e creating two fuzzy object property identifiers ¢ (Ehasopa;) € FOPIDy and ¢
(Ehasopa,) € FOPID,, which are used to denote the relationships between an
element E and o;;

e creating the following fuzzy class and fuzzy object property axioms:
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Class (¢ (E) complete intersectionOf (¢ (7)) @ (22)));

Class (¢ (E) partial restriction (¢ (Ehasope) allValuesFrom (¢ (o;))) restriction
(¢ (Ehasopay) allValuesFrom (¢ (¢3))));

ObjectProperty (¢ (Ehasopo;) domain (¢ (E)) range (¢ (¢1)));

ObjectProperty (¢ (Ehasopa,) domain (¢ (E)) range (¢ (0))).

For example, for the element type definition student — (sname?, age?, ...) in
the fuzzy DTD D, of Fig. 3.2, first we create three fuzzy class identifiers ¢
(student), ¢ (sname), and ¢ (age) € FCID, by using the rule 1, and then create two
fuzzy object property identifiers ¢ (studenthasopsname), ¢ (studenthasopage) €
FOPID, and the following axioms by jointly using the rules 6 and 11: Class (¢
(student) complete intersectionOf (¢ (sname) ¢ (age) ...)); Class (¢ (student)
partial restriction (¢ (studenthasopsname) allValuesFrom (¢ (sname)) maxCardi-
nality (1)) restriction (¢ (studenthasopage) allValuesFrom (¢ (age)) maxCardi-
nality (1)) ...); ObjectProperty (¢ (studenthasopsname) domain (¢ (student)) range
(¢p(sname))); ObjectProperty (¢ (studenthasopage) domain (¢ (student)) range (¢
(age))).

Based on the transformation at the structure level above, the following further
transforms fuzzy XML models into fuzzy ontologies at instance level.

Given a fuzzy XML document d = (N, <, 4, n, r) in Definition 3.2 in Chap. 3
conforming to a fuzzy DTD D, the corresponding fuzzy ontology instance
FOy = ¢(d) = (FIDy, FAxiomg) can be derived as the following Rules 12—14:

Rule 12: For each node v € N in the fuzzy XML document tree, if A(v) € E, then
creating a fuzzy individual identifier ¢ (v) € FIIDy € FIDy and an individual
axiom: Individual (¢ (v) type(p (A(v))) [>< m;]).

Here: (1) ¢ (A(v)) is a fuzzy class identifier FCID, created by the rule 1; (2) ¢
v) = “id” + six-digit number, such as id123456, where “+” denotes the con-
catenated operation of strings, and the six-digit number is generated randomly
according to the level of the node v in the fuzzy XML document tree and is unique
in fuzzy ontology instances; (3) The above axiom aims at creating a unique
individual for each fuzzy class in constructed fuzzy ontology structure, and the
default value of membership degree m; is 1.0. In the following, the part [>< 1.0] in
a fuzzy individual axiom is omitted for the sake of similarity.

For example, for the nodes such as university, UName € N in the fuzzy XML
document, we create two fuzzy individual identifiers id592914, id593011 € FIID,
and two individual axioms: Individual (id592914 Type (¢ (university))); Indi-
vidual (id593011 Type (¢ (UName))). Here, ¢ (university), ¢ (UName) are two
created fuzzy class identifiers FCID,.

Rule 13: For each pair nodes v;, v; € N in the fuzzy XML document tree, if A(v;),
(v;) € E, and v; <vj, i.e., v; is the parent node of v;, then creating the axioms:
Individual (¢ (vj) type (¢ (A(v})))) and Individual (¢ (v;) type (¢ (A(vy))) value (¢
(vihasopvy), @ (v)))). Furthermore:
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e if A(v;) € E is a leaf element node, then adding the axiom: Individual (¢ (v;) type
(¢ (A(vy)) value (¢ (vihasdpPCDATA), n(vi, vj));

o If i(vj) = Val;, A(vi) # Dist;, and there is a node vy, € N such that v, < v;, then
adding the axiom: Individual (¢(vy) type(@(A(vy))) value(p(vihasopy;), o(vy))
[>< my]), where m; = n(vj, @Poss;);

o If A(v)) = Val;, A(v;) = Dist;, we have: (1) if there is a node vy € N such that
vj < vx and A(vy) € E, then adding the axiom: Individual (¢ (vj) type (@ (A(v)))
value (¢ (vjhasopvy), @ (vi)) [>< my]), where m; = 5(v;, @Poss;); and else (2)
adding the axiom: Individual (¢ (v;) type (¢ (A(v;))) value (¢ (vhasdpPCDATA),
n(vi, v) [>< my]), where m; = n(v;, @Poss;).

