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P
This is not a book about Scala. This book introduces the concepts and techniques
of functional programming (FP)—we use Scala as the vehicle, but the lessons
herein can be applied to programming in any language. Our goal is to give you the
foundations to begin writing substantive functional programs and to comfortably
absorb new FP concepts and techniques beyond those covered here. Throughout
the book we rely heavily on programming exercises, carefully chosen and
sequenced to guide you to discover FP for yourself. Expository text is often just
enough to lead you to the next exercise. Do these exercises and you will learn the
material. Read without doing and you will find yourself lost.

A word of caution: no matter how long you've been programming, learning FP
is challenging. Come prepared to be a beginner once again. FP proceeds from a
startling premise—that we construct programs using only pure functions, or
functions that avoid  like writing to a database or reading from a file. Inside effects
the first chapter, we will explain exactly what this means. From this single idea and
its logical consequences emerges a very different way of building programs, one
with its own body of techniques and concepts. We start by relearning how to write
the simplest of programs in a functional way. From this foundation we will build
the tower of techniques necessary for expressing functional programs of greater
complexity. Some of these techniques may feel alien or unnatural at first and the
exercises and questions can be difficult, even brain-bending at times. This is
normal. Don't be deterred. Keep a beginner's mind, try to suspend judgment, and if

Preface

P.1 About this book
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you must be skeptical, don't let this skepticism get in the way of learning. When
you start to feel more fluent at expressing functional programs, then take a step
back and evaluate what you think of the FP approach.

This book does not require any prior experience with Scala, but we won't spend
a lot of time and space discussing Scala's syntax and language features. Instead
we'll introduce them as we go, with a minimum of ceremony, mostly using short
examples, and mostly as a consequence of covering other material. These minimal
introductions to Scala should be enough to get you started with the exercises. If
you have further questions about the Scala language while working on the
exercises, you are expected to do some research and experimentation on your own
or follow some of our links to further reading.

The book is organized into four parts, intended to be read sequentially. Part 1
introduces functional programming, explains what it is, why you should care, and
walks through the basic low-level techniques of FP, including how to organize and
structure small functional programs, define functional data structures, and handle
errors functionally. These techniques will be used as the building blocks for all
subsequent parts. Part 2 introduces functional design using a number of worked
examples of functional libraries. It will become clear that these libraries follow
certain patterns, which highlights the need for new cognitive tools for abstracting
and generalizing code—we introduce these tools and explore concepts related to
them in Part 3. Building on Part 3, Part 4 covers techniques and mechanisms for
writing functional programs that perform I/O (like reading/writing to a database,
files, or the screen) or writing to mutable variables.

Though the book can be read sequentially straight through, the material in Part
3 will make the most sense after you have a strong familiarity with the functional
style of programming developed over parts 1 and 2. After Part 2, it may therefore
be a good idea to take a break and try getting more practice writing functional
programs beyond the shorter exercises we work on throughout the chapters. Part 4
also builds heavily on the ideas and techniques of Part 3, so a second break after
Part 3 to get experience with these techniques in larger projects may be a good idea
before moving on. Of course, how you read this book is ultimately up to you, and
you are free to read ahead if you wish.

Most chapters in this book have similar structure. We introduce and explain
some new idea or technique with an example, then work through a number of
exercises, introducing further material via the exercises. The exercises thus serve

P.2 How to read this book
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two purposes: to help you to understand the ideas being discussed and to guide you
to discover for yourself new ideas that are relevant. Therefore we  suggeststrongly
that you download the exercise source code and do the exercises as you go through
each chapter. Exercises, hints and answers are all available at 

. We also encourage you to visit the https://github.com/pchiusano/fpinscala
 and the  IRC channel on scala-functional Google group #fp-in-scala

 for questions and discussion.irc.freenode.net

Exercises are marked for both their difficulty and to indicate whether they are
critical or noncritical. We will mark exercises that we think are  or that wehard
consider to be  to understanding the material. The  designation is ourcritical hard
effort to give you some idea of what to expect—it is only our guess and you may
find some unmarked questions difficult and some questions marked  to behard
quite easy. The  designation is applied to exercises that address conceptscritical
that we will be building on and are therefore important to understand fully.
Noncritical exercises are still informative but can be skipped without impeding
your ability to follow further material.

Examples are given throughout the book and they are meant to be  rathertried
than just read. Before you begin, you should have the Scala interpreter (REPL)
running and ready. We encourage you to experiment on your own with variations
of what you see in the examples. A good way to understand something is to change
it slightly and see how the change affects the outcome.

Sometimes we will show a REPL session to demonstrate the result of running
some code. This will be marked by lines beginning with the  prompt ofscala>

the REPL. Code that follows this prompt is to be typed or pasted into the
interpreter, and the line just below will show the interpreter's response, like this:

SIDEBAR Sidebars
Occasionally throughout the book we will want to highlight the precise
definition of a concept in a sidebar like this one. This lets us give you a
complete and concise definition without breaking the flow of the main
text with overly formal language, and also makes it easy to refer back to
when needed.

There are chapter notes (which includes references to external resources) and

scala> println("Hello, World!")
          Hello, World!
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several appendix chapters after Part 4. Throughout the book we provide references
to this supplementary material, which you can explore on your own if that interests
you.

Have fun and good luck.
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1
Functional programming (FP) is based on a simple premise with far-reaching
implications: We construct our programs using only . In other words,pure functions
functions that have no . What does this mean exactly? Performing anyside effects
of the following actions directly would involve a side effect:

Reassigning a variable
Modifying a data structure in place
Setting a field on an object
Throwing an exception or halting with an error
Printing to the console or reading user input
Reading from or writing to a file
Drawing on the screen

Consider what programming would be like without the ability to do these
things. It may be difficult to imagine. How is it even possible to write useful
programs at all? If we can't reassign variables, how do we write simple programs
like loops? What about working with data that changes, or handling errors without
throwing exceptions? How can we perform I/O, like drawing to the screen or
reading from a file?

The answer is that we can still write all of the same programs—programs that
can do all of the above and more—without resorting to side effects. Functional
programming is a restriction on  we write programs, but not on  programshow what
we can write. And it turns out that accepting this restriction is tremendously

What is Functional Programming?

1.1 The fundamental premise of functional programming
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beneficial because of the increase in  that we gain from programmingmodularity
with pure functions. Because of their modularity, pure functions are easier to test,
to reuse, to parallelize, to generalize, and to reason about.

But reaping these benefits requires that we revisit the act of programming,
starting from the simplest of tasks and building upward from there. In many cases
we discover how programs that seem to necessitate side effects have some purely
functional analogue. In other cases we find ways to structure code so that effects
occur but are not  (For example, we can mutate data that is declaredobservable
locally in the body of some function if we ensure that it cannot be referenced
outside that function.) Nevertheless, FP is a truly radical shift in how programs are
organized at every level—from the simplest of loops to high-level program
architecture. The style that emerges is quite different, but it is a beautiful and
cohesive approach to programming that we hope you come to appreciate.

In this book, you will learn the concepts and principles of FP as they apply to
every level of programming. We begin in this chapter by explaining what a pure
function is, as well as what it isn't. We also try to give you an idea of just why
purity results in greater modularity and code reuse.

A function with input type  and output type  (written in Scala as a single type: A B A

) is a computation which relates every value  of type  to exactly one value => B a A

 of type  such that  is determined solely by the value of .b B b a

For example, a function  having type  willintToString Int => String

take every integer to a corresponding string. Furthermore, if it really is a ,function
it will do nothing else.

In other words, a function has no observable effect on the execution of the
program other than to compute a result given its inputs; we say that it has no side
effects. We sometimes qualify such functions as  functions to make this morepure
explicit. You already know about pure functions. Consider the addition ( )+

function on integers. It takes two integer values and returns an integer value. For
any two given integer values it will . Anotheralways return the same integer value
example is the  function of a  in Java, Scala, and many otherlength String

languages. For any given string, the same length is always returned and nothing
else occurs.

We can formalize this idea of pure functions by using the concept of referential
 (RT). This is a property of  in general and not justtransparency expressions

1.2 Exactly what is a (pure) function?
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functions. For the purposes of our discussion, consider an expression to be any part
of a program that can be evaluated to a result, i.e. anything that you could type into
the Scala interpreter and get an answer. For example,  is an expression that2 + 3

applies the pure function  to the values  and  (which are also expressions). This+ 2 3

has no side effect. The evaluation of this expression results in the same value 5

every time. In fact, if you saw  in a program you could simply replace it2 + 3

with the value  and it would not change a thing about your program.5

This is all it means for an expression to be referentially transparent—in any
program, the expression can be replaced by its result without changing the meaning
of the program. And we say that a function is  if its body is RT, assuming RTpure
inputs.

SIDEBAR Referential transparency and purity
An expression  is  if for all programs , alle referentially transparent p

occurrences of  in  can be replaced by the result of evaluating ,e p e

without affecting the observable behavior of . A function  is  if thep f pure
expression  is referentially transparent for all referentiallyf(x)

transparent .x 1

Footnote 1mThere are some subtleties to this definition, and we'll be

refinining it later in this book. See the chapter notes for more discussion.

Referential transparency enables a mode of reasoning about program evaluation
called . When expressions are referentially transparent, wethe substitution model
can imagine that computation proceeds very much like we would solve an
algebraic equation. We fully expand every part of an expression, replacing all
variables with their referents, and then reduce it to its simplest form. At each step
we replace a term with an equivalent one; we say that computation proceeds by
substituting . In other words, RT enables equals for equals equational reasoning
about programs. This style of reasoning is  natural; you use it all the timeextremely
when understanding programs, even in supposedly "non-functional" languages.

Let's look at two examples—one where all expressions are RT and can be
reasoned about using the substitution model, and one where some expressions
violate RT. There is nothing complicated here, part of our goal is to illustrate that
we are just formalizing something you already likely understand on some level.

Let's try the following in the Scala REPL:2

1.3 Functional and non-functional: an example
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Footnote 2mIn Java and in Scala, strings are immutable. If you wish to "modify" a string, you must create a
copy of it.

Suppose we replace all occurrences of the term  with the expressionx

referenced by  (its definition), as follows:x

This transformation does not affect the outcome. The values of  and  arer1 r2

the same as before, so  was referentially transparent. What's more,  and  arex r1 r2

referentially transparent as well, so if they appeared in some other part of a larger
program, they could in turn be replaced with their values throughout and it would
have no effect on the program.

Now let's look at a function that is  referentially transparent. Consider the not
 function on the append scala.collection.mutable.StringBuilder

class. This function operates on the  in place. The previous stateStringBuilder

of the  is destroyed after a call to . Let's try this out:StringBuilder append

scala> val x = "Hello, World"
x: java.lang.String = Hello, World

scala> val r1 = x.reverse
r1: String = dlroW ,olleH

scala> val r2 = x.reverse
r2: String = dlroW ,olleH

scala> val r1 = "Hello, World".reverse
r1: String = dlroW ,olleH

val r2 = "Hello, World".reverse
r2: String = dlroW ,olleH

scala> val x = new StringBuilder("Hello")
x: java.lang.StringBuilder = Hello

scala> val y = x.append(", World")
y: java.lang.StringBuilder = Hello, World

scala> val r1 = y.toString
r1: java.lang.String = Hello, World

scala> val r2 = y.toString
r2: java.lang.String = Hello, World
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So far so good. Let's now see how this side effect breaks RT. Suppose we
substitute the call to  like we did earlier, replacing all occurrences of append y

with the expression referenced by :y

This transformation of the program results in a different outcome. We therefore
conclude that  is  a pure function. What's going onStringBuilder.append not

here is that while  and  look like they are the same expression, they are inr1 r2

fact referencing two different values of the same . By the time StringBuilder

 calls ,  will have already mutated the object referenced by . Ifr2 x.append r1 x

this seems difficult to think about, that's because it is. Side effects make reasoning
about program behavior more difficult.

Conversely, the substitution model is simple to reason about since effects of
evaluation are purely local (they affect only the expression being evaluated) and
we need not mentally simulate sequences of state updates to understand a block of
code. Understanding requires only . Even if you haven't used thelocal reasoning
name "substitution model", you have certainly used this mode of reasoning when

thinking about your code.3

Footnote 3mIn practice, programmers don't spend time mechanically applying substitution to determine if
code is pure—it will usually be quite obvious.

We said that applying the discipline of FP buys us greater modularity. Why is this
the case? Though this will become more clear over the course of the book, we can
give some initial insight here.

A modular program consists of components that can be understood and reused
independently of the whole, such that the meaning of the whole depends only on
the meaning of the components and the rules governing their composition; that is,
they are . A pure function is modular and composable because itcomposable
separates the logic of the computation itself from "what to do with the result" and

scala> val x = new StringBuilder("Hello")
x: java.lang.StringBuilder = Hello

scala> val r1 = x.append(", World").toString
r1: java.lang.String = Hello, World

scala> val r2 = x.append(", World").toString
r2: java.lang.String = Hello, World, World

1.4 Why functional programming?
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"how to obtain the input"; it is a black box. Input is obtained in exactly one way:
via the argument(s) to the function. And the output is simply computed and
returned. By keeping each of these concerns separate, the logic of the computation
is more reusable; we may reuse the logic wherever we want without worrying
about whether the side effect being done with the result or the side effect being
done to request the input is appropriate in all contexts. We also do not need to
mentally track all the state changes that may occur before or after our function's
execution to understand what our function will do; we simply look at the function's
definition and substitute the arguments into its body.

Let's look at a case where factoring code into pure functions helps with reuse.
This is a simple and contrived example, intended only to be illustrative. Suppose
we are writing a computer game and are required to do the following:

If player 1's score property is greater than player 2's, notify the user that player
1 has won, otherwise notify the user that player 2 has won.

We may be tempted to write something like this:

Declares a data type Player with two properties: name, which is a string, and score,
an integer.
Prints the name of the winner to the console.
Takes two Players, compares their scores and declares the winner.

This declares a simple data type  with two properties, , which isPlayer name

a character string, and  which is an integer. The method score declareWinner

takes two s, compares their scores and declares the player with the higherPlayer

score the winner (unfairly favoring the second player, granted). The 
 method prints the name of the winner to the console. The resultprintWinner

type of these methods is  indicating that they do not return a meaningfulUnit

result but have a side effect instead.
Let's test this in the REPL:

case class Player(name: String, score: Int)

def printWinner(p: Player): Unit =
  println(p.name + " is the winner!")

def declareWinner(p1: Player, p2: Player): Unit =
  if (p1.score > p2.score) printWinner(p1)
  else printWinner(p2)

scala> val sue = Player("Sue", 7)
sue: Player = Player(Sue, 7)
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While this code closely matches the earlier problem statement, it also
intertwines the branching logic with that of displaying the result, which makes the
reuse of the branching logic difficult. Consider trying to reuse the 

 method to compute and display the sole winner among declareWinner n

players instead of just two. In this case, the comparison logic is simple enough that
we could just inline it, but then we are duplicating logic—what happens when
playtesting reveals that our game unfairly favors one player, and we have to change
the logic for determining the winner? We would have to change it in two places.
And what if we want to use that same logic to sort a historical collection of past
players to display a high score list?

Suppose we refactor the code as follows:

A pure function that takes two players and returns the higher-scoring one.

This version separates the logic of computing the winner from the displaying of
the result. Computing the winner in  is referentially transparent and thewinner

impure part—displaying the result—is kept separate in . We canprintWinner

now reuse the logic of  to compute the winner among a list of players:winner

Constructs a list of players

scala> val bob = Player("Bob", 8)
bob: Player = Player(Bob, 8)

scala> winner(sue, bob)
Bob is the winner!

def winner(p1: Player, p2: Player): Player =
  if (p1.score > p2.score) p1 else p2

def declareWinner(p1: Player, p2: Player): Unit =
  printWinner(winner(p1, p2))

val players = List(Player("Sue", 7),
                   Player("Bob", 8),
                   Player("Joe", 4))

val p = players.reduceLeft(winner)

printWinner(p)
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Reduces the list to just the player with the highest score.
Prints the name of the winner to the console.

In this example,  is a function on the  data type from thereduceLeft List

standard Scala library. The expression will compare all the players in the list and
return the one with the highest score. Note that we are actually passing our 

 function to  as if it were a regular value. We will have a lotwinner reduceLeft

more to say about passing functions to functions, but for now just observe that
because  is a pure function, we are able to reuse it and combine it withwinner

other functions in ways that we didn't necessarily anticipate. In particular, this
usage of  would not have been possible when the side effect of displayingwinner

the result was interleaved with the logic for computing the winner.
This was just a simple example, meant to be illustrative, and the sort of

factoring we did here is something you've perhaps done many times before. It's
been said that functional programming, at least in small examples, is just normal
separation of concerns and "good software engineering".

We will be taking the idea of FP to its logical endpoint in this book, and
applying it in situations where is applicability is less obvious. As we'll learn, any
function with side effects can be split into a pure function at the "core" and
possibly a pair of functions with side effects; one on the input side, and one on the
output side. This is what we did when we separated the declaration of the winner

from our pure function . This transformation can be repeated to push sidewinner

effects to the "outer layers" of the program. Functional programmers often speak of
implementing programs with a pure core and a thin layer on the outside that
handles effects. We will return to this principle again and again throughout the
book.

In this chapter, we introduced functional programming and explained exactly what
FP is and why you might use it. In subsequent chapters, we cover some of the
fundamentals—how do we write loops in FP? Or implement data structures? How
do we deal with errors and exceptions? We need to learn how to do these things
and get comfortable with the low-level idioms of FP. We'll build on this
understanding when we explore functional design techniques in parts 2 and 3.

1.5 Conclusion
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composition
equals for equals
equational reasoning
expression substitution
modularity
program modularity
referential transparency
side effects
substitution
substitution model

Index Terms
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2
Now that we have committed to using only pure functions, a question naturally
emerges: how do we write even the simplest of programs? Most of us are used to
thinking of programs as sequences of instructions that are executed in order, where
each instruction has some kind of effect. In this chapter we will learn how to write
programs in the Scala language just by combining pure functions.

This chapter is mainly intended for those readers who are new to Scala, to
functional programming, or both. As with learning a foreign language, immersion
is a very effective method, so we will start by looking at a small but complete
Scala program. If you have no experience with Scala, you should not expect to
understand the code at first glance. Therefore we will break it down piece by piece
to look at what it does.

We will then look at working with higher-order functions. These are functions
that take other functions as arguments, and may themselves return functions as
their output. This can be brain-bending if you have a lot of experience
programming in a language  the ability to pass functions around like that.without
Remember, it's not crucial that you internalize every single concept in this chapter,
or solve every exercise. In fact, you might find it easier to skip whole sections and
spiral back to them when you have more experience onto which to attach these
concepts.

The following is a complete program listing in Scala.

Getting started

2.1 Introduction

2.2 An example Scala program

// A comment!
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We declare an object (also known as a "module") named . This isMyModule

simply to give our code a place to live, and a name for us to refer to it later. The 
 keyword creates a new , which means that  isobject singleton type MyModule

the only value (or 'inhabitant') of that type. We put our code inside the object,
between curly braces. We will discuss objects, modules, and namespaces in more
detail shortly. For now, let's just look at this particular object.

The  object has three methods: , , and .MyModule abs formatAbs main

Each method is introduced by the  keyword, followed by the name of thedef

method which is followed by the arguments in parentheses. In this case all three
methods take only one argument. If there were more arguments they would be
separated by commas. Following the closing parenthesis of the argument list, an
optional type annotation indicates the type of the result (the colon is pronounced
"has type").

The body of the method itself comes after an equals ( ) sign. We will=

sometimes refer to the part of a method declaration that goes before the equals sign
as the  or , and the code that comes after the equals sign weleft-hand side signature
will sometimes refer to as the  or . Note the absence of anright-hand side definition
explicit  keyword. The value returned from a method is simply the valuereturn

of its right-hand side.
Let's now go through these methods one by one. The  method represents aabs

pure function that takes an integer and returns its absolute value:1

Footnote 1mAstute readers might notice that this definition won't work for , theInteger.MinValue

smallest negative 32-bit integer, which has no corresponding positive . We'll ignore this technicality here.Int

/* Another comment */
/** A documentation comment */
object MyModule {
  def abs(n: Int): Int =
    if (n < 0) -n
    else n

  private def formatAbs(x: Int) = {
    val msg = "The absolute value of %d is %d"
    msg.format(x, abs(x))
  }

  def main(args: Array[String]): Unit =
    println(formatAbs(-42))
}

def abs(n: Int): Int =
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The abs method takes a single argument n of type Int, and this is declared with n:
Int.
The definition is a single Scala expression that uses the built-in if syntax to negate
n if it's less than zero.

The  method represents another pure function:formatAbs

The format method is a standard library method defined on String. Here we are
calling it on the msg object, passing in the value of x along with the value of abs
applied to x. This results in a new string with the occurrences of %d in msg
replaced with the evaluated results of x and abs(x) respectively. Also see the
sidebar on string interpolation below.

This method is declared , which means that it cannot be called fromprivate

any code outside of the  object. This function takes an  and returnsMyModule Int

a , but note that the return type is not declared. Scala is usually able toString

infer the return types of methods, so they can be omitted, but it's generally
considered good style to explicitly declare the return types of methods that you
expect others to use. This method is private to our module, so we can omit the type
annotation.

The body of the method contains more than one statement, so we put them
inside curly braces. A pair of braces containing statements is called a .block
Statements are separated by new lines or by semicolons. In this case we are using a
new line to separate our statements.

The first statement in the block declares a  named  using the String msg val

keyword. A  is an immutable variable, so inside the body of the val formatAs

method the name  will always refer to the same  value. The Scalamsg String

compiler will complain if you try to reassign  to a different value in the samemsg

context.
Remember, a method simply returns the value of its right-hand side, which in

this case is a block. And the value of a multi-statement block inside curly braces is
simply the same as the value of its last statement. So the result of the formatAbs

  if (n < 0) -n

  else n

private def formatAbs(x: Int) = {
  val msg = "The absolute value of %d is %d."

  msg.format(x, abs(x))
}
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method is just the value of .msg.format(x, abs(x))

SIDEBAR String interpolation in Scala
We could have written our  function using formatAbs string

 ( ) rather than the  method on interpolation documentation format

. Interpolated strings can reference Scala values in scope at theString

point where they are declared. An interpolated string has an  (fors

'substitute') just before the first , for example: " s"The absolute

. See the documentation linked abovevalue of $x is ${abs(x)}

for more details.

Finally, our  method is an "outer shell" that calls into our purelymain

functional core and performs the effect of printing the answer to the console:

The name  is special because when you run a program, Scala will look formain

a method named  with a specific signature. It has to take an  of main Array

s as its argument, and its return type must be . The  array willString Unit args

contain the arguments that were given at the command line that ran the program.
The return type of  indicates that this method does not return a meaningfulUnit

value. There is only one value of type  and it has no inner structure. It'sUnit

written , pronounced "unit" just like the type. Usually a return type of  is a() Unit

hint that the method has a side effect. But since the  method itself is calledmain

once by the operating environment and never from anywhere in our program,
referential transparency is not violated.

This section discusses the simplest possible way of running your Scala programs,
suitable for short examples. More typically, you'll build and run your Scala code
using sbt, the build tool for Scala, and/or an IDE like IntelliJ or Eclipse. See the
book's source code repo on GitHub for more information on getting set up with sbt.
Sbt is very smart about ensuring only the minimum number of files are recompiled
when changes are made. It also has a number of other nice features which we won't
discuss here.

But the simplest way we can run this Scala program ( ) is from theMyModule

def main(args: Array[String]): Unit =
  println(formatAbs(-42))

2.3 Running our program
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command line, by invoking the Scala compiler directly ourselves. We start by
putting the code in a file called  or something similar. We canMyModule.scala

then compile it to Java bytecode using the  compiler:scalac

This will generate some files ending with the  suffix. These files.class

contain compiled code that can be run with the Java virtual machine. The code can
be executed using the  code runner:scala

Actually, it's not strictly necessary to compile the code first with . Ascalac

simple program like the one we have written here can just be run using the Scala
interpreter by passing it to the  code runner directly:scala

This can be handy when using Scala for scripting. The code runner will look for
any object within the file  that has a  method with theMyModule.scala main

appropriate signature, and will then call it.
Lastly, an alternative way is to start the Scala interpreter's interactive mode,

usually referred to as the read-evalulate-print-loop or REPL (pronounced "repple"
like "apple"), and load the file from there (your actual console output may differ
slightly):

> scalac MyModule.scala

> scala MyModule
The absolute value of -42 is 42.

> scala MyModule.scala
The absolute value of -42 is 42.

> scala
Welcome to Scala.
Type in expressions to have them evaluated.
Type :help for more information.

scala> :load MyModule.scala
Loading MyModule.scala...
defined module MyModule

scala> MyModule.main(Array())
The absolute value of -42 is 42.
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main takes an array as its argument and here we are simply passing it an empty
array.

It's possible to simply copy and paste the code into the REPL. It also has a paste
mode (accessed with the  command) specifically designed to paste code.:paste

It's a good idea to get familiar with the REPL and its features.

In the above, notice that in order to refer to our  method, we had to say main

 because  was defined in the  object. AsideMyModule.main main MyModule

from a few technical corner cases, every value in Scala is what's called an "object".
An object whose primary purpose is giving its members a namespace is sometimes
called a . An object may have zero or more . A member can be amodule members
method declared with the  keyword, or it can be another object declared with def

 or . Objects can also have other kinds of members that we will ignoreval object

for now.
We dereference the members of objects with the typical object-oriented

dot-notation, which is a namespace (i.e. the name that refers to the object) followed
by a dot (the period character) followed by the name of the member. For example,
to call the  method on the  object we would say abs MyModule

. To use the  member on the object , weMyModule.abs(42) toString 42

would say . The implementations of members within an object can42.toString

refer to each other unqualified (without prefixing the object name), but if needed
they have access to their enclosing object using a special name: .this

Note that even an expression like  is just calling a member of an object.2 + 1

In that case what is being called is the  member of the object . It is really+ 2

syntactic sugar for the expression . We can in general omit the dot and2.+(1)

parentheses like that when calling a method and applying it to a single argument.
For example, instead of  we can say MyModule.abs(42) MyModule abs 42

and get the same result.
An object's member can be brought into scope by importing it, which allows us

to call it unqualified from then on:

2.4 Modules, objects, and namespaces

scala> import MyModule.abs
import MyModule.abs

scala> abs(-42)
res0: 42
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We can bring all of an object's (non-private) members into scope by using the
underscore syntax: import MyModule._

SIDEBAR Packages
In Scala, there is a language construct called a , which is apackage
namespace without an object. The difference between a package and a
module is that a package cannot contain  or  members andval def

can't be passed around as if it were an object.
For example, we can declare a package at the start of our Scala source
file:

And we can thereafter refer to  as a qualifiedmypackage.MyModule

name, or we can  to be able to refer to import mypackage._

 unqualified. However, we cannot say  toMyModule f(mypackage)

pass the package to some function , since a package is not af

first-class value in Scala.

In Scala, functions are objects too. They can be passed around like any other value,
assigned to variables, stored in data structures, and so on. When writing purely
functional programs, it becomes quite natural to want to accept functions as
arguments to other functions. We are going to look at some rather simple examples
just to illustrate this idea. In the chapters to come we'll see how useful this
capability really is, and how it permeates our programming style. But to start,
suppose we wanted to adapt our program to print out both the absolute value of a
number  the factorial of another number. Here's a sample run of such aand
program:

First, let's write , which also happens to be our first example offactorial

package mypackage

object MyModule {
  ...
}

2.5 Function objects: passing functions to functions

The absolute value of -42 is 42
The factorial of 7 is 5040
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how to write a loop without mutation:2

Footnote 2mWe can also write this using an ordinary  loop and a mutable variable. See the chapterwhile

code for an example of this.

Int is another primitive type in Scala, representing 32-bit integers
An inner or local function

The way we write loops in Scala is with a recursive function, by convention
often called  (or sometimes ) and which we'll often define local to anothergo loop

function (unlike Java, in Scala, we can define functions inside any block, including
within another function definition). The arguments to  are the state for the loopgo

(in this case, the remaining value , and the current accumulated factorial, ).n acc

To advance to the next iteration, we simply call  recursively with the new loopgo

state (here, ), and to exit from the loop we return a valuego(n-1, n*acc)

without a recursive call (here, we return  in the case that ). Scalaacc n <= 0

detects this sort of  and compiles it to the same sort of bytecode asself-recursion
would be emitted for a  loop, so long as the recursive call is in .while tail position

See the sidebar for the technical details on this, but the basic idea is that this
optimization (called ) is applied when there is no additionaltail call optimization

work left to do after the recursive call returns.3

Footnote 3mThe name 'tail-call optimization' (TCO) is something of a misnomer. An 'optimization' usually
connotes some nonessential performance improvement, but when we use tail calls to write loops, we generally rely
on their being compiled as iterative loops that do not consume a call stack frame for each iteration (which would
result in a  for large inputs).StackOverflowError

def factorial(n: Int): Int = {

  def go(n: Int, acc: Int): Int =
    if (n <= 0) acc
    else go(n-1, n*acc)

  go(n, 1)
}
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SIDEBAR Tail calls in Scala
A call is said to be in 'tail position' if the caller does nothing other than
return the value of the recursive call. For example, the recursive call to 

 above is in tail position, since the caller simply returnsgo(n-1,n*acc)

the value of this recursive call. If, on the other hand, we said 1 +
,  would no longer be in tail position, since the callergo(n-1,n*acc) go

would still have work to do when  returned its result (namely, adding go

 to it). Likewise if we said  for some function, .1 f(go(n-1,n*acc)) f

If all recursive calls made by a function are in tail position, Scala
compiles the recursion to iterative loops that do not consume call stack
frames for each iteration. If we are expecting this to occur for a
recursive function we write, we can tell the Scala compiler about this
assumption using an  ( ), so it canannotation more information on this
give us a compile error if it is not able to optimize the tail calls of the
function. Here's the syntax for this:

We won't be talking much more about  in this book, but we'llannotations
use  extensively.@annotation.tailrec

EXERCISE 1 (optional): Write a function to get the th Fibonacci number. Then

first two Fibonacci numbers are  and , and the next number is always the sum of0 1

the previous two. Your definition should use a local tail-recursive function.4

Footnote 4mNote that the nth Fibonacci number has a . Using that would be cheating; theclosed form solution
point here is just to get some practice writing loops using tail-recursive functions.

Now that we have , let's edit our program from before:factorial

The two functions,  and , are almostformatAbs formatFactorial

identical. If we like, we can generalize these to a single function, formatResult

, which accepts as an argument  to apply to its argument:the function

def factorial(n: Int): Int = {
  @annotation.tailrec
  def go(n: Int, acc: Int): Int =
    if (n <= 0) acc
    else go(n-1, n*acc)
  go(n, 1)
}

def fib(n: Int): Int
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There are a few new thing here. First, our  function takesformatResult

multiple arguments. To declare a function with multiple arguments, we just
separate each argument by a comma. Second, our  function nowformatResult

takes another function, which we call  (this is a common naming convention inf

FP; see the sidebar below). A function that takes another function as an argument
is called a  (HOF). Like any other function parameter, wehigher-order function
give a type to , the type , which indicates that  expects an f Int => Int f Int

and will also return an . (The type of a function expecting an  and a Int Int

 and returning an  would be written as .)String Int (Int,String) => Int

Next, notice that we call the function  using the same syntax as when wef

called  or  directly. Lastly, notice that we can pass aabs(x) factorial(n)

reference to  and  to the  function. Our functionabs factorial formatResult

 accepts an  and returns an , which matches the abs Int Int Int => Int

requirement on  in . And likewise,  accepts an f formatResult factorial

 and returns an , which also matches the  requirement on .Int Int Int => Int f

SIDEBAR Variable naming conventions in FP
It is a common convention to use , , and  as parameter names forf g h

functions passed to a HOF. In FP, we tend to use one-letter or very
short variable names, especially when everything there is to say about
a value is implied by its type. Since functions are usually quite short in
FP, many functional programmers feel this makes the code easier to
read, since it makes the structure of the code easier to see. We will
introduce other conventions like this throughout the book.

This example isn't terribly exciting, but the same principles apply in larger
examples, and we can use first-class functions to factor out duplication whenever
we see it. We'll see many more examples of this throughout this book.

def formatResult(name: String, n: Int, f: Int => Int) = {
  val msg = "The %s of %d is %d."
  msg.format(n, f(n))
}

def main(args: Array[String]): Unit = {
  println(formatResult("absolute value", -42, abs))
  println(formatResult("factorial", 7, factorial))
}
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Functions get passed around so often in functional programming that it's
convenient to have a lightweight way to declare a function, locally, without having
to give it a name. Scala provides a syntax for declaring these nameless or 

. (Also often called , , anonymous functions function literals lambda functions

, or just . )lambda expressions lambdas 5

Footnote 5mThe name 'lambda' comes from the , another theoretical basis for computation.lambda calculus

Let's look at some examples of anonymous functions:

In this code, , , , and (x: Int) => x + 1 (x) => x + 1 x => x + 1

 are all alternate ways of writing the increment function, which has the type_ + 1

. In this notation, the lambda expression has a left-hand side (Int => Int (x:

, , and ) and a right-hand side (  and Int) (x) x x + 1 { val result = x +

), separated by an arrow, . The left-hand side declares the1; result } =>

argument(s) in order (  is an example of a two-argument(x,y) => x + y

anonymous function), and the right-hand side, the  of the function, is simplybody

what the function will return. The body may of course refer to the arguments.6

Footnote 6mNote that in this case, Scala knows that  is expecting an  and weformatResult Int => Int

can get away with not annotating the type of ; in other cases, Scala may not know the type of the argumentx

and will force you to supply an annotation as in .(x: Int) => ...

We could declare a value of this type like so val f = (x: Int) => x +

2.5.1 Annonymous functions

def main(args: Array[String]): Unit = {
  println(formatResult("absolute value", -42, abs))
  println(formatResult("factorial", 7, factorial))
  println(formatResult("increment", 7, (x: Int) => x + 1))
  println(formatResult("increment2", 7, (x) => x + 1))
  println(formatResult("increment3", 7, x => x + 1))
  println(formatResult("increment4", 7, _ + 1))
  println(formatResult("increment5", 7, x => { val r = x + 1; r }))
}

The absolute value of -42 is 42
The factorial of 7 is 5040
The increment of 7 is 8
The increment2 of 7 is 8
The increment3 of 7 is 8
The increment4 of 7 is 8
The increment5 of 7 is 8
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, but here we are not bothering to declare a local variable for the function, which1

is quite common in FP. In this last form , sometimes called _ + 1 underscore

 for a function literal, we are not even bothering to name the argument to thesyntax
function, using  represent the sole argument. When using this notation, we can_

only reference the function parameter once in the body of the function (if we

mention  again, it refers to another argument to the function)._ 7

Footnote 7mThere are various rules affecting the scope of an  that we won't go over here. See the _ Scala

 for the full details. Generally, if you have to think about how anLanguage Specification, section 6.23
expression involving 's will be interpreted, it's better to just use the named parameter syntax, as in _ x => x

.+ 1
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SIDEBAR Functions are ordinary objects
We have said that functions and methods are not exactly the same
thing in Scala. When we define a function literal, what is actually being
defined is an object with a method called . Scala has a specialapply

rule for this method name, so that objects that have an  methodapply

can be called as if they were themselves methods. When we define a
function literal like  this is really syntax sugar for(a, b) => a < b

object creation:

lessThan has type , which isFunction2[Int,Int,Boolean]

usually written . Note that the (Int,Int) => Boolean Function2

interface (known in Scala as a "trait") has a single method called apply
. And when we call the  function with , itlessThan lessThan(10, 20)

is really syntax sugar for calling its  method:apply

Function2 is just an ordinary trait (i.e. an interface) provided by the
standard Scala library ( ) to represent function objects thatAPI docs link
take two arguments. Also provided are , , andFunction1 Function3

others, taking a number of arguments indicated by the name. Because
functions are really just ordinary Scala objects, we say that they are 

 values. We will often use "function" to refer to either such afirst-class
first-class function or a method, depending on context.

val lessThan = new Function2[Int, Int, Boolean] {
  def apply(a: Int, b: Int) = a < b
}

scala> val b = lessThan.apply(10, 20)
b: Boolean = true
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So far we have been defining only  functions. That is, functions thatmonomorphic
operate on only one type of data. For example, , and  are specificabs factorial

to arguments of type , and the higher-order function  is alsoInt formatResult

fixed to operate on functions that take arguments of type . Very often, we wantInt

to write code which works for  type it is given. As an example, here's aany
definition of binary search, specialized for searching for a  in an Double

.  is another primitive type in Scala, representingArray[Double] Double

double precision floating point numbers. And  is the typeArray[Double]

representing an array of  values.Double

We index into an array using the same syntax as function application

The details of the algorithm aren't too important here. What is important is that
the code for  is going to look almost identical if we are searchingbinarySearch

for a  in an , an  in an , a Double Array[Double] Int Array[Int] String

in an , or an  in an . We can write Array[String] A Array[A]

 more generally for any type , by accepting a function to use forbinarySearch A

testing whether an  value is greater than another:A

2.6 Polymorphic functions: abstracting over types

def binarySearch(ds: Array[Double], key: Double): Int = {
  @annotation.tailrec
  def go(low: Int, mid: Int, high: Int): Int = {
    if (low > high) -mid - 1
    else {
      val mid2 = (low + high) / 2

      val d = ds(mid2)
      if (d == key) mid2
      else if (d > key) go(low, mid2, mid2-1)
      else go(mid2 + 1, mid2, high)
    }
  }
  go(0, 0, ds.length - 1)
}

def binarySearch[A](as: Array[A], key: A, gt: (A,A) => Boolean): Int = {
  @annotation.tailrec
  def go(low: Int, mid: Int, high: Int): Int = {
    if (low > high) -mid - 1
    else {
      val mid2 = (low + high) / 2
      val a = as(mid2)
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This is an example of a  function.  We are polymorphic 8 abstracting over the
 of the array, and the comparison function used for searching it. To write atype

polymorphic function, we introduce a comma-separated list of ,type parameters
surrounded by  (here, just a single ), following the name of the function, in[] [A]

this case . We can call the type parameters anything we want—binarySearch

 and  are[Foo, Bar, Baz] [TheParameter, another_good_one]

valid type parameter declarations—though by convention we typically use short,
one letter type parameter names, like .[A,B,C]

Footnote 8mWe are using the term 'polymorphism' in a slightly different way than mainstream object-oriented
programming, where that term usually connotes some form of subtyping. There are no interfaces or subtyping here
in this example. One will occasionally see the term  used to refer to this form ofparametric polymorphism
polymorphism.

The type parameter list introduces  (or sometimes type variables type
) that can be referenced in the rest of the type signature (exactlyparameters

analogous to how variables introduced in the arguments to a function can be
referenced in the body of the function). Here, the type variable  is referenced inA

three places—the search key is required to have the type , the values of the arrayA

are required to have the type  (since it is an ), and the  functionA Array[A] gt

must accept two arguments both of type  (since it is an ).A (A,A) => Boolean

The fact that the same type variable is referenced in all three places in the type
signature enforces that the type must be the same for all three arguments, and the
compiler will enforce this fact anywhere we try to call . If we trybinarySearch

to search for a  in an , for instance, we'll get a typeString Array[Int]

mismatch error.9

Footnote 9mUnfortunately, Scala's use of subtyping means we sometimes get rather cryptic compile errors,
since Scala will try to find a common supertype to use for the  type parameter, and will fall back to using A

, the supertype of all types.Any

EXERCISE 2: Implement , which checks whether an  isisSorted Array[A]

sorted according to a given comparison function.

      val greater = gt(a, key)
      if (!greater && !gt(key,a)) mid2
      else if (greater) go(low, mid2, mid2-1)
      else go(mid2 + 1, mid2, high)
    }
  }
  go(0, 0, as.length - 1)
}
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SIDEBAR Boxed types and specialization in Scala
A function that is polymorphic in some type is generally forced to
represent values of these types as , or non-primitive values,boxed
meaning they are stored as a pointer to a value on the heap. It is
possible to instruct the Scala compiler to produce specialized versions
of a function for each of the primitive types, just by adding an annotation
to that type parameter:

This can potentially be much more efficient, though the mechanism is
rather fragile, since the polymorphic values will get boxed as soon as
they are passed to any other polymorphic function or data type which is
unspecialized in this way.

As you might have seen when writing , the universe of possibleisSorted

implementations is significantly reduced when implementing a polymorphic
function. If a function is polymorphic in some type, , the only operations that canA

be performed on that  are those passed into the function as arguments (or that canA

be defined in terms of these given operations).  In some cases, you'll find that the10

universe of possibilities for a given polymorphic type is constrained such that there
is only a single implementation!

Footnote 10mTechnically, all values in Scala can be compared for equality (using ), and we can compute a==

hash code for them as well. But this is something of a wart inherited from Java.

Let's look at an example of this, a higher-order function for doing what is called
. This function, , takes a value and a function of twopartial application partial1

arguments, and returns a function of one argument as its result. The name comes
from the fact that the function is being applied to some but not all of its required
arguments.

EXERCISE 3 (hard): Implement  and write down a concrete usagepartial1

of it. There is only one possible implementation that compiles. We don't have any

def isSorted[A](as: Array[A], gt: (A,A) => Boolean): Boolean

def binarySearch[@specialized A](as: Array[A], key: A,
                                 gt: (A,A) => Boolean): Int

def partial1[A,B,C](a: A, f: (A,B) => C): B => C
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concrete types here, so we can only stick things together using the local 'rules of
the universe' established by the type signature. The style of reasoning required here
is very common in functional programming—we are simply manipulating symbols
in a very abstract way, similar to how we would reason when solving an algebraic
equation.

EXERCISE 4 (hard): Let's look at another example, , which converts acurrying
function of  arguments into a function of one argument that returns anotherN

function as its result.  Here again, there is only one implementation that11

typechecks.

Footnote 11mThis is named after the mathematician Haskell Curry, who discovered the principle. It was
independently discovered earlier by Moses Schoenfinkel, but "Schoenfinkelization" didn't catch on.

EXERCISE 5 (optional): Implement , which reverses theuncurry

transformation of . Note that since  associates to the right, curry => A => (B

 can be written as .=> C) A => B => C

Let's look at a final example, , which feeds the output offunction composition
one function in as the input to another function. Again, the implementation of this
function is fully determined by its type signature.

EXERCISE 6: Implement the higher-order function that composes two
functions.

This is such a common thing to want to do that Scala's standard library provides
 as a method on . To compose two functions  and , youcompose Function1 f g

simply say . It also provides an  method. f compose g12 andThen f

 is the same as :andThen g g compose f

Footnote 12mSolving the  exercise by using this library function is considered cheating.compose

def curry[A,B,C](f: (A, B) => C): A => (B => C)

def uncurry[A,B,C](f: A => B => C): (A, B) => C

def compose[A,B,C](f: B => C, g: A => B): A => C

scala> val f = (x: Double) => math.Pi / 2 - x
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Interestingly, functions like  do not care whether they are operatingcompose

on huge functions backed by millions of lines of code, or a couple of one-line
functions. Polymorphic, higher-order functions often end up being extremely
widely applicable, precisely because they say nothing about any particular domain
and are simply abstracting over a common pattern that occurs in many contexts.
We'll be writing many more such functions over the course of this book, and this is
just a short taste of the style of reasoning and thinking you'll use when writing such
functions.

In this chapter we have learned some preliminary functional programming
concepts, and enough Scala to get going. We learned how to define simple
functions and programs, including how we can express loops using recursion, then
introduced the idea of higher-order functions and got some practice writing
polymorphic functions in Scala. We saw how the implementations of polymorphic
functions are often significantly constrained, such that one can often simply 'follow
the types' to the correct implementation. This is something we'll see a lot more of
in the chapters ahead.

Although we haven't yet written any large or complex programs, the principles
we have discussed here are scalable and apply equally well to programming in the
large as they do to programming in the small.

Next up we will look at using pure functions to manipulate data.

f: Double => Double = <function1>

scala> val cos = f andThen math.sin
cos: Double => Double = <function1>

2.7 Conclusion
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annonymous function
block
curried form
currying
function literals
higher-order function
import
lambda
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lambda notation
left-hand side
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method signature
module
monomorphic
monomorphism
namespace
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package
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proper tail-calls
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self-recursion
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string interpolation
tail-call optimization
tail position
type parameters
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uncurry
underscore syntax
val keyword

Index Terms
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3
We said in the introduction that functional programs do not update variables or
modify data structures. This raises pressing questions—what sort of data structures 

 we use in functional programming, how do we define them in Scala, and howcan
do we operate over these data structures? In this chapter we will learn the concept
of a  and how to define and work with such structures.functional data structure
We'll use this as an opportunity to introduce how data types are defined in
functional programming, learn about the related technique of , andpattern matching
get practice writing and generalizing pure functions.

This chapter has a lot of exercises, particularly to help with this last
point—writing and generalizing pure functions. Some of these exercises may be
challenging. As always, if you need to, consult the hints or the answers, or ask for
help online.

A functional data structure is (not surprisingly!) operated on using only pure
functions. Remember, a pure function may only accept some values as input and
yield a value as output. It may not change data in place or perform other side
effects.  For example, theTherefore, functional data structures are immutable.
empty list, (denoted  or  in Scala) is as eternal and immutable as theList() Nil

integer values  or . And just as evaluating  results in a new number 3 4 3 + 4 7

without modifying either  or , concatenating two lists together (the syntax for3 4

this is  for two lists  and ) yields a new list and leaves the two inputsa ++ b a b

unmodified.
Doesn't this mean we end up doing a lot of extra copying of the data?

Functional data structures

3.1 Introduction

3.2 Defining functional data structures
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Somewhat surprisingly, the answer is 'no'. We will return to this issue after
examining the definition of what is perhaps the most ubiquitous of functional data
structures, the singly-linked list. The definition here is identical in spirit to (though
simpler than) the  data type defined in Scala's standard library. This codeList

listing makes use of a lot of new syntax and concepts, so don't worry if not

everything makes sense at first—we will talk through it in detail.1

Footnote 1mNote—the implementations of  and  here are not tail recursive. We will be writingsum product

tail recursive versions of these functions later in the chapter.

Listing 3.1 Singly-linked lists

List data type
data constructor for List
List companion object
Pattern matching example
Variadic function syntax
Creating lists

package fpinscala.datastructures

sealed trait List[+A]

case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {

  def sum(ints: List[Int]): Int = ints match {
    case Nil => 0
    case Cons(x,xs) => x + sum(xs)
  }
 
  def product(ds: List[Double]): Double = ds match {
    case Nil => 1.0
    case Cons(0.0, _) => 0.0
    case Cons(x,xs) => x * product(xs)
  }
 

  def apply[A](as: A*): List[A] =
    if (as.isEmpty) Nil
    else Cons(as.head, apply(as.tail: _*))
 

  val example = Cons(1, Cons(2, Cons(3, Nil)))
  val example2 = List(1,2,3)
  val total = sum(example)
}
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Let's look first at the definition of the data type, which begins with the
keywords . In general, we introduce a data type with the sealed trait trait

keyword. A  is an abstract interface that may optionally containtrait

implementations of some methods. Here we are declaring a , called ,trait List

with no methods on it. Adding  in front means that all implementations ofsealed

our  must be declared in this file.trait 2

Footnote 2mWe could also say  here instead of . Technically, an abstract class trait abstract

 can contain , in the OO sense, which is what separates it from a , which cannotclass constructors trait

contain constructors. This distinction is not really relevant for our purposes right now.

There are two such implementations or  of  (eachdata constructors List

introduced with the keyword ) declared next, to represent each of the twocase

possible forms a  can take—it can be , denoted by the data constructor List empty

, or it can be nonempty (the data constructor , traditionally short forNil Cons

'construct'), in which case it consists of an initial element, , followed by a head

 (possibly empty) of remaining elements (the ).List tail

Listing 3.2 The data constructors of List

Just as functions can be polymorphic, data types can be as well, and by adding
the type parameter  after  and then using that [+A] sealed trait List A

parameter inside of the  data constructor, we have declared the  dataCons List

type to be polymorphic in the type of elements it contains, which means we can
use this same definition for a list of  elements (denoted ), Int List[Int]

 elements (denoted ),  elements (Double List[Double] String

), and so on (the  indicates that the type parameter,  is List[String] + A

—see sidebar 'More about variance' for more info).covariant
A data constructor declaration gives us a function to construct that form of the

data type (the  lets us write  to construct an empty case object Nil Nil List

, and the  lets us write , case class Cons Cons(1, Nil) Cons(1,

, and so on for nonempty lists), but also introduces a Cons(2, Nil)) pattern

that can be used for , as in the functions  and .pattern matching sum product

case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
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SIDEBAR More about variance
In the declaration , the  in front of the typetrait List[+A] +

parameter  is a  which signals that  is a A variance annotation A covariant
or 'positive' parameter of . This means that, for instance, List

 is considered a subtype of , assuming List[Dog] List[Animal] Dog

is a subtype of . (More generally, for all types  and , if  is aAnimal X Y X

subtype of  then  is a subtype of ). We could leaveY List[X] List[Y]

out the  in front of the , which would make   in that type+ A List invariant
parameter.
But notice now that  extends .  is aNil List[Nothing] Nothing

subtype of all types, which means that in conjunction with the variance
,  can be considered a , a ,annotation Nil List[Int] List[Double]

and so on, exactly as we want.
These concerns about variance are not very important for the present
discussion and are more of an artifact of how Scala encodes data
constructors via subtyping, so don't worry if this is not completely clear

right now.3

Footnote 3mIt is certainly possible to write code without using variance

annotations at all, and function signatures are sometimes simpler (while type

inference often gets worse). Unless otherwise noted, we will be using variance

annotations throughout this book, but you should feel free to experiment with

both approaches.

Let's look in detail at the functions  and , which we place in the sum product

, sometimes called the  to  (see sidebar).object List companion object List

Both these definitions make use of pattern matching.

As you might expect, the  function states that the sum of an empty list is ,sum 0

3.2.1 Pattern matching

def sum(ints: List[Int]): Int = ints match {
  case Nil => 0
  case Cons(x,xs) => x + sum(xs)
}

def product(ds: List[Double]): Double = ds match {
  case Nil => 1.0
  case Cons(0.0, _) => 0.0
  case Cons(x, xs) => x * product(xs)
}
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and the sum of a nonempty list is the first element, , plus the sum of thex

remaining elements, .  Likewise the  definition states that the productxs 4 product

of an empty list is , the product of any list starting with  is ,  and the1.0 0.0 0.0 5

product of any other nonempty list is the first element multiplied by the product of
the remaining elements. Notice these are recursive definitions, which are quite
common when writing functions that operate over recursive data types like List

(which refers to itself recursively in its  data constructor).Cons

Footnote 4mWe could call  and  anything there, but it is a common convention to use , , ,  asx xs xs ys as bs

variable names for a sequence of some sort, and , , , , or  as the name for a single element of ax y z a b

sequence. Another common naming convention is  for the first element of a list (the "head" of the list),  forh t

the remaining elements (the "tail"), and  for an entire list.l

Footnote 5mLISTS

6 This isn't the most robust test—pattern matching on  will match only the0.0

exact value , not  or any other value very close to .0.0 1e-102 0

Footnote 6mLISTS

Pattern matching works a bit like a fancy  statement that may descendswitch

into the structure of the expression it examines and extract subexpressions of that
structure (we'll explain this shortly). It is introduced with an expression (the target
or ), like  followed by the keyword , and a -wrappedscrutinee ds match {}

sequence of . Each case in the match consists of a  (like cases pattern
) to the left of the  and a  (like ) toCons(x,xs) => result x * product(xs)

the right of the . If the target  the pattern in a case (see below), the result=> matches

of that case becomes the result of the entire match expression. If multiple patterns
match the target, Scala chooses the first matching case.
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SIDEBAR Companion objects in Scala
We will often declare a  in addition to our data typecompanion object
and its data constructors. This is just an  with the same nameobject

as the data type (in this case ) where we put various convenienceList

functions for creating or working with values of the data type.
If, for instance, we wanted a function def fill[A](n: Int, a:

, that created a  with  copies of the element , the A): List[A] List n a

 companion object would be a good place for it. CompanionList

objects are more of a convention in Scala.  We could have called this7

module  if we wanted, but calling it  makes it clear that theFoo List

module contains functions relevant to working with lists, and also gives
us the nice  syntax when we define a variadic List(1,2,3) apply

function (see sidebar 'Variadic functions in Scala').

Footnote 7mThere is some special support for them in the language that

isn't really relevant for our purposes.

Let's look at a few more examples of pattern matching:

List(1,2,3) match { case _ => 42 } results in . Here we are using a variable42

pattern, , which matches any expression. We could say  or  instead of  but we_ x foo _

usually use  to indicate a variable whose value we ignore in the result of the case._ 8

Footnote 8mThe  variable pattern is treated somewhat specially in that it may be mentioned multiple_

times in the pattern to ignore multiple parts of the target.

List(1,2,3) match { case Cons(h,t) => h } results in . Here we are using a data1

constructor pattern in conjunction with variables to  or  a subexpression ofcapture bind
the target.
List(1,2,3) match { case Cons(_,t) => t } results in .List(2,3)

List(1,2,3) match { case Nil => 42 } results in a  at runtime. A MatchError

 indicates that none of the cases in a match expression matched the target.MatchError

What determines if a pattern matches an expression? A pattern may contain 
, like  or ,  like  and  which match anything,literals 0.0 "hi" variables x xs

indicated by an identifier starting with a lowercase letter or underscore, and data
constructors like  or , which match only values of theCons(x,xs) Nil

corresponding form (  as a pattern matches only the value , and Nil Nil

 or  as a pattern only match  values). TheseCons(h,t) Cons(x,xs) Cons

components of a pattern may be nested arbitrarily—Cons(x1, Cons(x2,

 and  are valid patterns. ANil)) Cons(y1, Cons(y2, Cons(y3, _)))
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pattern  the target if there exists an assignment of variables in the pattern tomatches
subexpressions of the target that make it  to the target. Thestructurally equivalent
result expression for a matching case will then have access to these variable
assignments in its local scope.

EXERCISE 1: What will the result of the following match expression be?

You are strongly encouraged to try experimenting with pattern matching in the
REPL to get a sense for how it behaves.

SIDEBAR Variadic functions in Scala
The function  in the listing above is a ,List.apply variadic function
meaning it accepts zero or more arguments of type . For data types, itA

is a common idiom to have a variadic  method in the companionapply

object to conveniently construct instances of the data type. By calling
this function  and placing it in the companion object, we canapply

invoke it with syntax like  or ,List(1,2,3,4) List("hi","bye")

with as many values as we want separated by commas (we sometimes
call this the  or just  syntax).list literal literal
Variadic functions are just providing a little syntax sugar for creating and
passing a  of elements explicitly.  is the interface in ScalaSeq Seq

implemented by sequence-like data structures like lists, queues,
vectors, and so forth. Inside ,  will be bound to a  (apply as Seq[A]

), which has the functions  (returns the firstdocumentation link head

element) and  (returns all elements but the first).tail

We can convert a , , back into something that can be passedSeq[A] x

to a variadic function using the syntax , where  can be anyx: _* x

expression, for instance:  or even List(x: _*) List(List(1,2,3):

._*)

val x = List(1,2,3,4,5) match {
  case Cons(x, Cons(2, Cons(4, _))) => x
  case Nil => 42
  case Cons(x, Cons(y, Cons(3, Cons(4, _)))) => x + y
  case Cons(h, t) => h + sum(t)
  case _ => 101
}
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When data is immutable, how do we write functions that, for example, add or
remove elements from a list? The answer is simple. When we add an element  to1

the front of an existing list, say , we return a new list, in this case xs

. Since lists are immutable, we don't need to actually copy ; weCons(1,xs) xs

can just reuse it. This property of immutable data is called  or just data sharing
. Data sharing of immutable data often lets us implement functions moresharing

efficiently; we can always return immutable data structures without having to
worry about subsequent code modifying our data. There's no need to

pessimistically make copies to avoid modification or corruption.9

Footnote 9mThis pessimistic copying can become a problem in large programs, when data may be passed
through a chain of loosely components, each of which may be forced to make copies of this data. Using immutable
data structures means never having to copy that data just to share it between two components of a system, which
promotes keeping these components loosely coupled. We find that , FP can often achieve greaterin the large
efficiency than approaches that rely on side effects, due to much greater sharing of data and computation.

In the same way, to "remove" an element from the front of a list val mylist

, we simply return . There is no real removing going on. The= Cons(x,xs) xs

original list,  is still available, unharmed. We say that functional datamylist

structures are , meaning that existing references are never changed bypersistent
operations on the data structure.

Let's try implementing a few different functions for "modifying" lists in
different ways. You can place this and other functions we write inside the List

companion object.
EXERCISE 2: Implement the function  for "removing" the first elementtail

of a . Notice the function takes constant time. What are different choices youList

could make in your implementation if the  is ? We will return to thisList Nil

question in the next chapter.
EXERCISE 3: Generalize  to the function , which removes the first tail drop

 elements from a list.n

EXERCISE 4: Implement ,  which removes elements from the dropWhile 10

 prefix as long as they match a predicate. Again, notice these functions takeList

time proportional only to the number of elements being dropped—we do not need
to make a copy of the entire .List

Footnote 10m  has two argument lists to improve type inference. See sidebar.dropWhile

3.3 Functional data structures and data sharing
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SIDEBAR Type inference in Scala
When writing functions like , we will often place the  indropWhile List

the first argument group, and any functions,  that receive elements off

the  in a later argument group. We can call this function with twoList

sets of parentheses, like , or we can partiallydropWhile(xs)(f)

apply it by supplying only the first argument . ThisdropWhile(xs)

returns a function that accepts the other argument, . The main reasonf

for grouping the arguments this way is to assist with type inference. If
we do this, Scala can determine the type of  without any annotation,f

based on what it knows about the type of the , which makes theList

function more convenient to use, especially when passing a function
literal like  in for , which would otherwise require anx => x > 34 f

annotation like . (Here it is not so bad, but(x: Int) => x > 34

when working with more complicated types, it is a pain to have to write
out these types each time we pass a function literal into a higher-order
function like ). This is an unfortunate restriction of the ScaladropWhile

compiler; other functional languages like Haskell and OCaml provide 
 inference, meaning type annotations are almost nevercomplete

required.11

Footnote 11mSee the notes for this chapter for more information and

links to further reading.

