
www.allitebooks.com

http://www.allitebooks.org

EE EFoundations for Efficient Web
Service Selection

www.allitebooks.com

http://www.allitebooks.org

Qi Yu • Athman Bouguettaya

Foundations for Efficient Web
Service Selection
Foreword by Fabio Casati

www.allitebooks.com

http://www.allitebooks.org

All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media, LLC 2009

Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2009933095

USA

Athman Bouguettaya
CSIRO ICT Center
Computer Sci. & Information Tech. Bldg.
North Road
Canberra, ACT 2601

athman.bouguettaya@csiro.au
Australia

Qi Yu
College of Computing and
Information Sciences
Rochester Institute of Technology
1 Lomb Memorial Drive
Rochester, NY 14623-5603

qi.yu@rit.edu

ISBN 978-1-4419-0313-6 e-ISBN 978-1-4419-0314-3
DOI 10.1007/978-1-4419-0314-3

www.allitebooks.com

http://www.allitebooks.org

To my wife Xumin and my daughter

Emily for their love, encouragement, and

support.

Qi Yu

To my wife Malika and my three children

Zakaria, Ayoub, and Mohamed-Islam.

Athman Bouguettaya

www.allitebooks.com

http://www.allitebooks.org

Foreword

The problem of search in Web services has been attracting the attention
of researchers over the last decade. The reason for this is that as service
technology evolves and as more services become available (and even more
now with the advent of cloud computing) it becomes important to be able to
locate the service that meets our needs within a large and sometimes dense
cloud of offering. Many, often “spot” proposals have been put forward to
address the problem and several standards have been defined, but none of
these has been effective or is now accepted as the way to perform service
search.

This excellent book looks at the search problem from a broader perspec-
tive. Instead of narrowing down on a specific aspect or subproblem of ser-
vice search, it dissects and analyzes the fundamental problems in search and
presents concrete, applicable solutions as well as the theoretical foundations
behind them. In particular, Yu and Bouguettaya define the notion and the
characteristics of a Web Services Management System, which is the service
analogous of a DBMS. They define why a WSMS is needed, and what makes
it similar to and different from a DBMS. They specify a service model and a
service algebra for querying Web services. All these aspects denote a rigorous
and holistic approach to the problem which not only supports the search tech-
niques provided in the book but that can be used as an underlying framework
for researchers to come.

One aspect I found particularly significant in the book is the mind shift
it generates from thinking about service modeling for the sake of supporting
deployment or invocation to modeling for supporting search. This design for
search approach is exactly what we do when we design databases because
search is what we worry about in that case, and there is no reason why this
shouldn’t be the case for services if we want services to be searchable with a
similar effectiveness.

Among the other many goodies that you will be able to appreciate read-
ing Yu’s and Bouguettaya’s book there are two in particular which stroke my
attention and that I would like to single out: the first is the quality-oriented

vii

www.allitebooks.com

http://www.allitebooks.org

viii Foreword

approach to search and within this the ability of the system to support users
in the tedious and often impossible task to select weights for quality proper-
ties. This will be key in making service search viable. The second, an issue
I have rarely seen discussed at all, is the importance of searching services
assuming that information is uncertain. This topic is picking up in database
management but it is even more important in service management as data
from services — especially quality description data — is by its very nature
uncertain, and handling this is fundamental for the success of a service search
paradigm. I hope you enjoy reading this book as much as I had.

Fabio Casati

www.allitebooks.com

http://www.allitebooks.org

Preface

The Web has evolved to encompass various information resources accessible
worldwide. Organizations across all spectra have already moved their main
operations to the Web, which has brought about a fast growth of various
Web applications. Service oriented computing is emerging as a new com-
puting paradigm for efficient deployment and access of these exponentially
growing plethora of Web applications. The development of enabling technolo-
gies for such an infrastructure is expected to change the way of conducting
business on the Web. Web services have become de facto the most significant
technological by-product.

The ability to efficiently access Web services is necessary, in light of the
large and widely geographically disparate space of services. Using Web ser-
vices would typically consist of invoking their operations by sending and re-
ceiving messages. However, complex applications, for example, a travel pack-
age that accesses multiple Web services, would need an integrated framework
to efficiently access and manipulate Web services functionalities. The increas-
ing adoption of Web services requires a systematic support of query facilities.
The service oriented queries would enable users to access multiple Web ser-
vices in a transparent and efficient manner. In addition, as Web services with
similar functionality are expected to be provided by competing providers, a
major challenge is devising optimization strategies for finding the best Web
services or composition thereof with respect to the expected user-supplied
quality (e.g., time, fee, and reputation).

The existing standards-based service discovery technologies are clearly in-
sufficient for building a full-fledged service query infrastructure. Current Web
service search engines or service registries (e.g., UDDI) mainly support sim-
ple keyword-based search on Web services. However, this keyword search
paradigm cannot always precisely locate Web services partially because of the
rich semantics embodied in these services. Query processing on Web services
is a novel concept that goes beyond the traditional data-centric view of query
processing, which is mainly performance centered. It focuses on user-quality

ix

www.allitebooks.com

http://www.allitebooks.org

x Preface

parameters to select multiple services that are equivalent in functionality but
exhibit different Quality of Web service (QoWS).

In this book, we describe a novel foundational framework that lays out a
theoretical underpinning for the emerging service computing. The proposed
framework provides disciplined and systematic support for efficient access to
Web services’ functionalities. The key components of the proposed frame-
work centers around a novel service model that provides a formal abstraction
of the Web services within an application domain. A service calculus and a
service algebra are defined to facilitate users in accessing services via declar-
ative service queries. We provide the implementation of the service algebra.
This enables the generation of Service Execution Plans (SEPs) that can be
used by users to directly access services. We present an optimization algo-
rithm to efficiently select the SEPs with the best QoWS. We then propose
a multi-objective optimization approach that releases users from the tedious
weight assigning process. We develop service skyline computation techniques
that return a set of most interesting SEPs. The service skyline guarantees
to include the user desired SEPs. We further explore a set of novel heuris-
tics for computing service skylines over sets of services. This enables users
to efficiently and optimally access multiple services simultaneously as an in-
tegrated service package. Finally, we consider the performance fluctuation of
service providers due to the dynamic service environment. We propose an un-
certain QoWS model and a novel concept called p-dominant service skyline.
We develop new indexing structures and algorithms to efficiently compute
the p-dominant service skyline. We derive analytical models and conduct ex-
tensive sets of experiments to evaluate the proposed framework and service
query optimization algorithms.

Qi Yu
Athman Bouguettaya

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

I would like to thank my parents for their all time love and support. My most
special thanks go to my wife, Xumin. It is her love, dedication, and endless
support that made me reach this far. I am also indebted to my daughter,
Emily, who brought the sunshine into my busiest life when preparing this
book.

Qi Yu

I would like to acknowledge the support of my family during the preparation
of this book: my wife Malika, my children: Zakaria, Ayoub, and Mohamed-
Islam. I would also like to thank my employer CSIRO (Australia) for provid-
ing me the environment to successfully finish this work.

Athman Bouguettaya

xi

www.allitebooks.com

http://www.allitebooks.org

Contents

1 Introduction . 1
1.1 Web Service Foundation . 2

1.1.1 Historical Perspective . 2
1.1.2 Web Services vs. Data . 4
1.1.3 Service Query Optimization . 4

1.2 Major Issues in Building a Web Service Foundation 5
1.2.1 Summary of Contributions . 8

1.3 Preview of Chapters . 10

2 Towards a WSMS: The State of the Art 11
2.1 Scenario . 12
2.2 Web Service Reference Model . 13
2.3 Web Service Stack . 14
2.4 Key Dimensions for Building a WSMS . 15
2.5 The WSMS Architecture . 19

3 A Foundational Service Framework . 25
3.1 Case Study: Car Brokerage . 26
3.2 Service Query Model . 27
3.3 Service Calculus . 34
3.4 Service Query Algebra . 36

3.4.1 Algebraic Operators . 37
3.4.2 Algebraic Equivalent Rules . 40

3.5 Implementing the Algebraic Operators . 41
3.5.1 Storing the Service Relations . 41
3.5.2 Implementing the Service Algebra 42
3.5.3 Complexity of Service Algebraic Operators 44
3.5.4 Generating SEPs . 46

3.6 Service Query Optimization . 49
3.6.1 QoWS for SEPs . 49
3.6.2 Score Function . 49

xiii

xiv Contents

3.6.3 Optimization Algorithms . 50
3.7 Analytical Model . 54

3.7.1 DP-based Query Optimization . 55
3.7.2 DAC-DP Query Optimization . 55

3.8 Experimental Study . 56

4 Multi-objective Service Query Optimization 61
4.1 The Service Skyline . 62
4.2 Computing Database Skylines: An overview 63

4.2.1 Block Nested Loops Algorithms . 63
4.2.2 Divide-and-Conquer Algorithm . 64
4.2.3 Bitmap Algorithm . 64
4.2.4 Index-based Algorithm . 65
4.2.5 Nearest Neighbor Algorithm . 67

4.3 Challenges of Computing the SEP Skyline 68
4.4 SEP Skyline Computation . 70

4.4.1 Using B-trees . 71
4.4.2 Nearest Neighbor Algorithm . 72
4.4.3 Extending BBS . 74
4.4.4 Operation Graph based Indexing (OGI) 80

4.5 Experimental Study . 81
4.5.1 Number of QoWS Attributes . 82
4.5.2 Number of Operations per SEP . 82
4.5.3 Cardinality of Service Relations . 83
4.5.4 Sizes of the SEP Skylines . 84

5 Skyline Computation for Multi-Service Query Optimization 87
5.1 Preliminaries . 88
5.2 One Pass Algorithm . 89
5.3 Dual Progressive Algorithm . 91

5.3.1 Basic Progressive Enumeration . 91
5.3.2 Node Duplication . 92
5.3.3 Parent Table . 94
5.3.4 Analysis . 95

5.4 A Bottom-Up Approach . 100
5.4.1 The Early Pruning Heuristic . 100
5.4.2 Linear Composition Plans . 101
5.4.3 Complexity Analysis . 104

5.5 Experimental Study . 105
5.5.1 Efficiency and Scalability . 105
5.5.2 Heap Size . 107
5.5.3 MEP Skyline Size . 108
5.5.4 Discussion . 108

Contents xv

6 Skyline Computation over Uncertain QoWS 111
6.1 p-dominant Service Skyline . 112
6.2 Preliminaries . 115

6.2.1 Problem Definition . 116
6.2.2 p-dominant Skyline Vs. p-skyline 117

6.3 Computing the p-dominant Skyline using p-R-tree 120
6.3.1 p-R-tree . 121
6.3.2 A Dual Pruning Process . 123
6.3.3 Computing the Dominate Probability 124
6.3.4 The Main Memory p-R-tree . 125
6.3.5 The Two Phase Algorithm. 126
6.3.6 Analysis . 127

6.4 Experimental Study . 130
6.4.1 Size of the p-dominant skylines . 131
6.4.2 Performance and Scalability . 132
6.4.3 Pruning Efficiency . 133
6.4.4 Computing p-dominant Skyline with (p+ δ)-R-tree . . . 134

7 Related Work . 137
7.1 Web Service Querying and Optimization 137
7.2 Evaluation of Web Service Deployment Systems 138

7.2.1 Research Prototypes . 139
7.2.2 Discussion of Web Service Deployment Platforms 143

8 Conclusions . 147
8.1 Summary . 147
8.2 Directions for Future Research . 149

8.2.1 Ontology Management for Web Services 149
8.2.2 QoWS Management . 149
8.2.3 Service Model Extension . 150
8.2.4 Reversed Two-phase Service Query Optimization 150
8.2.5 Subspace Service Skyline . 150
8.2.6 Uncertain QoWS Stream Processing 151
8.2.7 Failure Recovery in Service Query Optimization 151

References . 153

Index . 159

Chapter 1

Introduction

The Web is a distributed, dynamic, and large information repository. It has
now evolved to encompass various information resources accessible worldwide.
Organizations across all spectra have already moved their main operations to
the Web, which has brought about a fast growth of various Web applications.
This has dramatically increased the need to build a fundamental infrastruc-
ture for efficient deployment and access of the exponentially growing plethora
of Web applications. The development of enabling technologies for such an
infrastructure is expected to change the business paradigm on the Web. Web
services have become de facto the most significant technological by-product.
Simply put, a Web service is a piece of software application whose interface
and binding can be defined, described, and discovered as XML artifacts [?].
It supports direct interactions with other software agents using XML-based
messages exchanged via Internet-based protocols. Examples of Web services
include online reservation, ticket purchase, stock trading, and auction. Stan-
dards are key enablers of Web services [?]. Major industry players took a
lead to set up crucial standards. This has greatly facilitated the adoption
and deployment of Web services [?]. Three key XML-based standards have
been defined to support Web service deployment: SOAP [?], WSDL [?], and
UDDI [?]. SOAP defines a communication protocol for Web services. WSDL
enables service providers to describe their applications. UDDI offers a registry
service that allows advertisement and discovery of Web services.

The fast increasing number of Web services is transforming the Web from
a data-oriented repository to a service-oriented repository [?, ?]. In this an-
ticipated framework, existing business logic will be wrapped as Web services
that would be accessible on the Web via a Web service middleware [?]. Web
services will work as self-contained entities to fulfill users’ requests. Cooper-
ation among multiple Web services will additionally improve the quality of
answers by providing value-added services [?]. Web services are anticipated
to form the underlying technology that will realize the envisioned “sea of
services” [?].

1

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection,
 DOI 10.1007/978-1-4419-0314-3_1,

2 Introduction

Web services have been so far mainly driven by standards. They have yet
to have a solid theoretical underpinning. The foundational work is still in
its infancy. Providing a solid framework for Web services aims at providing
a powerful foundation much like the relational paradigm provided for the
database field. In the context of Web services, scientific communities are
expected to benefit from the ability to share resources on a large scale that
will lead to further innovation, collaboration, and discovery. Governments
would be able to better serve citizens and other constituencies by streamlining
and combining their Web accessible resources. Businesses would be able to
dynamically outsource their core functionalities and provide economies of
scale. This would translate into better products at cheaper prices.

Fully delivering on the potential of the next-generation Web services re-
quires building a foundation that would provide a sound design framework for
the entire life cycle of Web services, including efficiently developing, deploy-
ing, publishing, discovering, composing, monitoring, and optimizing access
to Web services. The proposed Web service foundation will enable the de-
ployment of Web Service Management Systems (WSMSs) that would be to
Web services what DBMSs have been to data. We largely draw on the ex-
perience and lessons learned from designing the database foundation. The
transition from the early file systems to databases is of particular interest.
If one looks carefully at the history of relational databases, one can clearly
observe a striking parallel with the current situation of Web services. There-
fore, understanding the related transition processes and resulting founda-
tional models will provide us with valuable insight and help in designing a
sound foundational framework for Web services.

1.1.1 Historical Perspective

For the purpose of comparison, it is noteworthy to mention that the early
file systems were developed for single users who had their own exclusive
data space. In addition, because of the state of data storage technology back
then, data sizes were very small. Computer systems were more computation
bound (CPU bound) as opposed to being data bound (I/O bound). More
importantly, the growing deployment of computer systems was coupled with
a tremendous growth in data volume and number of users sharing files. The
new computing environment posed fundamental challenges in providing uni-
form data representation, efficient concurrent access to and recoverability
of data, and ensuring correctness and consistency. As a result, the nascent
database research focused on laying the foundation for the next-generation
data management system to address these issues. Early work on the net-
work and hierarchical models set the foundational work in motion with the

1.1 Web Service Foundation

1.1 Web Service Foundation 3

early standardization-based models (e.g. DBTG model [?, ?]). The field of
databases enjoyed widespread acceptance only after the relational model was
proposed by Codd [?]. What made the relational model a success story is
the sound mathematical foundation upon which it is built. The relational
model is based on set theory and relational calculus (declarative). This sim-
ple, yet powerful paradigm was met with instant success in industry [?] and
academia [?]. New concurrency control models were proposed. Optimization
techniques based on algebraic principles were also proposed. This activity
spurred and sustained the deployment of databases as ubiquitous tools for
efficiently managing large amounts of data.

We observe that this historical perspective on managing data is quite simi-
lar with the evolution of Web services. Web services deliver complex function-
alities over the Web. The early function libraries (e.g., DLL on Windows) were
also designed to wrap certain functionalities and make them reusable. The
libraries provide a set of APIs, upon which users can manually incorporate
the functionalities into their programs. In addition, function libraries are only
locally accessible. The emergence of computer networks present new require-
ments for functionalities sharing and reusing. There is a need to integrate
applications within or across organizations. Middleware technologies (e.g.,
RPC, COM, and CORBA) took a first step to support intra-organization in-
teroperability. Web services came as a result to address the inter-organization
interoperability. They aim to provide users an integrated access to the func-
tionalities available on the Web. The development of Web services has so far
mostly been the result of standardization bodies usually operating on a con-
sensus basis and driven by market considerations. In this context, innovation
and long term market effects are not usually primary concerns. Because of
the global nature of the Web, the standardization process has so far been very
fragmented, leading to competing and potentially incompatible Web service
infrastructures. Many companies have invested very heavily in Web services
technologies (Microsoft’s .NET, IBM’s Websphere, SUN’s J2EE, to name a
few). These efforts have resulted in a fast-growing number of Web services
being made available. The envisioned business model is expected to include a
whole community of Web service providers that will compete to provide Web
services. It is important that this investment produces the expected results.
To maximize the benefits of this new technology, there is a need to provide a
sound and clean methodology for specifying, selecting, optimizing, and com-
posing Web services. This needs to take place within a secure environment.
The underlying foundation will enable designers and developers to reason
about Web services to produce efficient Web Service Management Systems.

4 Introduction

1.1.2 Web Services vs. Data

Despite similarities in nature and history, Web services are different from
data in many significant ways. First, data in traditional DBMSs are pas-
sive objects with a set of known properties, e.g., structure, value, functional
dependencies, integrity constraints. On the other hand, Web services are ac-
tive and autonomous entities that have a set of functions rather than values.
Moreover, unlike data in DBMSs, Web services may exhibit some run-time
behavior when they are invoked. Second, accessing a service on the Web is
similar to accessing data from a distributed DBMS. For example, to access
a Web service, the service requester must search in one or more service reg-
istries. However, Web services carry more complex information, which makes
accessing services a more complicated process. This involves understanding
the different services’ syntactic and semantic descriptions, selecting the ser-
vices providing the requested functionality, understanding their communica-
tion protocols, and finally engaging in a sequence of message exchange with
the selected services. Of significant importance are more complex scenar-
ios where requests for services may require the composition of several Web
services; various issues pertaining to individual Web services need to be rec-
onciled before they can be combined.

1.1.3 Service Query Optimization

The ability to efficiently access Web services is necessary, in light of the
large and widely geographically disparate service space. In addition, as Web
services with similar functionality are expected to be provided by competing
providers, a major challenge is devising optimization strategies for finding
the “best” Web services or composition thereof with respect to the expected
user-supplied quality.

Example 1.1. Consider a Map Web service that provides geographical infor-
mation. Some typical operations offered by this services include:

op1: GeoCode

Input : Address [String]

Output : Point [double lat, double long]

op2 : GetMap

Input : Point [double lat, double long]

Output : Map [URL]

op3 : GetTraffic

Input : Point [double lat, double long]

Output : TrafficReport [URL]

Assume that there are two service providers, S1 and S2 (e.g., Yahoo,
Google), providing the same map service but with different user-centered qual-

1.2 Major Issues in Building a Web Service Foundation 5

ity that may include the response time, fee, and reputation (e.g., updating the
delicacy of map). Suppose that a driver wants to view the map of the des-
tination address she will drive to. She may first select op2 to get the map.
However, op2 depends on op1 to transform the user provided address to its
required latitude and longitude. After the driver connects to S1 and gets the
map, she may find that the map is not up to date. In this case, she has to
connect to S2 to get a probably better map. �

Example 1.2. Suppose a user wants to do a trip planning. Typical Web ser-
vices that need to be accessed include TripPlanner, the Map service mentioned in
Example ??, and some other services, like Weather. TripPlanner provides basic
trip information, such as airlines, hotels, and things to do at destination.
Other than this, users may also be interested to see the city map, local at-
tractions, etc, by accessing the Map service. The weather condition during
the travel days is another important factor that makes the Weather service a
primary interest. �

From the above two examples, we note that efficient and optimal access to
Web services’ functionalities usually goes beyond simple operation invocation
via sending and receiving messages. In addition to following the dependency
constraints (e.g., op2 depends on op1 in Example ??) to access service op-
erations, users typically want to get access to a service provider with their
desired quality from multiple competing ones (like S1 and S2 in Example ??).
However, this usually requires a series of trial-run processes and would be
very painstaking if the number of competing providers is large. Things may
become more complicated if users need to access multiple services at the
same time, like the trip planning in Example ??. To get a desired trip pack-
age, users need to give a holistic consideration with respect to the quality of
the service package, such as the overall response time, fee, and reputation.
The possible combinations of providers for each service will far exceed the
range for a manual selection by the users. Therefore, disciplined optimization
strategies are required for finding the “best” Web services or composition
thereof with respect to the Quality of Web Services (QoWS).

1.2 Major Issues in Building a Web Service Foundation

The proliferation of Web services is forming a large service space, which still
keeps growing. However, there is no holistic view about how to organize,
manipulate, and access the large number of services. This triggers the need
for an integrated infrastructure that can provide a systematic support on
Web services. The existing enabling technologies for Web services are still
not sufficient to fulfill the above requirement. For example, current Web ser-
vice search engines or service registries mainly support simple keyword-based
search on Web services. However, this keyword search paradigm may not be

6 Introduction

sufficient for locating Web services partially because of the rich semantics
embodied in these services. Things may become more challenging when ser-
vices are programmatically integrated into more complex applications (e.g.,
travel package, navigation system) through service composition. Since service
operations with the same input-output types may provide totally different
functionalities [?], more precise and reliable search mechanisms are required
to locate the right services and ensure that the composed services can provide
the desired functionality. Furthermore, even the desired services are success-
fully located, invoking services may not be that straightforward. There may
be implicit dependency constraints between different service operations. The
constraints may require that the invocation of some service operations occur
only after their dependent operations have been successfully invoked. Users
may have to browse the entire service description to explore these constraints
before being able to invoke the service operations.

The ability to locate, compose, and invoke services only partially addresses
the issues. The growing number of Web services gives users more options be-
cause multiple service providers may compete to offer the same functionality.
However, it also brings users another problem: selecting a proper provider
with the desired quality of service. Typically, users have to go through a se-
ries of trial-run processes. It would be even more painstaking if users want to
target the providers that best suit their preference. Therefore, the user may
want to include the quality requirement into the search criteria. In this case,
it is necessary to differentiate competing Web services based on user expected
QoWS.

The objective of this research is to provide a formal framework for enabling
Web service query optimization. We focus on giving Web services a solid
theoretical foundation. This will serve as a key block for building tomorrow’s
WSMS.

We summarize the challenging issues that need to be dealt with while
building the foundational framework for service query optimization.

R1: Web services modeling. In traditional relational database systems, data
schema is used to describe and organize a large amount of data instances,
which allows efficient and systematic query on the data space. As a pre-
requisite to query Web services, there is a need to provide an efficient and
“meaningful” framework to organize Web services. This is especially im-
portant and desirable due to the large and heterogeneous service space.
Web services should be modeled in a way that can capture their key
features to filter interactions and accelerate service searches. The service
model can also provide the language constructs for the service queries.

R2: Querying Web services. Service queries are different from the tradi-
tional data queries because the first class objects retrieved are no longer the
simple data items. Instead, a service query would help users retrieve ser-
vices based on their functionalities. Users’ requirements on non-functional
properties (i.e., QoWS) of the services must also be captured by the service
queries. In addition, dependency constraints may exist between different

1.2 Major Issues in Building a Web Service Foundation 7

service operations. These constraints should be referred to when a service
query retrieves the service operations that are dependent on other opera-
tions. For example, the output of some service operations might serve as
the input of another service operation. Therefore, the latter service op-
eration would depend on the execution of the former service operation.
Thus, when the latter service operation is retrieved by a service query,
the first one should be automatically retrieved because of this dependency
relationship. Users should be able to formulate declarative service queries
by only specifying the required functionality and quality without worrying
about the internal dependency constraints.

R3: QoWS aware service query optimization. Traditional query optimiza-
tion technologies are mainly “performance centered”, aiming to produce
efficient query plans. However, having an efficient query plan is still not
sufficient in optimizing Web service queries. The query plan could retrieve
multiple service execution plans, which are equivalent in terms of func-
tionality and behavior. For example, an efficient query plan may return
many service execution plans that fulfill Mary’s requirements in terms of
functionality and behavior. However, they may provide different quality of
service, such as fees, reliability, and reputation etc. Since Mary may have
special requirement on the quality of service, she still needs to manually
select the one with the best quality. Therefore, the service query optimiza-
tion should be able to efficiently process the query and generate the service
execution plan with the best QoWS at the same time.

R4: Dealing with multiple and conflicting quality parameters. Existing ser-
vice optimization approaches usually select services based on a prede-
fined objective function [?, ?]. They require users to express their pref-
erence over different (and sometimes conflicting) quality parameters as
numeric weights. The objective function assigns a scalar value to each ser-
vice provider based on the quality values and the weights given by the
service user. The provider gaining the highest value from the objective
function will be selected and returned to the user. Implementing such an
optimization strategy may pose two major issues: (i) Transforming per-
sonal preferences to numeric weights is a rather demanding task for users.
(ii) Users may lose the flexibility to select their desired providers by them-
selves.

R5: Service Query Optimization over Uncertain QoWS. Current service
optimization approaches assume that the quality delivered by service
providers do not change over time. In addition, the QoWS values may
not precisely reflect the actual performance of a service provider. First,
the performance of a service provider may fluctuate due to the dynamic
service environment. For example, the response time may vary due to the
quality of the network. Second, service providers may not always deliver
according to their “promised” quality because of “intentional” deceptions.
Therefore, the actual QoWS delivered by service providers is inherently

www.allitebooks.com

http://www.allitebooks.org

8 Introduction

uncertain. Selecting service providers based on the advertised QoWS val-
ues does not capture the inherent uncertainty of the actual QoWS.

1.2.1 Summary of Contributions

We present a novel foundational framework that lays out a theoretical under-
pinning for the emerging services science. The proposed framework provides
disciplined support that enables users to efficiently access services with their
best desired quality in a transparent manner. It systematically addresses
each of the above research issues. More precisely, the major contributions are
summarized as follows:

C1: Foundational service framework. We develop a foundational service
framework that is expected to layout a theoretical underpinning for the
deployment of Web Service Management Systems (WSMSs). The key com-
ponents of this framework centers around a formal service model that cap-
tures the three key features of Web services: functionality, behavior, and
quality. Functionality is specified by the operations offered by a Web ser-
vice. Behavior reflects how the service operations can be invoked. It is
decided by the dependency constraints between service operations. Qual-
ity determines the non-functional properties of a Web service. We pro-
pose a service calculus based on the service model. Service queries can be
declaratively specified as calculus expressions. We propose a service alge-
bra consisting of a set of algebraic operators. A calculus service query can
be transformed into an equivalent algebraic expression. A set of algebraic
equivalent rules is also derived to transform user provided algebraic ex-
pression into the ones that can be more efficiently processed by the query
processor. We develop a set of algorithms to efficiently implement the al-
gebraic operators. The physical implementation of these operators enables
to generate Service Execution Plans (SEPs) that can be directly used by
users to access services.

C2: QoWS aware service query optimization. The traditional data query
optimization techniques are usually system-centered with the major focus
on improving the performance. The service query optimization problem
poses new challenges. Due to the competition between a possibly large
number of service providers, multiple SEPs can be generated from a service
query. These SEPs all satisfy the functional requirement of the user but
are different from each other in terms of QoWS. Since users may have
specific preferences over different quality aspects, they still need to go
through a series of trial-run process to get their desired SEP. We develop
an algorithm which directly extends the dynamic programming approach
for database query optimization. We then propose a divide-and-conquer
algorithm, which is empowered by a greedy local search strategy that

1.2 Major Issues in Building a Web Service Foundation 9

greatly improves the performance and also guarantees the quality of the
obtained SEP.

C3: Multi-objective service query optimization. We propose the approach of
multi-objective service query optimization through skyline computation.
A skyline of SEPs (called service skyline) consists of a set of SEPs that
are not dominated by others. For example, SEP φ dominates SEP µ if φ
is better than µ in at least one quality aspect and as good as or better
than µ in all other aspects. We develop two algorithms for computing
the service skyline: BBS4SEP and OGI. The former extends an efficient
database skyline algorithm whereas the latter is based on a novel indexing
structure constructed directly upon SEPs. Analytical and experimental
results justify that OGI outperforms BBS4SEP under various parameter
settings.

C4: Skyline computation over sets of services. Service users may want to
access sets of services as an integrated service package (e.g., a travel pack-
age). However, computing a service skyline over sets of services (referred
to as multi-service skyline) in a brute force manner incurs prohibitive
computation cost. This is because the size of the SEP space increases ex-
ponentially with the number of services. We propose a set of heuristics to
prune a large number of SEPs. We develop efficient algorithms that can
scale to a large number of services.

C5: Computing service skyline from uncertain QoWS. We introduce the
notion of p-dominant service skyline as an effective tool that facilitates
service users in selecting their desired service providers with the pres-
ence of uncertainty in their QoWS. Specifically, a provider S belongs to
the p-dominant service skyline if the chance that S is dominated by any
other provider is less than p, where p ∈ [0, 1], is a probability threshold.
By setting an appropriate probability threshold p, service users will gain a
corresponding level of confidence (in terms of probability) that a selected
provider “actually” belongs to the service skyline. Thus, computing service
skylines from uncertain QoWS provides a more meaningful and practi-
cal solution for the service optimization problem. We present a p-R-tree
indexing structure and a dual-pruning scheme to efficiently compute the
p-dominant service skyline.

We summarize in Table ?? how our contributions address each of the
above research issues. We also list the chapters that cover the corresponding
research contributions.

Table 1.1 Mapping between contributions and research issues

Contributions Research issues Chapters

C1 R1, R2 Chapter 3

C2 R3 Chapter 3

C3 R4 Chapter 4

C4 R4 Chapter 5

C5 R5 Chapter 6

10 Introduction

1.3 Preview of Chapters

The book is organized into eight chapters and a preview of these chapters
are given as follows.

In Chapter 2, we present an in-depth study of the enabling technologies
for deploying and managing Web services. We propose a framework that
identifies a set of dimensions to study and compare these technologies. We
propose the architecture of the expected WSMS and investigate how each of
these technologies can fit into this architecture. This also helps illustrate the
role of the proposed service query optimization framework in enabling the
deployment of the WSMS.

In Chapter 3, we present the foundational service framework. We elabo-
rate on each of the key components in this framework, which consists of the
service model, the service calculus, the service algebra, and the service query
optimizer. An QoWS aware optimization algorithm is developed that extends
the dynamic programming approach to efficiently select the SEPs with the
best user-desired quality.

In Chapter 4, we present a multi-objective service query optimization ap-
proach that releases service users from weight assignment during the opti-
mization process. We propose a novel concept, called service skyline, that
consists of a set of most interesting SEPs. The service skyline guarantees to
include the user desired SEPs. We develop two algorithms to compute the
service skyline.

In Chapter 5, we present efficient and scalable algorithms to compute ser-
vice skylines over sets of services. This is motivated by the fact that a straight-
forward application of skyline algorithms in Chapter 3 to a large number of
service will incur prohibitive computation cost. We first present a one pass
algorithm based on the observation that a multi-service skyline is completely
determined by the single service skylines. The skyline can be returned after
a complete enumeration on a significantly reduced candidate space. We then
develop a dual progressive algorithm that is completely pipelineable and able
to progressively report the skyline. We extend the dual progressive algorithm
through an early pruning strategy and develop a scalable bottom up approach
that performs with a nearly optimal time complexity.

In Chapter 6, we present a novel concept, called p-dominant service skyline
to deal with the uncertainty in the QoWS. A provider S belongs to the p-
dominant skyline if the chance that S is dominated by any other provider
is less than p. We present a p-R-tree indexing structure and a dual-pruning
scheme to efficiently compute the p-dominant skyline.

In Chapter 7, we present the related works that are most related to our
research. This helps differentiate the proposed research with existing efforts
from service computing and database research.

In Chapter 8, we provide concluding remarks and discuss directions for
future research.

Chapter 2

Towards a WSMS: The State of the
Art

A variety of definitions about Web services are given by different industry
leaders, research groups, and Web service consortia. For example, the W3C
consortium defines a Web service as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an in-
terface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards” [?]. IBM de-
fines Web services as “self-describing, self-contained, modular applications
that can be mixed and matched with other Web services to create innovative
products, processes, and value chains. Web services are Internet applications
that fulfill a specific task or a set of tasks that work with many other web ser-
vices in a manner to carry out their part of a complex workflow or a business
transaction”. According to Microsoft, “A Web Service is a unit of appli-
cation logic providing data and services to other applications. Applications
access Web Services via ubiquitous Web protocols and data formats such as
HTTP, XML, and SOAP, with no need to worry about how each Web Service
is implemented”. HP defines Web services as “modular and reusable software
components that are created by wrapping a business application inside a Web
service interface. Web services communicate directly with other web services
via standards-based technologies”. SUN perceives a Web service as an “appli-
cation functionality made available on the World Wide Web. A Web service
consists of a network-accessible service, plus a formal description of how to
connect to and use the service”.

The aforementioned definitions give a high-level description of the major
objective and supporting technologies of Web services. Interoperation among
machines is the major design goal of Web services. As the supporting stan-
dards, WSDL enables XML service description of Web services and SOAP
defines a communication protocol for Web services. These definitions give an
outside view of Web services. In this section, we go a step further by setting
up a comprehensive WSMS framework to support the entire Web service

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection,
 DOI 10.1007/978-1-4419-0314-3_2,

11

12 Towards a WSMS: The State of the Art

life cycle, including developing, deploying, publishing, discovering, compos-
ing, monitoring, and optimizing access to Web services. The remainder of
this chapter is organized as follows. We first describe a scenario that will
be used as an running example throughout this chapter in Section ??. We
then present the Web service reference model in Section ??. We elaborate
on the three key players in this model. We also identify different layers that
enable the interaction in the Web service model in Section ??. We define a
collection of dimensions across these layers in Section ??. The major compo-
nents of the proposed WSMS are devised based on these dimensions. Each
component provides functionalities that address the issues specified by the
corresponding dimension. Finally, we present the architecture of the proposed
WSMS in Section ??.

�������������� ���������������������
�������

� ��	
� �
�������
�����
������ ������ ������� !"#������� !"#

$%&% $%&%$%&% $%&%
$%&%

$%&%
'()*+,'-./012'()*+,'-./0123456784,'-./012'()*+,'-./012'()*+,'-./0123456784,'-./012�

9��:;<=>;<?@AB

C��������� D�����
���
���C�����

EFGHEFIJKLM EFGHEFIJKLMNO P
QR

ST
U

Fig. 2.1 A Travel Arrangement Scenario

2.1 Scenario

We consider a travel agency, named TravelAgency, providing the travel
arrangement (e.g., transportation, itinerary, and accommodations) for its
clients (Figure ??). Assume a university professor, Joan, wants to attend
an international conference in Sydney, Australia. Typical services needed by

2.2 Web Service Reference Model 13

Joan might include airlines, ground-transportation (e.g., taxi and car rental),
accommodation (e.g., hotels and inns), and other entertainment services (e.g.,
restaurant and opera house). Joan needs to first search for the services
that provide travel packages. The search can be conducted in some well-
known service registry. We assume that TravelAgency is located by Joan.
Joan would then send her request to it. To offer a complete tour package,
TravelAgency needs support from its business partners (e.g., AirCompany,
Hotel, Restaurant, CarRental, and OperaHouse) to arrange flights, hotels,
cars, and other entertainment facilities. These companies all define the service
description for their Web services and publish them on a well-known service
registry, whereby TravelAgency can search and locate them. TravelAgency
needs to outsource services from these business partners to provide the en-
tire travel package. Since Web services with similar functionalities might be
provided by competing business partners, there is a need to optimize access
those Web services or composition thereof with respect to the expected qual-
ity. In addition, the Web services need to be accessed in a reliable and secure
manner. This example articulates a typical Web service usage scenario. It
will serve as a running example to illustrate various Web service concepts.

2.2 Web Service Reference Model

Three types of participants cooperate to set up a Web service model (see
Figure ??), including: service provider, service client, and service registry.
Web services interact in three primary modes: service publishing, finding,
and binding. Interactions depend on the Web service artifacts, which include
the service implementation and the service description.

• Participants in a Web services model are categorized into three types:

– Service provider is the owner of the Web services. It holds the imple-
mentation of the service application and makes it accessible via the
Web.

– Service client represents a human or a software agent that intends to
make use of some services to achieve a certain goal.

– Service registry is a searchable registry providing service descriptions. It
implements a set of mechanisms to facilitate service providers to publish
their service descriptions. Meanwhile, it also enables service clients to
locate services and get the binding information.

• Interactions with a Web service take place in three modes:

– Service publication is to make the service description available in the
registry so that the service client can find it.

– Service lookup is to query the registry for a certain type of service and
then retrieve the service description.

14 Towards a WSMS: The State of the Art

– Service binding is to locate, contact, and invoke the service based on
the binding information in the service description.

• Artifacts encompass the service implementation and description:

– Service implementation is a network accessible software module realized
by the service provider. It could be invoked by a service client or act as
a service client to interact with another service provider.

– Service description could contain the syntactic and semantic informa-
tion of the Web services. The syntactic information describes the in-
put/output of the operations, the binding information, the data types,
and so on. The semantic information encompasses the domain of inter-
ests, business functionalities, QoWS issues, and so on.

VWXYZ[W\W]Z^_X`VWXYZ[WaW^[XZb_Zcd
VWXYZ[WefZWd_VWXYZ[W\WghW^_ VWXYZ[WiXcYZjWXVWXYZ[WVWXYZ[WaW^[XZb_Zcdd

k
d

k
k k

ihlfZ^m
nZdj odj ZdYcpW

qZdj rst
uvvw uvvw

xyz{
|x}~

|x}~

|x}~
Fig. 2.2 W3C Web Services Reference Model

2.3 Web Service Stack

The Web service stack contains five key layers: communications, messaging,
descriptions, discovery, and processes, which are shown along the vertical
direction in Figure ??. It is an extension of the W3C service stack [?]. Similar
to the W3C service stack, each stack layer provides certain functionality to
support interoperation between Web services and service clients or among
Web services. However, we categorize interoperability into two dimensions:
syntactic and semantic (see Section ?? for details). Therefore, our service
stack is distinguished from the W3C stack by further identifying the syntactic
and semantic interoperability offered by all layers above the messaging layer.

2.4 Key Dimensions for Building a WSMS 15

• Communications: The underpinning of the Web services stack is the net-
work, where the underlying communications take place. A set of network
protocols help realize the network accessibility of Web services. The wide
adoption of HTTP makes it the first choice of standard network protocol
for Internet available Web services. Other network protocols could also be
supported, such as SMTP.

• Messaging: The messaging layer provides a document-based messaging
model for the interaction with Web services. The messaging model works
with a wide variety of network protocols. For example, the messaging
model can be combined with HTTP to traverse firewalls. In another case,
combination with SMTP enables the interaction with Web services that
support asynchronous message exchanges.

• Description: The description (or representation) layer is for describing
Web services. It wraps Web services and specifies their functionalities,
operations, data types, and binding information using a service interface.
The WS discovery will rely on the WS representation to locate appropriate
Web services.

• Discovery: The discovery layer is for locating and publishing Web ser-
vices. It enables the usage of Web services in a much wider scale. Service
providers can store the service descriptions in a service registry via the
publication functionalities provided by WS discovery. Meanwhile, service
requestors can query the service registry and look for interested services
based on the stored service descriptions.

• Processes: The processes layer supports more complex interactions be-
tween Web services, which enables Web service interoperation. It relies on
the basic interaction functionalities provided by the technologies at lower
layers in the Web service stack. For example, it needs Web service dis-
covery and representation for querying and locating Web services based
on their descriptions. The selected Web services are used to construct the
process, which consists of a sequence of coordinated Web services.