Here: (1) ¢ (A(v})), @ (A(v)), and ¢ (A(vy)) are fuzzy class identifiers FCIDy; ¢
(v;hasopv)) is a fuzzy object property identifier FOPIDy; and ¢ (vihasdpPCDATA)
is a fuzzy datatype property identifier FDPIDy; (2) n(v;, vj) = d; € dom is the
content of the element A(v)).

For example, for two nodes university, UName € N such that univer-
sity < UName in the fuzzy XML document, we create the axioms: Individual
(id592914 Type (¢ (university)) Value (¢ (universityhasopUName) id593011));
Individual (id593011 Type (¢ (UName))). Here, ¢ (university), ¢ (UName) are
two fuzzy class identifiers FCID,y and ¢ (universityhasopUName) is the created
fuzzy object property identifier FOPID,, id592914 and id593011 are two fuzzy
individual identifiers FIID, as mentioned in the rule 12. The examples for the other
cases in the rule 13 can be given similarly.

Rule 14: For each pair nodes v;, v; € N with v; < v;, if 2(vj) € E and A(v)) = @g;
€ A, then creating the axiom: Individual (¢ (v;) type (¢ (A(v;))) value (¢ (v;has-
dpa)), n(vi, vj)))-

Here: (1) @ (A(v)) is a fuzzy class identifier FCID, and ¢ (v;hasdpa)) is a fuzzy
datatype property identifier FDPIDy; (2) n(vi, vj) = d; € dom is the value of the
attribute. For example, for two nodes Val,, Poss, € N such that Val, < @Poss,
and n(Val,, @Poss;) = 0.87 in the fuzzy XML document, we create the axiom:
Individual (id593017 Type (¢ (Valy)) Value (¢ (Val;hasdpPoss;) “0.87)). Here,
@ (Valy) is the fuzzy class identifier FCID, and ¢ (Val;hasdpPoss;) is the fuzzy
datatype property identifier FDPID,, and id593017 is the fuzzy individual iden-
tifier FIID, created by the rule 12.Fmay be returned by invoking

Below we discuss the correctness of the approach. Being similar to the Theorem
7.1, the correctness can be sanctioned by establishing mappings between instance
documents of the fuzzy DTD (i.e., fuzzy XML documents) and models of the
constructed fuzzy ontology.

Theorem 7.6 For every fuzzy DTD D and its transformed fuzzy ontology structure
@(D), there exist two mappings p, from fuzzy XML documents to models of ¢(D),
and A, from models of o(D) to fuzzy XML documents, such that:

e For each fuzzy XML document d conforming to D, p(d) is a model of ¢(D);
e For each model FI of ¢(D), A (FI) is a fuzzy XML document conforming to D.
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The proof of Theorem 7.6, which is similar to the proof of Theorem 7.1, is
omitted here.

In the following, we provide an example to explain well the transformation
processes. From the approach above, the approach first performs the transforma-
tion from the symbols of fuzzy DTDs in fuzzy XML models (e.g., elements and
attributes) to identifiers of fuzzy ontologies. For example:

1. The fuzzy XML element symbols such as student, sname in Fig. 3.2 are
transformed into fuzzy class identifiers ¢ (student), ¢ (sname) € FCID,
respectively according to the rule 1.

Then, the approach further transforms element type definitions of fuzzy DTDs
in fuzzy XML models into fuzzy class and property axioms of fuzzy ontologies.
For example:

2. For the element type definition such as student — (sname?, age?, email?) in
Fig. 3.2, the following axioms are created by jointly using the Rules 6 and 11:

Class (¢ (student) complete intersectionOf (¢ (sname) ¢ (age) ¢ (email)));
Class (¢ (student) partial restriction (¢ (studenthasopsname) allValuesFrom (¢
(sname)) maxCardinality (1)) restriction (¢ (studenthasopage) allValuesFrom
(¢ (age)) maxCardinality (1)) restriction (¢ (studenthasopemail) allValuesFrom
(¢ (email)) maxCardinality (1)));

ObjectProperty (¢ (studenthasopsname) domain (¢ (student)) range (¢
(sname)));

ObjectProperty (¢ (studenthasopage) domain (¢ (student)) range (¢ (age)));
ObjectProperty (¢ (studenthasopemail) domain (¢ (student)) range (¢ (email))).

