
•฀The฀fundamentals฀of฀ActionScript฀3
•฀How฀to฀use฀ActionScript฀3’s฀object-oriented฀features
•฀฀How฀to฀manipulate฀sound฀and฀video฀to฀produce฀exciting฀modern฀

•฀฀How฀to฀work฀with฀XML฀as฀your฀data฀source

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ... xvii

About the Technical Reviewer ... xix

Layout Conventions ... xxi

Chapter 1: Getting Started with ActionScript 3.0 ■ ..1

Chapter 2: ActionScript 3.0 Fundamentals ■ ..23

Chapter 3: Objects and Classes ■ ...67

Chapter 4: Working with the Display ■ ...101

Chapter 5: Creating Vector Graphics with the Drawing API ■ ..151

Chapter 6: User Interaction and More with Events ■ ..185

Chapter 7: Working with Video ■ ..223

Chapter 8: Using Audio ■ ..271

Chapter 9: Working with Components ■ ...319

Chapter 10: Regular Expressions ■ ..369

Chapter 11: Using XML ■ ..391

Chapter 12: Case Study: Creating a Dynamic Image Viewer ■ ...407

Chapter 13: Getting Started with Flex ■ ...441

Chapter 14: Flex by Example ■ ...463

Index ...521

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Getting Started with ActionScript 3.0

Here you stand (or sit or lie) at the start of a long and perilous journey to becoming an ActionScript developer.
Well, OK, maybe not all that perilous—it’s not like there are any dragons, angry trolls, or even anything as dangerous
as a mildly annoyed snail—but you can get some pretty nasty finger aches from all the typing.

Umm… where was I? Ah yes, ActionScript. In this chapter, we’ll look at what exactly this thing called
ActionScript is, the processes you’ll go through to create an ActionScript project, and what ActionScript can bring to
your Flash work.

Toward the end, we’ll dive right in at the deep end and look at an example of an ActionScript 3.0 project in all
its naked glory. Don’t worry—you’re not expected to understand any of what’s going on at this stage. The aim of this
example is to whet your geek taste buds (everyone has them, even if some people won’t admit it; they’re responsible for
that “oooooh” sound we make when we see an iPhone or any other shiny new device). The idea is that once you’ve seen
the potential of ActionScript, you’ll be hooked and inspired enough to want to read the rest of this book in one sitting.

Before we get that far, though, I thought it might be nice to take a stroll down memory lane and look at how
ActionScript came to be, stopping along the way to sniff the flowers and enjoy the views.

A Brief History of ActionScript
The official definition of ActionScript, directly from our grand overlords at Adobe (http://www.adobe.com/devnet/
actionscript/), goes something this:

ActionScript is the programming language for the Adobe Flash Player and Adobe AIR runtime
environments. Originally developed as a way for Flash developers to program interactivity,
ActionScript enables efficient programming of Flash applications for everything from simple
animations to complex, data-rich, interactive application interfaces.

This is a good definition, as you would expect coming from the company responsible for the language, but it
doesn’t tell you much about how ActionScript came to be.

What we now know as ActionScript 1.0 first appeared in Flash 5. Previous versions of Flash allowed developers
to add commands to their movies to control the playback and store values, but they were basic and it was arguable
whether those commands could be called a programming language. ActionScript 1.0 was based on ECMAScript 262,
the same family of languages that includes JavaScript.

www.allitebooks.com

http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/actionscript/
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

2

If you’re the curious type, you might be wondering about ECMAScript. ECMAScript is a programming
language defined by a standards body known as Ecma International (which used to be the European
Computer Manufacturers Association before it changed its name). This organization helps create,
define, and promote standardization for all sorts of highly technical stuff. ECMAScript was created
in 1997 with the aim of solving the incompatibilities between the different implementations of
JavaScript found in Netscape and Internet Explorer. (In fact, Microsoft’s version was so different
that it was called it JScript rather than JavaScript.) ECMAScript has since become the de facto
standard for scripting languages on the Internet, which is why Macromedia (now Adobe) decided
to adopt the standard for its new Flash scripting language.

ActionScript 2.0 arrived with Flash MX 2004 and was based on a newer version of the ECMAScript standard.
Although on the surface this version appeared to have a number of new language constructs—like classes,
interfaces, and private and public attributes—it was really a thin veneer over the old version, still compiling down
to the prototype-based programming used with ActionScript 1.0. (Not sure what a prototype is? Thankfully, with
ActionScript 3.0, we don’t have to go down that road.)

ActionScript 3.0 is based on and compiles with the very latest, bleeding-edge version of the ECMAScript
standard—ECMAScript Edition 4 for all you trivia buffs out there—and adds a host of new language features. Because
ActionScript 3.0 is fundamentally different from its predecessors and requires a completely new player to interpret it,
you can use it only for projects that target Adobe Flash Player 9 and above. ActionScript 3.0 was first available as part
of Flex 2, and was then incorporated into Flash CS3.

The Rise of ActionScript 3.0
Adobe released Flex 2 in July 2006 and with it gave the world the ActionScript 3.0 programming language. Flex 2 was
designed to provide a rapid development environment for rich Internet application (RIA) development and does not
contain the notion of a timeline as in Flash. Instead, the user interface is authored using MXML files (Adobe’s own
markup language for defining ActionScript applications using the Flex framework) and ActionScript 3.0 code to create
the final SWF files. (Although this is the normal course for using Flex, you also have the option of working strictly in
ActionScript without using MXML or the Flex framework.)

You have at least two paths for creating SWF files with ActionScript: the Flash integrated development
environment (IDE) or Flex. Since the Flash IDE is the more common choice, much of the text in this book is presented
from a Flash-centric view. The basic tenets of ActionScript 3.0 programming are the same whether you use Flash or
Flex, so the majority of this book will be useful no matter which development environment you’re using. In addition,
toward the end of the book you’ll find a couple chapters on authoring ActionScript 3.0 projects with Flex, so it’s like
getting two books for the price of one—a bargain!

If you’ve installed and worked with Flash, you know that creating SWFs is as simple as creating a new Flash file
and using the File ➤ Publish menu command. For Flex, things get a little trickier—or, perhaps, more intriguing and
appealing—presenting you with a number of options. If you have purchased and installed Flash Builder, either as a
stand-alone application or as an Eclipse plug-in, you can use that to create a new Flex or ActionScript project.
You can then run this project in order to create an SWF file. In addition to Flash Builder, you also have the option of
using the free command-line compiler. This involves creating ActionScript and (perhaps) MXML files, and then
using the compiler to create SWF files from this source. Often, this is accomplished with an automation tool like
Ant (http://ant.apache.org/). To find out more about this approach, you can start with a tutorial such as
http://www.senocular.com/flash/tutorials/as3withmxmlc.

www.allitebooks.com

http://ant.apache.org/
http://www.senocular.com/flash/tutorials/as3withmxmlc
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

3

For years, the term Flash has encompassed multiple meanings such as the Flash IDE, the Flash
Player, and the ActionScript compiler. This book will include statements like, “This line tells Flash
that . . .,” where Flash is used in a more general sense and is applicable even if you are using Flash
Builder or the command-line compiler to create SWFs. For clarity, when referring specifically to a
certain component in the larger Flash platform, the text will use the more precise term, such as the
Flash IDE. For reference, the Flash platform contains the following technologies: Flash Player, Flex,
Flash Builder, Flash Professional, Adobe AIR, Flash Media Server, and BlazeDS. You can find out
more at the Adobe website: http://www.adobe.com/flashplatform/.

All the examples in this book (with the exception of those from the Flex chapters) will be presented as Flash files.
Because the ActionScript will nearly always be in external files, there’s no reason you couldn’t adapt these examples
for use in Flex. In fact, this book’s downloadable files include both Flash files and Flex ActionScript projects, where
applicable, to run the ActionScript.

The Flex directories in this book’s downloadable code are not actually what would be considered
“Flex,” which usually implies use of the Flex framework and MXML files to control layout. Flash
Builder and the free command-line compiler not only allow for compilation of MXML and Flex
projects, but also of pure ActionScript projects, which include nothing but ActionScript code. For
the chapters not specifically about Flex, the samples are in ActionScript projects.

ActionScript and Object-Oriented Programming
Object-oriented programming might sound scary and official, but when you see and hear it shortened to the
common and silly-sounding acronym OOP, it becomes much less daunting. What is OOP? Well, put simply, OOP
is a programming technique. It’s a way to write and organize your code to make it easier for you, as a developer, to
build and maintain your applications. OOP developers break down functionality into modular pieces that interact in
certain, recommended ways.

Back in the dark ages of programming, applications were written using a procedural programming methodology,
which basically means that the program started running at the beginning and kept on going through the code in a
linear fashion. But this method of programming did not lend itself well to the expansive applications with graphic user
interfaces (GUIs) that were becoming more prevalent on the personal computers in everyone’s home. A new way to
program was needed to make it easier to build and maintain these types of applications, which were highly focused on
user interaction.

This was when OOP appeared—something of a swashbuckling hero with a cape and sword, crashing through a
lovely stained-glass window, I would imagine. OOP introduced a new way to organize a program by breaking up an
application into small pieces called objects, each with distinct functionality. These objects then took care of interacting
with one another to create a seamless program. The beauty of this approach is threefold:

It’s easy to break down a problem into small pieces and tackle each separately.•฀

It’s easier to reuse functionality from one project to another.•฀

It’s considerably easier to debug a well-written OOP application if something goes wrong.•฀

As you might have guessed, since this is a book on ActionScript and I’m spending a bit of time talking about OOP,
ActionScript is an OOP language. When you code in ActionScript 3.0, you will be practicing OOP, whether you know
it or not. Of course, there are degrees of adherence to true OOP methodology, and there are certainly open debates
within the OOP community about how certain things should be done. But generally, there is consensus on some of
the root tenets of OOP. ActionScript 3.0 helps to enforce these OOP principles, whereas ActionScript 2.0 and 1.0 were
much less strict (that’s not necessarily a good thing). So as you are learning ActionScript through this book, you will
also be learning OOP, which will be an added bonus.

www.allitebooks.com

http://www.adobe.com/flashplatform/
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

4

The Development Process
If you have never worked with ActionScript, it is important to understand what exactly will change in your workflow
for producing SWF files once you make the decision to add ActionScript to your projects. The changes will differ
depending on the amount of code you want to add. If you are an animator and want to add a simple preloader to your
movie and a replay button upon its completion, the amount of code you will need and the changes to your workflow
will be significantly less than if you are creating a game or an online application. In addition, where you add your code
and how you incorporate it into your projects will also vary from project to project.

For Flash users, ActionScript’s simplest integration involves adding some code to the timeline using the Actions
panel in the Flash IDE. This was the way it was accomplished for many previous versions and still has its uses. For
instance, the preloader and replay button mentioned in the previous paragraph might be implemented in such a way,
as they are small pieces of functionality that are largely independent of the rest of the movie. In such cases, you can
often continue to work as you normally would within the application and add the necessary code to your file once the
main content has been completed. It’s a great way to learn the ins and outs of ActionScript without diving headfirst
into hard-core OOP programming in external class files.

If you are a Flex user or have more complex interaction to code in Flash, your best bet is to use external
ActionScript files that you can reference in the Flash IDE or, in the case of Flex, through MXML. In this case, you’ll
need to do much more planning, and the diagramming of code beforehand is an important step. What does this
diagramming mean to your workflow?

For animation development, you’ll start with a storyboarding phase. In a storyboard, you mock up the proposed
animation in still frames in order to determine storytelling and flow. Figure 1-1 shows an example of a simple
storyboard. Including this step in the process helps to ensure that the work on the animation does not go astray.
You avoid going down a path where you waste time and need to redo work based on issues that you didn’t foresee.

Figure 1-1. An example of a storyboard for a proposed animation

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

5

If you’re developing a game or application using ActionScript to control its logic and interactions, you’ll start
by mapping out how code will interact. This helps to flush out problems in the logic and ensure that development
stays on track (well, as much as possible). Unified Modeling Language (UML) is a common technique used for
diagramming an application’s programming logic, as shown in Figure 1-2.

Figure 1-2. A UML diagram of several classes and how they interact

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

6

The extent you need to diagram can change from project to project, and the level of detail at which you diagram
is a subjective topic. Typically, though, each box will be divided into two or three sections. The top section is the
class name; the second section includes the class properties, followed by the class events and methods. However,
in any case, when planning a Flash or Flex project that will include ActionScript, planning the code before you start
programming should be considered within your workflow. As tempting as it is to just dive right in and start coding,
you can quickly become lost in your code and lose sight of your overall objective (if you even know what it is in the
first place).

That’s not to say that coding from the hip doesn’t have its place. Sometimes before starting a
more formal design process, you just need to know if something is even possible. The only way to
discover that is to sit down and build a rough version that tests all the key elements of your project.
This technique is known as rapid prototyping, and the idea is to test all the key functionality
without necessarily worrying about best practices or tidy code. Once you know your ideas are
possible, you either throw away the code and start again, or refactor the code into something that’s
a little more refined.

Once you have done the proper planning and design, and you’ve created the necessary visual elements using
the Flash IDE, you can write your code, testing as you go along to make sure that you’re still on the right track. For
an animation, you might continually test the movie to see how a motion plays out. In a similar way, with code, you
might test a small piece of functionality within the larger application. Instead of tweaking graphics and animation in a
timeline, you will be tweaking code to fix errors and add new functionality.

Many of the animations I work on now are all done through ActionScript. I used to build animations in a timeline,
small pieces at a time. Now I build animations through code, programming small pieces at a time. The workflow has
stayed very similar. Only the method I use to create the animations—code instead of timeline—has changed.

Organizing Your Files
Before you start writing any ActionScript code, you should consider where you are going to store your files. Your
ActionScript files should go in the same directory as the main FLA file for your project for Flash users, or in your
project root directory for Flex users. This might be individual ActionScript files, or, more often than not, entire
subdirectories of ActionScript files divided into packages. However, having a common project root directory is usually
a good rule to follow. (Of course, there are exceptions, such as when you’re creating code that will be used by more
than one project.)

Modern operating systems have user-specific directories where they can store personal files. On Windows
systems, this is C:\Documents and Settings\[username]; on Mac OS, this directory is /Users/[username].
Personally, I like to create a Projects directory in my user directory, with subdirectories for each of my individual
projects. That way, I can back up all my projects in one go without needing to hunt for them.

Since all the projects for this book are related, you’ll probably want to create a subdirectory for the book (named
Foundation AS3 or something similar), and then have a subdirectory for each chapter. If you download the sample
files from the book’s website (www.foundationAS3.com), you’ll find that they are already organized in this way.

Throughout the book, I’ll refer to the project directory as the directory in which you want to store the files for that
project. If you’re following the suggested organization scheme, that will be the directory of the current chapter; if
you’re using your own scheme, then the project directory can be wherever you want it to be. It’s completely up to you
where you want to keep your project files and how you want to organize them.

www.allitebooks.com

http://www.foundationas3.com/
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

7

Adding ActionScript to Your Projects
You can add ActionScript to your projects in several different ways:

Place code on the timeline.•฀

Import code from an external file.•฀

Specify a document class.•฀

Link library assets to external classes.•฀

Each approach has benefits and drawbacks. Here, we’ll look at each option individually, using the classic “Hello,
world” example, which is often the first exercise when learning a programming language—getting your program to
come alive, wake up to the world, and greet you.

Placing Code on the Timeline
It used to be quite acceptable for developers to write their ActionScript code directly onto the timeline in their FLA
files. Even now, there are times where it’s useful to place code on the timeline, so it’s worth knowing how to do this.
Follow these steps:

 1. Create a new Flash File (ActionScript 3.0) and save it with the name timeline.fla in the
project directory.

It’s a good idea to get into the habit of saving files just after creating them (even before you’ve actually
made any changes), and then saving periodically as you’re working. As with any application, Flash
could experience problems. By saving regularly, you reduce the chances of losing your work.

 2. Select the first frame of Layer 1 of your movie in the timeline.

 3. Open the Actions panel by selecting Window ➤ Actions from the main menu. (To save
your mouse some traveling time, you can also open the Actions panel using a keyboard
shortcut: F9 if you’re using Windows and Option+F9 if you’re using Mac OS X.) You should
now see the Actions panel in all its naked, brazen glory. The big white expanse on the right
of the window is where you write your ActionScript 3.0 code if you want to place it directly
on the timeline.

 4. Type the following, as shown in Figure 1-3:

trace("Hello, world");

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

8

 5. Test your movie by selecting Control ➤ Test Movie from the main menu. You’ll see the
Output panel with your ActionScript’s output, as shown in Figure 1-4.

Figure 1-3. The Actions panel in the Flash IDE

Figure 1-4. The classic “Hello, world” using ActionScript to trace to the Output panel

Don’t worry too much about what the text you’ve just typed in means—you’ll find out in the next chapter.
However, don’t let that detract from the fact that you’ve just crafted your first piece of ActionScript 3.0 code. You’re
now officially an ActionScript developer. Groovy, baby!

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

9

Unfortunately, writing your code into the frames of your Flash movies is not considered best practice. If you
can imagine that the code could be on any frame of any movie clip in your Flash movie, you might guess that it’s
not a great deal of fun hunting down a specific piece of code if you need to change it. This makes it difficult when a
new developer joins a project and needs to discover how things are done (believe me, I speak from experience). In
addition, if you are using any type of version control, code directly in an FLA file cannot be versioned and compared
easily. In a large software development group, this coding approach also makes it impossible for multiple developers
to be working on the same file, which can be done with text files.

Still, timeline code has its place for simple projects or one-person shops. Flash developers have worked this way
for years.

Importing Code from an External File
One step up from placing code directly on the timeline is pulling the code into a frame from an external file. Importing
code from an external file doesn’t affect how your ActionScript is incorporated into the final SWF file. It just separates
your code from the FLA file.

This technique might be useful if the code you’re writing is designed to be part of more than one SWF file,
allowing you to make changes just once (to the external file) and have them incorporated into multiple SWF files.
Without the ability to import code from an external file, you would need to copy and paste the code into each FLA file
that needs to be updated. You’ll still need to publish each movie that makes use of the external file when you make a
change; the import happens only at compile time, not at runtime. On the plus side, this means that you don’t need to
upload the external ActionScript file to your server along with the SWF file(s), as it has already been compiled.

I’m sure you’re itching to get your code imported from an external file. To do so, follow these simple steps:

 1. Create a new Flash File (ActionScript 3.0) and save it with the name import.fla to the
project directory.

 2. Select the first frame of the movie, open the Actions panel, and enter the following code in
the area on the right:

import ImportClass;
var imported:ImportClass = new ImportClass();

 3. Select File ➤ New from the main menu. Then select ActionScript File from the list in the
New Document dialog box, as shown in Figure 1-5, and click OK.

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

10

 4. Enter the following code into the text editor:

package {

 public class ImportClass {

 public function ImportClass () {
 trace("Hello, world");
 }

 }

}

 5. Save the file as ImportClass.as in the project directory.

 6. Switch back to the import.fla file in the Flash IDE.

 7. Test your Flash movie by selecting Control ➤Test Movie from the main menu. You should
see the same result as when you placed the code on the timeline, as shown in Figure 1-4,
but this time, the code is being pulled in from an external file.

While this method is better than placing all your code directly on the timeline, you still needed to add the import
statement in the FLA file, which, once again, makes it difficult to find and manage. Not only that, but although the
code was in an external file, it was actually compiled into the first frame of the SWF file as though you had written it on
the timeline.

Figure 1-5. The New Document dialog box with a new ActionScript file selected

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

11

Thankfully, Flash provides two other, interrelated methods for adding ActionScript to your projects, both of
which allow for better management of your code.

Specifying a Document Class
Flash CS3 introduced the concept of a document class. This is a movie clip that controls the main timeline in Flash,
which is actually a movie clip itself—it just happens to be one that holds everything in your movie. A document class
has some extra functionality that you, as a developer, can code. So perhaps the additional code might be kicking off
the loading of a series of animations and managing the playback. In that case, you would associate this class with the
main timeline of your movie, so that when the SWF file is loaded into the Flash Player, it will immediately run your
additional functionality.

This is a pretty advanced topic to bring up in Chapter 1, but to demonstrate the different ways ActionScript can
be used, specifying a document class must be noted here. And, in execution, it’s pretty easy to do, as the following set
of steps demonstrates:

 1. Create a new Flash File (ActionScript 3.0) and save it with the name document.fla in the
project directory.

 2. Open the Property inspector (if it’s not already visible) by selecting Window ➤Properties
from the main menu, or by pressing F3 (Windows) or Command+F3 (Mac OS X).

 3. Toward the bottom-right side of the Property inspector, locate the text box labeled
Document class and enter the text Document, as shown in Figure 1-6.

Figure 1-6. The Property inspector with the document class added

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

12

 4. Save the changes to your Flash movie.

 5. Create a new ActionScript file and save this file into your project directory with the name
Document.as. (Note the capital D, which is a common and recommended practice for
classes and class files.) This means both document.fla and Document.as will be in the
same directory in your file system.

 6. Enter the following text into your new ActionScript file:

package {

 import flash.display.MovieClip;

 public class Document extends MovieClip {

 public function Document() {
 trace("Hello, world");
 }

 }

}

 7. Switch back to the document.fla file in the Flash IDE and test your movie by selecting
Control ➤Test Movie from the main menu. Once again you should see the same result in
the Output panel (Figure 1-4).

Don’t worry too much about what all the stuff you typed means. I promise that by the end of Chapter 3, you’ll
know it backward and forward.

Linking Library Assets to External Classes
Linking library assets to external classes in order to use ActionScript in your Flash movie is similar to using a
document class. Remember when I mentioned that the main timeline was a movie clip? Well, there can obviously be
a lot of examples of movie clips in your FLA—ones that you create and store in the Library and can then drag onto
the stage and timeline or attach using ActionScript. In much the same way that the main timeline as a movie clip can
have a class associated with it, you can have a movie clip symbol in the library associated with a class. When this is
done, any instance of that symbol that is added to the stage, either in the IDE or at runtime through code, will run the
additional code that you have added using the external class file.

To test this, you can reuse the ActionScript file you created in the previous example. Let’s take a look at how this
works:

 1. Resave the Document.as file from the previous section as Symbol.as.

 2. Change the references in the file from Document to Symbol, as in the following code:

package {

 import flash.display.MovieClip;

 public class Symbol extends MovieClip {

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

13

 public function Symbol() {
 trace("Hello, world");
 }

 }

}

 3. Create a new Flash ActionScript 3.0 file and save it with the name symbol.fla in the
project directory.

 4. Select Insert ➤New Symbol from the menu to open the Create New Symbol dialog box.
Click the Advanced button in the bottom right to get the expanded dialog box, as shown in
Figure 1-7.

Figure 1-7. The Create New Symbol dialog box for adding new library assets

 5. In the Create New Symbol dialog box, enter Symbol as the name of the symbol and set
the symbol type to Movie clip. In the Linkage section, select the Export for ActionScript
option. A number of fields will then be filled in automatically, as shown in Figure 1-8.
You’ve specified that this symbol will actually create instances of the Symbol class you
coded.

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

14

 6. Click OK to exit the dialog box. You will be placed in editing mode for the symbol. Click the
Scene 1 button on the timeline to return to the main timeline.

 7. Open your Library (Window ➤Library) and drag an instance of Symbol anywhere onto the
stage.

 8. Test your movie by selecting Control ➤Test Movie from the main menu.

In this example, you associated an external class file with a symbol in the Library. You can do this for any number
of symbols and thus have instances of many different classes represented by instances in the Library. The components
that come with Flash use this technique, with each component mapped to a class and its ActionScript file.

Now that you know about the different ways to use ActionScript, you may recall that I promised you a more
complex example of an ActionScript project. As I’m never one to go back on my word, next you’re going to create
something that would be impossible to do in Flash without the help of ActionScript: random animation in the form of
hundreds of balls bouncing around the screen.

Figure 1-8. The filled-in Create New Symbol dialog box for this exercise

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

15

Bouncing Balls
Building a Flash movie with balls bouncing all over the screen is something of a rite of passage in the ActionScript
world—everyone seems to build one at some stage to test coded animation and basic physics. It’s a great way to see
some ActionScript in action as you start out on your programming path.

As I mentioned at the beginning of the chapter, you shouldn’t try to understand the code behind this example. I
promise that by the time you’ve completed Chapter 5, you’ll understand every single line of code, but for now, you’ll
have to trust me that the steps you follow will produce the desired result.

Figure 1-9 shows what we’re going to produce.

Figure 1-9. The balls they are a-bouncin’

Without further ado, let’s get cracking. You’ll need Flash CC installed to play along, though Flash Builder users
can find a Flex-tastic example in the downloadable files.

Creating the Flash File
As in the previous short examples, you begin by creating a Flash file:

 1. Create a new Flash File (ActionScript 3.0) and save it with the name bouncing.fla in the
project directory.

 2. Draw a filled circle on the stage with a diameter of roughly 50 pixels.

 3. Using the Selection tool, select the circle and convert it to a symbol by selecting
Modify ➤Convert to Symbol from the main menu, or by pressing F8.

 4. In the Convert to Symbol dialog box, give your symbol a name of Ball. Set the registration
point to the center. Check the Export for ActionScript check box. Enter Ball in the Class
field. You might need to switch to advanced mode by clicking the Advanced button to see
all of the options. Your dialog box should match Figure 1-10.

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

16

 5. Click the OK button. An ActionScript Class Warning dialog box will pop up, telling you
that Flash couldn’t find the class you have specified and that a class will be generated for
you when you publish your SWF, as shown in Figure 1-11.

Figure 1-10. The Convert to Symbol dialog box with all the necessary fields filled in for the Ball class

Figure 1-11. This warning lets you know that no class was found and so one will be created behind the scenes upon
compiling

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

17

 6. You know that the Ball class doesn’t exist because you haven’t created it yet, so it’s safe to
click OK and ignore the warning. Generally, it’s better to create the class first before trying
to associate a symbol with it, but there is no harm in creating the symbol first as long as
you understand the warning.

 7. Save the changes to your Flash file.

That’s it for the Flash file for now. Next you need to create the Ball class that Flash was looking for and couldn’t find.

Creating the Ball Class
Ball is going to be an external class file. It will be similar in structure to the Document and Symbol classes you created
earlier, but a little more complex since you want the ball to bounce around the screen and not just say “hello.”

 1. Create a new ActionScript file and save it with the name Ball.as in the project directory.

 2. Enter the following code, which is the code that makes the ball bounce around the stage.
Again, you don’t need to understand it now, but by all means, read through it. ActionScript
is quite readable for a programming language, and you don’t necessarily need to
understand it all to get a rough idea of what a particular piece of code is doing.

package {

 // Import necessary classes
 import flash.display.MovieClip;
 import flash.events.Event;
 import flash.geom.ColorTransform;
 import flash.geom.Rectangle;

 public class Ball extends MovieClip {

 // Horizontal speed and direction
 public var speedX:int = 10;

 // Vertical speed and direction
 public var speedY:int = -10;

 // Constructor
 public function Ball() {
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 // Colors the ball a random color
 var colorTransform:ColorTransform = new ColorTransform();
 colorTransform.color = Math.random()*0xFFFFFF;
 transform.colorTransform = colorTransform;
 }

 // Called every frame
 private function onEnterFrame(event:Event):void {
 // Move ball by appropriate amount
 x += speedX;
 y += speedY;

 // Get boundary rectangle for ball
 var bounds:Rectangle = getBounds(parent);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

18

 // Reverse horizontal direction if collided with left or right
 // of stage.
 if (bounds.left < 0 || bounds.right > stage.stageWidth) {
 speedX *= -1;
 }

 // Reverse vertical direction if collided with top or bottom
 // of stage.
 if (bounds.top < 0 || bounds.bottom > stage.stageHeight) {
 speedY *= -1;
 }
 }

 }

}

 3. Save the changes to your ActionScript file.

 4. Switch back to the bouncing.fla file in Flash CC and test your movie.

If everything has gone as planned, you should see the instance of the Ball symbol that is on the stage bouncing
around, as in Figure 1-12. It might be a surprise to you to see the ball colored differently than what you created on
the stage, but that is due to some code that colors the ball randomly when the movie starts (look for the lines with
ColorTransform). If you do not see this or get an error, check your file against the Ball.as file included with this
chapter’s downloadable files.

Figure 1-12. The ball is bouncing

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

19

You have one ball bouncing around the screen, but that’s not exactly going to set the world on fire, is it? Let’s scale
it up.

Adding More Balls
Your goal is to get 50 balls bouncing around the screen in random directions at random speeds. To do this, you first
need to set up a document class for your bouncing.fla file. Then you’ll create the Bouncing class so that it produces
the Ball instances, places them at random points around the stage, and sets them off at random speeds and in
random directions.

 1. Switch back to the bouncing.fla file in Flash CC and save the file as multibounce.fla.

 2. Delete the single instance of the Ball symbol from the stage. You’re going to create all the
balls using ActionScript, so you don’t need anything on the stage for this example to work.

 3. Create a new ActionScript file and save it with the name MultiBounce.as in the project
directory.

 4. Enter the following code. Again, feel free to look through and see if you can guess what
might be going on here.

package {

 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 public class MultiBounce extends MovieClip {

 // Number of balls to create
 private static const NUM_BALLS:uint = 50;

 // Constructor
 public function MultiBounce() {
 stage.addEventListener(MouseEvent.MOUSE_DOWN, onStageClick);
 }

 // Handler for when stage is clicked, creates balls
 private function onStageClick (pEvent:MouseEvent):void {
 stage.removeEventListener(MouseEvent.MOUSE_DOWN, onStageClick);
 // For each ball to be created
 for (var i:uint = 0; i < NUM_BALLS; i++) {
 // Create new Ball instance
 var ball:Ball = new Ball();

 // Places ball at mouse click
 ball.x = pEvent.stageX;
 ball.y = pEvent.stageY;

 // Specify random speed and direction
 ball.speedX = (Math.random() * 30) - 15;
 ball.speedY = (Math.random() * 30) - 15;

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

20

 // Add new Ball to stage
 addChild(ball);
 }
 }

 }

}

 5. Save the changes to the MultiBounce.as file.

 6. Switch back to the multibounce.fla file.

 7. In the Property inspector, enter MultiBounce in the Document class field, as shown in
Figure 1-13.

Figure 1-13. Setting the document class for the FLA

 8. Save the changes to your Flash file.

 9. Test your movie. The stage should initially be blank. Click the stage, and you should see 50
pretty little balls of different colors bouncing all over the stage (as in Figure 1-9).

CHAPTER 1 ■ GETTING STARTED WITH ACTIONSCRIPT 3.0

21

There’s much more you could have done with this example, but I didn’t want the bells and whistles to get in the way
just yet. What you did create, with only a little code, is a movie that required user interaction, then responded to that user
interaction by creating and animating a large number of graphics that were positioned and colored through code.

ActionScript in Action
I hope the bouncing balls example has done enough to convince you that reading the rest of this book will be
worthwhile. But if it hasn’t, here’s a short list of just some of the cool things that you will be able to accomplish with a
newfound knowledge of ActionScript:

Websites that invite interaction•฀

Online video games•฀

Interactive banners•฀

Dynamic animation•฀

Complex visual effects•฀

RIAs (a •฀ very big category)

If you are using Flash and would like to create any of these, ActionScript is your ticket on the bus, so to speak. It is
a necessary tool for any Flash developer, and, believe me, a lot of fun to play around with. In fact, I envy you a little the
thrill of discovery of what can be done with ActionScript. I remember when I first started out and experimented with
creating an animated star field that you could fly through. I stayed up all night working it out for myself and, in the
end, it was exhilarating as I flew through the stars on my screen. Now if that isn’t a metaphor that belongs in a book on
learning code, I’m not sure what is!

Summary
This was a brief chapter, intended to give you an insight into what ActionScript is and what it can do. You learned the
definition of ActionScript and had a quick look at its history. I explained how Flash and Flex are related, and how both
of them make use of ActionScript 3.0 to provide interactivity and advanced features. Finally, you created some basic
ActionScript code to demonstrate the various ways in which you can integrate ActionScript into your Flash projects.

You have already begun your journey toward becoming a full-fledged ActionScript developer. In the next chapter,
you’ll learn about the fundamental building blocks of the ActionScript 3.0 language. It’s going to be a wild ride, so if
you want to grab a coffee, be sure to put it in a mug that won’t spill, then head on back to your computer and the book
for some exciting chapters ahead.

23

CHAPTER 2

ActionScript 3.0 Fundamentals

This chapter covers how to do the following:

Store information in your projects using variables•฀

Choose the right data type for the information you need to store•฀

Create constants to store information that never changes•฀

Perform arithmetic and make decisions•฀

Perform a set of actions repeatedly by using loops•฀

Separate common parts of code into functions•฀

Comment your code so that you and others know what it does•฀

In this chapter, you will learn about the basic fundamental building blocks of the ActionScript 3.0 language.
I’ll warn you in advance that this chapter is probably the most challenging chapter in the whole book for new

programmers because there is a wealth of information covered, but it is also the single most important chapter if
you’re new to the ActionScript 3.0 language. The knowledge you pick up in this chapter will be used throughout the
rest of the book and in every single project you work on as a full-fledged ActionScript developer. I’ll try my best to
make the process as fun and as light-hearted as possible, but you’ll need to put in a bit of effort, too.

Note ■ If you’ve already dabbled with a bit of basic ActionScript 3.0, you might just want to skim this chapter or skip it

completely. It will always be here if you get stuck later on and need a little refresher.

It might help to imagine that reading this chapter is like learning to walk. It will be hard work and even confusing
at times, and you’ll fall down occasionally, but once you’ve mastered the basics of walking you can go anywhere you
want. After you’re mobile, you can then turn your attention to all the other fun stuff—such as examining the contents
of the cookie jar that was hitherto out of reach—and the hard slog will have been worthwhile.

All right, that’s enough of the metaphors—on with the show!

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

24

Statements and Expressions
Everything in ActionScript (and really any programming language) can be broken down into statements. Just as
a book is a series of sentences strung together, so too is a program a series of statements. Here is one statement in
ActionScript:

var age:Number = 30;

Here is another:

trace(age);

And one more:

if ((year - age) < 2000) {
 trace("You were born last millenium.");
}

All three of these statements look different, but they have a couple of things in common. First, and perhaps most
obvious visually, is that they all terminate with a semicolon. This is known in ActionScript as a statement terminator,
which lets the ActionScript compiler know that the statement is complete, just like a period at the end of a sentence.
Although this is not necessarily required, it is good form and best practice, and from here on out I’ll pretend that it is a
requirement as I present the examples. No one likes a sentence that doesn’t end with the proper punctuation!

The second common factor with the preceding statements is that they all form a complete command, or even
a number of commands, like an instruction for ActionScript. The first line creates a number variable and gives it a
value. The second line of code sends the value to be displayed in the Output panel in the Flash IDE or to the Console
in Flash Builder. The third line of code traces a series of characters to the Output panel or the Console, but only if
a certain condition is met. Don’t worry about understanding any of this code now; just know that a statement is a
complete instruction in ActionScript and you’ll be all set.

An expression, on the other hand, is not a complete instruction; it’s a value (or values) that can be evaluated to
determine a single resultant value. For instance, two simple expressions follow:

true
1

Expressions can be as simple or as complex as you need them to be, but in the end, Flash will determine their
single value upon evaluation. As a final example, consider the following lines:

var price1:Number = 55;
var price2:Number = 10;
trace(price1 > price2);

The result is true.
In this case, the expression is actually line three of the code that evaluates price1 and price2. Using the trace

statement, you can see that the expression evaluates to true because price1 is a greater amount than price2.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

25

Introducing Variables
The next step on your journey is to take a look at the humble variable. If you’ve ever written any kind of program
before, you probably already know that a variable is a named container in which you can store information to be
used at a later stage in the program. The type of information you can store in an individual variable is governed by the
variable’s assigned data type. If you didn’t know that before, well, you do now.

Before you can store any information in a variable, you first have to create or declare it. Let’s jump right in at the
deep end and take a look at a variable declaration:

var bookTitle:String;

OK, that’s not too scary, but what does it all mean? You start with the var keyword, which tells ActionScript that
you’re about to create a new variable. Next is the variable name or identifier, bookTitle, which is a unique name
for this variable. You can use this identifier in future code to read or change the value of the variable. Note that
ActionScript is a case-sensitive language, so booktitle and bookTitle are two completely different variables. If the
name looks altogether odd to you, squished together like that into a single word with odd capitalization, know that
there are many ways you can name a variable as well as a few limitations and requirements. A section is coming up
that dives more fully into naming conventions, so jump ahead if you need to or just go with it for the next page or so,
and all your questions will be answered.

Finally, you have the data type of the variable, String, which is separated from the identifier by a colon character.
When you specify a data type, you’re telling Flash what kind of information can be stored in this variable. In this case,
the variable is designed to hold String data, which is a character or sequence of characters such as a person’s name,
a stanza from a poem, or even the entire text of War and Peace if that’s your bag. I’ll talk more about data types in a few
pages’ time.

Assigning a Value to a Variable
Now that you have a variable, you can assign it a value by writing the variable name, followed by a single equals sign,
which is known as the assignment operator, and then the value:

var bookTitle:String;
bookTitle = "Foundation ActionScript 3.0";

This tells the Flash Player to take the string "Foundation ActionScript 3.0" and store it in the bookTitle
variable you created earlier. Simple.

Notice that the string value is enclosed in double quotes? This is how you can tell that a particular sequence of
characters is a string literal, and not a bunch of program statements that it should try to make sense of and execute.
You can actually use either single or double quotes; the only rule is that the closing quote must be the same as the
opening quote.

A little trick you can use to cut down the number of lines of code in your ActionScript documents is to assign
a value to a variable at the same time as when you create it. Using this technique you can cut the previous example
down to just a single line of code:

var bookTitle:String = "Foundation ActionScript 3.0";

Of course, this is possible only if the value is known at the time of the variable declaration. Not only does this
require less typing than the previous example—the value of which is directly proportional to the amount of code you
write—but it’s also easier to understand. You know what the value of your variable is as soon as it is created because
you explicitly told Flash what you want that value to be.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

26

Retrieving the Value of a Variable
After you create a variable and give it a value, you want to be able to make use of that value at some point later in your
code. Let’s face it—if you couldn’t use the value of a variable once it’s been set, variables would be about as useful as a
chocolate fireguard (and nowhere near as tasty).

Thankfully, you can get the value of a variable just by using its name in a statement. How that value is used
depends on the nature of the statement in which it appears. This might seem a bit confusing, so let’s look at an
example:

var bookTitle:String = "Foundation ActionScript 3.0";
trace(bookTitle);

Here you added one statement to the earlier example. You can see the bookTitle variable there, but I can almost
hear you asking, “What’s the trace stuff all about?” trace is the name of a function that is part of the Flash framework,
and its sole purpose is to display information in the Output panel in the Flash IDE or the Console window in Flash
Builder. (From here on out, I’ll just refer to the Output panel for a trace—readers who are testing in Flash Builder,
please assume that this refers to the Console in that application as well). I don’t want to dwell on functions here
(they’re covered in more detail later in the chapter), except to say that they are reusable pieces of code that can be
invoked using the name of the function followed by parentheses (or rounded brackets for those of you who didn’t
swallow a dictionary), passing the function any information it needs to do its thing within the parentheses.

To test this small fragment, the easiest thing to do is to put it directly in your timeline. However, because Flex
users don’t have a timeline, let’s create a couple of files that use a Document class so that both Flash and Flex users can
try out the code.

Note ■ If you are using Flash Builder, you can follow along with these steps, except instead of creating a FLA file and

compiling through Flash you can create a new ActionScript project in Flash Builder and use the document class code that

follows as the default application class. If you’re uncertain about how to create an ActionScript project in Flash Builder

and test your applications, please consult the application’s documentation. I’ll assume a similar proficiency for Flex users

as for Flash users and concentrate not on the applications, but on the ActionScript code.

 1. If you haven’t created a project directory for Chapter 2, you should do so now. You can
place this project directory in the same place where you stored the Chapter 1 project
directory.

 2. Create a new ActionScript file and save it into the new Chapter 2 project directory as
ActionScriptTest.as. Enter the following code:

package
{

 import flash.display.MovieClip;

 public class ActionScriptTest extends MovieClip
 {

 public function ActionScriptTest()
 {
 init();
 }

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

27

 private function init():void
 {
 // chapter code will go here
 }

 } // end class

} // end package

 For the rest of this chapter, you should be able to reuse this same file, just replacing the
comments within the init() method. Don’t yet know what comments or the init()
method are? No worries (it’s just the beginning of the book). That means replacing the
following line with the code presented in each section:

// chapter code will go here

 3. For this first example, replace the comment line with the following bold code. Just this
once, I present the entirety of the code, but from here on out, you should know the section
of code to replace in order to run these tests:

package
{

 import flash.display.MovieClip;

 public class ActionScriptTest extend MovieClip
 {

 public function ActionScriptTest()
 {
 init();
 }

 private function init():void
 {
 var bookTitle:String = "Foundation ActionScript 3.0";
 trace(bookTitle);
 }

 } // end class

} // end package

 4. Now create a new Flash document and save it as actionScriptTest.fla into the same
directory as the ActionScript file. In the Property inspector for the document, type
ActionScriptTest in the Document class field, as shown in Figure 2-1.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

28

 5. If you test your movie now, you should see the Output panel pop up with the name of this
book, as shown in Figure 2-2.

Figure 2-1. Entering the document class for the test file

Figure 2-2. Output results from the ActionScriptTest class file

Well done! You now can create a variable, set its value, and retrieve it again. Using variables is actually a major
part of programming, so although it might seem fairly insignificant, it will be something you use over and over.

Naming Your Variables
Before you set off to create variables with careless abandon, I would be failing in my duty as your guide if I didn’t talk
to you about how to name your variables. There are three things you need to keep in mind when dreaming up names
for the variables in your applications—one is required, and the other two are recommendations born out of decades
of experience from the entire development community.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

29

The first thing to keep in mind is that ActionScript needs to understand what you’ve entered as a valid variable
name. There are a few rules you should follow when constructing your variable names if you don’t want Flash to throw
an error and refuse to publish your movie.

A variable name must

Consist only of letters, digits, the underscore character, and the dollar symbol•฀

Not start with a number•฀

Not be a reserved word•฀

Be unique•฀

A reserved word is a name that has special meaning in the ActionScript 3.0 language, such as var or String.
You can find a complete list of reserved words in Adobe’s ActionScript documentation.

Make sure that your variable names bear some relation to the information that you intend to store in them.
If you’re creating a variable to store the name of your favorite computer game, call it favoriteComputerGame, not
thingamabob. You’ll be grateful you did this when you update your code in four months’ time and don’t have to spend
an hour trying to figure out what purpose a variable named doohickey might serve. Trust me; I’ve been there.

Finally, your variable names should be consistent. ActionScript is a case-sensitive language, so currentbalance,
currentBalance, and CURRENTBALANCE refer to three different variables. So you should choose a naming convention
for your variable names and stick to it throughout the project (if not across projects).

Although you’re free to invent your own, there are many existing naming conventions, the most common of
which (at least in the ActionScript world) is called camel case.

In camel case notation, the second letter of each word in a variable name is capitalized. When several words are
joined together to make one variable name (and if you squint real hard) you see a camel-hump-like effect created by
the capital letters:

myFavoriteColor

I’ll be using this variant camel case notation for variable names throughout this book because it is the most
common form of notation for ActionScript developers, and Flash and Flex use this notation for their supported
ActionScript classes, but feel free to pick your own style if you prefer something else. It doesn’t matter which notation
you use as long as it is consistent throughout your code.

If you are working on a large project across many developers, it is always a good idea to agree on a naming
convention before you start your project so you’re not hindered by guessing what the variable is referencing or
whether it is a property.

Fully capitalized words, such as EGGS or BACON, are normally used for declaring constants to show that they are
different from a normal variable. Constants will be covered in more detail a bit later in the chapter.

Note ■ Many companies have an in-house coding standards document with a section on variable naming conventions

that all developers should follow. This makes it easier for multiple developers to work on the same project without having

to worry about which naming convention the other developers are using. If you’re writing code within a company, see if it

already has a designated naming convention.

Understanding Data Types
ActionScript 3.0 has a small number of basic data types—known as primitive data types—that you can choose from
to store different types of information in your variables. All other data types in ActionScript 3.0 are made up from
these primitive data types, so I’ll spend some time discussing what they are and how they are used.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

30

Note ■ In addition to the more complex data types (which you’ll learn about as you work your way through the rest of

this book), you can create your own data types from these primitive building blocks. If that sounds like fun to you, you’re

in luck because that’s one of the things you’ll be looking at in the next chapter.

The primitive data types are listed in Table 2-1, along with a description of information they are designed to represent.

Table 2-1. ActionScript 3.0 primitive data types

Data type Represents

String A single character or sequence of characters

Boolean true or false values

int Positive and negative whole numbers

uint Positive whole numbers

Number Positive and negative whole and real (fractional) numbers

* Unassigned data type

Note ■ If you’re wondering why int and uint are all lowercase, and the rest start with an uppercase letter, you’ll

have to spend some quality time reading the ECMAScript standard, which ActionScript complies with. int and uint

are actually low-level numeric types that are subtypes of Integer (which does not exist in ActionScript). The lowercase

denotes this and also follows syntax shared by languages such as Java, C++, and C#. Inconsistencies like this within the

language seem designed to make the jobs harder, but thankfully there are so few primitive data types that it’s relatively

easy to remember which ones start with a lowercase letter. And with code hinting and code completion there to help you

out, most of the time you don’t have to type them out in full, anyway!

If you try to store a different type of information in a String variable, such as a person’s age, you would get an error

when you try to publish your Flash movie. This is known as a compile-time error, which is the compiler’s handy way of

telling you something needs to be fixed in the code

You already used the String data type, so I won’t go over that one again, but the others are quite interesting, so
you’ll spend some time looking at them in more detail.

Boolean Data Type

The Boolean data type is designed to represent values of either true or false. If you were to create an ActionScript
program to simulate a room, whether the light in that room was on or off could probably be stored as a Boolean value
(let’s not dwell on dimmer switches for the moment).

var lightsOn:Boolean = true;

There isn’t much more to say about Boolean variables, except that they are commonly used to make decisions in
your code based on one of two states, as you’ll discover later in the chapter.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

31

Numeric Data Types

The ActionScript 3.0 language has three numeric data types: int, uint, and Number. ActionScript 2.0 had only the
Number data type in which to store numerical data, something that was both a blessing and a curse. It was a blessing
because you didn’t have to worry about which numerical data type you should use, and a curse because its flexibility
came at a cost: it used twice as much memory as necessary if all you wanted to store were whole numbers. Whether
that was a real issue depended on how many variables you had in your code, but it always felt a little wasteful to me.

To counter this problem, ActionScript 3.0 introduced the int (short for integer) and uint (short for unsigned
integer) data types, allowing you to create variables to store whole numbers without wasting memory. If you’re
creating a program to track how much money is in your bank account, you’ll still have to use a Number variable to
keep track of your balance because the money will require two decimal places, but you might use a uint to store the
number of transactions because they will be whole numbers. Similarly, if you were creating a darts game, you would
use int instead of Number variables to keep track of the scores.

Unfortunately, choosing the right data type isn’t just about whether you want to store positive or negative
numbers, or even whole or real numbers; it’s also about how big a number you’re trying to store.

In Table 2-2, you can see the minimum and maximum values that can be stored in the new integer data types.

Table 2-2. Minimum and maximum values for the integer data types

Data type Minimum value Maximum value

int –2,147,483,648 2,147,483,647

uint 0 4,294,967,295

As you can see (well, if you do a little math in your head), both can store the same amount of numbers, but
although uint, being unsigned, stores only positive integers, int stores both positive and negative integers. The result
is that the maximum number a uint can store is double that of an int, but it can’t store negative numbers. So you
have to choose wisely and be sure which values you have to store before deciding on the data type of a given variable.

Note ■ What happens if you try to store a negative number in a variable of type uint or a real number in an int? Get

down with your inner geek and try it out—half the fun of learning something new is experimenting.

What happens if you want to store a number higher than 4,294,967,295 or a negative number less than
–2,147,483,648? You have to switch to using a Number variable instead. I didn’t list the values for Number because
they’re so gargantuan that I’d wear out the keyboard typing all the digits. If you really want to know the minimum and
maximum values (and if you dig scientific notation), enter the following lines of code into a new movie and see what
you get in the Output panel:

trace("Minimum: " + Number.MIN_VALUE);
trace("Maximum: " + Number.MAX_VALUE);

If you give this a go, you’ll see that Number can handle some seriously big numbers. If you’re feeling lazy, imagine
the number 179 with 305 zeroes after it (in both positive and negative directions), and you won’t be far off.

Having to store such a huge range of numbers, it’s inevitable that the Number data type has at least one quirk,
and this one’s a doozy: 0.1 plus 0.2 does not equal 0.3—at least not exactly. Seemingly flying in the face of basic
mathematics, 0.1 plus 0.2 will give 0.300000000000004. The reason for this inaccuracy has to do with the way the
information is represented in the computer’s memory and has caused many developers to spend all night searching
for bugs in their code. Don’t think ill of ActionScript, though; this problem plagues most modern programming
languages including JavaScript, PHP, Python, and Ruby.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

32

Using Constants
Constants are similar to variables in that they have an identifier, a type, and a value, but their value cannot be
changed once they have been set. Constants are declared using the const keyword:

const DAYS_PER_WEEK:uint = 7;

As illustrated in the preceding line, it is an established convention that the names of constants are specified in all
uppercase letters, and words are separated with an underscore. This makes it easy to distinguish between constants
and variables at a glance wherever they are used.

Note ■ It is also a common convention to have constants be static properties of a class, but because I haven’t covered

classes or properties yet, I’ll save further discussion until a later example.

Deciding what should be a constant and what should be a variable can sometimes be tricky, but any value that
is not to be changed at runtime and will be consistent throughout the life cycle of the application is usually a good
candidate for a constant. I often separate this out even further, keeping values that will always be the same each time
a program is run as constants, while making into variables those values that can change each time a program is run
(even if they are consistent during a single session). For instance, because DAYS_PER_WEEK in a calendar will always
be seven (even if you display less), it would make a good constant. However, currentYear (even though it would be
consistent through a single session—unless the program was run on New Year’s Eve—but let’s not quibble) would be
better served as a variable value.

One common use for constants is to replace magic values in your code to aid readability, particularly if they are used
in more than one place in your code. Magic values are hard-coded values within larger statements in which the purpose
of the value or how it was derived may not be immediately apparent. For example, take a look at the following code:

var totalAmount:Number = amount + (amount * 0.175);

This example performs some simple arithmetic (which I’ll cover in a moment) to calculate the total cost for a
hypothetical shopping basket full of goodies. You might be able to deduce that the number 0.175 represents the tax
rate as a decimal fraction, but you’d know that only by looking at the whole statement. It’s much better to replace this
magic number with a constant:

const TAX_RATE:Number = 0.175;
var totalAmount:Number = amount + (amount * TAX_RATE);

Now that’s much more readable. It also means that if you ever need to change the tax rate, you’d have to change
only the line in which the tax rate constant is defined instead of having to search for every occurrence of the magic
number.

Performing Operations
No, you haven’t accidentally replaced your ActionScript book with a medical text. Operations in programming are
expressions evaluated using a set of common operators. You will be familiar with many of these operators from
the world of mathematics, and their functionality remains mostly consistent with what you learned in your early
schooling. Let’s take a look at the common operators used for arithmetic before I discuss some of the unique operator
usage with programming.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

33

Arithmetic Operators
You’ve already seen a few examples of how to do basic arithmetic in the previous section. In ActionScript (or in any
programming language, in fact), the symbols used for arithmetic are referred to as arithmetic operators. Table 2-3
describes the complete set of arithmetic operators in ActionScript 3.0.

Table 2-3. Basic arithmetic operators

Operator Description

+ Addition

- Subtraction

* (asterisk) Multiplication

/ Division

% Modulo

The function of most of these arithmetic operators should be familiar to you; even if the symbols are slightly
different, they’re essentially the same ones you learned to use at school when you were eight years old. Each of these
operators requires two operands arranged in the following way:

[operand 1] [operator] [operand 2]

Examples of each of the operators using the same operand values follow:

trace(10 + 4);
trace(10 - 4);
trace(10 * 4);
trace(10 / 4);
trace(10 % 4);

Test this code in a new Flash movie, and it will (rather unsurprisingly) give you the following in the Output panel:

14
6
40
2.5
2

Note ■ The one that may seem a little quirky (and the one I hadn’t heard of before I started programming) is the modulo

operator. This operator gives you the remainder after the second operand has been divided into the first operand as many

times as possible. In the preceding example, 4 goes into 10 twice with 2 left over, so the result of the expression is 2.

Because each of these operators requires two operands, they are all known as binary operators. There are also
unary operators (one operand) and even a ternary operator (three operands). I’ll discuss unary operators shortly,
but will leave the more complex ternary operator until later in this book when you are more familiar with the basics.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

34

You can string multiple arithmetic operators together to form complex expressions:

trace(10 / 2 * 5 + 4 % 3);

Which part of the overall expression is evaluated first? The value in the Output panel after running the previous
line of code is 26, but I bet that (like me) you’d have to work hard to figure out why just by looking at the expression
itself. If you want to know what you can do about it, read on.

Specifying Precedence
The order in which the arithmetic operators are evaluated is also the same as you probably learned in school. In the
United Kingdom, children learn the BODMAS acronym, which gives the order in which arithmetic operators should
be evaluated: brackets, orders, division/multiplication, addition/subtraction. In the United States, this is known as
PEMDAS, which uses different terminology for the same thing: parentheses, exponents, multiplication/division,
addition/subtraction.

Why is this important? ActionScript 3.0 follows the same basic rules when evaluating arithmetic expressions. This
means that the following expression will actually evaluate to 15, not 10, because division is evaluated before addition:

trace(10 + 10 / 2);

Thankfully, in ActionScript (as in real-life arithmetic) you can use parentheses (or brackets) to explicitly specify
the order in which the various arithmetic operators in the expression are evaluated:

trace((10 + 10) / 2);

In this case, it was necessary to use parentheses to get the desired result, but I advise always using parentheses
in your expressions, even if they would work as intended without them. Doing so makes it much easier to see what’s
going on without having to remember the proper evaluation order for the arithmetic operators.

Using your newfound knowledge of precedence and employing the goal of using parentheses to make
precedence clear, you can rewrite the complex expression you met earlier to make it clearer:

trace(((10 / 2) * 5) + (4 % 3));

I don’t know about you, but I can see exactly what’s going on there now. Ten divided by 2 is 5, which when
multiplied by 5 gives 25. Four modulo 3 is 1, which when added to the 25 gives 26. Hurrah!

String Operations
One of the arithmetic operators in the previous section is also used with strings (you might hear this referred to as
the operator being overloaded, meaning that it has multiple functions based on its operands), so you might see the
following in code:

var fullName:String = "John " + "Doe";

Here, the plus sign is used to join together, or concatenate, two strings to form a single string, which is then
assigned to the fullName variable. This string functionality is unique to the plus operator—you cannot use the other
arithmetic operators with strings, such as trying to subtract one string from another.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

35

Unary Operations
As stated earlier, a unary operation involves a single operand, not the two operands used with arithmetic operators.
The most common unary operators are listed in Table 2-4.

Table 2-4. Unary operators

Operator Description

! Logical negation

- Negative

+ Positive

++ Increment

-- Decrement

The two operators you are probably familiar with are the positive and negative operators. The negative operator
changes positive values to negative and negative values to positive, as demonstrated in the following example:

var number:int = 10;
trace(number);
number = -number;
trace(number);
number = -number;
trace(number);

It produces this result:

10
-10
10

The positive operator, which is equivalent to multiplying a number by a positive one, does not really have much
effect in its operations and is more useful for making code more legible by specifying clearly that a number is positive.

Another unary operator that is often used is the logical negation operator (!). This operator works with Boolean
values and, similar to how the negative operator works with numbers, causes true values to become false and false
values to become true. When is this useful? Often, you might have Boolean variables or functions named based on
positive assertions, such as isSignedIn or editAllowed(). It makes more sense logically when reading code to have
these positive assertions as opposed to negative assertions (isNotSignedIn, for instance). However, if you need to
check whether someone wasn’t signed in before performing some necessary action, the easiest way is to use the
logical negation operator on the isSignedIn variable. You’ll learn more when I cover conditional statements later in
this chapter, but the basic syntax follows:

if (!isSignedIn) {
 statements
}

This can be read as follows: “If the user is not signed in, run these statements.”
The other unary operators listed include the increment and the decrement operators. They are most useful in

loops, so I’ll leave their discussion until that section is discussed.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

36

Introducing Arrays
Variables and constants work well, but sometimes the information you need to store is better organized in an Array
object. An Array is one of the more complex data types I mentioned earlier, and it is designed to store sequential
information in a more convenient fashion than using a series of variables. An example might help to make this clear.

Suppose that you’re creating an address book application and you need to store the names of all your contacts.
You could create several variables—contactName1, contactName2, contactName3, and so on—but you would need to
know how many entries there will be in the address book in advance to create the correct number of variables. Instead
of going through all that pain, you could use an Array to store all the contact names in a single variable, in which each
individual contact is kept separate but accessible. So contactName might be an array, or list, of values, and you could
then use special Array syntax to retrieve individual contacts from this list.

If you are still having some trouble understanding what an array is, it might help to imagine an array as a filing
cabinet in which you can store only one item in each drawer. Imagine that each drawer in this filing cabinet holds
the information about one of your contacts (you collect a lot of data on your contacts—you’re paranoid). So although
you have multiple contacts, the data for all these contacts is stored in single filing cabinet. If you want to refer to
the collection of contacts, you could point to the filing cabinet as a single entity and say, “That is my collection of
contacts.” But if you need information on a single contact within that collection, you could refer to a single drawer and
access that information (see Figure 2-3).

Figure 2-3. An array is like a filing cabinet that stores something in each drawer

There are several ways to create an Array object. The simplest is to use the Array constructor using the new
operator:

var myArray:Array = new Array();

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

37

The new operator is something you will become familiar with very quickly because it is the way to create almost
any type of ActionScript object. You simply place it before the name of the object you want to create an instance of,
followed by parentheses (this is actually a class’s constructor, but I’ll get to that in the next chapter) and—voilà!—you
get your object.

You can also pass some values within the parentheses (called parameters) to give special instructions to or
populate your array. For instance, if you pass in a number, it tells the array that it will be of a certain length, meaning
that it will contain a certain number of items in its list:

// an array with five "slots" ready to hold data
var myArray:Array = new Array(5);

If you pass in something other than a number or if you pass in more than one value, these will be the initial values
stored in the array:

// an array holding a single string initially
var charArray:Array = new Array("one");

// an array holding five numbers
var numArray:Array = new Array(5, 23, 35, 52, 100);

The way you most often create an array, however, is by using an array literal, which is a comma-separated list of
values enclosed in square brackets:

var myArray:Array = [value1, value2, value3, ... valueN];

Continuing the contacts collection example, creating an array to hold contact names might look like this:

var contactNames:Array = ["Rod", "Jane", "Freddy"];

If you want to find out the contents of an array, you can just pass it to the trace() function:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames);

This will give you a comma-separated list of all the values in the array:

Rod,Jane,Freddy

You can also tell how many values are in the array using the Array object’s length property. I’ll talk more about
objects and their properties in the next chapter, so don’t worry if seems confusing. All you need to know is that objects
can have properties, which are preassigned variables specific to the object, and you can access the properties of an
object using dot notation. To get the property of an object, specify the name of the object, followed by a period, and
then followed by name of the property.

If you work this into the example, you can find out how many elements are in the contactNames array:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames.length);

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

38

The values in an array are stored sequentially, by number, with the first value at index 0, the next at index 1, and
so on. You can read the individual values from an array using subscript notation, which is a fancy way of saying you
put the index of the desired value between square brackets after the variable name. Using subscript notation, you
could change the previous example to output only the second contact name in the address book:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames[1]);

If you test the preceding code, you should see Jane in the Output panel. If you were expecting to see Rod,
remember that the index of an Array object starts at zero—in geek parlance, Array objects are zero indexed.

Manipulating Arrays
One of the benefits of arrays over sequentially named variables is that an array can store a nearly unlimited number of
values. Once you have created an array, you can update or add a value using subscript notation in the same way you
would set a normal variable’s value.

For example, if you want to update Rod’s name to Rodney, you could do this:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
contactNames[0] = "Rodney";
trace(contactNames);

Running the preceding code would now produce the following in the Output panel:

Rodney,Jane,Freddy

Adding a value to the array is also easy to do. Actually, you have several ways to add a new value to an array:
you can do so using subscript notation or you can use one of the Array object’s many insertion methods. One of the
easiest to use is the push() method, which adds the value to the end of the array. For the contactNames example, the
following two statements are identical:

contactNames[3] = "Bungle";
contactNames.push("Bungle");

Either of the preceding statements results in the string Bungle being added as the fourth element in the
contactNames array:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames);
contactNames.push("Bungle");
trace(contactNames);

So that’s how you update existing values and add new ones to an array, but how do you remove them? Again, you
have several choices, depending on your desired result. If you simply want to clear a value in an array, you can use the
delete keyword:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames);
delete contactNames[1];
trace(contactNames);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

39

If you trace the value of the contactNames variable after using the delete keyword on one of its elements, you’ll
see the following in the Output panel:

Rod,Jane.Freddy
Rod,,Freddy

Pay very close attention to this output—notice that although Jane has been deleted, there is still a place reserved
for her in the array, as indicated by the two commas between Rod and Freddy in the output. So delete clears a value
but leaves its place in the array.

If you want to obliterate Jane completely (poor Jane—what did she ever do to you?), the easiest way is to use the
splice() method of the Array object. This method removes a number of items from the specified position in the array
and (optionally, although you won’t be using it in this case) inserts one or more values in their place.

If you replace the delete statement with a call to the splice() method instead, you can completely remove Jane
from the contactNames array:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
trace(contactNames);
contactNames.splice(1,1);
trace(contactNames);

This can be read in English as follows: “Starting at index 1, remove one element from the contactNames array.”
That’s exactly what it does.

Running the example now produces the following result in the Output panel:

Rod,Jane,Freddy
Rod,Freddy

There, Jane is completely gone. I don’t know what she did to fall out of favor with you, but it’s now as though you
tore the page from your address book instead of just scribbling her details. Remind me not to get on your bad side.

That’s just about all you need to know about arrays for the moment. There are quite a few more methods
for manipulation if you care to peruse the ActionScript documentation, but I’ll introduce them as needed for the
examples. If you can’t get enough, the good news is that you’ll be revisiting them shortly when you look at looping a
little later in the chapter. Loops and arrays go together like birds of a feather—or something like that, anyway.

Vectors vs Arrays
Vectors are typed arrays, which help to assure your collection is type safe. Using the Vector class is almost identical to
arrays, as it includes the same methods as the Array class.

Vectors provide performance improvements over arrays through faster read and write access. Element access
and iteration through the collection is faster. They enable runtime range checking (or fixed-length checking). In strict
mode, the compiler can identify data type errors.

The main difference between vectors and arrays are how they are instantiated. For example, using the new
operator to create a vector of strings:

var myVector:Vector.<String> = new Vector.<String>();

Like arrays, initial values may be passed either using the Vector.<T>() global function or new operator. The
following two statements are equivalent:

var contactNames:Vector.<String> = Vector.<String>(["Rod", "Jane", "Freddy"]);
var contactNames:Vector.<String> = new <String>["Rod", "Jane", "Freddy"];

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

40

Also similar to arrays is the ability to specify the number of items the vector will store by passing a number to the
constructor. By specifying the initial length, that number of elements will be created and populated with the default
value appropriate to the base type (or null for reference types).

var myVector:Vector.<int> = new Vector.<int>(2);

Vector length can be fixed, meaning you cannot modify the total number of elements it can hold. Once a vector
length is fixed, any operation that modifies length throws a RangeError at runtime. In memory, vectors are stored as
a single unbroken block of data; so, preallocating their size increases performance instead of the vector growing and
reallocating additional memory.

Length can be fixed when the vector is created by setting the length and fixed parameters to true in the
contructor:

var myVector:Vector.<int> = new Vector.<int>(2, true);
myVector.push(1);
myVector.push(2);
myVector.push(3); // RangeError – the Vector can only hold two items

The above code will throw a RangeError:

RangeError: Error #1126: Cannot change the length of a fixed Vector.

Or, you can set length to be fixed during runtime:

var myVector:Vector.<int> = new Vector.<int>();
myVector.push(1, 2, 3, 4, 5);

myVector.fixed = true;
myVector.push(6); // RangeError – the Vector length is now fixed

Vectors may be defined using many data types for the variables they hold. They may hold primitive values such
as String, Number, int, Boolean; or, complex values such as Object, Date, XML, or custom classes. Once declared,
assigning an incompatible type throws a compiler error. For example, if a vector is declared with a type of int, adding
any other data type that cannot be converted to int will throw an implicit coercion error:

var myVector:Vector.<int> = new Vector.<int>();
myVector[0] = "one";

The above code will throw an implicit coercion error because the Vector type is defined as int. Only integers
may be added to the collection. Trying to add a string will result in the following error:

1067: Implicit coercion of a value of type String to an unrelated type int.

Multiple data type values can be added to a Vector if they can be implicitly converted, such as adding a class
that derives from the destination class. For example, if you declare a Vector of type DisplayObject, any subclass that
inherits DisplayObject as a base class can be added:

var myVector:Vector.<DisplayObject> = new Vector.<DisplayObject>();
myVector[0] = new MovieClip();
myVector[1] = new Sprite();
myVector[2] = new Shape();

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

41

In the above example, a MovieClip, Sprite, and Shape were added to the vector because they all extend
DisplayObject.

Understanding Type Checking
As a dynamically typed language, ActionScript 3 has runtime type checking; however, in strict mode, type checking
occurs at both compile time and runtime. Beyond performance improvements, understanding data types helps as
applications grow in size and increase complexity. Code becomes more predictable, errors are discovered during
compilation, and applications become more stable.

Note ■ Data typing is the ability to give both the compiler and Flash Player information about the type of data stored in

memory. By providing this information, the tools can check to ensure your code doesn’t perform illogical operations, such

as trying to assign the word “help” to a date object. Further, based upon this type information, Flash Player can make

more intelligent decisions leading to faster execution of your program.

Type checking can occur at either compiler time or runtime. Dynamically typed languages offer tremendous
flexibility when you structure your code, but at the cost of allowing type errors to manifest at runtime. Statically typed
languages report type errors at compile time, but at the cost of requiring type information be known at compile time.

Making Decisions
Up until this point, all the code you’ve written has been of a sequential nature: program statements that execute one
after another until the end of the code is reached. In your ActionScript projects, there will be points at which you want
to decide to do one thing or another based on some condition. For example, if a user has accidentally entered his age
as 234 instead of something more sensible like 23, you’d want to show him a nice error message (or ask him what his
secret to longevity is).

To allow for this kind of scenario, you need to be able to make decisions in the projects. Thankfully ActionScript
provides a number of solutions to this problem: the decision-making, or conditional, statements.

Introducing the if Statement
The simplest conditional statement in ActionScript is the if statement. Similar to its namesake in the English
language, you can use the if statement to qualify that a particular block of ActionScript is executed only if a given
condition is true.

An if statement takes the following form:

if (condition) {
 statements
}

If the condition (which is a Boolean expression) evaluates to true, the statements inside the following block will
be executed. If not, they’ll be skipped. The code block is determined by the opening and closing curly braces, if there
are multiple lines of code to be run within the conditional. Fancy an example?

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

42

trace("Before");
if (true) {
 trace("Condition is true");
}
trace("After");

If you enter the preceding example and then run it, you’ll see the following in the Output panel:

Before
Condition is true
After

The condition portion of the if statement evaluated to true, so the trace() statement within was executed.

Note ■ In practice, the condition of an if statement is more complex than the example shown previously. You’ll look at

how to build more complex condition expressions later in the chapter.

Suppose that you now change the example so that the condition evaluates to false:

trace("Before");
if (false) {
 trace("Condition is true");
}
trace("After");

You can see that the trace() statement within the if statement is skipped:

Before
After

You can spice things up a bit by adding an else block to the if statement. The else block tacks into the end of the
closing brace of the if statement like this:

if (condition) {
 statements
} else {
 statements
}

The statements in the else block are executed only if the condition in the if statement is false. If you
incorporate this into the previous example, you see a nice message in the Output panel either way:

trace("Before");
if (false) {
 trace("Condition is true");
} else {
 trace("Condition is false");
}
trace("After");

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

43

It produces the following output:

Before
Condition is false
After

I cheated slightly with the preceding examples by hard-coding either true or false. The real power of the if
statement becomes apparent when you use a Boolean expression in the condition.

Forming Boolean Expressions
A Boolean expression is one that evaluates to either true or false. Indeed, the keywords true and false are
themselves the simplest form of Boolean expressions. More complex Boolean expressions are formed using
conditional or equality operators. (Table 2-5 contains a list of the most common.)

Similar to the arithmetic operators you saw earlier, these operators require an operand on either side:

[operand] [operator] [operand]

Each compares the left operand with the right operand to produce either a true or false answer:

10 > 4

The preceding line could be read as “10 is greater than 4.” A Boolean expression can be either true or false
(in this case, it is true). The great thing is that Flash takes care of determining whether the expression is true or false.
So an expression (20 < 10), which can be read “20 is less than 10,” is evaluated by Flash to be false. So in the following
lines of code, the variable canBuy is set to true because Flash will determine that the price is less than the cash:

var cash:Number = 20;
var price:Number = 5;
var canBuy:Boolean = (price < cash);

The expression on the right of the last line (price < cash) is evaluated to be (5 < 20), which is further
evaluated by Flash to be a true statement, so a value of true is assigned to the variable canBuy.