2.4 Key Dimensions for Building a WSMS

The variety of the Web service technologies constitutes a rich solution space
of Web services. Each technology has specific design requirements depending
on the usage scenarios. Therefore, it is important to determine the relevant
requirements for deploying and managing Web services. In this section, we
identify a set of dimensions to evaluate Web service technologies. These di-
mensions are in line with the key requirements for deploying and managing
Web services. We take the Web service stack as a starting point and extend
it to address the developing trends of Web service technologies. The dimen-
sions are defined according to the vertical layers of the Web service stack (see

16 Towards a WSMS: The State of the Art

S
E
C
U
R
IT
Y
/P
R
IV
A
C
Y

Q
U
A
L
IT
Y
 O
F
 W

E
B
 S
E
R
V
IC
E

M
A
N
A
G
E
M
E
N
TS

T
A
C
K
 L
A
Y
E
R
S

XML, DTD, Schema RDF/S, Ontologies

KEY DIMENSIONS

Description (Representation)

Syntactic, Semantic Descriptions

Discovery

Query, Publication

Messaging

Document Exchanging, Remote Procedure Call

Communications

HTTP, SMTP

Web Service Stack

INTEROPERABILITY

Processes

Coordination, Composition

S
Y
N
T
A
C
T
IC
 IN

T
E
R
O
P
E
R
A
B
IL
IT
Y

S
E
M
A
N
T
IC
 IN

T
E
R
O
P
E
R
A
B
IL
IT
Y

Fig. 2.3 Web Service Stack and Key Dimensions

Figure ??). They include interoperability, security & privacy, Quality of Web
Services (QoWS), and management.
Interoperability – This dimension refers to the extent to which participant
Web services would cooperate to accomplish a common objective. For ex-
ample, in the aforementioned scenario, TravelAgency needs to interoperate
with AirCompany and Hotel to serve its clients. The common objective of
the three parties is to provide satisfactory services for travelers. Good inter-
operability is a must for them to achieve this goal. Web services are designed
to bring together applications from geographically distributed and heteroge-
neous environments and provide interoperability among them [?]. Interoper-
ability could be achieved via three main approaches: standards, ontology, and
mediation. A standard is a specification or format that has been approved by a
recognized standardization organization or is accepted as a de facto standard
by the industry. Several standardization efforts in Web services have been
initiated by a focused group of companies, and have then been adopted by
different organizations such as OASIS (Organization for the Advancement
of Structured Standards) and W3C. These consortia aim at standardizing
the different aspects of Web service interactions (e.g., message format, in-
teraction protocols) [?]. An ontology is a formal and explicit specification of
a shared conceptualization [?]. “Conceptualization” refers to an abstraction
of a domain that identifies the relevant concepts in that domain. “Shared”
means that an ontology captures consensual knowledge. The development of
ontologies is often a cooperative process involving different entities possibly
at different locations (e.g., businesses, government agencies). All entities that
agree on using a given ontology commit themselves to the concepts and def-

2.4 Key Dimensions for Building a WSMS 17

initions within that ontology. “Explicit” means that the concepts used in an
ontology and the constraints on their use are explicitly defined. “Formal” in-
tends that the ontology should be machine understandable and describe using
a well-defined model or language called ontology language. Mediators provide
an integrated view or mediated schema over multiple heterogeneous and au-
tonomous services [?]. This schema represents generally a synthesized view
over a specific application domain. Users access the integrated view through
a uniform interface. Each service is connected to a wrapper that enables its
participation in the system. It translates between the services concepts and
those at the mediator level.

Interoperability is the core functionality that Web services endeavors to
achieve. Interoperation occurs at two levels: syntactic and semantic.

• Syntactic interoperability is concerned with the syntactic features of Web
services. Examples of syntactic features include the number of parameters
defining a message and the data types of those parameters. XML helps
achieve syntactic interoperability by encoding syntactic information into
XML documents. Additionally, XML provides platform and language in-
dependence, vendor neutrality, and extensibility, which are all crucial to
interoperability.

• Semantic interoperability is the most challenging issue for achieving the
truly seamless interoperation. It deals with semantic properties of Web
services. Examples of semantic features include the domain of interest
of a Web service and the functionality provided by an operation. The
envisioned Semantic Web is is gaining momentum as the potential silver
bullet for empowering Web services with semantics.

Interoperability could be achieved at different layers as depicted in Fig-
ure ?? [?]. The communication layer provides protocols for exchanging mes-
sages among remotely located partners (e.g., HTTP, SOAP). It is possible
that partners use different proprietary communication protocols. In this case,
gateways should be used to translate messages between heterogeneous pro-
tocols. The objective of interoperability at this layer is to achieve a seamless
integration of the communication protocols. The content (description) layer
provides languages and models to describe and organize information in such
a way that it can be understood and used. Content interoperability requires
that the involved systems understand the semantics of content and types of
business documents. For instance, if a Web service receives a message that
contains a document, it must determine whether the document represents
a purchase order or request for quotation. Information translation, transfor-
mation, data mediators, and integration capabilities are needed to provide
for reconciliation among disparate representations, vocabularies, and seman-
tics. The objective of interoperability at this layer is to achieve a seamless
integration of data formats, data models, and languages. The process layer
is concerned with the conversational interactions (i.e, joint business process)
among services. Before engaging in a transaction, service providers need to

www.allitebooks.com

http://www.allitebooks.org

18 Towards a WSMS: The State of the Art

agree on the procedures of their joint business process. The semantics of inter-
actions among partners must be well defined, such that there is no ambiguity
as to what a message may mean, what actions are allowed, what responses
are expected, etc. The objective of interoperability at this layer is to al-
low autonomous and heterogeneous partners to come online, advertise their
terms and capabilities, and engage in peer-to-peer interactions with any other
partners. Examples of concepts for enabling process interoperability include
process wrappers and application adapters [?, ?].
Security & Privacy – Security is an important issue for deploying Web
services. Web services enable interoperation at the risk of letting outside in-
truders attack the internal applications and databases since they open up
the network to give access to outside users to these resources [?]. Web service
security needs to be concerned with the following aspects: authentication, au-
thorization, confidentiality, and integrity. Authentication is used to verify a
claimed identity while authorization is to check whether a user is authorized
to perform a requested action. Confidentiality is to ensure that information
is disclosed only to authorized recipients by, for example encrypting the mes-
sage. Lastly, integrity refers to the protection of the information from being
tampered with by, for example putting digital signatures on the messages.
Privacy is another major concern of Web service deployment [?]. During ser-
vice interactions, personal data or business secrets (e.g., billing information,
shipping address, or product preference) might be unintentionally released
[?]. Conventional privacy protection mainly relies on law enforcement and re-
striction of social values. Emerging technologies for preserving privacy in Web
services include digital privacy credentials, data filters, and mobile privacy
preserving agents [?].
QoWS – The proliferation of Web services is expected to introduce compe-
tition among large numbers of Web services that offer similar functionalities.
The concept of QoWS is considered as a key feature in distinguishing between
competing Web services [?]. QoWS encompasses different quality parameters
that characterize the behavior of a Web service in delivering its functional-
ities. These parameters can be categorized into two major quality classes:
runtime quality and business quality. Quality parameters in these two classes
can be further extended to include more quality aspects of Web services to
fulfill the requirements of different application domains, such as Accessibility,
Integrity, and Regulatory.
Management – Web service management refers to the control and monitor-
ing of Web service qualities and usage. Web service management mechanisms
are highly coupled with QoWS of a Web service. We identify two types of
management: control and monitoring management.

• Control management aims to improve the service quality through a set
of control mechanisms. Typical control mechanisms include Web service
transaction, Web service change management, and Web service optimiza-
tion. Transactions help improve the reliability and fault-tolerance of Web
services. Change management deals with highly dynamic environment of

2.5 The WSMS Architecture 19

Web services. It takes a series of actions to identify the changes, notifying
the coupled entities, and adopting appropriate operations to response the
change. Web service optimization helps users identify Web services and/or
their combinations to best fulfill their requirements.

• Monitoring management rates the behavior of Web services in delivering its
functionalities in terms of each QoWS parameter. Monitoring Web service
behavior would be crucial in either calculating QoWS parameter values or
assessing a Web service claim in terms of promised QoWS.

Control and monitoring management might sometimes work cooperatively.
For instance, the Web service optimization would need the monitoring process
to get the QoWS parameter values of different Web services and/or their
combinations. These values would guide the optimization process to return
the optimized solutions that best fulfill users’ requirements.

2.5 The WSMS Architecture

Communications

Service Registry
WS Representation

Ontologies

Syntax

WS Processes

Coordination

WS Discovery

Query Publication

WS Management

Semantics

Composition

WS Messaging

Message
exchanging

Remote
Procedure

Call

Control

Monitor

Transaction

Optimization

Change

Management

Security / Privacy

Security

Authorization

Authentication

Confidentiality

Integrity

Privacy

QoWS

R
u
n
tim

e Q
u
a
lity

B
u
sin

ess Q
u
a
lity

R
elia

b
ility

R
esp

o
n
se tim

e

A
v
a
ila

b
ility

C
o
st

R
ep

u
ta
tio

n

Apply to

A
pply to

Monitor

Moni
tor

R
ep
or
t t
o

Encode

Rely on

Apply to

Rely on Encode

Sto
res

P
ublish

Rely on
Rely on

Control

Se
ar
ch

Rely on Monitor

R
ely on

Legend

Security/Privacy Functionality

WS Interoperation Functionality

WS Management Functionality

Rely on

A
p
p
ly
 t
o

Interoperation Framework

Rely on

Apply to

Co
ntr

ol

E
n
co
d
e

Fig. 2.4 The WSMS Architecture

In this section, we present the WSMS architecture. The design of the
WSMS architecture leverages the research result in DBMSs. Web services

20 Towards a WSMS: The State of the Art

will be treated and manipulated as first-class object in the proposed WSMS.
The key components in this architecture are modeled after those in DBMSs.
The functionality of each component aims to address the issues raised by the
key dimensions. The interoperation framework consists of six subcomponents:
communication, WS messaging, WS discovery, service registry, WS represen-
tation, and WS processes. The collaboration of these subcomponents provides
mechanisms to efficient access and interoperation with Web services. The se-
curity/privacy component guarantees that the access and interoperation can
be conducted in a secure and controlled manner. The QoWS component
lays out a set of quality metrics that can be used to advertise and discover
Web services. Some of the metrics can also be used to specify quality level
agreement, such as payment, price, etc. The management component offers
monitoring, transaction, change management, and optimization functionali-
ties. The proposed WSMS provides value added features to enable reliable
and optimized deployment of Web services. The architecture also reflects the
relationship among different components. In what follows, we give a detailed
description of the major functionality of each component.
The WS Interoperation Framework – The interoperation framework
is at the core of the WSMS architecture. It addresses the interoperability
issue of Web services through the collaboration of its six subcomponents.
WS-messaging combines with an underlying communication protocol (e.g.,
HTTP and SMTP) to enable the basic interaction with Web services. A
Web service takes the incoming message as the input to one of its methods
and responds with the output of the method as a returning message. WS-
representation defines the Web service interface containing a set of supported
methods. It specifies the signature of each method, which is similar to IDL in
the middleware systems. However, WS-representation goes beyond the IDL-
like syntactic service description. It incorporates more expressive language
constructs (e.g., ontologies) for describing the properties and capabilities of
Web services in an unambiguous and computer-interpretable manner. Other
information could also be specified in WS-representation, such as quality of
service parameters, security and transaction requirements, etc. The seman-
tic service description caters for the loosely-coupled interoperation between
Web services. It helps Web services determine the functionality, requirement,
and quality of their interoperation partners. Descriptions of Web services are
stored at service registries. WS discovery provides the query and publication
functionalities for locating and publishing Web services in a service registry.
Interaction with the registry is through WS messaging. WS processes rely on
the basic functionalities provided by the discovery, presentation, and messag-
ing components to support the complex interactions between Web services.
The processes involve the invocation of a sequence of Web services. Service co-
ordination defines the external interaction protocols for a WS process whereas
service composition defines the schemas for its internal implementation.
The WS Security/Privacy Component – The security/privacy compo-
nent ensures that interactions with Web services are conducted in a secure

2.5 The WSMS Architecture 21

fashion while sensitive information can be preserved as required. The secu-
rity mechanisms need to be applied to all aspects of Web services, including
messaging, query, publication, coordination, composition, control, and moni-
toring. Typical security functionalities that can be implemented by the secu-
rity module are auditing, authentication, access control, and data encryption.
Privacy is usually expressed by policies that reflect that the habits, behav-
iors, actions or other rights of the service users must be protected. Instead
of relying on laws and social values, the privacy module enforces the policies
from a technological perspective.
The QoWS Component – The QoWS component records the quality as-
pects of a Web service. It reflects the runtime and business requirements of
Web services, such as response time, availability, reliability, cost, and repu-
tation. Because it is anticipated that there will be multiple competitors to
provide similar functionalities, the WS query process uses QoWS as a major
criteria to select the “best” Web services. The QoWS component provides
functionalities to define appropriate metrics to characterize QoWS and devise
techniques to use it in optimizing service-based queries.
The WS Management Component – The WS management component
is for monitoring and controlling the interactions with Web services. The
monitoring module examines the behavior of the underlying communication,
WS messaging, and WS processes and reports the runtime and business prop-
erties of Web services to the QoWS component. The control module provides
transaction, optimization, and change management mechanisms to deliver the
functionalities of Web services in a reliable, adaptive, and optimal fashion.

Figure ?? describes the proposed WSMS architecture using the W3C con-
cept map model [?]. In this figure, rectangles represent concepts and lines with
arrows represent relationships. The key components in the WSMS architec-
ture are represented by the concepts. In addition to these key components,
the concept map also includes the Web service (represented by WS) concept.
The functionalities of each component are reflected by its relationships with
the WS concept or other components.

The proposed WSMS provides a foundational framework for Web services.
It formalizes the steps in the entire Web service life cycle. The design of each
component in the WSMS architecture follows key research issues (called di-
mensions) in Web service environments. Since Web services are designed to
achieve seamless interoperability, the interoperation framework stays at the
core of the WSMS architecture. The framework is composed of several hor-
izontally separated layers, each layer contains components that provide cor-
responding interoperation functionalities. The security/privacy, QoWS, and
management components offer supplementary support (e.g., security, privacy,
control, and monitoring) for the interoperation framework. These functional-
ities are orthogonal to the horizontal layers in the interoperation framework;
they can be applied across these layers. This is different from the Extended
Service Oriented Architecture (ESOA) [?]. ESOA contains three horizontal
layers: basic service, service composition, and management layers. The sepa-

22 Towards a WSMS: The State of the Art

WSMessaging

RepresentationDiscovery

Processes

Control Monitor

Security Privacy

QoWSSignals

Controls

Monitors

Secures

Enforces

Privacy

Has

Controls Monitors

Updates

Secures

Uses

Describes

Describes

Uses

Uses

Secures

Enforces Privacy

Describes

Describes

Uses

Uses

Uses

Participates

Legend Concept Relationship

Queries

and

Publicizes

Fig. 2.5 A Concept-map Description of the WSMS Architecture

ration of different layers is based on the advancement of their functionalities.
The basic service layer provides simple functionalities such as messaging, de-
scription, and discovery. The composition layer provides the functionalities
for the consolidation of multiple service into a single composite service. The
management layer provides advanced administration capacities for manag-
ing critical Web service based applications. Additionally, ESOA extends the
Service Oriented Architecture (SOA) by addressing the new requirements in-
troduced by Web services. The layers added in ESOA provide functionalities
that overlap with existing SOA layers. However, the WSMS architecture is
not developed by adding layers to an existing architecture. We take consid-
eration of the key research issues of Web service when designing the WSMS
architecture. Therefore, there is a clear functionality separation of different
components in a WSMS.

In [?], Web service management approaches have been investigated to sup-
port production-quality Web service applications. The Web service manage-
ment framework relies on a manageability information model and manage-
ment infrastructure services to make Web services measurable and manage-
able. Specifically, the manageability information model describes the manage-
ability information of Web services. Management infrastructure services de-
fine standard interfaces for the management functionalities, such as metering,
monitoring, mediation, etc. We take an integrated approach and a broader
scope to present the WSMS architecture. Management approaches investi-
gated in [?] are complementary to those covered in the management compo-

2.5 The WSMS Architecture 23

nent and fit into the the proposed WSMS architecture. There are some other
research effort underway to provide architectural support for Web services
such as Web Service Management Framework (WSMF) [?], Web Service Ar-
chitecture (WSA) [?], Web Services Conceptual Architecture (WSCA) [?], Se-
mantic Web enabled Web Services architecture (SWWS) [?], Service Bus [?],
and Web Service Interoperability framework (WS-I) [?]. These architectures
have addressed several similar components covered in our WSMS architec-
ture. These components are designed to address the key research issues in the
entire Web service life cycle. Unlike these architectures that present the com-
ponents in an isolated manner, we take an integrated approach to investigate
the functionalities of each component in the proposed WSMS architecture.
We further examine the relationship between these components and how
they could collaborate to set up the WSMS to enable the entire Web service
life cycle including developing, deploying, publishing, discovering, composing,
monitoring, and optimizing access to Web services.

Despite the proliferation of Web services, the field of service research is still in
its infancy, where there has been little foundational work to date. In this chap-
ter, we present the foundational service framework that helps address some
fundamental research issues on Web services [?, ?]. The presented framework
offers a systematic approach that enables users to achieve an optimal Service
Execution Plan (SEP) by submitting declarative service queries. Figure ??
shows the overall architecture of the service query optimization framework.
At the bottom, we have the service space for a given application domain that
consists of the actual service providers, a.k.a., service instances. The integra-
tion layer helps resolve the discrepancy of the service schemas and provides a
uniformed view of the service space. It can achieve this by applying the exist-
ing data integration techniques [?], which are not the focus of this work. The
QoWS manager deals with the collection of quality related information from
the service instances. The quality data will be used by the query optimizer
to make selection from the competing service providers. The service model
captures a set of key features of Web services that lay out a foundation for
service query specification, processing, and optimization. The service calcu-
lus enables users to use declarative service queries to locate Web services,
which is more precise and reliable than the keyword based search. The query
processor generates SEPs which can be used by the users to invoke services.

The remainder of this chapter is organized as follows. In Section ??, we
describe a scenario that will be used as a running example through this
chapter. In Section ??, we present the formal service model. In Section ??
and ?? we describe the service calculus and the service algebra, respectively.
In Section ??, we present the implementation of the algebraic operators. In
Section ??, we propose a QoWS model, which serves as the cost estimation
criteria in the QoWS optimization. Based on the model, we propose two
optimization algorithms. We present an analytical model in Section ?? and
conduct experimental studies in Section ??.

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection,
 DOI 10.1007/978-1-4419-0314-3_3,

25

Chapter 3

A Foundational Service Framework

26 A Foundational Service Framework

Service Instance Service Instance Service Instance Service Instance

Service Integration Layer

Service Model QoWS Manager

Service Calculus
Service Query

Processor

Service Query

Optimizer

Query Interface

Fig. 3.1 Architecture of The Framework

3.1 Case Study: Car Brokerage

As a way to illustrate this work, we use an application from the car brokerage
domain (see Figure ??). A typical scenario would be of a customer, say Mary,
planning to buy a used car having a specific model, make, and mileage. She
naturally wants to get the best deal. Assume that Mary has access to a
Web service infrastructure where the different entities that play a role in
the car purchase are represented by Web services. Examples of Web services
that need to be accessed include Car Purchase (CP), Car Insurance (CI),
and FInancing (FI). A single Web service may provide multiple operations.
Different operations may also have dependency relationships. For example,
the paymentHistory and financingQuote operations are both offered by
the financing service. The latter operation depends on the former operation,
i.e., the payment history decides the financing quote. We also anticipate that
there will be multiple competitors to provide each of the services mentioned
above. It is important that the users’ quality requirements be reflected in
the service query as criteria for service selection. To purchase an entire car
package, Mary would first like to know the price quote of the selected car
and the vehicle history report. She then needs to get the insurance quote.
Finally, since Mary needs the financing assistance, she also wants to know
the financing quote. In addition, Mary may have special requirements on the
quality of the service operations. For example, she wants to spend less than
20 dollars to get the vehicle history report.

The proposed service query optimization framework is designed to help
Mary with her car package purchase. Mary can specify her car package
through a declarative service query. The service query is formed based on
the service model. The declarative service query is a service calculus expres-
sion. It specifies the functionalities that the user wants to retrieve in terms
of service operations. There is no need for the user to have the knowledge
of the dependency constraints between service operations. In addition, the

3.2 Service Query Model 27

carQuote historyReport

Car Purchase (CP) Service Schema

Service Query

FI

CD

CI

Web Service schema

Query Service

Legend:

End User

Send Service Query

CI CI CI FI FI CP CP

Web Service Space

Web Service instance

Service Entry Point

Service Operation

CP

)}(|{ ss ψ

Conform to schema

paymentHistory financingQuote

FInancing Service (FI) Schema

drivingHistory

insuranceQuota

changeAddress
expirationCheck

updatePolicy renewPolicy

Car Insurance (CI) Service Schema

Operation Dependency C
on
fo
rm
 to

C
on
fo
rm
 to

C
on
fo
rm
 to

Fig. 3.2 The Car Brokerage Scenario

service query also allows the user to specify the requirements on the qual-
ity of the service operations. The service query is then transformed into the
service algebra, which consists of a set of algebraic operators. The algebraic
optimization is responsible for achieving the most efficient algebra expression.
Service execution plans can then be generated from the retrieved service in-
stances. The QoWS optimization is responsible for optimizing the execution
plans based on quality.

3.2 Service Query Model

We present our service model in this section. The service model proposes
and formally describes two key concepts: service schema and service relation.
The service schema is defined to capture the key features of all Web services
across an application domain. It provides a fixed vocabulary and enables
the definition of the service query languages. A set of service instances that
conform to a service schema form a service relation.

Finite State Machines (FSMs) and Petri-net have previously been pro-
posed to model Web services [?, ?]. However, these models are mainly de-
signed for automating the composition of Web services [?]. Our proposed
service model is different from these existing service models by providing
foundational support for service query optimization. It is worth to note that
the objective of this work is not to define a completely new model. Instead, we
are inspired by the standard relational model and make some key extensions
to it that enables service users to efficiently access services with their best
desired quality. The benefit of presenting such a model is twofold. First, we
can use this model to capture the rich semantics of Web services, including

28 A Foundational Service Framework

functionality, behavior, and quality. These features are of primary interests
for users to access services, which also makes them fundamental for specify-
ing service queries. In the proposed two-level service model, the graph-based
service schema is used to capture the functionalities of Web services in terms
of the operations they offer. It also captures the dependency relationships be-
tween the operations, which determine how these operations can be accessed
(called behavior of the service). The service relation is used to capture the
quality of the service providers. Second, we can leverage the existing tech-
nologies developed for the standard relational databases. For example, we
can store our service relation in a relational database and use some relational
operators to help implement the proposed service algebra (refer to Section 5
for details). In what follows, we first formally define several important con-
cepts about the service schema. We then give the definition of the service
relation.

Definition 3.1. (Service Schema) A service schema is defined as a tuple

S = (SG1, SG2, ..., SGn,D),with

SGi = (Vi, Ei, ǫi), i = 1, ..., n

is a directed acyclic graph (DAG), called service graph where

• Vi = {opij |1 ≤ j ≤ m} represents a set of service operations.
• ǫi is the root of the service graph. It represents the entry point, through

which all other operations in the service graph can be accessed. ǫi can
also be regarded as a special service operation, denoted by opi0. A service
graph has only one root.

• Ei = {eij|1 ≤ j ≤ l}, represents the dependencies between two service
operations from the same service graph, denoted by ≺ii. eij = (op, op′) is
an edge, where op ∈ Vi, op

′ ∈ Vi, and op 6= op′.
• D = {Di,j |1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i 6= j}, represents the dependencies

between two non-root operations from different service graphs, denoted
by ≺ij . Di,j = {ek

i,j|1 ≤ k ≤ l} represents the dependencies between two

non-root operations from service graph SGi and SGj . e
k
i,j = (op, op′) is

an edge, where op ∈ Vi and op′ ∈ Vj .
• SG′ = SGi ◦ SGj , the concatenation of two service graphs is formed by

coalescing the root of SGi and SGj . Furthermore, V ′ = {op|op ∈ Vi ∨op ∈
Vj} and E′ = {e|e ∈ Ei ∨ e ∈ Ej ∨ e ∈ Di,j}. Figure ?? shows an example
of the concatenation of two service graphs. �

The dependency between two service operations is modeled as op ≺ op′,
where ≺∈ {≺ii,≺ij}. ≺ii refers to the intra-service dependency, which can
only be satisfied by invoking the two service operations by the specified order
in the service graph. ≺ij refers to the inter-service dependency. It should
be satisfied when multiple services are accessed. We assume in Definition ??
that there is no dependency between the roots of different service graphs. We

www.allitebooks.com

http://www.allitebooks.org

3.2 Service Query Model 29

b

c

d

a e

f

b

c

d

a e

f

SGi SGj SG’

1ε 2ε 3ε

Fig. 3.3 Concatenation of Service Graphs

also assume that multiple dependency constraints on a single operation have
an ”And” relationship. For example, there are two dependency constraints
on opk, one with opi and the other with opj . In this case, both opi and opj

should be accessed before opk. It is also worth to note that when there is
only one service graph in the service schema S, i.e., n = 1 in Definition ??,
S becomes a single-graph service schema.

Example 3.2. Figure ?? shows the service schema for the car brokerage ser-
vice base. The service schema contains three service graphs, representing the
Car Purchase (CP), Car Insurance (CI), and FInancing (FI) services. For
example, in CI, there is a set of service operations, such as drivingHistory
and insuranceQuote. These operations collectively represent the functional-
ity of the CI Web service. The dependencies between service operations are
captured by the edges in the service graph. For example, drivingHistory

≺ii insuranceQuote means that the execution of insuranceQuote depends
on the result of drivingHistory. Service operations from different Web ser-
vices could have an inter-service dependency. For example, there is a depen-
dency between carQuote and insuranceQuote. It is denoted as carQuote

≺ij insuranceQuote. �

In what follows, we define a set of key concepts derived from the service
schema, including service path, operation graph, and operation set graph. We
focus on identifying the important properties they offer that are fundamental
to specifying and processing service queries.

Definition 3.3. (Service Path) For a service graph SG = (V,E, ǫ), we
defined a service path Pi = ({opi1, ..., opij , ...opik}, E′, ǫ}) where ǫ is the root
of SG, E′ ⊆ E, and k ≥ 1; opij ∈ V for 1 ≤ j ≤ k; and for each opij , 0 ≤ j ≤
(k − 1), ∃ej ∈ E′ : ej = (opij , opi(j+1)) (note that when j = 0, opij becomes
ǫ). Pi is an induced subgraph of service graph SG. �

Lemma 3.4. For any service operation op ∈ SG, there must be at least one
service path P that can reach op from ǫ.

30 A Foundational Service Framework

carQuote historyReport

paymentHistory financingQuote

FInancing Service (FI)

drivingHistory

insuranceQuota

changeAddress expirationCheck

updatePolicy renewPolicy

Car Insurance (CI) Service

Car Purchase (CP) Service

Legend

inter-service dependency

intra-service dependency

Fig. 3.4 The Service Schema for the Car Brokerage Scenario

Proof: This directly follows the definition of ǫ. Since ǫ is the entry point to
access any other operation (including op) in the service graph, there must be
at least one path from it to op. �

Definition 3.5. (Operation Graph) For a service graph SG = (V,E, ǫ),
an operation graph G(op) is the union of all the service paths in SG that
lead to operation op, G(op) = ∪Pi, where Pi = ({opi1, ..., opij , ...op}, Ei, ǫ}).
G(op) is an induced subgraph of the service graph SG. Figure ?? shows an
operation graph G(d), which is formed from SG by the union of two service
paths, P1 and P2, that both lead to the service operation d. �

Definition 3.6. (Operation Set Graph) For a service graph SG =
(V,E, ǫ), we define an operation set graph G(op) = ∪k

i=1G(opi), where
op = {opi|1 ≤ i ≤ k}. G(op) is an induced subgraph of service graph SG.
For example, in Figure ??, the operation set graph for {a,d,f} is SG itself,
i.e., G({a, d, f}) = SG. �

Operation graph and operation set graph are central to service query speci-
fication and processing. We identify their key properties by using the concepts
of accessible operation and accessible graph. It is worth noting that the root
of a service graph is accessible because the root is defined as the entry point
of a service. The formal definitions are given as follows.

Definition 3.7. (Accessible Operation) op is an operation in a service
graph SG and a general graph G is a subgraph of SG. op is an accessible
operation of G if the following two conditions are satisfied:

3.2 Service Query Model 31

b

c

d

a e

f

ε
P1 P2

SG

b

c

d

e

ε

G(d)

Fig. 3.5 An Example of An Operation Graph

(i) op ∈ G;
(ii) ∀op′, (op′, op) ∈ SG ⇒ op′ is an accessible operation of G. �

Lemma 3.8. An operation op is an accessible operation of G iff op and all
of its preceding nodes in the service graph are included in G.

Proof: This directly follows from Definition ??. �

Definition 3.9. (Accessible Graph) G is an accessible graph if each op-
eration in G is an accessible operation of G. �

Theorem 3.10. An operation graph G(op) is a minimal accessible graph for
op.
Proof: We use two steps to prove this theorem. First, we prove that G(op)
is an accessible graph. Second, we prove its minimality.

We can prove G(op) is an accessible graph by proving that op is an ac-
cessible operation of G(op). Assume that op is not an accessible operation of
G(op). Since op ∈ G(op), there exists an operation op′ where op′ is a preced-
ing node of op in SG and op′ is not a node of G(op) (Lemma ??). Let P1 be
the path from op′ to op. From Lemma ??, there is a path from ǫ to op′, which
is denoted by P2. Connecting P1 and P2, we get a new path P3 from ǫ to op,
which is not included in G(op). This contradicts Definition ??. Therefore, no
such op′ exists. We can conclude that G(op) is an accessible graph.

Assume that G(op) is an accessible graph but not minimal for op. There-
fore, there exists a graph G′(op) = G(op) − op′, where op′ 6= op, such that
G′(op) is still an accessible graph and op is its accessible operation. From
Definition ??, there is a path to op which passes through op′ in SG. There-
fore, op′ is a preceding node of op in SG. Since op is an accessible operation
of G′(op), from Lemma ??, we can get op′ ∈ G′(op). This contradicts the fact
that op′ is removed from G′(op). Therefore, G(op) is a accessible graph and
minimal for op. �

Theorem 3.11. An operation set graph G(op) is a minimal accessible graph
for op.
Proof: This directly follows from Definition ?? and Theorem ??. �

32 A Foundational Service Framework

Table 3.1 QoWS Parameters

Parameter Definition Domain Index

Latency Timeprocess(op) + Timeresults(op) where Timeprocess is the
time to process op and Timeresults is the time to trans-
mit/receive the results

number 1

Reliability Nsuccess(op)/Ninvoked(op) where Nsuccess is the number of
times that op has been successfully executed and Ninvoked is
the total number of invocations

number 2

Availability UpTime(op)/TotalTime(op) where UpTime is the time op was
accessible during the total measurement time TotalTime

number 3

Fee Dollar amount to execute the operation number 4
Reputation

P

n
u=1

Rankingu(op)/n, 1 ≤ Reputation ≤ 10 where
Rankingu is the ranking by user u and n is the number of
the times op has been ranked

number 5

Remark 3.12. In a service query, users only need to specify the operation(s)
they want to access (i.e., in a declarative way). An operation(set) graph
will be generated when the query is processed. For example, a user wants
financingQuote and formulates a service query to access it. An operation
graph G(financingQuote) will be generated. The query processor will use the
operation(set) graph as the single-graph service schema to generate service
execution plans (i.e., SEPs). Since an operation(set) graph is an accessible
graph, it guarantees that the operations specified in the service query are ac-
cessible through the generated SEPs. In addition, the minimality of the graph
also guarantees that only minimum number of service operations (i.e., the
ones that the operations in the query depends on) are included in the SEPs.�

We have now defined the service schema related concepts and identified
the key properties they offer for querying service. The service relation defines
a set of service instances that conform to the service schema. The service
instances offer the operations and follow the dependency constraints defined
in the service graphs. However, since the service instances are provided by
different service providers, they may have different quality properties. In what
follows, we first define a QoWS model to capture the quality features of
services. We then give the definition of a service relation.

Definition 3.13. (QoWS Model) The QoWS model formally defines a set
of quality parameters for Web services (see Table ??). It divides the quality
parameters into two categories: runtime quality and business quality.

• Runtime quality: It represents the measurement of properties that are
related to the execution of an operation op. We identify three runtime
quality parameters: latency, reliability, and availability. The latency mea-
sures the expected delay between the moment when op is initiated and the
time op sends the results. The reliability of op is the ability of the operation
to be executed within the maximum expected time frame. The availability
is the probability that the operation is accessible. Service providers could
publish runtime qualities of their Web service operations in the service
description or offer mechanisms to query them.

3.2 Service Query Model 33

• Business quality: It allows the assessment of an operation op from a
business perspective. We identify two business quality parameters: fee and
reputation. The fee gives the dollar amount required to execute op. The
reputation of op is a measure of the operation’s trustworthiness. It mainly
depends on the ratio to which the actual provision of the service is com-
pliant with its promised one. The fee quality can be obtained based on
the service providers’ advertisement in the service description whereas the
reputation is based on the ranking of the end-users. �

The values of the parameters defined in the QoWS model are from the
number domain, which consists of integer, float, and double. The proposed
QoWS model can be extended by adding other quality parameters. The index
number given in Table ?? will be used by the labeling function defined in the
service relation.

Definition 3.14. (Service Relation) A service relation SR with a ser-
vice graph SG = (V,E, ǫ) is defined as a set of service instances I =
{(sid, op1, ..., opn)}, where

• sid is the unique service id;
• op is a service operation and defined as a pair op = (opid, λ(op)), where
opid is the operation id and λ is a labeling function that assign to each
service operation op a set of values to its QoWS parameters, denoted by

Q =
⋃k

i=1Qi. op
λ

−→ Q gives the quality parameter values for op.
λi(op) = Qi specifies the ith quality parameter for op, where i is the
index for the quality parameter. Table ?? specifies the indices for all the
QoWS parameters. We will use these indices to refer to the different QoWS
parameters in later sections.

• Each service instance I in SR conforms to the service graph SG, i.e.,
operations in I are defined in SG and the operations follow the dependency
constraints specified by SG. �

We define the domain of λ(op) as dom(λ(op)) = {dom(λi(op))|1 ≤ i ≤ m},
where m is the number of QoWS parameters that can be applied to op.
Therefore, we can further define dom(op) = {dom(opid), dom(λi(op))}.

Based on the domain definition, we can restate the above definition of a
service relation as follows. A service relation SR is a (n+1)-degree relation on
the domains of dom(sid), dom(op1), dom(op2), ..., dom(opn), where opi ∈ SG
for i = 1,...,n,

r(SG) ⊆ (dom(sid) × dom(op1) × ...× dom(opn))

Figure ?? shows an example of CI service relation. The service relation
contains 5 service instances (a.k.a. service tuples) and has (n+1) fields, which
correspond to the sid and n service operations offered by the service instances.

The functionality, behavior, and quality parameters of the Web service are
captured in the service model. This provides fundamental support for query-
ing services. Since the functionality of a Web service is offered through a set

34 A Foundational Service Framework

drivingHistory insuranceQuote upldatePolicy changeAddresssid

{op11,(20,0.8,0.9,25,4)} {op12,(20,0.6,0.9,8,0,4)} {op13,(25,0.9,0.8,0,4)} {op14,(15,0.6,0.9,0,4)}1

...

...

{op21,(30,1.0,0.9,15,3)} {op22,(30,0.5,0.9,5,3)} {op23,(50,0.6,0.7,0,3)} {op24,(30,0.6,0.9,0,3)}2 ...

{op31,(10,1.0,0.9,30,5)} {op32,(10,0.9,0.9,10,5)} {op33,(20,0.8,0.8,0,5)} {op34,(10,0.9,0.9,0,5)}3 ...

{op41,(50,0.8,0.9,10,2)} {op42,(40,0.3,0.4,10,2)} {op43,(80,0.4,0.5,0,2)} {op44,(50,0.3,0.5,0,2)}4 ...

{op51,(15,0.8,0.9,20,3)} {op52,(30,0.6,0.5,5,3)} {op53,(30,0.6,0.7,20,3)} {op54,(20,0.6,0.9,10,3)}5 ...

OPn

{op1n,(20,0.7,0.9,0,4)}

{op2n,(15,0.8,0.8,0,4)}

{op3n,(40,0.8,0.9,0,5)}

{op4n,(25,0.4,0.7,0,2)}

{op5n,(45,0.5,0.8,10,3)}

Car Insurance (CI)

Fig. 3.6 An Example of CI Service Relation

of service operations, the vertices in V collectively represent the functionality
of the Web service. The behavior of the service is reflected by the operation
graphs (or operation set graph), which contain a set of service operations and
the dependency relationship between them. The quality parameters can be
attached to the service operations to evaluate QoWS parameters of opera-
tions from service instances.

3.3 Service Calculus

We propose a service calculus that enables a declarative specification of ser-
vice queries. We first give the formal definition of the proposed service cal-
culus. We use our running example to illustrate how the service calculus can
help users to get their desired services.

Definition 3.15. (Service Query) A service query is a service calculus
expression taking the following form: {s | ψ(s)}, where s is a service tuple
variable representing some service instance in a service relation SR. ψ is a
formula of the service calculus. Formulas are defined recursively from atoms,
which can take one of the following formats:

• x θq y, where (i) θq is a QoWS parameter comparison operator taken from
{=, >,≥, <,≤, 6=}; (ii) x and y can be QoWS parameters or constants.

• s.op == t.op, where (i) s.op denotes the service operations of service tuple
s and t.op denotes the service operations of service tuple t; (ii) s.op ==
t.op takes a True value if s and t have the same (i.e., the signatures are the
same) set of service operations whereas it takes a False value if otherwise.

• SR(s), where (i) SR is a service relation; (ii) s is a service tuple variable;
(iii) SR(s) takes a True value if s belongs to SR whereas the atom takes
a False value if otherwise. �

3.3 Service Calculus 35

Formulas are defined recursively from atoms using conjunction (∧), dis-
junction (∨), negation (¬), universal quantification (∀), and existential quan-
tification (∃). A variable is bound if it is introduced by using (∀ u) or (∃ u)
whereas it is free if otherwise. s is the only free variable in ψ. More specif-
ically, formulas are defined in three forms: (i) Every atom is a formula. (ii)
ψ1 ∨ ψ2, ψ1 ∧ ψ2, and ¬ψ are formulas if ψ1, ψ2, and ψ are formulas. (iii)
(∀ s)(ψ) and (∃ s)(ψ) are formulas if ψ1 and ψ2 are formulas.

We use two examples to illustrate the usage of service queries.

Example 3.16. Suppose that a user wants to get a vehicle history report with
less than 20 dollars. The service query can be expressed as follows:

Q1 = {s.sid, s[G(historyReport)]|CP (s) ∧ fee(s.historyReport) ≤ 20]}

where,

• G(historyReport) is an operation graph. Recall that in Theorem ??, we
proved that an operation graph G(op) is a minimum accessible graph for
op. G(historyReport) consists of all the necessary operations that make
historyReport accessible. It also specifies the dependency constraints for
accessing these operations. Therefore, G(historyReport) is the schema
(i.e., Gs) for the retrieved service relation.

• The [] operator in s[G(historyReport)] selects the operations
in G(historyReport) from s, including two operations: carQuote,

historyReport.
• fee(s.historyReport) refers to the fee of the historyReport operation in

s. �

Example 3.17. Suppose that the user also wants to get the insurance quote for
free. Since vehicle history report and insurance quote are from car purchase
service and insurance service respectively, there is a need to compose these
two services. The service query can be expressed as follows:

Q2 ={s.sid, s[G(op1) ◦G(op2)]|(∃s1)(∃s2)(CP (s1) ∧ fee(s1.op1) ≤ 20∧

CI(s2) ∧ fee(s2.op2) = 0 ∧ s.op == s1.op ◦ s2.op)}

where,

• s.sid is a new service id for the combined service tuple.
• G(op1) ◦G(op2) represents graph concatenation (see Definition ?? for de-

tails), where op1 and op2 are historyReport and insuranceQuote service
operations respectively. Similar to Example ??, the resultant graph from the
concatenation is the schema (i.e., Gs) for the retrieved service relation.

• s1.op ◦ s2.op represents service tuple concatenation. If s1 and s2 have m
and n service operations respectively, the result of service tuple concatena-
tion will be an operation set with (m+n) service operations, with the first
m operations from s1 and the following n operations from s2. �

36 A Foundational Service Framework

The service calculus enables a service user to formulate a query by spec-
ifying the required functionality in terms of service operations. It also al-
lows the user to specify quality requirements on specific operation (e.g.,
historyReport in Example ??). The calculus service query retrieves a service
relation SR that consists of the service instances satisfying the query predi-
cates. An intermediate service graph, Gs, will also be generated that serves
as the schema for the retrieved service instances. Gs is actually an operation
(set) graph (e.g., G(historyReport) in Example ??) or the concatenation of
multiple operation (set) graphs (e.g., G(op1) ◦ G(op2) in Example ??) if a
service query needs to access multiple services. The operation (set) comes
from the operation(s) that the user wants to access (e.g., historyReport in
Example ??) through the service query.

Remark 3.18. In the above two examples, the service calculus enables a service
user to formulate a query by specifying the required functionality in terms of
service operations. It also allows the user to specify quality requirements on
specific operation (e.g., historyReport in Example ??). The calculus service
query retrieves a service relation that consists of the service instances sat-
isfying the query predicates. An intermediate service graph, Gs, will also be
generated that serves as the schema for the retrieved service instances. Gs is
actually an operation (set) graph (e.g., G(historyReport) in Example ??) or
the concatenation of multiple operation (set) graphs (e.g., G(op1) ◦G(op2) in
Example ??) if a service query needs to access multiple services. The oper-
ation (set) comes from the operation(s) that the user wants to access (e.g.,
historyReport in Example ??) through the service query. �

3.4 Service Query Algebra

We define a service query algebra that enables the specification of algebraic
service queries. The proposed service algebra contains three major operators
that help service users query their desired services:

• Functional map (F-map): It facilitates users to locate and invoke their
desired functionalities in terms of service operations by making use of the
key properties provided by the operation (set) graphs.