EXERCISE 5: Using the same idea, implement the function  forsetHead

replacing the first element of a  with a different value.List

Data sharing often brings some more surprising efficiency gains. For instance,
here is a function that adds all the elements of one list to the end of another:

Notice that this definition only copies values until the first list is exhausted, so

def drop[A](l: List[A], n: Int): List[A]

def dropWhile[A](l: List[A])(f: A => Boolean): List[A]

def append[A](a1: List[A], a2: List[A]): List[A] =
  a1 match {
    case Nil => a2
    case Cons(h,t) => Cons(h, append(t, a2))
  }
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its runtime is determined only by the length of . The remaining list then justa1

points to . If we were to implement this same function for two arrays, we woulda2

be forced to copy all the elements in both arrays into the result.
EXERCISE 6: Not everything works out so nicely. Implement a function, 

, which returns a  consisting of all but the last element of a . So,init List List

given ,  will return . Why can't thisList(1,2,3,4) init List(1,2,3)

function be implemented in constant time like ?tail

Because of the structure of a singly-linked list, any time we want to replace the 
 of a , even if it is the last  in the list, we must copy all thetail Cons Cons

previous  objects. Writing purely functional data structures that supportCons

different operations efficiently is all about finding clever ways to exploit data
sharing, which often means working with more tree-like data structures. We are not
going to cover these data structures here; for now, we are content to use the
functional data structures others have written. As an example of what's possible, in
the Scala standard library, there is a purely functional sequence implementation, 

 ( ), with constant-time random access, updates, , Vector documentation link head

, , and constant-time additions to either the front or rear of thetail init

sequence.

Let's look again at the implementations of sum and product. We've simplified the 
 implementation slightly, so as not to include the "short-circuiting" logicproduct

of checking for :0.0

Notice how similar these two definitions are. The only things that differ are the

def init[A](l: List[A]): List[A]

3.4 Recursion over lists and generalizing to higher-order
functions

def sum(ints: List[Int]): Int = ints match {
  case Nil => 0
  case Cons(x,xs) => x + sum(xs)
}

def product(ds: List[Double]): Double = ds match {
  case Nil => 1.0
  case Cons(x, xs) => x * product(xs)
}
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value to return in the case that the list is empty (  in the case of ,  in the0 sum 1.0

case of ), and the operation to apply to combine results (  in the case of product +

,  in the case of ). Whenever you encounter duplication like this, assum * product

we've discussed before, you can generalize it away by pulling subexpressions out
into function arguments. If a subexpression refers to any local variables (the +

operation refers to the local variables  and  introduced by the pattern, similarlyx xs

for ), turn the subexpression into a function that accepts these variablesproduct

as arguments. Putting this all together for this case, our function will take as
arguments the value to return in the case of the empty list, and the function to add

an element to the result in the case of a nonempty list:12

Footnote 12mIn the Scala standard library,  is a method on  and its arguments are curriedfoldRight List

similarly for better type inference.

Listing 3.3 Right folds and simple uses

Again, placing f in its own argument group after l and z lets type inference
determine the input types to f. See earlier sidebar.

foldRight is not specific to any one type of element, and the value that is

returned doesn't have to be of the same type as the elements either. One way of
describing what  does is that it replaces the constructors of the list, foldRight

 and  with  and , respectively. So the value of Nil Cons z f

 becomes , and foldRight(Cons(a, Nil), z)(f) f(a, z)

 becomes foldRight(Cons(a, Cons(b, Nil)), z)(f) f(a, f(b,

.z))

Let's look at an example. We are going to  the evaluation of trace
, byfoldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)(_ + _)

repeatedly subsituting the definition of  in for its usages. We'll usefoldRight

def foldRight[A,B](l: List[A], z: B)(f: (A, B) => B): B =
  l match {
    case Nil => z
    case Cons(x, xs) => f(x, foldRight(xs, z)(f))
  }

def sum2(l: List[Int]) =
  foldRight(l, 0.0)(_ + _)

def product2(l: List[Double]) =
  foldRight(l, 1.0)(_ * _)
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program traces like this throughout this book.

Notice that  must traverse all the way to the end of the listfoldRight

(pushing frames onto the call stack as we go) before it can begin collapsing it.
EXERCISE 7: Can  implemented using  immediatelyproduct foldRight

halt the recursion and return  if it encounters a ? Why or why not?0.0 0.0

Consider how any short-circuiting might work if you call  with afoldRight

large list. This is a deeper question that we'll return to a few chapters from now.
EXERCISE 8: See what happens when you pass  and  themselves to Nil Cons

, like this: foldRight foldRight(List(1,2,3),

.  What do you think this says about theNil:List[Int])(Cons(_,_)) 13

relationship between  and the data constructors of ?foldRight List

Footnote 13mThe type annotation  is needed here, because otherwise Scala infers the Nil:List[Int] B

type parameter in  as .foldRight List[Nothing]

EXERCISE 9: Compute the length of a list using .foldRight

EXERCISE 10:  is not tail-recursive and will foldRight StackOverflow

for large lists. Convince yourself that this is the case, then write another general
list-recursion function,  that is tail-recursive, using the techniques wefoldLeft

discussed in the previous chapter. Here is its signature:14

Footnote 14mAgain,  is defined as a method of  in the scala standard library, and it is curriedfoldLeft List

similarly for better type inference, so you can write .mylist.foldLeft(0.0)(_ + _)

EXERCISE 11: Write , , and a function to compute the length ofsum product

a list using .foldLeft

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)(_ + _)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)(_ + _)
1 + (2 + foldRight(Cons(3, Nil), 0)(_ + _))
1 + (2 + (3 + (foldRight(Nil, 0)(_ + _))))
1 + (2 + (3 + (0)))
6

def length[A](l: List[A]): Int

def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B
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EXERCISE 12: Write a function that returns the reverse of a list (so given 
 it returns ). See if you can write it using a fold.List(1,2,3) List(3,2,1)

EXERCISE 13 (hard): Can you write  in terms of ?foldLeft foldRight

How about the other way around?
EXERCISE 14: Implement  in terms of either  or append foldLeft

.foldRight

EXERCISE 15 (hard): Write a function that concatenates a list of lists into a
single list. Its runtime should be linear in the total length of all lists. Try to use
functions we have already defined.

There are many more useful functions for working with lists. We are going to
cover a few more here. After finishing this chapter, we recommend looking
through the  to see what other functions there are. If youscala API documentation
find yourself writing an explicit recursive function for doing some sort of list
manipulation, check the  API to see if something like the function you needList

already exists.
After finishing this section, you're not going to emerge with an automatic sense

of when to use each of these functions. Just get in the habit of looking for possible
ways to generalize any explicit recursive functions you write to process lists. If you
do this, you'll (re)discover these functions for yourself and build more of a sense
for when you'd use each one.

SIDEBAR Lists in the standard library
List exists in the Scala standard library ( ), and we'llAPI documentation
use the standard library version in subsequent chapters.
The main difference between the  developed here and theList

standard library version is that  is called , which isCons ::

right-associative (all operators ending in  are right-associative), so : 1

 is equal to . When pattern matching, :: 2 :: Nil List(1,2,3)

 becomes , which avoids having tocase Cons(h,t) case h :: t

nest parentheses if writing a pattern like  tocase h :: h2 :: t

extract more than just the first element of the .List

EXERCISE 16: Write a function that transforms a list of integers by adding 1

to each element. (Reminder: this should be a pure function that returns a new 
!)List

3.4.1 More functions for working with lists
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EXERCISE 17: Write a function that turns each value in a List[Double]

into a .String

EXERCISE 18: Write a function , that generalizes modifying each elementmap

in a list while maintaining the structure of the list. Here is its signature:15

Footnote 15mIn the standard library,  and  are methods of .map flatMap List

EXERCISE 19: Write a function  that removes elements from a listfilter

unless they satisfy a given predicate. Use it to remote all odd numbers from a 
.List[Int]

EXERCISE 20: Write a function , that works like  except thatflatMap map

the function given will return a list instead of a single result, and that list should be
inserted into the final resulting list. Here is its signature:

For instance  shouldflatMap(List(1,2,3))(i => List(i,i))

result in .List(1,1,2,2,3,3)

EXERCISE 21: Can you use  to implement ?flatMap filter

EXERCISE 22: Write a function that accepts two lists and constructs a new list
by adding corresponding elements. For example,  and List(1,2,3)

 becomes .List(4,5,6) List(5,7,9)

EXERCISE 23: Generalize the function you just wrote so that it's not specific to
integers or addition.

There are a number of other useful methods on lists. You may want to try
experimenting with these and other methods in the REPL after reading the API

. These are defined as methods on , rather than asdocumentation List[A]

standalone functions as we've done in this chapter.

def take(n: Int): List[A]: returns a list consisting of the first  elements of .n this

def takeWhile(f: A => Boolean): List[A]: returns a list consisting of the longest
valid prefix of  whose elements all pass the predicate .this f

def forall(f: A => Boolean): Boolean: returns  if and only if all elements of true

 pass the predicate .this f

def exists(f: A => Boolean): Boolean: returns  if any element of  passestrue this

the predicate .f

def map[A,B](l: List[A])(f: A => B): List[B]

def flatMap[A,B](l: List[A])(f: A => List[B]): List[B]
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scanLeft and  are like  and , but they return the  ofscanRight foldLeft foldRight List

partial results, rather than just the final accumulated value.

One of the problems with  is that while we can often express operationsList

and algorithms in terms of very general-purpose functions, the resulting
implementation isn't always efficient—we may end up making multiple passes
over the same input, or else have to write explicit recursive loops to allow early
termination.

EXERCISE 24 (hard): As an example, implement  forhasSubsequence

checking whether a  contains another  as a subsequence. For instance, List List

 would have , , and  asList(1,2,3,4) List(1,2) List(2,3) List(4)

subsequences, among others. You may have some difficulty finding a concise
purely functional implementation that is also efficient. That's okay. Implement the
function however comes most naturally. We will return to this implementation in a
couple of chapters and hopefully improve on it. Note: any two values, , and ,x y

can be compared for equality in Scala using the expression .x == y

List is just one example of what is called an  (ADT).algebraic data type

(Somewhat confusingly, ADT is sometimes used in OO to stand for "abstract data
type".) An ADT is just a data type defined by one or more data constructors, each
of which may contain zero or more arguments. We say that the data type is the sum
or  of its data constructors, and each data constructor is the  of itsunion product

arguments, hence the name  data type.algebraic 16

Footnote 16mThe naming is not coincidental. There is actually a deep connection, beyond the scope of this
book, between the "addition" and "multiplication" of types to form an ADT and addition and multiplication of
numbers.

When you encode a data type as an ADT, the data constructors and associated
patterns form part of that type's API, and other code may be written in terms of
explicit pattern

def hasSubsequence[A](l: List[A], sub: List[A]): Boolean

3.5 Trees
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SIDEBAR Tuple types in Scala
Pairs and other arity tuples are also algebraic data types. They work
just like the ADTs we've been writing here, but have special syntax:

In this example,  is a pair whose type is ,("Bob", 42) (String,Int)

which is syntax sugar for  ( ). We canTuple2[String,Int] API link
extract the first or second element of this pair (a  will have aTuple3

method  and so on), and we can pattern match on this pair much like_3

any other . Higher arity tuples work similarly—trycase class

experimenting with them on the REPL if you're interested.

Algebraic data types can be used to define other data structures. Let's define a
simple binary tree data structure:

Pattern matching again provides a convenient way of operating over elements
of our ADT. Let's try writing a few functions.

EXERCISE 25: Write a function  that counts the number of nodes in asize

tree.
EXERCISE 26: Write a function  that returns the maximum elementmaximum

in a . (Note: in Scala, you can use  or  toTree[Int] x.max(y) x max y

compute the maximum of two integers  and .)x y

EXERCISE 27: Write a function  that returns the maximum path lengthdepth

from the root of a tree to any leaf.
EXERCISE 28: Write a function , analogous to the method of the samemap

scala> val p = ("Bob", 42)
p: (java.lang.String, Int) = (Bob,42)

scala> p._1
res0: java.lang.String = Bob

scala> p._2
res1: Int = 42

scala> p match { case (a,b) => b }
res2: Int = 42

sealed trait Tree[+A]
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
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name on , that modifies each element in a tree with a given function.List

SIDEBAR ADTs and encapsulation
One might object that algebraic data types violate encapsulation by
making public the internal representation of a type. In FP, we approach
concerns about encapsulation a bit differently—we don't typically have
delicate mutable state which could lead to bugs or violation of invariants
if exposed publicly. Exposing the data constructors of a type is often
fine, and the decision to do so is approached much like any other

decision about what the public API of a data type should be.17

Footnote 17mIt is also possible in Scala to expose patterns like  and Nil

  the actual data constructors of the type.Cons independent of

We do typically use ADTs for cases where the set of cases is closed
(known to be fixed). For  and , changing the set of dataList Tree

constructors would significantly change what these data types are. List 
 a singly-linked list—that is its nature—and the two cases,  and is Nil

 form part of its useful public API. We can certainly write codeCons

which deals with a more abstract API than  (we will see examplesList

of this later in the book), but this sort of information hiding can be
handled as a separate layer rather than being baked into  directly.List

EXERCISE 29: Generalize , , , and , writing a newsize maximum depth map

function  that abstracts over their similarities. Reimplement them in terms offold

this more general function. Can you draw an analogy between this  functionfold

and the left and right folds for ?List

In this chapter we covered a number of important concepts. We introduced
algebraic data types and pattern matching and showed how to implement purely
functional data structures, including the singly-linked list. Also, through the
exercises in this chapter, we hope you got more comfortable writing pure functions
and generalizing them. We will continue to develop this skill in the chapters ahead.
18

Footnote 18mAs you work through more of the exercises, you may want to read appendix Todo discussing
different techniques for generalizing functions.

3.6 Summary
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companion object
companion object
covariant
data constructor
data sharing
functional data structure
match expression
pattern
pattern
pattern matching
pattern matching
persistence
program trace
tracing
variance
zip
zipWith

Index Terms
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4
In chapter 1 we said that throwing an exception breaks referential transparency.
Let's look at an example:

def failingFn(i: Int): Int = {
  val x: Int = throw new Exception("fail!")
  try {
    val y = 42 + 5
    x + y
  }
  catch { case e: Exception => 43 }
}

Unlike the expression , which produces a result of , the expression 42 + 5 47

 does not produce a value at all—itsthrow new Exception("fail!")

"result" is to jump to the nearest enclosing , which depends on the contextcatch

in which it is evaluated. The use of  and  means we can no longerthrow catch

reason about our program purely locally by substituting terms with their
definitions—if we replace substitute  in  with x x + y throw new

, our program has a different result.Exception("fail!") + y

How then do we write functional programs which handle errors? That is what
you will learn in this chapter. The technique is based on a simple idea: instead of
throwing an exception, we return a value indicating an exceptional condition has
occurred. This idea might be familiar to anyone who has used return codes in C to
handle exceptions, although in FP it works a bit differently, as we'll see.

Handling errors without exceptions

4.1 Introduction
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Let's consider a more realistic situation where we might use an exception and look
at different approaches we could use instead. Here is an implementation of a
function that computes the mean of a list, which is undefined if the list is empty:

def mean(xs: Seq[Double]): Double =
  if (xs.isEmpty)
    throw new ArithmeticException("mean of empty list!")
  else xs.sum / xs.length

Seq is the common interface of various linear sequence-like collections. Check the
API docs for more information.
sum is defined as a method on Seq using some magic (that we won't get into here)
that makes the method available only if the elements of the sequence are numeric.

mean is an example of what is called a : it is not defined forpartial function

some inputs. A function is typically partial because it makes some assumptions

about its inputs that are not implied by the input types.  You may be used to1

throwing exceptions in this case, but we have a few other options. Let's look at
these for our  example:mean

Footnote 1mA function may also be partial if it does not terminate for some inputs. We aren't going to discuss
this form of partiality here—a running program cannot recover from or detect this nontermination internally, so
there's no question of how best to handle it.

The first possibility is to return some sort of bogus value of type . WeDouble

could simply return  in all cases, and have it result in xs.sum / xs.length

 when the input is empty, which is , or we could return0.0/0.0 Double.NaN

some other sentinel value. In other situations we might return  instead of anull

value of the needed type. We reject this solution for a few reasons:

It allows errors to silently propagate—the caller can forget to check this condition and
will not be alerted by the compiler, which might result in subsequent code not working
properly. Often the error won't be detected until much later in the code.
It is not applicable to polymorphic code. For some output types, we might not even have
a sentinel value of that type even if we wanted to! Consider a function like  whichmax

finds the maximum value in a sequence according to a custom comparison function: def
. If the input were empty, wemax[A](xs: Seq[A])(greater: (A,A) => Boolean): A

cannot invent a value of type . Nor can  be used here since  is only valid forA null null

non-primitive types, and  is completely unconstrained by this signature.A

It demands a special policy or calling convention of callers—proper use of the mean
function now requires that callers do something other than simply call  and make usemean

of the result. Giving functions special policies like this makes it difficult to pass them to

4.2 Possible alternatives to exceptions
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higher-order functions, who must treat all functions they receive as arguments uniformly
and will generally only be aware of the types of these functions, not any special policy or
calling convention.

The second possibility is to force the caller to supply an argument which tells
us what to do in case we don't know how to handle the input:

def mean_1(xs: IndexedSeq[Double], onEmpty: Double): Double =
  if (xs.isEmpty) onEmpty
  else xs.sum / xs.length

This makes  into a total function, but it has drawbacks—it requires thatmean

immediate callers have direct knowledge of how to handle the undefined case and
limits them to returning a . What if  is called as part of a largerDouble mean

computation and we would like to abort that computation if  is undefined? Ormean

perhaps we would like to take some completely different branch in the larger
computation in this case? Simply passing an  parameter doesn't give usonEmpty

this freedom.
We need a way to defer the decision of how to handle undefined cases so that

they can be dealt with at the most appropriate level.

The solution is to represent explicitly in the return type that we may not always
have a defined value. We can think of this as deferring to the caller for the error
handling strategy. We introduce a new type, :Option

sealed trait Option[+A]
case class Some[+A](get: A) extends Option[A]
case object None extends Option[Nothing]

Option has two cases: it can be defined, in which case it will be a , or itSome

can be undefined, in which case it will be . We can use this for our definitionNone

of  like so:mean

def mean(xs: Seq[Double]): Option[Double] =
  if (xs.isEmpty) None
  else Some(xs.sum / xs.length)

The return type now reflects the possibility that the result is not always defined.

4.3 The Option data type
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We still always return a result of the declared type (now )Option[Double]

from our function, so  is now a . It takes each value of the inputmean total function

type to exactly one value of the output type.

Partial functions abound in programming, and  (and related data types weOption

will discuss shortly) is typically how this partiality is dealt with in FP. You'll see 
 used throughout the Scala standard library, for instance:Option

Map lookup for a given key returns Option
headOption and   return lastOption defined for lists and other iterables Option

containing the first or last elements of a sequence if it is nonempty.

These aren't the only examples—we'll see  come up in many differentOption

situations. What makes  convenient is that we can factor out commonOption

patterns of error handling via higher order functions, freeing us from writing the
usual boilerplate that comes with exception-handling code.

Option can be thought of like a  that can contain at most one element,List

and many of the  functions we saw earlier have analogous functions on List

. Let's look at some of these functions. We are going to do somethingOption

slightly different than last chapter. Last chapter we put all the functions that
operated on  in the  companion object. Here we are going to place ourList List

functions, when possible, inside the body of the  trait, so they can beOption

called with OO syntax (  or  instead of obj.fn(arg1) obj fn arg1 fn(obj,

). This is a stylistic choice with no real significance, and we'll use botharg1)

styles throughout this book.2

Footnote 2mIn general, we'll use the OO style where possible for functions that have a single, clear operand
(like ), and the standalone function style otherwise.List.map

trait Option[+A] {
  def map[B](f: A => B): Option[B]
  def flatMap[B](f: A => Option[B]): Option[B]
  def getOrElse[B >: A](default: => B): B
  def orElse[B >: A](ob: => Option[B]): Option[B]
  def filter(f: A => Boolean): Option[A]
}

There are a couple new things here. The  type annotation in default: => B

 (and the similar annotation in ) indicates the argument willgetOrElse orElse

4.3.1 Usage patterns for Option
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not be evaluated until it is needed by the function. Don't worry about this for
now—we'll talk much more about it in the next chapter. Also, the  parameterB>:A

on these functions indicates that  must be a  of . It's needed toB supertype A

convince Scala that it is still safe to declare  as covariant in Option[+A] A

(which lets the compiler assume things like  is a subtype of Option[Dog]

). Likewise for . This isn't really important to ourOption[Animal] orElse

purposes; it's mostly an artifact of the OO style of placing the functions that
operate on a type within the body of the .trait

EXERCISE 1: We'll explore when you'd use each of these next. But first, as an
exercise, implement all of the above functions on . As you implementOption

each function, try to think about what it means and in what situations you'd use it.
Here are a few hints:

It is fine to use pattern matching, though you should be able to implement all the
functions besides  and  without resorting to pattern matching.map getOrElse

For  and , the type signature should be sufficient to determine themap flatMap

implementation.
getOrElse returns the result inside the  case of the , or if the  is ,Some Option Option None

returns the given default value.
orElse returns the first  if it is defined, otherwise, returns the second .Option Option

Although we can explicitly pattern match on an , we will almostOption

always use the above higher order functions. We'll try to give some guidance for
when to use each of them, but don't worry if it's not totally clear yet. The purpose
here is mostly to get some basic familiarity so you can recognize these patterns as
you start to write more functional code.

The  function can be used to transform the result inside an , if itmap Option

exists. We can think of it as proceeding with a computation on the assumption that
an error has not occurred—it is also a way of deferring the error handling to later
code:

case class Employee(name: String, department: String)

val employeesByName: Map[String, Employee] =
  List(Employee("Alice", "R&D"), Employee("Bob", "Accounting")).
  map(e => (e.name, e)).toMap

val dept: Option[String] = employeesByName.get("Joe").map(_.dept)

A dictionary or associative container with String as the key type and Employee as
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the value type
Convenient method for converting a List[(A,B)] to a Map[A,B]

Here,  returns an , whichemployeesByName.get Option[Employee]

we transform using  to pull out the  representing themap Option[String]

department.
flatMap is similar, except that the function we provide to transform the result

can itself fail.
EXERCISE 2: Implement the  function (if the mean is , variancevariance m

is the mean of , see ) in terms of  and math.pow(x - m, 2) definition mean

.flatMap 3

Footnote 3mVariance can actually be computed in one pass, but for pedagogical purposes we will compute it
using two passes. The first will compute the mean of the data set, and the second will compute the mean squared
difference from this mean.

def variance(xs: Seq[Double]): Option[Double]

filter can be used to convert successes into failures if the successful values

don't match the given predicate. A common pattern is to transform an  viaOption

calls to , , and/or , then use  to do errormap flatMap filter getOrElse

handling at the end.

val dept: String =
  employeesByName.get("Joe").
  map(_.dept).
  filter(_ != "Accounting").
  getOrElse("Default Dept")

getOrElse is used here to convert from an  to a Option[String]

, by providing a default department in case the key  did not exist inString "Joe"

the  or if Joe's department was .Map "Accounting"

orElse is similar to , except that we return another  ifgetOrElse Option

the first is undefined. This is often useful when we need to chain together possibly
failing computations, trying the second if the first hasn't succeeded.

A common idiom is to do o.getOrElse(throw

 to convert the  case of an  back to anAnException("FAIL")) None Option
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exception. The general rule of thumb is that we use exceptions only if no
reasonable program would ever catch the exception—if for some callers the
exception might be a recoverable error, we use  to give them flexibility.Option

It may be easy to jump to the conclusion that once we start using , itOption

infects our entire code base. One can imagine how any callers of methods that take
or return  will have to be modified to handle either  or . ButOption Some None

this simply doesn't happen, and the reason why is that we can  ordinarylift
functions to become functions that operate on .Option

For example, the  function lets us operate on values of type map Option[A]

using a function of type , returning . Another way of lookingA => B Option[B]

at this is that  turns a function  of type  into a function of type map f A => B

. It might be more clear if we make this moreOption[A] => Option[B]

explicit in the type signature:

def lift[A,B](f: A => B): Option[A] => Option[B] = _ map f

As an example of when you might use , let's look at one more example of amap

function that returns :Option

import java.util.regex._

def pattern(s: String): Option[Pattern] =
  try {
    Some(Pattern.compile(s))
  } catch {
    case e: PatternSyntaxException => None
  }

This example uses the Java standard library's regex package to parse a string

into a regular expression pattern.  If there is a syntax error in the pattern (it's not a4

valid regular expression), we catch the exception thrown by the library function
and return . Methods on the  class don't need to know anythingNone Pattern

about . We can simply  them using the  function:Option lift map

Footnote 4mScala runs on the Java Virtual Machine and is completely compatible with all existing Java
libraries. We can therefore call , a Java function, exactly as we would any ScalaPattern.compile

function.

4.3.2 Option composition and lifting
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def mkMatcher(pat: String): Option[String => Boolean] =
  pattern(pat) map (p => (s: String) => p.matcher(s).matches)

The details of this API don't matter too much, but p.matcher(s).matches will check
if the string s matches the pattern p.

Here, the  call will return an , whichpattern(pat) Option[Pattern]

will be  if  is not valid. Notice how we are using the  and None pat matcher

 functions  the . Because they are inside the , they don'tmatches inside map map

need to be aware of the outer containing . If you don't feel you fully graspOption

how this works yet, use the substitution model to execute this on paper step by
step, both for the case where  is valid and where it is invalid.pat

It's also possible to lift a function by using a , which in Scalafor-comprehension
is a convenient syntax for writing a sequence of nested calls to  and map flatMap

. We'll explain the translation in a minute. First, here are some examples:

def mkMatcher_1(pat: String): Option[String => Boolean] =
  for {
    p <- pattern(pat)
  } yield ((s: String) => p.matcher(s).matches)

def doesMatch(pat: String, s: String): Option[Boolean] =
  for {
    p <- mkMatcher_1(pat)
  } yield p(s)

So far we are only lifting functions that take one argument. But some functions
take more than one argument and we would like to be able to lift them too. The
for-comprehension makes this easy, and we can combine as many options as we
want:

def bothMatch(pat: String, pat2: String, s: String): Option[Boolean] =
  for {
    f <- mkMatcher(pat)
    g <- mkMatcher(pat2)
  } yield f(s) && g(s)

A for-comprehension like this is simply syntax sugar. Internally, Scala will
translate the above to ordinary method calls to  and :map flatMap

def bothMatch_1(pat: String, pat2: String, s: String): Option[Boolean] =
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  mkMatcher(pat) flatMap (f =>
  mkMatcher(pat2) map     (g =>
  f(s) && g(s)))

EXERCISE 3:  is an instance of a more general pattern. Write abothMatch

generic function , that combines two  values using a binary function.map2 Option

If either  value is , then the return value is too. Here is its signature:Option None

def map2[A,B,C](a: Option[A], b: Option[B])(f: (A, B) => C): Option[C]

EXERCISE 4: Re-implement  above in terms of this new function,bothMatch

to the extent possible.

def bothMatch_2(pat1: String, pat2: String, s: String): Option[Boolean]

EXERCISE 5: Write a function , that combines a list of Optionssequence

into one option containing a list of all the  values in the original list. If theSome

original list contains  even once, the result of the function should be ,None None

otherwise the result should be  with a list of all the values. Here is itsSome

signature:5

Footnote 5mThis is a clear instance where it's not possible to define the function in the OO style. This should
not be a method on  (which shouldn't need to know anything about ), and it can't be a methodList Option

on .Option

def sequence[A](a: List[Option[A]]): Option[List[A]]

Sometimes we will want to map over a list using a function that might fail,
returning  if applying it to any element of the list returns None. For example,None

parsing a whole list of strings into a list of patterns. In that case, we can simply
sequence the results of the :map

def parsePatterns(a: List[String]): Option[List[Pattern]] =
  sequence(a map pattern)

Unfortunately, this is a little inefficient, since it traverses the list twice. Wanting
to sequence the results of a  this way is a common enough occurrence tomap
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warrant a new generic function , with the following signature:traverse

def traverse[A, B](a: List[A])(f: A => Option[B]): Option[List[B]]

EXERCISE 6: Implement this function. It is straightforward to do using map

and , but try for a more efficient implementation that only looks at thesequence

list once. In fact, implement  in terms of .sequence traverse

The big idea in this chapter is that we can represent failures and exceptions with
ordinary values, and we can write functions that abstract out common patterns of
error handling and recovery.  is not the only data type we could use forOption

this purpose, and although it gets used quite frequently, it's rather simplistic. One
thing you may have noticed with  is that it doesn't tell us very much aboutOption

what went wrong in the case of an exceptional condition. All it can do is give us 
 indicating that there is no value to be had. But sometimes we want to knowNone

more. For example, we might want a  that gives more information, or if anString

exception was raised, we might want to know what that error actually was.
We can craft a data type that encodes whatever information we want about

failures. Sometimes just knowing whether a failure occurred is sufficient in which
case we can use ; other times we want more information. In this section,Option

we'll walk through a simple extension to , the  data type, whichOption Either

lets us track a  for the failure. Let's look at its definition:reason

sealed trait Either[+E, +A]
case class Left[+E](value: E) extends Either[E, Nothing]
case class Right[+A](value: A) extends Either[Nothing, A]

Either has only two cases, just like . The essential difference is thatOption

both cases carry a value. The  data type represents, in a very general way,Either

values that can be one of two things. We can say that it is a  of twodisjoint union
types. When we use it to indicate success or failure, by convention the Left

constructor is reserved for the failure case.6

Footnote 6m  is also often used more generally to encode one of two possibilities, in cases where itEither

isn't worth defining a fresh data type. We'll see some examples of this throughout the book.

4.3.3 The Either data type
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SIDEBAR Option and Either in the standard library
Both  and  exist in the Scala standard library (Option Either Option

 and ), and most of the functions we've definedAPI link Either API link
here in this chapter exist for the standard library versions. There are a
few missing functions, though, notably , , and sequence traverse

.map2

You are encouraged to read through the API for  and Option Either

to understand the differences.  in particular, does not define aEither

right-biased  directly like we did here, but relies on explicit flatMap

 and  projection functions. Read the API for details.left right

Let's look at the  example again, this time returning a  in case ofmean String

failure:

def mean(xs: IndexedSeq[Double]): Either[String, Double] =
  if (xs.isEmpty)
    Left("mean of empty list!")
  else
    Right(xs.sum / xs.length)

Sometimes we might want to include more information about the error, for
example a stack trace showing the location of the error in the source code. In such
cases we can simply return the exception in the  side of an :Left Either

def safeDiv(x: Double, y: Double): Either[Exception, Double] =
  try {
    Right(x / y)
  } catch {
    case e: Exception => Left(e)
  }

EXERCISE 7: Implement versions of , , , and  on map flatMap orElse map2

 that operate on the  value.Either Right

trait Either[+E, +A] {
  def map[B](f: A => B): Either[E, B]
  def flatMap[EE >: E, B](f: A => Either[EE, B]): Either[EE, B]
  def orElse[EE >: E,B >: A](b: => Either[EE, B]): Either[EE, B]
  def map2[EE >: E, B, C](b: Either[EE, B])(f: (A, B) => C):
    Either[EE, C]
}
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Note that with these definitions,  can now be used inEither

for-comprehensions, for instance:

for {
  age <- Right(42)
  name <- Left("invalid name")
  salary <- Right(1000000.0)
} yield employee(name, age, salary)

This will result in . Of course, Left("invalid name") Left("invalid

 could be an arbitrary expression like  that happens toname") foo(x,y,z)

result in a .Left

EXERCISE 8: Implement  and  for .sequence traverse Either

As a final example, here is an application of , where the function map2

 validates both the given name and the given age before constructing amkPerson

valid :Person

case class Person(name: Name, age: Age)
sealed class Name(val value: String)
sealed class Age(val value: Int)

def mkName(name: String): Either[String, Name] =
  if (name == "" || name == null) Left("Name is empty.")
  else Right(new Name(name))

def mkAge(age: Int): Either[String, Age] =
  if (age < 0) Left("Age is out of range.")
  else Right(new Age(age))

def mkPerson(name: String, age: Int): Either[String, Person] =
  mkName(name).map2(mkAge(age))(Person(_, _))

EXERCISE 9: In this implementation,  is only able to report one error,map2

even if both the name and the age are invalid. What would you need to change in
order to report  errors? Would you change  or the signature of both map2

? Or could you create a new data type that captures this requirementmkPerson

better than  does, with some additional structure? How would , Either orElse

, and  behave differently for that data type?traverse sequence
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disjoint union
for-comprehension
lifting
lifting

Using algebraic data types such as  and , we can handle errors inOption Either

a way that is modular, compositional, and simple to reason about. In this chapter,
we have developed a number of higher-order functions that manipulate errors in
ways that we couldn't otherwise if we were just throwing exceptions. With these
new tools in hand, exceptions should be reserved only for truly unrecoverable
conditions in our programs.

Index Terms

4.4 Conclusion
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5
In chapter 3 we talked about purely functional data structures, using singly-linked
lists as an example. We covered a number of bulk operations on lists — , map

, , , , etc. We noted that each of thesefilter foldLeft foldRight zip

operations makes its own pass over the input and constructs a fresh list for the
output.

Imagine if you had a deck of cards and you were asked to remove the
odd-numbered cards and then remove all the queens. Ideally, you would make a
single pass through the deck, looking for queens and odd-numbered cards at the
same time. This is more efficient than removing the odd cards and then looking for
queens in the remainder. And yet the latter is what Scala is doing in the following

code:1

Footnote 1mWe are using the Scala standard library's  type here, where  and  are methodsList map filter

on  rather than standalone functions like those we wrote in chapter 3.List

scala> List(1,2,3,4) map (_ + 10) filter (_ % 2 == 0) map (_ * 3)
List(36,42)

In this expression,  will produce an intermediate list that thenmap (_ + 10)

gets passed to , which in turn constructs a list whichfilter (_ % 2 == 0)

gets passed to  which then produces the final list. In other words,map (_ * 3)

each transformation will produce a temporary list that only ever gets used as input
to the next transformation and is then immediately discarded.

Think about how this program will be evaluated. If we manually produce a
trace of its evaluation, the steps would look something like this:

Strictness and laziness
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List(1,2,3,4) map (_ + 10) filter (_ % 2 == 0) map (_ * 3)
List(11,12,13,14) filter (_ % 2 == 0) map (_ * 3)
List(12,14) map (_ * 3)
List(36,42)

Here we are showing the result of each substitution performed to evaluate our
expression (for example, to go from the first line to the second, we have substituted

 with , based onList(1,2,3,4) map (_ + 10) List(11,12,13,14)

the definition of ).  This view makes it clear how the calls to  and map 2 map

 each perform their own traversal of the input and allocate lists for thefilter

output. Wouldn't it be nice if we could somehow fuse sequences of transformations
like this into a single pass and avoid creating temporary data structures? We could
rewrite the code into a while-loop by hand, but ideally we'd like to have this done
automatically while retaining the same high-level compositional style. We want to
use higher-order functions like  and  instead of manually fusingmap filter

passes into loops.

Footnote 2mWith program traces like these, it is often more illustrative to not fully trace the evaluation of
every subexpression. For instance, in this case, we've omitted the full expansion of List(1,2,3,4) map

. We could "enter" the definition of  and trace its execution but we chose to omit this level of(_ + 10) map

detail in this trace.

It turns out that we can accomplish this through the use of  (ornon-strictness
more informally, "laziness"). In this chapter, we will explain what exactly this
means, and we'll work through the implementation of a lazy list type that fuses
sequences of transformations. Although building a "better" list is the motivation for
this chapter, we'll see that non-strictness is a fundamental technique for improving
on the efficiency and modularity of functional programs in general.

Before we get to our example of lazy lists, we need to cover some basics. What is
strictness and non-strictness, and how are these concepts expressed in Scala?

SIDEBAR Termination and strictness
If the evaluation of an expression runs forever or throws an error
instead of returning a definite value, we say that the expression does
not , or that it evaluates to . A function  is  ifterminate bottom f strict

the expression  evaluates to bottom for all  that evaluate tof(x) x

bottom.

Non-strictness is a property of a function. To say a function is non-strict just

5.1 Strict and non-strict functions
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means that the function may choose  to evaluate one or more of its arguments.not
In contrast, a  function always evaluates its arguments. Strict functions are thestrict
norm in most programming languages and most languages don't even provide a
way to define non-strict functions. Unless you tell it otherwise, any function
definition in Scala will be strict (and all the functions we have defined so far have
been strict). As an example, consider the following function:

def square(x: Double): Double = x * x

When you invoke  square will receive the evaluatedsquare(41.0 + 1.0)

value of  because it is strict. If you were to invoke 42.0

, you would get an exception, since the square(sys.error("failure"))

 expression will be evaluated before entering thesys.error("failure")

body of .square

Although we haven't yet learned the syntax for indicating non-strictness in
scala, you are almost certainly familiar with non-strictness . Foras a concept
example, the Boolean functions  and  are non-strict. You may be used to&& ||

thinking of  and  as built-in syntax, part of the language, but we can also&& ||

think of them as functions that may choose not to evaluate their arguments. The
function  takes two  arguments, but only evaluates the second&& Boolean

argument if the first is :true

scala> false && { println("!!"); true } // does not print anything
res0: Boolean = false

And  only evaluates its second argument if the first is :|| false

scala> true || { println("!!") // doesn't print anything either }
res1: Boolean = true

Another example of non-strictness is the  control construct in Scala:if

val result = if (input.isEmpty) sys.error("empty input") else input

The  language construct could also be thought of as a function acceptingif

three parameters: a condition of type , an expression of some type  toBoolean A
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return in the case that the condition is true, and another expression of the same type
 to return if the condition is false. This  function would be non-strict, since itA if

will not evaluate all of its arguments. To be more precise, we would say that the 
 function is strict in its condition parameter, since it will always evaluate theif

condition to determine which branch to take, and non-strict in the two branches for
the  and  cases, since it will only evaluate one or the other based ontrue false

the condition.
In Scala, we can write non-strict functions by accepting some of our arguments

unevaluated, using the following syntax:

def if2[A](cond: Boolean, onTrue: => A, onFalse: => A): A =
  if (cond) onTrue else onFalse

The arguments we would like to pass unevaluated have  immediately before=>

their type. In the body of the function, we do not need to do anything to evaluate an
argument annotated with . We just reference the identifier. We also call this=>

function with the usual function call syntax:

scala> if2(false, sys.error("fail"), 3)
res2: Int = 3

Scala will take care of making sure that the second and third arguments are

passed unevaluated to the body of .if2 3

Footnote 3mThe unevaluated form of an expression is often called a . Thunks are represented at runtimethunk
in Scala as a value of type , which you can see if you're curious by inspecting thescala.Function0

signature of non-strict functions in the  file the Scala compiler generates..class

An argument that is passed unevaluated to a function will be evaluated once for
each place it is referenced in the body of the function. That is, Scala will not (by
default) cache the result of evaluating an argument:

scala> def pair(i: => Int) = (i, i)
scala> pair { println("hi"); 1 + 41 }
hi
hi
val res3: (Int, Int) = (42,42)

Here,  is referenced twice in the body of , and we have made iti pair
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particularly obvious that it is evaluated each time by passing the block 
 which prints  as a side effect before returning aprintln("hi"); 1 + 41 hi

result of . The expression  will be computed twice as well. Luckily we42 1 + 41

can cache the value explicitly if we wish to only evaluate the result once, by using
the  keyword:lazy

scala> def pair2(i: => Int) = { lazy val j = i; (j, j) }
scala> pair2 { println("hi"); 1 + 41 }
hi
val res4: (Int, Int) = (42,42)

Adding the  keyword to a  declaration will cause Scala to delaylazy val

evaluation of the right hand side until it is first referenced and will also cache the
result so that subsequent references of  don't trigger repeated evaluation. In thisj

example, we were going to evaluate  on the next line anyway, so we could havei

just written . Despite receiving its argument unevaluated,  isval j = i pair2

still considered a strict function since it always ends up evaluating its argument. In
other situations, we can use  when we don't know if subsequent codelazy val

will evaluate the expression and simply want to cache the result if it is ever
demanded.

As a final bit of terminology, a non-strict function that evaluates its arguments
each time it references them is said to evaluate those arguments ; if itby name
evaluates them only once and then caches their value, it is said to evaluate ,by need
or it's said to be . We'll often refer to unevaluated parameters in Scala as lazy

. Note also that the terms  or  areby-name parameters laziness lazy evaluation
sometimes used informally to refer to any sort of non-strict evaluation, not
necessarily evaluation by need. When you encounter the word "lazy" in this book,
you can assume that we are using an informal definition.

Let's now return to the problem posed at the beginning of this chapter. We are
going to explore how laziness can be used to improve the efficiency and
modularity of functional programs, using , or  as an example. We'lllazy lists streams
see how chains of transformations on streams are fused into a single pass, through

the use of laziness. Here is a simple  definition:Stream 4

Footnote 4mThere are some subtle possible variations on this definition of . We'll touch briefly onStream

some of these variations later in this chapter.

5.2 An extended example: lazy lists
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trait Stream[+A] {
  def uncons: Option[(A, Stream[A])]
  def isEmpty: Boolean = uncons.isEmpty
}

object Stream {

def empty[A]: Stream[A] =
  new Stream[A] { def uncons = None }

def cons[A](hd: => A, tl: => Stream[A]): Stream[A] =
  new Stream[A] {
    lazy val uncons = Some((hd, tl))
  }

def apply[A](as: A*): Stream[A] =
  if (as.isEmpty) empty
  else cons(as.head, apply(as.tail: _*))
}

Notice the  function is non-strict in its arguments. Thus the head and tailcons

of the stream will not be evaluated until first requested. We'll sometimes write 
 using the infix, right associative operator , so cons #:: 1 #:: 2 #:: empty

is equivalent to . We could add it to the cons(1, cons(2, empty)) Stream

trait in the same way that we added  to the  trait in the code for chapter 3,:: List

though there are some annoying additional hoops to jump through to make it
properly non-strict. See the associated code for this chapter if you're interested in
exactly how this syntax is implemented.

Before continuing, let's write a few helper functions to make inspecting streams
easier.

EXERCISE 1: Write a function to convert a  to a , which willStream List

force its evaluation and let us look at it in the REPL. You can convert to the
regular  type in the standard library. You can place this and other functionsList

that accept a  inside the  trait.Stream Stream

def toList: List[A]

EXERCISE 2: Write a function  for returning the first  elements of a take n

.Stream

def take(n: Int): Stream[A]
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EXERCISE 3: Write the function  for returning all startingtakeWhile

elements of a  that match the given predicate.Stream

def takeWhile(p: A => Boolean): Stream[A]

You can use  and  together to inspect the streams we'll betake toList

creating. For example, try printing .Stream(1,2,3).take(2).toList

Laziness lets us separate the description of an expression from the evaluation of
that expression. This gives us a powerful ability — we may choose to describe a
"larger" expression than we need, then evaluate only a portion of it. As an
example, consider  — we can implement this for  much likefoldRight Stream

we did for , but we can implement it lazily:List

def foldRight[B](z: => B)(f: (A, => B) => B): B =
  uncons match {
    case Some((h, t)) => f(h, t.foldRight(z)(f))
    case None => z
  }

This looks very similar to the  we wrote for , but notice howfoldRight List

our combining function, , is non-strict in its second parameter. If  chooses not tof f

evaluate its second parameter, this terminates the traversal early. We can see this
by using  to implement , which checks to see if any value infoldRight exists

the  matches a given predicate.Stream

def exists(p: A => Boolean): Boolean =
  foldRight(false)((a, b) => p(a) || b)

Since  can terminate the traversal early, we can reuse it tofoldRight

implement  rather than writing an explicit recursive function to handleexists

early termination. This is a simple example where separating the concerns of 
 a computation from the concern of  makes our descriptionsdescribing evaluation

more reusable than when these concerns are intertwined. This kind of separation of
concerns is a central theme in functional programming.

EXERCISE 4: Implement , which checks that all elements in the forAll

5.3 Separating program description from evaluation
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 match a given predicate. Your implementation should terminate theStream

traversal as soon as it encounters a non-matching value.

def forAll(p: A => Boolean): Boolean

EXERCISE 5: Use  to implement . This willfoldRight takeWhile

construct a stream incrementally, and only if the values in the result are demanded
by some other expression.

EXERCISE 6: Implement , , , and  using map filter append flatMap

.foldRight

Because the implementations are incremental, chains of transformations will
avoid fully instantiating the intermediate data structures. Let's look at a simplified
program trace for (a fragment of) the motivating example we started this chapter
with, . Take aStream(1,2,3,4).map(_ + 10).filter(_ % 2 == 0)

minute to work through this trace to understand what's happening. It's a bit more
challenging than the trace we looked at earlier in this chapter.

Stream(1,2,3,4).map(_ + 10).filter(_ % 2 == 0)
(11 #:: Stream(2,3,4).map(_ + 10)).filter(_ % 2 == 0)
Stream(2,3,4).map(_ + 10).filter(_ % 2 == 0)
(12 #:: Stream(3,4).map(_ + 10)).filter(_ % 2 == 0)
12 #:: Stream(3,4).map(_ + 10).filter(_ % 2 == 0)
12 #:: (13 #:: Stream(4).map(_ + 10)).filter(_ % 2 == 0)
12 #:: Stream(4).map(_ + 10).filter(_ % 2 == 0)
12 #:: (14 #:: Stream().map(_ + 10)).filter(_ % 2 == 0)
12 #:: 14 #:: Stream().map(_ + 10).filter(_ % 2 == 0)
12 #:: 14 #:: Stream()

Apply map to first element
Apply filter to first element
Apply map to second element
Apply filter to second element

Notice how the  and  transformations are interleaved—thefilter map

computation alternates between generating a single element of the output of ,map

and  testing to see if that element is divisible by  (adding it to the outputfilter 2

stream if it is), exactly as if we had interleaved these bits of logic in a
special-purpose loop that combined both transformations. Notice we do not fully
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instantiate the intermediate stream that results from the . For this reason,map

people sometimes describe streams as "first-class loops" whose logic can be
combined using higher-order functions like  and .map filter

The incremental nature of stream transformations also has important
consequences for memory usage. In a sequence of stream transformations like this,
the garbage collector can usually reclaim the space needed for each intermediate
stream element,  that element is passed on to the next transformation.as soon as
Here, for instance, the garbage collector can reclaim the space allocated for the
value  emitted by  as soon as  determines it isn't needed. Of course,13 map filter

this is a simple example; in other situations we might be dealing with larger
numbers of elements, and the stream elements themselves could be large objects
that retain significant amounts of memory. Being able to reclaim this memory as
quickly as possible can cut down on the amount of memory required by your

program as a whole.5

Footnote 5mWe will have a lot more to say about defining memory-efficient streaming calculations, in
particular calculations that require I/O, in part 4 of this book.

Because they are incremental, the functions we've written also work fine for 
. Here is an example of an infinite  of s:infinite streams Stream 1

val ones: Stream[Int] = cons(1, ones)

Although  is infinite, the functions we've written so far only inspect theones

portion of the stream needed to generate the demanded output. For example:

scala> ones.take(5).toList
res0: List[Int] = List(1, 1, 1, 1, 1)

scala> ones.exists(_ % 2 != 0)
res1: Boolean = true

Try playing with a few other examples:

ones.map(_ + 1).exists(_ % 2 == 0)

ones.takeWhile(_ == 1)

ones.forAll(_ != 1)

5.4 Infinite streams and corecursion
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In each case, we get back a result immediately. Be careful though, since it's
easy to write an expression that never terminates. For example ones.forAll(_

 will forever need to inspect more of the series since it will never encounter== 1)

an element that allows it to terminate with a definite answer.
Let's see what other functions we can discover for generating streams.
EXERCISE 7: Generalize  slightly to the function  whichones constant

returns an infinite  of a given value.Stream

def constant[A](a: A): Stream[A]

EXERCISE 8: Write a function that generates an infinite stream of integers,
starting from , then , , etc.n n + 1 n + 2

def from(n: Int): Stream[Int]

EXERCISE 9: Write a function  that generates the infinite stream offibs

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, and so on.
EXERCISE 10: We can write a more general stream building function. It takes

an initial state, and a function for producing both the next state and the next value
in the generated stream. It is usually called :unfold

def unfold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A]

Option is used to indicate when the  should be terminated, if at all. TheStream

function  is the most general -building function. Notice howunfold Stream

closely it mirrors the structure of the  data type.Stream

unfold and the functions we can implement with it are examples of what is

sometimes called a  function. While a recursive function consumes datacorecursive
and eventually terminates, a corecursive function produces data and .coterminates
We say that such a function is , which just means that we can alwaysproductive
evaluate more of the result in a finite amount of time (for , we just need tounfold

run the function  one more time to generate the next element). Corecursion is alsof

sometimes called . These terms aren't that important to ourguarded recursion
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discussion, but you will hear them used sometimes in the context of functional
programming. If you are curious to learn where they come from and understand
some of the deeper connections, follow the references in the chapter notes.

EXERCISE 11: Write , , , and  in terms of fibs from constant ones

.unfold

EXERCISE 12: Use  to implement , , ,  (asunfold map take takeWhile zip

in chapter 3), and . The  function should continue the traversal aszipAll zipAll

long as either stream has more elements — it uses  to indicate whetherOption

each stream has been exhausted.
Now that we have some practice writing stream functions, let's return to the

exercise we covered at the end of chapter 3 — a function, , tohasSubsequence

check whether a list contains a given subsequence. With strict lists and
list-processing functions, we were forced to write a rather tricky monolithic loop to
implement this function without doing extra work. Using lazy lists, can you see
how you could implement  by combining some otherhasSubsequence

functions we have already written? Try to think about it on your own before
continuing.

EXERCISE 13 (hard): implement  using functions you'vestartsWith

written. It should check if one  is a prefix of another. For instance, Stream

 would be .Stream(1,2,3) starsWith Stream(1,2) true

def startsWith[A](s: Stream[A], s2: Stream[A]): Boolean

EXERCISE 14: implement  using . For a given , tails unfold Stream

 returns the  of suffixes of the input sequence, starting with thetails Stream

original . So, given , it would return Stream Stream(1,2,3)

Stream(Stream(1,2,3), Stream(2,3), Stream(3),

.Stream.empty)

def tails: Stream[Stream[A]]

We can now implement  using functions we've written:hasSubsequence

def hasSubsequence[A](s1: Stream[A], s2: Stream[A]): Boolean =
  s1.tails exists (startsWith(_,s2))
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non-strict
strict
thunk

This implementation performs the same number of steps as a more monolithic
implementation using nested loops with logic for breaking out of each loop early.
By using laziness, we can compose this function from simpler components and still
retain the efficiency of the more specialized (and verbose) implementation.

EXERCISE 15 (hard, optional): Generalize  to the function tails

, which is like a  that returns a stream of thescanRight foldRight

intermediate results. For example:

scala> Stream(1,2,3).scanRight(0)(_ + _).toList
res0: List[Int] = List(6,5,3,0)

This example would be equivalent to the expression List(1+2+3+0,

. Your function should reuse intermediate results so that2+3+0, 3+0, 0)

traversing a  with  elements always takes time linear in . Can it beStream n n

implemented using ? How, or why not? Could it be implemented usingunfold

another function we have written?

In this chapter we have introduced non-strictness as a fundamental technique for
implementing efficient and modular functional programs. As we have seen, while
non-strictness can be thought of as a technique for recovering some efficiency
when writing functional code, it's also a much bigger idea — non-strictness can
improve modularity by separating the description of an expression from the "how
and when" of its evaluation. Keeping these concerns separate lets us reuse a
description in multiple contexts, evaluating different portions of our expression to
obtain different results. We were not able to do that when description and
evaluation were intertwined as they are in strict code. We saw a number of
examples of this principle in action over the course of the chapter and we will see
many more in the remainder of the book.

Index Terms

5.5 Summary
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6
In this chapter, we will be introducing how to write programs that manipulate state
in a purely functional way, using the very simple domain of random number

 as motivation. Although this is an unambitious domain on its own, we'llgeneration
be building on what we develop here in chapters to come, and its simplicity makes
it a good place to explore some fundamental issues that you will likely encounter
as you start writing your own functional APIs.

A word before getting started: don't worry if not everything in this chapter sinks
in at first. The goal is more to give you the basic pattern for how to make stateful
APIs purely functional. We will say a lot more about dealing with state and effects
in later parts of the book.

If you need to generate random numbers in Scala, there's a class in Java's standard
library,  ( ), with a pretty typical imperative APIjava.util.Random API link

that relies on side effects. Here's an example of its use:

cala> val rng = new java.util.Random
rng: java.util.Random = java.util.Random@caca6c9

scala> rng.nextDouble
res1: Double = 0.9867076608154569

scala> rng.nextDouble
res2: Double = 0.8455696498024141

scala> rng.nextInt
res3: Int = -623297295

scala> rng.nextInt
res4: Int = 1989531047

Purely functional state

6.1 Generating random numbers using side-effects
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And here's an excerpt of the API, transcribed to Scala:

trait Random {
  def nextInt: Int
  def nextBoolean: Boolean
  def nextDouble: Double
  ...
}

Even if we didn't know anything about what happens inside a 
, we can assume that this class has some internal state thatjava.util.Random

gets updated after each invocation, since we would otherwise get the same
"random" value each time. Because these state updates are performed as a side
effect, these methods are not referentially transparent.

What can we do about this? The key to recovering referential transparency is to
make these state updates . That is, do not update the state as a side effect,explicit
but simply return the new state along with the value we are generating. Here's one
possible interface:

trait RNG {
  def nextInt: (Int, RNG)
}

Should generate a random Int. We will later define other functions in terms of
nextInt.

Rather than returning only the generated random number (as is done in 
) and updating some internal state by  it in place,java.util.Random mutating

we return the random number and the new state, leaving the old state unmodified.
In effect, we separate the  of the next state from the concern of computing

 that state throughout the program. There is no global mutable memorypropagating
being used—we simply return the next state back to the caller. This leaves the
caller of  in complete control of what to do with the new state. NoticenextInt

that we are still  the state, in the sense that users of this API do notencapsulating
need to know anything about the implementation of the random number generator
itself.

Here is a simple implementation using the same algorithm as 

6.2 Purely functional random number generation
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, which happens to be a kind of random number generatorjava.util.Random

called a . The details of this implementation aren'tlinear congruential generator
really important, but notice that  returns both the generated value and anextInt

new  to use for generating the next value.RNG

object RNG {
def simple(seed: Long): RNG = new RNG {
  def nextInt = {
    val seed2 = (seed*0x5DEECE66DL + 0xBL) &
                ((1L << 48) - 1)
    ((seed2 >>> 16).asInstanceOf[Int],
     simple(seed2))
  }
}
}

& is bitwise AND
<< is left binary shift
>>> is right binary shift with zero fill

This problem of making seemingly stateful APIs pure, and its solution, of
having the API  the next state rather than actually mutate anything, is notcompute
unique to random number generation. It comes up quite frequently, and we can

always deal with it in this same way.1

Footnote 1mThere is an efficiency loss that comes with computing next states using pure functions, because it
means we cannot actually mutate the data in place. (Here, it is not really a problem since the state is just a single 

 that must be copied.) This loss of efficiency can be mitigated by using efficient purely functional dataLong

structures. It's also possible in some cases to mutate the data in place without breaking referential transparency.
We'll be discussing this in Part 4.

For instance, suppose you have a class like this:

class Foo {
  var s: FooState = ...
  def bar: Bar
  def baz: Int
}

Suppose  and  each mutate  in some way. We can mechanicallybar baz s

translate this to the purely functional API:

trait Foo {
  def bar: (Bar, Foo)
  def baz: (Int, Foo)
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}

In both of these cases, we are making state propagation explicit.
Whenever we use this pattern, we make users of the API responsible for

threading the computed next state through their programs. For the pure RNG

interface above, if you reuse a previous , it will always generate the sameRNG

value it generated before. For instance:

def randomPair(rng: RNG): (Int,Int) = {
  val (i1,_) = rng.nextInt
  val (i2,_) = rng.nextInt
  (i1,i2)
}

Here,  and  will be the same! If we want to generate two distinct numbers,i1 i2

we need to use the  returned by the first call to  to generate theRNG nextInt

second .Int

def randomPair(rng: RNG): ((Int,Int), RNG) = {
  val (i1,rng2) = rng.nextInt
  val (i2,rng3) = rng2.nextInt
  ((i1,i2), rng3)
}

Notice use of rng2 here.
Notice we return the final state, after generating the two random numbers. This lets
the caller generate more random values using the new state.

You can see the general pattern, and perhaps you can also see how it might get
somewhat tedious to use this API directly. Let's write a few functions to generate
random values and see if we notice any patterns we can factor out.

EXERCISE 1: Write a function to generate a random positive integer. Note:
you can use  to take the absolute value of an , . Make sure to handlex.abs Int x

the corner case , which doesn't have a positive counterpart.Int.MinValue

def positiveInt(rng: RNG): (Int, RNG)
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SIDEBAR Dealing with awkwardness in FP
As you write more functional programs, you'll sometimes encounter
situations like this where the functional way of expressing a program
feels awkward or tedious. Does this imply that FP is the programming
equivalent of trying to write an entire novel without using the letter 'e'?
Of course not. Awkwardness like this is almost always a sign of some
missing abstraction waiting to be discovered!
When you encounter these situations, we encourage you to plow ahead
and look for common patterns you can factor out. Most likely, this is a
problem others have encountered, and you may even rediscover the
"standard" solution yourself. Even if you get stuck, struggling to puzzle
out a clean solution yourself will help you to better understand what
solutions others have discovered to deal with the same or similar
problems.
With practice, experience, and more familiarity with the idioms of FP,

expressing a program functionally will become effortless and natural.2

Footnote 2mOf course, good design is still hard, but programming using

pure functions becomes easy with experience.