Let’s see an example of all the operators in action:

trace(10 == 4);
trace(10 != 4);
trace(10 < 4);
trace(10 > 4);
trace(10 <= 4);
trace(10 >= 4);

This will produce the following output (if you’re unsure about why a particular expression evaluates to true or
false, try reading each expression aloud, replacing the operator with the description from Table 2-5):

false
true
false
true
false
true

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

44

One operator to definitely watch out for is the equality operator (==), which is used to check whether one value is
equal to another. This should not be (but often is) confused with the assignment operator (=), which you have already
seen in action when assigning values to variables. Where this really can bite you is within a line that you expect to be
true or false by using the equality operator, but you instead assign a value, as in the following example:

var age:Number = 30;
if (age = 16) {
 trace("You can drive a car (legally)!");
}
trace(age);

Although you might think that the contents within the if block would be skipped, and the age would be traced as
30, what actually happens is that the expression (age = 16) evaluates to (16) because 16 is first assigned to the age
variable using the assignment operator. Then the resulting value of age is evaluated. Any nonzero number evaluates to
true within a conditional, so the end result is that not only will age be assigned a new value but the contents of the if
block will also be run. Bad news! (Fortunately, Flash gives you a warning when you do this.) The lesson is to always be
aware of the difference between the equality operator and the assignment operator.

Booleans in Conditionals
I mentioned earlier that you might want to show a polite error message if users enter an impossible value for their age.
In more concrete terms, you want to show an error message if the age entered is greater than 130. To do this, you can
construct a Boolean expression to test values and then plug it into an if statement. Looking at the list of operators
available, one of them fits your needs perfectly:

var age:uint = 159;
if (age > 130) {
 trace("I think you made a mistake");
}

Running the preceding example, you should see that the expression evaluates to true, and the trace() statement
is executed:

I think you made a mistake

You can also test that the expression evaluates to true by just tracing the following:

trace(age > 130)

The preceding traces true to the Output panel.
Now that you can see Boolean expressions working in conditional statements, you can add just a little more

to your conditional repertoire, as it were. You already know that you can follow an if conditional with an else
conditional. You can also nest if statements within any other code block, including other conditionals. For instance,
see if you can follow the logic in the following example:

var language:String = "ActionScript";
if (language == "Java") {
 trace("You need a Java book!");
} else {
 if (language == "ActionScript") {
 trace("You're in the right place!");

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

45

 } else {
 trace("I don't know what you're reading.");
 }
}

Notice that another if else conditional is put within the else conditional. This can continue to be as nested
as you need. In the preceding example, though, you can actually employ another conditional variant: the else if
conditional. The following lines have the same result as the ones from the previous example:

var language:String = "ActionScript";
if (language == "Java") {
 trace("You need a Java book!");
} else if (language == "ActionScript") {
 trace("You're in the right place!");
} else {
 trace("I don't know what you're reading.");
}

Even though the last two examples have the same result, it is important to note the difference. When you have
an if else statement, at least one of conditional code blocks will be run because if the first if condition evaluates to
false, the else block will run. However, with an else if statement, a block will be run only if its conditional is met,
which makes it possible that neither block could be run.

Sometimes the nesting of conditionals is necessary; sometimes a series of if else if statements will work;
sometimes you need a combination of both—it all depends on what you need to accomplish with the conditions
at that point in your code. There’s also a handy little structure called the switch statement that will also handle
conditionals, but I’ll roll that out when you need it later in the book (I’m throwing enough at you as it is!).

Using Logical Operators
You can form more complex Boolean expressions by logically joining them together using Boolean operators, which
are listed in Table 2-5.

Table 2-5. Boolean operators

Operator Description

&& AND: evaluates to true if both operands are true; otherwise evaluates to false.

|| OR: evaluates to true if either operand is true; otherwise evaluates to false.

Using these Boolean operators, you can join together two or more Boolean expressions to form a larger Boolean
expression.

For example, let’s say that you want to go to the movies, but only if you have enough money, aren’t working, and
have someone to go with. The conditions under which you would go to the movies could be written as a Boolean
expression using English like this:

have enough money AND not working AND have company

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

46

This can be translated into ActionScript simply if you assume that you have Boolean variables defined for each
part of the decision:

haveEnoughMoney && notWorking && haveCompany

You can then plug this expression into an if statement to see whether you can go to the movies:

var haveEnoughMoney:Boolean = true;
var notWorking:Boolean = true;
var haveCompany:Boolean = true;

if (haveEnoughMoney && notWorking && haveCompany) {
 trace("Go to the movies");
} else {
 trace("Go another time");
}

You can go to the movies only if all three parts of the Boolean expression evaluate to true. You can also revise
the expression to say that you might consider going to the movies on your own, but only if the film is really good. In
English, it would be the following:

have enough money AND not working AND either have company OR good movie

Translated to ActionScript, it looks like this:

haveEnoughMoney && notWorking && (haveCompany || goodMovie)

Working this into the example, you get this:

var haveEnoughMoney:Boolean = true;
var notWorking:Boolean = true;
var haveCompany:Boolean = false;
var goodMovie:Boolean = true;

if (haveEnoughMoney && notWorking && (haveCompany || goodMovie)) {
 trace("Go to the movies");
} else {
 trace("Go another time");
}

Now, you can go to the movies as long as both haveEnoughMoney and notWorking are true, and one (or both) of
haveCompany or goodMovie is true.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

47

Looping the Loop
So far, you had to manually type every single line of ActionScript that you want to be executed. If I were to ask you
right now to write some code that would output the numbers 1 to 5 to the Output panel, you’d probably come up with
something like this:

trace(1);
trace(2);
trace(3);
trace(4);
trace(5);

This would do the job as adequately as any other solution I could come up with, but it’s not the most efficient
method. Imagine if, instead of 1 to 5, I had asked you to output 1 to 1000 to the Output panel. Assuming that you
didn’t ignore me completely (and I wouldn’t blame you if you did), it would take you a while to write out all the
individual trace() commands.

Thankfully, programming languages have the concept of loops to take away a lot of the tedium, and ActionScript
is no different. Loops allow you to define a series of actions that will be performed again and again as long as a given
condition is met.

ActionScript 3.0 has three basic looping statements: while, do...while and for, which you’ll look at individually
in a moment. If you’re wondering why it’s necessary to have three different ways of repeatedly executing a block of
statements, the answer is that they each work in a slightly different way. This means that sometimes a while loop is a
better choice than a for loop, or a do...while loop is better than a while loop.

The while loop
The first stop on the whirlwind tour of looping constructs is the humble while loop. At first glance, the while loop
looks remarkably similar to the if statement you met earlier:

while (condition) {
 statements
}

The similarity is no accident. The while loop, like the if statement, has a condition that is tested to see whether it
evaluates to true. If it does, the statements within the loop are executed repeatedly, with the condition being checked
again at the start of each iteration of the loop. If the condition ever evaluates to false, the loop is exited, and execution
continues with any statements that appear after the while loop.

To a while loop, the business of printing out a series of numbers is but a moment’s work:

var number:uint = 1;
while (number <= 1000) {
 trace(number);
 number++ ;
}

It’s important to note that the condition for the while loop is checked at the start of each iteration. Like the if
statement, the condition portion of the while loop will be evaluated, and the statements within the while loop will
be executed only if the condition evaluates to true. The statements within the while loop will be executed repeatedly
until the condition evaluates to false.

Where the while loop differs from the if statement is that the statements within the while loop will be executed
repeatedly while the condition evaluates to true, as opposed to only once.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

48

Note ■ If the condition always evaluates to true, the statements in the loop will run forever. However, like a petulant

child, the Flash Player gets bored after 15 seconds stuck in one loop and asks users whether they want to halt the movie.

This is a good thing because nothing will appear to be happening in the movie while the loop is infinitely running—no

animation will be occurring, and no interaction will be allowed as Flash continues to evaluate the condition as true and

runs the loop.

You should avoid this situation at all costs. If you need to have code run continually within your movie, there are better ways

to handle this (for example, using a Timer or an onEnterFrame handler, both of which are discussed later in the book).

The condition of a while loop is evaluated at the start of each iteration. This means that if the condition initially
evaluates to false, the statements within the loop will never be executed. In other words, the statements in a while
loop will be executed zero or more times depending on the condition.

Let’s look once more at the while loop that was just presented, with a slight alteration, that will trace the numbers
1 to 1000 and break down exactly what is happening. Try out this code in a Flash movie:

var number:uint = 1;
while (number <= 1000) {
 trace(number);
 number++;
}

Here you first declare a uint variable named number and initialize it with the value of 1. You then set as a
condition in the while loop that as long as number holds a value that is less than or equal to 1000, you should trace its
current value to the Output panel and then add 1 to its value. At this point, the loop’s contents are complete, and the
condition is tested once more. If number is still less than or equal to 1000, the loop’s contents are run yet again.

Running the preceding example gives you the following in the Output panel:

1
1
2
3
...
998
999
1000

There—the same result and much better than 1000 lines of code!

Note ■ In the preceding example, the number variable is often referred to as the loop control variable because it

alone controls when the loop stops. You don’t always have a single loop control variable—your conditions might be made

up of complex Boolean expressions so that no one variable controls the loop.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

49

No doubt you noticed the slight alteration of the last line of the while loop code block. What’s up with the odd
++ notation? This is known as the increment operator, which you might recall from the earlier discussion on unary
operations. It simply adds 1 to the value of the variable specified and assigns this new value back to the variable. It is
the equivalent of writing the following:

number = number + 1;

As you can see, though, it is the same result with less code and actually is easier to read (as you program more).
There are two ways to use the increment operator, postfix and prefix, meaning that the operator can appear either
before or after the variable. Each produces slightly different results, as the following should demonstrate:

var postfix:uint = 1;
trace(postfix++);
trace("postfix is now:", postfix);

var prefix:uint = 1;
trace(++prefix);
trace("prefix is now:", prefix);

The lines result in the following output:

1
postfix is now: 2
2
prefix is now: 2

The first trace of the first block uses a postfix increment, which increments the postfix variable after it has been
evaluated in its current expression. This means that the value of 1 will be traced to the Output panel because that is
the current value of postfix, and only then will the postfix value be incremented.

The first trace of the second block uses the prefix increment, which first increments the variable before it is used
in its expression. The result in this case is that 2 is traced to the Output panel. In both cases, though, you can see that
the next time each variable is accessed it has its new value.

You will get a lot of mileage out of this operator, as well as from its companion, the decrement operator, which
uses a double minus sign: postfix-- or --prefix. Where are these operators used most often? Loops! In fact, you can
make the number tracing routine with fewer lines if you take even more advantage of this operator:

var number:uint = 1;
while(number <= 1000) {
 trace(number++);
}

The while loop is often used when there is a condition to be met that is not easily managed by a fixed set of
iterations but is more variable in nature. If a condition could be true for one iteration or a thousand iterations—
and this will be determined by the contents of the loop—it would probably call for a while statement. I often use
while loops to determine the nesting of objects in an application. For instance, to step through all the parent
DisplayObjects of a movie clip named myClip, you might use a loop like the following one:

var clip:DisplayObject = myClip;
var parentClip:DisplayObject = clip.parent;
while (parentClip != null) {
 trace(parentClip.name);
 parentClip = parentClip.parent;
}

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

50

As long as the parent object is not null, Flash will trace its name to the Output panel and then check to see
whether there is a parent higher up the display list hierarchy. The loop will continue to run until there are no more
parent objects left, which occurs once the stage is reached that has no parent (being at the top of the display list).

The do . . . while loop
There is a variation of the while loop called the do...while loop:

do {
 statements
} while (condition);

It is exactly the same as the while loop, except that the condition is evaluated at the end of each iteration instead
of at the beginning. What this means in practice is that the statements in the loop are always executed at least once,
even if the condition initially evaluates to false:

do {
 trace("Hello");
} while (false);

To prove that the while and do...while loops are basically the same, you can rewrite the previous number-
counting example as a do...while loop instead:

var number:uint = 1;
do {
 trace(number++);
} while (number <= 1000);

All you really did here is to move the furniture about a bit and add a nice new side table in the form of the do
keyword. In this case, it hasn’t made a single difference to the output. In your code, you should be aware of the subtle
difference between while and do...while loops and use the appropriate one for your needs. Remember that while
gives you zero or more iterations, and do...while gives you one or more, iterations, so do...while should be used in
place of while when you need to ensure that the contents of the loop run at least one time.

The for Loop
The Grand Poobah of all loop statements is the for loop, which has several varieties. The one most commonly used
allows you to initialize your loop control variable, specify the loop condition, and perform some action after every
iteration, all in a single statement. It’s like one of those multitasking, slice-’n’-dice, bash-and-baste kitchen tools
they’re always trying to peddle on the late-night shopping channels.

The for loop looks like this:

for (initializer; condition; action) {
 statements
}

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

51

The initializer statement is executed only once before you start looping. Next, the condition is checked. If this
evaluates to true, the statements in the body of the for loop are executed. The action statement is executed at the
end of each iteration, after which the next iteration begins by evaluating the condition again. As you will see in the
following example, the initializer statement plays an important part in defining how many times the loop will execute
because the initializer variable increments on each loop until the condition variable is met.

Like the while loop, the for loop evaluates the condition at the start of each iteration. You would use a for
loop when you are counting through a finite range of something, such as the number of characters in a string or the
number of elements in an Array.

Using the for loop, you could rewrite the previous example like this:

for (var number:uint = 1; number <= 1000; number++) {
 trace(number);
}

If you look closely, you can see that the various statements have shifted around, but they’re all there, and you get
exactly the same output in the Output panel:

1
2
3
...
998
999
1000

Looping through an Array
The for loop is particularly handy for looping through all the values in an Array object. Actually, any of the loop
statements would work, but the for loop was designed specifically to loop through sequences such as the elements in
an array.

Earlier you created an array to hold the names of all the contacts in an imaginary address book. If you want to say
hello to each of those contacts, you could write out a trace() statement for each of the contacts, but that would be
both a waste of time and a code maintenance nightmare if you had 100 contacts in the address book.

Instead of messing around with 100 trace() statements, you could use a for loop to go over each of the contacts
in the contactNames array, starting at index 0 and ending after the last one is processed. You know how many entries
are in the address book by looking at the value of contactNames.length, so you now have all the information you
need to create a for loop:

var contactNames:Array = ["Rod", "Jane", "Freddy"];
var numContacts:uint = contactNames.length;
for (var i:uint = 0; i < numContacts; i++) {
 trace("Hello " + contactNames[i]);
}

When you’re using this loop, it doesn’t matter how many (or few) contacts you have in the address book—
everyone gets a nice friendly greeting:

Hello Rod
Hello Jane
Hello Freddy

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

52

Note ■ Remember that you are storing the length of the array in numContacts variables before the looping begins.

The condition statement of the for loop is to run each iteration of the loop, so if you have any complex evaluation that

occurs each iteration, it can slow things down. Now, retrieving the length of an array each iteration isn’t necessarily

complex, but if you have a lot of loops and very long arrays, there can be a noticeable difference in your loops’ execution

because Flash has to look up the value each iteration. It’s therefore best to store things such as an array’s length in a

variable before the loop begins.

As you put arrays to work in your projects, you’ll find that they go hand in hand with for loops. Like its very own
stalker, wherever there’s an array, a for loop is never far away.

More for Loops
In addition to the for loop discussed previously, there are two variations: the for in loop and the for each loop.
These loops are used primarily for looping through all the elements in a complex object. I’ll discuss these loops in
more detail later in the book as you work more with such objects, but their basic syntax is presented here:

for (var element:String in object) {
 trace(object[element]);
}

for each (var element:Object in object) {
 trace(element);
}

Breaking Out of a Loop
There are two basic ways to break out of a loop. One is the return statement, and it has more to do with functions
than with loops, so I will leave it to the next section. The most common way to exit a loop prematurely (before all
iterations are completed) is through the use of the break statement. Executing this at any point of a loop ends any
further iterations and exits the loop. This is often used when some condition within the loop has been met and it is
determined that further iterations are no longer needed. For instance, if you had an array of movie clips named clips
and you needed to find the clip named myClip, you could set up a for loop to iterate through an array and then exit
the array once the clip has been found:

var clip:MovieClip;
var numClips:uint = clips.length;
for (var i:uint = 0; i < numClips; i++) {
 if (clips[i].name == "myClip") {
 clip = clips[i];
 break;
 }
}

Once the clip was found, no other loop iterations would be necessary, so you could break out of the loop.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

53

A related command is continue, which causes a loop to immediately exit its current iteration and go to the next
iteration. This is useful if, for instance, you are looping through an array and want to perform operations on only a
single type of value, but skip other types of value. Consider the following example:

var integers:Array = [1, 5, -3, 5, 2, -1];
var numIntegers:uint = integers.length;
for (var i:uint = 0; i < numIntegers; i++) {
 if (integers[i] < 0) {
 continue;
 }
 // perform complex operations only on positive values
}

The continue statement causes the loop to continue to its next iteration every time a negative number in
the array is detected. Positive numbers would not cause the loop iteration to exit and would have some complex
operations (not defined here) performed on them.

Looping through a Vector
Looping through a vector is almost identical to an array, except that the iterator variable data type is known. This is
especially convenient when using a for each loop.

var contactNames:Vector.<String> = new <String>["Rod", "Jane", "Freddy"];

for each (var contactName:String in contactNames) {
 trace("Hello " + contactName);
}

Introducing Functions
At the very beginning of this chapter, you used the trace() function to send the value of a variable to the Output
panel. I told you that a function was a reusable piece of code, and the good news is that you’re not restricted to the
functions built into the Flash framework—you can actually create your own.

You’ll have realized by now that I’m rather fond of analogies, so indulge me while I rattle off another one. I’m
forever losing my keys. I seem to find new and increasingly creative places to leave them—in a flowerpot or on top
of the mirrored cabinet in the bathroom, for example. I could solve this problem by having 100 keys cut and placing
them at strategic locations all over my apartment, and that would work just fine until I had to change the key (if I had
to have the locks changed, for example.) I’d then have to have 100 copies made of the new key and go hunting around
my apartment until I had found and replaced all copies of the old key—not how I want to spend my weekend.

A much better solution is to buy a key hook and always hang my keys there when I come in. I could then place
sticky notes all over the apartment, reminding me that my keys are now hung on the back of the door. If I need to
change the keys, I just change the one set hanging on the back of the door. The notes can stay because they point me
only in the direction of my single set of keys.

Functions in your programs serve the same purpose. They collect functionality that is repeated throughout your
code together under a name of your choosing and can then be used wherever necessary. If you ever need to change
the functionality, all you have to do is update the code in your function.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

54

Before you can make use of a function, you have to create it. A simple function definition takes the following form:

function functionName():returnType {
 statements;
}

In the preceding example, functionName is the unique name for the function, returnType is the data type of
whatever is returned by the function (which could be nothing—more on that in a bit), and contained within the curly
braces is the list of ActionScript statements that will be executed whenever the function is called. When deciding on a
name for your function, you need to respect the same rules as when defining a variable. A function name must

Consist only of letters, digits, the underscore character, and the dollar symbol•฀

Not start with a number•฀

Not be a reserved word•฀

Be unique•฀

Also, similar to variable names, your function names should reflect what the function does and follow some kind
of convention to keep your naming consistent. To keep things simple, you’ll be using modified camel case notation for
both function and variable names, which is exactly what ActionScript’s built-in functions use.

Note ■ For the remainder of the examples in this chapter, you’ll no longer use the document class file to test the code

(if you have been using it, not just placing code directly in the timeline). This is because as you introduce functions, it

is easier to test the code directly in the timeline and not have to worry about some of the more complex issues such as

scope and modifiers that would be required to test using a class file. These issues are covered in the next chapter, and

you’ll return to using a document then. For now, you should create a new Flash file and enter all the following code

directly on the timeline. Flex users can follow along in the text, but Flex versions of the code will not be presented.

 Unfortunately, with Flex, any exploration of functions is automatically an exploration of objects and classes, and that is

a subject presented in the next chapter.

Creating a Function
Let’s say that there are several places in the code where you want to output the numbers 1 to 10 in the Output panel.
Forgetting the fact that you’re unlikely to ever want to do this in a production project (stuff in the Output panel is
visible only when viewing the SWF in the Flash IDE), you’d create a function something like this:

function countToTen():void {
 for (var i:uint = 1; i <= 10; i++) {
 trace(i);
 }
}

Note ■ Remember that this code should now go directly in your timeline, not in a separate class file.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

55

You could then call this function using the function name followed by parentheses (as you did with trace())
wherever you need to in your code instead of copying and pasting the for loop several times:

trace("The numbers 1 to 10...");
countToTen();
trace("... again...");
countToTen();
trace("... and again...");
countToTen();

Now what the heck is that void that you have specified as a return type for the countToTen() function? Read on,
young grasshopper!

Returning a Value from a Function
You can break all functions down into two groups, really: those that are supposed to return a value and those that are
not. The countToTen() function is a good example of the latter, where it simply performs some action but does not
return any value to the place in the code from where the function was called. You can call (or invoke) the function and
let it run its course. In such cases, you must specify void as the return type for the function to let Flash know that the
function is not intended to return any value.

If a function is supposed to return a value to the place in the code from where the function was called, then the
function needs to include the return keyword followed by the data being returned:

return data;

What exactly is meant by “return a value?” Well, you have seen a function invoked without any values returned
(countToTen()). When a function does return a value, at runtime it is as if the call to the function is replaced with the
value returned by the function. For instance, if you had a function named getDayOfWeek() that returned the name of
the current day of the week, the call to the function might appear as follows in the code:

var day:String = getDayOfWeek();

If when the movie is run, the getDayOfWeek() function determines that it is Tuesday and returns that value as a
string, it is as if the line becomes the following at runtime:

var day:String = "Tuesday";

If a function is to return any data, when you create the function the data type for that data needs to be specified in
the declaration. Take, for example, the following code, which contains a function to format the user’s name:

var firstName:String = "John";
var lastName:String = "Doe";

function getFullName():String {
 var fullName:String = firstName + " " + lastName;
 return fullName;
}

var userName:String = getFullName();
trace(userName);

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

56

The getFullName() function has been given the return type of String. Inside the function, you create a string
variable and assign the combined values of the firstName and lastName variables created outside the function. This
new variable, fullName, is then returned out of the function using the return keyword back to the place in the code
from where the function was called.

Because the getFullName() function has a String return type, you can assign the result of this function to a new
variable, userName, that is typed as String as well. If username had been declared as a Number, Flash would throw a
compile-time error, and you would know that something was wrong—that you had tried to assign a string to a variable
that was intended to hold a number.

Now, the return keyword does not necessarily have to appear at the end of a function and can be used to exit
a function at any point. For instance, if you had a conditional within the function that returned different data based
on the condition, you might have multiple return statements. This is often used when performing checks for validity
before performing a function’s actions and works well because no further code in a function is run after a return
statement is executed. Let’s look at an example of when and how this might be used:

var firstName:String;
var lastName:String;

function getFullName():String {
 var fullName:String = firstName + " " + lastName;
 return fullName;
}

var fullName:String = getFullName();
trace("name is: ", fullName);

You have modified the previous example so that no values are assigned to the firstName and lastName variables.
If you test this movie now, you will see that the name is traced as null null. That isn’t right! What has happened is
that a String variable, if undefined, will become null within any expression. You need to account for the fact that
these variables might be undefined and return an empty string (no characters) from the function in that case.

This can be accomplished by combining a number of things covered in this chapter: conditionals, Boolean
operations, logical negation, and the return statement. Try adding the following bold code to the previous example:

var firstName:String;
var lastName:String;

function getFullName():String {
 if (!firstName || !lastName) {
 return "";
 }
 var fullName:String = firstName + " " + lastName;
 return fullName;
}

var fullName:String = getFullName();
trace("name is: ", fullName);
firstName = "John";
lastName = "Doe";
fullName = getFullName();
trace("name is: ", fullName);

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

57

The first line in the function is now a conditional statement that checks to see whether there are values assigned
to the firstName or lastName variables. Any variable that is defined (and is not the number 0) will be evaluated as
true within a Boolean expression, so placing the logical negation operator before a variable results in true only if
the variable is not defined. To make it clearer, the preceding conditional could be expressed in English as follows:
“If either the firstName variable is NOT defined OR the lastName variable is NOT defined, run these statements.”
So if either variable is undefined, the contents of the if block are run.

Now, what exactly happens in the if block? Because you know that either one or both of the variables are
undefined, there is no need to concatenate the values because that will return null null within the string. Instead,
you use the return keyword to exit the function by returning an empty string. Once the return statement is run, the
function is exited, and no further code is run. This is an important point because it allows you to exit the function
when necessary while ensuring that further code is not executed.

If you want to exit a function that does not have a return type, you can use the return keyword by itself without
any data following it. Take the following as an example:

var firstName:String;
var lastName:String;

function traceFullName():void {
 if (!firstName || !lastName) {
 return;
 }
 trace(firstName + " " + lastName);
}

traceFullName();
firstName = "John";
lastName = "Doe";
traceFullName();

Using Function Parameters
If you want the function to make use of values from outside of the function definition, you can pass these values in.
In order to do so, you need to tell Flash what kind of information the function expects to be passed when the function
is called.

You define the parameters (or arguments) for a function by placing them between the parentheses in the
function definition. You can see how this fits into the overall function definition:

function functionName(parameters):returnType {
 statements;
}

The list of parameters is comma separated, and each parameter has a name and a data type separated by a colon.
If that sounds familiar, it’s because it’s very similar to how you define a variable, and that’s no accident—within the
body of your function, the parameters are just extra variables that you can use in the statements to perform some task
or other.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

58

Let’s try an example, overhauling the earlier countToTen() function to count from 1 to a maximum number that
you specify as a parameter:

function countTo(max:uint):void {
 for (var i:uint = 1; i <= max; i++) {
 trace(i);
 }
}

You can now use the countTo() function to count from 1 to any number by passing that number in as part of the
function call. You know how to do this already because you’ve been doing it with the trace() function—you specify
the value you want to pass to the function between the parentheses in the function call:

countTo(5);
countTo(10);

Note that the max parameter is now required—you have to give the parameter a value when you’re calling the
function or else Flash will tell you that you haven’t specified the correct number of arguments for the countTo()
function. Sometimes this is undesirable, which is where default values for function parameters come in.

Providing a Default Value for Function Parameters
As you’ve seen, having to always pass a value for every parameter defined in the function definition isn’t always
desirable. Sometimes you want to specify that particular parameters are optional and, if they are not given a value
when the function is called, that they should adopt a predefined default value.

Suppose that you need to modify the countTo() function to count up to the specified maximum number but
allow the starting number to optionally be specified when calling the function. If no starting value is specified, the
function should start counting from 1:

function countTo(max:uint, min:uint = 1):void {
 for (var i:uint = min; i <= max; i++) {
 trace(i);
 }
}

countTo(5);
countTo(10);

You can run the preceding example without changing the function calls because the second parameter, min, is
optional and defaults to 1 if no value was specified. However, you can tell the second call to start counting from 6 by
specifying the additional parameter value:

countTo(10, 6);

Although you can have as many optional parameters as you like, they can appear only at the end of the parameter
list. The compiler will throw an error if you try to publish a Flash movie containing a function that has an optional
parameter listed before a regular parameter in the parameter list.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

59

Allowing for Variable Parameters
Because the number of arguments and their types need to be defined in the function definition (or signature, which
consists of the function name, arguments, and return type), there is special syntax that must be used if you require
functions to have a variable number of parameters passed in. When might you need such functionality? One example
might be a sum() function, which adds any number of values and returns their sum. To create a function such as this
that could accept any number of parameters, the ...(rest) parameter is required. Adding these three dots (like
an ellipsis) to your function definition tells Flash that any number of values may be passed in from that point on in
the function parameters. Each of those values is then placed into a single array that can be accessed using the name
specified after the ...(rest) notation. Let’s take a look at how that sum() function might be written with this syntax:

function sum(...operands):Number {
 var numOperands:uint = operands.length;
 var total:Number = 0;
 for (var i:uint = 0; i < numOperands; i++) {
 total = total + operands[i];
 }
 return total;
}

trace(sum(1, 2, 3));
trace(sum(5, 10));

In the function definition, you specified that there may be any number of parameters passed in by using the
...(rest) syntax. However many this may be, they are placed into an array that you can reference using the name
operands (because that is how you have defined it—any name can be used). Within the function, you determine the
number of operands using the Array.length property and use a for loop to iterate through all the array’s elements,
adding each value to the total. This total is returned from the function. The end result, as demonstrated by the two
trace() statements, is that you can call sum() using different numbers of parameters without any errors.

One thing I want to introduce at this point is a shorthand way of taking a variable’s value, altering it, and
reassigning it to the same variable. This was done in the last example with the following line:

total = total + operands[i];

Here, the value of total was taken and added to the value of the current operand, and the result was placed back
into total. Whenever such an operation occurs, the shorthand way of writing the exact same thing is the following:

total += operands[i];

When an arithmetic operator is followed by the assignment operator, the variable to the left of the operators
has its value operated upon, along with the operand to the right of the operators, with the calculated result assigned
directly back to the variable. Here are a few more examples to help demonstrate:

var number:uint = 2;
number += 5; // results in 7 now being assigned to number
number -= 3; // results in 4 now being assigned to number
number *= 2; // results in 8 now being assigned to number

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

60

The same operation can be used with the concatenation operator (+) with strings:

var name:String = "John";
name += " Doe"; // results in name now holding "John Doe"

You will see this syntax a lot in code, and you will be using it from here on out in the text.

Passing Values and References
One very important item to discuss, and one that is a frequent stumbling block for new programmers, is the difference
between passing variables by value and passing variables by reference. As a rule, any variable containing a primitive
data type—such as numbers, strings, and Boolean values—will pass only its value but no reference to itself, while
a complex data type, such as an array, will pass its reference. The easiest way to present this, before discussing it in
relation to functions, is to look at simple variable assignments.

Take as an example the following code:

var original:uint = 1;
var copy:uint = original;
trace(original, copy); // outputs 1 1
original = 2;
trace(original, copy); // outputs 2 1

Here, a variable original is initialized and assigned the value of 1. A second variable, copy, is then initialized
and given the value of original. Tracing these values produces the expected result 1 1. On the next line, the value
of original is changed to 2, and when both are traced again, the result is 2 1. As you can see, although the original
variable’s value was changed, it had no effect on the copy variable. This is because when the value was initially
assigned to copy, no reference to original was made; only its value was retrieved and stored in copy. No connection is
ever made between original and copy, so the value of either can change without any effect on the other.

With arrays and other complex objects, it is not the value that is passed, but instead a reference to the place
in memory where the object is stored. Altering the variable then alters the object in memory that the variable was
pointing to, which means that altering one variable alters all others that reference the same object. That’s a pretty
heady concept, so it’s definitely time for an example:

var original:Array = [1, 2, 3];
var copy:Array = original;
trace(original); // outputs 1,2,3
trace(copy); // outputs 1,2,3
original[1] = 50;
trace(original); // outputs 1,50,3
trace(copy); // outputs 1,50,3

You have a similar setup to the last example. The variable original is initialized and assigned an array of three
values. copy is then assigned the value of original. At this point, original and copy are just pointing to the same
place in memory. When these arrays are traced, the result is that both output 1,2,3. You then change the value of
the second index in original and trace out both variables once more. Because both variables point to a single array,
altering one alters the other as well. More precisely, altering one alters the array stored in memory, so that when each
variable is sent to the trace method, Flash looks up the current value of the array and outputs it. In both cases, the
value output is 1,50,3.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

61

So a variable with a primitive data type is passed by value, and a variable with a complex data type is passed
by reference. How does this apply to functions? Well, if a variable with a primitive data type is passed to a function,
only its value is passed into the body of the function. Altering that value inside the function will have no effect on the
original variable. Consider the following example:

function square(operand:Number):Number {
 return (operand * operand);
}

var number:Number = 5;
trace(square(number)); // outputs 25
trace(number); // outputs 5

The function square() takes a single operand and returns the product of that number multiplied by itself. The
first trace() statement outputs 25, as expected. The second trace() statement outputs 5, the original value of number,
because the variable is unchanged by the function. This is because for a variable containing a primitive value such as a
number, only the value is passed to the function. The function can do whatever it likes to the value without any effect
on the original variable. This is the same for both strings and Boolean values.

If you wanted to change the value of number based on the results of the function, you would need to assign the
returned value to number after the function is invoked, as in the following (which uses exactly the same function):

var number:Number = 5;
number = square(number);
trace(number); // outputs 25

In this case, the number variable is assigned the result of the square() function performed on number, so tracing
its value after the fact produces 25.

Things change a bit when dealing with complex objects such as arrays. In the case of an array (which is the only
complex object you’ve dealt with so far), it is passed by reference to the function, so it is the reference to the array in
memory that exists within the body of the function. Altering any value in this reference alters the array, so it alters any
other references to the array that exist. Take a look at the following code, which demonstrates the effect:

function doubleAllValues(array:Array):void {
 var numItems:uint = array.length;
 for (var i:uint = 0; i < numItems; i++) {
 array[i] *= 2;
 }
}

var myArray:Array = [1, 2, 3];
trace(myArray); // outputs 1,2,3
doubleAllValues(myArray);
trace(myArray); // outputs 2,4,6

Here, you create a function doubleAllValues(), which iterates through an array and doubles the value stored in
each index. To test this, you create a new array with the values 1,2,3 (which the trace() statement verifies). You then
pass this array to the doubleAllValues() function. When you trace the array a second time, you find the values are
now 2,4,6 because these values were altered within the body of the function. This is the result of having passed the
array by reference.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

62

Function Scope
The last item I’ll address at this time is function scope, which is another issue that often causes frustration for new
programmers. All use of variables thus far has been within the scope of the main timeline. With the examples, you
have not had to worry about whether variables existed within the scope of a function because all variables have been
available. This is not always the case, however.

Variables are accessible only within the scope in which they were declared. Each function actually has its own
scope. That means that any variable that is declared within a function is accessible only within that function. It is
referred to as a local variable. Once the function completes, the variable will no longer exist. Take, for example, the
following:

function createVariable():void {
 var myVariable:uint = 5;
}
createVariable();
trace(myVariable);

If you try to run this code, you will get a compile-time error that states Access of undefined property myVariable
because you are trying to access a variable that has been defined only within the scope of the createVariable()
function. It is only within this function that the variable is initialized and assigned a value. Once the function
completes, the scope of the function is terminated, and the variable is no more. Attempting to access it outside of the
scope in which it existed causes the error. If you alter the code slightly, you get something that will compile as follows:

function createVariable():void {
 myVariable = 5;
}
var myVariable:uint;
createVariable();
trace(myVariable); // outputs 5

Because now you have declared the variable outside of the scope of the function on the main timeline, you no
longer get the error. Because the createVariable() function exists within the scope of the main timeline as well, it
has access to all the variables declared on the main timeline, which includes myVariable.

What happens if you initialize a variable within one scope (a function, perhaps) that already exists in another
scope (such as the main timeline)? Let’s take a look:

function createVariable():void {
 var myVariable:uint = 5;
 trace("inside function:", myVariable);
}
var myVariable:uint = 10;
createVariable();
trace("main timeline: ", myVariable);

The output of these lines follows:

inside function: 5
main timeline: 10

In this code, you are assigning a value (10) to myVariable on the main timeline. However, within the function,
you are also creating a myVariable and assigning it a value of 5. The trace() inside the function results in 5 being
output. The trace() on the main timeline outputs 10. This is because within the function, the locally declared

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

63

myVariable takes precedence over any declared outside of the function’s scope. Back on the main timeline, the value
of 10 is traced out because the myVariable that existed locally within the function’s scope was destroyed when the
function was completed—the main timeline does not have access to any variables that were created within the scope
of the function.

Taking this a step further, because local variables within a function are destroyed upon completion of a function,
it follows that if you want a value to persist between calls to a function, it must therefore be declared outside of the
function, as demonstrated in the following:

function buy(price:Number):void {
 total += price;
}
var total:uint = 0;
buy(1.25);
buy(5.50);
buy(10.75);
trace(total); // outputs 16

Only because you have declared total outside of the scope of the buy() function can you continue to add to it
each time the function is called.

Commenting Your Code
Before you leave this chapter, I want to talk to you about comments. Comments in a block of program code are there
to help you, the developer, and the people you work with understand what a particular block of code is intended to do
and can even be used to generate helpful documentation. This may sound odd at first; surely it’s the computer that
needs to understand what the code does. You already know what it does because you wrote it. Well, that may be true
when you’re writing the code, but will you remember what it’s supposed to do tomorrow, next week, or next month
when you have to come back and modify it? Maybe—if you’ve got a brain like Albert Einstein—but the chances are
that you will have moved on to new projects and won’t remember a darn thing. Or worse, someone else can come
onto a project after you have left and have no idea what your intention was with the uncommented code, which slows
down development and can give you a bad reputation as the original author of the code.

Take it from me; you don’t want to have to trawl through 500-plus lines of ActionScript code on a Monday
morning to try to work out exactly what it was that you or someone else was trying to do.

There are two types of comments in ActionScript 3.0: the line comment and the block comment. The line
comment, as its name suggests, creates a comment that spans a single line in your code. A line comment starts with a
double forward slash, //, and ends at the end of the line:

// Hello, I am a line comment, and I eat peanut butter on toast

A block comment can span multiple lines. It starts with a forward slash followed by an asterisk, /*, and ends with
an asterisk followed by a forward slash, */:

/* Hello, I am a block comment,
 and I eat line comments for breakfast */

Comments can be inserted almost anywhere in your code: at the start of the file, between two lines of code, on
the same line as a piece of code, at the end of the file—wherever you like. The exceptions to this rule are that you can’t
have a comment in a string literal because the comment is interpreted as part of the string, and you can’t have a block
comment within another block comment.

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

64

In addition to helping you understand your code, comments can also be used to temporarily disable parts of your
code. When code appears within a comment, either after a line comment marker on the same line or between block
comment delimiters, that code will not be executed by the Flash Player. So you can add as many useful comments as
you want because it will not affect the end size of your SWF file.

Bad vs. Good Comments
Given the previous commenting advice, you would be forgiven for thinking that peppering your code with as many
comments as you can is a good idea. However, comments are useful only if they tell you more than a quick glance at
the code would, and even then only as long as they remain up to date. For example, take the following snippet of code:

// Set matchFound to false
var matchFound:Boolean = false;

The line of code in the snippet creates a new Boolean variable named matchFound and sets its initial value to
false. The comment above the line of code tells you exactly the same information, and a comment like that is no
good to anyone and just bloats the code. Comments should generally be at a higher level of abstraction than the code.
That is, they shouldn’t attempt to tell you how something will be done but why it is being done. A better comment for
the previous line might be the following:

// Assume that no match has been found
var matchFound:Boolean = false;

Now the comment tells you why the matchFound variable is being set to false, which wasn’t easy to glean from
looking at the line of code itself.

Beware of comments that become incorrect because the code around them has been updated. There’s nothing
more confusing than to read a comment and assume that a block of code does one thing when, in fact, it does the
complete opposite:

// Assume that no match has been found
var matchFound:Boolean = true;

When you modify your code, be sure to keep the comments updated, too.

Commenting for Documentation
One great result of having comments in your code is that if done with the proper syntax, those comments can be
used to generate documentation. Adobe has ASDoc, a command-line tool that ships with the free Flex Software
Development Kit (SDK) and can be used to generate documentation from code files that use a special comment
syntax. As an example of the syntax, one of the functions might have the following comments:

/**
* This function takes a single numeric operand
* and returns the value squared.
*
* @param operand The number to square.
*
* @returns The squared value of the specified number.
*/
function square(operand:Number):Number {
 return (operand * operand);
}

CHAPTER 2 ■ ACTIONSCRIPT 3.0 FUNDAMENTALS

65

An ASDoc comment begins with the notation /** and ends with a closing */. Within the comment block, in
addition to a description placed at the top (which can use HTML formatting), there are tags that you can use that
contain special meaning. For instance, the tag @param is used to describe any parameters that are to be passed to a
function. The @returns tag is used to describe what is returned from a function. By placing them in front of data, you
let the ASDoc tool know how to place the comments within the documentation.

There is a lot more to know about ASDoc; not only additional tags but also how to run the command-line tool
to generate the documentation. (Although it is beyond the scope of this book, it is covered in detail in the Adobe
documentation.) I present it here because it is a standard way to comment code (even outside the ActionScript world).
It’s based on industry standard documenting practice, and you’ll undoubtedly come across such syntax as you
program more. Commenting in a similar fashion is certainly a good habit to get into as you begin to program.

Summary
I’ve covered a monumental amount of ground in this chapter, so give yourself a hearty pat on the back if you’re still
with me. I feel like a particularly cruel drill sergeant putting you through this so early on, but now that the basics are
behind you, you’re almost ready to start having some serious fun.

This chapter looked at the very basic building blocks of the ActionScript language, from variables to constants, loops
to functions, and beyond. Along the way, I tried to dispense what I know about best coding practices so that you’re not
only writing code that works but also code that you can maintain when you come back to it in six months’ time.

A lot of the examples were necessarily contrived to not let too much get in the way. If some of the concepts are
still a bit fuzzy in your head, I advise that you carry on regardless, skipping back here if any of the basic concepts
continue to be a bit blurry.

That’s the good news. The bad news is that you’ve got one more brain-busting chapter to go before you get
to the really cool stuff, and it’s a real doozy. Unless you’re eager to get going, I’d suggest you give yourself a bit of a
breather before carrying on. Go out into the big wide world and take a few gulps of good, old-fashioned fresh air to
clear your head. One of the biggest mistakes you can make when learning a new subject is to try and force your brain
to digest too much information in one go, and the next chapter on objects and classes in ActionScript is particularly
important—I need your brain to suck it up like a sponge.

See you in Chapter 3 when you’re ready.

67

CHAPTER 3

Objects and Classes

This chapter covers how to do the following:

Create objects and access properties•฀

Use the dynamic •฀ Object object

Loop over objects•฀

Create a custom class with its methods and properties•฀

Define constructors and getter/setter methods•฀

Use packages and access modifiers•฀

Take advantage of inheritance and override methods•฀

Now that you have an understanding of the fundamentals of the ActionScript 3.0 world, you can move on to
looking at objects and classes. This is another of those important topics that needs to be covered before you can get to
the really fun stuff.

In the real world, objects are all around you. As I sit writing this, I can see many objects: a glass, a television, a
light switch, and (my most favorite object of them all) a shiny new MacBook Pro. (I was going to add my wife to the
list, but then we’d get into the whole “men-see-women-as-objects” debate, and I’d end up sleeping on the sofa again.)
In fact, we all live in a world full of objects.

Likewise, the ActionScript 3.0 world is full of objects. It may not have glasses or televisions, but it does have movie
clips, text fields, sounds, and many more. Pretty much everything other than a primitive value that you can stuff in a
variable in ActionScript 3.0 is an object. Languages that support this model are described as being object oriented.

There’s more to object-oriented programming in ActionScript 3.0 than mere objects. By the time you’re done
with this chapter, your head will be buzzing with keywords: class, method, property, inheritance, and many more.
If this list of keywords doesn’t scare you, you’re a far braver person than I was when I first started learning about
object-oriented programming. I thought I’d never get all this stuff to stay in my head, until one day one of my lecturers
explained object-oriented terminology in a way that I could understand by relating it to everyday life. What follows
isn’t an exact replica of that story—unfortunately my university days predated the iPod by more than a few years—but
hopefully it will serve the same purpose.

iPod Analogy
I’m a certified Apple addict, so let’s take an iPod as an example. It fits the definition of an object perfectly: it contains
data (the list of tracks, the volume level, and so on), and it can perform actions based on that data (play a particular
track, upload a new track, and so on). If my iPod were an ActionScript 3.0 object, the various bits of data I’ve
mentioned would be the properties of that object. The properties of an object are unique to it—if my wife uploads a
new Robbie Williams track to her iPod, the contents of my music library are left blissfully intact.

CHAPTER 3 ■ OBJECTS AND CLASSES

68

The actions my iPod can perform—play, pause, add a new track—would be the methods of the object. All other
objects of the same type share these methods, but they operate on the unique properties of each individual object.

Somewhere in the world, there is a factory churning out the myriad iPod models that tempt us to spend hard-
earned cash. Each iPod is created according to a blueprint, defining which properties a particular model of iPod has
(along with the factory default values) and what actions it can perform. (A blueprint means that my iPod looks and
works the same way as every other iPod of the same model.) It also has the same set of configurable options, which
I can use to make my iPod unique. The blueprint given to the factory is a class, which is then used to create each
individual IPod object, for instance.

Of course, there are lots of different iPod models on the market. I’m not talking about different capacities or
colors (I consider them to be different property values for a single iPod model instead of separate models); I mean
the different generations of the iPod, iPod Shuffle, and iPod Nano, which have significantly different features or
functionality. All these different models share certain characteristics and functionality, probably using much of
the same code, which is defined by a master iPod blueprint or class that every model of iPod extends. This shared
functionality is known as inheritance (yes, just as you might inherit your granny’s nose or your grandfather’s eyes).

As much as I’m addicted to all things Apple, I fully acknowledge that it isn’t the only brand of portable music
player in the world. All music players have a library of tracks they can play, pause, and skip. In that regard, one music
player is pretty much the same as the others, even if the players don’t share any of the same basic code. In this case,
you could say that all music player manufacturers agree that their devices will have certain properties and be able to
perform certain actions, and that they’ll even use the same symbol for those actions (play, pause, and so on) so that
you can pick up any music player and use it without having to know who created it or how it was written. You can do
the same in the ActionScript 3.0 world with interfaces.

Working with Objects
Before you get your hands dirty and create your first class, let’s take a quick look at the difference between a class
and an object. A class is the container that can hold many objects; objects can be classes for a movie clip or a text
field, for example. Now let’s dwell slightly on the subject of objects. As I said earlier, everything in ActionScript 3.0 is
an object—you may not have realized it, but you were creating new objects in every single example in the previous
chapter. I touched on this briefly in the section on arrays, in which I told you that an array is really an object and that
it has a length property that tells you how many values the array contains. You used it to loop over all the values in an
array and do something useful with them.

In this case, Array is a class, and new instances of this class are created by using array literals, which consist of a
comma-separated list of values enclosed in square brackets:

var myFavoriteFoods:Array = ["curry", "pizza", "pineapple"];

I’m creating a new instance of the Array class with the string values curry, pizza, and pineapple. I then store this
object in the myFavoriteFoods variable. The new Array instance has all the characteristics and functionality defined
by the Array class, which includes a length property and methods such as splice() and join().

Creating Objects using the New Operator
You can use the new operator in conjunction with a class’s constructor to create a new object of that type (or an
instance of that class, in geek-speak). A constructor for a class always has the same name as the class itself and is a
special function, which is automatically called when you create an instance of the class using the new operator. Taking
the previous Array example, you can replace the array literal with an object created using the new operator:

var myFavoriteFoods:Array = new Array("curry", "pizza", "pineapple");

CHAPTER 3 ■ OBJECTS AND CLASSES

69

The results are exactly the same as the previous example: a new Array instance containing three elements with
the specified values. You can also apply the same technique to String objects, which were created thus far using
string literals:

var bookTitle:String = new String("Foundation ActionScript 3.0");

In both cases, the technique you choose is a matter of personal preference. Some developers will tell you that
their way is the one true way, but as long as you’re consistent, it doesn’t really matter which one you choose.

What’s important is that you can use this technique to create instances of any ActionScript 3.0 class, whether
they’re part of the Flash framework or ones you create individually.

There is one important caveat to this piece of advice: when creating an Array object using the new
operator, the number and type of the parameters you provide can affect the nature of the array
you get back. If you pass in a single numeric value, you get a new Array object with that number of
empty elements instead of an Array object with a single element with the specified value. This can
lead to hours of frustration and head scratching unless a kindly author takes the time to warn you
in advance. My advice is to always use array literals unless you’re creating an empty array or a
certain number of empty elements.

Accessing Properties and Calling Methods
I briefly touched on accessing properties and calling methods of an object using dot notation in the previous
chapter (when I was talking about Array objects), and to be totally truthful there really isn’t much more to know.
For completeness, though, I want to go through the motions.

The properties and methods of an object can be accessed using dot notation. You specify the name of the variable
in which the object is stored, followed by a dot, and then followed by the name of the property you want to access or
the method you want to call.

Let’s take a String as an example because it’s one you’re already familiar with from the previous chapter. String
objects have lots of properties and methods, but I’ll concentrate on just two: the length property and the indexOf()
method.

The length property of a String object gives you the number of characters that make up the string. Using this
property, you might loop through all the characters in a string and output them using the trace() function:

var bookTitle:String = new String("Foundation ActionScript 3.0");
var titleLength:uint = bookTitle.length;
for (var i:uint = 0; I < titleLength; i++) {
 trace("Character " + i + " : " + bookTitle.charAt(i));
}

The preceding example creates a String object and then loops through all the characters in that string using a
for loop, outputting each character along with its index. Notice that you’re using bookTitle.length to loop through
the string, so no matter how long the string is, all characters are processed.

If you enter the preceding code into the first frame of a Flash movie and run it, you should see the following in the
Output panel:

Character 0: F
Character 1: o
Character 2: u
Character 3: n
Character 4: d
...

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ OBJECTS AND CLASSES

70

Character 22: t
Character 23:
Character 24: 3
Character 25: .
Character 26: 0

If you look closely at the code from the preceding example, you’ll see that I’m using a method of the bookTitle
String object, charAt(), to get the character at a specified index.

The built-in classes in the Flash framework have lots of properties and methods, so I won’t attempt
to go through them all here—that’s a job for a much thicker (and much less entertaining)
ActionScript 3.0 reference book.

Copying Objects
The last chapter discussed passing objects by value vs. passing objects by reference in relation to arrays. Remember
that primitive objects (numbers, strings, Booleans) are passed by value, whereas complex objects such as arrays are
passed by reference. For example, if you have two variables of type Number and you copy a value from one to the other,
subsequent changes to one of those values does not affect the other one:

var num1:Number = 256;
var num2:Number = num1;
trace(num1 + " vs " + num2); // 256 vs 256
num2 = num2 / 2;
trace(num1 + " vs " + num2); // 256 vs 128

This is true of all the primitive data types examined in the previous chapter. However, complex data types, such
as an Array or an object derived from a custom class, are passed by reference, so multiple variables can be pointing to
the same object in memory, and changes through one variable affect all other variables pointing to the same object.
This is most evident when you try to create a copy of a complex object in the same way you would a primitive value:

var array1:Array = new Array("one","two","three");
var array2:Array = array1;
trace(array1 + " vs " + array2); // one,two,three vs one,two,three
array2[3] = "four";
trace(array1 + " vs " + array2); // one,two,three,four vs one,two,three,four

From the preceding example, you can see that although in the code it looks as if you were only adding "four"
to array2, it appeared in array1 as well because both variables point to the same array in memory.

If you really want to create a copy of an Array object, the quickest way is to use the Array object’s slice()
method. The slice() method creates a new Array object based on an existing array. If you pass in parameters, it can
copy a subset of the array, but if you don’t pass any parameters, you’ll just get a copy of the entire Array object:

var array1:Array = new Array("one","two","three");
var array2:Array = array1.slice();
trace(array1 + " vs " + array2); // one,two,three vs one,two,three
array2[3] = "four";
trace(array1 + " vs " + array2); // one,two,three vs one,two,three,four

That’s more like it!

CHAPTER 3 ■ OBJECTS AND CLASSES

71

Casting Objects to a Type
As stated previously, nearly everything in ActionScript 3.0 is an object, and all object instances inherit from Object.
As such, a String variable is an Object instance, a Number variable is an Object instance, and a Boolean variable is an
Object instance. Sometimes, all your code might know is that it is dealing with an Object instance of some sort and
has to determine at runtime the type of object the instance stores—String, Number, or Boolean, for instance.

As an example, imagine that you needed to determine whether a variable held a valid value, but depending on
the type of object the variable held, the definition of what was valid would change. For a Boolean variable, only true
values would be valid. For a String variable, a valid value would be anything that wasn’t an empty string. For a Number
variable, any positive value would be valid.

What you might do in this case is create a function that received an Object instance because that can be any of
the types, and return true or false based on whether the value is valid. Of course, inside the function you need code
that can find out the type of the variable passed in and return validity based on that type. Let’s look at one possible
solution, and then discuss the syntax:

public function getIsValid(testObject:Object):Boolean {
 if (testObject is String) {
 var testString:String = (testObject as String);
 return testString.length > 0;

 } else if (testObject is Number) {
 var testNumber:Number = (testObject as Number);
 return testNumber > 0;

 } else if (testObject is Boolean) {
 return (testObject as Boolean);
 }
 return false;
}

There are two new operators introduced in the preceding code. The first is the operator is, which can be used to
test whether an object is of a certain type, and will return either true or false. The first conditional (testObject is
String) can be read aloud as, “Is testObject a String?” If it is, the block within the conditional is run.

The second new operator is as. This operator evaluates the operand on its left and determines whether it is of the
data type specified on its right. If that is the case (that is, if testObject is a String), the expression evaluates to the
object cast as the data type. If not, the expression evaluates to null.

Cast means that although the object was initially of one data type (Object), it can be assigned to a new variable of
a different data type (String in this case). This is actually known as a downcast because the cast is going from a type
higher up on the class hierarchy (Object) to one lower (String, which is a type of Object).

After you have cast the object and placed the result within a new variable, you can perform operations supported
by the new data type. For String, you can retrieve its length property. For Number, you can check to see whether it is
greater than zero. For Boolean, because that is the type returned by the function, you can simply return the argument
cast as a Boolean.

CHAPTER 3 ■ OBJECTS AND CLASSES

72

There is one other way to cast, demonstrated in the following code:

public function getIsValid(testObject:Object):Boolean {
 if (testObject is String) {

 var testString:String = String(testObject);
 return testString.length > 0;

 } else if (testObject is Number) {
 var testNumber:Number = Number(testObject);
 return testNumber > 0;

 } else if (testObject is Boolean) {
 return Boolean(testObject);

 }
 return false;
}

In this case, you do not use the as operator; instead, the desired type is followed by the object wrapped in
parentheses. The results for this and the previous example are the same, but there are some subtle differences
between the two forms of casting. Whereas the as operator returns null if the object is not of the data type, the type
wrapping the object form of casting will actually try to do an automatic conversion of the object to the new data type.
For complex data types such as arrays, this process will throw a runtime error. For primitive data types, the conversion
will occur according to a fixed set of rules. For instance, a String "1" cast as a Number will become the number 1.
A String "hello" will become NaN, or “not a number.” Any nonzero Number when cast as a Boolean will become
true. 0 will become false.

Sometimes, the automatic conversion that occurs with casting is what you want. Other times, it is merely a matter
of downcasting an object you know is of a type, in which case the as operator works great. In fact, you could rewrite
the function one more time without the is operator and rely solely on the as operator and its behavior of returning
null for objects not of the specified type:

public function getIsValid(testObject:Object):Boolean {
 var testString:String = (testObject as String);
 if (testString) {
 return testString.length > 0;
 }
 var testNumber:Number = (testObject as Number);
 if (testNumber) {
 return testNumber > 0;
 }
 return (testObject as Boolean);
}

Because as will return null if the object is not of the specified type, you can use the result in a conditional
statement to test whether it exists (null evaluates to a Boolean false).

The method of testing type and casting can depend on the context of the code, but you can usually choose the
method that works best for you.

Downcasting occurs when you cast an object to one of its subclasses. For example, if I had a class
called Car that had a subclass of Wheel, I could downcast Wheel as type Car:

Wheel(new Car())

CHAPTER 3 ■ OBJECTS AND CLASSES

73

The Object Object
The base of all objects in ActionScript 3.0 is actually the Object class, which means it is possible to make what is
referred to, though seemingly redundant, as an Object object. An instance of the Object class is the simplest sort of
object you can make, with only a couple of properties and a handful of methods, which are inherited by every other
class in the ActionScript 3.0 language, including Array, Number, String, and any custom class you create. Some of
the more useful are hasOwnProperty(), which returns whether a property exists on an object (calling a property
that doesn’t exist results in a runtime error), and toString(), which returns a string identifying the object. This last
method is actually automatically invoked when you pass an object to the trace() function.

To create an Object instance, you can use the new operator with the constructor:

var myObject:Object = new Object();

Object instances are actually dynamic, which means that you can then assign whatever properties you need
without worry of a compile-time error (this works only for Object instances, not for subclasses, such as Array and
Number, and custom classes unless those classes have been specifically identified as dynamic):

var myObject:Object = new Object();
myObject.name = "Simple Object";
myObject.ID = 12345;

Just like an array, you can also create a new Object instance by assigning an object literal, which uses curly
braces:

var myObject:Object = {};

You can even include the properties you want to define within this object literal by using a comma-separated list
of name/value pairs, with the name and value separated by a colon:

var myObject:Object = { name:"SimpleObject", ID:12345 };

If there are more than one or two properties and you still want to use the object literal, I suggest actually breaking
it up over multiple lines to make it more legible:

var myObject:Object = {
 name: "SimpleObject",
 ID: 12345
};

Object instances are very versatile, but you should be careful not to use them too often in your code because
their dynamic nature prevents them from having any strong data typing and so hides errors that might have otherwise
been caught by the compiler. For instance, the preceding example has a name and ID property, but there is nothing
that forces the name to be a string, so an error in the code could actually assign an array for this value, causing larger
issues and runtime errors. I usually use Object instances to hold references to other objects.

For instance, suppose that you have an application with a number of users and you want to store those users
based on their IDs. In this case, an array is not a great way to store the users because the IDs might not be numbers.
In this case, storing the collection of users in an object is a great alternative. Here is an example of how to set that up:

var user0:Object = {name:"John", ID:"A111"};
var user1:Object = {name:"Paul", ID:"A112"};
var user2:Object = {name:"George", ID:"A113"};
var user3:Object = {name:"Ringo", ID:"A114"};

CHAPTER 3 ■ OBJECTS AND CLASSES

74

var users:Object = {};
users[user0.ID] = user0;
users[user1.ID] = user1;
users[user2.ID] = user2;
users[user3.ID] = user3;

Four unique Object instances are created, each containing a name and ID property. You then create another new
Object instance and assign it to the variable users. Using the IDs as the property names, you assign each user to a
property in the users object. If this bracket notation syntax appears odd to you, consider that the three following lines
are equivalent:

users[user0.ID] = user0;
users["A111"] = user0;
users.A111 = user0;

The benefit of using the first line in the code is that this line does not rely on hard-coding the ID value from the
preceding line, so if you need to change that ID, you have to do so in only one place, not two.

Now you have a users object that stores all the users based on their IDs (the ID is referred to as the key in this
scenario). If you ever want to retrieve a user, you can find that user using her ID to look her up in the users object:

trace(users["A111"]);

The lines in the preceding example could be easily condensed by using an array to hold the initial
user objects and then looping through this array to populate the users object. This was avoided to
keep the example very clear about what it was doing, but the example is not very scalable as you
gain many more users. If you are up to it, try to rewrite the preceding example using an array to see
whether you can figure out how to optimize those lines using a loop. That will be a great segue into
the next section on looping through objects.

Iterating Over Objects
Because an Object instance does not have a nice length property like an Array does, how do you loop through an
object if you want to process every property value? The answer is to use one of the two for loop variations that were
introduced (but not explored in depth) in the last chapter: the for in and for each loops. Either of these looping
mechanisms allows you to loop through all the iterable properties in an object, which means any properties that
have been defined in the class as those can be surfaced during a loop. For an Object instance, this is any property you
assign. Let’s take a look at an example using the users object from the last section.

For in Loop

If you want to loop through all the users and output their names and IDs, you can first try it with the for in loop.
This loop uses the following syntax:

for (var property:String in object) {
 // loop statements
}

CHAPTER 3 ■ OBJECTS AND CLASSES

75

This syntax is handy when it is important to see the name of the property in the object in each iteration of
the loop because that name will actually be accessible through the property variable (this variable can be named
anything; often it is just the loop iterator i). Here is how you might trace out all IDs and names of the users:

for (var prop:String in users) {
 trace(prop + ": " + users[prop].name);
}

Remember that the only properties defined on users were the IDs for each user, so using this loop will iterate
over each of those properties (the IDs). In each loop iteration, prop holds the ID of the particular user being accessed.
That user can be referenced using the object[property] bracket notation, which is how you retrieve the name of the
user in the loop example.

For each Loop

This works fine for the example, but a new looping mechanism introduced in ActionScript 3.0 is the for each loop.
This loop works similarly to the for in loop, but instead of using the properties to iterate over an object, which are
always cast as String, this loop allows you to iterate over the actual objects, whatever they may be, that are stored at
each property. The following syntax is used:

for each (var iterator:DataType in object) {
 // loop statements
}

Applied to the users example, you could trace out the names and IDs with the following:

for each (var user:Object in users) {
 trace(user.ID + ": " + user.name);
}

This looping type has at least one con and one pro. The con is that you cannot access the name of the property (or key)
as you iterate, as you could in the previous example with the prop value. However, the pro is that you can cast the iterator
as whatever type the object contains. This works fantastically if you have assigned only a single type of instance to the
object, such as numbers or arrays, because you can then access properties and methods of those objects without additional
casting within the loop and will receive compile-time errors if there are problems. For the users example, this benefit is not
immediately apparent because the users object contains other Object objects without any strong data typing.

As an example of the loop’s benefits, though, consider the following:

for each (var user:User in users) {
 user.sendNotification();
}

Here, you loop through all users, but in this scenario, you have a custom class created named User. You can type
this into the loop and then call a specific method that belongs to User directly: sendNotification(). If, at a later time,
the User code changes to require a token to be passed to sendNotification() or a message body, Flash will give
you a nice compile-time error, letting you know that you need to update the code in the loop. This would not happen
with the following code:

for (var prop:String in users) {
 users[prop].sendNotification();
}

CHAPTER 3 ■ OBJECTS AND CLASSES

76

In this case, the type of the object is not known at compile time, so it would cause an error only at runtime for the
user when the loop was run, perhaps even after you have deployed the application (this is one way that bugs slip by).
You could avoid this by casting within the loop, but which of the following two loops would you like to see in your code?

for each (var user:User in users) {
 user.sendNotification();
}
for (var prop:String in users) {
 (users[prop] as User).sendNotification();
}

My vote’s for the first one!

Dictionaries vs Objects
Like objects, the Dictionary class lets you create a dynamic collection of properites as key-value pairs of data. However,
instead of being bound to string key names, a Dictionary can associate a value with an object as the key. When an
object is used as the key, the object’s identity is used to look up object using strick equality (===) for key comparison.

In most ways, the Dictionary class is exactly the same as objects. One difference is that you cannot use object
literal syntax to create dictionaries – only array syntax or dot notation. Below, a dictionary is created using integers as
the key, with the value as a string describing the error code.

import flash.utils.Dictionary;

var errorCode:Dictionary = new Dictionary();
errorCode[200] = "OK";
errorCode[301] = "Moved Permanently";
errorCode[401] = "Unauthorized";
errorCode[404] = "Not Found";

Removing a key from a dictionary is done the same way as objects, using the delete keyword:

var photos:Dictionary = new Dictionary();
photos["beach.jpg"] = "The first trip to the beach.";
photos["pool.jpg"] = "A personal pool party.";

delete photos["pool.jpg"];

Another great use for dictionaries is creating maps. For example, a dictionary could be used to graph
relational data such as a friends list. Using user objects as the key, here the value of the dictionary are users friends,
implemented as an array of user objects.

var friends:Dictionary = new Dictionary();
friends[user1] = [user2, user5];
friends[user2] = [user1, user3];
friends[user3] = [user2];

We can now use a user object as a key to lookup friends of that user. For example, here friends of user1 are
returned as an array:

var userFriendList:Array = friends[user1];

CHAPTER 3 ■ OBJECTS AND CLASSES

77

Because objects can be used as keys, a Dictionary will retain a strong reference to the object. This means the
object will not be eligible for garbage collection until it is removed from the Dictionary. weak keys won’t stop its key
from being garbage collected.

Native JSON
JavaScript Object Notation (or JSON) is a lightweight data-interchange format that has become a popular alternative
to XML due to its simple, efficient, readable syntax to declare Object literals.

Flash provides native JSON support through a JSON class that lets you import and export data. To export an
object as a JSON-formatted string, call JSON.stringify() on the object:

var photos:Object = {
 "title": "Audrey",
 "images": [{
 "name": "The first trip to the beach.",
 "file": "beach.jpg"
 }, {
 "name": "A personal pool party.",
 "file": "pool.jpg"
 }]
};

var json:String = JSON.stringify(photos);

To import data, parse a string in JSON format to create an ActionScript object that represents that value:

var json:String = (<![CDATA[
{
 "title": "Audrey",
 "images": [{
 "name": "The first trip to the beach.",
 "file": "beach.jpg"
 }, {
 "name": "A personal pool party.",
 "file": "pool.jpg"
 }]
}
]]>).toString();

var photos:Object = JSON.parse(json)

Creating Your First Class
Assuming that you’ve been following along faithfully since the beginning, you’ve already created your first class,
although you probably didn’t realize it at the time. In the very first chapter, in which I was discussing the different
ways to integrate ActionScript 3.0 code into your projects, you created a class using the document class feature of
Flash CC (hint: it was the stuff I told you to ignore until later).

From the iPod analogy, you know that a class is like a blueprint in which you define the methods and properties
that instances of that class will have. I’ll get to how you create methods and properties in a moment, but for now,

CHAPTER 3 ■ OBJECTS AND CLASSES

78

let’s look at a class definition with no methods or properties and conveniently ignore the fact that such a class is
completely useless, literally:

public class IPod {
}

Yes, it really is that simple. Well, almost. There are a couple of things you need to worry about if you want to be
able to actually use this class.

First, all classes in ActionScript 3.0 must be part of a package. You’ll look at packages in more detail later in the
chapter, so for now, just think of them as collections of classes. Thankfully, there is a default package that you can
use for your classes, and making the IPod class part of that package is as simple as wrapping the class definition in a
package block:

package {

 public class IPod {
 }

}

The other thing you need to know is that class definitions must appear in a separate ActionScript 3.0 document,
and that document must have the same name as the class name. This means that you can’t add the class definition to
a frame of your Flash document using the Actions window in the Flash integrated development environment (IDE).

If you’re wondering what the public bit is all about, it is technically known as a class access control

namespace attribute. That’s quite a mouthful, but in essence, it means that as an ActionScript
3.0 developer, you get to decide what other classes can make use of your class by using these access
control attributes. Here, I used the public namespace attribute, which means that the IPod class
is available to everything. There are three other namespace attributes—private, protected, and
internal—which I’ll cover as part of the wider topic of namespaces in the “Controlling access to
properties and methods” section later in the chapter.

To see that you’ve actually accomplished something with the preceding code (because on paper it doesn’t look
like much), follow these steps to integrate it into a simple example:

 1. Create a new ActionScript file, and save it with the name IPod.as in the project directory
for this chapter. Enter the code listed previously and save the file.

When creating an ActionScript 3.0 class, the file name needs to be the same as the class name;
otherwise, the ActionScript compiler will throw an error.

 2. Create a new Flash file (ActionScript 3.0), and save it with the name IPodExample.fla in
the project directory.

 3. Select the first frame from the timeline, open the Actions panel, and enter the following code:

var myIPod:IPod = new IPod();
trace(myIPod);

 4. Save the Flash document and test it by selecting Control ➤ Test movie from the main
menu. If all goes according to plan, you should see the following in the Output panel:

[object IPod]

CHAPTER 3 ■ OBJECTS AND CLASSES

79

It’s not that profound, but what it does tell you is that you just created an instance of the IPod class you’ve just
written. It doesn’t actually do anything yet; I’ll get to that shortly, but before you get there, I want to talk to you about
the rules and general guidelines for choosing a name for your classes.

Choosing Suitable Names for your Classes
As with variable and function names, ActionScript 3.0 imposes some rules that you need to follow when naming your
classes. Class names must

Consist only of letters, digits, the underscore character, and the dollar symbol•฀

Not start with a number•฀

Not be a reserved word•฀

Be unique•฀

Class names should be specified in camel case notation. This is the granddaddy of the notation you’ve adopted
for variable and function names (modified camel case) and differs only in that the first letter of the first word is always
uppercase (such as MotorCar or, as in the example, IPod.) The only other piece of guidance I want to share is that you
should try to make your class names nouns; after all, nouns are things, and objects are also things.

Sorry if I’m getting a little repetitive with all these naming conventions; if there’s one thing you take away from this
book (in addition to superior ActionScript 3.0 skills), it’s that consistent naming is important and will stop you from
going insane. If it helps, this is the second-to-last time I’ll mention naming conventions in this book. Scout’s honor.

Adding Properties
So far, you created an IPod class and created an instance of it, but you’ve already discovered that it’s completely
useless as it is. It’s like an annoying socialite factory capable of churning out an endless parade of celebrity wannabes
who are famous just for being famous, despite being completely devoid of both substance and talent. I’m sure you can
think of a few media personalities who fit this bill and you should refuse to let your IPod class become one of them.

Anyway, where was I? Ah, yes—properties. As discussed earlier, the class definition dictates what properties
objects of that class will have, so it stands to reason that if you want IPod objects to have certain properties, you’ll have
to add them to the class definition.

Let’s dig right in and give the IPod class a volumeLevel property. I figure that the appropriate data type is
probably uint because I don’t know what a negative volume level might mean:

package {

 public class IPod {

 public var volumeLevel:uint = 10;

 }

}

From the preceding example, you can see that property definitions look pretty similar to variable definitions,
and that’s no accident—properties are essentially variables that belong to an object rather than floating in the global
primordial soup. The property has been made public for the same reason the class itself is public: to tell the Flash
Player that you want the volumeLevel property to be available to all and sundry.

If you look closely, you’ll see you were even able to give the property a default value, meaning that
new IPod objects will automatically have their volume levels set to 10.

CHAPTER 3 ■ OBJECTS AND CLASSES

80

Every instance of the IPod class now has a volumeLevel property that can be set and read back. If you now modify
the code on the first frame of the IPodExample.fla file, you can fiddle with the volume level of the IPod object created
and stored in the myIPod variable:

var myIPod:IPod = new IPod();
trace(myIPod.volumeLevel);

If you test this in the Flash IDE, you’ll see the value 10, the default value for the volumeLevel property, in the
Output panel. Just to prove you can also change the value of this property, add a line setting the volumeLevel to 11 so
that it’s one level louder (and if you haven’t seen This Is Spinal Tap, stay after class) and then trace the value out again:

var myIPod:IPod = new IPod ();
trace(myIPod.volumeLevel);
myIPod.volumeLevel = 11;
trace(myIPod.volumeLevel);

Testing the movie now should yield 11 in the Output panel.
Of course, you’re not just limited to a single property; objects can have as many properties as you like, and they

can be of any data type. Let’s add some more likely looking properties to the class:

package {

 public class IPod {

 public var name:String = "";
 public var volumeLevel:uint = 10;
 public var tracks:Array;
 public var currentTrack:uint = 0;
 public var shuffle:Boolean = false;

 }

}

Here you added a name property to hold the name given to the iPod (for example, "Steve's iPod"), a tracks
array to hold all the music tracks, a currentTrack property so you can tell which track is being played and change it,
and a shuffle property that indicates whether the tracks will be played in a random order.