• Quality-based selection (Q-select): It allows users to locate service
instances (i.e., service providers) with their desired quality.

• Composition (Compose): It enables service composition when users need
to access multiple services.

Service users can use the algebraic operators to access one or multiple ser-
vices with their desired functionality and quality. A service query is typically
specified with the combination of the above three operators (More detailed
definition for each of these operators are given in Section 4.1). Querying ser-
vices is an integrated process that requires to query both the service graphs

3.4 Service Query Algebra 37

defined in the service schema and the service relation. Processing an algebraic
service query will result in a service relation SR′ and a service graph, Gs,
that serves as the schema for the retrieved service relation. Gs is constructed
based on the operations specified in the service query (i.e., the functionalities
a user wants to access). Gs consists of the operations in the service query and
all their dependent operations. It also specifies the dependency constraints
between these operations. In this section, we first present the service query
algebra. We then present a set of algebraic equivalent rules that enable the
query optimizer to rewrite the algebraic expressions.

3.4.1 Algebraic Operators

The service algebra consists of three major operators: F-map (χ), Q-select
(δ), and Compose (⊕). The algebra operators are applied to a service re-
lation and produce a new service relation.

3.4.1.1 F-map

The F-map operator, denoted by χ, is used to map a service relation SR onto
a subset of (user selected) service operations and result in a service relation
SR′. The service schema of SR′ is a service graph Gs, which is an operation
set graph built upon the user specified operations and the service graph of
SR. The F-map operator is also called functional map because users can
choose their desired functionality (in terms of service operations) using this
operator. F-map is formally defined as follows:

χop(SR) = {s.sid, s[G(op)]|SR(s)}

where

• op is the set of service operations that a user wants to select to achieve
the desired functionality.

• G(op) is an operation set graph. It contains the service operations spec-
ified by the service query and all their dependent operations. Recall that
in Theorem ??, we proved that an operation graph is a minimum acces-
sible graph for op. It consists of all the necessary operations that make
the operation specified in the service query accessible. It also specifies the
dependency constraints for accessing these operations. Therefore, the oper-
ation (set) graph can be regarded as the schema (i.e., Gs) for the retrieved
service relation.

• The [] operator selects the operations from s with respect to G(op), i.e.,
the retrieved service tuple only contains all the operations of G(op).

38 A Foundational Service Framework

Example 3.19. An algebraic service query that retrieves the insuranceQuote

operation from the CI service relation is interpreted as follows:

χ{insuranceQuote}(CI) = {s.sid, s[G({insuranceQuote}]|CI(s)}

�

3.4.1.2 Q-Select

The Q-select operator, denoted by δ, is used to select a subset of service
tuples from service relation SR that satisfy some quality requirement. The
selected tuples form a service relation SR′, which has the same service schema
as SR. Q-select is also called quality select. The quality requirement is
specified by the select quality predicate ps. Q-select is formally defined as
follows:

δps
(SR) = {s|SR(s) ∧ ps(s)}

where

• SR is a general service algebra expression which results in a service relation;
SR(s) takes True if s belongs to the generated service relation, False
otherwise.

• ps is a select quality predicate, which connects a set of clauses using the
boolean operators: conjunction (∧), disjunction (∨), and negation (¬). A
clause has the form of x θq c and returns a boolean, where (i) θq is a QoWS
parameter comparison operator taken from {=, >,≥, <,≤, 6=}; (ii) x is a
QoWS parameter and c is a constant.

Example 3.20. An algebraic service query that retrieves the CI service in-
stances with a vehicle history report cost less than 20 dollars can be inter-
preted as follows:

δλ4(drivingHisotry)≤20(CI) = {s|CI(s) ∧ λ4(s.drivingHisotry) ≤ 20}

The following algebra expression combines the F-map and the Q-select

operators:

χ{insuranceQuote}(δλ5(insuranceQuote)≥3(CI))

= {s.sid, s[G(insuranceQuote)]|CI(s) ∧ λ5(s.insuranceQuote) ≥ 3}

�

3.4.1.3 Compose

The Compose operator, denoted by ⊕, combines two service relations SR1

and SR2 into a single service relation SR′. The service schema of SR′ is the

www.allitebooks.com

http://www.allitebooks.org

3.4 Service Query Algebra 39

concatenation of the service graphs of SR1 and SR2, i.e., Gs = G1 ◦G2. It is
used to address the complex service queries that require the cooperation of
multiple services. Users can specify their quality requirement over multiple
services by using the compose quality predicate pc. These requirements will
be used to select service tuples from the combined service relation. Compose
is formally defined as follows:

SR1 ⊕pc
SR2 = {s.sid, s[G1 ◦G2]|(∃s1)(∃s2)(

SR1(s1) ∧ SR2(s2) ∧ s.op == (s1.op ◦ s2.op) ∧ pc(s))}

where

• G1 and G2 are the service graphs of SR1 and SR2 respectively. G1 ◦ G2

represents graph concatenation (see Definition ?? for details).
• pc is a quality predicate, which connects a set of clauses using the conjunc-

tion (∧) operator. Each clause takes the form of x θq y, where x is a QoWS
parameter of a service operation from SR1 and y is a QoWS parameter of
a service operation from SR2.

• s.op == t.op takes a True value if s and t have the same set of service
operations (i.e., the signatures are the same) whereas it takes a False value
otherwise, where s.op denotes the service operations of service tuple s and
t.op denotes the service operations of service tuple t.

• s1.op ◦ s2.op represents service tuple concatenation. If s1 and s2 have m
and n service operations respectively, the result of service tuple concate-
nation will be an operation set with (m+n) service operations1, with the
first m operations from s1 and the following n operations from s2.

Example 3.21. The following algebraic expression applies to two service
relations, CP and CI. It retrieves the combined tuples, in which the
insuranceQuote operation has a higher availability than the carQuote oper-
ation.

χ{op1,op2}(CP ⊕λ3(op1)<λ3(op2) CI) = {s.sid, s[G(op1) ◦G(op2)]|(∃cp)(∃ci

(CP (cp) ∧ CI(ci) ∧ s.op == (cp.op ◦ ci.op) ∧ λ3(cp.op1) < λ3(ci.op2))}

where op1 and op2 represent the service operations carQuote and insurance-
Quote respectively. The query combines the Compose operator and the F-map

operator. The schema of the resulted service relation SR′ is the concatenation
of two operation (set) graphs, i.e., Gs = G(op1) ◦G(op2). �

If a user does not specify any quality predicate, pc becomes empty. We de-
fine a Compose operator with empty quality predicate as Crossover, denoted
as ⊗. Crossover is interpreted the same way as Compose by only removing
the pc part.

1 The service schema is designed to have different service graphs with different functional-
ities (i.e., different set of operations). In this regards, the set of operations for two service
graphs are disjoint.

40 A Foundational Service Framework

Table 3.2 Algebraic Equivalent Rules

1. Associative rule

SR1Ω(SR2ΩSR3) = (SR1ΩSR2)ΩSR3, ∀Ω ∈ {⊕p,⊗}

if p is applicable to operations from SR1 and SR2

2. Communicative rule

SR1ΩSR2 = SR2ΩSR1, ∀Ω ∈ {⊕p,⊗}

3. Cascading rule

3.1. χop1
(χop2

(...(χopn
(SR))) = χop1∪op2...∪opn

(SR)

3.2. δp1
(δp2

(...(δpn(SR))) = δp1∧p2...∧pn (SR)

4. Swapping rule

4.1. χop(δp(SR)) = δp(χop(SR)), if operations in p are only from op

4.2. χop1∪op2
(SR1ΩSR2) = (χop1

(SR1))Ω(χop1
(SR2)), ∀Ω ∈ {⊕p,⊗}

if op1 and op2 are the operations from SR1 and SR2 respectively

and p is applicable to operations from χop1
(SR1) and χop2

(SR2)

4.3. δp1∧p2
(SR1ΩSR2) = (δp1

(SR1))Ω(δp2
(SR2)),∀Ω ∈ {⊕p,⊗}

if operations in p1 and p2 are only from SR1 and SR2 respectively

4.4. Ω1(SR1Ω2SR2) = (Ω1(SR1))Ω2(Ω1(SR2)),

∀Ω1 ∈ {δp, χop}, ∀Ω2 ∈ {⊕p,⊗}

3.4.2 Algebraic Equivalent Rules

We present a set of algebraic equivalent rules in this section. Algebraic rewrit-
ing can be performed based on these rules. This enables algebraic optimiza-
tion to generate efficient Service Query Plans (SQPs). Table ?? gives the
details of each of these algebraic equivalent rules.

The correctness of the algebraic rules can be proved directly from the
definition of our service algebra. These rules lay out a foundation for algebraic
rewriting. We now present our heuristic rules for finding efficient SQPs. We
assume that the internal form of a service query is implemented using a parse
tree.

1. Split the Q-select with multi-clause predicates into a set of cascading
Q-selects with single-clause predicates by using cascading rule 3.2.

2. Move Q-selects towards the leaves of the parse tree by using swapping
rules, 4.1, 4.3, and 4.4

3. Split the F-map with multiple sets of operations into a set of cascading
F-maps with single set of operations by using cascading rule 3.1.

4. Move F-maps towards the leaves of the parse tree by using swapping rules,
4.2, 4.3, and 4.4.

5. Combine cascading Q-selects and F-maps into a single Q-select, a single
F-map, or a Q-select followed by a F-map by using cascading rules, 3.1,
3.2, and swapping rule 4.1.

3.5 Implementing the Algebraic Operators 41

3.5 Implementing the Algebraic Operators

We present the implementation of the algebraic operators in this section.
This enables the generation of SEPs that can be directly used by service
users to access services. In relational databases, there is a strong correspon-
dence between algebraic operators and the low-level primitives of the physical
system [?]. This correspondence comes from the mapping between relations
and files, and tuples and records [?]. In our service query framework, the
service execution plan depends on both the service instances and the shape
of the service graph. The service instances are offered by the actual service
providers. The service graph serves as the schema of the service instances.
It specifies the dependency constraints of accessing the service operations in
the service instances.

3.5.1 Storing the Service Relations

We leverage the relational database approach to store service instances. A
service relation can be mapped to a set of database relations and stored
in a relational database. Service relations allow nonatomic attributes. For
example, a service operation is a composite attribute, which consists of an
operation id (opid) and a set of QoWS values (λ(op)). This makes a service
relation a nested relation. Therefore, a service relation contradicts with the
First Normal Form (1NF) of relational databases. To normalize service re-
lations into 1NF, we need to remove the nested relation attributes into new
relations and propagate the primary key into it. A service relation

SR(sid, {op1(opid, λ(op1))}, ..., {opn(opid, λ(opn))})

is decomposed into (m+ 1) database relations:

opid(SR)(sid, opid(op1), ..., opid(opn)) (1)

λ1(SR)(sid, λ1(op1), ..., λ1(opn) (2)

...

λm(SR)(sid, λm(op1), ..., λm(opn) (m+ 1)

Figure ?? illustrates the normalization process. SR is a service relation (see
Figure ??(a)). The opi attribute is multivalued, which contradicts with 1NF.
The normalization decomposes SR into (m+1) 1NF relations, as shown in Fig-
ure ??(b). Normalization transforms a service relation into a set of database
relations. Service relations can thus be stored in relational databases.

42 A Foundational Service Framework

...)(11 opλ)(1 nopλ)(21 opλ

...)(12 opλ)(22 opλ)(2 nopλ

...)(1opmλ)(2opmλ)(nm opλ

...
sid

sid

sid

opid(op2) ... opid(opn)opid(op1)sid

op2 ... opnop1sid

SR

opid(SR)

)(1 SRλ

)(2 SRλ

)(SRmλ

(a)

(b)

Fig. 3.7 Normalizing service relations into 1NF

3.5.2 Implementing the Service Algebra

New service graphs might need to be generated when processing the algebraic
service queries. Generating a new service graph is usually not as straightfor-
ward as generating a new relational data schema. Among the three algebraic
operators, F-map and Compose require the generation of new service graphs.
Therefore, implementation of these two operators consists of two major tasks:
generating the service graph and retrieving service instances. The Q-select

operator does not involve any update of the service graph. It only retrieves
the service instances based on the quality requirement.

3.5.2.1 F-map

Service Graph Generation: The F-map operator employs an algorithm
called OSGgen (i.e., Operation-Set-Graph generation) to output an opera-
tion set graph given a set of service operations and a service graph. The
resultant operation set graph will be the schema for the new service relation
generated by the F-map operator. Algorithm ?? illustrates the Operation-set-
graph generation process.
Service Instance Retrieval: The F-map operator performs database pro-
jections on each of the quality value relations and the service id relation,
i.e., Πopid(Gop1),...,opid(Gopk)(opid(SR)), Πλ1(Gop1),...,λ1(Gopk)(λ1(SR)),..., and
Πλm(Gop1),...,λm(Gopk)(λm(SR)), where Gop1,..., and Gopk are the operations
from service graph G.

3.5 Implementing the Algebraic Operators 43

3.5.2.2 Q-select

Service Instance Retrieval: The Q-select operator uses five steps to
retrieve service instances:

1. Divide the selection predicate p(λ1, λ2..., λk) into k subpredicates p(λ1),
p(λ2)...,p(λk), where k is the number of distinct quality parameters in the
selection predicate.

2. Use the subpredicates to perform database selection, σp(λ1)(λ1(SR)),
σp(λ2)(λ2(SR))..., and σp(λk)(λk(SR)).

3. Perform database projection on the resultant relations from step 2
to retrieve the service id, sidλ1

= Πsid(σp(λ1)(λ1(SR))), sidλ2
=

Πsid(σp(λ2)(λ2(SR))),..., and sidλk
= Πsid(σp(λk)(λk(SR))).

4. Combine sidλ1
, sidλ2

, ..., sidλk
to generate the relation SID, which con-

tains all the sids to be retrieved. The combination process is performed
based on the boolean operators used to connect different quality pa-
rameter clauses in p(λ1, λ2..., λk). The boolean operator can take one of
the following two forms: ∨ and ∧. For example, if p = c(λ1) ∧ c(λ2),
SID = sidλ1

∩ sidλ2
; if p = c(λ1) ∨ c(λ2), SID = sidλ1

∪ sidλ2

5. Perform database natural join, opid(SR) ∞ SID, λ1(SR) ∞ SID,..., and
λk(SR) ∞ SID to retrieve the operation id and quality values for the
retrieved service instances.

3.5.2.3 Compose

Service Graph Generation: The Compose operator employs an algorithm
called Gcon (i.e., Graph concatenation) to output a new service graph given
two service graphs and a set of edges representing inter-service dependencies.
The resultant service graph will be the schema for the new service relation
generated by the Compose operator. Algorithm ?? illustrates the graph con-
catenation process.
Service Instance Retrieval: The Compose operator uses five steps to re-
trieve service instances:

1. Divide the selection predicate p into a set of subpredicates, each of which
contains a single clause.

2. Perform database θ-join, λi(SR1) ⊲⊳p(λi,λj) λj(SR2), where p(λi, λj) is a
subpredicate containing λi and λj and λi. λj can refer to the same quality
parameter, for example, p = λ3(carQuote) < λ3(insureanceQuote).

3. Perform database projection on the resultant relations from step 2 to re-
trieve the service id, sidλi,j = Πsidi,sidj

(λi(SR1) ⊲⊳p(λi,λj) λj(SR2)).
4. Combine sidλi,λj

to generate the relation SID, which contains all the
sids to be retrieved. The combination process is similar to step 4 of the
Q-select operator.

44 A Foundational Service Framework

5. Perform database natural join, (opid(SR1)∞SID)∞(opid(SR2),
(λ1(SR1)∞SID)∞λ1(SR2),..., and (λk(SR1)∞SID)∞λk(SR2) to
retrieve the operation id and quality values for the retrieved service
instances.

Algorithm 1 Operation Set Graph Generation (OSGcon)

Require: A set of service operations op={op1, ..., opn}, a service graph SG
Ensure: An operation set graph OSG
1: OSG = φ;
2: for all op ∈ op do

3: OG = OGgen(SG, op);
4: OSG=OSG ∪ OG;
5: end for

6: Function OGgen(SG, op)
7: OG.E=φ, OG.V =φ;
8: OG.V = OG.V ∪ {op};
9: for all e ∈ SG.E do

10: if e.to == op then

11: OG.E = OG.E ∪ {e};
12: op′ = e.from;
13: end if

14: end for

15: OG′ = OGgen(OG, op′);
16: OG = OG ∪ OG′;

Algorithm 2 Service Graph Concatenation Algorithm (Gcon)

Require: Two service graphs SG1, SG2, an edge set ED={e1, e2, ..., en}
Ensure: A service graph SG
1: SG.V = φ, SG.E = φ;
2: SG.V = SG1.V ∪ SG2.V ;
3: SG.E = SG1.E ∪ SG2.E ∪ ED;
4: SG=SG-{SG1.ǫ, SG2.ǫ};
5: SG.ǫ = ǫ0;
6: for all op ∈ SG.V do

7: if op does not have any incoming edge then

8: e′ = {ǫ, op};
9: SG.E = SG.E∪ {e’};

10: end if

11: end for

3.5.3 Complexity of Service Algebraic Operators

We analyze the complexity of the service algebraic operators in this section.
The complexity is defined with respect to the cardinalities of the service rela-

3.5 Implementing the Algebraic Operators 45

tions that are independent of the physical implementation details. We assume
the cardinality of the original service relations is t. Table ?? summarizes the
complexity of each service algebraic operator.
F-map – The F-map operator first generates a new service graph by applying
OSGgen that has a complexity of O(n×(V +E)). It then retrieves the service
instances by performing projection on each relation, include the operation
id relation and the m quality value relation. This requires a complexity of
O(m× t). Therefore, the overall complexity is O(n× (V + E) +m× t).
Q-select – The Q-select operator uses five major steps for retrieving ser-
vice instances. We analyze the complexity of each step and derive the total
complexity in the end.

1. Step 1 divides a complex selection predicate into k subpredicates. It re-
quires one pass of the k subpredicates and has a complexity of O(k).

2. Step 2 performs selection using the k subpredicates on k quality value
relations respectively. The complexity is O(k × t).

3. Step 3 projects the resultant quality value relation onto the sid attribute.
We assume that the average selection factor in Step 2 is sF . Therefore, the
complexity of step 3 is O(k × t× sF).

4. Step 4 uses the set operators (i.e., ∩ and ∪) to get the final sids. To
eliminate duplicates, we assume that the set operators usually need to sort
the relations on the sids and then compare the sids from both relations.
Therefore, the complexity is O((k − 1) × t× sF × log (t× sF)).

5. Step 5 joins the final sids with the operation id relation and all the m
quality value relation. We assume that natural join also needs to sort the
relations on sids. Therefore, the complexity is O(m× t× log t).

We can derive the overall complexity of the Q-select operator as:

O(k + k × t+ k × t× sF + (k − 1) × t× sF × log t× sF +m× t× log t)

= O((k +m) × t× sF × log t)

Compose – The Compose operator first applies the Gcon to generate a new
service graph that requires a complexity of O(V +E). It then uses five major
steps for retrieving service instances. We analyze the complexity of each step
and derive the overall complexity in the end.

1. Step 1 divides a complex project predicate into k subpredicates. It requires
one pass of the k subpredicates and has a complexity of O(k).

2. Step 2 performs θ-join using the k subpredicates respectively. The com-
plexity is O(k × t× log t).

3. Step 3 projects the resultant quality value relation onto the sid attribute.
We assume that the average selection factor in Step 2 is s′F . Therefore, the
complexity of step 3 is O(k × t2 × s′F).

4. Step 4 uses the set operators (i.e., ∩ and ∪) to get the final sids. To
eliminate duplicates, we assume that the set operators usually need to sort

46 A Foundational Service Framework

Table 3.3 Complexity of Service Algebraic Operators

Algebraic operator Complexity

F-map O(n × (V + E) + m × t)

Q-select O((k + m) × t × sF × log t)

Compose O((V + E) + (k × t + m) × t × log t)

Crossover O((V + E) + (m + 1) × t2)

the relations on the sids and then compare the sids from both relations.
Therefore, the complexity is O((k − 1) × t2 × s′F × log (t2 × s′F)).

5. Step 5 performs (opid(SR1)∞SID)∞(opid(SR2),
(λ1(SR1)∞SID)∞λ1(SR2),..., and (λm(SR1)∞SID)∞λk(SR2) to
retrieve the operation id and quality values for the retrieved service
instances. Since SID has been sorted in Step 4, the complexity is
O(m× t× log t).

We can derive the overall complexity of the Compose operator as:

O((V + E) + k + k × t× log t+ k × t2 × s′F + (k − 1) × t2 × s′F

×log (t2 × s′F) +m× t× log t)

= O((V + E) + (k × t+m) × t× s′F × log t)

Crossover – The Crossover first applies the Gcon to generate a new service
graph that requires a complexity of O(V +E). It then applies to the operation
id relation and them quality value relation. Therefore, they have a complexity
of O((V + E) + (m+ 1) × t2).

3.5.4 Generating SEPs

The retrieved service relation conforms to the service graphs that define the
service operations and their dependency constraints for the service instances
in the retrieved service relation. We investigate in this section how to generate
SEPs from the retrieved service instances based on the service graphs. The
service graphs could be generated during query processing (e.g., if F-map and
Compose are involved) or originally defined by the service schema. We propose
an algorithm that generates a service execution path from a service graph.
The service execution path arranges all operations in the service graph into a
sequence with respect to all the dependency constraints. A service execution
path is non-executable because operations in the path are at the schema
level, i.e., these operations are not from any particular service instances.
SEPs can be generated by instantiating the service execution path with the
operations from the service instances. A SEP is executable in that it is formed

3.5 Implementing the Algebraic Operators 47

by the operations from service instances that correspond to the actual service
providers.

Remark 3.22. A Service Execution Plan (SEP) is different from a Service

Query Plan (SQP) from two major aspects:

1. A SEP consists of a set of service operations from the retrieved service

instances. A SQP, on the other hand, is composed of algebraic operators

and service relations. It is used for retrieving service instances.

2. A SEP specifies the order to execute the service operations. A SQP, on

the other hand, specifies the order of the algebraic operators and service

relations for retrieving service instances. �

Algorithm 3 Service Execution Path Generation
Require: A Service Graph G
Ensure: A Service Execution Path P = (ǫ, op1, ..., opn)
1: for all op ∈ G do

2: op.order=-1;
3: end for

4: for all e ∈ G do

5: e.color=red;
6: end for

7: current order=0;
8: P[current order]=ǫ;
9: ǫ.order=current order+1;

10: current order=current order+1;
11: for all ǫ’s outgoing edge e do

12: e.color=green;
13: end for

14: for all ǫ’s next operation op do

15: Depth First Traversal(G, op, P, current order);
16: end for

17: for all operation op′ do

18: if op′.order==-1 then

19: Depth First Traversal(G, op’, P,current order);
20: end if

21: end for

48 A Foundational Service Framework

Algorithm 4 Depth First Traversal
Require: G, op, P, order
1: executable=true;
2: for all op′s incoming edge e do

3: if e.color==red then

4: executable=false;
5: break;
6: end if

7: end for

8: if executable==false then

9: return;
10: end if

11: P[current order]=op;
12: op.order=current order+1;
13: current order=current order+1;
14: for all op’s outgoing edge e do

15: e.color=green;
16: end for

17: for all op’s next operation op′ do

18: Depth First Traversal(G, op’, P, current order);
19: end for

Algorithm ?? illustrates the algorithm of generating a service execution
path from a service graph. The produced service execution path is an or-
dered list of service operations. This algorithm has two major features: edge
coloring and depth-first traversal. First, the orders among operations need
to conform to the dependency constraints. Therefore, an operation can be
executed only after all of its depending operations have been executed. To
fulfill this requirement, we color the edges of the graph as green and red. An
edge is initially colored as red (line 4-6). Once a service operation is visited,
all of its outgoing edges are colored as green (line 11-13). Only the operations
with all green incoming edges will be visited. Edge coloring guarantees that
service operations can be executed in the order that conforms to dependen-
cies. Second, we use the recursive call to achieve a graph depth-first traversal
(shown in Algorithm ??). The graph depth-first traversal will put service op-
erations that come from the same service paths (e.g., paymentHistory and
financingQuote) close to one another in the service execution path. This
enables users to continuously perform a set of related operations.

Theorem 3.23. The execution path generation algorithm has the complexity

of O|V + E|.

Proof: This algorithm is a graph depth-first traversal algorithm. Therefore,

it has the complexity of O|V + E|. �

www.allitebooks.com

http://www.allitebooks.org

3.6 Service Query Optimization 49

3.6 Service Query Optimization

The retrieved service relation usually contains more than one service in-
stances. Therefore, multiple SEPs can be generated from the service relation.
All these SEPs satisfy the functional and quality requirement specified by the
query. However, users may have special preference for some QoWS parame-
ters over others. For example, Mary wants to use the SEP with the highest
reputation, i.e., she prefers to buy the car package from the most reputable
providers. The preference is on the entire SEP that usually contains multiple
operations. It is different from the quality requirement in the service query
that is on some individual operations (e.g., get the history report for less than
20 dollars). The QoWS aware query optimization is a “user centered” opti-
mization. It is to find the SEP with the best quality based on user preference
over the entire SEP. In this regard, the service query optimization performs
a global selection as opposed to local search that is performed by the query
processor. In this section, we first present a set of aggregation functions to
compute the QoWS for SEPs. They combine the QoWS parameters from
multiple service operations. An score function is then presented to evaluate
the entire SEPs. Finally, we present two optimization algorithms to find the
best SEPs.

3.6.1 QoWS for SEPs

We need now to compute the QoWS parameters for the entire service execu-
tion plan that may contain multiple service operations. Based on the meaning
of QoWS, we define a set of aggregation functions to compute QoWS of ser-
vice execution plans, as shown in Table ??. The quality of a SEP can thus
be characterized as a vector of QoWS,

Quality(SEPi) = (lat(SEPi), rel(SEPi), av(SEPi), fee(SEPi), rep(SEPi)).

lat (latency) and fee (usage fee) take scalar values (ℜ+). av (availability),
and rel (reliability) represent probability values (a real value between 0 and
1). Finally, rep (reputation) ranges over the interval [0,5].

3.6.2 Score Function

We define a score function to compute a scalar value out of the QoWS vector
of the SEPs. This can facilitate the comparison of the quality of the SEPs.
Since users may have preferences over how their queries are answered, they
may specify the relative importance of QoWS parameters. We assign weights,

50 A Foundational Service Framework

Table 3.4 QoWS for a Service Execution Plan

QoWS parameter Aggregation function

Latency
Pn

i=1 latency(opi)

Reliability
Qn

i=1 rel(opi)

Availability
Qn

i=1 av(opi)

Fee
Pn

i=1 fee(opi)

Reputation 1
n

Pn
i=1 rep(opi)

ranging from 0 to 1, to each QoWS parameter to reflect the level of impor-
tance. Default values are otherwise used.

We use the following score function F to evaluate the quality of the service
execution plans. By using the score function, the QoWS optimization is to
find the execution plan with the maximum score.

F = (
X

Qi∈Neg

Wi

Qmax
i − Qi

Qmax
i − Qmin

i

+
X

Qi∈Pos

Wi

Qi − Qmin
i

Qmax
i − Qmin

i

)

where Neg and Pos are the sets of negative and positive QoWS respec-
tively. In negative (resp. positive) parameters, the higher (resp. lower) the
value, the worse is the quality. Wi are weights assigned by users to each
parameter. Qi is the value of the ith QoWS of the service execution plan ob-
tained through the aggregate functions from Table ??. Qmax

i is the maximum
value for the ith QoWS parameter for all potential service execution plans
and Qmin

i is the minimum. These two values can be computed by considering
the operations from service instances with the highest and lowest values for
the ith QoWS.

3.6.3 Optimization Algorithms

The algebraic optimization depends on the “predicate pushdown” rules to
perform Compose and Crossover as late as possible. Since the service al-
gebraic rules also include associative and communicative rules for Compose

and Crossover, many equivalent expressions can still be produced after the
algebraic optimization. As the number of Compose or Crossover in a ser-
vice query increases, the number of different composition orders may grow
rapidly. The objective of service query optimization is to select the most ef-
ficient composition order to form a fast SQP. It then selects the SEP with
the best user desired quality from the multiple candidates resulted from the
SQP.

3.6 Service Query Optimization 51

Algorithm 5 DP Plan Optimization
1: for all i ∈ [1, k] do

2: find the best query plan bestSQP({SRi}) for SRi;
3: end for

4: for all i ∈ [2, k] do

5: for all PR ⊆ {SR1, ..., SRk} s.t. ||PR|| = i do

6: {PR is a set with i service relations}
7: bestSQP = a system generated SQP with +∞ cost;
8: for all pair PRj , SRj s.t. PR = {SRj} ∪ PRj and SRj /∈ PRj do

9: {PRj is a set with (i − 1) service relations}
10: tempSQP = composePlan(bestSQP(PRj), SRj);
11: if tempSQP.cost < bestSQP.cost then

12: bestSQP = tempSQP;
13: end if

14: end for

15: bestSQP(PR) = bestSQP;
16: end for

17: end for

18: {SEP1, ..., SEPm} = execute(bestSQP({SR1 , ..., SRk}));
19: bestSEP = a system generated SEP with −∞ score;
20: for all i ∈ [1, m] do

21: SEPi.score = F(SEPi);
22: if SEPi.score < bestSEP.score then

23: bestSEP = SEPi;
24: end if

25: end for

26: return bestSEP;

Join ordering optimization has been intensively investigated in database
research [?, ?]. One of the most adopted approaches is the System-R bottom-
up dynamic programming query optimization [?]. A straightforward solution
for our service query optimization is to extend the DP optimization approach.
Figure ?? shows the extended DP based plan optimization algorithm. It con-
sists of two major phases. The first phase depends on dynamic programming
to select the most efficient query plan (line 1-17). The query plan is then
executed in the second phase (line 18), which results in a set of SEPs. The
second phase then proceeds to select the SEP with the best quality (i.e., the
maximum score) (line 19-26). It is worth noting that multiple query plans
may coexist even if they share the same join order in the first phase of the
algorithm. This is because some query plan may place the service tuples in
interesting orders that can be beneficial to subsequent algebraic operators [?].

DP optimization performs all Crossovers as late in the join se-
quence as possible [?]. This implies that in composing service relations
SR1, SR2, ..., SRn only those orderings SRi1, SRi2, ..., SRin are examined in
which for all j, where j = 2, ..., n, either

1. SRij has at least one join predicate with some relation SRik, where k < j,
or

2. ∀k > j, SRik has no compose quality predicate with SRi1, ..., SRi(j−1)

52 A Foundational Service Framework

P P’

SR1 SR2 SRj-3 SRj-2 SRj-1 SRj

Partial connection decided by P Partial connection decided by P’ Full connection

{SEP}j-1 {SEP}j

Fig. 3.8 Properties of Crossover

All query plans that satisfy the above composition ordering requirement
can generate relatively smaller number of intermediate results than other
query plans. Therefore, they can be performed more efficiently to generate
the SEPs. Since service query optimization aims to select the best SEP, it
will be necessary if a query plan can return a subset of the SEPs where the
optimal solution is in it. This can effectively reduce the enumeration space.
Therefore, we can further improve the DP optimization. The challenge is how
to ensure that the optimal solution is included in the subset of SEPs. This is
addressed by a special treatment on the Crossover operator.

A Divide-And-Conquer Query Optimization Strategy

Crossover is an expensive algebraic operator. The number of service tuples
returned is exponential to the number of service relations that are involved.
In this section, we propose an approach to deal with the Crossover operator.
This approach enables the optimization process to consider only a small sub-
set of the service execution plans. It guarantees that the subset encompasses
the (semi) optimal solution. This greatly improves the system performance
while preserving the quality of the selected SEP.

We first investigate some important properties of the Crossover operator.
Figure ?? helps illustrate these properties. Service relation SRj−1 is the re-
sult of a sequence of compositions. The service relations (e.g., SR1 and SR2)
under the Compose operator are “partially connected” based on the compose
quality predicate. By “partially connected”, we mean that only a subset of
service tuples from SR1 and SR2 are selected and combined to form the com-
posed relation (see the connections between SR1 and SR2 in Figure ??). The
number of service generated is card(SR1) × card(SR2) × SFJ (SR1, SR2, p),
where SFJ(SR1, SR2, p) is the join selectivity factor. The selectivity factor
depends on service relations and the compose quality predicate. It takes a
real value between 0 and 1. After the sequence of compositions are performed,

3.6 Service Query Optimization 53

service relation SRj−1 is combined with SRj to generate the final result using
the Crossover operator. Since there is no compose predicate, SRj−1 is “fully
connected” with SRj to perform the Crossover (see the connections between
SRj−1 and SRj in Figure ??). This results in card(SRj−1)× card(SRj) ser-
vice tuples. The searching space would be greatly increased by the Crossover
operator.

We adopt a divide-and-conquer strategy to deal with Crossover. The
strategy generates a set of (sub) optimal partial SEPs through local search. It
then combines these partial SEPs to form the final SEP. Before going into the
details, we first introduce some approximation functions which will be used
in this strategy. Two aggregation functions (i.e., the functions for reliability
and availability) presented in Table ?? do not combine QoWS parameters
from multiple service operations in a linear manner. We propose two lin-
ear functions to approximate the original functions for aggregation purpose.
Specifically,

Reliability =
n∑

i=1

log(rel(opi)), Availability =

n∑

i=1

log(av(opi))

These enable to express the score of the final SEP as a linear combination
of the scores from the partial SEPs. In the example shown in Figure ??,
the score of the final SEP is the sum of those from its partial SEPs, i.e.,
score(SEPik) = score(SEP j−1

i) + score(SEP j
k).

SRj−1 is fully connected with SRj through the Crossover operator. There
must be a connection between the best partial plan in {SEP}j−1 and the
best partial plan in {SEP}j. The aggregation of these two partial plans
forms the best service execution plan. This is because best({SEP}).score =
best({SEP}j−1).score + best({SEP}j).score. Therefore, the optimization
algorithm can perform the sequence of joins and query a single (or a set
of) service relation(s) separately. This enables to achieve the (semi) final
optimal solution through a set of local search without the need to really
perform the Crossover. We call this optimization strategy the Divide-And-
Conquer-DP (DAC-DP) optimization. The best partial SEPs can finally be
combined to form the (semi) optimal solution. For the case shown in Fig-
ure ??, only (card(SRj−1) + card(SRj)) service tuples are returned instead
of (card(SRj−1) × card(SRj)). Figure ?? shows the DAC-DP service query
optimization algorithm. The algorithm first perform the sequence of compo-
sitions on the first t service relations and generate m partial SEPs (line 18).
It then selects the best partial SEP (line 20-25). The algorithm then proceeds
to query each of the remaining service relations that need to be combined
using the Crossover operator. It selects the best partial SEP from the query
result of each service relation (line 27-34). All the best partial SEPs are then
combined to form the final SEP (line 35).

54 A Foundational Service Framework

Algorithm 6 DAC-DP Plan Optimization
1: for all i ∈ [1, k] do

2: find the best query plan bestSQP({SRi}) for SRi;
3: end for

4: for all i ∈ [2, k] do

5: for all PR ⊆ {SR1, ..., SRk} s.t. ||PR|| = i do

6: {PR is a set with i service relations}
7: bestSQP = a system generated SQP with +∞ cost;
8: for all pair PRj , SRj s.t. PR = {SRj} ∪ PRj and SRj /∈ PRj do

9: {PRj is a set with (i − 1) service relations}
10: tempSQP = composePlan(bestSQP(PRj), SRj);
11: if tempSQP.cost < bestSQP.cost then

12: bestSQP = tempSQP;
13: end if

14: end for

15: bestSQP(PR) = bestSQP;
16: end for

17: end for

18: {SEP1, ..., SEPm} = execute(bestSQP({SR1 , ..., SRt}));
19: bestSEP = a system generated SEP with −∞ score;
20: for all i ∈ [1, m] do

21: SEPi.score = F(SEPi);
22: if SEPi.score < bestSEP.score then

23: bestSEP = SEPi;
24: end if

25: end for

26: for all i ∈ [(t + 1), k] do

27: {SEP i
1, ..., SEP i

mi} = execute(bestSQP(SRi));
28: bestSEPi = a system generated SEP with −∞ score;
29: for all j ∈ [1, mi] do

30: SEP i
j .score = F(SEP i

j);

31: if SEP i
j .score < bestSEPi.score then

32: bestSEPi = SEP i
j ;

33: end if

34: end for

35: bestSEP = bestSEP ⊗ bestSEPi;
36: end for

37: return bestSEP;

3.7 Analytical Model

In this section, we present the analytical model for the above optimization
algorithms. We analyze the complexity of the DP-based optimization algo-
rithm and the DAC-DP algorithm. Table ?? defines the parameters and the
symbols used in this section.

3.7 Analytical Model 55

Table 3.5 Symbols and Parameters

Variables Definition

NSR Total number of service relations

NJ
SR Number of service relations under join

NC
SR Number of service relations under Cartesian product

NIO Total number of interesting orders

Ni
SI Number of service instances in the ith service relation

SFJ (SRi, SRi+1) Join selectivity factor between SRi, SRi+1

3.7.1 DP-based Query Optimization

We start by studying the complexity of the DP-based optimization algorithm.
There are two major phases in this algorithm. The first phase is to select the
most efficient query plan whereas the second phase is to generate the best
service execution plan. In the first phase, the DP optimization algorithm
uses two heuristics to reduce the enumeration space. First, it eliminates the
permutations that involve Cartesian products. Second, the commutatively
equivalent strategies with the highest cost are also eliminated. Therefore,
these heuristics help reduce the size of the enumeration space from NSR! to
2NSR . The algorithm also considers interesting orders, hence the complexity
of the first phase is:

O(2NSR × NIO) (3.1)

The second phase enumerates the space of SEPs. The size of the SEP space
is determined by the number of service relations, number of service instances
per service relation, and the join selectivity factor. The join selectivity factor
for Cartesian products takes the value of 1 whereas the selectivity factor for
the normal join operators takes a value between 0 and 1. The complexity of
the second phase is:

O(

NSR
Y

i=1

N i
SI ×

NSR−1
Y

i=1

SFJ(SRi, SRi+1)) (3.2)

Therefore, the complexity of the entire DP-based optimization algorithm
is:

O(2NSR × NIO +

NSR
Y

i=1

N i
SI ×

NSR−1
Y

i=1

SFJ(SRi, SRi+1)) (3.3)

3.7.2 DAC-DP Query Optimization

The DAC-DP optimization algorithm consists of two similar phases as the
DP-based optimization algorithm. It relies on the divide-and-conquer strat-
egy to reduce the enumeration space in both phases. We assume that there are

56 A Foundational Service Framework

Table 3.6 Parameter Settings

Parameters CP CI FI

op1 op2 op3 op4 op5 op6

latency 0-300(s) 0-300(s) 0-300(s)

reliability 0.5-1.0 0.5-1.0 0.5-1.0

availability 0.7-1.0 0.7-1.0 0.7-1.0

fee 0-30($) 0-30($) 0-30($)

reputation 0-5 0-5 0-5

NJ
SR service relations to be combined using join. Therefore, the complexity

of the first phase is:

O(2NJ
SR × NIO) (3.4)

The second phase selects a set of best partial SEPs and then combines
them to form the final optimal SEP. Based on our analysis in Section ??, we
can derive the complexity of the second phase is:

O(

NJ
SR

Y

i=1

N i
SI ×

NJ
SR−1
Y

i=1

SFJ (SRi, SRi+1) +

NSR
X

i=NJ
SR

+1

N i
SI) (3.5)

Therefore, the complexity of the entire DAC-DP optimization algorithm
is:

O(2NJ
SR × NIO +

NJ
SR

Y

i=1

N i
SI ×

NJ
SR−1
Y

i=1

SFJ(SRi, SRi+1) +

NSR
X

i=NJ
SR

+1

N i
SI) (3.6)

3.8 Experimental Study

We conducted a set of experiments to assess the performance of the proposed
approach. We use the car brokerage scenario as our testing environment to
setup the experiment parameters. The purpose is to demonstrate how our
approach can help Mary select the best deal. The Web services are developed
on Systinet WASP Server, which is a complete platform for development,
deployment, and management of Web service based applications [?]. We run
our experiments on a cluster of Sun Enterprise Ultra 10 workstations under
Solaris operating system.

We create a service schema containing three services, which is similar to
the one shown in Figure ??. For simplicity, we omit the unnecessary service
operations. Each service contains two operations: CP (careQuote, historyRe-
port), CI (drivingHistory, insuranceQuote), and FI (paymentHistory, financ-
ingQuote). We create three service relations, which conform to the service
schema. The number of service instances in each service relation varies from

3.8 Experimental Study 57

10 to 60. We use five QoWS parameters to evaluate service operations: la-
tency, reliability, availability, fee, and reputation. The values of these param-
eters are generated within a range based on uniform distribution. The user’s
role is to give the weights for these parameters. Table ?? summarizes the
potential values for the QoWS parameters for each service operation, where
op1, op2, op3, op4, op5, op6 represent service operations carQuote, historyRe-
port, paymentHistory, financingQuote, drivingHistory, and insuranceQuote,
respectively.