EXERCISE 2: Write a function to generate a  between  and , notDouble 0 1

including . Note: you can use  to obtain the maximum positive1 Int.MaxValue

integer value and you can use  to convert an , , to a .x.toDouble Int x Double

def double(rng: RNG): (Double, RNG)

EXERCISE 3: Write functions to generate an  pair, a (Int, Double)

 pair, and a  3-tuple. You(Double, Int) (Double, Double, Double)

should be able to reuse the functions you've already written.

def intDouble(rng: RNG): ((Int,Double), RNG)
def doubleInt(rng: RNG): ((Double,Int), RNG)
def double3(rng: RNG): ((Double,Double,Double), RNG)

EXERCISE 4: Write a function to generate a list of random integers.

def ints(count: Int)(rng: RNG): (List[Int], RNG)
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Looking back at our implementations, we notice a common pattern: each of our
functions has a type of the form  for some type . FunctionsRNG => (A, RNG) A

of this type describe  that transform  states, and these state actionsstate actions RNG

can be built up and combined using general-purpose functions.
To make them convenient to talk about, let's make a type alias for the  stateRNG

action data type:

type Rand[+A] = RNG => (A, RNG)

We can now turn methods such as 's  into values of this type:RNG nextInt

val int: Rand[Int] = _.nextInt

We want to start writing combinators that let us avoid explicitly passing along
the  state. This will become a kind of domain-specific language that does all ofRNG

this passing for us. For example, a simple -transition is the  action,RNG unit

which passes the  state through without using it, always returning a constantRNG

value rather than a random value.

def unit[A](a: A): Rand[A] =
  rng => (a, rng)

There is also , for transforming the output of a state action withoutmap

modifying the state itself. Remember,  is just a type alias for a functionRand[A]

type , so this is just a kind of function composition.RNG => (A, RNG)

def map[A,B](s: Rand[A])(f: A => B): Rand[B] =
  rng => {
    val (a, rng2) = s(rng)
    (f(a), rng2)
  }

EXERCISE 5: Use  to generate an  between  and , inclusive:map Int 0 n

def positiveMax(n: Int): Rand[Int]

6.3 A better API for state actions
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EXERCISE 6: Use  to reimplement  in a more elegant way.map RNG.double

EXERCISE 7: Unfortunately,  is not powerful enough to implement map

 and  from before. What we need is a new combinator intDouble doubleInt

, that can combine two RNG actions into one using a binary rather than unarymap2

function. Write its implementation and then use it to reimplement the intDouble

and  functions.doubleInt

def map2[A,B,C](ra: Rand[A], rb: Rand[B])(f: (A, B) => C): Rand[C]

EXERCISE 8 (hard): If we can combine two RNG transitions, we should be
able to combine a whole list of them. Implement , for combining a sequence

 of transitions into a single transition. Use it to reimplement the List ints

function you wrote before. For the latter, you can use the standard library function 
 to make a list with  repeated  times.List.fill(n)(x) x n

def sequence[A](fs: List[Rand[A]]): Rand[List[A]]

We're starting to see a pattern: We're progressing towards implementations that
don't explicitly mention or pass along the  value. The  and RNG map map2

combinators allowed us to implement, in a rather succinct and elegant way,
functions that were otherwise tedious and error-prone to write. But there are some
functions that we can't very well write in terms of  and .map map2

Let's go back to  and see if it can be implemented in terms of positiveInt

. It's possible to get most of the way there, but what do we do in the case that map

 is generated? It doesn't have a positive counterpart and we can'tInt.MinValue

just select an arbitrary number:

def positiveInt: Rand[Int] = {
  map(int) { i =>
    if (i != Int.MinValue) i.abs else ??
  }
}

What goes here?

We want to retry the generator in the case of , but we don'tInt.MinValue

actually have an ! Besides, anything except an  there would have theRNG Int
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wrong type. So we clearly need a more powerful combinator than .map

EXERCISE 9: Implement , then use it to reimplement flatMap

.positiveInt

def flatMap[A,B](f: Rand[A])(g: A => Rand[B]): Rand[B]

EXERCISE 10: Reimplement  and  in terms of .map map2 flatMap

The functions you've just written, , , , , and unit map map2 flatMap

, are not really specific to random number generation at all. They aresequence

general-purpose functions for working with state actions, and don't actually care
about the type of the state. Notice that, for instance,  does not care that it ismap

dealing with  state actions and we can give it a more general signature:RNG

def map[S,A,B](a: S => (A,S))(f: A => B): S => (B,S)

Changing this signature doesn't require modifying the implementation of !map

The more general signature was there all along, we just didn't see it.
We should then come up with a more general type than , for handling anyRand

type of state:

type State[S,+A] = S => (A,S)

Here,  is short for "state action" (or even "state transition"). We mightState

even want to write it as its own class, wrapping the underlying function like this:

case class State[S,+A](run: S => (A,S))

The representation doesn't matter too much. What is important is that we have a
single, general-purpose type and using this type we can write general-purpose
functions for capturing common patterns of handling and propagating state.

In fact, we could just make  a type alias for :Rand State

type Rand[A] = State[RNG, A]

EXERCISE 11: Generalize the functions , , , , and unit map map2 flatMap
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. Add them as methods on the  case class where possible.sequence State

Otherwise you should put them in a  companion object.State

The functions we've written here capture only a few of the most common
patterns. As you write more functional code, you'll likely encounter other patterns
and discover other functions to capture them.

In the sections above, we were writing functions that followed a definite pattern.
We would run a state action, assign its result to a , then run another stateval

action that used that , assign its result to another , and so on. It looks a lotval val

like  programming.imperative
In the imperative programming paradigm, a program is a sequence of

statements where each statement may modify the program state. That's exactly
what we have been doing, except that our "statements" are really state actions,
which are really functions. As functions, they read the current program state simply
by receiving it in their argument, and they write to the program state simply by
returning a value.

SIDEBAR Aren't imperative and functional programming opposites?
Absolutely not. Remember, functional programming is simply
programming without side-effects. Imperative programming is about
programming with statements that modify some program state, and as
we've seen it's entirely reasonable to maintain state without
side-effects.
Functional programming has excellent support for writing imperative
programs, with the added benefit that such programs can be reasoned
about equationally because they are referentially transparent.

We implemented some combinators like , , and ultimately ,map map2 flatMap

to handle the propagation of the state from one statement to the next. But in doing
so, we seem to have lost a bit of the imperative mood.

Consider as an example the following (which assumes that we have made 
 a type alias for ):Rand[A] State[RNG, A]

int.flatMap(x =>
int.flatMap(y =>
ints(x).map(xs =>
xs.map(_ % y))))

6.4 Purely functional imperative programming
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It's not very clear what's going on here. But since we have  and map flatMap

defined, we can use -comprehension to recover the imperative style:for

for {
  x <- int
  y <- int
  xs <- ints(x)
} yield xs.map(_ % y)

This code is much easier to read (and write), and it looks like what it is—an
imperative program that maintains some state. But it is . We get thethe same code
next  and assign it to , get the next  after that and assign it to , thenInt x Int y

generate a list of length , and finally return the list with all of its elementsx

wrapped around the modulus .y

To facilitate this kind of imperative programming with -comprehensionsfor

(or s), we really only need two primitive  combinators—one forflatMap State

reading the state and one for writing the state. If we imagine that we have a
combinator  for getting the current state, and a combinator  for setting aget set

new state, we could implement a combinator that can modify the state in arbitrary
ways:

def modify[S](f: S => S): State[S, Unit] = for {
  s <- get
  _ <- set(f(s))
} yield ()

Gets the current state and assigns it to `s`.
Sets the new state to `f` applied to `s`.

This method returns a  action that modifies the current state by theState

function . It yields  to indicate that it doesn't have a return value other thanf Unit

the state.
EXERCISE 12: Come up with the signatures for  and , then write theirget set

implementations.
EXERCISE 13 (hard): To gain experience with the use of , implement aState

simulation of a simple candy dispenser. The machine has two types of input: You
can insert a coin, or you can turn the knob to dispense candy. It can be in one of
two states: locked or unlocked. It also tracks how many candies are left and how
many coins it contains.
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sealed trait Input
case object Coin extends Input
case object Turn extends Input

case class Machine(locked: Boolean, candies: Int, coins: Int)

The rules of the machine are as follows:

Inserting a coin into a locked machine will cause it to unlock if there is
any candy left.

Turning the knob on an unlocked machine will cause it to dispense candy
and become locked.

Turning the knob on a locked machine or inserting a coin into an
unlocked machine does nothing.

A machine that is out of candy ignores all inputs.

The method  should operate the machine based on the listsimulateMachine

of inputs and return the number of coins left in the machine at the end. Note that if
the input  has  coins in it, and a net total of  coins are added in theMachine 10 4

inputs, the output will be .14

def simulateMachine(inputs: List[Input]): State[Machine, Int]

In this chapter, we touched on the subject of how to deal with state and state
propagation. We used random number generation as the motivating example, but
the overall pattern comes up in many different domains, and this chapter illustrated
the basic idea of how to handle state in a purely functional way. The idea is very
simple: we use a pure function that accepts a state as its argument, and it returns
the new state alongside its result. Next time you encounter an imperative API that
relies on side effects, see if you can provide a purely functional version of it, and
use some of the functions we wrote here to make working with it more convenient.

6.5 Summary
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7
In this chapter, we are going to build a library for creating and composing parallel
and asynchronous computations. We are going to work iteratively, refining our
design and implementation as we gain a better understanding of the domain and the
design space.

Before we begin, let's think back to the libraries we wrote in Part 1, for example
the functions we wrote for  and . In each case we defined a dataOption Stream

type and wrote a number of useful functions for creating and manipulating values
of that type. But there was something interesting about the functions we wrote. For
instance consider —if you look back, you'll notice we wrote only a few Stream

 functions (like  and ) which required knowledge ofprimitive foldRight unfold

the internal representation of  (consisting of its  method). WeStream uncons

then wrote a large number of  or  withoutderived operations combinators
introducing additional primitives, just by combining existing functions.

In Part 1, very little design effort went into creating these nicely compositional
libraries. We created our data types and found, perhaps surprisingly, that it was
possible to define a large number of useful operations over these data types, just by
combining existing functions. When you create a library for a new domain, the
design process won't always be this easy. You will need to choose data types and
functions that , and this is what makesfacilitate this compositional structure
functional design both challenging and interesting.

Purely functional parallelism

7.1 Introduction
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SIDEBAR What is a combinator library?
The libraries we wrote in Part 1, and the libraries we will write in Part 2
are sometimes called . This is a somewhat informalcombinator libraries
term in FP. Generally, it's used to describe a library consisting of one or
more data types, along with a collection of (often higher-order) functions
for creating, manipulating, and combining values of these types. In
particular, the name is usually applied to libraries with a very
compositional structure, where functions are combined in different ways
to produce richer and more complex functionality. Though because this
style of organization is so common in FP, we sometimes don't bother to
distinguish between an ordinary functional library and a "combinator
library".

Our goal in this section is to discover a data type and a set of primitive functions
for our domain, and derive some useful combinators. This will be a somewhat
meandering journey. Functional design can be a messy, iterative process. We hope
to show at least a stylized view of this messiness that nonetheless gives some
insight into how functional design proceeds in the real world. Don't worry if you
don't follow absolutely every bit of discussion throughout this process. This
chapter is a bit like peering over the shoulder of someone as they think through
possible designs. And because no two people approach this process the same way,
the particular path we walk here might not strike you as the most natural
one—perhaps it considers issues in what seems like an odd order, skips too fast or
goes too slow. Keep in mind that when you design your own functional libraries,
you get to do it at your own pace, take whatever path you want, and whenever
questions come up about design choices, you get to think through the consequences
in whatever way makes sense for you, which could include running little
experiments, creating prototypes, and so on.

With that as disclaimer, why don't we get started? When you begin designing a
functional library, you usually have some ideas about what you generally want to
be able , and the difficulty in the design process is in refining these ideas andto do
finding a data type that enables the functionality you want. In our case, we'd like to
be able to "create parallel computations", but what does that mean exactly? Let's

7.2 Choosing data types and functions
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try to refine this into something we can implement by examining a simple,
parallelizable computation—summing a sequence of values. Here's a sequential
function for this in Scala:

def sum(as: IndexedSeq[Int]): Int =
  if (as.size <= 1) as.headOption getOrElse 0
  else {
    val (l,r) = as.splitAt(as.length/2)
    sum(l) + sum(r)
  }

headOption is a method defined on all collections in Scala (API docs). It returns
the first element in the collection, or None if the collection is empty.

This implementation isn't the usual left fold, ;as.foldLeft(0)(_ + _)

instead we are dividing the sequence in half using the  function,splitAt

recursively summing both halves, then combining their results. And unlike the 
-based implementation, this implementation can be parallelized—thefoldLeft

two halves can be summed in parallel.1

Footnote 1mAssuming we have  elements and  CPU cores, we could in principle compute  in n n sum O(log n)

time. This is meant to be a simple example (see sidebar) though; in this instance the overhead of
parallelization is unlikely to pay for itself.

SIDEBAR The importance of simple examples
Summing integers is in practice probably so fast that parallelization
imposes more overhead than it saves. But simple examples like this are

 the sort that are most helpful to consider when designing aexactly
functional library. Complicated examples include all sorts of incidental
structure and extraneous detail that can confuse the initial design
process. We are trying to understand the essence of the problem
domain, and a good way to do this is to work with very small examples,
factor out common concerns across these examples, and gradually add
complexity. In functional design, our goal is to achieve expressiveness
not with mountains of special cases, but by building a simple and 

 set of core data types and functions.composable

As we think about how what sort of data types and functions could enable
parallelizing this computation, we can shift our perspective. Rather than focusing
on  this parallelism will ultimately be implemented (likely using how

 and  and related types) andjava.lang.Thread java.lang.Runnable

forcing ourselves to work with those APIs directly, we are instead going to design
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our 'ideal' API as illuminated by our examples and work backwards from there to
an implementation.

Look at the line , which invokes  on the two halvessum(l) + sum(r) sum

recursively. Just from looking at this single line, we can see that  datawhatever
type we choose to represent our parallel computations needs to be able to contain a

, that result will have some meaningful type (in this case ), and weresult Int

require some way of extracting this result. Let's apply this newfound knowledge to
our implementation. For now, let's just  a container type for our result, invent

 (for "parallel"), and assume the existence of the functions we need:Par[A]

def unit[A](a: => A): Par[A], for taking an unevaluated  and returning a parallelA

computation that yields an .A
def get[A](a: Par[A]): A, for extracting the resulting value from a parallel
computation.

Can we really just do this? Yes, of course! For now, we don't need to worry
about what other functions we require, what the internal representation of Par

might be, or how these functions are implemented. We are simply reading off the
needed data types and functions by inspecting our simple example. Let's update
this example now:

def sum(as: IndexedSeq[Int]): Int =
  if (as.size <= 1) as.headOption getOrElse 0
  else {
    val (l,r) = as.splitAt(as.length/2)
    val sumL: Par[Int] = Par.unit(sum(l))
    val sumR: Par[Int] = Par.unit(sum(r))
    Par.get(sumL) + Par.get(sumR)
  }

We've wrapped the two recursive calls to  in calls to , and we aresum unit

calling  to extract the two results from the two subcomputations.get
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SIDEBAR The problem with using threads directly
What of , or ? Let's take a look at these classes.java.lang.Thread Runnable

Here is a partial excerpt of their API, transcribed to Scala:

trait Runnable { def run: Unit }

class Thread(r: Runnable) {
  def start: Unit
  def join: Unit
}

Begin executing r in a separate thread.

Wait until r finishes executing before returning.

Already, we can see a problem with both of these types—none of the methods
return a meaningful value. Therefore, if we want to get any information out of a 

, it has to have some side effect, like mutating some internal state thatRunnable

we know about. This is bad for composability—we cannot manipulate Runnable
objects generically, we need to always know something about their internal
behavior to get any useful information out of them.  also has theThread

downside that it maps directly onto operating system threads, which are a scarce
resource. We'd prefer to create as many 'logical' parallel computations as is
natural for our problem, and later deal with mapping these logical computations
onto actual OS threads.

We now have a choice about the meaning of  and —  couldunit get unit

begin evaluating its argument immediately in a separate (logical) thread,  or it2

could simply hold onto its argument until  is called and begin evaluation then.get

But notice that in this example, if we want to obtain any degree of parallelism, we

require that  begin evaluating its argument immediately. Can you see why?unit 3

Footnote 2mWe'll use the term "logical thread" somewhat informally throughout this chapter, to mean a chunk
of computation that runs concurrent to the main execution thread of our program. There need not be a one-to-one
correspondence between logical threads and OS threads. We may have a large number of logical threads mapped
onto a smaller number of OS threads via thread pooling, for instance.

Footnote 3mFunction arguments in Scala are strictly evaluated from left to right, so if  delays executionunit

until  is called, we will both spawn the parallel computation and wait for it to finish before spawning theget

second parallel computation. This means the computation is effectively sequential!

But if  begins evaluating its argument immediately, then calling unit get

arguably breaks referential transparency. We can see this by replacing  and sumL
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 with their definitions—if we do so, we still get the same result, but oursumR

program is no longer parallel:

Par.get(Par.unit(sum(l))) + Par.get(Par.unit(sum(r)))

Given what we have decided so far,  will start evaluating its argumentunit

right away. And the very next thing to happen is that  will wait for thatget

evaluation to complete. So the two sides of the  sign will not run in parallel if we+

simply inline the  and  variables. Here we can see that  has a verysumL sumR unit

definite side-effect, but only  . That is,  simply returns a with regard to get unit

 in this case, representing an asynchronous computation. But as soon asPar[Int]

we pass that  to , we explicitly wait for it, exposing the side-effect. So itPar get

seems that we want to avoid calling , or at least delay calling it until the veryget

end. We want to be able to combine asynchronous computations without waiting
for them to finish.

Before we continue, notice what we have done. First, we conjured up a simple,
almost trivial example. We next explored this example a bit to uncover a design
choice. Then, via some experimentation, we discovered an interesting consequence
of one option and in the process learned something fundamental about the nature of
our problem domain! The overall design process is a series of these little
adventures. You don't need any special license to do this sort of exploration, and
you don't need to be an expert in functional programming either. Just dive in and
see what you find.

Let's see if we can avoid the above pitfall of combining  and . If weunit get

don't call , that implies that our  function must return a . Whatget sum Par[Int]

consequences does this change reveal? Again, let's just invent functions with the
required signatures:

def sum(as: IndexedSeq[Int]): Par[Int] =
  if (as.size <= 1) Par.unit(as.headOption getOrElse 0)
  else {
    val (l,r) = as.splitAt(as.length/2)
    Par.map2(sum(l), sum(r))(_ + _)
  }

EXERCISE 1:  is a new higher-order function for combining thePar.map2

result of two parallel computations. What is its signature? Give the most general
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signature possible (that is, do not assume it works only for ).Par[Int]

Observe that we are no longer calling  in the recursive case, and it isn'tunit

clear whether  should accept its argument lazily anymore. In this example,unit

accepting the argument lazily doesn't seem to provide any benefit, but perhaps this
isn't always the case. Let's try coming back to this question in a minute.

What about —should it take its arguments lazily? It would make sense formap2

 to run both sides of the computation in parallel, giving each side equalmap2

opportunity to run (it would seem arbitrary for the order of the  arguments tomap2

matter—we simply want  to indicate that the two computations beingmap2

combined are independent, and can be run in parallel). What choice lets us
implement this meaning? As a simple test case, consider what happens if  ismap2

strict in both arguments, and we are evaluating sum(IndexedSeq(1,2,3,4))

. Take a minute to work through and understand the following (somewhat stylized)
program trace:

sum(IndexedSeq(1,2,3,4))
map2(
  sum(IndexedSeq(1,2)),
  sum(IndexedSeq(3,4)))(_ + _)
map2(
  map2(
    sum(IndexedSeq(1)),
    sum(IndexedSeq(2)))(_ + _),
  sum(IndexedSeq(3,4)))(_ + _)
map2(
  map2(
    unit(1),
    unit(2))(_ + _),
  sum(IndexedSeq(3,4)))(_ + _)
map2(
  map2(
    unit(1),
    unit(2))(_ + _),
  map2(
    sum(IndexedSeq(3)),
    sum(IndexedSeq(4)))(_ + _))(_ + _)
...

In this trace, to evaluate , we substitute  into the definition of , assum(x) x sum

we've done in previous chapters. Because  is strict, and Scala evaluatesmap2

arguments left to right, whenever we encounter map2(sum(x),sum(y))(_ +

, we have to then evaluate , and so on recursively. This has the rather_) sum(x)

unfortunate consequence that we will strictly construct the entire left half of the
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tree of summations first before moving on to (strictly) constructing the right half
(here,  gets fully expanded before we consider sum(IndexedSeq(1,2))

). And if  begins evaluating its argumentssum(IndexedSeq(3,4)) map2

immediately (using whatever resource is being used to implement the parallelism,
like a thread pool), that implies the left half of our computation will begin its
execution before we even begin constructing the right half of our computation.

What if we keep  strict, but  have it begin execution immediately?map2 don't

Does this help? If  doesn't begin evaluation immediately, this implies a map2 Par

value is merely constructing a  of what needs to be computed indescription
parallel. Nothing actually occurs until we  this description, perhaps using aevaluate

-like function. The problem is that if we construct our descriptions strictly,get

they are going to be rather heavyweight objects. Looking back at our trace, our
description is going to have to contain the full tree of operations to be performed:

map2(
  map2(
    unit(1),
    unit(2))(_ + _),
  map2(
    unit(3),
    unit(4))(_ + _))(_ + _)

Whatever data structure we use to store this description, it will likely occupy
more space than the original list itself! It would be nice if our descriptions were a
bit more lightweight.

It seems we should make  lazy and have it begin immediate execution ofmap2

both sides in parallel (this also addresses the problem of giving each side equal
"weight"), but something still doesn't feel right about this. Is it  the case thatalways
we want to evaluate the two arguments to  in parallel? Probably not.map2

Consider this simple hypothetical example:

Par.map2(Par.unit(1), Par.unit(1))(_ + _)

In this case, we happen to know that the two computations we're combining
will execute so quickly that there isn't much point in spawning off a separate
logical thread to evaluate them. But our API doesn't give us any way of providing
this sort of information. That is, our current API is very  about whenimplicit
computations get forked off the main thread—the programmer does not get to
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specify where this forking should occur. What if we make this forking more
explicit? We can do that by inventing another function, def fork[A](a: =>

, which we can take to mean that the given  should bePar[A]): Par[A] Par

run in a separate logical thread:

def sum(as: IndexedSeq[Int]): Par[Int] =
  if (as.isEmpty) Par.unit(0)
  else {
    val (l,r) = as.splitAt(as.length/2)
    Par.map2(Par.fork(sum(l)), Par.fork(sum(r)))(_ + _)
  }

With , we can now make  strict, leaving it up to the programmer tofork map2

wrap arguments if they wish. A function like  solves the problem offork

instantiating our parallel computations too strictly (as an exercise, try revisiting the
hypothetical trace from earlier), but more fundamentally it makes the parallelism
more explicit and under programmer control. There are really two separate
concerns being addressed here. The first is that we need some way to indicate that
the results of the two parallel tasks should be combined. Separate from this, we
have the choice of whether a particular task should be performed asynchronously.
By keeping these concerns separate, we avoid having any sort of global policy for
parallelism attached to  and other combinators we write, which would meanmap2

making tough (and ultimately arbitrary) choices about what global policy is best.
Such a policy may in practice be inappropriate in many cases.

Let's now return to the question of whether  should be strict or lazy. With unit

, we can now make  strict without any loss of expressiveness. Afork unit

non-strict version of it, let's call it , can be implemented using  and async unit

.fork

def unit[A](a: A): Par[A]
def async[A](a: => A): Par[A] = fork(unit(a))

The function  is a simple example of a  combinator, as opposedasync derived

to a  combinator like . We were able to define  just in termsprimitive unit async

of other operations. Later, when we pick a representation for ,  will notPar async

need to know anything about this representation—its only knowledge of  isPar

through the operations  and  that are defined on .fork unit Par 4
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Footnote 4mThis sort of indifference to representation is a hint that the operations are actually more general,
and can be abstracted to work for types other than just . We will explore this topic in detail in part 3.Par

We still have the question of whether  should begin evaluating itsfork

argument immediately, or wait until the computation is  later usingforced
something like . When you are unsure about a meaning to assign to someget

function in your API, you can always continue with the design process—at some
point later the tradeoffs of different choices of meaning may become clear. Here,
we make use of a helpful trick—we are going to think about what sort of

 is required to implement  with various meanings.information fork

If  begins evaluating its argument immediately in parallel, thefork

implementation must clearly know something (either directly or indirectly) about
how to create threads or submit tasks to some sort of thread pool. Moreover, if 

 is just a standalone function (as it currently is on ), it implies thatfork Par

whatever resource is used to implement the parallelism must be globally accessible
. This means we lose the ability to control the parallelism strategy used for
different parts of our program. And while there's nothing inherently wrong with
having a global resource for executing parallel tasks, we can imagine how it would
be useful to have more fine-grained control over what implementations are used
where (we might like for each subsystem of a large application to get its own
thread pool with different parameters, say).

Notice that coming to these conclusions didn't require knowing exactly how 
 would be implemented, or even what the representation of  will be. Wefork Par

just reasoned informally about the sort of information required to actually spawn a
parallel task, and examined the consequences of having  values know aboutPar

this information.
In contrast, if  simply holds onto the computation until later, this requiresfork

no access to the mechanism for implementing parallelism. Let's tentatively assume
this meaning then for . With this model,  itself does not know how tofork Par

actually  the parallelism. It is more a  of a parallelimplement description
computation. This is a big shift from before, where we were considering  to bePar

a "container" of a value that we could "get". Now it's more of a first-class program
that we can . So let's rename our  function to .run get run

def run[A](a: Par[A]): A
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Because  now just a pure data structure, we will assume that  has somePar run

means of implementing the parallelism, whether it spawns new threads, delegates
tasks to a thread pool, or uses some other mechanism.

Just by exploring this simple example and thinking through the consequences of
different choices, we've sketched out the following API:

def unit[A](a: A): Par[A]
def map2[A,B,C](a: Par[A], b: Par[B])(f: (A,B) => C): Par[C]
def fork[A](a: => Par[A]): Par[A]
def async[A](a: => A): Par[A] = fork(unit(a))
def run[A](a: Par[A]): A

We've also loosely assigned meaning to these various functions:

unit injects a constant into a parallel computation.
map2 combines the results of two parallel computations with a binary function.
fork spawns a parallel computation. The computation will not be spawned until forced
by .run

run extracts a value from a  by actually performing the computation.Par

At any point while sketching out an API, you can start thinking about possible 
 for the abstract types that appear.representations

EXERCISE 2: Before continuing, try to come up with representations for Par

and  that make it possible to implement the functions of our API.Strategy

Let's see if we can come up with a representation. We know  needs torun

execute asynchronous tasks somehow. We could write our own API, but there's
already a class for this in , .java.util.concurrent ExecutorService

Here it its API, excerpted and transcribed to Scala:

class ExecutorService {
  def submit[A](a: Callable[A]): Future[A]
}
trait Future[A] {
  def get: A
  def get(timeout: Long, unit: TimeUnit): A
  def cancel(evenIfRunning: Boolean): Boolean
  def isDone: Boolean
  def isCancelled: Boolean
}

7.2.1 Picking a representation
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So,  lets us submit a  value (in Scala we'dExecutorService Callable

probably just use a lazy argument to ), and get back a corresponding submit

. We can block to obtain a value from a  with its  method,Future Future get

and it has some extra features for cancellation, only blocking for a certain amount
of time, and so on.

Let's try assuming that our  function has an  and seerun ExecutorService

if that suggests anything about the representation for :Par

def run[A](s: ExecutorService)(a: Par[A]): A

The simplest possible model for  might just be Par[A] ExecutorService

. This would obviously make  trivial to implement. But it might be nice=> A run

to defer the decision of how long to wait for a computation or whether to cancel it
to the caller of :run

type Par[A] = ExecutorService => Future[A]

def run[A](s: ExecutorService)(a: Par[A]): Future[A] = a(s)

Is it really that simple? Let's assume it is for now, and revise our model if we
decide it doesn't allow some functionality we'd like.

The way we've worked so far is actually a bit artificial. In practice, there aren't
such clear boundaries between designing your API and choosing a representation,
and one does not necessarily precede the other. Ideas for a representation can
inform the API you develop, the API you develop can inform the choice of
representation, and it's natural to shift fluidly between these two perspectives, run
experiments as questions arise, build prototypes, and so on.

We are going to devote the rest of this section to exploring our API. Though we
got a lot of mileage out of considering a simple example, before we add any new
primitive operations let's try to learn more about what is expressible using those we
already have. With our primitives and choices of meaning for them, we have
carved out a little universe for ourselves. We now get to discover what ideas are
expressible in this universe. This can and should be a fluid process—we can

7.2.2 Exploring and refining the API
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change the rules of our universe at any time, make a fundamental change to our
representation or introduce a new primitive, and explore how our creation then
behaves.

EXERCISE 3: Let's begin by implementing the functions of the API we've
developed so far. Now that we have a representation for , we should be able toPar

fill these in. Optional (hard): try to ensure your implementations respect the
contract of the  method on  that accepts a timeout.get Future

def unit[A](a: A): Par[A]
def map2[A,B,C](a: Par[A], b: Par[B])(f: (A,B) => C): Par[C]
def fork[A](a: => Par[A]): Par[A]

You can place these functions and other functions we write inside an object

called , like so:Par

object Par {
  /* Functions go here */
}

SIDEBAR Adding infix syntax using implicit conversions
If  were an actual data type, functions like  could be placed inPar map2

the class body and then called with infix syntax like x.map2(y)(f)
(much like we did for  and ). But since  is just a typeStream Option Par

alias we can't do this directly. There is, however, a trick to add infix
syntax to  type using . We won't discuss thatany implicit conversions
here since it isn't all that relevant to what we're trying to cover, but if
you're interested, check out the code associated with this chapter and
also the appendix.

EXERCISE 4: This API already enables a rich set of operations. Here's a
simple example: using , write a function to convert any function async A => B

to one that evaluates its result asynchronously:

def asyncF[A,B](f: A => B): A => Par[B]

What else can we express with our existing combinators? Let's look at a more
concrete example.

Suppose we have a  representing a parallel computationPar[List[Int]]

99

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


producing a  and we would like to convert this to a List[Int]

 whose result is now sorted:Par[List[Int]]

def sortPar(l: Par[List[Int]]): Par[List[Int]]

We could of course  the , sort the resulting list, and re-package it in a run Par

 with . But we want to avoid calling . The only other combinator wePar unit run

have that allows us to manipulate the value of a  in any way is . So if wePar map2

passed  to one side of , we would be able to gain access to the  insidel map2 List

and sort it. And we can pass whatever we want to the other side of , so let'smap2

just pass a no-op:

def sortPar(l: Par[List[Int]]): Par[List[Int]] =
  map2(l, unit(()))((a, _) => a.sorted)

Nice. We can now tell a  that we would like that list sorted.Par[List[Int]]

But we can easily generalize this further. We can "lift" any function of type A =>

 to become a function that takes  and returns . That is, we can B Par[A] Par[B]

 any function over a :map Par

def map[A,B](fa: Par[A])(f: A => B): Par[B] =
  map2(fa, unit(()))((a,_) => f(a))

For instance,  is now simply this:sortPar

def sortPar(l: Par[List[Int]]) = map(l)(_.sorted)

This was almost too easy. We just combined the operations to make the types
line up. And yet, if you look at the implementations of  and , it shouldmap2 unit

be clear this implementation of   something sensible.map means

Was it cheating to pass a bogus value,  as an argument to ,unit(()) map2

only to ignore its value? Not at all! It shows that  is strictly more powerfulmap2

than . This sort of thing can be a hint that  can be further decomposedmap map2

into primitive operations. And when we consider it,  is actually doing twomap2

things—it is creating a parallel computation that waits for the result of two other
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computations  it is combining their results using some function. We couldand then
split this into two functions,  and :product map

def product[A,B](fa: Par[A], fb: Par[B]): Par[(A,B)]
def map[A,B](fa: Par[A])(f: A => B): Par[B]

EXERCISE 5 (optional): Implement  and  as primitives, thenproduct map

define  in terms of them.map2

This is sort of an interesting little discovery that we can factor things this way.
Is it an improvement? On the one hand,  is "doing one thing only", and product

 is now completely orthogonal. But if you look at your implementation of map

, you can almost see  hiding inside, except that you are alwaysproduct map2

supplying a function of type  that sticks its arguments in a(A,B) => (A,B)

pair. If we're going to have to write that function, we might as well expose the
most general version of it, . So let's keep  as primitive for now, andmap2 map2

define  in terms of it as above. This is one example where there is a choice ofmap

which things we consider primitive and which things are derived.
What else can we implement using our API? Could we  over a list inmap

parallel? Unlike , which combines two parallel computations,  (let'smap2 parMap

call it) needs to combine  parallel computations. Still, it seems like this shouldN
somehow be expressible.

EXERCISE 6: Note that we could always just write  as a newparMap

primitive. See if you can implement it this way. Remember that  is simplyPar[A]

an alias for . Here is the signature for ExecutorService => Future[A]

:parMap

def parMap[A,B](l: List[A])(f: A => B): Par[List[B]]

There's nothing wrong with implementing operations as new primitives. In
some cases we can even implement the operations more efficiently, by assuming
something about the underlying representation of the data types we are working
with. But we're interested in exploring what operations are expressible using our
existing API, and understanding the relationships between the various operations
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we've defined. Knowledge of what combinators are truly primitive will become
more important in Part 3, when we learn to abstract over common patterns across

libraries.5

Footnote 5mIn this case, there's another good reason not to implement  as a new primitive—it'sparMap

challenging to do correctly, particularly if we want to properly respect timeouts. It's frequently the case that
primitive combinators encapsulate some rather tricky logic, and reusing them means we don't have to duplicate this
logic.

Let's see how far we can get implementing  in terms of existingparMap

combinators:

def parMap[A,B](l: List[A])(f: A => B): Par[List[B]] = {
  val fbs: List[Par[B]] = l.map(asyncF(f))
  ...
}

Remember,  converts an  to a , by forking aasyncF A => B A => Par[B]

parallel computation to produce the result. So we can fork off our  parallelN
computations pretty easily, but we need some way of collecting up their results.
Are we stuck? Well, just from inspecting the types, we can see that we need some
way of converting our  to the  required by theList[Par[B]] Par[List[B]]

return type of .parMap

EXERCISE 7 (hard): Let's write this function, typically called . Nosequence

additional primitives are required.

def sequence[A](l: List[Par[A]]): Par[List[A]]

Once we have , we can complete our implementation of :sequence parMap

def parMap[A,B](l: List[A])(f: A => B): Par[List[B]] = fork {
  val fbs: List[Par[B]] = l.map(asyncF(f))
  sequence(fbs)
}

Notice that we've wrapped our implementation in a call to . With thisfork

implementation,  will return immediately, even for a huge input list. WhenparMap

we later call , it will fork a single asynchronous computation which itselfrun

spawns  parallel computations then waits for these computations to finish,N
collecting their results up into a list. If you look back at your previous
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implementation of , the one that had knowledge of the internalparMap

representation of , you'll see that it's doing the same thing.Par

EXERCISE 8: Implement , which filters elements of a list inparFilter

parallel.

def parFilter[A](l: List[A])(f: A => Boolean): Par[List[A]]

Can you think of any other useful functions to write? Experiment with writing a
few parallel computations of your own to see which ones can be expressed without
additional primitives. Here are some ideas to try:

Is there a more general version of the parallel summation function we wrote at the
beginning of this chapter? Try using it to find the maximum value of an  inIndexedSeq

parallel.
Write a function that takes a list of paragraphs (a ), and returns the totalList[String]

number of words across all paragraphs, in parallel. Generalize this function as much as
possible.
Implement , , and , in terms of .map3 map4 map5 map2

As the previous section demonstrates, we often get quite far by treating this all as a
game of (what seems like) meaningless symbol manipulation! We write down the
type signature for an operation we want, then "follow the types" to an
implementation. Quite often when working this way we can almost forget the
concrete domain (for instance, when we implemented  in terms of  and map map2

) and just focus on lining up types. This isn't cheating; it's a natural butunit

different style of reasoning, analogous to the reasoning one does when simplifying

an algebraic equation like . We are treating the API as an ,  or an abstractx algebra 6

set of operations along with a set of  or properties we assume true, and simplylaws
doing formal symbol manipulation following the "rules of the game" specified by
this algebra.

Footnote 6mWe do mean algebra in the mathematical sense of one or more sets, together with a collection of
functions operating on objects of these sets, and a set of . (Axioms are statements assumed true, fromaxioms
which we can derive other  that must also be true.) In our case, the sets are values with particulartheorems
types, like , , the functions are operations like , , and .Par[A] List[Par[A]] map2 unit sequence

Up until now, we have been reasoning somewhat informally about our API.
There's nothing wrong with this, but it can be helpful to take a step back and

formalize what laws you expect to hold (or would like to hold) for your API.7

7.2.3 The algebra of an API
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Without realizing it, you have probably mentally built up a model of what
properties or laws you expect. Actually writing these down and making them
precise can highlight design choices that wouldn't be otherwise apparent when
reasoning informally.

Footnote 7mWe'll have much more to say about this throughout the rest of this book. In the next chapter, we'll
be designing a declarative testing library that lets us define properties we expect functions to satisfy, and
automatically generates test cases to check these properties. And in Part 3 we'll introduce abstract interfaces
specified  by sets of laws.only

Like any design choice, choosing laws has —it places constraintsconsequences
on what the operations can mean, what implementation choices are possible,
affects what other properties can be true or false, and so on. Let's look at an
example. We are going to simply  a possible law that seems reasonable.conjure up
This might be used as a test case if we were creating unit tests for our library:

map(unit(1))(_ + 1) == unit(2)

We are saying that mapping over  with the  function is inunit(1) _ + 1

some sense equivalent to . (Laws often start out this way, as concreteunit(2)

examples of  we expect to hold.) In what sense are they equivalent? Thisidentities8

is somewhat of an interesting question. For now, let's say two  objects arePar

equivalent if   argument, the  theyfor any valid ExecutorService Future

return results in the same value.

Footnote 8mHere we mean 'identity' in the mathematical sense of a statement that two expressions are
identical or equivalent.

We can check that this holds for a particular  with aExecutorService

function like:

def equal[A](e: ExecutorService)(p: Par[A], p2: Par[A]): Boolean =
  p(e).get == p2(e).get

Laws and functions share much in common. Just as we can generalize
functions, we can generalize laws. For instance, the above could be generalized:

map(unit(x))(f) == unit(f(x))

Here we are saying this should hold for  choice of  and . This placesany x f
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some constraints on our implementation. Our implementation of  cannot, say,unit

inspect the value it receives and decide to return a parallel computation with a
result of  when the input is —it can only pass along whatever it receives.42 1

Similarly for our —when we submit  objects toExecutorService Callable

it for execution, it cannot make any assumptions or change behavior based on the

values it receives.  More concretely, this law disallows downcasting or 9

 checks (often grouped under the term ) in theisInstanceOf typecasing

implementations of  and .map unit

Footnote 9mHints and standalone answers

Much like we strive to define functions in terms of simpler functions, each of
which  just one thing, we can define laws in terms of simpler laws that each do say
just one thing. Let's see if we can simplify this law further. We said we wanted this
law to hold for  choice of  and . Something interesting happens if weany x f

substitute the identity function for . We can simplify both sides of the equationf10

and get a new law which is considerably simpler:11

Footnote 10mThe identity function has the signature .def id[A](a: A): A = a

Footnote 11mThis is the same sort of substitution and simplification one might do when solving an algebraic
equation.

map(unit(x))(f) == unit(f(x))
map(unit(x))(id) == unit(id(x))
map(unit(x))(id) == unit(x)
map(y)(id) == y

Substitute identity function for f
Simplify
Substitute y for unit(x) on both sides

Fascinating! Our new, simpler law talks only about —apparently themap

mention of  was an extraneous detail. To get some insight into what this newunit

law is saying, let's think about what   do. It cannot, say, throw anmap cannot

exception and crash the computation before applying the function to the result (can
you see why this violates the law?). All it can do is apply the function  to thef

result of , which of course, leaves  unaffected in the case that function is .y y id 12

Even more interesting, given , we can perform themap(y)(id) == y

substitutions in the other direction to get back our original, more complex law.
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(Try it!) Logically, we have the freedom to do so because  cannot possiblymap

behave differently for different function types it receives. Thus, given 
, it must be true that map(y)(id) == y map(unit(x))(f) ==

. Since we get this second law or theorem "for free", simply becauseunit(f(x))

of the parametricity of , it is sometimes called a .map free theorem 13

Footnote 12mWe say that  is required to be , in that it does not alter the structure ofmap structure-preserving

the parallel computation, only the value "inside" the computation.

Footnote 13mThe idea of free theorems was introduced by Philip Wadler in a classic paper called Theorems
for free!

EXERCISE 9 (hard, optional): Given , it is a freemap(y)(id) == y

theorem that . (This ismap(map(y)(g))(f) == map(y)(f compose g)

sometimes called , and it can be used as an optimization—rather thanmap fusion
spawning a separate parallel computation to compute the second mapping, we can

fold it into the first mapping.)  Can you construct a proof? You may want to read14

the paper  to better understand the "trick" of free theorems.Theorems for Free!

Footnote 14mOur representation of  does not give us the ability to implement this optimization, since it isPar

an opaque function. If it were reified as a data type, we could pattern match and discover opportunities to apply this
rule. You may want to try experimenting with this idea on your own.

As interesting as all this is, these laws don't do much to constrain our
implementation. You have probably been assuming these properties without even
realizing it (it would be rather strange to have any special cases in the
implementations of ,  or , or have map unit ExecutorService.submit map

randomly throwing exceptions). Let's consider a stronger property, namely that 
 should not affect the result of a parallel computation:fork

fork(x) == x

This seems like it should be obviously true of our implementation, and it is
clearly a desirable property, consistent with our expectation of how  shouldfork

work.  should 'do the same thing' as , but asynchronously, in a logicalfork(x) x

thread separate from the main thread. If this law didn't always hold, we'd have to
somehow know when it was safe to call without changing meaning, without any
help from the type system.

Surprisingly, this simple property places very strong constraints on our
implementation of . After you've written down a law like this, take off yourfork
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implementer hat, put on your debugging hat, and try to break your law. Think
through any possible corner cases, try to come up with counterexamples, and even
construct an informal proof that the law holds—at least enough to convince a
skeptical fellow programmer.

Let's try this mode of thinking. We are expecting that  for fork(x) == x all

choices of , and any choice of . We have a pretty goodx ExecutorService

sense of what  could be—it's some expression making use of , , and x fork unit

 (and other combinators derived from these). What about map2

? What are some possible implementations of it? There's aExecutorService

good listing of different implementations in the class  ( ).Executors API link

EXERCISE 10 (hard, optional): Take a look through the various static methods
in  to get a feel for the different implementations of Executors

 that exist. Then, before continuing, go back and revisit yourExecutorService

implementation of  and try to find a counterexample or convince yourselffork

that the law holds for your implementation.

SIDEBAR Why laws about code and proofs are important
It may seem unusual to state and prove properties about an API. This
certainly isn't something typically done in ordinary programming. Why is
it important in FP?
In functional programming, it is easy, and expected, that we will factor
out common functionality into generic, reusable, components that can
be . Side effects hurt compositionality, but more generally,composed
any hidden or out-of-band assumptions or behavior that prevent us from
treating our components (be they functions or anything else) as black

 make composition difficult or impossible.boxes
In our example of the law for , we can see that if the law wefork

posited did not hold, many of our general purpose combinators, like 
, would no longer be sound (and their usage might beparMap

dangerous, since they could, depending on the broader parallel
computation they were used in, result in deadlocks).
Giving our APIs an algebra, with laws that are meaningful and aid
reasoning, make the API more usable for clients, but also mean we can
treat the objects of our API as black boxes. As we'll see in Part 3, this is
crucial for our ability to factor out common patterns across the different
libraries we've written.

There's actually a problem with most implementations of . It's a ratherfork
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subtle deadlock that occurs when using an  backed by aExecutorService

t h r e a d  p o o l  o f  b o u n d e d  s i z e  ( s e e  

).  Suppose we have an ExecutorService.newFixedThreadPool 15

 backed by a thread pool where the maximum number ofExecutorService

threads is bounded to 1. Try running the following example using your current
implementation:

Footnote 15mIn the next chapter we'll be writing a combinator library for testing that can help discover
problems like these automatically.

val a = async(42 + 1)
val S = Executors.newFixedSizeThreadPool(1)
println(Par.equal(S)(a, fork(a)))

Most implementations of  will result in this code deadlocking. Can youfork

see why? Most likely, your implementation of  looks something like this:fork 16

Footnote 16mThere's actually another minor problem with this implementation—we are just calling  onget

the inner  returned from . This means we are not properly respecting any timeouts that have beenFuture fa

placed on the outer .Future

def fork_simple[A](a: => Par[A]): Par[A] =
  es => es.submit(new Callable[A] {
    def call = a(es).get
  })

The bug is somewhat subtle. Notice that we are submitting the Callable

first, and , we are submitting another  to the within that callable Callable

 and blocking on its result (recall that  will submit a ExecutorService a(es)

 to the  and get back a ). This is aCallable ExecutorService Future

problem if our thread pool has size 1. The outer  gets submitted andCallable

picked up by the sole thread. Within that thread, before it will complete, we submit
and block waiting for the result of another . But there are no threadsCallable

available to run this . Our code therefore deadlocks.Callable

EXERCISE 11 (hard, optional): Can you show that any fixed size thread pool
can be made to deadlock given this implementation of ?fork

When you find counterexamples like this, you have two choices—you can try
to fix your implementation such that the law holds, or you can refine your law a
bit, to state more explicitly the conditions under which it holds (we could simply
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stipulate that we require thread pools that can grow unbounded). Even this is a
good exercise—it forces you to document invariants or assumptions that were
previously implicit.

We are going to try to fix our implementation, since being able to run our
parallel computations on fixed size thread pools seems like a useful capability. The
problem with the above implementation of  is that we are invoking  fork submit

 a callable, and we are  on the result of what we've submitted. Thisinside blocking
leads to deadlock when there aren't any remaining threads to run the task we are
submitting. So it seems we have a simple rule we can follow to avoid deadlock:

A  should never submit and then block on the result of a Callable

.Callable

You may want to take a minute to prove to yourself that our parallel tasks
cannot deadlock, even with a fixed-size thread pool, so long as this rule is
followed.

Let's look at a different implementation of :fork

def fork[A](fa: => Par[A]): Par[A] =
  es => fa(es)

This certainly avoids deadlock. The only problem is that we aren't actually
forking a separate logical thread to evaluate . So, fa

 for some , , runs fork(hugeComputation)(es) ExecutorStrategy es

 in the main thread, which is exactly what we wanted tohugeComputation

avoid by calling . This is still a useful combinator, though, since it lets usfork

delay instantiation of a parallel computation until it is actually needed. Let's give it
a name, :delay

def delay[A](fa: => Par[A]): Par[A] =
  es => fa(es)

EXERCISE 12 (hard, optional): Can you figure out a way to still evaluate  infa

a separate logical thread, but avoid deadlock? You may have to resort to some
mutation or imperative tricks behind the scenes. There's absolutely nothing wrong
with doing this, so long as these local violations of referential transparency aren't
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observable to users of the API. The details of this are quite finicky to get right. The
nice thing is that we are confining this detail to one small block of code, rather than
forcing users to have to think about these issues throughout their use of the API.

Taking a step back from these details, the purpose here is not necessarily to
figure out the best, nonblocking implementation of , but more to show thatfork

laws are important. They give us another angle to consider when thinking about the
design of a library. If we hadn't tried writing some of these laws out, we may not
have discovered this behavior of  until much later.fork

In general, there are multiple approaches you can consider when choosing laws
for your API. You can think about your conceptual model, and reason from there to
postulate laws that should hold. You can also  laws you think are conjure up useful

 (like we did with our  law), and see if it isfor reasoning or compositionality fork

possible and sensible to ensure they hold for your model and implementation. And
lastly, you can look at your  and come up with laws you expect toimplementation

hold based on your implementation.17

Footnote 17mThis last way of generating laws is probably the weakest, since it can be a little too easy to just
have the laws reflect the implementation, even if the implementation is buggy or requires all sorts of unusual side
conditions that make composition difficult.

EXERCISE 13: Can you think of other laws that should hold for your
implementation of , , and ? Do any of them have interestingunit fork map2

consequences?

Functional design is an iterative process. After you've written down your API and
have at least a prototype implementation, try using it for progressively more
complex or realistic scenarios. Often you'll find that these scenarios require only
some combination of existing primitive or derived combinators, and this is a
chance to factor out common usage patterns into other combinators; occasionally
you'll find situations where your existing primitives are insufficient. We say in this
case that the API is not expressive enough.

Let's look at an example of this.
EXERCISE 14: Try writing a function to choose between two forking

computations based on the result of an initial computation. Can this be
implemented in terms of existing combinators or is a new primitive required?

def choice[A](a: Par[Boolean])(ifTrue: Par[A], ifFalse: Par[A]): Par[A]

7.2.4 Expressiveness and the limitations of an algebra
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Notice what happens when we try to define this using only . If we try map

, we obtain the type map(a)(a => if (a) ifTrue else ifFalse)

. If we had an  we could force the outer Par[Par[A]] ExecutorStrategy

 to obtain a , but we'd like to keep our  values agnostic to the Par Par[A] Par

. That is, we don't want to actually execute our parallelExecutorStrategy

computation, we simply want to  a parallel computation that  runs onedescribe first
parallel computation and  uses the result of that computation to choose whatthen
computation to run next.

This is a case where our existing primitives are insufficient. When you
encounter these situations, you can respond by simply introducing the exact
combinator needed (for instance, we could simply write  as a newchoice

primitive, using the fact that  is merely an alias for Par[A] ExecutorService

 rather than relying only on , , and ). But quite=> Future[A] unit fork map2

often, the example that motivates the need for a new primitive will not be minimal
—it will have some incidental features that aren't really relevant to the essence of
the API's limitation. It's a good idea to try to explore some related examples around
the particular one that cannot be expressed, to see if a common pattern emerges.
Let's do that here.

If it's useful to be able to choose between  parallel computations based ontwo
the results of a first, it should be useful to choose between  computations:N

def choiceN[A](a: Par[Int])(choices: List[Par[A]]): Par[A]

Let's say that  runs , then uses that to select a parallel computationchoiceN a

from . This is a bit more general than .choices choice

EXERCISE 15: Implement  and then  in terms of choiceN choice choiceN

.
EXERCISE 16: Still, let's keep looking at some variations. Try implementing

the following combinator. Here, instead of a list of computations, we have a Map

of them:18

Footnote 18m  ( ) is a purely functional data structure.Map API link

def choiceMap[A,B](a: Par[A])(choices: Map[A,Par[B]]): Par[B]

If you want, stop reading here and see if you can come up with a combinator
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that generalizes these examples.
Something about these combinators seems a bit arbitrary. The  encoding ofMap

the set of possible choices feels too specific. If you look at your implementation of 
, you can see you aren't really using much of the API of . Really,choiceMap Map

we are just using the  to provide a function, .Map[A,Par[B]] A => Par[B]

And looking back at  and , we can see that for , thechoice choiceN choice

pair of arguments was just being used as a  (where theBoolean => Par[A]

boolean selects either the first or second element of the pair), and for ,choiceN

the list was just being used as an .Int => Par[A]

Let's take a look at the signature.

def chooser[A,B](a: Par[A])(choices: A => Par[B]): Par[B]

EXERCISE 17: Implement this new primitive , then use it tochooser

implement  and .choice choiceN

Whenever you generalize functions like this, take a look at the result when
you're finished. Although the function you've written may have been motivated by
some very specific use case, the signature and implementation may have a more
general meaning. In this case,  is perhaps no longer the most appropriatechooser

name for this operation, which is actually quite general—it is a parallel
computation that, when run, will run an initial computation whose result is used to
determine a second computation. Nothing says that this second computation needs
to even exist before the first computation's result is available. Perhaps it is being 

 from whole cloth using the result of the first computation. This function,generated
which comes up quite often in combinator libraries, is usually called  or bind

:flatMap

def flatMap[A,B](a: Par[A])(f: A => Par[B]): Par[B]

Is  really the most primitive possible function? Let's play around withflatMap

it a bit more. Recall when we first tried to implement , we ended up with achoice

. From there we took a step back, tried some related examples, andPar[Par[A]]

eventually discovered . But suppose instead we simply  anotherflatMap conjured

combinator, let's call it , for converting  to :join Par[Par[A]] Par[A]
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def join[A](a: Par[Par[A]]): Par[A]

We'll call it  since conceptually, it is a parallel computation that whenjoin

run, will run the inner computation, wait for it to finish (much like Thread.join

), then return its result. Again, we are just following the types here. We have an
example that demands a function with the given signature, and so we just bring it
into existence.

EXERCISE 18: Implement . Optional: can it be implemented in a wayjoin

that avoids deadlock, even when run on bounded thread pools as in ? Canfork

you see how to implement  using ? And can you implement flatMap join join

using ?flatMap

We are going to stop here, but you are encouraged to try exploring this algebra
further. Try more complicated examples, discover new combinators, and see what
you find! Here are some questions to consider:

Can you implement a function with the same signature as , but using  and ?map2 bind unit

How is its meaning different than that of ?map2

Can you think of laws relating  to the other primitives of the algebra?join

Are there parallel computations that cannot be expressed using this algebra? Can you
think of any computations that cannot even be expressed by adding new primitives to the
algebra?
In this chapter, we've chosen a "pull" model for our parallel computations. That is, when
we run a computation, we get back a , and we can block to obtain the result of thisFuture

. Are there alternative models for  that don't require us to ever block on a Future Par

?Future

In this chapter, we worked through the design of a library for defining parallel and
asynchronous computations. Although this domain is interesting, the goal of this
chapter was to give you a window into the process of functional design, to give you
a sense of the sorts of issues you're likely to encounter and to give you ideas for
how you can handle them. If you didn't follow absolutely every part of this, or if
certain conclusions felt like logical leaps, don't worry. No two people take the
same path when designing a library, and as you get more practice with functional
design, you'll start to develop your own tricks and techniques for exploring a
problem and possible designs.

In the next chapter, we are going to look at a completely different domain, and
take yet another meandering journey toward discovering an API for that domain.

7.3 Conclusion
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free theorem
map fusion
parametricity
shape
structure-preserving
typecasing

Index Terms
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8
In the last chapter, we worked through the design of a functional library for
expressing parallel computations. There, we introduced the idea of an API forming
an —that is, a collection of data types, functions over these data types, andalgebra
importantly,  or  that express relationships between these functions.laws properties
We also hinted at the idea that it might be possible to somehow check these laws
automatically.

This chapter will work up to the design and implementation of a simple but
powerful  library. What does this mean? The general idea ofproperty-based testing
such a library is to decouple the specification of program behavior from the
creation of test cases. The programmer focuses on specifying the behavior and
giving high-level constraints on the test cases; the framework then handles
generating (often ) test cases satisfying the constraints and checking thatrandom
programs behave as specified for each case.

As an example, in , a property-based testing library for Scala, aScalaCheck
property looks something like:

val intList = Gen.listOf(Gen.choose(0,100))
val prop =
  forAll(intList)(l => l.reverse.reverse == l) &&
  forAll(intList)(l => l.headOption == l.reverse.lastOption)
val failingProp = forAll(intList)(l => l.reverse == l)

A generator of lists of integers between 0 and 100
A property which specifies the behavior of the List.reverse method

Property-based testing

8.1 Introduction

8.2 A brief tour of property-based testing
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Check that reversing a list twice gives back the original list
Check that the first element becomes the last element after reversal
A property which is obviously false

And we can check properties like so:

scala> prop.check
+ OK, passed 100 tests.

scala> failingProp.check
! Falsified after 6 passed tests.
> ARG_0: List("0", "1")

Here,  is not a , but a , which isintList List[Int] Gen[List[Int]]

something that knows how to generate test data of type . We can List[Int]

 from this generator, and it will produce lists of different lengths, filled withsample
random numbers between  and . Generators in a property-based testing0 100

library have a rich API. We can combine and compose generators in different
ways, reuse them, and so on.

The function  creates a  by combining a  with someforAll property Gen[A]

predicate  to check for each value generated. Like ,A => Boolean Gen

properties can also have a rich API. Here in this simple example we have used &&

to combine two properties. The resulting property will hold only if neither property
can be  by any of the generated test cases. Together, the two propertiesfalsified

form a  specification of the correct behavior of the  method.partial reverse 1

Footnote 1mHints and standalone answers

When we invoke , ScalaCheck will randomly generate prop.check

 values and ensure that each passes the predicates we have supplied.List[Int]

The output indicates that ScalaCheck has generated 100 test cases (of type 
) and that the predicates were satisfied for each. Properties can ofList[Int]

course fail—the output of  indicates that the predicatefailingProp.check

tested false for some input, which is helpfully printed out to facilitate further
testing or debugging.

EXERCISE 1: To get more of a feel for how to approach testing in this way, try
thinking of properties to specify the implementation of a sum: List[Int] =>

 function. Don't try writing your properties down as executable ScalaCheckInt

code, an informal description is fine. Here are some ideas to get you started:
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Reversing a list and summing it should give the same result as summing
the original, non-reversed list.

What should the sum be if all elements of the list are the same value?

Can you think of other properties?
EXERCISE 2: What are properties that specify the function that finds the

maximum of a ?List[Int]

Property-based testing libraries often come equipped with other useful features.
We'll talk more about these features later, but just to give an idea of what is
possible:

: In the event of discovering a failing test, the test runner triesTest case minimization
smaller sizes until finding the  size test case that also fails, which is moreminimal
illuminating for debugging purposes. For instance, if a property fails for a list of size 10,
the test runner checks smaller lists and reports the smallest failure.
Exhaustive test case generation: We call the set of possible values that could be produced
by some  the .  When the domain is small enough (for instance, supposeGen[A] domain 2

the domain were all even integers less than 100), we may exhaustively generate all its
values, rather than just randomly from it. If the property holds for all values in a domain,
we have an actual proof, rather than just the absence of evidence to the contrary.