Now instances of the IPod class can keep track of several different pieces of information. You can now make use
of these properties:

var myIPod:IPod = new IPod ();
myIPod.name = "Steve's iPod";
myIPod.volumeLevel = 11;
myIPod.tracks = ["Guns 'n' Roses - Estranged", "Muse – Super MassiveBlackholes",
"Evanescence - Good Enough"];
myIPod.shuffle = true;

I gave my iPod a suitable name and then populated it with the names of some of my favorite songs (no poking fun
at my taste in music!) using array literal notation. Go ahead and do the same with yours, although you should feel free
to use different values. (Unless you’re some kind of copycat stalker; in that case, where have you been all my life? I’ve
always wanted a stalker).

CHAPTER 3 ■ OBJECTS AND CLASSES

81

At the moment, testing this in the Flash IDE doesn’t produce any kind of output, but it’s worth doing anyway
just to make sure that you haven’t committed any errors. What you need is for the IPod instance to be able to do
something with the information it contains, which is where methods come in.

Adding Methods
As I mentioned at the start of this chapter, methods are basically functions that belong to an object. If you follow good
object-oriented design principles, the method will be related to the purpose of your object, which is a long-winded
way of saying that if you had a Pig class you wouldn’t give it a fly() method—that belongs with the Bird class.

You add method definitions to a class in much the same way you did with properties: by adding them to the class
definition. Because they’re functions, you declare them using the function keyword as you would a regular function;
but like properties, you need to specify an access attribute. I’ll deal with these in more detail later in the chapter, but
for now, you can just make all your methods publicly available using the public access attribute.

Method names need to follow the same rules and guidelines as function names. I won’t bore you
with yet another lecture on good naming practice. I trust that you can look up how functions are
named in the previous chapter if you need a refresher.

The IPod class is currently bereft of any functionality at all, so let’s give it a play() method that outputs the name
of the current track (if you were dealing with real music files instead of just track names, it would play the MP3):

package {

 public class IPod {

 public var name:String = "";
 public var volumeLevel:uint = 10;
 public var shuffle:Boolean = false;
 public var currentTrack:uint = 0;
 public var tracks:Array;

 public function play():void {
 trace("Playing: " + tracks[currentTrack]);
 }

 }

}

Now any instance of the IPod class will have a play() method that traces out the current track title in the Output
panel. Let’s give that a try by modifying the code on the first frame of the IPodExample.fla file to call this method after
all the properties of the object are set:

var myIPod:IPod = new IPod ();
myIPod.name = "Steve's iPod";
myIPod.volumeLevel = 11;
myIPod.tracks = ["Guns 'n' Roses - Estranged", "Muse – Super MassiveBlackholes",
"Evanescence - Good Enough"];
myIPod.shuffle = true;
myIPod.play();

CHAPTER 3 ■ OBJECTS AND CLASSES

82

If you test the movie now, you should see Playing: Guns ‘n’ Roses - Estranged in the Output panel. Hurrah, your
first method is born!

Of course, just being able to play one track won’t help to sell millions of iPods (I don’t think even the mercurial
Steve Jobs could get away with that one), so you need to add some more methods that might make the class a little
more useful. Let’s start by giving the IPod class the capability to skip to the next track:

package {

 public class IPod {

 public var name:String = "";
 public var volumeLevel:uint = 10;
 public var shuffle:Boolean = false;
 public var currentTrack:uint = 0;
 public var tracks:Array;

 public function play():void {
 trace("Playing: " + tracks[currentTrack]);
 }

 public function next():void {
 }

 }

}

Remember that the IPod class has a shuffle attribute, so what you want to do is to choose a random track if it is
set to true. To do this, you’ll use the Math.random() method, which will return a number between 0 and 1 that can be
multiplied by the number of tracks and rounded down to the nearest whole number with the Math.floor() method
(rounded down because the tracks array is zero indexed) to get a random track number:

...
 public function next():void {
 if (shuffle) {
 currentTrack = Math.floor(Math.random() * tracks.length);
 }
 }
...

This isn’t true shuffle functionality because the equation you’re using to generate the next track
number is random, meaning that you could get the same track several times in a row (which would
get old in a hurry if the track in question was some kind of Robbie Williams compendium). To
mimic the iPod’s shuffle mode, you’d need to clone the tracks array, sort all the tracks randomly,
and then play through them in sequence. That’s quite tricky, however, and I didn’t want to distract
you from learning about methods. If you’re feeling brave, feel free to have a stab at this yourself
(maybe after you finish the book). Don’t be afraid to make mistakes.

By the way, I omitted the lines of code you created in the previous section because I get annoyed
when programming books fill page after page with source code listings—not only does it waste
trees, it also makes my eyes hurt trying to look for the one or two lines that have changed.

CHAPTER 3 ■ OBJECTS AND CLASSES

83

If the shuffle property is set to false, you can just increment the currentTrack property or reset it to zero if
you’ve reached the end of the track listings:

...
 public function next():void {
 if (shuffle) {
 currentTrack = Math.floor(Math.random() * tracks.length);
 } else {
 if (currentTrack == tracks.length - 1) {
 currentTrack = 0;
 } else {
 currentTrack++;
 }
 }
 }
...

Finally, you want to play the next track:

...
 public function next():void {
 if (shuffle) {
 currentTrack = Math.floor(Math.random() * tracks.length);
 } else {
 if (currentTrack == tracks.length - 1) {
 currentTrack = 0;
 } else {
 currentTrack++;
 }
 }
 play();
 }
...

To take the new method for a test drive, give the following steps a whirl:

 1. In the IPodExample.fla file, draw a circle (or a fancy Next-type button if you’re more
graphically oriented than I am) on the stage, select it, and convert it into a movie clip
symbol by pressing F8. Name the symbol circle and click the OK button.

 2. Now, select your new instance on the stage, and give it an instance name of nextButton in
the Property inspector.

 3. Add the following code to the first frame above the existing code:

import flash.events.MouseEvent;

nextButton.addEventListener(MouseEvent.CLICK, onNextButtonClick);
function onNextButtonClick(event:MouseEvent):void {
 myIPod.next();
}

You haven’t gotten to event-based programming yet (that will have to wait until Chapter 6), but all
this bit of code does is call the next() method of the myIPod object when the nextButton on
the stage is clicked.

CHAPTER 3 ■ OBJECTS AND CLASSES

84

Go ahead and test the movie. Clicking the button should result in the track being changed randomly (because
you set the shuffle property to true a while back).

There are still a few bits of functionality missing from the IPod class, so if you are feeling particularly adventurous,
see whether you can add your own previous() method to skip backward through the track list and anything else you
can think is missing.

Initializing Your Objects with a Constructor Method
When you create custom classes, most likely you will want to perform some initialization on instances when they are
created, before there is any interaction through the properties and methods. Sometimes, this will be assigning values
based on properties existing in the movie or application or instantiating more complex objects that aren’t as easily
initialized in a property declaration. Any actions to be taken care of immediately when an object is created need to be
handled within, or at least kicked off from, the class’s constructor.

A constructor is a special method of your class that is executed on each new instance of your class as it is created.
It has the same name as the class to which it belongs, and the parameters of the constructor dictate what information
needs to be provided when creating a new instance of that class. The idea is that you could use the constructor in
conjunction with the parameters passed to it to initialize the object and its properties so that it’s ready to go to work.

In ActionScript 3.0, there can only ever be one constructor per class, which differs from some other
languages; if you don’t write one, Flash creates a default constructor for you behind the scenes.

One of the problems with the IPod class at the moment is that once you’ve created a new instance, you have to
initialize all the properties, one after the other. It would be much more convenient to allow a developer to pass in
values for the name, volumeLevel, and shuffle properties when creating a new IPod instance, assigning the default
values only if no user-defined values are passed in. This will move the assigning of property values from the property
declarations into the constructor. To keep things consistent (always a good idea), you’ll actually move all the property
assignments to the constructor even currentTrack, which always defaults to 0.

Let’s create a simple constructor for the IPod class to accept parameters. Remember that a constructor is just a
method that has the same name as the class. The only difference between its definition and any other method
(well, other than the name) is that it cannot specify a return data type or return a value.

When creating a constructor, remember that it doesn’t work the same way as a method, so there is
no return type.

package {

 public class IPod {

 public var name:String;
 public var volumeLevel:uint;
 public var shuffle:Boolean;
 public var currentTrack:uint;
 public var tracks:Array;

 public function IPod(
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {
 this.name = name;
 this.volumeLevel = volumeLevel;

CHAPTER 3 ■ OBJECTS AND CLASSES

85

 this.shuffle = shuffle;
 currentTrack = 0;
 tracks = new Array();
 }
...
}

Three parameters were added to the constructor that allow you to specify the name, volumeLevel, and shuffle
values, which are then copied to the appropriate properties within the body of the constructor. Each of these three
parameters is given a default value, so they are optional for a developer when creating a new instance. For instance,
if I don’t specify the second parameter when creating a new IPod object, it will get the default volumeLevel of 10.
In addition, you also instantiate the tracks array and assign 0 to currentTrack.

One new keyword introduced in the preceding code is this. Within a class, this refers to the instance of the
class that is running the code. It is used here within the constructor because you are passing in local variables
(in the parameters) that use the same names as the class properties. So you need some way to differentiate between
the parameters and the properties, and this works perfectly for this purpose (you can name the passed-in parameters
something slightly different if you like).

Now if I want to create a new IPod with a name of Steve's Shuffle and a volume level of 11, I can do so like this:

var myIPod:IPod = new IPod("Steve's Shuffle", 11);
trace(myIPod.name);
trace(myIPod.volumeLevel);

It’s good practice to make your constructors as flexible as possible and to make sure that the parameters are in
a sensible order. I’ve decided that I’m most likely to want to set the name of an IPod instance when creating it, so I
made that the first parameter of the constructor. Similarly, it’s unlikely that I’ll want to set the currentTrack property
to anything other than the first track, so I’ve not included it in the constructor parameters. Being judicious when
deciding what should become a constructor parameter and what should just be a property with a default value makes
your classes much easier to understand.

Controlling Access to Properties and Methods
As it currently stands, all the properties and methods of the IPod class are publicly accessible, meaning that they
can be read and modified from any other part of the code. This might not always be desired. For example, my iPod
undoubtedly has a serial number that uniquely identifies that particular iPod, which you could store in a property names
serialNumber. However, the serial number that Steve’s iPod was given when it was created cannot be changed, so you
need some way of hiding the serialNumber variable from the outside world, which is where access attributes come in.

You’ve already met one access attribute, public, and defined what it means, but Table 3-1 provides a complete
rundown of the access attributes available in ActionScript 3.0, along with their descriptions.

CHAPTER 3 ■ OBJECTS AND CLASSES

86

Table 3-1. Access attributes available in ActionScript 3.0

Access Attribute Description

private Can be accessed only by methods of the class itself

public Can be accessed from any other part of the code in the entire application in which the class exists

protected Can be accessed only by methods of the class itself and any classes that extend this class

internal Can be accessed by any class defined in the same package

Some of these attributes (namely protected and internal) might not make too much sense at the moment
because they are useful only when you’re dealing with inheritance and packages (not covered yet in this chapter).

Despite that, you can see that the private access attribute is a good candidate for the serialNumber property. The
plan is to pass the serial number as a String into the constructor method, which can then set the value of the private
serialNumber variable appropriately (remember that private variables are visible to methods of the class itself):

...
 public var currentTrack:uint;
 public var tracks:Array;

 private var _serialNumber:String;

 public function IPod(
 serialNumber:String,
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {
 _serialNumber = serialNumber;
 this.name = name;
 this.volumeLevel = volumeLevel;
 this.shuffle = shuffle;
 currentTrack = 0;
 tracks = new Array();
 }
...

I chose to start the new _serialNumber property with an underscore character, which is common notation within
ActionScript 3.0 files to mark a property as private. That way, it is very easy within the class to know which properties
are private (contain an underscore) and which are public (no underscore). This also frees you from having to use
this when assigning the property within the constructor because the name of the property now differs from the name
of the parameter passed in.

I made this parameter mandatory (by not providing a default value for it in the method definition)
because all iPods have serial numbers (with the possible exception of James Bond’s, but I’m guessing
he’s not among the target audience for the application).

CHAPTER 3 ■ OBJECTS AND CLASSES

87

You’ll also need to change the code on the first frame of the IPodExample.fla file to pass in the extra parameter
to the constructor method when creating an instance of the IPod class:

var myIPod:IPod = new IPod("A101", "Steve's Shuffle", 11);
trace(myIPod.name);
trace(myIPod.volumeLevel);

Perfect. If you try to trace out the value of the _serialNumber property of the myIPod object, you’ll get an error
from the ActionScript 3.0 compiler, telling you that you cannot access a private property from outside the class.
This demonstrates that the property, set as private, is not accessible to outside classes or code.

Adding Getter/Setter Methods
Hiding properties using the access modifiers is fine, but sometimes it isn’t enough. What if all you wanted to do was
to make sure that when a property was set it was given a sensible value? What would it mean, for example, for the
currentTrack property of an IPod instance to be set to be greater than the number of tracks in the tracks array?
In fact, setting the currentTrack property at the moment doesn’t do anything at all; you certainly don’t get a nice
message traced to the Output panel telling you which track is being played now.

You could, of course, make the currentTrack property private and create two public methods,
 getCurrentTrack() and setCurrentTrack(), which can be used to manipulate the value of that property. These are
referred to as explicit getter/setter methods because they explicitly provide two methods for reading from and writing
to a single property, respectively. I don’t know about you, but that just doesn’t feel right; ideally, I’d like currentTrack
to still be a property but just be able to intervene whenever the value is being set. Thankfully, ActionScript 3.0 gives
implicit getter/setter methods for that exact purpose.

Implicit getter/setter methods allow you to create properties that behave like functions. They come as a pair of
methods with the same name, with the getter function being called whenever the property value is read, and the setter
function being called whenever a value is assigned to the property. These methods are known as implicit getter/setter
methods because they are methods that act, on the outside, like a single public property that in fact calls two separate
read/write methods for a single private property.

A getter method looks almost like any other method of your class, except that it has the get keyword between the
function keyword and the function name. The getter method cannot take any parameters and must return a value of
the data type specified by the return type of the function, which will be the data type you want for your public property
(in the case of the currentTrack property, this would be uint):

public function get propertyName():ReturnType {
 // needs to return a value of the appropriate type
}

A setter method is similar, but it uses the set attribute in place of the get attribute, and it’s passed the new value
assigned to the property as its one and only parameter. The data type of this parameter should be the same as the data
type returned by the getter method. The return type of the setter method is always void:

public function set propertyName(value:Type):void {
 // the new value for the property is in the value variable
}

Before you rush off and add a getter/setter pair to the IPod class, there’s one small issue: you can’t have a
property and a method with the same name. This means that you’ll need to rename the old currentTrack property
to something else so that you can create a getter/setter pair of that name. You’ll also want to make it private rather
than public; otherwise, there’s nothing to stop other code from using the renamed public property instead of

CHAPTER 3 ■ OBJECTS AND CLASSES

88

the getter/setter pairs, which rather defeats the purpose. As with _serialNumber, you will give the private property
_currentTrack the underscore prefix to differentiate it from the public getter/setter methods.

Not all getter/setter methods need to relate to a private property of the class. They could be a
convenient method of setting the value of several properties (think about a name getter/setter pair
that splits the value into firstName and lastName properties, which might or might not be public) or
not actually set any properties at all and just be functional.

With that in mind, go ahead and make the currentTrack property private and prefix an underscore to its name.
Here I grouped it with _serialNumber because I like to keep my public and private properties separate:

package {

 public class IPod {

 public var name:String;
 public var volumeLevel:uint;
 public var shuffle:Boolean;
 public var tracks:Array;

 private var _serialNumber:String;
 private var _currentTrack:uint;

 public function IPod(
 serialNumber:String,
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {
 _serialNumber = serialNumber;
 this.name = name;
 this.volumeLevel = volumeLevel;
 this.shuffle = shuffle;
 _currentTrack = 0;
 tracks = new Array();
 }
...

Now create the currentTrack getter/setter methods. The getter method just needs to return the value held in
the private _currentTrack property, but you need to do something trickier with the setter method. The whole aim of
this exercise was to prevent the currentTrack property from being greater than the number of tracks you have in the
tracks array. You can use the Math.min() method to set the value to the smaller of the value passed in or the index
of the last track in the tracks array (which is the length of the array minus one because arrays are zero indexed).
Of course, you also need to make sure that the current track is not set to be less than 0, and the Math.max() method
takes care of that. Normally, I put getter/setter methods at the end of a class definition (just personal preference),
so you can see the methods after the next() method:

...
 public function next():void {
 if (shuffle) {
 currentTrack = Math.floor(Math.random() * tracks.length);
 } else {

CHAPTER 3 ■ OBJECTS AND CLASSES

89

 if (currentTrack == tracks.length - 1) {
 currentTrack = 0;
 } else {
 currentTrack++;
 }
 }
 play();
 }

 public function get currentTrack():uint {
 return _currentTrack;
 }
 public function set currentTrack(value:uint):void {
 value = Math.max(0, value);
 value = Math.min(value, tracks.length - 1);
 _currentTrack = value;
 }
...

You can see this magic in action by changing the code on the first frame of the IPodExample.fla file to add a
couple of tracks and then try setting the currentTrack property to 55 and see what you get:

var myIPod:IPod = new IPod("A101", "Steve's Shuffle", 10);
myIPod.tracks.push("Guns 'n' Roses - Estranged");
myIPod.tracks.push("Muse - Supermassive Black Hole");
myIPod.tracks.push("Evanescence - Good Enough");
trace(myIPod.currentTrack); // 0
myIPod.currentTrack = 55;
trace(myIPod.currentTrack); // 2

If you test this movie, you’ll see 0 and 2 in the Output panel in the Flash IDE, confirming that the getter/setter

methods are working as planned.

Note that in the preceding example you are manipulating the tracks array directly by calling the
push() method. This is possible because you have made the array publicly accessible. The problem is
that it is then possible for any outside code to manipulate that array (arrays are passed by reference,
so any manipulation of that array outside the class affects the array inside the class).

Here is a great example of when you should make a property private and instead provide either
implicit or explicit getter/setter methods to allow for outside classes to manipulate data. Allowing
access only through the getter/setter methods provides a way to ensure that only a class will directly
alter its properties, which is generally good object-oriented programming practice. In fact, in
nearly all cases, I make properties private or protected, and allow access only through getter/setter
methods. For tracks, a good exercise is to make it private and perhaps provide addTrack() and
–removeTrack() methods managed by the class.

CHAPTER 3 ■ OBJECTS AND CLASSES

90

Creating Read-Only Properties with Getter Methods
So far, I’ve discussed getter/setter methods used as a pair, but that doesn’t always have to be the case. Using just a
getter method with no equivalent setter, you can create properties that are read-only from outside of your class. If
some other part of the code attempts to assign a value to that property, the ActionScript 3.0 compiler will throw an
error, and your project won’t compile.

This is a great way of exposing internal private properties to the outside world without allowing them to be
changed, which would be ideal for the _serialNumber property you added to the IPod class a while back.

In the following code, the currentTrack getter/setter methods add a solitary serialNumber getter method that
returns the value of the private _serialNumber property:

...
 public function get currentTrack():uint {
 return _currentTrack;
 }
 public function set currentTrack(value:uint):void {
 value = Math.max(0, value);
 value = Math.min(value, tracks.length - 1);
 _currentTrack = value;
 }

 public function get serialNumber():String {
 return _serialNumber;
 }
...

Finally, you can rewrite the code in the first frame of the IPodExample.fla file to trace the –serialNumber of the
iPod to the Output panel:

var myIPod:IPod = new IPod("A101", "Steve's iPod", 11);
trace(myIPod.serialNumber); // A101

Ta da! You can now get at the serial number of an IPod instance without being able to change its value. If you’re
feeling adventurous, feel free to try setting the value of the serialNumber property and see what error you get from the
ActionScript 3.0 compiler—it will help you to work out what’s going on the next time you get this error.

Static Properties and Methods
Grouping variables and functions together into logical objects is all well and good, but not all pieces of data or
functionality belong to a particular instance of an object. Utility functions and pieces of data that don’t logically
belong to a single instance of a class, but are nonetheless related to the class, can be added to the class as static
properties and methods.

CHAPTER 3 ■ OBJECTS AND CLASSES

91

Static properties and methods are part of the class definition, but are identified by the static attribute being
used as part of their definition:

public class StaticExample {

 public static const PI:Number = 3.1415;
 public static function doStaticStuff():void {
 // take some actions
 }

}

Technically, ActionScript 3.0 is somewhat flexible about the order of the attributes applied to a
class or method. When looking at code that’s out there in the wild, you’ll sometimes see static
specified before the access attribute and sometimes see them the other way around. It’s the collective
meaning of the attributes that matters, not the order in which you specify them. However, you’ll
make life easier for yourself if you pick a convention and stick to it.

When accessing a static property or calling a static method of a class, you don’t need to create an instance because
the property is actually a part of the class, not of any individual object created from that class. Just use dot notation with
the class name and the property or method name (as you did with Math.random() earlier in the chapter):

trace(StaticExample.PI);
StaticExample.doStuff();

Sometimes you have utility functions that don’t logically belong to a class at all. Take the Math class for example:
you can’t create an instance of the Math class (what would “a math” be?) and it’s just used as a container for a whole
bunch of mathematical constants and utility functions.

Oh, and you can even have static getter/setter methods if you think of a good use for them.

Taking Advantage of Inheritance
No, I won’t give you advice on how to invest granny’s millions (though I know a very grateful author who could take
very good care of it for you). I’m talking about object-oriented inheritance.

Inheritance allows you to create new classes using an existing class as a foundation, adding or changing
functionality as necessary. For example, a basic Car class might have a licensePlate property, and accelerate() and
brake() methods, which every car has, and there’s no sense in duplicating all that stuff for every different type of car.
Instead, the DeLorean class can extend the Car class and add its own functionality—a fluxCapacitor property and a
travelThroughTime() method, for example.

The key to understanding inheritance is that it is an “is-a” relationship. A DeLorean is a Car; a Cat is a Mammal;
and an Apple is a Fruit. Each of those subclasses is a specialization of its base class, adding in its own properties and
methods yet inheriting the basic functionality. The idea of inheritance is to write common functionality once in the
base class and then specialize that functionality for the different subclasses.

In ActionScript 3.0, you can specify that one class extends another using the extends keyword as part of the class
definition:

public class SubClass extends BaseClass {
 ...
}

CHAPTER 3 ■ OBJECTS AND CLASSES

92

An instance of SubClass will now inherit all the features and functionality defined in BaseClass as if they were
defined in SubClass itself.

In the constructor of your subclass, you can call a special method named super(), which invokes the base class’s
constructor method. If you need to pass any parameters from the subclass constructor to the base class constructor,
you can do it just as you would a normal method call:

public class SubClass extends BaseClass {
 public function SubClass(someParam:String) {
 super(someParam);
 }
}

If you forget to call the super() method, the ActionScript 3.0 compiler will attempt to invoke the
constructor of your base class with no arguments. If your base class is expecting to receive parameters
(it has parameters that are not optional), the ActionScript 3.0 compiler will throw an error like this:
1203: No default constructor found in base class BaseClass.

If you ever get this error, make sure you’re calling the super() method in the subclasses constructor
and passing the necessary parameters.

Relating this back to the IPod class analogy, you might say that there are different types of iPod. There’s the iPod
Shuffle, the iPod Nano, and the regular photo iPod. Each of these types of iPod supports the same basic functionality
set up in the IPod class, but they each add something extra. Let’s create a PhotoIPod class that has a collection of
photos and the capability to cycle through them:

 1. Create a new ActionScript file named PhotoIPod.as and save it in the project directory.

 2. Create the basic class definition in the default package, remembering to extend the base
IPod class along the way:

package {

 public class PhotoIPod extends IPod {
 }

}

 3. Create a duplicate of the constructor method from IPod that takes the same parameters
and passes them through to the super() method to let the base class initialize itself:

package {

 public class PhotoIPod extends IPod {

 public function PhotoIPod(
 serialNumber:String,
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {

CHAPTER 3 ■ OBJECTS AND CLASSES

93

 super(
 serialNumber,
 name,
 volumeLevel,
 shuffle
);
 }

 }

}

 4. Now you can start to add the extended functionality of the PhotoIPod class. The first
thing you need is an array to keep the list of photos in and a property to keep track of the
current photo:

package {

 public class PhotoIPod extends IPod {

 public var photos:Array;
 public var currentPhoto:uint;

 public function PhotoIPod(
 serialNumber:String,
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {
 super(
 serialNumber,
 name,
 volumeLevel,
 shuffle
);
 photos = new Array();
 currentPhoto = 0;
 }

 }

}

I’ve been a bit lazy and just made the currentPhoto property public. If left like this, it would face
the same problem as the currentTrack property that you added getter/setter methods for earlier—
namely that something could set the currentPhoto property to be greater than the number of entries
in the photos array. If this is nagging at your conscience as much as it is mine, feel free to embellish
it with getter/setter methods.

CHAPTER 3 ■ OBJECTS AND CLASSES

94

 5. Add a showPhoto() method that displays the title of the current photo from the photos
array:

public function PhotoIPod(
 serialNumber:String,
 name:String="",
 volumeLevel:uint=10,
 shuffle:Boolean=false
) {
 super(
 serialNumber,
 name,
 volumeLevel,
 shuffle
);
 photos = new Array();
 currentPhoto = 0;
}

public function showPhoto():void {
 trace("Showing: " + photos[currentPhoto]);
}

 6. Finally, add a nextPhoto() method to cycle through the photos sequentially, looping back
around to the beginning if you get to the end:

public function showPhoto():void {
 trace("Showing: " + photos[currentPhoto]);
}

public function nextPhoto():void {
 if (currentPhoto == photos.length - 1) {
 currentPhoto = 0;
 } else {
 currentPhoto++;
 }
 showPhoto();
}

With that done, you can create a new instance of the PhotoIPod, which can play music and
view photos at the same time:

 7. Save your IPodExample.fla file as PhotoIPodExample.fla.

 8. Change the code on the first frame of the PhotoIPodExample.fla file to reflect the
following changes in bold:

var myIPod:PhotoIPod = new PhotoIPod("A101", "Steve's iPod", 10);
myIPod.tracks.push("Guns 'n' Roses - Estranged");
myIPod.tracks.push("Muse - Supermassive Black Holes");
myIPod.tracks.push("Evanescence - Good Enough");

CHAPTER 3 ■ OBJECTS AND CLASSES

95

myIPod.photos.push("Steve with streamers on his head");
myIPod.photos.push("Nicki asleep by the fire");
myIPod.photos.push("Steve a little worse for wear");

myIPod.play();
myIPod.showPhoto();

It might not be clear that you have been using the tracks property without declaring it because after you have
extended a class, you inherit all the public properties from that class. So in the preceding example, the PhotoIPod
inherits the tracks property from the IPod class that it extended.

Feel free to add another button to the stage to cycle through the photos. Follow the same basic instructions as the
button you added to skip through the music tracks, but call the nextPhoto() method instead.

Overriding Methods of the Base Class
Sometimes when extending a base class, you want to change or enhance some piece of functionality provided by that
base class to suit the subclass. This is known as method overriding.

To override a method of a base class, you need to use the override attribute. Like the static attribute, it can go
anywhere before the function name, but it’s probably best to put it before the access attribute, so you know up front
which methods are being overridden in a class:

override public function methodName():void {
 ...
}

If you’re just embellishing the functionality of the base class (or you want to run some additional checks before
the method is called) you can always use the super keyword to call the original method from the base class from
within the override method:

override public function methodName():void {
 super.methodName();
}

Instead of just calling a method named super(), as you did with the constructor, super is actually a reference to
the base class object, and you just call the method of the same name on that object.

If you try to just use this.methodName() instead, you’ll be calling the same method again, which
will call the same method again. Rinse; repeat. This is known as infinite recursion and it actually
crashes the Flash Player and causes a lovely little warning dialog box to pop up on the user’s screen.
Needless to say, this is not something to strive for.

Let’s take the simple Car vs. DeLorean example. You’ll probably want to override the Car class’s –forward()
function to check not only the fuelLevel (which in the case of the DeLorean would be black-market plutonium
bought from Libya) but also that a target date has been configured:

public class Car {

 public var fuelLevel:uint = 100;

 public function Car() {
 }

CHAPTER 3 ■ OBJECTS AND CLASSES

96

 public function forward() {
 if (fuelLevel > 0) {
 fuelLevel--;
 }

 }

}

So that’s the basic Car class. Next, you’ll tackle the DeLorean class, which has a target date that needs to be set
before the car can go anywhere:

class DeLorean extends Car {

 public var targetDate:Date;

 public function DeLorean () {
 super();
 }

 override public function forward():void {
 if (targetDate != null) {
 super.forward();
 }

 }

}

Here, you override the forward method of the Car class, calling it through the super object only if a target date
has been set.

Using Packages to Group Your Classes
So far in this chapter, you’ve been putting all the classes into the default package. Although this may be okay for very
simple examples that you’ll just throw away later, it’s not a good idea for code that has to be organized, maintained, or
shared with others.

The reason why it’s not a good idea is that you can have only one class of a given name. So if everyone just dumps
classes in the default package, the chance of a naming conflict is quite high (not to mention causing a staggering
number of class files in a single directory). Instead of using the default package, you can use the packaging system in
ActionScript 3.0 for the purpose it was intended: to organize the code into logical groups or packages, with a portion
of package names being unique enough to differentiate the code from someone else’s.

In ActionScript 3.0, you create a package by surrounding your class definition in a package block:

package name {
 ...
}

CHAPTER 3 ■ OBJECTS AND CLASSES

97

The package name is made up of parts separated by a dot, or period. These parts of the package name must be
mirrored by the directory structure in which the ActionScript 3.0 files are saved. For example, all the classes for this
book are in the com.foundationAS3 package, which means that they are stored in the foundationAS3 subdirectory of
the com directory within the main project directory. If you place an ActionScript 3.0 class file in a location that doesn’t
match its package name, the ActionScript 3.0 compiler won’t be able to find it, and you’ll get an error.

Naming Your Packages
There are two primary benefits of placing your code in packages. The first is to ensure that your classes don’t clash
with classes of the same name created by others. This means that the package name you choose for your classes needs
to be unique—if everyone chooses the same package name, you’re no better off than you were when using the default
package name.

The de facto method of ensuring unique package names is to reverse the domain name of the website belonging
to the company producing the code or the client for whom the code is being written. Because domain names are
registered and can be owned by only one entity at any one time, there’s very little chance of a naming conflict. Going
forward, all the ActionScript 3.0 classes in this book will be within the com.foundationAS3 package.

Adobe has ignored this convention for the built-in Flash and Flex framework classes, which are
spread across the flash and mx packages. Adobe did this to save you from having to type com.adobe
before each package path, mindful that you’re likely to be using the built-in classes quite frequently.

The second benefit of packages is that they help you organize your classes into logical groups according to their
functions. When I’m working on a project, any class that’s specific to that project goes within a package with the same
name as the application, with any generic classes going into the top-level domain package. Going further, I then
subdivide those classes according to their function, so utility classes will go in the utils package, and so on.

What you end up with is a structure that looks like the one shown in Figure 3-1.

CHAPTER 3 ■ OBJECTS AND CLASSES

98

Figure 3-1 shows that you can quite happily mix classes and subpackages in the same package.

Having said all that, you are free to ignore all this good advice and organize your code any way you see fit.
Package names need to conform to the same rules as class names, but should generally be lowercase to differentiate
them from classes. Other than that, you can name and structure your packages however you like. Just be aware that
putting all your classes for a professional project into a package named charlieBrown just for a laugh will probably get
you fired. Don’t say I didn’t warn you.

Figure 3-1. An example of a package structure for many classes

CHAPTER 3 ■ OBJECTS AND CLASSES

99

Importing a Class from a Package
After you section your classes into logical packages, you’ll need to use the import statement to bring the classes into
the class in which you want to make use of them. Actually, you need to do this only for classes that aren’t in the same
package as the class you’re editing—classes in the same package are automatically available to you.

When adding import statements to your code, they should go inside the package block but outside of the class
definition, and you need to use the full package path and class name for the class you want to import. If you had a
class that needed to make use of the MovieClip class from the flash.display package, you’d need to do something
like this:

package {

 import flash.display.MovieClip;

 class Example extends MovieClip {
...
 }

}

Once the class has been imported, you can use just the class name to reference it in the code (with one small
exception, which I’ll get to in a bit).

Importing a class doesn’t automatically mean that the class will be compiled into the resultant SWF file for your
project. The ActionScript 3.0 compiler is smart enough to work out whether you’re making use of a class and exclude
it if there’s no reference to that class in your code.

Importing all Classes in a Given Package
On a large project in which you have classes that use lots of classes from other packages, maintaining the import
statements can become a task in itself. To help you combat this, you can use the asterisk symbol to include all the
classes in a given package in a single import statement.

When you start looking at the display list in the next chapter, you’ll be using a lot of the classes from the
flash.display package. Instead of importing each of these classes individually, you can import them all with a
single import statement that uses the asterisk wildcard (*):

import flash.display.*;

This statement will import only classes directly in that package and will not include classes in any
subpackages within the specified package, so you wouldn’t be able to import every single class that resides in the
fl.motion.easing package by importing fl.motion.*.

Resolving Naming Conflicts among Imported Classes
When importing classes from multiple packages, there’s still a chance you will end up with two classes with the
same name. When this happens, you won’t be able to use just the name of the class in your code because the
ActionScript 3.0 compiler won’t be able to work out which of the classes with that name you mean.

CHAPTER 3 ■ OBJECTS AND CLASSES

100

In cases like this, you need to give the compiler a helping hand by specifying the full package name for the class
wherever you use it, although you’ll still need to import the classes with an import statement:

com.foundationAS3.chp
Number.ClassName

Removing Dependency on Timeline Code
Now that you know all about classes and objects, I’ll do away with placing code on the timeline for the remainder of
this book and use document classes instead.

When you specify a document class for a Flash movie, an instance of that class is created when the movie is
played, and it represents the top-level MovieClip in your document (it could be a Sprite instead).

If you’re dealing with timeline keyframe animation and you need something to happen on a particular frame, my

advice is to place that code in a method of a class and call that method from the frame.

There is a sneaky undocumented method that allows you to specify a function to be called when a
particular frame is reached without having to put any code on the timeline: the addFrameScript()
method of the MovieClip class. This method takes a frame number (starting at zero for the first
frame) and a function reference, with the function you pass in being called when the movie enters
the specified frame number.

That said, I don’t recommend using this for two reasons. The first is that the –addFrameScript()
method is undocumented, so Adobe could remove it at any point, and your movies would break.
The second reason is that if you’re shifting stuff around on the timeline (to tweak your animations,
for example), you’ll have to remember to change the code in the class, too—at least if the code is on
a frame, that frame will probably get shunted around with the animation.

Summary
The previous chapter was about basic building blocks; in this chapter, you learned how to put those building blocks
together to build rooms. Classes are the foundation of everything you will do in your ActionScript 3.0 projects, so it
was important that I covered them early on.

I’ve kept to the basics of object-oriented programming in ActionScript 3.0, covering just enough to get you
through to the end of this book. Advanced topics have been left out to spare your gray matter from imploding—I’ll
touch on them in the coming chapters where applicable, but I didn’t want to overload you with too much information
at the get-go. If you are feeling like you need more, Object Oriented Actionscript 3.0, by Todd Yard, Peter Elst, and Sas
Jacobs (friends of ED, 2009) is dedicated to this very subject.

Now, I promised you some fun stuff after these two chapters were over, and fun stuff you shall have. In the next
chapter, you’ll look at how to create and manipulate graphics on the stage using the display list. See you there.

101

CHAPTER 4

Working with the Display

This chapter covers the following topics:

How to control movie playback•฀

What the display list is, and why you should care•฀

How to manipulate items on the display list•฀

How to create new display items from Library symbols•฀

How to load external images and SWF files•฀

How to animate display items•฀

How to live long and prosper•฀

(Just kidding about that last one—you’ll want a self-help book for that.)
This chapter is all about performing cool visual feats with ActionScript. If you’re from a design background, that’s

no doubt music to your ears after the last two and a half chapters of techno-babble. If you rather liked all that geeky,
highly technical stuff, the good news is that there’s enough of that in this chapter to keep you interested, too.

Introducing the Display List
In ActionScript 3.0 development, the display list is the term used to describe the hierarchy of visual items that make
up your Flash movie. I would have called it the display tree, rather than the display list; the latter implies a flat list
of display objects. whereas the former suggests that display objects can be arranged hierarchically. Still, I don’t get
to define the terms that Adobe uses, so we’ll have to work with what we’re given. If you’ve done any graphical work
in Flash CC (or any previous version of the Flash authoring tool, for that matter), you’ve been creating display
lists without really knowing or thinking about it. If you have a Flash movie containing a mixture of movie clips,
graphic symbols, text fields (both static and dynamic), and an imported JPEG, the display list might look something
like Figure 4-1.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

102

The display list is made up of display objects, which all derive from the DisplayObject class in the
flash.display package. However, certain display objects can hold (or nest) other display objects, and these derive
from flash.display.DisplayObjectContainer. If you think about how you put graphical objects together in Flash,
you should be able to come up with some examples of both DisplayObject and DisplayObjectContainer instances.
MovieClip is an obvious candidate for a DisplayObjectContainer, since it can contain just about anything, and a
Shape would also be a DisplayObject.

Many different child classes ext these two classes. Everything visual you can add to a Flash movie is represented
as a class, and at least some of these should be familiar to you. Figure 4-2 shows all the display object classes and how
they relate to one another.

Figure 4-1. See, I told you that the display list is actually more like a tree!

CHAPTER 4 ■ WORKING WITH THE DISPLAY

103

Figure 4-2. The DisplayObject classes available through ActionScript

I’m not going to go through all these classes right here, as that would be drab and boring. You’ll meet most of
them during the course of this chapter. I do, however, want to go over the lineage of the MovieClip class to explain
what facets and features are added by each class in the hierarchy.

•฀ DisplayObject: At the top of the hierarchy, this class provides the basic properties for all
visual items in the display list, such as x, y, z, width, and height. Everything in the display
list is an instance of one of the classes that exts the DisplayObject class, either directly or
indirectly.

•฀ InteractiveObject: This class adds various properties, methods, and events that allow users
to interact with display objects using the mouse and keyboard. You’ll learn more about events
and how to allow users to interact with display objects in Chapter 6.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

104

•฀ DisplayObjectContainer: This class gives display objects the ability to contain other display
objects, which can be manipulated using methods like addChild() and removeChild().
Other display list classes allow a specific number of child display objects. A good example is
SimpleButton, which allows you to specify a different display object for each of the button
states, but only DisplayObjectContainer instances allow you to have an open-ed number of
child display objects.

•฀ Sprite: This is a new type of object available with ActionScript 3.0, and there is no equivalent
in the IDE. Basically, it is like a movie clip without a timeline, so it doesn’t contain any of the
timeline-controlling ActionScript necessary with MovieClip instances. You can still draw into
it, add new display objects to it, and code for interactivity, but it is lighter weight in memory
than a movie clip. It is the best bet if you are programmatically creating interactive graphics in
your applications.

•฀ MovieClip: This class adds the concept of frames, frame labels, and scenes, with all the
properties and methods you need to query and manipulate the playhead. Note that while you
can create MovieClip objects programmatically, you cannot add frames, labels, or scenes with
ActionScript code.

Although DisplayObject, InteractiveObject, and DisplayObjectContainer are listed in the class
diagram, you can’t actually create instances of any of them. These classes exist just to provide
the common functionality for their descants. Trying to create an instance of them will result in a
runtime error from the ActionScript compiler such as the following:

ArgumentError: Error #2012: DisplayObjectContainer$ class cannot be
instantiated.

Such classes are known in the trade as abstract classes. ActionScript 3.0 doesn’t support true
abstract classes. If they were true abstract classes, you would get a warning from the ActionScript
compiler, rather than a runtime error from the Flash Player, but that’s just me being picky.

You also can’t create an instance of the AVM1Movie class, which is used to represent Flash movies
that were created for previous versions of the Flash Player (version 8 and earlier). When you load
a movie of this type, it will automatically be of type AVM1Movie, which is a stripped-down version of
the MovieClip class.

Since you’re probably already familiar with the concept of a movie clip, that seems like an ideal place to start our
display list journey.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

105

Working with Display Objects
When you create a movie clip in the Flash CC IDE and place it on the stage, it becomes a property of type MovieClip
in the document class specified for the Flash movie. The name of the property is the same as the instance name of the
movie clip on the stage.

 1. Create a new Flash movie and save it in the project directory with the name display.fla.

 2. On the stage, draw a 100 × 100-pixel, light-blue square with a thick, black outline.

 3. Select the square (and its outline) and convert it to a movie clip symbol by selecting
Modify ➤ Convert to Symbol from the main menu or by pressing F8.

 4. Enter Square in the Name field of the Convert to Symbol dialog box, as shown in Figure 4-3,
and then click OK to create the symbol. You will get the familiar warning about the class
file being created behind the scenes for you. This is OK.

Figure 4-3. A new symbol is created using a blue square

 5. Select the instance of the Square symbol on the stage and give it an instance name of
square in the Property inspector.

 6. Now create a new ActionScript file for the document class. As promised in the previous
chapter, you’re going to start organizing classes properly, so create a class named
DisplayTest in the com.foundationAS3.ch4 package. This means that you’ll need to
create a directory structure in the project directory that mirrors this package structure.
Save the file in the ch4 folder with the name DisplayTest.as.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

106

 7. Create the basic package and class definitions for the DisplayTest class with an empty
constructor method. The main document class needs to ext either the Sprite or
MovieClip class. Unless you have timeline animation in the root timeline of the Flash
document, it’s always best to use the Sprite class. It’s slightly more efficient in terms
of performance and memory usage, because it doesn’t need to keep track of frame
information. Since you don’t have any timeline animation, the Sprite class will
do just fine.

package com.foundationAS3.ch4 {

 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 }

 }

}

 8. Once you’ve set this class to be the document class for the display.fla movie and
published the SWF file, the instance of the Square symbol on the stage with an instance
name of square will become a property of your DisplayTest instance. You can add a
simple trace() statement to the constructor method to prove that the MovieClip exists:

package com.foundationAS3.ch4 {

 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);
 }

 }

}

 9. Save the changes to the DisplayTest.as file and switch back to the display.fla file.

 10. You now need to specify that the display.fla movie should use the DisplayTest class as
its document class. Click an empty area of the stage and enter com.foundationAS3.ch4.
DisplayTest in the Document class field of the Property inspector, as shown in Figure 4-4.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

107

 11. Save the changes to the display.fla file and test it by selecting Control ➤ Test Movie
from the main menu, or by pressing Ctrl+Enter (Windows) or Command+Enter
(Mac OS X).

Oops! You got your square, but nothing in the Output panel. If you look at the Compiler Errors panel, you’ll see
that you got an error, as shown in Figure 4-5.

Figure 4-4. Setting the document class

Figure 4-5. Your frily neighborhood compiler warning for a missing class

CHAPTER 4 ■ WORKING WITH THE DISPLAY

108

The Flash compiler is complaining that it couldn’t find the MovieClip class. But why was it looking for it if
you exted the Sprite class? The answer is that the compiler tried to add the Square instance as a property of type
MovieClip to the DisplayTest class, but wasn’t smart enough to import the class on its own. This is a bug in the Flash
compiler, but you can get around that simply by adding an import statement for MovieClip.

 12. In the DisplayTest.as file, add the bold line shown in the following code:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);
 }

 }

}

 13. Save the changes to the file, switch to the display.fla movie, and test the movie again.

This time, you should see the result of the trace() statement in the Output panel, as
shown in Figure 4-6.

Figure 4-6. The Square instance found and traced in the DisplayTest class

CHAPTER 4 ■ WORKING WITH THE DISPLAY

109

Manipulating Display Objects
Now that you have a reference to the MovieClip instance, you can start to play around with its various properties. For
example, you could move the instance of the Square symbol to (300,300) on the stage by setting its x and y properties
accordingly (see Figure 4-7):

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);

 // Move to (300,300)
 square.x = 300;
 square.y = 300;
 }

 }

}

Figure 4-7. The square moved to a new screen position

CHAPTER 4 ■ WORKING WITH THE DISPLAY

110

You can change the Square symbol instance’s width and height by setting its width and height properties
(see Figure 4-8):

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);
 // Move to (300,300)
 square.x = 300;
 square.y = 300;

 // Stretch horizontally and squash vertically
 square.width = 200;
 square.height = 50;
 }

 }

}

Figure 4-8. Changing an object’s dimensions is a snap

Another way to adjust a display object’s height and width is by changing the scaleX and scaleY properties. These
values are used to multiply the original width and height of the object to determine its scale. So, if you set scaleX and
scaleY to 2, the Square instance would be twice as wide and twice as high as it was originally. Conversely, if you set

CHAPTER 4 ■ WORKING WITH THE DISPLAY

111

scaleX and scaleY to 0.5, the Square instance would be half as tall and half as high. The following code is equivalent
to the previous example, but instead of setting width and height, it scales the movie clip using scaleX and scaleY:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);

 // Move to (300,300)
 square.x = 300;
 square.y = 300;

 // Stretch horizontally and squash vertically
 square.scaleX = 2;
 square.scaleY = 0.5;
 }

 }

}

You can change the opacity of the movie clip using the alpha property. This is a value between 0 (transparent)
and 1 (opaque) that indicates the alpha level for the instance. Here’s an example (see Figure 4-9):

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);

 // Move to (300,300)
 square.x = 300;
 square.y = 300;

 // Stretch horizontally and squash vertically
 square.scaleX = 2;
 square.scaleY = 0.5;
 // Make 50% alpha
 square.alpha = 0.5;
 }

 }

}

CHAPTER 4 ■ WORKING WITH THE DISPLAY

112

You can also rotate the movie clip around the registration point by setting the rotation property. This is a
number in degrees indicating the rotation amount of the display object. The following example rotates the Square
instance 45 degrees (see Figure 4-10):

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DisplayTest exts Sprite {

 public function DisplayTest() {
 trace(square);

 // Move to (300,300)
 square.x = 300;
 square.y = 300;

 // Stretch horizontally and squash vertically
 square.scaleX = 2;
 square.scaleY = 0.5;

 // Make 50% alpha
 square.alpha = 0.5;

 // Rotate 45 degrees
 square.rotation = 45;
 }

 }

}

Figure 4-9. The alpha of the square is set through code

CHAPTER 4 ■ WORKING WITH THE DISPLAY

113

You’ll learn about some of the other properties you can manipulate, such as blMode and filters, throughout this
chapter. Feel free to stop here and play around for a while.

Managing Depth
In the Flash IDE, you may be used to controlling the depth of a visual object by using layers in the timeline or (if you
like to make it harder on yourself) through the entries in the Modify ➤ Arrange menu.

In ActionScript, the depth of a display object is determined by its index in the parent display object’s internal
array of children. The higher the index, the further toward the front of the movie that object appears. That means if a
Sprite instance has a child at index 0, that child will appear visually below a child at index 1 (or any higher number,
for that matter). You can’t manipulate this array directly, as it’s an internal property of the DisplayObjectContainer
class, but you can use the methods provided to query and manipulate the depth of a display object directly.

Discovering the Depth of Objects

To get the depth of a display object, you need to pass that object to its parent’s getChildIndex() method. Follow these
steps to see how that works:

 1. Create a new ActionScript file and save it as DepthTest.as in the com.foundationAS3.ch4
directory. Add the following code to the file:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace(getChildIndex(square));
 }

 }

}

Figure 4-10. The square is rotated as well

CHAPTER 4 ■ WORKING WITH THE DISPLAY

114

 2. Save the display.fla file as depth.fla. Set the document class as com.foundationAS3.
ch4.DepthTest. If you test the movie now, you should see that the square object is at
depth 0. Let’s make it a little more interesting by adding a few more instances of the Square
symbol to the stage.

 3. In the display.fla movie, drag two more instances of the Square symbol from the Library
onto the stage, each in its own layer. Make sure they overlap, as shown in Figure 4-11.

Figure 4-11. Overlapping squares set up for a depth example

 4. Give these new Square symbols instance names, from back to front, of square2 and
square3 (yeah, just call me Mr. Imaginative from now on).

 5. Save the changes to the document, and then switch back to the DepthTest.as file.

 6. Now add trace statements to get the depths of the two new instances of the Square
symbol. Add string labels before them so you know which depth belongs to which
instance.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));
 }

 }
}

CHAPTER 4 ■ WORKING WITH THE DISPLAY

115

 7. Save the changes, switch back to the depth.fla movie, and test. In addition to seeing three
squares on the stage, you should be able to see the depth of each one in the Output panel,
as shown in Figure 4-12.

Figure 4-12. The squares’ depths traced to the Output panel

As you can see, from back to front, the Square symbols are arranged from index 0 to index 2.

Manipulating the Depth of Objects

Now that you have several display objects on the screen, you can start to manipulate their depths using the
setChildIndex() method. This method takes two parameters: the display object whose index you want to change and
the index to which you want to move it.

The specified display object must be a child of the display object on which you’re calling the
setChildIndex() method, and the index must not be higher than the number of children that the
display object contains. Otherwise, you’ll get a runtime error in the player.

Let’s try moving the original square object to the front of the display list. To do this, call the parent’s
setChildIndex() method, passing the square object and a new depth. You could pass in 2 as the depth, but the best
way to bring an object to the top of its parent’s list is to use numChildren to determine the highest depth. Note that you
must use (numChildren-1), since the display list is zero-indexed. So a parent with three children has a top depth of 2
(0 for the first child, 1 for the second, and 2 for the third).

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

CHAPTER 4 ■ WORKING WITH THE DISPLAY

116

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);
 }

 }

}

Copy and paste the index-tracing statements below the call to setChildIndex(), so you can see what effect
setting the index of a display object has on the other display objects belonging to that parent.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));
 }

 }

}

Save the changes, switch to the depth.fla file, and test the movie. On the stage, you can see that the original
square is now in front of the others. In the Output panel, shown in Figure 4-13, you can see why: its index is now the
highest of all the display objects.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

117

Swapping Depths

The other way to alter the index of a display object is to swap its index with another display object belonging to the
same parent. There are two ways to do this: call the swapChildren() method and pass the two display objects as the
parameters, or call swapChildrenAt() and pass the two indexes you want to swap. Let’s do both.

First swap the indexes of square2 and square3:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 swapChildren(square2, square3);
 }

 }

}

Figure 4-13. The squares with a bit of depth swapping applied using setChildIndex()

CHAPTER 4 ■ WORKING WITH THE DISPLAY

118

Now swap the indexes of the display objects at index 0 and 2:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 swapChildren(square2, square3);
 swapChildrenAt(0, 2);
 }

 }

}

Copy and paste the trace() statements, so you know the indexes of your Square symbols:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 swapChildren(square2, square3);
 swapChildrenAt(0, 2);

CHAPTER 4 ■ WORKING WITH THE DISPLAY

119

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));
 }

 }

}

Finally, switch to depth.fla and test the movie. You should see in the Output panel (and on the stage) that the
Square symbols have ed up in the same order in which they started. If you aren’t sure why, cut up some squares of
paper and perform the depth-swapping operations in the real world.

Creating new Display Objects
You’re not just limited to the display list that is generated by the Flash IDE. You don’t even need to have anything
on the stage in the Flash IDE. You can create new instances of many of the display list classes and add them to the
display list.

You create display list class instances in the same way as you create instances of a normal class: with the new
keyword. Creating a new MovieClip object is as simple as this:

var myMovieClip:MovieClip = new MovieClip();

You now have a new MovieClip instance, but it isn’t yet part of the display list. To add it to the display list, you
need to add it as a child of a display object that’s already on the display list. You can add a display object as a child
of another by calling the addChild() method on the parent display object and passing the child object as the single
parameter.

var myMovieClip:MovieClip = new MovieClip();
parentMovieClip.addChild(myMovieClip);

The addChild() method is part of the DisplayObjectContainer class, so only instances of classes desced from
this class (Sprite, MovieClip, and so on) can have child display objects added in this way.

When you add a new child with the addChild() method, it is assigned the topmost index, and appears in front, or
on top, of all other display objects belonging to the same parent. If you want to add a child at a specific depth, you can
use the addChildAt() method, passing the display object to be added and the desired index.

var myMovieClip:MovieClip = new MovieClip();
parentMovieClip.addChildAt(myMovieClip, 4);

If there is already a display object at that index, the existing display object’s index (and the index of all display
objects above it) are incremented to make room for the new display object, as shown in Figure 4-14.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

120

Just how useful the ability to create new display objects and add them to the display list is will become apparent
when we look at using Library symbols in the “Using Library resources” section later in the chapter.

Removing Display Objects from the Display List
You can also remove display objects from the list. The removeChild() method allows you to specify a display object
to remove. The removeChildAt() method removes a display object at a specific index. Based on the previous sample
code, the following two statements are equal:

parentMovieClip.removeChild(myMovieClip);
parentMovieClip.removeChildAt(4);

When you remove a display object from the display list, the index of each display object above the removed one is
decremented to fill in the gap left by the removed display object, as shown in Figure 4-15.

Figure 4-14. A new child is inserted into the display list, shifting all children at higher depths up a level

Figure 4-15. When a child is removed from the display list, all children at higher depths are shifted down a depth to fill the gap

CHAPTER 4 ■ WORKING WITH THE DISPLAY

121

The display list does not allow for gaps in the depths, as was possible in ActionScript 2.0 and
AVM1. You cannot add a display object at an index that is higher than the parent’s total number of
children, and once you remove a display object, all children at higher depths shift down to fill in the
gap, automatically adjusting their depths.

To remove all children from the display list, call the removeChildren() method.

parentMovieClip.removeChildren();

By default, this method removes all children display objects from the display list; however, a range may be
specified to remove objects between a start index and index. For example, to remove the first three children specify
0 for the inning position, and 2 for the ing position. This will remove children at index zero, one, and two.

parentMovieClip.removeChildren(0, 2);

Specifying Bl Modes
You have access to the same set of bl modes in ActionScript as you have at design time in the Flash IDE. Every display
object has a blMode property, which will specify the bl mode to use when rering it.

The blMode property expects a String value, but to help you out (so you don’t need to guess what the string is for
each bl mode), a BlMode class in the flash.display package has static constants for each of the bl modes.

To see this in action, go back to the DepthTest.as class from earlier and edit the constructor method to set the
blMode property of square3 to BlMode.INVERT. Be sure to import the BlMode class at the top.

package com.foundationAS3.ch4 {

 import flash.display.BlMode;
 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class DepthTest exts Sprite {

 public function DepthTest() {
 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 setChildIndex(square, numChildren-1);

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 swapChildren(square2, square3);
 swapChildrenAt(0, 2);

CHAPTER 4 ■ WORKING WITH THE DISPLAY

122

 trace("square: " + getChildIndex(square));
 trace("square2: " + getChildIndex(square2));
 trace("square3: " + getChildIndex(square3));

 square3.blMode = BlMode.INVERT;
 }

 }

}

Save the changes, switch to the depth.fla file, and test the movie. The result should be as shown in Figure 4-16.

Figure 4-16. The top square in the display list is given a bl mode

Working with Filters
In addition to bl modes, you can apply filters (or manipulate existing filters) from ActionScript. Each display object
has a filters property, which is an array of BitmapFilter instances applied to the display object. Each different type
of filter you can apply is represented as a subclass of the BitmapFilter class. Filter classes include the following:

•฀ BevelFilter

•฀ BlurFilter

•฀ ColorMatrixFilter

•฀ ConvolutionFilter

•฀ DisplacementMapFilter

•฀ DropShadowFilter

•฀ GlowFilter

•฀ GradientBevelFilter

•฀ GradientGlowFilter

CHAPTER 4 ■ WORKING WITH THE DISPLAY

123

The filter classes live in the flash.filters package, and each has its own set of properties that control various
facets of the filter. For example, the BlurFilter class has three properties—blurX, blurY, and quality—that control
the amount and quality of the blur effect applied to a display object.

Applying a Filter to a Display Object
Let’s create a simple example and use the GlowFilter.

 1. Create a new Flash document and save it to a file named filters.fla.

 2. Draw a white 100 × 100-pixel square with a medium, black outline on the stage and
convert it to a movie clip symbol named Square, as shown in Figure 4-17.

Figure 4-17. A new Square symbol

 3. Drag a second Square symbol onto the stage, and position the squares next to each other
in the center of the stage, as shown in Figure 4-18. Give the squares instance names of
square and square2.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

124

 4. Save the changes to filters.fla.

 5. Create a new ActionScript file for the document class. Save it as FilterTest.as into the
com.foundationAS3.ch4 directory.

 6. Create the basic package and class definitions for the FilterTest class, including an
empty constructor method.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 }

 }

}

 7. Since you will be trying out a number of filters, use the asterisk (*) wildcard to import all

the classes from the flash.filters package and create a new instance of the GlowFilter
class as a local variable in the class constructor.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

Figure 4-18. A second Square instance is added to the stage

CHAPTER 4 ■ WORKING WITH THE DISPLAY

125

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter();
 }

 }

}

 8. Wrap the GlowFilter instance in an array literal, and assign that to the filters property

of the square object.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter();
 square.filters = [glow];
 }

 }

}

 9. Save the changes to FilterTest.as and switch back to the filters.fla movie. Set the

document class of the movie in the Property inspector to com.foundationAS3.ch4.FilterTest.

 10. Save the changes to filters.fla and test the movie. You should see that one of the Square
symbols on the stage has a red glow, as shown in Figure 4-19, created by the filter you’ve
just applied.

Figure 4-19. Your first ActionScript filter applied, resulting in a red glow

CHAPTER 4 ■ WORKING WITH THE DISPLAY

126

The GlowFilter constructor takes a whole bunch of parameters that control how the filter looks when applied to
a display object. You’ve just used the filter with its default values. The parameters for the GlowFilter constructor are
as follows:

•฀ color: A hexadecimal value for the desired color of the glow. The default is 0xFF0000 (red).

•฀ alpha: A value between 0 (transparent) and 1 (opaque). The default is 1.

•฀ blurX: A Number value dictating the amount of horizontal blur applied to the glow.
The default is 6.

•฀ blurY: Same as blurX, but vertically.

•฀ strength: A Number value between 0 and 255, indicating the intensity of the glow.
The default is 2.

•฀ quality: An int value between 1 and 15 that indicates the number of times the filter is
applied. The more times a filter is applied, the better it looks, but higher-quality filters can
have an impact on performance. The default is 1.

•฀ inner: A Boolean value that, if set to true, applies the glow to the inside of a display object
rather than the outside. The default is false.

•฀ knockout: A Boolean value that, if set to true, means that the display object’s fill will be
transparent, leaving just the result of the filter. The default is false.

I’m not a big fan of red, and the square’s glow looks a little wimpy to me, so let’s change some of the properties
of the filter. Let’s use green (0x00FF00), with full opacity and blur values of 10 pixels. Make these changes in the
FilterTest class constructor:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 square.filters = [glow];
 }

 }

}

Save the changes, switch back to filters.fla, and test the movie. You should now see a much bigger, green glow
on the square, as shown in Figure 4-20.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

127

Applying Filters in a Specific Order
As in the Flash IDE, the filters for a given display object are applied in the order in which they are assigned. If you
apply a DropShadowFilter before a GlowFilter, the glow appears around the composite outline of the symbol and the
drop shadow (which, if you ask me, just looks plain weird). Let’s try it out.

In the FilterTest class constructor, create a new DropShadowFilter instance and add it as a second element in
the filters array.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow, dropShadow];
 }

 }

}

Figure 4-20. The parameters of the glow have been altered for a slightly different effect

CHAPTER 4 ■ WORKING WITH THE DISPLAY

128

Now assign the same filters in the reverse order to square2’s filters property.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow, dropShadow];
 square2.filters = [dropShadow, glow];
 }

 }

}

Save the changes to the FilterTest.as file, switch to filters.fla, and test the movie. You should see the result
shown in Figure 4-21.

Figure 4-21. The ordering of filters is important, as demonstrated here where the same glow and drop shadow are
applied to both squares in different orders for different effects

CHAPTER 4 ■ WORKING WITH THE DISPLAY

129

Making Changes to an Existing Filter
You can make changes to a BitmapFilter instance once it has been applied to a display object, but the process for
doing so is a little trickier than you might think. Given that the filters array is made up of references to BitmapFilter
instances, you would think that all you need to do is get a reference to the relevant BitmapFilter instance, make a
change, and that change would be replicated on screen in the appearance of the filter. You could try this:

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

 // Change glow to blue
 glow.color = 0x0000FF;
 }

 }

}

Frustratingly, that doesn’t work. It turns out that the filters property of a display object is a bit special in the
way that it works.

When you assign an array of BitmapFilter instances to a display object, it clones the array and all of the
BitmapFilter instances within it, meaning that making a change to one of the original BitmapFilter instances
will not affect the clone that the display object is using. To make your changes take effect, you need to overwrite the
filters property with a new array.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

CHAPTER 4 ■ WORKING WITH THE DISPLAY

130

 // Change glow to blue
 glow.color = 0x0000FF;
 square.filters = [glow,dropShadow];
 }

 }

}

If you test filters.fla with the preceding changes to the FilterTest class, you’ll see that only one of your
Square symbols has a blue glow, and the other has a green glow—job done!

This was relatively painless because you already had a reference to the BitmapFilter instance you wanted to
change in the glow variable, and you had a reference to the other filter, so you could easily reconstruct the filters
array. Sometimes that’s not an option (maybe the filters were originally created by another part of the code). In that
case, you can use the filters property of the display object to get a clone of the filters assigned to it, make your
changes, and then reassign the array back to the filters property.

Let’s pret you don’t have references to the BitmapFilter instances and change the angle of the drop shadow on
the second Square symbol. Get a clone to the filters array from the square2 display object and loop through the
BitmapFilter instances with a for each loop.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

 // Change glow to blue
 glow.color = 0x0000FF;
 square.filters = [glow,dropShadow];

 // Change angle of drop shadow
 var filters:Array = square2.filters;
 for each (var filter:BitmapFilter in filters) {

 }
 }

 }

}

Notice that the for each loop allows you to strongly type the iterator for the loop to BitmapFilter, since you
know that the filters array can contain only instances of BitmapFilter.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

131

In each iteration of the loop, you will test to see if you’ve found the DropShadowFilter instance and, if so, set the
angle property accordingly.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

 // Change glow to blue
 glow.color = 0x0000FF;
 square.filters = [glow,dropShadow];

 // Change angle of drop shadow
 var filters:Array = square2.filters;
 for each (var filter:BitmapFilter in filters) {
 if (filter is DropShadowFilter) {
 (filter as DropShadowFilter).angle = 270;
 }
 }
 }

 }

}

Here, you are using the is operator to check to see whether the filter at the current iteration of the loop is an
instance of DropShadowFilter. If it is, you then can use the as operator to cast the filter iterator as a DropShadowFilter,
so that you can assign to its angle property. If you did not do this, you would get a compile-time error, since filter is
typed to the abstract base class BitmapFilter in the loop—a class that does not have an angle property.

Finally, reassign the filters array to the filters property of the display object.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();

CHAPTER 4 ■ WORKING WITH THE DISPLAY

132

 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

 // Change glow to blue
 glow.color = 0x0000FF;
 square.filters = [glow,dropShadow];

 // Change angle of drop shadow
 var filters:Array = square2.filters;
 for each (var filter:BitmapFilter in filters) {
 if (filter is DropShadowFilter) {
 (filter as DropShadowFilter).angle = 270;
 }
 }
 square2.filters = filters;
 }

 }

}

Save the changes to FilterTest.as, switch to filters.fla, and test the movie. With a bit of luck, the drop
shadow on the second square should have changed direction, as shown in Figure 4-22.

Figure 4-22. The angle of the drop shadow is changed by finding the filter in the original array, altering it, and then
reassigning all the filters back to the square

Removing an Existing Filter
Once you understand how to change a property of a filter, removing it from a display object is pretty straightforward.
You need to get a clone of the display object’s filters array, remove the element from that array containing the
BitmapFilter you want to remove, and then reassign the array to the filters property of the display object.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

133

You can remove an element from an array in several ways:

To remove the last element in the array, the easiest method is to use •฀ pop().

To remove the first element in the array, the easiest method is to use •฀ shift().

To remove an element in the middle of an array, use the •฀ splice() method.

The splice() method is designed to allow you to splice two arrays together, inserting an array at a certain point
in another array and replacing a specified number of the original array’s values. It takes three parameters: the index
into which to splice the new array, the number of elements in the original array that will be replaced, and the new
array itself. However, if you leave out the last parameter, the splice() method will just remove the specified number
of elements from the source array at the specified index.

Let’s change the FilterTest class to remove the drop shadow filter from square. In this case, you know the index
of the DropShadowFilter in the filters array (it’s at index 1), so you don’t need to loop through the array to find it.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.filters.*;

 public class FilterTest exts Sprite {

 public function FilterTest() {
 var glow:GlowFilter = new GlowFilter(0x00FF00, 1, 10, 10);
 var dropShadow:DropShadowFilter = new DropShadowFilter();
 square.filters = [glow,dropShadow];
 square2.filters = [dropShadow,glow];

 // Change glow to blue
 glow.color = 0x0000FF;
 square.filters = [glow,dropShadow];

 // Change angle of drop shadow
 var filters:Array = square2.filters;
 for each (var filter:BitmapFilter in filters) {
 if (filter is DropShadowFilter) {
 (filter as DropShadowFilter).angle = 270;
 }
 }
 square2.filters = filters;

 // Remove drop shadow
 filters = square.filters;
 filters.pop();
 square.filters = filters;
 }

 }

}

Save the changes to FilterTest.as, switch to filters.fla, and test the movie. You should see that the first
square no longer has a drop shadow, as shown in Figure 4-23.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

134

Introducing the Advanced Filters
All of the filters discussed in the previous sections are the same ones that you can create and apply visually within
the Flash IDE. However, two extra BitmapFilter classes are available through ActionScript: ConvolutionFilter and
DisplacementMapFilter.

When applied to a display object, the ConvolutionFilter calculates each pixel to display based on its neighboring
pixels and a mathematical matrix that you supply. This is a powerful filter that enables you to achieve a number of effects,
including sharpen, edge detect, emboss, and bevel. Figure 4-24 shows an example of using the ConvolutionFilter.

Figure 4-23. The drop shadow on the first square is removed altogether

Figure 4-24. The ConvolutionFilter applied to an image creates an embossing effect

CHAPTER 4 ■ WORKING WITH THE DISPLAY

135

The DisplacementMapFilter allows you to warp a display object using a BitmapData object to calculate where
and how much to warp. Using this filter, you can create fisheye, warp, mottle, and other effects. Figure 4-25 shows an
example of using the DisplacementMapFilter.

Figure 4-25. The DisplacementMapFilter applied to an image for an interesting effect

If these filters sound interesting to you, many examples are available in the online help.

Accessing the Stage
You can access the stage through the stage property of a display object. The Stage class is the topmost display object.
This class contains a number of additional properties for the movie, such as stageWidth and stageHeight, which give
you the dimensions of the entire stage (as opposed to width and height, which will tell you the combined dimensions
of all the visible items in the movie).

Using Stage Properties
Although the Stage class is part of the display list class diagram shown earlier in Figure 4-2, you can’t actually
create new instances of it—as they say in the Highlander movies, “There can be only one.” In addition, many of the
properties that the single Stage instance has by virtue of its class inheritance have no meaning, such as x, y, alpha,
and so on; some can actually throw errors if you try to set them. However, a few useful properties of the Stage instance
are worth remembering.

First, by setting scaleMode to one of the constants from the StageScaleMode class, you can change how the movie
is resized when its size changes from that originally specified in the document’s Property inspector. This can happen
when the movie is playing in a stand-alone player and the user resizes the window, or if a developer changes the
width/height of the <object>/<embed> tags used to embed the Flash movie in an HTML page.

When scaleMode is set to StageScaleMode.NO_SCALE, the stage dimensions change every time the movie is
resized. That’s where the stageWidth and stageHeight properties come in handy. They tell you exactly how big the
stage is.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

136

The potentially most useful Stage property is displayState, which allows you to switch the playback of the
movie to full screen, either from a movie embedded in a web page or from the stand-alone player. This is great when
playing back video or viewing a slide show, but has a couple of drawbacks when you’re dealing with a Flash movie
embedded in a web page:

You must set the •฀ allowFullScreen parameter/attribute to true in the HTML source code for
both the object and embed tags.

You can change the •฀ Stage.displayState property only in response to a mouse click or a key
press (not, for instance, when the movie loads).

When entering full-screen mode, the Flash Player overlays a message on the screen informing •฀
the users that they are in full-screen mode and that they can press the Esc key at any time to exit.

While the movie is in full-screen mode, keyboard input will be disabled.•฀

This may all seem like a bit of a pain, but can you imagine how badly advertising agencies would misuse this
feature if they could s users into full-screen mode without their permission? Even worse, without these precautions,
scammers could use this to spoof websites and potentially steal your valuable data. Suddenly, these fail-safe measures
don’t seem like so much of a pain.

Making a Movie Full Screen
Let’s go through a quick example to see how you can make your movie full screen. You won’t use any graphics other
than a button, so this won’t be much to look at, but you’ll see how easy it is to get the full-screen experience.