We consider a service query that helps Mary get an entire car package,
including the price quote and history report of a used car, insurance quote,
and financing quote. The service query can be expressed as a service algebraic
expression as follows:

Q : χ{op1,op2,op3,op4}[δλ4(op2)≤20(CP) ⊕λ3(op1)<λ3(op4) δλ4(op3)≤20(CI) ⊗ FI]
(3.7)

where op1, op2, op6, op4 represent service operations carQuote, historyRe-
port, insuranceQuote, and fincancingQuote respectively.

10 20 30 40 50 60
0

10

20

30

40

50

instances per service relation

tim
e

(m
s)

SQP optimization time

DP
DAC−DP

10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

instances per service relation

tim
e

(m
s)

SEP optimization time

DP
DAC−DP

10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

instances per service relation

tim
e

(m
s)

Total optimization time

DP
DAC−DP

Fig. 3.9 Performance Comparison: DP Vs. DAC-DP

10 20 30 40 50 60
0

2

4

6

8

10

12
x 10

4

instances per service relation

nu
m

be
r o

f S
EP

s

Number of SEPs

DP
DAC−DP

10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

instances per service relation

sc
or

e

Score of best SEPs

DP
DAC−DP

1000 2000 3000 4000 5000
0

200

400

600

800

1000

instances per service relation

tim
e

(m
s)

Scalability of DAC−DP

DAC−DP

Fig. 3.10 (a) # of SEPs (b) Scores of SEPs (c) Scalability

Performance measure: We measure the performance of the optimization
approaches using computational time and score function value. We use the
formulae defined in Section ?? to compute the score of SEPs. We compare the
scores of the best SEPs generated by the two query optimization algorithm.

58 A Foundational Service Framework

10 20 30 40 50 60
0

1

2

3

4

5

instances per service relation

D
P/

D
AC

−D
P

SOP optimization time

Experiment
Analytical

10 20 30 40 50 60
0

10

20

30

40

50

60

instances per service relation

D
P/

D
AC

−D
P

SEP optimization time

Experiment
Analytical

10 20 30 40 50 60
0

10

20

30

40

50

60

instances per service relation

D
P/

D
AC

−D
P

Total optimization time

Experiment
Analytical

Fig. 3.11 Experiment Result vs. Analytical Result

Since both query optimization algorithms both have two phases, we study and
compare the computational time for each phase and the entire algorithm.
We also investigate and compare the number of SEPs generated by each
algorithm.

Figure ?? shows the optimization time resulting from the experiments. DP-
DAC is much more efficient than DP due to the divide-and-conquer strategy.
The chart on the left compares the optimization time for the first phase,
where the most efficient service query plans (SQPs) are selected. The chart
in the middle compares the optimization time for the second phase, where
the best service execution plans (SEPs) are generated. DP-DAC outperforms
DP in both cases. The right-hand-side chart compares the total optimization
time.

Figure ?? (a) shows the number of SEPs generated by performing the
most efficient SQP selected in the first phase. DP-DAC generates much less
SEPs than DP. This also justifies why DP-DAC is more efficient in its second
phase than DP. Figure ?? (b) shows the scores of the best SEPs generated
by DP and DAC-DP. In two cases (number of instances 10 and 60), DP
and DAC-DP output the best SEPs with the same score. In the other four
cases, the scores of DAC-DP are slightly lower (less than three percent) than
those of DP. The difference comes from the two approximation functions
used by DAC-DP to aggregate QoWS parameters. We have conducted a set
of additional experiments to further evaluate the scalability of the DAC-DP
algorithm. We increase the number of instance per service relation with two
orders of magnitude and test of the performance of DAC-DP with the number
of service instances varying from 1000 to 5000. Experiment results (presented
in Figure ?? (c)) show that DAC-DP can still perform very efficiently (using
less than 1 second to query three service relations, each of which has 5000
service instances) on large number of service instances.
Compare with the analytical model: We further compare the experiment
results with the results from the analytical model presented in Section ??.
Although the analytical model only predicts the upper bound of the time
complexity, we can still perform an approximate comparison. This is to jus-
tify that the experiment results follow the same trends as predicted by the
analytical model. We focus on the improvement (in terms of optimization
time) achieved by DAC-DP over DP. We define a variable DP/DAC-DP (i.e.,

www.allitebooks.com

http://www.allitebooks.org

3.8 Experimental Study 59

the time used by DP divided by the time used by DAC-DP) to demonstrate
the improvement. Figure ?? illustrates the detailed comparison results.

The chart on the left-hand-side shows the improvement for the first op-
timization phase. The complexity of this phase is mainly decided by the
number of service relations under join. In our experiment settings, the DP
approach needs to join three service relations whereas the DAC-DP only
needs to join two service relations (the divide-and-conquer strategy removes
the service relation FI from the join list by considering it separately). There-
fore, in the analytical model, DP/DAC-DP should take an approximate value
of (2×NDP

IO)/NDAC−DP
IO , where NDP

IO and NDAC−DP
IO represent the number

of interesting orders considered by DP and DAC-DP in the first optimization
phase. Since the number of interested orders are unknown, they are not re-
flected by the analytical result in the chart (that is why the analytical result
curve is a horizontal straight line). The actual experiment result curve stays
above the analytical one. This is because DP joins one more service relations
than DAC-DP, it naturally needs to consider more interesting orders, i.e.,
NDP

IO /NDAC−DP
IO > 1. This makes (2 ×NDP

IO)/NDAC−DP
IO > 2.

The middle chart in Figure ?? shows the improvement in the second opti-
mization phase. To calculate DP/DAC-DP for the analytical model, we use
formulae (2) and (5) defined in Section ??. If we neglect the last item in

formula (5) (i.e.,
∑NSR

i=NJ
SR

+1N
i
SI), we can derive that DP/DAC-DP takes an

approximate value of N3
SR, i.e., the number of service instances in the third

service relation FI. Therefore, the analytical curve is an 45-degree straight
line. The experiment curve has a very similar trends. It stays below the an-
alytical curve because we neglect the last item in the denominator for the
analytical curve. Since the total optimization time is dominated by the sec-
ond phase, the total optimization time has a very similar trends as the second
phase. The right-hand-side chart shows the result of the total optimization
time.

Multi-objective Service Query

Existing service optimization approaches usually select services based on a
predefined objective function [?, ?]. They require users to express their prefer-
ence over different (and sometimes conflicting) quality parameters as numeric
weights. The objective function assigns a scalar value to each service provider
based on the quality values and the weights given by the service user. The
provider gaining the highest value from the objective function will be selected
and returned to the user. Implementing such an optimization strategy may
pose several challenges:

• Transforming personal preferences to numeric weights is a rather demand-
ing task for users. Sometimes it is even impossible if the preference is still
vague before the user is presented with the actual service providers. Users
may miss their desired providers because of an imprecise specification of
the weights, which would be very common in real-world scenarios.

• Users may lose the flexibility to select their desired providers by them-
selves. For example, a service user may choose a service provider that has
a good reputation within a price range she can tolerate although price is a
very important factor she considers. In this case, the relationship between
reputation and price is subtle and the choice from different users may vary
significantly. Therefore, it would be wise to give users the flexibility make
their own selections from a small set of candidate providers.

Presenting users with all SEPs that meet the requirements in the service
query may make users overloaded with too much information. Manually se-
lecting the most suitable SEP from a large SEP space requires a painstaking
and time-consuming process, which is also error prone. A promising direction
is to present users with only interesting SEPs that both shrink the SEP space
and guarantee that the user desired SEP will be included. A possible solution
to tackle this problem is to use top-k queries. Instead of returning a single
SEP, the top-k queries retrieve the best k SEPs. This greatly reduces the de-
cision space and also gives users certain flexibility to make their own choice
among the k SEPs. Top-k queries have been intensively investigated in the

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection,
 DOI 10.1007/978-1-4419-0314-3_4,

61

Chapter 4

Optimization

62 Multi-objective Service Query Optimization

10 20 30 40 50 60 70

6
5

4
3

2
1

Price

L
a
te
n
c
y

9080

a

b

c

d

e

f

n

Fig. 4.1 Skyline of SEPs

database community. Typical techniques include PREFER [?] and Onion [?]
that rely respectively on pre-materialization and convex hulls. However, top-
k queries are usually based on some specific preference function. Using top-k
queries is not able to free users from assigning weight to different QoWS
parameters. Therefore, they cannot completely address the above two issues.

We propose to use multi-objective service query optimization to deal with
the above issues. We adopt a skyline computation approach to achieve multi-
objective optimization. The remainder of this chapter is organized as follows.
In Section ??, we present the concept of service skylines. In Section ??, we
give an overview of the existing database skyline algorithms. In Section ??, we
discuss the challenges for computing service skylines. We present the service
skyline algorithms in Section ??. We experimentally evaluate and compare
the proposed algorithms under different settings in Section ??.

4.1 The Service Skyline

A key observation is that the weighting mechanism is used for calculating a
single objective function. Thus, we can free users from the weight assignment
task if we do not use a single objective function to combine multiple QoWS
parameters. In this case, we need to consider each user interested QoWS pa-
rameter individually and select the SEPs that are good at all these quality
aspects. This turns out to be a multi-objective optimization problem. A nat-
ural solution is to incorporate the skyline operator in the proposed service
query algebra. The skyline operator is coined in the database community [?].
Simply put, skyline consists of a set of objects that are not dominated by
other objects. Object a dominates object b if a is better than b in at least
one dimension and as good as or better than b in all other dimensions.

4.2 Computing Database Skylines: An overview 63

We use an example to illustrate how skyline can help resolve the issues of
service query optimization. Suppose that Mary is interested in the economic
and efficient SEPs., i.e., she wants the SEPs with minimum price and latency.
All the points in Figure ?? represent the entire SEP space. The highlighted
points, {a, b, c, d, e, f}, form the skyline of SEPs, which is also referred to the
the service skyline. With the minimum condition, we can see that these SEPs
are not dominated by any other SEP in the entire space. Therefore, they are
preferable to other SEPs according to any scoring function that is monotone
on all dimensions. For example, the skyline SEP d is better than the non-
skyline SEP n because it is more efficient and cheaper. It is worth to note
that this comparison is totally independent of the relative importance (i.e.,
weights) of the price and latency QoWS parameters. We further summarize
the benefit offered by the skyline operator as follows:

• It completely frees users from the weight assignment task since the selec-
tion of SEPs is totally independent of the relative importance of different
QoWS parameters.

• The skyline constitutes the SEP set that a service user is most interested
in since all the non-skyline SEPs are dominated by the skyline ones.

• It gives users the flexibility to select their desired SEP from a relatively
small decision space because the non-skyline SEPs (that usually consti-
tute a large portion of the SEP space) will be eliminated by the skyline
operator.

4.2 Computing Database Skylines: An overview

Before investigating how to find SEP skylines, we first give an overview of
several existing approaches for computing database skylines. Typical algo-
rithms include Block Nested Loops [?], Divide-and-Conquer [?], Bitmap [?],
Index [?], and Nearest Neighbor [?, ?].

4.2.1 Block Nested Loops Algorithms

The block nested loops algorithm adopts a straightforward approach to tackle
the skyline computation. It assumes no index structures (e.g., B-tree, R-tree,
etc) of the data records. The skyline is computed iteratively through the di-
rect comparison between data records. The algorithm keeps a set of candidate
(i.e., incomparable) data records, called window, in the main memory. It then
continuously loads the subsequent data record, say p, and compare it with
the candidate records. There are three comparison results:

64 Multi-objective Service Query Optimization

• If p is dominated by any record in the candidate window, it will be dis-
carded immediately with no need to compare with any other candidate
records or considered in future iterations.

• If some candidate records are dominated by p, all these records will be
removed from the window and p will be inserted into the window.

• If p is incomparable with any record in the window, it will be inserted into
the window.

As more data records are inserted into the candidate window, the size
of the window may become larger than the main memory. In this case, the
algorithm stores the extra incompatible data records into a temporary file. At
the end of an iteration, all the data record inserted into the window before
the creation of the temporary file are output as part of the skyline. The
remaining data records in the window and the temporary file will go into
the next iteration. This process continues until there are no remaining data
records.

4.2.2 Divide-and-Conquer Algorithm

The divide-and-conquer algorithm takes full consideration of the limited ca-
pacity of the memory. The rationale is similar to the sort-merge algorithm
that is used to sort large data files. The algorithm takes three major steps:
split, compute, and merge.

• Split the entire dataset into k subsets, P1, ..., Pk, along some dimension d
so that each subset can fit into the memory.

• Compute the skyline of each subset using any main-memory algorithm and
result in k sub-skylines S1, ..., Sk.

• Merge the k sub-skylines into the final skyline.

Since the merged result may become larger than the memory, the split-
compute-merge process may be applied in the merge step recursively. Each
time this procedure is invoked, a different dimension will be selected to split
the input dataset. The algorithm also avoids some unnecessary merges of
sub-skylines because they are inherently incomparable due to the subset they
reside in.

4.2.3 Bitmap Algorithm

The bitmap algorithm is proposed for progressively constructing the skylines.
It uses a bitmap data structure to store all the necessary information to
determine whether a record belongs to the skyline or not. The algorithm

4.2 Computing Database Skylines: An overview 65

involves three major tasks: create bit vectors, transform bit vectors into bit-
slices, and compute skylines. Bit-slices need only to be created once and then
they can be used to calculate skylines for various queries.

• Create bit vectors: A d dimensional data record x = (x1, ..., xd) is trans-
formed as a m-bit vector.m equals the total number of distinct values over
all the d dimensions, i.e., m =

∑d
i=1 ki, where ki is the number of distinct

values in the ith dimension. Therefore, we have x = (k1 bits, ..., kd bits).
Now, we investigate how to represent xi with the ki bits. Assume xi is
the jith distinct value on the ith dimension. Then in the ki bits for xi,
the most significant ji − 1 bits (i.e., bit 1 to ji − 1) are set to 0 and the
remaining bits are set to 1.

• Transform bit vectors into bit-slices: Instead of storing these bit vectors
individually, the algorithm transposes all the transformed bit vectors into
an array of so called bit-slices. The size of the array is m.

• Compute skylines: The algorithm uses bit-slices for efficient skyline com-
putation. Consider a data record x = (x1, ..., xd), where xi is the jith
distinct value on the ith dimension. The algorithm computes C =
BS1j1&...&BSdjd

, where & is the bitwise “and” operation. BSiji
repre-

sents the bit-slice for the jith distinct value of the ith dimension. BSiji

has n bits, where n is the total number of data records. The kth bit of
BSiji

is 1 if the kth data record ranks higher than or equal to ji (which
is the rank of x) on the ith dimension and it is 0 if otherwise. After the
computation, the algorithm enumerates the number of ’1’s in C. If there is
more than one ’1’ (which means except for itself, there are still other data
records that are better than x in all the d dimensions, i.e., x is dominated
by others), x is not in the skyline.

4.2.4 Index-based Algorithm

The index structures (e.g., B-tree, hash table, etc) on the data records can be
used to facilitate the skyline computation. The first index-based algorithm
is presented in [?]. The algorithm is based on B-tree and can be applied if
there is an index for each dimension of the data records. Specifically, the
computation proceeds as follows:

• Locate the first skyline record: The algorithm scan all the indexes in parallel
until it locates the first data record that appears in all the dimensions.
Since this data record is definitely in the skyline, it is immediately returned
by the algorithm.

• Remove the non-skyline records: Take the index of the first dimension and
scan the rest of the index entries after the entry of the returned data record.
For a data record, if its index entries on all dimensions appear after the

66 Multi-objective Service Query Optimization

10 20 30 40 50 60 70

6
5

4
3

2
1

Price

L
a
te
n
c
y

9080

Partition 1 Partition 2 Partition 3

NN

Fig. 4.2 Nearest Neighbor Algorithm

corresponding entries of the returned data record, this data record is not
part of the skyline and should be removed.

• Compute skyline for all other records: For all other data records that have
some index entries above the returned data records and the others below
it, an existing skyline computation algorithm is applied to output other
skyline records from them.

An improved version is presented in [?] that is able to progressively and
more efficiently output the skyline. The key idea of this algorithm is to map a
multi-dimensional data record into a single-dimensional data record. Consider
a data record x = (x1, ..., xd) and xi has the minimum value among all
dimensions. Then x will take value xi and be assigned to a list, say li. There
would be d such lists. Each list corresponds to one dimension because a value
from any dimension could take a minimum value over the other dimensions for
a data record. For each list, the algorithm sorts the data records in ascending
order of the value in the corresponding dimension. Such an arrangement
helps put the interesting data records near the top position of each list. A
fast initial response time can thus be achieved. In addition, it also facilitates
the elimination of a large body of non-skyline records. Specifically, if the
maximum value across all dimensions of a data record is even smaller than
the minimum value across all dimension of another data records, the latter
should be eliminated.

4.2 Computing Database Skylines: An overview 67

Table 4.1 Major Database Skyline Algorithms

Index Algorithm Key Strategy

1 Block Nested Loop Sequential scan

2 Divide-and-Conquer Sort and partition

3 Bitmap Bitmap structure

4 Index B-tree based index

5 Nearest Neighbor R-tree based index

4.2.5 Nearest Neighbor Algorithm

The nearest neighbor algorithm adopts a divide-and-conquer strategy to
tackle the skyline computation. The key idea is to recursively apply near-
est neighbor search to find the data record with the minimum distance from
an imagined optimal data record (which is usually the beginning of the axes,
i.e., the original point). Consider a set of two dimensional data records. The
algorithm maintains a to-do list that stores the candidate data records. Ini-
tially, the to-do list contains the entire data space. The algorithm recursively
uses the nearest neighbor search to compute the skyline and updates the
to-do list. It terminates until the to-do list is empty. We elaborate on this
process with the help of Figure ??.

1. Compute the near neighbor of data record (0, 0). The output data record
is definitely part of the skyline and can be immediately returned to the
user.

2. Divide the data space into different partitions. The region between NN
and (0, 0) should be empty because otherwise NN will not be output as
the nearest neighbor to (0, 0). There are three partitions that need to be
considered. As we can see from Figure ??, all the data records fallen into
partition 3 are all dominated by NN. Therefore, the entire partition 3 can
be pruned away. Partition 1 and partition 2 will be regarded as two new
sub data spaces and inserted into the to-do list.

3. For each partition in the to-do list, recursively apply Step 1 and 2, until
the to-do list is empty.

The center of the nearest neighbor algorithm is to find the data record that
has the minimum distance from an imagined optimal data record within a
region (such as partition 1 and 2). The algorithm needs to rely on the R-tree
based index structures [?, ?] for efficient computation of the nearest neighbor
data record for a given region.

68 Multi-objective Service Query Optimization

4.3 Challenges of Computing the SEP Skyline

A close investigation of the above database skyline algorithms helps achieve
some interesting observations. This also identifies the inherent difference be-
tween database skylines and SEP skyline and highlights the challenges for
computing the skyline of SEPs.

We summarize in Table ?? the underlying strategies adopted by each of
the above algorithms for computing the database skylines. Each algorithm
may have its own advantages and disadvantages. For example, algorithm 1 is
usually most inefficient. However, it has the most widely applicability. Some
of the algorithms also share key similarities. As we can see from Table ??,
algorithms 2, 4, and 5 are able to leverage the index structure of the original
data space to achieve more efficient computation of skylines. Among them,
the index-based algorithms directly use B-tree (or B+-tree) to compute the
skylines. The nearest neighbor algorithms use R-tree based index to efficiently
perform the nearest neighbor search that indirectly accelerates the skyline
computation process. For the divide-and-conquer algorithm, since it relies on
sorting to partition the data space, an index structure can greatly improve
its performance. Algorithm 3 relies on the bitmap structure to efficiently and
progressively compute the skyline. Although bitmap is different from indexes
(such as B-tree and R-tree), both of them are essentially data structures pre-
computed from the original dataset. They just need to be constructed once
(updates are sometimes required) and then can be applied to help efficiently
resolve various types of skyline queries. Therefore, an interesting observation
is that except for the Block Nested Loop algorithm, all the other skyline
algorithms rely on some pre-computed data structures (i.e., bitmap, B-tree,
R-tree) to achieve their efficiency of skyline computation.

The pre-computed data structures are tightly bounded with the original
dataset. They capture the underlying characteristics of the original dataset in
certain aspects that can be leveraged for efficiently compute the skylines. Al-
though building these data structures are usually computationally expensive,
the relative static property of the dataset enables the one-time construction,
i.e., once the data structures are generated, they can be applied to almost all
types of skyline queries. However, the static property does not hold for the
SEP space any more. This poses a set of new challenges for computing SEP
skylines:

1. In contrast to having single static SEP space, a new set of SEPs (i.e., a
new SEP space) will be dynamically generated for any service query.

2. A SEP usually contains a set of member service operations. Different mem-
ber service operations are selected for different service queries. More im-
portantly, some member service operations may even not appear in the
service queries. They are selected and put in the SEP based on the de-
pendency constraints. Since service query optimization is based on user’s
preference on the entire SEP, the optimization of SEPs cannot be per-

4.3 Challenges of Computing the SEP Skyline 69

formed based on the information carried by the service queries. Instead,
the optimization needs to be carried out only after the SEPs have been
generated.

3. The attributes of a SEP are aggregates of the corresponding attributes
from its member service operations. Indices on the attributes of service
relations (i.e., service operations) are usually not able to directly be ap-
plied to the aggregate attributes in the SEPs. Answering aggregate queries
remains to be a challenging task in traditional database systems. It is usu-
ally addressed by leveraging materialized views [?, ?, ?]. However, view
materialization may not be suitable for the highly dynamic service query
optimization.

Example 4.1. Consider a service query that helps a user get a free insurance
quote and a vehicle history report for less than 20 dollars. The service query
needs to access both CP and CI and combine them to generate the final SEPs.
We can use an algebraic expression to specify the query as follows:

χ{op1,op2}(δλ4(op1)≤20(CP) ⊗ δλ4(op2)=0(CI))

where op1 and op2 represent the service operations historyReport and
insuranceQuote respectively. The service relation retrieved by the service
query may consist of multiple service instances. Therefore, a corresponding
number of SEPs will also be generated. Suppose there are K1 CP service
providers offering vehicle report for less than 20 dollars and K2 CI service
providers offering insurance quote for free. Thus, a total number of K1 ×K2

SEPs will be generated. �

Example ?? highlights several important facts about service query opti-
mization that helps understand the above research issues:

1. A SEP space (e.g., K1 × K2 SEPs in Example ??) will be dynamically
generated for each service query. Different service queries will have different
SEP spaces.

2. A SEP may contain service operations that are not covered by the ser-
vice query. For example, the service query only specifies historyReport

and insuranceQuote since the service user is only interested in get-
ting these functionalities. The query processor will automatically include
drivingHistory and carQuote into the SEP based on the dependency
constraints between these service operations. The service query optimiza-
tion should consider all of the four service operations instead of only
considering historyReport and insuranceQuote specified by the service
query.

3. The quality attributes (e.g., latency, fee, etc) of a SEP are in fact the
aggregate of the corresponding attributes of its member service operations.
Table ?? gives the aggregation functions for calculating the quality of a
SEP from the quality of service operations. For instance, in Example ??,
the fee of a SEP is the sum of the fees of all the four service operations.

70 Multi-objective Service Query Optimization

4.4 SEP Skyline Computation

We present a set of algorithms for computing SEP skylines in this section.
Our first attempt is to extend the existing database skyline algorithms. These
algorithms are based on the index structures (B+-tree, R-tree, etc) built upon
the service relations. We identify the problems with these algorithms and
propose a new indexing mechanism for service relations. We then continue to
present a SEP skyline algorithm based on this new indexing structure.

Example 4.2. Consider a service query that helps users get insurance quote
from car insurance services. The service query is specified as:

Q = {s.sid, s[G(insuranceQuote)]|CI(s)}

The resultant SEP in fact contains two service operations: drivingHistory,
insuranceQuote (denoted by op1 and op2 respectively). drivingHistory

is included due to the dependency constraints. The service user wants a
SEP with the lowest fee and quickest response time (i.e., min(fee) and
min(latency)). �

We define a set of notations that will be used for explaining the algorithms:

• Aggregation (+): We use + to uniformly represent the aggregation of ser-
vice operations. For example, the aggregation of two service operations
op1 and op2 is denoted by op1 + op2.

• Domination (⊲): The domination relationship between SEPs are denoted
by ⊲, i.e., sep1⊲sep2 means that sep1 dominates sep2. Suppose sep1 has two
service operations: op1 and op2. sep1 ⊲

op1 sep2 means that sep1 dominates
sep2 on op1. Therefore, sep1 ⊲sep2 can also be represented as sep1 ⊲

op1+op2

sep2, i.e., sep1 dominates sep2 on the aggregation of op1 and op2. The
negated notion, sep1 6 ⊲sep2, means that sep1 does not dominate sep2.
Similarly, sep1 6 ⊲op1sep2 means that sep1 does not dominate sep2 on op1.

Theorem 4.3. For any two seps, sep1 and sep2, that contain k service op-
erations op1,...,opk ,

(sep1 ⊲
op1 sep2) ∧ ... ∧ (sep1 ⊲

opk sep2) ⇒ sep1 ⊲ sep2

�

An intuitive interpretation of Theorem ?? is that if all the service oper-
ations of sep1 are better than those from sep2, sep1 dominates sep2. How-
ever, the domination of sep1 over sep2 does not necessarily mean that all
operations from sep1 are better than those of sep2, i.e., sep1 ⊲ sep2 6⇒
(sep1 ⊲

op1 sep2) ∧ ... ∧ (sep1 ⊲
opk sep2). Instead, it only guarantees that

the aggregation of operations in sep1 is better than the aggregation of those
from sep2. Theorem ?? enables us to eliminate dominated SEPs from the
SEP space. The basic strategy is to examine all the service operations in the
SEPs and the SEPs with all operations dominated by others will be removed.

4.4 SEP Skyline Computation 71

sid fee ($)

S2 8

S15 10

S8 13

S22 18

... ...

sid latency (s)

S10 5

S1 7

S4 12

S8 15

... ...

sid fee ($)

S21 0

S2 2

S8 4

S22 8

... ...

sid latency (s)

S15 15

S8 18

S23 19

S6 21

... ...

drivingHistoryinsuranceQuote

S2 S15 S10 S1 S4 S21 S15 S8

Fig. 4.3 Computing SEP Skylines using B-tree

4.4.1 Using B-trees

The most straightforward approach for computing SEP skylines is to ex-
tend the B-tree based approach [?]. A final SEP contains two service opera-
tions (drivingHistory, insuranceQuote) instead of only insuranceQuote

specified by the service query. The user’s requirement (i.e., lowest fee
and quickest response time) is applied on the entire SEPs by consider-
ing the two operations simultaneously. To achieve this, we can take the
fee and latency from the two member services as four different attributes,
i.e., drivingHistory.fee, drivingHistory.latency, insuranceQuote.fee, and
insuranceQuote.latency. We assume that these four attributes are all in-
dexed using B-tree for efficient access. We can then scan the four indices
simultaneously to find the first match of sid. All the service instances that
are not inspected before the first match will be removed from further com-
putation. The remained service instances will go through a second round
selection to determine the final skyline. The second round selection needs
to be conducted in a brute-force manner. The quality of a SEP (i.e., fee
and latency, etc) will be calculated using the aggregate functions defined in
Table ??. Then a non-index based approach (e.g., block nested loop, divide-
and-conquer, etc) can be applied to compute the final skyline.

Figure ?? illustrates how to use the B-tree approach to compute the skyline
of the example service query. The simultaneous scan identifies the first match,
which is S8. The uninspected seps are then eliminated. The scan process guar-
antees that, for any uninspected sepk, (sep8 ⊲

op1 sepk) ∧ (sep8 ⊲
op2 sepk) is

true, where op1 and op2 are drivingHistory and insuranceQuote respec-
tively. According to Theorem ??, sep8⊲sepk is true, i.e., sep8 dominates sepk.
Therefore, sepk should be removed from further computation. The remain-

72 Multi-objective Service Query Optimization

10 20 30 40 50 60 70

2
5

2
0

1
5

1
0

5

Price

L
a
te
n
c
y

9080

S
1
NN

10 20 30 40 50 60 70

2
5

2
0

1
5

1
0

5

Price

L
a
te
n
c
y

9080

S
1
NN

A B

Intersection

insuraneQuote drivingHistory

Fig. 4.4 Computing SEP Skylines using Nearest Neighbor Search

ing seps (i.e., S2, S15,...,S8) will go through the second round selection to
generate the target skyline.

4.4.2 Nearest Neighbor Algorithm

We can also extend the nearest neighbor algorithm to compute skyline for
service queries. We continue to use the sample service query to illustrate the
computation process (see Figure ??).

1. Take the first member operation (i.e., drivingHistory) and compute the
nearest neighbor of data record (0,0). Assume that the nearest neighbor
we get is S1

NN and the set of seps dominated by S1
NN is A. We then take

S1
NN and evaluate it on the second operation (i.e., insuranceQuote) and

get the set of seps dominated by S1
NN , which is B.

2. Compute the intersection of A and B and we get C = A ∩ B. According
to Theorem ??, all the seps in C are dominated by S1

NN and therefore
should be removed from further computation.

3. For partition 1 and 2 (see Figure ??), recursively apply Step 1 and 2 to
further remove dominated seps.

4. For the remaining seps, reverse the order of member operations (i.e.,
find the nearest neighbor of insuranceQuote and evaluate it on
drivingHistory), and apply the above three steps.

5. Use a brute-force approach (similar to the one described in the B-tree
approach) to generate the skyline from the remaining seps.

The above algorithm requires a frequent computation of intersections be-
tween two sets. Computing set intersections could be very expensive espe-
cially for large sets. Assume that the cardinalities of set A and B are k1

and k2 respectively. To get the intersection C, we usually need to do a
pairwise comparison between these two sets that requires O(k1 × k2) time
complexity. When k1 and k2 are large, this will be prohibitive as a frequent

4.4 SEP Skyline Computation 73

1

3

A

16

42

21 55

16

0 0 1 0 0

21

1 0 0

42

V1

1

8

B

2

16

21 67

16

0 0 1 0 0

21
V2

16 21

C

Fig. 4.5 Computing Set Intersections Using Bitmap

executed operation. Another approach is to sort the two sets and do a se-
quential pass simultaneously on them. This would require a time complexity
of O(k1 × logk1 + k2 × logk2).

We adopt the key-indexed search strategy to make this operation run in
linear time. To achieve this efficiency, we need O(n) additional space as a
tradeoff. Suppose there are n service instances with the car insurance service.
We assign the id numbers of these instances from 0 to n-1, i.e., sid ∈ [0, n−1].
The id numbers are distinct from each other. We use an assistance array T
of size n to record these sids. All the elements of the array are initialized to
be 0. To compute the intersection of A and B, we first pass set A and add 1
the corresponding item of T accordingly. For example, if sidk ∈ A, then set
T [sidk] to 1 (the initial T [sidk] is 0). We then continue to apply the same
process using B. In the end, all the sids that satisfy T [sid] > 1 fall into the
intersection. Obviously, the time complexity of this approach is O(n).

We can further reduce the space complexity by using bitmaps to implement
the assistance array T . Specifically, we can use two n-bits vectors V1 and V2

to replace T . They will only use 1/16 of the space used by T . All the bits in V1

and V2 are initialized to 0. Similarly, we first pass A and set the corresponding
bits of V1 to 1 accordingly, i.e., if sidk ∈ A, then V1[sidk] = 1. When we pass
B, we set the bits in V2 according to V1, i.e., if (sidk ∈ B)∧ (V1[sidk] == 1),
then V2[sidk] = 1. Finally, all the sids that satisfy V2[sid] == 1 fall into
the intersection. We can use bitwise operators to implement the bit vectors.
This enables to process bits in a batch mode that can also make it run more
efficiently.

Analysis

Theorem ?? offers us heuristics for pruning dominated seps. However, al-
gorithms based on Theorem ?? may be far less efficient than an optimal
algorithm. They have to use a brute-force approach on a usually large sep
space due to the limited prune power of the adopted heuristics. In this section,
we conduct an analysis that gives an insight of this inherent inefficiency.

74 Multi-objective Service Query Optimization

We continue to use Example ??. For two seps, if sep1 dominates sep2, it
can be represented as sep1 ⊲sep2. Since there are two membership operations
in the seps, sep1 ⊲ sep2 actually means sep1 ⊲

op1+op2 sep2. There are four
possible situations that lead to sep1 ⊲

op1+op2 sep2:

1. (sep1 ⊲
op1 sep2) ∧ (sep1 ⊲

op2 sep2)
2. (sep1 ⊲

op1 sep2) ∧ (sep1 6 ⊲op2sep2)
3. (sep1 6 ⊲op1sep2) ∧ (sep1 ⊲

op2 sep2)
4. (sep1 6 ⊲op1sep2) ∧ (sep1 6 ⊲op2sep2)

Theorem ?? only covers the first situation, i.e., (sep1⊲
op1 sep2) ∧ (sep1⊲

op2

sep2) ⇒ sep1⊲
op1+op2 sep2. We can directly eliminate sep2 if the first situation

is satisfied. However, for the remaining three situations, we have to postpone
the decision until the aggregate attributes of the seps are actually computed
and compared. Therefore, the heuristics derived from Theorem ?? only helps
prune a (sometimes small) subset of seps. For a correlated service base, where
some service instances that are good in one dimension are also good in the
other dimensions, the heuristics may have a good prune capability because
there may be few very good service instances that dominate others. However,
for other service bases, (e.g., independent or anti-correlated) the prune power
may be very limited.

Among all the above database skyline algorithms, the nearest neighbor
algorithm outperforms others in terms of overall performance and general
applicability independently of the dataset characteristics. The nearest neigh-
bor search depends on a R-tree to gain its efficiency. BBS (branch and bound
skyline) [?], which is another R-tree based approach, further improves the
nearest neighbor algorithm. It is an optimal algorithm in terms of node ac-
cesses. Since the R-tree based algorithms are among the best skyline compu-
tation approaches, we take interest in extending these algorithms or building
algorithms based on R-trees to efficiently compute the service skyline.

4.4.3 Extending BBS

BBS (branch and bound skyline) is a database skyline algorithm that lever-
ages a priority queue (or a heap) and an in-memory R-tree to efficiently and
progressively retrieve the skyline [?]. The heap helps determine the order of
retrieving the data points whereas the in-memory R-tree is for dominance
checking (i.e., removing the dominated data points).

We propose in this section an algorithm (called BBS4SEP) that extends
BBS. By making several key changes on BBS, BBS4SEP is able to efficiently
retrieve SEP skylines. Suppose that a service space is indexed by a R-tree.
In Example ??, the SEPs can be regarded as having four dimensions (i.e.,
op1.fee, op1.latency, op2.fee, and op2.latency) and organized in a R-tree. The
leaf nodes of the R-tree represents the SEPs. An intermediate node represents

4.4 SEP Skyline Computation 75

a minimum bounding rectangle (MBR) of each node at its lower level. The
heap is constructed to efficiently output the node (intermediate or leaf node)
that has the least mindist. The mindist of a leaf node is the summation of
all its coordinate values whereas the mindist of an intermediate node is the
mindist of its lower-left corner point.

BBS4SEP works as follows (shown in Algorithm ??). It initially inserts
all the entries in the root of the R-tree into the heap H . It then iteratively
expands these entries based on their mindist. The expanded entry will be
removed from the heap whereas its child entries will be inserted. When the
first leaf node is returned, it will be inserted into the resultant skyline list
L. The in-memory R-tree IR will then be initialized using the first skyline
point. It worth to note that BBS4SEP has a similar behavior as BBS up
to this step. The IR has a different structure as that of BBS. Recall that
if SEP1 dominates SEP2, it actually means SEP1⊲

op1+op2 SEP2. Since the
IR is used for dominance checking, it should be able to prune SEPs based
on the aggregate attributes of SEPs. Therefore, the IR will be dynamically
constructed with two dimensions: SEP.fee and SEP.latency, where

SEP.fee =op1.fee+ op2.fee (4.1)

SEP.latency =op1.latency + op2.latency (4.2)

After the IR is constructed, the entries output from the heap will be checked
against the IR for dominance. Specifically, if a top entry in the heap is dom-
inated by some SEP in the IR tree, it can be directly pruned. Otherwise, 1)
it will be expanded into several child entries if it is an intermediate node and
these child entries will also be checked for dominance against the IR before
inserting into the heap because the dominated entries can also be directly
pruned; 2) it will inserted into L and IR if it is a leaf node.

76 Multi-objective Service Query Optimization

Algorithm 7 BBS4SEP
Require: A R-tree RT
Ensure: A list of the SEP skyline points L
1: L = φ, IR = φ, H = φ
2: while H 6= φ do

3: e = H.extractmin();
4: if IR 6= φ then

5: map e to the dimensions of IR and check dominance;
6: if e is dominated then

7: prune e;
8: else

9: if e is an intermediate node then

10: for each child entry e.ci of e do

11: if e.ci is not dominated by IR then

12: H.insert(e.ci);
13: end if

14: end for

15: else

16: L.insert(e);
17: IR.insert(e);
18: end if

19: end if

20: else

21: if e is an intermediate node then

22: for each child entry e.ci of e do

23: H.insert(e.ci);
24: end for

25: else

26: L.insert(e);
27: initialize IR using e;
28: end if

29: end if

30: end while

Analysis

The IR tree enables dominance checking on the aggregate attributes of SEPs.
It determines the SEP skyline search region (SSR) that is the section of the
data space containing the skyline SEPs [?]. By observing formulae (1) and
(2), we find that the R-tree (denoted by RT) that is used to index the service
space and the in-memory R-tree IR share the same mindist, i.e.,

mindist = SEP.fee+ SEP.latency =

op1.fee+ op2.fee+ op1.latency + op2.latency

Property 4.4. Given a R-tree (RT) that indexes the service space, BBS4SEP
only accesses candidate entries in the R-tree that potentially contain skyline
SEPs if RT and the in-memory R-tree (IR) share the same mindist function.

4.4 SEP Skyline Computation 77

Proof: A candidate entry should intersect with the SSR. On the other hand,
a non-candidate entry e does not overlap with the SSR. This implies that
there is a skyline SEP ψ that can dominate the lower-left corner of e. ψ must
also have a mindist that is smaller than that of e [?]. We use the notion
mindist(IR) to denote the mindist calculated under the in-memory R-tree IR.
Similarly, we use the notion mindist(RT) to denote the mindist calculated
under RT. Recall that the heap enables that the entries in the RT are visited
in ascending order of their mindists. If mindist(IR) equals to mindist(RT),
it can be guaranteed that ψ is processed before e so that e is pruned by ψ.
In this manner, the non-candidate entries will be pruned and only candidate
ones are accessed. �

Given Property ??, we can estimate the number of nodes accessed by
BBS4SEP. Assume that the height of RT is h and there are candi candidate
nodes in the ith level of the R-tree. The total number of node accesses can
be represented as

NA =

h−1
X

i=0

candi (4.3)

To further examine how NA is related to the structure of the R-tree and
the inherent characteristics of the data space, we further elaborate (??).
Specifically, h can be specified as 1 + ⌈logf (N

f)⌉, where N is the cardinality
of the data space and f is the average fanout of a node in RT. Suppose there
are ni nodes at level i and the probability that a node at level i intersects
with SSR is P i

intsect(SSR). The candidate nodes at level i can be described

as [?]
candi = ni × P i

intsect(SSR) (4.4)

The number of node at level i can be specified as ni = N
fi+1 . P i

intsect(SSR)

can be evaluated by using the node density Di(p) at level i, i.e.,

P i
intsect(SSR) =

Z

p∈SSR

Di(p)dp (4.5)

A pessimistic upper bound for retrieving the entire skyline is given by [?]
, which is |L| × h. It is decided by the cardinality of the skylines (i.e., |L|)
and the height of RT. This upper bound corresponds to the situation that
the algorithm needs to go through a complete path (i.e., the length of the
path is h) to find each skyline point. However, multiple skyline points may
be grouped into a single node or belong to the same branch of the R-tree.
In this regard, the R-tree can be viewed as a cluster mechanism that groups
together the points with similar properties (e.g., similar coordinate values).
Since the total number of node accesses is less than |L| × h, we can have

NA = α × |L| × h =

⌈logf (N
f

)⌉
X

i=0

N

f i+1
×

Z

p∈SSR

Di(p)dp (4.6)

78 Multi-objective Service Query Optimization

where α ∈ (0, 1] is defined as a bounding factor. From (??), (??), and (??), we
can see that NA is determined by the cardinality of the data space, the node
density of each level of the R-tree, and the fanout of the R-tree. Therefore,
α is related to the structure of the R-tree and the inherent characteristics of
the data space.

The above analysis helps us further investigate the performance of
BBS4SEP. Although it has an upper bound of |L| × h, it may not be an
optimal solution for retrieving the SEP skylines (i.e., the bounding factor α
of BBS4SEP may be large). The reason is that BBS4SEP is based on a R-
tree (i.e., RT) that is constructed from the original service space. The service
space is different from the SEP space whose coordinates are the aggregates
of the service space. Therefore, (1) the SEP space may have different char-
acteristics with the original service space; (2) a R-tree built from the SEP
space (where we try to find the skylines) may have a different structure with
a R-tree built from the original service space. We illustrate these two aspects
by using two simple examples.

