Functional Programming in

MEAF

Paul Chiusano
Ranar Bjarnason

.allitebooks.co

http://www.allitebooks.org

MEAP Edition
Manning Early Access Program
Functional Programming in Scala

version 10

Copyright 2013 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

M.al | itebooks.cogl

http://www.manning.com/
http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

brief contents

PART 1: INTRODUCTION TO FUNCTIONAL PROGRAMMING
1. What is functional programming?
2. Getting Started
3. Functional data structures
4. Handling errors without exceptions
5. Strictness and laziness
6. Purely functional state
PART 2: FUNCTIONAL DESIGN AND COMBINATOR LIBRARIES
7. Purely functional parallelism
8. Property-based testing
9. Parser combinators
PART 3: FUNCTIONAL DESIGN PATTERNS
10. Monouds
11. Monads
12. Applicative and traversable functors
PART 4: BREAKING THE RULES: EFFECTS AND 1/0O
13. External effects and 1/ O
14. Local effects and the ST monad

15. Stream processing and incremental 1/ O

vww .allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

Preface

P.1 About this book

Thisis not a book about Scala. This book introduces the concepts and techniques
of functional programming (FP)—we use Scala as the vehicle, but the lessons
herein can be applied to programming in any language. Our goal is to give you the
foundations to begin writing substantive functional programs and to comfortably
absorb new FP concepts and techniques beyond those covered here. Throughout
the book we rely heavily on programming exercises, carefully chosen and
sequenced to guide you to discover FP for yourself. Expository text is often just
enough to lead you to the next exercise. Do these exercises and you will learn the
material. Read without doing and you will find yourself lost.

A word of caution: no matter how long you've been programming, learning FP
is challenging. Come prepared to be a beginner once again. FP proceeds from a
startling premise—that we construct programs using only pure functions, or
functions that avoid side effects like writing to a database or reading from afile. In
the first chapter, we will explain exactly what this means. From this single ideaand
its logical consequences emerges a very different way of building programs, one
with its own body of techniques and concepts. We start by relearning how to write
the simplest of programs in a functional way. From this foundation we will build
the tower of techniques necessary for expressing functional programs of greater
complexity. Some of these techniques may feel alien or unnatural at first and the
exercises and questions can be difficult, even brain-bending at times. This is
normal. Don't be deterred. Keep a beginner's mind, try to suspend judgment, and if

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

you must be skeptical, don't let this skepticism get in the way of learning. When
you start to feel more fluent at expressing functional programs, then take a step
back and evaluate what you think of the FP approach.

This book does not require any prior experience with Scala, but we won't spend
a lot of time and space discussing Scala's syntax and language features. Instead
we'll introduce them as we go, with a minimum of ceremony, mostly using short
examples, and mostly as a consequence of covering other material. These minimal
introductions to Scala should be enough to get you started with the exercises. If
you have further questions about the Scala language while working on the
exercises, you are expected to do some research and experimentation on your own
or follow some of our linksto further reading.

P.2 How to read this book

The book is organized into four parts, intended to be read sequentially. Part 1
introduces functional programming, explains what it is, why you should care, and
walks through the basic low-level techniques of FP, including how to organize and
structure small functional programs, define functional data structures, and handle
errors functionally. These techniques will be used as the building blocks for all
subsequent parts. Part 2 introduces functional design using a number of worked
examples of functional libraries. It will become clear that these libraries follow
certain patterns, which highlights the need for new cognitive tools for abstracting
and generalizing code—we introduce these tools and explore concepts related to
them in Part 3. Building on Part 3, Part 4 covers techniques and mechanisms for
writing functional programs that perform 1/O (like reading/writing to a database,
files, or the screen) or writing to mutable variables.

Though the book can be read sequentialy straight through, the material in Part
3 will make the most sense after you have a strong familiarity with the functional
style of programming developed over parts 1 and 2. After Part 2, it may therefore
be a good idea to take a break and try getting more practice writing functional
programs beyond the shorter exercises we work on throughout the chapters. Part 4
also builds heavily on the ideas and techniques of Part 3, so a second break after
Part 3 to get experience with these techniquesin larger projects may be a good idea
before moving on. Of course, how you read this book is ultimately up to you, and
you are free to read ahead if you wish.

Most chapters in this book have similar structure. We introduce and explain
some new idea or technique with an example, then work through a number of
exercises, introducing further material via the exercises. The exercises thus serve

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

3

two purposes: to help you to understand the ideas being discussed and to guide you
to discover for yourself new ideas that are relevant. Therefore we strongly suggest
that you download the exercise source code and do the exercises as you go through
each chapter. Exercises, hints and answers are all available at
https://github.com/pchiusano/fpinscala. We also encourage you to visit the
scala-functional Google group and the #f p-i n-scal a IRC channel on

I rc. freenode. net for questions and discussion.

Exercises are marked for both their difficulty and to indicate whether they are
critical or noncritical. We will mark exercises that we think are hard or that we
consider to be critical to understanding the material. The hard designation is our
effort to give you some idea of what to expect—it is only our guess and you may
find some unmarked questions difficult and some questions marked hard to be
quite easy. The critical designation is applied to exercises that address concepts
that we will be building on and are therefore important to understand fully.
Noncritical exercises are still informative but can be skipped without impeding
your ability to follow further material.

Examples are given throughout the book and they are meant to be tried rather
than just read. Before you begin, you should have the Scala interpreter (REPL)
running and ready. We encourage you to experiment on your own with variations
of what you see in the examples. A good way to understand something is to change
it lightly and see how the change affects the outcome.

Sometimes we will show a REPL session to demonstrate the result of running
some code. This will be marked by lines beginning with the scal a> prompt of
the REPL. Code that follows this prompt is to be typed or pasted into the
interpreter, and the line just below will show the interpreter's response, like this:

scala> println("Hello, World!'")
Hel |l o, Worl d!

SIDEBAR Sidebars
Occasionally throughout the book we will want to highlight the precise

definition of a concept in a sidebar like this one. This lets us give you a
complete and concise definition without breaking the flow of the main
text with overly formal language, and also makes it easy to refer back to
when needed.

There are chapter notes (which includes references to external resources) and

[vww allitebooks.cond

https://github.com/pchiusano/fpinscala
https://groups.google.com/forum/#!forum/scala-functional
https://github.com/pchiusano/fpinscala
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

several appendix chapters after Part 4. Throughout the book we provide references
to this supplementary material, which you can explore on your own if that interests
you.