Footnote 2mThis is the same usage of 'domain' as —generators describethe domain of a function
possible inputs to functions we would like to test. Note that we will also still sometimes use 'domain' in the
more colloquial sense, to refer to a subject or area of interest, e.g. "the domain of functional parallelism" or
"the error-handling domain".

ScalaCheck is just one property-based testing library. And while there's nothing
wrong with it, we are going to be deriving our own library in this chapter, starting
from scratch. This is partially for pedagogical purposes, but there's another reason:
we want to encourage the view that no existing library (even one designed by
supposed experts) is authoritative. Don't treat existing libraries as a cookbook to be
followed. Most libraries contain a whole lot of  design choices, manyarbitrary
made unintentionally. Look back to the previous chapter—notice how on several
occasions, we did some informal reasoning to rule out entire classes of possible
designs. This sort of thing is an inevitable part of the design process (it is
impossible to fully explore every conceivable path), but it means it's easy to miss
out on workable designs.

When you start from scratch, you get to revisit all the fundamental assumptions
that went into designing the library, take a different path, and discover things about
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the domain and the problem space that others may not have even considered. As a
result, you might arrive at a design that's much better for your purposes. But even
if you decide you like the existing library's solution, spending an hour or two of
playing with designs and writing down some type signatures is a great way to learn
more about a domain, understand the design tradeoffs, and improve your ability to
think through design problems.

In this section, we will embark on another messy, iterative process of discovering
data types and a set of primitive functions and combinators for doing
property-based testing. As before, this is a chance to peer over the shoulder of
someone working through possible designs. The particular path we take and the
library we arrive at isn't necessarily the same as what you would discover. If
property-based testing is unfamiliar to you, even better; this is a chance to explore
a new domain and its design space, and make your own discoveries about it. If at
any point, you're feeling inspired or have ideas of your own about how to design a
library like this, don't wait for an exercise to prompt you—  andput the book down
go off to implement and play with your ideas. You can always come back to this
chapter if you want ideas or get stuck on how to proceed.

With that said, let's get started. What data types should we use for our testing
library? What primitives should we define, and what should their meanings be?
What laws should our functions satisfy? As before, we can look at a simple
example and "read off" the needed data types and functions, and see what we find.
For inspiration, let's look at the ScalaCheck example we showed earlier:

val intList = Gen.listOf(Gen.choose(0,100))
val prop =
  forAll(intList)(l => l.reverse.reverse == l) &&
  forAll(intList)(l => l.headOption == l.reverse.lastOption)

Without knowing anything about the implementation of  or Gen.choose

, we can guess that whatever data type they return (let's call it ,Gen.listOf Gen

short for "generator") must be parametric in some type. That is, 
 probably returns a , and  isGen.choose(0,100) Gen[Int] Gen.listOf

then a function with the signature . ButGen[Int] => Gen[List[Int]]

8.3 Choosing data types and functions
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since it doesn't seem like  should care about the type of the  itGen.listOf Gen

receives as input (it would be odd to require separate combinators for creating lists
of , , , and so on), let's go ahead and make it polymorphic:Int Double String

def listOf[A](a: Gen[A]): Gen[List[A]]

We can learn many things by looking at this signature. Notice what we are not
specifying—the size of the list to generate. For this to be implementable, this
implies our generator must either assume or be told this size. Assuming a size
seems a bit inflexible—whatever we assume is unlikely to be appropriate in all
contexts. So it seems that generators must be told the size of test cases to generate.
We could certainly imagine an API where this were explicit:

def listOfN[A](n: Int, a: Gen[A]): Gen[List[A]]

This would certainly be a useful combinator, but  having to explicitlynot
specify sizes is powerful as well—it means the test runner has the freedom to
choose test case sizes, which opens up the possibility of doing the test case
minimization we mentioned earlier. If the sizes are always fixed and specified by
the programmer, the test runner won't have this flexibility. Keep this concern in
mind as we get further along in our design.

What about the rest of this example? The  function looks interesting.forAll

We can see that it accepts a  and what looks to be aGen[List[Int]]

corresponding predicate, . But again, it doesn't seemList[Int] => Boolean

like  should care about the types of the generator and the predicate, asforAll

long as they match up. We can express this with the type:

def forAll[A](a: Gen[A])(f: A => Boolean): Prop

Here, we've simply invented a new type,  (short for "property", followingProp

the ScalaCheck naming), for the result of binding a  to a predicate. We mightGen

not know the internal representation of  or what other functions it supportsProp

but based on this example, we can see that it has an  operator, so let's introduce&&

that:
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trait Prop { def &&(p: Prop): Prop }

Now that we have a few fragments of an API, let's discuss what we want our types
and functions to . First, consider . We know there exist functions mean Prop

 (for creating a property) and  (for running a property). InforAll check

ScalaCheck, this  method has a side effect of printing to console. This ischeck

probably fine to expose as a convenience function, but it's not a basis for
composition. For instance, we couldn't implement  for  if its only API&& Prop

were the  method:check 3

Footnote 3mThis might remind you of similar problems that we discussed last chapter, when we looked at
directly using  and  for parallelism.Thread Runnable

trait Prop {
  def check: Unit
  def &&(p: Prop): Prop = ???
}

In order to combine  values using combinators like , we need Prop && check

(or whatever function "runs" properties) to return some meaningful value. What
type should that value be? Well, let's consider what sort of information we'd like to
get out of checking our properties. At a minimum, we need to know whether the
property succeeded or failed. This lets us implement .&&

EXERCISE 3: Assuming the following definition of , implement  as aProp &&

method of :Prop

trait Prop { def check: Boolean }

In this representation,  is nothing more than a non-strict , andProp Boolean

any of the usual  functions ('and', 'or', 'not', 'xor', etc) can be defined for Boolean

. But a  alone is probably insufficient. If a property fails, we'd likeProp Boolean

to perhaps know how many tests succeeded first, and what the arguments were that
resulted in the failure. And if it succeeded, we might like to know how many tests
it ran. Let's try to return an  to indicate this success or failure:Either

object Prop {

8.3.1 The meaning and API of properties
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  type SuccessCount = Int
  ...
}
trait Prop { def check: Either[???,SuccessCount] }

Type aliases like this can help readability of an API

There's a problem, what type do we return in the failure case? We don't know
anything about the type of the test cases being generated internal to the .Prop

Should we add a type parameter to , make it a ? Then Prop Prop[A] check

could return . Before going too far down this path, let's askEither[A,Int]

ourselves, do we really care though about the  of the value that caused thetype
property to fail? Not exactly. We would only care about the type if we were going
to do further computation with this value. Most likely we are just going to end up
printing this value to the screen, for inspection by the person running these tests.
After all, the goal here is a) to find bugs, and b) to indicate to a person what test
cases trigger those bugs, so they can go fix them. This suggests we can get away
with the following type:

object Prop {
  type FailedCase = String
  type SuccessCount = Int
}

trait Prop { def check: Either[FailedCase,SuccessCount] }

In the case of failure,  returns a , where  is some check Left(s) s String

representation of the value that caused the property to fail. As a general rule,
whenever you return a value of some type  from a function, think about whatA

callers of your function are likely to do with that value. Will any of them care that
the value is of type , or will they always convert your  to some other uniformA A

representation (like  in this case)? If you have a good understanding of allString

the ways callers will use your function, and they all involve converting your value
to some other type like , there's often no loss in expressiveness to simplyString

return that  directly. The uniformity of representation makes compositionString

easier.
That takes care of the return value of , at least for now, but what aboutcheck

the arguments to ? Right now, the  method takes no arguments. Ischeck check

this sufficient? We can think about what information  will have access to justProp
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by inspecting the way  values are created. In particular, let's look at :Prop forAll

def forAll[A](a: Gen[A])(f: A => Boolean): Prop

Without knowing more about the representation of , it's hard to say whetherGen

there's enough information here to be able to generate values of type  (which isA

what we need to implement ). So for now let's turn our attention to , tocheck Gen

get a better idea of what it means and what its dependencies might be.

Let's take a step back to reflect on what we've learned so far. We've certainly made
some progress. By inspecting a simple example, we learned that our library deals
with at least two fundamental types, , and , and we've loosely assignedGen Prop

meanings to these types. In looking at , we made what seems like an importantGen

distinction between generators whose "size" is chosen explicitly by the
programmer (as in ), and generators where the testing framework islistOfN

allowed to pick sizes (as in ). We noted this as something to keep in mindlistOf

for later.
Somewhat arbitrarily, we then chose to look at  first, and determined weProp

couldn't commit to a concrete representation for  without first knowing theProp

representation of . We've made a note of this, and plan on returning to Gen Prop

shortly. Have we made a mistake by starting with ? Not at all. This sort ofProp

thing happens all the time. It doesn't matter much where we begin our inquiry—the
domain will inexorably guide us to make all the design choices that are required.
As you do more functional design, you'll develop a better intuition for where a
good place is to start.

Let's press on. We determined earlier that a  was something that knowsGen[A]

how to generate values of type . What are some ways it could do that? Well, itA

could  generate these values. Look back at the example from chapterrandomly
six—there, we gave an interface for a purely functional random number generator
and showed how to make it convenient to combine computations that made use of

it. We could have  build on this:Gen 4

Footnote 4mRecall .case class State[S,A](run: S => (A,S))

8.3.2 The meaning and API of generators

TWO WAYS OF GENERATING VALUES
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type Gen[A] = State[RNG,A]

EXERCISE 4: Implement  using this representation of . FeelGen.choose Gen

free to use functions you've already written.

def choose(start: Int, stopExclusive: Int): Gen[Int]

But in addition to randomly generating values, it might be nice when possible
to exhaustively enumerate a sequence of values, and be notified somehow that all
possible values have been generated. If we can get through all possible values
without finding a failing case, this is an actual  that our property holds overproof
its domain. Clearly exhaustive generation won't always be feasible, but in some
cases it might be. As a simple example, a  could first generate Gen[Boolean]

, then , then report it was done generating values. Likewise for thetrue false

expression . Note that if we can't exhaustively enumerateGen.choose(1,10)

all possible values, we'll likely want to sample our values differently—for instance,
if we have , we could generate  inGen.choose(1,10) 1, 2, ... 10

sequence, but if we have , we won't be able toGen.choose(0,1000000000)

enumerate all possible values and should probably sample our random values more
uniformly from the range.

If we want to support both modes of test case generation (random and
exhaustive), we need to extend .  gives us all we need toGen State[RNG,A]

support random test case generation, but what about exhaustive generation? Well,
the simplest type we could use to encode a generator for an exhaustive list of
values is... a  of these values:List

type Gen[+A] = (State[RNG,A], List[A])

The first element of the pair is the generator of random values, the second is an
exhaustive list of values. Note that with this representation, the test runner will
likely have to choose between the two modes based on the number of test cases it
is running. For instance, if the test runner is running 1000 tests, it could 'spend' up
to the first 300 of these tests working through the domain exhaustively, then switch
to randomly sampling the domain if the domain has not been fully enumerated.
We'll get to writing this logic a bit later, after we nail down exactly how to
represent our "dual-mode" generators.
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There's a few problems with the current encoding of these dual-mode
generators. For one, it would be a shame to have to exhaustively generate all these
values if we end up having to resort to random test case generation (and the full set
of values may be huge or even infinite!). So let's use a  in place of .Stream List

We are going to use the  type we developed last chapter and also promoteStream

our type alias to a data type.5

Footnote 5mWe aren't using Scala's standard library streams here. They have an unfortunate "off-by-one"
error—they strictly evaluate their first element. Generic code like what we are writing in this chapter can't assume it
is desireable to evaluate any part of the stream until it is explicitly requested.

case class Gen[+A](sample: State[RNG,A], exhaustive: Stream[A])

EXERCISE 5: Let's see what we can implement using this representation of 
. Try implementing , , , and .Gen unit boolean choose listOfN

def unit[A](a: => A): Gen[A]

def boolean: Gen[Boolean]

def choose(start: Int, stopExclusive: Int): Gen[Int]

/** Generate lists of length n, using the given generator. */
def listOfN[A](n: Int, g: Gen[A]): Gen[List[A]]

So far so good. But these domains are all finite. What should we do about
infinite domains, like a  generator in some range:Double

/** Between 0 and 1, not including 1. */
def uniform: Gen[Double]

/** Between `i` and `j`, not including `j`. */
def choose(i: Double, j: Double): Gen[Double]

To randomly sample from these domains is straightforward, but what should we
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do for ? Return the empty ? No, probably not. Previously,exhaustive Stream

we made a choice about the meaning of an empty stream—we interpreted it to
mean that we have finished exhaustively generating values in our domain and there
are no more values to generate. We could change its meaning to "the domain is
infinite, use random sampling to generate test cases", but then we lose the ability to
determine that we have exhaustively enumerated our domain, or that the domain is
simply empty. How can we distinguish these cases? One simple way to do this is
with :Option

case class Gen[+A](sample: State[RNG,A], exhaustive: Stream[Option[A]])

We'll adopt the convention that a  in  signals to the testNone exhaustive

runner should switch to random sampling, because the domain is infinite or

otherwise not worth fully enumerating.  If the domain can be fully enumerated, 6

 will be a finite stream of  values. Note that this is a prettyexhaustive Some

typical usage of . Although we introduced  as a way of doingOption Option

error handling,  gets used a lot whenever we need a simple way ofOption

encoding one of two possible cases.

Footnote 6mWe could also choose to put the  on the outside: . You mayOption Option[Stream[A]]

want to explore this representation on your own. You will find that it doesn't work out so well as it requires that we
be able to decide  that the domain is not worth enumerating. We will see examples later of generatorsup front
where it isn't possible to make this determination.
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SIDEBAR Using the simplest possible types
We could create a new data type to wrap our Stream[Option[A]]
representing our domain for , but we will sometimes holdexhaustive

off on doing this until it feels justified (say, when we accumulate some
functions over this representation that aren't trivially defined in terms of 

 and , or we really want to hide this representation inOption Stream

the interest of modularity). When using a type like this with no particular
meaning attached to it, it can be a good practice to define type aliases
and functions which help codify and document the meaning you have
assigned to the type:

type Domain[+A] = Stream[Option[A]]

def bounded[A](a: Stream[A]): Domain[A] = a map (Some(_))
def unbounded: Domain[Nothing] = Stream(None)

This is pretty low cost—it doesn't require us to reimplement or replicate
the API of  or . But it helps with documentation of theOption Stream

API and makes it easier to implement a refactoring later which
promotes  to its own data type.Domain

EXERCISE 6: With this representation, reimplement the operations , boolean

 (the  version), and  (hard) from before, then implement choose Int listOfN

 and  (the  version).uniform choose Double

As we discussed last chapter, we are interested in understanding what operations
are , and what operations are , and in finding a small yetprimitive derived
expressive set of primitives. A good way to explore what is expressible with a
given set of primitives is to pick some concrete examples you'd like to express, and
see if you can assemble the functionality you want. As you do so, look for patterns,
try factoring out these patterns into combinators, and refine your set of primitives.
We encourage you to stop reading here and simply  with the primitives andplay
combinators we've written so far. If you want some concrete examples to inspire
you, here are some ideas:

If we can generate a single  in some range, do we need a new primitive to generate an Int

 pair in some range?(Int,Int)

Can we produce a  from a ? What about a  from a Gen[Option[A]] Gen[A] Gen[A]

?Gen[Option[A]]

REFININING THE PRIMITIVES
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Can we generate strings somehow using our existing primitives?

SIDEBAR The importance of play
You don't have to wait around for a concrete example to force
exploration of the design space. In fact, if you rely exclusively on
concrete, obviously "useful" or "important" examples to design your API,
you'll often miss out on aspects of the design space and generate
designs with ad hoc, overly specific features. We don't want to overfit
our API to the particular examples we happen to think of . Weright now
want to reduce the problem to its , and sometimes the best wayessence
to do this is . Don't try to solve important problems or produceplay
useful functionality. Not right away. Just experiment with different
representations, primitives, and operations, let questions naturally arise,
and explore whatever piques your curiosity. ("These two functions seem
similar. I wonder if there's some more general operation hiding inside."
or "Would it make sense to make this data type polymorphic?" or "What
would it mean to change this aspect of the representation from a single
value to a  of values?") There's no right or wrong way to do this,List

but there are so many different design choices that it's impossible  tonot
run headlong into fascinating little questions to play with.

Here, we are going to take a bit of a shortcut. Notice that  is composed of aGen

few other types, , , and . This can often be a hint that theStream State Option

API of  is going to have many of the same operations as these types. Let's seeGen

if there's some familiar operations from , , and  that weStream State Option

can also define for .Gen

EXERCISE 7: Aha! Our  data type supports both  and .  See ifGen map map2 7

you can implement these. Your implementation should be almost trivially defined

in terms of the  and  functions on , , and .  Youmap map2 Stream State Option 8

can add them as methods of the  type, as we've done before, or write them asGen

standalone functions in the  companion object. After you've implemented Gen map

, you may want to revisit your implementation of  for  and definechoose Double

it in terms of  and .uniform map

Footnote 7mYou've probably noticed by now that many data types support , , and . We'llmap map2 flatMap

be discussing how to abstract over these similarities in part 3 of the book.

Footnote 8mIn part 3 we will also learn how to derive these implementations automatically. That is, by
composing our data types in certain well-defined ways, we can obtain the implementations of , , andmap map2

so on for free, without having to write any additional code!
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def map[B](f: A => B): Gen[B]

def map2[B,C](g: Gen[B])(f: (A,B) => C): Gen[C]

So far so good. But  and  are not expressive enough to encode somemap map2

generators. Suppose we'd like a  where both integers are odd,Gen[(Int,Int)]

or both are even. Or a  where we first generate a lengthGen[List[Int]]

between 0 and 11, then generate a  of the chosen length. In bothList[Double]

these cases there is a dependency—we generate a value, then use that value to

determine what generator to use next.  For this we need , another9 flatMap

function we've seen before.

Footnote 9mTechnically, this first case can be implemented by generating the two integers separately, and
using  to make them both odd or both even. But a more natural way is to choose an even or oddmap2

generator based on the first value generated.

EXERCISE 8: Implement , then use it to implement the generatorsflatMap

mentioned above. You can make  and this version of  in the flatMap listOfN

 class, and  in the  companion object.Gen sameParity Gen

def flatMap[B](f: A => Gen[B]): Gen[B]

def sameParity(from: Int, to: Int): Gen[(Int,Int)]

def listOfN(size: Gen[Int]): Gen[List[A]]

EXERCISE 9 (hard, optional): Try implementing the version of listOfN

which picks its size up front purely in terms of other primitives. Is it possible? If
yes, give an implementation. Otherwise, explain why not:

def listOfN[A](n: Int, g: Gen[A]): Gen[List[A]]

EXERCISE 10 (hard): Implement , for combining two generators of theunion

same type into one, by pulling values from each generator with equal likelihood.
What are some possible ways you could combine the two exhaustive streams? Can
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you think of any reason to prefer one implementation over another?

def union(g1: Gen[A], g2: Gen[A]): Gen[A]

EXERCISE 11 (hard, optional): Implement , a version of weighted union

which accepts a weight for each  and generates values from each  withGen Gen

probability proportional to its weight.

def weighted(g1: (Gen[A],Double), g2: (Gen[A],Double)): Gen[A]

Now that we know more about our representation of generators, let's return to our
definition of . Our  representation has revealed information about theProp Gen

requirements for . First, we notice that our properties can succeed in one ofProp

two ways—they can be  correct, by exhaustive enumeration, or they canproven
succeed when no counterexamples are found via random generation. Our current
definition of  doesn't distinguish between these possibilities:Prop

trait Prop { def check: Either[FailedCase,SuccessCount] }

It only includes two cases, one for success, and one for failure. We can create a
new data type, , to represent the two ways a test can succeed:Status

trait Status
case object Proven extends Status
case object Unfalsified extends Status

trait Prop { def run: Either[FailedCase,(Status,SuccessCount)] }

A test can succeed by being , if the domain has been fully enumeratedproven
and no counterexamples found, or it can be merely , if the test runnerunfalsified
had to resort to random sampling.

Prop is now nothing more than a non-strict . But  is stillEither Prop

missing some information—we have not specified how many test cases to examine
before we consider the property to be passed. We could certainly hardcode
something, but it would be better to propagate this dependency out:

REFININING THE PROP DATA TYPE
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type TestCases = Int
type Result = Either[FailedCase, (Status,SuccessCount)]
case class Prop(run: TestCases => Result)

Is this sufficient? Let's take another look at . Can  beforAll forAll

implemented? Why not?

def forAll[A](a: Gen[A])(f: A => Boolean): Prop

We can see that  does not have enough information to return a .forAll Prop

Besides the number of test cases to run,  must have all the informationProp

needed for generated test cases to return a , but if it needs to generateStatus

random test cases, it is going to need an . Let's go ahead and propagate thatRNG

dependency to :Prop

case class Prop(run: (TestCases,RNG) => Result)

We can start to see a pattern here. There are certain parameters that go into
generating test cases, and if we think of other parameters besides the number of
test cases and the source of randomness, we can just add these as extra arguments
to .Prop

We now have enough information to actually implement . Here is aforAll

simple implementation. We have a choice about whether to use exhaustive or
random test case generation. For our implementation, we'll spend a third of our test
cases examining elements from the exhaustive . If we reach the end of thatStream

 or find a counterexample, we return immediately, otherwise, we fall backStream

to generating random test cases for our remaining test cases:10

Footnote 10mHere is a question to explore—might there be a way to track the expected size of the exhaustive
stream, such that the decision to use random data could be made up front? For some primitives, it is certainly
possible, but is it possible for all our primitives?

def forAll[A](a: Gen[A])(f: A => Boolean): Prop = Prop {
  (n,rng) => {
    def go(i: Int, j: Int, s: Stream[Option[A]], onEnd: Int => Result):
    Result =
      if (i == j) Right((Unfalsified, i))
      else s.uncons match {
        case Some((Some(h),t)) =>
          try { if (f(h)) go(i+1,j,s,onEnd)
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                else Left(h.toString) }
          catch { case e: Exception => Left(buildMsg(h, e)) }
        case Some((None,_)) => Right((Unfalsified,i))
        case None        => onEnd(i)
      }
    go(0, n/3, a.exhaustive, i => Right((Proven, i))) match {
      case Right((Unfalsified,_)) =>
        val rands = randomStream(a)(rng).map(Some(_))
        go(n/3, n, rands, i => Right((Unfalsified, i)))
      case s => s
    }
  }
}

If proven or failed, stop immediately

def buildMsg[A](s: A, e: Exception): String =
  "test case: " + s + "\n" +
  "generated an exception: " + e.getMessage + "\n" +
  "stack trace:\n" + e.getStackTrace.mkString("\n")

Notice we are catching exceptions and reporting them as test failures, rather
than bringing down the test runner (which would lose information about what
argument triggered the failure).

EXERCISE 12: Now that we have a representation of , implement ,Prop &&

and  for manipulating  values. While we can implement , notice that in|| Prop &&

the case of failure we aren't informed which property was responsible, the left or
the right. (Optional): Can you devise a way of handling this, perhaps by allowing 

 values to be assigned a tag or label which gets displayed in the event of aProp

failure?

def &&(p: Prop): Prop

def ||(p: Prop): Prop

Earlier, we mentioned the idea of test case minimization. That is, we would ideally
like our framework to find the  or simplest failing test case, to bettersmallest
illustrate the problem and facilitate debugging. Let's see if we can tweak our
representations to support this. There are two general approaches we could take:

8.3.3 Test case minimization
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Shrinking: After we have found a failing test case, we can run a separate procedure to
minimize the test case, by successively decreasing its "size" until it no longer fails. This
is called , and it usually requires us to write separate code for each data type toshrinking
implement this minimization process.
Sized generation: Rather than shrinking test cases after the fact, we simply generate our
test cases in order of increasing size and complexity. So, we start small and increase size
until finding a failure. This idea can be extended in various ways, to allow the test runner
to make larger jumps in the space of possible sizes while still making it possible to find
the smallest failing test.

ScalaCheck, incidentally, takes this first approach of . There's nothingshrinking
wrong with this approach (it is also used by the Haskell library  thatQuickCheck
ScalaCheck is based on) but we are going to see what we can do with sized
generation. It's a bit simpler and in some ways more modular—our generators only
need to be knowledgeable about how to generate a test case of a given size, they
don't need to be aware of the 'schedule' used to search the space of test cases and
the test runner therefore has the freedom to choose this schedule. We'll see how
this plays out shortly.

We are going to do something different. Rather than modifying our  dataGen

type, for which we've already written a number of useful combinators, we are
going to introduce sized generation as a separate layer in our library. That is, we
are going to introduce a type, , for representing sized generators:SGen

case class SGen[+A](forSize: Int => Gen[A])

EXERCISE 13: Implement helper functions for converting  to . YouGen SGen

can add this as a method to .Gen

def unsized: SGen[A]

EXERCISE 14 (optional): Not surprisingly,  at a minimum supports manySGen

of the same operations as , and the implementations are rather mechanical.Gen

You may want to define some convenience functions on  that simplySGen

delegate to the corresponding functions on .Gen 11

Footnote 11mAgain, we are going to discuss in Part 3 ways of factoring out this sort of duplication.

EXERCISE 15: We can now implement a  combinator that does notlistOf

accept an explicit size. It can return an  instead of a . TheSGen Gen
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implementation can generate lists of the requested size.

def listOf[A](g: Gen[A]): SGen[List[A]]

Let's see how  affects the definition of  and . The SGen Prop Prop.forAll

 version of  looks like this:SGen forAll

def forAll[A](g: SGen[A])(f: A => Boolean): Prop

Can you see how this function is not possible to implement?  is expectingSGen

to be told a size, but  does not receive any size information. Much like weProp

did with the source of randomness and number of test cases, we simply need to
propagate this dependency to . But rather than just propagating thisProp

dependency  to the caller of , we are going to have  accept a as is Prop Prop

 size. This puts  in charge of invoking the underlying generatorsmaximum Prop

with various sizes, up to and including the maximum specified size, which means it

can also search for the smallest failing test case. Let's see how this works out:12

Footnote 12mThis rather simplistic implementation gives an equal number of test cases to each size being
generated, and increases the size by  starting from . We could imagine a more sophisticated implementation1 0

that does something more like a binary search for a failing test case size—starting with sizes 
 then narrowing in on smaller sizes in the event of a failure.0,1,2,4,8,16...

case class Prop(run: (MaxSize,TestCases,RNG) => Status)

def forAll[A](g: SGen[A])(f: A => Boolean): Prop =
  forAll(g.forSize)(f)

def forAll[A](g: Int => Gen[A])(f: A => Boolean): Prop = Prop {
  (max,n,rng) =>
    val casesPerSize = n / max + 1
    val props: List[Prop] =
      Stream.from(0).take(max+1).map(i => forAll(g(i))(f)).toList
    props.map(p => Prop((max,n,rng) => p.run(max,casesPerSize,rng))).
          reduceLeft(_ && _)(max,n,rng)
}

This implementation highlights a couple minor problems with our
representation of . For one, there are actually now  ways that a propertyProp three

can succeed. It can be , if the domain of the generator has been fullyproven
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examined (for instance, a  can only ever generate two distinctSGen[Boolean]

values, regardless of size). It can be , if the domain of the generator hasexhausted
been fully examined, but only up through the maximum size. Or it could be merely

, if we had to resort to random generation and no counterexamples wereunfalsified
found. Let's add this to our  representation:Status

case object Exhausted extends Status
case object Proven extends Status
case object Unfalsified extends Status

EXERCISE 16: Try to reimplement , assuming this definition of forAll

. Notice that we lack a way to distinguish between  and Status Proven

. Why is that? Can you see how to fix it?Exhausted

The problem is that  is a totally opaque function from  to , andSGen Size Gen

so the test runner in  cannot distinguish a generator that has been forAll fully

exhausted from a generator that has merely been exhausted for the given size. We
can add this distinction by making  into a data type with two cases:SGen

trait SGen[+A]
case class Sized[+A](forSize: Size => Gen[A]) extends SGen[A]
case class Unsized[+A](get: Gen[A]) extends SGen[A]

EXERCISE 17: Implement  for this representation of  and anyforAll SGen

other functions you've implemented that require updating to reflect these changes
in representation. Notice that we only need to update primitive
combinators—derived combinators get their new behavior "for free", based on the
updated implementation of primitives.

We have converged on what seems like a reasonable API. We could keep tinkering
with it, but at this point let's try  the library to construct tests and see if weusing
notice any deficiencies, either in what it can express or its general usability.
Usability is somewhat subjective, but we generally like to provide convenient 

 and appropriate  which abstract out common patterns thatsyntax helper functions
occur in client usage of the library. We aren't necessarily aiming here to make the
library more expressive, we simply want to make it more pleasant to use.

Let's revisit an example that we mentioned at the start of this

8.3.4 Using the library, improving its usability, and future directions
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chapter—specifying the behavior of the function , available as a method on max

 ( ). The maximum of a list should be greater than or equal toList API docs link

every other element in the list. Let's specify this:

val smallInt = Gen.choose(-10,10)
val maxProp = forAll(listOf(smallInt)) { l =>
  val max = l.max
  !l.exists(_ > max)
}

No value greater than max should exist in l

We can introduce a helper function in  for actually  our Prop running Prop

values and printing their result to the console in a useful format:

def run(p: Prop,
        maxSize: Int = 100,
        testCases: Int = 100,
        rng: RNG = RNG.simple(System.currentTimeMillis)): Unit = {
  p.run(maxSize, testCases, rng) match {
    case Left(msg) => println("! test failed:\n" + msg)
    case Right((Unfalsified,n)) =>
      println("+ property unfalsified, ran " + n + " tests")
    case Right((Proven,n)) =>
      println("+ property proven, ran " + n + " tests")
    case Right((Exhausted,n)) =>
      println("+ property unfalsified up to max size, ran " +
               n + " tests")
  }
}

A default argument of 200

We are using default arguments here to make it more convenient to call in the
case that the defaults are fine.

EXERCISE 18: Try running . Notice that it fails!Prop.run(maxProp)

Property-based testing has a way of revealing all sorts of hidden assumptions
we have about our code, and forcing us to be much more explicit about these
assumptions. The Scala standard library implementation of  crashes whenmax

given the empty list (rather than returning an ).Option

EXERCISE 19: Define , for generating nonempty lists, then updatelistOf1

your specification of  to use this generator.max

Let's try a few more examples.
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EXERCISE 20: Write a property to verify the behavior of  (List.sorted

), which you can use to sort (among other things) a .API docs link List[Int] 13

For instance, .List(2,1,3).sorted == List(1,2,3)

Footnote 13m  takes an   for the elements of the list, to control the sorting strategy.sorted implicit Ordering

val sortedProp = forAll(listOf(smallInt)) { l =>
  val ls = l.sorted
  l.isEmpty || !l.zip(l.tail).exists { case (a,b) => a > b }
}

Recall that in the previous chapter we looked at laws we expected to hold for
our parallel computations. Can we express these laws with our library? The first
"law" we looked at was actually a particular test case:

map(unit(1))(_ + 1) == unit(2)

We certainly can express this, but the result is somewhat ugly.14

Footnote 14mRecall that .type Par[A] = ExecutorService => Future[A]

val ES: ExecutorService = Executors.newCachedThreadPool
val p1 = Prop.forAll(Gen.unit(Par.unit(1)))(i =>
  Par.map(i)(_ + 1)(ES).get == Par.unit(2)(ES).get)

We've expressed the test, but it's verbose, cluttered, and the "idea" of the test is
obscured by details that aren't really relevant here. Notice that this isn't a question
of the API being expressive enough—yes we can express what we want, but a
combination of missing helper functions and poor syntax obscures the intent.

Let's improve on this. Our first observation is that  is a bit too generalforAll

for this test case. We aren't varying the input to this test, we just have a hardcoded
example. Hardcoded examples should be just as convenient to write as in a
traditional unit testing library. Let's introduce a combinator for it:

def check(p: => Boolean): Prop =
  forAll(unit(()))(_ => p)

Note that we are non-strict here
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Is this cheating? Not at all. We provide the unit generator, which, of course,
only generates a single value. The value will be ignored in this case, simply used to
drive the evaluation of the given . Notice that this combinator isBoolean

general-purpose, having nothing to do with —we can go ahead and move itPar

into the  companion object. Updating our test case to use it gives us:Prop

val p2 = check {
  val p = Par.map(Par.unit(1))(_ + 1)
  val p2 = Par.unit(2)
  p(ES).get == p2(ES).get
}

Better. Can we do something about the  and  noise?p(ES).get p2(ES).get

There's something rather unsatisfying about it. For one, we're forcing this code to
be aware of the internal implementation details of , simply to compare two Par

 values for equality. One improvement is to move the equality comparison intoPar

, and into a helper function, which means we only have to run a single  atPar Par

the end to get our result:

def equal[A](p: Par[A], p2: Par[A]): Par[Boolean] =
  Par.map2(p,p2)(_ == _)

val p3 = check {
  equal (
    Par.map(Par.unit(1))(_ + 1),
    Par.unit(2)
  ) (ES) get
}

So, we are  equality to operate in , which is a bit nicer than having tolifting Par

run each side separately. But while we're at it, why don't we move the  of running
 out into a separate function, , and the analogous .Par forAllPar checkPar

This also gives us a good place to insert variation  different parallelacross
strategies, without it cluttering up the property we are specifying:

val S = weighted(
  choose(1,4).map(Executors.newFixedThreadPool) -> .75,
  unit(Executors.newCachedThreadPool) -> .25)

def forAllPar[A](g: Gen[A])(f: A => Par[Boolean]): Prop =
  forAll(S.map2(g)((_,_))) { case (s,a) => f(a)(s).get }
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def checkPar(p: Par[Boolean]): Prop =
  forAllPar(Gen.unit(()))(_ => p)

a -> b is syntax sugar for (a,b)

S.map2(g)((_,_)) is a rather noisy way of combining two generators to

produce a pair of their outputs. Let's quickly introduce a combinator to clean that

up:15

Footnote 15mHints and standalone answers

def **[B](g: Gen[B]): Gen[(A,B)] =
  (this map2 g)((_,_))

Much nicer:

def forAllPar2[A](g: Gen[A])(f: A => Par[Boolean]): Prop =
  forAll(S ** g) { case (s,a) => f(a)(s).get }

We can even introduce  as a pattern , which lets us** using custom extractors

write:

def forAllPar3[A](g: Gen[A])(f: A => Par[Boolean]): Prop =
  forAll(S ** g) { case s ** a => f(a)(s).get }

This syntax works nicely when tupling up multiple generators—when pattern
matching, we don't have to nest parentheses like would be required when using the
tuple pattern directly. To enable  as a pattern, we define an object called ** **

with an  function:unapply

object ** {
  def unapply[A,B](p: (A,B)) = Some(p)
}

See the  documentation for more details.custom extractors
So,  is a  that will vary over fixed sized threadS Gen[ExecutorService]

pools from 1-4 threads, and also consider an unbounded thread pool. And now our

property looks a lot cleaner:16
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Footnote 16mWe cannot use the standard Java/Scala  method, or the  method in Scala (whichequals ==

delegates to the  method), since that method returns a  directly, and we need to return a equals Boolean

. Some infix syntax for  might be nice. See the chapter code for the previous chapterPar[Boolean] equal

on purely functional parallelism for an example of how to do this.

val p2 = checkPar {
  equal (
    Par.map(Par.unit(1))(_ + 1),
    Par.unit(2)
  )
}

These might seem like minor changes, but this sort of factoring and cleanup can
greatly improve the usability of your library, and the helper functions we've written
make the properties easier to read and more pleasant to write. You may want to add
versions of  and  for sized generators as well.forAllPar checkPar

Let's look at some other properties from the previous chapter. Recall that we
generalized our test case:

map(unit(x))(f) == unit(f(x))

We then simplified it to the law:

map(y)(id) == y

Can we express this? Not exactly. This property implicitly states that the
equality holds  choices of , for all types. We are forced to pick particularfor all y

values for :y

val pint = Gen.choose(0,10) map (Par.unit(_))
val p4 =
  forAllPar(pint)(n => equal(Par.map(n)(y => y), n))

We can certainly range over more choices of , but what we have here isy

probably good enough. The implementation of  cannot care about the values ofmap

our parallel computation, so there isn't much point in constructing the same test for 
, , and so on. What   be affected by is the  of theDouble String map can structure

parallel computation. If we wanted greater assurance that our property held, we
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could provide richer generators for the structure. Here, we are only supplying Par

expressions with one level of nesting.
EXERCISE 21 (hard): Writer a richer generator for , which buildsPar[Int]

more deeply nested parallel computations than the simple ones we gave above.
EXERCISE 22: Express the property about  from last chapter, that fork

.fork(x) == x

So far, our library seems quite expressive, but there's one area where it's
lacking: we don't currently have a good way to test higher-order functions. While
we have lots of ways of generating , using our generators, we don't really havedata
a good way of generating .functions

For instance, let's consider the  function defined for  and takeWhile List

. Recall that this function returns the longest prefix of its input whoseStream

elements all satisfy a predicate. For instance, List(1,2,3).takeWhile(_ <

 results in . A simple property we'd like to check is that for any3) List(1,2)

stream, , and any , s: List[A] f: A => Boolean

, that is, every element in the returned streams.takeWhile(f).forall(f)

satisfies the predicate.17

Footnote 17mIn the Scala standard library,  is a method on  and  with the signature forall List Stream

.def forall[A](f: A => Boolean): Boolean

EXERCISE 23: Come up with some other properties that  shouldtakeWhile

satisfy. Can you think of a good property expressing the relationship between 
 and ?takeWhile dropWhile

We could certainly take the approach of only examining  argumentsparticular
when testing HOFs like . For instance, here's a more specific propertytakeWhile

for :takeWhile

val isEven = (i: Int) => i%2 == 0
val takeWhileProp =
  Prop.forAll(Gen.listOf(int))(l => l.takeWhile(isEven).forall(isEven))

This works, but is there a way we could let the testing framework handle

generating functions to use with ?  Let's consider our options. TotakeWhile 18

make this concrete, let's suppose we have a  and would like to produceGen[Int]
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a . What are some ways we could do that? Well, weGen[String => Int]

could produce  functions that simply ignore their input stringString => Int

and delegate to the underlying .Gen[Int]

Footnote 18mRecall that in the previous chapter we introduced the idea of  and discussed howfree theorems
parametricity frees us somewhat from having to inspect the behavior of a function for every possible type argument.
Still, there are many situations where being able to generate functions for testing is useful.

EXERCISE 24: Implement a function to do this conversion.

def genStringIntFn(g: Gen[Int]): Gen[String => Int]

This approach isn't sufficient though. We are simply generating constant
functions that ignore their input. In the case of , where we need atakeWhile

function that returns a , this will be a function that always returns Boolean true

or always returns —clearly not very interesting for testing the behavior offalse

our function.
EXERCISE 25 (hard, optional): We clearly want to generate a function that 

 in some way to select which  to return. Can you think of auses its argument Int

good way of expressing this? This is a very open-ended and challenging design
exercise. See what you can discover about this problem and if there is a nice
general solution that you can incorporate into the library we've developed so far.
This exercise is optional, but you may find it interesting to work on.

EXERCISE 26: You are strongly encouraged to venture out and try using the
library we've developed! See what else you can test with it, and see if you discover
any new idioms for its use or perhaps ways it could be extended further or made
more convenient. Here are a few ideas to get you started:

Try writing properties to specify the behavior of some of the other functions we wrote for
 and , for instance , , , and .List Stream take drop filter unfold

Try writing a sized generator for producing the  data type we defined in chapter 3,Tree

then use this to specify the behavior of the  function we defined for . Can youfold Tree

think of ways to improve the API to make this easier?
Try writing properties to specify the behavior of the  function we defined for sequence

 and .Option Either

141

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Isn't it interesting that many of the functions we've implemented here, for our Gen

type, look quite similar to other functions we've defined on , , ,Par List Stream

and ? As an example, for  we defined:Option Par

def map[A,B](a: Par[A])(f: A => B): Par[B]

And in this chapter we defined  for  (as a method on ):map Gen Gen[A]

def map[B](f: A => B): Gen[B]

And we've defined very similar-looking functions for other data types. We have
to wonder, is it merely that our functions share similar-looking signatures, or do
they satisfy the same  as well? Let's look at a law we introduced for  in thelaws Par

previous chapter:

map(x)(id) == x

EXERCISE 27: Does this law hold for our implementation of ? WhatGen.map

about for , ,  and ?Stream List Option State

Fascinating! Not only do these functions share similar-looking signatures, they
also in some sense have analogous meanings in their respective domains.

EXERCISE 28 (hard, optional): Spend a little while thinking up laws for some
of the functions with similar signatures you've written for , , and List Option

. For each law, see if an analogous law holds for .State Gen

It appears there are deeper forces at work! We are uncovering some rather
fundamental patterns that cut across domains. In part 3, we'll learn the names for
these patterns, discover the laws that govern them, and understand what it all

means.19

Footnote 19mIf curiosity is really getting the better of you, feel free to peek ahead at Part 3.

8.3.5 The laws of generators
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lifting
primitive vs. derived operations
shrinking, test cases
test case minimization
test case minimization

In this chapter, we worked through another extended exercise in functional library
design, using the domain of property-based testing as inspiration. Once again, we
reiterate that our goal was not necessarily to learn about property-based testing per

, but to give a window into the process of functional design. We hope thesese
chapters are giving you ideas about how to approach functional library design in
your own way and preparing you for the sorts of issues and questions you'll
encounter. Developing an understanding of the overall process is much more
important than following absolutely every small design decision we made as we
explored the space of this particular domain.

In the next chapter, we'll look at another domain, , with its own set ofparsing
challenges and design questions. As we'll see, similar patterns will emerge.

Index Terms

8.4 Conclusion
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9
In this chapter, we will work through the design of a combinator library for
creating , using  parsing as a motivating use case. As in the past twoparsers JSON
chapters, we will use this opportunity to provide insight into the process of
functional design and notice common patterns that we'll discuss more in part 3.

This chapter will introduce a design approach called . This isalgebraic design
just a natural evolution of what we've already been doing to different degrees in
past chapters—designing our interface and associated laws first and letting this
guide our choice of data type representations. Here, we take this idea to its logical
limit to see what it buys us.

At a few key points during this chapter, we will be giving more open-ended
exercises, intended to mimic the scenarios you might encounter when designing
and implementing your own libraries from scratch. You'll get the most out of this
chapter if you use these opportunities to put the book down and spend some time
investigating possible approaches. When you design your own libraries, you won't
be handed a nicely chosen sequence of type signatures to fill in with
implementations. You will have to make the decisions about what types and
combinators should even exist and a goal in part 2 of this book has been to prepare
you for doing this on your own. As always, in this chapter, if you get stuck on one
of the exercises or want some more ideas, you can keep reading or consult the
answers.

Parser combinators

9.1 Introduction
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SIDEBAR Parser combinators vs. parser generators
You might be familiar with  libraries like  or similarparser generator Yacc
libraries in other languages (for instance,  in Java). TheseANTLR
libraries  code for a parser based on a specification of thegenerate
grammar. This approach works fine and can be quite efficient, but
comes with all the usual problems of code generation—they produce as
as their output a monolithic chunk of code that is difficult to debug. It's
also quite difficult to reuse fragments of logic since we cannot introduce
new combinators or helper functions to abstract over common patterns
in our parsers.
In a parser combinator library, parsers are ordinary values that can be
created and manipulated in a first-class way within the language.
Reusing parsing logic is trivial (we simply introduce a new combinator),
and we don't have to delegate to any sort of separate external tool.

Recall that we defined an algebra to mean a collection of functions operating over
some data type(s),  specifying relationships between thesealong with a set of laws
functions. In past chapters, we moved rather fluidly between inventing functions in
our algebra, refining the set of functions, and tweaking our data type
representations. Laws were somewhat of an afterthought—we worked out the laws
only after we had a representation and an API fleshed out. There's absolutely

nothing wrong with this style of design , but here we are going to take a different1

approach. We will  with the algebra (including its laws) and decide on astart
representation later. This is an approach we'll call . This approachalgebraic design
can be used for any design problem but works particularly well for parsing,
because it's easy to imagine what combinators are required to be able to parse

different inputs.  Overall, you might find this approach very natural, or you might2

find it extremely disconcerting to do so much work without committing to any
concrete representations. Either way, try to keep an open mind.

Footnote 1mHints and standalone answers

Footnote 2mFull source files

There are a lot of different parsing libraries.  Ours will be designed for3

expressiveness (we'd like to be able to parse arbitrary grammars), speed, and good
error reporting. This last point is important—if there are parse errors, we want to
be able to indicate exactly where the error is and accurately indicate its cause.

9.2 Designing an algebra, first

145

http://en.wikipedia.org/wiki/Yacc
http://www.antlr.org/
http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Error reporting is often somewhat of a second-class citizen in parsing libraries, but
we are going to make sure we give careful thought to it.

Footnote 3mIncluding a parser combinator library in Scala's standard library. As in the previous chapter, we
are deriving our own library from first principles partially for pedagogical purposes, and to further encourage the
idea that no library is authoritative. Scala's parser combinators don't really satisfy our goals of providing speed and
good error reporting (see the chapter notes for some additional discussion).

OK, let's begin. For simplicity and for speed, our library will create parsers that

operate on strings as input.  We need to pick some parsing tasks to help us4

discover a good algebra for our parsers. What should we look at first? Something
practical like parsing an email address, JSON, or HTML? No! These can come
later. For now we are content to focus on a pure, simple domain of parsing various
combinations of repeated letters and jibberish words like  and "abracadabra"

. As silly as this sounds, we've seen before how simple examples like this"abba"

help us ignore extraneous details and focus on the essence of the problem.

Footnote 4mThis is certainly a simplifying design choice. We can make the parsing library more generic, at
some cost. See the chapter notes for more discussion.

So let's start with the simplest of parsers, one that recognizes the single
character input . As we've done in past chapters, we can just  a"a" invent

combinator for the task, :char

def char(c: Char): Parser[Char]

What have we done here? We have conjured up a type, , which isParser

parameterized on a single parameter indicating the  of the . Thatresult type Parser

is, running a parser should not simply yield a yes/no response to the input—if it
succeeds, we want to get back a  of some useful type, and if it fails we expectresult

. The  parser will succeed only if theinformation about the failure char('a')

input is the string  and we have chosen (somewhat arbitrarily) to have it return"a"

that same character  as its result.'a'

This talk of "running a parser" makes it clear our algebra needs to be extended
somehow to support that. Let's invent another function for it:

def run[A](p: Parser[A])(input: String): Either[ParseError,A]

Wait a minute, what is ? It's another type we've just conjuredParseError
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into existence! At this point, we don't care about the representation of 
 or  for that matter. We are in the process of specifying an ParseError Parser

 that happens to make use of two types whose representation orinterface
implementation details we choose to remain ignorant of for now. Let's make this
explicit with a :trait

trait Parsers[ParseError, Parser[_]] {

  def run[A](p: Parser[A])(input: String): Either[ParseError,A]
  def char(c: Char): Parser[Char]
}

A type constructor type argument

What's with the funny  type argument? It's not too important forParser[_]

right now, but that is Scala's syntax for a type parameter that is itself a type

constructor.  Just like making  a type argument lets the 5 ParseError Parsers

interface work for multiple representations of , making ParseError

 a type parameter means the interface works for multipleParser[_]

representations of , which itself can be applied to one type argument.Parser 6

This code will compile as is, without us having to pick a representation for 
 or , and you can continue placing additional combinatorsParseError Parser

in the body of this trait.

Footnote 5mWe will say much more about this in the next chapter. We can indicate that the  typeParser[_]

parameter should be covariant in its argument with the syntax .Parser[+_]

Footnote 6mWe will say much more about this in the next chapter. We can indicate that the  typeParser[_]

parameter should be covariant in its argument with the syntax .Parser[+_]

Let's continue. We can recognize the single character , but what if we want'a'

to recognize the string ? We don't have a way of recognizing"abracadabra"

entire strings right now, so let's add that:

def string(s: String): Parser[String]

What if we want to recognize either the string   the string "abra" or

? We could certainly add a very specialized combinator for it:"cadabra"

def orString(s1: String, s2: String): Parser[String]
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But choosing between two parsers seems like something that would be more
generally useful, regardless of their result type, so let's go ahead and make this
polymorphic:

def or[A](s1: Parser[A], s2: Parser[A]): Parser[A]

Incidentally, we can give this nice infix syntax like  or alternately s1 | s2 s1

, using implicits like we did in chapter 7:or s2

Listing 9.1 Adding infix syntax to parsers

trait Parsers[ParseError, Parser[+_]] {
  ...
  def or[A](s1: Parser[A], s2: Parser[A]): Parser[A]
  implicit def string(s: String): Parser[String]
  implicit def operators[A](p: Parser[A]) = ParserOps[A](p)
  implicit def asStringParser[A](a: A)(implicit f: A => Parser[String]):
    ParserOps[String] = ParserOps(f(a))

  case class ParserOps[A](p: Parser[A]) {
        def |[B>:A](p2: Parser[B]): Parser[B] = self.or(p,p2)
    def or[B>:A](p2: => Parser[B]): Parser[B] = self.or(p,p2)
  }
}

use self to explicitly disambiguate reference to the or method on the trait

We have also made  an implicit conversion and added another implicit string

. With these two functions, Scala will automatically promote aasStringParser

 to a , and we get infix operators for any type,  that can beString Parser A

converted to a . So given a , we can then Parser[String] val P: Parsers

 to let us write expressions like  or import P._ "abra" or "cadabra" "a"

 to create parsers. This will work for  implementations of .| "bbb" all Parsers 7

Other binary operators or methods can be added to the body of . WeParserOps

are going to follow the discipline of keeping the primary definition directly in 
 and delegating in  to this primary definition. See the codeParsers ParserOps

for this chapter for more examples. We'll be using the  syntax liberallya | b

throughout the rest of this chapter to mean .or(a,b)

Footnote 7mSee the appendix  for more discussion of theseScalaz, implicits, and large library organization
issues.
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We can now recognize various strings, but we don't have any way of talking
about repetition. For instance, how would we recognize three repetitions of our 

 parser? Once again, let's add a combinator for it:"abra" | "cadabra" 8

Footnote 8mThis should remind you of a very similar function we wrote in the previous chapter.

def listOfN[A](n: Int, p: Parser[A]): Parser[List[A]]

We made  parametric in the choice of , since it doesn't seem like itlistOfN A

should care whether we have a , a , or someParser[String] Parser[Char]

other type of parser.
At this point, we have just been collecting up required combinators, but we

haven't tried to refine our algebra into a minimal set of primitives, and we haven't
talked about laws at all. We are going to start doing this next, but rather than give
away the "answer", we are going to ask you to examine a few more simple use
cases yourself and try to design a minimal algebra with associated laws. This
should be a challenging exercise, but enjoy struggling with it and see what you can
come up with.

Here are additional parsing tasks to consider, along with some guiding
questions:

A  that recognizes zero or more  characters, and whose result value isParser[Int] 'a'

the number of  characters it has seen. For instance, given , the parser results in ,'a' "aa" 2

given  or  (a string not starting with ), it results in , and so on."" "b123" 'a' 0

A  that recognizes  or more  characters, and whose result value is theParser[Int] one 'a'

number of  characters it has seen. (Is this defined somehow in terms of the same'a'

combinators as the parser for  repeated zero or more times?) The parser should fail'a'

when given a string without a starting . How would you like to handle error reporting'a'

in this case? Could the API support giving an explicit message like "Expected one or
 in the case of failure?more 'a'"

A parser that recognizes zero or more , followed by one or more , and which'a' 'b'

results in the pair of counts of characters seen. For instance, given , we get ,"bbb" (0,3)

given , we get , and so on."aaaab" (4,1)

And additional considerations:

If we are trying to parse a sequence of zero or more  and are only interested in the"a"

number of characters seen, it seems inefficient to have to build up, say, a List[Char]
only to throw it away and extract the length. Could something be done about this?
Are the various forms of repetition primitive in your algebra, or could they be defined in
terms of something simpler?
We introduced a type  earlier, but so far we haven't chosen any functions forParseError

149

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


the API of  and our algebra doesn't have any ways of letting the programmerParseError

control what errors are reported. This seems like a limitation given that we'd like
meaningful error messages from our parsers. Can you do something about it?
Does  mean the same thing as ? This is a choice you get to make. What area | b b | a

the consequences if the answer is yes? What about if the answer is no?
Does  mean the same thing as ? If yes, is this a primitive lawa | (b | c) (a | b) | c

for your algebra, or is it implied by something simpler?
Try to come up with a set of laws to specify your algebra. You don't necessarily need the
laws to be complete, just write down some laws that you expect should hold for any 

 implementation.Parsers

Spend some time coming up with combinators and possible laws based on this
guidance. When you feel stuck or at a good stopping point, then continue reading
to the next section, which walks through a possible design.

SIDEBAR The advantages of algebraic design
When you design the algebra of a library first, representations for the
data types of the algebra don't matter as much. As long as they support
the required laws and functions, you do not even need to make your
representations public. This, as we'll see later, makes it easy for
primitive combinators to use cheap tricks internally that might otherwise
break referential transparency.
There is a powerful idea here, namely, that a type is given meaning
based on its relationship to other types (which are specified by the set

of functions and their laws), rather than its internal representation.  This9

is a viewpoint often associated with category theory, a branch of
mathematics we've mentioned before. See the chapter notes for more
on this connection if you're interested.

Footnote 9mThis sort of viewpoint might also be associated with

object-oriented design, although OO has not traditionally placed much

emphasis on algebraic laws. Furthermore, a big reason for encapsulation in

OO is that objects often have some mutable state and making this public

would allow client code to violate invariants, a concern that is not as relevant

in FP.

We are going to walk through discovering a set of combinators for the parsing
tasks mentioned above. If you worked through this design task yourself, you will
likely have taken a different path and may have ended up with a different set of
combinators, which is absolutely fine.

9.2.1 A possible algebra
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First, let's consider the parser that recognizes zero or more repetitions of the
character , and returns the number of characters it has seen. We can start by'a'

adding a primitive combinator for it, let's call it :many

def many[A](p: Parser[A]): Parser[List[A]]

This isn't quite right, though—we need a  that counts theParser[Int]

number of elements. We could change the  combinator to return a many

, but that feels a little too specific—undoubtedly there will beParser[Int]

occasions where we do care about more than just the list length. Better to introduce
another combinator that should be familiar by now, :map

def map[A,B](a: Parser[A])(f: A => B): Parser[B]

We can now define our parser as .map(many(char('a')))(_.length)

And let's go ahead and add  and  as methods in , so we canmap many ParserOps

write this as: .char('a').many.map(_.length)

We have a strong expectation for the behavior of —it should merelymap

transform the result value if the  was successful. No additional inputParser

characters should be examined by a , a failing parser cannot become amap

successful one via a  and vice versa, and in general, we expect  to be map map

 much like we required for  and . Let's go ahead andstructure preserving Par Gen

formalize this by stipulating the now-familiar law:

map(p)(id) == p

How should we document this law that we've just added? We could put it in a
documentation comment, but in the preceding chapter we developed a way to make
our laws . Let's make use of that library here:executable

def equal[A](p1: Parser[A], p2: Parser[A])(in: Gen[String]): Prop =
  forAll(in)(s => run(p1)(s) == run(p2)(s))

def mapLaw[A](p: Parser[A])(in: Gen[String]): Prop =
  equal(p, p.map(a => a))(in)
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import fpinscala.testing._

trait Parsers {
  ...
  object Laws {
    def equal[A](p1: Parser[A], p2: Parser[A])(in: Gen[String]): Prop =
      forAll(in)(s => run(p1)(s) == run(p2)(s))
   
    def mapLaw[A](p: Parser[A])(in: Gen[String]): Prop =
      equal(p, p.map(a => a))(in)
  }
}

This will come in handy later when we go to test that our implementation of 
 behaves as we expect. As we discuss other laws, you are encouraged toParsers

write them out as actual properties inside the  object.Laws 10

Footnote 10mAgain, see the chapter code for more examples. In the interest of keeping this chapter shorter,
we won't be giving  implementations of all the laws, but that doesn't mean you shouldn't try writingProp

them out yourself!