4.4.3.1 Characteristics of the data space

Let’s continue to use Example ??. Based on (2), the latency of a SEP is
the sum of the latency from its member operations. We use X and Y to
represent the latency of the two member operations and assume they are two
independent continuous random variables with density functions fX(x) and
fY (y). The latency of the SEP is described as the sum of X and Y , i.e.,
Z = X + Y . The density function of Z is fZ(z) with fZ = fX ∗ fY , where ∗
is the convolution operator. Specifically,

fZ(z) = (fX ∗ fY)(z) =

∫ +∞

−∞

fX(z − y)fY (y)dy

As an example to show how the distribution of Z is different from X and Y ,
we assume X and Y are randomly chosen variables from interval [0,1] with
uniform probability density. Z = X + Y is the sum of these two variables.
The density functions of X and Y are described as:

fX(x) = fY (y) =



1 if 0 ≤ x ≤ 1
0 otherwise

The density function of Z can be computed from the convolution of fX and
fY :

fZ(z) =

∫ +∞

−∞

fX(z − y)fY (y)dy =

{
z if 0 ≤ z ≤ 1
2 − z if 1 ≤ z ≤ 2
0 otherwise

4.4 SEP Skyline Computation 79

a bc

a’b’

c’

fee

op1.latency
op2.latency

op1.latency+op2.lantency

Fig. 4.6 Different data organizations (R-tree)

We can see that Z has a triangle distribution that is different from both fX

and fY . We use this example just to show that how the characteristics of the
SEP space may be different from the original service space.

4.4.3.2 Structure of the R-tree

The R-trees may organize service instances in different ways in the SEP space
as compared to the original service space. Using Example ??, we assume that
all the service instances provide the insurance quote for free (i.e., op2.fee=0).
This enables us to visualize the SEPs in the original service space (with three
dimensions because the op2.fee dimension is collapsed into the origin). As we
can see in Figure ??, the service space is represented using three coordinates:
fee, op1.latency, and op2.latency. We select three representative SEPs, a, b,
and c to investigate how they could be organized differently in the original
service space and the SEP space. In the service space, a and b are far from
each other because they have quite different values for the latency on their two
member operations, i.e., a is much more efficient on performing op2 whereas
b is much more efficient on performing op1. Another SEP c is much nearer
to a than b although it is less efficient on performing both op1 and op2 than
a. Therefore, a and c may be more likely to be “clustered” into the same
MBR by a R-tree built from the original service space. However, in the SEP
space (represented using two coordinates: fee and op1.latency+op2.latency in
Figure ??), a is actually much closer to b than c. In this case, a and b may be
more likely to be “clustered” into the same MBR by a R-tree built from the
SEP space. If both a and b belong to the SEP skyline, they can be retrieved
together. In contrast, retrieving a and b from the original service space may
require more node accesses because they could be in different leaf nodes or
even different branches of the R-tree.

4.4.3.3 Summary

BBS4SEP is based on an index structure (i.e., a R-tree) built from the original
service space. The above analysis shows that: (1) the underlying character-
istics (e.g., data distribution) of the service space and the SEP space are

80 Multi-objective Service Query Optimization

different; (2) a R-tree (say R1) built from the service space may organize
SEPs into different ways than a R-tree (say R2) built from the SEP space.
From (??) we observe that the number of node accesses is related to the car-
dinality of the data space, the fanout of the R-tree, and the node density of
each level of the R-tree. Since the cardinality stays the same (i.e., the number
of SEPs) and we can also make R1 and R2 have the same average fanout,
the node density of each level of R1 and R2 will be different due to (1) and
(2). This accounts for the performance difference (in terms of node access) of
BBS4SEP.

4.4.4 Operation Graph based Indexing (OGI)

An effective improvement on BBS4SEP is to make it perform on a R-tree that
is constructed directly from the SEP space. However, the challenge is that
the SEP space is dynamically generated by each service query. This makes
the SEP space inherently different from the original service space which is
relatively static. Pre-computing an index structure for such a dynamic space
seems to be infeasible.

In this section, we present an operation graph based indexing (OGI) ap-
proach to build indices for SEPs. Although different SEP spaces can be dy-
namically formed for different service queries, SEPs are not generated in an
ad hoc manner. The dependency constraints between service operations only
allow SEPs that conform to certain patterns to be generated. These patterns
are like rules that define what kind of SEPs can be generated. If we know
these patterns in advance, we can foresee the properties (i.e., the aggregate
attributes) of the SEPs and construct index structures on them. Now the
problem turns out to be whether such patterns exist or not and if yes, how to
find such patterns. The proposed service model provides a natural solution
for this problem.

Lemma 4.5. Consider a set of SEPs, SEP1,...,SEPk , that are generated from
service relation SR with k service instances. Assume that these SEPs are used
to access operation op specified by some service query. The operation graph
G(op) and service relation SR carry enough information to construct the
index for the SEPs.
Proof: Recall Theorem ??. The operation graph G(op) consists of a mini-
mum number of necessary operations that make op accessible. Thus, G(op)
identifies all the operations (i.e., op and all its dependent operations) in the
SEPs. The service instances in SR store the QoWS parameters for each of
these operations. Combining them, the aggregate QoWS parameters of SEPs
can be computed using Table ??. Indices can thus be constructed from the
QoWS parameters of SEPs. �

4.5 Experimental Study 81

Operation graph based indexing (OGI) enables us to pre-compute indices
for SEPs. Algorithms built from OGI can thus use an index on the SEP space.
This has two major advantages over BBS4SEP:

• OGI overcomes the “distortions” (e.g., the characteristics of data space
and structure of the R-tree) introduced by using an index on the original
service space.

• A R-tree index on the SEP space has lower dimensionality than a R-tree
on the service space. The former has a dimensionality that equals to the
number of user interested quality attributes while the dimensionality of
the latter equals the number of user interested quality attributes times
the service operations in a SEP.

4.5 Experimental Study

We conduct an extensive set of experiments to assess the effectiveness of the
proposed service skyline computation algorithms. We run our experiments on
a cluster of Sun Enterprise Ultra 10 workstations with 512 Mbytes Ram under
Solaris operating system. The node capacity of the R-trees is 100. The QoWS
attributes1 of service instances are generated in three different ways following
the approach described in [?]: 1) Independent QoWS where all the QoWS
attributes of service instances are uniformly distributed, 2) Anti-correlated
QoWS where a service instance is good at one of the QoWS attributes but
bad in one or all of the other QoWS attributes, and 3) Correlated QoWS
where a service instance which is good at one of the QoWS attributes is also
good at the other QoWS attributes.

We setup a set of experiment parameters to evaluate and compare the
performance of BBS4SEP and OGI. These include the number of QoWS at-
tributes in the range of 2 to 5, the number of operations per SEP in the
range of 2 to 5, and the cardinality of the service relations in the range of
100k to 500k (i.e., 100,000 to 500,000). We also study the performance of sky-
line computation over multiple services and investigate how the performance
varies with different number of services in a SEP. By performance, we report
both the node accesses (which is independent of hardware settings) and the
actual running time on our experiment machines. Finally, we study the sizes
of the SEP skylines and examine whether they are in a practical range for
user selection.

1 We use QoWS attributes instead of QoWS parameters in the experiment section to differentiate
it from the term “experiment parameters” we use in this section.

82 Multi-objective Service Query Optimization

4.5.1 Number of QoWS Attributes

We study the effect of the number of QoWS attributes in this section. We keep
the cardinality as 100k, the number of operation per SEP as 2, and vary the
number of attributes from 2 to 5. Figure ?? and ?? show how the number of
node accesses and the actual running time vary with the number of attributes
for both independent and anti-correlated QoWS. OGI outperforms BBS4SEP
on small number of attributes by almost an order of magnitude but the
difference decreases as the number of attributes increases. The performance
difference comes from two sources: 1) BBS4SEP works on a R-tree built from
the original service space (as contrast to a R-tree built from the SEP space
used by OGI); 2) The R-tree used by BBS4SEP has a dimensionality which
is two times (since the number of operations per SEP is 2 in this case) of the
one used by OGI. The difference becomes smaller with a larger number of
attributes, which is due to that both algorithms are dominated by the poor
performance of R-tree in high dimensions.

2d 3d 4d 5d
10

1

10
2

10
3

10
4

Dimension

N
od

e
A

cc
es

se
s

(a) Anti−correlated ata

BBS4SEP
OGI

2d 3d 4d 5d
10

1

10
2

10
3

10
4

Dimension

N
od

e
A

cc
es

se
s

(b) Independent data

BBS4SEP
OGI

2d 3d 4d 5d
10

0

10
1

10
2

10
3

Dimension

N
od

e
A

cc
es

se
s

(c) Correlated data

BBS4SEP
OGI

Fig. 4.7 Node accesses Vs. Number of attributes

2d 3d 4d 5d
10

−2

10
−1

10
0

10
1

Dimension

C
P

U
 T

im
e

[s
ec

]

(a) Anti−correlated data

BBS4SEP
OGI

2d 3d 4d 5d
10

−2

10
−1

10
0

Dimension

C
P

U
 T

im
e

[s
ec

]

(b) Independent data

BBS4SEP
OGI

2d 3d 4d 5d
10

−2

10
−1

10
0

Dimension

C
P

U
 T

im
e

[s
ec

]

(c) Correlated data

BBS4SEP
OGI

Fig. 4.8 CPU time Vs. Number of attributes

4.5.2 Number of Operations per SEP

We study the effect of the number of operations per SEP with Figure ?? and
??. We keep the cardinality as 100k, the number of QoWS attributes as 2,

4.5 Experimental Study 83

and vary the number of operations per SEP from 2 to 5. OGI is more efficient
than BBS4SEP with several orders of magnitude and the difference increases
with the number of operations. The performance degradation of BBS4SEP
is mainly due to the dimensionality increment of the R-tree with the number
of operations. A close investigation reveals that the performance of OGI is
insensitive to the number of operations. By using the operation graph to
index the SEPs, the same QoWS attributes from multiple operations (e.g.,
the fee of operations) are aggregated into a single QoWS attribute of the
SEP (e.g., the fee of a SEP). Therefore, the dimensionality of the R-tree used
by OGI equals to a constant (i.e., the number of different QoWS attributes
which is 2 in this case) and will not increase with the number of operations.

2 3 4 5
10

1

10
2

10
3

10
4

Operation

N
od

e
A

cc
es

se
s

(a) Anti−correlated data

BBS4SEP
OGI

2 3 4 5
10

0

10
1

10
2

10
3

Operation

N
od

e
A

cc
es

se
s

(b) Independent data

BBS4SEP
OGI

2 3 4 5
10

0

10
1

10
2

Operation

N
od

e
A

cc
es

se
s

(c) Correlated data

BBS4SEP
OGI

Fig. 4.9 Node accesses Vs. Number of operations

2 3 4 5
10

−2

10
−1

10
0

10
1

Operation

C
P

U
 ti

m
e

[s
ec

]

(a) Anti−correlated data

BBS4SEP
OGI

2 3 4 5
10

−2

10
−1

10
0

Operation

C
P

U
 ti

m
e

[s
ec

]

(b) Independent data

BBS4SEP
OGI

2 3 4 5
10

−2

10
−1

10
0

Operation

C
P

U
 ti

m
e

[s
ec

]

(c) Correlated data

BBS4SEP
OGI

Fig. 4.10 CPU time Vs. Number of operations

4.5.3 Cardinality of Service Relations

We show the effect of cardinality in Figure ?? and ??. We keep the number
of QoWS attributes as 2, the number of operations per SEP as 2, and vary
the cardinality from 100k to 500k. OGI outperforms BBS4SEP by almost
an order of magnitude due to similar reasons as described in Section ??.
Both algorithms do not exhibit an obvious performance degradation with
the increment of cardinality. For some cases, the algorithms even perform

84 Multi-objective Service Query Optimization

more efficiently with larger cardinality which is due to the positions of the
skyline SEPs and the order they are retrieved [?].

100k 200k 300k 400k 500k
10

1

10
2

10
3

Cardinality

N
od

e
A

cc
es

se
s

(a) Anti−correlated data

BBS4SEP
OGI

100k 200k 300k 400k 500k
10

0

10
1

10
2

10
3

Cardinality

N
od

e
A

cc
es

se
s

(b) Independent data

BBS4SEP
OGI

100k 200k 300k 400k 500k
10

0

10
1

10
2

Cardinality

N
od

e
A

cc
es

se
s

(c) Correlated data

BBS4SEP
OGI

Fig. 4.11 Node accesses Vs. Cardinality

100k 200k 300k 400k 500k
10

−2

10
−1

10
0

Cardinality

C
P

U
 ti

m
e

[s
ec

]

(a) Anti−correlated data

BBS4SEP OGI

100k 200k 300k 400k 500k
10

−2

10
−1

10
0

Cardinality

C
P

U
 ti

m
e

[s
ec

]

(b) Independent data

BBS4SEP OGI

100k 200k 300k 400k 500k
10

−2

10
−1

10
0

Cardinality

C
P

U
 ti

m
e

[s
ec

]

(c) Correlated data

BBS4SEP OGI

Fig. 4.12 CPU time Vs. Cardinality

100k 200k 300k 400k 500k
10

0

10
1

10
2

Cardinality

S
ky

lin
e

si
ze

Anti−correlated
Independent
Correlated

2 3 4 5
10

0

10
1

10
2

Operation

S
ky

lin
e

si
ze

Anti−correlated
Independent
Correlated

2d 3d 4d 5d
10

0

10
1

10
2

10
3

10
4

Dimension

S
ky

lin
e

si
ze

Anti−correlated
Independent
Correlated

Fig. 4.13 Sizes of SEP Skylines

4.5.4 Sizes of the SEP Skylines

We finally examine how the sizes of SEP skylines change with cardinality,
number of operations per SEP, number of QoWS attributes, and number
of services. Figure ?? presents some interesting effects of these parameters
on the sizes of SEP skylines. First of all, the skylines generated from anti-
correlated QoWS have larger sizes than those generated from independent

4.5 Experimental Study 85

and correlated QoWS, which is just as expected. Second, cardinality and
number of operations per SEP have no obvious effect on the sizes of SEP
skylines. As the cardinality varies from 100k to 500k, the sizes of skylines
for independent and correlated QoWS vary from 5 to 20 whereas those for
anti-correlated QoWS vary from 30 to 40. The sizes of skylines stay in a
similar range respectively when we vary the number of operations per SEP
from 2 to 5. Interestingly, the sizes of skylines for anti-correlated QoWS have
a trend to decrease with the number of operations. This may be due to that
the aggregation of QoWS attributes from multiple operations compromises
the anti-correlated effect. Third, the sizes of skylines clearly increase with
the number of QoWS attributes and the number of services. However, in
most practical usage scenarios where the number of QoWS attributes and
the number of services are less than three, the sizes of the skylines are still
within a practical range for user selection.

Chapter 5

Skyline Computation for Multi-Service
Query Optimization

In this chapter, we study a more general and challenging problem: computing

service skylines over sets of services. Following Example ?? described in Chap-
ter ??, a complex service package (like a trip package) is formed by combining
services from different providers (e.g., TripPlanner, Map, and Weather). The
possible combinations of service providers will increase exponentially with the
number of services involved. Suppose that there are n1,..., and nm providers
for each of the m services in a service package. To find the skyline for the
service package,

∏m
i=1 ni number of candidates need to be evaluated. The

computational cost would be prohibitive if the following conditions are true:
(C1) the number of services in a service package is large, i.e., m is large; (C2)
the number of providers for each service is large, i.e., ni is large.

An intuitive solution that addresses the above challenge is to compute the
multi-service skylines from single service skylines. This solution is valid due to
two observations: (O1) a multi-service skyline point can only be formed by a
set of single service skyline points; (O2) the sizes of skylines are usually much
smaller than the sizes of the service space (i.e., the number of providers).
In this case, only N =

∏m
i=1 ki maximum number of candidates need to be

evaluated due to O1, where ki is the size of the ith service skyline and we
expect that ki ≪ ni due to O2. Thus, the computational cost can be reduced
with several orders of magnitude. However, N can still be large as more
services are involved in the service package. In this chapter, we present a
progressive and pipelineable approach for computing multi-service skylines,
which also has a nearly optimal time complexity. The major contributions
are summarized as follows:

• We first develop a baseline algorithm (referred to as one pass algorithm

or OPA), which performs a single pass on the N candidates and outputs
the skyline when the pass is complete. It employs a special enumeration
mechanism to effectively reduce the number of false positive skyline points
during skyline computation.

• We present a dual progressive algorithm (referred to as DPA) that is com-
pletely pipelineable and able to progressively report the skyline. It lever-

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection, 87
 DOI 10.1007/978-1-4419-0314-3_5,

88 Skyline Computation for Multi-Service Query Optimization

ages an expansion tree and a parent table to ensure the efficiency and
progressiveness.

• We develop a bottom-up approach (referred to as BUA) that extends DPA
through an early pruning strategy. BUA is able to compute the skyline
with a nearly optimal time complexity. With early pruning, BUA also
exhibits a good scalability with the increment of the number of services.

• We perform a rigorous analytical study and conduct an extensive set of
experiments to evaluate the proposed multi-service skyline computation
algorithms.

The remainder of this chapter is organized as follows. We formally define
the multi-service skyline computation problem in Section ??. We present one
pass algorithm, dual progressive algorithm, and the bottom-up approach in
Sections ??, ??, and ??, respectively. We present the experimental results in
Section ??.

5.1 Preliminaries

A complex service package (e.g., a travel package) typically requires access
to a set of operations across multiple services. As stated in the beginning of
this chapter, computing a SEP skyline for such a service package would incur
intensive computational overhead. We present our approaches to efficiently
compute service skylines over sets of services. For clarity, we use the term
SEP to specifically refer to the service execution plan for a single service and
the SEP skyline refers to the skyline for a single service. We use the term
MEP to refer to the service execution plan for sets of services. Therefore, we
study the problem of efficiently computing the MEP skylines in this section.
Table ?? summarizes the terminologies used throughout the chapter.

Table 5.1 Terminologies

Term Definition

SEP service execution plan for a single service

MEP service execution plan for sets of services

SKi the ith SEP skyline

ki size of the ith SEP skyline

score the sum of the QoWS attributes of a MEP(SEP)

MS the MEP skyline

A � B A dominates B

N size of the MEP space

m number of services

d number of QoWS attributes

Problem Definition. Given m services with d user interested QoWS at-
tributes, where the ith service has ni different providers, the problem of MEP

5.2 One Pass Algorithm 89

skyline computation is to compute the service skyline MS over the m services.

Computing the MEP skyline in a brute force manner is computationally
intensive. The following observation helps improve the computation efficiency
directly.

Lemma 5.1. Given m services S1, ..., Sm and the set of SEP skylines
SK1,...,SKm, computed for each of them, the MEP skyline MS over
S1, ..., Sm can be completely decided by SK1,...,SKm. �

Lemma ?? enables us to compute the MEP skylines by only considering
the SEP skylines. We develop a one pass algorithm based on this. It performs
a single pass on the MEP space with a size of N =

∏m
i=1 ki to compute the

MEP skyline.

5.2 One Pass Algorithm

We present a One Pass Algorithm (OPA) in this section. During the single
pass of the MEP space, OPA enumerates the candidate MEPs one by one
and only stores the potential skyline MEPs. It outputs the skyline after all
the candidate MEPs have been evaluated. OPA requires that all the SEP
skylines are sorted according to the scores of the SEPs. OPA works as follows
(shown in Algorithm ??). It starts by evaluating the first MEP (referred to as
MEP1) that is formed by combining the top SEPs from each SEP skyline. It
is guaranteed that MEP1 ∈ MS because MEP1 has the minimum score in the
MEP space so that no other MEPs can dominate it. With the minimum score,
MEP1 is expected to have a very good pruning capacity. Thus, OPA puts
MEP1 on the top of MS so that the non-skyline MEPs which are dominated
by MEP1 can be pruned at the earliest time. After this, OPA continues to
enumerate all other MEPs, one by each time. For each MEPi, the algorithm
checks it against the current MS. When MEPi meets the first MEP, say
MEPj, that can dominate it, the algorithm prunes MEPi and stops further
checking. On the other hand, if MEPi dominates any MEP, say MEPj, in
MS, MEPj will be removed from the skyline. If none of the MEPs in MS
can dominate MEPi, MEPi will be inserted into the skyline.

90 Skyline Computation for Multi-Service Query Optimization

Algorithm 8 One Pass Algorithm
Require: m sorted SEP skylines SK1, ..., SKm

Ensure: The MEP skyline MS
1: N = 1; {number of candidate MEPs}
2: for all i ∈ [2,N] do

3: MEPi = EnumerateNext(SK1 ,...,SKm);
4: IsDominated = False;
5: for all j ∈ [1, |MS|] do

6: MEPj = MS.get(j);
7: if MEPi � MEPj then

8: MS.remove(j);
9: else if MEPj � MEPi then

10: IsDominated = True;
11: break;
12: end if

13: end for

14: if IsDominated == False then

15: MS.add(MEPi);
16: end if

17: end for

One outstanding issue with OPA is the false positive skyline MEPs, which
incur additional space and CPU cost. The false positives are generated be-
cause OPA has no restriction on the enumeration order of the MEPs. Some
early discovered MEP that has been inserted into the skyline may be dom-
inated by other later discovered MEPs. These false positive MEPs will stay
in the skyline (which introduces space cost) and be compared with all the
MEPs discovered after them until being dominated (which introduces CPU
cost).

To reduce the number of false positives, we add some special control on
the EnumerateNext function of DPA. Suppose that there are m SEP skylines
(each of them are sorted on the scores of its SEPS). EnumerateNext first
returns MEP1. It then keeps increasing the index of the mth SEP skyline
to enumerate the remaining MEPs. When the index hits the end of the mth
SEP skyline, the index of (m − 1)th SEP skyline will increase by 1 and the
index of the mth skyline will reset to 0. This will propagate to all other
SEP skylines until all MEPs are enumerated. Since all the SEP skylines
are sorted, this process tends to enumerate the MEPs by roughly following
the ascending order of their scores. The effectiveness of the EnumerateNext

function is justified by our experimental results.

5.3 Dual Progressive Algorithm 91

5.3 Dual Progressive Algorithm

We present a Dual Progressive Algorithm (DPA) in this section. The un-
derlying principle of DPA is the dual progressive strategy, which we briefly
elaborate as follows.

• DPA progressively enumerates the MEPs in an ascending order of their
scores. By “progressively”, we mean that it does not need any presorting,
which is usually very time consuming and thus blocks on input [?, ?]. DPA
“intelligently” retrieves the MEPs based on their scores one at a time. This
is non-trivial if the entire MEP space is not initially sorted. DPA follows
the enumeration steps defined by an expansion tree and leverages a set
of key data structures to achieve this, which will be explained in what
follows.

• DPA progressively reports the skyline MEPs. By “progressively”, we mean
that once a MEP is discovered not being dominated by any existing skyline
MEP, it is guaranteed to be in the skyline and can be returned to the
user. This also implies that no false positives are generated by DPA. This
is because that a later discovered MEPj cannot have a smaller score than
an earlier discovered MEPi due to the first progressive property of DPA.
Based on the definition of score, it is impossible for MEPj to dominate
MEPi because otherwise the former should have a smaller score than the
latter.

The dual progressive property helps DPA gain two major advantages: (1)
DPA is a completely pipelineable algorithm, i.e., it does not block on both
input and output. It does not block on input because presorting is no longer
needed. Meanwhile, the progressive generation of the skyline make it non-
block on output. (2) Since only true skyline MEPs are kept in MS, the
space overhead is greatly reduced. In addition, many useless comparisons are
expected to be eliminated.

5.3.1 Basic Progressive Enumeration

The second progressive property is essentially a natural result from the first
progressive property. We focus on investigating how the first progressive prop-
erty is achieved in this section. Similar to OPA, DPA also requires that the
SEP skylines are all sorted. The entire MEP space can be enumerated sys-
tematically using a MEP expansion tree. Figure ?? shows the expansion tree
for three SEP skylines, A(a1, a2, a3), B(b1, b2, b3), and C(c1, c2, c3). The num-
ber of MEPs generated from these skylines will be |A|× |B|× |C| = 27. Each
node of the expansion tree corresponds to a MEP. In particular, the root
node (referred to as r or n1) corresponds to MEP1, i.e., the MEP that is
formed by the top SEPs from each SEP skyline. MEP1 has the smallest score

92 Skyline Computation for Multi-Service Query Optimization

a1b1c1

a2b1c1 a1b2c1 a1b1c2

a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2 a1b1c3

a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b3c2 a1b2c3

a3b3c1 a3b2c2 a3b1c3 a2b3c2 a2b2c3 a1b3c3

a3b3c2 a3b2c3 a2b3c3

a3b3c3

Level
0

1 1 1

1 1222 1

2 2 2 2 2 2

2 2 23

3

3

3

3 3

33

0

1

2

3

4

5

6

Fig. 5.1 Expansion Tree For A(a1, a2, a3), B(b1, b2, b3), and C(c1, c2, c3)

and thus must belong to the skyline. A child node is different from a parent
node by only one SEP and the SEP from the child node is the successor of
the SEP from the parent in the corresponding SEP skyline.

We use the expansion tree T together with a heap H to achieve the basic
progressive enumeration. Specifically, the expansion tree ensures that a parent
node is enumerated before its child nodes. This is desirable because the score
of a parent node cannot be larger than those from its children. The heap, on
the other hand, determines the enumeration order of nodes that do not have
a parent-child relationship. The enumeration starts by initializing the heap
H with MEP1 (i.e., n1). Each enumeration step consists of two sub-steps:
(1) Extract—the MEP with the smallest score, say ni, is extracted from H
and compared with the existing skyline. ni will be inserted into the skyline
if not dominated and discarded if otherwise. (2) Expand—the child nodes of
ni are then generated and inserted into H. The enumeration stops when H
is empty.

5.3.2 Node Duplication

A major issue with the above basic implementation is that a single node could
be generated from parent expansion for multiple times, referred to as node
duplication. This is because that a node could have up to m parents, where
m is the number of SEP skylines. The same child node will be generated
when each of its parents is expanded. As shown in Figure ??, the number
above each node indicates the number of its parents. For example, the node
(a2, b2, c2) will be inserted into H for three times because it has three parents
and when each of them is expanded, (a2, b2, c2) will be generated and inserted

5.3 Dual Progressive Algorithm 93

into H. The node duplication issue introduces great computational overhead
because lots of node are processed multiple times. More seriously, the same
node could be inserted into the skyline for more than one time, which results
in a wrong skyline.

A straightforward extension to tackle the above issue is to add a Parent
Checking (PC) procedure before inserting a node into the heap. For a given
node, say ni, generated from the expansion, PC examines whether there is
any of its parents currently in the heap. If this is the case, the child will
not be inserted. However, PC still cannot completely resolve the above issue.
We use a specific example to explain this. With the expansion tree shown
in Figure ??, nodes (a2, b1, c1), (a1, b2, c1), and (a1, b1, c2) will be generated
and inserted into H after (a1, b1, c1) is expanded. Assume that (a2, b1, c1)
has the smallest score so that it will be extracted from H. After (a2, b1, c1)
is expanded, its three child nodes (a3, b1, c1), (a2, b2, c1), and (a2, b1, c2) are
generated. With the checking procedure, only (a3, b1, c1) is inserted into H
because the parents of (a2, b2, c1), and (a2, b1, c2) are still in H. Assume that
(a3, b1, c1) has the smallest score at this point. It is then extracted from H and
expanded to generate its two child nodes (a3, b2, c1) and (a3, b1, c2). With the
checking procedure, both (a3, b2, c1) and (a3, b1, c2) are inserted into H since
none of their parents are in the heap. This is problematic because (a3, b2, c1)
and (a3, b1, c2) are placed into the heap before some of their parents, i.e.,
(a2, b2, c1), and (a2, b1, c2). In this case, when the parent nodes are expanded,
(a3, b2, c1) and (a3, b1, c2) will be generated again, respectively. This, again,
results in node duplication.

The above analysis reveals that in order to completely avoid node duplica-
tion, we should check whether there is any ancestor (instead of only parent)
of a node currently in the heap, i.e., as long as any ancestor of a node is still in
the heap, the node will not be inserted into the heap. In the above example,
(a3, b2, c1) and (a3, b1, c2) will not be inserted into H with ancestor checking
because their ancestors (a1, b2, c1) and (a1, b1, c2) are in the heap. Node nj ,
represented as (SEP1j,...,SEPmj) is an ancestor of node ni, represented as
(SEP1i,...,SEPmi) if SEPkj .score ≤ SEPki.score, 1 ≤ ∀k ≤ m. Therefore, the
complexity of checking an ancestor relationship is Θ(m). For each node, the
entire H needs to be checked. Thus, ancestor checking for a node requires a
complexity of Θ(|H| ×m), where |H| is the length of the heap at the point
when the checking is conducted. Since a node will be generated when each of
its parent is expanded, the overall complexity of ancestor checking for each
node is Θ(|H| ×m× p), where p is the number of parents for the node. This
is expensive especially when the size of H becomes large with the increase of
the number of services (refer to Sect. ?? for details).

94 Skyline Computation for Multi-Service Query Optimization

5.3.3 Parent Table

We introduce the parent table data structure in this section. The parent table
provides a decent solution to tackle the node duplication issue with minimum
overhead. Instead of keeping track of all the ancestors, the parent table only
stores the information related to the number of parents for a given node. The
underlying principle is that a node can be inserted into the heap only after all
its parents have been processed. Since the maximum number of parents for a
node is m, with m as the number of SEP skylines, the parent table only uses
up to (xlogmy + 1) bits for a given node. Now the question is how to decide
the number of parents for a node. Based on the expansion tree, we have the
following property.

Property 5.2. Assume that the index of each SEP skyline starts with 1. The
number of parents for a given node ni, represented as (SEP1i,...,SEPmi),
equals to the number of SEPs with an index greater than 1. �

Figure ?? shows the number of parents for each node in the expansion
tree. With the parent table, the progressive enumeration now works as fol-
lows. The parent table, referred to as P , is first initialized by setting each
node entry as the number of parents for the node (refer to Property ??).
Similar to the basic implementation, the heap H is initialized with the root
of the expansion tree T . Each enumeration step now consists of three sub-
steps. The Extract and Expand are the same as before except that Expand

only generates the child nodes and does not insert any of them into H. A
new UpdateCheck step is added, which works as follows. For each newly gen-
erated child node, it first updates P by subtracting 1 from the corresponding
node entry. The updated entry now represents the remaining parent nodes
that have not been processed yet. It then checks the entry. If the entry be-
comes 0, the corresponding node will be inserted into H. By doing this, we
make sure that a child node can only be inserted into the heap after all its
parent nodes have been processed. Each UpdateCheck takes a complexity of
Θ(1). Thus, for a node that has p parents, the overall overhead is Θ(p). The
detailed progressive enumeration algorithm (referred to as PEN) is given in
Algorithm ??.

5.3 Dual Progressive Algorithm 95

Algorithm 9 Progressive ENumeration (PEN)
Require: m SEP skylines that form an expansion tree T
Ensure: The MEP skyline MS
1: MS = φ,H = φ;
2: Initialize the parent table P;
3: while H 6= φ do

4: remove the top node n from H;
5: if n is not dominated by MS then

6: MS.add(n);
7: end if

8: CN = expand(n, T); {generate the child nodes}
9: for all node ni ∈ CN do

10: P(ni) = P(ni) − 1;
11: if P(ni) == 0 then

12: H.add(ni);
13: end if

14: end for

15: end while

Example 5.3. We use an example as shown in Figure ?? to explain the pro-
gressive enumeration process. Figure ?? (c) shows the enumeration steps with
Figure ?? (d) and (e) illustrating the contents of the parent table and the
heap, respectively. In step 1, (a1, b1) is removed from the heap and expanded
to (a2, b1) and (a1, b2). For each of these two nodes, the corresponding en-
tries in the parent table are first updated, i.e., P(a1, b2) = P(a1, b2) − 1 =
0,P(a2, b1) = P(a2, b1) − 1 = 0. Since both entries become 0 after the up-
date, (a2, b1) and (a1, b2) are inserted into the heap. In step 2, (a1, b2) will
be removed from the heap since it has the smallest score. It is expanded
to MEP(a2, b2) and MEP(a1, b3). The parent table is updated as follows:
P(a2, b2) = P(a2, b2) − 1 = 1,P(a3, b1) = P(a3, b1) − 1 = 0. Thus, only
MEP(a1, b3) is inserted into the heap. Figure ?? (c) shows the expansion di-
rection of each step and a mark “×” on the lines means that the generated
node will not be inserted into the heap at that step (due to a nonzero parent
entry). The entire enumeration stops when the heap becomes empty. �

5.3.4 Analysis

In what follows, we identify some key properties of PEN and present the
proof of correctness. We then investigate the overall complexity of DPA.

96 Skyline Computation for Multi-Service Query Optimization

(a1,b2),(a2,b1)1

b1 b2 b3 b4 b5

a1

a2

a3

1

1

2

2

5

5

6
6

8 9

43

3 4

12

11

1
37

7

10

1
1

14

(c) Enumeration Process

(d) Heap Contents

(a1,b1)

(a1,b3),(a2,b1)

(a1,b3),(a3,b1),(a2,b2)

(a1,b3),(a3,b1)

(a1,b4),(a3,b1),(a2,b3)

(a1,b5),(a3,b1),(a2,b3)

(a1,b5),(a3,b1),(a2,b4)

(a1,b5),(a3,b2),(a2,b4)

(a1,b5),(a3,b3),(a2,b4)

(a3,b3),(a2,b4)

(a3,b3),(a2,b5)

(a3,b4),(a2,b5)

0

2

3

4

5

6

7

8

9

10

11

12

Heap contentsStep

(a3,b4)

(a3,b5)

13

14

a1b1

a2b1 a1b2

a3b1 a2b2 a1b3

a3b2 a2b3 a1b4

a3b3 a2b4 a1b5

a3b4 a2b5

a3b5

(b) Expansion Lattice

a1b1
a1b2
a2b1

a2b2
a3b1
a1b4
a2b3
a3b2
a1b5
a2b4
a3b3

a1b3

a2b5
a3b4
a3b5

0

0

0

2

1

1

2

2

1

2

2

1

2

2

2

Step 1

0

0

0

1

1

1

2

2

1

2

2

0

2

2

2

2

0

0

0

0

0

1

2

2

1

2

2

0

2

2

2

3

0

0

0

0

0

1

1

1

1

2

2

0

2

2

2

4

0

0

0

0

0

0

0

1

1

2

2

0

2

2

2

5

0

0

0

0

0

0

0

1

0

1

1

0

1

2

2

6

0

0

0

0

0

0

0

1

0

0

1

0

2

2

2

7

0

0

0

0

0

0

0

0

0

0

1

0

2

2

2

8

0

0

0

0

0

0

0

0

0

0

0

0

2

1

2

9

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

10

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

14

0

1

1

2

1

1

2

2

1

2

2

1

2

2

2

0

(e) Parent Table Contents

A

a1

a2

a3

B

b1

b2

b3

b4

b5

score

0.08

0.37

0.75

score

0.13

0.16

0.46

0.72

0.87

(a) Two Sample SEP Skylines

Fig. 5.2 Progressive Enumeration

5.3.4.1 Correctness

Lemma 5.4. PEN processes the nodes (i.e.,MEPs) in an ascending order of
their scores.
Proof: Assume that we have ni processed earlier than nj whereas
score(nj) < score(ni). Assume that at a certain point, ni becomes the node
that has the smallest score in the heap. Thus, nj cannot be in the heap be-
cause otherwise nj should have the smallest score. Since nj has not been
processed at that point, it must not be inserted into the heap yet. Thus, we
can always find a node nk currently in the heap, which is an ancestor of nj .
Extracting nk from the heap will (directly or indirectly) trigger the insertion
of nj into the heap. Now, we have two cases to deal with: (1) ni = nk; and (2)
ni 6= nk. Case (1) means that ni is an ancestor of nj , which contradicts that ni

has a larger score than that of nj. For case (2), we have score(ni) < score(nk)
and score(nk) ≤ score(nj). Thus, we have score(ni) < score(nj), which leads
to a contradiction. �

Lemma 5.5. Every node will be examined by PEN.

5.3 Dual Progressive Algorithm 97

Proof: Suppose that there is a set of nodes, S, that is ignored by PEN,
where S 6= φ. We can always choose a node say, n = (ai, bj, ck, ...), such that
there does not exist a node n′ = (a′i, b

′
j, c

′
k...) in S satisfying that i′ ≤ i∧ j′ ≤

j ∧ k′ ≤ k.... Since n is ignored by PEN, we can conclude that each time
when one of its parents is processed, the remaining parent number is always
larger than 0 (according to Algorithm ??). It means that at least one parent
of n is ignored by PEN, too. This contradicts the selection of node n. �

5.3.4.2 Complexity

Lemma ?? and Lemma ?? collectively ensure the correctness of DPA. We
investigate the performance of DPA by examining the cost on each node in
the expansion tree. The time spent by DPA on node ni consists of two major
parts: heap operation (i.e., insertion and extraction) and skyline comparison.
Assume that the size of the MEP space is N and expected size of the MEP
skyline MS is Θ((lnd−1 N)/(d−1)!) [?]. The number of comparisons between
skyline MEPs is |MS|2/2, which is o(N). Since the MEP space is examined
in a sorted order, the number of comparisons between skyline MEPs and
non-skyline MEPs is bounded by O(N) [?]. The cost of heap operation is de-
termined by the size of the heap, which we examine in detail in the remaining
part of this section.

Lemma 5.6. A node and its ancestors (or descendants) cannot coexist in the
heap.
Proof: Assume that we have both ni and one of its ancestor nj in the heap
at a certain point. nj cannot be the parent of ni because when ni is inserted
into the heap, all its parents must already have been extracted from the heap.
In this case, nj should be the ancestor of one of ni’s parent, say nk. Similarly,
nj cannot be the parent of nk because otherwise nj will be extracted from the
heap before nk. Following this, we will have two situations: (1) nj coincides
with the root r of the expansion tree; or (2) nj does not exist (when nj is a
non-parent ancestor of nk which is a child node of the root). Case (2) directly
contradicts the assumption. Case (1) also leads to a contradiction because r
is extracted from the heap in the very beginning of PEN. �

The order between the nodes that are incomparable (i.e., nodes that do
not have a ancestor-successor relationship) with the expansion tree is decided
by the heap. Therefore, the upper bound of the heap size is determined by
the maximum number of incomparable nodes that can concurrently reside in
the heap. Some important properties of the expansion tree helps provide an
answer for this. For the ease of analysis, we assume that the index for each
SEP skyline starts from 0 and the size of each SEP skyline is (k + 1). Thus,
the index range for the jth SEP skyline is 0 ≤ ij ≤ k. Assume that there are
m SEP skylines and the level number of the expansion tree stats with 0.

98 Skyline Computation for Multi-Service Query Optimization

With the above settings, we can immediately derive the number of nodes
in each level of the expansion tree. Based on how the expansion tree is con-
structed (refer to Sect. ?? for details), the indices of the SEPs within a given
node sum to the level number, upon which the node resides. Thus, for any
node (SEPi1 , SEPi2 ,...,SEPim

) on level l, we have i1 + i2 + · · · + im = l.
As can be seen from Figure ??, after subtracting 1 from each index of a
given node (because the index here starts from 1 instead of 0), the sum of
the indices equals to the corresponding level number. Therefore, the num-
ber of nodes on a given level is actually the number of integral solutions of
i1 + i2 + · · · + im = l, 0 ≤ ij ≤ k. This is given by the following equation:

Nl(m, k) =

[l/(k+1)]
∑

j=0

(−1)j

(
m

j

)(
l +m− 1 − j(k + 1)

m− 1

)

(5.1)

where [l/(k+1)] is the integer part of l/(k+1). Eq. (??) has also been used in
combinatorial analysis [?]. Another way to interpret this is that Nl(m, k) is
the coefficient of xl in the expansion of (1+x+ · · ·+xk)m. Nl(m, k) achieves
its maximum value at the middle level of the expansion tree [?], i.e.,

max({Nl(m, k)|0 ≤ l ≤ mk}) = N[mk
2

](m, k) (5.2)

The expansion tree has a symmetrical structure, which can be justified by
the following lemma.

Lemma 5.7. The lth level and the (mk− l)th level of the expansion tree have
the same number of nodes i.e., Nl(m, k) = Nmk−l(m, k).
Proof: The number of nodes on level l is determined by the number of
integral solutions of i1 + i2 + · · · + im = l, 0 ≤ ij ≤ k. Suppose that ij =
k − tj , 1 ≤ j ≤ m. Thus, we have

(k − t1) + (k − t2) + · · · + (k − tm) = l, 0 ≤ tj ≤ k (5.3)

⇒ t1 + t2 + · · · + tm = mk − l, 0 ≤ tj ≤ k (5.4)

Since there is a one-to-one correspondence relationship between ij and tj , the
number of integral solutions of i1 + i2 + · · ·+ im = l, 0 ≤ ij ≤ k equals to the
number of integral solutions of t1 + t2 + · · ·+ tm = mk− l, 0 ≤ tj ≤ k, which
determines the number of nodes on level mk − l. �

Lemma 5.8. The nodes on the same level of the expansion tree are not com-
parable to each other.
Proof: This is straightforward because the nodes on the same level do not
hold an ancestor-successor relationship. �

Theorem 5.9. The size of the heap H is bounded by the number of nodes on
the middle level of the expansion tree, i.e., max(|H|) = N[mk

2
](m, k).