Have fun and good luck.

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

What is Functional Programming?

1.1 The fundamental premise of functional programming
Functional programming (FP) is based on a simple premise with far-reaching
implications: We construct our programs using only pure functions. In other words,
functions that have no side effects. What does this mean exactly? Performing any
of the following actions directly would involve a side effect:

Reassigning avariable

Modifying a data structure in place

Setting afield on an object

Throwing an exception or halting with an error
Printing to the console or reading user input
Reading from or writing to afile

Drawing on the screen

Consider what programming would be like without the ability to do these
things. It may be difficult to imagine. How is it even possible to write useful
programs at all? If we can't reassign variables, how do we write simple programs
like loops? What about working with data that changes, or handling errors without
throwing exceptions? How can we perform 1/O, like drawing to the screen or
reading from afile?

The answer is that we can still write all of the same programs—programs that
can do all of the above and more—without resorting to side effects. Functional
programming is a restriction on how we write programs, but not on what programs
we can write. And it turns out that accepting this restriction is tremendously

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

beneficial because of the increase in modularity that we gain from programming
with pure functions. Because of their modularity, pure functions are easier to test,
to reuse, to parallelize, to generalize, and to reason about.

But reaping these benefits requires that we revisit the act of programming,
starting from the simplest of tasks and building upward from there. In many cases
we discover how programs that seem to necessitate side effects have some purely
functional analogue. In other cases we find ways to structure code so that effects
occur but are not observable (For example, we can mutate data that is declared
locally in the body of some function if we ensure that it cannot be referenced
outside that function.) Nevertheless, FP is atruly radical shift in how programs are
organized at every level—from the simplest of loops to high-level program
architecture. The style that emerges is quite different, but it is a beautiful and
cohesive approach to programming that we hope you come to appreciate.

In this book, you will learn the concepts and principles of FP as they apply to
every level of programming. We begin in this chapter by explaining what a pure
function is, as well as what it isn't. We also try to give you an idea of just why
purity resultsin greater modularity and code reuse.

1.2 Exactly what is a (pure) function?
A function with input type A and output type B (written in Scalaas asingle type: A
=> B) isacomputation which relates every value a of type Ato exactly one value
b of type B such that b is determined solely by the value of a.

For example, afunction i nt ToSt ri ng having typel nt => Stri ng will
take every integer to a corresponding string. Furthermore, if it really is a function,
it will do nothing else.

In other words, a function has no observable effect on the execution of the
program other than to compute a result given its inputs; we say that it has no side
effects. We sometimes qualify such functions as pure functions to make this more
explicit. You already know about pure functions. Consider the addition (+)
function on integers. It takes two integer values and returns an integer value. For
any two given integer values it will always return the same integer value. Another
example is the | engt h function of a St ri ng in Java, Scala, and many other
languages. For any given string, the same length is always returned and nothing
else occurs.

We can formalize thisidea of pure functions by using the concept of referential
transparency (RT). This is a property of expressions in general and not just

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

7

functions. For the purposes of our discussion, consider an expression to be any part
of a program that can be evaluated to aresult, i.e. anything that you could type into
the Scala interpreter and get an answer. For example, 2 + 3 isan expression that
applies the pure function + to the values 2 and 3 (which are also expressions). This
has no side effect. The evaluation of this expression results in the same value 5
every time. In fact, if yousaw 2 + 3 in aprogram you could simply replace it
with the value 5 and it would not change a thing about your program.

This is all it means for an expression to be referentially transparent—in any
program, the expression can be replaced by its result without changing the meaning
of the program. And we say that a function is pureif its body is RT, assuming RT
inputs.

SIDEBAR Referential transparency and purity
An expression e is referentially transparent if for all programs p, all
occurrences of e in p can be replaced by the result of evaluating e,
without affecting the observable behavior of p. A function f is pure if the
expression f(x) is referentially transparent for all referentially

transparent x.1

Footnote 1 There are some subtleties to this definition, and we'll be
refinining it later in this book. See the chapter notes for more discussion.

1.3 Functional and non-functional: an example
Referential transparency enables a mode of reasoning about program evaluation

called the substitution model. When expressions are referentially transparent, we
can imagine that computation proceeds very much like we would solve an
algebraic equation. We fully expand every part of an expression, replacing all
variables with their referents, and then reduce it to its simplest form. At each step
we replace a term with an equivalent one; we say that computation proceeds by
substituting equals for equals. In other words, RT enables equational reasoning
about programs. This style of reasoning is extremely natural; you use it all the time
when understanding programs, even in supposedly "non-functional” languages.

Let's look at two examples—one where all expressions are RT and can be
reasoned about using the substitution model, and one where some expressions
violate RT. There is nothing complicated here, part of our goal is to illustrate that
we are just formalizing something you already likely understand on some level.
Let'stry the following in the Scala REPL :2

[vww allitebooks.cond

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

Footnote 2 In Javaand in Scala, strings are immutable. If you wish to "modify" a string, you must create a
copy of it.

scala> val x = "Hello, World"
X: java.lang. String = Hello, Wrld

scala> val rl1 = x.reverse
rl: String = dlrow,olleH

scala> val r2 = x.reverse
r2: String = dlrow,olleH

Suppose we replace all occurrences of the term x with the expression
referenced by x (its definition), asfollows:

scala> val rl1 = "Hello, Wrld".reverse
rl: String = dlrow,olleH

val r2 = "Hello, Wirld".reverse
r2: String = dlrow,olleH

This transformation does not affect the outcome. The valuesof r 1 and r 2 are
the same as before, so x was referentially transparent. What's more, r 1 andr 2 are
referentially transparent as well, so if they appeared in some other part of a larger
program, they could in turn be replaced with their values throughout and it would
have no effect on the program.