Incidentally, now that we have , we can actually implement  in termsmap char

of :string

def char(c: Char): Parser[Char] =
  string(c.toString) map (_.charAt(0))

And similarly, there's another combinator, , that can be defined insucceed

terms of  and :string map

def succeed[A](a: A): Parser[A] =
  string("") map (_ => a)

This parser always succeeds with the value , regardless of the input stringa

(since  will always succeed, even if the input is empty). Does thisstring("")

combinator seem familiar to you? We can specify its behavior with a law:

run(succeed(a))(s) == Right(a)
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The combination of  and  certainly lets us express the parsing task ofmany map

counting the number of  characters, but it seems inefficient to be constructing'a'

a  only to discard its values and extract its length. It would be nice ifList[Char]

we could run a  purely to see what portion of the input string it examines.Parser

Let's conjure up a combinator for that purpose:

def slice[A](p: Parser[A]): Parser[String]

We call it  since it returns the portion of the input string examined byslice

the  parser  i f  successful .  As  an  example ,  
 results in run(slice(or('a','b').many))("aaba")

—that is, we ignore the list accumulated by  and simplyRight("aaba") many

return the portion of the input string matched by the parser.
With , our parser can now be written as slice

 (again, assuming we add anchar('a').many.slice.map(_.length)

alias for  to ). The  function here is nowslice ParserOps _.length

referencing the  method on , rather than the  method on length String length

.List

Let's consider the next use case. What if we want to recognize  or more one 'a'

characters? First, we introduce a new combinator for it, :many1

def many1[A](p: Parser[A]): Parser[List[A]]

It feels like  should not have to be primitive, but should be definedmany1

somehow in terms of . Really,  is just   .many many1(p) p followed by many(p)

So it seems we need some way of running one parser, followed by another,
assuming the first is successful. Let's add that:

def product[A,B](p: Parser[A], p2: Parser[B]): Parser[(A,B)]

We can add  and  as methods on , where ** product ParserOps a ** b

and  both delegate to .a product b product(a,b)

EXERCISE 1: Using , implement the now-familiar combinator product map2

SLICING AND NONEMPTY REPETITION
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and then use this to implement  in terms of . (Note that we could havemany1 many

chosen to make  primitive and defined  in terms of  as we'vemap2 product map2

done in the previous chapters)

def map2[A,B,C](p: Parser[A], p2: Parser[B])(f: (A,B) => C): Parser[C]

def map2[A,B,C](p: Parser[A], p2: Parser[B])(
                f: (A,B) => C): Parser[C] =
  map(product(p, p2))(f.tupled)
def many1[A](p: Parser[A]): Parser[List[A]] =
  map2(p, many(p))(_ :: _)

With , we can now implement the parser for zero or more  followedmany1 'a'

by one or more  as:'b'

char('a').many.slice.map(_.length) **
char('b').many1.slice.map(_.length)

EXERCISE 2 (hard): Try coming up with properties to specify the behavior of 
.product

Now that we have , is  really primitive? Let's think about what map2 many

 will do. It tries running ,  another , and another, and so onmany(p) p followed by p

until attempting to parse  fails, at which point the parser returns the empty p List

and combines the results of the successful parses.
EXERCISE 3 (hard): Before continuing, see if you can define  in terms ofmany

, , and .or map2 succeed

EXERCISE 4 (hard, optional): Using  and , implement the map2 succeed

 combinator from earlier.listOfN

Now let's try writing :many

def many[A](p: Parser[A]): Parser[List[A]] =
  map2(p, many(p))(_ :: _) or succeed(List())

This looks pretty, but there's a problem with it. Can you spot what it is? We are
calling  recursively in the second argument to , which is  inmany map2 strict
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evaluating its second argument. Consider a simplified program trace of the
evaluation of  for some parser . We are only showing the expansion ofmany(p) p

the left side of the  here:or

many(p)
map2(p, many(p))(_ :: _)
map2(p, map2(p, many(p))(_ :: _))(_ :: _)
map2(p, map2(p, map2(p, many(p))(_ :: _))(_ :: _))(_ :: _)
...

Because a call to  always evaluates its second argument, our map2 many

function will never terminate! That's no good. Let's go ahead and make product

and  non-strict in their second argument:map2

def product[A,B](p: Parser[A], p2: => Parser[B]): Parser[(A,B)]

def map2[A,B,C](p: Parser[A], p2: => Parser[B])(
                f: (A,B) => C): Parser[C] =
  product(p, p2) map (f.tupled)

EXERCISE 5 (optional): We could also deal with non-strictness with a separate
combinator like we did in chapter 7. Try this here and make the necessary changes
to your existing combinators. What do you think of that approach in this instance?

Now our implementation of  should work fine. Conceptually, many product

feels like it should have been non-strict in its second argument anyway, since if the
first  fails, the second will not even be consulted.Parser

Now that we're considering whether combinators should be non-strict, let's
revisit :or

def or[A](p1: Parser[A], p2: Parser[A]): Parser[A]

We will assume that  is left-biased, meaning it tries running  on the inputor p1

then tries  only if  fails.  In this case, we ought to make it non-strict in itsp2 p1 11

second argument, which may never even be consulted:

Footnote 11mThis is a design choice. You may wish to think about the consequences of having a version of 
 that always runs both  and .or p1 p2
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def or[A](p1: Parser[A], p2: => Parser[A]): Parser[A]

EXERCISE 6: Given this choice of meaning for , is it associative? That is,or

should  equal  for all choices of , , and ?a or (b or c) (a or b) or c a b c

We'll come back to this question when refining the laws for our algebra.

Let's take a step back and look at the primitives we have so far:

string(s): Recognize and return a single String
slice(p): Return the portion of input inspected by  if successfulp

succeed(a): Always succeed with the value a
map(p)(f): Apply the function  to the result of , if successfulf p

product(p1,p2): Sequence two parsers, running , then  and return the pair of theirp1 p2

results if both succeed
or(p1,p2): Choose between two parsers, first attempting , then  if  failsp1 p2 p1

Using these primitives, we can express repetition and nonempty repetition (
,  and ) as well as combinators like  and . Whatmany listOfN many1 char map2

else could we express?
Surprisingly, these primitives are sufficient for parsing  context-freeany

grammar, including JSON! We'll get to writing that JSON parser soon.
These combinators are not without limitations, though. Suppose we want to

parse a single digit, like , followed by   characters (this sort of'4' that many 'a'

problem should feel familiar). Examples of valid input are , , , "0" "1a" "2aa"

, and so on. This is an example of a context-sensitive grammar. It can't"4aaaa"

be expressed with  because our choice of the second parser product depends on

the result of the first (the second parser depends on its context). We want to run the
first parser, then do a  using the number extracted from the first parser'slistOfN

result. Can you see why  cannot express this?product

EXERCISE 7: Before continuing, think of a primitive that makes it possible to
parse this grammar, and revisit your existing primitives as needed.

This progression might feel familiar to you. In past chapters, we encountered
similar expressiveness limitations and dealt with it by introducing a new primitive, 

. Let's introduce that here (and we'll add an alias to  so weflatMap ParserOps

can writer parsers using -comprehensions):for

def flatMap[A,B](p: Parser[A])(f: A => Parser[B]): Parser[B]

9.2.2 Handling context-sensitivity

156

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Can you see how this signature implies an ability to sequence parsers?
EXERCISE 8: Using  and any other combinators, write theflatMap

context-sensitive parser we could not express above. To parse the digits, you can
make use of a new primitive, , which promotes a regular expression to a regex

:  In Scala, given a string, , it can be promoted to a  objectParser 12 s Regex

(which has methods for performing matching) using , for instance: s.r

"[a-zA-Z_][a-zA-Z0-9_]*".r

Footnote 12mIn theory this isn't necessary, we could write out  to recognize a"0" | "1" | ... "9"

single digit, but this isn't likely to be very efficient.

implicit def regex(r: Regex): Parser[String]

EXERCISE 9: Implement  and  in terms of .product map2 flatMap

EXERCISE 10:  is no longer primitive. Express it in terms of map flatMap

and/or other combinators.
So it appears we have a new primitive, , which enablesflatMap

context-sensitive parsing and lets us implement  and . This is not the firstmap map2

time  has made an appearance, but up until now we have not really triedflatMap

to pin down any laws for it. We'll be working through that in this chapter in a later
section.

So far we have not discussed error reporting at all. We've been focused exclusively
on discovering a set of primitives that let us express parsers for different grammars.
But besides just being able to parse a grammar, we want to be able to determine
how the parser should respond when given unexpected input.

Even without knowing what an implementation of  will look like, weParsers

can reason very abstractly about  by a set ofwhat information is being specified
combinators. None of the combinators we have introduced so far say anything
about  should be reported in the event of failure or what otherwhat error message
information a  should contain. Our existing combinators onlyParseError

specify what the grammar is and what to do with the result if successful. If we
were to declare ourselves done and move to implementation at this point, we
would have to make some arbitrary decisions about error reporting and error
messages that are unlikely to be universally appropriate.

9.2.3 Error reporting
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EXERCISE 11 (hard): If you have not already done so, spend some time
discovering a nice set of combinators for expressing what errors get reported by a 

. For each combinator, try to come up with laws specifying what itsParser

behavior should be. This is a very open-ended design task. Here are some guiding
questions:

Given the parser , what"abra" ** " ".many ** "cadabra"

sort of error would you like to report given the input "abra cAdabra"

(note the capital )? Only something like ? Or 'A' Expected 'a'

? What if we wanted to choose a different errorExpected "cadabra"

message like ?"Expected The Magic Word (TM)"

Given , if  fails on the input, do we  want to run , ora or b a always b

are the cases where we might not want to? If there are cases, can you think
of additional combinators that would allow the programmer to specify when 

 should consider the second parser?or

Given , if  and  both fail on the input, might we want toa or b a b

support reporting both errors? And do we  want to report both errors,always
or do we want to give the programmer a way to specify which of the two
errors are reported?

How do you want to handle reporting the  of errors?location

Once you are satisfied with your design, you can continue reading. The next
section works through a possible design in detail.

SIDEBAR Combinators specify information
In a typical library design scenario, where one has a concrete
representation at least in mind, we often think of functions in terms of
how they will affect this representation. By starting with the algebra first,
we are forced to think differently—we must think of functions in terms of

 to a possible implementation. Thewhat information they specify
signatures specify what information is given to the implementation, and
the implementation is free to use this information however it wants as
long as it respects the specified laws.
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Now that you've spent some time coming up with some good error reporting
combinators, we are now going to work through one possible design. Again, you
may have arrived at a different design, which is absolutely fine. This is just another
opportunity to see a worked design process.

We are going to progressively introduce our error reporting combinators. To
start, let's introduce an obvious one. None of the primitives so far let us assign an
error message to a parser. We can introduce a primitive combinator for this, 

:label

def label[A](msg: String)(p: Parser[A]): Parser[A]

The intended meaning of  is that if  fails, its  willlabel p ParseError

"somehow incorporate" . What does this mean exactly? Well, we could justmsg

assume  and that the returned type ParseError = String ParseError

will  the label. The problem with this is that we'd like our parse error to alsoequal
tell us  the problem occurred. Let's tentatively add this to our algebra:where

case class Location(input: String, offset: Int = 0) {
  lazy val line = input.slice(0,offset+1).count(_ == '\n') + 1
  lazy val col = input.slice(0,offset+1).reverse.indexOf('\n')
}

def errorLocation(e: ParseError): Location
def errorMessage(e: ParseError): String

We've picked a concrete representation for  here that includes theLocation

full input, an offset into this input, and the line and column numbers (which can be
computed, lazily, derived from the full input and offset). We can now say more
precisely what we expect from —in the event of failure with , label Left(e)

 will equal the message set by . This can be specifiederrorMessage(e) label

with a  if we like:Prop

def labelLaw[A](p: Parser[A], inputs: SGen[String]): Prop =
  forAll(inputs ** Gen.string) { case (input, msg) =>   
    run(label(msg)(p))(input) match {
      case Left(e) => errorMessage(e) == msg

A POSSIBLE DESIGN
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      case _ => true
    }
  }

What about the ? We would like for this to be filled in by the Location

 implementation with the location where the error occurred. This notionParsers

is still a bit fuzzy—if we have  and both parsers fail on the input, whicha or b

location is reported, and which label(s)? We will discuss this in the next section.

Is the  combinator sufficient for all our error reporting needs? Not quite.label

Let's look at an example:

val p = label("first magic word")("abra") **
        " ".many **
        label("second magic word")("cadabra")

Skip whitespace

What sort of  would we like to get back from ParseError run(p)("abra

? (Note the capital  in ) The immediate cause is thatcAdabra") A cAdabra

capital  instead of the expected lowercase . That error will have a location,'A' 'a'

and it might be nice to report it somehow. But reporting  that low-level erroronly
would not be very informative, especially if this were part of a large grammar and
the parser were being run on a larger input. We have some more context that would
be useful to know—the immediate error occurred while in the  labeled Parser

. This is certainly helpful information. Ideally, we"second magic word"

could be told that while parsing , we encountered an"second magic word"

error due to an unexpected capital , which pinpoints the error and gives us the'A'

context needed to understand it. And we can imagine that perhaps the top-level
parser (  in this case) might be able to provide an even higher-level description ofp

what the parser was doing when it failed ( , say),"parsing magic spell"

which could also be informative.
So, it seems wrong to assume that one level of error reporting will always be

sufficient. Let's therefore provide a way to  labels:nest

def scope[A](msg: String)(p: Parser[A]): Parser[A]

ERROR NESTING
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Unlike ,  does not throw away the label(s) attached to —itlabel scope p

merely adds additional information in the event that  fails. Let's specify what thisp

means exactly. First, we modify the functions that pull information out of a 
. Rather than containing just a single  and ParseError Location String

message, we should get a :List[(Location,String)]

def errorStack(e: ParseError): List[(Location,String)]

This is a stack of error messages indicating what the  was doing whenParser

it failed. We can now specify what  does—if  is ,scope run(p)(s) Left(e)

then  is , where  willrun(scope(msg)(p)) Left(e2) errorStack(e2)

have at the top of the stack the message , followed by any messages added by msg

 itself.p

We can take this one step further. A stack does not fully capture what the parser
was doing at the time it failed. Consider the parser scope("abc")(a or b

. If , , and  all fail, which error goes at the top of the stack? We couldor c) a b c

adopt some global convention, like always reporting the last parser's error (in this
case ) or perhaps reporting whichever parser examined more of the input, but itc

might be nice to allow the implementation to return all the errors if it chooses:

case class ParseError(stack: List[(Location,String)] = List(),
                      otherFailures: List[ParseError] = List())

This is a somewhat unusual data structure—we have , the current stack,stack

but also a list of other failures ( ) that occurred previously in aotherFailures

chain of  combinators.  This is potentially a lot of information, capturing notor 13

only the current path in the grammar, but also all the previous failing paths. We
can write helper functions later to make constructing and manipulating 

 values more convenient and to deal with formatting them nicely forParseError

human consumption. For now, our concern is just making sure it contains all the
potentially relevant information for error reporting, and it seems like 

 will be more than sufficient. Let's go ahead and pick this as ourParseError

concrete representation. We can remove the type parameter from :Parsers
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Footnote 13mWe could also represent  as a trie in which shared prefixes of the error stack areParseError

not duplicated, at a cost of having more expensive inserts. It is easier to recover this sharing information during
formatting of errors, which happens only once.

trait Parsers[Parser[+_]] {
  def run[A](p: Parser[A])(input: String): Either[ParseError,A]
  ...
}

Now we are giving the  implementation all the information it needsParsers

to construct nice, hierarchical errors if it chooses. As a user of , we willParsers

judiciously sprinkle our grammar with  and  calls which the label scope

 implementation can use when constructing parse errors. Note that itParsers

would be perfectly reasonable for implementations of  to not use the fullParsers

power of  and retain only basic information about the cause andParseError

location of errors.14

Footnote 14mWe may want to explicitly acknowledge this by relaxing the laws specified for Parsers

implementations, or making certain laws optional.

There is one last concern regarding error reporting that we need to address. As we
just discussed, when we have an error that occurs inside an  combinator, weor

need some way of determining which error(s) to report. We don't want to  haveonly
a global convention for this, we sometimes want to allow the programmer to
control this choice. Let's look at a more concrete motivating example:

val spaces = " ".many
val p1 = scope("magic spell") {
  "abra" ** spaces ** "cadabra"
}
val p2 = scope("jibberish") {
  "abba" ** spaces ** "babba"
}
val p = p1 or p2

What  would we like to get back from ParseError run(p)("abra

? (Again, note the capital  in .) Both branches of the cAdabra") A cAdabra or

will produce errors on the input. The -labeled parser will report an"jibberish"

error due to expecting the first word to be , and the "abba" "magic spell"

CONTROLLING BRANCHING AND BACKTRACKING
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parser will report an error due to the accidental capitalization in ."cAdabra"

Which of these errors do we want to report back to the user?
In this instance, we happen to want the  parse error—after"magic spell"

successfully parsing the  word, we are  to the "abra" committed "magic

 branch of the , which means if we encounter a parse error we do notspell" or

examine the next branch of the . In other instances, we may want to allow theor

parser to consider the next branch of the .or

So, it appears we need a primitive for letting the programmer indicate when to
commit to a particular parsing branch. Recall that we loosely assigned p1 or p2

to mean try running p1 on the input, then try running p2 on the same input if p1
. We can change its meaning to: fails try running p1 on the input, and if it fails in

an uncommitted state, try running p2 on the same input, otherwise report the
. This is useful for more than just providing good error messages—it alsofailure

improves efficiency by letting the implementation avoid lots of possible parsing
branches.

One common solution to this problem is to have all parsers  ifcommit by default

they examine at least one character to produce a result.  We then introduce a15

combinator, , which delays committing to a parse:attempt

Footnote 15mThough see the chapter notes for more discussion of this.

def attempt[A](p: Parser[A]): Parser[A]

It should satisfy something like:16

Footnote 16mThis is not quite an equality. Even though we want to run  if the attempted parser fails, wep2

may want  to somehow incorporate the errors from both branches if it fails.p2

attempt(p flatMap (_ => fail)) or p2 == p2

Where  is a parser that always fails (we could introduce this as a primitivefail

combinator if we like). That is, even if  fails midway through examining thep

input,  reverts the commit to that parse and allows  to be run. The attempt p2

 combinator can be used whenever there is ambiguity in the grammarattempt

and multiple tokens may have to be examined before the ambiguity can be resolved
and parsing can commit to a single branch. As an example, we might write:
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(attempt("abra" ** spaces ** "abra") ** "cadabra") or (
 "abra" ** spaces "cadabra!")

Suppose this parser is run on —after parsing the first "abra cadabra!"

, we don't know whether to expect another  (the first branch) or "abra" "abra"

 (the second branch). By wrapping an  around "cadabra!" attempt "abra"

, we allow the second branch to be considered up until** spaces ** "abra"

we have finished parsing the second , at which point we commit to that"abra"

branch.
EXERCISE 12: Can you think of any other primitives that might be useful for

letting the programmer specify what error(s) in an  chain get reported?or

Note that we still haven't written an implementation of our algebra! But this
exercise has been more about making sure our combinators provide a way for users
of our library to convey the right information to the implementation. It is up to the
implementation to figure out how to use this information in a way that satisfies the
laws we've stipulated.

Let's write that JSON parser now, shall we? We don't have an implementation of
our algebra yet, but that doesn't actually matter! Our JSON parser doesn't need to
know the internal details of how parsers are represented. It will be constructing a
parser purely using the set of primitives we've defined and any derived
combinators. Of course, we will not actually be able to run our parser until we have
a concrete implementation of the  interface.Parsers

Recall that we have built up the following set of primitives:

string(s): Recognizes and returns a single String
slice(p): Returns the portion of input inspected by  if successfulp

succeed(a): Always succeed with the value a
label(e)(p): In the event of failure, replace the assigned message with e
scope(e)(p): In the event of failure, add  to the error stack returned by e p

seq(p)(f): Run a parser, then use its result to select a second parser to run in sequence
attempt(p): Delays committing to  until after it succeedsp

or(p1,p2): Chooses between two parsers, first attempting , then  if  fails in anp1 p2 p1

uncommitted state on the input

We've used these primitives to define a number of combinators like , map map2

, , , and .flatMap many many1

Again, we will be asking  to drive the process of writing this parser. After ayou

9.3 Writing a JSON parser
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brief introduction to JSON and the data type we'll use for the parse result, it's up to
you to go off on your own to write the parser.

If you aren't already familiar with the JSON format, you may want to read the 
 and the . Here's an exampleWikipedia page description grammar specification

JSON document:

{
  "Company name" : "Microsoft Corporation",
  "Ticker"  : "MSFT",
  "Active"  : true,
  "Price"   : 30.66,
  "Shares outstanding" : 8.38e9,
  "Related companies" :
    [ "HPQ", "IBM", "YHOO", "DELL", "GOOG" ]
}

A  in JSON can be one of several types. An  in JSON is a value object {}

-wrapped, comma separated sequence of key-value pairs. The keys must be strings
like  or , and the values can be either another object, an "Ticker" "Price"

 like  which contains further values, or a array ["HPQ", "IBM" ... ] literal

like , , , or ."MSFT" true null 30.66

We are going to write a rather dumb parser that simply parses a syntax tree

from the document without doing any further processing.  We'll need a17

representation for a parsed JSON document. Let's introduce a data type for this:

Footnote 17mSee the chapter notes for discussion of alternate approaches.

trait JSON
object JSON {
  case object JNull extends JSON
  case class JNumber(get: Double) extends JSON
  case class JString(get: String) extends JSON
  case class JBool(get: Boolean) extends JSON
  case class JArray(get: IndexedSeq[JSON]) extends JSON
  case class JObject(get: Map[String, JSON]) extends JSON
}

The task is two write a . We want this to work for whateverParser[JSON]

the chosen  implementation. To allow this, we can place theParsers

implementation in a regular function that takes a  value as its argument:Parsers

9.3.1 The JSON format
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18

Footnote 18mUnfortunately, we have to mention the covariance of the  type constructor again, ratherParser

than inferring the variance from the definition of .Parsers

def jsonParser[Parser[+_]](P: Parsers[Parser]): Parser[JSON] = {
  import P._
  val spaces = char(' ').many.slice
  ...
}

gives access to all the combinators

EXERCISE 13 (hard): At this point,  are going to take over the process.you
You will be creating a  from scratch using the primitives we haveParser[JSON]

defined. You don't need to worry (yet) about the representation of . AsParser

you go, you will undoubtedly discover additional combinators and idioms, notice
and factor out common patterns, and so on. Use the skills and knowledge you've
been developing throughout this book, and have fun! If you get stuck, you can
always consult the answers.

Here is some minimal guidance:

Any general purpose combinators you discover can be added to the  Parsers trait

directly.
You will probably want to introduce combinators that make it easier to parse the tokens
of the JSON format (like string literals and numbers). For this you could use the regex
primitive we introduced earlier. You could also add a few primitives like , , letter digit

, and so on, for building up your token parsers.whitespace

Consult the hints if you'd like a bit more guidance.
EXERCISE 14 (hard): You are now (hopefully) finished with your 

. Aren't you curious to try testing it? Now it's finally time toParser[JSON]

come up with a representation for  and implement the  interfaceParser Parsers

using this representation. This is a very open-ended design task, but the algebra we
have designed places very strong constraints on possible representations. You
should be able to come up with a simple, purely functional representation of 

 that can be used to implement the  interface.Parser Parsers 19

Footnote 19mNote that if you try running your JSON parser once you have an implementation of ,Parsers

you may get a stack overflow error. See the end of the next section for a discussion of this.

Your code will likely look something like this:
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class MyParser[+A](...) { ... }

object MyParsers extends Parsers[MyParser] {
  // implementations of primitives go here
}

Replace  with whatever data type you use for representing yourMyParser

parsers. When you have something you are satisfied with, get stuck, or want some
more ideas, keep reading.

In the next section, we will work through an implementation of our Parsers

interface. Here, we are going to spend some time refining the laws for just two of
our combinators,  and . We've introduced these combinatorsflatMap succeed

several times before (though  was previously called ), for differentsucceed unit

data types. This is more than a coincidence: besides having similar type signatures,
these combinators give rise to laws that are , somethingubiquitous in programming
we will explore further in part 3 of this book when abstracting over the combinator
libraries we have written. This section can be safely skipped but we are hoping to
pique your curiosity a bit more in preparation for part 3. Don't worry if you don't
follow everything here or it feels very abstract—we will be discussing this much
more extensively in part 3.

Earlier, as an exercise, we asked the question: is  associative? That is, do weor

expect that  is equal to ? As designers of the(a or b) or c a or (b or c)

API, we get to choose whatever laws we wish—let's choose to make the answer 
. Associativity is a nice property to expect of operations in an algebra. If  isyes or

associative, it means we do not need to have knowledge of a parser's context (what
parser it is grouped with) to understand its behavior.

The associativity of  makes us wonder: is there a kind of associativity lawor

for ? Yes, there is. The formulation is usually not given directly in termsflatMap

of . The problem with  is the "shape" of the two sides isflatMap flatMap

different:

def flatMap[A,B](p: Parser[A])(f: A => Parser[B]): Parser[B]

On the left side we have a , but on the right side we have aParser[A]

function. The expression  would not even beflatMap(a,flatMap(b,c))

9.4 Refining the laws
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well-typed. However, there is a combinator, let's call it , that is equivalent inseq

expressiveness to , which has a function on  sides:flatMap both

def seq[U,A,B](f: U => Parser[A])(g: A => Parser[B]): U => Parser[B]

This might seem like a rather odd-looking combinator, but it can be used to

express , if we substitute  in for :flatMap Unit U 20

Footnote 20mRecall that the type  has just a single value, written . That is, .Unit () val u: Unit = ()

def flatMap[A,B](p: Parser[A])(f: A => Parser[B]): Parser[B] =
  seq((u: Unit) => p)(f)(())

The key insight here was that  could be converted to Unit => Parser[A]

 and vice versa.Parser[A]

EXERCISE 15: To complete the demonstration that  and  areseq flatMap

equivalent in expressiveness, define  in terms of .seq flatMap

Now that we have an operation with the same shape on both sides, we can ask
whether it should be associative as well. That is, do we expect the following:

seq(seq(f, g), h) == seq(f, seq(g, h))

EXERCISE 16 (hard): That answer is again, , but can you see why? Thinkyes
about this law and write down an explanation in your own words of why it should
hold, and what it means for a . We will discuss this more in chapter 11.Parser

EXERCISE 17 (hard): Come up with a law to specify the relationship between 
 and .seq succeed

EXERCISE 18: The  and  laws specified are quite common andseq succeed

arise in many different guises. Choose a data type, such as  or .Option List

Define functions analogous to  and  for this type and show that theseq succeed

implementations satisfy the same laws. We will discuss this connection further in
chapter 11.

EXERCISE 19 (hard, optional): We can define a function, , analogous to kor

 but using  to combine the results of the two functions:seq or

def kor[A,B](f: A => Parser[B], g: A => Parser[B]): A => Parser[B] =
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  a => f(a) or g(a)

Can you think of any laws to specify the relationship between  and ?seq kor

We are now going to discuss an implementation of . Our parsing algebraParsers

supports a lot of features. Rather than jumping right to the final representation of 
, we will build it up gradually by inspecting the primitives of the algebraParser

and reasoning about the information that will be required to support each one.
Let's begin with the  combinator:string

def string(s: String): Parser[A]

We know we need to support the function :run

def run[A](p: Parser[A])(input: String): Either[ParseError,A]

As a first guess, we can assume that our   simply the implementationParser is

of the  function:run

type Parser[+A] = String => Either[ParseError,A]

We could certainly use this to implement :string

def string(s: String): Parser[A] =
  (input: String) =>
    if (input.startsWith(s))
      Right(s)
    else
      Left(Location(input).toError("Expected: " + s))

The  branch has to build up a , which are a littleelse ParseError

inconvenient to construct right now, so we've introduced a helper function on 
 for it, :Location toError

def toError(msg: String): ParseError =
  ParseError(List((this, msg)))

9.5 Implementing the algebra
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So far so good. We have a representation for  that at least supports Parser

. Let's move on to sequencing of parsers. Unfortunately, to represent astring

parser like , our existing representation is not going to"abra" ** "cadabra"

be sufficient. If the parse of  is successful, then we want to consider those"abra"

characters  and run the  parser on the remaining characters.consumed "cadabra"

So in order to support sequencing, we require a way of letting a  indicateParser

how many characters it consumed. Let's try capturing this:21

Footnote 21mRecall that  contains the full input string and an offset into this string.Location

type Parser[+A] = Location => Result[A]

trait Result[+A]
case class Success[+A](get: A, charsConsumed: Int) extends Result[A]
case class Failure(get: ParseError) extends Result[Nothing]

We introduced a new type here, , rather than just using . InResult Either

the event of success, we return a value of type  as well as the number ofA

characters of input consumed, which can be used by the caller to update the 

 state. . This type is starting to get at the essence of what a Location 22 Parser

is—it is a kind of state action that can fail, similar to what we built in chapter 6.23

It receives an input state, and if successful returns a value as well enough
information to control how the state should be updated.

Footnote 22mNote that returning an  would give  the ability to set the ,(A,Location) Parser input

which is granting it too much power.

Footnote 23mThe precise relationship between these two types will be further explored in part 3 when we
discuss what are called .monad transformers

This understanding gives us a way of framing how to build a fleshed out
representation supporting all the fancy combinators and laws we have stipulated.
We simply consider what each primitive requires that we track in our state type
(just a  may not be sufficient), and work through the details of howLocation

each combinator transforms this state.
Let's again recall our set of primitives:

string(s): Recognizes and returns a single String
slice(p): Returns the portion of input inspected by  if successfulp

label(e)(p): In the event of failure, replace the assigned message with e
scope(e)(p): In the event of failure, add  to the error stack returned by e p
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flatMap(p)(f): Run a parser, then use its result to select a second parser to run in
sequence
attempt(p): Delays committing to  until after it succeedsp

or(p1,p2): Chooses between two parsers, first attempting , then  if  fails in anp1 p2 p1

uncommitted state on the input

EXERCISE 20: Implement , , , and  forstring succeed slice flatMap

this initial representation of . Notice that  is a bit less efficient thanParser slice

it could be, since it must still construct a value only to discard it. We will return to
this later.

Let's look at  next. In the event of failure, we want to push a newscope

message onto the  stack. Let's introduce a helper function for this onParseError

, we'll call it :ParseError push 24

Footnote 24mThe  method comes for free with a . It returns an updated copy of the objectcopy case class

with one or more arguments replaced, using the usual default argument mechanism in Scala. If no new value is
specified for a field, it will have the same value as in the original object.

def push(loc: Location, msg: String): ParseError =
  copy(stack = (loc,msg) :: stack)

With this we can implement :scope

def scope[A](msg: String)(p: Parser[A]): Parser[A] =
  s => p(s).mapError(_.push(s.loc,msg))

The function  is defined on —it just applies a function tomapError Result

the failing case:

def mapError(f: ParseError => ParseError): Result[A] = this match {
  case Failure(e,c) => Failure(f(e),c)
  case _ => this
}

Because we push onto the stack after the inner parser has returned, the bottom
of the stack will have more detailed messages that occurred later in parsing.
(Consider the  that will result if ParseError scope(msg1)(a **

 fails while parsing .)scope(msg2)(b)) b

And we can implement  similarly. In the event of failure, we want tolabel
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replace the failure message. We can write this again using :mapError

def label[A](msg: String)(p: Parser[A]): Parser[A] =
  s => p(s).mapError(_.label(msg))

We added a helper function to , also called . We willParseError label

make a design decision that  trims the error stack, cutting off more detailedlabel

messages from inner scopes, using only the most recent location from the bottom
of the stack:

def label[A](s: String): ParseError =
  ParseError(latestLoc.map((_,s)).toList,
             otherFailures map (_.label(s)))

def latest: Option[(Location,String)] =
  stack.lastOption

def latestLoc: Option[Location] =
  latest map (_._1)

The  combinator can be used to implement , which pruneslatest furthest

a  to the error that occurred after consuming the most characters.ParseError

We can use this to implement the  combinator for parsers:furthest

def furthest: ParseError =
  copy(otherFailures = List()) ::
  otherFailures maxBy (_.latest.map(_._1.offset))

def furthest[A](p: Parser[A]): Parser[A] =
  s => p(s).mapError(_.furthest)

EXERCISE 21: Revise your implementation of  and  tostring flatMap

work with the new representation of .Parser

Let's now consider  and . Recall what we specified for theor attempt

expected behavior of : it should run the first parser, and if it fails or in an

, it should run the second parser on the same input. We said thatuncommitted state
consuming at least one character should result in a committed parse, and that 

 converts committed failures of  to uncommitted failures.attempt(p) p

172

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


We can support the behavior we want by adding one more piece of information
to the  case of —a  value indicating whether theFailure Result Boolean

parser failed in a committed state:

case class Failure(get: ParseError,
                   isAttempted: Boolean) extends Result[Nothing]

The implementation of  just 'uncommits' any failures that occur. Itattempt

uses a helper function, , which we can define on :uncommit Result

def attempt[A](p: Parser[A]): Parser[A] =
  s => p(s).uncommit

def uncommit: Result[A] = this match {
  case Failure(e,true) => Failure(e,false)
  case _ => this
}

And the implementation of  simply checks the  flag beforeor isCommitted

running the second parser—if the first parser fails in a committed state, then we
skip running the second parser. Again we first introduce a helper function on 

 to accumulate a failure into the  list:ParseError otherFailures

def addFailure(e: ParseError): ParseError =
  this.copy(otherFailures = e :: this.otherFailures)

def or[A](p: Parser[A], p2: => Parser[A]): Parser[A] =
  s => p(s) match {
    case r@Failure(e,committed) if committed =>
      p2(s).mapError(_.addFailure(e))
    case r => r
  }

committed failure or success skips running p2

What about ? The implementation is simple, we just advance theflatMap

location before calling the second parser. Again we use a helper function, 
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, on . There is one subtlety—if the first parser consumesadvanceBy Location

any characters, we ensure that the second parser is committed, using a helper
function,  on :addCommit ParseError

def flatMap[A,B](f: Parser[A])(g: A => Parser[B]): Parser[B] =
  s => f(s) match {
    case Success(a,n) => g(a)(s.advanceBy(n)).addCommit(n == 0)
    case f@Failure(_,_) => f
  }

advanceBy has the obvious implementation:

def advanceBy(n: Int): Location =
  copy(offset = offset+n)

Likewise, , defined on , is straightforward:addCommit ParseError

def addCommit(isCommitted: Boolean): Result[A] = this match {
  case Failure(e,false) if isCommitted => Failure(e, true)
  case _ => this
}

EXERCISE 22: Implement the rest of the primitives, including  using thisrun

representation of  and try running your JSON parser on various inputs.Parser 25

Footnote 25mYou will find, unfortunately, that it stack overflows for large inputs (for instance, 
). One simple solution to this is to provide a specialized implementation of  that[1,2,3,...10000] many

avoids using a stack frame for each element of the list being built up. So long as any combinators that do repetition
are defined in terms of  (which they all can be), this solves the problem. See the answers for discussionmany

of more general approaches.

EXERCISE 23: Come up with a nice way of formatting a  forParseError

human consumption. There are a lot of choices to make, but a key insight is that we
typically want to combine or group labels attached to the same location when
presenting the error as a  for display.String

EXERCISE 24 (hard, optional): The  combinator is still less efficientslice

than it could be. For instance,  will still build up a many(char('a')).slice

 only to discard it. Can you think of a way of modifying the List[Char]

 representation to make slicing more efficient?Parser
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algebra
algebraic design
backtracking
combinator parsing
commit
laws
parser combinators

In this chapter, we introduced an approach to writing combinator libraries called
algebraic design, and used it to design a parser combinator library and implement a
JSON parser. Along the way, we discovered a number of very similar combinators
to previous chapters, which again were related by familiar laws. In part 3, we will
finally understand the nature of the connection between these libraries and learn
how to abstract over their common structure.

This is the final chapter in part 2. We hope you have come away from these
chapters with a basic sense for how functional design can proceed, and more
importantly, we hope these chapters have motivated you to try your hand at 

, for whatever domains interest .designing your own functional libraries you
Functional design is not something reserved only for FP experts—it should be part
of the day-to-day work done by functional programmers at all experience levels.
Before starting on part 3, we encourage you to venture beyond this book and try
writing some more functional code and designing some of your own libraries.
Have fun, enjoy struggling with design problems that come up, and see what you
discover. Next we will begin to explore the universe of patterns and abstractions
which the chapters so far have only hinted at.

Index Terms

9.6 Conclusion
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10
By the end of Part 2, we were getting comfortable with considering data types in
terms of their —that is, the operations they support and the laws thatalgebras
govern those operations. Hopefully you will have noticed that the algebras of very
different data types tend to follow certain patterns that they have in common. In
this chapter, we are going to begin identifying these patterns and taking advantage
of them. We will consider algebras in the abstract, by writing code that doesn't just
operate on one data type or another but on  data types that share a commonall
algebra.

The first such abstraction that we will introduce is the . We choose tomonoid1

start with monoids because they are very simple and because they are ubiquitous.
Monoids come up all the time in everyday programming, whether we're aware of
them or not. Whenever you are working with a list or concatenating strings or
accumulating the result of a loop, you are almost certainly using a monoid.

Footnote 1mThe name "monoid" comes from mathematics. The prefix "mon-" means "one", and in category
theory a monoid is a category with one object. See the chapter notes for more information.

Let's consider the algebra of string concatenation. We can add "foo" + "bar"

to get , and the empty string is an  for that operation."foobar" identity element

That is, if we say  or , the result is always . Furthermore,(s + "") ("" + s) s

if we combine three strings by saying , the operation is (r + s + t) associative

—it doesn't matter whether we parenthesize it  or ((r + s) + t) (r + (s +

.t))

The exact same rules govern integer addition. It's associative and it has an
identity element, , which "does nothing" when added to another integer. Ditto for0

Monoids

10.1 What is a monoid?
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multiplication, whose identity element is .1

The Boolean operators,  and  are likewise associative, and they have&& ||

identity elements  and , respectively.true false

These are just a few simple examples, but algebras like this are virtually
everywhere. The term for this kind of algebra is . The laws of"monoid"
associativity and identity are collectively called the . A monoidmonoid laws
consists of:

Some type A
A binary associative operation that takes two values of type  and combines them intoA

one.
A value of type  that is an identity for that operation.A

We can express this with a Scala trait:

trait Monoid[A] {
  def op(a1: A, a2: A): A
  def zero: A
}

An example instance of this trait is the  monoid:String

val stringMonoid = new Monoid[String] {
  def op(a1: String, a2: String) = a1 + a2
  def zero = ""
}

List concatenation also forms a monoid:

def listMonoid[A] = new Monoid[List[A]] {
  def op(a1: List[A], a2: List[A]) = a1 ++ a2
  def zero = Nil
}

EXERCISE 1: Give  instances for integer addition and multiplicationMonoid

as well as the Boolean operators.

val intAddition: Monoid[Int]
val intMultiplication: Monoid[Int]
val booleanOr: Monoid[Boolean]
val booleanAnd: Monoid[Boolean]
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EXERCISE 2: Give a  instance for combining s:Monoid Option

def optionMonoid[A]: Monoid[Option[A]]

EXERCISE 3: A function having the same argument and return type is called

an . Write a monoid for endofunctions:endofunction2

def EndoMonoid[A]: Monoid[A => A]

Footnote 2mThe Greek prefix "endo-" means "within", in the sense that an endofunction's codomain is within
its domain.

EXERCISE 4: Use the property-based testing framework we developed in Part
2 to implement a property for the monoid laws. Use your property to test the
monoids we have written.

val monoidLaws[A](m: Monoid[A]): Prop

SIDEBAR Having vs. being a monoid
There is a slight terminology mismatch between programmers and
mathematicians, when they talk about a type  a monoid as againstbeing

 a monoid instance. As a programmer, it's natural to think of thehaving
instance of type  as being . But that is notMonoid[A] a monoid
accurate terminology. The monoid is actually both things—the type
together with the instance. When we say that a method accepts a value
of type , we don't say that it takes a monoid, but that itMonoid[A]

takes  that the type  is a monoid.evidence A

Just what  a monoid, then? It is simply an implementation of an interfaceis
governed by some laws. Stated tersely, a monoid is a type together with an

.associative binary operation ( ) which has an identity element ( )op zero

What does this buy us? Can we write any interesting programs over  dataany
type, knowing nothing about that type other than that it's a monoid? Absolutely!
Let's look at an example.
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Monoids have an intimate connection with lists. If you look at the signatures for 
 and  on , you might notice something about thefoldLeft foldRight List

argument types.

def foldRight[B](z: B)(f: (A, B) => B): B
def foldLeft[B](z: B)(f: (B, A) => B): B

What happens when  and  are the same type?A B

def foldRight(z: A)(f: (A, A) => A): A
def foldLeft(z: A)(f: (A, A) => A): A

The components of a monoid fit these argument types like a glove. So if we had
a list of s, we could simply pass the  and  of the String op zero

 in order to reduce the list with the monoid.stringMonoid

scala> val words = List("Hic", "Est", "Index")
words: List[String] = List(Hic, Est, Index)

scala> val s = words.foldRight(stringMonoid.zero)(stringMonoid.op)
s: String = "HicEstIndex"

scala> val t = words.foldLeft(stringMonoid.zero)(stringMonoid.op)
t: String = "HicEstIndex"

Notice that it doesn't matter if we choose  or  whenfoldLeft foldRight

folding with a monoid —we should get the same result. This is precisely because3

the laws of associativity and identity hold. A left fold associates operations to the
left while a right fold associates to the right, with the identity element on the left
and right respectively:

Footnote 3mAs of this writing, with Scala at version 2.9.2, the implementation of  in the standardfoldRight

library is not tail-recursive, so for large lists it matters operationally which we choose since they have different
memory usage characteristics.

words.foldLeft("")(_ + _)  == (("" + "Hic") + "Est") + "Index"

words.foldRight("")(_ + _) == "Hic" + ("Est" + ("Index" + ""))

10.2 Folding lists with monoids
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EXERCISE 5: Write a monoid instance for  that inserts spacesString

between words unless there already is one, and trims spaces off the ends of the
result. For example:

op("Hic", op("est ", "chorda ")) == "Hic est chorda"
op("Hic ", op(" est"), "chorda") == "Hic est chorda"

def wordsMonoid(s: String): Monoid[String]

EXERCISE 6: Implement , a function that folds a list with aconcatenate

monoid:

def concatenate[A](as: List[A], m: Monoid[A]): A

But what if our list has an element type that doesn't have a  instance?Monoid

Well, we can always  over the list to turn it into a type that does.map

def foldMap[A,B](as: List[A], m: Monoid[B])(f: A => B): B

EXERCISE 7: Write this function.
EXERCISE 8 (hard): The  function can be implemented using either foldMap

 or . But you can also write  and foldLeft foldRight foldLeft foldRight

using ! Try it.foldMap

The fact that a monoid's operation is associative means that we have a great deal of
flexibility in how we fold a data structure like a list. We have already seen that
operations can be associated to the left or right to reduce a list sequentially with 

 and . But we could instead split the data into chunks, foldfoldLeft foldRight

them , and then combine the chunks with the monoid. Folding to thein parallel
right, the combination of chunks , , , and  would look like this:a b c d

op(a, op(b, op(c, d)))

Folding to the left would look like this:

10.3 Associativity and parallelism
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op(op(op(a, b), c), d)

But folding in parallel looks like this:

op(op(a, b), op(c, d))

This parallelism might give us some efficiency gains, because the two inner op

s could be run simultaneously in separate threads.

As a nontrivial use case, let's say that we wanted to count the number of words in a
. This is a fairly simple parsing problem. We could scan the stringString

character by character, looking for whitespace and counting up the number of runs
of consecutive non-whitespace characters. Parsing sequentially like that, the parser
state could be as simple as tracking whether the last character seen was a
whitespace.

But imagine doing this not for just a short string, but an enormous text file. It
would be nice if we could work with chunks of the file in parallel. The strategy
would be to split the file into manageable chunks, process several chunks in
parallel, and then combine the results. In that case, the parser state needs to be
slightly more complicated, and we need to be able to combine intermediate results
regardless of whether the section we're looking at is at the beginning, end, or
middle of the file. In other words, we want that combination to be associative.

To keep things simple and concrete, let's consider a short string and pretend it's
a large file:

"lorem ipsum dolor sit amet, "

If we split this string roughly in half, we might split it in the middle of a word.
In the case of our string above, that would yield  and "lorem ipsum do" "lor

. When we add up the results of counting the words in thesesit amet, "

strings, we want to avoid double-counting the word . Clearly, just countingdolor

the words as an  is not sufficient. We need to find a data structure that canInt

handle partial results like the half words  and , and can track the completedo lor

words seen so far, like , , and .ipsum sit amet

The partial result of the word count could be represented by an algebraic data

10.3.1 Example: Parallel parsing
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type:

sealed trait WC
case class Stub(chars: String) extends WC
case class Part(lStub: String, words: Int, rStub: String) extends WC

A  is the simplest case, where we have not seen any complete words yet.Stub

But a  keeps the number of complete words we have seen so far, in .Part words

The value  holds any partial word we have seen to the left of those words,lStub

and  holds the ones on the right.rStub

For example, counting over the string  would result in "lorem ipsum do"

 since there is one complete word. And since therePart("lorem", 1, "do")

is no whitespace to the left of  or right of , we can't be sure if they arelorem do

complete words, so we can't count them yet. Counting over "lor sit amet,

 would result in ." Part("lor", 2, "")

EXERCISE 9: Write a monoid instance for  and make sure that it meets theWC

monoid laws.

val wcMonoid: Monoid[WC]

EXERCISE 10: Use the  monoid to implement a function that counts wordsWC

in a  by recursively splitting it into substrings and counting the words inString

those substrings.
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SIDEBAR Monoid homomorphisms
If you have your law-discovering cap on while reading this chapter, you
may notice that there is a law that holds for some functions between
monoids. Take the  concatenation monoid and the integerString

addition monoid. If you take the length of two strings and add them up,
it's the same as taking the length of the concatenation of those two
strings:

"foo".length + "bar".length == ("foo" + "bar").length

Here,  is a function from  to  that length String Int preserves the

. Such a function is called a .monoid structure monoid homomorphism4

A monoid homomorphism  between monoids  and  obeys thef M N

following general law for all values  and :x y

Footnote 4mThis word comes from Greek, "homo" meaning "same" and

"morphe" meaning "shape".

M.op(f(x), f(y)) == f(N.op(x, y))

The same law holds for the homomorphism from  to  in theString WC

current example.
This property can be very useful when designing your own libraries. If
two types that your library uses are monoids, and there exist functions
between them, it's a good idea to think about whether those functions
are expected to preserve the monoid structure and to check the monoid
homomorphism law with automated tests.
There is a higher-order function that can take any function of type A =>

, where  is a monoid, and turn it in to a monoid homomorphism from B B

 to .List[A] B

Sometimes there will be a homomorphism in both directions between
two monoids. Such a relationship is called a  ("iso-"monoid isomorphism
meaning "equal") and we say that the two monoids are isomorphic.

Associativity can also be exploited to gain efficiency. For example, if we want
to concatenate a list of strings, doing so with a left or right fold can be less efficient
than we would like. Consider the memory usage of this expression:

List("lorem", "ipsum", "dolor", "sit").foldLeft("")(_ + _)
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At every step of the fold, we are allocating the full intermediate  onlyString

to discard it and allocate a larger string in the next step:

List("lorem", ipsum", "dolor", "sit").foldLeft("")(_ + _)
List("ipsum", "dolor", "sit").foldLeft("lorem")(_ + _)
List("dolor", "sit").foldLeft("loremipsum")(_ + _)
List("sit").foldLeft("loremipsumdolor")(_ + _)
List().foldLeft("loremipsumdolorsit")(_ + _)
"loremipsumdolorsit"

A more efficient strategy would be to combine the list by halves. That is, to first
construct  and , then add those together. But a "loremipsum" "dolorsit"

 is inherently sequential, so there is not an efficient way of splitting it in half.List

Fortunately, there are other structures that allow much more efficient random
access, such as the standard Scala library's  data type which provides veryVector

efficient  and  methods.length splitAt

EXERCISE 11: Implement an efficient  for , afoldMap IndexedSeq

common supertype for various data structures that provide efficient random access.

def foldMapV[A,B](v: IndexedSeq[A], m: Monoid[B])(f: A => B): B

EXERCISE 12: Use  to detect whether a given foldMap

 is ordered. You will need to come up with a creative IndexedSeq[Int]

 instance.Monoid

In chapter 3, we implemented the data structures  and , both of whichList Tree

could be folded. In chapter 5, we wrote , a lazy structure that also can beStream

folded much like a  can, and now we have just written a fold for List

.IndexedSeq

When we're writing code that needs to process data contained in one of these
structures, we often don't care about the shape of the structure (whether it's a tree
or a list), or whether it's lazy or not, or provides efficient random access, etc.

For example, if we have a structure full of integers and want to calculate their
sum, we can use foldRight:

ints.foldRight(0)(_ + _)

10.4 Foldable data structures
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Looking at just this code snippet, we don't really know the type of . Itints

could be a , a , or a , or anything at all with a Vector Stream List foldRight

method. We can capture this commonality in a trait:

trait Foldable[F[_]] {
  def foldRight[A, B](as: F[A])(f: (A, B) => B): B
  def foldLeft[A, B](as: F[A])(f: (B, A) => B): B
  def foldMap[A, B](as: F[A])(f: A => B)(mb: Monoid[B]): B
  def concatenate[A](as: F[A])(m: Monoid[A]): A =
    as.foldLeft(m.zero)(m.op)
}

Here we are abstracting over a type constructor , much like we did with the F

 type in the previous chapter. We write it as , where the underscoreParser F[_]

indicates that  is not a type but a  that takes one type argument.F type constructor

Just like functions that take other functions as arguments are called higher-order
functions, something like  is a  or a Foldable higher-order type constructor

.higher-kinded type5

Footnote 5mJust like values and functions have types, types and type constructors have . Scala uses kindskinds
to track how many type arguments a type constructor takes, whether it is co- or contravariant in those arguments,
and what their kinds are.

EXERCISE 13: Implement , Foldable[List] Foldable[IndexedSeq]

, and . Rembember that ,  and Foldable[Stream] foldRight foldLeft

 can all be implemented in terms of each other, but that might not be thefoldMap

most efficient implementation.
EXERCISE 14: Recall the  data type from Chapter 3. Implement a Tree

 instance for it.Foldable

sealed trait Tree[+A]
case object Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]

EXERCISE 15: Write a  instance.Foldable[Option]

EXERCISE 16: Any foldable structure can be turned into a . Write thisList

conversion in a generic way:

def toList[A](fa: F[A]): List[A]
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The  abstraction by itself is not all that compelling, and with theMonoid

generalized  it's only slightly more interesting. The real power offoldMap

monoids comes from the fact that they .compose
This means, for example, that if types  and  are monoids, then the tuple type A B

 is also a monoid (called their ).(A, B) product

EXERCISE 17: Prove it.

def productMonoid[A,B](A: Monoid[A], B: Monoid[B]): Monoid[(A,B)]

EXERCISE 18: Do the same with . This is called a monoid .Either coproduct

def coproductMonoid[A,B](A: Monoid[A],
                         B: Monoid[B]): Monoid[Either[A,B]]

Some data structures also have interesting monoids as long as their value types are
monoids. For instance, there is a monoid for merging key-value s, as long asMap

the value type is a monoid.

def mapMergeMonoid[K,V](V: Monoid[V]): Monoid[Map[K, V]] =
  new Monoid[Map[K, V]] {
    def zero = Map()
    def op(a: Map[K, V], b: Map[K, V]) =
      a.map {
        case (k, v) => (k, V.op(v, b.get(k) getOrElse V.zero))
      }
  }

Using these simple combinators, we can assemble more complex monoids
fairly easily:

scala> val M: Monoid[Map[String, Map[String, Int]]] =
     | mapMergeMonoid(mapMergeMonoid(intAddition))
M: Monoid[Map[String, Map[String, Int]]] = $anon$1@21dfac82

This allows us to combine nested expressions using the monoid, with no

10.5 Monoids compose

10.5.1 Assembling more complex monoids
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additional programming:

scala> val m1 = Map("o1" -> Map("i1" -> 1, "i2" -> 2))
m1: Map[String,Map[String,Int]] = Map(o1 -> Map(i1 -> 1, i2 -> 2))

scala> val m2 = Map("o1" -> Map("i2" -> 3))
m2: Map[String,Map[String,Int]] = Map(o1 -> Map(i2 -> 3))

scala> val m3 = M.op(m1, m2)
m3: Map[String,Map[String,Int]] = Map(o1 -> Map(i1 -> 1, i2 -> 5))

EXERCISE 19: Write a monoid instance for functions whose results are
monoids.

def functionMonoid[A,B](B: Monoid[B]): Monoid[A => B]

EXERCISE 20: Use monoids to compute a frequency map of words in an 
 of s.IndexedSeq String

def frequencyMap(strings: IndexedSeq[String]): Map[String, Int]

A frequency map contains one entry per word, with that word as the key, and
the number of times that word appears as the value under that key. For example:

scala> frequencyMap(Vector("a rose", "is a", "rose is", "a rose"))
res0: Map[String,Int] = Map(a -> 3, rose -> 3, is -> 2)

The fact that multiple monoids can be composed into one means that we can
perform multiple calculations simultaneously when folding a data structure. For
example, we can take the length and sum of a list at the same time in order to
calculate the mean:

scala> val m = productMonoid(intAddition, intAddition)
m: Monoid[(Int, Int)] = $anon$1@8ff557a

scala> val p = listFoldable.foldMap(List(1,2,3,4))(a => (1, a))(m)
p: (Int, Int) = (10, 4)

scala> val mean = p._1 / p._2.toDouble
mean: Double = 2.5

10.5.2 Using composed monoids to fuse traversals

187

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


The ability to compose monoids really comes into its own when you have
complicated nested structures. But it can be somewhat tedious to assemble them by
hand in each case. Fortunately, Scala has a facility that can make monoids a lot
more pleasant to work with by making instances implicit:

implicit val stringMonoid: Monoid[String] = ...

Such implicit instances can then be used to implicitly construct more
complicated instances:

implicit def productMonoid[A](implicit A: Monoid[A]): Monoid[List[A]] =
  ...

If we make all of our monoid instances implicit, a simple function definition
with an implicit argument can automatically assemble arbitrarily complex monoids
for us.

def monoid[A](implicit A: Monoid[A]): Monoid[A] = A

All we have to do is specify the type of the monoid we want. As long as that
type has an implicit  instance, it will be returned to us.Monoid

scala> monoid[Map[List[String], Int => Map[String, List[Boolean]]]]
res0: Monoid[Map[List[String], Int => Map[String, List[Boolean]]]] =
$anon$1@356380e8

But what about types that have more than once  instance? ForMonoid

example, a valid monoid for  could be either addition (with 0 as the identity)Int

or multiplication (with 1 as the identity). A common solution is to put values in a
simple wrapper type and make that type the monoid.

case class Product(value: Int)
implicit val productMonoid: Monoid[Product] = new Monoid[Product] {
  def op(a: Product, b: Product) = Product(a.value * b.value)
  def zero = 1

10.5.3 Implicit monoids
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associativity
higher-kinded types
identity element
implicit instances
monoid
monoid coproduct
monoid homomorphism
monoid laws
monoid product
type constructor polymorphism

}

case class Sum(value: Int)
implicit val sumMonoid: Monoid[Sum] = new Monoid[Sum] {
  def op(a: Sum, b: Sum) = Sum(a.value + b.value)
  def zero = 0
}

This plays nicely with  on . For example if we have a list foldMap Foldable

 of integers and we want to sum them:ints

listFoldable.foldMap(ints)(Sum(_))

Or to take their product:

listFoldable.foldMap(ints)(Product(_))

In this chapter we introduced the concept of a monoid, a simple and common type
of abstract algebra. When you start looking for it, you will find ample opportunity
to exploit the monoidal structure of your own libraries. The associative property
lets you fold any  data type and gives you the flexibility of doing so inFoldable

parallel. Monoids are also compositional, and therefore they let you write folds in a
declarative and reusable way.

Monoid has been our first totally abstract trait, defined only in terms of its

abstract operations and the laws that govern them. This gave us the ability to write
useful functions that know nothing about their arguments except that their type
happens to be a monoid.

Index Terms

10.6 Summary
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11
In Part 2, we implemented several different combinator libraries. In each case, we
proceeded by writing a small set of primitives and then a number of derived
combinators defined purely in terms of existing combinators. You probably noticed
some similarities between implementations of different derived combinators across
the combinator libraries we wrote. For instance, we implemented a  functionmap

for each data type, to lift a function taking one argument. For , , and Gen Parser

, the type signatures were as follows:Option

These type signatures are very similar. The only difference is the concrete type
involved. We can capture, as a Scala trait, the idea of "a data type that implements 

".map

If a data type  implements  with a signature like above, we say that  is a F map F

. Which is to say that we can provide an implementation of the followingfunctor
trait:

Monads

def map[A,B](ga: Gen[A])(f: A => B): Gen[B]

def map[A,B](pa: Parser[A])(f: A => B): Parser[B]

def map[A,B](oa: Option[A])(f: A => B): Option[A]

11.1 Functors: Generalizing the map function

trait Functor[F[_]] {
  def map[A,B](fa: F[A])(f: A => B): F[B]
}
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Much like we did with  in the previous chapter, we introduce a trait Foldable

 that is parameterized on a type constructor . Here is an instanceFunctor F[_]

for :List

What can we do with this abstraction? There happens to be a small but useful
library of functions that we can write using just . For example, if we have map

 where  is a functor, we can "distribute" the  over the pair to get F[(A, B)] F F

:(F[A], F[B])

It's all well and good to introduce a new combinator like this in the abstract, but
we should think about what it  for concrete data types like , ,means Gen Option

etc. For example, if we  a , we get two lists of thedistribute List[(A, B)]

same length, one with all the s and the other with all the s. That operation isA B

sometimes called "unzip". So we just wrote a generic unzip that works not just for
lists, but for any functor!

Whenever we create an abstraction like this, we should consider not only what
abstract methods it should have, but which  we expect should hold for thelaws
implementations. If you remember, back in chapter 7 (on parallelism) we found a
general law for :map

Later in Part 2, we found that this law is not specific to . In fact, we wouldPar

expect it to hold for all implementations of  that are "structure-preserving".map

This law (and its corollaries given by parametricity) is part of the specification of
what it means to "map". It would be very strange if it didn't hold. It's part of what a
functor .is

val listFunctor extends Functor[List] {
  def map[A,B](as: List[A])(f: A => B): List[B] = as map f
}

def distribute[A,B](fab: F[(A, B)]): (F[A], F[B]) =
  (map(fab)(_._1), map(fab)(_._2))

map(v)(x => x) == v

191

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Not only did we implement  for many data types, we also implemented a map

 to lift a function taking two arguments. For , , and ,map2 Gen Parser Option

the  function could be implemented as follows.map2

Makes a generator of a random C that runs random generators ga and gb,
combining their results with the function f.
Makes a parser that produces C by combining the results of parsers pa and pb with
the function f.
Combines two Options with the function f, if both have a value. Otherwise returns
None.

These functions have more in common than just the name. In spite of operating
on data types that seemingly have nothing to do with one another, the
implementations are exactly identical! And again the only thing that differs in the
type signatures is the particular data type being operated on. This confirms what
we have been suspecting all along—that these are particular instances of some
more general pattern. We should be able to exploit that fact to avoid repeating
ourselves. For example, we should be able to write  once and for all in such amap2

way that it can be reused for all of these data types.
We've made the code duplication particularly obvious here by choosing

uniform names for our functions, taking the arguments in the same order, and so
on. It may be more difficult to spot in your everyday work. But the more
combinator libraries you write, the better you will get at identifying patterns that
you can factor out into a common abstraction. In this chapter, we will look at an
abstraction that unites , , , , and some other data typesParser Gen Par Option

we have already looked at: They are all  We will explain in a momentmonads.
exactly what that means.