Proof: This actually means that the upper bound of the heap is achieved
when all the nodes on the middle level of the expansion tree concurrently

5.3 Dual Progressive Algorithm 99

reside in the heap. To prove this, we assume that the maximum size of the
heap is achieved when there are nodes from some levels above the middle
(same conclusion can be drawn for the levels below the middle due to sym-
metrical property stated in Lemma ??). Assume that ni is from level i, where
i < [mk

2]. All the nodes in the heap cannot be the successor of ni. Suppose ni

is expanded at this point. Therefore, all its m child nodes can be inserted into
the heap, with m > 1. This contradicts that the heap has already achieved
its maximum size before ni is expanded. �

We now asymptotically investigate the heap size based on Eq. (??). This
provides an intuitive way to understand how heap size increases with some
key parameters, including the size of the individual SEP skylines (i.e., k) and
the number of services (i.e., m). Specifically, let l = pk, where 0 ≤ p ≤ m,
and we have,

(
l +m− 1 − j(k + 1)

m− 1

)

=

(
(p− j)k − j + (m− 1)

m− 1

)

=
1

(m− 1)!
× ((p− j)k − j + (m− 1))

× ((p− j)k − j + (m− 2))

· · ·

× ((p− j)k − j + (1))

On the right hand side, the product multiplies (m − 1) items in addition to
1

(m−1)! , where each of these (m − 1) items contains (p − j)k. This allows us

to rewrite the right hand side as the (m− 1) powers of k,

(
l +m− 1 − j(k + 1)

m− 1

)

=
(p− j)m−1

(m− 1)!
km−1 +Θ(km−2) (5.5)

The remaining terms can be expressed as Θ(km−2) because the number of
SEP skylines (i.e., the number of services) is expected to be much less than
the size of the SEP skyline, i.e., m ≪ k. We also have j ≤ [l

k+1] ≤ m ≪ k.
Therefore, the magnitude of the remaining terms is dominated by the highest
power of k, which is (m − 2). Based on Eq. (??), Eq. (??) can be rewritten
as

Nl(m, k) =

∑[l/(k+1)]
j=0 (−1)j

(
m
j

)
(p− j)m−1

(m− 1)!
km−1 +Θ(km−2) (5.6)

Eq. (??) shows that the heap size increases exponentially with the num-
ber of services although it may have a small constant factor. Also, the upper
bound of the heap size cannot exceed km−1. This can be illustrated in a
more intuitive manner. Assume that at certain point, the size of the heap
exceeds km−1. In this case, we must have at least two nodes that are dif-

100 Skyline Computation for Multi-Service Query Optimization

ferent from each other by only one SEP. Suppose that these two nodes are
(s1i,...,sjx,...,smi) (referred to nx) and (s1i,...,sjy ,...,smi) (referred to as ny),
respectively, where x 6= y. Therefore, nx is a ancestor (or a descendant) of
ny. The coexistence of nx and ny contradicts with Lemma ??.

Assume that the heap size is |Hin(ni)| (or |Hout(ni)|) when node ni is
inserted into (or removed from) the heap. Then, the cost for inserting ni into
H is log(|Hin(ni)|). Although the cost for heap extraction is a constant, a
reorganization of the heap is required after ni is extracted, which has a cost
of log(|Hout(ni)|). Since the total number of nodes in the expansion tree is
N , the overall cost of heap operations is

N∑

i=1

[log(|Hin(ni)|) + log(|Hout(ni)|)] (5.7)

Since the cost for skyline comparison is O(N), the overall complexity of DPA
is dominated by Eq. (??).

5.4 A Bottom-Up Approach

The DPA algorithm is able to progressively report the MEP skyline. As
shown in Sect. ??, its performance is decided by the size of MEP space
and the heap size. With the increment of the number of services, the total
number of MEPs will increase in an exponential manner. Similarly, the upper
bound of the heap also grows exponentially due to Theorem ??. In this case,
although DPA can still efficiently report an initial answer set (due to the
progressiveness), its performance to compute the entire skyline remains to be
an issue especially for a large number of services. In this section, we present
a bottom-up approach to efficiently compute the entire MEP skyline while
keeping all the nice properties (i.e., progressive and pipelineable) of DPA.

5.4.1 The Early Pruning Heuristic

As discussed in Sect. ??, the performance of DPA is decided by two factors:
the size of the MEP space (i.e., N) and the heap size (i.e., |H|). The bottom-
up approach is built based upon DPA. It leverages an Early Pruning (EP)
heuristic to reduce both of these two factors in computing the skyline. We
first present a key observation which grounds the EP heuristic.

Theorem 5.10. If MEP n
(m+1)
i , represented as (SEP1i, ..., SEP(m+1)i) be-

longs to the (m + 1)-MEP skyline (i.e., the skyline computed over (m + 1)

5.4 A Bottom-Up Approach 101

services), then MEP n
(m)
i , represented as (SEP1i, ..., SEPmi), must belong

to the m-MEP skyline.

Proof: Assume that n
(m)
i is not in the m MEP skyline. Thus, we can always

find a n
(m)
j such that n

(m)
j � n

(m)
i . By combining n

(m)
j with SEP(m+1)i, we

have (n
(m)
j ,SEP(m+1)i) � (n

(m)
i ,SEP(m+1)i), which contradicts that n

(m+1)
i

is in the skyline. �

Theorem ?? implies that if n
(m)
i /∈ m-MEP skyline, then n

(m)
i cannot be

part of any MEP in the (m+1)-MEP skyline. Thus, we can safely prune n
(m)
i

when computing the m-MEP skyline. This actually has the effect of pruning
k MEPs in the (m+ 1)-MEP space, where k is the size of the (m+1)th SEP
skyline. The bottom-up approach is built upon this EP heuristic. Instead of
considering all the m services simultaneously (as DPA), it progressively com-
bines the m services together. Specifically, it combines m′(m′ < m) SEP (or
intermediate MEP) skylines by using DPA in each step and keeps doing this
until m is reached. Since DPA is completely pipelineable and the generated
skyline MEPs are automatically sorted, a skyline MEP can be immediately
used for the next-phase skyline computation. This guarantees the progres-
siveness of the bottom-up approach. There are two remaining questions: (Q1)
how to choose m′, and (Q2) in what order to combine the temporary skylines.
The selection of m′ is straightforward due to Theorem ??. To achieve the
maximum pruning efficiency of EP, we should always compute the skyline
from the minimum number of SEP (or intermediate MEP) skylines in each
step, i.e., we choose m′ = 2.

5.4.2 Linear Composition Plans

For (Q2), we first use an example to illustrate what it actually implies. We
then present our solution for it. Figure ?? shows two different ways to combine
the SEP and intermediate MEP skylines, which we refer to as composition
plans. Figure ??(a) gives a linear composition plan, where at least one child
of a composition node is an SEP skyline. On the other hand, a non-linear or a
bushy plan is shown in Figure ??(b). The following lemma helps us determine
which type of plan to use.

Lemma 5.11. The heap size used by DPA to compose two skylines X and Y
has an upper bound of min(|X |, |Y |).
Proof: For any two MEPs in the heap, say ns represented as (xis, yjs) and
nt represented as (xit, yjt), xis 6= xit and yjs 6= yjt. Suppose |X | < |Y |. We
assume there are |X |+ 1 MEPs in the heap. Therefore, there must exist two
MEPs that share the same entry from X . This contradicts Lemma ??. �

Assume that the sizes of the SEP skylines are all around k. Thus, a linear
composition plan guarantees that the cost of any individual heap operation

102 Skyline Computation for Multi-Service Query Optimization

A

DPA

DPA

DPA

DPA DPA

DPA

(a) Linear Composition (b) Bushy Composition

B

C

D

A B C D

Fig. 5.3 Composition Plans

during the entire skyline computation is bounded by log(k). In contrast, in
a bushy plan, the cost of the heap operations are determined by the sizes of
the intermediate MEP skylines. In addition, since the size of the intermediate
MEP skyline is typically larger than any of its children (we analyze this
below), the cost of heap operations will keep increasing, which may become
rather significant especially for a large number of services. On the other hand,
the cost of heap operations for a linear plan is insensitive to the number of
services, which helps it achieve a much better scalability.

The only remaining question now is to justify that the size of the inter-
mediate MEP skyline (referred to as S(i,j)) is indeed larger than any of its
two children (referred to as Si and Sj respectively). A straightforward way
is to use the skyline cardinality estimation approach presented in [?], where
we assume that the size of S(i,j) takes the form of K1 logK2(|Si| × |Sj |) and
parameters K1 and K2 can be estimated based on small data samples. Here,
we present a more intuitive approach to roughly estimate the size of a in-
termediate MEP skyline. Suppose that we want to compose two skylines A
and B. The sizes of B and A are k and k′, respectively. Skyline A consists
of a1, a2, a3, and a4, as shown in Figure ??(a). For skyline B, instead of
highlighting each individual skyline point, we use a curve to approximate
the overall distribution of the skyline points for the ease of analysis. For the
composition of A and B, we first compose each skyline point in A with B
and then combine the result together. For example, for composing a1 and B,
we only need to shift the skyline curve of B with a distance of a1[x] along the
x axis and a distance of a1[y] along the y axis. Figure ??(b) shows the ob-
tained result lists of composing a1, a2 and a3 with B. Each result list is sorted
based on the x values. We assume that there is a crossing point for every two
consecutive compositions. For example, a1 +B and a2 +B cross at (x1, y1).
(x1, y1) coincides with two virtual points 1 (b21[x] + a1[x], b21[y] + a1[y]) and
(b21[x] + a1[x], b21[y] + a1[y]), that are from a1 +B and a2 +B respectively.
Since a2[x] > a1[x], we have b12[x] > b21[x]. Thus, we have k12 > k21 (be-

1 We call them virtual because there may be no actual points in the results list that
corresponds to (x1, y1).

5.4 A Bottom-Up Approach 103

y

x

x

x

x

x

y

y

y

y

Possible dominated area

Possible dominated area

a1

a2

a3

a4

“Skyline A” “Skyline B”

“Skyline B”

“Skyline B”

“Skyline B”

x1

y1

y2

y3

x2 x3

b1[x]+a1[x], b1[y]+a1[y]

b12[x]+a1[x], b12[y]+a1[y]

bk[x]+a1[x], bk[y]+a1[y]

k12

b1[x]+a2[x], b1[y]+a2[y]

b21[x]+a2[x], b21[y]+a2[y]

bk[x]+a2[x], bk[y]+a2[y]

k21

b23[x]+a2[x], b23[y]+a2[y]

b1[x]+a3[x], b1[y]+a3[y]

b32[x]+a3[x], b32[y]+a3[y]

bk[x]+a3[x], bk[y]+a3[y]

k32

a1+B a2+B a3+B

Possible Dominated

Area

Possible Dominated

Area

Possible Dominated

Area

k23

(a) Skyline Distribution of A and B

(b) Cardinality Esitmation

(x1,y1) (x2,y2)

Fig. 5.4 Cardinality Estimation for Intermediate Skylines

cause the list is sorted on x). We generously assume that the points lay in
the “possible dominated areas” (i.e., the lower part of a1 +B and the upper
part of a2 +B, as shown in Figure ??(a)) are actually all dominated. There-
fore, the remaining number of points is (a1, a2, B) = k12 + (k − k21), which
is greater than k because k12 > k21. Similarly, we then combine a2 + B and
a3 +B and have (a2, a3, B) = (k23−k21)+(k−k32). We subtract k21 because
these are dominated by a1 +B. In addition, we keep the term (k23−k21) only
if k23 > k21, otherwise, (a2, a3, B) = (k − k32). We keep applying this and

obtain the final size of the skyline as KAB =
∑k′−1

i=1 (ai, ai+1, B). We have

104 Skyline Computation for Multi-Service Query Optimization

KAB > max(k, k′) because (a1, a2, B) ≥ (k+1) and all the remaining (k′−2)
items are greater than or equal to 1.

5.4.3 Complexity Analysis

Similar to our previous analysis, we assume without loss of generality that
there are m services and the sizes of the SEP skylines are around k. The
bottom-up approach employs (m−1) phases to compute the m-MEP skyline.
We use the notion k(i+1) to represent the size of the MEP skyline generated
from phase i. To adapt to this notion, we have k(1) = k. For phase i, the
complexity can be expressed as follows:

2 × k × k(i) × log k
︸ ︷︷ ︸

heap operation

+ k × k(i) +
1

2
k2
(i+1)

︸ ︷︷ ︸

skyline comparison

(5.8)

Thus, we have the overall complexity as

m−1∑

i=1

2 × k × k(i) × log k + k × k(i) +
1

2
k2
(i+1) (5.9)

= k(2 log k + 1)

m−1∑

i=1

k(i) +
1

2

m−1∑

i=1

k2
(i+1) (5.10)

Based on the above analysis on the intermediate skyline size, we have k(i) <
k(i+1) < k × k(i). Thus,

1

k
<

k(i)

k(i+1)
< 1 (5.11)

Assume

max(
k(i)

k(i+1)
) =

1

p
, 1 ≤ ∀i ≤ m− 1 and 1 < p < k (5.12)

Therefore, we have

m−1∑

i=1

k(i) <
1

1 − 1
p

× k(i) =
p

p− 1
k(m−1) (5.13)

m−1∑

i=1

k2
(i+1) <

1

1 − 1
p2

× k(i+1) =
p2

p2 − 1
k2
(m) (5.14)

5.5 Experimental Study 105

Since we have k(m) > k(m−1) > k and also note that k(m) = |MS|, the

overall complexity can be derived as O(p2

2(p2−1) |MS|2). This is nearly optimal

because to compute a skyline with size |MS|, at least |MS|2/2 skyline to
skyline comparisons are required.

5.5 Experimental Study

We implement all the proposed algorithms: OPA, DPA, and BUA. We con-
duct an extensive set of experiments to assess the performance of these algo-
rithms. We run our experiments on a cluster of Sun Enterprise Ultra 10 work-
stations with 512 Mbytes Ram under Solaris operating system. The QoWS
attributes of service instances are generated in three different ways following
the approach described in [?]: 1) Independent QoWS where all the QoWS
attributes of service instances are uniformly distributed, 2) Anti-correlated
QoWS where a service instance is good at one of the QoWS attributes but
bad in one or all of the other QoWS attributes, and 3) Correlated QoWS
where a service instance which is good at one of the QoWS attributes is also
good at the other QoWS attributes. We build indices on the SEP space (refer
to Chapter ??) and use BBS [?] to compute the SEP skylines. Thus, the SEP
skylines are automatically sorted based on the scores of their SEPs. Table ??
gives the parameter settings of the experiments.

Table 5.2 Experiment Parameters

Parameter Description Value

n Cardinality of service relations 100k

d Number of QoWS attributes [2,5]

m Number of Services [2,10]

5.5.1 Efficiency and Scalability

We evaluate the performance in terms of total CPU cost against d and m
in this section. It is worth to note that the sizes of the SEP skylines keep
increasing with d, which is especially obvious with the anti-correlated QoWS.
For instance, the size of a SEP skylines typically exceeds 1000 when d ≥ 5. In
practice, a service query may typically pose some other quality constraints,
which help prune a large portion of the SEP skyline. To avoid overly large
SEP skylines, we select the top 100 skyline SEPs (based on their scores) from
them. Under this setting, the candidate MEP space N can still become very
large with the increase of the number of services, for example, N = 1020,
when m = 10.

106 Skyline Computation for Multi-Service Query Optimization

Figure ?? compares the three algorithms, BUA, DPA, and OPA with m =
4 and d ∈ [2, 5]. When d = 2, which also corresponds to a relatively small
candidate MEP space, OPA performs slightly more efficiently than BUA
because it requires no overhead to maintain progressiveness. It also benefits
from the effectiveness of the EnumerateNext function. BUA performs the
most efficiently for all other cases. In particular, the performance advantage
of BUA over the other two algorithms becomes larger as d increases. It is also
interesting that the CPU cost of DPA does not necessarily increase with d for
independent and correlated QoWS. This is because the performance of DPA
is decided by both the size of the MEP space N and the heap size |H|. For
anti-correlated QoWS, the sizes of the SEP skylines increase quickly with d.
This results in a large N , which make it a dominating factor in the overall
cost. In contrast, for independent and correlated QoWS, the increasing speed
on sizes of the SEP skylines is typically much slower, which makes |H| play an
important role in the overall cost. Since |H| may not necessarily increase with
d (as shown in Figure ??), the overall CPU cost of DPA does not necessarily
increase with d for independent and correlated QoWS.

Figure ?? evaluates the impact of m. Both DPA and OPA fail to output
the skyline within reasonable time for m > 4 (m > 5) on anti-correlated and
independent (correlated) QoWS. DPA is less efficient than OPA because the
heap size |H| increases quickly with m. The result demonstrates that BUA is
more efficient than the other two algorithms (with orders of magnitude) and
can easily scale to a large number of services.

2 3 4 5
10

−2

10
0

10
2

10
4

d

T
im

e
 [
S

e
co

n
d
s]

(a) Anti−correlated

BUA
OPA
DPA

2 3 4 5
10

−2

10
0

10
2

10
4

d

T
im

e
 [
S

e
co

n
d
s]

(b) Independent

BUA
OPA
DPA

2 3 4 5
10

−2

10
0

10
2

10
4

d

T
im

e
 [
S

e
co

n
d
s]

(c) Correlated

BUA
OPA
DPA

Fig. 5.5 CPU Time Vs. d (m = 4)

2 3 4 5 6 7 8 9 10
10

−2

10
0

10
2

10
4

10
6

m

T
im

e
[S

ec
on

ds
]

(a) Anti−correlated

BUA
OPA
DPA

2 3 4 5 6 7 8 9 10
10

−2

10
0

10
2

10
4

m

T
im

e
[S

ec
on

ds
]

(b) Independent

BUA
OPA
DPA

2 3 4 5 6 7 8 9 10
10

−2

10
0

10
2

10
4

10
6

m

T
im

e
[S

ec
on

ds
]

(c) Correlated

BUA
OPA
DPA

Fig. 5.6 CPU Time Vs. m (d = 3)

5.5 Experimental Study 107

5.5.2 Heap Size

We evaluate how the maximum heap size changes with d andm in this section.
As shown in Figure ??, the maximum heap sizes of BUA are smaller than
those of DPA by several orders of magnitude with all d ∈ [2, 5]. Also, it is
interesting to note that the maximum heap size does not necessarily increase
with d for both DPA and BUA. For BUA, the maximum heap size is actually
bounded by the maximum SEP skyline size, which is due to Lemma ??.
For DPA, it is determined by the maximum number of incomparable MEPs
that coincide in the heap. Although with the increase of d, the chance of
incomparability between MEPs may increase as well, there are some other
important factors that may affect the maximum heap size, such as the relative
order of putting the MEPs in the heap.

Figure ?? evaluates the maximum heap size against m. The heap size
of BUA is significantly less than that of DPA. The only exception is when
m = 2, when BUA becomes identical to DPA. It is also important to note
that the heap size of BUA is insensitive to m at all, which accounts for the
good scalability of BUA. The maximum heap size of DPA, on the other hand,
increases exponentially. The DPA heap goes beyond the size of main memory
for m > 4 (m > 5) on anti-correlated and independent (correlated) QoWS.

2 3 4 5
10

0

10
1

10
2

10
3

10
4

d

H
ea

p
si

ze

(a) Anti−correlated

BUA
OPA

2 3 4 5
10

0

10
1

10
2

10
3

10
4

d

H
ea

p
si

ze

(b) Independent

BUA
OPA

2 3 4 5
10

0

10
1

10
2

10
3

10
4

d

H
ea

p
si

ze

(c) Correlated

BUA
OPA

Fig. 5.7 Heap Size Vs. d (m = 4)

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

m

H
ea

p
si

ze

(a) Anti−correlated

BUA
OPA

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

m

H
ea

p
si

ze

(b) Independent

BUA
OPA

2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

m

H
ea

p
si

ze

(c) Correlated

BUA
OPA

Fig. 5.8 Heap Size Vs. m (d = 3)

108 Skyline Computation for Multi-Service Query Optimization

5.5.3 MEP Skyline Size

We evaluate the effect of the MEP skyline size in this section. Figure ??
shows that, in BUA, the MEP skyline size for i services (referred to as k(i))
is greater than skyline size for (i− 1) services (referred to as k(i−1)) and less
than ki × k(i−1) for all m ∈ [3, 10]. This is consistent with our theoretical
analysis on the intermediate skyline size, which is summarized as Eq. (??).

Figure ?? evaluates the effectiveness of the EnumerateNext function for
OPA. The sizes of MEP skylines generally keep increasing over all iterations.
The sizes only drop occasionally and slightly due to the removing of the
false positives. Therefore, the EnumerateNext function effectively reduces the
chances of generating false positive skyline MEPs, which accounts for efficient
performance of OPA for generating the entire MEP skylines, especially for a
small MEP space.

5.5.4 Discussion

Since OPA is more efficient than DPA, an interesting question is whether we
can replace DPA with OPA in BUA. We choose DPA over OPA due to two
major reasons. First, by using DPA, BUA is able to progressively report the
MEP skyline. Second, the reason that OPA is more efficient than DPA is that
it relies on the EnumerateNext function, whose effectiveness is built upon that
the skylines are sorted. However, since the skylines generated by OPA is not
sorted, we need to sort each intermediate skyline if using OPA with BUA,
which will introduce significant overhead. In addition, a key reason that the
performance of DPA degrades with m is due to the increase of the heap size.
In BUA, we combine two skylines in each step and the heap size is invariant
to m. In this case, DPA has a very similar performance with OPA (as shown
in Figure ?? when m = 2).

We also investigate the situation when the sizes of the SEP skylines are
significantly different from each other. We compute ten SEP skylines from
anti-correlated, independent, and correlated QoWS and the ranges of their
sizes are [81, 162], [57, 95], and [28, 51], respectively. We explore three different
orders to combine these skylines using BUA: sorted (based on their sizes),
reversely sorted, and randomly ordered. As shown in Figure ??, the perfor-
mances of the three composition orders are only slightly different from each
other. A closer investigation reveals that the sorted order performs most in-
efficiently for all m ∈ [5, 10]. This is most obvious with the anti-correlaed
QoWS. The major reason is as follows. Since the MEP skyline size keeps
increasing with m, the overall cost of skyline computation is mainly affected
by the cost of the last step. When a sorted order is adopted, the last SEP
skyline has the largest size. This typically results in a large MEP space for the

5.5 Experimental Study 109

last step computation, which accounts for a high cost. Since the performance
difference between reversely sorted order and random order is almost indis-
tinguishable, we just need to avoid a sorted order if a further performance
tuning is required for BUA.

3 4 5 6 7 8 9 10
10

2

10
4

10
6

10
8

m

S
ky

lin
e

si
ze

(a) Anti−correlated

k(i)
k(i−1)
ki*k(i−1)

3 4 5 6 7 8 9 10
10

2

10
4

10
6

10
8

m

S
ky

lin
e

si
ze

(b) Independent

k(i)
k(i−1)
ki*k(i−1)

3 4 5 6 7 8 9 10
10

2

10
3

10
4

10
5

10
6

m

S
ky

lin
e

si
ze

(c) Correlated

k(i)
k(i−1)
ki*k(i−1)

Fig. 5.9 |MS| Vs. m (d = 3)

0 2 4 6 8

x 10
7

0

500

1000

1500

2000

2500

3000

3500

Iteration

S

ky
lin

e
M

E
P

s

(a) Anti−correlated

0 1 2 3

x 10
7

0

500

1000

1500

2000

2500

3000

Iteration

S

ky
lin

e
M

E
P

s

(b) Independent

0 0.5 1 1.5 2

x 10
6

0

200

400

600

800

1000

1200

1400

Iteration

S

ky
lin

e
M

E
P

s

(c) Correlated

Fig. 5.10 # Skyline MEPs Vs. Iteration (m = 4, d = 3)

5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

m

T
im

e
 [
S

e
co

n
d
s]

(a) Anti−correlated

Reversely sorted
Sorted
Random order

5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

m

T
im

e
 [
S

e
co

n
d
s]

(b) Independent

Reversely sorted
Sorted
Random order

5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

m

T
im

e
 [
S

e
co

n
d
s]

(c) Correlated

Reversely sorted
Sorted
Random order

Fig. 5.11 Composition Order (d = 3, m ∈ [5, 10])

Chapter 6

Skyline Computation over Uncertain
QoWS

Quality of Web service (QoWS) has become a central criterion for differenti-
ating competing service providers considering the increasing number of ser-
vices with similar functionalities. The current service optimization paradigm
assumes that precise QoWS values are available for selecting the competing
service providers [?, ?]. Consider a Hotel Web service that provides hotel
search and online reservation functionalities. Service users can locate hotels
near their travel destinations and make the reservation via this service. Typ-
ically, there could be multiple service providers, S1,..., Sk (e.g., Holiday Inn,
Days Inn, etc), competing with each other offering different user-centered
quality. Quality attributes may include response time, fee, and reputation,
etc. To select a satisfactory hotel, users usually need to go through a series of
trial-run processes. If the number of competing providers is large, this would
be very painstaking. Based on this example, the QoWS values of the provider
Si of the Hotel service could be: response time (2 seconds), fee (30 dollars),
and reputation (2 stars). An objective function F(q,w) is then defined, where
q is the set of QoWS parameters and w is a set of weights assigned for each
parameter in q. The objective function F assigns a scalar value to each ser-
vice provider and the provider gaining the highest value will be selected and
returned to the user. However, there are two major limitations affiliated with
the current service optimization approaches.

• First, current service optimization approaches require users to transform
personal preferences into numeric weights. Users may not know enough to
make tradeoffs between different quality aspects using numbers. Further-
more, most existing approaches work like a “black box”, where users sub-
mit their weights over quality parameters and the system selected provider
is returned. Users thus lose the flexibility to select their desired providers
by themselves.

• Second, current service optimization approaches assume that the qual-
ity delivered by service providers do not change over time. In addition,
the QoWS values are usually obtained from the corresponding service de-

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection,
 DOI 10.1007/978-1-4419-0314-3_6,

111

112 Skyline Computation over Uncertain QoWS

scriptions (referred to as tentative values) or computed by aggregating
values over multiple transactions. However, these tentative or aggregated
QoWS values may not precisely reflect the actual performance of a service
provider. First, the performance of a service provider may fluctuate due to
the dynamic service environment. For example, the response time may vary
due the quality of the network and the fee for reserving a room may change
with seasons. Second, service providers may not always deliver according to
their “promised” quality because of “intentional” deceptions. Therefore,
the actual QoWS delivered by service providers is inherently uncertain.
Selecting service providers based on the tentative or aggregated QoWS
values does not capture the inherent uncertainty of the actual QoWS.

Computing the skylines from service providers (referred to as service sky-
lines) comes as a natural solution that overcomes the first limitation.
Skyline computation has received significant consideration in database re-
search [?, ?, ?, ?]. For a d-dimensional data set, the skyline consists of
a set of points which are not dominated by any other points. A point
p (p1, ..., pd) dominates another point r (r1, ..., rd) if ∀ i ∈ [1, d], pi � ri
and ∃ j ∈ [1, d], pj ≻ rj . We use � to generally represent better than or equal
to and ≻ to represent better than. In the context of Web services, a service
skyline can be regarded as a set of service providers that are not dominated
by others in terms of all user interested QoWS attributes, such as response
time, fee, and reputation. Computing service skylines can completely free
users from assigning weights over different QoWS parameters. The skylines
also guarantee that the user desired service providers are included so that
users can make flexible selection from them.

To overcome the second limitation, we need to investigate a more challeng-
ing problem: computing service skylines from uncertain QoWS. We present
in this chapter a novel concept, called p-dominant service skyline and a set of
efficient algorithms to address the above issue. The remainder of this chapter
is organized as follows. We present in Section ?? the concept of p-dominant
service skyline and describe our contribution. We formally define the problem
in Section ?? and illustrate the key difference between p-dominant skyline
and p-skyline. We present the p-R-tree indexing structure and an two-phase
algorithm to compute the p-dominant skyline in Section ??. We evaluate the
efficiency and the effectiveness of the proposed new concepts, indexing struc-
tures, and algorithms through a comprehensive set of experimental study in
Section ??.

6.1 p-dominant Service Skyline

We assume that the actual QoWS values delivered by a provider are avail-
able through a set of transaction logs obtained from some QoWS monitoring
mechanisms [?, ?]. A transaction is modeled as a multi-dimensional data

6.1 p-dominant Service Skyline 113

point, where each dimension corresponds to a QoWS attribute. Thus, the
dominance relationship between transactions follows the standard semantics
as described above.

Before introducing the p-dominant service skyline, we first use an example
to illustrate the different implications for computing service skylines from
certain and uncertain QoWS.

Example 6.1. Consider two providers S and T that offer the similar Hotel

Web service. The performance of S and T is recorded by a series of trans-
action logs, which help capture the actual QoWS delivered by each of these
providers in practice. The dynamic environment, in which these providers
operate, causes the uncertainty of their performance. This can be reflected by
the fluctuation among different transactions. For the ease of illustration, we
consider only four transactions with providers S and T , respectively, although
the actual number of transactions should be much larger. These transactions
are represented as (s1, ..., s4) and (t1, ..., t4). Table ?? gives these transactions
with a focus on the user rating (in a scale of 1 to 5) and the latency. Finally,
the aggregate QoWS values, represented as s̄ and t̄, obtained by averaging all
transactions are given in the last row of Table ??. �

Table 6.1 A Set of Service Transactions

Provider S Provider T

TID Rating Latency TID Rating Latency

s1 3 25s t1 2 30s

s2 2 32s t2 2 41s

s3 4 23s t3 3 18s

s4 2 24s t4 2 23s

s̄ 2.75 26s t̄ 2.25 28s

When computing service skylines using the aggregate QoWS values, s̄ and
t̄ can be directly used for dominance checking in Example ??. In this case,
S dominates T . On the other hand, when the uncertainty of the QoWS is
considered, we need to take a holistic view of the QoWS values from all the
transactions (because the actual QoWS is captured by each of these transac-
tions). If we take a closer look at each transaction individually, some interest-
ing result can be discovered which is very different from using the aggregate
values. For example, transaction t3 is not dominated by any transactions of
S. Since it takes a chance of 1/4 for transaction t3 to happen with provider
T , the chance that provider S does not dominate T in practice is at least 1/4.
In fact, if all other transactions are considered, the chance that S dominates
T is only 1/2 in practice. This can be informally calculated as follows. For
example, t1 is dominated by three transactions of S (s1, s3, and s4), which
means it has a chance of 3/4 to be dominated by S. Similarly, t2 and t4
have chances of 4/4 and 1/4 to be dominated by S, respectively. Considering
that t1, t2, t3, and t4 all take a chance of 1/4 to happen with provider T , the

114 Skyline Computation over Uncertain QoWS

overall probability that S dominates T is 1/4× (3/4 + 4/4 + 0 + 1/4) = 1/2.
This implies that the QoWS delivered by T in practice has a 50% chance that
is not dominated by that delivered by S. However, the user may believe that
S is able to dominate T all the time if only the certain (i.e., the aggregate)
QoWS is considered.

Incorporating the uncertainty of QoWS into service skyline analysis al-
lows users to have a deep understanding on the real behavior of the ser-
vice providers in the dynamic environment. We introduce the notion of p-
dominant service skyline as an effective tool that facilitates service users in
selecting their desired service providers with the presence of uncertainty in
their QoWS. Specifically, a provider S belongs to the p-dominant service sky-
line if the chance that S is dominated by any other provider is less than p,
where p ∈ [0, 1], is a probability threshold. By setting an appropriate probabil-
ity threshold p, service users will gain a corresponding level of confidence (in
terms of probability) that a selected provider “actually” belongs to the service
skyline. Thus, computing service skylines from uncertain QoWS provides a
more meaningful and practical solution for the service optimization problem.

Computing skyline based on uncertain information poses a set of new
challenges, which make it hard to adapt existing skyline approaches [?, ?, ?, ?]
to computing the p-dominant skyline.

• An uncertain object is no longer a simple multi-dimensional vector. In-
stead, it is usually associated with some probability density function or
represented by a set of instances that have the effect of approximating the
probability density function when it is not available [?]. When an uncer-
tain object is represented by a set of instances (which is usually the case
for service providers), the possible large number of instances will introduce
significant computational overhead for the pairwise comparison between
uncertain objects.

• The dominance relationship between uncertain objects does not maintain
the transitive property, which is very effective to prune the dominated data
points in traditional skyline analysis. A set of uncertain object U1, ..., Uk

may form a cyclic dominance relationship with probability threshold p.
That is, U1 dominates U2 with a chance greater than p, ..., Uk−1 dominates
Uk with a chance greater than p, and Uk dominates U1 with a chance
greater than p. This is similar to the k-dominate relationship on certain
objects discussed in [?]. Therefore, an uncertain object can not be pruned
even if it is dominated with a chance greater than p because it may be
useful for pruning other objects.

Example 6.2. Consider three providers A,B, and C. Their respective trans-
actions record the user rating and latency. Assume, there are three
A transactions: a1(2, 27), a2(1, 25) and a3(2, 17); three B transactions:
b1(2, 19), b2(2, 28), and b3(3, 30); and two C transactions: c1(3, 31) and
c2(3, 34). By setting p = 1/3, we have A p-dominates B and B p-dominates
C but the probability that A dominates C is 0. Thus, it is not transitive. �

6.2 Preliminaries 115

The first work, to our best knowledge, that addresses skyline analysis
on uncertain data is presented by [?], in which Pei et al. presented the p-
skyline and a set of efficient pruning techniques for computing the p-skyline.
Uncertain data objects are represented by a set of instances in [?]. It is natural
to follow this convention in computing the service skyline from uncertain
QoWS because the QoWS of a service provider is usually reflected by a
series of transactions. However, there are some inherent issues of applying
the p-skyline to the service optimization problem. First, the p-skyline usually
prefers to uncertain objects with large variances (i.e., objects that have some
very good and very bad instances at the same time) [?]. However, this may
contradict common users’ decisions when selecting their desired providers.
Furthermore, the p-skyline is very sensitive to the noise providers. By noise
providers, we refer to the providers that deliver bad and inconsistent QoWS,
which we expect to be common in the dynamic service environment. In fact,
the chance that a good and consistent provider is selected into the p-skyline
will decrease exponentially with the number of noise providers. We will come
back to this with more detail in Section ??, where we demonstrate that the
p-dominant skyline is completely robust to the number of noise providers. It
is also worth noting that consistency is different from other typical quality
parameters, like latency or availability because a high consistency does not
necessarily implies a good quality but a low latency or a high availability
does. For example, a service provider that consistently asks for a high price
or response to service requests very slowly is by no means a good provider.
This is also justified by the fact that the widely used QoWS models do not
make consistency as one of their quality dimensions [?, ?, ?, ?].

The proposed p-dominant skyline is able to address all these issues. Com-
puting the p-dominant service skyline provides a decent way to select the
service providers that can consistently deliver good QoWS in the dynamic
service environment. Since a single service provider may have a large number
of transactions, checking the dominance relationship between each pair of
providers is computationally expensive. Furthermore, without the transitive
property, a provider that is determined not being in the p-dominant skyline
cannot be pruned immediately. Thus, given a set of N providers, a brute
force approach needs to check dominance against N/2 providers on average
to determine whether a provider belongs to the p-dominant skyline or not.
Efficient algorithms must be developed to compute the p-dominant skyline.

6.2 Preliminaries

We present a set of key concepts used throughout in this chapter. We then
formally define the p-dominant skyline problem and further motivate the use
of p-dominant skylines to tackle the service optimization problem. Table ??
summarizes a set of key terms.

116 Skyline Computation over Uncertain QoWS

Table 6.2 Terminologies

Term Description

S, T service providers

s, t transactions with S and T

s ≻ t transaction s dominates transaction t

|S| number of transactions with S

P{s ≻ T} the probability that s dominates T

P{S ≻ T} the probability that S dominates T

P{S} (P{s}) the probability that S or s in the skyline

6.2.1 Problem Definition

We start by defining the probability that provider S dominates provider T . [?]
derives the dominate probability on uncertain objects from the continuous
case and generalizes it to the discrete case. In contrast, we interpret this
probability entirely from the discrete point of view (which suits better for
the service optimization scenario). This helps provide an intuitive way to
understand this probability. Similarly, we assume that a transaction with a
provider is independent of transactions with other providers. We also assume
that each transaction is equally like to occur with a specified provider.

Consider a service provider S whose QoWS can be presented as a set of
transactions, i.e., S = {s1, ..., s|S|}. From the probability’s perspective, S can
be viewed as a sample space. The individual transactions can be regarded as
a sequence of events in S that are pairwise mutually exclusive (i.e., only one
transaction can happen at a certain point of time). Suppose that we have
another service provider T = {t1, ..., t|T |}. The probability that S dominates
T can be derived as follows:

P{S ≻ T } = P{(s1 ∩ (s1 ≻ T)) ∪ ... ∪ (s|S| ∩ (s|S| ≻ T))}

=

|S|
∑

i=1

P{(si ∩ (si ≻ T)) =

|S|
∑

i=1

P{si} × P{si ≻ T }

Since each transaction has an equal probability to appear in S, P{si} = 1
|S| .

The probability that a transaction si dominates T given that si occurs is
defined as the number of transactions in T that are dominated by si over

the total number of transactions in T , i.e., P{si ≻ T } =
|Tsi

|

|T | , where Tsi
=

{t|t ∈ T ∧ si ≻ t}.

Definition 6.3. (dominate probability) The probability that S domi-
nates T is defined as:

P{S ≻ T } =
1

|S|
×

|S|
∑

i=1

|Tsi
|

|T |
, (6.1)

where Tsi
= {t|t ∈ T ∧ si ≻ t}

6.2 Preliminaries 117

�

Definition 6.4. (p-dominate) A provider S is said to p-dominate another
provider T if and only if P{S ≻ T } ≥ p, where 0 ≤ p ≤ 1, is a probability
threshold. �

Definition 6.5. (p-dominant service skyline) A provider S is in the p-
dominant service skyline if and only if there does not exist any provider T 6= S
that p-dominates S. �

Example 6.6. Given Eq. (??), we can now compute the dominate probability
between service providers in Example ??. For instance, the probability that A
dominates B can be calculated as follows:

P{A ≻ B} =
1

|A|
×

|A|
∑

i=1

|Bai
|

|B|
,where (6.2)

|Ba1
| = |{bj |bj ∈ B ∧ a1 ≻ bj}| = |{b2}| = 1 (6.3)

|Ba2
| = |{bj |bj ∈ B ∧ a1 ≻ bj}| = |{}| = 0 (6.4)

|Ba3
| = |{bj |bj ∈ B ∧ a3 ≻ bj}| = |{b1, b2}| = 2 (6.5)

Thus, P{A ≻ B} =
1

3
× (

1

3
+

0

3
+

2

3
) =

1

3
(6.6)

Similarly, we have P{A ≻ C} = 0, P{B ≻ A} = 2/9, P{B ≻ C} = 1/3,
P{C ≻ A} = 0, and P{C ≻ B} = 0. By setting p = 1/3, we have A
p-dominates B and B p-dominates C. Thus, only A belongs to the 1/3-
dominant service skyline. �

Problem definition. Given a set of service providers S and a specified
probability threshold p, compute the p-dominant service skyline. �

6.2.2 p-dominant Skyline Vs. p-skyline

The notion of p-skyline is proposed by Pei et al. to denote the set of uncer-
tain objects that take a probability of at least p to be in the skyline [?]. To
further motivate why the p-dominant skyline is needed, we investigate the dif-
ference between the p-dominant skyline and the p-skyline in this section. We
then discuss the issues of applying the p-skyline for the service optimization
problem.