Finally, the approach transforms fuzzy XML documents of fuzzy XML models
into fuzzy individual identifiers and axioms of fuzzy ontologies. For example:

3. For nodes student, sname, and age € N such that student < sname, stu-
dent < age in the fuzzy XML document, the following axioms are created by
jointly using the Rules 12 and 13:

Individual (id593108 Type (¢ (student)) Value (¢ (studenthasopsname) id593216)
Value (¢ (studenthasopage) id593237));
Individual (id593216 Type (¢ (sname))); Individual (id593237 Type (¢ (age))).

The complete transformation example from a fuzzy XML model to a fuzzy
ontology is provided in the following. Given a fragment of fuzzy DTD and fuzzy
XML document (which are basically from the fuzzy DTD D, in Fig. 3.2 and the
corresponding document instance fuzzy XML document d; in Fig. 3.1), according to
the Rules 1-14, we can obtain the fuzzy ontology FO = (FOs, FOy), which consists
of the fuzzy ontology structure FOg = ¢(D;) and the fuzzy ontology instance
FOy = ¢ (dy) as follows. Here, some fuzzy axioms are omitted for brevity.

Class (¢p(universities) partial restriction (@(universitieshasopuniversity) all-
ValuesFrom (¢(university))));
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ObjectProperty (¢@(universitieshasopuniversity) domain (¢(universities)) range
(p(university)));

Class (¢(university) complete intersectionOf (¢(UName) ¢(Val))));
ObjectProperty  (¢(universityhasopUName) domain (¢(university)) range
(@(UName)) [Functional]);

ObjectProperty (¢(universityhasopVal;) domain (¢p(university)) range (¢p(Val,)));
Class (¢@(university) partial restriction (@(universityhasopUName) allValuesFrom
(p(UName)) Cardinality (1)) restriction (¢@(universityhasopVal;) allValuesFrom
(¢(Valy)) minCardinality (1)));

Class (¢(UName) partial restriction (@(UNamehasdpPCDATA) allValuesFrom
(@(PCDATA)) cardinality (1)));

DatatypeProperty  (o(UNamehasdpPCDATA) domain (¢(UName)) range
(p(PCDATA)) [Functional]);

Class (¢(Val;) partial restriction (¢(Val;hasopstudent) allValuesFrom (¢(student))));
ObjectProperty (¢(Valhasopstudent) domain (¢(Val;)) range (¢(student)));
Class (@(Val;) partial restriction (¢(Val;hasdpPoss;) allValuesFrom
(p(CDATA)));

DatatypeProperty (¢(Val;hasdpPoss;) domain (¢@(Val,)) range(p(CDATA)));
Class (¢(student) complete intersectionOf (¢(sname) ¢@(age) ¢(email)));

Class (¢(student) partial restriction (@(studenthasopsname) allValuesFrom
(p(sname)) maxCardinality (1)) restriction (@(studenthasopage) allValuesFrom
(p(age)) maxCardinality (1)) restriction (¢(studenthasopemail) allValuesFrom
(p(email)) maxCardinality (1)));

ObjectProperty (¢(studenthasopsname) domain (¢(student)) range (¢(sname)));
ObjectProperty (¢(studenthasopage) domain (¢p(student)) range (¢(age)));
ObjectProperty (¢@(studenthasopemail) domain (¢(student)) range (@(email)));
Class (¢(sname) partial restriction (¢@(snamehasdpPCDATA) allValuesFrom
(@p(PCDATA)) cardinality (1)));

DatatypeProperty (¢(snamehasdpPCDATA) domain (¢@(sname)) range (¢@(PCDA-
TA)) [Functional]);

Class (¢p(age) partial restriction (@(agehasopDist;) allValuesFrom (¢@(Dist;))
Cardinality (1)));

ObjectProperty  (p(agehasopDist;) domain (¢(age)) range (¢(Dist))
[Functional]);

Class (¢(Dist;) partial restriction (¢(Dist;hasopValy) allValuesFrom (¢(Val,))
minCardinality (1)));

ObjectProperty (¢(Dist;hasopVal,) domain (¢(Dist;)) range (@(Valy)));

Class (@(Dist;) partial restriction (¢@(Dist;hasdptype)  allValuesFrom
(p(disjunctive)));

DatatypeProperty (¢(Dist;hasdptype) domain (¢(Dist,)) range(¢(disjunctive)));
Class (¢@(Valp) partial restriction (¢@(Valyhasopage_value) allValuesFrom
(¢p(age_value)) Cardinality (1)));