Now let's look at a function that is not referentially transparent. Consider the
append function on the scal a. col | ecti on. nut abl e. St ri ngBui | der
class. Thisfunction operates on the St r i ngBui | der in place. The previous state
of the St r i ngBui | der isdestroyed after acall to append. Let'stry this out:

scal a> val x = new StringBuilder("Hello")
x: java.lang. StringBuilder = Hello

scal a> val y = x.append(", World")
y: java.lang. StringBuilder = Hello, Wrld

scala> val rl1 = y.toString
rl: java.lang. String = Hello, Wrld

scala> val r2 = y.toString
r2: java.lang.String = Hello, Wrld

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

9

So far so good. Let's now see how this side effect breaks RT. Suppose we
substitute the call to append like we did earlier, replacing all occurrences of y
with the expression referenced by y:

scal a> val x = new StringBuilder("Hello")
X: java.lang. StringBuilder = Hello

scala> val rl1 = x.append(", Wrld").toString
rl: java.lang.String = Hello, Wrld

scala> val r2 = x.append(", Wrld").toString
r2: java.lang.String = Hello, Wrld, Wrld

This transformation of the program results in a different outcome. We therefore
conclude that St ri ngBui | der . append isnot apure function. What's going on
here is that whiler 1 and r 2 look like they are the same expression, they are in
fact referencing two different values of the same St r i ngBui | der . By the time
r 2 callsx. append, r 1 will have aready mutated the object referenced by x. If
this seems difficult to think about, that's because it is. Side effects make reasoning
about program behavior more difficult.

Conversely, the substitution model is simple to reason about since effects of
evaluation are purely local (they affect only the expression being evaluated) and
we need not mentally simulate sequences of state updates to understand a block of
code. Understanding requires only local reasoning. Even if you haven't used the
name "substitution model”, you have certainly used this mode of reasoning when
thinking about your code.3

Footnote 3 In practice, programmers don't spend time mechanically applying substitution to determine if
codeis pure—it will usualy be quite obvious.

1.4 Why functional programming?
We said that applying the discipline of FP buys us greater modularity. Why is this
the case? Though this will become more clear over the course of the book, we can
give someinitial insight here.

A modular program consists of components that can be understood and reused
independently of the whole, such that the meaning of the whole depends only on
the meaning of the components and the rules governing their composition; that is,
they are composable. A pure function is modular and composable because it
separates the logic of the computation itself from "what to do with the result" and

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

10

"how to obtain the input"; it is a black box. Input is obtained in exactly one way:
via the argument(s) to the function. And the output is simply computed and
returned. By keeping each of these concerns separate, the logic of the computation
IS more reusable; we may reuse the logic wherever we want without worrying
about whether the side effect being done with the result or the side effect being
done to request the input is appropriate in all contexts. We also do not need to
mentally track all the state changes that may occur before or after our function's
execution to understand what our function will do; we simply look at the function's
definition and substitute the arguments into its body.

Let's look at a case where factoring code into pure functions helps with reuse.
Thisis a ssimple and contrived example, intended only to be illustrative. Suppose
we are writing a computer game and are required to do the following:

If player 1's score property is greater than player 2's, notify the user that player
1 has won, otherwise notify the user that player 2 has won.

We may be tempted to write something like this:

case class Player(nane: String, score: Int) ‘)

def printWnner(p: Player): Unit = ‘D
println(p.name + " is the winner!")

def declareWnner(pl: Player, p2: Player): Unit = ‘;
if (pl.score > p2.score) printWnner(pl)
el se printWnner(p2)

@ Declares adatatype Player with two properties: name, which is a string, and score,
an integer.

@ Printsthe name of the winner to the console.

© Takestwo Players, compares their scores and declares the winner.

This declares a simple data type Pl ayer with two properties, name, which is
acharacter string, and scor e which is an integer. The method decl ar eW nner
takes two Pl ayer s, compares their scores and declares the player with the higher
score the winner (unfairly favoring the second player, granted). The
pri nt W nner method prints the name of the winner to the console. The result
type of these methods is Uni t indicating that they do not return a meaningful

result but have a side effect instead.
Let'stest thisin the REPL:

scal a> val sue = Player("Sue", 7)
sue: Pl ayer = Pl ayer(Sue, 7)

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

scal a> val bob = Pl ayer("Bob", 8)
bob: Pl ayer = Pl ayer (Bob, 8)

scal a> wi nner (sue, bob)
Bob is the wi nner!

While this code closely matches the earlier problem statement, it also
intertwines the branching logic with that of displaying the result, which makes the
reuse of the branching logic difficult. Consider trying to reuse the
decl ar eW nner method to compute and display the sole winner among n
playersinstead of just two. In this case, the comparison logic is simple enough that
we could just inline it, but then we are duplicating logic—what happens when
playtesting reveals that our game unfairly favors one player, and we have to change
the logic for determining the winner? We would have to change it in two places.
And what if we want to use that same logic to sort a historical collection of past
playersto display ahigh score list?

Suppose we refactor the code as follows:

def winner(pl: Player, p2: Player): Player = o
if (pl.score > p2.score) pl else p2

def declareWnner(pl: Player, p2: Player): Unit =
print Wnner (wi nner (pl, p2))

@ A purefunction that takes two players and returns the higher-scoring one.

This version separates the logic of computing the winner from the displaying of
the result. Computing the winner in wi nner is referentially transparent and the
impure part—displaying the result—is kept separate in pri nt W nner . We can
now reuse thelogic of Wi nner to compute the winner among alist of players:

val players = List(Player("Sue", 7), o
Pl ayer (" Bob", 8),
Pl ayer (" Joe", 4))

val p = players. reducelLeft (w nner) 0

print W nner (p) 9

@ Constructsalist of players

F

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

12

W Reducesthelist to just the player with the highest score.
© Printsthe name of the winner to the console.

In this example, r educelLef t isafunction on the Li st data type from the
standard Scala library. The expression will compare al the players in the list and
return the one with the highest score. Note that we are actually passing our
w nner functiontor educelLeft asif it werearegular value. We will have alot
more to say about passing functions to functions, but for now just observe that
because Wi nner is a pure function, we are able to reuse it and combine it with
other functions in ways that we didn't necessarily anticipate. In particular, this
usage of wi nner would not have been possible when the side effect of displaying
the result was interleaved with the logic for computing the winner.

This was just a simple example, meant to be illustrative, and the sort of
factoring we did here is something you've perhaps done many times before. It's
been said that functional programming, at least in small examples, is just normal
separation of concerns and "good software engineering"”.

We will be taking the idea of FP to its logical endpoint in this book, and
applying it in situations where is applicability is less obvious. As we'll learn, any
function with side effects can be split into a pure function at the "core" and
possibly a pair of functions with side effects; one on the input side, and one on the
output side. Thisis what we did when we separated the declaration of thew nner
from our pure function wi nner . This transformation can be repeated to push side
effects to the "outer layers" of the program. Functional programmers often speak of
implementing programs with a pure core and a thin layer on the outside that
handles effects. We will return to this principle again and again throughout the
book.