The probability that an uncertain object S is in the skyline is defined as
follows in [?]:

P{S} =
1

|S|
×

∑

s∈S

P{s} (6.7)

where P{s} is the skyline probability of s and defined as:

118 Skyline Computation over Uncertain QoWS

P{s} =
∏

T 6=S

(1 −
|{t ∈ T |t ≻ s}|

|T |
) (6.8)

Example 6.7. Given Eq. (??), we can now compute the skyline probability of
service providers in Example ??. For instance, the probability that A belongs
to the skyline can be calculated as follows:

P{a1} = (1 −
|{b1}|

|B|
) × (1 −

|{}|

|C|
) = (1 −

1

3
) × 1 =

2

3
(6.9)

P{a2} = (1 −
|{b1}|

|B|
) × (1 −

|{}|

|C|
) = (1 −

1

3
) × 1 =

2

3
(6.10)

P{a3} = (1 −
|{}|

|B|
) × (1 −

|{}|

|C|
) = 1 (6.11)

Thus, P{A} =
1

3
× (

2

3
+

2

3
+ 1) =

7

9
(6.12)

�

As discovered in [?], uncertain objects with large variances (e.g., objects
that have some very good and very bad instances at the same time) are
usually preferred by the p-skyline. This may make it not appropriate for the
service optimization problem because a consistent provider is usually more
desired than the inconsistent ones.

x

y

T’1

T’m

DS

s1

sn

T’’1

T’’m

DT

S

Fig. 6.1 The Effect of Noise Service Providers

In addition to the above observation, there is another hidden but maybe
more serious issue of applying the p-skyline on the service optimization prob-
lem: the chance that some good and consistent provider is selected into the
skyline may be greatly reduced by other very inconsistent providers. Given
the dynamic service environment, the QoWS delivered by a certain provider
could be very inconsistent. For example, it is common that a provider starts

6.2 Preliminaries 119

with fairly high QoWS to attract users in the very beginning and drops to a
lower level later on due to various reasons (e.g., to reduce the cost). Consider
a provider S that consistently delivers good QoWS. As shown in Figure ??,
all S transactions consistently fall into the bounding rectangle in the middle.
Assume that there are m providers T1, ..., Tm that deliver very inconsistent
QoWS. Each of these providers has a very small subset of transactions T ′

i

(|T ′
i | ≥ 1) fall into theDS area, which means that these transactions can dom-

inate those of S. All other transactions T ′′
i from each Ti fall into the DT area,

which are dominated by S. Assume w.l.o.g. that |Ti| = |S| = n, 1 ≤ i ≤ m.
Thus, we have

P{s} ≤
∏

T 6=S

(1 −
1

n
) = (1 −

1

n
)m (6.13)

P{S} =
1

|S|
×

∑

s∈S

P{s} ≤ n(1 −
1

n
)m (6.14)

The above analysis shows that the probability of S is in the skyline will de-
crease exponentially with the increase of the number of inconsistent providers,
like T1, ..., Tm. For example, when n = 0.5k and m = 10k, the probability
of S is in the skyline will be below 1.01 × 10−6. Since the size of T ′

1, .., T
′
m

(i.e., good transactions) is very small, providers Ti, ..., Tm can just be viewed
as noises in the service space. Thus, computing the p-skyline is vulnerable
to the side effect brought by these noises, especially when their numbers are
large.

The p-dominant skyline, on the other hand, is quite robust to these noises.
In particular, the increase of the number of noises will not affect the p-
dominant skyline at all. Continue with the above example. T1, ..., Tm only
affect the probability that S is in the p-dominant service skyline by the
maximum probability that T1, ..., Tm can dominate S. We have,

max(P{T1 ≻ S}, ..., P{Tn ≻ S}) =
|Tî|

n
(6.15)

where, î = arg max
i

|Ti| (6.16)

Since for any noise provider Ti, the size of T ′
i (i.e., the good transactions)

should be very small (because otherwise Ti will be a good provider). There-

fore,
|T

î
|

n should also be very small because Tî is one of the noise providers.

Since
|T

î
|

n is independent of m, the number of noise providers (i.e., m) has no
effect on the probability of S being in the p-dominant skyline. Thus, comput-
ing the p-dominant skyline ensures that providers that consistently deliver
good QoWS (like S) are more likely to be included in the skyline, which is
desired by the service users.

The following theorem specifies another key property of the p-dominant
skyline: all providers selected by computing the (1-p)-skyline will also be

120 Skyline Computation over Uncertain QoWS

included in the p-dominant service skyline. This ensures that the p-dominant
skyline will not miss any really good providers, either.

Theorem 6.8. The (1−p)-skyline is a subset of the p-dominant skyline, i.e.,
(1 − p)-skyline ⊆ p-dominant skyline.
Proof: Assume that there exists a provider S, such that S ∈ (1− p)-skyline
and S /∈ p-dominant skyline. Since S /∈ p-dominant skyline, there must exist
a provider Ti, such that P{Ti ≻ S} > p. Thus, we have

P{S ⊀ Ti} =
1

|S|
×

∑

s∈S

P{s ⊀ Ti} < (1 − p),

where P{s ⊀ Ti} = 1 −
|{t ∈ Ti|t ≻ s}|

|Ti|

On the other hand, since

P{s} =
∏

T 6=S

(1 −
|{t ∈ T |t ≻ s}|

|T |
)

=P{s ⊀ Ti} ×
∏

T 6=S∧T 6=Ti

(1 −
|{t ∈ T |t ≻ s}|

|T |
),

we have P{s} ≤ P{s ⊀ Ti}. Therefore,

P{S} =
1

|S|
×

∑

s∈S

P{s} ≤
1

|S|
×

∑

s∈S

P{s ⊀ Ti} < (1 − p),

which leads to a contradiction. �

6.3 Computing the p-dominant Skyline using p-R-tree

We present algorithms for efficiently computing the p-dominant skyline. The
algorithms are based upon a new indexing structure, called p-R-tree. A p-R-
tree is an augmentation of the R-tree data structure to efficiently prune un-
certain objects that are p-dominated by other objects. A set of heuristics are
also developed in addition to the p-R-tree to efficiently find the p-dominant
skyline.

6.3 Computing the p-dominant Skyline using p-R-tree 121

6.3.1 p-R-tree

The p-R-tree is built based upon an important concept, called p-complete
dominate. p-complete dominate offers a key property which can be used to
effectively prune service providers (or uncertain objects in general).

6.3.1.1 p-Complete Dominate

Definition 6.9. (complete dominate) A transaction s is said to complete
dominate another provider T if and only if P{s ≻ T } = 1. �

Definition 6.10. (p-complete dominate) A service provider S is said to
p-complete dominate service another provider T if and only if there exists a
subset of S, denoted as S′, such that ∀s ∈ S′, s complete dominates T , and
|S′|
|S| ≥ p. �

Lemma 6.11. If S p-complete dominates T , then S p-dominates T .
Proof Sketch: Based on Equation ?? and Definition ??, we have P{S ≻
T } = 1

|S| × (
∑

s∈S′ P{s ≻ T } +
∑

s∈(S−S′) P{s ≻ T }) ≥ 1
|S| ×

∑

s∈S′ P{s ≻

T } = 1
|S| × |S′| ≥ p. �

Figure ?? (a) gives an example of the p-complete dominate relationship.
A provider S is represented by its minimum bounding rectangle (MBR(S)),
whose lower-left and upper-right corners are denoted by Smin and Smax re-
spectively. The shaded area of MBR(S) (i.e., S′) contains no less than p×|S|
transactions. From Figure ?? (a) we can see for each transaction s ∈ S′, s
dominates all the transactions in MBR(T). Therefore, S p-complete domi-
nates T .

x

y

S’
S

T

x

S

T

Ŝ’

Tmin

Tmax

y

(a) (b)

Ŝp

Sp

Fig. 6.2 Sp and Ŝp

Corollary 6.12. s complete dominates T ⇔ s ≻ Tmin.
Proof: [⇒] Assume that s ⊁ Tmin. Thus, there must exist one dimension say
di such that s.di > Tmin.di (assume the smaller the value is the better). Since

122 Skyline Computation over Uncertain QoWS

Tmin = (mint∈T {t.d1}, ...,mint∈T {t.d|D|}), where |D| is the total number
of dimensions, we have s.di > mint∈T {t.di}. Assume w.l.o.g. that tj .di =
mint∈T {t.di}. Therefore, s.di > tj .di. Thus, we have s ⊁ tj , which contradicts
that s complete dominates T .

[⇐] Since s ≻ Tmin and Tmin � t, ∀t ∈ T , we have s ≻ t, ∀t ∈ T . Hence, s
complete dominates T . �

Lemma 6.13. The transitive property holds for the p-complete dominate re-
lationship, i.e., if R p-complete dominates S, and S p-complete dominates T ,
then R p-complete dominates T .
Proof: Since R p-complete dominates S and S p-complete dominates T ,

there must exist R′ ⊆ R and S′ ⊆ S, where |R′|
|R| ≥ p and |S′|

|S| ≥ p, such

that ∀r ∈ R′, r complete dominates S and ∀s ∈ S′, s complete dominates T .
Due to Corollary ??, we have ∀s ∈ S′, s ≻ Tmin. Since ∀s ∈ S′, Smin � s,
Smin ≻ Tmin. Also due to Corollary ??, we have ∀r ∈ R′, r ≻ Smin. Thus,
∀r ∈ R′, r ≻ Tmin and hence, R p-complete dominates T . �

6.3.1.2 Building the p-R-tree

Lemma ?? specifies the key property behind the p-R-tree: a provider can
be pruned immediately as long as it is discovered to be p-complete domi-
nated. The basic steps of constructing a p-R-tree are as follows. For each
S, we select a subset S′ such that |S′| ≥ p × n, where n = |S|. Define
Sp = (maxs∈S′{s.d1}, ...,maxs∈S′{s.d|D|}), which is the upper-right corner
of MBR(S′). Figure ?? (a) gives an example of the obtained S′ and Sp.
Then, construct a R-tree using the Sp obtained from each S. To evaluate
whether a provider S is p-complete dominated, we just issue a window query
with the origin and Smin as the opposite corners on the p-R-tree. If the result
set of the window query is not empty, S can be immediately pruned.

The only remaining issue now is how to select the subset S′ from S because
choosing S′ inappropriately may impair the pruning power of the p-R-tree.
Based on Definition ?? and Lemma ??, in order for S to p-complete dominate
T , we need to have each s ∈ S′, such that s ≻ Tmin. We choose S′ based on the
following fact: s ≻ Tmin ⇒ s.mindist < Tmin.mindist, hence s.mindist ≮

Tmin.mindist⇒ s ⊁ Tmin, where the mindist of s or Tmin equals to the sum
of its coordinates. Therefore, we should choose s that is as near to the origin
as possible (to achieve a small mindist) to increase its chance to dominate
Tmin.

We adopt the following heuristic empowered by a binary search strat-
egy to improve the pruning power of the p-R-tree. First, select the top
p× n transactions with the smallest mindists from S. Then, compute S+

p =
(maxs∈S′+{s.d1}, ...,maxs∈S′{s.d|D|}), where S′+ contains all the transac-
tions in the MBR with Smin and S+

p as the minimum and maximum corners,
respectively. Since the boundary of MBR(S′+) is formed by the maximum

6.3 Computing the p-dominant Skyline using p-R-tree 123

value of all the selected p×n transactions at each dimension, S′+ would typ-
ically include much more than p×n transactions. As shown in Figure ?? (a),
the dark grey rectangle represents MBR(S′+) which contains more than p×n
transactions whereas the light grey rectangle contains exact p × n transac-
tions. To make Sp close to the origin, the optimal way is to set the maximum
corner of the light grey rectangle as Sp instead of directly using S+

p (which
is the maximum corner of S′+). We use a binary search process to approach
the optimal Sp. Specifically, this process takes S+

p as the upper bound and
searches for a MBR(S′) with Smin as its minimum corner and contains the
number of transactions within the range of [p × n, p × n + ǫ] (ǫ is a buffer
that is set to trade precision with efficiency). The maximum corner of the
obtained MBR is set to Sp.

x

y

Sp
+

Smax

Smin

Sp

x

y

Smax

Smin

Ŝp
+½

¾

¼

½

¾

¼
Ŝp

maxs∈S’{s.x}

m
a
x
s
∈
S
’ {s.y}

mins∈Ŝ’{s.x}

m
in
s
∈
Ŝ
’ {s.y}

(a) (b)
Fig. 6.3 Binary Search for Optimal Sp and Ŝp

6.3.2 A Dual Pruning Process

Actually computing the dominate probability is a time consuming process.
For providers S and T , each of which contains n transactions with a |D|
dimensionality, the time complexity is n2 × |D|. We present a dual pruning
process which leverages the p-R-tree and a set of efficient pruning heuristics
to eliminate a large portion of providers without actually computing the
dominate probability.

6.3.2.1 Pruning using Ŝp

The p-R-tree essentially leverages a subset of transactions with good per-
formance from each provider to prune other providers. On the other
hand, if a provider has a subset of transactions with bad performance,
it can also be quickly pruned. Based on this observation, for each S,

124 Skyline Computation over Uncertain QoWS

we select a subset Ŝ′ such that |Ŝ′| ≥ p × n, where n = |S|. Define
Ŝp = (mins∈Ŝ′{s.d1}, ...,mins∈Ŝ′{s.d|D|}), which is the lower-left corner of

MBR(Ŝ′). Figure ?? (b) gives an example of the obtained Ŝ′ and Ŝp. If ∃T ,

such that Tmax ≻ Ŝp, we have Tmax complete dominates Ŝ′. Hence, T p-
dominates S. To improve the chance of pruning such kind of providers, we
adopt a similar strategy to select Ŝ′ as used to select S′. First, select top
(p × n) transactions with the largest mindists from S to form Ŝ′+. Then,
we use the binary search strategy as described in Sect. ?? to find the op-
timal Ŝp (shown in Figure ?? (b)). To check whether Ŝp is dominated by
certain Tmax, we build a R-tree (denoted as Rmax) using the Tmax from each
provider. When S is processed, we issue a window query with the origin and
Ŝp as the opposite corners on Rmax. A non-empty result set implies that S
is p-dominated.

The use of Ŝp coupled with Sp (which is used to build the p-R-tree) essen-
tially achieves a dual pruning effect, i.e., a selected set of good transactions
of S, represented by S′, is used to prune other providers; on the other hand,
a selected set of bad transactions of S, represented by Ŝ′ is used to prune
itself. Only the providers that survive this dual pruning process need to go
through the dominate probability computation process, which we elaborate
below.

6.3.3 Computing the Dominate Probability

If S survives the dual pruning process, we need to compute the dominate
probability against other providers. In fact, the number of providers that
have to go through this step is typically much less than the total number
of providers (considering that they have passed the dual pruning process).
We adopt a similar strategy as used in [?] (see Sect. ?? for details) to get
the providers that possibly p-dominate S. We use the following approach to
compute the dominate probability on S.

Consider a possible p-dominating provider, say T . Assume that the trans-
actions in both S and T are sorted based on their mindists. For each si ∈ S
(start from the si with the largest mindist, say s0), perform a binary search
of si in T . Count the number of transactions in T that have a mindist less
than that of si, say ni, because only these transactions may dominate si.
Estimate the upper bound of

∑

i ni at each step. If at certain point we know

that the upper bound of
P

i
ni

|T |×|S| < p, stop the process and go to the next

possible p-dominating provider. If we go through all the transactions and

still have
P

i
ni

|T |×|S| ≥ p, construct a R-tree using all the transactions in T that

have a mindist less than that of s0. We don’t need to build a R-tree for each
individual si because by doing so we have included all transactions in T that
may dominate each si ∈ S. Then, for each si, issue a window query with

6.3 Computing the p-dominant Skyline using p-R-tree 125

the origin and si as the opposite corners to count the number of t such that

t ≻ si. If
P

i
|{t|t≻si}|
|T |×|S| ≥ p, S can be pruned. If after testing all the possible

p-dominating providers and S is not pruned, S is in the p-dominant skyline.

6.3.4 The Main Memory p-R-tree

To further improve the performance, our final refinement is to make the p-R-
tree in memory. This is based on the observation that the p-R-tree is only used
for dominance checking. When checking whether a provider S is p-complete
dominated, we issue a window query on the p-R-tree (recall Sect. ??). As
long as we can get a non-empty result set, S can be pruned. In this case, we
can just compute the skyline from the disk-based p-R-tree and build a main
memory p-R-tree by only using the skyline points because if S is p-complete
dominated by a non-skyline point it must be p-complete dominated by at
least one skyline point (which guarantees a non-empty result set). Similarly,
since Rmax is only used for dominance checking, we can also make it reside
in the main memory.

126 Skyline Computation over Uncertain QoWS

Algorithm 10 Dual Pruning [Phase I]
Require: A set of service providers S, probability threshold p
Ensure: a candidate list L, a hash table M
1: Initialization:

2: for all S ∈ S do

3: compute Smin, Smax, Sp, and Ŝp;
4: end for

5: build Rmin, Rmax, and the p-R-tree;
6: compute the skyline from the p-R-tree;
7: build main memory R-tree, Rp and R′

max from the p-R-tree and Rmax, respectively
8: Main procedure:

9: L = φ; M = φ; H = φ;
10: insert the root entries of Rmin into H;
11: while H 6= φ do

12: extract the top entry e from H;
13: if e is not dominated by Rp then

14: if e is an intermediate node then

15: for all child entry ei of e do

16: if ei is not dominated by Rp then

17: insert ei into H;
18: end if

19: end for

20: else

21: insert e.id into M;
22: if êp is not dominated by R′

max then

23: insert e into L;
24: end if

25: end if

26: end if

27: end while

6.3.5 The Two Phase Algorithm

We combine different pieces into an integrated process and present a two
phase algorithm in this section. The first phase leverages the p-R-tree and the
pruning strategy presented in Sect. ?? to filter out the p-dominated providers.
The remaining providers will go into the second phase, where the dominate
probability will be computed on them.

As shown in Algorithm ??, phase I initializes by building Rmin (a R-tree
on Smin), Rmax (a R-tree on Smax), and the p-R-tree. It then constructs the
main memory version of the p-R-tree and Rmax, which are denoted as Rp

and R′
max, respectively. The main body of the algorithm performs the dual

pruning process. It starts from the root node ofRmin and inserts all its entries
into the heap H. The entry with the minimum mindist, say e, will be popped
up. e will be first checked against with Rp (where the first level of pruning
occurs). If e is dominated, then prune e. Otherwise, if e is an intermediate
entry, expand it and insert all its child entries that are not dominated by Rp

6.3 Computing the p-dominant Skyline using p-R-tree 127

into the heap. If e is a leaf (i.e., e is a provider), insert e.id into the hash
table M. Then, check êp against R′

max (where the second level of pruning
occurs). If e is not p-dominated, insert it into the candidate list L.

Phase II is shown in Algorithm ??. It takes as input the candidate list L
and the hash table M obtained in the first phase. For each S ∈ L, it computes
a set T that possibly p-dominate S. This is done by issuing a window query
with the origin and Smax as the opposite corners on Rmin. For each T ∈ T , it
searches its id in the hash table. Only a T with an id in the hash table will be
used for computing the dominate probability on S. If S is not p-dominated
in the end, it is inserted into the p-dominant skyline.

Algorithm 11 Computing the Dominate Probability [Phase II]
Require: A candidate list L, a hash table M
Ensure: the p-dominate skyline DS
1: for all S ∈ L do

2: compute the set T that possibly p-dominate S;
3: for all T ∈ T do

4: search T .id in M;
5: if T .id is in M then

6: compute the dominate probability of T on S;
7: end if

8: end for

9: if S is not p-dominated by all T ∈ T then

10: insert S into DS;
11: end if

12: end for

6.3.6 Analysis

The skyline computed from the p-R-tree actually determines the region of the
data space that may contain the p-dominant skyline. This region is called
skyline search region (SSR) for traditional skyline analysis [?]. We name
it pSSR (i.e., p-dominant skyline search region) in our p-dominant skyline
analysis.

Lemma 6.14. A p-dominant skyline algorithm, which leverages a R-tree
Rmin built from the Smin of each uncertain object S, must access each node
which has a MBR that intersects the pSSR. �

Figure ?? shows that the entry e in Rmin will be accessed by the algorithm
although its two child nodes S1min and S2min are all dominated by the
skyline computed from the p-R-tree (i.e., not in the pSSR).

128 Skyline Computation over Uncertain QoWS

x

y

pSSR

Smax

e

S1min

S2min

T1min

T2min

T3min

T4min

T5min

Query window

Fig. 6.4 p-dominant Skyline Search Region

6.3.6.1 Time Complexity of Phase I

The complexity of the first phase is dominated by the number of nodes in
Rmin that are accessed by the algorithm. Using the concept of pSSR, we can
make an estimation on its upper bound. Assume that the height of Rmin is
h and there are candi candidate nodes in the ith level of Rmin. The total
number of node accesses can be represented as

NA =

h−1
X

i=0

candi (6.17)

To further examine howNA is related to the structure of Rmin and the inher-
ent characteristics of the data space, we further elaborate (??). Specifically,
h can be specified as 1 + ⌈logf(N

f)⌉, where N is the cardinality of the data
space and f is the average fanout of a node in Rmin. Suppose there are ni

nodes at level i and the probability that a node at level i intersects with
pSSR is P i

intsect(pSSR). The candidate nodes at level i can be described as [?]

candi = ni × P i
intsect(pSSR) (6.18)

The number of node at level i can be specified as ni = N
fi+1 . P i

intsect(pSSR)

can be evaluated by using the node density Di(p) at level i, i.e.,

P i
intsect(pSSR) =

Z

p∈pSSR

Di(p)dp (6.19)

A pessimistic upper bound for retrieving the entire skyline is given by [?]
, which is |L| × h. It is decided by the cardinality of the skylines (i.e., |L|)
and the height of Rmin. This upper bound corresponds to the situation that
the algorithm needs to go through a complete path (i.e., the length of the
path is h) to find each skyline point. However, multiple skyline points may
be grouped into a single node or belong to the same branch of the R-tree.

6.3 Computing the p-dominant Skyline using p-R-tree 129

In this regard, the R-tree can be viewed as a cluster mechanism that groups
together the points with similar properties (e.g., similar coordinate values).
Since the total number of node accesses is less than |L| × h, we can have

NA = α × |L| × h =

⌈logf (N
f

)⌉
X

i=0

N

f i+1
×

Z

p∈pSSR

Di(p)dp (6.20)

where α ∈ (0, 1] is defined as a bounding factor. From (??), (??), and (??),
we can see that NA is determined by three factors: (1) the cardinality of the
data space, (2) the fanout of the R-tree, and (3) the number of nodes that are
in the pSSR at each level of the R-tree. Since the cardinality of the data space
and the fanout of the R-tree is determined a priori, α is actually decided the
size of the pSSR. A smaller pSSR means a smaller α, which also implies that
fewer nodes need to be accessed (i.e., better performance). This justifies the
heuristic strategy we use in Sect. ?? to improve the pruning power of the
p-R-tree, which has the effect of making the upper-right corner of MBR(S′)
(i.e., Sp) as close to the origin as possible. Since Sp is used to build the p-R-
tree and the skyline computed from the p-R-tree forms the boundary of the
pSSR, the heuristic strategy also has the effect of making the boundary as
close to the origin as possible, which, at the same time, makes the pSSR as
small as possible.

6.3.6.2 Time Complexity of Phase II

The time complexity of the second phase is dominated by the cost for com-
puting the dominate probability on each provider in the candidate list.

Lemma 6.15. If provider S is pruned by the p-R-tree, it is guaranteed not
to be used for computing the dominate probability against any other provider
T .
Proof Sketch: In Phase I of the algorithm, only the providers whose MBRs
have a lower-left corner fall into the pSSR (i.e., not dominated by the p-R-
tree) are inserted into the hash table M. Phase II of the algorithm searches
each possible dominating provider in M before using it to compute the domi-
nate probability. This guarantees that any provider S pruned by the p-R-tree
is not used for computing the dominate probability. �

Figure ?? shows the results returned from a window query with the origin
and Smax as the opposite corners on Rmin. There are five providers returned
including T 1, ..., T 5, among which only T 4min and T 5min fall into the pSSR.
Since T 1min, T 2min, and T 3min are outside the pSSR (which means T 1, T 2,
and T 3 are pruned by the p-R-tree), they are not used for computing the
dominate probability due to Lemma ??.

Assume that for each provider S ∈ L, a set TS of possible dominating
providers are returned from the window query. Also assume that a set T p

S ⊂

130 Skyline Computation over Uncertain QoWS

TS is pruned by the p-R-tree. Suppose that the average cost for actually
computing the dominate probability on a pair of providers is C. Thus, the
total time complexity of Phase II is

∑

s∈L

|TS − T p
S | × C (6.21)

Equation ?? does not count the cost for searching the hash table for each
provider in TS , which can be neglected when compared with the average cost
for computing the dominate probability on a pair of providers.

6.4 Experimental Study

We report our experimental results in this section. We run our experiments
on a PC with AMD Athlon 64*2 Dual Core 2.0GHz CPU and 1 GB of
RAM. The algorithms are implemented in Java. The uncertain QoWS data
of service providers are generated by following the approach described in [?].
In particular, the center of a provider’s QoWS is generated with each of the
following three distributions: independent, anti-correlated, and correlated [?].
Based on the center, a bounding box is generated which contains all the
transactions with this provider. A certain number of transactions with an
upper bound t are uniformly distributed in this bounding box. A total number
n of such providers are thus generated, each of which has d QoWS attributes.
We leverage R*-trees to implement the proposed p-R-tree. Table ?? lists these
parameters and their default values.

Table 6.3 Parameters and Key Terms

Parameter Description Default

d Dimensionality of the QoWS 4

n Cardinality of the providers 10k

p Probability threshold 0.3

t Maximum transactions per provider 400

Rp Skyline on Sp N/A

Rmax Skyline on Smax N/A

PdSky p-dominant skyline N/A

TP Two-phase algorithm N/A

BA Baseline algorithm N/A

6.4 Experimental Study 131

6.4.1 Size of the p-dominant skylines

We study the size of the p-dominant skylines (denoted as PdSky) w.r.t. d, p,
and n in this section. We also compute the skylines on Sp and Smax (denoted
as Rp and Rmax, respectively) to compare how the sizes of the p-dominant
skylines vary from that of the traditional skylines.

Figure ?? shows that the size of PdSky follows a similar trends as tradi-
tional skylines with the increase of dimensionality. With p set to 0.3, the sizes
of Pdsky are also similar to those of Rp and Rmax (except for the correlated
case, although the sizes can still be regarded as in the same scale). The sizes
of the three skylines exhibit very different behaviors w.r.t. p, as shown in
Figure ??. As expected, the probability threshold p has a significant effect on
the size of the PdSky, which keeps increasing as p increases. The size of Rmax

is insensitive to p at all because Smax does not change with p. The size of
Rp varies very slightly with p. This is in that although Sp may change with
p, the size of Rp should still stay rather stable because d, n, and the data
distribution (the distribution of Sp roughly follows the same distribution as
the center of S) are fixed. In contrast to d and p, n has no obvious effect on
the sizes of the skylines as shown in Figure ??. We vary n from 2k to 10k
and find that the sizes of the three skylines not strictly keep increasing as
n increases but they share the same trends, i.e., they increase and decrease
simultaneously.

2d 4d 6d 8d 10d
0

2000

4000

6000

8000

si
ze

(a) Anti−correlated

Rp
Rmax
PdSky

2d 4d 6d 8d 10d
0

1000

2000

3000

4000

5000

si
ze

(b) Independent

Rp
Rmax
PdSky

2d 4d 6d 8d 10d
0

50

100

150

200

250

300

350

si
ze

(c)Correlated

Rp
Rmax
PdSky

Fig. 6.5 Size of the p-dominant Skyline Vs. d (p = 0.3, n = 10k)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

si
ze

(a) Anti−correlated

Rp
Rmax
Pdsky

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

si
ze

(b) Independent

Rp
Rmax
Pdsky

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

si
ze

(c) Correlated

Rp
Rmax
Pdsky

Fig. 6.6 Size of the p-dominant Skyline Vs. p (d = 4, n = 10k)

132 Skyline Computation over Uncertain QoWS

2k 4k 6k 8k 10k
0

200

400

600

800

si
ze

(a) Anti−correlated

Rp
Rmax
PdSky

2k 4k 6k 8k 10k

20

40

60

80

100

120

140

si
ze

(c) Independent

Rp
Rmax
PdSky

2k 4k 6k 8k 10k

10

20

30

40

50

60

si
ze

(c) Correlated

Rp
Rmax
PdSky

Fig. 6.7 Size of the p-dominant Skyline Vs. n (p = 0.3, d = 4)

2d 4d 6d 8d 10d
0

100

200

300

400

500

T
im

e
 (

S
e

co
n

d
s)

(a) Anti−Correlated

TP
BA

2d 4d 6d 8d 10d
0

100

200

300

400

500

T
im

e
 (

S
e

co
n

d
s)

b) Independent

TP
BA

2d 4d 6d 8d 10d
0

200

400

600

800

1000

1200

T
im

e
 (

S
e

co
n

d
s)

(c) Correlated

TP
BA

Fig. 6.8 CPU Time Vs. d (p = 0.3, n = 10k)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

T
im

e
 (

S
e
co

n
d
s)

(a) Anti−correlated

TP
BA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

T
im

e
 (

S
e
co

n
d
s)

(b) Independent

TP
BA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

T
im

e
 (

S
e
co

n
d
s)

(c) Correlated

TP
BA

Fig. 6.9 CPU Time Vs. p (d = 4, n = 10k)

2k 4k 6k 8k 10k
0

100

200

300

400

T
im

e
(S

ec
on

ds
)

(a) Anti−correlated

TP
BA

2k 4k 6k 8k 10k
0

50

100

150

200

250

300

T
im

e
(S

ec
on

ds
)

(b) Independent

TP
BA

2k 4k 6k 8k 10k
0

100

200

300

400

500

T
im

e
(S

ec
on

ds
)

(c) Correlated

TP
BA

Fig. 6.10 CPU Time Vs. n (p = 0.3, d = 4)

6.4.2 Performance and Scalability

We study the performance of the proposed two-phase algorithm with Fig-
ures ?? to ??. We develop a baseline algorithm (referred to as BA) for com-
parison purpose. BA is implemented without the dual-pruning process. It
mainly relies on the technique presented in Sect. ??, i.e., for each provider,
it first identifies the possible dominating providers and then computes the
dominating probability against each of them.

Figure ?? shows that TP is consistently more efficient than BA by vary-
ing d from 2 to 10. For anti-correlated and independent QoWS (shown in
Figures ?? (a) and (b)), the performance difference between TP and BA de-

6.4 Experimental Study 133

creases with d. This is because that the size of PdSky increases significantly
with d and the number of providers pruned by the dual pruning process
decreases accordingly. In addition, as d increases, the data space becomes
sparser, which reduces the number of possible dominating providers. This
explains why BA performs more efficiently on a 10d space than an 8d space
with anti-correlated and independent QoWS. For correlated QoWS, on the
other hand, the size of the PdSky remains to be relatively small even for
a large dimensionality. Therefore, the dual pruning process still removes a
large portion of providers (see next section for details). Moreover, since the
correlated QoWS are located closely to the line from (0,...,0) to (1,...,1), the
possible dominating providers resulted from the window query may remain to
be large even for large dimensions. This makes the running time of BA keep
increasing with d. These aggregate effects make the performance difference
between TP and BA increases with d (as shown in Figure ?? (c)). Figure ??
and ?? compare TP and BA w.r.t. p and n. TP is faster than BA in a consis-
tent manner and its performance advantage over BA becomes more obvious
with both increasing p and n.

6.4.3 Pruning Efficiency

Figures ?? to ?? demonstrate the pruning capacity by the different phases of
the TP algorithm. Since Phase I of the algorithm uses a dual pruning strategy,
we further separate the providers that are pruned by the p-R-tree (i.e., by
comparing Smin with Rp) and those pruned by Rmax (i.e, by comparing Ŝp

with Rmax).
As shown in Figures ?? (a) and (b), the overall pruning efficiency of

the dual pruning process is fairly significant for relatively low-dimensional
spaces (e.g., d ≤ 4) on anti-correlated and independent QoWS. As d in-
creases, the dual pruning efficiency decrease accordingly. This is due to the
increase on the size of the p-dominant skyline, which can also can be re-
flected by the total pruning percentage by both of the two phases in TP. For
correlated QoWS, the dual pruning efficiency remains significant even for
high-dimensional spaces (as shown in Figures ?? (c)). Figure ?? shows the
dual pruning efficiency w.r.t. p. The pruning power only drops very slightly
when p increases. Figure ?? indicates that the pruning efficiency is not very
sensitive to n. Another important observation is that the pruning power of
the dual pruning process mainly comes from the p-R-tree for the three types
of QoWS distributions. This is because that we apply the p-R-tree first in
TP so that a large portion of providers that can also be pruned by checking
Ŝp will be taken away by the p-R-tree.

134 Skyline Computation over Uncertain QoWS

2d 4d 6d 8d 10d
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
c
it
y

(a) Anti−correlated

Rp Rmax Ph−II

2d 4d 6d 8d 10d
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
c
it
y

(b) Independent

Rp Rmax Ph−II

2d 4d 6d 8d 10d
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
c
it
y

(c) Correlated

Rp Rmax Ph−II

Fig. 6.11 Pruning Power Vs. d (p = 0.3, n = 10k)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20%

40%

60%

80%

100%

P
ru

n
e

 c
a

p
a

ci
ty

(a) Anti−correlated

Rp Rmax Ph−II

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20%

40%

60%

80%

100%
P

ru
n

e
 c

a
p

a
c
it
y

(b) Independent

Rp Rmax Ph−II

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20%

40%

60%

80%

100%

P
ru

n
e

 c
a

p
a

c
it
y

(c) Correlated

Rp Rmax Ph−II

Fig. 6.12 Pruning Power Vs. p (d = 4, n = 10k)

2k 4k 6k 8k 10k
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
ci

ty

(a) Anti−correlated

Rp Rmax Ph−II

2k 4k 6k 8k 10k
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
ci

ty

(b) Independent

Rp Rmax Ph−II

2k 4k 6k 8k 10k
0

20%

40%

60%

80%

100%

P
ru

n
e
 c

a
p
a
ci

ty

(c) Correlated

Rp Rmax Ph−II

Fig. 6.13 Pruning Power Vs. n (p = 0.3, d = 4)

2d 4d 6d 8d 10d
0

100

200

300

400

T
im

e
 (

S
e
c
o
n
d
s
)

(a) Anti−correlated

0.5−R−tree
0.3−R−tree

2d 4d 6d 8d 10d
0

100

200

300

400

T
im

e
 (

S
e
c
o
n
d
s
)

(b) Independent

0.5−R−tree
0.3−R−tree

2d 4d 6d 8d 10d
0

50

100

150

200

T
im

e
 (

S
e
c
o
n
d
s
)

(c) Correlated

0.5−R−tree
0.3−R−tree

Fig. 6.14 0.5-R-tree Vs. 0.3-R-tree

6.4.4 Computing p-dominant Skyline with
(p + δ)-R-tree

Since the probability threshold p can be specified at large in a service query, it
is not feasible to construct a p-R-tree a priori for each possible p. We observe
that if a provider can be pruned by a p’-R-tree (p′ ≥ p), it will not appear in
the p-dominant skyline. Therefore, for an arbitrary probability threshold p,
we can always use a pre-constructed (p+δ)-R-tree to compute the p-dominant
skyline. In this section, we compare the performance of computing the 0.3-

6.4 Experimental Study 135

dominant skyline with a 0.3-R-tree and a 0.5-R-tree (i.e., δ = 0.2) w.r.t. d.
As shown in Figure ??, the (p + 0.2)-R-tree can efficiently compute the p-
dominant skyline and the performance difference with the actual p-R-tree is
very small.

Chapter 7

Related Work

The proliferation of Web services is fostering a very active research area [?,
?, ?, ?, ?, ?, ?, ?, ?]. We give an overview of some work in this area which
are most closely related to our work. Since the field of Web service research
is still in its infancy, there is little foundational work to date.

7.1 Web Service Querying and Optimization

In [?], a Web Service Management System (WSMS) is proposed to enable

optimized querying of Web services. A Web service WSi(X b
i ,Y

f
i) is modeled

as a virtual table in the proposed WSMS. The values of attributes in Xi

must be specified whereas the values of attributes in Yi are retrieved. An
algorithm is proposed to optimized access Web services. The optimization
algorithm takes as input the classical Select-Project-Join queries over Web
services. It arranges Web services in a query based on a cost model and
returns an pipelined execution plan with minimum total running time of
the query. In our service query optimization framework, we adopt a formal
service model. The service model goes beyond the simple function call by
effectively capturing the key features of Web services: functionality, behavior,
and quality. The service calculus is proposed based on the service model. It
enables users to declaratively query Web services based on these features.
The optimization algorithm in [?] only considers the total running time. In
contrast, we adopt a two-phase optimization process. Both the response time
and the quality of Web service are optimized.

In [?], a search engine, called Woogle, is proposed to support Web ser-
vice query. In contrast to the simple keyword-based query, Woogle goes a
step further by providing a more flexible and precise Web service search. It
adopts machine learning mechanisms to determine the similarity between the
desirable operations and targeted operations. Woogle takes an information re-

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection, 137
 DOI 10.1007/978-1-4419-0314-3_7,

138 Related Work

trieval approach to measure the similarity between Web service descriptions,
including the input and output of services.

In [?], a query model is proposed that offers complex and optimized query
functionalities for Web services. The query model consists of three levels:
query level, virtual level, and concrete level. The query level is composed
of a set of relations that facilitate formulating and submitting declarative
queries. The virtual level contains a set of virtual operations which represent
the space of Web services within a given application domain in a generic way.
The concrete level denotes the space of Web services offered on the Web. The
query model uses the predefined mapping rules to capture the relationship
between relations and virtual operations. Specifically, the mapping rule can
represent relations at the query level using virtual operations at the virtual
level. The designer can thus provide a specific view of the application domain
by defining a mapping rule that represents a relation using a set of virtual
operations from that domain. Users can directly use relations as queries to
access Web services. Our approach goes beyond this ad hoc query model by
proposing a solid foundation, upon which algorithms can be developed for
optimizing service queries.

In [?], a composite service optimization approach is proposed based on
several quality of service parameters. Composite services are represented as a
state-chart. The optimization problem is tackled by finding the best Web ser-
vices to execute a composite service in the form of a linear programming prob-
lem. Our work focuses on Web service query instead of generating composite
services. We adopt a two-phase optimization strategy. In the first phase, the
query optimizer transforms an algebraic expression into the most efficient
one. It then performs the QoWS optimization in the second phase to select
the service execution plan with the best quality.

In [?], a QoS ontology has been defined for Web services. However, this
work does not seem to formulate how to measure the QoS parameters clearly.
Additionally, it does not specify how to aggregate all these parameters for
service evaluation.

7.2 Evaluation of Web Service Deployment Systems

We present a representative set of WS deployment systems in this sec-
tion. These systems adopt different technologies to provide the functional-
ities identified by the WSMS framework. These include interoperation, secu-
rity/privacy, QoWS, and management. The evaluation only covers the most
representative systems for the sake of space.

There are some other standardization effort underway to full support for
semantic Web services. For example, the Semantic Web Services Initiative
Architecture (SWSA) committee focuses on providing architecture support
for deploying semantic Web services [?]. It has identified a set of requirements

7.2 Evaluation of Web Service Deployment Systems 139

for building a semantic Web service architecture. The architecture supports a
three-phase interaction with semantic Web services: discovery, engagement,
and enactment. Architectural requirements are identified for each interac-
tion phase. Instead of building concrete software components, SWSA aims to
generalize the protocols and functional descriptions of capacities across a va-
riety of semantic Web service architectures. This enables specific components
that are consistent with the proposed general model to interoperate with one
another.

7.2.1 Research Prototypes

In this section, we present a set of WS deployment systems: CMI, Meteor,
SELF-SERV, WebDG, AgFlow, WSXM, and IRS.

CMI

CMI (Collaboration Management Infrastructure) [?, ?] provides architectural
support to manage collaboration processes. The kernel component of CMM is
a Core Model (CORE). CORE provides a common set of primitives shared by
all of its extensions. These primitives fall into two categories – activity states
and resources. Activity states can be either generic or application-specific.
Generic activity states follow the convention of the Workflow Management
Coalition [?]. They capture activity behaviors that are independent of appli-
cations. Application-specific activity states enable the precise modeling of the
peculiar applications. CORE identifies several primary resource types for the
activity execution. For example, data resources refer to the workflow internal
data. Helper resources refer to auxiliary programs that help implement the
basic activities.

The CORE extensions include the Coordination Model (CM), the Ser-
vice Model (SM), and the Awareness Model (AM). CM coordinates partici-
pants and automates process enactment. CM provides two types of advanced
primitives: activity placeholders and repeated optional dependencies. Activity
placeholders enable the run-time service selection. They represent services
in a process as activity types at specification time. At run time, a concrete
activity replaces the activity placeholder to construct an executable process.
A resolution policy helps ensure the syntactic and semantic compatibility
when replacing the placeholder by an actual activity. Repeated optional de-
pendencies specify the invocation place of a activity in a control flow path of
a process. They also specify the number of invocations of the given activity
to accomplish the application’s objective. The SM provides rich semantics
to describe services. It introduces the notion of service ontologies to capture

140 Related Work

the semantics of services. In addition, the SM uses Quality of Service (QoS)
as an important non-functional parameter to characterize services and their
providers. The resolution policy can choose the service with the best QoS
to optimize the execution of a process. The Awareness Model monitors the
process related events. It allows authorized composition and delivery of such
events only to closely related process participants.

METEOR

METEOR [?] is a workflow management platform that supports QoS man-
agement and service composition. It sets up a QoS model to describe the
nonfunctional issues of the workflow. The QoS model consists of four pa-
rameters, including time, cost, reliability, and fidelity. For each parameter,
the description of the operational runtime behavior of a task is composed
of two classes of information: basic and distributional. The basic class spec-
ifies the minimum value, average value, and maximum value the parameter
can take in a given task. The distributional class specifies a constant or of
a distribution function (such as Exponential, Normal, and Uniform) which
statistically describes a task’s behavior at runtime. The values in the basic
class are used by mathematical methods to calculate workflow QoS metrics.
The distributional class information is used by simulation systems to com-
pute workflow QoS. METEOR forms a mathematical model that collectively
uses all QoS parameters. The mathematical model computes the overall QoS
of workflow. It can serve as a guide to predict, estimate, and analyze the QoS
of production of workflow.