 1. Create a new Flash file and save it into your project directory as fullscreen.fla.

 2. Draw a circle on the stage that will act as your button. Convert it into a movie clip symbol
and name it Circle, as shown in Figure 4-26. Click OK to exit the dialog box and create
the symbol.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

137

 3. Using the Property inspector with the Circle instance still selected, name the instance
circle and save the file.

 4. Create a new ActionScript file and save it into the com.foundationAS3.ch4 directory as
FullScreenTest.as. Add the following package information:

package com.foundationAS3.ch4 {
}

 5. Add the class definition. Make sure you import Sprite, which your class will ext. You also

need to import MovieClip so you can access the circle on your stage.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;

 public class FullScreenTest exts Sprite {
 }

}

Figure 4-26. A circle created to act as a button for entering full-screen mode

CHAPTER 4 ■ WORKING WITH THE DISPLAY

138

 6. Add a constructor and within it, add an event listener for the click event when the circle
is clicked and released. (You’ll learn about events in Chapter 6, but since you need a user
event to enter full-screen mode, you get a sneak peek here).

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class FullScreenTest exts Sprite {

 public function FullScreenTest() {
 circle.addEventListener(MouseEvent.CLICK, onButtonClick);
 }

 }

}

 7. You need to add the handler for when the button is clicked. A handler is simply a method

that will be called when a certain event occurs in the movie, and is said to “handle” the
event. (Again, you’ll learn more about event handling in Chapter 6). For now, just know
that when the circle is clicked, this method will be called.

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class FullScreenTest exts Sprite {

 public function FullScreenTest() {
 circle.addEventListener(MouseEvent.CLICK, onButtonClick);
 }

 private function onButtonClick(event:MouseEvent):void {
 }

 }

}

 8. Within this method, set the displayState property of Stage to full screen. It’s a pretty

simple procedure for a very powerful feature. Make sure you add the new import
statement at the top.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

139

package com.foundationAS3.ch4 {

 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.display.StageDisplayState;
 import flash.events.MouseEvent;

 public class FullScreenTest exts Sprite {

 public function FullScreenTest() {
 circle.addEventListener(MouseEvent.CLICK, onButtonClick);
 }

 private function onButtonClick(event:MouseEvent):void {
 stage.displayState = StageDisplayState.FULL_SCREEN;
 }

 }

}

 9. Save FullScreenTest.as. Return to fullscreen.fla and set com.foundationAS3.ch4.

FullScreenTest as the document class for the movie.

 10. To test full-screen mode, you need to go through the browser. Open the Publish Setting
dialog box (File ➤ Publish Settings), and on the HTML tab, select Flash Only – Allow Full
Screen in the Template drop-down list, as shown in Figure 4-27. Then click the Publish
button at the bottom of the dialog box.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

140

 11. Save your file and find the HTML file you just published in the same directory as
fullscreen.fla. Open this file in your browser, and you will find that clicking the circle
takes the movie to full-screen mode, as shown in Figure 4-28. Nice!

Figure 4-27. Test the full-screen mode using the selected template in the Publish Settings dialog box

Figure 4-28. Full-screen mode in all of its glory!

CHAPTER 4 ■ WORKING WITH THE DISPLAY

141

You will note that the movie scales as it takes over the screen. If you wanted to maintain the same 100% scale on
your objects, you would need to set the scaleMode property of the Stage instance to StageScaleMode.NO_SCALE and
(usually) its align property to StageAlign.TOP_LEFT. Then you would listen for when the stage resizes, and redraw or
reposition your objects accordingly.

Using Library Resources
Creating instances of Library symbols in ActionScript 3.0 is much easier than it was in ActionScript 2.0. Every symbol
in the Library of a Flash movie that has been exported for ActionScript is associated with a class—whether it’s one you
have written or one that the ActionScript compiler has created for you.

To add an instance of a symbol to your movie, you just need to create a new instance of that class and add it to the
display list. Let’s try it out.

 1. Create a new Flash movie and save it in the project directory as library.fla.

 2. On the stage, draw a 50 × 50-pixel circle.

 3. Select the circle and select Modify ➤ Convert to Symbol from the main menu, or press F8.
In the Convert to Symbol dialog box, enter Ball for the symbol name and select Movie clip
for the type. Set its registration point at the top left of the graphic.

 4. If the advanced options are not visible in the dialog box, click the Advanced button to
reveal them. Click the Export for ActionScript check box in the Linkage options, as
shown in Figure 4-29, and then click OK, accepting the default values for the Class and
Base class fields.

Figure 4-29. Creating the Ball movie clip symbol

CHAPTER 4 ■ WORKING WITH THE DISPLAY

142

That sets up the Ball symbol with a class of the same name. To finish the example, you need to create an
instance of the Ball class and add it to the display list. You’ll do this by adding a document class to the movie with the
necessary code in the constructor.

 5. Back on the main timeline, delete the Ball instance that you originally created on the
stage. This example will demonstrate how to add it to a movie through ActionScript, so you
want to remove this original instance.

 6. Create a new ActionScript file and save it in the com.foundationAS3.ch4 directory as
LibraryTest.as.

 7. In the LibraryTest.as file, create the package block with the appropriate package name.

package com.foundationAS3.ch4 {
}

 8. Create the LibraryTest class definition. Since this is a document class, you’ll need to ext

either the MovieClip or Sprite class. There’s no timeline animation in this example, so
you’re safe to choose the Sprite class:

package com.foundationAS3.ch4 {

 import flash.display.Sprite;

 public class LibraryTest exts Sprite {
 }

}

Don’t forget to make the class public, or the ActionScript compiler won’t be able to use it as the
document class.

 9. Add the constructor function for the LibraryTest class. In the constructor function, create
a new instance of the Ball class (which is in the default package, so you don’t need to
import it) and add it to the display list.

package com.foundationAS3.ch4 {

 import flash.display.Sprite;

 public class LibraryTest exts Sprite {

 public function LibraryTest() {
 var ball:Ball = new Ball();
 addChild(ball);
 }

 }

}

 10. Save the changes to the ActionScript file. Switch back to the library.fla file, and enter

the full package and class name com.foundationAS3.ch4.LibraryTest as the document
class for the Flash movie.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

143

 11. Save the Flash movie and test it. You should see an instance of the Ball symbol in the
top-left corner of the movie, as shown in Figure 4-30.

Figure 4-30. An instance of the Ball class is added to the stage through code

Loading from External Files
Embedding every visual asset you want to use into the Library main movie SWF file can make the SWF file
unnecessarily large. Imagine an image gallery with hundreds of images where you needed to embed each image
(both thumbnail and full size) into the main SWF, which could easily be 10MB or more. Visitors would need to
download all the images, even if they wanted to look at only a handful. Wouldn’t it be better if you could load those
assets on demand from external files?

In ActionScript 3.0, loading in external visual assets is the job of the Loader class, which lives in the flash.display
package and inherits from the DisplayObject class. The Loader class can load in SWF files as well as GIF, JPEG, and
PNG images. Video files and sound files are handled by the Video and Sound classes, respectively.

Loading an External Asset
To load an external asset, you create an instance of the Loader class, add it to the display list at the appropriate point,
and then tell it to load the asset using the load() method. That sounds relatively painless, so let’s give it a go.

 1. Create a new Flash movie and save it in the project directory with the name
loadExternal.fla.

 2. Copy an image you would like to load into this same directory. If you do not have one, you
can use the audrey_computer.png file that is included with this chapter’s source files.

 3. Next, you need to create an ActionScript file for the document class. Create a
new ActionScript file and save it into the com.foundationAS3.ch4 directory as
LoadExternalTest.as.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

144

 4. In the LoadExternalTest.as file, create the package container with the appropriate
package name:

package com.foundationAS3.ch4 {
}

 5. Create the LoadExternalTest class, which should ext the Sprite class, since there won’t

be any timeline animation.

package com.foundationAS3.ch4 {

 import flash.display.Sprite;

 public class LoadExternalTest exts Sprite {
 }

}

 6. In the constructor function for the document class, create a new instance of the Loader
class in a local variable, and then add it to the display list using the addChild() method of
the LoadExternalTest instance. Make sure you import the Loader class at the top.

package com.foundationAS3.ch4 {

 import flash.display.Loader;
 import flash.display.Sprite;

 public class LoadExternalTest exts Sprite {

 public function LoadExternalTest() {
 var loader:Loader = new Loader();
 addChild(loader);
 }

 }

}

 7. You need to tell the Loader instance to load the image using the load() method. Rather

than a simple string containing the URL of the asset to load, the load() method expects
a URLRequest instance to be passed to it. The URLRequest class, which lives in the flash.
net package, is used in most calls and requests from the Flash Player. In its simplest form,
which is all that’s necessary here, you just need to pass the URL address to call in the
constructor. (Obviously, you should replace the audrey_computer.png string with the
filename of whatever image you have copied into your project directory in step 2).

package com.foundationAS3.ch4 {

 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.net.URLRequest;

CHAPTER 4 ■ WORKING WITH THE DISPLAY

145

 public class LoadExternalTest exts Sprite {

 public function LoadExternalTest() {
 var loader:Loader = new Loader();
 addChild(loader);
 loader.load(new URLRequest("audrey_computer.png"));
 }

 }

}

 8. Save the changes to the ActionScript file. Switch back to the loadExternal.fla file and

set com.foundationAS3.ch4.LoadExternalTest as the document class in the Property
inspector.

 9. Save the changes to the Flash movie and test it by selecting Control ➤ Test Movie from
the main menu. You should see your loaded image as part of your SWF file, as shown in
Figure 4-31.

Figure 4-31. An image is loaded into the movie (and what a lovely image it is!)

If the image doesn’t load, check the Output panel for an error message. If you have an error message,
double-check that the string path for the image and that you’ve copied the image into the same
directory as your FLA file. You can trap these error messages and handle them in ActionScript code,
but that will need to wait until Chapter 6, where you’ll learn about event handling.

Manipulating the Loaded Asset
When loading an external asset through an instance of the Loader class, the asset becomes a child of that object and
is accessible through the Loader’s content property. This is occasionally useful when loading an image file. You can
control whether the image is snapped to the nearest pixel and/or whether smoothing is used if it is resized, but it
really comes into its own when you’re dealing with an SWF file.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

146

Since the Loader class can handle both image files (instances of the Bitmap class) and SWF files (either MovieClip
instances or AVM1Movie instances if you’re loading Flash 8 or earlier SWFs), the data type of the content property must
be something that’s a common ancestor of all those classes. A quick look at the display list class diagram shown earlier
in Figure 4-2 will tell you that the only common ancestor for all these classes is the DisplayObject class. What this
means in practice is that you’ll need to cast the content property to the appropriate type before you can do anything
with it that’s specific to that type of asset.

var loadedClip:MovieClip = loader.content as MovieClip;

You’ll need to wait at least until the asset has started loading before you can use the content property. The
loaderInfo property of an instance of the Loader class dispatches a number of events that let you know when the
asset ins loading, when it has been initialized (and is ready to interact with), and when it has finished loading. Again,
you’ll learn about the details of event handling in Chapter 6.

Making Things Move
When it comes to animating the position of an object on the stage with ActionScript, you have two basic choices:
you can copy an animation from the timeline as ActionScript 3.0 code, or you can manually reposition the object
at frequent intervals over a certain length of time. The first technique is designed for keyframe-style animation and
tweening, and we’ll discuss this approach in detail here. The second technique is much more powerful but requires
knowledge of event-based programming in ActionScript, so we’ll leave that one until Chapter 6.

Copying Animation from the Timeline
One of the major innovations in the Flash CC IDE, at least from an ActionScript developer’s point of view, is the
ability to copy a timeline animation into the clipboard as ActionScript code. Gone are the days when developers tried
to approximate animation in ActionScript from a timeline animation produced by a professional animator, only to
be bashed over the head by said animator for getting it totally wrong. No, now you can just copy the animation as a
reusable piece of ActionScript that can be applied to any display object.

This system has a couple of limitations. One is that you can copy only continuous frames of animation from a
single layer in the Flash movie. The other is that you can have only one object on each keyframe of the animation. You
can overcome both of these limitations by breaking down your animation into separate layers and copying the motion
of each layer separately.

Creating the Animation

Let’s create a simple three-frame animation of a ball going from the left edge of the screen to the right edge and
back again.

 1. Create a new Flash movie and save it in the project directory with the name motion.fla.

 2. Draw a 50 × 50-pixel ball on the stage.

 3. Select the ball and select Modify ➤ Convert to Symbol from the main menu, or press F8.
In the Convert to Symbol dialog box, name the symbol Ball. Give it a central registration
point, and check the Export to ActionScript check box, as shown in Figure 4-32. Accept
the default values for the Class and Base class fields, and then click OK.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

147

 4. Position the instance of the Ball symbol on the stage at (50,50), right-click the Ball
instance, and choose the Create Motion Tween option. Notice that the timeline has grown
by 24 frames. Select the 24th frame and drag your ball to the far left of the stage. Then click
on the motion guide and create an upward curve to the tween’s path.

Your timeline should look like Figure 4-33.

Figure 4-32. Creating a new Ball symbol

CHAPTER 4 ■ WORKING WITH THE DISPLAY

148

 5. Save the changes to the motion.fla file and test the movie. You should see the ball moving
from the top-left to the top-right corners of the movie.

Copying the Animation Code

Now you’ll copy that animation as ActionScript 3.0 code and create a new Flash Movie to apply it to.

 1. Create a new Flash Movie and save it as MotionTest.fla.

 2. Draw a shape on the stage and convert it to a symbol.

 3. Go back to motion.fla and select the Ball instance. Right-click and select Copy Motion
as ActionScript 3.0.

 4. Now return to MotionTest.fla and create a new layer. In the first frame of that layer, enter
the following code into the Actions panel:

import fl.motion.AnimatorFactory;
import fl.motion.MotionBase;
import flash.filters.*;
import flash.geom.Point;
var __motion_Ball_2:MotionBase;
if(__motion_Ball_2 == null) {
 import fl.motion.Motion;
 __motion_Ball_2 = new Motion();
 __motion_Ball_2.duration = 24;

 // Call overrideTargetTransform to prevent the scale, skew,
 // or rotation values from being made relative to the target
 // object's original transform.
 // __motion_Ball_2.overrideTargetTransform();

Figure 4-33. Adding some simple timeline animation

CHAPTER 4 ■ WORKING WITH THE DISPLAY

149

 // The following calls to addPropertyArray assign data values
 // for each tweened property. There is one value in the Array
 // for every frame in the tween, or fewer if the last value
 // remains the same for the rest of the frames.
 __motion_Ball_2.addPropertyArray("x", [0,16.9572,34.6471,
53.0949,72.3883,92.4954,113.506, 135.327,157.906,181.17,204.859,228.769,
252.676,276.307,299.468,322.028,343.874,364.976,385.346,404.999,423.925,
442.205,459.852,476.95]);
 __motion_Ball_2.addPropertyArray("y", [0,-16.9031,-33.0551,-48.3038,
-62.5272,-75.4939,-87.0413,-96.8931,-104.818,-110.597,-114.025,
-115.001,-113.514, -109.653,-103.591,-95.5415,-85.7543,-74.4588,
-61.856,-48.1317, -33.4746,-17.99,-1.81318,15]);
 __motion_Ball_2.addPropertyArray("scaleX", [1.075272]);
 __motion_Ball_2.addPropertyArray("scaleY", [1.075272]);
 __motion_Ball_2.addPropertyArray("skewX", [0]);
 __motion_Ball_2.addPropertyArray("skewY", [0]);
 __motion_Ball_2.addPropertyArray("rotationConcat", [0]);
 __motion_Ball_2.addPropertyArray("blMode", ["normal"]);

 // Create an AnimatorFactory instance, which will manage
 // targets for its corresponding Motion.
 var __animFactory_Ball_2:AnimatorFactory =
 new AnimatorFactory(__motion_Ball_2);

 // Call the addTarget function on the AnimatorFactory
 // instance to target a DisplayObject with this Motion.
 // The second parameter is the number of times the animation
 // will play - the default value of 0 means it will loop.
 // __animFactory_Ball_2.addTarget(<instance name goes here>, 0);
}

 5. Select the shape instance on the stage, and in the Property inspector give it an instance

name of Ball.

 6. Finally, change the last line of code in the Actions panel from

// __animFactory_Ball_2.addTarget(<instance name goes here>, 0);

to

 __animFactory_Ball_2.addTarget(Ball, 0);

Make sure you uncomment the line as well. At this point, you have added your instance
to the animation. The second parameter is the loop indicator, with 0 as the default, which
sets a continuous loop.

 7. All that’s left to do is to test your movie. You should see the new shape moving in the same
way as your motion.fla file did.

CHAPTER 4 ■ WORKING WITH THE DISPLAY

150

Animating other Properties
Using the Copy Motion as ActionScript 3.0 menu option, you can copy the following animated properties of a display
object (right-click the object to access the option):

Position•฀

Scale•฀

Skew•฀

Rotation•฀

Transformation point•฀

Color•฀

Bl mode•฀

Filters•฀

Orientation to path (as part of a tween)•฀

Cache as bitmap•฀

The animation system also supports frame labels, motion guides, and custom easing equations. That’s some
pretty powerful, heady stuff.

Summary
Wow! What a tour de force of the awesome capabilities of ActionScript 3.0 when it comes to messing with the
display. In fact, you’ve seen only the tip of the iceberg. See you across the great (page) divide for a lot more display
programming fun and games, where we’ll focus on creating cool graphics from scratch using your ActionScript skills.

As I mentioned in the previous chapter, take a look at AdvancED ActionScript 3.0 Animation by Keith Peters, to
delve into the realms of ActionScript motion in greater detail.

151

CHAPTER 5

Creating Vector Graphics with
the Drawing API

This chapter covers the following topics:

How to draw straight and curved lines programmatically•฀

How to create solid and gradient-filled shapes•฀

How to alter a stroke’s graphic style, including drawing gradient strokes•฀

How to combine the drawing API methods to create a complete graphic•฀

How to move your graphic in a 3D space•฀

ActionScript 3.0 includes a Graphics class that provides a drawing API, which you can use to create vector
graphics through code. Each Sprite or Shape instance you create actually includes a Graphics instance that can be
used to draw within its respective parent object. You’ll learn how to use this drawing API in this chapter.

Why we Need a Drawing API
If you’re from a design background, the fact that I’m getting all excited about being able to create vector graphics with
ActionScript might lead you to the conclusion that I’ve spent too long out in the midday sun. You’re wondering why
on earth you would want to create vector graphics with code when you have a perfectly good set of drawing tools in
the Flash IDE, particularly if you’ve spent years honing your ninja-like Pen tool skills.

Having the ability to create vector graphics with ActionScript code means that you don’t have to know which
graphics you need in advance. Imagine putting together a Flash movie that represents the recent history of a stock
price like the one shown in Figure 5-1, from Google Finance (finance.google.com). Or maybe you’re building a Flash
MP3 player widget for your site, and you want to have a little graphic equalizer going while the music is playing, as
shown in Figure 5-2.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

152

You would require a Tolkienesque army of Flash-wielding orcs to do all the donkeywork required for the stock
graph or equalizer scenario. Thankfully, there’s a distinct lack of orcs in our world (they leave one heck of a stain on
the carpet), but that means we need to do this ourselves (no, thank you!) or find another solution to the problem.

Drawing API, enter stage right.
The Drawing API (or application programming interface, for the long-winded) was first introduced in Flash

MX (a.k.a. Flash 6 for those of us who prefer old-fashioned numbers) but was supercharged in Flash 8 and Flash
CS3 and again in Flash Player 10 and CC. It provides a powerful set of drawing tools for creating vector artwork
with ActionScript. The drawing API allows you to create, at runtime, pretty much any kind of vector graphics your
twisted mind can conjure up. Developers have even used this technique to draw and animate 3D objects, as shown
in Figure 5-3.

Figure 5-1. A dynamic graph is a prime candidate for runtime graphic creation

Figure 5-2. Creating sound visualization is a great use of the drawing API

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

153

We won’t be going that far in this chapter (the mathematics behind 3D drawing makes my head hurt), but you
will get to play with all the features of the drawing API. You’ll then be free to pursue the whole spinning 3D cube thing
yourself, if you feel so inclined.

Understanding the Drawing API
Every instance of the Sprite class (and its descendents) has a graphics property, which contains a host of methods
and properties that make up the drawing API. This property is an instance of the Graphics class from the flash.
display package, and it has various methods, such as beginGradientFill() and drawCircle(), which you can use
to draw vector graphics. The layer on which the vector graphics are drawn is not part of the display list and always
appears below any child display objects that the sprite contains.

If you want the vector graphics to be drawn at a specific depth in the display list (in front of any other display
objects belonging to the same parent display object), you’ll need to create a new Sprite instance, add that to the
display list at the required depth, and draw with that object’s graphics property. Another alternative is to use a Shape
instance, which is a direct child class of DisplayObject, meaning that it can be added to the display list but does
not have the added functionality of InteractiveObject and DisplayObjectContainer. So although you cannot add
children to a Shape instance or code for interactivity, you can draw into and position it on the stage. If all you want is
to create a graphic without children and without interactivity, opt for the leaner Shape class.

I always recommend creating a new Sprite or Shape instance for your vector artwork. It makes positioning art a
cinch, and is really helpful if you need to fill any shapes with gradient fills.

Figure 5-3. A 3D model rendered in Flash at runtime using the drawing API

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

154

Setting up Mr. Smiley
In order to make learning about the drawing API at least a little interesting, you’ll re-create the image shown in
Figure 5-4 using nothing but ActionScript code.

Figure 5-4. The image you’ll create with the drawing API

OK, so it’s not fancy 3D, and it’s never going to win any prizes for most original piece of artwork—poor Mr. Smiley
doesn’t even have a nose, for goodness sake—but then I’m what you might call graphically challenged. Besides, this is
just an exercise to help you learn all about the drawing API. (Yes, that’s my excuse, and I’m sticking to it.)

Let’s set up a project for Mr. Smiley. You’re going to create a new Shape instance as a child of the main
document class. You could put this all into a single ActionScript class, but, ideally, you don’t want your document
class doing much more than acting as an entry point for your application or movie and instantiating its necessary
subcomponents. Things like drawing of internal graphics, especially graphics with any complexity, are best delegated
to a subcomponent, so that’s what you’ll set up now.

 1. The main document class will instantiate and position the smiley graphic, which you will
house in a separate class to make things cleaner. For this class, create a new ActionScript
file and save it as Smiley.as into a new com.foundationAS3.ch5 directory that you will be
using for this chapter.

 2. In Smiley.as, add the necessary package and class definitions. Since the graphic will not
need to hold any children or account for user interactivity, you will use the Shape class
(in the flash.display package) as its base class.

package com.foundationAS3.ch5 {

 import flash.display.Shape;

 public class Smiley extends Shape {

 public function Smiley() {
 }

 }

}

 3. Create a new ActionScript file for the document class. Save the file as SmileyTest.as in the
same directory as Smiley.as.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

155

 4. Create the basic package and class definitions for the document class. As you may have
guessed, you’re going to extend the Sprite class, so you’ll need to import that from the
flash.display package.

package com.foundationAS3.ch5 {

 import flash.display.Sprite;

 public class SmileyTest extends Sprite {

 public function SmileyTest() {
 }

 }

}

 5. In the constructor method, create a new Smiley instance, which is your custom class,
and add it to the display list. Then position it in the center of the stage using the stage
object’s stageWidth and stageHeight properties. Note that you do not need to import the
Smiley class to use it, since Smiley resides within the same package as your SmileyTest
document class.

package com.foundationAS3.ch5 {

 import flash.display.Sprite;

 public class SmileyTest extends Sprite {

 public function SmileyTest() {
 // Create and center smiley sprite on stage
 var smiley:Smiley = new Smiley();
 addChild(smiley);
 smiley.x = stage.stageWidth / 2;
 smiley.y = stage.stageHeight / 2;
 }

 }

}

 6. Create a new Flash document and save it in the project directory with the name smiley.fla.

 7. Set the document class of the Flash document to be the com.foundationAS3.ch5.
SmileyTest class you just created.

 8. Save your changes to the Flash document and test it by selecting Control ➤ Test Movie
from the main menu. You should see an empty SWF file with no errors in the
Output panel.

With that done, let’s start drawing some lines. What fun!

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

156

Drawing Lines
Imagine you have a piece of paper in front of you and you’re holding a pen against the center of the paper. If you
move your hand in a straight line in any direction without lifting the pen from the paper, you draw a line on the paper.
However, if you lift the pen off the paper, and then move it to another location and lower it again, you have no line,
but your pen is now at a new location. In the ActionScript world, drawing lines works in a similar way, and these two
actions are performed by the lineTo() and moveTo() methods of the Graphics class, respectively.

Creating Straight Lines
When a Sprite or Shape object is created, the pen is positioned at the origin (0,0) in the drawing layer. To draw a
50-pixel-long horizontal line to the right of the origin, just call the lineTo() method and specify the (x,y) coordinates
for the endpoint of the line as the parameters. Use the lineStyle() method to draw a line that has a visual
representation (more on this in the next section).

To test this, open the Smiley.as file and add the lines shown in bold to the constructor:

package com.foundationAS3.ch5 {

 import flash.display.Shape;

 public class Smiley extends Shape {

 public function Smiley() {
 // Testing
 graphics.lineStyle(1);
 graphics.lineTo(50, 0);
 }

 }

}

Save the ActionScript file and test the movie. You should see a small, black line drawn from the center of the stage
to the right, as shown in Figure 5-5. Remember that when calling the lineTo() method, the pen is kept against the
paper, so a line is drawn from wherever the pen currently resides to where you’ve told it to go. In this case, the pen was

at (0,0), and you’ve told the Flash Player to draw a line between there and (50,0).

Figure 5-5. Your first line

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

157

Remember that (0,0) is at the top left of the stage in Flash, as it is in most computer graphics
applications. When a new Sprite or Shape instance is created, it is empty with no graphics, and
therefore has no width and height, so (0,0) is merely the center of transformation (there is no concept
of “top left” in an empty graphic). You can then draw graphics anywhere within the instance in
relation to the origin—to the right or left, above or below.

If you are instantiating a symbol from your library, the origin is determined by what you set in the
Flash IDE, which could be center, top left, bottom right, and so on.

If you were expecting the line you just added to be drawn in the top-left corner of the Flash movie,
remember that we’re drawing into the Smiley instance, which is (0,0), but the instance has been
moved to the center of the stage. That means the graphic will show up wherever the instance has
been moved to.

After the call to the lineTo() method, the pen is in the new location, so subsequent calls to lineTo() will start at
that point. Actually, what you end up with is a single line with several points along it.

Let’s add a vertical line:

public function Smiley() {
 // Testing
 graphics.lineStyle(1);
 graphics.lineTo(50, 0);
 graphics.lineTo(50, 50);
}

Now you have an upside-down, back-to-front L shape, and the pen is at (50,50) in the drawing layer.
This is starting to look like a box, and you could finish drawing the rest of the box using the lineTo() method, but

that would mean you wouldn’t get to try out the moveTo() method. Instead, let’s create a completely disconnected line:

public function Smiley() {
 // Testing
 graphics.lineStyle(1);
 graphics.lineTo(50, 0);
 graphics.lineTo(50, 50);
 graphics.moveTo(-50, 50);
 graphics.lineTo(-50, -50);
}

There you have it: three distinct lines—two connected at a corner and another off on its own—all drawn by the
Flash Player in response to the drawing commands you’ve given it (extra marks if you can tell me where the pen is
after the last command). Figure 5-6 shows the result. It isn’t earth-shattering, granted, but even Picasso had to start
somewhere.

Figure 5-6. lineTo() and moveTo() at work on multiple lines

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

158

Controlling the Line Style
You probably won’t want to draw everything with thin, black lines. Fortunately, it’s easy to draw thick, purple lines,
or anything else you desire, by specifying your choices with the lineStyle() method. This method takes up to eight
parameters, each dictating a different facet of how the Flash Player will render subsequently drawn lines.

At its simplest, you can call lineStyle() with no parameters, meaning that no line will be drawn on subsequent
calls to lineTo(), curveTo(), or any of the primitive shape methods. This is useful if you just want to draw a filled
shape with no lines/strokes, for example. This is also the default setting for the lines drawn in a Graphics instance, so
unless you explicitly set a line style using lineStyle(), you will not see any lines drawn.

The first lineStyle() parameter is thickness, and as you can guess, it controls the thickness of the lines drawn.
You pass in a Number value for the desired thickness of the line in points. You can pass any whole or fractional value
between 0 and 255 (which is pretty darn thick). Passing in 0 gives you a hairline, which has the special property of
never scaling up, even if you scale the Graphics instance or its parent container. In contrast, a 1-point line inside a
Sprite that is scaled to 300% will appear at three times its original scale. Here’s an example of setting the thickness
parameter to 5 (see Figure 5-7):

public function Smiley() {
 // Testing
 graphics.lineStyle(5);
 graphics.lineTo(50, 0);
 graphics.lineTo(50, 50);
 graphics.moveTo(-50, 50);
 graphics.lineTo(-50, -50);
}

Figure 5-7. Beefier lines created by the thickness parameter in lineStyle()

As you probably have noticed, you don’t need to call lineStyle() before each line is drawn. The
lineStyle() method is sticky, which means that once you’ve called it, the settings you provide are
used for all drawing functions until you call the method again.

You can also call the clear() method, which wipes the graphics layer clean and resets all aspects
of the pen and graphics layer to their defaults, including the line style. The clear() method is an
important part of the drawing API. Its most common use is when you need to redraw within a
Graphics instance. It is important in such a case to clear any previous graphics that may have
been drawn.

The next lineStyle() parameter is color, and, unsurprisingly, it controls the color used to draw the lines.
The data type for this parameter is uint, but to make it easy to work with colors, the number is usually specified in
hexadecimal (base 16) format. Hexadecimal number literals in ActionScript start with 0x followed by a number of
hexadecimal digits. In the case of colors, there are six digits: two each for the red, green, and blue components of the
color: 0xRRGGBB. To make it easy, you can copy this number straight from the Color panel in the Flash IDE, as shown
in Figure 5-8, replacing the pound symbol (#) with 0x. If you don’t supply a color, the default is black.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

159

The third lineStyle() parameter is alpha, which controls the opacity of the lines drawn. This is a Number value
between 0 (transparent) and 1 (opaque), with numbers in between offering varying degrees of semitransparency. The
default alpha value is 1, or fully opaque. Here is an example of setting the lineStyle() method’s color parameter to
0xFF0000 (red) and its alpha parameter to 0.5 (see Figure 5-9):

public function Smiley() {
 // Testing
 graphics.lineStyle(5, 0xFF0000, 0.5);
 graphics.lineTo(50, 0);
 graphics.lineTo(50, 50);
 graphics.moveTo(-50, 50);
 graphics.lineTo(-50, -50);
}

Figure 5-8. Color values can be copied directly from the Color panel in the Flash IDE into your ActionScript

Figure 5-9. Using lineStyle() to set the color and alpha of lines

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

160

The other parameters for the lineStyle() method allow you to fine-tune how the Flash Player renders the lines
drawn, as follows:

•฀ pixelHinting: A Boolean value that when set to true will improve the rendering of curves and
straight lines at small sizes. The default is false.

•฀ scaleMode: A String value that determines how lines are scaled when the scaleX and scaleY
properties of the DisplayObject are altered. See the LineScaleMode class in the online help
for a list of possible values. The default is LineScaleMode.NORMAL.

•฀ caps: A String value from the CapsStyle class that determines how the ends of lines are
rendered. This is equivalent to the Cap setting shown in the Property inspector in the Flash
IDE when drawing a line or a shape with a stroke. The default is CapsStyle.ROUND.

•฀ joints: A String value from the JointStyle class that determines how joins between points
on a line are rendered. This is equivalent to the Join setting shown in the Property inspector in
the Flash IDE when drawing a line or a shape with a stroke. The default is JointStyle.ROUND.

•฀ miterLimit: A Number value that determines the limit at which a miter is cut as a factor of the
line thickness. This applies only when the joints parameter is set to JointStyle.MITER, and is
equivalent to the Miter setting shown in the Property inspector in the Flash IDE when drawing
a line or a shape with a stroke. The default is 3.

You can consult Adobe’s documentation for examples of these more complex parameters.

Drawing Curved Lines
Drawing straight lines is no fun unless you’re trying to draw a map of old Roman roads, or maybe a cartoon caricature
of Sylvester Stallone. The rest of us live in a curvy world, and are easily offended by utilitarian straight lines and sharp
angles (or is that just me?). Thankfully, we have the curveTo() method to ease our (or my) troubles.

The curveTo() method is similar to the lineTo() method in that it draws a line from the current pen location
to the one you specify, but you also get to include a control point that is used to specify the curve of the line. Some
seriously complex math is going on behind the scenes, but all you need to know is that the curve of the line is dragged
in the direction of the control point. It’s almost as if the control point were a magnet that is pulling the line toward it in
order to create the curve. Figure 5-10 shows an example.

Figure 5-10. curveTo() at work to create a curved line. The control point above is not rendered; it is shown here
only to illustrate how it affects the curve of a line

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

161

The curveTo() method takes four parameters: the (x,y) coordinates of the control point, and the (x,y) coordinates
of the end anchor of the line:

curveTo(controlX:Number, controlY:Number, anchorX:Number,
anchorY:Number):void

Let’s add the curveTo() method to the sample code to draw a curved line from the current pen position back to
the Shape instance’s origin, as shown in Figure 5-11.

public function Smiley() {
 // Testing
 graphics.lineStyle(5, 0xFF0000, 0.5);
 graphics.lineTo(50, 0);
 graphics.lineTo(50, 50);
 graphics.moveTo(-50, 50);
 graphics.lineTo(-50, -50);
 graphics.curveTo(0, -50, 0, 0);
}

Figure 5-11. In this example, the curveTo() method draws a curved line from the current pen position back to the origin

Drawing and Filling Shapes
The ability to draw straight and curved lines is undoubtedly useful, but it seems like it might be a lot of work to draw
simple shapes such as rectangles and circles. Consider trying to draw a rectangle with rounded corners using various
combinations of lineTo() and curveTo() calls—we’re talking about 8 lines and 20 points. Thankfully, Adobe has
provided a number of primitive shape drawing methods as part of the Graphics class. You can also create custom shapes.

Drawing Primitive Shapes
The shape-drawing methods are drawCircle(), drawEllipse(), drawRect(), and drawRoundRect()—not exactly
exhaustive, but not too shabby.

You’ll use two of these methods for the smiley graphic: drawCircle() for the face and the eyes, and
drawRoundRect() for the glasses. You’ll draw just the outlines for the moment, and then fill them in later.

The drawCircle() method takes three parameters: the (x,y) coordinate for the center of the circle and a Number
value specifying the radius of the circle in pixels. Let’s clear out all the test code and draw a 100-pixel radius circle in
the center of the smiley object (see Figure 5-12). You’ll use a 5-point black line for the outlines, some of which you’ll
keep and some of which you’ll get rid of in favor of a fill color.

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 graphics.drawCircle(0, 0, 100);
}

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

162

Remember that this code replaces all the test drawing code you originally put into your constructor.
Next, use the same method to draw the eyes. I had to play around a bit to find the right coordinates for the eyes.

Circles that were too close together made my smiley face looked untrustworthy; too far apart made him look just plain
weird. In the end, I settled on 10-pixel radius circles at (-35,-30) and (35,-30) (see Figure 5-13).

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 graphics.drawCircle(0, 0, 100);

 // Draw eyes
 graphics.drawCircle(-35, -30, 10);
 graphics.drawCircle(35, -30, 10);
}

Figure 5-13. drawCircle() is used to draw the eyes as well

Figure 5-12. Drawing a circle is a cinch with drawCircle()

You can use the drawRoundRect() method to draw the Woody Allen–style glasses on our little hero. This method
takes six parameters:

•฀ x: The x coordinate for the top-left corner of the rectangle

•฀ y: The y coordinate for the top-left corner of the rectangle

•฀ width: The width of the rectangle

•฀ height: The height of the rectangle

•฀ ellipseWidth: The width of the ellipse used to draw the rounded corners

•฀ ellipseHeight: The height of the ellipse used to draw the rounded corners

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

163

Again, after a bit of experimentation, I came up with reasonable values for each of these parameters to get the
look I wanted (see Figure 5-14):

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 graphics.drawCircle(0, 0, 100);

 // Draw eyes
 graphics.drawCircle(-35, -30, 10);
 graphics.drawCircle(35, -30, 10);

 // Draw glasses
 graphics.drawRoundRect(-60, -50, 50, 40, 20, 20);
 graphics.drawRoundRect(10, -50, 50, 40, 20, 20);
}

Figure 5-14. drawRoundRect() is employed to create the eyeglass frames

You can see that the eyes look a little big for the glasses, but fear not. Later, you’ll remove the outline from the
eyes and fill them with black.

Now you can draw the remainder of the glasses (the arms and nose bridge) using a combination of moveTo(),
lineTo(), and curveTo() (see Figure 5-15):

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 graphics.drawCircle(0, 0, 100);

 // Draw eyes
 graphics.drawCircle(-35, -30, 10);
 graphics.drawCircle(35, -30, 10);

 // Draw glasses
 graphics.drawRoundRect(-60, -50, 50, 40, 20, 20);
 graphics.drawRoundRect(10, -50, 50, 40, 20, 20);
 graphics.moveTo(-60, -30);
 graphics.lineTo(-80, -40);
 graphics.moveTo(-10, -30);
 graphics.curveTo(0, -40, 10, -30);
 graphics.moveTo(60, -30);
 graphics.lineTo(80, -40);
}

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

164

Lovely! Next you need to draw the mouth, which requires the use of a custom shape.

Creating Custom Shapes
Sometimes the primitive shape drawing functions offered by the Graphics class aren’t enough, such as when you
want to draw a hexagon or something much more complex, like a monkey. For your smiley face, you need to draw the
mouth, which is a crescent moon shape on its side—something none of the primitive drawing functions can handle.

In cases like this, you’re left pretty much to your own devices, using the lineTo() and curveTo() methods to
draw the shape. The key here is to draw the shape in one continuous series of statements, so that rather than a lot of
separate lines, you have many points on a single line. This makes it possible to fill the shape with a color, gradient,
or bitmap.

Drawing the mouth of the smiley face is as simple as drawing two curves—from left to right and then back
again—using different control points to increase the curve for the bottom of the mouth (see Figure 5-16).

public function Smiley() {
. . .

 // Draw glasses
 graphics.drawRoundRect(-60, -50, 50, 40, 20, 20);
 graphics.drawRoundRect(10, -50, 50, 40, 20, 20);
 graphics.moveTo(-60, -30);
 graphics.lineTo(-80, -40);
 graphics.moveTo(-10, -30);
 graphics.curveTo(0, -40, 10, -30);
 graphics.moveTo(60, -30);
 graphics.lineTo(80, -40);

 // Draw mouth
 graphics.moveTo(-45, 30);
 graphics.curveTo(0, 50, 45, 30);
 graphics.curveTo(0, 90, -45, 30);
}

Figure 5-15. The glasses are completed by drawing lines with moveTo(), lineTo(), and curveTo()

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

165

As you can see, you’ve finished the outline of the smiley face. Now it’s time to add a splash of color.

Filling Shapes with a Solid Color
Filling shapes with a solid color is as easy as calling the beginFill() method before drawing the shape, and then
calling endFill() when you’re finished. The beginFill() method takes two arguments: the color to fill the shape
with and a Number value between 0 (transparent) and 1 (opaque) for the alpha value of the fill color. If you omit the
alpha value, it defaults to 1, or fully opaque. You can call beginFill() before or after you set the line style. endFill()
does not take any parameters and is just used to signify the end of the filled shape, so that a new shape (with perhaps a
new fill or no fill) can be drawn.

Using the fill methods, let’s give the smiley face a nice (un)healthy yellow complexion, jet-black eyes, and a
super-shiny dentist’s smile (see Figure 5-17):

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 graphics.beginFill(0xFFFF00);
 graphics.drawCircle(0, 0, 100);
 graphics.endFill();

 // Draw eyes
 graphics.beginFill(0x000000);
 graphics.drawCircle(-35, -30, 10);
 graphics.drawCircle(35, -30, 10);
 graphics.endFill();
. . .
 // Draw mouth
 graphics.moveTo(-45, 30);
 graphics.beginFill(0xFFFFFF);
 graphics.curveTo(0, 50, 45, 30);
 graphics.curveTo(0, 90, -45, 30);
 graphics.endFill();
}

Figure 5-16. Who needs a drawCrescent() when a couple of curveTo() calls do the trick?

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

166

Now let’s give the glasses a slight white tint (see Figure 5-18). You can do this by filling them with pure white with
an alpha value of 0.3, which equates to 30% alpha and creates a very subtle effect.

// Draw glasses
graphics.beginFill(0xFFFFFF, 0.3);
graphics.drawRoundRect(-60, -50, 50, 40, 20, 20);
graphics.drawRoundRect(10, -50, 50, 40, 20, 20);
graphics.endFill();
graphics.moveTo(-60, -30);
graphics.lineTo(-80, -40);
graphics.moveTo(-10, -30);
graphics.curveTo(0, -40, 10, -30);
graphics.moveTo(60, -30);
graphics.lineTo(80, -40);

Figure 5-17. beginFill() and endFill() create solid color shapes

Figure 5-18. A transparent fill is given to the glasses

Mr. Smiley is looking better, but his eyes are still too big. Now that they’ve been filled in black, let’s remove the
line from them by calling lineStyle() with no parameters before drawing them. You’ll also need to set lineStyle()
back to 5-point thickness before drawing the glasses.

// Draw eyes
graphics.lineStyle();
graphics.beginFill(0x000000);
graphics.drawCircle(-35, -30, 10);
graphics.drawCircle(35, -30, 10);
graphics.endFill();

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

167

// Draw glasses
graphics.lineStyle(5);
graphics.beginFill(0xFFFFFF, 0.3);
graphics.drawRoundRect(-60, -50, 50, 40, 20, 20);
graphics.drawRoundRect(10, -50, 50, 40, 20, 20);
graphics.endFill();
graphics.moveTo(-60, -30);
graphics.lineTo(-80, -40);
graphics.moveTo(-10, -30);
graphics.curveTo(0, -40, 10, -30);
graphics.moveTo(60, -30);
graphics.lineTo(80, -40);

As you can see in Figure 5-19, the eyes look much better.

Figure 5-19. Calling lineStyle() with no parameters allows for shapes to be drawn without strokes

Filling Shapes with Color Gradients
Gradient fills (both linear and radial) are created using the beginGradientFill() method. A gradient may be a
gradual progression through two or more colors, a gradual progression through two or more alpha values, or a
mixture of the two, all at varying ratios. Using the beginGradientFill() method and its many parameters, you can
replicate any kind of gradient fill you can create in the Color panel of the Flash IDE.

The beginGradientFill() method has eight parameters:

•฀ type: A String value from the GradientType class that specifies whether to use a linear or
radial fill (GradientType.LINEAR or GradientType.RADIAL, respectively).

•฀ colors: An array of the colors in the gradient fill. You must have as many colors as you have
alpha values, and vice versa, so if you are setting up a seven-step alpha gradient for a single
color, you’ll need to repeat that color seven times in the colors array.

•฀ alphas: An array of the alpha values to use in the gradient fill. These values should be
between 0 (transparent) and 1 (opaque).

•฀ ratios: An array of values between 0 and 255 that indicate at what point in the gradient each
color and alpha should be positioned. There should be the same number of elements in the
ratios array as there are in the colors and alphas arrays. You can think of these values as
percentages, except that they go from 0 to 255 instead of 0 to 100.

•฀ matrix: An instance of the Matrix class from the flash.geom package. Its purpose is to
describe the dimensions of the gradient (gradients don’t necessarily need to be the same
size as the object they’re filling), the rotation of the gradient, and the (x,y) coordinates of the

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

168

origin of the gradient. Confused? Imagine that the gradient fills a piece of paper underneath
the paper on which you’re drawing, and when you draw a shape, you’re revealing the gradient
underneath. The matrix determines the size, position, and rotation of the paper with the
gradient. How the gradient paper is transformed affects how it fills the shape above. Thankfully,
every instance of the Matrix class has a createGradientBox() method, which takes all the
pain out of creating matrices for gradients. This method takes five parameters—width, height,
rotation, x, and y—and sets the matrix values accordingly.

•฀ spreadMethod: A String value from the SpreadMethod class that determines what happens if
the gradient does not fill the entire shape (if it was not wide or tall enough, or was positioned
outside the shape). This property maps directly to the Overflow value found in the Color
Mixer panel of the Flash IDE. Figure 5-20 shows the results of each of the possible values
for this parameter (as set through the IDE). This parameter is optional and defaults to
SpreadMethod.PAD if omitted.

Figure 5-20. Examples of the spreadMethod (or Overflow in the Flash IDE) for a gradient

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

169

•฀ interpolationMethod: A String value from the InterpolationMethod class that fine-tunes the
method used to calculate the gradations between two colors in the gradient. This parameter is
optional and defaults to InterpolationMethod.LINEAR_RGB if omitted.

•฀ focalPointRatio: Specific to radial gradients, a Number value between -1 and 1 that specifies
how far along the axis of rotation the focal point for the radial gradient will be. -1 is on the
left edge of the gradient, 0 is in the center, and 1 is on the right edge; values in between are
somewhere along that line. This parameter is optional and defaults to 0 (center) if omitted.

Going back to Mr. Smiley, he’s looking OK but a little too flat. Let’s give him some depth with a radial fill of the face.
Start with a simple radial fill between a light yellow, a moderate yellow, and a dark yellow to give the face a 3D

look (see Figure 5-21). Use 100% alpha for all the colors, and spread them out evenly over the gradient.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;

 public class Smiley extends Shape {

 public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 var colors:Array = [0xFFFF66, 0xFFFF00, 0xCCCC00];
 var alphas:Array = [1, 1, 1];
 var ratios:Array = [0, 128, 255];
 graphics.beginGradientFill(
 GradientType.RADIAL,
 colors,
 alphas,
 ratios
);
 graphics.drawCircle(0, 0, 100);
 graphics.endFill();

Figure 5-21. A gradient fill is applied to the smiley face

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

170

That looks a little better, but there’s something slightly unnatural about the focal point for the gradient being
dead center in the circle. You can use the focalPointRatio parameter of the beginGradientFill() method to
adjust the location of the focal point. Remember that this is a number between -1 (left edge) and 1 (right edge) that
specifies where the focal point should be in the gradient. Set this to -0.5 to shift the focal point from the center of
the circle to halfway toward the left edge (see Figure 5-22). Because the focalPointRatio parameter comes after
matrix, spreadMethod, and interpolationMethod, none of which you want to set, you can just pass null for those
three parameters.

public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 var colors:Array = [0xFFFF66, 0xFFFF00, 0xCCCC00];
 var alphas:Array = [1, 1, 1];
 var ratios:Array = [0, 128, 255];
 graphics.beginGradientFill(
 GradientType.RADIAL,
 colors,
 alphas,
 ratios,
 null,
 null,
 null,
 -0.5
);
 graphics.drawCircle(0, 0, 100);
 graphics.endFill();

Figure 5-22. The focalPointRatio parameter can be used to offset the center of the gradient

You’re nearly there, but the fill would look better with the focal point above and to the left of center, rather than
just to the left. To do this, you’ll need to rotate the gradient by 45 degrees. And for that, you need a matrix. Let’s create
a new Matrix instance and call its createGradientBox() method to build a gradient matrix.

The only tricky bit about the createGradientBox() method is that the rotation parameter is in radians, whereas
we humans normally think in degrees. Thankfully, it is simple to convert degrees to radians, requiring only that you
multiply the degrees value by the result of Math.PI divided by 180. You can even do this in-line in the method call:

matrix.createGradientBox(100, 100, 90 * (Math.PI / 180), 0, 0);

Remember also that Flash’s degrees system is a little kooky in that 0 degrees is at 3 o’clock.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

171

The createGradientBox() method takes five parameters: width, height, rotation, x, and y. The width, height,
rotation, x, and y parameters are the dimensions and location of the matrix in the Shape’s coordinate space, and
rotation is how far the gradient is rotated (in radians). You need a gradient that’s the same dimensions as your
circle (200 ´ 200 pixels), but because the circle is centered at (0,0) in the sprite, you’ll need to move the gradient to
(–100,–100), so that the gradient is positioned correctly. For the rotation parameter, just plug 45 degrees into the little
degrees-to-radians formula, and you’re finished.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.geom.Matrix;

 public class Smiley extends Shape {

 public function Smiley() {
 // Draw face
 graphics.lineStyle(5);
 var colors:Array = [0xFFFF66, 0xFFFF00, 0xCCCC00];
 var alphas:Array = [1, 1, 1];
 var ratios:Array = [0, 128, 255];
 var matrix:Matrix = new Matrix();
 matrix.createGradientBox(
 200,
 200,
 45 * (Math.PI / 180),
 -100,
 -100
);
 graphics.beginGradientFill(
 GradientType.RADIAL,
 colors,
 alphas,
 ratios,
 matrix,
 null,
 null,
 -0.5
);
 graphics.drawCircle(0, 0, 100);
 graphics.endFill();

Make sure that you import the Matrix class from the flash.geom package and that you pass the Matrix instance
in the beginGradientFill() method. Figure 5-23 shows the result.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

172

So there you have it: a smiley face drawn entirely with ActionScript code. You’re not quite finished with the
drawing API just yet—I couldn’t shoehorn all of the methods into the smiley face example—but feel free to stop here
and play around. Maybe you would be kind enough to give the poor little fellow a nose, perhaps some hair, and swap
the geek glasses for some cool shades.

Simplifying the Code
Before continuing with another example of using the drawing API, let’s look at how you might improve the code for
drawing the smiley face, to make it a little easier to work with and extend.

First, look at any common pieces and address redundancies in the code. For instance, the thickness of the lines
is hard-coded in two separate places in the code. This could be moved into a private variable to make it easier to edit,
especially if the number may ever be needed again in another part of the code. The same could hold true for any of
the “magic numbers” throughout the code.

You may also notice that the drawing is always done through the graphics property of the Shape instance.
Because of this, you can employ the with statement to nest all these lines and reduce the code. Basically, a with allows
you to target a specific object to be used to execute all the code within the block. If you use with (graphics), you
do not need to continually target the graphics property in each of the calls within the block. Here is the Smiley class
rewritten with a with statement, so you can see how it works to simplify the code:

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.geom.Matrix;

 public class Smiley extends Shape {

 public function Smiley() {
 with (graphics) {
 // Draw face
 lineStyle(5);
 var colors:Array = [0xFFFF66, 0xFFFF00, 0xCCCC00];
 var alphas:Array = [1, 1, 1];
 var ratios:Array = [0, 128, 255];
 var matrix:Matrix = new Matrix();
 matrix.createGradientBox(

Figure 5-23. With the help of a Matrix instance, the gradient fill is offset for a more 3D look for the smiley face

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

173

 200,
 200,
 45 * (Math.PI / 180),
 -100,
 -100
);
 beginGradientFill(
 GradientType.RADIAL,
 colors,
 alphas,
 ratios,
 matrix,
 null,
 null,
 -0.5
);
 drawCircle(0, 0, 100);
 endFill();

 // Draw eyes
 lineStyle();
 beginFill(0x000000);
 drawCircle(-35, -30, 10);
 drawCircle(35, -30, 10);
 endFill();

 // Draw glasses
 lineStyle(5);
 beginFill(0xFFFFFF, 0.3);
 drawRoundRect(-60, -50, 50, 40, 20, 20);
 drawRoundRect(10, -50, 50, 40, 20, 20);
 endFill();
 moveTo(-60, -30);
 lineTo(-80, -40);
 moveTo(-10, -30);
 curveTo(0, -40, 10, -30);
 moveTo(60, -30);
 lineTo(80, -40);

 // Draw mouth
 moveTo(-45, 30);
 beginFill(0xFFFFFF);
 curveTo(0, 50, 45, 30);
 curveTo(0, 90, -45, 30);
 endFill();
 }
 }
 }

}

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

174

Creating Gradient line Styles
Earlier, I mentioned that the drawing API was significantly enhanced in Flash 8. The ability to draw lines that use a
gradient rather than a solid color was one of those enhancements.

Setting up a gradient line style takes two steps:

Set up the line thickness by calling the •฀ lineStyle() method, just as you would for solid-color
lines. You may as well ignore the color and alpha properties for the line style, since they will
be ignored in favor of the gradient style.

Call the •฀ lineGradientStyle() method to set up the gradient style. This method takes exactly
the same arguments as the beginGradientFill() method you met earlier, and it works in
exactly the same way to produce a gradient, which you can then use to render lines with the
drawing API.

Let’s give this a go with a linear gradient fill that cycles through all the colors of the rainbow:

 1. Create a new Flash document and save it with the name lineGradient.fla in the project
directory.

 2. Create a new ActionScript document for the document class. Save the file as
LineGradientTest.as in the com.foundationAS3.ch5 directory.

 3. Create the basic package and class definitions, including the constructor method, using
Sprite as the base class. Be sure to import the Shape, Sprite, and GradientType classes
from the flash.display package.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

 public function LineGradientTest () {
 }

 }

}

 4. As this is a simpler example than the smiley face, you’ll include all the drawing code within
this document class. Create a new Shape object on which you can draw, add the item to the
display list, and center it on the stage.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

175

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;
 }

 }

}

 5. Set up the basic line style with a call to lineStyle(). So you can see the line gradient
clearly, use a thickness of 30 pixels. Remember that the lineStyle() color and alpha
parameters are ignored, so you don’t need to supply them.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;

 // Set basic line style
 ellipse.graphics.lineStyle(30);
 }

 }

}

 6. Begin to set up the properties for the gradient, starting with the colors array. You’ll create
an array containing all the colors of the rainbow: red (0xFF0000), orange (0xFF6600),
yellow (0xFFFF00), green (0x00FF00), blue (0x0000FF), indigo (0x2E0854), and violet
(0x8F5E99). You may as well deal with the alphas array here, too, since you want the
gradient to be fully opaque.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

176

 public class LineGradientTest extends Sprite {

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;

 // Set basic line style
 ellipse.graphics.lineStyle(30);

 // Set up gradient properties
 var colors:Array =
 [
 0xFF0000,
 0xFF6600,
 0xFFFF00,
 0x00FF00,
 0x0000FF,
 0x2E0854,
 0x8F5E99
];
 var alphas:Array = [1,1,1,1,1,1,1];
 }

 }

}

 7. Now you need to deal with the gradient ratios. You want the colors spaced evenly, so you
need to divide 255 (the maximum ratio value) by 6 (you have seven colors, but one of them
will exist at position 0, so you don’t need to count it). That gives increments of 42, give or
take a fraction.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;

 // Set basic line style
 ellipse.graphics.lineStyle(30);

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

177

 // Set up gradient properties
 var colors:Array =
 [
 0xFF0000,
 0xFF6600,
 0xFFFF00,
 0x00FF00,
 0x0000FF,
 0x2E0854,
 0x8F5E99
];
 var alphas:Array = [1,1,1,1,1,1,1];
 var ratios:Array = [0,42,84,126,168,210,255];
 }

 }

}

 8. Call the lineGradientStyle() method to set up a linear gradient using the gradient
properties you’ve just created.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;

 // Set basic line style
 ellipse.graphics.lineStyle(30);

 // Set up gradient properties
 var colors:Array =
 [
 0xFF0000,
 0xFF6600,
 0xFFFF00,
 0x00FF00,
 0x0000FF,
 0x2E0854,
 0x8F5E99
];

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

178

 var alphas:Array = [1,1,1,1,1,1,1];
 var ratios:Array = [0,42,84,126,168,210,255];

 // Set gradient line style
 ellipse.graphics.lineGradientStyle(GradientType.LINEAR, colors,
 alphas, ratios);
 }

 }

}

 9. Use the drawEllipse() method to draw the outline of an ellipse on the stage. This method
takes four parameters to specify the location and size of the ellipse to draw: x, y, width, and
height. Using this method, draw a 200 ´ 100-pixel ellipse in the center of the ellipse sprite.

The drawEllipse() method operates more like drawRect() than drawCircle(). The parameters specify
the positions and dimensions of an imaginary rectangle that would contain the ellipse, rather than
the center point and the horizontal and vertical radius values.

package com.foundationAS3.ch5 {

 import flash.display.GradientType;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class LineGradientTest extends Sprite {

 public function LineGradientTest() {
 // Create and center ellipse shape on stage
 var ellipse:Shape = new Shape();
 addChild(ellipse);
 ellipse.x = stage.stageWidth / 2;
 ellipse.y = stage.stageHeight / 2;

 // Set basic line style
 ellipse.graphics.lineStyle(30);

 // Set up gradient properties
 var colors:Array =
 [
 0xFF0000,
 0xFF6600,
 0xFFFF00,
 0x00FF00,
 0x0000FF,
 0x2E0854,
 0x8F5E99
];
 var alphas:Array = [1,1,1,1,1,1,1];
 var ratios:Array = [0,42,84,126,168,210,255];

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

179

 // Set gradient line style
 ellipse.graphics.lineGradientStyle(GradientType.LINEAR, colors,
 alphas, ratios);

 // Draw ellipse
 ellipse.graphics.drawEllipse(-100, -50, 200, 100);
 }

 }

}

 10. Save your changes to the LineGradientTest.as document and switch to lineGradient.fla.
Set the document class of the movie to com.foundationas3.ch5.LineGradientTest.

 11. Save your changes to the lineGradient.fla document and test your movie.

Voilà! You now have an ellipse drawn on the stage using a gradient for its outline, as shown in Figure 5-24.

Figure 5-24. A rainbow gradient filling the stroke of an ellipse demonstrates the power of lineGradientStyle()

Flash 3D
Now that we have created our lovely little Mr. Smiley, let’s see if we can move him around in a 3D space. In this section
we will be looking at the 3D tool. You were able to move an object in the x and y spaces in previous versions of Flash,
but the new 3D tool, which is located in the toolbar, allows you to move an object in the x, y, and z spaces as well as
specify the perspective angle and vanishing point. This tool lets you give an object depth of field and determine the
direction in which it should move, so we can make Mr. Smiley look far away or close.

Let’s look at these parameters on the timeline:

 1. Open a new Flash document and draw a simple rectangle on the stage.

 2. Select the rectangle and make it a movie clip, assigning it any name you wish.

 3. Open the Properties panel and you will see the new 3D Position and View options, as
shown in Figure 5-25.

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

180

 4. Select the z option. (If the field is unavailable, make sure you are set up to publish in Flash
Player 10.) Changing the z field parameter will move the rectangle in the z space, which will
make it look far away or close depending on the number you enter. Let’s leave the z space alone
for now because we will come back to it using the Mr. Smiley example files in a moment.

 5. Select the Perspective Angle field, which has a little camera next to it. The camera icon is
a giveaway as to what this parameter does. When you change this value, you will see that
the rectangle gets bigger or smaller. So what’s the difference between this and the z field
parameter, you ask? Well, the Perspective Angle is your starting point; for example,
if I were to set up my camera on a tripod to take a picture of a cow, my camera would stay
in the same place but the cow would move around the field, getting bigger and smaller.
The perspective point is, in essence, my camera on my tripod.

 6. Let’s take a look at the Vanishing Points now; again, these options are pretty self-explanatory.
When selecting one of the two options, you will see a crosshair that indicates where in the
distance your rectangle will vanish when the z space parameter is set to the maximum
amount it needs to be before it disappears.

Now that you have had a preview of the 3D position and view options, let’s have a little fun with Mr. Smiley and
the z field parameter.

 1. Open the class file called SmileyTest.as and you should see this code:

package com.foundationAS3.ch5 {

 import flash.display.Sprite;

 public class SmileyTest extends Sprite {

 public function SmileyTest() {
 // Create and center smiley sprite on stage
 var smiley:Smiley = new Smiley();
 addChild(smiley);
 smiley.x = stage.stageWidth / 2;
 smiley.y = stage.stageHeight / 2;
 }

 }
}

Figure 5-25. The 3D position and view panel

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

181

 2. Import the MouseEvent class and add a listener to the stage. The listener should capture
when the mouse has been moved and trigger a call to the function onNewPosition().

package com.foundationAS3.ch5 {

 import flash.display.Sprite;

 import flash.event.MouseEvent;

 public class SmileyTest extends Sprite {

 public function SmileyTest() {
 // Create and center smiley sprite on stage
 var smiley:Smiley = new Smiley();
 addChild(smiley);
 smiley.x = stage.stageWidth / 2;
 smiley.y = stage.stageHeight / 2;

 stage.addEventListener(MouseEvent.MOUSE_MOVE, onNewPosition);

 }

 }
}

 3. Create the function onNewPosition() and remember to pass in the MouseEvent as a
parameter; otherwise, you will get one of those pesky Flash errors. Inside the function
we are just playing with the z space amounts by taking the localX parameter of the event
object, which is in fact the X position of the mouse, and then adding or subtracting 200
pixels depending on the current mouse position. Then, before we leave the function we
place Mr. Smiley in the X and Y position of the mouse.

package com.foundationAS3.ch5 {

 import flash.display.Sprite;

 import flash.event.MouseEvent;

 public class SmileyTest extends Sprite {

 public function SmileyTest() {
 // Create and center smiley sprite on stage
 var smiley:Smiley = new Smiley();
 addChild(smiley);
 smiley.x = stage.stageWidth / 2;
 smiley.y = stage.stageHeight / 2;

 stage.addEventListener(MouseEvent.MOUSE_MOVE, onNewPosition);

 }
 function onNewPosition(evt:MouseEvent):void {

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

182

 if (evt.localX>200) {
 smiley.z = (evt.localX + 200);
 } else {
 smiley.z = (evt.localX - 200);
 }
 smiley.y = evt.localY;
 smiley.x = evt.localX;
 }

 }
}

 4. If you run the code as it is, it will not produce any errors, but neither will it work. So you
need to modify the location in which you declare the smiley object so it stays in scope.
By placing the object outside the constructor, you are declaring the smiley object as global
to the class; therefore, other functions and methods inside that class will be able to
reference the smiley object by name. You can still create a new instance in the constructor,
but declare it at the top of the class as shown here:

package com.foundationAS3.ch5 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class SmileyTest extends Sprite {
 var smiley:Smiley;
 public function SmileyTest() {
 // Create and center smiley sprite on stage
 smiley = new Smiley();
 addChild(smiley);
 smiley.x=stage.stageWidth/2;
 smiley.y=stage.stageHeight/2;

 stage.addEventListener(MouseEvent.MOUSE_MOVE, onNewPosition);
 }

 function onNewPosition(evt:MouseEvent):void {
 if (evt.localX>200) {
 smiley.z = (evt.localX + 200);
 } else {
 smiley.z = (evt.localX - 200);
 }
 smiley.y=evt.localY;
 smiley.x=evt.localX;

 }

 }

}

CHAPTER 5 ■ CREATING VECTOR GRAPHICS WITH THE DRAWING API

183

Test your movie and watch Mr. Smiley move left and right and backward and forward, depending on where
you position your mouse. This was just a small taste of what is possible using the new 3D options in Flash CC, so we
suggest you spend some time experimenting with the new 3D tool.

Summary
So, that was the drawing API. This was a relatively brief chapter, but then there’s not that much to the drawing API.
The power of the API is that it is very simple to learn, and yet you’re limited in what you can create only by your artistic
talents and the amount of time you have to sit and fiddle.

You’ll be seeing the drawing API again in the next chapter, when you combine it with the event model to produce
a basic drawing application. Until then, get creative!

For further reading on vector animation via ActionScript, check out AdvancED ActionScript 3.0 Animation by
Keith Peters (friends of ED, 2008).

185

CHAPTER 6

User Interaction and More with Events

This chapter covers the following topics:

How the ActionScript event model works•฀

How to work with event listeners•฀

How to use input events from the mouse and keyboard to allow interactivity in your projects•฀

The event flow and why it’s useful•฀

One of the facets that makes Flash movies and Flex applications so appealing to users is that developers (you
and me) can tap into the Flash Player to handle mouse and keyboard events and provide immediate feedback. All of
the projects you’ve looked at so far in this book have been lacking one vital ingredient: user interaction. I’m going to
remedy that here and now by taking you on a journey through the magical world of events and event handling.

As you might have guessed from the title, events in ActionScript 3.0 let you do more than just allow your projects
to interact with the users. They are the means by which you know when an external image file has finished loading,
for example, or when the Flash Player shows the next frame of your movie. We’ll get to these less tangible, but no less
important, uses of events and event handling later in the chapter, and begin by concentrating on user interaction.

Understanding Events
In the real world, you don’t need to check your microwave every 2 seconds to see when your food has finished
cooking. Instead, when the timer reaches zero, the microwave beeps to let you know that your gourmet all-in-one
chicken dinner (complete with artificial gravy and green things that may once have been peas) is ready to eat. The
fact that your microwave will tell you when the food is ready lets you get on with other stuff while it’s cooking, like
searching through the bathroom cabinet for some antacid tablets to extinguish the inevitable heartburn you’ll get
after consuming your “gourmet” meal.

The events system in ActionScript 3.0 is made up of three types of objects: events, event dispatchers, and event
listeners. In ActionScript 3.0 parlance, the microwave would be known as the event dispatcher. The event would be
the microwave timer reaching zero and beeping frantically. You, or more specifically, the part of your brain you’ve
tasked with listening for the beep, would be the event listener. Figure 6-1 illustrates this concept.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

186

An event is an instance of the Event class, which has a variety of properties that relate to the type of event that
occurred. If the event in question were a mouse click, the event object would contain details about the position of the
mouse pointer and which (if any) modifier keys—Shift or Ctrl—were held down at the time the event occurred.

Many different classes extend the core Event class in the Flash and Flex frameworks, each tailored to a specific type
of event. For example, the mouse click is represented by the MouseEvent class, which adds stageX and stageY properties,
among others, to describe the position of the mouse pointer when the event occurred. Additional event classes include
KeyboardEvent for keyboard activity, NetStatusEvent for events that occur when streaming video and communicating
with the Flash Media Server, and ProgressEvent for monitoring the loading of assets and data. Consult the Adobe
documentation for a complete listing of all the event classes, including the additional ones in the Flex framework.

Listening for an Event
If you want to be notified of a specific type of event, you can register your interest in that event type with the event
dispatcher using the addEventListener() method. When you set up a listener for an event using this method, you
need to provide two crucial pieces of information: the type of event you are interested in and the method you want to
be called when that type of event occurs (commonly called the event handler method).

someObject.addEventListener(type, listener);

The type parameter is the name of the event you want to listen for, in the form of a string. Rather than use a
string literal, you should use the static event type constants that are part of the Event class and its descendants. These
constants are provided so that you don’t need to memorize the event names themselves, and they bring the added
benefit that the compiler will probably catch any mistakes you might make in the event name.

The second parameter is a reference to the method you want to be called whenever an event of the specified type
occurs. This method should have a single parameter, which corresponds to the class of event you want to listen for
(Event for basic events, MouseEvent for mouse-related events, and so on) and have a return type of void.

private function methodName(event:EventClass):void {
 // Handle event in here
}

Figure 6-1. A real-world metaphor for the event model in ActionScript

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

187

Be careful when specifying the type for the handler’s parameter: the Flash Player will throw
a runtime error if the type of dispatched event does not match the specified data type in your
event listener.

As an example, if you wanted to set up an event listener for the Event.ENTER_FRAME event, which is broadcast by
all DisplayObject instances whenever a new frame is displayed, you would end up with something like this:

mySprite.addEventListener(Event.ENTER_FRAME, onSpriteEnterFrame);

private function onSpriteEnterFrame(event:Event):void {
 x += 2; // moves sprite 2 pixels right each frame
}

Event listeners are processed in the order in which they were added to the object, so if you added three listeners
for the same event, the listeners will receive notification of the event in the order they were added as listeners.

The addEventListener() method has a couple of extra optional parameters you can pass. Generally,
you will not need to worry about these additional parameters, but it is good to understand what
the options provide.

First, the useCapture parameter offers a way to have listeners receive event notifications at an earlier
stage of the event flow. You’ll learn more about this parameter in the “Listening for events in the
capture phase” section later in this chapter.

The priority parameter allows you to specify an order in which listeners receive event notification.
You’ll learn more about this parameter in the “Stopping an event from propagating” section later
in this chapter.

The useWeakReference parameter specifies that an object can be garbage-collected if its only reference
is as a listener for another object’s events. Basically, when an object adds an event listener for an
event, a reference to that object is stored and cannot be garbage-collected (removed from memory),
even when that object is no longer referenced anywhere but as an event listener. At that point, it is
even impossible to remove the object as an event listener, since no other reference exists, so the object
is said to be “orphaned” and is really just wasted memory. Passing true for the useWeakReference
parameter tells the Flash runtime that if no other references to the object exist except as the event
listener, the object may be marked for garbage collection.

Removing an Event Listener
Should you no longer wish to listen for an event, you just need to call the removeEventListener() method, passing
the exact same parameters you passed to addEventListener() to set up the event listener in the first place: the event
type (preferably using one of the event type constants from the Event classes) and a reference to the event listener
method:

someObject.removeEventListener(type, listener);

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

188

Once you call the removeEventListener() method, your listener will no longer receive events of the specified
type from the event dispatcher.

It’s important that you remove event listeners when you’re finished with them in order to prevent
your project from consuming more and more memory. An object will not be garbage-collected by
the Flash Player when it has event listeners registered for it, meaning that those objects will just
hang around for as long as your project is running in the Flash Player. You can get around this by
passing true for the useWeakReference parameter in the addEventListener() method call, but it is
still strongly recommended that you remove any event listener that no longer needs notification of
an event.

Naming Your Event Listener Methods
Your event handler methods can have any name you like—they are your methods, and you’re telling the event
dispatcher which method to call. However, to make things easier for you (and anyone else reading your code) to know
at a glance what a particular event listener method is designed to handle, you can use the following convention:

on + ObjectType + EventType

For example, if you have your own DisplayObject class to represent thumbnails of photographs (named,
rather cunningly, PhotoThumbnail) that users can click to view a larger version (which will be communicated by the
MouseEvent.CLICK event), name your event handler onPhotoThumbnailClick. Simple, huh?

Creating a Simple Drawing Application
Now is a good time to handle your first event in ActionScript 3.0. This example combines event handling with the
drawing API (covered in the previous chapter).

The premise is simple: when the mouse button is held down and the mouse is moved, you draw a line from the
last mouse position to the current one. When the mouse button is released, you stop drawing. Granted, it’s more
Etch-A-Sketch than Adobe Photoshop, but everyone needs to start somewhere, right?