1.5 Conclusion
In this chapter, we introduced functional programming and explained exactly what
FP is and why you might use it. In subsequent chapters, we cover some of the
fundamentals—how do we write loops in FP? Or implement data structures? How
do we deal with errors and exceptions? We need to learn how to do these things
and get comfortable with the low-level idioms of FP. We'll build on this
understanding when we explore functional design techniquesin parts 2 and 3.

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

Index Terms
composition
equals for equals
equational reasoning
expression substitution
modularity
program modularity
referential transparency
side effects
substitution
substitution model

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

14

Getting started

2.1 Introduction
Now that we have committed to using only pure functions, a question naturally
emerges. how do we write even the simplest of programs? Most of us are used to
thinking of programs as sequences of instructions that are executed in order, where
each instruction has some kind of effect. In this chapter we will learn how to write
programs in the Scala language just by combining pure functions.

This chapter is mainly intended for those readers who are new to Scala, to
functional programming, or both. As with learning a foreign language, immersion
is a very effective method, so we will start by looking at a small but complete
Scala program. If you have no experience with Scala, you should not expect to
understand the code at first glance. Therefore we will break it down piece by piece
to look at what it does.

We will then look at working with higher-order functions. These are functions
that take other functions as arguments, and may themselves return functions as
their output. This can be brain-bending if you have a lot of experience
programming in a language without the ability to pass functions around like that.
Remember, it's not crucial that you internalize every single concept in this chapter,
or solve every exercise. In fact, you might find it easier to skip whole sections and
spiral back to them when you have more experience onto which to attach these
concepts.

2.2 An example Scala program
Thefollowing is a complete program listing in Scala.

/1l A comment!

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

/* Anot her comment */
/** A docunentation conment */
obj ect MyModul e {
def abs(n: Int): Int =
if (n<0) -n
el se n

private def formatAbs(x: Int) = {
val msg = "The absolute value of % is %"
nsg. f ormat (x, abs(x))

}

def main(args: Array[String]): Unit =
println(format Abs(-42))

We declare an object (also known as a "module") named MyModul e. Thisis
simply to give our code a place to live, and a name for us to refer to it later. The
obj ect keyword creates a new singleton type, which means that MyModul e is
the only value (or 'inhabitant’) of that type. We put our code inside the object,
between curly braces. We will discuss objects, modules, and namespaces in more
detail shortly. For now, let's just ook at this particular object.

The MyModul e object has three methods: abs, f or mat Abs, and nai n.
Each method is introduced by the def keyword, followed by the name of the
method which is followed by the arguments in parentheses. In this case all three
methods take only one argument. If there were more arguments they would be
separated by commas. Following the closing parenthesis of the argument list, an
optional type annotation indicates the type of the result (the colon is pronounced
"has type").

The body of the method itself comes after an equals (=) sign. We will
sometimes refer to the part of a method declaration that goes before the equals sign
as the left-hand side or signature, and the code that comes after the equals sign we
will sometimes refer to as the right-hand side or definition. Note the absence of an
explicit r et ur n keyword. The value returned from a method is ssimply the value
of itsright-hand side.

Let's now go through these methods one by one. The abs method represents a

pure function that takes an integer and returnsits absolute value:1

Footnote 1 Astute readers might notice that this definition won't work for | nt eger. M nVal ue, the
smallest negative 32-bit integer, which has no corresponding positive | nt . We'll ignore this technicality here.

def abs(n: Int): Int = 0

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

16

if (n<0) -n

el se n 0

@ The abs method takes a single argument n of type Int, and this is declared with n:
Int.

® Thedefinition isasingle Scala expression that uses the built-in if syntax to negate
nif it'sless than zero.

Thef or mat Abs method represents another pure function:

private def formatAbs(x: Int) = {
val nmsg = "The absolute value of % is %."

nsg. format (x, abs(x)) o
}

@ Theformat method is a standard library method defined on String. Here we are
calling it on the msg object, passing in the value of x along with the value of abs
applied to x. Thisresults in a new string with the occurrences of %d in msg
replaced with the evaluated results of x and abs(x) respectively. Also see the
sidebar on string interpolation below.

This method is declared pri vat e, which means that it cannot be called from
any code outside of the MyMbdul e object. This function takesan | nt and returns
a St ri ng, but note that the return type is not declared. Scala is usually able to
infer the return types of methods, so they can be omitted, but it's generally
considered good style to explicitly declare the return types of methods that you
expect othersto use. This method is private to our module, so we can omit the type
annotation.

The body of the method contains more than one statement, so we put them
inside curly braces. A pair of braces containing statements is called a block.
Statements are separated by new lines or by semicolons. In this case we are using a
new line to separate our statements.

The first statement in the block declaresa St r i ng named nsg using the val
keyword. A val isan immutable variable, so inside the body of the f or mat As
method the name nsg will always refer to the same St ri ng value. The Scala
compiler will complain if you try to reassign nsg to a different value in the same
context.

Remember, a method simply returns the value of its right-hand side, which in
this case is a block. And the value of a multi-statement block inside curly bracesis
simply the same as the value of its last statement. So the result of the f or mat Abs

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

method isjust thevalue of nsg. f or mat (x, abs(x)).

SIDEBAR String interpolation in Scala

We could have written our format Abs function using string
interpolation (documentation) rather than the for mat method on
St ri ng. Interpolated strings can reference Scala values in scope at the
point where they are declared. An interpolated string has an s (for
'substitute’) just before the first ", for example: s" The absol ute
val ue of $x is ${abs(x)}. See the documentation linked above
for more details.

Finally, our mai n method is an "outer shell" that calls into our purely
functional core and performs the effect of printing the answer to the console:

def main(args: Array[String]): Unit =
println(format Abs(-42))

The name mai n is specia because when you run a program, Scalawill look for
a method named mai n with a specific signature. It has to take an Arr ay of
St ri ngsasits argument, and its return type must be Uni t . Thear gs array will
contain the arguments that were given at the command line that ran the program.
The return type of Uni t indicates that this method does not return a meaningful
value. There is only one value of type Uni t and it has no inner structure. It's
written () , pronounced "unit” just like the type. Usually areturn type of Uni t isa
hint that the method has a side effect. But since the mai n method itself is called
once by the operating environment and never from anywhere in our program,
referential transparency is not violated.