ObjectProperty (¢(Valshasopage_value) domain (¢(Valy)) range (¢(age_value))
[Functional]);

Individual (id592846 Type (universities)
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Value (universitieshasopuniversity 1d592912) [« 0.87]

Value (universitieshasopuniversity 1d592914));
Individual (id592914 Type (university)

Value (universityhasopUName 1d593011));
Individual (id593011 Type (UName)

Value (UNamehasdpPCDATA “Wayne state University”));
Individual (id592912 Type (university)

Value (universityhasopUName 1d593015)

Value (universityhasopVal; 1d593017));
Individual (id593015 Type (UName)

Value (UNamehasdpPCDATA “Oakland University”));
Individual (id593017 Type (Valy)

Value (Val;hasopstudent id593108)

Value (Val;hasdpPoss; “0.877));
Individual (id593108 Type (student)

Value (studenthasopsname 1d593216)

Value (studenthasopage 1d593237)

Value (studenthasopemail 1d593241));
Individual (id593216 Type (sname)

Value (snamehasdpPCDATA “Tom Smith”));
Individual (id593237 Type (age)

Value (agehasopDist; id593319));
Individual (id593407 Type (Val,)

Value (Val;hasopage_value 1d593516) [>< 0.9]

Value (Val;hasdpPoss, “0.97)); ...

So far, on the basis of the proposed approach, fuzzy ontologies can be con-
structed from fuzzy XML models. Two steps need to be carried out when trans-
forming fuzzy XML model into fuzzy ontology: transforming the fuzzy DTD into
a fuzzy ontology at structure level and transforming the fuzzy XML document
w.r.t. the fuzzy DTD into the fuzzy ontology at instance level. Therefore, the
correctness of the construction approach is decided by the respective correctness of
two steps above. For the first step, the Rules 1-11 can first transform all the
symbols in a fuzzy DTD (e.g., element names and attribute names) into fuzzy
ontology identifiers, and then create a set of fuzzy class and property axioms from
the element type definitions E — (o, A) of the fuzzy DTD. The correctness of the
transformation in this step can be guaranteed by the Theorem 7.6. For the second
step, as mentioned in the rules 12-14, based on the constructed fuzzy ontology
identifiers and axioms in the first step, the rules in the second step can further map
the values of elements and attributes in a fuzzy XML document to fuzzy individual
axioms. The correctness of the transformation of instance level can be ensured by
the correctness of the first step.
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Following the approach above, we developed a prototype transformation tool
called FXML2FOnto, which can automatically construct fuzzy ontologies from
fuzzy XML models. In the following, we briefly introduce the design and
implementation of FXML2FOnto. The implementation of FXML2FOnto is based
on Java 2 JDK 1.6 platform, and the Graphical User Interface is exploited by using
the java.awt and javax.swing packages. The core of FXML2FOnto supports the
transformations from a fuzzy DTD to fuzzy ontology structure as well as from a
fuzzy XML document w.r.t. the fuzzy DTD to fuzzy ontology instance. Figure 7.3
shows the overall architecture of FXML2FOnto.

As shown in Fig. 7.3, FXML2F Onto includes four main modules: input module,
parsing module, transformation module, and output module. The input module
inputs the fuzzy DTD and the corresponding fuzzy XML document files, and it
should be noted that at present FXML2FOnto cannot automatically extract the
fuzzy DTD according to the fuzzy XML document if there is not a fuzzy DTD at
hand; the parsing module uses Java methods to parse the fuzzy DTD and uses the
XML DOM technique to parse the fuzzy XML document, and then stores the
parsed results as document object trees; the transformation module uses XSLT
processor to transform the parsed fuzzy DTD and fuzzy XML document into the
fuzzy ontology structure and instance based on the proposed approaches above; the
output module produces the resulting fuzzy ontology which is saved as a text file
and displayed on the tool screen. The main class diagram of the tool is shown in

Fig. 7.4.
Fuzzy DTD Fuzzy XML
Document
Fuzzy XML parser
| [
A 4 i
. fuzzy DTD to . Fuzzy XML
Mapping rules . S .