Setting up the Canvas

Let’s begin by setting up the basic framework for the simple drawing application.

 1. Create a new Flash file and save it in the project folder with the name
drawingApplication.fla.

 2. Create a new ActionScript file for the document class, which will live in the
com.foundationAS3.ch6 package. Create the appropriate package directory structure,
and save the file named DrawingApplication.as in the ch6 directory.

 3. Create the basic package and class definitions for the DrawingApplication class, including
an empty constructor method. You’ll extend the Sprite class, since you’re not dealing with
any timeline animation.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

189

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class DrawingApplication extends Sprite {

 public function DrawingApplication() {
 }

 }

}

 4. You need a surface on which to draw, so create a new Sprite display object (storing a

reference to it in a new property named canvas).

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class DrawingApplication extends Sprite {

 private var _canvas:Sprite;

 public function DrawingApplication() {
 _canvas = new Sprite();
 }

 }

}

 5. In order for the canvas to receive mouse events, it needs to have a width and a height.
The easiest way to provide that, as well as present some visual surface for the user, is
to draw into it. Draw a light-gray rectangle that is the same size as the stage using the
drawing API methods.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class DrawingApplication extends Sprite {

 private var _canvas:Sprite;

 public function DrawingApplication() {
 _canvas = new Sprite();

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

190

 _canvas.graphics.beginFill(0xF0F0F0);
 _canvas.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
 _canvas.graphics.endFill();
 }

 }

}

 6. Set the line style of the canvas to be a 2-pixel black line, which will be used for all further
drawing. Then add the canvas to the stage.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class DrawingApplication extends Sprite {

 private var _canvas:Sprite;

 public function DrawingApplication() {
 _canvas = new Sprite();

 _canvas.graphics.beginFill(0xF0F0F0);
 _canvas.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
 _canvas.graphics.endFill();

 _canvas.graphics.lineStyle(2, 0x000000);

 addChild(_canvas);
 }

 }

}

With this basic framework in place, you’re ready to add the event listeners to your canvas object.

Adding Event Listeners

When the mouse button is pressed, communicated by the MouseEvent.MOUSE_DOWN event, you need to move
the drawing pen to the current mouse location. You also need to start listening for the MouseEvent.MOUSE_MOVE
event so that you can draw a line whenever the mouse moves. Finally, when the mouse button is released and a
MouseEvent.MOUSE_UP event is dispatched, you need to draw a line to the current mouse position and remove the
listener for the MouseEvent.MOUSE_MOVE event.

 1. Create a new private method named onCanvasMouseDown() that takes a single parameter,
event, of type MouseEvent, and add that method as a listener for the MouseEvent.MOUSE_
DOWN event of the canvas object. You’ll need to import the MouseEvent class from the
flash.events package.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

191

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 addChild(_canvas);

 _canvas.addEventListener(MouseEvent.MOUSE_DOWN, onCanvasMouseDown);
 }

 private function onCanvasMouseDown(event:MouseEvent):void {
 }

 }

}

 2. Within the onCanvasMouseDown() event, move the Drawing API pen to the current mouse

position, which is contained in the localX and localY properties of the event object.
localX and localY are good to use when it’s important to obtain the mouse positions
within a sprite’s own coordinate space, as when you are drawing into that sprite. In this
particular case, stageX and stageY, which return the global coordinates, could have been
used, since the canvas is at coordinates (0, 0) within the main document class. However,
it’s still a good idea to be in the habit of looking at the local coordinates, just in case the
canvas was moved to a different location.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 _canvas.addEventListener(MouseEvent.MOUSE_DOWN, onCanvasMouseDown);
 }

 private function onCanvasMouseDown(event:MouseEvent):void {
 _canvas.graphics.moveTo(event.localX, event.localY);
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

192

 3. Create a new private method named onCanvasMouseMove() to handle the
MouseEvent. MOUSE_MOVE event. Add the addEventListener() call to set up this event
listener within the onCanvasMouseDown() method, meaning that you’ll be notified of
mouse move events only after the mouse button has been pressed.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 private function onCanvasMouseDown(event:MouseEvent):void {
 _canvas.graphics.moveTo(event.localX, event.localY);
 _canvas.addEventListener(MouseEvent.MOUSE_MOVE, onCanvasMouseMove);
 }

 private function onCanvasMouseMove(event:MouseEvent):void {
 }

 }

}

 4. Within the onCanvasMouseMove() event, draw a line from the current pen position to the

current position of the mouse pointer.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 private function onCanvasMouseDown(event:MouseEvent):void {
 _canvas.graphics.moveTo(event.localX, event.localY);
 _canvas.addEventListener(MouseEvent.MOUSE_MOVE, onCanvasMouseMove);
 }

 private function onCanvasMouseMove(event:MouseEvent):void {
 _canvas.graphics.lineTo(event.localX, event.localY);
 }

 }

}

 5. Create a new private method named onCanvasMouseUp() to handle the MouseEvent.

MOUSE_UP event. The event listener should be added in the same place the MouseEvent.
MOUSE_DOWN event was added: in the main DrawingApplication constructor method.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

193

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 addChild(_canvas);

 _canvas.addEventListener(MouseEvent.MOUSE_DOWN, onCanvasMouseDown);
 _canvas.addEventListener(MouseEvent.MOUSE_UP, onCanvasMouseUp);
 }

 private function onCanvasMouseDown(event:MouseEvent):void {
 _canvas.graphics.moveTo(event.localX, event.localY);
 _canvas.addEventListener(MouseEvent.MOUSE_MOVE, onCanvasMouseMove);
 }

 private function onCanvasMouseMove(event:MouseEvent):void {
 _canvas.graphics.lineTo(event.localX, event.localY);
 }

 private function onCanvasMouseUp(event:MouseEvent):void {
 }

 }

}

 6. Within the onCanvasMouseUp() method, you need to draw a line to the current mouse

location (just in case the mouse has been moved since the last MouseEvent.MOUSE_MOVE
event was dispatched) and remove the MouseEvent.MOUSE_MOVE event listener using the
 removeEventListener() method.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DrawingApplication extends Sprite {
. . .
 private function onCanvasMouseMove(event:MouseEvent):void {
 _canvas.graphics.lineTo(event.localX, event.localY);
 }

 private function onCanvasMouseUp(event:MouseEvent):void {
 _canvas.graphics.lineTo(event.localX, event.localY);
 _canvas.removeEventListener(MouseEvent.MOUSE_MOVE, onCanvasMouseMove);
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

194

 7. Save the changes to the DrawingApplication.as file and switch back to the
drawingApplication.fla file.

 8. Set com.foundationAS3.ch6.DrawingApplication as the document class in the Property
inspector. Save the changes and test your movie.

Figure 6-2 shows an example of the drawing application in action. You’ll have to forgive my (lack of) drawing
skills; I’m certainly no Rembrandt. But I think you’ll agree that it’s not a bad application for 30-odd lines of code.

Figure 6-2. The drawing application made possible by events (and your code!)

Refreshing the Screen

One thing you might notice is a lack of smoothness in the drawing interaction. This is due to the fact that the movie
will update the screen only at the frame rate that you have set prior to publishing, which may be slower than the rate
at which you draw. You can get around this by forcing the screen to update whenever the mouse changes its position.

Mouse events have a method named updateAfterEvent() (in ActionScript 2.0, this method was a global
function). By calling this method within your mouse move handler, you can force the screen refresh and create a
smoother interaction.

Add the following line of code to the end of the onCanvasMoveHandler():

private function onCanvasMouseMove(event:MouseEvent):void {
 _canvas.graphics.lineTo(event.localX, event.localY);
 event.updateAfterEvent();
}

Save the file, then return to drawingApplication.fla and test your movie. (Alternatively, if you are using the
Flash IDE to code your ActionScript,File press Ctrl+Enter to test the movie.) You should see a much smoother result.

Using One Event Listener for Multiple Objects
One of the nice features of the event model is that it does not force you to have one method respond to each event
(which can happen if you are using something like callback handlers—users of the version 1 Flash components may
remember those days!). Multiple objects can have the same listener and handler method, if that suits your needs.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

195

Also another useful tip is that you can now reduce the number of event listeners that you need to have running
at one time, which will help when clearing up memory. For example, say you have a navigation bar with ten buttons
on the screen. Instead of having to attach a listener to each of the button instances, you can attach a listener to the
stage that can detect a mouse click event. Then, using a switch statement, you can catch which button was pressed to
trigger the event for that button.

For instance, suppose that you have a group of Sprite instances that you want to scale in size when the
user rolls over them. You can take care of all of this in a single method, and add it as the handler for the
MouseEvent.MOUSE_ROLLOVER event. When any of the Sprite instances are rolled over, the method is called, and
you can access the rolled-over Sprite instance through the MouseEvent object’s target property.

private function onSpriteRollover(event:MouseEvent):void {
 // Get reference to rolled-over sprite
 var sprite:Sprite = event.target as Sprite;
 sprite.scaleX = sprite.scaleY = 1.5;
}

As shown in this snippet, you need to cast the target property to the appropriate class (Sprite in this case) using
the as operator in order to use this property. This is necessary because any type of object can be the target of an event,
so the data type of the target property in the Event class is Object. This type of operation is called—you guessed
it—casting.

Using Events with the Display List
Now that you know how events work in ActionScript 3.0, it’s time to look at some of the more interesting events that
are dispatched by the various DisplayObject classes and the different ways in which those events can be used.

Handling Single and Double Mouse Clicks
With enough time and energy, you could use the MouseEvent.MOUSE_UP and MouseEvent.MOUSE_DOWN events to
handle single and double mouse clicks in your project. You would, however, need to listen for a MOUSE_DOWN,
followed by a MOUSE_UP on the same object, and then wait a specified amount of time to see if another
MOUSE_DOWN, MOUSE_UP sequence happened on the same object.

Thankfully, Adobe has taken pity on us poor time- and energy-deficient developers by providing us with ready-
made MouseEvent.CLICK and MouseEvent.DOUBLE_CLICK events. The only small hoop you need to jump through is
that display objects don’t receive MouseEvent.DOUBLE_CLICK events by default. To remedy this, you just need to set the
display object’s doubleClickEnabled property to true.

myDisplayObject.doubleClickEnabled = true;

Once you’ve done that, you’re ready to rock and roll, double-click style.
Let’s work through a simple example to show how these two events work:

 1. Create a new Flash document named click.fla and save it in the project directory.

 2. Create a new ActionScript file for the document class, which will be in the
com.foundationAS3.ch6 package, and save it in the appropriate location within the
project directory with the name ClickTest.as.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

196

 3. Create the basic package and class definitions for the ClickTest class, which will extend
the Sprite class.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class ClickTest extends Sprite {

 public function ClickTest() {
 }

 }

}

 4. In the constructor method, create a new Sprite object in a local variable named square

and add it to the display list.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class ClickTest extends Sprite {

 public function ClickTest() {
 var square:Sprite = new Sprite();
 addChild(square);
 }

 }

}

 5. Use the drawing API methods to draw a 100 ´ 100-pixel, red square with a black outline

within the new Sprite instance.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class ClickTest extends Sprite {

 public function ClickTest() {
 var square:Sprite = new Sprite();
 square.graphics.lineStyle(2, 0x000000);
 square.graphics.beginFill(0xFF0000);
 square.graphics.drawRect(0, 0, 100, 100);
 square.graphics.endFill();
 addChild(square);
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

197

 6. Create two private methods named onSquareClick() and onSquareDoubleClick(), and
add them as event listeners for the MouseEvent.CLICK and MouseEvent.DOUBLE_CLICK
events on the new Sprite instance, respectively. You’ll need to import the MouseEvent
class from the flash.events package. Also, don’t forget to set the doubleClickEnabled
property of the Sprite instance to true; otherwise, the Flash Player will not dispatch
double-click events for this object.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class ClickTest extends Sprite {

 public function ClickTest() {
 var square:Sprite = new Sprite();
 square.graphics.lineStyle(2, 0x000000);
 square.graphics.beginFill(0xFF0000);
 square.graphics.drawRect(0, 0, 100, 100);
 square.graphics.endFill();
 addChild(square);

 square.doubleClickEnabled = true;

 square.addEventListener(MouseEvent.CLICK, onSquareClick);
 square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 }

 private function onSquareClick(event:MouseEvent):void {
 }

 private function onSquareDoubleClick(event:MouseEvent):void {
 }

 }

}

 7. In the onSquareClick() and onSquareDoubleClick() methods, trace some string values
to identify which method was clicked. I’ve gone for "ouch!" and "double ouch!", but feel
free to be creative.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

198

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class ClickTest extends Sprite {

 public function ClickTest() {
 var square:Sprite = new Sprite();
 square.graphics.lineStyle(2, 0x000000);
 square.graphics.beginFill(0xFF0000);
 square.graphics.drawRect(0, 0, 100, 100);
 square.graphics.endFill();
 addChild(square);

 square.doubleClickEnabled = true;

 square.addEventListener(MouseEvent.CLICK, onSquareClick);
 square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 }

 private function onSquareClick(event:MouseEvent):void {
 trace("ouch!");
 }

 private function onSquareDoubleClick(event:MouseEvent):void {
 trace("double ouch!");
 }

 }

}

 8. Save the changes to the ClickTest.as file and switch back to the click.fla document.

 9. In the Property inspector, set the document class to com.foundationAS3.ch6.ClickTest.
Then save the changes to the click.fla document.

 10. Test the Flash movie and go click-happy on the shiny red square.

If you click once, you’ll see the string “ouch!” (or whatever you chose instead) added to the Output panel. If you
click twice in quick succession, you’ll see “ouch!” followed by “double ouch!, ” which is the initial MouseEvent.CLICK
event firing, followed by the MouseEvent.DOUBLE_CLICK event. Figure 6-3 shows an example of the results.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

199

For me, the MouseEvent.DOUBLE_CLICK event behavior is a little counterintuitive. When double-clicking
a DisplayObject instance, I would have expected a solitary MouseEvent.DOUBLE_CLICK event. The fact
that the MouseEvent.CLICK event fires for the first mouse click of a double-click action means that
you need to be wary when you’re listening for both types of events, particularly if the actions you’re
performing are mutually exclusive.

Handling Mouse Hover States
When the mouse pointer passes over an InteractiveObject instance in the display list, several events are fired to
help you respond appropriately:

•฀ MouseEvent.MOUSE_OVER and MouseEvent.MOUSE_OUT: These events are dispatched when the
user moves the mouse pointer over and out of an InteractiveObject instance. They will fire
whenever the mouse pointer moves from one InteractiveObject to another, even if that
object is a descendant of the previous one.

•฀ MouseEvent.ROLL_OVER and MouseEvent.ROLL_OUT: These have been added to make it easier
to write event handlers for InteractiveObject instances that have children. They will fire
only for a given InteractiveObject if the mouse pointer has moved to or from another
InteractiveObject instance that is not one of its descendants.

Since using MouseEvent.MOUSE_OVER and MouseEvent.MOUSE_OUT can make it difficult to write event handlers for
nested objects, I advise using MouseEvent.ROLL_OVER and MouseEvent.ROLL_OUT if you’re trying to handle rollovers,
even if the display objects in question have no children. On one of my projects, it took me an entire day to track down
a problem with rollovers, all because the designers had changed the sprites to have children, and I was using the
MouseEvent.MOUSE_OVER and MouseEvent.MOUSE_OUT events. Forewarned is forearmed, or so they say.

Figure 6-3. An example of enabling mouse events

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

200

Responding to a Rollover Event

Let’s change the previous example so that the square changes to blue when the mouse is over it.

 1. Create a new Flash document named rollover.fla and save it in the project directory.

 2. For the document class, save the previous example’s ClickTest.as file as RolloverTest.as.
Change the class name and constructor to use RolloverTest instead of ClickTest.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class RolloverTest extends Sprite {

 public function RolloverTest() {
 var square:Sprite = new Sprite();
 square.graphics.lineStyle(2, 0x000000);
 square.graphics.beginFill(0xFF0000);
 square.graphics.drawRect(0, 0, 100, 100);
 square.graphics.endFill();
 addChild(square);

 square.doubleClickEnabled = true;

 square.addEventListener(MouseEvent.CLICK, onSquareClick);
 square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 }

 private function onSquareClick(event:MouseEvent):void {
 trace("ouch!");
 }

 private function onSquareDoubleClick(event:MouseEvent):void {
 trace("double ouch!");
 }

 }

}

 3. Create two new private methods named onSquareRollOver() and onSquareRollOut(),
and add them as event listeners for the MouseEvent.ROLL_OVER and MouseEvent.ROLL_OUT
events, respectively.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;
. . .

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

201

 square.addEventListener(MouseEvent.CLICK, onSquareClick);
 square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 square.addEventListener(MouseEvent.ROLL_OVER, onSquareRollOver);
 square.addEventListener(MouseEvent.ROLL_OUT, onSquareRollOut);
 }

 private function onSquareClick(event:MouseEvent):void {
 trace("ouch!");
 }

 private function onSquareDoubleClick(event:MouseEvent):void {
 trace("double ouch!");
 }

 private function onSquareRollOver(event:MouseEvent):void {
 }

 private function onSquareRollOut(event:MouseEvent):void {
 }

 }

}

 4. Since you’re going to need a reference to the square object in your new event handlers (so

you can redraw it using different colors), change the local square variable to be a private
property of the object instead. To follow the previous naming conventions, you’ll change
its name to include a preceding underscore, so make sure to update this in the code.

 package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class RolloverTest extends Sprite {

 private var _square:Sprite;

 public function RolloverTest() {
 _square = new Sprite();
 _square.graphics.lineStyle(2, 0x000000);
 _square.graphics.beginFill(0xff0000);
 _square.graphics.drawRect(0, 0, 100, 100);
 _square.graphics.endFill();
 addChild(_square);

 _square.doubleClickEnabled = true;

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

202

 _square.addEventListener(MouseEvent.CLICK, onSquareClick);
 _square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 _square.addEventListener(MouseEvent.ROLL_OVER, onSquareRollOver);
 _square.addEventListener(MouseEvent.ROLL_OUT, onSquareRollOut);
 }
 . . .
}

 5. Move the drawing code to a new private method named drawSquare(). This method

accepts a single parameter, color, which specifies the fill color for the shape. Add a call to
this new method in place of the old drawing code in the constructor method. Also, add a
call to the graphics.clear() method at the start of this new method to clear the graphics
layer, so you’re not just drawing over the top of whatever was already there.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class RolloverTest extends Sprite {

 private var _square:Sprite;

 public function RolloverTest() {
 _square = new Sprite();
 drawSquare(0xFF0000);
 addChild(_square);

 _square.doubleClickEnabled = true;

 _square.addEventListener(MouseEvent.CLICK, onSquareClick);
 _square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 _square.addEventListener(MouseEvent.ROLL_OVER, onSquareRollOver);
 _square.addEventListener(MouseEvent.ROLL_OUT, onSquareRollOut);
 }

 private function drawSquare(color:uint):void {
 _square.graphics.clear();
 _square.graphics.lineStyle(2, 0x000000);
 _square.graphics.beginFill(color);
 _square.graphics.drawRect(0, 0, 100, 100);
 _square.graphics.endFill();
 }
 . . .
 }

Don’t forget to use the color parameter of the drawSquare() method in the call to the beginFill()
drawing API method in place of the hard-coded 0xFF0000 (red).

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

203

 6. Within the onSquareRollOver() and onSquareRollOut() methods, call the drawSquare()
method with parameters of 0x0000FF (blue) and 0xFF0000 (red), respectively.

package com.foundationAS3.ch6 {
. . .
 private function onSquareRollOver(event:MouseEvent):void {
 drawSquare(0x0000FF);
 }

 private function onSquareRollOut(event:MouseEvent):void {
 drawSquare(0xFF0000);
 }

 }

}

 7. Save the changes to the RolloverTest.as document and switch back to the rollover.fla
document in the Flash IDE.

 8. In the Property inspector for the document, set the document class to
com.foundationAS3.ch6.RolloverTest.

 9. Save the changes to the rollover.fla document, and then test your movie.

Rolling your mouse over the square and off again should change the color from red to blue and then back to red
again, as shown in Figure 6-4.

Figure 6-4. Rolling over the square changes its color

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

204

If you were trying to turn the square object from the preceding example into a button, you
might consider using the built-in SimpleButton class. That class allows you to specify a different
DisplayObject for each of the up, over, down, and hit states that a simple button has, without
needing to mess with setting up events.

Making Colors Constants

One final change you should make to the RolloverTest class is to move the colors into constant properties for the
class, as opposed to specifying them directly in the drawSquare() calls. Why do this?

Notice that even at this simple state, red is specified in two places in the code. If you wanted a different color
for the up state, you would need to make sure to update both places in the code. What if the class was twice as long,
with colors in more than three places? Sure, you could do a search and replace, and hope to catch everything, but
the better solution is to move items like colors into properties that are easily accessed and updated. This works great
not only for values that appear in multiple places, but also for values that appear only once but may require editing
at some point. Placing such values in properties, perhaps defined at the top of the class, makes it much easier to go in
and tweak values—you don’t need to hunt through the code to see where things are set.

Place the following constants in your RolloverTest class:

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class RolloverTest extends Sprite {

 private static var UP_COLOR:uint = 0xFF0000;
 private static var ROLLOVER_COLOR:uint = 0x0000FF;

 private var _square:Sprite;
. . .
}

Now update the places in the code where the colors were hard-coded with the new constant values.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class RolloverTest extends Sprite {

 private static var UP_COLOR:uint = 0xFF0000;
 private static var ROLLOVER_COLOR:uint = 0x0000FF;

 private var _square:Sprite;

 public function RolloverTest() {
 _square = new Sprite();
 drawSquare(UP_COLOR);
 addChild(_square);

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

205

 _square.doubleClickEnabled = true;

 _square.addEventListener(MouseEvent.CLICK, onSquareClick);
 _square.addEventListener(MouseEvent.DOUBLE_CLICK, onSquareDoubleClick);
 _square.addEventListener(MouseEvent.ROLL_OVER, onSquareRollOver);
 _square.addEventListener(MouseEvent.ROLL_OUT, onSquareRollOut);
 }
. . .
 private function onSquareRollOver(event:MouseEvent):void {
 drawSquare(ROLLOVER_COLOR);
 }

 private function onSquareRollOut(event:MouseEvent):void {
 drawSquare(UP_COLOR);
 }

 }

}

Of course, there’s no reason you couldn’t also make the line color and thickness, as well as the width and height
of the box, into properties. I will leave that as an exercise for you to do on your own.

Handling Key Presses
The Flash Player dispatches keyboard events in response to user input through the keyboard. In contrast to the
myriad of mouse-related events, only two events are associated with keyboard input: KeyboardEvent.KEY_DOWN and
KeyboardEvent.KEY_UP. The events dispatched to listeners of these events are instances of the KeyboardEvent class,
which includes information about which key was pressed and whether the Ctrl and/or Shift keys were held down at
the time.

The keyCode and charCode properties can be used to determine which key was pressed. keyCode will give you a
numeric value that corresponds to the key on the keyboard that was pressed (and which can be compared against the
constants in the flash.ui.Keyboard class). charCode will give you the numeric value for the character represented by
that key in the current character set. Thus, pressing 1 on the main keyboard and 1 on the numeric keypad will return
different results for keyCode but the same result for charCode.

The flash.ui.Keyboard class also has two Boolean properties named capsLock and numLock, which will tell you
whether the CapsLock and NumLock keys, respectively, are enabled.

For the modifier keys, you have the ctrlKey and shiftKey Boolean properties (there is also altKey, but it is
not currently implemented and is reserved for future use). If you need to differentiate between the left and right
Shift or Ctrl keys, you can use the keyLocation property along with the LEFT and RIGHT properties of the
flash.ui.KeyLocation class. If you are a Mac user, the Ctrl key corresponds to the Command key (as you are
probably well aware, with all the Windows-centric documentation out there!).

When a key is pressed, the Flash Player uses the focus property of the Stage object to determine which
InteractiveObject instance in the display list should be the target of that event. The Stage.focus property contains
a reference to the InteractiveObject instance on the display list that currently has input focus. By default, this will be
the main Application object for your project. The user can change the object with the focus (by tabbing to a different
text field or button, for example). And you can change the object with the focus programmatically, by assigning a new
value to the Stage.focus property.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

206

Setting up a Keyboard Drawing Application

To demonstrate using the keyboard events, you’ll re-create the simple drawing application from earlier so that it
can be operated using the keyboard instead. You’ll listen for keyboard events from the cursor keys and the spacebar.
The cursor keys will be used to move a crosshair around the screen (our keyboard-friendly equivalent of the mouse
pointer). If the cursor keys are used while the spacebar is held down, you will draw a line between the last known
crosshair position and the current one.

 1. Create a new Flash document named keyboardDrawing.fla and save it in the project
directory.

 2. Create a new ActionScript document for the document class, which will belong to the
com.foundationAS3.ch6 package. Save the file with the name KeyboardDrawing.as in the
appropriate location in the project directory.

 3. Create the basic package and class definitions for the KeyboardDrawing class, extending
the Sprite class.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class KeyboardDrawing extends Sprite {

 public function KeyboardDrawing() {
 }

 }

}

 4. Add two private properties, _canvas and _crosshair, to the class definition, and create
the Sprite and Shape instances, respectively, in the constructor method before adding
them both to the display list (canvas first, so that the crosshair is on top visually). You
are making the crosshair a Shape instance, since it does not need any of the interactive
capabilities of Sprite.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;

 public class KeyboardDrawing extends Sprite {

 private var _canvas:Sprite;
 private var _crosshair:Shape;

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

207

 public function KeyboardDrawing() {
 _canvas = new Sprite();
 addChild(_canvas);
 _crosshair = new Shape();
 addChild(_crosshair);
 }

 }

}

 5. Draw the crosshair using the drawing API. Use the lineStyle() method to set the line

style to draw 1-pixel black lines, and draw two lines—from (–5,0) to (6, 0) and from (0,–5)
to (0,6)—using a combination of the moveTo() and lineTo() methods. To keep things
clean, you will place this code in a separate method.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;

 public class KeyboardDrawing extends Sprite {

 private var _canvas:Sprite;
 private var _crosshair:Shape;

 public function KeyboardDrawing() {
 _canvas = new Sprite();
 addChild(_canvas);
 _crosshair = new Shape();
 drawCrosshair();
 addChild(_crosshair);
 }

 private function drawCrosshair():Void {
 _crosshair.graphics.lineStyle(1, 0x000000);
 _crosshair.graphics.moveTo(-5, 0);
 _crosshair.graphics.lineTo(6, 0);
 _crosshair.graphics.moveTo(0, -5);
 _crosshair.graphics.lineTo(0, 6);
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

208

 6. Set the line style of the canvas to draw 2-pixel black lines, and set the stage.focus
property to the canvas so it will receive keyboard events.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;

 public class KeyboardDrawing extends Sprite {

 private var _canvas:Sprite;
 private var _crosshair:Shape;

 public function KeyboardDrawing() {
 _canvas = new Sprite();
 addChild(_canvas);
 _crosshair = new Shape();
 drawCrosshair();
 addChild(_crosshair);

 // Prepare canvas for drawing and keyboard input
 _canvas.graphics.lineStyle(2, 0x000000);
 stage.focus = _canvas;
 }

 private function drawCrosshair():void {
 _crosshair.graphics.lineStyle(1, 0x000000);
 _crosshair.graphics.moveTo(-5, 0);
 _crosshair.graphics.lineTo(6, 0);
 _crosshair.graphics.moveTo(0, -5);
 _crosshair.graphics.lineTo(0, 6);
 }

 }

}

With that done, you’re ready to devise a strategy for handling crosshair movement.

Handling Crosshair Movement

Since it would be neat to allow diagonal movement as well as horizontal and vertical movement, I’ve decided to
use two private class properties—_xDirection and _yDirection—to store how to move in the x and y position of
the virtual pen. This pen’s position will be set when the relevant cursor keys are pressed and cleared when they’re
released. These values will then be checked in an Event.ENTER_FRAME event listener, and the crosshair will be moved
by a specified amount each frame.

The final piece of the puzzle is determining whether you should be drawing or moving the drawing API pen from
its current location to the new location of the crosshair object. This will be handled by a private Boolean _isDrawing
class property, which will be set to true when the spacebar is pressed and set to false when it’s released.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

209

 1. Create the _xDirection, _yDirection, and _isDrawing properties. The _xDirection and
_yDirection properties need to be of type int, since they can have both positive (right/down)
and negative (left/up) values, in addition to 0 (stationary). While you’re there, add a
constant for the pixel distance amount to draw each frame (which I’ve set to 2).

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;

 public class KeyboardDrawing extends Sprite {

 private const PIXEL_DISTANCE_TO_DRAW:uint = 2;

 private var _canvas:Sprite;
 private var _crosshair:Shape;

 private var _xDirection:int = 0;
 private var _yDirection:int = 0;
 private var _isDrawing:Boolean = false;

 public function KeyboardDrawing() {
 . . .
 }

 }

}

 2. Create two private methods named onCanvasKeyDown() and onCanvasKeyUp() and set
them up as listeners for the KeyboardEvent.KEY_DOWN and KeyboardEvent.KEY_UP events,
respectively, on the _canvas instance. You’ll need to import the KeyboardEvent class from
the flash.events package.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;
 import flash.events.KeyboardEvent;

public class KeyboardDrawing extends Sprite {
 . . .
 // Prepare canvas for drawing and keyboard input
 _canvas.graphics.lineStyle(2, 0x000000);
 stage.focus = _canvas;

 // Add canvas event listeners
 _canvas.addEventListener(KeyboardEvent.KEY_DOWN, onCanvasKeyDown);
 _canvas.addEventListener(KeyboardEvent.KEY_UP, onCanvasKeyUp);
}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

210

 private function onCanvasKeyDown(event:KeyboardEvent):void {
 }

 private function onCanvasKeyUp(event:KeyboardEvent):void {
 }

 }

}

 3. In the onCanvasKeyDown() listener, use the keyCode property of the KeyboardEvent
object to determine which key was pressed by comparing it to the constants from the
Keyboard class. You’ll need to import the Keyboard class from the flash.ui package.
Depending on the key pressed, set the value of the _yDirection or _xDirection variable
to the appropriate value using the PIXEL_DISTANCE_TO_DRAW constant you created earlier.
Remember that positive is right/down and negative is left/up. If the spacebar has been
pressed, set _isDrawing to true.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;
 import flash.events.KeyboardEvent;
 import flash.ui.Keyboard;

 public class KeyboardDrawing extends Sprite {
 . . .
 private function onCanvasKeyDown(event:KeyboardEvent):void {
 switch (event.keyCode) {
 case Keyboard.UP:
 _yDirection = -PIXEL_DISTANCE_TO_DRAW;
 break;
 case Keyboard.DOWN:
 _yDirection = PIXEL_DISTANCE_TO_DRAW;
 break;
 case Keyboard.LEFT:
 _xDirection = -PIXEL_DISTANCE_TO_DRAW;
 break;
 case Keyboard.RIGHT:
 _xDirection = PIXEL_DISTANCE_TO_DRAW;
 break;
 case Keyboard.SPACE:
 _isDrawing = true;
 break;
 }
 }

 private function onCanvasKeyUp(event:KeyboardEvent):void {
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

211

The onCanvasKeyDown() listener uses a construct called the switch statement. This is a conditional statement
similar to the if else if construct. It allows you to run different lines of code based on whether a certain case is met.

You begin a switch statement with a value you wish to match, almost certainly contained within some variable
or variable property, followed by cases with the different possible values for the variable. The one that matches the
current value of the variable will have its code run. Here’s an example:

switch (variable) {
 case value0:
 trace("run first block");
 break;
 case value1:
 trace("run second block");
 break;
}

If variable equals value0, then the first trace() will run. If variable equals value1, then the second trace()
will run. This is equivalent to the following if else if statement:

if (variable == value0) {
 // run first block
} else if (variable == value1) {
 // run second block
}

Well, that doesn’t look so bad, does it? So why use switch at all? In this case, using if else if makes sense
because there are only a couple conditions. switch statements are useful when you need to test many more values.
Try rewriting onCanvasKeyDown() with if else if, and you will see that the switch statement is much more readable.

Each case in the example here and in onCanvasKeyDown() has a break statement. Just as in a loop, when a
break statement is encountered, the code block—in this case, the switch statement—will be exited. If a break is
not included in a case, the switch statement will continue to run, and the code in the next case will be run as well,
continuing until the switch block is complete or a break statement is reached. This is called falling through and
allows for multiple cases to run a single section of code, as in the following:

switch (action) {
 case "run":
 case "jump":
 raiseHeartrate();
 break;
 case "sit":
 case "sleep"
 lowerHeartrate();
 break;
}

In this example, if the current action is "run", there is no further code to execute for that case, and the switch
statement will continue to run until it reaches the end or a break statement, which happens within case for "jump".
The result is that raiseHeartrate() will be called if action equals either "run" or "jump". lowerHeartrate() will be
called if either "sit" or "sleep" is the current action.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

212

switch statements may also include the default keyword, usually at the end of a switch block, to indicate code
to run if no cases have been met (or no break statement has been hit).

switch (variable) {
 case value0:
 break;
 case value1:
 break;
 default:
 // default code runs
}

Here, the default code will run only if variable does not equal either value0 or value1. default can be seen as
similar to the final else block in an if else if else statement, which will run only if no other conditions are met.

 4. In the onCanvasKeyUp() listener, do the same thing but set the relevant property to 0, since
the key is no longer pressed. If the spacebar was released, set _isDrawing to false.

package com.foundationAS3.ch6 {
. . .
 private function onCanvasKeyUp(event:KeyboardEvent):void {
 switch (event.keyCode) {
 case Keyboard.UP:
 case Keyboard.DOWN:
 _yDirection = 0;
 break;
 case Keyboard.LEFT:
 case Keyboard.RIGHT:
 _xDirection = 0;
 break;
 case Keyboard.SPACE:
 _isDrawing = false;
 break;
 }
 }

 }

}

 5. Add a private onCanvasEnterFrame() method, and add that as a listener for the
Event.ENTER_FRAME event on the canvas Sprite. You’ll use this for the actual drawing
code. You’ll need to import the Event class from the flash.events package.

package com.foundationAS3.ch6 {

 import flash.display.Shape;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.KeyboardEvent;
 import flash.ui.Keyboard;

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

213

 public class KeyboardDrawing extends Sprite {
 . . .
 // Prepare canvas for drawing and keyboard input
 _canvas.graphics.lineStyle(2, 0x000000);
 stage.focus = _canvas;

 // Add canvas event listeners
 _canvas.addEventListener(KeyboardEvent.KEY_DOWN, onCanvasKeyDown);
 _canvas.addEventListener(KeyboardEvent.KEY_UP, onCanvasKeyUp);
 _canvas.addEventListener(Event.ENTER_FRAME, onCanvasEnterFrame);
 }
 . . .
 private function onCanvasEnterFrame(event:Event):void {
 }

 }

}

 6. Within the onCanvasEnterFrame() method, add the values of _xDirection and
_yDirection to the crosshair’s own x and y properties. Move the drawing API pen to the
new crosshair location using either the moveTo() or lineTo() method, depending on
whether the _isDrawing property is set to true or false.

package com.foundationAS3.ch6 {
 . . .
 private function onCanvasEnterFrame(event:Event):void {
 _crosshair.x += _xDirection;
 _crosshair.y += _yDirection;

 if (_isDrawing) {
 _canvas.graphics.lineTo(_crosshair.x, _crosshair.y);
 } else {
 _canvas.graphics.moveTo(_crosshair.x, _crosshair.y);
 }
 }

 }

}

 7. Save the changes to the KeyboardDrawing.as document and switch back to the
keyboardDrawing.fla document in the Flash IDE.

 8. In the Property inspector for the document, set the document class to
com.foundationAS3. ch6.KeyboardDrawing.

 9. Save the changes to the keyboardDrawing.fla document and test your movie.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

214

Use the cursor keys to move the crosshair around (it starts in the top-right corner), holding down the spacebar
when you want to draw. You might end up with something like Figure 6-5.

Figure 6-5. Drawing with the keyboard (look, ma, no mouse!)

Preventing an Event’s Default Action
Some of the events generated by the Flash Player for certain objects have default actions associated with them, and
many of these default actions can be overridden programmatically by using the preventDefault() method of the
Event object. When called, this method will prevent whatever default action is associated with the event.

Not all events have default actions, and of those that do, only some will allow you to prevent that default action
from occurring. You can tell whether an event has a default action that can be prevented by checking the cancelable
property of the Event object, which is a Boolean value indicating whether the event can be canceled.

One example of a cancelable event is TextEvent.TEXT_INPUT, which is dispatched when the user types a
character into a TextField object while it has input focus. Unless you instruct it otherwise, the default action carried
out by the Flash Player is to insert the character into the contents of the text field at the current insertion point.

If you wanted to filter the characters that can be entered into a TextField object (assuming the restrict
property wasn’t rich enough for your needs), you could register an event listener for that event and decide whether to
allow the character to be inserted (or whether to do something else entirely) within your event handler.

Let’s quickly code an example that will let you enter a particular character only once in a text field. Admittedly,
this example is a little contrived—I certainly can’t see this having many uses in the real world—but it does
demonstrate something that can’t be done using the TextField.restrict property.

 1. Create a new Flash document and save it in the project directory as preventDefault.fla.

 2. Create a new ActionScript document for the document class, which is going to be in the
com.foundationAS3.ch6 package. Save it as PreventDefaultTest.as in the appropriate
package directory in the project directory.

 3. Create the basic package and class definitions, including an empty constructor method.
The PreventDefaultTest class should extend the Sprite display class, since you do not
have any timeline animation.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

215

package com.foundationAS3.ch6 {

 import flash.display.Sprite;

 public class PreventDefaultTest extends Sprite {

 public function PreventDefaultTest() {
 }

 }

}

 4. In the constructor method, create a new TextField object and add it to the display list.
You’ll need to import the TextField class from the flash.text package.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.text.TextField;

 public class Application extends Sprite {
 public function Application() {
 var tf:TextField = new TextField();
 addChild(tf);
 }

 }

}

 5. Set the width and height properties of the new TextField object to match the stage width

and height. Set the type and wordWrap properties to TextFieldType.INPUT and true,
respectively. You’ll need to import the TextFieldType class from the flash.text package.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;

 public class PreventDefaultTest extends Sprite {

 public function PreventDefaultTest() {
 var tf:TextField = new TextField();
 addChild(tf);

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

216

 tf.width = stage.stageWidth;
 tf.height = stage.stageWidth;
 tf.type = TextFieldType.INPUT;
 tf.wordWrap = true;
 }

 }

}

This will give you a TextField object that’s as big as the stage, accepts user input, and will
wrap the text. Next, you need to add a listener for the TextEvent.TEXT_INPUT event that
cancels the event if the character entered already exists in the TextField.

 6. Create a private method named onTextFieldTextInput() (which nicely follows your
naming convention for event listeners) and add it as a listener for the TextEvent.TEXT_
INPUT event of the TextField object you created. You’ll need to import the TextEvent class
from the flash.events package.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.TextEvent;

 public class PreventDefaultTest extends Sprite {

 public function PreventDefaultTest() {
 var tf:TextField = new TextField();
 addChild(tf);

 tf.width = stage.stageWidth;
 tf.height = stage.stageWidth;
 tf.type = TextFieldType.INPUT;
 tf.wordWrap = true;

 tf.addEventListener(TextEvent.TEXT_INPUT, onTextFieldTextInput);
 }

 private function onTextFieldTextInput(event:TextEvent):void {
 }

 }

}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

217

 7. Within the onTextFieldTextInput() handler, use the text property of the event object to
get the character entered by the user, and then use the TextField object’s text property
in conjunction with the indexOf() method to see if that character is already present. If it
is, call the preventDefault() method of the event object to prevent the character being
added to the TextField object.

package com.foundationAS3.ch6 {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.TextEvent;

 public class PreventDefaultTest extends Sprite {

 public function PreventDefaultTest() {
 var tf:TextField = new TextField();
 addChild(tf);

 tf.width = stage.stageWidth;
 tf.height = stage.stageWidth;
 tf.type = TextFieldType.INPUT;
 tf.wordWrap = true;

 tf.addEventListener(TextEvent.TEXT_INPUT, onTextFieldTextInput);
 }

 private function onTextFieldTextInput(event:TextEvent):void {
 var tf:TextField = event.target as TextField;
 if (tf.text.indexOf(event.text) > -1) {
 event.preventDefault();
 }
 }

 }

}

Remember that the indexOf() method of a String object takes a single parameter—another String
object—and returns either the position of the latter within the former or -1 if the specified string
could not be found.

 8. Save the changes to the PreventDefaultTest.as file and switch back to the
preventDefault.fla document.

 9. In the Property inspector, set the document class to com.foundationAS3.ch6
.PreventDefaultTest.

 10. Save the changes to the preventDefault.fla file and test the Flash movie.

Try to type a whole bunch of characters (let your inner keyboard masher go wild). You should see that you can
enter each character only once. Good job!

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

218

Capturing and Bubbling: The Event Flow
When an event is dispatched by a DisplayObject instance on the display list, it progresses through three states:
capture, at target, and bubble. These states are collectively known as the event flow, which is illustrated in
Figure 6-6.

Figure 6-6. The event flow in the Flash Player

Let’s use the MouseEvent.MOUSE_CLICK event as an example. When the user clicks a DisplayObject, a MouseEvent
object is created by the Flash Player and dispatched from the topmost DisplayObject under the mouse pointer.

Initially, the event is in the capture phase. In the capture phase, an event works its way down the display list
hierarchy through the event target’s ancestors, until it reaches the target object itself. At each level of the hierarchy,
any event handlers that match the event type and have been specified as capture event listeners (you’ll learn how to
do that in the “Listening for events in the capture phase” section, coming up soon) will be called.

Once the event reaches the target object, it is said to be in the at-target phase. (Whoever came up with that name
isn’t going to win any prizes for originality or creativity, but at least it’s descriptive.) In the at-target phase, all the event
listeners registered on the event target that match the event type are called.

After all the event listeners on the event target have been called, the event enters the bubble phase. In the bubble
phase, the event travels back up through the display list hierarchy toward the Stage, calling any event listeners that
match the specified event type.

If you’re anything like me when I first encountered the event flow, you’re probably thinking, “Well, that’s
interesting, but what’s it useful for?” Actually, the event flow is useful for a lot of things. At any stage in the event flow,
you can have an event handler respond to the event, and you get to choose whether to stop the event right there or
allow it to continue its journey through the display hierarchy. You can also override some default actions associated
with an event, such as text being entered into a TextField when a key is pressed.

Event objects even have a property, eventPhase, to help you determine the current phase. This property can
have one of three values, for each of the event phases: EventPhase.CAPTURING_PHASE, EventPhase.AT_TARGET, or
EventPhase.BUBBLING_PHASE.

Not all events go through the bubble and capture phases. If an event is not associated with a display
object, there is no display list hierarchy for the event to travel through. Effectively, the event flow
consists of just the at-target phase.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

219

Listening for Events in the Bubble Phase
In order to listen for events in the bubble phase, you just need to attach event listeners to an ancestor of the target
object using the addEventListener() method. An event fired on the descendants of a display object will automatically
bubble up through the display list hierarchy toward the stage.

One of the biggest use cases for listening for events in the bubble phase is event delegation. This technique allows
you to register a single event listener for all of the descendants of a display list object. Consider a grid of thumbnails
where each thumbnail can be clicked. Instead of registering a listener for every single thumbnail, you could register
a listener to receive events from the parent container, and then use the properties of the Event object to determine
which thumbnail had been clicked.

The key to using this technique successfully is the target property of the Event object passed to the event
listener. This will give you a reference to the object that dispatched the event. To elaborate on this example, suppose
that the thumbnails in question are instances of a custom PhotoThumbnail class. Using the target property
when the event is handled in parent container, you can make sure that the object that was clicked was actually
a PhotoThumbnail using the is operator. You need to do this because the container display object will receive
MouseEvent.CLICK events both for itself and for all its descendants. The following code snippet shows what I’m talking
about here.

photoContainer.addEventListener(MouseEvent.CLICK, onPhotoContainerClick);
. . .
private function onPhotoContainerClick(event:MouseEvent):void {
 if (event.target is PhotoThumbnail) {
 // Handle event in here
 }
}

Using the built-in event bubbling, you are able to listen for clicks on all thumbnails with only several
lines of code.

Listening for Events in the Capture Phase
Listening for events in the capture phase is most useful when you need to prevent an event from being dispatched to
other objects or when the default behavior for the event sometimes needs to be prevented. To listen for events in the
capture phase, you need to use one of the extra parameters to the addEventListener() method that I hinted about
earlier. The first optional parameter for this method, useCapture, is a Boolean value indicating whether the event
listener should listen for events of the specified type when they’re in the capture phase.

someObject.addEventListener(type, listener, useCapture);

The default value for this parameter is false. By passing true, you set up a capture phase event listener for the
specified event type.

Let’s rework the previous snippet of code to listen for the capture phase of an event:

photoContainer.addEventListener(MouseEvent.CLICK, onPhotoContainerClick, true);
. . .
private function onPhotoContainerClick(event:MouseEvent):void {
 if (event.target is PhotoThumbnail) {
 // Handle event in here
 }
}

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

220

When you add an event listener for the capture phase of a specific type of event, that event listener will not be
called in the at-target or bubble phase. If you want to set up a single event listener for all event phases, you’ll need to
call addEventListener() twice: once with useCapture set to true and once with it set to false (or omitted).

photoContainer.addEventListener(MouseEvent.click, onPhotoContainerClick, true);
photoContainer.addEventListener(MouseEvent.click, onPhotoContainerClick);
. . .
private function onPhotoContainerClick(event:MouseEvent):void {
 if (event.target is PhotoThumbnail) {
 // Handle event in here
 }
}

The capture phase is the first phase of an event where it trickles down the display list hierarchy to the event target.
Because capture phase event handlers are called before any at-target or bubble phase event handlers, you can use
this technique, together with either stopPropagation() or stopImmediatePropagation(), to effectively suppress an
event, as discussed next.

Stopping an Event from Propagating
You might have several event handlers for the same event attached at various points in the display list. If in one of
these event handlers you decide that the event should be ignored or has been handled sufficiently, you can prevent
the event from continuing through the rest of the event flow using the stopPropagation() method of the Event object.
For example, you could prevent all clicks within an application from being registered by calling stopPropagation()
within a capture phase MouseEvent.CLICK event listener attached to the main document class.

Calling stopPropagation() does not mean that the default action of the event won’t occur—that’s
the job of the preventDefault() method discussed earlier in this chapter.

When you have multiple handlers for the same event on the current display object, they will all be called,
regardless of when you call stopPropagation(). The stopPropagation() method prevents events from continuing
through the event flow, but it doesn’t stop the remaining event handlers on the current display object from being
called. If you need to stop all remaining event handlers from being called, use the stopImmediatePropagation()
method instead.

Remember that event listeners are processed in the order in which they were added to the object. If it is
important to have a listener receive notification of the event first, add it first as a listener. Alternatively, you could use
the priority argument in addEventListener() method, which determines whether certain listeners take precedence
over others when the event is dispatched. For instance, consider this line, which adds two event listeners, one with a
specified priority and one without:

object.addEventListener(Event.CHANGE, callFirst, false, Number.MAX_VALUE);
object.addEventListener(Event.CHANGE, callSecond);

The first line adds a listener using an extremely high priority (the highest value a number can hold). The second
line adds a listener without passing a priority, so it defaults to a priority of 0. When the CHANGE event fires on the
object, the listener set at the higher priority will receive notification first, no matter the order in which the listeners
were added.

CHAPTER 6 ■ USER INTERACTION AND MORE WITH EVENTS

221

Removing Capture Phase Event Listeners
To remove a capture phase event listener, use the optional useCapture parameter of the removeEventListener()
method:

someObject.removeEventListener(type, listener, useCapture);

Again, this is a Boolean value specifying whether the event listener you want to remove is listening for the capture
phase of events of the specified type.

When removing an event listener, it’s important to make sure that you use the same parameters when calling
removeEventListener() as you did when you called addEventListener(). If you don’t use the same parameters, your
event listener won’t be removed, and you’ll end up with a project that consumes more and more memory, because an
object will not be garbage-collected by the Flash Player when it has event listeners registered for it.

Summary
This chapter has been a whistle-stop tour of events and event handling in ActionScript 3.0. You’ll meet many different
types of events throughout the rest of this book, and the knowledge gleaned in these pages will help you use them to
their full effect.

In the next chapter, you’ll learn how you can use ActionScript to work with video.

223

CHAPTER 7

Working with Video

This chapter covers the following topics:

Types of video format•฀

How to access, load, and display video•฀

How to control video once it has loaded•฀

How to send data to and from video•฀

In this chapter, you will learn the basics of how to load and control video using ActionScript 3.0. After an
introduction to encoding, delivering, and playing video, you’ll build a simple video player. This example will
demonstrate how to define the video location, control its loading and use, and display information about it and
its state.

Video on the Modern Web
We are currently in the middle of a video revolution on the Web, which is made possible, for the most part, by the
availability of better Internet connections and better codecs. Video usage in rich Internet applications (RIAs) and
websites is becoming very common.

A codec, in ActionScript video terms, is a device or program capable of performing encoding and
decoding on a digital data stream or signal. The word codec can be a combination of any of the
following: compressor-decompressor, coder-decoder, or compression/decompression algorithm.

The Video Experience
Developers are excited about the experience video allows them to give to web users, or “viewers,” as they have now
become. This is often as good as or better than the standard TV experience, because it can be made in high-definition
(HD) video, fully interactive and integrated with multiple data sources.

Marketing in general is making some excellent use of web video, creating beautifully shot and produced
interactive experiences. Nokia’s interactive spoof “Great Pockets” clothes and online store (http://www.
greatpockets.com), which ultimately is an advertisement for their excellent N95 phone, is a great example of this.

Other companies and individuals have gone the obvious route of creating their own “channels.” They usually
record digital video (DV) clips of something they have a passion for (be it a summary of their band’s last concert or a
video tutorial on how to create a Flash widget). Then they encode it so Flash can play it (which is very easy, as you’ll
see in this chapter), and then share it on their site. Many people have scheduled regular programs and streamed
live content (see http://www.stickam.com for an example of a site that specializes in live webcam feeds), and their

http://www.greatpockets.com/
http://www.greatpockets.com/
http://www.stickam.com/

CHAPTER 7 ■ WORKING WITH VIDEO

224

channels are beginning to gather a rather respectable number of viewers. Ask a Ninja is a permanent favorite
of mine (http://www.askaninja.com/). Issy Depew, of Denver, Colorado, created a channel for mothers
(http://www.mommetv.com/), which is a massive broadcasting success. I’m a big golf fan and GolfSpan is very helpful
for me and thousands of other golfers for video lessons (http://www.golflink.com).

Third-party video-sharing sites like YouTube (http://www.youtube.com) and Revver (http://www.revver.com)
allow anyone to share their video clips, with or without a website or host of their own. Many companies have now
jumped on this bandwagon—AOL, Google, Yahoo, and blip.tv are just a few.

In addition, companies such as PixelFish (http://www.eyespot.com) and Brightcove (http://www.brightcove.com)
are providing APIs and hosting services that go even further, allowing you to add special effects, events, and more
to your video clips; create custom players; edit your videos online; and so on. Also check out Jumpcut
(http://www.jumpcut.com), Motionbox (http://www.motionbox.com), and Crackle (http://www.crackle.com).

Finally, major networks such as Fox, ABC, and CBS now offer their entire programming catalog via the Internet.
This trend has spawned a series of third-party content distributors such as Hulu (http://www.hulu.com/).

I think you can start to see why this is so exciting. We are all filmmakers and broadcasters now—from large
companies to the man on the street with nothing more than an Internet connection and a DV camera, or even a
camera phone.

Where ActionScript Comes in
So where does ActionScript come into all this? Flash/ActionScript is at the center of the video revolution. This is
because it provides one of the easiest and best ways to deliver video on to the Web, for the following reasons:

Flash CC has an easy workflow available for video, including an easy-to-use video encoder, •฀
comprehensive support for video in ActionScript 3.0, and a video player component that can
just be dropped onto the stage and wired up.

The ubiquity of the Flash Player means that your new video application can be seen easily and •฀
quickly by almost any user. Also, with the recent introduction of support for the H.264 codec
standard, repurposing existing broadcast and HD video is quick, easy, and affordable.

It allows you to easily integrate animation, graphics, text, and even other videos, as •฀
dynamically and interactively as you can conceive.

Though a video player component is available in both Flex and Flash, using ActionScript is far more rewarding,
provides for an optimal solution, and allows a greater diversity of video implementations. Often, you will want to
create a more flexible or powerful video player. If you know ActionScript 3.0, creating a video player from scratch is
just as quick as trying to learn about the video component for the first time. Once you have created all the class files
for your video player, you have effectively the same thing as a video player component, but with none of the overhead.
And you can reuse the class files any time you need to create a new video player, with very little modification of the
original code (or none, if you’re a good object-oriented developer). The bottom line is that using ActionScript 3.0
allows you to take advantage of all of its extended video control and modification capabilities, many of which simply
aren’t available or as flexible when using the built-in components and property panels within Flash or Flex.

But video players aside, video can be used in many ways that don’t require the standard player layout (with
play, stop, fast-forward, and rewind buttons, and so on). Examples of these other uses include demos, interactive
navigation, information, tutorials, banners, and backgrounds.

As I’ve said, the Flash Player is one of the best ways of delivering video to the Web. Let’s move on to the basics of
just how to do that.

http://www.askaninja.com/
http://www.mommetv.com/
http://www.golflink.com/
http://www.youtube.com/
http://www.revver.com/
http://www.eyespot.com/
http://www.brightcove.com/
http://www.jumpcut.com
http://www.motionbox.com/
http://www.crackle.com/
http://www.hulu.com/

CHAPTER 7 ■ WORKING WITH VIDEO

225

Encoding Your Video
Until very recently, your onlychoice for delivering video in the Flash Player was to encode it using the Sorenson Spark
codec or On2 VP6.2 codec, giving you an FLV (Flash video) file. While these codecs were optimized for web delivery,
they did not support HD. From a process point of view, they were time-consuming and poorly automated, and made
commercial delivery of video comparatively costly. Many video professionals suggested to Adobe that support for the
industry-standard H.264 codec would be very desirable for all these reasons, and supporting that codec would open
many new doors for the use of video in the Flash Player. (I was among the early developers to complain about it when
I was working for an Internet Protocol television project startup some years ago.)

Adobe listened to the increasing requests for the H.264 codec support and implemented it in Flash Player 9.
This is a huge step forward and allows for the repurposing of commercial, broadcast-quality HD video directly in
ActionScript. But this does not mean that FLV is now redundant! Far from it. The FLV format has its own strengths, and
even within FLV files, the choice of Spark and VP6.2 codecs is based, for the most part, on their inherent and different
strengths. We simply have more choices, so that we can provide our clients with the right solutions.

So let’s take a look at the process of getting your video ready for the Web. If your video source is in FLV or H.264
format, you really have to do very little with it. Supported H.264 formats include MOV, 3GP, MP4, M4V, and M4A. The
Flash Player reads the file header to ascertain the file format, so provided your file has been encoded to a supported
H.264 format, the file name extension doesn’t matter. You could name a supported MOV file file.txt, and it would
still load and play. In addition, Flash Player 10 is capable of playing back On2’s VP7 content created in other software
tools, provided it is saved with the .flv extension.

So, you can use a video file in a supported format directly in ActionScript. However, you may want to go on to
encode the file into an FLV format for the benefits that format offers: the ability to provide cue points (timeline-related
events, which are discussed in the “Cue point events” section later in this chapter) and a reduced file size. However, in
some cases, the production of FLV-encoded footage takes more time, and it thus is not as cost-effective.

Now suppose you have a video in a format that is completely unsupported in the Flash Player—say an AVI
file—and you want to share it with the world through the Flash Player. You have a couple of choices. The Flash Player
supports H.264- and FLV-based codecs natively. You can therefore choose to encode your unsupported video format
to H.264-based video or an FLV file.

H.264 is industry standard for most broadcast quality and HD format video, and this can be easily repurposed
for use in the Flash Player. This approach is less time-consuming, and thus less costly. The main drawbacks of this
method are that there can be licensing cost issues and you cannot place cue points into the video.

Although you probably won’t receive FLV-formatted video from the client, you are likely to receive
video source files that are H.264-encoded. In fact, many companies pay good money to have H.264-
based video files reduced to something more manageable before they even try to use the footage on
the Web. Thankfully, this is no longer always necessary. We can now take things like movie trailers,
advertisements, and even entire programs and films, and with little or no optimization, use them
directly in our applications. However, often you will need to optimize it on delivery platforms that
are associated with a different aspect ratio or resolution, such as mobile phones. Or you might want
to remove specific advertisements or even add some. All of these things constitute repurposing.

Should you choose to deliver your video as an FLV, this requires some extra work, though to be honest,
sometimes repurposing H.264 source format can require a little work, too. And you need to consider the quite
legitimate need for cue points, which will require encoding.

Capturing Your Video
If you don’t yet have your video in a digital format (for example, it’s still on your DV camera), you’ll need to capture it.
You can use some great commercial packages, like Adobe Premier Pro, Apple Final Cut, and so on, but they all cost a
lot. I’m here to tell you how it can be done on a shoestring budget.

CHAPTER 7 ■ WORKING WITH VIDEO

226

If you have Windows, the much-underrated Windows Movie Maker is the easiest and cheapest (free) choice. It
automates much of the process for you. In fact, if you use a FireWire (DV) connection, Windows will even prompt you
to launch Movie Maker to rip the video. Launch Movie Maker, as shown in Figure 7-1, and you will see that it offers
a host of easy-to-use features—from format conversion to automatic scene definition and special effects. Although
I have had the odd problem with it, it’s a great free capture and production package. However, at present it doesn’t
support FLV format output. So save your final video as a .mov or an .avi file, and you won’t go wrong. At this point,
you can just use the .mov file directly in ActionScript, as noted earlier. However, you may want to continue and encode
it to an FLV file.

Figure 7-1. Windows Movie Maker

If you’re running Mac OS X, then the obvious choice for capturing your video is iMovie HD, shown in Figure 7-2.
This little baby is free, user-friendly, and ready to capture your input from your DV camera, your HDV camera, an MPEG-4
source, or even your iSight camera. We’ve come to expect a lot of functionality and grace from Apple media software,
and though iMovie HD will never be used on the next Hollywood blockbuster, it is perfect for your web-based video
ventures. Once again, if you have an H.264 source, you can just use it or repurpose it first. IMovie HD supports full HD
1080 interlaced input. I have no doubt Apple will add true HD 1080 progressive in the next full release. But this kind of
geek jargon is really for another book, so let’s move on.

CHAPTER 7 ■ WORKING WITH VIDEO

227

Working with video in most video-capture and video-editing software often bears a remarkable
resemblance to working in the Flash CC IDE itself, and this is no accident. They share many of the
same workflow processes, naming conventions, and functionalities. In fact, if you take a look at
Adobe After Effects, you’ll be surprised at how similar it is to the Flash IDE, and the differences are
quickly being reduced as both of these software packages evolve. I foresee a time when the workflow
between video applications and Flash will be seamless.

So, now you have your AVI, MOV, MP4, or other format video file. Next, to get an FLV file, you need to take your
captured video files and encode them using the Flash Video Encoder.

Using the Flash Video Encoder
The Flash Video Encoder is a separate program installed along with Flash. It supports files in MOV, AVI, MP4, ASF, DV,
MPG/MPEG, and WMV format. You can use any video you like if it’s in one of the supported formats. If you don’t
have a video in one of these formats, you can use the video provided with this book’s downloadable code (available at
www.friendsofed.com).

To begin, open the Flash Video Encoder. You will find it in a separate directory in the same place that Flash CC
was installed. On your PC, that will usually be in C:\Program Files\Adobe\FlashMediaEncoder\. On a Mac, it will
usually be found in Macintosh HD/Applications.

To add your video file, click the Add button and search for your video. Find it and click OK. Now you will see your
source video as the one and only entry in the queue, as shown in Figure 7-3.

Figure 7-2. Apple iMovie

http://www.friendsofed.com/

CHAPTER 7 ■ WORKING WITH VIDEO

228

To check and adjust encoding settings, if necessary, click Edit ➤ Settings. This takes you to the Export Settings
screen, as shown in Figure 7-4.

Figure 7-3. Adding a file to be encoded

Figure 7-4. Flash Video Encoder Profiles Export Settings window

CHAPTER 7 ■ WORKING WITH VIDEO

229

As you can see, this screen has a number of tabs. In most cases, you won’t make any changes on the Audio tab.
You’ll learn about the settings on the Cue Points tab in the “Cue point events” section later in this chapter. The Crop
and Resize tab is one I believe has very limited use. Frankly, if you’ve left your video sizing and cropping until you’re
encoding it, you’re not implementing a good video production workflow. Videos should be edited before they are
encoded using tools much better suited to the job (Adobe Premier Pro or After Effects, for example). That leaves the
Profiles and Video tabs to address here.

If you try to encode your file to a child directory and that directory doesn’t exist, the encoder will
generate an error, and you will have difficulty getting it to export again without first removing the
entry from the encoder and starting from scratch! This appears to be a bug.

The Video tab, shown in Figure 7-5, allows you to set the following options:

•฀ Video codec: Choose the compression codec, either Sorenson Spark or On2 VP6. On2
provides better compression and quality as a rule. Beneath this, you can choose Encode alpha
channel and/or Deinterlace, if you have video with green-screen footage, for example, or
broadcast footage that needs deinterlacing.

•฀ Frame rate: It is often best to leave this at the default (Same as Source).

•฀ Quality: You can set the quality of the video in both a generalized quality setting and
maximum data rate. The higher the data rate, the better the quality but the larger the final
encoded FLV will be. It takes some experimenting to get these settings right.

•฀ Key frame placement: The encoder will place keyframes at a variable rate, depending on
the changes in the displayed video. If you want to ensure quality (and increased size) by
increasing that to a more formal rate of keyframes, you can set the Key frame placement
option to Custom and define a Key frame interval setting. Having more keyframes is actually
less processor-intensive, so there is a benefit.

CHAPTER 7 ■ WORKING WITH VIDEO

230

For this example, you will use the default settings. So return to the Flash Video Encoder queue screen and click
the Start Queue button. You’ll see the encoding process kick off quickly and smoothly. It should look like Figure 7-6.

Figure 7-5. Flash Video Encoder Video tab

CHAPTER 7 ■ WORKING WITH VIDEO

231

You will see the video play in a preview panel. The progress bar shows the encoding status, and the elapsed time
and the time left to finish encoding your video are displayed. When the video has finished encoding, you’ll be notified,
and that’s it. You now have video encoded to FLV format.

Exactly how long it will take your video to encode depends on a lot of factors: how large your source file is, how
powerful your machine is, what else is running on it, and what encoding settings you’ve chosen. I can say that any
decent size, reasonable quality, usable video source is going to require enough encoding time to allow you to get a
cup of coffee and read some more of this book. The example I used was a video of just under 6 seconds. With all of the
default settings, it took 17 seconds to encode.

Delivering Your Video
Video can be referenced and used from a number of different places:

From imported video embedded in the timeline or Flash Library•฀

From an external FLV/H.264 file, using progressive download or streamed through the Flash •฀
Media Server (FMS) or another server

From a webcam, live encoded and streamed to and from the FMS, Flash Video Encoder, or •฀
similar

From DV camera feeds, which can be streamed•฀

Figure 7-6. Flash video encoding in progress

CHAPTER 7 ■ WORKING WITH VIDEO

232

So, the three methods of delivery are embedded, progressive, and streamed. The method you use has a direct
bearing on the performance you can expect and the code you will write to access your video. Table 7-1 compares these
methods, based on video delivery across the Internet.

Table 7-1. Comparison of video delivery methods

Feature Embedded Progressive Streaming

Encoding Video and audio are encoded
on import into Flash using
the Sorenson Spark codec.
Alternatively, FLV files
(encoded elsewhere) can be
imported and placed on the
Flash timeline (reencoding is
not necessary). H.264 video
cannot be embedded on the
timeline.

FLV files are encoded
externally from the Flash
authoring system, either
through the Flash Video
Encoder or using a stand-
alone video-encoding
application such as Sorenson
Squeeze. H.264 video can be
used (as is or repurposed),
but encoding is not essential.

Same as progressive
download. In addition, you
can capture and record live
video feeds from client-side
webcams or DV cameras and
control live encoding variables
such as bit rate, frames per
second, and video playback
size programmatically.
Currently, you cannot record
to H.264 format.

File size SWF files contain both the
video and audio streams as
well as the Flash interface,
resulting in a single large and
often unusable file.

SWF and FLV/H.264 files are
kept separate, resulting in
a smaller SWF file size and
independent video loading.

Same as progressive
download.

Start time Large SWF files often require
users to wait a long time before
seeing any video, for a horrible
user experience.

Begins quite quickly. This
can be fine-tuned by
setting the buffer size
programmatically.

Immediate—this offers the
fastest video download and
play.

Timeline access When embedded in the Flash
timeline, video appears on
individual keyframes and can
be treated like any other object
on the stage.

Video is played back only at
runtime. Timeline events
(cue points) can be marked
at the time of encoding
and then triggered as the
playhead reaches those cue
points if you use FLV format.

Same as progressive
download.

Publishing Each time the Flash movie
is published or tested, the
entire video file is republished.
Changes to video files require
manually reimporting files
into the timeline.

FLV/H.264 files are
referenced only during
runtime. Publishing to the
SWF format is much faster
than with embedded video.
Video files can be updated or
modified independently of
any SWF files.

Same as progressive
download. You can
dynamically pull FLV/H.264
files from virtual locations,
such as your storage area
network or the Flash Video
Streaming Service content
delivery network.

Frame rate Video frame rate and SWF
movie frame rate must be the
same.

FLV files can have a different
frame rate than the SWF files.

Same as progressive
download. Live video capture
has programmable control
over the frame rate.

(continued)

CHAPTER 7 ■ WORKING WITH VIDEO

233

Feature Embedded Progressive Streaming

ActionScript
access

Video playback and control
are achieved by controlling
the movie’s playback on the
timeline.

The NetStream class can
be used to load and control
external FLV/H.264 files.

Same as progressive
download. Server-side
ActionScript can also be
used to provide additional
functionality such as
synchronization of streams,
server-side playlists, smart
delivery adjusted to client
connection speed, and more.

Components No video-specific
components.

Media components can be
used to set up and display
external FLV/H.264 files
together with transport
controls (play, pause, and
search).

Same as progressive
download.

Seek and
navigation ability

Requires the entire SWF
file to be downloaded before
the user can seek or navigate
the video.

User can seek to only
portions of the video that have
been downloaded.

User can seek anywhere at any
time.

Web delivery Entire SWF file must be
downloaded to the client and
loaded into memory in order
to play back video.

FLV files are progressively
downloaded, cached, and
then played from the local
disk. The entire video clip
need not fit in memory,
and the theory is that the
cache will stay ahead of the
playhead.

FLV/H.264 files are streamed
from the FMS, played on the
client’s machine, and then
discarded from memory in a
play-as-you-go method. This
provides very secure video
delivery.

Performance Audio and video
synchronization is limited
after approximately 120
seconds of video. Total file
duration is limited to
available memory on the
playback system.

Improved performance
over embedded SWF video,
permitting larger video
files and reliable audio
synchronization. Provides
best image quality, which is
limited only by the amount of
hard drive available.

Improved efficiency from a
web-delivery perspective, with
optimal bit rate delivery on an
as-needed basis to as many
customers as necessary.

Video stream
control

None. None. Full control over what gets
delivered when.

Live video
support

No. No. Yes.

Table 7-1. (continued)

CHAPTER 7 ■ WORKING WITH VIDEO

234

Embedded video is hardly ever used and is considered an amateur way of delivering video content in all but
the odd rare example, so you can basically ignore it. Streaming, while offering the best control in terms of content
and digital rights management (DRM), requires a server-side technology to control the streaming, such as the FMS.
Streaming may be the best delivery platform in many situations, but it is quite complex. The examples in this chapter
will demonstrate the most commonly used method of video delivery on the Web today: progressive download. Playing
external FLV/H.264 files provides several advantages over embedding video in a Flash document, such as better
performance and memory management, and independent video and Flash frame rates.

A note about security by default, loading and playing an audio or video file is not allowed if the SWF
file is local and tries to load and play a remote file. A user must grant explicit permission to allow
this. Additionally, the security sandbox must be placated by the use of a cross-domain policy file.

Using ActionScript to Play Videos
Generally, four main ActionScript classes are used to access, control, and render video:

•฀ NetConnection: Sets up a connection to a video source, either network or local. It also
provides the ability to invoke commands on a remote application server.

•฀ NetStream: Provides methods and properties for playing, controlling, monitoring, and even
recording video files.

•฀ Video: Allows you to create a display object for your video feeds.

•฀ Camera: Allows you connect to one or more webcam feeds for viewing or recording.

The NetConnection class is essentially a data access class. It connects your Flash movie to the video source
location. Through this class, you can access the videos you need or call server-side ActionScript. The NetStream class
provides control over the video stream connection that NetConnection has set up, including play, pause, and seek
functions. It also allows a video source to be recorded to a media server.

The Video and Camera class instances are display objects that actually display or capture the output and input
for the end user. The Camera class is also capable of publishing back to the server (when used in conjunction with a
streaming server like the FMS) or to the open page (when used in conjunction with a video object).

Before we get to building the video player application, let’s look at the classes and events you’ll be using in
some detail. This will serve as a valuable reference section as you create your first projects. If you just want to build
something and you can’t wait, you can skip these sections and get straight to building the video player (the “Building a
video player” section).

Managing Connections with the NetConnection Class
The NetConnection class opens and closes connections to a video source, either network or local. It can invoke
commands on a remote application server, such as the FMS or Flex server.

Table 7-2 briefly summarizes the public properties of the NetConnection class.