METEOR extends DAML-S to describe Web services. The enriched service
description includes three parts of information: syntactic description, seman-
tic description, and operational metrics, such as QoS parameters. All of this
information helps match the service object with a corresponding service tem-
plate. METEOR also provides registry services to enable the advertisement
and discovery of Web services. The workflow management system executes
the composite services and also handles runtime exceptions using a case-based
reasoning mechanism.

SELF-SERV

SELF-SERV is a platform for Web services composition [?]. It aims to provide
a declarative mechanism to compose Web services. It defines a peer-to-peer
mode to support scalable execution of composite Web services. SELF-SERV
uses a state chart to model the flow of component service operations. It
integrates service containers into its service composition platform. A service

7.2 Evaluation of Web Service Deployment Systems 141

container consists of a set of Web services with common functionalities. The
container determines which service is selected to execute. It carries out the
selection dynamically and puts off the selection until the invocation time.
The service selection is based on a set of QoWS metrics and their relative
weights. The service container also handles change management. It provides
operations to monitor services, notify the changes, and make reactions to
the changes. SELF-SERF relies on a set of state coordinators to enable the
scalable execution of composite services. It generates a state coordinator for
each state in the state chart. The state coordinator determines when to enter
its associated state depending on the notification of other coordinators. Once
a state has been entered, the coordinator invokes the services and retrieves the
results. The coordinator then notifies other coordinators when it completes
the execution of the service. Routing tables maintain the information required
by a coordinator. The information may include preconditions for entering a
state and post actions that notify successive coordinators.

WebDG

Digital government has turned to be a major application area of Web services.
WebDG is proposed based on the available Web service technologies [?]. It
aims to provide high quality e-government services by improving the interact-
ing mechanism between government and citizens. Two major contributions
make WebDG distinguish itself from other e-government service suppliers.
The first one is that it introduces the privacy-preserving scheme into Web
services. This is among the leading efforts to combine privacy protection with
Web services. While the second contribution is that it realizes the automatic
service composition based on the semantic feature of Web services.

WebDG enforces privacy from the technology point of view but not merely
depends on the trust of involved entities. It constructs a three-layered pri-
vacy model, including user privacy, service privacy, and data privacy. Each
layer defines its own privacy policy respectively. Obeying these privacy poli-
cies, WebDG implements two privacy preserving schemes, including DFilter
and PPM. These two schemes guarantee that necessary credentials are the
keys to access the requested operation. Service composition is a necessity
for most Web service systems because a single service could hardly fulfill all
requirements from a user. WebDG achieves its automatic service composi-
tion resorting to the ontology notion. According to the semantic features of
the services, WebDG defines two ontologies for service operations, namely,
Category and Type. The semantic composability rule is derived based on
these ontologies. It states that two operations can be composed with each
other semantically if their Categories and Types are compatible respectively.
WebDG also implements a composition template to evaluate the soundness
of the service composition .

142 Related Work

AgFlow

AgFlow is a QoS-aware middleware for Web service composition [?]. It uses
ontologies to model the component services. The data types follow the XML
specification and the message exchange relies on the data flow approach.
The orchestration model is specified using statecharts and generated by the
programming-based composition scheme. AgFlow defines a QoS model to
evaluate Web services from five quality aspects: price, duration, reputation,
success execution rate, and availability. Users can specify their preferences by
assigning weights to each of these quality parameters. AgFlow proposes two
planning strategies, local and global, to select the proper component services.
The candidate composition plans are evaluated against an objective function,
whereby the optimal plan with the highest objective value can be selected.
Users’ constraints are also considered during the planning. The global strat-
egy can adapt to the dynamic changes in the service environment. When
some component service becomes unavailable or significant changes occurs to
its QoS, a re-planning process will be triggered. The re-planning is to enable
the composite service to remain optimal in a dynamic environment. The per-
formance of AgFlow is efficient when there is a small number of tasks to be
accomplished by the composition. However, as the number of tasks increases,
the response time of AgFlow exhibits an exponential growth. This situation
becomes even more severe when re-planning is required by the composition.

WSMX and IRS-III

Web Service Modeling eXecution environment (WSMX) [?] is the reference
implementation of WSMO. It provides an event-based service oriented frame-
work for dynamic service discovery, selection, mediation, and invocation. The
core of WSMX architecture is the WSMX manager. It has several major
components, including resource manager, discovery, selector, and mediator.
The resource manager is used to manage the repositories that store WSMO
entities and other system-specific information. WSMO entities include Web
services, goals, ontologies, and mediators. The WSMX discovery provides a
three-step solution for service location. First, goal discovery is to map a user
request to a predefined, formalized goal in the goal repository. Second, Web
service discovery is to map the formalized goal to the formalized service de-
scription in the service repository. During this process, a Web service with
the capability that matches the goal would be returned. Finally, service dis-
covery is to map the formalized service description to the concrete service.
The WSMX selector helps choose the “best” Web service returned from a set
of matching Web services. Various selection criteria as well as users’ prefer-
ence can be applied to select the optimal Web service. The WSMX mediator
is used to mediate heterogeneous entities. WSMX provides two kinds of me-

7.2 Evaluation of Web Service Deployment Systems 143

diators: data mediators and Process mediator. Data mediators are used to
address semantic dissimilarity between data from different sources. Process
mediators provide a runtime analysis and adjustment of mismatching between
communication patterns from service requesters and providers. The WSMX
manager controls operational flow to react to incoming requests. WSMX pro-
vides an interface to accept user requests. Once a service request is submitted,
the WSMX discovery and WSMX selector locate the services that match the
request and return the optimal one on demand. IRS-III (Internet Reasoning
Service) is another reference implementation of WSMO [?]. It is a framework
for description, location, composition of Web services. IRS-III provides two
methods for creating semantic Web services, including browser-based and
Java API. The IRS-III ontology adopts and extends WSMO. The additional
attributes include a new type of mediator, gw-mediator. The gw-mediator is
used for service discovery. An applicability function is used for selecting Web
services.

7.2.2 Discussion of Web Service Deployment
Platforms

In this section, we evaluate and compare different Web service deployment
systems using the proposed WSMS. We first conduct the evaluation by map-
ping these systems onto the WS interoperation framework. This helps reflect
how each system achieves the WS interoperability. We examine the different
layers in the interoperation framework, including communication, messaging,
representation, discovery, and processes. We then evaluate the deployment
systems based on other key components in the WSMS: security/privacy, man-
agement, and QoWS. This helps reflect the functionalities of each system for
dealing with other issues of WS deployment in addition to WS interoperabil-
ity.

Table 7.1 WS Deployment Systems vs layers in the Interoperation Framework

Systems Communication Messaging Representation

METEOR Java RMI Not specified DAML-S, QoS model

CMI HTTP, CORBA Not specified Service model, ontologies

SELF-SERV HTTP SOAP WSDL

WebDG HTTP SOAP WSDL, ontologies

AgFlow HTTP SOAP WSDL, ontologies

WSMX Not specified SOAP WSMO, WSML

IRS-III HTTP SOAP WSMO, IRS-III ontology

144 Related Work

Table 7.2 WS Deployment Systems vs layers in the Interoperation Framework (Cont’d)

Systems Discovery Processes

METEOR registry service Workflow engine

CMI Service broker, advertisement State machine-based model

SELF-SERV UDDI State charts

WebDG UDDI Composition rules, QoC Model,
and composition template

AgFlow UDDI Statecharts

WSMX Ontology repository, WSMX repos-
itory

Event manager

IRS-III PSM Task specification

Tables ?? and ?? compare the representative Web service deployment sys-
tems using layers in the WS interoperation framework. For instance, WebDG
uses HTTP at the communication layer. It depends on the three key Web
service standards—SOAP, WSDL, and UDDI—for messaging, representation,
and discovery. In addition, WebDG also uses ontologies to describe the se-
mantic features of Web services. At the WS processes layer, WebDG pro-
vides a set of mechanisms to compose Web services automatically. It uses
the composition rules to check the semantic and syntactic composability of
Web services. The composition plan is optimized based on the QoC (Qual-
ity of Composition) model. A composition template is used to evaluate the
soundness of the composition.

Table 7.3 Deployment systems vs key components in the WSMS

Systems Security Privacy QoWS

METEOR Not specified Not specified Time, cost, reliability, and fidelity

CMI Role-based ac-
cess control

Not specified Services attached with a set of QoS at-
tributes

SELF-
SERV

Not specified Not specified Weighted QoWS parameters

WebDG Not specified Three-layered
privacy model

Not specified

AgFlow Not specified Not specified Price, duration, reputation, success execu-
tion rate, and availability

WSMX Not specified Not specified Accuracy, cost, network-related time, relia-
bility, robustness, scalability, security, trust

IRS-III Not specified Not specified Accuracy, cost, network-related time, relia-
bility, robustness, scalability, security, trust

Tables ?? and ?? compare the same set of systems using the other key
components in the proposed WSMS. For instance, RosettaNet adopts dig-
ital certification and digital signatures to ensure security to interact with
Web services. The PIP of RosettaNet contains a transaction layer to provide

7.2 Evaluation of Web Service Deployment Systems 145

Table 7.4 Deployment systems vs key components in the WSMS (Cont’d)

System Transaction Change Management Optimization Monitoring

METEOR Not specified Not specified Mathematical
model to com-
pute the overall
QoS of workflow

Not specified

CMI Coordination
model

Scoped roles Resolution policy
for QoS based
service selection

Awareness Model

SELF-
SERV

Not specified Service containers for
monitoring changes

Not specified Service contain-
ers for notifying
changes and
make reactions

WebDG Not specified Not specified Quality of Com-
position model

Not specified

AgFlow Not specified Re-planning Integer program-
ming

Not specified

WSMX Not specified Not specified WSMX selector Not specified

IRS-III Not specified Not specified Applicability
function

Not specified

transaction support for the business processes. Privacy, change management,
optimization, monitoring, and QoWS are not specified in RosettaNet.

Chapter 8

Conclusions

The development of Web services has so far mostly been the result of stan-
dardization bodies usually operating on a consensus basis and driven by mar-
ket considerations. In this context, innovation and long-term market effects
are not usually primary concerns. Because of the global nature of the Web,
the standardization process has so far been very fragmented, leading to com-
peting and potentially incompatible Web service infrastructures. Many com-
panies have invested very heavily in Web services technologies (Microsoft’s
.NET, IBM’s Websphere, SUN’s J2EE, to name a few). These efforts have
resulted in a fast-growing number of Web services being made available. The
envisioned business model is expected to include a whole community of Web
service providers that will compete to provide Web services. It is important
that this investment produce the expected results. To maximize the benefits
of this new technology, there is a need to provide a sound and clean method-
ology for specifying, selecting, optimizing, and composing Web services. This
needs to take place within a secure environment. The underlying foundation
will enable designers and developers to reason about Web services to produce
efficient Web Service Management Systems.

8.1 Summary

In this book, for the first time, we describe a complete and comprehensive
architecture for a Web Service Management System (WSMS). The presented
WSMS are expected to provide a systematic support to organize, manipulate,
and access Web services as first class objects. We also take an initiative step
for building such a WSMS. We propose a foundational framework for service
query optimization that will serve as a key building block for the expected
WSMS. We summarize the major content of this book as follows.
Foundational Service Framework – Current Web service technologies
are mainly standard-based. The successful experience from the history of

© Springer Science + Business Media, LLC 2009

Q. Yu and A. Bouguettaya, Foundations for Efficient Web Service Selection, 147
 DOI 10.1007/978-1-4419-0314-3_8,

148 Conclusions

databases demonstrated the importance of having a theoretical underpinning.
The field of databases only enjoyed widespread acceptance after the relational
model was proposed. The relational model set up the theoretical foundation
for database research. The first step of our research was thereby to define a
foundation for Web service research. The proposed service foundation centers
around a formal service model. The service model relies on graph theories to
capture a set of key features of Web services within an application domain.
The service calculus and algebra are defined based on the service model. The
physical implementation of the algebraic operators enables the generation of
SEPs that can be directly used by users to access services. Two optimization
algorithms are proposed based on a score function to efficiently process a
service query and select the SEP with the best user desired QoWS.
Multi-objective Service Query Optimization – The proposed query op-
timization algorithms rely on a score function to select SEPs. The issue is
that they require users to specify their preference on different quality pa-
rameters as numeric weights. This is a demanding task and the users may
miss their desired providers if they cannot precisely specify the weights. The
multi-objective optimization completely removes user intervention from ser-
vice selection. We use service skylines to enable the multi-objective service
query optimization. The ability to index the inherent dynamic SEP space also
comes as a result of the use of operation (set) graphs in the service model.
Analytical and experimental results show that the proposed indexing scheme
is quite effective and efficient.
Computing Service Skylines over Sets of Services – As the number
of services increases, the possible combinations between them also increase
rapidly. This results in a large SEP space. Therefore, efficiently skyline com-
putation algorithms are required that can scale to a large number of services.
We developed three algorithms that include a baseline one pass algorithm,
OPA, a dual progressive algorithm, DPA, and a bottom up algorithm, BUA.
DPA employs an expansion tree and a parent table to achieve progressiveness
and pipelineability. BUA further improves DPA with good scalability and or-
ders of magnitude of efficiency through a powerful early pruning strategy. We
experimentally evaluated the algorithms and demonstrated that BUA is an
efficient and scalable algorithm in computing multi-service skylines.
Skyline Computation over Uncertain QoWS – The dynamic service en-
vironment determines that the advertised QoWS may not reflect the actual
performance of service providers. Therefore, the QoWS is inherently uncer-
tain. We introduce a new concept, called p-dominant skyline, to address the
uncertainty of QoWS. We present a p-R-tree indexing structure and a dual
pruning process to efficiently compute the p-dominant skyline. Our experi-
mental results demonstrate the effectiveness of the proposed algorithm.

8.2 Directions for Future Research 149

8.2 Directions for Future Research

We identify the important directions for future research: ontology manage-
ment for Web services, QoWS management, service model extension, reversed
two-phase service query optimization, subspace service skyline computation,
and uncertain QoWS stream processing.

8.2.1 Ontology Management for Web Services

Ontologies empower Web services with rich semantics. They help enrich the
service description and ease the service advertisement and discovery process.
Ontologies offer an effective organization mechanism to deal with the large
number, dynamics, and heterogeneity of Web services. Service ontologies are
essentially organized in a distributed manner to adapt to the large scale of the
Web. Service ontologies are formed based on Web services’ domains of inter-
est. Typically, a service ontology contains a set of standard terms to describe
service classes. It also contains some inference rules to express complex rela-
tions between service classes. As the service model presented in Chapter ??
offers a uniformed view of various services within the same application do-
main, a potential issue is the mapping between different service ontologies.
Cross-ontology interactions between Web services may bring terms and rules
from one ontology to another. Interpreting and reasoning information from
other ontologies precisely and efficiently is crucial for cross-ontology service
integrations. Existing efforts in data integration mainly rely on a centralized
mediation mechanism [?]. However, the centralized approach can hardly fit
into the large scale of service ontologies on the Web. Since ontologies have
become a key component for Web service description and organization, an
effective mechanism to realize mappings of different ontologies would become
increasingly important.

8.2.2 QoWS Management

The current optimization approach relies on the knowledge of the quality
information from the service instances. A key extension is to develop qual-
ity management mechanisms that can monitor the performance of service
providers and precisely report their quality values. The reputation-based ap-
proaches can also be used to evaluate the trustworthiness of service providers
in reporting their QoWS. In addition, it would also be interesting to consider
the missing quality values that may be common in real-world scenarios. Work
on fuzzy-set based querying (e.g., SQL-F [?]) may be relevant for handling
the situation of missing values.

150 Conclusions

8.2.3 Service Model Extension

The current service model assumes an “And” relationship between multi-
ple dependency constraints in a service graph. An interesting direction is to
integrate the “Or” semantic into the service model in future research. By
incorporating the “Or” semantic, there might be multiple service execution
paths and each execution path can be instantiated into a set of SEPs. This
makes the optimization process more complicated. There are two promis-
ing approaches to deal with it: 1) include path expressions into the service
queries, which enables users to specify their desired operation(set) graphs so
that only one service execution path will be generated; 2) extend the current
optimization approach to enable the selection of the operation(set) graphs
and their corresponding SEPs.

8.2.4 Reversed Two-phase Service Query Optimization

We presented a two-phase service query optimization algorithm in Chap-
ter ??. In the first phase, we find an efficient service query plan (referred to
as SQP) and execute this SQP to generate a set of candidate SEPs. In the
second phase, we find the SEP with the best QoWS. The two-phase algo-
rithm essentially performs functional optimization in its first phase to locate
all functionally feasible SEPs. It then performs non-functional optimization
to select the SEP with the best quality. An interesting direction to explore is
performing non-functional optimization before functional optimization in the
service query optimization process. This will have the effect of filtering out
service instances with bad QoWS before actually querying their functional-
ities. Therefore, there will be no need to generate SEPs from these service
instances at all, which could reduce both the processing time and the space
that is used to store these SEPs. A promising solution is to leverage the ser-
vice skyline computation techniques for non-functional optimization. Then,
functional optimization will only need to be performed on the skyline ser-
vice instances, because other instances are dominated on all user interested
quality aspects.

8.2.5 Subspace Service Skyline

Both OGI and BBS4SEP are based on a R-tree index, which are optimized for
a fixed set of dimensions (and operations in the context of service skyline). It
would be interesting to extend these approaches to efficiently compute service
skylines on varying number of QoWS attributes. One possible approach is to
build an index an all attributes. However, this has an issue of so called “curse

8.2 Directions for Future Research 151

of dimensionality” [?]. A suitable solution for the service skyline problem is
to identify the typical usage patterns of service users. This is practical for
specific service domains because the user interested operations and QoWS
attributes usually converges to a small number of candidates. A more general
solution may be to extend the Skyline Cube approach [?, ?, ?] and adapt it
to the service skyline problem.

8.2.6 Uncertain QoWS Stream Processing

In our p-dominant service skyline model, each service provider is represented
as a set of static transactions. A promising future direction is to model these
transactions in a streaming manner, which is highly time sensitive. In another
word, each transaction occurs at a certain time (or with a certain timestamp).
Users typically take more interest in the more recent transactions that more
precisely reflect the recent behavior of the corresponding service provider.
It is interesting to integrate the sliding window model to our p-dominant
skyline computation framework. This allows users to get the query result for
the current sliding window [?].

8.2.7 Failure Recovery in Service Query Optimization

Service query optimization targets at the service providers that can offer the
best QoWS. However, a viable and robust Web service solution also needs to
have the capacity to deal with failures because the selected SEP may fail to
execute due to various reasons. Failure recovery is a crucial issue for proper
and effective delivery of Web service functionalities. In traditional database
and distributed computing systems, failures are treated as exceptions. Since
failures rarely happen in such fixed and well-controlled environment, some ex-
pensive mechanisms are often adopted for recovery from failures. For instance,
transactions with ACID properties are the major tools to deal with failures
in traditional database systems. Mobile computing is another major applica-
tion area for failure recovery techniques [?, ?, ?]. In a mobile environment,
failures are more prone to happen due to multiple reasons, such as physical
damage, lost of mobile hosts, power limitation, and connectivity problems.
The mobile computing community would treat failures as rules rather than
exceptions due to their high occurrence probability. Checkpoint-based recov-
ery is a representative technique used in mobile environment. Web services are
autonomous and loosely coupled. They interact dynamically without a-priori
knowledge of each other. Therefore, failures in Web service environment are
expected to happen frequently. Design of an effective failure recovery mecha-
nism for Web services can be based on the ideas from both database systems

152 Conclusions

and mobile computing. A key step towards such a mechanism is to define
what failures are in Web service interaction environment and provide a clear
taxonomy for all these failures.

References

1. American National Standards Institute: Study Group on Data Base Management Sys-
tems. Interim report, FDT, 7:2, ACM, 1975.

2. Report of the CODASYL Data Base Task Group. ACM, April 1971.
3. M. S. Ackerman. Privacy in E-Commerce: Examining User Scenarios and Privacy

Preferences. In Proceedings of the ACM Conference on Electronic Commerce, 1999.
4. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-

ture, and Applications. Springer Verlag, June 2003.
5. M. Astrahan, M. Blasgen, D Chamberlin, K. Eswaran, P. Griffiths J. Gray, F. King

III, R. Lorie, P. McJones, J. Mehl, G. Putzolu, I. Traiger, B. Wade, and V. Watson.
System R: Relational Approach to Database Management. ACM Transactions on
Database Systems, 1(2):97–137, 1976.

6. D. Baker, D. Georgakopoulos, H. Schuster, A. R. Cassandra, and A. Cichocki. Pro-
viding customized process and situation awareness in the collaboration management
infrastructure. In Proceedings of the Fourth IFCIS International Conference on Coop-
erative Information Systems, Edinburgh, Scotland, September 2-4, 1999, pages 79–91.
IEEE Computer Society, 1999.

7. F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of instances
and classes of web service compositions. In ICWS ’06: Proceedings of the IEEE In-
ternational Conference on Web Services, pages 63–71, Washington, DC, USA, 2006.
IEEE Computer Society.

8. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient

and robust access method for points and rectangles. In SIGMOD ’90: Proceedings of
the 1990 ACM SIGMOD International Conference on Management of Data, pages
322–331, New York, NY, USA, 1990. ACM.

9. B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad, and F. Toumani. Devel-
oping Adapters for Web Services Integration. In CAiSE Conference, pages 415–429,
Porto, Portugal, June 2005.

10. B. Benatallah, M. Dumas, M. Sheng, and A. H. H. Ngu. Declarative Composition
and Peer-to-Peer Provisioning of Dynamic Web Services. In ICDE ’01: Proceedings
of the 17th International Conference on Data Engineering, pages 297–308, San Jose,
California, USA, February 2002.

11. B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing, 7(1):40–48, 2003.

12. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic com-
position of transition-based semantic web services with messaging. In VLDB ’05:
Proceedings of the 31st International Conference on Very Large Data Bases, pages
613–624. VLDB Endowment, 2005.

153

154 References

13. Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree : An index
structure for high-dimensional data. In VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), In-
dia, pages 28–39. Morgan Kaufmann, 1996.

14. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE ’01:
Proceedings of the 17th International Conference on Data Engineering, pages 421–
430, Washington, DC, USA, 2001. IEEE Computer Society.

15. P. Bosc and O. Pivert. SQLf: a relational database language for fuzzy querying. IEEE
Transactions on Fuzzy Systems, 3(1):1–17, 1995.

16. M. Burstein, C. Bussler, T. Finin, M. Huhns, M. Paolucci, A. Sheth, and S. Williams. A
Semantic Web Services Architecture. IEEE Internet Computing, 9:52–61, September-

October 2005.
17. C. Bussler. B2B Protocal Standards and their Role in Semantic B2B Integration

Engines. IEEE Data Engineering Bulletin, 24(1), 2001.
18. C. Bussler, D. Fensel, and A. Maedche. A Conceptual Architecture for Semantic Web

Enabled Web Services. SIGMOD Record, 31(4), December 2002.
19. J. Cardoso. Quality of service and semantic composition of workflows. Ph.D Thesis,

University of Georgia, Athens, GA, 2002.
20. F. Casati, E. Shan, U. Dayal, and M. Shan. Business-oriented management of web

services. Communications of the ACM, 46(10):55–60, October 2003.
21. D. Chakerian and D. Logothetti. Cube Slices, Pictorial Triangles, and Probability.

Mathematics Magazine, 64(4):219–241, 1991.
22. C. Y. Chan, H. V. Jagadish, K. L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-

dominant skylines in high dimensional space. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data, pages 503–
514, New York, NY, USA, 2006. ACM.

23. Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion
technique: indexing for linear optimization queries. SIGMOD Rec., 29(2):391–402,
2000.

24. S. Chaudhuri. An overview of query optimization in relational systems. In PODS
’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 34–43, New York, NY, USA, 1998. ACM.

25. S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardinality and cost estimation for
skyline operator. In ICDE ’06: Proceedings of the 22nd International Conference on
Data Engineering, page 64, Washington, DC, USA, 2006. IEEE Computer Society.

26. J. Chomicki, P. Godfrey, J.Gryz, and D. Liang. Skyline with presorting. In ICDE
’03: Proceedings of the 19th International Conference on Data Engineering, pages
717–719, 2003.

27. E. Codd. A relational model for large shared data banks. Communication of the ACM,
13(6), 1970.

28. S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In
PODS ’99: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, pages 155–166, New York, NY, USA, 1999.
ACM.

29. M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi. Quality of Service Issues in Internet
Web Services. IEEE Transactions on Computers, 51(6):593 – 594, 2002.

30. Y. Ding, D. Fensel, and and B. Omelayenko M. Klein. The Semantic Web: Yet Another
Hip? Data and Knowledge Engineering, 41(3):205–227, May 2002.

31. J. Domingue, S. Galizia, and L. Cabral. Choreography in IRS-III - Coping with
Heterogeneous Interaction Patterns in Web Services. In The International Symposium
on Wearable Computers, pages 415–429, Galway, Ireland, November 2005.

32. X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services. In VLDB ’04: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, pages 372–383. VLDB Endowment, 2004.

References 155

33. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications, pages 113–137, 2002.

34. H. Garcia-Molina. The TSIMMIS Project: Integration of Heterogeneous Information
Sources. J. Intelligent Information Systems, 8(2):117–132, May 1997.

35. D. Geer. Taking steps to secure web services. IEEE Computer, 36(10):14–16, 2003.
36. D. Georgakopoulos, H. Schuster, A. Chichocki, and D. Baker. Managing process and

service fusion in virtual enterprises. Inf. Syst., 24(6):429–456, 1999.
37. P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets.

In VLDB ’05: Proceedings of the 31st International Conference on Very Large Data
Bases, pages 229–240. VLDB Endowment, 2005.

38. L. Gravano and Y. Papakonstantinou. Mediating and metasearching on the Internet.
IEEE Data Engineering Bulletin, 21(2), 1998.

39. Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query processing in
data warehousing environments. In VLDB ’95: Proceedings of the 21th International
Conference on Very Large Data Bases, pages 358–369, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

40. Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration: the teenage
years. In VLDB ’06: Proceedings of the 32nd International Conference on Very Large
Data Bases, pages 9–16. VLDB Endowment, 2006.

41. R. Hamadi and B. Benatallah. A petri net-based model for web service composition. In
Fourteenth Australasian Database Conference on Database Technologies, pages 191–
200, 2003.

42. V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: a system for the efficient
execution of multi-parametric ranked queries. SIGMOD Rec., 30(2):259–270, 2001.

43. IBM. Web Services Conceptual Architecture. http://www-
306.ibm.com/software/solutions /webservices/pdf/WSCA.pdf.

44. IBM. http://www.research.ibm.com/ssme/, 2006.
45. C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. chapter-window top-k queries on

uncertain streams. In VLDB ’08: Proceedings of the 33rd International Conference
on Very Large Data Bases. VLDB Endowment, 2008.

46. R. Jurca, B. Faltings, and W. Binder. Reliable qos monitoring based on client feedback.
In WWW ’07: Proceedings of the 16th International Conference on World Wide Web,
pages 1003–1012, New York, NY, USA, 2007. ACM.

47. D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an online algorithm
for skyline queries. In VLDB ’02: Proceedings of the 28th International Conference
on Very Large Data Bases, pages 275–286. VLDB Endowment, 2002.

48. C. S. Langdon. The State of Web Services. IEEE Computer, 36(7):93–94, 2003.
49. F. Laymann. Jump Onto The Bus: A Guided Tour To The WS-* Landscape. In

ICSOC ’03: Proceedings of the First International Conference on Service-Oriented
Computing. SpringerVerlag, 2003.

50. C. P. Martin and K. Ramamritham. Recovery guarantees in mobile systems. In
Proceedings of the 1st ACM international workshop on Data engineering for wireless
and mobile access, pages 22–28. ACM Press, 1999.

51. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5):84–93, 2004.

52. S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

53. B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elmagarmid.
Business-to-business interactions: issues and enabling technologies. The VLDB Jour-
nal, 12(1):59–85, 2003.

54. B. Medjahed and A. Bouguettaya. A Multilevel Composability Model for Seman-
tic Web Services. IEEE Transaction on Knowledge and Data Engineering (TKDE),
17(7):954–968, July 2005.

55. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web Services on
the Semantic Web. VLDB Journal, 12(4), November 2003.

156 References

56. B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani. Infrastructure for E-
Government Web Services. IEEE Internet Computing, 7(1):58–65, 2003.

57. Nuno Neves and W. Kent Fuchs. Adaptive recovery for mobile environments. Com-
mun. ACM, 40(1):68–74, 1997.

58. OASIS. Universal Description, Discovery, and Integration (UDDI).
http://www.uddi.org.

59. M. Ouzzani and B. Bouguettaya. Efficient Access to Web Services. IEEE Internet
Computing, 37(3), March 2004.

60. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, pages 467–478, New York, NY, USA,
2003. ACM.

61. M. P. Papazoglou and J. Dubray. A Survey of Web service technologies. Technical
Report DIT-04-058, University of Trento, 2004.

62. M.P. Papazoglou and W.-J. van den Heuvel. Web Services Management: A Survey.
IEEE Internet Computing, pages 58–64, 2005.

63. J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In
VLDB ’07: Proceedings of the 33rd International Conference on Very Large Data
Bases, pages 15–26. VLDB Endowment, 2007.

64. J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: a semantic
approach based on decisive subspaces. In VLDB ’05: Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, pages 253–264. VLDB Endowment,
2005.

65. C. Petrie and C. Bussler. Service Agents and Virtual Enterprises: A Survey. IEEE
Internet Computing, 7(4):68–78, 2003.

66. R. Prakash and M. Singhal. Low-cost checkpointing and failure recovery in mobile
computing systems. IEEE Trans. Parallel Distrib. Syst., 7(10):1035–1048, 1996.

67. K. Pu, V. Hristidis, and N. Koudas. In ICDE ’06: Proceedings of the 22nd Interna-
tional Conference on Data Engineering, page 31, Washington, DC, USA, 2006. IEEE
Computer Society.

68. A. Rezgui, A. Bouguettaya, and M. Y. Eltoweissy. Privacy on the Web: Facts, Chal-
lenges, and Solutions. IEEE Security&Privacy, 1(6):40–49, 2003.

69. J. Riordan. An Introduction to Combinatorial Analysis. John Wiley and Sons, Inc,
New York, 1958.

70. Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries.
In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, pages 71–79, New York, NY, USA, 1995. ACM.

71. P. Selinger, M.M. Astrahanand, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access
path selection in a relational database management system. In SIGMOD ’79: Proceed-
ings of the 1979 ACM SIGMOD International Conference on Management of Data,
pages 23–34, New York, NY, USA, 1979. ACM.

72. M. P. Singh and M. N. Huhns. Service-Oriented Computing Semantics, Processes,
Agents. John Wiley & Sons, Ltd., 2005.

73. E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services using
semantic descriptions. In Web Services: Modeling, Architecture and Infrastructure
workshop in conjunction with ICEIS2003, 2003.

74. J. Spohrer and D. Riecken editors. Special issue on services science. Commun. ACM,
49(7), July 2006.

75. Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. Answering queries
with aggregation using views. In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 318–329, San Francisco, CA, USA, 1996.
Morgan Kaufmann Publishers Inc.

76. U. Srivastava, J. Widom, K. Munagala, and R. Motwani. Query optimization over
web services. In VLDB ’06: Proceedings of the 32nd International Conference on
Very Large Data Bases, pages 355–366. VLDB Endowment, 2006.

References 157

77. M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation of
ingres. ACM Transactions on Database Systems, 1(3), 1976.

78. Dave D. Straube and M. Tamer Özsu. Query optimization and execution plan gener-
ation in object-oriented data management systems. IEEE Trans. Knowl. Data Eng.,
7(2):210–227, 1995.

79. Systinet. Systinet Server for Java. http://www.systinet.com/products/ssj/overview,
2004.

80. K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In
VLDB ’01: Proceedings of the 27th International Conference on Very Large Data
Bases, pages 301–310, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

81. Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in subspaces.
In ICDE ’06: Proceedings of the 22nd International Conference on Data Engineering,
page 65, Washington, DC, USA, 2006. IEEE Computer Society.

82. A. Tsalgatidou and T. Pilioura. An Overview of Standards and Related Technology
in Web Services. Distributed and Parallel Databases, 12(2):135–162, 2002.

83. S. J. Vaughan-Nichols. Web services: Beyond the hype. IEEE Computer, 35(2):18–21,
2002.

84. S. Vinoski. Web services interaction models, part 1: Current Practice. IEEE Internet
Computing, 6(3):89–91, 2002.

85. W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap.
86. W3C. Web Service Execution Environment (WSMX).

http://www.w3.org/Submission/WSMX/.
87. W3C. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl.
88. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/, 2003.
89. Workflow Management Coalition. Workflow Management Application Programming

Interface (Interface 2&3) Specification. Document Number WFMC-TC-1009, July
1998. Version 2.0.

90. WS-I. Web Services Interoperability Organization. http://www.ws-i.org/.
91. J. Yang. Web Service Componentization. Communications of the ACM, 46(10):35–40,

2003.
92. T. Yu, Y. Zhang, and K. J. Lin. Efficient algorithms for web services selection with

end-to-end qos constraints. ACM Trans. Web, 1(1), 2007.
93. Y. Yuan, X. Lin, Q. Liu, W. Wang, J. Xu Yu, and Q. Zhang. Efficient computation

of the skyline cube. In VLDB ’05: Proceedings of the 31st International Conference
on Very Large Data Bases, pages 241–252. VLDB Endowment, 2005.

94. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality driven web
services composition. In WWW ’03: Proceedings of the 12th international conference
on World Wide Web, pages 411–421, New York, NY, USA, 2003. ACM.

95. L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng., 30(5):311–
327, 2004.

Index

.NET, 3

Aggregated QoWS, 108

BBS, 74
BBS4SEP, 8, 74
Behavior, 8
BUA, 97

COM, 3
CORBA, 3
Crossover, 39

DBTG, 2
Dominate, 8

Dual progressive algorithm, 88

ESOA, 21

FSM, 27
Functionality, 8

J2EE, 3

MEP, 86

Node duplication, 90

OGI, 8
One pass algorithm, 87
Onion, 62

p-dominant service skyline, 9, 113

complete dominate, 117
p-complete dominate, 117
p-dominate, 113

p-R-tree, 9

p-skyline, 111
Parent table, 91
Petri-net, 27

PREFER, 62

QoWS, 5–7
QoWS model, 32

Business quality, 32
Runtime quality, 32

Quality, 8

RPC, 3

SEP, 8
Service algebra, 8, 37

Compose, 38

Equivalent rules, 39
F-map, 37
Q-select, 38

Service artifact, 13
Service description, 14

Service implementation, 14
Service bus, 23
Service calculus, 8

Service interaction, 13
Service binding, 13
Service lookup, 13

Service publication, 13
Service model, 8
Service participant, 13

Service client, 13
Service provider, 13

Service registry, 13
Service query, 34
Service query plan, 46

Service relation, 33
Service schema, 28

159

160 Index

Accessible graph, 31
Accessible operation, 30
Operation graph, 30
Operation set graph, 30
Service graph concatenation, 28
Service path, 29

Service skyline, 8
Skyline operator, 62
SOAP, 1, 11
SWWS, 23
System-R, 51

Top-k query, 61

UDDI, 1
Uncertain QoWS, 7

Web service, 1, 11
Web service stack, 14

Communications, 14

Description, 15
Discovery, 15
Messaging, 15
Processes, 15

Websphere, 3
WS-I, 23
WSA, 22
WSCA, 23
WSDL, 1, 11
WSMF, 22
WSMS, 2, 8

WSMS dimension, 15
Interoperability, 15

Sementic interoperability, 17
Syntactic interoperability, 17

Management, 18
Control management, 18
Monitoring management, 19

QoWS, 18
Security and privacy, 18

	Cover Page

	Title Page

	EFEoundations for Efficient WebService Selection
	Foreword
	Preface
	Acknowledgements
	Contents

	Chapter 1
Introduction
	Chapter 1Introduction
	1.1 Web Service Foundation
	1.1.1 Historical Perspective
	1.1.2 Web Services vs. Data
	1.1.3 Service Query Optimization

	1.2 Major Issues in Building a Web Service Foundation
	1.2.1 Summary of Contributions

	1.3 Preview of Chapters

	Chapter 2
Towards a WSMS: The State of theArt
	Chapter 2Towards a WSMS: The State of theArt
	2.1 Scenario
	2.2 Web Service Reference Model
	2.3 Web Service Stack
	2.4 Key Dimensions for Building a WSMS
	2.5 The WSMS Architecture

	Chapter 3
A Foundational Service Framework
	Chapter 3A Foundational Service Framework
	3.1 Case Study: Car Brokerage
	3.2 Service Query Model
	3.3 Service Calculus
	3.4 Service Query Algebra
	3.4.1 Algebraic Operators
	3.4.1.1 F-map
	3.4.1.2 Q-Select
	3.4.1.3 Compose

	3.4.2 Algebraic Equivalent Rules

	3.5 Implementing the Algebraic Operators
	3.5.1 Storing the Service Relations
	3.5.2 Implementing the Service Algebra
	3.5.2.1 F-map
	3.5.2.2 Q-select
	3.5.2.3 Compose

	3.5.3 Complexity of Service Algebraic Operators
	3.5.4 Generating SEPs

	3.6 Service Query Optimization
	3.6.1 QoWS for SEPs
	3.6.2 Score Function
	3.6.3 Optimization Algorithms

	3.7 Analytical Model
	3.7.1 DP-based Query Optimization
	3.7.2 DAC-DP Query Optimization

	3.8 Experimental Study

	Chapter 4
Multi-objective Service Query Optimization
	Chapter 4Multi-objective Service Query Optimization
	4.1 The Service Skyline
	4.2 Computing Database Skylines: An overview
	4.2.1 Block Nested Loops Algorithms
	4.2.2 Divide-and-Conquer Algorithm
	4.2.3 Bitmap Algorithm
	4.2.4 Index-based Algorithm
	4.2.5 Nearest Neighbor Algorithm

	4.3 Challenges of Computing the SEP Skyline
	4.4 SEP Skyline Computation
	4.4.1 Using B-trees
	4.4.2 Nearest Neighbor Algorithm
	4.4.3 Extending BBS
	4.4.3.1 Characteristics of the data space
	4.4.3.2 Structure of the R-tree
	4.4.3.3 Summary

	4.4.4 Operation Graph based Indexing (OGI)

	4.5 Experimental Study
	4.5.1 Number of QoWS Attributes
	4.5.2 Number of Operations per SEP
	4.5.3 Cardinality of Service Relations
	4.5.4 Sizes of the SEP Skylines

	Chapter 5
Skyline Computation for Multi-ServiceQuery Optimization
	Chapter 5Skyline Computation for Multi-ServiceQuery Optimization
	5.1 Preliminaries
	5.2 One Pass Algorithm
	5.3 Dual Progressive Algorithm
	5.3.1 Basic Progressive Enumeration
	5.3.2 Node Duplication
	5.3.3 Parent Table
	5.3.4 Analysis
	5.3.4.1 Correctness
	5.3.4.2 Complexity

	5.4 A Bottom-Up Approach
	5.4.1 The Early Pruning Heuristic
	5.4.2 Linear Composition Plans
	5.4.3 Complexity Analysis

	5.5 Experimental Study
	5.5.1 Efficiency and Scalability
	5.5.2 Heap Size
	5.5.3 MEP Skyline Size
	5.5.4 Discussion

	Chapter 6
Skyline Computation over UncertainQoWS
	Chapter 6Skyline Computation over UncertainQoWS
	6.1 p-dominant Service Skyline
	6.2 Preliminaries
	6.2.1 Problem Definition
	6.2.2 p-dominant Skyline Vs. p-skyline

	6.3 Computing the p-dominant Skyline using p-R-tree
	6.3.1 p-R-tree
	6.3.1.1 p-Complete Dominate
	6.3.1.2 Building the p-R-tree

	6.3.2 A Dual Pruning Process
	6.3.2.1 Pruning using ˆ Sp

	6.3.3 Computing the Dominate Probability
	6.3.4 The Main Memory p-R-tree
	6.3.5 The Two Phase Algorithm
	6.3.6 Analysis
	6.3.6.1 Time Complexity of Phase I
	6.3.6.2 Time Complexity of Phase II

	6.4 Experimental Study
	6.4.1 Size of the p-dominant skylines
	6.4.2 Performance and Scalability
	6.4.3 Pruning Efficiency
	6.4.4 Computing p-dominant Skyline with(p + �)-R-tree

	Chapter 7
Related Work
	Chapter 7Related Work
	7.1 Web Service Querying and Optimization
	7.2 Evaluation of Web Service Deployment Systems
	7.2.1 Research Prototypes
	7.2.2 Discussion of Web Service DeploymentPlatforms

	Chapter 8
Conclusions
	Chapter 8Conclusions
	8.1 Summary
	8.2 Directions for Future Research
	8.2.1 Ontology Management for Web Services
	8.2.2 QoWS Management
	8.2.3 Service Model Extension
	8.2.4 Reversed Two-phase Service Query Optimization
	8.2.5 Subspace Service Skyline
	8.2.6 Uncertain QoWS Stream Processing
	8.2.7 Failure Recovery in Service Query Optimization

	back-matter
	References
	Index