2.3 Running our program

This section discusses the simplest possible way of running your Scala programs,
suitable for short examples. More typically, you'll build and run your Scala code
using sbt, the build tool for Scala, and/or an IDE like IntelliJ or Eclipse. See the
book's source code repo on GitHub for more information on getting set up with sbt.
Sht is very smart about ensuring only the minimum number of files are recompiled
when changes are made. It aso has a number of other nice features which we won't
discuss here.

But the simplest way we can run this Scala program (MyModul e) is from the

[vww allitebooks.cond

http://docs.scala-lang.org/overviews/core/string-interpolation.html
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

18

command line, by invoking the Scala compiler directly ourselves. We start by
putting the code in afile called MyModul e. scal a or something similar. We can
then compile it to Java bytecode using the scal ac compiler:

> scal ac MyModul e. scal a

This will generate some files ending with the . cl ass suffix. These files
contain compiled code that can be run with the Java virtual machine. The code can
be executed using the scal a code runner:

> scal a MyModul e
The absol ute value of -42 is 42.

Actualy, it's not strictly necessary to compile the code first with scal ac. A
simple program like the one we have written here can just be run using the Scala
interpreter by passing it to the scal a code runner directly:

> scal a MyMbdul e. scal a
The absol ute value of -42 is 42.

This can be handy when using Scala for scripting. The code runner will ook for
any object within the file MyModul e. scal a that has a mai n method with the
appropriate signature, and will then call it.

Lastly, an alternative way is to start the Scala interpreter's interactive mode,
usually referred to as the read-evalulate-print-loop or REPL (pronounced "repple’
like "apple"), and load the file from there (your actual console output may differ
dightly):

> scal a

Vel come to Scal a.

Type in expressions to have them eval uat ed.
Type :help for nore information.

scal a> : 1 oad MyMddul e. scal a
Loadi ng MyModul e. scal a. . .
defi ned nodul e MyModul e

scal a> MyModul e. mai n(Array()) (1)
The absol ute val ue of -42 is 42.

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

@ maintakesan array asits argument and here we are simply passing it an empty
array.
It's possible to simply copy and paste the code into the REPL. It also has a paste
mode (accessed with the : past e command) specifically designed to paste code.
It's agood ideato get familiar with the REPL and its features.

2.4 Modules, objects, and namespaces

In the above, notice that in order to refer to our mai n method, we had to say
MyModul e. mai n because mai n was defined in the MyModul e object. Aside
from afew technical corner cases, every value in Scalais what's called an "object".
An object whose primary purpose is giving its members a namespace is sometimes
called a module. An object may have zero or more members. A member can be a
method declared with the def keyword, or it can be another object declared with
val orobj ect . Objects can aso have other kinds of members that we will ignore
for now.

We dereference the members of objects with the typical object-oriented
dot-notation, which is a namespace (i.e. the name that refers to the object) followed
by a dot (the period character) followed by the name of the member. For example,
to call the abs method on the MyModul e object we would say
MyModul e. abs(42). To use the t oSt ri ng member on the object 42, we
would say 42. t oSt r i ng. The implementations of members within an object can
refer to each other unqualified (without prefixing the object name), but if needed
they have accessto their enclosing object using a special name: t hi s.

Note that even an expression like2 + 1 isjust calling a member of an object.
In that case what is being called is the + member of the object 2. It is really
syntactic sugar for the expression 2. +(1) . We can in general omit the dot and
parentheses like that when calling a method and applying it to a single argument.
For example, instead of MyModul e. abs(42) wecansay MModul e abs 42
and get the same resullt.

An object's member can be brought into scope by importing it, which allows us
to call it unqualified from then on:

scal a> i mport MyModul e. abs
i nport MyMbdul e. abs

scal a> abs(-42)
res0: 42

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

20

We can bring al of an object's (non-private) members into scope by using the
underscore syntax: i nport MyModul e.

SIDEBAR Packages
In Scala, there is a language construct called a package, which is a
namespace without an object. The difference between a package and a
module is that a package cannot contain val or def members and
can't be passed around as if it were an object.
For example, we can declare a package at the start of our Scala source
file:

package nypackage
obj ect MyModul e {

\

And we can thereafter refer to mypackage. MyModul e as a qualified
name, or we can i nport nypackage. to be able to refer to
MyModul e unqualified. However, we cannot say f (mypackage) to
pass the package to some function f, since a package is not a
first-class value in Scala.

2.5 Function objects: passing functions to functions

In Scala, functions are objects too. They can be passed around like any other value,
assigned to variables, stored in data structures, and so on. When writing purely
functional programs, it becomes quite natural to want to accept functions as
arguments to other functions. We are going to look at some rather simple examples
just to illustrate this idea. In the chapters to come we'll see how useful this
capability really is, and how it permeates our programming style. But to start,
suppose we wanted to adapt our program to print out both the absolute value of a
number and the factorial of another number. Here's a sample run of such a
program:

The absol ute value of -42 is 42
The factorial of 7 is 5040

First, let's write f act ori al , which also happens to be our first example of

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

21

how to write aloop without mutati on:2

Footnote 2 We can also write this using an ordinary whi | e loop and a mutable variable. See the chapter
code for an example of this.

def factorial(n: Int): Int = { (1]

def go(n: Int, acc: Int): Int = 9
if (n <= 0) acc
el se go(n-1, n*acc)

go(n, 1)
}

© Intisanother primitive typein Scala, representing 32-bit integers
@® Aninner or local function
The way we write loops in Scala is with a recursive function, by convention

often called go (or sometimes | oop) and which wel'll often define local to another
function (unlike Java, in Scala, we can define functions inside any block, including
within another function definition). The arguments to go are the state for the loop
(in this case, the remaining value n, and the current accumulated factorial, acc).
To advance to the next iteration, we ssimply call go recursively with the new loop
state (here, go(n-1, n*acc)), and to exit from the loop we return a value
without a recursive call (here, we return acc in the case that n <= 0). Scala
detects this sort of self-recursion and compiles it to the same sort of bytecode as
would be emitted for awhi | e loop, so long as the recursive call isin tail position.
See the sidebar for the technical details on this, but the basic idea is that this
optimization (called tail call optimization) is applied when there is no additional
work left to do after the recursive call returns.®

Footnote 3 The name 'tail-call optimization' (TCO) is something of a misnomer. An 'optimization' usually
connotes some nonessential performance improvement, but when we use tail calls to write loops, we generaly rely
on their being compiled as iterative loops that do not consume a call stack frame for each iteration (which would
resultina St ackOver f | owEr r or for large inputs).