CHAPTER 7 ■ WORKING WITH VIDEO

235

Here’s an example of using NetConnection:

// Import the NetConnection class
import flash.net.NetConnection;
. . .
// Declare a NetConnection data type variable in the class header
private var ncVideoPlayer:NetConnection;
. . .
// Create a new instance of the NetConnection class and connect it in
// the class constructor
ncVideoPlayer = new NetConnection();
ncVideoPlayer.connect(null);

This example connects the NetConnection instance to null. You would do this if you were actually going to
connect to a local FLV file. If you want to connect to an FMS service, the connection instruction would look
more like this:

ncVideoPlayer.connect (RTMP://www.flashcoder.net/videoChatRoom, parameters);

where parameters signifies any additional parameters.

Table 7-2. NetConnection public properties

Property Type Description

client Object Indicates the object on which callback methods should be invoked.

Connected Boolean Read-only. Indicates whether Flash Player has connected to a server
through a persistent Real Time Messaging Protocol (RTMP) connection
(true) or not (false).

ConnectedProxyType String Read-only. If a successful connection is made, indicates the method
that was used to make it: a direct connection, the connect() method, or
HTTP tunneling.

DefaultObjectEncoding uint Static. The default object encoding (AMF version) for NetConnection
objects created in the SWF file.

ObjectEncoding uint The object encoding (AMF version) for this NetConnection instance.

ProxyType String Determines whether native Secure Sockets Layer (SSL) is used for
RTMPS (RTMP over SSL) instead of HTTPS (HTTP over SSL), and
whether the connect() method of tunneling is used to connect through
a proxy server.

Url String Read-only. The URI of the application server that was passed to
NetConnection.connect(), if connect() was used to connect to a server.

UsingTLS Boolean Read-only. Indicates whether a secure connection was made using
native Transport Layer Security (TLS) rather than HTTPS.

http://www.flashcoder.net/videoChatRoom

CHAPTER 7 ■ WORKING WITH VIDEO

236

Loading and Controlling Video with the NetStream Class
The NetStream class provides methods and properties for playing, controlling, and monitoring FLV files from the local
file system or from an HTTP address. Using the NetStream class gives you a conduit through which to load and control
video files (FLV or MPEG-4 files) to a Video object from a NetConnection object. The video you are working with
through the NetStream instance can be changed dynamically at any time.

Event handlers need to be in place to handle onMetaData and, if they exist, onCuePoint events, as
discussed in the “Handling video events” section later in this chapter. If they are not, the compiler
will issue error warnings. This will not prevent the code from compiling successfully, nor prevent
the final SWF from working properly. But be aware of this, as it is pointing out poor convention on
your part as an object-oriented programmer.

Table 7-3 briefly summarizes the public properties of the NetStream class.

Table 7-3. NetStream class public properties

Property Type Description

bufferLength Number Read-only. The number of seconds of data currently in the buffer.

bufferTime Number Read-only. The number of seconds assigned to the buffer by
NetStream.setBufferTime().

bytesLoaded Number Read-only. The number of bytes of data that have been loaded into the
player.

bytesTotal Number Read-only. The total size in bytes of the file being loaded into the player.

checkPolicyFile Boolean Specifies whether Flash Player should attempt to download a
cross-domain policy file from the loaded FLV file’s server before
beginning to load the FLV file itself.

currentFps Number Read-only. The number of frames per second being displayed.

time Number Read-only. The position of the playhead, in seconds.

Initially, you need to import, declare, and instantiate the NetStream class, but you also need to give it a reference
to an existing NetConnection object, so it will have access to the video source.

// Import the NetStream class
import flash.net.NetStream;
. . .
// Declare a NetStream data type variable in the class header
private var nsVideoPlayer:NetStream;
. . .
// Create a new instance of the NetStream class and pass it a reference
// to the NetConnection object we created for it.
nsVideoPlayer = new NetStream(ncVideoPlayer);

Now you want to be able to play, pause, stop, and otherwise control the FLV file. The NetStream instance needs
to be assigned to an actual Video display object before you will see anything happening, as discussed in the upcoming
section about the Video class.

CHAPTER 7 ■ WORKING WITH VIDEO

237

Buffering Your Video

FLV buffering should definitely be a consideration. By default, the FLV you try to access and play will start playing
as soon as the player receives one-tenth of a second of the file. For obvious reasons, you will probably want to allow
a buffer of the video to load before you start playing it, to avoid jerky playback as much as possible. For very small
videos, this is not so important; but these days, hardly anyone is showing small videos.

You can set the bufferTime parameter of your NetStream instance to tell the player how many seconds of FLV
video to load before beginning playback. This is, of course, entirely individual to the project. It’s worth experimenting
with this value to get it right for your expected bandwidth, FLV size, and so on. Here is an example of buffering 10
seconds of video before it starts to play:

// Set buffer load before playing
nsVideoPlayer.bufferTime = 10;

Playing Your Video

Playing the video couldn’t be simpler:

// Tell the NetStream instance what FLV file to play
nsVideoPlayer.play("video_final.flv");

You can easily make references to local or remote FLV files. However, remember that if they are on another
domain, you will need to address the cross-domain security policy before you do that.

Pausing Your Video

Pausing the video requires another simple command:

nsVideoPlayer.pause();

From a display point of view, it’s important to remember to toggle the play button to be the pause button and vice
versa when going from play to pause to play again.

Stopping Your Video

Use close() to stop playing the video:

nsVideoPlayer.close();

Stopping the video does not clear it from the cache (though it does unload it from the player). It automatically
resets the NetStream.time property to 0, and It makes this NetStream instance available for use by another video, but
not by another Video object.

The video will stop exactly where it is. This will make it appear as if it has paused at the point where you
stopped it. This is not aesthetically or functionally pleasing. When the user clicks the play button again, because the
NetStream.time property has been set to 0, your video will start again from the beginning. A better solution is to set the
NetStream.seek() function to 0 first. If you still want the video to continue loading after you have stopped it, don’t use
the NetStream.close() function. Instead, use the NetStream.pause() function after the NetStream.seek(0) function.

CHAPTER 7 ■ WORKING WITH VIDEO

238

Fast-Forwarding and Rewinding Your Video

Fast-forwarding and rewinding are slightly less straightforward than the other functions (no single line of code here.
I’m afraid). This is because these functions need to loop through incremental or decremental seek methods using a
timer. You will need to decide on the size of the seek increment/decrement steps (in seconds) for the fast-forward (FF)
and rewind (RW) functions to use.

// Set the seek increment/decrement in seconds
private var seekIncDec:int;
private var playHeadPosition:int;
private var timerFF:Timer;
private var timerRW:Timer;
...
seekIncDec = 3;
timerFF = new Timer(100, 0);
timerRW = new Timer(100, 0);

Fast-forwarding is simply a matter of seeking through the video feed in the specified increments (set in the
seekIncDec variable; 3 seconds in this example), incrementing the playHeadPosition variable based on this, and
seeking to that position while the fast-forward button is selected. (I have not included the button code here, as we’ll
discuss the button classes shortly.)

private function onClickFF():void {
 timerFF.addEventListener(TimerEvent.TIMER, FFward);
 timerFF.start();
}

private function FFward():void {
 playHeadPosition = Math.floor(ns1.time) + seekIncDec;
 nsVideoPlayer.seek(playHeadPosition);
}

When the fast-forward button is released, simply clear the timer and tell the NetStream object to play(), and it
will play from the new playhead position.

private function onReleaseFF():void {
 timerFF.reset();
 nsVideoPlayer.play();
}

Rewinding your video is almost the same as fast-forwarding, but in reverse:

private function onClickRW():void {
 timerRW.addEventListener(TimerEvent.TIMER, RWind);
 timerRW.start();
}
private function RWind():void {
 playHeadPosition = Math.floor(ns1.time) - seekIncDec;
 nsVideoPlayer.seek(playHeadPosition);
}

CHAPTER 7 ■ WORKING WITH VIDEO

239

When the rewind button is released, simply clear the timer and tell the NetStream object to play(), and it will
play from the new head position:

private function onReleaseRW():void {
 timerRW.reset();
 nsVideoPlayer.play();
}

Creating Video Objects with the Video Class
In previous versions of ActionScript, the Video class didn’t exist (at least not in the same way it does in ActionScript
3.0). You needed to create a physical video object and drag it on screen, then give it an instance name, which
you would then use to link the NetStream instance to it. This meant that the development cycle of a video-based
application could not be done by code alone (not something I mind, to be honest, as you can’t make syntax errors
with a physical object). This was, however, a bit of a glaring inconsistency in the way we develop video-based
applications, and it has now been addressed with the Video class.

Table 7-4 briefly summarizes the public properties of the Video class.

Table 7-4. Video class public properties

Property Type Description

deblocking int Indicates the type of filter applied to decoded video as part of postprocessing.

smoothing Boolean Specifies whether the video should be smoothed (interpolated) when it is scaled.

videoHeight int Read-only. Specifies the height of the video stream, in pixels.

videoWidth int Read-only. Specifies the width of the video stream, in pixels.

Create a Video object like this:

// Import the Video class
import flash.media.Video;
. . .
// Declare a Video data-typed variable in the class header
private var vid1:Video;
. . .
// Create an instance of the Video class in the class constructor
vid1 = new Video();

The Video class is a display object. This means it displays and can modify what it displays; however, it doesn’t
have any control over the content it displays. Remember to add your Video object instance to the display list also.

// Add Video instance to display list
addChild(vid1);
. . .
// Set display properties

vid1.x = 166;
vid1.y = 77;
vid1.width = 490;
vid1.height = 365;

CHAPTER 7 ■ WORKING WITH VIDEO

240

Since the Video instance has no control over the video it displays, you must attach a NetStream control object to
the Video instance, as follows:

vid1.attachNetStream(nsVideoPlayer);

When your video is stopped using the NetStream.close() function, the video display object does not clear. To
get around this cleanly, use the Video.clear() function once the video has stopped playing. You can also remove the
Video object from the display list:

vid1.clear();
removeChild(vid1);

That’s pretty much it for setting up the Video class. It can be modified in other ways to alter how it is displayed,
but that would be overkill for this example. Its work is done, and now the NetStream class will do all the controlling.

Creating Camera Objects with the Camera Class
The Camera class provides access to and control of the user’s webcam, so it can be used as the video source. Generally,
the Camera class is used in conjunction with the FMS; however, it can be used without any back-end communication
requirements.

When using the Camera class to call the camera in question, the user will be challenged for access to the camera.
This is a security feature, and the user must agree to allow access in the pop-up box that appears.

The pop-up challenge box is 215x138 pixels, so the SWF in which you publish the FLV must be this
size as a minimum.

Table 7-5 briefly summarizes the public properties of the Camera class.

Table 7-5. Camera class public properties

Property Type Description

activityLevel Number Read-only. Specifies the amount of motion the camera is detecting.

bandwidth int Read-only. Specifies the maximum amount of bandwidth the current outgoing
video feed can use, in bytes.

Constructor Object A reference to the class object or constructor function for a given object
instance.

currentFps Number Read-only. The rate at which the camera is capturing data, in frames per
second.

fps Number Read-only. The maximum rate at which you want the camera to capture data,
in frames per second.

height int Read-only. The current capture height, in pixels.

index int Read-only. A zero-based integer that specifies the index of the camera, as
reflected in the array returned by the names property.

keyFrameInterval int Read-only. Specifies which video frames are transmitted in full (called
keyframes) instead of being interpolated by the video compression algorithm.

(continued)

CHAPTER 7 ■ WORKING WITH VIDEO

241

Creating a Camera object is very simple. However, just as with the NetStream object, it needs to be assigned a
Video object in order to display it:

private var cam1:Camera;
. . .
cam1 = new Camera();
. . .
// Load camera source
public function loadCamera():void {
 addChild(vid1);
 vid1.x = 40;
 vid1.y = 70;
 vid1.width = 500;
 vid1.height = 375;
 cam1 = Camera.getCamera();
 vid1.attachCamera(cam1);
}

The Camera class has a number of useful methods, which are summarized in Table 7-6.

Table 7-5. (continued)

Property Type Description

loopback Boolean Read-only. Specifies whether a local view of what the camera is capturing is
compressed and decompressed (true), as it would be for live transmission
using FMS, or uncompressed (false).

motionLevel int Read-only. Specifies the amount of motion required to invoke the activity
event.

motionTimeout int Read-only. The number of milliseconds between the time the camera stops
detecting motion and the time the activity event is invoked.

muted Boolean Read-only. Specifies whether the user has denied access to the camera (true)
or allowed access (false) in the Flash Player Privacy panel.

name String Read-only. Specifies the name of the current camera, as returned by the
camera hardware.

names Array Static, read-only. Retrieves an array of strings reflecting the names of all
available cameras without displaying the Flash Player Privacy panel.

prototype Object Static. A reference to the prototype object of a class or function object.

quality int Read-only. Specifies the required level of picture quality, as determined by the
amount of compression being applied to each video frame.

width int Read-only. The current capture width, in pixels.

CHAPTER 7 ■ WORKING WITH VIDEO

242

Handling Video Events
A number of useful events are associated with video. These include mouse events, status events, metadata events, and
cue point events.

Mouse Events

All of the buttons for standard video player functionality—such as play, pause, fast-forward, rewind, and stop—
require listeners for their mouse-based events to be handled. To set up these listeners, you need to import both the
SimpleButton class and the MouseEvent class:

import flash.display.SimpleButton;
import flash.events.MouseEvent;

Then create the button instances:

// Rewind, Play, Pause, Stop and Fast Forward buttons
private var butRW:SimpleButton;
private var butPlay:SimpleButton;
private var butPause:SimpleButton;
private var butStop:SimpleButton;
private var butFF:SimpleButton;

Add MouseEvent listeners Here’s an example of adding listeners for the CLICK event:

// Add button listeners
butRW.addEventListener(MouseEvent.CLICK, doRewind);
butPlay.addEventListener(MouseEvent.CLICK, doPlay);
butPause.addEventListener(MouseEvent.CLICK, doPause);
butStop.addEventListener(MouseEvent.CLICK, doStop);
butFF.addEventListener(MouseEvent.CLICK, doFastForward);

Table 7-6. Camera class methods

Method Description

getCamera(name:String =
null):Camera [static]

Returns a reference to a Camera object for capturing video

setKeyFrameInterval
(keyFrameInterval:int):void

Specifies which video frames are transmitted in full (called keyframes)
instead of being interpolated by the video compression algorithm

setLoopback(compress:Boolean =
false):void

Specifies whether to use a compressed video stream for a local view
of the camera

setMode(width:int, height:int,
fps:Number, favorArea:Boolean =
true):void

Sets the camera capture mode to the native mode that best meets the
specified requirements

setMotionLevel(motionLevel:int,
timeout:int = 2000):void

Specifies how much motion is required to dispatch the activity event

setQuality(bandwidth:int,
quality:int):void

Sets the maximum amount of bandwidth per second or the required picture
quality of the current outgoing video feed

CHAPTER 7 ■ WORKING WITH VIDEO

243

In some cases, you will also need to listen for the MouseEvent.UP event, such as with the fast-forward and
rewind buttons.

Status Events

Status events will be broadcast about any existing NetStream instance when it has a change in status. The event will
tell you information such as if the NetStream stops or pauses, if the buffer is full, and if it errors out.

import flash.events.NetStatusEvent;
. . .
// Add a listener for any status events (playing, stopped, etc.)
nsVideoPlayer.addEventListener(NetStatusEvent.NET_STATUS, nsOnStatus);
. . .
private function nsOnStatus(infoObject:NetStatusEvent):void {
 for (var prop in infoObject.info) {
 trace("\t" + prop + ":\t" + infoObject.info[prop]);
 }
}

The nsOnStatus function will trace through the infoObject and its contents whenever a status event is broadcast.
Table 7-7 summarizes the NetStream onStatus events and errors.

Table 7-7. NetSteam onStatus events and errors

Event/error Description

NetStream.Buffer.Empty Data is not being received quickly enough to fill the buffer. Data flow will be
interrupted until the buffer refills, at which time a NetStream.Buffer.Full
message will be sent and the stream will begin playing again.

NetStream.Buffer.Full The buffer is full and the stream will begin playing.

NetStream.Buffer.Flush Data has finished streaming, and the remaining buffer will be emptied.

NetStream.Play.Start Playback has started.

NetStream.Play.Stop Playback has stopped.

NetStream.Play.StreamNotFound The video file passed to the play() method can’t be found.

NetStream.Seek.InvalidTime For video downloaded with progressive download, the user has tried to seek
or play past the end of the video data that has downloaded thus far, or past the
end of the video once the entire file has downloaded. The Error.message.
details property contains a time code that indicates the last valid position to
which the user can seek.

NetStream.Seek.Notify The seek operation is complete.

The Camera class has the same onStatus event as the NetStream class, and should be handled in the same way.
Camera also has a unique activity event (ActivityEvent.ACTIVITY), which is fired whenever the camera detects or
stops detecting motion.

CHAPTER 7 ■ WORKING WITH VIDEO

244

First, import the event class:

import flash.events.ActivityEvent;

Then, once you have created a Camera instance, add a listener for any activity:

cam1.addEventListener(ActivityEvent.ACTIVITY, activityHandler);

Metadata Events

You can use the onMetaData callback handler to view the metadata information in your video files. Metadata includes
information about your video file, such as duration, width, height, frame rate, and more. The metadata information
that is added to your FLV or H.264 file depends on the software you use to encode it, or the software you use to add
metadata information after encoding. You can use the metadata to do things like work out and display the video
length. The metadata gives you a way to interrogate the video file prior to playing it, and gives the user this feedback as
soon as the video file is accessible.

ActionScript 3.0’s metadata callback handler is considerably different from that of ActionScript 2.0, and indeed,
from the callback handlers of just about any other class. It uses a client object, to which the onMetaData handler
method is assigned. The callback method is invoked on whatever is set with the client property.

var objTempClient:Object = new Object();
objTempClient.onMetaData = mdHandler;
nsVideoPlayer.client = objTempClient;

// This function cycles through and displays all of the video file's
// metadata, so you can see what metadata it has and get used to
// seeing the sort of metadata that is attached to video files.
private function mdHandler(obj:Object):void {
 for(var x in obj){
 trace(x + " : " + obj[x]);
 }
}

Using the previous code snippet to trace the returned metadata information object in the mdHandler() method
creates the following output on the included FLV file:

width: 320
audiodatarate: 96
audiocodecid: 2
videocodecid: 4
videodatarate: 400
canSeekToEnd: true
duration: 16.334
audiodelay: 0.038
height: 213
framerate: 15

Table 7-8 shows the possible values for video metadata in FLV files.

CHAPTER 7 ■ WORKING WITH VIDEO

245

Table 7-9 shows the video metadata reported on H.264 files.

Table 7-8. Video metadata in FLV files

Parameter Description

audiocodecid A number that indicates the audio codec (code/decode technique) that was used. Possible
values are 0 (uncompressed), 1 (ADPCM), 2 (MP3), 5 (Nellymoser 8kHz mono), and
6 (Nellymoser).

audiodatarate A number that indicates the rate at which audio was encoded, in kilobytes per second.

audiodelay A number that indicates what time in the FLV file “time 0” of the original FLV file exists. The
video content needs to be delayed by a small amount to properly synchronize the audio.

canSeekToEnd A Boolean value that is true if the FLV file is encoded with a keyframe on the last frame that
allows seeking to the end of a progressive download movie clip. It is false if the FLV file is not
encoded with a keyframe on the last frame.

cuePoints An array of objects, one for each cue point embedded in the FLV file. The value is undefined
if the FLV file does not contain any cue points. Each object has the type, name, time, and
parameters.

duration A number that specifies the duration of the FLV file, in seconds.

framerate A number that is the frame rate of the FLV file.

height A number that is the height of the FLV file, in pixels.

videocodecid A number that is the codec version that was used to encode the video. Possible values are
2 (Sorenson H.263), 3 (screen video; SWF 7 and later only), 4 (VP6.2; SWF 8 and later only),
and 5 (VP6.2 video with alpha channel: SWF 8 and later only).

videodatarate A number that is the video data rate of the FLV file.

width A number that is the width of the FLV file, in pixels.

Table 7-9. Video metadata in H.264 files

Parameter Description

duration Shows the length of the video. (Unlike for FLV files, this field is always present.)

videocodecid For H.264, avc1 is reported.

audiocodecid For AAC, mp4a is reported. For MP3, mp3 is reported.

avcprofile The H.264 profile. Possible values are 66, 77, 88, 100, 110, 122, and 144.

avclevel A number between 10 and 51.

aottype Audio type. Possible values are 0 (AAC Main), 1 (AAC LC), and 2 (SBR).

moovposition The offset in bytes of the moov atom in a file.

trackinfo An array of objects containing various information about all the tracks in a file.

chapters Information about chapters in audiobooks.

(continued)

CHAPTER 7 ■ WORKING WITH VIDEO

246

“The time has come,” the Walrus said, “to talk of many things.” Of moov atoms and seekpoints, of cabbages and
kings. Well, OK, perhaps we won’t get into vegetables and royalty, but now is a good time to talk about a couple of
interesting differences when interrogating H.264-based video files, which involve moov atoms and seekpoints.

Atoms are metadata in their own right. Specifically, you can get information about the moov atom. The moov
atom is movie resource metadata about the movie (number and type of tracks, location of sample data, and so on).
It describes where the movie data can be found and how to interpret it.

Since H.264 files contain an index, unlike FLV files, you can provide a list of seekpoints, which are times you can
seek to without having the playhead jump around. You’ll get this information through the onMetaData callback from
an array with the name seekpoints. Some files, however, are not encoded with this information, which means that
these files are not seekable at all. This works differently from keyframe-based FLV files, which use cue points rather
than seekpoints. H.264-based video cannot use cue points.

Building a Video Player
So now that you have all the theory, let’s build an actual video player application. You will eventually end up with
something like the player shown in Figure 7-7. All the physical assets have already been created for the example.

Parameter Description

seekpoints You can directly feed into NetStream.seek();.

videoframerate The frame rate of the video if a monotone frame rate is used. Most videos will have a
monotone frame rate.

audiosamplerate The original sampling rate of the audio track.

audiochannels The original number of channels of the audio track.

width The width of the video source.

height The height of the video source.

Table 7-9. (continued)

CHAPTER 7 ■ WORKING WITH VIDEO

247

Figure 7-7. The final video player

This simple video player will have a loading progress bar incorporated into the scrubber bar. Beneath that is a
status text field to tell the user when a video is loading, playing, paused, and so on. At the bottom are the standard
play, pause, stop, rewind, and fast-forward buttons. The video play length will be displayed on the right of the
scrubber bar, and the position of the playhead will be displayed on the left of the scrubber bar.

You’ll use four class files for the video player:

•฀ Main.as: This class will contain the instances of the video and button controls. You will need
to create, address, and display buttons, video, and text fields so you need to import the Flash
classes for these.

•฀ Videos.as: This class will handle the video control, which will load the video, read its
metadata, and respond to button-control commands.

•฀ ButtonManager.as: This class will handle the interactive controls.

•฀ MediaControlEvent.as: This class will allow us to fire off bespoke events for button presses.

A number of “manager” classes that I use really should be made into singletons. A singleton is
a pattern as well as a code implementation, which enforces the convention of creating only one
instance of a given class. With the release of ActionScript 3.0, Adobe has chosen to comply with the
ECMA-262 standard, and thus has been forced to disallow private constructors. These were essential
for the Java standard way of implementing singletons. Without private constructors, implementing
a singleton-based class is a sticky-tape and elastic-band quality build proposition that is doomed
to lack consistency, and has my object-oriented spidey senses tingling away like crazy. Bring back
the private constructor!

CHAPTER 7 ■ WORKING WITH VIDEO

248

Setting up the Project
I have created the physical assets and initial FLA file (videoDemo_final.fla) to save you some time on this example.
You can find the starting point for this exercise in this book’s downloadable code. You will also find all the class files
(in case you have the urge to cheat).

Open videoDemo_final.fla in Flash. You will see all the graphical assets are already laid out on the stage for
you, as shown in Figure 7-8. They also already have instance names for your convenience. Save this file to a new work
directory of your choice.

Creating the Main.as File

The FLA has a document class called Main.as, and this is where you will start. Let’s get to work.

 1. Create a new .as file, and add the following code to it:

package foundationAS.ch07 {

 import flash.display.MovieClip;
 import foundationAS.ch07.Videos;
 import foundationAS.ch07.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

 public class Main extends MovieClip {

 }
}

Figure 7-8. Video player assets inside Flash

CHAPTER 7 ■ WORKING WITH VIDEO

249

 2. Save the file in a subdirectory called foundationAS.ch07 as Main.as. You have created the
class and imported the external classes you will be using.

 3. Add the code to declare the Video and ButtonManager classes and create the Main
constructor. These will take care of the video and the button control and functionality.
Your file should look like this:

package foundationAS.ch07 {

 import flash.display.MovieClip;
 import foundationAS.ch07.Videos;
 import foundationAS.ch07.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

 public class Main extends MovieClip {
 private var vids:Videos;
 public var buts:ButtonManager;

 public function Main() {
 }
 }
}

The Main.as FLA document class is complete. This won’t do much at the moment, but never fear—you’ll come
back and put the calls for the Videos and ButtonManager classes in afteryou’ve created those classes.

Creating the Videos.as File

Now it’s time to turn our attention to another class file: Videos.as. You will start by importing all the classes you will
need for this file. I will explain what these are for as we go along.

The qualified constructor you will create is designed so you can pass references for the scrubber
movie clip and the text fields I have physically put on the stage so the class can directly update
them. I could have created them within the Videos class file in code, as they are specifically for the
video player, but for the sake of simplicity (less code), I have chosen to create them physically and
reference them. There is nothing wrong with this approach (no matter what strict object-oriented
purists may tell you).

 1. Create another new .as file and save it as Videos.as in your foundationAS.ch07 directory.

 2. Add the following code to the Videos.as file, and then save it. You’ll notice that it declares
a number of variables—all of the variables you will use in the code. This is to save time, so
you don’t need to later go back to the top of the class to create them.

package foundationAS.ch07 {
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.MovieClip;
 import flash.events.TimerEvent;
 import flash.events.NetStatusEvent;

CHAPTER 7 ■ WORKING WITH VIDEO

250

 import flash.utils.Timer;
 import flash.text.TextField;
 import foundationAS.ch07.MediaControlEvent;

 public class Videos extends MovieClip {
 private var vid1:Video;
 private var ncVideoPlayer:NetConnection;
 private var nsVideoPlayer:NetStream;
 private var flvTarget:String;
 private var vidDuration:Number;
 private var trackLength:int;
 private var timerLoading:Timer;
 private var timerPlayHead:Timer;
 private var timerFF:Timer;
 private var timerRW:Timer;
 private var txtStatus:TextField;
 private var txtTrackLength:TextField;
 private var txtHeadPosition:TextField;
 private var bytLoaded:int;
 private var bytTotal:int;
 private var opct:int;
 private var movScrubber:MovieClip;
 private var ns_minutes:Number;
 private var ns_seconds:Number;
 private var seekRate:Number=3;
 private var headPos:Number;

 // CONSTRUCTOR
 public function Videos(movScrubber:MovieClip, txtStatus:TextField,
txtHeadPosition:TextField, txtTrackLength:TextField):void {
 }
 }
}

 3. Now assign the references you sent to the constructor to local variables. Also set the

loading progress bar to its initial size, turn off the scrubber playhead (until you have
loaded enough video to play), and set the initial status message. Among other things,
these initial settings prove your references are working. Add the following code to the
constructor:

// Set movies and text fields to local references and to start
// positions and contents
movScrubber = movScrubber;
txtStatus = txtStatus;
txtHeadPosition = txtHeadPosition;
txtTrackLength = txtTrackLength;
movScrubber.movLoaderBar.width = 1;
movScrubber.movHead.alpha = 0;
txtStatus.text = "AWAITING LOCATION";

CHAPTER 7 ■ WORKING WITH VIDEO

251

 4. Set up the netConnection and netStream classes, and set the video target file. To do so,
add the following into the constructor, just before the closing curly brace:

// Instantiate vars, connect NC and NS
ncVideoPlayer = new NetConnection();
ncVideoPlayer.connect(null);
nsVideoPlayer = new NetStream(ncVideoPlayer);
flvTarget = "video_final.flv";

Although you are targeting an FLV file in this example, you could just as easily target an
H.264-encoded file at this point.

 5. Before playing the video, you want to set up the buffer so that you will have preloaded an
acceptable amount of video into the buffer before you play it. Set the buffer to 5 seconds.
Add the following to the constructor:

nsVideoPlayer.bufferTime = 5;

 6. Instantiate the Video display object, like so (add this to the constructor):

vid1 = new Video();

 7. You’re finally ready to call and play your video file. Add the following line to the constructor:

loadFLV();

But hang on—that’s a function call isn’t it? Yes, it is. This keeps the call to action modularized.
The specifics of which video to load, where to place it, and how big to make it, along with the
actual instructions to play it, are all in this one function. In a refactored future version, you
can easily make this method public and allow the user to pass the video target and extend the
video object settings when it is called.

 8. Add the function the constructor calls to your Videos.as file:

// Load FLV source
private function loadFLV():void {
 addChild(vid1);
 vid1.x = 166;
 vid1.y = 77;
 vid1.width = 490;
 vid1.height = 365;
 vid1.attachNetStream(nsVideoPlayer);
 nsVideoPlayer.play(flvTarget);
}

For the moment, you have hard-coded the dimensions and position of the Video instance and added it to the
display list, before attaching the NetStream instance to it. Then you simply issue the NetStream play() command.

You now need to address a number of important and complementary issues in order to make use of the event
handling and the control functionality that the NetStream class affords. You can see the buttons on the screen, and
although they will respond when you click them, they do not have any control over the actual video yet.

This section leaves you with a lot of the basic code set up, although you still have a way to go. Next, you’ll turn
your attention to the control of the video player.

CHAPTER 7 ■ WORKING WITH VIDEO

252

Controlling the Video Player
Now we will add the status text field, loading progress bar, and playhead bar. You’ll also handle the metadata and the
cue points.

Setting up the Status Text Field

Let’s start by setting up a listener and handler for the NetStream onStatus event. This event is fired off whenever the
NetStream starts playing, stops playing, the buffer fills, and so on (see Table 7-7 for the NetStream events).

Using the NetStream onStatus event is a great way of populating the status text field initially. You might think
the button event listeners would be the most consistent way to do that, but they are only command events and do not
reflect if the video actually responded to those commands.

First, add the following event listener in the constructor, just before the closing curly brace:

nsVideoPlayer.addEventListener(NetStatusEvent.NET_STATUS, nsOnStatus);

You have set up your NetStream instance to listen for the NetStatus event NET_STATUS and call the nsOnStatus
function when it receives an event object of that type. It will automatically send the event object with it when it calls
the handler.

Next, create the following event handler in the Videos.as file, outside the Videos.as constructor, as a function in
its own right:

public function nsOnStatus(infoObject:NetStatusEvent):void {
 for (var prop in infoObject.info) {
 // This trace will show what properties the NetStatus event contains
 trace("\t" + prop + ":\t" + infoObject.info[prop]);
 // This If checks to see if it is a code property and if that contains
 // a stop notification. If it is, then it displays this in the status
 // text field
 if (prop == "code" && infoObject.info[prop] == "NetStream.Play.Stop") {
 txtStatus.text = "Stopped";
 }
 // This If checks to see if it is a code property and if that contains
 // a start notification. If it is, then it displays this in the status
 // text field and makes the scrubhead movie clip visible
 else if (prop == "code" && infoObject.info[prop] == "NetStream.Play.Start") {
 txtStatus.text = "Playing";
 movScrubber.movHead.alpha = 100;
 }
 }
}

The received object is of type NetStatusEvent. To give you a better idea of the sort of things the NET_STATUS
event reports, the code includes a for in loop to cycle through all the contents of the code array of the returned
NetStatusEvent and trace them. When you next publish your SWF, you will see a lot of NET_STATUS events being
reported to the Output panel of your IDE, like the following:

level: status
code: NetStream.Play.Start

CHAPTER 7 ■ WORKING WITH VIDEO

253

Of course, you really need the NET_STATUS event to confirm a few important things at the moment: when the
video starts playing and when it stops, for example, because you need to adjust the status text, the playhead, and so
forth. It would be better if you could get pause, fast-forward, and rewind status events also. However, although the
NET_STATUS can provide seek event notification, it cannot report which way it’s going and it has no concept of pausing
at all. So for these functions, you will need to rely on the buttons themselves dispatching these events. This is less
satisfactory, as it tells you only that the command was sent, not that it has been executed, but it’s the best you’re going
to do until Adobe extends the NetStream events.

Now you will implement the loading progress bar of your video player.

Implementing the Loading Progress Bar

The loading progress bar will display how far the video is through the loading process. This should complement the
playhead bar, and indeed, it will operate within the scrubber movie clip. I have already created the physical asset.
You will need to loop the check at regular intervals until the load is complete. In ActionScript 2.0, you would have
used setInterval or an onEnterFrame. In ActionScript 3.0, it is more powerful and elegant to use the new Timer
class. You have already imported this and declared it in the constructor, so let’s instantiate it, add a listener, and start
the timer running.

Add the following code to your Videos.as constructor, just before the closing curly brace:

// Add Timers
timerLoading = new Timer(10, 0);
timerLoading.addEventListener(TimerEvent.TIMER, this.onLoading);
timerLoading.start();

The first line instantiates the new Timer instance with the parameters of interval and number of loops. You have
set a 10-millisecond interval and told it to loop indefinitely. You will be a good programming citizen and stop the
timer when it has finished its job.

Now that you have defined an event listener and started the timer, let’s take a look at the event handler code.
Create the following function at the bottom of the Videos.as class file:

private function onLoading(event:TimerEvent):void {
 bytLoaded = nsVideoPlayer.bytesLoaded;
 bytTotal = nsVideoPlayer.bytesTotal;
 opct = ((nsVideoPlayer.bytesTotal) / 100);
 movScrubber.movLoaderBar.width = (Math.floor(bytLoaded / opct)) * 4;
 if (bytLoaded == bytTotal) {
 timerLoading.stop();
 }
}

This is all fairly self-explanatory. The first few lines work out the amount loaded and the total size of the video
in bytes. You then calculate what 1 percent of the total value would be. After this, it is a simple matter of setting the
scrubber movie clip’s loader bar movie clip to be the appropriate width based on these calculations and taking into
account that the entire bar is 400 pixels wide. Finally, you check if the video has completed loading (if the bytes loaded
equal the bytes total), and if so, stop the loading Timer instance.

The movie loading will seem instantaneous if the file is being loaded locally. To see the loading
progress bar in action, you really need to load a video from a web server.

Let’s follow this by creating the playhead bar.

CHAPTER 7 ■ WORKING WITH VIDEO

254

Creating the Playhead Bar

The playhead bar will show wherethe playhead is when you are watching the video. Once again, I have already created
the graphical object on the stage, within the scrubber movie clip. This will be coded similarly to the loading progress
bar. You already have the necessary variables defined in the Videos.as class file, so let’s go ahead and create a Timer
instance for this function in its constructor.

Add the following code to the Videos.as constructor, again just before the closing curly brace:

timerPlayHead = new Timer(100, 0);
timerPlayHead.addEventListener(TimerEvent.TIMER, this.headPosition);
timerPlayHead.start();

The first line instantiates the new Timer instance with the parameters of interval and number of loops. You have
set a 100-millisecond interval and told it to loop indefinitely.

Now that you have defined an event listener and started the timer, let’s look at the event handler code. Create the
following function at the bottom of the Videos.as class file:

private function headPosition(event:TimerEvent):void {
 // Set Head movie clip to correct width but don't run till we get the
 // track length from the metadata
 if (trackLength > 0) {
 movScrubber.movHead.width = (nsVideoPlayer.time / (trackLength / 100)) * 4;
 }
 // Format and set timer display text field
 ns_minutes = int(nsVideoPlayer.time / 60);
 ns_seconds = int(nsVideoPlayer.time % 60);
 if (ns_seconds < 10) {
 txtHeadPosition.text = ns_minutes.toString() + ":0" + ns_seconds.toString();
 } else {
 txtHeadPosition.text = ns_minutes.toString() + ":" + ns_seconds.toString();
 }
}

As you can see, you don’t set the playhead movie clip width until you have received the duration metadata to
establish the track length. You will learn how to handle the metadata in the next section.

The playhead movie clip calculations differ from the loader bar movie clip in that they cannot make use of
the bytes loaded to give an indication of the playhead position, nor the bytes total to give an indication of the total
track length. This is because you are working in chronological time units here, not bytes as you did with the loading
progress bar. So you need the NetStream.Time information, which tells you the playhead position in seconds, and the
duration metadata, which tells you the total duration of the video in seconds. Once you have the necessary calculation
from the figures, you need to do a little formatting to show this in minutes:seconds format. Once the minutes:seconds
formatting is done, you display it in the head position text field. Because this is on a timer, this will update in real time
for the user.

I have deliberately not shown the duration in hours:minutes:seconds format. For these examples,
you will not be playing anything that stretches into hours. If you need to do this, the calculation is
simple and obvious.

CHAPTER 7 ■ WORKING WITH VIDEO

255

Handling the Metadata

Now you need to get the duration of the video from the video’s metadata. Although you need only the duration, you
will use a for in loop in the metadata event handler to see what metadata your video contains (see the “Metadata
events” section earlier in the chapter for more information).

With FLV video that was encoded in versions before Flash CC, often the duration metadata was
missing, and you would need to use some third-party software to specifically add the duration
metadata. You may still find this is the case in any video you have not encoded yourself or not
encoded in the most recent versions of the available video encoders. This is why it is important
to specifically check for the duration metadata in early testing of any video you will play. It is a
relatively simple matter to add the duration information to the metadata after the fact.

Let’s set up the metadata event listener. Again, you have already imported and defined any necessary classes and
variables. Add the following lines of code to the Videos.as class file constructor:

// Create a metadata event handling object
var objTempClient:Object = new Object();
objTempClient.onMetaData = mdHandler;
nsVideoPlayer.client =o bjTempClient;

Metadata (and for that matter, cue point) handling is quite different in ActionScript 3.0 than it was in
ActionScript 2.0. You now use NetStream’s client property (discussed in the “Metadata events” section earlier in
the chapter).

Now that you’ve assigned the NetStream client property and set the metadata handler, let’s look at the event
handler itself. You have assigned the mdHandler function to deal with all metadata events. Add this function to your
Videos.as class file:

private function mdHandler(obj:Object):void {
 for (var x in obj) {
 trace("METADATA " + x + " is " + obj[x]);
 // If this is the duration, format it and display it
 if (x == "duration") {
 trackLength = obj[x];
 var tlMinutes:int = trackLength / 60;
 if (tlMinutes < 1) {
 tlMinutes = 0
 }
 var tlSeconds:int = trackLength % 60;
 if (tlSeconds < 10) {
 txtTrackLength.text =
 tlMinutes.toString() + ":0" + tlSeconds.toString();
 } else {
 txtTrackLength.text =
 tlMinutes.toString() + ":" + tlSeconds.toString();
 }
 }
 }
}

CHAPTER 7 ■ WORKING WITH VIDEO

256

You loop through the properties of the object that this function receives. You check specifically for only the
duration property. Once you find it, you format it for use in the track length text field and store it for use in the playhead
calculations. Now when you publish your movie, you will see all the metadata information in the Output panel.

Handling Cue Points

Cue point handling is very similar to metadata handling. As explained in the “Cue point events” section earlier in the
chapter, not all videos have cue points, and it’s up to you or your production team to add them. You generally use
them to add enhanced interactivity to video. This is an incredibly powerful feature of ActionScript.

So let’s set up the cue point event listener. As usual, you have already imported and defined any necessary classes
and variables. Add the following line of code to the Videos.as class file constructor just below where you defined your
metadata listener:

objTempClient.onCuePoint = cpHandler;

This should now leave this small section of the constructor looking like so:

// Create a metadata and cue point event handling object
var objTempClient:Object = new Object();
objTempClient.onMetaData = mdHandler;
objTempClient.onCuePoint = cpHandler;
nsVideoPlayer.client = objTempClient;

As you can see, both the cue point and metadata events use the same NetStream Client object. They only differ
in the handler function.

Now add the following function to your Videos.as class file to handle the cue points:

private function cpHandler(obj:Object):void {
 for (var c in obj) {
 trace("CUEPOINT " + c + " is " + obj[c]);
 if (c == "parameters") {
 for (var p in obj[c]) {
 trace(" PARAMETER " + p + " is " + obj[c][p]);
 }
 }
 }
}

This function will loop through the returned cue point object to display the standard cue point information
(time, type, and name). Most important, when it finds the parameters array within it, it will also loop through this to
output any extra parameters you defined and set during the cue point encoding process.

CUEPOINT time is 5.38
CUEPOINT type is event
CUEPOINT name is onMary
CUEPOINT parameters is
 PARAMETER activity is snowboarding
 PARAMETER with is Fluffy
 PARAMETER name is Mary
 PARAMETER location is Chamonix

CHAPTER 7 ■ WORKING WITH VIDEO

257

For the purposes of this demo, you do not actually use cue points to enhance the interaction with the
video. I have added some simply to show the sort of output you can expect and that you can set.

OK, so you’ve loaded, played, monitored, and event-handled the video. Now you really need to exercise some
control over it. You have a full complement of buttons on the stage, but as of yet, no control is exercised using them. So
let’s change that now.

Controlling the Video on the Stage
Now you will create another classcalled ButtonManager, which will deal with all the button-based events in the
video player.

Create a new file inside your foundationAS.ch07 directory called ButtonManager.as. Add the following code,
which takes care of all the classes you need to import and the variable definitions you will need:

package foundationAS.ch07 {
 import flash.net.*;
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.events.MouseEvent;
 import flash.events.EventDispatcher;
 import flash.events.Event;

 import foundationAS.ch07.MediaControlEvent;

 public class ButtonManager extends Sprite {
 private var butRW:SimpleButton;
 private var butPlay:SimpleButton;
 private var butPause:SimpleButton;
 private var butStop:SimpleButton;
 private var butFF:SimpleButton;
 private var eventDispatcherButton:EventDispatcher;
 private var evtButRW:String;
 private var pauseOn:Boolean = false;

 public function ButtonManager
 (butRW:SimpleButton, butPlay:SimpleButton,
 butPause:SimpleButton, butStop:SimpleButton,
 butFF:SimpleButton):void {
 butRW = butRW;
 butPlay = butPlay;
 butPause = butPause;
 butStop = butStop;
 butFF = butFF;
 }
 }
}

Because I have deliberately not added extra code to create the buttons for this example, and instead opted to
create them graphically on the stage, you will see you have passed references to them into the class file constructor.
You also immediately pass these references to your local variables so you can access them in the scope of the class.

CHAPTER 7 ■ WORKING WITH VIDEO

258

Let’s now return to the Main.as file and instantiate our new Videos and ButtonManager classes and pass in the
appropriate instance references. Add the following lines inside the Main function:

public function Main() {
 vids = new Videos(movScrubber, txtStatus, txtHeadPosition, txtTrackLength);
 addChild(vids);
 buts = new ButtonManager(butRW, butPlay, butPause, butStop, butFF);
}

Adding Button Functionality

Now let’s add the button functionality. You need to start by adding event listeners to the ButtonManager.as class file
constructor for each button to listen for MOUSE_DOWN events. They will tell you as soon as a button is pressed; you do
not want to wait until the button is released to be notified. It is especially important with functions like fast-forward
(FF) and rewind (RW), which rely on the user pressing and holding down the button to execute them. The FF and
RW buttons use a Timer class instance to continue to run while the button is pressed, and they need a release event
handler so you can stop them from executing when the user releases the mouse. You will use the CLICK mouse event
rather than the more obvious MOUSE_UP event.

The MOUSE_UP event is fired on any button, even if it is not the one that fired the MOUSE_DOWN
event. If you moved your mouse during the press, you could easily get an erroneous release function
call for another button. The CLICK event registers the button that was pressed and registers a mouse
release against only that button, no matter where the mouse may have slid before it was released.

In the ButtonManager.as constructor, add the following listener definitions:

// Add button listeners
butRW.addEventListener(MouseEvent.MOUSE_DOWN, doRewind);
butRW.addEventListener(MouseEvent.CLICK, stopRewind);
butPlay.addEventListener(MouseEvent.MOUSE_DOWN, doPlay);
butPause.addEventListener(MouseEvent.MOUSE_DOWN, doPause);
butStop.addEventListener(MouseEvent.MOUSE_DOWN, doStop);
butFF.addEventListener(MouseEvent.MOUSE_DOWN, doFastForward);
butFF.addEventListener(MouseEvent.CLICK, stopFastForward);

In the constructor, you also need to set the initial state of the buttons. By default, the enabled state of all the
buttons is true. However, as the video will automatically begin playing, you really don’t need the play button to be
enabled initially. In fact, it would be very poor usability to make it so. This also applies to other buttons based on the
status of the video. If the video is paused, for example, then none of the other buttons need to be enabled. So, let’s start
by adding the following to the end of the ButtonManager.as constructor before coding the other relational button
states:

butPlay.enabled = false;

The event handling itself could have been done in a number of ways, and I spent considerable time deciding on
the best way to do it here. I chose to use good convention over poor code. In principle, you need to fire off notification
that a button has been pressed or released to the Videos.as class instance so it can execute that command on the
video it is controlling. The simpler way might have been to add a function for every button and every press within
the Videos.as class instance, and then add each one of these as event listeners to each button and each event.
Long-winded, but it would look pretty simple and it would work. But that calls for a lot of functions and is really not

CHAPTER 7 ■ WORKING WITH VIDEO

259

great convention, so I decided to use button event handlers within the ButtonManager.as class instance. So add the
following functions to the body of your ButtonManager.as class file:

private function doRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RW"));
}

private function stopRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RWEND"));
}

private function doPlay(event:MouseEvent):void {
 butPlay.enabled = false;
 butPause.enabled = true;
 butRW.enabled = true;
 butFF.enabled = true;
 butStop.enabled = true;
 dispatchEvent(new MediaControlEvent("PLAY"));
}

private function doPause(event:MouseEvent):void {
 if (pauseOn) {
 butRW.enabled = true;
 butFF.enabled = true;
 butStop.enabled = true;
 pauseOn = false;
 } else {
 butRW.enabled = false;
 butFF.enabled = false;
 butStop.enabled = false;
 pauseOn = true;
 }
 dispatchEvent(new MediaControlEvent("PAUSE"));
}

private function doStop(event:MouseEvent):void {
 butPlay.enabled = true;
 butPause.enabled = false;
 butRW.enabled = false;
 butFF.enabled = false;
 butStop.enabled = false;
 dispatchEvent(new MediaControlEvent("STOP"));
}

private function doFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FF"));
}
private function stopFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FFEND"));
}

CHAPTER 7 ■ WORKING WITH VIDEO

260

Let’s look at thePause functionality for a moment before we move on. Notice that you have set a Boolean variable
in the class called pauseOn. You need to use this because there is no easy way to detect whether the video is paused or
unpaused when the pause button is pressed, as it toggles. You know that, by default, when the application loads, the
video starts playing and the video is not paused. Therefore, the first time through, you know the pauseOn is false, so
you can toggle the status within the pause event handler based on this knowledge, as you will see.

Next, notice that these functions are dispatching their own event: MediaControlEvent. This is an event that
you will create by extending the Event class, in order to fire off notifications of stop, play, pause, and so on when the
buttons are clicked. You’ll create the custom event after finishing the three class files, but let’s look at the reasoning for
handling events this way.

You want to allow for simple, modular, extendable event handling and registration for any classes that need
to use the media control buttons created in the ButtonManager class. Also, you want to allow for the possibility to
add parameters to be sent with the returned object, which can be read by interrogation when it is received. You will
include a string that shows what the button command was (“Rewind” or “Rewind End,” for example). You could,
because of the design of this solution, refactor it to send any amount of data that the event handler might need in
the future, or indeed allow for any other type of class that might need to use these media control buttons but need
extended event data. Additionally you can assign a single event handler function in the listening class to handle any
events for which it receives notification. (In a stricter object-oriented project, you would be looking at supporting the
use of interfaces through this approach, but that’s a subject for another book.)

So let’s add an event listener for the new event you are going to create. Add this function into the ButtonManager
class. It will register an external handler for any MediaControlEvent.CONTROL_TYPE events:

// This function adds any external objects to the listener list
// for the mediaControl event
public function addMediaControlListener(funcObj:Function):void {
 addEventListener(MediaControlEvent.CONTROL_TYPE, funcObj);
}

Adding the listener now is a little back to front, as you should really create the event class first.
However, it wouldn’t have meant that much to you if you had created the event class first, with no
frame of reference to its purpose. Also, I wanted to keep the ButtonManager class code all together, as
it’s a simple class.

And that’s it for the ButtonManager class. You will call this function from the FLA document class, Main.as.
This will be the last line of code in the Main.as class:

buts.addMediaControlListener(vids.onControlCommand);

As you can see, you have defined the Videos.as class function onControlCommand to handle the
MediaControlEvent.CONTROL_TYPE events, and you’ll add that next.

Save and close both the Main.as and ButtonManager.as classes. They are complete.
Your Main.as file should look like this:

package foundationAS.ch07 {

 import flash.display.MovieClip;
 import foundationAS.ch07.Sounds;
 import foundationAS.ch07.Videos;
 import foundationAS.ch07.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

CHAPTER 7 ■ WORKING WITH VIDEO

261

 public class Main extends MovieClip {
 private var sound1:Sounds;
 private var vids:Videos;
 public var buts:ButtonManager;

 public function Main() {
 vids =
 new Videos(movScrubber, txtStatus, txtHeadPosition, txtTrackLength);
 addChild(vids);
 buts = new ButtonManager(butRW, butPlay, butPause, butStop, butFF);
 buts.addMediaControlListener(vids.onControlCommand);
 }
 }
}

And your ButtonManager.as file should look like this:

package foundationAS.ch07 {
 import flash.net.*;
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.events.MouseEvent;
 import flash.events.EventDispatcher;
 import flash.events.Event;

 import foundationAS.ch07.MediaControlEvent;

 public class ButtonManager extends Sprite {
 private var butRW:SimpleButton;
 private var butPlay:SimpleButton;
 private var butPause:SimpleButton;
 private var butStop:SimpleButton;
 private var butFF:SimpleButton;
 private var eventDispatcherButton:EventDispatcher;
 private var pauseOn:Boolean = false;

 public function ButtonManager(butRW:SimpleButton,
 butPlay:SimpleButton, butPause:SimpleButton, butStop:SimpleButton,
 butFF:SimpleButton):void {
 butRW = butRW;
 butPlay = butPlay;
 butPause = butPause;
 butStop = butStop;
 butFF = butFF;

 // Add button listeners
 butRW.addEventListener(MouseEvent.MOUSE_DOWN, doRewind);
 butRW.addEventListener(MouseEvent.CLICK, stopRewind);
 butPlay.addEventListener(MouseEvent.MOUSE_DOWN, doPlay);
 butPause.addEventListener(MouseEvent.MOUSE_DOWN, doPause);
 butStop.addEventListener(MouseEvent.MOUSE_DOWN, doStop);

CHAPTER 7 ■ WORKING WITH VIDEO

262

 butFF.addEventListener(MouseEvent.MOUSE_DOWN, doFastForward);
 butFF.addEventListener(MouseEvent.CLICK, stopFastForward);
 butPlay.enabled = false;
 }

 // This function adds any external objects to the listener list for
 // the mediaControl event
 public function addMediaControlListener(funcObj:Function):void {
 addEventListener(MediaControlEvent.CONTROL_TYPE, funcObj);
 }

 private function doRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RW"));
 }

 private function stopRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RWEND"));
 }

 private function doPlay(event:MouseEvent):void {
 butPlay.enabled = false;
 butPause.enabled = true;
 butRW.enabled = true;
 butFF.enabled = true;
 butStop.enabled = true;
 dispatchEvent(new MediaControlEvent("PLAY"));
 }

 private function doPause(event:MouseEvent):void {
 if (pauseOn) {
 butRW.enabled = true;
 butFF.enabled = true;
 butStop.enabled = true;
 pauseOn = false;
 } else {
 butRW.enabled = false;
 butFF.enabled = false;
 butStop.enabled = false;
 pauseOn = true;
 }
 dispatchEvent(new MediaControlEvent("PAUSE"));
 }

 private function doStop(event:MouseEvent):void {
 butPlay.enabled = true;
 butPause.enabled = false;
 butRW.enabled = false;
 butFF.enabled = false;
 butStop.enabled = false;
 dispatchEvent(new MediaControlEvent("STOP"));
 }

CHAPTER 7 ■ WORKING WITH VIDEO

263

 private function doFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FF"));
 }

 private function stopFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FFEND"));
 }
 }
}

Finishing the Videos.as Class

Open the Videos.as class file and add the following function to it to handle the MediaControlEvent.CONTROL_TYPE
events:

public function onControlCommand(evt:MediaControlEvent):void {
 switch (evt.command) {
 //---- PAUSE ----
 case "PAUSE":
 nsVideoPlayer.togglePause();
 txtStatus.text = (txtStatus.text == "Playing") ? "Paused" : "Playing";
 break;
 //---- PLAY ----
 case "PLAY":
 nsVideoPlayer.play(flvTarget);
 break;
 //---- STOP ----
 case "STOP":
 nsVideoPlayer.seek(0);
 nsVideoPlayer.pause();
 txtStatus.text = "Stopped";
 break;
 //---- RW ----
 case "RW":
 nsVideoPlayer.pause();
 timerRW.start();
 txtStatus.text = "Rewind";
 break;
 //---- RW END ----
 case "RWEND":
 nsVideoPlayer.resume();
 timerRW.stop();
 txtStatus.text = "Playing";
 break;
 //---- FF ----
 case "FF":
 timerFF.start();
 txtStatus.text = "Fast Forward";
 break;

CHAPTER 7 ■ WORKING WITH VIDEO

264

 //---- FF END ----
 case "FFEND":
 timerFF.stop();
 txtStatus.text = "Playing";
 break;
 }
}

You have used a single switch/case statement to deal with every possibility or delegate it, as appropriate.
As previously mentioned, dispatching your own custom event allows you to send extra parameters in the dispatched
object, and you are going to be interrogating it for a variable called command. This is a String that contains the type of
command that a particular button fired off (such as STOP, RW, FF, or FFEND). Once a case has been made, it will set the
status text field to reflect this change and execute the appropriate NetStream function.

The PAUSE case needed some special handling. In ActionScript 2.0, you used the NetStream.pause() function
(using true or false as parameters to pause or resume playing). In ActionScript 3.0, the pause() command still
works to pause, but it does not resume play if clicked again, and it does not support the use of a Boolean parameter.
ActionScript 3.0 has togglePause() and resume() functions, and for the example, you need only the togglePause()
function. This doesn’t, however, fire off any event or give any indication as to what state it’s in, so you need to add
some sort of logic to determine what the status text field should show based on whether the video is toggled to paused
or resumed. This can be done by checking the status text field’s present text every time the pause button is clicked and
toggling it accordingly, using the simplified if else statement:

txtStatus.text = (txtStatus.text == "Playing") ? "Paused" : "Playing";

The fast-forward (FF) and fast-forward end (FFEND) events, along with their rewind counterparts (RW and RWEND),
also require special consideration. They need to continue to fire and implement as long as the FF or RW buttons
are clicked. To accommodate this functionality, you must use a couple of Timer class instances for them. Add the
following timer code into the constructor of the Videos.as class file:

timerFF = new Timer(100, 0)
timerFF.addEventListener(TimerEvent.TIMER, this.runFF);
...
timerRW = new Timer(100, 0)
timerRW.addEventListener(TimerEvent.TIMER, this.runRW);

You may notice that these Timer instances are not told to start yet. That is because they should start when the
appropriate button is clicked, and this functionality will be dealt with by the onControlCommand event handler. If the
case is RW or FF, the appropriate timer gets started, which in turn calls the timer event handlers. Add the following FF
and RW timer handler functions to the bottom of the Videos.as class file:

private function runFF(event:TimerEvent):void {
 headPos = Number(Math.floor(nsVideoPlayer.time) + seekRate);
 nsVideoPlayer.seek(headPos);
}

private function runRW(event:TimerEvent):void {
 headPos = Number(Math.floor(nsVideoPlayer.time) - seekRate);
 nsVideoPlayer.seek(headPos);
}

CHAPTER 7 ■ WORKING WITH VIDEO

265

Basically, the runFF() function increments the seekRate variable amount to set the headPos number, and then
seeks that position in order to fast-forward the playhead. The runRW() function simply decrements this number in
order to rewind the playhead. When the FF or RW button is released, the case changes to FFEND or RWEND, the timers
are stopped, and the status text is changed to reflect this.

This example uses seek to fast-forward and rewind through a video, However, H.264-encoded video
does not seek in the same way as FLV-encoded video. There is a parameter in the metadata of an
H.264-encoded file called seekpoint, which is an array of saved seekpoints. You can seek directly
to these time points, provided that that part of the video has downloaded when you try. However,
there are presently a large number of encoded files that do not have this information embedded and
are thus not seekable (that is, you cannot fast-forward or rewind through them in this way). This
is a limitation of using H.264-based video at this time; however, I have no doubt that this issue will
be addressed very soon.

So finally, you are also finished with the Videos.as file, which looks like this:

package foundationAS.ch07 {
 import flash.net.*;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.MovieClip;
 import flash.events.TimerEvent;
 import flash.events.NetStatusEvent;
 import flash.utils.Timer;
 import flash.text.TextField;

 import foundationAS.ch07.MediaControlEvent;

 public class Videos extends MovieClip {
 private var vid1:Video;
 private var ncVideoPlayer:NetConnection;
 private var nsVideoPlayer:NetStream;
 private var flvTarget:String;
 private var vidDuration:Number;
 private var trackLength:int;
 private var timerLoading:Timer;
 private var timerPlayHead:Timer;
 private var timerFF:Timer;
 private var timerRW:Timer;
 private var txtStatus:TextField;
 private var txtTrackLength:TextField;
 private var txtHeadPosition:TextField;
 private var bytLoaded:int;
 private var bytTotal:int;
 private var opct:int;
 private var movScrubber:MovieClip;
 private var ns_minutes:Number;
 private var ns_seconds:Number;
 private var seekRate:Number = 3;
 private var headPos:Number;

CHAPTER 7 ■ WORKING WITH VIDEO

266

 // CONSTRUCTOR
 public function Videos(movScrubber:MovieClip, txtStatus:TextField,
 txtHeadPosition:TextField, txtTrackLength:TextField):void {
 // Set movies and text fields to local references and to start
 // positions and contents
 movScrubber = movScrubber;
 txtStatus = txtStatus;
 txtHeadPosition = txtHeadPosition;
 txtTrackLength = txtTrackLength;
 movScrubber.movLoaderBar.width = 1;
 movScrubber.movHead.alpha = 0;
 txtStatus.text = "AWAITING LOCATION";

 // Instantiate vars and connect NC
 ncVideoPlayer = new NetConnection();
 ncVideoPlayer.connect(null);
 nsVideoPlayer = new NetStream(ncVideoPlayer);
 nsVideoPlayer.bufferTime = 3;
 flvTarget = "video_final.flv";

 // Add event listeners and handlers
 nsVideoPlayer.addEventListener(NetStatusEvent.NET_STATUS, nsOnStatus);

 // Instantiate display objects
 vid1 = new Video();

 // Create a metadata and cue point event handling object
 var objTempClient:Object = new Object();
 objTempClient.onMetaData = mdHandler;
 objTempClient.onCuePoint = cpHandler;
 nsVideoPlayer.client = objTempClient;

 // Add Timers
 timerLoading = new Timer(10, 0);
 timerLoading.addEventListener(TimerEvent.TIMER, this.onLoading);
 timerLoading.start();
 timerPlayHead = new Timer(100, 0);
 timerPlayHead.addEventListener(TimerEvent.TIMER, this.headPosition);
 timerPlayHead.start();
 timerFF = new Timer(100, 0)
 timerFF.addEventListener(TimerEvent.TIMER, this.runFF);
 timerRW = new Timer(100, 0)
 timerRW.addEventListener(TimerEvent.TIMER, this.runRW);

 loadFLV();
 }

 // Load FLV source
 public function loadFLV():void {
 addChild(vid1);
 vid1.x = 166;
 vid1.y = 77;

CHAPTER 7 ■ WORKING WITH VIDEO

267

 vid1.width = 490;
 vid1.height = 365;
 vid1.attachNetStream(nsVideoPlayer);
 nsVideoPlayer.play(flvTarget);
 }

 //------------- FLV's metadata ------------------------------
 private function mdHandler(obj:Object):void {
 for (var x in obj) {
 trace("METADATA " + x + " is " + obj[x]);
 // If this is the duration, format it and display it
 if (x == "duration") {
 trackLength = obj[x];
 var tlMinutes:int = trackLength / 60;
 if (tlMinutes < 1) {
 tlMinutes = 0
 }
 var tlSeconds:int = trackLength % 60;
 if (tlSeconds < 10) {
 txtTrackLength.text =
 tlMinutes.toString() + ":0" + tlSeconds.toString();
 } else {
 txtTrackLength.text =
 tlMinutes.toString() + ":" + tlSeconds.toString();
 }
 }
 }
 }

 //------------- FLV's cue points ------------------------------
 private function cpHandler(obj:Object):void {
 for (var c in obj) {
 trace("CUEPOINT " + c + " is " + obj[c]);
 if (c == "parameters") {
 for (var p in obj[c]) {
 trace(" PARAMETER " + p + " is " + obj[c][p]);
 }
 }
 }
 }

 //--------------- ON STATUS LISTENER --------------------------
 public function nsOnStatus(infoObject:NetStatusEvent):void {
 for (var prop in infoObject.info) {
 trace("\t" + prop + ":\t" + infoObject.info[prop]);
 // If end of video is found, then stop the movHeadSlider moving.
 if (prop == "code" && infoObject.info[prop] == "NetStream.Play.Stop") {
 txtStatus.text = "Stopped";
 } else if (prop == "code" && infoObject.info[prop] ==
 "NetStream.Play.Start") {

CHAPTER 7 ■ WORKING WITH VIDEO

268

 txtStatus.text = "Playing";
 movScrubber.movHead.alpha = 100;
 }
 }
 }

 //------------------ HEAD POSITION & COUNT --------------------
 private function headPosition(event:TimerEvent):void {
 // Set Head movie clip to correct width but don't run till we get the
 // track length from the metadata
 if (trackLength > 0) {
 movScrubber.movHead.width = (nsVideoPlayer.time / (trackLength / 100)) * 4;
 }
 // Set timer display text field
 ns_minutes = int(nsVideoPlayer.time / 60);
 ns_seconds = int(nsVideoPlayer.time % 60);
 if (ns_seconds < 10) {
 txtHeadPosition.text =
 ns_minutes.toString() + ":0" + ns_seconds.toString();
 } else {
 txtHeadPosition.text =
 ns_minutes.toString() + ":" + ns_seconds.toString();
 }
 }

 //------------------- FILE LOADER -----------------------------
 // --- Load bar calculations & text field settings----------

 private function onLoading(event:TimerEvent):void {
 bytLoaded = nsVideoPlayer.bytesLoaded;
 bytTotal = nsVideoPlayer.bytesTotal;
 opct = ((nsVideoPlayer.bytesTotal) / 100);
 movScrubber.movLoaderBar.width = (Math.floor(bytLoaded / opct)) * 4;
 if (bytLoaded == bytTotal) {
 timerLoading.stop();
 }
 }

 //----------------- CONTROL BUTTONS ---------------------------

 public function onControlCommand(evt:MediaControlEvent):void {
 switch (evt.command) {
 //---- PAUSE ----
 case "PAUSE":
 nsVideoPlayer.togglePause();
 txtStatus.text = (txtStatus.text == "Playing") ? "Paused" : "Playing";
 break;

CHAPTER 7 ■ WORKING WITH VIDEO

269

 //---- PLAY ----
 case "PLAY":
 nsVideoPlayer.play(flvTarget);
 break;
 //---- STOP ----
 case "STOP":
 nsVideoPlayer.seek(0);
 nsVideoPlayer.pause();
 txtStatus.text = "Stopped";
 break;
 //---- RW ----
 case "RW":
 nsVideoPlayer.pause();
 timerRW.start();
 txtStatus.text = "Rewind";
 break;
 //---- RW END ----
 case "RWEND":
 nsVideoPlayer.resume();
 timerRW.stop();
 txtStatus.text = "Playing";
 break;
 //---- FF ----
 case "FF":
 timerFF.start();
 txtStatus.text = "Fast Forward";
 break;
 //---- FF END ----
 case "FFEND":
 timerFF.stop();
 txtStatus.text = "Playing";
 break;
 }
 }

 private function runFF(event:TimerEvent):void {
 headPos = Number(Math.floor(nsVideoPlayer.time) + seekRate);
 nsVideoPlayer.seek(headPos);
 }

 private function runRW(event:TimerEvent):void {
 headPos = Number(Math.floor(nsVideoPlayer.time) - seekRate);
 nsVideoPlayer.seek(headPos);
 }
 }
}

CHAPTER 7 ■ WORKING WITH VIDEO

270

Creating a Custom Event
Finally, let’s code the custom event class. You’ll be amazed how short and very simple it is to create a custom event,
so don’t panic.

Open a new ActionScript file and save it in foundationAS.ch07 as MediaControlEvent.as. Now put this code
inside it:

package foundationAS.ch07 {
 import flash.events.Event;

 public class MediaControlEvent extends flash.events.Event {
 public static const CONTROL_TYPE:String = "headControl";
 public var command:String;

 public function MediaControlEvent(command:String) {
 super(CONTROL_TYPE);
 this.command = command;
 }
 }
}

This class simply needs to extend the Event class. You add a static constant String variable to identify the event
type when you interrogate the returned event object. In this case, you want it to identify itself as type headControl.
Then you add as many variables as you want to be able to pass to it and get from it when the event is fired. In this case, you
just want to set up a String variable called command. (Remember that you interrogated the returned event object in the
MediaControlEvent event handler for the command variable in order to determine which command button was clicked.)

As you saw earlier, a MediaControlEvent instance is created on the fly when you dispatch the event in the
ButtonManager.as class, like this:

dispatchEvent(new MediaControlEvent("button command"));

And that’s it. You’re finished! Save all your classes and publish your FLA. You’ll have a working video player. If you
find it doesn’t work and you want to see the working version before you track down your bugs, just check it against the
complete code you downloaded for this book.

Summary
This chapter covered the basics of video—enough to begin to use it in your own projects. An entire book could be
written on the subject, so I’ve concentrated on the essentials. You’ve learned how to do the following:

Load a video or access the camera•฀

Encode your videos•฀

Monitor and report on video load and play status•฀

Read metadata•฀

Create and read cue point data•฀

Control video loading and play back•฀

You can experiment with the video player you built in this chapter and see what else you can do with it.
For example, you could add filter effects, have multiple sources, or look at live streaming and recording.

We’ve done video, so now let’s trip into sound. Onward!

271

CHAPTER 8

Using Audio

This chapter covers the following topics:

How to load sound files•฀

How to control audio behavior•฀

How to read and display audio ID3 information•฀

How to display the sound spectrum•฀

How to control sound volume and panning•฀

The value of sound is subtle and undervalued. Often, it makes the difference between a good site and a great site.
Sound is similar in many ways to video in ActionScript 3.0. It contains overhauled properties and functionality, which
were long overdue in ActionScript 2.0.

In this chapter, you will learn about the basics of using sound, including how to load, play, and control audio,
as well as some of the new funky sound capabilities that are exposed in ActionScript 3.0. By the end of this chapter,
there won’t be a dry eye in the house, and you’ll be using audio in every site you make (although you probably
shouldn’t—the watchword is appropriate).

For this chapter’s example, you’ll build a basic audio player that will play any MP3 file. You’ll also create a
comprehensive control and display system for the player. So let’s get started by looking at importing and converting
sound files.

Importing and Converting Sound Files
ActionScript 3.0 supports files encoded in both MP3 and AAC format. But for our examples in this chapter, we’ll look
at using MP3 files. Just as with video, there are numerous ways to import sound files before converting them into
MP3 files, but we will stick with loading external MP3 files as (and when) we need them. There may be times when
pragmatism demands that you load the sound file directly into the timeline; however, these are fairly rare and really
used only in demos and tutorials. Just be aware that although all the examples in this chapter use MP3 files externally,
that is not the only choice—although it is usually the best choice.

There are many sound encoders available, both as freeware and to purchase. Here, I’ll cover the ubiquitous and
freely available iTunes and a sound editor called Soundbooth.

Using iTunes
Although WAV and AIFF formats are very popular, most of the files in your iTunes directories will have been ripped
off your CDs or downloaded from the iTunes Store in M4A format. iTunes has the facility to convert unprotected M4A
files to MP3 (see Figure 8-1). iTunes also has a useful little ID3 editor.

CHAPTER 8 ■ USING AUDIO

272

Converting to MP3 Format

Here are the steps to convert your sound files to MP3 format:

 1. In iTunes, select ITunes ➤ Preferences from the main menu; then choose the General
tab in the dialog box that appears.

 2. Click the Import settings button. In the Import Using field, choose MP3 Encoder;
then click OK.

 3. Go back to your iTunes Library and select the files you want to convert from M4A to MP3
(see Figure 8-2).

Figure 8-1. Mac version of MP3 conversion settings in iTunes 11

Figure 8-2. Mac version of MP3 conversion settings in iTunes

This will export an MP3 version of the selected sound track to your iTunes directory.

CHAPTER 8 ■ USING AUDIO

273

Adding ID3 Information

If you want to attach information to the MP3 file that relates to the track (such as the name of the artist, song title,
name of the album, and so on), you will need to add the ID3 information that is the MP3 metadata. When you convert
a file to MP3, it will often have no ID3 information attached, which is pretty useful information to have. You can add
ID3 information to your MP3 files in several ways; one is to use the iTunes ID3 editor, as described next.

Once you have converted your file to MP3 inside iTunes, you will see a second version of the same track. This is
the MP3 version. You can add ID3 information to it as follows:

 1. Select the MP3 version, right-click (Ctrl-click on a Mac), and choose Get Info from the
menu that pops up.

 2. In the dialog box that appears, select the Info tab, as shown in Figure 8-3. Here you can fill
in all the ID3 information (most MP3 files will have some information already filled in).
After you have entered any extra information, just click the OK button.