11.2 Generalizing the flatMap and unit functions

def map2[A,B,C](
      ga: Gen[A], gb: Gen[B])(f: (A,B) => C): Gen[C] =
  ga flatMap (a => fb map (b => f(a,b)))

def map2[A,B,C](
      pa: Parser[A], pb: Parser[B])(f: (A,B) => C): Parser[C] =
  pa flatMap (a => pb map (b => f(a,b)))

def map2[A,B,C](
      pa: Option[A], pb: Option[B])(f: (A,B) => C): Option[C] =
  pa flatMap (a => pb map (b => f(a,b)))
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In both parts 1 and 2 of this book, we concerned ourselves with finding a minimal
set of primitive operations for various data types. We implemented  for manymap2

data types, but as we know by now,  can be implemented in terms of map2 map

and . Is that a minimal set? Well, the data types in question all had a flatMap

, and we know that  can be implemented in terms of  and unit map flatMap

. For example, on :unit Gen

So let's pick  and  as our minimal set. We will unify under aunit flatMap

single concept all data types that have these combinators defined.  has Monad

 and  abstract, and provides default implementations for  and flatMap unit map

.map2

Since Monad provides a default implementation of map, it can extend Functor. All
monads are functors, but not all functors are monads.

SIDEBAR The name "monad"
We could have called  anything at all, like  orMonad FlatMappable

whatever. But "monad" is already a perfectly good name in common
use. The name comes from category theory, a branch of mathematics
that has inspired a lot of functional programming concepts. The name
"monad" is intentionally similar to "monoid", and the two concepts are
related in a deep way. See the chapter notes for more information.

To tie this back to a concrete data type, we can implement the  instanceMonad

for :Gen

11.2.1 The Monad trait

def map[A,B](f: A => B): Gen[B] =
  flatMap(a => unit(f(a)))

trait Monad[M[_]] extends Functor[M] {
  def unit[A](a: => A): M[A]
  def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]

  def map[A,B](ma: M[A])(f: A => B): M[B] =
    flatMap(ma)(a => unit(f(a)))
  def map2[A,B,C](ma: M[A], mb: M[B])(f: (A, B) => C): M[C] =
    flatMap(ma)(a => map(mb)(b => f(a, b)))
}
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We only need to implement  and  and we get  and  atunit flatMap map map2

no additional cost. We have implemented them once and for all, for any data type
for which it is possible to supply an instance of ! But we're just gettingMonad

started. There are many more combinators that we can implement once and for all
in this manner.

EXERCISE 1: Write monad instances for , , , ,Par Parser Option Stream

and .List

EXERCISE 2 (optional, hard):  looks like it would be a monad too, butState

it takes two type arguments and you need a type constructor of one argument to
implement . Try to implement a  monad, see what issues you runMonad State

into, and think about possible solutions. We will discuss the solution later in this
chapter.

Now that we have our primitive combinators for monads, we can look back at
previous chapters and see if there were some other combinators that we
implemented for each of our monadic data types. Many of of them can be
implemented once for all monads, so let's do that now.

EXERCISE 3: The  and  combinators should be prettysequence traverse

familiar to you by now, and your implementations of them from various prior
chapters are probably all very similar. Implement them once and for all on 

:Monad[M]

One combinator we saw for e.g.  and  was , whichGen Parser listOfN

allowed us to replicate a parser or generator  times to get a parser or generator ofn

object Monad {
  val genMonad = new Monad[Gen] {
    def unit[A](a: => A): Gen[A] = Gen.unit(a)
    def flatMap[A,B](ma: Gen[A])(f: A => Gen[B]): Gen[B] =
      ma flatMap f
  }
}

11.3 Monadic combinators

def sequence[A](lma: List[M[A]]): M[List[A]]
def traverse[A,B](la: List[A])(f: A => M[B]): M[List[B]]
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lists of that length. We can implement this combinator for all monads  by addingM

it to our  trait. We should also give it a more generic name such as Monad

.replicateM

EXERCISE 4: Implement :replicateM

EXERCISE 5: Think about how  will behave for various choicesreplicateM

of . For example, how does it behave in the  monad? What about ?M List Option

Describe in your own words the general meaning of .replicateM

There was also a combinator  for our  data type to take twoproduct Gen

generators and turn them into a generator of pairs, and we did the same thing for 
 computations. In both cases, we implemented  in terms of .Par product map2

So we can definitely write it generically for any monad . This combinator mightM

more appropriately be called , since we are "factoring out" , or "pushing factor M

 to the outer layer":M

We don't have to restrict ourselves to combinators that we have seen already.
It's important to  and see what we find. Now that we're thinking in theplay around
abstract about monads, we can take a higher perspective on things.

We know that  and  let us combine pairs, or when we otherwisefactor map2

have  of two things. But what about when we have  of two thingsboth either
(sometimes called their )? What happens then? We would havecoproduct
something like this:

EXERCISE 6: Implement the function . Explain to yourself what itcofactor

does.
The combinators we have seen here are only a small sample of the full library

that  lets us implement once and for all.Monad

def replicateM[A](n: Int, ma: M[A]): M[List[A]]

def factor[A,B](ma: M[A], mb: M[B]): M[(A, B)] = map2(ma, mb)((_, _))

def cofactor[A,B](e: Either[M[A], M[B]]): M[Either[A, B]]
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In chapters past, we found that the  function, for all of the data types thatmap

support it, obeys the functor law. It would be very strange if it didn't hold. It's part
of the meaning we ascribe to . It's what a  map Functor is.

But what about ? Certainly we would expect the functor laws to alsoMonad

hold for , but what else would we expect? What laws should govern Monad

 and ?flatMap unit

For example, if we wanted to combine three monadic values into one, which two
would we expect to be combined first? Would it matter? To answer this question,
let's for a moment take a step down from the abstract level and look at a simple
concrete example of using the  monad.Gen

Say we are testing a product order system and we need to mock up some orders.
We might have an  case class and a generator for that class.Order

Above, we are generating the  inline, but there might be places where weItem

want to generate an  separately. So we could pull that into its own generator:Item

Then we can use that in :genOrder

11.4 Monad laws

11.4.1 The associative law

case class Order(item: Item, quantity: Int)
case class Item(name: String, price: Double)

val genOrder: Gen[Order] = for {
  name <- Gen.nextString
  price <- Gen.nextDouble
  quantity <- Gen.nextInt
} yield Order(Item(name, price), quantity)

val genItem: Gen[Item] = for {
  name <- Gen.nextString
  price <- Gen.nextDouble
} yield Item(name, price)

val genOrder: Gen[Order] = for {
  item <- genItem
  quantity <- Gen.nextInt
} yield Order(item, quantity)

196

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


And that should do exactly the same thing, right? It seems safe to assume that.
But not so fast. How can we be sure? It's not exactly the same code.

EXERCISE 7 (optional): Expand both implementations of  to genOrder map

and  calls to see the true difference.flatMap

Once you expand them out, those two implementations are clearly not identical.
And yet when we look at the -comprehension, it seems perfectly reasonable tofor

assume that the two implementations do exactly the same thing. In fact, it would be
surprising and weird if they didn't. It's because we are assuming that flatMap

obeys an :associative law

And this law should hold for all values , , and  of the appropriate types.x f g

EXERCISE 8:  that this law holds for .Prove Option

EXERCISE 9 (hard): Show that the equivalence of the two genOrder

implementations above follows from this law.

It's not so easy to see that the law we have discovered is an  law.associative
Remember the associative law for monoids? That was very clear:

But our associative law for monads doesn't look anything like that! Fortunately,
there's a way we can make the law clearer if we consider not the monadic values of
types like , but monadic  of types like . Functions likeM[A] functions A => M[B]

that are called , and they can be composed with one another:Kleisli arrows1

Footnote 1mThis name comes from category theory and is after the Swiss mathematician Heinrich Kleisli.

EXERCISE 10: Implement this function.
We can now state the associative law for monads in a much more symmetric

way:

x.flatMap(f).flatMap(g) == x.flatMap(a => f(a).flatMap(g))

11.4.2 Kleisli composition

append(append(a, b), c) == append(a, append(b, c))

def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C]

compose(compose(f, g), h) == compose(f, compose(g, h))
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EXERCISE 11: Implement  in terms of . It seems that weflatMap compose

have found another minimal set of monad combinators:  and .compose unit

EXERCISE 12 (optional): Show that the two formulations of the associative
law, the one in terms of  and the one in terms of , areflatMap compose

equivalent.

The other monad law is now pretty easy to see. Just like  was an zero identity

 for  in a monoid, there is an identity element for  in aelement append compose

monad. Indeed, that is exactly what  is, and that is why we chose its name theunit

way we did:

This function has exactly the right type to be passed to . The effectcompose

should be that anything composed with  is that same thing. This usually takesunit

the form of two laws,  and :left identity right identity

EXERCISE 13: Rewrite these monad identity laws in terms of .flatMap

EXERCISE 14: There is a third minimal set of monadic combinators: , map

, and . Implement .unit join join

EXERCISE 15: Implement either  or  in terms of .flatMap compose join

EXERCISE 16: Use  to restate the monad laws.join

EXERCISE 17 (optional): Write down an explanation, in your own words, of
what the associative law means for  and .Par Parser

EXERCISE 18 (optional): Explain in your own words what the identity laws
are stating in concrete terms for  and .Gen List

11.4.3 The identity laws

def unit[A](a: => A): M[A]

compose(f, unit) == f

compose(unit, f) == f

def join[A](mma: M[M[A]]): M[A]
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Let us now take a wider perspective. There is something unusual about the Monad

interface. The data types for which we've given monad instances don't seem to
have very much to do with each other. Yes,  factors out code duplicationMonad

among them, but what  a monad exactly? What does "monad" ?is mean
You may be used to thinking of interfaces as providing a relatively complete

API for an abstract data type, merely abstracting over the specific representation.
After all, a singly-linked list and an array-based list may be implemented
differently behind the scenes, but they will share a common interface in terms of
which a lot of useful and concrete application code can be written.  is muchMonad

more abstract than that. The  combinators are often just a small fragment ofMonad

the full API for a given data type that happens to be a monad. So  doesn'tMonad

generalize one type or another; rather, many vastly different data types can satisfy
the  interface.Monad

We have discovered that there are at least three minimal sets of primitive 
 combinators, and instances of  will have to provideMonad Monad

implementations of one of these sets:

unit and flatMap
unit and compose
unit, , and map join

And we know that there are two monad laws to be satisfied, associativity and
identity, that can be formulated in various ways. So we can state quite plainly what
a monad :is

A monad is an implementation of one of the minimal sets of monadic
combinators, satisfying the laws of associativity and identity.

That's a perfectly respectable, precise, and terse definition. But it's a little
dissatisfying. It doesn't say very much about what it implies—what a monad 

 The problem is that it's a  definition. Even if you're ameans. self-contained
beginning programmer, you have by now obtained a vast amount of knowledge
about programming, and this definition integrates with none of that. In order to
really  what's going on with monads (or with anything for that matter),understand
we need to think about them in terms of things we already understand. We need to
connect this new knowledge into a wider context.

To say "this data type is a monad" is to say something very specific about how

11.5 Just what is a monad?
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it behaves. But what exactly? To begin to answer the question of what monads 
, let's look at another couple of monads and compare their behavior.mean

To really distill monads to their essentials, we should look at the simplest
interesting specimen, the identity monad, given by the following type:

EXERCISE 19: Implement  and  as methods on this class, andmap flatMap

give an implementation for .Monad[Id]

Now,  is just a simple wrapper. It doesn't really add anything. Applying Id Id

to  is an identity since the wrapped type and the unwrapped type are totallyA

isomorphic (we can go from one to the other and back again without any loss of
information). But what is the meaning of the identity ? Let's try using it inmonad
the REPL:

When we write the exact same thing with a -comprehension, it might befor

clearer:

So what is the  of  for the identity monad? It's simply variableaction flatMap

substitution. The variables  and  get bound to  and ,a b "Hello, " "monad!"

respectively, and then they get substituted into the expression . In fact, wea + b

could have written the same thing without the  wrapper, just using Scala's ownId

variables:

11.5.1 The identity monad

case class Id[A](value: A)

scala> Id("Hello, ") flatMap (a =>
     |   Id("monad!") flatMap (b =>
     |     Id(a + b)))
res0: Id[java.lang.String] = Id(Hello, monad!)

scala> for {
     |   a <- Id("Hello, ")
     |   b <- Id("monad!")
     | } yield a + b
res1: Id[java.lang.String] = Id(Hello, monad!)

scala> val a = "Hello, "
a: java.lang.String = "Hello, "
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Besides the  wrapper, there is no difference. So now we have at least aId

partial answer to the question of what monads mean. We could say that monads
provide a scheme for binding variables. Stated more dramatically, a monad is a
kind of programming language that supports variable substitution.

Let's see if we can get the rest of the answer.

Look back at the chapter on the  data type. Recall that we implementedState

some combinators for , including  and :State map flatMap

It looks like  definitely fits the profile for being a monad. But its typeState

constructor takes two type arguments and  requires a type constructor ofMonad

one argument, so we can't just say . But if we choose someMonad[State]

particular  then we have something like , which is the kind ofS State[S, _]

thing expected by . So  doesn't just have one monad instance but aMonad State

whole family of them, one for each choice of . We would like to be able toS

partially apply  to where the  type argument is fixed to be some concreteState S

type.
This is very much like how you would partially apply a function, except at the

type level. For example, we can create an  type constructor, which is anIntState

alias for  with its first type argument fixed to be :State Int

scala> val b = "monad!"
b: java.lang.String = monad!

scala> a + b
res2: java.lang.String = Hello, monad!

11.5.2 The State monad and partial type application

case class State[S, A](run: S => (A, S)) {
  def map[B](f: A => B): State[S, B] =
    State(s => {
      val (a, s1) = run(s)
      (f(a), s1)
    })
  def flatMap[B](f: A => State[S, B]): State[S, B] =
    State(s => {
      val (a, s1) = run(s)
      f(a).run(s1)
    })
}
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And  is exactly the kind of thing that we can build a  for:IntState Monad

Of course, it would be really repetitive if we had to manually write a separate 
 instance for each specific state type. Unfortunately, Scala does not allow usMonad

to use underscore syntax to simply say  to create an anonymousState[Int, _]

type constructor like we create anonymous functions with the underscore syntax.
But instead we can use something similar to lambda syntax at the type level. For
example, we could have declared  directly inline like this:IntState

This syntax can be a little jarring when you first see it. But all we are doing is
declaring an anonymous type within parentheses. This anonymous type has, as one
of its members, the type alias , which looks just like before. OutsideIntState

the parentheses we are then accessing its  member with the  syntax.IntState #

Just like we can use a "dot" ( ) to access a member of an object at the value level,.

we can use the  symbol to access a type member (# See the "Type Member" section

).of the Scala Language Specification
A type constructor declared inline like this is often called a  intype lambda

Scala. We can use this trick to partially apply the  type constructor andState

declare a  trait. An instance of  is then a monadStateMonad StateMonad[S]

instance for the given state type .S

type IntState[A] = State[Int, A]

object IntStateMonad extends Monad[IntState] {
  def unit[A](a: => A): IntState[A] = State(s => (a, s))
  def flatMap[A,B](st: IntState[A])(f: A => IntState[B]): IntState[B] =
    st flatMap f
}

object IntStateMonad extends
  Monad[({type IntState[A] = State[Int, A]})#IntState] {
  ...
}

def stateMonad[S] = new Monad[({type lambda[x] = State[S,x]})#lambda] {
  def unit[A](a: => A): State[S,A] = State(s => (a, s))
  def flatMap[A,B](st: State[S,A])(f: A => State[S,B]): State[S,B] =
    st flatMap f
}
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Again, just by giving implementations of  and , we getunit flatMap

implementations of all the other monadic combinators for free.
EXERCISE 20: Now that we have a  monad, you should try it out to seeState

how it behaves. What is the meaning of  in the  monad?replicateM State

How does  behave? What about ?map2 sequence

Let's now look at the difference between the  monad and the  monad.Id State

Remember that the primitive operations on  (besides the monadicState

operations  and ) are that we can read the current state with unit flatMap

 and we can set a new state with .getState setState

Remember that we also discovered that these combinators constitute a minimal
set of primitive operations for . So together with the monadic primitives (State

 and ), they  everything that we can do with the unit flatMap completely specify

 data type.State

EXERCISE 21: What laws do you expect to mutually hold for , getState

,  and ?setState unit flatMap

What does this tell us about the meaning of the  ? Let's study aState monad

simple example:

This function numbers all the elements in a list using a  action. It keepsState

a state that is an  which is incremented at each step. The whole composite stateInt

action is run starting from 0. We are then reversing the result since we constructed

it in reverse order .2

Footnote 2mThis is asymptotically faster than appending to the list in the loop.

The details of this code are not really important. What is important is what's

def getState[S]: State[S, S]
def setState[S](s: => S): State[S, Unit]

val M = new StateMonad[Int]

def zipWithIndex[A](as: List[A]): List[(Int,A)] =
  as.foldLeft(M.unit(List[(Int, A)]()))((acc,a) => for {
    n  <- getState
    xs <- acc
    _  <- setState(n + 1)
} yield (n, a) :: xs).run(0)._1.reverse
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going on with  and  in the -comprehension. We aregetState setState for

obviously getting variable binding just like in the  monad—we are binding theId

value of each successive state action ( , , and then ) togetState acc setState

variables. But there is more going on, literally  At each line in thebetween the lines.
-comprehension, the implementation of  is making sure that thefor flatMap

current state is available to , and that the new state gets propagated togetState

all actions that follow a .setState

What does the difference between the action of  and the action of  tellId State

us about monads in general? We can see that a chain of s (or anflatMap

equivalent -comprehension) is like an imperative program with statements thatfor

assign to variables, and the monad specifies what occurs at statement boundaries.
For example, with , nothing at all occurs except unwrapping and re-wrapping inId

the  constructor. With , the most current state gets passed from oneId State

statement to the next. With the  monad, a statement may return  andOption None

terminate the program. With the  monad a statement may return manyList

results, which causes statements that follow it to potentially run multiple times,
once for each result.

EXERCISE 22: To cement your understanding of monads, give a monad
instance for the following type, and explain what it means. What are its primitive
operations? What is the action of ? What meaning does it give toflatMap

monadic functions like , , and ? What meaningsequence join replicateM

does it give to the monad laws?

case class Reader[R, A](run: R => A)

object Reader {
  def readerMonad[R] = new Monad[({type f[x] = Reader[R,x]})#f] {
    def unit[A](a: => A): Reader[R,A]
    def flatMap[A,B](st: Reader[R,A])(f: A => Reader[R,B]): Reader[R,B]
  }
}
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functor
functor law
identity element
Kleisli arrow
left identity law for monads
listOfN
monad
monadic join
monad identity law
monad laws
replicateM
right identity law for monads
type lambda
unit law

In this chapter, we took a pattern that we had seen repeated throughout the book
and we unified it under a single concept: monad. This allowed us to write a number
of combinators once and for all, for many different data types that at first glance
don't seem to have anything in common. We discussed laws that they all satisfy,
the monad laws, from various perspectives, and we tried to gain some insight into
what it all means.

An abstract topic like this cannot be fully understood all at once. It requires an
iterative approach where you keep revisiting the topic from new perspectives.
When you discover new monads, new applications of them, or see them appear in a
new context, you will inevitably gain new insight. And each time it happens you
might think to yourself: "OK, I thought I understood monads before, but now I 

 get it."really
In the next chapter, we will explore a slight variation on the theme of monads,

and develop your ability to discover new abstractions on your own.

Index Terms

11.6 Conclusion
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12
In the previous chapter on monads we saw how a lot of the functions we have been
writing for different combinator libraries can be expressed in terms of a single
interface, .Monad

Monads provide a very powerful interface, as evidenced by the fact that we can
use  to essentially write imperative programs in a purely functional way.flatMap

But sometimes this is more power than we need, and such power comes at a price.
As we will see in this chapter, the price is that we lose some compositionality. We
can reclaim it by instead using , which are simpler and moreapplicative functors
general than monads.

By now you have seen  and  many times for differentsequence traverse

monads, implemented them in terms of each other, and generalized them to any
monad :M

Here, the implementation of  is using  and , and wetraverse map2 unit

have seen that  can be implemented in terms of :map2 flatMap

Applicative and traversable functors

12.1 Generalizing monads

def sequence[A](lma: List[M[A]]): M[List[A]]
  traverse(mas, ma => ma)

def traverse[A,B](as: List[A])(f: A => M[B]): M[List[B]]
  as.foldRight(unit(List[B]()))((a, mbs) => map2(f(a), mbs)(_ :: _))

def map2[A,B,C](ma: M[A], mb: M[B])(f: (A,B) => C): M[C] =
  flatMap(ma)(a => map(mb)(b => f(a,b)))

206

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


What you may not have noticed is that almost all of the useful combinators we
wrote in the previous chapter can be implemented just in terms of  and map2 unit

. What's more, for all the data types we have discussed,  can be written map2

 resorting to .without flatMap

Is  with  then just another minimal set of operations for monads?map2 unit

No it's not, because there are monadic combinators such as  and join flatMap

that cannot be implemented with just  and . This suggests that map2 unit map2

and  is a less powerful subset of the  interface, that nonetheless isunit Monad

very useful on its own.

Since so many combinators can be written in terms of just these two functions,
there is a name for data types that can implement  and . They are calledmap2 unit

:applicative functors

There is an additional combinator, , that we haven't yet discussed. The apply

 and  combinators can be implemented in terms of each other, so amap2 apply

minimal implementation of  must provide one or the other.Applicative

EXERCISE 1: Implement  in terms of  and . Thenmap2 apply unit

implement  in terms of  and .apply map2 unit

Applicative also extends . This implies that  can be writtenFunctor map

in terms of , , and . Here it is in terms of  and :map2 apply unit apply unit

And here in terms of  and :map2 unit

You should already have a good sense of what  means. But what is themap2

12.2 The Applicative trait

trait Applicative[F[_]] extends Functor[F] {
  def map2[A,B](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]
  def apply[A,B](fab: F[A => B])(fa: F[A]): F[B]
  def unit[A](a: A): F[A]
}

def map[A,B](a: F[A])(f: A => B): F[B] =
  apply(unit(f))(a)

def map[A,B](a: F[A])(f: A => B): F[B] =
  map2(a, unit(f))(_(_))
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meaning of ? At this point it's a little bit of a floating abstraction, and weapply

need an example. Let's drop down to  and look at a concreteOption

implementation:

You can see that this method combines two s. But one of themOption

contains a  (unless it is  of course). The action of  is to applyfunction None apply

the function inside one argument to the value inside the other. This is the origin of
the name "applicative". This operation is sometimes called idiomatic function

 since it occurs within some idiom or context. In the case of the application
 idiom from the previous chapter, the implementation is literally justIdentity

function application. In the example above, the idiom is  so the methodOption

additionally encodes the rule for , which handles the case where either theNone

function or the value are absent.
The action of  is similar to the familiar . Both are a kind of functionapply map

application in a context, but there's a very specific difference. In the case of 
, the function being applied might be affected by the context. For example,apply

if the second argument to  is  in the case of  then there is noapply None Option

function at all. But in the case of , the function must exist independently of themap

context. This is easy to see if we rearrange the type signature of  a little andmap

compare it to :apply

The only difference is the  around the function argument type. The F apply

function is strictly more powerful, since it can have that added  effect. It makesF

sense that we can implement  in terms of , but not the other waymap apply

around.
We have also seen that we can implement  as well in terms of .map2 apply

We can extrapolate that pattern and implement , , etc. In fact, map3 map4 apply

can be seen as a general function lifting combinator. We can use it to lift a function

def apply[A,B](oab: Option[A => B])(oa: Option[A]): Option[B] =
  (oab, oa) match {
    case (Some(f), Some(a)) => Some(f(a))
    case _ => None
  }

def   map[A,B](f:   A => B )(a: F[A]): F[B]
def apply[A,B](f: F[A => B])(a: F[A]): F[B]
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of any arity into our applicative functor. Let's look at  on  as anmap3 Option

example.
We start out with a ternary function like , which just adds 3(_ + _ + _)

integers:

If we Curry this function, we get a slightly different type. It's the same function,
but one that can be gradually applied to arguments one at a time.

Pass that to  (which is just  in the case of ) and we have:unit Some Option

We can now use idiomatic function application three times to apply this to three
 values. To complete the picture, here is the fully general implementationOption

of  in terms of .map3 apply

The pattern is simple. We just Curry the the function we want to lift, pass the
result to , and then  as many times as there are arguments. Each callunit apply

to  is a partial application of the function .apply 1

Footnote 1mNotice that in this sense  can be seen as , since it's the case of "lifting" where unit map0 apply

is called zero times.

Another interesting fact is that we have just discovered a new minimal
definition of ! We already know that a monad can be given byMonad

implementations of , , and . Well, since we can implement  inmap unit join map

terms of , we now know that a  can be given by , , andapply Monad unit join

either  or . This gives us further insight into what a monad is! Amap2 apply

monad is just an applicative functor with an additional combinator, .join

val f: (Int, Int, Int) => Int = (_ + _ + _)

val g: Int => Int => Int => Int = f.curried

val h: Option[Int => Int => Int => Int] = unit(g)

def map3[A,B,C,D](fa: F[A],
                  fb: F[B],
                  fc: F[C])(f: (A, B, C) => D): F[D] =
  apply(apply(apply(unit(f.curried))(fa))(fb))(fc)
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We know that we can implement  using . And following themap2 flatMap

reasoning above, this means that . Since weall monads are applicative functors
have already implemented  instances for a great many data types, we don'tMonad

have to write  instances for them. We can simply change Applicative Monad

so that it extends  and overrides :Applicative apply

But the converse is not true—not all applicative functors are monads. Using 
 together with either  or , we cannot implement  or unit map2 apply flatMap

. If we try it, we get stuck pretty quickly.join

Let's look at the signatures of  and  side by side, rearrangingflatMap apply

the signature of  slightly from what we're used to in order to make thingsflatMap

clearer:

The difference is in the type of the function argument. In , that argumentapply

is fully contained inside . So the only way to pass the  from the secondF A

argument to the function of type  in the first argument is to somehowA => B

consider both  contexts. For example, if  is  we pattern-match on bothF F Option

arguments to determine if they are  or :Some None

12.3 The difference between monads and applicative functors

trait Monad[M[_]] extends Applicative[M] {
  def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B] = join(map(ma)(f))

  def join[A](mma: M[M[A]]): M[A] = flatMap(mma)(ma => ma)

  def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C] =
    a => flatMap(f(a))(g)

  override def apply(mf: M[A => B])(ma: M[A]): M[B] =
    flatMap(mf)(f => flatMap(ma)(a => f(a))
}

def apply[A,B](fab: F[A => B])(fa: F[A]): F[B]
def flatMap[A,B](f: A => F[B])(fa: F[A]): F[B]

def apply[A,B](oa: Option[A], oab: Option[A => B]): Option[B] =
  (oa, oab) match {
    case (Some(a), Some(f)) => Some(f(a))
    case _ => None
  }
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Likewise with  the function argument  is only invoked if both of the map2 f

 arguments are . The important thing to note is that whether theOption Some

answer is  or  is entirely determined by whether the inputs are both Some None

.Some

But in , the second argument is a function that produces an , and itsflatMap F

structure  on the value of the  from the first argument. So in the depends A Option

case, we would match on the first argument, and if it's  we apply the functionSome

 to get a value of type . And whether  result is  or f Option[B] that Some None

actually depends on the value inside the first :Some

One way to put this difference into words is to say that applicative operations
 while monadic operations may alter a structure. What does thispreserve structure

mean in concrete terms? Well, for example, if you  over a  with threemap List

elements, the result will always also have three elements. But if you flatMap

over a list with three elements, you may get many more since each function
application can introduce a whole  of new values.List

EXERCISE 2: Transplant the implementations of as many combinators as you
can from  to , using only , , and , orMonad Applicative map2 apply unit

methods implemented in terms of them.

def map2[A,B](x: Option[A], y: Option[B])(f: (A, B) => C): Option[C] =
  (x, y) match {
    case (Some(a), Some(b)) => Some(f(a, b))
    case _ => None
  }

def flatMap[A,B](oa: Option[A])(f: A => Option[B]): Option[B] =
  oa match {
    case Some(a) => f(a)
    case _ => None
  }

def sequence[A](fas: List[F[A]]): F[List[A]]
def traverse[A](as: List[A])(f: A => F[B]): F[List[B]]
def replicateM[A](n: Int, fa: F[A]): F[List[A]]
def factor[A,B](fa: F[A], fb: F[A]): F[(A,B)]
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To further illustrate the difference between applicative functors and monads,
getting a better understanding of both in the process, we should look at an example
of an applicative functor that is not a monad.

In chapter 4, we looked at the  data type and considered the question ofEither

how such a data type would have to be modified to allow us to report multiple
errors. To make this concrete, think of validating a web form submission. You
would want to give an error to the user if some of the information was entered
incorrectly, and you would want to tell the user about all such errors at the same
time. It would be terribly inefficient if we only reported the first error. The user
would have to repeatedly submit the form and fix one error at a time.

This is the situation with  if we use it monadically. First, let's actuallyEither

write the monad for the partially applied  type.Either

EXERCISE 3: Write a monad instance for :Either

Now consider what happens in a sequence of s like this, where eachflatMap

of the functions , , and validateEmail validPhone validatePostcode

has type  for a given type :Either[String, T] T

If  fails with an error, then  and validName validBirthdate

 won't even run. The computation with  is inherentlyvalidPhone flatMap

sequential and causal. The variable  will never be bound to anything unless f1

 succeeds.validName

Now think of doing the same thing with :apply

12.4 Not all applicative functors are monads

def eitherMonad[E]: Monad[({type f[x] = Either[E, x]})#f]

validName(field1) flatMap (f1 =>
validBirthdate(field2) flatMap (f2 =>
validPhone(field3) map (WebForm(_, _, _))

apply(apply(apply((WebForm(_, _, _)).curried)(
  validName(field1)))(
  validBirthdate(field2)))(
  validPhone(field3))
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Here, there is no causality or sequence implied. We could run the validation
functions in any order, and there's no reason we couldn't run them all first and then
combine any errors we get. Perhaps by collecting them in a  or . ButList Vector

the  monad we have is not sufficient for this. Let's invent a new data type, Either

, that is very much like  except that it can explicitly handleValidation Either

more than one error.

EXERCISE 4: Write an  instance for  thatApplicative Validation

accumulates errors in . Notice that in the case of  there isFailure Failure

always at least one error, stored in . The rest of the errors accumulate in the head

.tail

To continue the example above, consider a web form that requires an email
address, a phone number, and a post code.

This data will likely be collected from the user as strings, and we must make
sure that the data meets a certain specification, or give a list of errors to the user
indicating how to fix the problem. The specification might say that  cannotname

be empty, that  must be in the form , and that birthdate "yyyy-MM-dd"

 must contain exactly 10 digits:phoneNumber

sealed trait Validation[+E, +A]

case class Failure[E](head: E, tail: Vector[E])
  extends Validation[E, Nothing]

case class Success[A](a: A) extends Validation[Nothing, A]

case class WebForm(name: String, birthdate: Date, phoneNumber: String)

def validName(name: String): Validation[String, String] =
  if (name != "")
       Success(name)
  else Falure("Name cannot be empty", List())

def validBirthdate(birthdate: String): Validation[String, Date] =
  try {
    import java.text._
    Success((new SimpleDateFormat("yyyy-MM-dd")).parse(birthdate))
  } catch {
    Failure("Birthdate must be in the form yyyy-MM-dd", List())
  }
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And to validate an entire web form, we can simply lift the WebForm

constructor with :apply

If any or all of the functions produce , the whole Failure validWebForm

method will return all of those failures combined.

What sort of laws should we expect applicative functors to obey? Well, we should
definitely expect them to obey the functor law:

What does this mean for applicative functors? Let's remind ourselves of our
implementation of :map

This definition of  simply shows that an applicative functor  in amap is a functor

specific way. And this definition, together with the functor law, imply the first
applicative law. This is the  for applicative functors:law of identity

This law demands that  preserve identities. Putting the identity functionunit

through  and then  results in the identity function itself. But this reallyunit apply

def validPhone(phoneNumber: String): Validation[String, String] =
  if (phoneNumber.matches("[0-9]{10}"))
       Success(phoneNumber)
  else Failure("Phone number must be 10 digits")

def validWebForm(name: String,
                 birthdate: String,
                 phone: String): Validation[String, WebForm] =
  apply(apply(apply((WebForm(_, _, _)).curried)(
    validName(name)))(
    validBirthdate(birthdate)))(
    validPhone(phone))

12.5 The applicative laws

map(v)(x => x) == v

def map[A,B](a: F[A])(f: A => B): F[B] =
  apply(unit(f))(a)

apply(unit(x => x))(v) == v
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is just the functor law with an applicative accent, since by our definition above, 
 is the same as  followed by .map unit apply

The second thing that the laws demand of applicative functors is that they 
. This is stated as the :preserve function composition composition law

Here,  and  have types like  and , and  is a valuef g F[A => B] F[B => C] x

of type . Both sides of the  sign are applying  to  and then applying  toF[A] == g x f

the result of that. In other words they are applying the composition of  and  to .f g x

All that this law is saying is that these two ways of lifting function composition
should be equivalent. In fact, we can write this more tersely using :map2

Or even more tersely than that, using :map3

This makes it much more obvious what's going on. We're lifting the
higher-order function  which, given the arguments , , and  will_(_(_)) f g x

return . And the composition law essentially says that even though theref(g(x))

might be different ways to implement  for an applicative functor, they shouldmap3

all be equivalent.
The two remaining applicative laws establish the relationship between unit

and . These are the laws of  and . Theapply homomorphism interchange

homomorphism law states that passing a function and a value through ,unit

followed by idiomatic application, is the same as passing the result of regular
application through :unit

We know that passing a function to  and then  is the same asunit apply

simply calling , so we can restate the homomorphism law:map

   apply(apply(apply(unit(a => b => c => a(b(c)))))(g))(x)
== apply(f)(apply(g)(x))

apply(map2(f, g)(_compose _))(x) == apply(f)(apply(g)(x))

map3(f, g, x)(_(_(_)))

apply(unit(f))(unit(x)) == unit(f(x))
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The  completes the picture by saying that  should haveinterchange law unit

the same effect whether applied to the first or the second argument of :apply

The interchange law can be stated a different way, showing a relationship
between  and  with regard to lifted function application:map2 map

The applicative laws are not surprising or profound. Just like the monad laws,
these are simple sanity checks that the applicative functor works in the way that we
would expect. They ensure that , , , and  behave in aapply unit map map2

consistent manner.
EXERCISE 5 (optional, hard): Prove that all monads are applicative functors,

by showing that the applicative laws are implied by the monad laws.
EXERCISE 6: Just like we can take the product of two monoids  and  to giveA B

the monoid , we can take the product of two applicative functors.(A, B)

Implement this function:

EXERCISE 7 (hard): Applicative functors also compose another way! If F[_]

and  are applicative functors, then so is . Prove this.G[_] F[G[_]]

EXERCISE 8 (optional): Try to write  on . It is not possible,compose Monad

but it is instructive to attempt it and understand why this is the case.

map(unit(x))(f) == unit(f(x))

apply(u)(unit(y)) == apply(unit(_(y)))(u)

map2(u, unit(y))(_(_)) == map(u)(_(y))

def product[G[_]](G: Applicative[G]):
  Applicative[({type f[x] = (F[x], G[x])})#f]

def compose[G[_]](G: Applicative[G]):
  Applicative[({type f[x] = F[G[x]]})#f]

def compose[N[_]](N: Monad[N]): Monad[({type f[x] = M[N[x]]})#f]
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Look again at the signatures of  and :traverse sequence

Can we generalize this further? Recall that there were a number of data types
other than  that were  in chapter 10. Are there data types otherList Foldable

than  that are ? Of course!List traversable

EXERCISE 9: On the  trait, implement  over a Applicative sequence Map

rather than a :List

But traversable data types are too numerous for us to write specialized 
 and  methods for each of them. What we need is a newsequence traverse

interface. We will call it :Traverse2

Footnote 2mThe name  is already taken by an unrelated trait in the Scala standard library.Traversable

The really interesting operation here is . Look at its signaturesequence

closely. It takes  and swaps the order of  and . In other words it F[M[A]] F M

  and  past each other to give . This is as general as a typecommutes F M M[F[A]]

signature gets. What  is saying is that  can be swapped with an Traverse[F] F M

inside of it, as long as that  is an applicative functor. We have seen lots ofM

examples of this in past chapters, but now we are seeing the general principle.
The  method, given an  full of s, will turn each  into an traverse F A A M[B]

and then use the applicative functor to combine the s into an  full of s.M[B] F B

EXERCISE 10: Write  instances for , , and :Traverse List Option Tree

12.6 Traversable functors

def traverse[F[_],A,B](as: List[A], f: A => F[B]): F[List[B]]
def sequence[F[_],A](fas: List[F[A]]): F[List[A]]

def sequenceMap[K,V](ofa: Map[K,F[V]]): F[Map[K,V]]

trait Traverse[F[_]] {
  def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]] =
    sequence(map(fa)(f))
  def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
    traverse(fma)(ma => ma)
}
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At this point you might be asking yourself what the difference is between a
traversal and a fold. Both of them take some data structure and apply a function to
the data within in order to produce a result. The difference is that  traverse

, while  actually throws the structurepreserves the original structure foldMap

away and replaces it with the operations of a monoid.
For example, when traversing a  with an -valued function, weList Option

would expect the result to always either be  or to contain a list of the sameNone

length as the input list. This sounds like it might be a law! But we can choose a
simpler applicative functor than  for our law. Let's choose the simplestOption

possible one, the identity functor:

We already know that  is a monad so it's also an applicative functor:Id

Then our law, where  is an  for some , can be writtenxs F[A] Traverse[F]

like this:

If we replace  with  here, then this is just the functor identitytraverse map

law! This means that in the context of the  applicative functor,  and Id map

 are the same operation. This implies that  can extend traverse Traverse

 and we can write a default implementation of  in terms of Functor map

 through , and  itself can be given a defaulttraverse Id traverse

implementation in terms of  and :sequence map

case class Tree[+A](head: A, tail: List[Tree[A]])

type Id[A] = A

val idMonad = new Monad[Id] {
  def unit[A](a: => A) = a
  override def flatMap[A,B](a: A)(f: A => B): B = f(a)
}

traverse[Id, A, A](xs)(x => x) == xs

trait Traverse[F[_]] extends Functor[F] {
  def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]] =
    sequence(map(fa)(f))
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A valid instance of  must then override at least either  orTraverse sequence

.traverse

But what is the relationship between  and ? The answerTraverse Foldable

involves a connection between  and .Applicative Monoid

Take another look at the signature of :traverse

Suppose that our  were a type constructor  that takes any type to M ConstInt

, so that  throws away its type argument  and just gives us Int ConstInt[A] A

:Int

Then in the type signature for , if we instantiate  to be traverse M ConstInt

, it becomes:

This looks a lot like  from . Indeed, if  is something likefoldMap Foldable F

 then what we need to implement this signature is a way of combining the List

 values returned by  for each element of the list, and a "starting" value forInt f

handling the empty list. In other words, we only need a . AndMonoid[Int]

that's easy to come by.
Indeed, given a constant functor like above, we can turn any  into an Monoid

:Applicative

  def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
    traverse(fma)(ma => ma)
  def map[A,B](fa: F[A])(f: A => B): F[B] =
    traverse[Id, A, B](fa)(f)(idMonad)
}

12.6.1 From monoids to applicative functors

def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]

type ConstInt[A] = Int

def traverse[A,B](fa: F[A])(f: A => Int): Int

type Const[A, B] = A

implicit def monoidApplicative[M](M: Monoid[M]) =
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This is ConstInt generalized to any A, not just Int.

For this reason, applicative functors are sometimes called "monoidal functors".
The operations of a monoid map directly onto the operations of an applicative.

This means that  can extend  and we can give a defaultTraverse Foldable

implementation of  in terms of :foldMap traverse

Note that  now extends both   !Traverse Foldable and Functor

Importantly,  itself cannot extend . Even though it's possibleFoldable Functor

to write  in terms of a fold for most foldable data structures like , it is notmap List

possible .in general
EXERCISE 11: Answer, to your own satisfaction, the question of why it's not

possible for  to extend . Can you think of a  thatFoldable Functor Foldable

is not a functor?

So what is  really for? We have already seen practical applications ofTraverse

particular instances, such as turning a list of parsers into a parser that produces a
list. But in what kinds of cases do we want the ? What sort ofgeneralization
generalized library does  allow us to write?Traverse

The  applicative functor is a particularly powerful one. Using a State State

action to  a collection, we can implement complex traversals that keeptraverse

some kind of internal state.
There's an unfortunate amount of type annotation necessary in order to partially

apply  in the proper way, but traversing with  is common enoughState State

that we can just have a special method for it and write those type annotations once
and for all:

  new Applicative[({ type f[x] = Const[M, x] })#f] {
    def unit[A](a: => A): M = M.zero
    override def apply[A,B](m1: M)(m2: M): M = M.op(m1, m2)
  }

override def foldMap[A,B](as: F[A])(f: A => B)(mb: Monoid[B]): B =
  traverse[({type f[x] = Const[B,x]})#f,A,Nothing](
    as)(f)(monoidApplicative(mb))

12.7 Uses of Traverse

12.7.1 Traversals with State
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To demonstrate this, here is a  traversal that labels every element withState

its position. We keep an integer state, starting with 0, and add 1 at each step:

By the same token, we can keep a state of type , to turn anyList[A]

traversable functor into a List:

Get the current state, the accumulated list.
Add the current element and set the new list as the new state.

It begins with the empty list  as the initial state, and at every element in theNil

traversal it adds it to the front of the accumulated list. This will of course construct
the list in the reverse order of the traversal, so we end by reversing the list we get
from running the completed state action. Note that we  because in thisyield ()

instance we don't want to return any value other than the state.
Of course, the code for  and  is nearly identical. AndtoList zipWithIndex

in fact most traversals with  will follow this exact pattern: We get theState

current state, compute the next state, set it, and yield some value. We should
capture that in a function:

def traverseS[S,A,B](fa: F[A])(f: A => State[S, B]): State[S, F[B]] =
  traverse[({type f[x] = State[S,x]})#f,A,B](fa)(f)(Monad.stateMonad)

def zipWithIndex[A](ta: F[A]): F[(A,Int)] =
  traverseS(ta)((a: A) => (for {
    i <- get[Int]
    _ <- set(i + 1)
  } yield (a, i))).run(0)._1

def toList[A](fa: F[A]): List[A] =
  traverseS(fa)((a: A) => (for {

    as <- get[List[A]]

    _  <- set(a :: as)
  } yield ()).run(Nil)._2.reverse

def mapAccum[S,A,B](fa: F[A], s: S)(f: (A, S) => (B, S)): (F[B], S) =
  traverseS(fa)((a: A) => (for {
    s1 <- get[S]
    (b, s2) = f(a, s)
    _  <- set(s2)
  } yield b)).run(s)

override def toList[A](fa: F[A]): List[A] =
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EXERCISE 12: An interesting consequence of being able to turn any
traversable functor into a  list is that we can write, once and for all, areversed
function to reverse any traversable functor! Write this function.

It should obey the following law, for all  and  of the appropriate types:x y

EXERCISE 13: Use  to give a default implementation of mapAccum

 for the  trait.foldLeft Traverse

It is in the nature of a traversal that it must preserve the shape of its argument. This
is both its strength and its weakness. This is well demonstrated when we try to
combine two structures into one.

Given  can we combine a value of some type  andTraverse[F] F[A]

another of some type  into an ? We could try using  to writeF[B] F[C] mapAccum

a generic version of :zip

Notice that this version of  is not able to handle arguments of differentzip

"shapes". For example if  is  then it can't handle lists of different lengths. InF List

this implementation, the list  must be at least as long as . If  is , then fb fa F Tree

 must have at least the same number of branches as  at every level.fb fa

We can change the generic  slightly and provide two versions so that thezip

shape of one side or the other is dominant:

  mapAccum(fa, List[A]())((a, s) => ((), a :: s))._2.reverse

def zipWithIndex[A](fa: F[A]): F[(A, Int)] =
  mapAccum(fa, 0)((a, s) => ((a, s), s + 1))._1

def reverse[A](fa: F[A]): F[A]

toList(reverse(x)) ++ toList(reverse(y)) ==
 reverse(toList(y) ++ toList(x))

12.7.2 Combining traversable structures

def zip[A,B](fa: F[A], fb: F[B]): F[(A, B)] =
  (mapAccum(fa, toList(fb)) {
    case (a, Nil) => sys.error("zip: Incompatible shapes.")
    case (a, b :: bs) => ((a, b), bs)
  })._1
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In the case of  for example, the result of  will have the shape of the List zipR

 argument, and it will be padded with  on the left if  is longer than .fb None fb fa

In the case of , the result of  will have the shape of the  tree, and itTree zipR fb

will have  on the  side only where the shapes of the two trees intersect.Some(a) A

In the chapter on streams and laziness we talked about how multiple passes over a
structure can be fused into one. In the chapter on monoids, we looked at how we
can use monoid products to carry out multiple computations over a foldable
structure in a single pass. Using products of applicative functors, we can likewise
fuse multiple traversals of a traversable structure.

EXERCISE 14: Use applicative functor products to write the fusion of two
traversals. This function will, given two functions  and , traverse  a singlef g fa

time, collecting the results of both functions at once.

Not only can we use composed applicative functors to fuse traversals, traversable
functors themselves compose. If we have a nested structure like 

 then we can traverse the map, the option, and theMap[K,Option[List[V]]]

list at the same time and easily get to the  value inside, because , ,V Map Option

and  are all traversable.List

EXERCISE 15: Implement the composition of two  instances.Traverse

def zipL[A,B](fa: F[A], fb: F[B]): F[(A, Option[B])] =
  (mapAccum(fa, toList(fb)) {
    case (a, Nil) => ((a, None), Nil)
    case (a, b :: bs) => ((a, Some(b)), bs)
  })._1

def zipR[A,B](fa: F[A], fb: F[B]): F[(Option[A], B)] =
  (mapAccum(fb, toList(fa)) {
    case (b, Nil) => ((None, b), Nil)
    case (b, a :: as) => ((Some(a), b), as)
  })._1

12.7.3 Traversal fusion

def fuse[M[_],N[_],A,B](fa: F[A])(f: A => M[B], g: A => N[B])
                       (M: Applicative[M], N: Applicative[N]):
                       (M[F[B]], N[F[B]])

12.7.4 Nested traversals
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Let's now return to the issue of composing monads. As we saw earlier in this
chapter,  instances always compose, but  instances do not.Applicative Monad

If you tried before to implement general monad composition, then you would have
found that in order to implement  for nested monads  and , you wouldjoin M N

have to write something of a type like . AndM[N[M[N[A]]]] => M[N[A]]

that can't be written generically. But if  also happens to have a N Traverse

instance, we can  to turn  into , leading to sequence N[M[_]] M[N[_]]

. Then we can join the adjacent  layers as well as the adjacent M[M[N[N[A]]]] M

 layers using their respective  instances.N Monad

EXERCISE 16: Implement the composition of two monads where one of them
is traversable:

Expressivity and power often comes at the price of compositionality and
modularity. The issue of composing monads is often addressed with a
custom-written version of each monad that is specifically constructed for
composition. This kind of thing is called a . For example, the monad transformer

 monad transformer composes  with any other monad:OptionT Option

The  definition here maps over both the  and the , andflatMap M Option

flattens structures like  to just .M[Option[M[Option[A]]]] M[Option[A]]

But this particular implementation is specific to . And the general strategyOption

of taking advantage of  works only with traversable functors. ToTraverse

compose with  for example (which cannot be traversed), a specialized State

def compose[G[_]](implicit G: Traverse[G]):
    Traverse[({type f[x] = F[G[x]]})#f]

12.7.5 Monad composition

def composeM[M[_],N[_]](M: Monad[M], N: Monad[N], T: Traverse[N]):
    Monad[({type f[x] = M[N[x]]})#f]

case class OptionT[M[_],A](value: M[Option[A]])(implicit M: Monad[M]) {
  def flatMap[B](f: A => OptionT[M, A]): OptionT[M, B] =
    OptionT(value flatMap {
      case None => M.unit(None)
      case Some(a) => f(a).value
    })
}
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applicative functor laws
composition law
homomorphism law
identity law
interchange law
law of composition
law of homomorphism
law of identity
law of interchange
laws of applicative functors
monad transformer

 monad transformer has to be written. There is no generic compositionStateT

strategy that works for every monad.
See the chapter notes for more information about monad transformers.

Applicative functors are a very useful abstraction that is highly modular and
compositional. The functions  and  allow us to lift functions and values,unit map

while  and  give us the power to lift functions of higher arities. Thisapply map2

in turn enables  and  to be generalized to traversabletraverse sequence

functors. Together,  and  let us construct complexApplicative Traverse

nested and parallel traversals out of simple elements that need only be written
once.

This is in stark contrast to the situation with monads, where each monad's
composition with others becomes a special case. It's a wonder that monads have
historically received so much attention and applicative functors have received so
little.

Index Terms

12.8 Summary
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13
In this chapter, we will introduce the I/O monad (usually written 'the  monad'),IO

which extends what we've learned so far to handle , like writing to aexternal effects
file, reading from a database, etc, in a purely functional way. The  monad willIO

be important for two reasons:

It provides the most straightforward way of embedding imperative programming into FP,
while preserving referential transparency and keeping pure code separate from what we'll
call  code. We will be making an important distinction here in this chaptereffectful
between  and .effects side effects
It illustrates a key technique for dealing with external effects—using pure functions to
compute a  of an imperative computation, which is then executed by adescription
separate . Essentially, we are crafting an embedded domain specific languageinterpreter
(EDSL) for imperative programming. This is a powerful technique we'll be using
throughout part 4; part of our goal is to equip you with the skills needed to begin crafting
your own descriptions for interesting effectful programs you are faced with.

We are going to work our way up to the  monad by first considering a veryIO

simple example, one we discussed in chapter 1 of this book:

External effects and I/O

13.1 Introduction

13.2 Factoring effects

case class Player(name: String, score: Int)

def printWinner(p: Player): Unit =
  println(p.name + " is the winner!")

def declareWinner(p1: Player, p2: Player): Unit =
  if (p1.score > p2.score) printWinner(p1)
  else printWinner(p2)
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In chapter 1, we factored out the logic for computing the winner into a function
separate from displaying the winner:

We commented in chapter 1 that it was  possible to factor an impurealways
function into a pure 'core' and two functions with side effects, (possibly) one that
produces the pure function's input and (possibly) one that accepts the pure
function's output. In this case, we factored the pure function  out of winner

—conceptually,  was doing , itdeclareWinner declareWinner two things

was  the winner, and it was  the winner that was computed.computing displaying
Interestingly, we can continue this sort of factoring—the printWinner

function is also doing two things—it is computing a message, and then printing
that message to the console. We could factor out a pure function here as well,
which might be beneficial if later on we decide we want to display the winner
message in some sort of UI or write it to a file instead:

These might seem like silly examples, but the same principles apply in larger,
more complex programs and we hope you can see how this sort of factoring is
quite natural. We aren't changing what our program does, just the internal details of
how it is factored into smaller functions. The insight here is that inside every

. We can evenfunction with side effects is a pure function waiting to get out
formalize this a bit. Given an impure function of type , we can often splitA => B

this into two functions:1

Footnote 1mWe will see many more examples of this in this chapter and in the rest of part 4.

def printWinner(p: Player): Unit =
  println(p.name + " is the winner!")

def winner(p1: Player, p2: Player): Player =
  if (p1.score > p2.score) p1 else p2

def declareWinner(p1: Player, p2: Player): Unit =
  printWinner(winner(p1, p2))

def winnerMsg(p: Player): String =
  p.name + " is the winner!"

def printWinner(p: Player): Unit =
  println(winnerMsg(p))
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A  function , where  is some pure A => D D description
An  function , which can be thought of as an  of theseimpure D => B interpreter
descriptions

We will extend this to handle 'input' side effects shortly. For now, though,
consider applying this strategy repeatedly to a program. Each time we apply it, we
make more functions pure and push side effects to the outer layers of the program.
We sometimes call these impure functions the 'imperative shell' around the pure
core of the program. Eventually, we reach functions that seem to  sidenecessitate
effects like the built-in , which has type . What doprintln String => Unit

we do then?

It turns out that even functions like  can be factored into a pure core, byprintln

introducing a new data type we'll call :IO

Our  function is now pure—it returns an  value, whichprintWinner IO

simply describes an action that is to take place without actually  it. Weexecuting
say that  has or produces an  or is , but it is only theprintWinner effect effectful

interpreter of  (its  function) that actually has  effects.IO run side

Other than technically satisfying the requirements of FP, has the  typeIO

actually bought us anything? This is a subjective question, but as with any other
data type, we can access the merits of  by considering what sort of algebra itIO

provides—is it something interesting, from which we can define a large number of
useful operations and assemble useful programs, with nice laws that give us the
ability to reason about what these larger programs will do? Not really. Let's look at
the operations we can define:

13.3 A simple IO type

trait IO { def run: Unit }

def PrintLine(msg: String): IO =
  new IO { def run = println(msg) }

def printWinner(p: Player): IO =
  PrintLine(winnerMsg(p))

trait IO { self => 
  def run: Unit
  def ++(io: IO): IO = new IO {
    def run = { self.run; io.run }
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The only thing we can say about  as it stands right now is that it forms a IO

 (  is the identity, and  is the associative operation). So if weMonoid empty ++

have for instance a , we can reduce that to an , and the associativityList[IO] IO

of  means we can do this by folding left or folding right. On its own, this isn't++

very interesting. All it seems to have given us is the ability to delay when a side
effect gets 'paid for'.

Now we will let you in on a secret—you, as the programmer, get to invent
whatever API you wish to represent your computations, including those that
interact with the universe external to your program. This process of crafting
pleasing, useful, and composable descriptions of what you want your programs to
do is at its core . You are crafting a little language and anlanguage design
associated  that will allow you to express various programs. If you don'tinterpreter
like something about this language you have created, change it! You should
approach this task just like any other combinator library design task, and by now
you've had plenty of experience designing and writing such libraries.

As we have seen many times before, sometimes, when building up your little
language, you will encounter a program that cannot be expressed. So far, our IO

type can represent only 'output' effects. There is no way to express IO

computations that must, at various points, wait for input from some external
source. Suppose we would like to write a program that prompts the user for a
temperature in degrees fahrenheit, then converts this value to celsius and echoes it

to the user. A typical imperative program might look something like:2

Footnote 2mWe are not doing any sort of error handling here. This is just meant to be an illustrative example.

  }
}
object IO {
  def empty: IO = new IO { def run = () }
}

13.3.1 Handling input effects

def farenheitToCelsius(f: Double): Double =
  (f - 32) * 5.0/9.0

def converter: Unit = {
  println("Enter a temperature in degrees fahrenheit: ")
  val d = readLine.toDouble
  println(fahrenheitToCelsius(d))
}

229

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Unfortunately, we run into problems if we want to make  into aconverter

pure function that returns an :IO

In Scala,  is a  with a side effect of capturing a line of inputreadLine def

from the console. It returns a . We could wrap a call to this in an , butString IO

we have nowhere to put the result! We don't yet have a way of representing this
sort of effect with our current  type. The problem is we cannot express IO IO

computations that  of some meaningful type—our interpreter of yield a value IO

just produces  as its output. Should we give up on our  type and resort toUnit IO

using side effects? Of course not! We extend our  type to allow , by addingIO input

a type parameter to :IO

An  computation can now return a meaningful value. Notice we've added IO

 and  functions so  can be used in for-comprehensions. And map flatMap IO IO

now forms a :Monad

syntax for IO ..

def fahrenheitToCelsius(f: Double): Double =
  (f - 32) * 5.0/9.0

def converter: IO = {
  val prompt: IO = PrintLine(
    "Enter a temperature in degrees fahrenheit: ")
  // now what ???
}

trait IO[+A] { self => 
  def run: A
  def map[B](f: A => B): IO[B] =
    new IO[B] { def run = f(self.run) }
  def flatMap[B](f: A => IO[B]): IO[B] =
    new IO[B] { def run = f(self.run).run }
}

object IO extends Monad[IO] {
  def unit[A](a: => A): IO[A] = new IO[A] { def run = a }
  def flatMap[A,B](fa: IO[A])(f: A => IO[B]) = fa flatMap f

  def apply[A](a: => A): IO[A] = unit(a)
}
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We can now write our  example:converter

Our  definition no longer has side effects—it is a RT converter description

of a computation that will have side effects when interpreted via 
. And because it forms a , we can use all theconverter.run Monad

combinators we've written previously. Here are some other example usages of :IO

val echo = ReadLine.flatMap(PrintLine): An  that reads a line from theIO[Unit]

console and echoes it back.
val readInt = ReadLine.map(_.toInt): An  that parses an  by reading aIO[Int] Int

line from the console.
val readInts = readInt ** readInt: An  that parses an IO[(Int,Int)] (Int,Int)

by reading two lines from the console.
replicateM_(5)(converter): An  that will repeat  5 times,IO[Unit] converter

discarding the results (which are just ).  We can replace  here with any Unit 3 converter IO

action we wished to repeat 5 times (for instance,  or ).echo readInts

Footnote 3mRecall that  is the same as .replicateM(3)(fa) sequence(List(fa,fa,fa))

replicateM(10)(ReadLine): An  that will read 10 lines from theIO[List[String]]

console and return the list of results.

Here's a larger example, an interactive program which prompts the user for
input in a loop, then computes the factorial of the input. Here's an example run:

This code uses a few  functions we haven't seen yet, , ,Monad when foreachM

def ReadLine: IO[String] = IO { readLine }
def PrintLine(msg: String): IO[Unit] = IO { println(msg) }

def converter: IO[Unit] = for {
  _ <- PrintLine("Enter a temperature in degrees fahrenheit: ")
  d <- ReadLine.map(_.toDouble)
  _ <- PrintLine(fahrenheitToCelsius(d).toString)
} yield ()

The Amazing Factorial REPL, v2.0
q - quit
<number> - compute the factorial of the given number
<anything else> - bomb with horrible error
3
factorial: 6
7
factorial: 5040
q
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and , discussed in the sidebar below. For the full listing, see thesequence_

associated chapter code. The details of this code aren't too important; the point here
is just to demonstrate how we can embed an imperative programming language
into the purely functional subset of Scala. All the usual imperative programming
tools are here—we can write loops, perform I/O, and so on. If you squint, it looks a
bit like normal imperative code.