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

22

SIDEBAR

Tail calls in Scala

A call is said to be in 'tail position' if the caller does nothing other than
return the value of the recursive call. For example, the recursive call to
go(n-1, n*acc) above is in tail position, since the caller simply returns
the value of this recursive call. If, on the other hand, we said 1 +
go(n-1, n*acc), go would no longer be in tail position, since the caller
would still have work to do when go returned its result (namely, adding
1 to it). Likewise if we said f (go(n- 1, n*acc)) for some function, f .

If all recursive calls made by a function are in tail position, Scala
compiles the recursion to iterative loops that do not consume call stack
frames for each iteration. If we are expecting this to occur for a
recursive function we write, we can tell the Scala compiler about this
assumption using an annotation (more information on this), so it can
give us a compile error if it is not able to optimize the tail calls of the
function. Here's the syntax for this:

def factorial(n: Int): Int = {
@nnotation.tailrec
def go(n: Int, acc: Int): Int =
if (n <= 0) acc
el se go(n-1, n*acc)
go(n, 1)
}

We won't be talking much more about annotations in this book, but we'll
use @nnot ati on. t ai | r ec extensively.

EXERCISE 1 (optional): Write afunction to get the nth Fibonacci number. The
first two Fibonacci numbersare 0 and 1, and the next number is aways the sum of

the previous two. Y our definition should use alocal tail-recursive function.*

Footnote 4 Note that the nth Fibonacci number has a closed form solution. Using that would be cheating; the
point hereisjust to get some practice writing loops using tail-recursive functions.

def fib(n:

Int): Int

Now that we havef act ori al , let's edit our program from before:

The two functions, f or mat Abs and f or mat Fact ori al , are amost
identical. If we like, we can generalize these to asingle function, f or mat Resul t
, Which accepts as an argument the function to apply to its argument:

http://stackoverflow.com/questions/3114142/what-is-the-scala-annotation-to-ensure-a-tail-recursive-function-is-optimized
http://www.scala-lang.org/node/106
http://en.wikipedia.org/wiki/Fibonacci_number#Closed-form_expression
mailto:@annotation.tailrecdefgo
mailto:@annotation.tailrecdefgo
mailto:@annotation.tailrec
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

23

def formatResult(name: String, n: Int, f: Int =>1Int) = {
val nmsg = "The % of %l is %l."
msg. format (n, f(n))

}

def main(args: Array[String]): Unit = {
println(formatResult("absolute value", -42, abs))
println(formatResult("factorial", 7, factorial))

}

There are a few new thing here. First, our f or mat Resul t function takes
multiple arguments. To declare a function with multiple arguments, we just
separate each argument by a comma. Second, our f or mat Resul t function now
takes another function, which we call f (thisis a common naming convention in
FP; see the sidebar below). A function that takes another function as an argument
Is called a higher-order function (HOF). Like any other function parameter, we
giveatypetof, thetypel nt => I nt, whichindicatesthat f expectsan | nt
and will aso return an | nt . (The type of a function expecting an | nt and a
St ring andreturning an | nt would bewrittenas(I nt, String) => Int.)

Next, notice that we call the function f using the same syntax as when we
caled abs(x) or factorial (n) directly. Lastly, notice that we can pass a
referenceto abs andf act ori al tothef or mat Resul t function. Our function
abs accepts an | nt and returns an | nt, which matches the I nt => | nt
requirement on f in f or mat Resul t . And likewise, f act ori al accepts an
I nt andreturnsan | nt , which also matchesthel nt => | nt requirementonf .

SIDEBAR Variable naming conventions in FP

It is a common convention to use f, g, and h as parameter names for
functions passed to a HOF. In FP, we tend to use one-letter or very
short variable names, especially when everything there is to say about
a value is implied by its type. Since functions are usually quite short in
FP, many functional programmers feel this makes the code easier to
read, since it makes the structure of the code easier to see. We will
introduce other conventions like this throughout the book.

This example isn't terribly exciting, but the same principles apply in larger
examples, and we can use first-class functions to factor out duplication whenever
we seeit. We'll see many more examples of this throughout this book.

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

24

2.5.1 Annonymous functions

Functions get passed around so often in functional programming that it's
convenient to have a lightweight way to declare a function, locally, without having
to give it a name. Scala provides a syntax for declaring these nameless or
anonymous functions. (Also often called function literals, lambda functions,

lambda expressions, or just lambdas.”)

Footnote 5 The name 'lambda comes from the lambda cal culus, another theoretical basis for computation.

Let'slook at some examples of anonymous functions:

def main(args: Array[String]): Unit = {
println(formatResult("absolute value", -42, abs))
println(formatResult("factorial", 7, factorial))
println(format Result("increnment”, 7, (x: Int) => x + 1))
println(formatResult("increnent2", 7, (x) => x + 1))
println(formatResult("increment3", 7, x => x + 1))
println(formatResult("increnent4", 7, _ + 1))
println(formatResult("increnment5”, 7, x =>{ val r = x +1; r }))

The absol ute value of -42 is 42
The factorial of 7 is 5040

The increnent of 7 is 8

The increnent2 of 7 is 8

The increment3 of 7 is 8

The increnment4 of 7 is 8

The increment5 of 7 is 8

Inthiscode, (x: Int) => x + 1,(x) =>x + 1,x => x + 1,and
_+ 1 aredl dternate ways of writing the increment function, which has the type
I nt => I nt. In this notation, the lambda expression has a left-hand side ((x:

Int),(x),andx)andaright-handside(x + 1and{ val result =

1; result }), separated by an arrow, =>. The left-hand side declares the
argument(s) in order ((x,y) => x + Yy isan example of a two-argument
anonymous function), and the right-hand side, the body of the function, is simply

what the function will return. The body may of course refer to the arguments.6

Footnote 6 Note that in this case, Scalaknowsthat f or mat Resul t isexpectingan| nt => | nt andwe
can get away with not annotating the type of x; in other cases, Scala may not know the type of the argument
and will force you to supply an annotationasin (x: Int) =>

We could declare avalue of thistypelikesoval f = (x: Int) => x +

http://en.wikipedia.org/wiki/Lambda_calculus
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

25

1, but here we are not bothering to declare alocal variable for the function, which
IS quite common in FP. In this last form _ + 1, sometimes called underscore
syntax for a function literal, we are not even bothering to name the argument to the
function, using _ represent the sole argument. When using this notation, we can
only reference the function parameter once in the body of the function (if we
mention _ again, it refers to another argument to the function).”