Figure 8-3. Adding ID3 metadata using iTunes

CHAPTER 8 ■ USING AUDIO

274

 3. With your track still selected, select Advanced ➤ Convert ID3 Tags.

 4. In the Convert ID3 Tags dialog box, check the ID3 tag version check box. From that
option’s drop-down list, shown in Figure 8-4, choose v2.4. Version 2.4 is the latest version
of the ID3 tagging standards, and ActionScript 3.0 has no problems reading these tags.
Finally, click the OK button.

Figure 8-4. Adding ID3 tags

Your MP3 file will now be saved again with all the ID3 information in place, and ActionScript 3.0 is ready to read
in the details of your favorite rock band (if rock is your preference).

Using Adobe Audition
Audition comes packaged with Adobe Creative Cloud, so check your Applications folder; it may be lurking in a dark
corner. So dust it off and open it up because it is a powerful sound editing tool. For example, you can look through a
sound waveform to see a graphical representation of the sound, and if there’s an aberration present (a mobile phone
ringing, for example), you can remove it from the sound waveform graphically—yes, graphically! You can literally cut
out (select and cut) the section of the waveform pattern that represents the aberration and then play back the track.
Presto, the section is gone. It’s obviously not perfect because you can still lose some of the sound’s required waveform
at the same time if the frequencies overlap, but it’s a great feature and one of many intuitive tools that Audition makes
available. It’s also full of easy-to-use effects and tasks.

Now back to the task at hand of converting audio files to MP3s. Soundbooth offers a remarkably easy-to-use and
quick tool (I did it in about 5 seconds). You can import a music file of any format and encode a version to MP3 format.
Just open Audition, open your sound file (WAV file, for example), and export it as type MP3. That’s it!

With your MP3 files ready, you can now use ActionScript 3.0 to play them, so enough chatter about converting
let’s get ready to rumble!

Using ActionScript to Play Sound
Before we get into the fun stuff and start coding, let’s take a look at the main classes that are associated with sound:

•฀ Sound: Makes it possible to create a Sound object to load, control, and access metadata from
the MP3 file you are loading.

•฀ SoundChannel: Allows you to treat each sound you load as a separate channel, so you can
control the sound, get/set its playhead position, and assign a SoundTransform object.

CHAPTER 8 ■ USING AUDIO

275

•฀ SoundLoaderContext: Provides contextual information for the Sound class at load time.

•฀ SoundTransform: Allows you to control the volume and panning of your loaded sound.

•฀ SoundMixer: Provides global sound control.

•฀ ID3Info: Contains properties that reflect ID3 metadata.

•฀ Microphone: Lets you capture audio from a microphone attached to the computer that is
running Flash Player.

There are some other classes without which we couldn’t use sound, such as the URLRequest class, which we use
to load the sound file. You’ll see how to use all those classes in the examples throughout this chapter, but first you’ll
concentrate on the direct sound classes because without them you have no sound to manipulate.

Accessing Sound Files with the Sound Class
The Sound class (flash.media.Sound) lets you create a new Sound object, load and play an external MP3 file into that
object, close the sound stream, and access data about the sound, such as information about the number of bytes
in the stream and ID3 metadata. More detailed control of the sound is performed through the sound source—the
SoundChannel or Microphone object for the sound—and through the properties in the SoundTransform class that control
the output of the sound to the computer’s speakers. Table 8-1 briefly summarizes the public properties of the Sound class.

Table 8-1. Sound class public properties

Property Type Description

bytesLoaded uint Returns the currently available number of bytes in this Sound object

bytesTotal int Returns the total number of bytes in this Sound object

id3 ID3Info Provides access to the metadata that is part of an MP3 file

isBuffering Boolean Returns the buffering state of external MP3 files

length Number Returns the length of the current sound in milliseconds

url String Returns the URL from which this sound was loaded

What the heck, let’s create a quick demo so you can see how fast it is to actually just play an MP3 using the Sound
class on the timeline (I know I said the timeline; well, this is just a demo after all).

Open Flash and add the following code to frame 1 on the timeline, replace Demo.MP3 with your newly converted
rock MP3, and test your movie:

//Import the two main classes needed to play sound
import flash.media.Sound;
import flash.net.URLRequest;
//Create and asign the new sound object
var snd:Sound = new Sound();
snd.load(new URLRequest("Demo.MP3"));
snd.play();

You should hear your MP3 playing unless you haven’t got speakers or haven’t plugged in your headphones. I will
not decompile the code this time because there is plenty of code to come, so it’s back to the books before you get to
play again.

CHAPTER 8 ■ USING AUDIO

276

Controlling Sound Channels with the SoundChannel Class
The SoundChannel class (flash.media.SoundChannel) controls a sound in an application. Each sound playing is
assigned to a sound channel, and the application can have multiple sound channels that are mixed together. The
SoundChannel class contains a stop() method, properties for monitoring the amplitude (volume) of the channel, and
a property for setting a SoundTransform object to the channel. Table 8-2 briefly summarizes the public properties of
the SoundChannel class.

Table 8-2. SoundChannel class public properties

Property Type Description

leftPeak Number The current amplitude (volume) of the left channel, from 0 (silent)
to 1 (full amplitude)

position Number The current position of the playhead within the sound

rightPeak Number The current amplitude of the right channel, from 0 (silent) to 1
(full amplitude)

soundTransform SoundTransform The SoundTransform object assigned to the sound channel

Table 8-3. SoundLoader class public properties

Property Type Description

bufferTime Number Returns the number of seconds to preload a streaming sound into a buffer
before the sound starts to stream; set to 1000 milliseconds by default

checkPolicyFile Boolean Specifies whether Flash Player should try to download a cross-domain policy
file from the loaded sound’s server before beginning to load the sound; set to
false by default

Doing Security Checks with the SoundLoaderContext Class
The SoundLoaderContext class (flash.media.SoundLoaderContext) provides security checks for SWF files that load
sound. SoundLoaderContext objects are passed as an argument to the constructor and the load() method of the
Sound class, and specify things such as preload buffer size. Table 8-3 briefly summarizes the public properties of the
SoundLoader class.

Controlling Volume and Panning with the SoundTransform Class
The SoundTransform class (flash.media.SoundTransform) allows control of volume and panning. Microphone,
NetStream, SimpleButton, SoundChannel, SoundMixer, and Sprite objects all contain a SoundTransform property,
the value of which is a SoundTransform object. Table 8-4 briefly summarizes the public properties of the
SoundTransform class.

CHAPTER 8 ■ USING AUDIO

277

Controlling Sounds Globally with the SoundMixer Class
The SoundMixer class (flash.media.SoundMixer) contains static properties and methods for global sound control.
The ActionScript 3.0 documentation states that “The SoundMixer class controls embedded streaming sounds in a SWF;
it does not control dynamically created Sound objects (that is, Sound objects created in ActionScript).” However, this is
not strictly true. Although the public properties reflect this position, the public methods it exposes do not. In fact, one
of the public methods is extremely useful for any sound you create. This is the computeSpectrum() method, which you
will use in this chapter’s example to good effect. The only problem with the public methods is that because they are
global, they affect every sound that is playing, whether embedded, dynamically loaded, or part of a video sound track.

The public properties of the SoundMixer class are specifically directed at embedded sound, and you probably
won’t use them often. In contrast, the SoundMixer class’s public methods are generic and useful. Table 8-5 describes
the public methods of the SoundMixer class.

Table 8-4. SoundTransform class public properties

Property Type Description

leftToLeft Number A value ranging from 0 (none) to 1 (all), specifying how much of the left input is
played in the left speaker

leftToRight Number A value ranging from 0 (none) to 1 (all), specifying how much of the left input is
played in the right speaker

pan Number The left-to-right panning of the sound, ranging from -1 (full pan left) to 1 (full pan
right), with 0 (the default) as equal panning left and right for central balanced sound

rightToLeft Number A value ranging from 0 (none) to 1 (all), specifying how much of the right input is
played in the left speaker

rightToRight Number A value ranging from 0 (none) to 1 (all), specifying how much of the right input is
played in the right speaker

volume Number The volume, ranging from 0 (silent) to 1 (full volume)

Table 8-5. SoundMixer class public methods

Method Type Description

areSoundsInaccessible() Boolean Determines whether any sounds are not accessible due to
security restrictions.

computeSpectrum(outputArray,
FFTMode,stretchFactor)

void Takes a snapshot of the current sound wave and places it into the
specified ByteArray object. outputArray is a ByteArray, FFTMode
is a Boolean (false by default), and stretchFactor is an int
(0 by default).

stopAll() void Stops all sounds currently playing.

Getting ID3 Data with the ID3Info Class
The ID3Info class (flash.media.ID3Info) contains properties that reflect ID3 metadata. Essentially, it translates
native ID3 tags into something more legible. For example, it allows you to access the TPE1 tag, which contains the artist
name, by allowing you to reference it as ID3Info.artist. This translation is not strictly necessary, but it makes things
a little easier on the eyes and the brain. You can get additional metadata for MP3 files by accessing the id3 property of
the Sound class; for example, mySound.id3.TIME. For more information, see the Sound.id3 entry in Table 8-1 and the
ID3 tag definitions at http://www.id3.org. Table 8-6 briefly summarizes the public properties of the ID3Info class.

http://www.id3.org/

CHAPTER 8 ■ USING AUDIO

278

Table 8-6. ID3Info class public properties

Property Type Description

album String The name of the album; corresponds to the ID3 2.0 tag TALB

artist String The name of the artist; corresponds to the ID3 2.0 tag TPE1

comment String A comment about the recording; corresponds to the ID3 2.0 tag COMM

genre String The genre of the song; corresponds to the ID3 2.0 tag TCON

songName String The name of the song; corresponds to the ID3 2.0 tag TIT2

track String The track number; corresponds to the ID3 2.0 tag TRCK

year String The year of the recording; corresponds to the ID3 2.0 tag TYER

Table 8-7. Microphone class public properties

Property Type Description

activityLevel Number The amount of sound the microphone is detecting

gain Number The microphone gain; that is, the amount by which the
microphone should multiply the signal before transmitting it

index int The index of the microphone, as reflected in the array returned by
Microphone.names

muted Boolean Specifies whether the user has denied access to the microphone
(true) or allowed access (false)

name String The name of the current sound-capture device, as returned by the
sound-capture hardware

names Array The names of all available sound-capture devices

rate int The rate at which the microphone is capturing sound, in kilohertz

silenceLevel Number The amount of sound required to activate the microphone and
dispatch the activity event

silenceTimeout int The number of milliseconds between the time the microphone
stops detecting sound and the time the activity event is
dispatched

soundTransform SoundTransform Controls the sound of this Microphone object when it is in
loopback mode

useEchoSuppression Boolean Returns true if echo suppression is enabled; false otherwise

Using a Microphone with the Microphone Class
The Microphone class (flash.media.Microphone) is primarily for use with a server, such as the Flash Media Server (FMS)
or the Flex server. However, you can also use the Microphone class in a limited fashion without a server—for example,
to transmit sound from the microphone through the speakers on the local computer. You attach a Microphone object
to a NetStream object to stream audio from a microphone. Table 8-7 briefly summarizes the public properties of the
Microphone class.

CHAPTER 8 ■ USING AUDIO

279

Understanding the Basics of a Sound Player Application
Wow, you survived! I know that was all pretty dry stuff, but it was essential for understanding the nuts and bolts of how
sound is manipulated in Flash. Remember that demo? Let’s tidy it up and take another look at the basics of a sound
player. The first thing you want to do is define and load an external audio source (an MP3 file). Let’s break down the
most basic list of definitions and commands:

//Define the audio source
var audioLocation:String;
//Define a URL request object
var URLReq:URLRequest;
//Define a new Sound object
var snd:Sound;

//Instantiate audio location string
audioLocation = "song1.mp3";
//Instantiate URLrequest to call audio source
URLReq = new URLRequest(audioLocation);
//Instantiate Sound instance
snd = new Sound();

//Call the Sound object's load function to load audio source, using the
//URLrequest
snd.load(URLReq);
//Finally play the audio source. Phew!
snd.play();
//You should hear the MP3 playing now.

Some download manager software can cause Flash Player to fail to load the MP3 file you are
calling because it will intercept the response and bypass Flash. There is a way around this. As with
video files, the Flash Player reads the file header, not the file suffix, to assess the file type. This means
you can give your audio file any suffix type you like. So, for example, you might rename a file called
sound.mp3 to sound.fsf, and it would load and play just fine.

Preloading a Buffer

The previous code is a basic implementation, from defining the audio source to playing it. It doesn’t take into
consideration the use of a buffer to partially preload the sound file both before and as it plays, which on the whole,
is usually essential. As with video, sound can be of low or high quality, and these days, for the sake of an exceptional
experience, we err toward much better quality. This is why you need to consider and test buffer size. For seamless
playback, you want to allow enough of the sound file to download before beginning to play it, to prevent the playhead
from catching up with the progressive download head. To create a buffer that you can pass to the Sound class’s load()
function, you must use the SoundLoaderContext class.

Using the Sound.load() function can allow you to truly preload the entire audio source before
commanding it to play(). Add an event listener on the Sound object to listen for the Event.COMPLETE
event before playing. Although this offers little in the way of runtime buffering, if your site/
application has enough time because of its design, consider preloading as many of your sound files
as possible this way.

CHAPTER 8 ■ USING AUDIO

280

Here’s the basic code with the buffer preloader added:

//Define the audio source
var audioLocation:String;
//Define a URL request object
var URLReq:URLRequest;
//Define new Sound object
var snd:Sound;
//Define a buffer
var buffer:SoundLoaderContext;
//Instantiate audio location string
audioLocation = "song1.mp3";
//Instantiate URLrequest to call audio source
URLReq = new URLRequest(audioLocation);
//Instantiate Sound instance
snd = new Sound();
//Create audio buffer size (in seconds)
buffer = new SoundLoaderContext(5000);
//Call the Sound object's load function to load audio source,
//using the URLrequest and setting a buffer
snd.load(URLReq, buffer);

//Finally play the audio source. Phew!
snd.play();

This version strictly separates the declarations, definitions, and commands from one another. But like the first
example, these classes could be defined, instantiated, and passed the information they need all in one go, condensing
ten lines of code into four. Now that’s what I call optimization to the extreme.

//Define new Sound object
var snd:Sound;
//Pass the length of the buffer in milliseconds to the new instance of
//the SoundLoaderContext object as it is instantiated.
var buffer:SoundLoaderContext = new SoundLoaderContext(5000);
//Call the Sound object's load function implicitly at instantiation by
//loading the audio source in the URLrequest object instantiation
//and set the buffer
snd = new Sound(new URLRequest(song.mp3), buffer);

//Play (offset, number of loops)
snd.play(30000, 2);

However, for the sake of practicality, good convention, and easy maintenance, I don’t recommend condensing
the process quite this much, and you will see that I have taken the middle ground in the code for this chapter’s
example.

So you’ve seen how to define a sound source, load it, and play it, but you’ll probably want to be able to stop it,
pause it, rewind, and fast-forward it not to mention control the volume and panning of the audio. And believe it or
not, you can even display its sound spectrum. Well, relax—these things are not as scary as they might sound; you have
seen that playing sound is not rocket science. The rest is just layers on top of what you have already learned.

CHAPTER 8 ■ USING AUDIO

281

Pausing Sound

Pausing is one of a few areas of sound usage in ActionScript 3.0 that shows that Adobe needs to address this
functionality a little more seriously. There is no actual pause functionality in the Sound class or in any other sound-
related classes. You therefore need to use a simple hack. Because you will need to stop the sound playing to make
it appear that it is paused, you will need to use the play() command to start it again. But you want to play from the
point where the user clicked the pause button the first time, right? And simply playing it again will just start the sound
file from the beginning. Luckily, the SoundChannel class has a property called position, which you can use to get
the position of the playhead when the pause button is clicked the first time. You store the position before calling the
SoundChannel.stop() method, use that as an offset when the pause button is clicked again, and restart playing from
this offset.

So let’s consider the variables you need for the pause functionality to work. You need to set a Boolean variable to
store the status of the pause button and a Number variable to store the position of the playhead:

var pauseStatus:Boolean;
var playHeadPosition:Number;

Now you need the code to use these when the pause button is toggled:

if (pauseStatus) {
 //Play offset , number of loops
 soundChannelVar = snd.play(playHeadPosition, 1);
 pauseStatus = false;
} else {
 playHeadPosition = soundChannelVar.position;
 soundChannelVar.stop();
 pauseStatus = true;
}

You check to see whether the status of pause is true. If it’s not, then you store the playhead position, stop() the
SoundChannel, and set the pause status to true. If it is true, you play the sound file from the offset position stored in
the playHeadPosition variable and then set the pause status to false. So, even though you have no built-in, native
pause functionality, you can emulate it relatively easily and reliably.

Stopping Sound

Stopping a sound file playing is very straightforward. Let’s assume you have a Sound instance called snd. You can stop
it as follows:

var snd:Sound;
. . .
snd.close();

However, you should consider that you cannot use the Sound.close() method once the sound file has finished
loading. If you try, you will get the following error:

Error: Error #2029: This URLStream object does not have a stream opened

This is because it is designed to close the sound file download stream, and this will execute without error only
if the sound file is still in the process of downloading. Once it has finished downloading, issuing the Sound.close()
command will have no effect on the playing sound file. Also, in order to restart a sound file downloading once the

CHAPTER 8 ■ USING AUDIO

282

Sound.close() method has been successfully executed on it, you must reissue the load() command first. Whatever
amount of the sound file that had downloaded at the point where you issued the Sound.close() command will
remain in memory and can be played as normal.

The simple, reliable, and generally best choice is to use the SoundChannel.stop() function, as described in the
previous section. It will still keep the channel open and the sound file loading into memory, but loading another
sound file will replace it.

If you want to be thorough, you can have the stop button execute Sound.close() if the file is still downloading
and SoundChannel.stop() if it has finished downloading.

As your code becomes more advanced, it will be important for you to learn about the try...catch
method of error handling for checking whether a file is still downloading. I suggest you look into
this in more detail when you finish this book. You might check out Adobe’s excellent MXNA blog
aggregator (http://weblogs.macromedia.com/mxna/) to start learning more about topics such as error
handling. This aggregator provides links to the blog sites of some of the most talented developers in
the world.

Fast-Forwarding and Rewinding Sound

To enable yourself to use fast-forward (FF) and rewind (RW) functionality, you need to define timers, so they can run
continuously while the user is pressing the FF or RW button. You will notice that you don’t start these timers right away.

timerFF = new Timer(100, 0)
timerFF.addEventListener(TimerEvent.TIMER, this.runFF);
timerRW = new Timer(100, 0)
timerRW.addEventListener(TimerEvent.TIMER, this.runRW);

When the FF or RW button is pressed or released, it will start or stop the timer. So, for example, when the user
presses the RW button, you will start the timer:

timerRW.start();

When the user releases the RW button, you stop the timer:

timerRW.stop();

The important thing is what the timer handler code does:
On FF press:

playHeadPosition = soundChannelVar.position;
soundChannelVar.stop();
timerFF.start();

First, you store the present playhead position. Then you stop the track playing (otherwise, you’ll hear multiple
versions of the track playing when you release the FF button and it starts playing the track again). Finally, start the FF
timer. The FF Timer event handler will simply carry out the calculation of the increment of the playhead position by
whatever increment you choose (in milliseconds) and move the playhead bar to represent the present position:

var increment:int = 1000;
playHeadPosition += increment;
movScrubber.movHead.width = 
((Math.floor (playHeadPosition) / trueChronoLength) * 100) * 4;

http://weblogs.macromedia.com/mxna/

CHAPTER 8 ■ USING AUDIO

283

Once the FF button is released, the timer is stopped, and the SoundChannel plays the sound from the offset
position defined by the new playHeadPosition variable.

timerFF.stop();
soundChannelVar = snd.play(playHeadPosition, 1);
//(Play offset, number of loops)

The rewind code is exactly the same, except that the Timer event handler decrements the playhead position:

playHeadPosition -= increment;

Obviously, these are the bare bones of the functionality. In a real-world application, you need to address the
fast-forwarding and rewinding not extending beyond the beginning or end of the actual play time. Also, you need
to take care of all the little details such as preventing the FF and RW buttons from being engaged if the sound is not
already playing, and making sure that the modified volume and pan values are stored and reapplied once the sound is
restarted. Don’t panic; I will cover these by the end of the chapter.

Controlling Volume

Now let’s take a look at how you control the volume of your rock song because I know some of you will like to turn it
way up loud. For this, you will need to create some form of graphical volume control, be it a simple input text field or
a volume dial with meter display.

The important things here are the SoundTransform and the SoundChannel classes. The SoundTransform class
allows you to set the volume and pan settings for the SoundChannel instance to which it is assigned. Remember that,
in turn, the SoundChannel instance will already be assigned to a Sound class instance. Confused? Let’s look at an
example:

//Import required classes
import flash.media.SoundChannel;
import flash.media.SoundTransform;
 . . .
//Declare SoundTransform variable
var soundChannelVar:SoundChannel;
var stVolume:SoundTransform;
 . . .
//Instantiate SoundTransform object
stVolume = new SoundTransform();
 . . .
//Set up SoundChannel
//Play offset, number of loops
soundChannelVar = snd.play(0, 1);
soundChannelVar.soundTransform = stVolume;

CHAPTER 8 ■ USING AUDIO

284

You will fire off the volume adjustment event by whatever means are appropriate, based on the type of volume-
control interface you have implemented. For example, if you used volume-up and volume-down buttons, you simply
assign an event listener to those buttons that listens for a MouseEvent.MOUSE_DOWN event. The code would look
something like this:

volUpButton.addEventListener(MouseEvent.MOUSE_DOWN, onVolUp);
volDownButton.addEventListener(MouseEvent.MOUSE_DOWN, onVolDown);

function onVolUp(event:MouseEvent):void {
 stVolume.volume = soundVariable + increment;
 soundChannelVar.soundTransform = stVolume;
}

function onVolDown(event:MouseEvent):void {
 stVolume.volume = soundVariable - increment;
 soundChannelVar.soundTransform = stVolume;
}

Notice that this takes soundVariable plus or minus the increment variable, which are both numbers. The result
can be a number you feed in directly, or it will be factored on the scale of your volume slide, depending on how you
have developed your volume control. Once you have set it, you must reapply the SoundTransform to the SoundChannel
class’s own SoundTransform property, which expects a value in the range 0.0 to 1.0. In this chapter’s example, you
will see what this process looks like using a slider to set the volume.

And that’s it. That’s how easy controlling the volume is. Next, we’ll look at controlling the sound panning.

Controlling Panning

To control the panning of a sound that is playing is almost exactly the same as controlling the volume. You use the
same classes (SoundChannel and SoundTransform) and instantiate them as shown in the preceding section. You
actually use the same SoundTransform instance to control both the volume and panning on its assigned SoundChannel
object. The only difference is that you need another event handler because a different control is being used. And
inside the event handler, the only difference is that you set the pan and not the volume.

stVolume.pan = soundVariable;
soundChannelVar.soundTransform = stVolume;

Remember that the pan has a range of -1.0 to 1.0 (with 0 as the default central setting), unlike the volume range.
You should take this into account when deciding what values to send to the event handler for the pan functionality.

Displaying the Sound Spectrum

So would you like to visualize the sound? I’m sure you’ve dreamed of being able to make graphic equalizers to
represent the sound file you were playing, or of being able to interpret the sound file waveform frequencies into
beautiful aesthetic patterns. I know I have. I even faked a graphic equalizer in one of my early portfolio sites. Well, I’m
not much of a back-end coder, so I couldn’t mash one up properly. It looked OK, but it didn’t do anything magical
because it couldn’t read the sound frequency data. Well, you’ll be pleased to know that’s all changed with the advent
of ActionScript 3.0 and the introduction of the SoundMixer.computeSpectrum() function. “Yay!”

Now I won’t lie; the SoundMixer class doesn’t do all the work. In fact, to be fair, it really just produces all the frequency
information and populates the ByteArray it must be passed, with 512 floating-point values representing either the high to
low sound frequencies of both the left and right channels or a fast Fourier transform (FFT) algorithm of the sound signal.
The first 256 floating-point values represent the left channel, and the second 256 values represent the right channel.

CHAPTER 8 ■ USING AUDIO

285

If you want to understand more about the FFT algorithm, I suggest you dust off your advanced
mathematics degree and Google it. Or you can just accept that we can use this algorithm.

Adobe’s choice of 512 floating-point values was probably driven by optimization because FFT algorithms can be
represented by a range of return values above and below 512. Additionally, you should be aware that it samples all the
sounds playing globally as one sound sample, and not any one specific sound file you have loaded. All the sexy stuff is
done by the ByteArray, BitmapData, or whatever display vehicle class you decide to use.

A tip for improving the performance of the spectrum computation is to just use the first or last 256
floating-point values (left or right side only), duplicating the data. The audio data will often be very
similar, and you skip 256 iterations per timed interval.

You will need to import these classes:

import flash.media.SoundMixer;
import flash.display.BitmapData;
import flash.utils.ByteArray;

Declare the ByteArray variable:

var baSpectrum:ByteArray;

Then instantiate the ByteArray class to pass to the SoundMixer.computeSpectrum() function:

baSpectrum = new ByteArray();

This ByteArray will be populated with the 512 values, representing the frequencies from the snapshot the
computeSpectrum() function has taken. Each one of these frequency entries has a value range of -1.0 through 1.0.
You need this to happen repeatedly for as long as the sound file is playing, and as you will want to update the visual
representation of the playing sound wave constantly, you will need to put this on a Timer event.

timerSpectrum = new Timer(100, 0);
timerSpectrum.addEventListener(TimerEvent.TIMER, onSpectrum);

Notice you haven’t started the timer yet, because you don’t want to run the computeSpectrum() function when
the sound isn’t playing and there is consequently no spectrum to compute. This would lead to unnecessary processor
overhead. So you’ll need to start the timer every time the sound file is played, and stop it every time it is paused,
fast-forwarded, rewound, or stopped. (You’ll see the code permutations for the various play statuses in this chapter’s
example.) You need to add the following code where appropriate in the command control function:

timerSpectrum.start();
 . . .
timerSpectrum.stop();

So now let’s look at the onSpectrum Timer event handler function code because this is where the action is. You
will pass the ByteArray instance to the computeSpectrum() function every time you loop through. As I mentioned
earlier, this will be populated with the 512 frequencies that the spectrum snapshot has taken at that moment:

SoundMixer.computeSpectrum(outputArray, FFTMode, stretchFactor);

CHAPTER 8 ■ USING AUDIO

286

This function accepts the following parameters:

•฀ outputArray: A ByteArray object that holds the values associated with the sound. If any
sounds are not available because of security restrictions (areSoundsInaccessible == true),
the outputArray object is left unchanged. If all sounds are stopped, the outputArray object is
filled with zeros. This parameter is mandatory.

•฀ FFTMode: A Boolean value indicating whether an FFT is performed on the sound data first.
The default is false. Setting this parameter to true causes the method to return a frequency
spectrum instead of the raw sound wave. In the frequency spectrum, low frequencies are
represented on the left and high frequencies are on the right.

•฀ stretchFactor: An int value indicating the resolution of the sound samples. With the default
value of 0, data is sampled at 44.1 KHz; with a value of 1, data is sampled at 22.05 KHz; with a
value of 2, data is sampled at 11.025 KHz; and so on.

This takes care of constant sound wave frequency data gathering. Now it’s time to look at the other side of the
coin: displaying this data aesthetically. There are innumerable ways to display such a large amount of frequency data,
and indeed this is one of the features that makes the computeSpectrum() function so powerful.

Let’s consider a couple of the simpler display implementations: an equalizer bar chart and a sound wave display.
For the purposes of this example, assume you have created a new Sprite instance called grFrequency. So let’s look at
the Timer event handler function code:

//------------------COMPUTE SPECTRUM ------------------------
function onSpectrum(evt:Event):void {
 SoundMixer.computeSpectrum(baSpectrum, false);
 grFrequency.graphics.clear();
 grFrequency.graphics.beginFill(0x00FF00);
 grFrequency.graphics.moveTo(0, 0);
 for (var i:int = 0; I < 512; I += 1) {
 grFrequency.graphics.drawRect(i, 0, 1, (baSpectrum.readFloat() * 150));
 }
}

The first line of the function deals with actually computing the spectrum and passing it into the baSpectrum
ByteArray. I have set the false value on the FFTMode simply as a reminder that this is the type of display I want
(as noted earlier, by default, the FFTMode is already false). As a simplification, if the FFTMode is set to false, you will
produce a sound wave visualization; if it is set to true, you will produce a bar chart visualization.

The next three lines are all initializing the graphics to display the sound wave or bar chart. You clear the graphic,
set the color, and move to the start position, before beginning the drawing cycle.

Following this, you simply loop through the 512 ByteArray values by calling the ByteArray.readFloat() method
to get the value, and then display it using the graphics.drawRect method, which takes the x and y coordinates and
the width and height as parameter values:

function drawRect(x:Number, y:Number, width:Number, height:Number):void

You calculate the bar height as a factor of the -1.0 through 1.0 value that the readFloat() function returns. This
needs to take into account the size of the display area you have available and be adjusted accordingly.

CHAPTER 8 ■ USING AUDIO

287

Handling ID3 Tags

Even though the recommended standard for ID3 metadata is not always fully implemented, what we do have from
most MP3 files is still very useful. You can get data such as the artist name, the track name, the album title, year of
production, and so on. Table 8-8 lists commonly available ID3 tags, which ActionScript allows for access to through
the ID3Info class.

Table 8-8. Common ID3 tags

ID3 2.0 tag Corresponding ActionScript property

COMM Sound.id3.comment

TALB Sound.id3.album

TCON Sound.id3.genre

TIT2 Sound.id3.songName

TPE1 Sound.id3.artist

TRCK Sound.id3.track

TYER Sound.id3.year

Table 8-9 lists ID3 tags that are supported but do not have predefined properties in the ID3Info class
(you could extend the ID3Info class in order to add them). You can access these directly by calling Sound.id3.TFLT,
Sound.id3.TIME, for example.

Table 8-9. Supported ID3 tags without predefined properties

ID3 2.0 tag Description

TFLT File type

TIME Time

TIT1 Content group description

TIT2 Title/song name/content description

TIT3 Subtitle/description refinement

TKEY Initial key

TLAN Languages

TLEN Length

TMED Media type

TOAL Original album/movie/show title

TOFN Original file name

TOLY Original lyricists/text writers

TOPE Original artists/performers

TORY Original release year

(continued)

CHAPTER 8 ■ USING AUDIO

288

Now that you know the kind of information the ID3 metadata tags can contain, let’s look at how you go about
getting that information out of the tags.

First, make sure you have imported the Sound, Event, and ID3Info:

import flash.media.Sound;
import flash.event.Event;
import flash.media.ID3Info;

Next, set up your ID3 event listener:

var snd:Sound = new Sound();
snd.addEventListener(Event.ID3, id3Handler)

Finally, add the ID3 event-handling code. I have written this with two possibilities in mind: you might simply
want to loop through all the fields in the ID3 metadata just to see what’s in there, and you might want to represent a
few of the more common (and indeed, essential) pieces of information in onscreen text fields (in this example, the
artist and song name):

function id3Handler(event:Event):void {
 var song:Sound = Sound(event.target);
 var songInfo:ID3Info = ID3Info(song.id3);

ID3 2.0 tag Description

TOWN File owner/licensee

TPE1 Lead performers/soloists

TPE2 Band/orchestra/accompaniment

TPE3 Conductor/performer refinement

TPE4 Interpreted, remixed, or otherwise modified by

TPOS Part of a set

TPUB Publisher

TRCK Track number/position in set

TRDA Recording dates

TRSN Internet radio station name

TRSO Internet radio station owner

TSIZ Size

TSRC International Standard Recording Code (ISRC)

TSSE Software/hardware and settings used for
encoding

TYER Year

WXXX URL link frame

Table 8-9. (continued)

CHAPTER 8 ■ USING AUDIO

289

 for (var xx in songInfo) {
 trace("ID3 - " + xx + " is " + songInfo[xx]);
 }
 txtArtist.text = songInfo.artist;
 txtTitle.text = songInfo.songName;
}

You will use these techniques in the sound player you’ll build next, to see what is in the ID3 metadata and to
display the artist name and track title while an MP3 file is playing.

Building a Sound Player
Now that you’ve been introduced to the basics of manipulating sound in ActionScript 3.0, including the relevant
classes and common functionality, let’s put this all together to create an MP3 player. The MP3 player will look like
Figure 8-5. As you can see, it has all the typical features you would expect in an MP3 player.

Figure 8-5. The finished MP3 player

You’ll use the following files for the sound player:

•฀ AudioDemo_final.fla

•฀ Main.as

•฀ Sounds.as

•฀ ButtonManager.as

•฀ MediaControlEvent.as

CHAPTER 8 ■ USING AUDIO

290

Setting up the Project
As with the video player, I have created the physical assets and initial FLA file (AudioDemo_final.fla) to save you
some time on this example. To begin, locate the AudioDemo_final.fla in the code you downloaded for this book and
open it.

Now you need to do a quick check. Make sure that the document class is Main.as, and make sure that it is
selected. In the Flash IDE, select File ➤ Publish Settings. In the window that appears, click the Settings button to
open the ActionScript 3.0 Settings screen, as shown in Figure 8-6.

Figure 8-6. Flash ActionScript 3.0 Settings screen

In the Document class text field, enter Main if it’s not already there. This will load the Main.as file as the
document class. Remember that the document class is like a root class, so it can control all assets on the root of the
timeline.

CHAPTER 8 ■ USING AUDIO

291

Next, click the target button to the right of the Classpath: heading and navigate to the directory location where
you have stored your class files. When you select it, it should appear very much as mine does in Figure 8-6.

Creating the Main.as File

In the Main.as file, you will create the instances of the Sounds class and button controls. You will also need to create
address and display buttons, an audio spectrum, and text fields. Therefore, you will need to import all the Flash
classes for these objects.

It is common practice to keep your class and resource files in a deeper directory structure or in
packages that reflect the domain under which they are stored and served. For example, if this
book’s files were on a domain called www.fas3.com, the classes on this domain would be stored
in a directory structure that most competent object-oriented developers would expect to be
com.fas3.classes (or similar). Indeed, this is almost the exact package structure I have used. This is
to avoid class namespace clashes. A package declaration for the domain would look like this:

package com.fas3.smc
{
 class. . .
}

This is an approach you would be well advised to start using regularly.

First, let’s create a new .as file for the Main.as file and add the following code to it:

package com.fas3.smc
{
 import flash.display.MovieClip;
 import com.fas3.smc.Sounds;
 import com.fas3.smc.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

 public class Main extends MovieClip
 {
 }
}

Save this file as Main.as in your work directory.
Now it’s time to declare the Sound and ButtonManager classes and create the Main constructor, as follows.

Sound was already covered, and the ButtonManager will look after any button-based events. You will be creating the
ButtonManager later on in this chapter, so update your code with the following highlighted code:

package com.fas3.smc
{
 import flash.display.MovieClip;
 import com.fas3.smc.Sounds;
 import com.fas3.smc.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

http://www.fas3.com/

CHAPTER 8 ■ USING AUDIO

292

 public class Main extends MovieClip {
 private var soundManager:Sounds;
 private var buts:ButtonManager;

 public function Main()
 {
 }
 }
}

This completes the base Main.as FLA document class. This won’t do much at present, but you’ll add the calls for
the Sounds and ButtonManager classes after you create them.

Creating the Sounds.as File

You will be creating the Sounds.as class to handle all the sound requirements for your application. So create this file
and save it in the same project folder.

Now, let’s add the import and variable declaration statements. As with the video player example in the previous
chapter, you’re creating them all in advance, so you don’t need to repeatedly return to the top of the class file and
import a class or define a variable. The naming convention should give you some clues about the code you will be
creating. Add the following to your Sounds.as class:

package com.fas3.smc
{
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.media.SoundLoaderContext;
 import flash.media.SoundTransform;
 import flash.media.ID3Info;
 import flash.events.Event;
 import flash.display.MovieClip;
 import flash.net.URLRequest;
 import flash.text.TextField;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import fl.controls.Slider;
 import fl.events.SliderEvent;

 public class Sounds extends MovieClip
 {
 private var snd:Sound;
 private var soundChannelVar:SoundChannel;
 private var buffer:SoundLoaderContext;
 private var timerLoading:Timer;
 private var timerPlayHead:Timer;
 private var timerFF:Timer;
 private var timerRW:Timer;
 private var barWid:int = 200;
 private var barHi:int = 5;
 private var bytLoaded:int;
 private var bytTotal:int;

CHAPTER 8 ■ USING AUDIO

293

 private var pctLoaded:int;
 private var trueChronoLength:Number;
 private var txtStatus:TextField;
 private var txtTrackLength:TextField;
 private var txtHeadPosition:TextField;
 private var txtArtist:TextField;
 private var txtTitle:TextField;
 private var movScrubber:MovieClip;
 private var multiplier:Number;
 private var nsMinutes:Number;
 private var nsSeconds:Number;
 private var pauseStatus:Boolean;
 private var playHeadPosition:Number;
 private var volumeSlider:Slider;
 private var panSlider:Slider;
 private var stVolume:SoundTransform;
 private var tempVol:Number = 0.5;
 private var tempPan:Number = 0;
 private var trackEnd:Boolean;
 private var trackStart:Boolean;
 }
}

There’s quite a lot there, especially in the variable definitions. The sound manager needs to define text fields,
components, temporary minders, multiple integers, and numbers for calculations, timers, and so on. It’s a busy
bunny. But don’t let this put you off. Everything will become clear as you step through each part of the process of
creating an MP3 player.

Let’s continue with the constructor for your Sound.as class file. This class needs to be passed references to the
physical movie clips and text fields on the stage, which I have created for your convenience. Add the constructor
function at the bottom of the file:

 public function Sounds(movScrubber:MovieClip, txtStatus:
TextField, txtHeadPosition:TextField, txtTrackLength:TextField,
txtArtist:TextField, txtTitle:TextField, volumeSlider:Slider,
panSlider:Slider) {
 //Set movies and text fields to local references and to start
 //positions and contents
 this.movScrubber = movScrubber;
 this.txtStatus = txtStatus;
 this.txtHeadPosition = txtHeadPosition;
 this.txtTrackLength = txtTrackLength;
 this.txtArtist = txtArtist;
 this.txtTitle = txtTitle;
 this.volumeSlider = volumeSlider;
 this.panSlider = panSlider;
 }

As you can see, you’re already starting to use your defined variables. In this case, you’re using them to store a
local reference to the movie clip, text field, and component references that were passed into the constructor.

CHAPTER 8 ■ USING AUDIO

294

Now you need to define a function to play the sound file you pass to it and listen for any events. Add the following
to the bottom of the file:

public function loadSong(song:String):void {
 snd = new Sound(new URLRequest(song));
 snd.addEventListener(Event.ID3, id3Handler)
}

In this example, you will listen only for the ID3 events because you will be displaying some important ID3
metadata a bit later. The first line of this function is a compound load statement. It declares a new Sound instance,
using a URLRequest instance that it creates on the fly, to load the song you have passed in as a parameter.

Loading the Sound File

I have provided a sample sound file to use with this application called song1.mp3 (not very original, I know).
Check out your downloaded code for this file and see the Creative Commons license with which it is issued in a text
file in the same download pack. You can, of course, use your own sound file instead.

Now let’s return to the Main.as file and add the instantiation of the Sound.as class file and subsequently call its
loadSong() function passing in the song1.mp3 file. Add the following code to the bottom of the file:

soundManager = new Sounds(movScrubber, txtStatus, txtHeadPosition,
txtTrackLength, txtArtist,
txtTitle, volumeSlider, panSlider);
soundManager.loadSong("song1.mp3");
addChild(soundManager);

As you can see, when you instantiate the Sounds class, you pass in all the references to the objects on the stage
that this class will need to work with. Then you pass the song1.mp3 reference to its loadSong() function. This loads
the sound file but doesn’t play it. Finally, you add the soundManager instance to the display list.

Buffering Sound

When you load the sound file, you need to define a buffer for the sound to load into before playing. So first instantiate
the buffer variable in the Sound.as class file constructor:

//Song buffer size in milliseconds
buffer = new SoundLoaderContext(5000);

In the example, 5 seconds of the song need to load into the buffer before it will commence playing. You need to
pass this information to the loader, and you do this during the load command. In the Sound.as file, modify the first
line of the loadSong() function accordingly:

snd = new Sound(new URLRequest(song), buffer);

This will start the song1.mp3 file loading.

CHAPTER 8 ■ USING AUDIO

295

Adding Display Items
The sound player will display a loading progress bar, playhead bar, sound spectrum, and sound track information.
So let’s start by adding the loading progress bar.

Creating the Loading Progress Bar

The loading bar will display the progress of the sound file load process. This should complement the playhead bar,
and indeed it will operate within the scrubber movie clip. I have already created the physical asset as a white bar.

You will need to loop the check at regular intervals until the load is complete. So you’ll instantiate a timer,
add a listener, and start the timer running.

Add this code to your Sounds.as constructor:

timerLoading = new Timer(100, 0);
timerLoading.addEventListener(TimerEvent.TIMER, onLoading);
timerLoading.start();

The first line instantiates the new Timer instance with the parameters of interval and number of loops. You have
set the timer to a 100-millisecond interval and told it to loop indefinitely. You will stop the timer when it has finished
its job.

Now that you have defined an event listener and started the timer, let’s add the event handler code for the timer
event. Add the following function to the bottom of the Sounds.as class file:

private function onLoading(event:TimerEvent):void {
 bytLoaded = snd.bytesLoaded;
 bytTotal = snd.bytesTotal;
 if ((bytTotal >=bytLoaded) && (bytLoaded>0)) {
 if (txtStatus.text != "Playing") {
 txtStatus.text = "Loading";
 }
 movScrubber.movLoaderBar.width = ((bytLoaded / bytTotal) * 100) * 4;
 if (bytLoaded == bytTotal) {
 if (txtStatus.text ==" Loading") {
 txtStatus.text = "Load Complete";
 }
 timerLoading.stop();
 }
 }
}

This is all fairly self-explanatory. The first few lines work out the amount loaded and the total size of the sound
in bytes from the Sound object you created earlier. You check that the file hasn’t completed loading and that it has
actually started loading before you try representing the information and issuing status notifications to the status text
field. Provided that this is all in order, you then set the width of the loading bar to represent the percentage loaded
times 4 (because the movie clip is 400 pixels wide). Finally, you perform another check to see whether the total bytes
loaded are equal to the total number of bytes in the sound file. If it is, then the sound file has finished downloading,
and you need to stop the associated timer and alert the user through the status text field.

Now if you publish your FLA file, you will see the loading progress bar fill as the sound loads.

The sound file loading will seem instantaneous if the file is being loaded locally. To see this in action,
you really need to load a sound file from a remote Internet server.

CHAPTER 8 ■ USING AUDIO

296

Creating the Playhead Bar

The playhead bar will show where the song1.mp3 playhead is when playing. Once again, I have already created the
graphical object on the stage, within the scrubber movie clip, and you already have the necessary variables defined in
the Sounds.as file.

So let’s go ahead and create a Timer instance for this function in the Sounds.as class constructor. Add this to the
bottom of the file:

timerPlayHead = new Timer(500, 0);
timerPlayHead.addEventListener(TimerEvent.TIMER, this.headPosition);

The first line instantiates the new Timer instance with the required parameters of interval and number of loops.
You have set it to a 500-millisecond interval and told it to loop indefinitely.

Now that you have defined an event listener, you need to think about the event handler code. This is not as simple as
working with a video file. The basic principle of displaying an accurate graphical representation of the playhead position
is that you take the total length of the sound or video track in a chronological format and compare it against the track’s
playhead position chronological information. The goal is to create a relative and accurately scaled playhead graphic, and
possibly display the total track length and playhead position in minutes and seconds in appropriate text fields.

For video, you get the track’s chronological head position from the NetStream.Time property.
The SoundChannel.position property gives the same information about a sound file, so that’s all good.

Next, you need to get the total track length, so that you can use it to work out how far the track playhead has
advanced relative to the total track length. This is where the problem lies. You get video track length from the duration
information in the metadata, which is encoded into the FLV file. However, Sound class–loaded MP3s often do not
have that information. You can interrogate the track’s ID3 metadata for the TLEN property, which is set aside for the
declaration of the track’s length; however, this is far too rarely used to be of reliable value.

The other option is to get the chronological track length by interrogating the length property of the Sound class
into which the sound file was loaded. Unfortunately, the Sound.length property is a chronological representation of
only the amount of the sound file (in milliseconds) that has been downloaded at the time the property is interrogated,
so it will never be accurate until the sound file has completely finished downloading. As you can imagine, that will
change the playhead position ratio during the load process, and possibly quite dramatically. It might even look like
the track playhead were going backward as the ratio of percent loaded to playhead position changed. So you would
seem to have no reliable way of getting the track length.

There is, however, a cunning way around this, which is certainly accurate enough to represent the playhead
position acceptably. You can use the information you have about the track load status to extrapolate the track length
information. “How?” I hear you ask. “You’re a madman!” I hear you say. Well, it’s simple, if not perfect. Because you
have the total number of bytes in the sound file and can compare that with the bytes loaded, you can get an
accurate representation of the percentage of the file that has been loaded. Because this is exactly the information
the Sound.length property uses, you can use that percentage as a multiplier on that property. This will give you an
accurate representation of the true chronological track length. Of course, you will need to do a little tweaking and
formatting to get it in seconds and initially, while the factors are at their highest, the calculations could be a little off.

The following code gets the playhead to display the count in minutes and seconds, the total track length to
display in minutes and seconds, and the graphical representation of the playhead position, using the work-around for
the total track length time. These three distinct requirements are separated into the three commented sections within
the function. Add this function at the bottom of your Sounds.as file:

private function headPosition(event:TimerEvent):void {
 //Set playhead position graphic
 multiplier = (1 / (snd.bytesLoaded / snd.bytesTotal));
 trueChronoLength = snd.length * multiplier;

CHAPTER 8 ■ USING AUDIO

297

 if (txtStatus.text == "Playing") {
 if (trueChronoLength>0) {
 movScrubber.movHead.width = ((Math.floor(soundChannelVar.position)
 / trueChronoLength) * 100) * 4;
 //Set head position display text field
 nsMinutes = Math.floor((soundChannelVar.position / 1000) / 60);
 nsSeconds = Math.floor((soundChannelVar.position / 1000) %6 0);
 if (nsSeconds < 10) {
 this.txtHeadPosition.text = nsMinutes.toString() + ":0" + nsSeconds.toString();
 } else {
 this.txtHeadPosition.text = nsMinutes.toString() + ":" + nsSeconds.toString();
 }
 }

 //Set track length display text field
 var tlMinutes:int = Math.floor((trueChronoLength / 1000) / 60);
 if (tlMinutes < 1){
 tlMinutes = 0;
 }
 var tlSeconds:int = Math.floor((trueChronoLength / 1000) % 60);
 if (tlSeconds < 10) {
 txtTrackLength.text = tlMinutes.toString() + ":0" + tlSeconds.toString();
 } else {
 txtTrackLength.text = tlMinutes.toString() + ":" + tlSeconds.toString();
 }
 }
}

The first section takes care of displaying the correct position of the playhead, as the function comment suggests.
However, it will skip the display process if you do not yet have the full chronological length of the track worked
out when this function fires. The playhead numerical position display text field will format and display it in the
appropriate text field after you have the information. The same is true of the total track length text field, and a great
amount of code is devoted to formatting the display in this function.

Adding the Sound Spectrum

Now let’s add the code to compute the spectrum. This goes in the Sounds.as file, in which you have already imported
the SoundMixer, ByteArray, BitmapFilterQuality, and GlowFilter classes. You have also declared the Timer for the
spectrum calculation, the ByteArray to hold the returned 512 frequency variables, and the Sprite that will be used to
display the frequency information in its final state. Additionally, you have declared a width uint and a spread Number
for the display sizes, and a GlowFilter to polish the display a little.

Add these variable declarations to your Sounds.as class file:

private var timerSpectrum:Timer;
private var baSpectrum:ByteArray;
private var grFrequency:Sprite;
private var w:uint = 1;
private var spread:Number;
private var glow:GlowFilter;

CHAPTER 8 ■ USING AUDIO

298

Next, you need to instantiate these variables. Add the following code to the bottom of your Sounds.as class constructor:

baSpectrum = new ByteArray();
grFrequency = new Sprite();
grFrequency.x = 0;
grFrequency.y = 200;
movScreen.movSpectrum.addChild(grFrequency);
glow = new GlowFilter()

Here, you have instantiated the ByteArray GlowFilter and the Sprite. You have also set the Sprite’s x and y position
and added it to the movScreen.movSpectrum display list because this is the movie clip set up in the FLA file to display it.

Finally, initialize and add an event listener to the spectrum timer. You won’t start it because it should run only
when the sound file is playing. You’ll be adding it to the button event handler later in the code. For now, just add the
following to the Sounds.as constructor:

timerSpectrum = new Timer(100, 0);
timerSpectrum.addEventListener(TimerEvent.TIMER, onSpectrum);

It seems natural to add the Timer event handler function onSpectrum() now. Add this function into your
Sounds.as file:

//------------------COMPUTE SPECTRUM ------------------------
private function onSpectrum(evt:Event):void {
 SoundMixer.computeSpectrum(baSpectrum, false);
 grFrequency.graphics.clear();
 grFrequency.graphics.beginFill(0x00FF00);
 grFrequency.graphics.moveTo(0, 0);

 for (var i:int = 0; i < 512; i += w) {
 spread = (baSpectrum.readFloat() * 150);
 grFrequency.graphics.drawRect(i, 0, w, -spread);
 }
}

The first line within the function does the important work of computing the sound spectrum and passing it to the
baSpectrum ByteArray you defined earlier. You then set up the graphic to display the sound frequencies by setting its
color and start position. Once this is done, you loop through the 512 frequency values in the ByteArray by using the
readFloat() method, applying a factoring number of 150 to allow for the display size, and then drawing the rectangle
that represents these calculations and settings.

After the basic drawing to screen is done, you need to add a little polish. The setting of the color is bright green.
This is a color traditionally used by manufacturers to display graphic equalizer information, where it is so bright
against the usually black background that it seems to glow. So you’re going to add a simple glow filter. You have
already imported the GlowFilter class and instantiated it. Add the following code to the bottom of the onSpectrum
function, after the for-next loop:

//Apply the glow filter to the grFrequency graphic.
glow.color = 0x009922;
glow.alpha = 1;
glow.blurX = 25;
glow.blurY = 25;
glow.quality = BitmapFilterQuality.MEDIUM;
grFrequency.filters = [glow];

The last line adds the newly configured glow filter to the Sprite’s filters array.

CHAPTER 8 ■ USING AUDIO

299

Displaying ID3 Track Metadata

You need to be able to display track information about the artist’s name and the name of the track, at the very least.
As explained earlier in the chapter, you can interrogate for more ID3 information, but for now you’ll stick with these
two reasonably reliable and simple fields in this example.

Add the following event listener to the loadSong() function in the Sounds.as file:

snd.addEventListener(Event.ID3, id3Handler);

Now you can add the event handler code to the Sounds.as file, like so:

//----------------- ID3 information event handler -----------------
function id3Handler(event:Event):void {
 var song:Sound = Sound(event.target);
 var songInfo:ID3Info = ID3Info(song.id3);
 trace("ID3 loaded");

We now loop over the song’s metadata so you can see how much there is; we’ll just trace it:

 for (var xx in songInfo){
 trace("ID3 - " + xx + " is " + songInfo[xx]);
 }
 txtArtist.text=songInfo.artist;
 txtTitle.text=songInfo.songName;
}

You extract the sound file target from the returned object and store it in a Sound variable, so that you can
interrogate its ID3 information. You’ll notice that you’re feeding even the song’s ID3 information into another class:
the ID3Info class. As noted earlier in the chapter, essentially this class takes the fairly nondescript ID3 tags and
translates them into something legible to call. For example, the ID3 tag TPE1 becomes the ID3Info property artist.
You don’t have to use the ID3Info class; indeed, you loop through the ID3 metadata in this function to give you some
idea of what data you can find in any MP3 files you choose to use.

You assign the artist and songName properties of the ID3Info instance to the appropriate text fields that, once
again, I have already put on the stage for you. As you can see, getting ID3 information is pretty simple.

Controlling the Audio as it Plays
The ButtonManager class will deal with all the button-based events. Create that class file now and save it as
ButtonManager.as.

Add the following code to the ButtonManager.as file. This covers all the classes you need to import and the
variable definitions you will need later on.

package com.fas3.smc {
 import flash.net.*;
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.events.MouseEvent;
 import flash.events.EventDispatcher;
 import flash.events.Event;
 import com.fas3.smc.MediaControlEvent;

CHAPTER 8 ■ USING AUDIO

300

 public class ButtonManager extends Sprite {
 private var butRW:SimpleButton;
 private var butPlay:SimpleButton;
 private var butPause:SimpleButton;
 private var butStop:SimpleButton;
 private var butFF:SimpleButton;
 private var eventDispatcherButton:EventDispatcher;
 private var pauseOn:Boolean = false;

 //Simply instantiate your button manager class by passing it the
 //names of your Rewind, Play, Pause, Stop and Fast Forward
 //button instances
 public function ButtonManager(butRW:SimpleButton, butPlay :
 SimpleButton, butPause:SimpleButton, butStop:SimpleButton,
 butFF:SimpleButton){
 this.butRW = butRW;
 this.butPlay = butPlay;
 this.butPause = butPause;
 this.butStop = butStop;
 this.butFF = butFF;
 }
 }
}

Because I have deliberately not added extra code to create the buttons, and instead opted to create them
graphically on the stage, you have passed references to them into the class file constructor. You also immediately pass
these references to the local variables so you can access them in the scope of the class.

In order to instantiate the ButtonManager class and pass in the button instance references, return to the Main.as
file and add the following line after the line that adds the Sounds.as class instance to the display list:

Buts = new ButtonManager(butRW, butPlay, butPause, butStop, butFF);

Now let’s add the button functionality.

Adding Button Functionality

You will start by adding event listeners to the ButtonManager.as class file constructor for each button to listen for
MOUSE_DOWN events as soon as a button is pressed. As with the video player, you do not want to wait until the button
is released to be notified, particularly for the fast-forward and rewind functions, which rely on the user pressing and
holding down the button to execute them. The FF and RW buttons use a Timer class instance to continue to run while
the button is pressed, and they have a release event handler that allows you to stop them executing their timer when
the user releases the mouse.

Add the following code to your ButtonManager.as class file constructor:

//Add button listeners
butRW.addEventListener(MouseEvent.MOUSE_DOWN, doRewind);
butRW.addEventListener(MouseEvent.CLICK, stopRewind);
butPlay.addEventListener(MouseEvent.MOUSE_DOWN, doPlay);
butFF.addEventListener(MouseEvent.MOUSE_DOWN, doFastForward);
butFF.addEventListener(MouseEvent.CLICK, stopFastForward);

CHAPTER 8 ■ USING AUDIO

301

butRW.enabled = false;
butFF.enabled = false;
butPause.enabled = false;
butStop.enabled = false;

You have disabled all the buttons except for the play button. The other buttons will be enabled and disabled as
logic dictates throughout the application’s use. Also notice that the pause and stop buttons don’t have event listeners
added to them at this stage. Because these buttons don’t need an event listener added to them until after the sound is
playing, you have left it to the Play event handler to take care of it.

Now let’s add the button event handlers to ButtonManager.as:

private function doRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RW"));
}

private function stopRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RWEND"));
}

private function doPlay(event:MouseEvent):void {
 butPause.addEventListener(MouseEvent.MOUSE_DOWN, doPause);
 butPause.enabled = true;
 butStop.addEventListener(MouseEvent.MOUSE_DOWN, doStop);
 butStop.enabled = true;
 butFF.enabled = true;
 butRW.enabled = true;
 dispatchEvent(new MediaControlEvent("PLAY"));
}

private function doPause(event:MouseEvent):void{
if (pauseOn) {
 butRW.enabled = true;
 butFF.enabled = true;
 butPlay.enabled = true;
 butStop.enabled = true;
 pauseOn = false;
} else {
 butRW.enabled = false;
 butFF.enabled = false;
 butPlay.enabled = false;
 butStop.enabled = false;
 pauseOn = true;
}
dispatchEvent(new MediaControlEvent("PAUSE"));
}

private function doStop(event:MouseEvent):void {
 butPause.removeEventListener(MouseEvent.MOUSE_DOWN, doPause);
 butPause.enabled = false;
 dispatchEvent(new MediaControlEvent("STOP"));
}

CHAPTER 8 ■ USING AUDIO

302

private function doFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FF"));
}
private function stopFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FFEND"));
}

The Play event handler has some extra code. It adds the event listeners for the pause and stop buttons, and it
enables all the other control buttons, now that their use is valid. The Stop event handler also has a little extra code.
It removes the Pause event listener and disables the pause button.

You’ll also notice that these functions are dispatching their own event: MediaControlEvent. This is the same
class you used for the video player example in the previous chapter, and the reasoning for extending the Event class
to create this class is the same as explained in that chapter: to allow for simple, modular, extendable event handling
and registration for any classes that need to use the media control buttons. And as in the video player example, you’re
adding it to the ButtonManager class before it is created. Add the following function into the ButtonManager.as file:

//This function adds any external objects to the listener list
//for the mediaControl event
public function addMediaControlListener(funcObj:Function):void {
 addEventListener(MediaControlEvent.CONTROL_TYPE, funcObj);
}

It will register an external handler for any MediaControlEvent.CONTROL_TYPE events.
Now let’s add a call to this function from the Main.as file. Add the following line to the end of the Main.as

constructor:

buts.addMediaControlListener(soundManager.onControlCommand);

You have defined the Sound.as class function onControlCommand to handle the MediaControlEvent.CONTROL_TYPE
events, which you’ll add to the Sounds.as file next.

Save and close both the Main.as and ButtonManager.as files now. They are complete. The Main.as file should
look like this:

package com.fas3.smc{

 import flash.display.MovieClip;
 import com.fas3.smc.Sounds;
 import com.fas3.smc.ButtonManager;
 import flash.text.TextField;
 import flash.display.SimpleButton;

 public class Main extends MovieClip {
 private var soundManager:Sounds;
 private var buts:ButtonManager;

 public function Main(){
 soundManager = new Sounds(movScrubber, txtStatus,

txtHeadPosition, txtTrackLength, txtArtist, txtTitle, volumeSlider, panSlider);
 soundManager.loadSong("song1.mp3");
 addChild(soundManager);

CHAPTER 8 ■ USING AUDIO

303

 buts = new ButtonManager(butRW, butPlay, butPause, butStop, butFF);
 buts.addMediaControlListener(soundManager.onControlCommand);
 }

 }

}

The ButtonManager.as file should look like this:

package com.fas3.smc {
 import flash.net.*;
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.events.MouseEvent;
 import flash.events.EventDispatcher;
 import flash.events.Event;
 import com.fas3.smc.MediaControlEvent;

 public class ButtonManager extends Sprite {
 private var butRW:SimpleButton;
 private var butPlay:SimpleButton;
 private var butPause:SimpleButton;
 private var butStop:SimpleButton;
 private var butFF:SimpleButton;
 private var eventDispatcherButton:EventDispatcher;
 private var pauseOn:Boolean = false;

 //Simply instantiate your button manager class by passing it the
 //names of your Rewind, Play, Pause, Stop and Fast Forward
 //button instances
 public function ButtonManager(butRW:SimpleButton, butPlay:
 SimpleButton, butPause:SimpleButton, butStop:SimpleButton, butFF:SimpleButton) {
 this.butRW = butRW;
 this.butPlay = butPlay;
 this.butPause = butPause;
 this.butStop = butStop;
 this.butFF = butFF;

 //Add button listeners
 butRW.addEventListener(MouseEvent.MOUSE_DOWN, doRewind);
 butRW.addEventListener(MouseEvent.CLICK, stopRewind);
 butPlay.addEventListener(MouseEvent.MOUSE_DOWN, doPlay);
 butFF.addEventListener(MouseEvent.MOUSE_DOWN, doFastForward);
 butFF.addEventListener(MouseEvent.CLICK, stopFastForward);

 butRW.enabled = false;
 butFF.enabled = false;
 butPause.enabled = false;
 butStop.enabled = false;
 }

CHAPTER 8 ■ USING AUDIO

304

 //This function adds any external objects to the listener list
 //for the mediaControl event
 public function addMediaControlListener(funcObj:Function):void {
 addEventListener(MediaControlEvent.CONTROL_TYPE, funcObj);
 }

 private function doRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RW"));
 }

 private function stopRewind(evnt:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("RWEND"));
 }

 private function doPlay(event:MouseEvent):void {
 butPause.addEventListener(MouseEvent.MOUSE_DOWN, doPause);
 butPause.enabled = true;
 butStop.addEventListener(MouseEvent.MOUSE_DOWN, doStop);
 butStop.enabled = true;
 butFF.enabled = true;
 butRW.enabled = true;
 dispatchEvent(new MediaControlEvent("PLAY"));
 }

 private function doPause(event:MouseEvent):void {
 if (pauseOn) {
 butRW.enabled = true;
 butFF.enabled = true;
 butPlay.enabled = true;
 butStop.enabled = true;
 pauseOn = false;
 } else {
 butRW.enabled = false;
 butFF.enabled = false;
 butPlay.enabled = false;
 butStop.enabled = false;
 pauseOn = true;
 }
 dispatchEvent(new MediaControlEvent("PAUSE"));
 }

 private function doStop(event:MouseEvent):void {
 butPause.removeEventListener(MouseEvent.MOUSE_DOWN, doPause);
 butPause.enabled = false;
 dispatchEvent(new MediaControlEvent("STOP"));
 }

 private function doFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FF"));
 }

CHAPTER 8 ■ USING AUDIO

305

 private function stopFastForward(event:MouseEvent):void {
 dispatchEvent(new MediaControlEvent("FFEND"));
 }

 }
}

The Sounds.as file still has some work to be done on it, which you’ll handle next.

Handling Button Events

The ButtonManager MediaControlEvent.CONTROL_TYPE events are dispatched when any control button is pressed.
Now you will add the event handlers to take action when they are notified of a button press. These event handlers go
in the Sound.as file.

Open the Sounds.as class file and add the following function to it, to handle the
MediaControlEvent.CONTROL_TYPE events:

//----------------- CONTROL BUTTONS ---------------------------

public function onControlCommand(evt:MediaControlEvent):void {
 switch(evt.command) {
 //---- PAUSE ----
 case "PAUSE":
 if (pauseStatus) {
 soundChannelVar = snd.play(playHeadPosition, 1);
 restoreVolPan();
 timerSpectrum.start();
 pauseStatus = false;
 } else {
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 pauseStatus = true;
 }
 txtStatus.text = (txtStatus.text == "Playing")?"Paused" : "Playing";
 break;
 //---- PLAY ----
 case "PLAY":
 if (txtStatus.text != "Playing") {
 soundChannelVar = snd.play(0,1);
 timerPlayHead.start ();
 restoreVolPan();
 timerSpectrum.start();
 txtStatus.text = "Playing";
 trackEnd = false;
 }
 break;
 //---- STOP ----
 case "STOP":
 timerPlayHead.stop();
 txtStatus.text = "Stopped";

CHAPTER 8 ■ USING AUDIO

306

 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 movScrubber.movHead.width = 1;
 txtHeadPosition.text = "0:00";
 break;
 //---- RW ----
 case "RW":
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 timerRW.start();
 txtStatus.text = "Rewind";
 break;
 //---- RW END ----
 case "RWEND":
 timerRW.stop();
 if (!trackStart){
 soundChannelVar = snd.play(playHeadPosition, 1);
 txtStatus.text = "Playing";
 restoreVolPan();
 timerSpectrum.start();
 }
 break;
 //---- FF ----
 case "FF":
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 timerFF.start();
 txtStatus.text = "Fast Forward";
 break
 //---- FF END ----
 case "FFEND":
 timerFF.stop();
 if (!trackEnd){
 soundChannelVar = snd.play(playHeadPosition,1);
 txtStatus.text = "Playing";
 restoreVolPan();
 timerSpectrum.start();
 }
 break;
 default:
 trace("BUTTON COMMAND ERROR");
 break;
 }
}

CHAPTER 8 ■ USING AUDIO

307

There are a number of conditional code segments in here, nearly all of which are based on the premise that you
need to take note of the playhead position, the volume, and the pan settings before you stop the sound playing and
execute fast-forward, rewind, pause, and so on, so that you can restart the sound playing with its previous settings still
intact. For this, you use two functions: storeVolPan() and restoreVolPan(). Also, you will notice that the playhead
timer is started and stopped on the start and stop buttons.

Add the following code to your Sounds.as file:

//Store volume and pan settings for reapplication
private function storeVolPan():void {
 playHeadPosition = soundChannelVar.position;
 tempVol = stVolume.volume;
 tempPan = stVolume.pan;
}

//Restore pan and volume settings
private function restoreVolPan():void {
 stVolume.pan = tempPan;
 stVolume.volume = tempVol;
 soundChannelVar.soundTransform = stVolume;
}

You have used a single switch/case statement to deal with every button press event or delegate it as appropriate.
Dispatching your own event allows you to send extra parameters in the dispatched object, and you’ll be interrogating
it for a variable called command. This is a String that contains the type of command that a particular button fired
off (such as STOP, RW, FF, or FFEND). Once a case has been made, it will set the status text field to reflect this change
in status; record the volume, pan, and playhead positions; and execute the appropriate function(s) to carry out the
command’s native request.

The Pause switch case statement toggles between play and pause by using a pauseStatus Boolean variable
because the Sound class does not have an actual pause function. If you wanted to, you could extend the Sound class to
include such a thing, almost exactly as you have done here.

The Play event restarts the sound file playing from the beginning, but restores the volume and pan settings in
case they have been changed. It also starts the spectrum timer running to take the sound spectrum snapshot.

The Stop event stores the present user-defined volume and pan settings. It then stops the SoundChannel to which
the Sound instance is assigned. Next, it does a little housekeeping by moving the playhead back to the beginning and
making sure the numerical representation of the playhead is returned to zero. It also stops the sound spectrum timer
and clears the sound spectrum sprite.

The FF/FFEND and RW/RWEND events also require special consideration. When the FF and RW buttons are pressed,
they are required to fire off a Timer event to accommodate the need for the playhead increment or decrement for as
long as the buttons are held down. They also have the job of stopping the sound spectrum timer and clear the sound
spectrum sprite.

Let’s add the Timer declarations to the Sounds.as class file constructor now:

timerFF = new Timer(100, 0)
timerFF.addEventListener(TimerEvent.TIMER, this.runFF);
timerRW = new Timer(100, 0)
timerRW.addEventListener(TimerEvent.TIMER, this.runRW);

CHAPTER 8 ■ USING AUDIO

308

Now you need to write the functions they call. These Timer event handlers, which normally just increment or
decrement the playhead, will also check for the exception that the playhead is equal to 0 (the beginning of the track)
or to the total track length (the end of the track), and set the trackStart or trackEnd Boolean values to true to reflect
whichever status has been achieved in such an event. They then do some housekeeping by resetting the numerical
representation of the playhead, resetting the width of the scrub head movie clip, and setting the status text to notify
the user that one of these exceptions has been reached. The users are at liberty to press the play button at this point in
order to start playing the sound file again. Add the following code for these two functions to your Sounds.as file:

//Fast Forward
private function runFF(event:TimerEvent):void {
 if (playHeadPosition < trueChronoLength) {
 playHeadPosition += 1000;
 movScrubber.movHead.width = ((Math.floor(playHeadPosition)
 /trueChronoLength) * 100) * 4;
 } else {
 trackEnd = true;
 txtHeadPosition.text = txtTrackLength.text;
 txtStatus.text = "End of track";
 movScrubber.movHead.width = 400;
 }
}

//Rewind
private function runRW(event:TimerEvent):void {
 if (playHeadPosition > 1) {
 playHeadPosition -= 1000;
 movScrubber.movHead.width = ((Math.floor(playHeadPosition)
 /trueChronoLength)*100)*4;
 } else {
 trackStart = true;
 txtHeadPosition.text = "0:00";
 txtStatus.text="Start of track";
 movScrubber.movHead.width = 1;
 }
}

Upon releasing the FF or RW button , the associated timer is stopped, and a check is done to see whether the
trackEnd or trackStart Boolean were set to true. If not, the track is allowed to play from its newly incremented or
decremented position, and the last-known volume and pan settings are applied.

Controlling the Sound Volume and Panning
Now let’s look at controlling the sound file’s volume and panning. There is one important consideration before you
start coding: if users have played the sound once and paused, stopped, or otherwise interacted with its timeline, they
may well have set and reset the volume and pan settings. These settings need to be stored, recalled, and reapplied to
the sound file when it is restarted or replayed. To the users, these are global settings, affecting any sound that they load
and play, and they will not expect the volume or pan to change once they have been set. This will extend our basic
button control functionality.

CHAPTER 8 ■ USING AUDIO

309

Now you need to control how loud the sound file plays back and the balance of volume from each speaker
channel. You’ll be using the SoundTransform class for this, as explained earlier in the chapter. You’ll see that you
have already imported the class and defined an instance of it (called stVolume). Add the following line of code to the
Sounds.as class file constructor:

stVolume = new SoundTransform();

You also need some form of graphical volume and pan control mechanisms. For this example, you’re using the
Slider component (see Figure 8-7).

Figure 8-7. The Slider component

I have already added two of these components to the demo FLA file: one for volume and one for panning,
as shown in Figure 8-8.

Figure 8-8. The sliders in the final application

CHAPTER 8 ■ USING AUDIO

310

As you can see, I have set the scale from a minimum of 0 to maximum of 100, to give the user a percentage setting
for the volume, and defaulted it to start at 50, so it will be in the middle range initially. The pan settings are only
slightly different in that the SoundTransform.pan range is –1.0 to 1.0, so the minimum and maximum values are
–100 and 100, respectively. The default value is 0 to start with the sound balanced.

I have called these instances volumeSlider and panSlider. In order to use them, you just need to add event
listeners to them.