Imperative factorial using a mutable IO reference
Allocation a mutable reference
Modify reference in a loop
Dereference to obtain the value inside a reference
See sidebar

def factorial(n: Int): IO[Int] = for {

  acc <- ref(1)

  _ <- foreachM (1 to n toStream) (i => acc.modify(_ * i).skip)

  result <- acc.get
} yield result

val factorialREPL: IO[Unit] = sequence_(
  IO { println(helpstring) },

  doWhile { IO { readLine } } { line =>
    val ok = line != "q"
    when (ok) { for {
      n <- factorial(line.toInt)
      _ <- IO { println("factorial: " + n) }
    } yield () }
  })
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SIDEBAR Additional monad combinators
The above example makes use of some monad combinators we haven't
seen before, although they can be defined for any . You mayMonad

want to think about what these combinators mean for types other than 
. Notice that not all these combinators make sense for every monadicIO

type. (For instance, what does  mean for ? For forever Option

?)Stream

We don't necessarily endorse writing code this way.  What this does4

demonstrate, however, is that FP is not in any way limited in its
expressiveness—any program that can be expressed can be expressed in FP, even
if that functional program is a straightforward embedding of the imperative
program into the  monad.IO

Footnote 4mIf you have a monolithic block of impure code like this, you can always just write a definition
which performs actual side effects then wrap it in —this will be more efficient, and the syntax is nicer thanIO

what is provided using a combination of for-comprehension syntax and the various  combinators.Monad

def when[A](b: Boolean)(fa: => F[A]): F[Boolean] =
  if (b) as(fa)(true) else unit(false)
def doWhile[A](a: F[A])(cond: A => F[Boolean]): F[Unit] = for {
  a1 <- a
  ok <- cond(a1)
  _ <- if (ok) doWhile(a)(cond) else unit(())
} yield ()
def forever[A,B](a: F[A]): F[B] = {
  lazy val t: F[B] = forever(a)
  a flatMap (_ => t)
}
def foreachM[A](l: Stream[A])(f: A => F[Unit]): F[Unit] =
  foldM_(l)(())((u,a) => skip(f(a)))
def foldM_[A,B](l: Stream[A])(z: B)(f: (B,A) => F[B]): F[Unit] =
  skip { foldM(l)(z)(f) }
def foldM[A,B](l: Stream[A])(z: B)(f: (B,A) => F[B]): F[B] =
  l match {
    case h #:: t => f(z,h) flatMap (z2 => foldM(t)(z2)(f))
    case _ => unit(z)
  }
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The  monad is a kind of least common denominator for expressing programsIO

with external effects. Its usage is important mainly because it clearly separates
, forcing us to be honest about where interactions withpure code from impure code

the outside world are occurring and also encouraging the beneficial factoring of
effects that we discussed earlier. When programming  the  monad, wewithin IO

have many of the same problems and difficulties as we would in ordinary
imperative programming, which has motivated functional programmers to search

for more composable ways of describing effectful programs.  Nonetheless, the 5 IO

monad does provide some real benefits:

Footnote 5mAs we'll see in chapter 15, we don't need to give up on all the nice compositionality we've come
to expect from FP just to interact with the outside world.

IO computations are ordinary . We can store them in lists, pass them to functions,values
create them dynamically, etc. Any common pattern we notice can be wrapped up in a
function and reused. This is one reason why it is sometimes argued that functional
languages provide , as compared tomore powerful tools for imperative programming
languages like C or Java.
Reifying  computations as values means we can craft a more interesting interpreterIO

than the simple -based "interpreter" baked into the  type itself. Later on in thisrun IO

chapter, we will build a more refined  type and sketch out an interpreter that usesIO

nonblocking I/O in its implementation. Interestingly, client code like our converter
example remains identical—we do not expose callbacks to the programmer at all! They
are entirely an implementation detail of our  interpreter.IO

SIDEBAR IO computation reuse in practice
In practice, the amount of reuse we get by factoring out common
patterns of  usage is limited (you will notice this yourself if you startIO

writing programs with ). An  is a completely opaqueIO IO[A]

description of a computation that yields a single . Most of the generalA

purpose combinators for  are functions that can be defined for anyIO

monad—  itself is not contributing anything new, which means weIO

only have the monad laws to reason with.
What this means in practice is that we generally need to know
something more about an  than just its type to compose it withIO[A]

other computations (contrast this with, say, ). Reuse isStream[A]

extremely limited as a result.

13.3.2 Has this bought us anything?
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In this section, we are going to explore what an   and introduce aIO[A] means

more nuanced  type that clarifies what is actually going on in a functionalIO

program that performs I/O. A primary purpose here is to get you thinking, and to
make it clear how it is possible to craft more interesting interpreters of  than theIO

simple one we baked into the  function. Don't worry too much about followingrun

absolutely everything in this section.
With that said, let's see what we can learn about the meaning of . You mayIO

have noticed that our  type is roughly equivalent to our  type, introduced inIO Id

chapter 13 as the simplest possible type that gives rise to a monad. Let's compare
the two types side-by-side:

Aside from the fact that  is non-strict, and that retrieving the value is doneIO

using  instead of , the types are identical! Our "IO" type is just arun value

non-strict value. This is rather unsatisfying. What's going on here?
We have actually cheated a bit with our  type. We are relying on the fact thatIO

Scala allows unrestricted side effects at any point in our programs. But let's think
about what happens when we evaluate the  function of an . Duringrun IO

evaluation of , the pure part of our program will occasionally make requests ofrun

the outside world (like when it invokes ), wait for a result, and thenreadLine

pass this result to some further pure computation (which may subsequently make
some further requests of the outside world). Our current  type is completelyIO

inexplicit about where these interactions are occurring. But we can model these
interactions more explicitly if we choose:

This type separates the pure and effectful parts of an  computation. We'll getIO

to writing its  instance shortly. An  can be a pure value, or it can beMonad IO[A]

a request of the external computation. The type  defines the External protocol

13.4 The meaning of the IO type

case class Id[+A](value: A)
trait IO[+A] { def run: A }

trait IO[+A]
case class Pure[+A](a: A) extends IO[A]
case class Request[I,+A](expr: External[I],
                         receive: I => IO[A]) extends IO[A]
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—it encodes what possible external requests our program can make. We can think
of  much like an expression of type , but it is an expression that isExternal[I] I

"external" that must be evaluated by whatever program is running this  action.IO

The  function defines what to do when the result of the request becomesreceive

available, it is sometimes called the . We'll see a bit later how this cancontinuation
be exploited to write an interpreter for  that uses nonblocking I/O internally.IO

The simplest possible representation of  would be simply aExternal[I]

nonstrict value:6

Footnote 6mSimilar to our old  type!IO

This implies that our  type can call absolutely any impure Scala function,IO

since we can wrap any expression at all in  (for instance, Delay Delay {

). If we want to restrict access to only certainprintln("Side effect!") }

functions, we can parameterize our  type on the choice of .IO External 7

Footnote 7mOf course, Scala will not technically prevent us from invoking a function with side effects at any
point in our program. This discussion assumes we are following the discipline of not allowing side effects unless
this information is tracked in the type.

We have renamed  to just  here. With this representation, we canExternal F

define an  type that grants access to exactly the effects we want:F

Now an  is an  computation that can only read from andIO[Console,A] IO

write to the console.  We can introduce other types for different I/O capabilities—a8

file system , granting read/write access (or even just read access) to the fileF

trait Runnable[A] { def run: A }
object Delay { def apply[A](a: => A) = new Runnable[A] { def run = a }}

trait IO[F[_], +A]
case class Pure[F[_], +A](get: A) extends IO[F,A]
case class Request[F[_], I, +A](
    expr: F[I],
    receive: I => IO[F,A]) extends IO[F,A]

trait Console[A]
case object ReadLine extends Console[Option[String]]
case class PrintLine(s: String) extends Console[Unit]
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system, a network  granting the ability to open network connections and readF

from them, and so on. Notice, interestingly, that nothing about  impliesConsole

that any side effects must actually occur! That is a property of the  of interpreter F

values now required to actually run an :IO[F,A]

Footnote 8m

A completely valid  could ignore  requests andRun[Console] PrintLine

always return the string  in response to  requests:"Hello world!" ReadLine

Ignored!

While the real  could actually execute the effects:Run[Console]

def printWinner(p: Player): Unit =
  println(p.name + " is the winner!")

def winner(p1: Player, p2: Player): Player =
  if (p1.score > p2.score) p1 else p2

def declareWinner(p1: Player, p2: Player): Unit =
  printWinner(winner(p1, p2))

trait Run[F[_]] {
  def apply[A](expr: F[A]): (A, Run[F])
}

object IO {
  @annotation.tailrec
  def run[F[_],A](R: Run[F])(io: IO[F,A]): A = io match {
    case Pure(a) => a
    case Request(expr,recv) =>
      R(expr) match { case (e,r2) => run(r2)(recv(e)) }
  }
}

object RunConsoleMock extends Run[Console] {
  def apply[A](c: Console[A]) = c match {
    case ReadLine => (Some("Hello world!"), RunConsoleMock)

    case PrintLine(_) => ((), RunConsoleMock)
  }
}

object RunConsole extends Run[Console] {
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EXERCISE 1: Give the  instance for .  You may want toMonad IO[F,_] 9

override the default implementations of various functions with more efficient
versions.

Footnote 9mNote we must use the same trick discussed in chapter 10, to partially apply the  typeIO

constructor.

EXERCISE 2: Implement a  which uses elements from a Run[Console]

 to generate results from calls to  (it can ignore List[String] ReadLine

 calls):PrintLine

EXERCISE 3: Our definition of  is overly specific. We only need a Run

 to implement ! Implement  given an arbitrary .Monad[F] run run Monad[F] 10

With this definition, the interpreter is no longer tail recursive, and it is up to the 
 to ensure that the chains of  calls built up duringMonad[F] flatMap

interpretation do not result in stack overflows. We will discuss this further in the
next section.

Footnote 10mNote on this signature: when passing a  or  to a function, we typicallyMonad[F] Monad[G]

give the variable the same name as its type parameter (  or  in this case). We can then write F G

 almost as if  were the companion object of a type .F.map(expr)(f) F F

These last two exercises demonstrate something rather amazing—there is
nothing about our  type nor our  or  which require side effects of anyIO Run[F] F

  def apply[A](c: Console[A]) = c match {
    case ReadLine =>
      val r = try Some(readLine) catch { case _ => None }
      (r, RunConsole)
    case PrintLine(s) => (println(s), RunConsole)
  }
}

def monad[F[_]] = new Monad[({ type f[a] = IO[F,a]})#f] {
  ...
}

def console(lines: List[String]): Run[Console]

def run[F[_],A](F: Monad[F])(io: IO[F,A]): F[A]
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kind. From the perspective of our  programs, we cannot even  anIO distinguish

interpreter that uses 'real' side effects from one like  that doesn't. console IO

values are simply pure computations that may occasionally make requests of some
interpreter that exists outside the universe established by the program.

With our  type, the behavior of this external interpreter is modeled only in aIO

very opaque way—we say that each evaluation we request from the interpreter
results in a new interpreter state and beyond that make no assumptions about how

the sequence of requests made will affect future behavior.  As we will learn in11

chapter 15, creating more composable abstractions for dealing with I/O and other
effects is all about designing types that codify additional assumptions about the
nature of the interactions between the 'internal' and 'external' computations.

Footnote 11mOur definition for an arbitrary  is telling us the same thing, since a Monad[F] Monad[F]

provides us with a strategy for sequencing programs, but makes no additional assumptions about the nature of
this sequencing.

In this section we will develop an  type and associated interpreter that usesIO

nonblocking I/O internally. We will also demonstrate a general technique, called 

, for avoiding stack overflow errors in monadic code.  Trampoliningtrampolining 12

is particularly important for  since  is often used for defining top-levelIO IO

program loops and other large or long-running computations that are susceptible to
excessive stack usage.

Footnote 12mSee chapter notes for more discussion and links to further reading on this.

Our current  type will stack overflow for some programs. In this section, we willIO

develop an  type and a  function that uses . By this weIO run constant stack space

mean that the stack usage of  is not dependent on the input in any way. Torun

start, let's look at a few examples of  programs that can be problematic. We'llIO

make use of a helper function, , which constructs an IO.apply

 from a nonstrict :IO[Runnable,A] A

13.5 A realistic I/O data type and interpreter

13.5.1 A trampolined IO type and a tail-recursive interpreter

object IO {
  ...
  def apply[A](a: => A): IO[Runnable,A] =
    Request(Delay(a), (a:A) => Pure(a))
}
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Here are some perfectly reasonable  programs that can present problems:IO

Bring Monad combinators into scope
Generates a large list of random values
Prints the numbers from 1 to 100,000
Prints "hi" in an infinite loop
Prints out "hi" 100,000 times, but the IO action is built up using a left fold so that
calls to flatMap are associated to the left

EXERCISE 4 (hard): Try running these examples for your current
implementation of , and also (optional) for the simple  type we defined firstIO IO

in this chapter. For those that fail, can you explain why? It can be a little difficult
to tell what's going on just by looking at the stack trace. You may want to instead
trace on paper the evaluation of these expressions until a pattern becomes clear.

To fix the problem, we are going to build what is called a  versiontrampolined

of . To illustrate the idea, let's first look at the type .IO Trampoline 13

Footnote 13mWe are not going to work through derivation of this type, but if you are interested, follow the
references in the chapter notes for more information.

What is ? First, note that we can extract an  from a Trampoline A

 using a tail-recursive function, :Trampoline[A] run

EXERCISE 5: Write the tail-recursive function, , to convert a run

 to an . Just follow the types—there is only oneTrampoline[A] A

implementation that typechecks!

val F = monad[Runnable]; import F._

val ex1 = sequence_(Stream.fill(100000)(IO { math.random }))

val ex2 = foreachM(Stream.range(1,100000))(i => IO { println(i) })

val ex3 = forever(IO { println("hi") })

val ex4 = Stream.fill(100000)("hi").foldLeft(IO { () })(
  (acc,s) => acc *> IO { println(s) })

trait Trampoline[+A]
case class Done[+A](get: A) extends Trampoline[A]
case class More[+A](force: () => Trampoline[A]) extends Trampoline[A]
case class Bind[A,+B](force: () => Trampoline[A],
                      f: A => Trampoline[B]) extends Trampoline[B]

@annotation.tailrec
def run[A](t: Trampoline[A]): A
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So a  can be used in place of . But even more interestingly,Trampoline[A] A

 forms a , and if implemented correctly, arbitrary monadicTrampoline Monad

expressions can be guaranteed not to stack overflow.
EXERCISE 6 (hard): Implement . (You may want toMonad[Trampoline]

add  and  methods to .) A valid implementation willmap flatMap Trampoline

never evaluate  or call  in the implementation of  or .force() run flatMap map

Can you see how it works?  lets us return control to the  function, andMore run

 represents a call to  as an ordinary value. If implementedBind flatMap

correctly,  will always return control to the  function after a constantflatMap run

number of steps, and the  function is guaranteed to make progress.run

EXERCISE 7 (hard, optional): Show that  always returns after doingflatMap

a constant amount of work, and that  will always call itself after a single call torun

.force()

Can you see why this is called trampolining? The name comes from the fact
that interpretation of a trampolined program bounces back and forth between the
central  loop and the functions being called.  is essentiallyrun Trampoline

providing an interpreter for function application that uses the heap instead of the
usual call stack. The key to making it work is that we reify  calls as data,flatMap

but associate these calls to the right, which lets us implement the  function as arun

tail-recursive function. There is some overhead to using it, but its advantage is that

we gain predictable stack usage.14

Footnote 14mThere are some interesting optimizations to this scheme—it isn't necessary to return to the
central loop after every function call, only periodically to avoid stack overflows. See the chapter notes for more
information.

We can now add the same trampolining behavior directly to our  type:IO

trait IO[F[_], +A]
case class Pure[F[_], +A](get: A) extends IO[F,A]
case class Request[F[_],I,+A](
    expr: F[I],
    receive: I => IO[F,A]) extends IO[F,A]
case class BindMore[F[_],A,+B](
    force: () => IO[F,A],
    f: A => IO[F,B]) extends IO[F,B]
case class BindRequest[F[_],I,A,+B](
    expr: F[I], receive: I => IO[F,A],
    f: A => IO[F,B]) extends IO[F,B]
case class More[F[_],A](force: () => IO[F,A]) extends IO[F,A]
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We have a  constructor, as before, but we now have two additional More Bind

constructors.
EXERCISE 8: Implement both versions of  for this new version of .run IO

EXERCISE 9 (hard): Implement  for this new version of . OnceMonad IO

again, a correct implementation of  will not invoke  or .flatMap run force()

Test your implementation using the examples we gave above. Can you see why it
works? Again, you may want to try tracing their execution until the pattern
becomes clear, or even construct a proof that stack usage is guaranteed to be
bounded.

SIDEBAR Enabling infix monadic syntax for IO
When compiling an expression like , if  does not have aa.map(f) a

function , Scala will look in the companion object of the  type formap a

an implicit conversion to some type with a  function and call that ifmap

such a conversion exists. We can use this to expose infix syntax for all
the various  combinators—we just add the following function toMonad

the  companion object:IO

With this definition in the companion object, we we can write
expressions like , , a replicateM 10 a as "hello!" (a map2

 for any  values  and .b)(_ + _) IO a b

The  type used for  frequently includes operations that can take a long time toF IO

complete and which do not occupy the CPU, like accepting a network connection
from a server socket, reading a chunk of bytes from an input stream, writing a large
number of bytes to a file, and so on. Our current   function will wait idly forIO run

these operations to complete:

def run[F[_],A](R: Run[F])(io: IO[F,A]): A
def run[F[_],A](F: Monad[F])(io: IO[F,A]): F[A]

def monad[F[_]]: Monad[({ type f[x] = IO[F,x]})#f]

implicit def toMonadic[F[_],A](a: IO[F,A]) = monad[F].toMonadic(a)

13.5.2 A nonblocking I/O interpreter

242

http://www.manning-sandbox.com/forum.jspa?forumID=805
http://www.manning-sandbox.com/forum.jspa?forumID=805


Might take a long time

We can do better. There are I/O libraries that support  I/O. Thenonblocking
details of these libraries vary, but to give the general idea, a nonblocking  ofsource
bytes might have an interface like this:

Here, it is assumed that  returns immediately. We give requestBytes

 a callback function indicating what to do when the resultrequestBytes

becomes available or an error is encountered. Using this sort of library directly is

quite painful, for obvious reasons.15

Footnote 15mEven this API is rather nicer than what is offered directly by the  package in Java (nio API link

), which supports nonblocking I/O.

One of the nice things about making I/O computations into values is that we
can build more interesting interpreters for these values than the default 'interpreter'
which performs I/O actions directly. Here we will sketch out an interpreter that
uses nonblocking I/O internally. The ugly details of this interpreter are completely
hidden from code that uses the  type, and code that uses  can be written in aIO IO

much more natural style without explicit callbacks.
Recall that earlier, we implemented a function with the following signature:

We are going to simply choose  for our , though we will be using aFuture F

different definition than the  introduced injava.util.concurrent.Future

chapter 7. The version we use here can be backed by a nonblocking I/O primitive.

It is trampolined, as we've seen before.16

case Request(expr, recv) =>

  val (expensive, r2) = R(expr)
  run(r2)(recv(expensive))

trait Source {
  def requestBytes(
    nBytes: Int,
    callback: Either[Throwable, Array[Byte]] => Unit): Unit
}

def run[F[_],A](F: Monad[F])(io: IO[F,A]): F[A]
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Footnote 16mThis definition can be extended to handle timeouts, cancellation, and deregistering callbacks.
We won't be discussing these extensions here, but you may be interested to explore this on your own. See the 

 for an extension to  supporting proper error handling.Task.scala Future

Future looks almost identical to , except we have replaced the IO Request

and  cases with  and  constructors. The BindRequest Later BindLater

 function of  is presumed to have some side effect—perhapslisten Later

adding  to a mutable list of listeners to notify when the result becomescallback

available. We will only be using it here as an implementation detail of the run

function for  (this could be enforced using access modifiers).IO

EXERCISE 10 (hard, optional): Implement . We will need itMonad[Future]

to implement our nonblocking  interpreter. Also implement , for anIO runAsync

asynchronous evaluator for , and , the synchronous evaluator:Future run

With this in place, we can asynchronously evaluate any  to a IO[Future,A]

. But what do we do if we have an , say, and weFuture[A] IO[Console,A]

wish to evaluate it asynchronously to a ? We need a way to translateFuture[A]

between  and , which we can think of as aIO[Console,A] IO[Future,A]

form of compilation—we are replacing the abstract requests for  withConsole

concrete requests that will actually read from and write to the standard input and
output streams. We will use the following :trait

trait Future[+A]
object Future {
  case class Now[+A](get: A) extends Future[A]
  case class Later[+A](listen: (A => Unit) => Unit) extends Future[A]
  case class More[+A](force: () => Future[A]) extends Future[A]
  case class BindLater[A,+B](listen: (A => Unit) => Unit,
                             f: A => Future[B]) extends Future[B]
  case class BindMore[A,+B](force: () => Future[A],
                            f: A => Future[B]) extends Future[B]
}

def runAsync[A](a: Future[A])(onFinish: A => Unit): Future[Unit]
def run[A](a: Future[A]): A

trait Trans[F[_], G[_]] {
  def apply[A](f: F[A]): G[A]
}
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EXERCISE 11: Implement a version of  which translates from  to  as itrun F G

interprets the  action:IO

With this in place, we can now write the following to asynchronously evaluate
an :IO[Console,A]

That's it! In general, for any  type, we just require a way to translate that  to aF F

 and we can then evaluate  programs asynchronously. Let's lookFuture IO[F,A]

at some possible definitions of :RunConsole

First, if we wish, we can always implement  using ordinaryRunConsole

blocking I/O calls:17

Footnote 17mRecall that  doesn't do anything special with its argument—the argument willFuture.unit

still be evaluated in the main thread using ordinary function calls.

But because we are returning a , we have more flexibility. Here, weFuture

delegate  interpretation to a shared thread pool, to avoid blocking theReadLine

main computation thread while waiting for input. Notice that nothing requires us to
implement nonblocking calls everywhere in our interpreter—  uses thePrintLine

ordinary blocking  call directly (with the assumption that submitting thisprintln

as a task to a thread pool is not worth the overhead).

def run[F[_],G[_],A](T: Trans[F,G])(G: Monad[G])(io: IO[F,A]): G[A]

val RunConsole: Trans[Console,Future] = ...
val prog: IO[Console,A] = ...
val result: Future[A] = run(RunConsole)(Future)(prog)

object RunConsole extends Trans[Console,Future] {
  def apply[A](c: Console[A]): Future[A] =
    c match {
      case ReadLine => 
        Future.unit {
          try Some(readLine)
          catch { case _: Exception => None }
        }
      case PrintLine(a) =>
        Future.unit { println(a) }
    }
}
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In the  companion object, we define an  function, whichFuture apply

evaluates its argument in a thread pool. It returns a  which notifies anyLater

listeners once the result is available. The implementation is somewhat involved;
see the answer code for this chapter if you are interested.

EXERCISE 12 (hard, optional): Going one step further, we can use an API that
directly supports nonblocking I/O. We are not going to work through such an
implementation here, but you may be interested to explore this on your own by
building off the  library ( . As a start, try implementing anjava.nio API link

asynchronous read from an  ( ).AsynchronousFileChannel API link 18

Footnote 18mThis requires Java 7.

What is remarkable is that regardless of the implementation, we get to retain the
same straightforward style in code that uses , rather than being forced toIO

program with callbacks directly.

object RunConsole extends Trans[Console,Future] {
  def apply[A](c: Console[A]): Future[A] =
    c match {
      case ReadLine => 
        Future {
          try Some(readLine)
          catch { case _: Exception => None }
        }
      case PrintLine(a) =>
        Future.unit { println(a) }
    }
}

object Future {
  ...
  def apply[A](a: => A): Future[A] = { ... }
}

def read(file: AsynchronousFileChannel,
         fromPosition: Long,
         nBytes: Int): Future[Either[Throwable, Array[Byte]]]
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Despite the fancy implementation of our  interpreter and the advantage ofIO

having first-class  values, the  type fundamentally present us the same levelIO IO

of abstraction as ordinary imperative programming. This means that writing
efficient, streaming I/O will generally involve monolithic loops.

Let's look at an example. Suppose we wanted to write a program to convert a
file, , containing a sequence of temperatures in degreesfahrenheit.txt

fahrenheit, separated by blank lines, to a new file, , containing thecelsius.txt

same temperatures in degrees celsius. An  type for this might look somethingF

like:19

Footnote 19mWe are ignoring exception handling in this API.

This works, although it requires loading the contents of fahrenheit.txt

entirely into memory to work on it, which could be problematic if the file is very
large. We would prefer to perform this task using roughly constant memory—read
a line or a fixed size buffer full of lines from , convert tofarenheit.txt

celsius, dump to , and repeat. To achieve this efficiency we couldcelsius.txt

expose a lower-level file API that gives access to I/O handles:

13.6 Why the IO type is insufficient for streaming I/O

trait Files[A]
case class ReadLines(file: String) extends Files[List[String]]
case class WriteLines(file: String, lines: List[String])
  extends Files[Unit]

for {
  lines <- request(ReadLines("fahrenheit.txt"))
  cs = lines.map(s => fahrenheitToCelsius(s.toDouble).toString)
  _ <- request(WriteLines("celsius.txt", cs))
} yield ()

trait Files[A]
case class OpenRead(file: String) extends Files[HandleR]
case class OpenWrite(file: String) extends Files[HandleW]
case class ReadLine(h: HandleR) extends Files[Option[String]]
case class WriteLine(h: HandleW, line: String) extends Files[Unit]

trait HandleR
trait HandleW
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The only problem with this is we now need to write a monolithic loop:

There's nothing inherently wrong with writing a monolithic loop like this, but
it's not composable. Suppose we decide later that we'd like to compute a 5-element
moving average of the temperatures. Modifying our  function to do thisloop

would be somewhat painful. Compare that to the equivalent change we'd make to
our -based code, where we could define a  function and justList movingAvg

stick it before or after our conversion to celsius:

Even  could be composed from smaller pieces—we could build itmovingAvg

using a generic combinator, :windowed 20

Footnote 20mThis can actually be implemented for any . Also, if we have a  instead of just aFoldable group

monoid it can be implemented more efficiently. A group defines an additional operation, negation, for which 
.op(a,neg(a)) == zero

The point to all this is that programming with a composable abstraction like 
 is much nicer than programming directly with the primitive I/O operations.List

Lists are not really special—they are just one instance of a composable API that is
pleasant to use. We should not have to give up all the nice compositionality we've

def loop(f: HandleR, c: HandleW): IO[Files,Boolean] = for {
  line <- request(ReadLine(f))
  b <- line.map(s =>
    request(WriteLine(c,
            fahrenheitToCelsius(s.toDouble).toString)) as true) .
    getOrElse (IO.unit(false))
} yield b

def convertFiles = for {
  f <- request(OpenRead("fahrenheit.txt"))
  c <- request(OpenWrite("celsius.txt"))
  _ <- while_(loop(f,c))
} yield ()

def movingAvg(n: Int)(l: List[Double]): List[Double]

cs = movingAvg(5)(lines.map(s => fahrenheitToCelsius(s.toDouble))).
     map(_.toString)

def windowed[A](n: Int, l: List[A])(f: A => B)(m: Monoid[B]): List[B]
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..
continuation
effect scoping
trampolining
unobservable

come to expect from FP just to write programs that make use of efficient,

streaming I/O.  Luckily we don't have to. As we will see in chapter 15, we get to21

build  abstractions we want for creating computations that perform I/O. Ifwhatever
we like the metaphor of lists or streams, we can find a way to encode a list-like
API for expressing I/O computations. If we invent or discover some other
composable abstraction, we can often find some way of using that.

Footnote 21mOne might ask—could we just have various  operations return the  type weFiles Stream

defined in chapter 5? This is called , and it is problematic for several reasons we'll discuss more inlazy I/O
chapter 15.

This chapter introduced the simplest model for how external effects and I/O can be
handled in a purely functional way. We began with a discussion of effect-factoring
and demonstrated how effects can be moved to the outer layers of a program. From
there, we defined two  data types, one with a simple interpreter built into theIO

type, and another which made interactions with the external universe more explicit.
This second representation allowed us to implement a more interesting interpreter
of  values that used nonblocking I/O internally.IO

The  monad is not the final word in writing effectful programs. It isIO

important because it represents a kind of lowest common denominator. We don't
normally want to program with  directly, and in chapter 15 we will discuss howIO

to build nicer, more composable abstractions.
Before getting to that, in our next chapter, we will apply what we've learned so

far to fill in the other missing piece of the puzzle: . At various placeslocal effects
throughout this book, we've made use of local mutation rather casually, with the
assumption that these effects were not . Next chapter we explore whatobservable
this means in more detail, show more example usages of local effects, and show
how  can be enforced by the type system.effect scoping

Index Terms

13.7 Conclusion
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14
In the first chapter of this book we introduced the concept of referential
transparency, setting the premise for purely functional programming. We declared
that pure functions cannot mutate data in place or interact with the external world.
In the previous chapter on I/O, we learned that this is not exactly true. We can
write purely functional and compositional programs that describe interactions with
the outside world. These programs are unaware that they can be interpreted with an
evaluator that has side-effects.

In this chapter, we will develop a more mature concept of referential
transparency. We will consider the idea that effects can occur  inside anlocally
expression, and that we can guarantee that no other part of the larger program can
observe these effects occurring.

We will also introduce the idea that expressions can be referentially transparent 
 some programs and not others.with regard to

Up until this point, you may have had the impression that in purely functional
programming we're not allowed to use mutable state. But if we look carefully,
there is nothing about the definitions of referential transparency and purity that
disallows mutation of  state. Let's remind ourselves of our definitions fromlocal
chapter 1:

Local effects and mutable state

14.1 Introduction

14.2 Purely functional mutable state
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SIDEBAR Definition of referential transparency and purity
An expression  is referentially transparent if for all programs , everye p

occurrence of  in  can be replaced with the result of evaluating e p e

without changing the result of evaluating .p
A function  is  if the expression  is referentially transparentf pure f(x)

for all referentially transparent inputs .x

By that definition, the following function is pure, even though it uses a while

loop, an updatable , and a mutable array:var

The  function sorts a list by turning it into a mutable array, sortingquicksort

the array in place using the well-known Quicksort algorithm, and then turning the
array back into a list. It's not possible for any caller to know that the individual
subexpressions inside the body of  are not referentially transparent orquicksort

that the local methods , , and  are not pure, because at noswap partition qs

point does any code outside the  function hold a reference to thequicksort

mutable array. Since all of the mutation is locally scoped, the overall function is

def quicksort(xs: List[Int]): List[Int] = if (xs.isEmpty) xs else {
  val arr = xs.toArray
  def swap(x: Int, y: Int) = {
    val tmp = arr(x)
    arr(x) = arr(y)
    arr(y) = tmp
  }
  def partition(l: Int, r: Int, pivot: Int) = {
    val pivotVal = arr(pivot)
    swap(pivot, r)
    var j = l
    for (i <- l until r) if (arr(i) < pivotVal) {
      swap(i, j)
      j += 1
    }
    swap(j, r)
    j
  }
  def qs(l: Int, r: Int): Unit = if (l < r) {
    val pi = partition(l, r, l + (l - r) / 2)
    qs(l, pi - 1)
    qs(pi + 1, r)
  }
  qs(0, arr.length - 1)
  arr.toList
}
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pure. That is, for any referentially transparent expression  of type ,xs List[Int]

the expression  is also referentially transparent.quicksort(xs)

Some algorithms, like Quicksort, need to mutate data in place in order to work
correctly or efficiently. Fortunately for us, we can always safely mutate data that is
created locally. Any function can use side-effecting components internally and still
present a pure external interface to its callers.

But working with mutable data can force us to take a monolithic approach. For
example, the constituent parts of  above would have directquicksort

side-effects if used on their own, which makes it impossible to compose them in
the same way that we would compose pure functions. Of course, we could just
make them work in , but that's really not appropriate for local mutable state. If IO

 returned  then it would be an  action that isquicksort IO[List[Int]] IO

perfectly safe to run and would have no side-effects, which is not the case in
general for  actions. We want to be able to distinguish between effects that areIO

safe to run (like locally mutable state) and external effects like I/O. So a new data
type is in order.

The most natural approach is to make a little language for talking about mutable
state. Writing and reading a state is something we can already do with the 

 monad, which you will recall is just a function of type State[S,A] S => (A,

 that takes an input state and produces a result and an output state. But whenS)

we're talking about mutating the state , we're not really passing it from onein place
action to the next. What we'll pass instead is a kind of token marked with the type 

. A function called with the token then has the authority to mutate data that isS

tagged with the same type .S

This new data type will employ Scala's type system to gain two static
guarantees. That is, we want code that violates these invariants to :not complile

A mutable object can never be observed outside of the scope in which it was created.
If we hold a reference to a mutable object, then nothing can observe us mutating it.

We will call this new local effects monad , which could stand for "StateST

Thread", "State Transition", "State Token", or "State Tag". It's different from the 
 monad in that its  method is protected, but otherwise its structure isState run

exactly the same.

14.2.1 Composable mutations

252

http://www.manning-sandbox.com/forum.jspa?forumID=805


Cache the value in case run is called more than once.

The reason the  method is protected is that an  represents the ability to run S

 state, and we don't want the mutation to escape. So how do we then run an mutate
 action, giving it an initial state? These are really two questions. We will start byST

answering the question of how we specify the initial state.
As always, don't feel compelled to understand every detail of the

implementation of . What matters is the idea that we can use the type system toST

constrain the scope of mutable state.

Our first example of an application for the  monad is a little language for talkingST

about mutable references. This takes the form of a combinator library with some
primitive combinators. The language for talking about mutable memory cells
should have these primitive commands:

Allocate a new mutable cell
Write to a mutable cell
Read from a mutable cell

The data structure we'll use for mutable references is just a wrapper around a
protected :var

sealed trait ST[S,A] { self =>
  protected def run(s: S): (A,S)
  def map[B](f: A => B): ST[S,B] = new ST[S,B] {
    def run(s: S) = {
      val (a, s1) = self.run(s)
      (f(a), s1)
    }
  }
  def flatMap[B](f: A => ST[S,B]): ST[S,B] = new ST[S,B] {
    def run(s: S) = {
      val (a, s1) = self.run(s)
      f(a).run(s1)
    }
  }
}
object ST {
  def apply[S,A](a: => A) = {

    lazy val memo = a
    new ST[S,A] {
      def run(s: S) = (memo, s)
    }
  }
}

14.2.2 An algebra of mutable references
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The methods on  to read and write the cell are pure since they just returnSTRef

 actions. Notice that the type  is  the type of the cell that's being mutated,ST S not

and we never actually use the value of type . Nevertheless, in order to call S apply

and actually run one of these  actions, you do need to have a value of type .ST S

That value therefore serves as a kind of token—an authorization to mutate or
access the cell, but it serves no other purpose.

The question of how to give an initial state is answered by the  methodapply

on the  companion object. The  is constructed with an initial valueSTRef STRef

for the cell, of type . But what is returned is not a naked , but an  actionA STRef ST

that constructs the  when run. That is, when given the token of type .STRef S

At this point, let's try writing a trivial  program. It's a little awkward rightST

now because we have to choose a type  arbitrarily. Here, we arbitrarily choose S

:Nothing

This little program allocates two mutable  cells, swaps their contents, addsInt

sealed trait STRef[S,A] {
  protected var cell: A
  def read: ST[S,A] = ST(cell)
  def write(a: => A): ST[S,Unit] = new ST[S,Unit] {
    def run(s: S) = {
      cell = a
      ((), s)
    }
  }
}

object STRef {
  def apply[S,A](a: A): ST[S, STRef[S,A]] = ST(new STRef[S,A] {
    var cell = a
  })
}

for {
  r1 <- STRef[Nothing,Int](1)
  r2 <- STRef[Nothing,Int](1)
  x  <- r1.read
  y  <- r2.read
  _  <- r1.write(y+1)
  _  <- r2.write(x+1)
  a  <- r1.read
  b  <- r2.read
} yield (a,b)
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one to both, and then reads their new values. But we can't yet  this programrun
because  is still protected (and we could never actually pass it a value of type run

 anyway). Let's work on that.Nothing

By now you will have figured out the plot with the  monad. The plan is to use ST

 to build up a computation that, when run, allocates some local mutable state,ST

proceeds to mutate it to accomplish some task, and then discards the mutable state.
The whole computation is referentially transparent because all the mutable state is
private and locally scoped. But we want to be able to  that. For example,guarantee
an  contains a mutable  and we want Scala's type system to guaranteeSTRef var

that we can never extract an  out of an  action because that would violateSTRef ST

the invariant that the mutable reference is local to the  action, violatingST

referential transparency in the process.
So how do we safely run  actions? First we must differentiate betweenST

actions that are safe to run and ones that aren't. Spot the difference between these
types:

ST[S, STRef[S, Int]] (not safe to run)
ST[S, Int] (completely safe to run)

The former is an  action that contains a mutable reference. But the latter isST

quite different. A value of type  is quite literally just an , evenST[S,Int] Int

though computing the  may involve some local mutable state. Fortunately forInt

us, there's an exploitable difference between these two types. The  involvesSTRef

the type , but  does not.S Int

We want to disallow running an action of type ST[S, STRef[S,A]]

because that would expose the . And in general we want to disallowSTRef

running any  where  involves the type . On the other hand, it's easy toST[S,T] T S

see that it should always be safe to run an  action that doesn't expose a mutableST

object. If we have such a pure action of a type like , it should be safeST[S,Int]

to pass it an  to get the  out of it. Furthermore, S Int we don't care what  actuallyS

 in that case because we are going to throw it away. The value might as well beis
polymorphic in .S

In order to represent this, we will introduce a new trait that represents ST

actions that are safe to run. In other words, actions that are polymorphic in :S

14.2.3 Running mutable state actions
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This is very similar to the idea behind the  trait from the previousTrans

chapter. A value of type  is a function that takes a   andRunnableST[A] type S

produces a  of type .value ST[S,A]

In the section above we arbitrarily chose  as our  type. Let's insteadNothing S

wrap it in  making it polymorphic in . Then we do not have toRunnableST S

choose the type  at all. It will be supplied by whatever calls .S apply

We are now ready to write the  function that will call  on anyrunST apply

polymorphic  by arbitrarily choosing a type for . Since the RunnableST S

 action is polymorphic in , it's guaranteed to not make use of theRunnableST S

value that gets passed in. So it's actually completely safe to pass !null

The  function must go on the  companion object. Since  isrunST ST run

protected on the  trait, it's accessible from the companion object but nowhereST

else:

trait RunnableST[A] {
  def apply[S]: ST[S,A]
}

val p = new RunnableST[(Int, Int)] {
  def apply[S] = for {
    r1 <- STRef(1)
    r2 <- STRef(2)
    x  <- r1.read
    y  <- r2.read
    _  <- r1.write(y+1)
    _  <- r2.write(x+1)
    a  <- r1.read
    b  <- r2.read
  } yield (a,b)
}

object ST {
  def apply[S,A](a: => A) = {
    lazy val memo = a
    new ST[S,A] {
      def run(s: S) = (memo, s)
    }
  }
  def runST[A](st: RunnableST[A]): A =
    st[Null].run(null)._1
}
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We can now run our trivial program  from above:p

The expression  uses mutable state internally but it does not haverunST(p)

any side-effects. As far as any other expression is concerned, it's just a pair of
integers like any other. It will always return the same pair of integers and it will do
nothing else.

But this is not the most important part. Most importantly, we  run acannot
program that tries to return a mutable reference. It's not possible to create a 

 that returns a naked .RunnableST STRef

In this example, we arbitrarily choose  just to illustrate the point. TheNothing

point is that the type  is bound in the  method, so when we say S apply new

, that type is not accessible.RunnableST

Because an  is always tagged with the type  of the  action that itSTRef S ST

lives in, it can never escape. And this is guaranteed by Scala's type system! As a
corollary, the fact that you cannot get an  out of an  action guaranteesSTRef ST

that if you have an  then you are inside of the  action that created it, soSTRef ST

it's always safe to mutate the reference.

scala> val p = new RunnableST[(Int, Int)] {
     |   def apply[S] = for {
     |     r1 <- STRef(1)
     |     r2 <- STRef(2)
     |     x  <- r1.read
     |     y  <- r2.read
     |     _  <- r1.write(y+1)
     |     _  <- r2.write(x+1)
     |     a  <- r1.read
     |     b  <- r2.read
     |   } yield (a,b)
     | }
p: RunnableST[(Int, Int)] = $anon$1@e3a7d65

scala> val r = ST.runST(p)
r: (Int, Int) = (3,2)

scala> new RunnableST[STRef[Nothing,Int]] {
     |   def apply[S] = STRef(1)
     | }
<console>:17: error: type mismatch;
 found   : ST[S,STRef[S,Int]]
 required: ST[S,STRef[Nothing,Int]]
                def apply[S] = STRef(1)
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SIDEBAR A note on the wildcard type
It is possible to bypass the type system in  by using the runST wildcard

. If we pass it a , this will allow an type RunnableST[STRef[_,Int]]

 to escape:STRef

The wildcard type is an artifact of Scala's interoperability with Java's
type system. Fortunately, when you have an , using itSTRef[_,Int]

will cause a type error:

This type error is caused by the fact that the wildcard type in ref
represents some concrete type that only  knows about. In this caseref

it's the  type that was bound in the  method of the S apply RunnableST

where it was created. Scala is unable to prove that this is the same type
as . Therefore, even though it's possible to abuse the wildcard type toR

get the naked  out, this is still safe since we can't use it to mutateSTRef

or access the state.

Mutable references on their own are not all that useful. A more useful application
of mutable state is arrays. In this section we will define an algebra for manipulating
mutable arrays in the  monad and then write an in-place QuickSort algorithmST

compositionally. We will need primitive combinators to allocate, read, and write
mutable arrays:

scala> val ref = ST.runST(new RunnableST[STRef[_, Int]] {
     |   def apply[S] = for {
     |     r1 <- STRef(1)
     |   } yield r1
     | })
ref: STRef[_, Int] = STRef$$anonfun$apply$1$$anon$6@20e88a41

scala> new RunnableST[Int] {
     |   def apply[R] = for { x <- ref.read } yield x }
 error   : type mismatch;
 found   : ST[_$1,Int]
 required: ST[R,Int]
              def apply[R] = for { x <- ref.read } yield x }
                                     ^

14.2.4 Mutable arrays

sealed abstract class STArray[S,A](implicit manifest: Manifest[A]) {
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Scala requires an implicit Manifest for constructing arrays.
Write a value at the give index of the array
Read the value at the given index of the array
Turn the array into an immutable list
Construct an array of the given size filled with the value v

A thing to note is that Scala cannot create arrays for every type. It requires that
there exist a  for the type in implicit scope. Scala's standard libraryManifest

provides manifests for most types that you would in practice want to put in an
array. The  function simply gets that manifest out of implicit scope.implicitly

Just like with s, we always return s packaged in an  actionSTRef STArray ST

with a corresponding  type, and any manipulation of the array (even reading it), isS

an  action tagged with the same type . It's therefore impossible to observe aST S

naked  outside of the  monad (except in the Scala source file in whichSTArray ST

the  data type itself is declared).STArray

Using these primitives, we can write more complex functions on arrays.
EXERCISE 1: Add a combinator on  to fill the array from a STArray Map

where each key in the map represents an index into the array, and the value under
that key is written to the array at that index. For example, fill(Map(0->"a",

 should write the value  at index  in the array and  at index .2->"b")) "a" 0 "b" 2

Use the existing combinators to write your implementation.

  protected def value: Array[A]
  def size: ST[S,Int] = ST(value.size)

  def write(i: Int, a: A): ST[S,Unit] = new ST[S,Unit] {
    def run(s: S) = {
      value(i) = a
      ((), s)
    }
  }

  def read(i: Int): ST[S,A] = ST(value(i))

  def freeze: ST[S,List[A]] = ST(value.toList)
}

object STArray {

  def apply[S,A:Manifest](sz: Int, v: A): ST[S, STArray[S,A]] =
    new STArray[S,A] {
      lazy val value = Array.fill(sz)(v)
    }
}
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Not everything can be done efficiently using these existing combinators. For
example, the Scala library already has an efficient way of turning a list into an
array. Let's make that primitive as well:

The components for  are now easy to write in . For example, the quicksort ST

 function that swaps two elements of the array:swap

EXERCISE 2: Write the purely functional versions of  and .partition qs

With those components written, quicksort can now be assembled out of them in
the  monad:ST

def fill(xs: Map[Int,A]): ST[S,Unit]

def fromList[S,A:Manifest](xs: List[A]): ST[S, STArray[S,A]] =
  ST(new STArray[S,A] {
    lazy val value = xs.toArray
  })

14.2.5 A purely functional in-place quicksort

def swap[S](i: Int, j: Int): ST[S,Unit] = for {
  x <- read(i)
  y <- read(j)
  _ <- write(i, y)
  _ <- write(j, x)
} yield ()

def partition[S](arr: STArray[S,Int],
                 l: Int, r: Int, pivot: Int): ST[S,Int]
def qs[S](a: STArray[S,Int], l: Int, r: Int): ST[S,Unit]

def quicksort(xs: List[Int]): List[Int] =
  if (xs.isEmpty) xs else ST.runST(new RunnableST[List[Int]] {
    def apply[S] = for {
      arr    <- STArray.fromList(xs)
      size   <- arr.size
      _      <- qs(arr, 0, size - 1)
      sorted <- arr.freeze
    } yield sorted
})
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As you can see, the  monad allows us to write pure functions thatST

nevertheless mutate the data they receive. Scala's type system ensures that we don't
combine things in an unsafe way.

EXERCISE 3:  Give the same treatment  to 
 as we have given here toscala.collection.mutable.HashMap

references and arrays. Come up with a minimal set of primitive combinators for
creating and manipulating hash maps.

In the preceding section, we talked about effects that are not observable because
they are entirely local to some scope. There are no programs that can observe the
mutation of data to which it doesn't hold a reference.

But there are other effects that may be non-observable, depending on who is
looking. As a simple example let's take a kind of side-effect that occurs all the time
in ordinary Scala programs, even ones that we would usually consider purely
functional.

Here,  looks pretty innocent. We could be forgiven if weFoo("hello")

assumed that it was a completely referentially transparent expression. But each
time it appears, it produces a   in a certain sense. If we test different Foo

 for equality using the  function, we get  as we wouldFoo("hello") == true

expect. But testing for  (a notion inherited from the Javareference equality
language) with , we get . The two appearances of  areeq false Foo("hello")

not references to the "same object" if we look under the hood.
Notice that if we evaluate  and store the result as , thenFoo("hello") x

substitute  to get the expression , it has a different result.x x eq x

14.3 Purity is contextual

scala> case class Foo(s: String)

cala> val b = Foo("hello") == Foo("hello")
b: Boolean = true

scala> val c = Foo("hello") eq Foo("hello")
c: Boolean = false

scala> val x = Foo("hello")
x: Foo = Foo(hello)

scala> val d = x eq x
d: Boolean = true
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Therefore, by our original definition of referential transparency, every data
. The effect is that a new and unique object isconstructor in Scala has a side-effect

created in memory, and the data constructor returns a reference to that new object.
For most programs this makes no difference because most programs do not

check for reference equality. It is only the  method that allows our programs toeq

observe this side-effect occurring. We could therefore say that it's not a side-effect
at all in the context of the vast majority of programs.

Our definition of referential transparency doesn't take this into account. It
seems like we need the definition to be more general:

SIDEBAR More general definition of referential transparency
An expression  is referentially transparent with regard to program  ife p

every occurrence of  in  can be replaced with the result of evaluating e p

 without changing the result of evaluating .e p

This definition is only slightly modified to reflect the fact that not all programs
can observe the same effects. We say that an effect of  is  by  ife non-observable p

it doesn't affect the referential transparency of  with regard to .e p

We should also note that this definition makes some assumptions. What is
meant by "evaluating"? And what is the standard by which we determine whether
the results of two evaluations are the same?

In Scala, there is a kind of standard answer to these questions. Generally,
evaluation means . Since Scala is a strictlyreduction to some normal form
evaluated language, we can force the evaluation of an expression  to normal forme

in Scala by assigning it to a :val

And referential transparency of  with regard to a program  means that we cane p

rewrite  replacing every appearance of  with .p e v

But what do we mean by "changing the result"? We mean that the two results,
before and after rewriting, are in some sense equivalent. And what it means for two
expressions to be equal is a little more nuanced than it might at first appear. Do we

val v = e
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mean equality by the  operator? Or do we mean reference equality by the == eq

operator? And what about the case where  is a function? When are two functionse

equal?
Again, there is a standard answer. In Scala we usually refer to extensional

 when talking about whether two functions are equivalent. We say that twoequality
functions,  and  are extensionally equal when  equals  for all inputs f g f(x) g(x)

. We could just as well take the position of requiring  equality whichx intensional

means that  and  would have to have the same implementation in order to bef g

considered equal. But whatever context we choose, the point is that we must
choose  context.some

Above, we talked about how the  method is able to  the side-effect ofeq observe

object creation. Let's look more closely at this idea of observable behavior. It
requires that we delimit what we consider observable and what we don't. Take for
example this method that has a definite side-effect:

If you replace  with  in your program, you do not have thetimesTwo(1) 2

same program in every respect. It may compute the same result, but we can say
that the observable behavior of the program has changed. But this is not true for all
programs that call , nor for all notions of program equivalence.timesTwo

We need to decide up front whether changes in standard output are something
we care to observe—whether it's part of the changes in behavior that  in ourmatter
context. In this case it's exceedingly unlikely that any other part of the program
will be able to observe that  side-effect occurring inside .println timesTwo

Of course,  has a  on the I/O subsystem. IttimesTwo hidden dependency

requires access to the standard output stream. But as we have seen above, most
programs that we would consider purely functional also require access to some of
the underlying machinery of Scala's environment, like being able to construct
objects in memory and discard them. At the end of the day, we have to decide for
ourselves which effects are important enough to track. We could use the  monadIO

to track  calls, but maybe we don't want to bother. If we're just using theprintln

14.3.1 What counts as a side-effect?

def timesTwo(x: Int) = {
  if (x < 0) println("Got a negative number")
  x * 2
}
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console to do some temporary debug logging, it seems like a waste of time to track
that. But if the program's correct behavior depends in some way on the what it
prints to the console (like if it's a UNIX utility), then we definitely want to track it.

This brings us to an essential point: Keeping track of effects is a  wechoice
make as programmers. It's a value judgement, and there are trade-offs associated
with how we choose. We can take it as far as we want. But as with the context of
referential transparency, in Scala there is a kind of standard choice. For example it
would be completely valid and possible to track memory allocations in the type
system if that really mattered to us. But in Scala we have the benefit of automatic
memory management so the cost of explicit tracking is usually higher than the
benefit.

The policy we should adopt is to track those effects that program correctness
. If a program is fundamentally about reading and writing files, then filedepends on

I/O should be tracked in the type system to the extent feasible. If a program relies
on object reference equality, it would be nice to know that statically as well. Static
type information lets us know what kinds of effects are involved, and thereby lets
us make educated decisions about whether they matter to us in a given context.

The  type in this chapter and the  monad in the previous chapter shouldST IO

have given you a taste for what it's like to track effects in the type system. But this
is not the end of the road. You're limited only by your imagination and the
expressiveness of Scala's types.

In this chapter, we discussed two different implications of referential transparency.
We saw that we can get away with mutating data that never escapes a local

scope. At first blush it may seem that mutating state can't be compatible with pure
functions. But as we have seen, we can write components that have a pure interface
and mutate local state behind the scenes, using Scala's type system to guarantee
purity.

We also discussed that what counts as a side-effect is actually a choice made by
the programmer or language designer. When we talk about functions being pure,
we should have already chosen a context that establishes what it means for two
things to be equal, what it means to execute a program, and which effects we care
to take into account when observing the program's behavior.

14.4 Summary
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extensional equality
extensionality
intensional equality
intensionality

Index Terms
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15
We said in the introduction to part 4 that functional programming is a complete
paradigm. Any program that can be imagined can be expressed functionally,
including those that interact with the external world. But it would be disappointing
if the  type were our only way of constructing such programs.  (and ) workIO IO ST

by simply  an imperative programming language into the purelyembedding
functional subset of Scala. While programming  the  monad, we have towithin IO

reason about our programs much like we would in ordinary imperative
programming.

We can do better. Not only can functional programs embed arbitrary imperative
programs; in this chapter we show how to recover the high-level, compositional
style developed in parts 1-3 of this book, even for programs that interact with the
outside world. The design space in this area is enormous, and our goal here is more

to convey ideas and give a sense of what is possible.1

Footnote 1mAs always, there is more discussion and links to further reading in the chapter notes.

Rather than simply giving the 'answer' up front, we will build up a library for
streaming, composable I/O incrementally. We are going to start by considering a
very simple, concrete usage scenario, which we'll use to highlight some of the
problems with imperative I/O embedded in the  monad:IO

Check whether the number of lines in a file is greater than 40,000.
This is a rather simplistic task, intended to be illustrative and help us get at the

essence of the problem we are trying to solve with our library. We could certainly

Stream processing and incremental I/O

15.1 Introduction

15.2 Problems with imperative I/O: an example
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accomplish this task with ordinary imperative code, inside the  monad. Let'sIO

look at that first:2

Footnote 2mFor simplicity, in this chapter we are not going to parameterize our  type on the  languageIO F

used. That is, let's assume that , where type IO[A] = fpinscala.iomonad.IO[Task,A] Task[A]

just wraps a  with some functions for error handling. This should beFuture[Either[Throwable,A]]

taken to mean that within an  we can make use of any impure Scala function. See the chapter code forIO[A]

details.

There are a number of convenience functions in scala.io.Source for reading from
external sources like files.
Obtain a stateful Iterator from the Source
Has side effect of advancing to next element

Although this code is rather low-level, there are a number of  things aboutgood
it. First, it is —the entire file is not loaded into memory up front.incremental
Instead, lines are fetched from the file only when needed. If we didn't buffer our
input, we could keep as little as a single line of the file in memory at a time. It also
terminates early, as soon as the answer is known, rather than reading the entire file
and then returning an answer.

There are some bad things about this code, too. For one, we have to remember
to close the file when we're done. This might seem obvious, but if we forget to do
this or (more commonly) if we close the file outside of a  block and anfinally

exception occurs first, the file will remain open.  This is called a . A3 resource leak
file handle is an example of a scarce —the operating system can only haveresource
a limited number of files open at any given time. If this task were part of a larger

def linesGt40k(filename: String): IO[Boolean] = IO {

  val src = io.Source.fromFile(filename)
  try {
    var count = 0

    val lines: Iterator[String] = src.getLines
    while (count <= 40000 && lines.hasNext) {

      lines.next
      count += 1
    }
    count > 40000
  }
  finally src.close
}
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program, say we were scanning an entire directory recursively, building up a list of
all files with more than 40,000 lines, our larger program could easily fail because
too many files were left open.

Footnote 3mThe JVM will actually close an  (which is what backs a )InputStream scala.io.Source

when it is garbage collected, but there is no way to guarantee this will occur in a timely manner, or at all! This is
especially true in generational garbage collectors that perform 'full' collections infrequently.

We want to write programs that are —that is, they should closeresource safe
file handles as soon as they are finished with them (whether because of normal
termination or an exception), and they should not attempt to read from a closed
file. Likewise for other resources like network connections, database connections,
and so on. Using  directly can be problematic because it means our programsIO

are , and we get no help from theentirely responsible for ensuring resource safety
compiler in making sure of this. It would be nice if our library would ensure
resource safety by construction.

SIDEBAR The bracket combinator
A commonly used combinator that helps with ensuring resource safety
in  code is :IO bracket

The exact implementation of this combinator depends on the
representation of , but the implementation should ensure that theIO

resource is released, either just after the  action finishesusing

successfully or immediately if an exception occurs. As an exercise, you
may wish to implement  for our existing  type.bracket IO

But even aside from the problems with resource safety, there is something
rather low-level and unsatisfying about this code. We should be able to express the 

—of counting elements and stopping with a response as soon as we hitalgorithm
40,000, independent of  we are to obtain these elements. Opening and closinghow
files and catching exceptions is a separate concern from the fundamental algorithm
being expressed, but this code intertwines these concerns. This isn't just ugly, it's
not , and our code will be difficult to extend later. For instance,compositional
consider a few variations of this scenario:

Check whether the number of  lines in the file exceeds 40,000nonempty

def bracket[A,B](acquire: IO[A], release: A => IO[Unit])(
                 using: A => IO[B]): IO[B]
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Find a line index before 40,000 where the first letter of consecutive lines spells out 
."abracadabra"

For this first case, we could imagine passing a  intoString => Boolean

our  function. But for the second case, we would need to modify ourlinesGt40k

loop to keep track of some further state, and besides being uglier, the resulting
code will likely be tricky to get right. In general, writing efficient code in the IO

monad generally means writing monolithic loops, and monolithic loops are not
composable.

Let's compare this to the case where we have a  for theStream[String]

lines being analyzed.

Much nicer! With a , we get to assemble our program from preexistingStream

combinators,  and . If we want to filter these lines, wezipWithIndex exists

can do so easily:

And for the second scenario, we can use the  function definedindexOfSlice

on ,  in conjunction with  (to terminate the search after 40,000 lines)Stream 4 take

and  (to pull out the first character of each line):map

Footnote 4mIf the argument to  does not exist as a subsequence of the input,  is returned.indexOfSlice -1

See the API docs for details, or experiment with this function in the REPL.