PPInNg »  fuzzy ontology > Mapping rules » document to fuzzy
structure \-/—\ ontology instance

Fuzzy ontology Fuzzy ontology

Connecting them by
owl:import property

structure instance

Fig. 7.3 The overall architecture of FXML2FOnto
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Fig. 7.4 The main class diagram of FXML2FOnto

We carried out transformation experiments of some fuzzy XML models using
the implemented tool FXML2FOnto, with a PC (CPU P4/3.0 GHz, RAM 3.0 GB
and Windows XP system). The sizes of the fuzzy XML models range from 0 to
1000. We use the total number of main elements and attributes to measure the size
N of a fuzzy XML model. Case studies show that our approach actually works and
the tool is efficient. Figure 7.5 shows the actual execution time routines in the
FXML2FOnto tool running ten fuzzy XML models, where the preprocessing
denotes the operations of parsing and storing fuzzy XML models, i.e., parsing the
fuzzy XML models and preparing the element data in computer memory for the
usage in the transformation procedure.

Here we provide an example of FXML2FOnto. Figure 7.6 is the screen snap-
shot of FXML2FOnto running a case study, and the used case study is the previous
example. The screen snapshot displays the procedure of constructing the fuzzy
ontology from the fuzzy XML model. In Fig. 7.6, the fuzzy XML model, the
parsed results, and the transformed fuzzy ontology are displayed in the left, right,
and middle areas, respectively.

7.3.2 Reasoning on Fuzzy XML with Fuzzy Ontology

Reasoning on fuzzy XML with fuzzy ontology is very similar to the reasoning of
fuzzy XML with fuzzy Description Logic as introduced in Sect. 7.2.3. Fuzzy
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Fig. 7.6 The screen snapshot of FXML2FOnto

ontologies have the reasoning nature because of the existence of fuzzy Description
Logics, since the logical underpinnings of fuzzy ontologies are mainly very
expressive fuzzy Description Logic. Therefore, here we do not attempt to intro-
duce the details of reasoning on fuzzy XML with fuzzy ontologies. In Horrocks
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and Patel-Schneider (2004), a translation from OWL entailment to Description
Logic satisfiability was provided. Based on the idea in Horrocks and Patel-
Schneider (2004), the authors in Stoilos et al. (2010) presented a translation
method which reduces inference problems of fuzzy OWL ontologies into inference
problems of fuzzy Description Logics, thus one can make use of fuzzy Description
Logic reasoners to support reasoning for fuzzy OWL ontologies. In summary, two
steps may be needed for reasoning on fuzzy ontologies:

1. Translating fuzzy ontology into fuzzy Description Logic knowledge base, thus
fuzzy ontology entailment can be further reduced to fuzzy Description Logic
knowledge base entailment.

2. Reducing fuzzy Description Logic knowledge base entailment to fuzzy
Description Logic knowledge base (un)satisfiability, and the latter can be
reasoned through the reasoning techniques or the fuzzy Description Logic
reasoners.

For the first step (1), the translation from a fuzzy ontology to the corresponding
fuzzy Description Logic knowledge base can be defined by a function over the
mappings between fuzzy OWL syntax and the respective fuzzy Description Logic
syntax as shown in Zhang et al. (2013). For instance, the fuzzy OWL axioms
SubClassOf (Cy, C») and EquivalentClasses (Cy, ..., C,) are mapped to fuzzy
Description Logic concept axioms C; [ C, and C; =---= C, respectively.
Besides the straightforward translation above, it should be noted that the transla-
tion of individual axioms from fuzzy ontology to fuzzy Description Logic
knowledge base is complex as mentioned in Stoilos et al. (2010), because the fuzzy
OWL syntax supports anonymous individuals, which fuzzy Description Logic
syntax does not. For example, the individual axiom Individual (type (C) value
(R Individual (type (D) > 0.9)) > 0.8) is translated into the fuzzy Description
Logic assertions C (a) = 1, R (a, b) > 0.8 and D (b) > 0.9, where a and b are new
individuals. Based on the translation from a fuzzy ontology to the corresponding
fuzzy Description Logic knowledge base, thus fuzzy ontology entailment can be
reduced to fuzzy Description Logic knowledge base entailment. That is, a fuzzy
ontology axiom is satisfied if and only if the translated fuzzy Description Logic
axiom or assertion is satisfied, or if FO; and FO, are two fuzzy ontologies and
FK, and FIC, are the respective translated fuzzy Description Logic knowledge
bases, then FO; entails FO, iff FIC; entails F/C,. For the second step (2), it is a
common issue in the area of fuzzy Description Logics, and many proposals have
been presented for reducing some reasoning problems of fuzzy Description Logics
(e.g., concept subsumption and entailment problems) to the knowledge base
(un)satisfiability.