Footnote 7 There are various rules affecting the scope of an _ that we won't go over here. See the Scala
Language Specification, section 6.23 for the full details. Generally, if you have to think about how an
expression involving _'swill be interpreted, it's better to just use the named parameter syntax, asin x => X
+ 1.

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

26

SIDEBAR

Functions are ordinary objects

We have said that functions and methods are not exactly the same
thing in Scala. When we define a function literal, what is actually being
defined is an object with a method called appl y. Scala has a special
rule for this method name, so that objects that have an appl y method
can be called as if they were themselves methods. When we define a
function literal like (a, b) => a < b this is really syntax sugar for
object creation:

val | essThan = new Function2[Int, Int, Boolean] ({
def apply(a: Int, b: Int) = a<b
}

| essThan has type Function2[Int,|nt, Bool ean], which is
usually written (1 nt, I nt) => Bool ean. Note that the Functi on2
interface (known in Scala as a "trait") has a single method called appl y
. And when we call the | essThan function with | essThan(10, 20), it
is really syntax sugar for calling its appl y method:

scal a> val b = | essThan. appl y(10, 20)
b: Bool ean = true

Functi on2 is just an ordinary trait (i.e. an interface) provided by the
standard Scala library (APl docs link) to represent function objects that
take two arguments. Also provided are Functi onl, Functi on3, and
others, taking a number of arguments indicated by the name. Because
functions are really just ordinary Scala objects, we say that they are
first-class values. We will often use "function” to refer to either such a
first-class function or a method, depending on context.

http://www.scala-lang.org/api/current/index.html#scala.Function2
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

27

2.6 Polymorphic functions: abstracting over types

So far we have been defining only monomor phic functions. That is, functions that
operate on only one type of data. For example, abs, andf act ori al are specific
to arguments of type | nt , and the higher-order function f or mat Resul t isaso
fixed to operate on functions that take arguments of type | nt . Very often, we want
to write code which works for any type it is given. As an example, here's a
definition of binary search, specialized for searching for a Doubl e in an
Array[Doubl e] . Doubl e is another primitive type in Scala, representing
double precision floating point numbers. And Arr ay[Doubl e] is the type
representing an array of Doubl e values.

def binarySearch(ds: Array[Double], key: Double): Int = {
@nnotation.tailrec
def go(low Int, md: Int, high: Int): Int = {
if (low> high) -md - 1
el se {
val md2 = (low + high) / 2
val d = ds(mid2) @
if (d == key) mid2
else if (d > key) go(low, md2, nid2-1)
el se go(md2 + 1, m d2, high)
}

}
go(0, O, ds.length - 1)

}

@ Weindex into an array using the same syntax as function application

The details of the algorithm aren't too important here. What is important is that
the code for bi nar ySear ch isgoing to look almost identical if we are searching
for aDoubl e inan Array[Doubl e] ,anInt inanArray[Int],aString
in an Array[String], or an A in an Array[A]. We can write
bi nar ySear ch more generally for any type A, by accepting a function to use for
testing whether an A value is greater than another:

def binarySearch[A] (as: Array[A], key: A gt: (A A => Boolean): Int = {
@nnotation.tailrec
def go(low Int, md: Int, high: Int): Int = {
if (low> high) -md - 1
el se {
val md2 = (low + high) / 2
val a = as(m d2)

[vww allitebooks.cond

mailto:@annotation.tailrecdefgo
mailto:@annotation.tailrecdefgo
mailto:@annotation.tailrecdefgo
mailto:@annotation.tailrecdefgo
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.allitebooks.org

28

val greater = gt(a, key)
if (!'greater && !'gt(key,a)) md2
else if (greater) go(low, md2, md2-1)
el se go(nmid2 + 1, mid2, high)
}

}
go(0, 0, as.length - 1)

}

This is an example of a polymorphic function.2 We are abstracting over the
type of the array, and the comparison function used for searching it. To write a
polymorphic function, we introduce a comma-separated list of type parameters,
surrounded by [] (here, just asingle [A]), following the name of the function, in
this case bi nar ySear ch. We can call the type parameters anything we want—
[Foo, Bar, Baz] and [TheParaneter, another _good one] are
valid type parameter declarations—though by convention we typically use short,
one letter type parameter names, like[A, B, C] .

Footnote 8 We are using the term 'polymorphism' in a dightly different way than mainstream object-oriented
programming, where that term usually connotes some form of subtyping. There are no interfaces or subtyping here

in this example. One will occasionally see the term parametric polymorphism used to refer to this form of
polymorphism.

The type parameter list introduces type variables (or sometimes type
parameters) that can be referenced in the rest of the type signature (exactly
analogous to how variables introduced in the arguments to a function can be
referenced in the body of the function). Here, the type variable A is referenced in
three places—the search key is required to have the type A, the values of the array
are required to have the type A (since it isan Arr ay[A]), and the gt function
must accept two arguments both of type A (sinceitisan (A, A) => Bool ean).
The fact that the same type variable is referenced in al three places in the type
signature enforces that the type must be the same for all three arguments, and the
compiler will enforce this fact anywhere we try to call bi nar ySear ch. If wetry

to search for a String inan Array[I nt], for instance, we'll get a type

mismatch error.®

Footnote 9 Unfortunately, Scala's use of subtyping means we sometimes get rather cryptic compile errors,
since Scalawill try to find a common supertype to use for the A type parameter, and will fall back to using
Any, the supertype of all types.

EXERCISE 2: Implement i sSor t ed, which checks whether an Array[A] is
sorted according to a given comparison function.

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

29

def isSorted[A](as: Array[A], gt: (A A => Bool ean): Bool ean

SIDEBAR Boxed types and specialization in Scala
A function that is polymorphic in some type is generally forced to
represent values of these types as boxed, or non-primitive values,
meaning they are stored as a pointer to a value on the heap. It is
possible to instruct the Scala compiler to produce specialized versions
of a function for each of the primitive types, just by adding an annotation
to that type parameter:

def binarySearch[@pecialized Al (as: Array[Al, key: A
gt: (A A) => Bool ean): Int

This can potentially be much more efficient, though the mechanism is
rather fragile, since the polymorphic values will get boxed as soon as
they are passed to any other polymorphic function or data type which is
unspecialized in this way.