A natural question to ask is, could we just write the above programs if reading
from an actual file? Not quite. The problem is we don't have a 

, we have a file from which we can read a line at a time. WeStream[String]

could cheat by writing a function, , which returns an lines

:IO[Stream[String]]

lines.zipWithIndex.exists(_._2 + 1 >= 40000)

lines.filter(!_.trim.isEmpty).zipWithIndex.exists(_._2 + 1 >= 40000)

lines.take(40000).map(_.head).indexOfSlice("abracadabra".toList)

def lines(filename: String): IO[Stream[String]] = IO {
  val src = io.Source.fromFile(filename)
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This is called . We are cheating because the  insidelazy I/O Stream[String]

the  is not actually a pure value. As elements of the stream are forced, it willIO

execute side effects of reading from the file, and only if we examine the entire
stream and reach its end will we close the file. Although it is appealing that lazy
I/O lets us recover the compositional style to some extent, it is problematic for
several reasons:

It isn't resource safe. The resource (in this case, a file) will be released only if we traverse
to the end of the stream. But we will frequently want to terminate traversal early (here, 

 will stop traversing the  as soon as it finds a match) and we certainly don'texists Stream

want to leak resources every time we do this.

Nothing stops us from traversing that same  again, after the file has been closed,Stream

resulting in either excessive memory usage (if the  is one that caches or Stream memoizes
its values once forced) or an error if the  is unmemoized and this causes a readStream

from a closed file handle. Also, having two threads traverse an unmemoized  atStream

the same time can result in unpredictable behavior.
In more realistic scenarios, we won't necessarily have full knowledge of what is
happening with the  we created. It could be passed on to some otherStream[String]

function we don't control, which might store it in a data structure for a long period of
time before ever examining it, etc. Proper usage now requires some out-of-band
knowledge—we cannot necessarily just manipulate this  like a typicalStream[String]

pure value, we have to know something about its origin. This is bad for the compositional
style typically used in FP, where most of our code won't know anything about a value
other than its type.

Lazy I/O is problematic, but it would be nice to recover the high-level style we
are accustomed to from our usage of  and . In the next section, we'llStream List

introduce the notion of  or , which is our firststream transducers stream processors
step toward achieving this.

A stream transducer specifies a transformation from one stream to another. We are
using the term  more generally here, to refer to a sequence, possibly lazilystream
generated or supplied by an external source (for instance, a stream of lines from a
file, a stream of HTTP requests, a stream of mouse click positions, etc). Let's
consider a simple data type, , that lets us express stream transformations:Process
5

  src.getLines.toStream append { src.close; Stream.empty }
}

15.3 Simple stream transducers
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Footnote 5mWe have chosen to omit variance annotations in this chapter for simplicity, but it is possible to
write this as .Process[-I,+O]

A  can be used to transform a stream containing  values to aProcess[I,O] I

stream of  values (this is sometimes called a stream transducer). The viewpoint ofO

 is somewhat inverted from how we might be used to thinking of things. Process

 is not a typical function , whichProcess[I,O] Stream[I] => Stream[O]

could pattern match on the input and construct the output itself. Instead, we have a
state machine which must be interpreted by a . There are three possible statesdriver
a  can be in, each of which signals something to the driver:Process

Emit(head,tail) indicates to the driver that the  values should be emitted to thehead

output stream, and that  should be the next state following that.tail 6

Footnote 6mWe could choose to have  produce just a single value. The use of  avoids stackEmit Seq

overflows for certain  definitions.Process

Await(recv,finalizer) requests a value from the input stream, indicating that recv
should be used by the driver to produce the next state, and that  should befinalizer

consulted if the input has no more elements available.
Halt indicates to the driver that no more elements should be read from the input stream
or emitted to the output.

Let's look at a sample driver that will actually interpret these requests. Here is
one that actually transforms a . We can implement this as a function on Stream

:Process

trait Process[I,O]
case class Emit[I,O](
    head: Seq[O],
    tail: Process[I,O] = Halt[I,O]())
  extends Process[I,O]
case class Await[I,O](
    recv: I => Process[I,O],
    finalizer: Process[I,O] = Halt[I,O]())
  extends Process[I,O]
case class Halt[I,O]() extends Process[I,O]

def apply(s: Stream[I]): Stream[O] = this match {
  case Halt() => Stream()
  case Await(recv, finalizer) => s match {
    case h #:: t => recv(h)(t)
    case _ => finalizer(s) // Stream is empty
  }
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Thus, given  and ,  produces a p: Process[I,O] in: Stream[I] p(in)

. What is interesting is that  is agnostic to how it is fedStream[O] Process

input. We have written a driver that feeds a  from a , but we canProcess Stream

also write drivers that perform . We'll get to writing such a driver a bit later, butIO

first, we are going to explore the large number of operations expressible with 
.Process

We can think about , on the one hand, as a sequence of  values,Process[I,O] O

and many of the operations defined for sequences are defined for  asProcess

well. Let's start with a familiar one, :map

The implementation simply calls  on any values produced by the map Process

. As with lists, we can also  processes. Given two processes,  and , append x y x ++

 runs  to completion, then runs  to completion on whatever input remains aftery x y

the first has halted. For the implementation, we simply replace the  of  with Halt x

 (much like how  on  replaces the  of the first list with the secondy ++ List Nil

list):

Helper function described below

This uses a helper function, , which behaves just like the emitAll Emit

constructor but combines adjacent emit states into a single . For instance, Emit

 becomes . (AemitAll(h1, Emit(h2, t)) Emit(h1 ++ h2, t)

  case Emit(h,t) => h.toStream append t(s)
}

15.3.1 Operations on Process

def map[O2](f: O => O2): Process[I,O2] = this match {
  case Halt() => Halt()
  case Emit(h, t) => Emit(h map f, t map f)
  case Await(recv,fb) => Await(recv andThen (_ map f), fb map f)
}

def ++(p: => Process[I,O]): Process[I,O] = this match {
  case Halt() => p

  case Emit(h, t) => emitAll(h, t ++ p)
  case Await(recv,fb) => Await(recv andThen (_ ++ p), fb ++ p)
}
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function like this that just calls some constructor of a data type but enforces some
addition invariant is often called a .)smart constructor

Consistent use of  lets us assume that an  will always beemitAll Emit

followed by an  or a , which avoids stack overflow errors in certain Await Halt

 definitions.Process

With the help of  on , we can define :++ Process flatMap

Incidentally,  forms a . The  function just emits a singleProcess Monad unit

value, then halts:

To write the  instance, we have to partially apply the  parameter of Monad I

, which we've seen before:Process

def emitAll[I,O](head: Seq[O],
                 tail: Process[I,O] = Halt[I,O]()): Process[I,O] =
  tail match {
    case Emit(h2, tl) => Emit(head ++ h2, tl)
    case _ => Emit(head, tail)
  }

def emit[I,O](head: O,
               tail: Process[I,O] = Halt[I,O]()): Process[I,O] =
      emitAll(Stream(head), tail)

def flatMap[O2](f: O => Process[I,O2]): Process[I,O2] = this match {
  case Halt() => Halt()
  case Emit(h, t) =>
    if (h.isEmpty) t flatMap f
    else f(h.head) ++ emitAll(h.tail, t).flatMap(f)
  case Await(recv,fb) =>
    Await(recv andThen (_ flatMap f), fb flatMap f)
}

def unit[O](o: => O): Process[I,O] = emit(o)

def monad[I]: Monad[({ type f[x] = Process[I,x]})#f] =
  new Monad[({ type f[x] = Process[I,x]})#f] {
    def unit[O](o: => O): Process[I,O] = Emit(o)
    def flatMap[O,O2](p: Process[I,O])(
                      f: O => Process[I,O2]): Process[I,O2] =
      p flatMap f
  }
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We use the same trick introduced in chapter 13 of placing a toMonadic

implicit conversion in the companion object to give us infix syntax for the Monad

combinators:

This lets us write, for instance: .emit(42) as "hello!" 7

Footnote 7mRecall that  is equal to .a as b a map (_ => b)

The  instance is exactly the same 'idea' as the  for . WhatMonad Monad List

makes  more interesting than just  is it can accept . And it canProcess List input

transform that input through mapping, filtering, folding, grouping, and so on. It
turns out that  can express almost any stream transformation, all whileProcess

remaining agnostic to how exactly it is obtaining its input or what should happen
with its output.

The way we will build up complex stream transformations is by  composing
 values. Given two  values,  and , we can feed the output Process Process f g f

into the input of . We'll call this operation  (pronounced 'pipe' or 'compose')g |>

and implement it as a function on .  It has the nice property that Process 8 f |>

  transformations of  and . As soon as values are emitted by , they areg fuses f g f

transformed by .g

Footnote 8mThis operation might remind you of function composition, which feeds the (single) output of a
function in as the (single) input to another function. Both  and functions form . We won'tProcess categories

be discussing that much here, but see the chapter notes.

EXERCISE 1 (hard): Implement . Let the types guide your implementation.|>

We can convert any function  to a . Wef: I => O Process[I,O]

repeatedly , then  the value received, transformed by .Await Emit f

implicit def toMonadic[I,O](a: Process[I,O]) = monad[I].toMonadic(a)

PROCESS COMPOSITION, LIFTING, AND REPETITION

def |>[O2](p2: Process[O,O2]): Process[I,O2]

def lift[I,O](f: I => O): Process[I,O] =
  Await((i: I) => emit(f(i), lift(f)))
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This pattern is quite common—we often have some  whose steps weProcess

wish to repeat forever. We can write a combinator for it, :repeat

This is very typical of  definitions. We define a recursive internalProcess

function (often called  or ) whose parameters are the  used for thego loop state

transformation. (In the case of , the only piece of state is the current repeat

; for other transformations the state may be more complicated.) We thenProcess

call this internal function with some initial state. Let's use  to write repeat

, which constructs a  that filters its input:filter Process

We can now write expressions like filter(_ % 2 == 0) |> lift(_

 to filter and map in a single transformation. We'll sometimes call a sequence+ 1)

of transformations like this a .pipeline
There are a huge number of other combinators we can write for .Process

Let's look at another one, , which outputs a running total of the values seen sosum

far:

Again, we use the same pattern of an inner function which tracks the current
state (in this case, the total so far). Here's an example of its use in the REPL:

def repeat: Process[I,O] = {
  def go(p: Process[I,O]): Process[I,O] = p match {
    case Halt() => go(this)
    case Await(recv,fb) => Await(recv andThen go, fb)
    case Emit(h, t) => Emit(h, go(t))
  }
  go(this)
}

def filter[I](f: I => Boolean): Process[I,I] =
  Await[I,I](i => if (f(i)) emit(i) else Halt()) repeat

def sum: Process[Double,Double] = {
  def go(acc: Double): Process[Double,Double] =
    Await((d: Double) => emit(d+acc, go(d+acc)))
  go(0.0)
}

scala> sum(Stream(1.0, 2.0, 3.0, 4.0)).toList
val res0: List[Double] = List(1.0, 3.0, 6.0, 10.0)
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Let's get write some more  combinators to get accustomed to thisProcess

style of programming. Try to work through implementations of at least some of
these exercises until you get the hang of it.

EXERCISE 2: Implement , which halts the  after it encounterstake Process

the given number of elements, and , which ignores the given number ofdrop

arguments, then emits the rest. Optional: implement  and takeWhile

.dropWhile

EXERCISE 3: Implement . It should emit the number of elements seencount

so far, for instance,  should yield count(Stream("a", "b", "c"))

 (or , your choice). Feel free toStream(1, 2, 3) Stream(0, 1, 2, 3)

use existing combinators.

EXERCISE 4: Implement . It should emit a running average of the valuesmean

seen so far.

Just as we have seen many times before throughout this book, when we notice
common patterns when defining a series of functions, we can factor these patterns
out into generic combinators. The functions ,  and  all share asum count mean

def take[I](n: Int): Process[I,I]

def drop[I](n: Int): Process[I,I]

def takeWhile[I](f: I => Boolean): Process[I,I]

def dropWhile[I](f: I => Boolean): Process[I,I]

def count[I]: Process[I,Int]

def mean: Process[Double,Double]
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common pattern. Each has a single piece of state, and a state transition function
that updates this state in response to input and produces a single output. We can
generalize this to a combinator, :loop

Using , we can, for instance, express  as loop sum

.loop(0)((n:Double,acc) => (acc,n+acc))

EXERCISE 5 (optional): Write  and  in terms of .sum count loop

EXERCISE 6 (hard, optional): Come up with a generic combinator that lets us
express  in terms of  and . Define this combinator and implement mean sum count

 in terms of it.mean

EXERCISE 7 (optional): Implement . It emits a running countzipWithIndex

of values emitted along with each value. For example: 
 yields Process("a","b").zipWithIndex Process(("a",0),

.("b",1))

EXERCISE 8 (optional): Implement . There are multiple ways toexists

implement it. Given  couldexists(_ % 2 == 0)(Stream(1,3,5,6,7))

produce  (halting, and only yielding the final result), Stream(true)

 (halting, and yielding all intermediateStream(false,false,false,true)

results), or  (  halting, andStream(false,false,false,true,true) not

yielding all the intermediate results). Note that because  fuses, there is no|>

penalty to implementing the 'trimming' of this last form with a separate
combinator.

We can now express the core stream transducer for our line-counting problem
as . Of course, it's easy to attach filters andcount |> exists(_ > 40000)

other transformations to our pipeline.

def loop[S,I,O](z: S)(f: (I,S) => (O,S)): Process[I,O] =
  Await((i: I) => f(i,z) match {
    case (o,s2) => emit(o, loop(s2)(f))
  })

def exists[I](f: I => Boolean): Process[I,Boolean]
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We can use an external source to drive a . We'll look first at a simplisticProcess

approach in which sources are a completely separate type from ; later,Process

we will consider a generalized  type which can represent sources as wellProcess

as single-input stream transducers.

As the definitions of  and  demonstrate, we can implement variousfilter map

operations with helper functions that simply attach the appropriate  ontoProcess

the output of the . Using this approach we can implement , Source take

, and lots of other typical list processing functions, almost as if takeWhile

 were an actual . We only need to provide an  for Source List interpreter

 that actually performs the  actions and feeds them to the transducer,Source IO

but this is absolutely straightforward:

15.3.2 External sources

trait Source[O] {
  def |>[O2](p: Process[O,O2]): Source[O2]
  def filter(f: O => Boolean) = this |> Process.filter(f)
  def map[O2](f: O => O2) = this |> Process.lift(f)
}
case class ResourceR[R,I,O]( // A resource from which we can read values
  acquire: IO[R],
  release: R => IO[Unit],
  step: R => IO[Option[I]],
  trans: Process[I,O]) extends Source[O] {
  def |>[O2](p: Process[O,O2]) =
    ResourceR(acquire, release, step, trans |> p)
}

def collect: IO[IndexedSeq[O]] = {

  def tryOr[A](a: => A)(cleanup: IO[Unit]) =
    try a catch { case e: Exception => cleanup.run; throw e }

  @annotation.tailrec
  def go(acc: IndexedSeq[O],
         step: IO[Option[I]],
         p: Process[I,O],
         release: IO[Unit]): IndexedSeq[O] =
    p match {
      case Halt() => release.run; acc
      case Emit(h, t) =>

        go(tryOr(acc ++ h)(release), step, t, release)

      case Await(recv, fb) => tryOr(step.run)(release) match {
        case None => go(acc, IO(None), fb, release)
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Helper function: evaluates a, and runs cleanup if an exception occurs.
We tryOr(acc ++ h) since h may be a non-strict Seq like Stream which forces some
computations that can fail.
Our IO computation can of course fail during evaluation.

Notice we are guaranteed to run the  action, whether we terminaterelease

normally or if an exception occurs during processing.  This is important since we9

will often construct  values backed by some resource like a file handle weSource

want to ensure gets closed. Here is an example of a primitive , createdSource

from the lines of a file:

Footnote 9mOne might reasonably ask—if we are eliminating usage of exceptions by using  and Either

 throughout our code, is this really necessary? Yes. For one, not all functions in our programs areOption

defined for all inputs and we typically still use exceptions to signal unrecoverable errors. We may also be using
some third-party API which may throw exceptions or errors. And lastly, exceptions may be triggered 

, through no fault of the program—for instance, when the thread a program runs in is killed,asynchronously
this generates a  exception to give the program the opportunity to clean up.ThreadInterruped

Our code for checking whether the number of lines in a file exceeds 40,0000
now looks like Source.lines("input.txt").count.exists(_ >

. This is nicely compositional, and we are assured that calling 40000) collect

on this  will open the file and guarantee it is closed, regardless of whetherSource

exceptions occur. We deal with resource safety in just two places, the collect

function we wrote earlier, and the definition of —the knowledge of how tolines

allocate and release a resource is encapsulated in a single type, , and Source

 is the sole driver that must take care to use this information to ensurecollect

        case Some(i) => go(acc, step, recv(i), release)
      }
    }
  acquire map (res =>
    go(IndexedSeq(), step(res), trans, release(res)))
}

def lines(filename: String): Source[String] =
  ResourceR(
    IO(io.Source.fromFile(filename)),
    (src: io.Source) => IO(src.close),
    (src: io.Source) => {
      lazy val iter = src.getLines 
      IO { if (iter.hasNext) Some(iter.next) else None }
    },
    Process.id[String])
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resource safety. This is in contrast to ordinary imperative I/O (in the  monad orIO

otherwise) where any code that reads from files must repeat the same (error-prone)
patterns to ensure resource safety.

Although we can get quite far with  and , and the simpleProcess Source

way we have combined them here is resource safe, these data types are too simple
to express a number of interesting and important use cases. Let's look at one of
those next:

Transform , a file containing temperatures in degreesfahrenheit.txt

fahrenheit, to , a file containing the same temperatures in degreescelsius.txt

celsius.
Here's a hypothetical :fahrenheit.txt

We'd like to write a program that reads this and produces :celsius.txt

Our program should work in a streaming fashion, emitting to the output file as
lines are read from the input file, while staying resource safe. With the library we
have so far, we can certainly produce a  containing theSource[Double]

temperatures we need to output to :celsius.txt

15.3.3 External sinks

# a comment - any line starting with #
# temperatures in fahrenheit
85.2
83.1
80.0
71.9
...

29.5556
28.38889
26.6667
22.16667
...

val tempsC: Source[Double] =
  Source.lines("fahrenheit.txt").
         filter(!_.startsWith("#")).
         map(s => fahrenheitToCelsius(s.toDouble))
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Unfortunately,  lacks the ability to actually write these lines to theSource

output file. In general, one way we can handle these expressiveness problems is by
adding extra cases to . Here, we could try solving our immediate problemSource

by first introducing a new type, , analogous to :Sink Source

Here's a simple  combinator, for writing to a file:Sink

How might we integrate this into our  API? Let's imagine a newSource

combinator, :observe

Implementing this combinator will likely require an additional Source

constructor and updates to our  implementation (taking care to ensurecollect

resource safety in our usage of the ). Assuming we do this, our completeSink

scenario now looks something like:

trait Sink[I] {
  def <|[I0](p: Process[I0,I]): Sink[I0]
  def filter(f: I => Boolean) = this <| Process.filter(f)
  ...
}
case class ResourceW[R,I,I2](
    acquire: IO[R],
    release: R => IO[Unit],
    recv: R => (I2 => IO[Unit]),
    trans: Process[I,I2]) extends Sink[I] {

  def <|[I0](p: Process[I0,I]) =
    ResourceW(acquire, release, recv, p |> trans)
}

def file(filename: String, append: Boolean = false): Sink[String] =
  ResourceW(
    IO(new FileWriter(filename, append)),
    (w: FileWriter) => IO(w.close),
    (w: FileWriter) => (s: String) => IO(w.write(s)),
    Process.id[String]
  )

def observe(snk: Sink[O]): Source[O]

val convert: IO[Unit] =
  Source.lines("fahrenheit.txt").
         filter(!_.startsWith("#")).
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add line separators back in

This uses the helper function , which ignores the output of a ,run Source

evaluating it only for its effects. See the chapter code for its implementation.
Ultimately, this approach of adding special cases to  starts gettingSource

rather ugly. Let's take a step back and consider some additional scenarios for which
our existing API is insufficient. These are just informal descriptions.

Multi-source input/zipping: 'Zip' together two files,  and , each containingf1.txt f2.txt

temperatures in degrees fahrenheit, one per line. Add corresponding temperatures
together, convert the result to celsius, apply a 5-element moving average, and output to 

.celsius.txt

Concatenation: Concatenate two files, , and , into afahrenheit1.txt fahrenheit2.txt

single logical stream, apply the same transformation as above and output to celsius.txt
.
Dynamic resource allocation: Read a file, , containing a list offahrenheits.txt

filenames. Concatenate these files into a single logical stream, convert this stream to
celsius, and output the joined stream to .celsius.txt

Multi-sink output: As above, but rather than producing a single output file, produce an
output file for each input file in . Name the output file by appending fahrenheits.txt

 onto the input file name..celsius

Internal effects: Given a stream of HTTP requests, parse each into some object and use it
to construct a database query. Execute this query, generating a stream of rows, which are
further processed using other stream transformations before being assembled into an
HTTP response. Here, the effect is no longer just a sink—we need to get back a result
and continue processing.

These scenarios can't be expressed with our existing API without dropping
down into normal, low-level  monad programming (can you see why?).IO

Although we can try just adding more special cases to  (perhaps a Source Zip

constructor, then an  constructor, etc.), we can see this getting ugly,Append

especially if done naively.  It seems we need a more principled way of extending 10

. This is what we will consider next.Process

         map(s => fahrenheitToCelsius(s.toDouble)).

         map(d => d.toString + "\n").
         observe(Sink.file("celsius.txt")).
         run
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Footnote 10mStill, you may be interested to explore this approach. It is a challenging design exercise—the
problem is coming up with a nice, small set of primitive combinators that lets us express all the programs we wish
to write. We don't want to have 50 special cases which, in addition to being ugly, makes writing the collect

function extremely complicated. If you decide to experiment with this approach, think about what combinators
are needed to express each of these scenarios and any others you can think of. Can the combinator be expressed
using existing primitives in a resource safe way? If not, you can try adding another primitive case for it, refining
your primitives as we did throughout part 2, and updating your  function to handle additional casescollect

in a resource-safe way.

Our existing  type implicitly assumes an  or Process environment context

containing a single stream of values. Furthermore, the  for communicatingprotocol
with the driver is also fixed—a  can only issue three instructions to theProcess

driver, , , and , and there is no way to extend this protocol shortHalt Emit Await

of defining a completely new type. In order to make  extensible, we areProcess

going to parameterize on the protocol used for issuing requests of the driver. This
works in much the same way as the  type we covered in chapter 13:IO

Unlike , a  represents a  of  values ('O' forIO Process[F,O] stream O

'output'), produced by (possibly) making external requests using the protocol .F

Otherwise, the  parameter serves the same role here as the  type constructor weF F

used for .IO

This type is more general than the previous  (which we'll refer toProcess

from now on as a 'single-input ' or a ), and we can representProcess Process1

single-input  as a special instance of this generalized  type.Process Process

We'll see how this works in a later section.
First, let's note that a number of operations are defined for  Process

15.4 An extensible process type

trait Process[F[_],O]

object Process {
  case class Await[F[_],A,O](
    req: F[A], recv: A => Process[F,O],
    finalizer: Process[F,O]) extends Process[F,O]

  case class Emit[F[_],O](
    head: Stream[O],
    tail: Process[F,O]) extends Process[F,O]

  case class Halt[F[_],O]() extends Process[F,O]
}
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 of the choice of . We can still define  ('append'), , regardless F ++ flatMap map

and  for , and the definitions are almost identical to before.filter Process

Here's  and  (see chapter code for other functions, including ,++ flatMap repeat

, and ):map filter

We use the same smart constructors as before,  and , withemitAll emit

similar definitions:

We will also introduce the helper function, , which just curries the await

 constructor for better type inference:Await

Again, using , we define :++ flatMap

def ++(p: => Process[F,O]): Process[F,O] = this match {
  case Halt() => p
  case Emit(h, t) => emitAll(h, t ++ p)
  case Await(req,recv,fb) =>
    Await(req, recv andThen (_ ++ p), fb ++ p)
}

def emitAll[F[_],O](head: Seq[O], tail: Process[F,O] = Halt[F,O]()) =
  tail match {
    case Emit(h2,t) => Emit(head ++ h2, t)
    case _ => Emit(head, tail)
  }
def emit[F[_],O](head: O, tail: Process[F,O] = Halt[F,O]()) =
  emitAll(Stream(head), tail)

def await[F[_],A,O](req: F[A])(
    recv: A => Process[F,O] = (a: A) => Halt[F,O](),
    fallback: Process[F,O] = Halt[F,O](),
    cleanup: Process[F,O] = Halt[F,O]()): Process[F,O] =
  Await(req, recv, fallback, cleanup)

def flatMap[O2](f: O => Process[F,O2]): Process[F,O2] =
  this match {
    case Halt() => Halt()
    case Emit(o, t) =>
      if (o.isEmpty) t.flatMap(f)
      else f(o.head) ++ emitAll(o.tail, t).flatMap(f)
    case Await(req,recv,fb,c) =>
      Await(req, recv andThen (_ flatMap f),
            fb flatMap f, c flatMap f)
  }
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Let's see what else we can express with this new  type. The Process F

parameter gives us a lot of flexibility.

Before, we were forced to introduce a separate type to represent sources. Now, we

can represent an effectful source using a .Process[IO,O] 11

Footnote 11mThere are some issues with making this representation resource-safe that we'll discuss shortly.

Whereas before,  was a completely separate type from , nowSource Process

it is merely a particular instance of it! To see how  is indeed aProcess[IO,O]

source of  values, consider what the  constructor looks like when weO Await

substitute  for :IO F

Thus, any requests of the 'external' world can be satisfied, just by running the 
 action. If this action returns an  successfully, we invoke the  functionIO A recv

with this result. If the action throws a special exception (perhaps called ) itEnd

indicates normal termination and we switch to the  state. And if thefallback

action throws any other exception, we switch to the  state. Below iscleanup

simple interpreter of  which collects up all the values emitted:Source

Here is the exception type  that we use for signaling normal termination.End 12

Footnote 12mThere are some design decisions here—we are using an exception, , for control flow, but weEnd

could choose to indicate normal termination with , say with Option type Step[A] =

, then having  represent sources. We could also choose to pass theIO[Option[A]] Process[Step,O]

exception along to the  function, requiring the  function to take an .recv recv Either[Throwable,A]

We are adopting the convention that any exceptions that bubble all the way up to  are by definitioncollect

unrecoverable. Programs can certainly choose to throw and catch exceptions internally if they wish.

With that we define :collect

15.4.1 Sources

case class Await[A,O](
  req: IO[A], recv: A => Process[F,O],
  fallback: Process[IO,O],
  cleanup: Process[IO,O]) extends Process[Step,O]

case object End extends Exception

def collect[O](src: Process[IO,O]): IndexedSeq[O] = {
  @annotation.tailrec
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Normal termination
Helper function, defined below

This uses a helper function, :failIO

Importantly, we are guaranteed to run either  or  beforefallback cleanup

halting the , regardless of whether exceptions occur. We'll see later howProcess

this allows us to define a  backed by some resource like a file handle thatProcess

we want to close in a prompt, deterministic fashion.
Notice how in the  case, we run  and block waiting for its resultAwait req

before continuing the interpretation. It turns out that we don't require  inIO

particular, any  will do, so long as we have a  and as long as F Monad[F] F

supports catching (and throwing) exceptions. We'll introduce a new interface for
this, :Partial

Rather than invoking  on our  values, we can simply  into the run IO flatMap

 to obtain the result. We define a function on  to produce an req Process[F,O]

 given a  and a :F[IndexedSeq[O]] Monad[F] Partial[F]

  def go(cur: Process[IO,O], acc: IndexedSeq[O]): IndexedSeq[O] =
    cur match {
      case Emit(h,t) => go(t, acc ++ h)
      case Halt() => acc
      case Await(req,recv,fb,err) =>
        val next =
          try recv(req.run)
          catch {

            case End => fb

            case e: Exception => err ++ failIO(e)
          }
        go(next, acc)
    }
  go(src, IndexedSeq())
}

def failIO[O](e: Throwable): Process[IO,O] =
  await[IO,O,O](IO(throw e))()

trait Partial[F[_]] {
  def attempt[A](a: F[A]): F[Either[Throwable,A]]
  def fail[A](t: Throwable): F[A]
}

286

http://www.manning-sandbox.com/forum.jspa?forumID=805


Unlike the simple tail recursive  function above, this implementationcollect

is no longer tail recursive, which means our  instance is now responsible forMonad

ensuring constant stack usage. Luckily, the  type we developed in chapter 13 isIO

already suitable for this, and as an added bonus, it supports the use of
asynchronous I/O primitives as well.

Source can be used for talking to external resources like files and database

connections, but care must be taken to ensure resource safety—we want all file
handles to be closed, database connections released, and so on, even (especially!) if
exceptions occur. Let's look at what's needed to make this happen.

To make the discussion concrete, suppose we have lines:

 representing the lines of some large file. This implicitlyProcess[IO,String]

references a resource (a file handle) that we want to ensure is closed. When should
we close the file handle? At the very end of our program? No, ideally we would
close the file once we know we are done reading from . We are certainlylines

done if we reach the last line of the file—at that point there are no more values to
produce and it is certainly safe to close the file. So this gives us our first simple
rule to follow: a resource should close itself immediately after emitting its final
value.

How do we do this? We do this by placing the file-closing action in the 
 argument of any , and the  function(s) above willfallback Await collect

ensure this gets called before halting (via catching of the  exception). But thisEnd

is not sufficient—we also want to ensure that the file-closing action is run in the
event of an uncaught exception. Thus we place the same file-closing action in the 

def collect(implicit F: Monad[F], P: Partial[F]): F[IndexedSeq[O]] = {
  def go(cur: Process[F,O], acc: IndexedSeq[O]): F[IndexedSeq[O]] =
    cur match {
      case Emit(h,t) => go(t, acc ++ h)
      case Halt() => F.unit(acc)
      case Await(req,recv,fb,c) =>
         F.flatMap (P.attempt(req)) {
           case Left(End) => go(fb, acc)
           case Left(err) =>
             go(c ++ await[F,Nothing,O](P.fail(err))(), acc)
           case Right(o) => go(recv(o), acc)
         }
    }
  go(this, IndexedSeq())
}

15.4.2 Ensuring resource safety
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 argument to the , which again the  function willcleanup Await collect

ensure gets called should errors occur.
As an example, let's use this policy to create a  backed byProcess[IO,O]

the lines of a file. We define it terms of the more general combinator, ,resource

the  analogue of the  function we introduced earlier for :Process bracket IO

Emit the value and repeat the step action
Release resource when exhausted
Also release in event of error

We can now write  in terms of :lines resource

So far so good. However, we cannot  make sure that  keeps its only lines

 and  parameters up to date whenever it produces an fallback cleanup Await

—we need to make sure they actually get called. To see a potential problem,
consider . The collect(lines("names.txt") |> take(5)) take(5)

process will halt early after only 5 elements have been received, possibly before
the file has been exhausted. It must therefore make sure before halting that 

 of  is run. Note that  cannot be responsible for this,cleanup lines collect

since  has no idea that the  it is interpreting is internallycollect Process

composed of two other  values, one of which requires finalization.Process

Thus, we have our second simple rule to follow: any process, , which pullsd

def resource[R,O](acquire: IO[R])(
                  release: R => IO[Unit])(
                  step: R => IO[O]): Process[IO,O] = {
  def go(step: IO[O], onExit: IO[Unit]): Process[IO,O] =
    await[IO,O,O](step) (

      o => emit(o, go(step, onExit))

    , await[IO,Unit,O](onExit)()

    , await[IO,Unit,O](onExit)())
  await(acquire) ( r => go(step(r), release(r)), Halt(), Halt() )
}

def lines(filename: String): Process[IO,String] =
  resource(IO(io.Source.fromFile(filename)))(
           src => IO(src.close)) { src =>
    lazy val lines = src.getLines // A stateful iterator
    IO { if (lines.hasNext) lines.next else throw End }
  }
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values from another process, , must ensure the cleanup action of  is run before p p

 halts.d

This sounds rather error prone, but luckily, we get to deal with this concern in
just a single place, the  combinator. We'll show how that works shortly in the|>

next section, when we show how to encode single-input processes using our
general  type.Process

We now have nice, resource-safe sources, but we don't yet have any way to apply
transformations to them. Fortunately, our  type can also represent theProcess

single-input processes we introduced earlier in this chapter. To represent 
, we craft an appropriate  that only allows the  toProcess1[I,O] F Process

make requests for elements of type . Lets look at how this works—the encodingI

is a bit unusual in Scala, but there's nothing fundamentally new here:

Evidence that types A and B are equal

It is a bit strange to define the type  inside of . Let's unpack what's goingf One

on. Notice that  takes one parameters, , but we have just one instance, ,f X Get

which fixes  to be the  in the outer . Therefore, the type X I One[I] One[I]#f13

can only ever be a request for a value of type ! Moreover, we get  that I evidence X

is equal to  in the form of the  which comes equipped with a pair ofI Eq[X,I]

functions to convert between the two types.  We'll see how the  value gets used14 Eq

a bit later during pattern matching. But now that we have all this, we can define 
 as just a type alias:Process1

Footnote 13mNote on syntax: recall that if  is a type,  references the type  defined inside .x x#foo foo x

Footnote 14mWe are prevented from instantiating an , say, because there is only oneEq[Int,String]

public constructor, , which takes just a single type parameter and uses the identity function forEq.refl[A]

both  and .to from

15.4.3 Single-input processes

case class Is[I]() {
  sealed trait f[X] { def is: Eq[X,I] }
  val Get = new f[I] { def is = Eq.refl }
}

case class Eq[A,B] private(to: A => B, from: B => A)
object Eq { def refl[A]: Eq[A,A] = Eq(identity, identity) }
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To see what's going on, it helps to substitute the definition of  into aIs[I]#f

call to :Await

From the definition of , we can see that  has just one possibleOne[I]#f req

value, . Therefore,  must accept an  as its argument, whichGet: f[I] recv I

means that  can only be used to request  values. This is important toAwait I

understand—if this explanation didn't make sense, try working through these
definitions on paper, substituting the type definitions.

Our  alias supports all the same operations as our old single-input Process1

. Let's look at a couple. We first introduce a few helper functions toProcess

improve type inference when calling the  constructors:Process

Using these, our definitions of, for instance,  and  look almostlift filter

identical to before, except they return a :Process1

type Process1[I,O] = Process[Is[I]#f, O]

case class Await[A,O](
  req: Is[I]#f[A], recv: A => Process[F,O],
  fallback: Process[Is[I]#f,O] = Halt[F,O](),
  cleanup: Process[Is[I]#f,O] = Halt[F,O]()) extends Process[Is[I]#f,R]

def await1[I,O](recv: I => Process1[I,O],
                fb: Process1[I,O] = Halt()): Process1[I,O] =
  await(Get[I])(recv, fb)

def emit1[I,O](h: O,
               tl: Process1[I,O] = halt1[I,O]): Process1[I,O] =
  emit(h, tl)

def emitAll1[I,O](h: Seq[O],
                  tl: Process1[I,O] = halt1[I,O]): Process1[I,O] =
  emitAll(h, tl)

def halt1[I,O]: Process1[I,O] = Halt[Is[I]#f, O]()

def lift[I,O](f: I => O): Process1[I,O] =
  await1[I,O](i => emit(f(i))) repeat

def filter[I](f: I => Boolean): Process1[I,I] =
  await1[I,I](i => if (f(i)) emit(i) else halt1) repeat
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Let's look at process composition next. The implementation looks very similar
to before, but we make sure to run the  of the left process before thefinalizer

right process halts. (Recall that we are using the  argument of finalizer Await

to finalize resources—see the implementation of the  combinator fromresource

earlier.)

We use a helper function, —it runs the  of a  butkill cleanup Process

ignores any of its remaining output:

def |>[O2](p2: Process1[O,O2]): Process[F,O2] = {
  // if this is emitting values and p2 is consuming values,
  // we feed p2 in a loop to avoid using stack space
  @annotation.tailrec
  def feed(emit: Seq[O], tail: Process[F,O], recv: O => Process1[O,O2],
           fb: Process1[O,O2], cleanup: Process1[O,O2]): Process[F,O2] =
    if (emit isEmpty) tail |> await1(recv, fb)
    else recv(emit.head) match {
      case Await(_, recv2, fb2, c2) =>
        feed(emit.tail, tail, recv2, fb2, c2)
      case p => Emit(emit.tail, tail) |> p
    }
  p2 match {
    case Halt() => this.kill ++ Halt()
    case Emit(h,t) => emitAll(h, this |> t)
    case Await(req,recv,fb,c) => this match {
      case Emit(h,t) => feed(h, t, recv, fb, c)
      case Halt() => Halt() |> fb
      case Await(req0,recv0,fb0,c0) =>
        await(req0)(i => recv0(i) |> p2, fb0 |> fb, c0 |> c)
    }
  }
}

@annotation.tailrec
final def kill[O2]: Process[F,O2] = this match {
  case Await(req,recv,fb,c) => c.drain
  case Halt() => Halt()
  case Emit(h, t) => t.kill
}

def drain[O2]: Process[F,O2] = this match {
  case Halt() => Halt()
  case Emit(h, t) => t.drain
  case Await(req,recv,fb,c) => Await(
    req, recv andThen (_.drain),
    fb.drain, c.drain)
}
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Note that  is defined for any  type, so this operation works|> Process[F,O]

for transforming a  value, an effectful , and theProcess1 Process[IO,O]

two-input  type we will discuss next.Process

With , we can add convenience functions on  for attaching various|> Process

 transformations to the output. For instance, here's , definedProcess1 filter

for any :Process[F,O]

We can add similar convenience functions for , , and so on.take takeWhile

See the chapter code for more examples.

One of the scenarios we mentioned earlier was zipping or merging of input
streams:

'Zip' together two files,  and , add correspondingf1.txt f2.txt

temperatures together, convert the result to celsius, apply a 5-element moving
average, and output to .celsius.txt

We can address these sorts of scenarios with  as well. Much likeProcess

sources and  were just a specific instance of our general Process1 Process

type, a , which combines two input streams in some way,  can also beTee 15

expressed by our  type. Once again, we simply craft an appropriateProcess

choice of :F

Footnote 15mThe name 'Tee' comes from the letter 'T', which approximates a diagram merging two inputs (the
top of the 'T') into a single output.

This looks quite similar to our  type from earlier, except that we now haveIs

two possible values,  and , and we get an L R Either[Eq[X,I], Eq[X,I2]]

for pattern matching. With , we can now define a type alias, , which acceptsT Tee

def filter(f: O => Boolean): Process[F,O] =
  this |> Process.filter(f)

15.4.4 Multiple input streams

case class T[I,I2]() {
  sealed trait f[X] { def get: Either[Eq[X,I], Eq[X,I2]] }
  val L = new f[I] { def get = Left(Eq.refl) }
  val R = new f[I2] { def get = Right(Eq.refl) }
}
def L[I,I2] = T[I,I2]().L
def R[I,I2] = T[I,I2]().R
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two inputs:

Once again, we define a few convenience functions for building these particular
types of :Process

Let's define some  combinators. Zipping is a special case of —we readTee Tee

from the left, then the right (or vice versa), then emit the pair. Notice we get to be
explicit about the order we read from the inputs, a capability that can be important

when a  is talking to streams with external effects.Tee 16

Footnote 16mWe may also wish to be  about the order of the effects, allowing the driver to chooseinexplicit
nondeterministically and allowing for the possibility that the driver will execute both effects concurrently. See the
chapter notes and chapter code for some additional discussion of this.

This transducer will halt as soon as either input is exhausted, just like the zip

funtion on . Let's define a  which continues as long as eitherList zipWithAll

input has elements. We accept a value to 'pad' each side with when its elements run
out:

type Tee[I,I2,O] = Process[T[I,I2]#f, O]

def awaitL[I,I2,O](
    recv: I => Tee[I,I2,O],
    fallback: Tee[I,I2,O] = haltT[I,I2,O]): Tee[I,I2,O] =
  await[T[I,I2]#f,I,O](L)(recv, fallback)

def awaitR[I,I2,O](
    recv: I2 => Tee[I,I2,O],
    fallback: Tee[I,I2,O] = haltT[I,I2,O]): Tee[I,I2,O] =
  await[T[I,I2]#f,I2,O](R)(recv, fallback)

def haltT[I,I2,O]: Tee[I,I2,O] =
  Halt[T[I,I2]#f,O]()

def emitT[I,I2,O](h: O, tl: Tee[I,I2,O] = haltT[I,I2,O]): Tee[I,I2,O] =
  emit(h, tl)

def zipWith[I,I2,O](f: (I,I2) => O): Tee[I,I2,O] =
  awaitL[I,I2,O](i  =>
  awaitR        (i2 => emitT(f(i,i2)))) repeat

def zip[I,I2]: Tee[I,I2,(I,I2)] = zipWith((_,_))
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This uses a few helper functions—  and  ignore one of the inputspassR passL

to a  and echo the other branch.Tee

awaitLOr and  just call  with the  argument asawaitROr await fallback

the first argument, which is a bit more readable here.

There are a lot of other  combinators we could write. Nothing requires thatTee

we read values from each input in lockstep. We could read from one input until
some condition is met, then switch to the other; we could read five values from the
left, then ten values from the right, read a value from the left then use it to
determine how many values to read from the right, and so on.

We will typically want to feed a  by connecting it to two processes. We canTee

define a function on  that combines  processes using a . ThisProcess two Tee

function works for any  type:Process

def zipWithAll[I,I2,O](padI: I, padI2: I2)(
                       f: (I,I2) => O): Tee[I,I2,O] = {
  val fbR = passR[I,I2] map (f(padI, _    ))
  val fbL = passL[I,I2] map (f(_   , padI2))
  awaitLOr(fbR)(i =>
  awaitROr(fbL)(i2 => emitT(f(i,i2)))) repeat
}

def passR[I,I2]: Tee[I,I2,I2] = awaitR(emitT(_, passR))
def passL[I,I2]: Tee[I,I2,I] = awaitL(emitT(_, passL))

def awaitLOr[I,I2,O](fallback: Tee[I,I2,O])(
                     recvL: I => Tee[I,I2,O]): Tee[I,I2,O] =
  awaitL(recvL, fallback)

def awaitROr[I,I2,O](fallback: Tee[I,I2,O])(
                     recvR: I2 => Tee[I,I2,O]): Tee[I,I2,O] =
  awaitR(recvR, fallback)

def tee[O2,O3](p2: Process[F,O2])(t: Tee[O,O2,O3]): Process[F,O3] =
  t match {
    case Halt() => this.kill ++ p2.kill ++ Halt()
    case Emit(h,t) => Emit(h, (this tee p2)(t))
    case Await(side, recv, fb, c) => side.get match {
      case Left(isO) => this match {
        case Halt() => p2.kill ++ Halt()
        case Emit(o,ot) =>
          feedL(o, ot, p2, isO.to andThen recv, fb, c)
        case Await(reqL, recvL, fbL, cL) =>
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This uses two helper functions,  and , which serve the samefeedL feedR

purpose as before—to feed the  in a loop as long as it expects values fromTee

either side. See the chapter code for the full definition.
The one subtlety in this definition is we make sure to run cleanup for both

inputs before halting. What is nice about this overall approach is that we have
exactly four places in the library where we must do anything to ensure resource
safety: , ,  and the  interpreter. All the other clienttee |> resource collect

code that uses these and other combinators is guaranteed to be resource safe.

How do we perform output using our  type? We will often want to sendProcess

the output of a  to some  (perhaps sending a Source[O] Sink

 to an output file). Somewhat surprisingly, we can representSource[String]

sinks in terms of sources!

This makes a certain kind of sense. A  provides a sequenceSink[F[_], O]

of functions to call with the input type . The function returns  (later,O F[Unit]

we'll see how to get back values from sinks). Let's look at a file  that writesSink

strings to a file:

          Await(reqL, recvL andThen (this2 => (this2 tee p2)(t)),
                (fbL tee p2)(t), (cL tee p2)(t))
      }
      case Right(isO2) => p2 match {
        case Halt() => this.kill ++ Halt()
        case Emit(o,ot) =>
          feedR(o, ot, this, isO2.to andThen recv, fb, c)
        case Await(reqR, recvR, fbR, cR) =>
          Await(reqR, recvR andThen (p3 => (this tee p3)(t)),
                (this tee fbR)(t), (this tee cR)(t))
      }
    }
  }

15.4.5 Sinks

type Sink[F[_],O] = Process[F[_], O => F[Unit]]

def fileW(file: String, append: Boolean = false): Sink[IO,String] =
  resource(IO { new java.io.FileWriter(file, append) })(
           w => IO(w.close)) {
    w => IO { (s: String) => IO(w.write(s)) }
  }
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That was easy. And notice what  included—there is no exception handlingisn't
code here—the combinators we are using guarantee that the  will beFileWriter

closed if exceptions occur or when whatever is feeding the  signals it is done.Sink

We can use  to implement a combinator , which pipes the output of a tee to

 to a :Process Sink

EXERCISE 9: The definition of  uses a new combinator, , defined forto eval

any , which just runs all the actions emitted. Implement .Process eval

Using , we can now write programs like:to

When run via , this will open the input file and the output file andcollect

incrementally transform the input stream, ignoring commented lines.

We can generalize  to allow responses other than . The implementation isto Unit

identical! The operation had a more general type than we gave it before. Let's call
this operation :through

Let's introduce a type alias for this pattern:

def to[O2](snk: Sink[F,O]): Process[F,Unit] =
  eval { (this zipWith p2)((o,f) => f(o) }

def eval[F[_],O](p: Process[F, F[O]]): Process[F,O]

val converter: Process[IO,Unit] =
  lines("fahrenheit.txt").
  filter(!_.startsWith("#")).
  map(line => fahrenheitToCelsius(line.toDouble).toString).
  to(fileW("celsius.txt")).
  drain

15.4.6 Effectful channels

def through[O2](p2: Process[F, O => F[O2]]): Process[F,O2] =
  eval { (this zipWith p2)((o,f) => f(o)) }

type Channel[F[_],I,O] = Process[F, I => F[O]]

296

http://www.manning-sandbox.com/forum.jspa?forumID=805


Channel is useful when a pure pipeline must execute some I/O action as one

of its stages. A typical example might be an application that needs to execute
database queries. It would be nice if our database queries could return a 

, where  is some representation of a database row. This wouldSource[Row] Row

allow the program to process the result set of a query using all the fancy stream
transducers we've built up so far.

Here's a very simple query executor, which uses  as theMap[String,Any]

(untyped) row representation:

We could certainly write a Channel[PreparedStatement,

, why don't we do that? Because we don't wantSource[Map[String,Any]]]

code that uses our  to have to worry about how to obtain a Channel

 (which is needed to build a ). ThatConnection PreparedStatement

dependency is managed entirely by the  itself, which also takes care ofChannel

closing the connection when it is finished executing queries (this is guaranteed by
the implementation of ).resource

This implementation is is directly closing the connection when finished. A real
application may obtain the connections from some sort of connection pool and
release the connection back to the pool when finished. This can be done just by
passing different arguments to the  combinator.resource

import java.sql.{Connection, PreparedStatement, ResultSet}

def query(conn: IO[Connection]):
    Channel[IO, Connection => PreparedStatement,
                Process[IO,Map[String,Any]]] =
  resource(conn)(c => IO(c.close)) { conn => IO {
    (q: Connection => PreparedStatement) => {
      IO { resource ( IO {
        val rs = q(conn).executeQuery
        val ncols = rs.getMetaData.getColumnCount
        val colnames = (1 to ncols).map(rs.getMetaData.getColumnName)
        (rs, colnames)
      }) ( p => IO { p._1.close } ) { // close the ResultSet
        case (rs, cols) => IO {
          if (!rs.next) throw End
          else cols.map(c => (c, rs.getObject(c): Any)).toMap
        }
      }}
    }
  }}
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Realistic programs may need to allocate resources dynamically, while transforming
some input stream. Recall the scenarios we mentioned earlier:

Dynamic resource allocation: Read a file, , containing a list offahrenheits.txt

filenames. Concatenate these files into a single logical stream, convert this stream to
celsius, and output the joined stream to .celsius.txt

Multi-sink output: As above, but rather than producing a single output file, produce an
output file for each input file in . Name the output file by appending fahrenheits.txt

 onto the input file name..celsius

Can these capabilities be incorporated into our definition of , in aProcess

way that preserves resource safety? Yes, they can! We actually already have the
power to do these things, using the  combinator that we have alreadyflatMap

defined for an arbitrary  type.Process

For instance,  plus our existing combinators let us write this firstflatMap

scenario as:

Trim the stream to at most a single element; see chapter code
We can give eval infix syntax using implicits; see chapter code for details

This code is completely resource-safe—all file handles will be closed
automatically by the runner as soon as they are finished, even in the presence of
exceptions. Any exceptions encountered will be thrown to the  functioncollect

when invoked.
We can write to multiple files just by switching the order of the calls to 

:flatMap

15.4.7 Dynamic resource allocation

val convertAll: Process[IO,Unit] = (for {

  out <- fileW("celsius.txt").once
  file <- lines("fahrenheits.txt")
  _ <- lines(file).
       map(line => fahrenheitToCelsius(line.toDouble)).
       map(celsius => out(celsius.toString)).

       eval
} yield ()) drain

val convertMultisink: Process[IO,Unit] = (for {
  file <- lines("fahrenheits.txt")
  _ <- lines(file).
       map(line => fahrenheitToCelsius(line.toDouble)).
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And of course, we can attach transformations, mapping, filtering and so on at
any point in the process:

There are additional examples using this library in the chapter code.

The ideas presented in this chapter are extremely widely applicable. A surprising
number of programs can be cast in terms of stream processing—once you are
aware of the abstraction, you begin seeing it everywhere. Let's look at some
domains where it is applicable:

File I/O: We've already demonstrated how to use stream processing for file I/O. Although
we have focused on line-by-line reading and writing for the examples here, we can also
use the library for processing binary files.
Message processing, state machines, and actors: Large systems are often organized as a
system of loosely-coupled components that communicate via message passing. These
systems are often expressed in terms of , which communicate via explicit messageactors
sends and receives. We can express components in these architectures as stream
processors, which lets us describe extremely complex state machines and behaviors while
retaining a high-level, compositional API.
Servers, web applications: A web application can be thought of as converting a stream of
HTTP requests to a stream HTTP responses.
UI programming: We can view individual UI events such as mouseclicks as streams, and
the UI as one large network of stream processors determining how the UI responds to
user interaction.
Big data, distributed systems: Stream processing libraries can be  and distributed

 for processing large amounts of data. The key insight here is that parallelized Process

values being composed need not all live on the same machine.

If you're curious to learn more about these applications (and others), see the
chapter notes for additional discussion and links to further reading. The chapter

       map(_ toString).
       to(fileW(file + ".celsius"))
} yield ()) drain

val convertMultisink2: Process[IO,Unit] = (for {
  file <- lines("fahrenheits.txt")
  _ <- lines(file).
       filter(!_.startsWith("#")).
       map(line => fahrenheitToCelsius(line.toDouble)).
       filter(_ > 0). // ignore below zero temperatures
       map(_ toString).
       to(fileW(file + ".celsius"))
} yield ()) drain

15.5 Applications
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notes and code also discuss some extensions to the  type we discussedProcess

here, including the introduction of  which allows fornondeterministic choice
concurrent evaluation in the execution of a .Process

We began this book with the introduction of a simple premise: that we assemble
our programs using only pure functions. From this sole premise and its
consequences we were led to develop a new approach to programming, one with its
own ideas, techniques, and abstractions. In this final chapter, we constructed a
library for stream processing and incremental I/O, demonstrating that we can retain
the compositional style developed throughout this book even for programs that
interact with the outside world.  of how to use FP toOur story is now complete
architect programs both large and small.

While good design is always hard, over time, expressing code functionally
becomes effortless. By this point, you have all the tools needed to start functional

, no matter the programming task. FP is a deep subject, and as youprogramming
apply it to more problems, new ideas and techniques will emerge. Enjoy the
journey, keep learning, and good luck!

15.6 Conclusion
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causal streams
compositionality
compositional style
composition of processes
driver
early termination
equality witness
fusion
imperative programming
incremental I/O
lazy I/O
memoization
multi-input transducer
pipe
pipeline
resource
resource leak
resource safety
resource safety
resource safety
resource safety
smart constructor
sources
state machine
stream processor
stream transducer
Tee
Wye

Index Terms

301

http://www.manning-sandbox.com/forum.jspa?forumID=805

	Functional Programming in Scala MEAP v10
	Copyright
	Table of Contents
	Chapter 1: What is Functional Programming?
	Preface
	P.1 About this book
	P.2 How to read this book

	Chapter 1: What is Functional Programming?
	1.1 The fundamental premise of functional programming
	1.2 Exactly what is a (pure) function?
	1.3 Functional and non-functional: an example
	1.4 Why functional programming?
	1.5 Conclusion


	Chapter 2: Getting started
	2.1 Introduction
	2.2 An example Scala program
	2.3 Running our program
	2.4 Modules, objects, and namespaces
	2.5 Function objects: passing functions to functions
	2.5.1 Annonymous functions

	2.6 Polymorphic functions: abstracting over types
	2.7 Conclusion

	Chapter 3: Functional data structures
	3.1 Introduction
	3.2 Defining functional data structures
	3.2.1 Pattern matching

	3.3 Functional data structures and data sharing
	3.4 Recursion over lists and generalizing to higher-order functions
	3.4.1 More functions for working with lists

	3.5 Trees
	3.6 Summary

	Chapter 4: Handling errors without exceptions
	4.1 Introduction
	4.2 Possible alternatives to exceptions
	4.3 The Option data type
	4.3.1 Usage patterns for Option
	4.3.2 Option composition and lifting
	4.3.3 The Either data type

	4.4 Conclusion

	Chapter 5: Strictness and laziness
	5.1 Strict and non-strict functions
	5.2 An extended example: lazy lists
	5.3 Separating program description from evaluation
	5.4 Infinite streams and corecursion
	5.5 Summary

	Chapter 6: Purely functional state
	6.1 Generating random numbers using side-effects
	6.2 Purely functional random number generation
	6.3 A better API for state actions
	6.4 Purely functional imperative programming
	6.5 Summary

	Chapter 7: Purely functional parallelism
	7.1 Introduction
	7.2 Choosing data types and functions
	7.2.1 Picking a representation
	7.2.2 Exploring and refining the API
	7.2.3 The algebra of an API
	7.2.4 Expressiveness and the limitations of an algebra

	7.3 Conclusion

	Chapter 8: Property-based testing
	8.1 Introduction
	8.2 A brief tour of property-based testing
	8.3 Choosing data types and functions
	8.3.1 The meaning and API of properties
	8.3.2 The meaning and API of generators
	8.3.3 Test case minimization
	8.3.4 Using the library, improving its usability, and future directions
	8.3.5 The laws of generators

	8.4 Conclusion

	Chapter 9: Parser combinators
	9.1 Introduction
	9.2 Designing an algebra, first
	9.2.1 A possible algebra
	9.2.2 Handling context-sensitivity
	9.2.3 Error reporting

	9.3 Writing a JSON parser
	9.3.1 The JSON format

	9.4 Refining the laws
	9.5 Implementing the algebra
	9.6 Conclusion

	Chapter 10: Monoids
	10.1 What is a monoid?
	10.2 Folding lists with monoids
	10.3 Associativity and parallelism
	10.3.1 Example: Parallel parsing

	10.4 Foldable data structures
	10.5 Monoids compose
	10.5.1 Assembling more complex monoids
	10.5.2 Using composed monoids to fuse traversals
	10.5.3 Implicit monoids

	10.6 Summary

	Chapter 11: Monads
	11.1 Functors: Generalizing the map function
	11.2 Generalizing the flatMap and unit functions
	11.2.1 The Monad trait

	11.3 Monadic combinators
	11.4 Monad laws
	11.4.1 The associative law
	11.4.2 Kleisli composition
	11.4.3 The identity laws

	11.5 Just what is a monad?
	11.5.1 The identity monad
	11.5.2 The State monad and partial type application

	11.6 Conclusion

	Chapter 12: Applicative and traversable functors
	12.1 Generalizing monads
	12.2 The Applicative trait
	12.3 The difference between monads and applicative functors
	12.4 Not all applicative functors are monads
	12.5 The applicative laws
	12.6 Traversable functors
	12.6.1 From monoids to applicative functors

	12.7 Uses of Traverse
	12.7.1 Traversals with State
	12.7.2 Combining traversable structures
	12.7.3 Traversal fusion
	12.7.4 Nested traversals
	12.7.5 Monad composition

	12.8 Summary

	Chapter 13: External effects and I/O
	13.1 Introduction
	13.2 Factoring effects
	13.3 A simple IO type
	13.3.1 Handling input effects
	13.3.2 Has this bought us anything?

	13.4 The meaning of the IO type
	13.5 A realistic I/O data type and interpreter
	13.5.1 A trampolined IO type and a tail-recursive interpreter
	13.5.2 A nonblocking I/O interpreter

	13.6 Why the IO type is insufficient for streaming I/O
	13.7 Conclusion

	Chapter 14: Local effects and mutable state
	14.1 Introduction
	14.2 Purely functional mutable state
	14.2.1 Composable mutations
	14.2.2 An algebra of mutable references
	14.2.3 Running mutable state actions
	14.2.4 Mutable arrays
	14.2.5 A purely functional in-place quicksort

	14.3 Purity is contextual
	14.3.1 What counts as a side-effect?

	14.4 Summary

	Chapter 15: Stream processing and incremental I/O
	15.1 Introduction
	15.2 Problems with imperative I/O: an example
	15.3 Simple stream transducers
	15.3.1 Operations on Process
	15.3.2 External sources
	15.3.3 External sinks

	15.4 An extensible process type
	15.4.1 Sources
	15.4.2 Ensuring resource safety
	15.4.3 Single-input processes
	15.4.4 Multiple input streams
	15.4.5 Sinks
	15.4.6 Effectful channels
	15.4.7 Dynamic resource allocation

	15.5 Applications
	15.6 Conclusion