Overall, the translation approaches from fuzzy ontologies to fuzzy Description
Logic knowledge bases together with the fuzzy Description Logic reasoning
techniques as introduced briefly in Sect. 7.2, may provide reasoning support over
fuzzy ontologies. In this section, the details of reasoning on fuzzy XML with fuzzy
ontology, which are very similar to the reasoning of fuzzy XML with fuzzy
Description Logic as introduced in Sect. 7.2.3, and thus are not introduced in here
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again. Based on the Theorems in Sect. 7.2.3, here we only give the brief reasoning
algorithm for fuzzy XML models with the fuzzy ontology. The following algo-
rithm describes the overall process of reasoning on fuzzy XML models with the
fuzzy ontologies, and the algorithm includes two main steps: constructing fuzzy
ontologies from fuzzy XML models and reducing the reasoning tasks of the fuzzy
XML models to the reasoning problems of the constructed fuzzy ontologies. The
former is based on some previous proposed transformation rules, and the latter is
based on several reducing procedures as shown in Theorems 7.2-7.5.

Algorithm// The algorithm describes the reasoning process of fuzzy XML
models with fuzzy ontologies

Input: R, i.e., any one of reasoning tasks of a fuzzy XML model (D, d) mentioned
in Sect. 7.2.3, where D may be a fuzzy DTD or a set {D;, D,,...} of fuzzy DTDs,
and d is a fuzzy XML document

Output: true/false

Steps:

1. Constructing a fuzzy ontology FO = (¢ (D), ¢ (d)) from the fuzzy XML
model (D, d) according to the transformation Rules 1-14:

e For each element symbol E€ E — (a, A) in D, creating a fuzzy class identifier
¢ (E) as Rule 1;

e For each type T (i.e., #PCDATA or CDATA) in D, creating a fuzzy data range
identifier ¢ (7T) as Rule 2;

e For each attribute type definition in D, creating the corresponding fuzzy
ontology identifiers and axioms as Rule 3;

e For each element type definition in D, creating the corresponding fuzzy
ontology identifiers and axioms as the rules 4—11;

e For each element node v € N in d, creating the corresponding fuzzy ontology
individual identifier and individual axiom as Rule 12;

e For each pair nodes vi, v; € N in d with v; <vj, creating the corresponding
fuzzy ontology individual identifiers and individual axioms as the rules
13-14;

2. Reducing the input reasoning task R, of the fuzzy XML model to the reasoning
problem of the constructed fuzzy ontology FO:

e If R, is whether d conforms to D, then checking whether 1 (d) is a model of
@(D) as mentioned in Theorem 7.6, and then goto step 3;
//n (d) can be given according to Theorem 7.6

o If R, is D; S D,, then checking whether ¢ (D) F 1), [ r}),, and then goto
step 3;

e If R, is D; = D,, then checking whether ¢ (D) F1),, = r},, and then goto
step 3;
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e If R, is D; ® D,, then checking whether ¢ (D) )=r;)1 M rgz C 1, and then
goto step 3;
/lhere 1, and r}), are two fuzzy concepts in ¢ (D)
3. Return true/false

/IThe reasoning results may be returned by invoking the reasoner DeLorean
(Bobillo et al. 2012). When we input the constructed fuzzy ontology FO and the
reasoning problems of FO above into the reasoner, the reasoner can return the
results.

4. End

7.4 Summary

Data management involving XML with imprecision and uncertainty has attracted
much attention both from academia and industry. Accordingly, a significant
interest developed regarding the problem of describing fuzzy XML with expres-
sive knowledge representation techniques in recent years, so that some fuzzy XML
issues such as reasoning and querying may be handled intelligently. Reasoning on
XML with imprecision and uncertainty would help to check whether a document
conforms to a given document structure or two documents are compatible, and also
may improve the precision and efficiency of query processing. Therefore, based on
the high expressive power and effective reasoning services of the knowledge
representation formalisms fuzzy Description Logics and fuzzy ontologies, in this
chapter, we introduced how to reason on fuzzy XML with fuzzy Description
Logics and fuzzy ontologies. We developed some rules for transforming fuzzy
XML into fuzzy Description Logic and fuzzy ontology, respectively, and then
presented approaches for reasoning on fuzzy XML with the transformed
formalisms.

Reasoning on fuzzy XML is an important issue for establishing the overall
management system and realizing the intelligent processing of fuzzy XML data. It
should be noted that the issue of reasoning on fuzzy XML we introduced in this
chapter mainly focuses on XML DTD because it has traditionally been the most
common method for describing the structure of XML instance documents, and
reasoning on fuzzy XML Schema can be done following the similar procedure.
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