As you might have seen when writing i sSor t ed, the universe of possible
implementations is significantly reduced when implementing a polymorphic
function. If afunction is polymorphic in some type, A, the only operations that can
be performed on that A are those passed into the function as arguments (or that can
be defined in terms of these given operations).10 In some cases, you'll find that the
universe of possibilities for a given polymorphic type is constrained such that there
isonly a single implementation!

Footnote 10 Technically, all valuesin Scala can be compared for equality (using ==), and we can compute a
hash code for them aswell. But thisis something of awart inherited from Java

Let's ook at an example of this, a higher-order function for doing what is called
partial application. This function, parti al 1, takes avaue and a function of two
arguments, and returns a function of one argument as its result. The name comes
from the fact that the function is being applied to some but not all of its required
arguments.

def partial1[A B, Cl(a: A f: (AB == C: B=>2C

EXERCISE 3 (hard): Implement par ti al 1 and write down a concrete usage
of it. There is only one possible implementation that compiles. We don't have any

http://www.scala-lang.org/api/current/index.html#scala.specialized
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

30

concrete types here, so we can only stick things together using the local ‘rules of
the universe' established by the type signature. The style of reasoning required here
Is very common in functional programming—we are simply manipulating symbols
in avery abstract way, similar to how we would reason when solving an algebraic
eguation.

EXERCISE 4 (hard): Let's look at another example, currying, which converts a
function of N arguments into a function of one argument that returns another
function as its result.ll Here again, there is only one implementation that
typechecks.

Footnote 11 Thisis named after the mathematician Haskell Curry, who discovered the principle. It was
independently discovered earlier by Moses Schoenfinkel, but " Schoenfinkelization” didn't catch on.

def curry[A B, Cl(f: (A B) == 0C: A= (B = 0O

EXERCISE 5 (optional): Implement uncurry, which reverses the
transformation of cur ry. Note that since => associates to the right, A => (B
=> (C) canbewrittenasA => B => C,

def uncurry[A B, CJ(f: A=>B=>0C: (A B =>2C

Let's look at a final example, function composition, which feeds the output of
one function in as the input to another function. Again, the implementation of this
function isfully determined by its type signature.

EXERCISE 6: Implement the higher-order function that composes two
functions.

def conpose[A B, CJ(f: B=>C, g A=>B): A=>C

Thisis such acommon thing to want to do that Scala's standard library provides
conpose as amethod on Functi onl. To compose two functionsf and g, you

simply say f conpose g2 It aso provides an andThen method. f
andThen gisthesameasg conpose f:

Footnote 12 Solving the conpose exercise by using thislibrary function is considered cheating.

scala> val f = (x: Double) => math.Pi / 2 - x

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

31
f: Double => Double = <functionl>

scal a> val cos = f andThen math. sin
cos: Doubl e => Doubl e = <functionl>

Interestingly, functions like conpose do not care whether they are operating
on huge functions backed by millions of lines of code, or a couple of one-line
functions. Polymorphic, higher-order functions often end up being extremely
widely applicable, precisely because they say nothing about any particular domain
and are simply abstracting over a common pattern that occurs in many contexts.
WEe'll be writing many more such functions over the course of this book, and thisis
just a short taste of the style of reasoning and thinking you'll use when writing such
functions.

2.7 Conclusion

In this chapter we have learned some preliminary functional programming
concepts, and enough Scala to get going. We learned how to define simple
functions and programs, including how we can express |oops using recursion, then
introduced the idea of higher-order functions and got some practice writing
polymorphic functions in Scala. We saw how the implementations of polymorphic
functions are often significantly constrained, such that one can often ssmply ‘follow
the types' to the correct implementation. This is something we'll see alot more of
in the chapters ahead.

Although we haven't yet written any large or complex programs, the principles
we have discussed here are scalable and apply equally well to programming in the
large as they do to programming in the small.

Next up we will look at using pure functions to manipulate data.

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

32

Index Terms
annonymous function
block
curried form
currying
function literals
higher-order function
import
lambda
lambda expression
lambda notation
left-hand side
method definition
method signature
module
monomorphic
monomorphism
namespace
object
package
partial application
proper tail-calls
REPL
right-hand side
self-recursion
singleton type
string interpolation
tail-call optimization
tail position
type parameters
uncurry
uncurry
underscore syntax
val keyword

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

33

Functional data structures

3.1 Introduction

We said in the introduction that functional programs do not update variables or
modify data structures. This raises pressing questions—what sort of data structures
can we use in functional programming, how do we define them in Scala, and how
do we operate over these data structures? In this chapter we will learn the concept
of a functional data structure and how to define and work with such structures.
WEel'll use this as an opportunity to introduce how data types are defined in
functional programming, learn about the related technique of pattern matching, and
get practice writing and generalizing pure functions.

This chapter has a lot of exercises, particularly to help with this last
point—writing and generalizing pure functions. Some of these exercises may be
challenging. As aways, if you need to, consult the hints or the answers, or ask for
help online.

3.2 Defining functional data structures

A functional data structure is (not surprisingly!) operated on using only pure
functions. Remember, a pure function may only accept some values as input and
yield a value as output. It may not change data in place or perform other side
effects. Therefore, functional data structures are immutable. For example, the
empty list, (denoted Li st () or Ni | in Scala) is as eternal and immutable as the
integer values 3 or 4. And just as evaluating 3 + 4 results in a new number 7
without modifying either 3 or 4, concatenating two lists together (the syntax for
thisisa ++ b for two lists a and b) yields a new list and leaves the two inputs
unmodified.

Doesn't this mean we end up doing a lot of extra copying of the data?

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805

34

Somewhat surprisingly, the answer is 'no’. We will return to this issue after
examining the definition of what is perhaps the most ubiquitous of functional data
structures, the singly-linked list. The definition hereisidentical in spirit to (though
simpler than) the Li st data type defined in Scala's standard library. This code
listing makes use of a lot of new syntax and concepts, so don't worry if not
everything makes sense at first—we will talk through it in detail .1

Footnote 1 Note—the implementations of sumand pr oduct here are not tail recursive. We will be writing
tail recursive versions of these functions later in the chapter.

package fpi nscal a. dat astructures

sealed trait List[+A] o

case object Ni| extends List[Nothing] 0

case class Cons[+A] (head: A, tail: List[A]) extends List[A]

obj ect List { (3]

def sum(ints: List[Int]): Int = ints match { 0
case Nil =>0
case Cons(x, xs) => x + sum(Xxs)

}

def product (ds: List[Double]): Double = ds match {
case Nil =>