Add the following lines to your Sounds.as class file constructor:

//Set volume controls
volumeSlider.addEventListener(SliderEvent.CHANGE,
onVolSliderChange);
panSlider.addEventListener(SliderEvent.CHANGE, onPanSliderChange);

Add these functions to your Sounds.as class file also to set the pan and volume defaults:

//Set volume
private function onVolSliderChange(evt:SliderEvent):void {
 stVolume.volume = (evt.value / 100);
 soundChannelVar.soundTransform = stVolume;
}

//Set pan
private function onPanSliderChange(evt:SliderEvent):void{
 stVolume.pan = (evt.value / 100);
 soundChannelVar.soundTransform = stVolume;
}

The event object that is returned to the event handler contains a value Number variable. This reflects the relative
position in either the volume or pan range that you assigned, based on where the slider was set. This value needs
to be converted into the SoundTransform class’s native pan or volume range (1.0 through 1.0, or 0.0 through 1.0,
respectively), so that it can be applied to the SoundTransform and that, in turn, can be applied to the SoundChannel.

Figure 8-9. Slider component parameter settings

The parameters for the Slider components have been set, as shown in Figure 8-9.

CHAPTER 8 ■ USING AUDIO

311

So now your Sounds.as class file is complete and should look like this:

package com.fas3.smc {
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.media.SoundLoaderContext;
 import flash.media.SoundTransform;
 import flash.media.SoundMixer;
 import flash.media.ID3Info;
 import flash.events.Event;
 import flash.utils.ByteArray;
 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.net.URLRequest;
 import flash.text.TextField;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import fl.controls.Slider;
 import fl.events.SliderEvent;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.GlowFilter;

 public class Sounds extends MovieClip {
 private var snd:Sound;
 private var soundChannelVar :SoundChannel;
 private var buffer:SoundLoaderContext;
 private var timerLoading:Timer;
 private var timerPlayHead:Timer;
 private var timerFF:Timer;
 private var timerRW:Timer;
 private var timerSpectrum:Timer;
 private var barWid:int = 200;
 private var barHi:int = 5;
 private var bytLoaded:int;
 private var bytTotal:int;
 private var pctLoaded:int;
 private var trueChronoLength:Number;
 private var txtStatus:TextField;
 private var txtTrackLength:TextField;
 private var txtHeadPosition:TextField;
 private var txtArtist:TextField;
 private var txtTitle:TextField;
 private var movScreen:MovieClip;
 private var movScrubber:MovieClip;
 private var multiplier:Number;
 private var nsMinutes:Number;
 private var nsSeconds:Number;
 private var pauseStatus:Boolean;
 private var playHeadPosition:Number;
 private var volumeSlider:Slider;
 private var panSlider:Slider;
 private var stVolume:SoundTransform;

CHAPTER 8 ■ USING AUDIO

312

 private var tempVol:Number = 0.5;
 private var tempPan:Number = 0;
 private var trackEnd:Boolean;
 private var trackStart:Boolean;
 private var baSpectrum:ByteArray;
 private var grFrequency:Sprite;
 private var w:uint = 1;
 private var spread:Number;
 private var glow:GlowFilter;

 //CONSTRUCTOR
 public function Sounds(movScreen:MovieClip, movScrubber:
MovieClip, txtStatus:TextField, txtHeadPosition:TextField,
txtTrackLength:TextField, txtArtist:TextField, txtTitle:TextField,
volumeSlider:Slider, panSlider:Slider) {
 //Set movies and text fields to local references and
 // to start positions and contents
 this.movScreen = movScreen;
 this.movScrubber = movScrubber;
 this.txtStatus = txtStatus;
 this.txtHeadPosition = txtHeadPosition;
 this.txtTrackLength = txtTrackLength;
 this.txtArtist = txtArtist;
 this.txtTitle = txtTitle;
 this.volumeSlider = volumeSlider;
 this.panSlider = panSlider;
 movScrubber.movLoaderBar.width = 1;
 txtStatus.text = "AWAITING LOCATION";

 buffer = new SoundLoaderContext(5000);//buffer size in ms
 stVolume = new SoundTransform();
 baSpectrum = new ByteArray();
 grFrequency = new Sprite();
 grFrequency.x = 0;
 grFrequency.y = 200;
 movScreen.movSpectrum.addChild(grFrequency);
 glow = new GlowFilter()

 //Set volume controls
 volumeSlider.addEventListener(SliderEvent.CHANGE, onVolSliderChange);
 panSlider.addEventListener(SliderEvent.CHANGE, onPanSliderChange);

 //Add Timers
 timerLoading = new Timer(100, 0);
 timerLoading.addEventListener(TimerEvent.TIMER, onLoading);
 timerLoading.start();
 timerPlayHead = new Timer(500, 0);
 timerPlayHead.addEventListener(TimerEvent.TIMER, this.headPosition);
 timerFF = new Timer(100, 0)
 timerFF.addEventListener(TimerEvent.TIMER, this.runFF);
 timerRW = new Timer(100, 0)

CHAPTER 8 ■ USING AUDIO

313

 timerRW.addEventListener(TimerEvent.TIMER, this.runRW);
 timerSpectrum = new Timer(100, 0);
 timerSpectrum.addEventListener(TimerEvent.TIMER, onSpectrum);
 //NB don't forget to stop the Timer when finished
 }

 //---------------- Load song into Sound instance ----------------
 public function loadSong(song:String):void {
 snd = new Sound(new URLRequest(song), buffer);
 //Add event listeners for completion of loading and for ID3
 //information
 snd.addEventListener(Event.ID3, id3Handler)
 }

 //----------------- Loader Timer handler -----------------------
 private function onLoading(event:TimerEvent):void {
 bytLoaded = snd.bytesLoaded;
 bytTotal = snd.bytesTotal;
 if ((bytTotal >=bytLoaded) && (bytLoaded > 0)) {
 if (txtStatus.text != "Playing") {
 txtStatus.text = "Loading";
 }
 movScrubber.movLoaderBar.width = ((bytLoaded / bytTotal) * 100) * 4;
 if (bytLoaded == bytTotal) {
 if (txtStatus.text == "Loading") {
 txtStatus.text = "Load Complete";
 }
 timerLoading.stop();
 }
 }
 }

 //------------------ HEAD POSITION & COUNT --------------------
 private function headPosition(event:TimerEvent):void {
 multiplier = (1 / (snd.bytesLoaded / snd.bytesTotal));
 trueChronoLength = snd.length*multiplier;
 if (txtStatus.text == "Playing") {
 if (trueChronoLength > 0) {
 movScrubber.movHead.width = ((Math.floor
 (soundChannelVar.position)/trueChronoLength)*100)*4;
 }

 //Set timer display text field
 nsMinutes = Math.floor((soundChannelVar.position / 1000)/ 60);
 nsSeconds = Math.floor((soundChannelVar.position / 1000)% 60);
 if (nsSeconds < 10) {
 this.txtHeadPosition.text = nsMinutes.toString() + ":0" + nsSeconds.toString();
 } else {
 this.txtHeadPosition.text = nsMinutes.toString() + ":" + nsSeconds.toString();
 }
 }

CHAPTER 8 ■ USING AUDIO

314

 //Set track total length display text field
 var tlMinutes:int = Math.floor((trueChronoLength / 1000)
 / 60);
 if (tlMinutes < 1){
 tlMinutes = 0
 }
 var tlSeconds:int = Math.floor((trueChronoLength / 1000)
 % 60);
 if (tlSeconds < 10) {
 txtTrackLength.text = tlMinutes.toString() + ":0" +
 tlSeconds.toString();
 } else {
 txtTrackLength.text = tlMinutes.toString() + ":" +
 tlSeconds.toString();
 }
 }

 //----------------- ID3 information event handler -----------------
 function id3Handler(event:Event):void {
 var song:Sound = Sound(event.target);
 //The ID3Info class translates the ID3 tags into more
 //legible calls for the information - e.g., TPE1 becomes
 //artist
 var songInfo:ID3Info = ID3Info(song.id3);
 for (var xx in songInfo) {
 trace("ID3 - " + xx + " is " + songInfo[xx]);
 }
 txtArtist.text = songInfo.artist;
 txtTitle.text = songInfo.songName;
 }

 //------------------COMPUTE SPECTRUM ------------------------
 private function onSpectrum(evt:Event):void {
 SoundMixer.computeSpectrum(baSpectrum, true);
 //SoundMixer.computeSpectrum(baSpectrum, false);
 grFrequency.graphics.clear();
 grFrequency.graphics.beginFill(0x00FF00);
 grFrequency.graphics.moveTo(0, 0);
 for (var i:int = 0; i < 512; i += w) {
 spread = (baSpectrum.readFloat() * 150);
 grFrequency.graphics.drawRect(i, 0, w, -spread);
 }
 // Apply the glow filter to the gr graphic.
 glow.color = 0x009922;
 glow.alpha = 1;
 glow.blurX = 25;
 glow.blurY = 25;
 glow.quality = BitmapFilterQuality.MEDIUM;
 grFrequency.filters = [glow];
 }

CHAPTER 8 ■ USING AUDIO

315

 //----------------- CONTROL BUTTONS ---------------------------
 public function onControlCommand(evt:MediaControlEvent):void {
 switch(evt.command) {
 //---- PAUSE ----
 case "PAUSE":
 if (pauseStatus) {
 //Play offset, number of loops:
 soundChannelVar = snd.play(playHeadPosition, 1);
 restoreVolPan();
 timerSpectrum.start();
 pauseStatus = false;
 } else {
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 pauseStatus = true;
 }
 txtStatus.text = (txtStatus.text == "Playing") ?
 "Paused" : "Playing";
 break;
 //---- PLAY ----
 case "PLAY":
 if (txtStatus.text != "Playing") {
 soundChannelVar = snd.play(0, 1);//Play offset, number of loops
 timerPlayHead.start();
 restoreVolPan();
 timerSpectrum.start();
 txtStatus.text = "Playing";
 trackEnd = false;
 }
 break;
 //---- STOP ----
 case "STOP":
 timerPlayHead.stop();
 txtStatus.text = "Stopped";
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 movScrubber.movHead.width = 1;
 txtHeadPosition.text = "0:00";
 break;
 //---- RW ----
 case "RW":
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 soundChannelVar.stop();
 timerRW.start();
 txtStatus.text = "Rewind";
 break;

CHAPTER 8 ■ USING AUDIO

316

 //---- RW END ----
 case "RWEND":
 timerRW.stop();
 if (!trackStart) {
 //Play offset, number of loops:
 soundChannelVar = snd.play(playHeadPosition, 1);
 txtStatus.text = "Playing";
 restoreVolPan();
 timerSpectrum.start();
 }
 break;
 //---- FF ----
 case "FF":
 timerSpectrum.stop();
 grFrequency.graphics.clear();
 storeVolPan();
 sc.stop();
 timerFF.start();
 txtStatus.text = "Fast Forward";
 break;
 //---- FF END ----
 case "FFEND":
 timerFF.stop();
 if (!trackEnd) {
 //Play offset , number of loops:
 soundChannelVar = snd.play(playHeadPosition,1);
 txtStatus.text = "Playing";
 restoreVolPan();
 timerSpectrum.start();
 }
 break;
 default:
 trace("BUTTON COMMAND ERROR");
 break;
 }
 }

 //Fast Forward
 private function runFF(event:TimerEvent):void {
 if (playHeadPosition < trueChronoLength) {
 playHeadPosition += 1000;
 movScrubber.movHead.width = ((Math.floor(playHeadPosition)
 / trueChronoLength) * 100) * 4;
 } else {
 trackEnd = true;
 txtHeadPosition.text = txtTrackLength.text;
 txtStatus.text = "End of track";
 movScrubber.movHead.width = 400;
 }
 }

CHAPTER 8 ■ USING AUDIO

317

 //Rewind
 private function runRW(event:TimerEvent):void {
 if (playHeadPosition > 1) {
 playHeadPosition -= 1000;
 movScrubber.movHead.width = ((Math.floor(playHeadPosition) /
 trueChronoLength) * 100) * 4;
 } else {
 trackStart = true;
 txtHeadPosition.text = "0:00";
 txtStatus.text="Start of track";
 movScrubber.movHead.width = 1;
 }
 }

 //Store volume and pan settings for reapplication
 private function storeVolPan():void {
 playHeadPosition = soundChannelVar.position;
 tempVol = stVolume.volume;
 tempPan = stVolume.pan;
 }

 //Reapply pan and volume settings
 private function restoreVolPan():void {
 stVolume.pan = tempPan;
 stVolume.volume = tempVol;
 soundChannelVar.soundTransform = stVolume;
 }

 //Set volume
 private function onVolSliderChange(evt:SliderEvent):void {
 stVolume.volume = (evt.value / 100);
 soundChannelVar.soundTransform = stVolume;
 }

 //Set pan
 private function onPanSliderChange(evt:SliderEvent):void {
 stVolume.pan = (evt.value / 100);
 soundChannelVar.soundTransform = stVolume;
 }

 }
}

CHAPTER 8 ■ USING AUDIO

318

Creating the Custom Event Class
Now it’s time to create the custom MediaControlEvent.as class. You will use this to fire off button interaction events.
This is the same event class you used for the video player example in the previous chapter, so if you’ve already written
it, just open the file again and save it to your audio project directory. If not, open a new ActionScript file and save it as
MediaControlEvent.as, and put the following code in it:

package com.fas3.smc {
 import flash.events.Event;

 public class MediaControlEvent extends flash.events.Event {
 public static const CONTROL_TYPE:String = "headControl";
 public var command:String;

 public function MediaControlEvent(command:String):void {
 super(CONTROL_TYPE);
 this.command = command;
 }
 }
}

This class simply extends the Event class, and works as described in the previous chapter.
And that completes this example. Save all your classes and publish your FLA file. You’ll have a working MP3 player.

Summary
This chapter covered the basics of working with audio. You have learned how to do the following:

Load an MP3 file or access the microphone•฀

Monitor and report on MP3 load and play status•฀

Read and display ID3 metadata•฀

Represent the sound data graphically using the sound spectrum•฀

Control MP3 loading and playback•฀

You can experiment with the MP3 player you built in this chapter and see what else you can do with it.
For example, you might add more aesthetically pleasing effects to the sound spectrum display. You could add a file list
so you could browse the MP3 files and choose one to load. You could experiment with voice interaction and control.
And you could create a multichannel sound mixer. The generic reference information presented in this chapter will be
useful for pretty much any MP3–based ActionScript 3.0 project you want to try.

The next chapter covers the components that are available in ActionScript 3.0 and how they can help you quickly
create standardized functional objects.

319

CHAPTER 9

Working with Components

This chapter covers the following topics:

Components in the context of ActionScript•฀

The benefits of working with components•฀

The makeup of the Flash component framework•฀

Scripting interactions with components•฀

The process of skinning components•฀

How to build your own components•฀

How to get more components•฀

Up to this point in the book, you’ve been working with the objects in ActionScript that are built into the core
language. These objects include the display list items Sprite and MovieClip; and top-level objects such as Array,
String, and Number. For additional functionality, you’ve explored building your own classes from scratch or extending
the existing classes, as in the iPod example in Chapter 3.

Sometimes, other developers have built additional functionality that you can use within your own projects. This
functionality might be in the form of a class Library from which you could create instances. Often, in the context of
Flash and ActionScript, the additional functionality comes in the form of a special kind of class Library built off the
display list, providing drag-and-drop widgets to place in your applications or instantiate through code. These drag-
and-drop widgets are called components in Flash lingo. If you understand what components are and what they can
do, they can help speed up your development and add some pretty cool features to your projects.

If you’re a Flex user, note that this chapter is necessarily focused on the Flash CC IDE and its
components framework. The Flex framework is a more robust and complex application framework
that includes its own UI component classes—many more than are available by default in Flash.
However, the concept for scripting interaction between components is still applicable. And perhaps
more important, components can be developed using the graphical timeline in Flash CC for use
within Flex.

Just What are Components?
Components are items in your Library just like any other movie clip symbol. In fact, all components must extend
Sprite or MovieClip, and so are, by default, display objects that can be added to the display list. On that level, they are
not much different from a graphic object drawn and then turned into a movie clip symbol. At that point in the game,
each symbol instance can have different properties set—such as x, y, alpha, and rotation—all done visually on the
stage in the IDE.

CHAPTER 9 ■ WORKING WITH COMPONENTS

320

What makes components different and special is that in addition to the familiar display object settings, any
number of additional parameters might be available for you to set in the IDE (through the Parameters panel). For
example, the CheckBox component that comes with Flash CC has three additional parameters not standard to other
sprites, but important for check boxes: label, labelPlacement, and selected.

So, in that light, components are extended sprites or movie clips that add specific functionality, usually for
use within a UI. Components available with the standard installation of Flash CC include Button, CheckBox,
ColorPicker, ComboBox, and many more. You can place instances of each type of component on the stage and
configure them to act differently from other instances, so that two Button components could have two different labels,
and three ComboBox components could have different lists of items.

Although components are display objects and are generally UI widgets, that is not to say that they
must be. A component might be nonrendering, meaning it would not draw any graphics within
itself and would simply provide additional functionality for a movie. In that case, it would be only
a Library item so that it could be dragged onto the stage and configured using the Parameters
panel, but at runtime it would be invisible, or perhaps purposely remove itself from the display list.
We won’t explore this nonrendering type of component in this chapter, but you should be aware
that these are valid forms of components as well.

Accessing Your Components
To add a component to your Flash file, you can drag it in from the Components panel or simply double-click it in the
Components panel, and it will be added to the center of the stage. You can open this panel by selecting Window ➤
Components from the main menu. One folder in the Components panel contains general UI controls such as Button,
List, and Slider. The other folder contains controls for video playback, including the FLVPlayback component.
With both of its folders expanded, this panel should appear as shown in Figure 9-1.

CHAPTER 9 ■ WORKING WITH COMPONENTS

321

To add any of these components to your file, simply drag and drop the items onto your stage or directly into your
Library. In either case, the components will then appear in your Library. You can drag additional instances from your
Library, as opposed to having to access the Components panel again.

Figure 9-1. The Components panel with its two folders expanded

CHAPTER 9 ■ WORKING WITH COMPONENTS

322

Some components are made of multiple subcomponents, so don’t be surprised if by adding one component to
your file you get several in your Library. For instance, if you add the ComboBox component to your Library, you’ll find
that the List and TextInput components come with it, as shown in Figure 9-2. This is one advantage of the modular
style in which components are often created. With the ComboBox component added to your file, you can also create
instances of the TextInput or List component without any additional file size cost. Nice!

Figure 9-2. A Flash file’s Library after the ComboBox component has been dragged into it, bringing its subcomponents
along

Of course, you do not necessarily need to drag and drop component instances onto the stage to use them. Just as
with any other symbol, once a component is in the Library, you can create a new instance by using the new keyword in
ActionScript (hey, this is still an ActionScript book, right?), as long as it is set to be exported for ActionScript in the first
frame, which all Flash CC components are by default. So, for instance, to create a new instance of the ComboBox class,
you would use this code:

import fl.controls.ComboBox;

var combo:ComboBox = new ComboBox();
addChild(combo);

Keep in mind that when working with ActionScript and components, the component must also exist
in the Library. Therefore the previous code will execute only if there is a ComboBox component in
the Library.

Adjusting Component Parameters
Now you have components accessible in your Flash file through your Library, but how exactly can you configure an
instance? Well, here’s the answer! When you have a component selected on the stage, you can use the Component
Parameters panel from the Properties window (Windows ➤ Properties) to populate components with all the
wonderful options available for editing through the IDE for that component instance (there might be more available
through ActionScript). Let’s take a look at an example.

CHAPTER 9 ■ WORKING WITH COMPONENTS

323

 1. Create a new Flash file for ActionScript 3.0. Open the Components panel if it is not
currently open (Windows ➤ Components).

 2. Expand the User Interface folder in the Components panel and drag a Button
component onto your stage. Notice that the button symbol now appears in your Library,
along with the Component Assets folder, which contains the button symbol’s skins
(among other things).

Figure 9-3. A Button component is added to the stage, and thus also appears in the Library

 3. Select the Button instance on the stage if it is not currently selected, and then open the
Properties window to find the Component Parameters panel.

Seven parameters are available under the Component Parameters group: emphasized,
enabled, label, labelPlacement, selected, toggle, and visible (see Figure 9-4). The
values in the left column of the grid are the names of the configurable properties. The
values in the right column are the current values of the properties and are all editable.

CHAPTER 9 ■ WORKING WITH COMPONENTS

324

 4. Click the cell that says Label in the right column, which is the current value of the label
property. The word becomes highlighted and you can overwrite it with your own string.
Type in My Button and press Enter.

Did you notice what happened on the stage? Your Button instance now has My Button as
its label, giving you instant feedback to your change, as shown in Figure 9-5. This sweet
little feature is called Live Preview, and it allows components to update based on certain
properties (unfortunately, some properties are not reflected; for instance, changing a skin
does not update the skin of the Live Preview). Keep an eye on the instance on the stage as
you edit to see how your changes are represented (or else the engineer who developed this
fantastic feature will go cry in the corner).

Figure 9-4. The available parameters for a Button instance, accessed through the Component Parameters panel

Figure 9-5. The Button’s Live Preview shows the label updated with the new value

 5. Click the checkbox in the second column next to the emphasized property. When checked,
you will see the component update to emphasized.

 6. Click the right value next to the labelPlacement property and select left from the list
of four items. Nothing happens! In this case, the parameters here are a little misleading
because they show options that are applicable only to coded items. labelPlacement
affects only Button instances that have icons (in which case the labelPlacement
parameter controls on which side of the icon the label is placed), and icons can be set only
through ActionScript. So changing this value here does nothing unless you write some
code to add an icon to this or all Button instances.

CHAPTER 9 ■ WORKING WITH COMPONENTS

325

 7. Change the selected property from false to true by checking the checkbox. Again,
nothing happens! In this case, it is because the selected property of a Button instance is
directly tied to whether the button is set to toggle. A button that does not toggle cannot
be selected. So if you change the toggle property to true as well, then you should see the
Button instance change to show it is selected. If you test your movie, you should see that
the instance starts out selected and can be toggled between states. Figure 9-6 shows the
Component Parameters and component after making all these changes to the properties.

Figure 9-6. The Button instance with its selected, toggle, and emphasized properties set to true

Don’t get frustrated by the Component Parameters panel. At this point, it pays to know where to
find information about all your components and why properties might not be working as expected.
That information is available through the ActionScript 3.0 Language and Components Reference
in your Flash Help (select Help ➤ Flash Help, press F1, or navigate to http://help.adobe.com/
en_US/FlashPlatform/reference/actionscript/3/index.html in your browser). From there, open the
Classes folder, and you will see all ActionScript classes, including the components. You can browse
each component’s properties here (as well as methods, styles, and events, with sample code) to
investigate just what is configurable and how.

Well, there you go! The component framework in Flash CC and ActionScript 3.0 was intentionally simplified
from the previous version to make components more lightweight. This makes the framework easier to work with for
developing applications and movies using the Flash graphical environment (with the thought that more complex
application development that requires more advanced features would be done using the Flex framework).

Benefits of Working with Components
We have looked at what components are, how to add them to your files, and how to configure them. A big remaining
question is why you would want to do such a thing. Well, here’s a list:

•฀ Rapid prototyping: Do you need to put an application together fast, fast, fast? Components,
with their ready-to-use, often complex functionality, make it a cinch to put together an
interface of standard UI widgets in no time.

•฀ No need to reinvent the wheel: A button might not be a big deal to code in itself, but when
you add on functionality such as icons, labels, and toggling, it gets a lot more complex than
you might expect. Others have coded it already. Why not leverage the work already done?

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

CHAPTER 9 ■ WORKING WITH COMPONENTS

326

•฀ Easy to have minor differences in widgets: You need one button with a label; another with
a label and an icon. You have one check box with the label on the right, another with the
label on the left, and another with its label twice as big as all other instances. These minor
differences between instances can be handled by a properly coded component, while keeping
base functionality and graphical appearance consistent among all instances.

•฀ Conforming functionality: One complaint against Flash interfaces is the lack of conformity
among different applications, potentially causing frustration for the users who must “learn”
an interface before using it. Using standard components, such as those available in the Flash
component framework, helps to reduce this potential frustration.

•฀ More OOP-like development: OOP is something that you are already doing with
ActionScript, perhaps without really being aware of it. As explained in Chapter 1, OOP is a
method of programming in which distinct, self-contained objects (think of Sprite and Array
instances) interact with each other in a recommended pattern that maintains a separation
of responsibility. You don’t need to understand this fully or be a die-hard OOP proponent to
know that by using self-contained widgets with clearly defined APIs, you are building in more
of an OOP manner, which will make it easier to develop and maintain your code.

•฀ Something for everyone: A lot of components are out there—not just the ones available
with the standard Flash CC installation—that will do pretty much anything you could need. If
you don’t have the time to develop from scratch, chances are someone else already has. The
“Using third-party components” section at the end of the chapter discusses where you might
find more components to use.

Exploring the Flash Component Framework
The ActionScript 3.0 components come in two broad categories: UI and Video components, and both sets can be
accessed from your Components panel.

UI Components
The UI components consist of the following widgets:

•฀ Button: This is the most common UI element, which allows a user to click for an action. The
Button component also lets you set a label and/or icon, and allows for toggling behavior,
meaning that the button can stay in one of two states: selected or unselected.

•฀ CheckBox: Similar to the Button component set to toggle, this component has selected and
unselected states, usually represented by a check mark within a box (the name says it all,
doesn’t it?). A label, if added, is placed to the side of the box.

•฀ ColorPicker: This component allows a user to set a color based on a pop-up swatch list of
colors laid out in a grid. Alternatively, a color can be set by typing a hex value into a text field
within the pop-up list. The close state of the ColorPicker shows a single swatch with the
selected color.

•฀ ComboBox: This is a drop-down list that displays a scrolling list of options, from which
one can be selected. The selected option then appears displayed in the closed state of the
component. A ComboBox instance can be set as editable, and the way a list item is rendered
is completely configurable (meaning it does not need to be simply a text string; it can be an
image, an image plus text, or anything you need to represent the data).

CHAPTER 9 ■ WORKING WITH COMPONENTS

327

•฀ DataGrid: Probably the most complex of the UI components, the DataGrid represents data in
a scrolling grid of columns and rows, in which each row is a line item with possibly multiple
values laid out across columns, each of which represents a single value. Each column can have
a different way to represent its data, so that one column might have all its values as text, while
another column might use images.

•฀ Label: One of the simpler UI components, a Label is simply a text string that can be single- or
multiple-line, and display regular or HTML text. The benefit of using Label components over
TextField components is that the component framework makes it easy to change formatting
across an entire application.

•฀ List: The List component is useful for displaying arrays of values in a vertically laid out,
scrollable region (the ComboBox, when open, displays a List instance). The way items are
represented in the List component is completely configurable, just as in the ComboBox, so
you are not limited to merely a list of text values.

•฀ NumericStepper: This component allows a user to set a single number from an ordered set of
numbers, through a text field or by clicking up/down arrows that change the value of the text
field. You can configure the range of numbers represented and the interval between numbers.

•฀ ProgressBar: When an application is loading external data or media, it is best to offer the
user feedback on the progress of the loading process, and that is where the ProgressBar
component comes in handy. This component displays a graphical representation of the
state of the load, either in a determinate manner (for example, showing a percentage of the
bytes loaded in) or in an indeterminate manner (for example, showing a looping animation
to assure the user that something is occurring, though it does not represent a percentage of
bytes).

•฀ RadioButton: This component is like a CheckBox in a group. When there are multiple
RadioButton instances grouped together (programmatically, not graphically), only one option
within the group can be selected at one time. This is great if there are a small number of
options from which only one may be selected, and one must be selected for validation. A good
example of this is male/female options on a user registration page.

•฀ ScrollPane: This component offers a way to display other display objects and externally
loaded images within a scrollable region. You can use this if you need to limit the area in
which a display object may be viewed, but you want to allow the user to scroll to any area of
that display object. This is useful not only for loaded images when there is limited screen real
estate but also for forms that contain many controls, where you need to scroll vertically.

•฀ Slider: This component allows the user to select a numeric value by dragging a slider thumb
either horizontally or vertically within a defined region. The range represented, the interval
between numbers that can be selected (for instance, if you only want integers or if you want
decimal values), and the tick marks are configurable.

•฀ TextArea: This component is a useful multiline input field that can optionally display
scrollbars. If you need a user to enter any moderately large amount of data, or you wish
to display such data (you can set a TextArea instance to be noneditable), this is a great
component to use.

•฀ TextInput: This component is the little brother of the TextArea component, allowing only a
 single line of input. This is useful for when smaller amounts of data need to be entered, like a
username, a password, or an e-mail address.

CHAPTER 9 ■ WORKING WITH COMPONENTS

328

•฀ TileList: This component is most useful for displaying a scrollable grid of image data in a
specified number of columns and rows (you can also configure the component to display
only a single scrollable row or column). Like the other list components (List, ComboBox, and
DataGrid), the TileList allows you to configure the way that tiles are displayed, so if the default
method of displaying a tile isn’t what you need, you can create your own class to represent a
tile in the manner required.

•฀ UILoader: UILoader components are used to retrieve and display any content that exists
outside of Flash. This content can include SFW, JPG, PNG, and GIF files. The UILoader
component also gives you the ability to resize its contents.

•฀ UIScrollBar: Scrollbars are ubiquitous and necessary in complex applications that are now
commonplace, so thank goodness that the Flash component framework includes its own.
Use the UIScrollBar component when you need to scroll a visual region. Often, using the
ScrollPane is easier for scrolling display objects that need to be masked, but the UIScrollBar
is most useful for text fields that need to be scrolled when you don’t want to deal with a
TextArea component.

Figure 9-7 shows most of the UI components laid out on the stage.

Figure 9-7. The UI components on display

Video Components
The video components are built a little differently from the UI components and are specifically targeted for
playback and interaction with video. Only two of the video components are in the form of movie clip symbols with
customizable parameters: FLVPlayback and FLVPlaybackCaptioning. The other components that appear in the
Components panel under the Video folder—such as PlayButton, SeekBar, and VolumeBar—are skins that can be
used to customize the controls of an FLVPlayback component. All you need to do is drag them to the stage, and they
will automatically work with the FLVPlayback component; there is no parameter configurability.

Let’s take a look at the two configurable video components. The FLVPlayback component is shown in
Figure 9-8, but the FLVPlaybackCaptioning component is nonrendering, so it does not appear in the screenshot of
the published SWF.

CHAPTER 9 ■ WORKING WITH COMPONENTS

329

•฀ FLVPlayback: This component fulfills almost all your video playback needs. It can load
and play both progressively downloaded and streaming video, and there is a wide variety of
customizable controls for such common functionality, such as play/pause toggling, volume
control, back and forward buttons (when playing a list of videos), and a seek bar for showing
the playhead position. Skins are all assigned from externally loaded SWFs and come with
many different options.

•฀ FLVPlayback 2.5: This is an updated version of the FLVPlayback component that adds
support for dynamic streaming and DVR features of Adobe Flash Media Server 3.5.

•฀ FLVPlaybackCaptioning: This component doesn’t actually have any graphic
representation, but instead adds functionality to an FLVPlayback component. Using an
FLVPlaybackCaptioning component, you can specify XML to load with your video. This
XML can list time codes in a single FLV file or in multiple FLV files, text that should be shown
at those times (represented in a format known as timed text), and the text formatting that
should be applied. When the video plays back, the caption text will appear over it. Through
code, you can have the text appear elsewhere by listening for change events and updating
your own text display.

As mentioned previously, the remaining components in the Video folder in the Components panel are controls
that can be used to build and skin your own layout for the FLVPlayback controls. The workflow for this would be to
set the skins parameter of your FLVPlayback instance to None; then drag the desired controls from the Components
panel to the stage in whatever configuration you need. The components are built so that the FLVPlayback component
and the controls will automatically plug in to each other; you do not need any additional code to wire up things. You
are then free to lay out and skin the controls however you need. See the “Styling and skinning” section later in this
chapter for more on skinning components.

Figure 9-8. An FLVPlayback component with its selected control skins

CHAPTER 9 ■ WORKING WITH COMPONENTS

330

Going Behind the Scenes
Now that we’ve explored briefly what is available for use with the Flash component framework, let’s pop the hood and
take a look at what’s going on to make everything run so smoothly.

 1. Create a new Flash ActionScript 3.0 file to start fresh.

 2. With the Components panel open, drag a Button component to the stage. At this point,
you should see the Button symbol in your Library as well as the Component Assets folder.

 3. Generally, you should never need to go into this folder and can access all you need
through the component symbols (or their instances). But what’s the fun of looking under
the hood if we honor that now? Open the Component Assets folder in your Library.

 4. You will see three more folders: _private, ButtonSkins, and Shared. Expand ButtonSkins
to see all the—you guessed it—button skin symbols, as shown in Figure 9-9. You can enter
editing mode for any of these symbols to change their graphical appearance. However, a
better option for this is to double-click the component symbol or one of its instances, as
you will learn in the “Styling and skinning” section later in this chapter.

Figure 9-9. All the button symbol skins are accessible in the Library

CHAPTER 9 ■ WORKING WITH COMPONENTS

331

 5. Expand the Shared folder. You will see the focusRectSkin symbol. This symbol is used
by many of the components to represent when they have keyboard focus. Several symbols
will appear in this Shared folder, based on which components you have in your Library.
The general rule is that any skin used by multiple components will appear here.

 6. Expand the _private folder. You will see two symbols: Component_avatar and
ComponentShim, as shown in Figure 9-12.

Figure 9-10. The contents of the _private folder in the expanded Component Assets folder

What are these goodies? The Component_avatar symbol is simply a rectangle that is used to size components in
the IDE. Because components behind the scenes are just code, this graphic is used so that you can select and resize
instances on the stage. At runtime, this graphic is removed from the display list in the component. (For all you users of
the V2 components, this serves the same functionality as BoundingBox_mc.)

The ComponentShim symbol is much more interesting. To speed up the compile time of a movie, the component
classes have been precompiled into SWC files. However, SWC files are not editable in the IDE. So, to keep components
precompiled for speed and encapsulation, and yet still offer access for editing skins, all component classes have
been precompiled into the ComponentShim symbol. This means that the component symbol, such as Button, is not
precompiled, so it can be edited, but all the code used to define the Button functionality is precompiled into the
ComponentShim symbol, along with all other UI components. This keeps the code tucked away and ensures faster
compile times, yet still offers access to a component’s skins by double-clicking the symbol or an instance.

That’s pretty sweet! But if all the component classes are compiled into the ComponentShim, why doesn’t the file
size increase enormously with the addition of a single component? After all, dragging a Button component into
your file must also mean that you are getting DataGrid, TileList, and ScrollPane components, right? Actually, no.
Much like when you include multiple import statements in your ActionScript referencing classes you do not use, the
compiler knows to not include the unused component classes. Only if you include the additional components in your
Library will you get the extra components compiled into your SWF because each component’s symbol in the Library is
set to export for ActionScript.

CHAPTER 9 ■ WORKING WITH COMPONENTS

332

Finding the Files
If you use components a lot, want to know better how they are put together, or need to make modifications, you
should know where to find them in your file system.

First, you need to find the directory where you installed Flash. The default directory on Windows is
C:\Program Files\Adobe\Adobe Flash CC, On a Mac, it is /Applications/Adobe Flash CC 2014, right-click
the application and select "Show Package Contents". Within this directory, you should find a Common
subdirectory where you will find Configuration and First Run directories. First Run will include files copied to
your personal user directory the first time you launch Flash under a specific login. The Configuration directory is the
one of interest now. Go ahead and expand that, and you should see subdirectories, as shown in Figure 9-11.

Figure 9-11. The Configuration directory in a default Flash CC installation

The two subdirectories of interest in this discussion of components are Components and Component Source.

Components Directory

If you select the Components directory, you will see two FLAs, as shown in Figure 9-12. Whatever is in this Components
directory will appear in your Components panel in the Flash IDE. The two FLAs, which are named User Interface
and Video, correspond to the two folders in the Components panel you’ve already explored.

CHAPTER 9 ■ WORKING WITH COMPONENTS

333

If you want to open the User Interface FLA, you have to copy it into another directory because Flash already
recognizes this FLA as being open in the Components panel and will not open a second instance. Let’s do that now.

Select the User Interface.fla file in your file system and copy it to your clipboard. Select another directory,
perhaps one associated with this chapter’s files in your personal folders, and paste the file there. Next, double-click
the FLA to open it in Flash. You will see the stage appear, as shown in Figure 9-13.

Figure 9-12. The Components subdirectory in a default Flash CC installation

CHAPTER 9 ■ WORKING WITH COMPONENTS

334

This FLA is merely a container for the components so that they appear in a single folder in the Components
panel. If you ever needed to modify the default skins that appear for any components, as opposed to editing in each
file in which you use a component, you might edit the skins in the User Interface.fla file. In addition, if you ever
wanted to add a component to the User Interface folder in your Components panel, you could add it to this file.
In those cases, however, you would save the file under a new name and copy it into the Components directory within
your user directory for your Flash configuration. For instance, on a Windows machine, the Components directory is
located at C:\Documents and Settings\<user>\Local Settings\Application Data\Adobe\Flash CC\<language>\
Configuration. If you did that and restarted Flash, a new folder would appear in your Components panel and would
contain all the modified components, but the original UI components would remain untouched.

Component Source Directory

The second directory of interest in the Configuration directory is Component Source. Expand Component Source,
and you will see an ActionScript 3.0 directory. Expand the ActionScript 3.0 directory to find FLVPlayback,
FLVPlaybackCaptioning, and User Interface subdirectories, as shown in Figure 9-14.

Figure 9-13. The User Interface.fla open in the Flash IDE

CHAPTER 9 ■ WORKING WITH COMPONENTS

335

Select the User Interface directory and notice that it contains a ComponentShim.fla file. This is the file that
includes all the uncompiled component symbols for each class (not to be confused with the symbols that contain
the skins).

Double-click the ComponentShim.fla file to open it in Flash. Notice that there is nothing on the stage, and no
ActionScript in the timeline or document class is specified. However, the Library contains a symbol for each of the
UI component classes, and each of them is set to export for ActionScript in the first frame. It is this file that is used to
create the compiled symbol, which is then included within each component. If you want to modify the component
source or add more classes to the ComponentShim symbol that appears in each component, this is the file you modify
and recompile.

Now, the ComponentShim is a great trick for helping the compile times in complex applications with many
components (and believe me, compile time can be a real pain in these circumstances), but what if you need access
to that original source code that has been precompiled? Well, thankfully, Adobe has included the source for this
purpose. Expand the fl subdirectory in the User Interface directory, and you will see all the packages containing
the ActionScript files that are used in the components, as shown in Figure 9-15.

Figure 9-14. The Component Source directory contains all the ActionScript source for the component classes

CHAPTER 9 ■ WORKING WITH COMPONENTS

336

Let’s try modifying the source code to see how it might work.

 1. Expand the fl directory and select the core directory within this. You should see two
ActionScript files: InvalidationType.as and UIComponent.as, as shown in Figure 9-16.
All UI components inherit from UIComponent, either directly or indirectly, so if you add
a trace() statement within this class’s constructor, you should see it appear in the Flash
IDE’s Output panel.

Figure 9-16. The ActionScript classes found in the fl/core directory

Figure 9-15. The ActionScript source code for all UI components is found in the User Interface directory in
Configuration/Component Source/ActionScript 3.0.

 2. Copy and rename UIComponent.as so that you have a backup, which is always a good idea
when you are editing an original source file. Even though you will be adding only a single
trace() statement, you want to be sure you can revert the file to its original condition, if
necessary.

CHAPTER 9 ■ WORKING WITH COMPONENTS

337

 3. Double-click UIComponent.as so that it opens in Flash. Although it’s 1,500 lines of
ActionScript, a quick look will show that the majority of the file contains comments, so it’s
not as complex as you might first fear. Find the constructor at line 459, and add the single
line of code shown in bold:

 public function UIComponent() {
 super();
 trace(this);
 instanceStyles = {};
 sharedStyles = {};
 invalidHash = {};

This will simply call the toString() method on the instance of the component that is being created and
send the value to the Output panel.

 4. Create a new Flash ActionScript 3.0 file and drag a Button component from Components
panel on to the stage. Test your movie.

Nothing traces! Let’s think this one through. You know that the components have a
ComponentShim symbol that contains all the precompiled component classes. Because the
classes are precompiled, your trace() statement is not present (it wasn’t there when the
classes were first compiled). So in order to modify this code, does that mean you need to
recompile the ComponentShim and replace it in your file?

Thankfully, the answer to that is no. There is a nice trick to precompiled code, and that is
if the Flash compiler finds uncompiled ActionScript in the classpath while compiling your
SWF, it will use these classes as opposed to the precompiled versions. All that means is that
if you point to the component source code directory, when you test the movie, the Flash
compiler will grab the uncompiled source and ignore the precompiled code, and thus the
trace() statement will be run.

 5. Select File ➤ Publish Settings. On the Flash tab, click the Settings button next to the
ActionScript version drop-down list. This opens the ActionScript 3.0 Settings dialog box,
as shown in Figure 9-17.

CHAPTER 9 ■ WORKING WITH COMPONENTS

338

 6. With the Source Path tab selected, click the Browse To Path button that looks like a folder.
This opens a browse dialog box. Navigate your file system to select the Configuration/
Component Source/ActionScript 3.0/ User Interface directory where the
ActionScript source resides. Click OK, and the path will be entered into the Classpath list,
as shown in Figure 9-18.

Figure 9-17. The ActionScript 3.0 Settings dialog box is where classpaths can be specified

Figure 9-18. An example of multiple components working together to create a simple interface

 7. Click OK to exit the ActionScript 3.0 Settings dialog box, and then click OK again to exit
the Publish Settings dialog box. Test your movie again.

CHAPTER 9 ■ WORKING WITH COMPONENTS

339

You should have noticed two things. First, the compiling of your movie should have taken slightly longer (not
much, because there is just one component, but it might be noticeable). Second, the Output panel should have
opened and traced [object Button]. So now you know that if you ever need to modify the component source, you
can merely point to the source directory, and the compiler will grab the classes from there. Of course, as before, it is
always recommended that you duplicate the original files before making any changes, so that you have a backup in
case you need to restore the previous versions.

Scripting Interaction
Now that you have some familiarity with the components and an idea of what is going on behind the scenes, it’s
time to plug some components together in a simple example. This will demonstrate how easy it is to work with the
components and how they can be made to interact through ActionScript.

You will create a List instance that allows a user to add items to it through a TextInput instance and a Button
instance. If an item is selected in the List instance, the user will be allowed to edit or delete the selected item. Such a
control might be useful for any type of list that a user should be able to add to, such as a shopping cart, a buddy list, or
a group of events. The end result will look like Figure 9-18.

Adding the Components
You’ll begin by adding the components to create the interface.

 1. Create a new Flash ActionScript 3.0 file and save it as editableList.fla into a project
directory for this chapter.

 2. Select Modify ➤ Document from the main menu to open the Document Properties
dialog box. Set the width of the file to 230 px and the height to 200 px. Change the
Background color option to a light gray (#CCCCCC), as shown in Figure 9-19.

Figure 9-19. The document properties for the editableList.fla file

CHAPTER 9 ■ WORKING WITH COMPONENTS

340

 3. Open the Components panel if it’s not currently open (Window ➤ Components).
Drag the Button, Label, List, and TextInput components on to your stage from the
User Interface folder.

 4. Select the List instance on the stage. In the Property inspector, change its dimensions to
200 × 100 and set its position to (15, 15). Leave all its default parameter settings, but give
the instance the name names_li. The _li suffix makes it easy to see that the object is a
List instance.

 5. Select the TextInput instance. In the Property inspector, change its dimensions to
170 × 22 and set its position to (15, 120). Give it the instance name editName_ti
(_ti for TextInput). Keep all its default parameter settings.

 6. Select the Button instance. In the Property inspector, change its dimensions to 22 × 22 and
set its position to (193, 120). Give it the instance name deleteName_bn (_bn for Button). In
the Component Inspector, set the label property to – (a minus sign).

 7. Select the Label instance. In the Property inspector, change its dimensions to 200 × 20
with its position set to (15, 150). This instance does not need a name (you will not be
manipulating it through ActionScript). In the Component Inspector, change its text
property to Enter a name to add to the list. Figure 9-20 shows the results so far.

Figure 9-20. The first four components laid out on the stage

 8. Drag another TextInput instance from your Library (Window ➤ Library) to the stage.
Give it the dimensions 170 × 22 and the position (15, 170). Give it the instance name
addName_ti. All its parameters should remain at their defaults.

 9. Drag another Button instance from the Library to the stage. Name it addName_bn.
Make its dimensions the same as the other Button instance, 22 × 22, and set its position to
(193, 170). In the Component Inspector, change its label property to + (a plus sign).

You are now finished with the interface itself, as shown in Figure 9-21. Using components makes it easy to lay out
and align groups of components in the visual editor. Of course, to get those components to do anything useful, you’ll
need some ActionScript to wire everything together.

CHAPTER 9 ■ WORKING WITH COMPONENTS

341

Adding the ActionScript
Create a new ActionScript file and save it as EditableList.as into a package directory named com/foundationAS3/
ch9 that is a subdirectory of where you saved the editableList.fla file from the previous steps. This will be the
package structure for your ActionScript class.

In the ActionScript file, create the package structure, class declaration, and constructor for your EditableList
class. Let’s also include the imports you will need, including the controls classes that are included in your interface.
Note that these controls are found in the fl package, not the flash package that you have been previously using. The
flash package contains all the classes built into the Flash Player runtime. The fl package contains classes provided
for the Flash component framework that come with the Flash CC IDE installation.

package com.foundationAS3.ch9 {

 import fl.controls.Button;
 import fl.controls.List;
 import fl.controls.TextInput;

 import flash.display.Sprite;

 public class EditableList extends Sprite {

 public function EditableList() {
 }

 }

}

You will call an init() method from within the constructor to set up event listeners on all your components.
Add the lines in bold to the EditableList class:

package com.foundationAS3.ch9 {

 import fl.controls.Button;
 import fl.controls.List;
 import fl.controls.TextInput;

Figure 9-21. The completed component interface for the editable list

CHAPTER 9 ■ WORKING WITH COMPONENTS

342

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;

 public class EditableList extends Sprite {

 public function EditableList() {
 init();
 }

 private function init():void {
 addName_bn.addEventListener(MouseEvent.CLICK, onAddName);
 deleteName_bn.addEventListener(MouseEvent.CLICK, onDeleteName);
 editName_ti.addEventListener(Event.CHANGE, onNameChange);
 names_li.addEventListener(Event.CHANGE, onNameSelected);
 }
 private function onAddName(event:MouseEvent):void {
 }

 private function onDeleteName(event:MouseEvent):void {
 }

 private function onNameChange(event:Event):void {
 }

 private function onNameSelected(event:Event):void {
 }

 }

}

Because all the controls components are interactive display objects, they have the same event API that you have
explored previously with Sprite. Each component may have additional events that are dispatched based on the type
of component. For instance, the CHANGE event is dispatched from a List instance whenever the selection in the List
instance changes. You will use this CHANGE event to update the other controls based on the selection. The CHANGE event
is also dispatched from a TextInput instance when its text is changed. You will use this event from editName_ti to
update the data in the List instance for the selected item.

First, though, you need to provide a way to enter items into the list. You will handle this in the onAddName()
method, which will be called whenever addName_bn is clicked. Update the onAddName() method with the following
bold lines.

private function onAddName(event:MouseEvent):void {
 var newItem:Object = {label:addName_ti.text};
 names_li.dataProvider.addItem(newItem);
 addName_ti.text = "";
}

A List instance has a dataProvider property through which all manipulation of the internal list data must be
done. You can use the addItem() method of dataProvider to append items to the List instance’s data. A new item
needs at least a label property for display in the list, so you add a new item by creating an Object instance with
one property: label. To this label property, you assign the value of the addName_ti instance’s text property. Once
addItem() has been called, you remove the text from addName_ti so that the user can enter a new item.

CHAPTER 9 ■ WORKING WITH COMPONENTS

343

If you test your movie now and type a name in the bottom field and click the add button, that name should
appear in names_li. Try adding several names to see them appear.

Next, let’s allow someone to select an item in the list and be able to edit or remove that item. Removing items
will be handled in onDeleteName(). Editing items will be handled in the onNameChange(). To make it easy for a user
to edit a name, you’ll populate the editName_ti TextInput instance with the label value of the currently selected
item in the list. That will be taken care of in the onNameSelected() handler. Update your EditableList class with the
following bold lines (code not listed does not need to be changed):

private function onDeleteName(event:MouseEvent):void {
 names_li.dataProvider.removeItemAt(names_li.selectedIndex);
 editName_ti.text = "";
}

private function onNameChange(event:Event):void {
 var newItem:Object = {label:editName_ti.text};
 names_li.dataProvider.replaceItemAt
 (newItem, names_li.selectedIndex);
}

private function onNameSelected(event:Event):void {
 editName_ti.text = names_li.selectedItem.label;
}

When an item is selected in the list, the onNameSelected() handler will be called. This assigns the label from
the currently selected item, found through the aptly named selectedItem property of List, to the text property of
editName_ti.

If the user then types into editName_ti, adding or removing letters, the onNameChange() handler will be called
(thanks to the CHANGE event fired by editName_ti). A new item is created using the current text in editName_ti. You
then can use the list dataProvider’s replaceItem() method to replace the value of the currently selected item with
the new updated item.

Finally, whenever the deleteName_bn button is clicked, it will dispatch a CLICK event, which will be handled
by the onDeleteName() method. The dataProvider’s removeItemAt() method is just what you need to remove the
currently selected item. removeItemAt() takes an integer value representing the index of the item in the list to remove,
which you can obtain through the selectedIndex property of List. Once the item is deleted, you remove the text from
the editName_ti field as well. ActionScript:

At this point, you have a pretty nice little miniapplication to create lists. One problem, though, is that the delete
button can be clicked when no item has been selected. The same issue occurs with the editName_ti component. Also,
items can be added to the list without any labels by clicking the add button without typing anything into addName_ti.
You can take care of these problems by enabling and disabling controls based on the states of other controls. All the
controls have an enabled property, which actually comes from the UIComponent class from which they all descend. If
this property is not true, then the component does not allow for interaction.

First, you want to disable the two buttons and editName_ti when the SWF launches. This will ensure that the
only initial interaction allowed will be entering text into addName_ti. Add the following bold lines to the init()
method to try this:

private function init():void {
 addName_bn.addEventListener(MouseEvent.CLICK, onAddName);
 addName_ti.addEventListener(Event.CHANGE, onNameEnter);
 deleteName_bn.addEventListener(MouseEvent.CLICK, onDeleteName);
 editName_ti.addEventListener(Event.CHANGE, onNameChange);
 names_li.addEventListener(Event.CHANGE, onNameSelected);

CHAPTER 9 ■ WORKING WITH COMPONENTS

344

 addName_bn.enabled = false;
 deleteName_bn.enabled = false;
 editName_ti.enabled = false;
}

Unfortunately, if you test the movie, you will see that the buttons don’t disable themselves as expected, although
the text input field does. Well, that’s no good. This is a problem with the constructor running before some internal
code within the component, which is re-enabling itself. To handle this, you will move your code into the next frame
by setting up a handler for the ENTER_FRAME event and disabling the components then. Alter your code for the init()
method to look like the following, which creates a new listener for the ENTER_FRAME event and moves the disabling
code into that listener:

private function init():void {
 addName_bn.addEventListener(MouseEvent.CLICK, onAddName);
 addName_ti.addEventListener(Event.CHANGE, onNameEnter);
 deleteName_bn.addEventListener(MouseEvent.CLICK, onDeleteName);
 editName_ti.addEventListener(Event.CHANGE, onNameChange);
 names_li.addEventListener(Event.CHANGE, onNameSelected);
 addEventListener(Event.ENTER_FRAME, onNextFrame);
}
private function onNextFrame(event:Event):void {
 removeEventListener(Event.ENTER_FRAME, onNextFrame);
 addName_bn.enabled = false;
 deleteName_bn.enabled = false;
 editName_ti.enabled = false;
}

If you test the movie again, you should see that the buttons are disabled. Now you need to handle when to enable
those buttons.

The add button should be enabled whenever there is text entered into the addName_ti field. You can listen for this
through the CHANGE event for the TextInput instance. Then the button should disable itself when the field is cleared.
Add the following bold lines to handle these events:

private function init():void {
 addName_bn.addEventListener(MouseEvent.CLICK, onAddName);
 addName_ti.addEventListener(Event.CHANGE, onNameEnter);
 deleteName_bn.addEventListener(MouseEvent.CLICK, onDeleteName);
 editName_ti.addEventListener(Event.CHANGE, onNameChange);
 names_li.addEventListener(Event.CHANGE, onNameSelected);
 addEventListener(Event.ENTER_FRAME, onNextFrame);
}

private function onNextFrame(event:Event):void {
 removeEventListener(Event.ENTER_FRAME, onNextFrame);
 addName_bn.enabled = false;
 deleteName_bn.enabled = false;
 editName_ti.enabled = false;
}

CHAPTER 9 ■ WORKING WITH COMPONENTS

345

private function onAddName(event:MouseEvent):void {
 var newItem:Object = {label:addName_ti.text};
 names_li.dataProvider.addItem(newItem);
 addName_ti.text = "";
 addName_bn.enabled = false;
}

private function onNameEnter(event:Event):void {
 addName_bn.enabled = addName_ti.text.length > 0;
}

private function onDeleteName(event:MouseEvent):void {
 names_li.dataProvider.removeItemAt(names_li.selectedIndex);
 editName_ti.text = "";
}

Now the add button will be enabled in the onNameEnter() method, which will be called when text is entered or
edited in the addName_ti component. It will be disabled in the onAddName() method when a new item is added to the
list and the addName_ti text is cleared.

The final step is enabling the delete button and the editName_ti component whenever an item can be edited or
deleted. This will occur in the onNameSelected() handler. When an item is deleted, you need to disable these controls
once again. Add the following bold lines, which should handle these occurrences:

 private function onDeleteName(event:MouseEvent):void {
 names_li.dataProvider.removeItemAt(names_li.selectedIndex);
 deleteName_bn.enabled = false;
 editName_ti.text = "";
 editName_ti.enabled = false;
 }

 private function onNameChange(event:Event):void {
 var newItem:Object = {label:editName_ti.text};
 names_li.dataProvider.replaceItemAt(newItem, 
names_li.selectedIndex);
 }

 private function onNameSelected(event:Event):void {
 editName_ti.text = names_li.selectedItem.label;
 editName_ti.enabled = true;
 deleteName_bn.enabled = true;
 }

Save the EditableList.as file and return to the editableList.fla file.
You now need to set the document class for this file to be the EditableList class you just created. In the Property

inspector, set the document class to com.foundationAS3.ch9.EditableList.
Now test your movie. You should see your miniapplication for creating and editing a list of names (as shown

earlier in Figure 9-21), all through the use of Flash components and ActionScript to wire everything together.
If you get errors when compiling, see whether the error messages help you determine where the syntax of what

you typed was incorrect. If you are unable to debug, compare your file with the EditableList.as file included with
the files you downloaded for this chapter.

CHAPTER 9 ■ WORKING WITH COMPONENTS

346

That’s not a bad little app for a few pages’ work! Imagine now if you had to code all those components yourself to
build such an application, and how much longer such a task would take. There are times when that will be necessary
and inevitable, but for the times it isn’t, the components offer a great way to quickly implement an application
consisting of UI controls.

Styling and Skinning
One important thing to know about any component framework is how you might go about customizing the built-in
components so that you can make the interfaces you create unique, with your own desired look and feel. Generally,
altering items such as colors and fonts within a component is referred to as styling, and changing the graphics used to
produce the overall look of a component is called skinning. Let’s look at what you can do within the Flash component
framework to restyle and reskin for your needs.

Styling Components
With the V2 components for ActionScript 2.0 from previous versions of Flash, the default skins had a large number of
styles that could be set to control colors within the skins. This offered great color configurability for the default skins.
However, many found the task of reskinning to be difficult, or at least not as easy as they would have liked.

With the ActionScript 3.0 components, the workflow for reskinning has been greatly simplified. This
simplification has also resulted in the reduction of the number of styles that can be set for the default skins. Although
the configurable styles vary from component to component, most styles can be generally separated into those for
setting text properties and those for setting skin properties. Using styles to set individual colors within a skin is no
longer supported; instead, you need to create new skins with the desired new colors. You’ll learn how to create skins a
little later in this chapter.

For now, let’s concentrate on altering text properties across components using styles. You’ll continue with the
previous list example and change aspects of the text properties in order to achieve a slightly different look. To do
this, you’ll change styles globally for all components, change styles for all instances of a single component class, and
change the style on a single component instance.

Setting up for Changing Styles

To begin, save the class file EditableList.as as StyledList.as in the same directory. You’ll use this as a base file
for testing your styling code. Also save the editableList.fla as styledList.fla and change the document class to
StyledList. In StyledList, change the following bold code:

package com.foundationAS3.ch9 {

 import fl.controls.Button;
 import fl.controls.List;
 import fl.controls.TextInput;

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;

 public class StyledList extends Sprite {

 public function StyledList() {
 init();
 }

CHAPTER 9 ■ WORKING WITH COMPONENTS

347

You’ll create a new method called setStyles(), which you’ll call from the init() method. To make things
cleaner, you’ll move all the event listener code into its own method as well:

public function StyledList() {
 init();
}

private function init():void {
 setStyles();
 addListeners();
}

private function setStyles():void {
}

private function addListeners():void {
 addName_bn.addEventListener(MouseEvent.CLICK, onAddName);
 addName_ti.addEventListener(Event.CHANGE, onNameEnter);
 deleteName_bn.addEventListener(MouseEvent.CLICK, onDeleteName);
 editName_ti.addEventListener(Event.CHANGE, onNameChange);
 names_li.addEventListener(Event.CHANGE, onNameSelected);
 addEventListener(Event.ENTER_FRAME, onNextFrame);
}

To set styles for all components or all instances of a certain class, you need to use the Flash component
framework’s StyleManager class. Import this class at the top of the code, along with TextFormat, which you’ll need for
setting text formats for components:

package com.foundationAS3.ch9 {

 import fl.controls.Button;
 import fl.controls.List;
 import fl.controls.TextInput;
 import fl.managers.StyleManager;

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextFormat;

 public class StyledList extends Sprite {

Now you can start setting some styles!

CHAPTER 9 ■ WORKING WITH COMPONENTS

348

Setting Styles for all Components

To set styles for all components in the framework, use the StyleManager’s setStyles() method. This takes the name
of the style property to set and the value for that property. Let’s first change the color of the text for all components to a
blue to match the highlight color built into the skins. Add the lines in bold to achieve this:

private function setStyles():void {
 // blue green text for all components' default state
 var format:TextFormat = new TextFormat("Arial", 10, 0x01578F);
 StyleManager.setStyle("textFormat", format);
}

If you test your movie now, you should see blue text for all the components, except for the disabled state of the
buttons, which requires setting a different property: disabledTextFormat.

Setting a Style for all Instances of a Component

Next, let’s try changing a style for all instances of a single component. For this, you will use StyleManager’s
setComponentStyle() method, which takes the class of component for which you wish to set a style property, the
name of the property, and the value for that property. Because you’re using only plus and minus symbols for your
buttons, let’s boost up the point size of the text to make it more visible. For this, add the following lines in bold:

private function setStyles():void {
 // blue green text for all components' default state
 var format:TextFormat = new TextFormat("Arial", 10, 0x01578F);
 StyleManager.setStyle("textFormat", format);
 // blue green text for Button default state
 format = new TextFormat("Arial", 12, 0x01578F);
 StyleManager.setComponentStyle(Button, "textFormat", format);
 // light gray text for Button disabled state
 format = new TextFormat("Arial", 12, 0x999999);
 StyleManager.setComponentStyle
 (Button, "disabledTextFormat", format);
}

You set two properties here, textFormat and disabledTextFormat, so that the point size of the text doesn’t
change based on the state. Notice that you can assign a new TextFormat instance each time to the format variable
after the previous value has been passed in the setComponentStyle() call. You can do this because the variable is
simply storing a reference, and that reference is passed in the method call, not the variable itself. So you then can
assign new references to the variable that can be passed in the subsequent calls. If you test the movie again, the text
for the button labels should be increased by two points.

CHAPTER 9 ■ WORKING WITH COMPONENTS

349

Setting the Style for a Single Instance of a Component

As a final step, let’s change the color of just the deleteName_bn component so that its label is red when it is clickable,
giving a bit of a visual warning that clicking the button causes a destructive action. To set the style on a single instance,
you need to use the UIComponent class’s setStyle() method, which, like StyleManager’s setStyles(), takes a name
of a style property and the value to set. Because all the controls inherit from UIComponent, this method is available on
each component instance. Add the following lines in bold:

private function setStyles():void {
 // blue green text for all components' default state
 var format:TextFormat = new TextFormat("Arial", 10, 0x01578F);
 StyleManager.setStyle("textFormat", format);
 // blue green text for Button default state
 format = new TextFormat("Arial", 12, 0x01578F);
 StyleManager.setComponentStyle(Button, "textFormat", format);
 // light gray text for Button disabled state
 format = new TextFormat("Arial", 12, 0x999999);
 StyleManager.setComponentStyle
(Button, "disabledTextFormat", format);
 // red text for delete button default state
 format = new TextFormat("Arial", 12, 0xFF0000);
 deleteName_bn.setStyle("textFormat", format);
}

If you test your movie once more, you’ll see that all components have blue text (unless disabled); the button
instances have text at a slightly larger point size; and when the delete button is active, its label is red as opposed to
blue. This is styling at work!

Skinning using the Timeline
If you are used to the graphic tools in Flash, reskinning a component using the new ActionScript 3.0 components
is a piece of cake—simpler than it has been in either of the two previous versions. Any component instance on the
stage or symbol in the Library allows you to double-click it to enter into symbol-editing mode, in which the different
supported skins are made obvious. Figure 9-22 shows an example of entering symbol-editing mode by double-clicking
the List symbol.

CHAPTER 9 ■ WORKING WITH COMPONENTS

350

Entering symbol-editing mode for a component immediately takes you to frame 2 of the component’s timeline,
where graphic skins on the left are labeled with descriptive text on the right. If you want to edit any of the skins,
double-click the desired skin to enter its symbol-editing mode. Figure 9-23 shows what you find if you enter
symbol-editing mode by double-clicking List_Skin within the List symbol.

Figure 9-23. List_Skin, which is the back graphic of the List component, in symbol-editing mode

Figure 9-22. The skins that can be found within the List symbol

At this point within the List_Skin symbol, you have a simple vector graphic that you can edit directly to change
shapes, colors, or both; and these changes will be reflected in every single List instance in your application. The
horizontal and vertical dotted lines represent the slices for the scale9 grid. This grid determines how a graphic is
resized, and it is a great enhancement over manually slicing components, as we had to do before the feature was
introduced in Flash 8. Only the middle section of the grid is scaled both vertically and horizontally. The top and
bottom rows are not scaled vertically, and the right and left columns are not scaled horizontally. For more information
about scale9 grids and how to create and use them, check out the Flash documentation.

CHAPTER 9 ■ WORKING WITH COMPONENTS

351

Sometimes, a complex component contains nested components, which you need to navigate to in order to find
the vectors to edit them. If you return to symbol-editing mode for the List symbol and double-click ScrollBar Skins,
you should see something like Figure 9-24.

Figure 9-24. The ScrollBar skin accessed from within the List component

ScrollBar is a complex symbol that contains a number of nested skins. You need to be aware that multiple
components use the ScrollBar symbol, so although you might be editing the ScrollBar symbol from within the List
symbol, any component that uses these skins will be affected. The same holds true for editing of a global skin such as
the Focus Rect Skin, which appears within every single component. Editing this changes the skin that is used by all
components that allow focus.

Let’s do some timeline graphic editing to see how easy it is to change a skin in this manner. You will change the
graphics for the TextInput component so it uses rounded corners like the Button component, as opposed to sharp
corners. You’ll need to edit both the enabled and disabled states.

 1. Save styledList.fla as timeSkinsList.fla. The document class can remain the same
because you will not alter any code for this example; you will change only the Library
graphics.

 2. Double-click one of the TextInput instances on the main timeline’s stage. You should
enter symbol-editing mode and see the skins, as shown in Figure 9-25.

CHAPTER 9 ■ WORKING WITH COMPONENTS

352

 3. Double-click the Normal Skin graphic (TextInput_upSkin) to enter its symbol-editing
mode. You should see a graphic like the one shown in Figure 9-26.

Figure 9-25. Symbol-editing mode for TextInput

Figure 9-26. Symbol-editing mode for the Normal Skin graphic within TextInput

Figure 9-27. A new graphic is drawn for the skin using a rounded rectangle

 4. Delete the graphics on the timeline and draw a rounded rectangle with a corner radius of 3
and a stroke of 1 pixel that is around 150 × 25 in its dimensions. You do not need to be exactly
precise, as you can drag the scale9 dividers wherever they need to go to suit your graphic.

 5. Make the fill of the rectangle white (#FFFFFF). Assign a linear gradient to the stroke with
two color stops set to #6D6F70 and #D3D5D6. Use the Gradient Transform tool to rotate
and scale the gradient so that it runs vertically down the component, moving from the
darker color to the lighter color. The result should look like Figure 9-27.

CHAPTER 9 ■ WORKING WITH COMPONENTS

353

 6. Use the Selection tool to move the scale9 grid dividers to make sure that the corners do
not get scaled in any resizing of the component; only the straight lines scale on resizing.

 7. Now that the Normal Skin is complete, copy it to your clipboard.

 8. Return to symbol-editing mode for the TextInput symbol. Double-click the Disabled Skin
graphic (TextInput_disabledSkin) to enter its symbol-editing mode. Delete the graphic
that is on its timeline and then paste in place the graphic copied from the Normal Skin.

 9. Alter the fill for the disabled state rectangle to #DBDBDB. Alter the gradient stroke so that
the top color is #AFAFB0 and the bottom color is #CECECF.

Now test your movie. You should see nice rounded corners on the TextInput instances, in both the normal and
disabled states.

Skinning using Classes
Now it just doesn’t seem right that we spend too much time in an ActionScript book doing edits in the timeline when
we have this perfectly wonderful language to accomplish the same thing. Let’s take a look at how you might use code
to create and set skins for components, as opposed to editing graphic symbols in the Library.

First, it helps to remember that any symbol exported from the Library is done so as a class, whether you specify
the class file to associate with the symbol or it is generated for you automatically behind the scenes. As such, any skin
that is in the Library that a component instantiates at runtime is a class. There is nothing that requires that such a skin
class needs to be in the Library, as long as it is available for a component to instantiate when it needs to draw itself.
Therefore, you do not need to use predrawn graphics in the Library, but can draw the graphics through code in a
custom class, as long you specify which class or classes a component should use for its skins.

In this next example, you’ll create a new skin for the buttons in your list application, but instead of using the
vector tools on the timeline, you’ll create the graphics using ActionScript. The skins will be simple round graphics with
a one-point stroke. You’ll create a different skin for each of the four states of the buttons: up, over, down, and disabled.

To begin, create a new ActionScript file and save it as StrokedCircle.as into a new skins subdirectory in the
com/foundationAS3/ch9 directory (so the full path will be com/foundationAS3/ch9/skins).

Creating a Skin for the Button’s Up State

Next, enter the following code, which represents everything you will need to draw the up state for your buttons:

package com.foundationAS3.ch9.skins {

 import flash.display.Shape;

 public class StrokedCircle extends Shape {

 protected var _fillColor:uint = 0xE6E6E6;
 protected var _strokeColor:uint = 0x5C5C5C;

 public function StrokedCircle() {
 init();
 }

 protected function init():void {
 draw();
 }

CHAPTER 9 ■ WORKING WITH COMPONENTS

354

 private function draw():void {
 graphics.lineStyle(1, _strokeColor);
 graphics.beginFill(_fillColor);
 graphics.drawCircle(25, 25, 25);
 graphics.endFill();
 }

 }

}

At this point in the book, nothing here should come as a surprise to you. The class extends Shape because it is
merely drawing graphics into itself and does not need to allow for interactivity. You define two protected properties
for the fill and stroke color. They are made protected so that child classes can set their own values for these colors. The
constructor for the class simply calls the init() method, which is also made protected so that child classes can use it
to set new values for the colors before the graphics are drawn, which is handled in the draw() method. That draw()
method sets a line style of 1 point and draws a circle with a 25-pixel radius, which is really arbitrary because the
components will resize the skin as necessary by setting its width and height directly.

That is all you need to do to create a skin. Pretty easy, isn’t it? If you think so, then you’ll love the next steps. You
need to create variations for the over, down, and disabled states, but you can use inheritance to leverage the drawing
code you just wrote, and just have the child classes set new color values.

Creating Skins for the Button’s Other States

Create a new ActionScript file and save it as StrokedCircleOver.as into the same skins directory as StrokedCircle.
as. Enter the following code:

package com.foundationAS3.ch9.skins {

 public class StrokedCircleOver extends StrokedCircle {

 override protected function init():void {
 _strokeColor = 0x0076C1;
 super.init();
 }

 }

}

Do you love it? A child class of StrokedCircle with a change of color needs to override only the superclass’s
protected init() method (remember that it is the protected access setting that lets a child class override the parent
class’s implementation). A new color is specified for the stroke color and then the superclass’s init() method is
called. And that’s it—the same skin shape with different colors.

CHAPTER 9 ■ WORKING WITH COMPONENTS

355

For the down state of the button, create another new ActionScript file and save it into the same skins directory as
the other two skins as StrokedCircleDown.as. Enter the following code:

package com.foundationAS3.ch9.skins {

 public class StrokedCircleDown extends StrokedCircle {
 override protected function init():void {
 _fillColor = 0xA7DCFE;
 _strokeColor = 0x0076C1;
 super.init();
 }

 }

}

This is pretty much the same as the StrokedCircleOver class, except that both the fill and stroke color are
overridden in this case.

The final skin is for the disabled state of the button. Once more, create a new ActionScript file and save it into the
skins directory as StrokedCircleDisabled.as. The following is the entire class code:

package com.foundationAS3.ch9.skins {

 public class StrokedCircleDisabled extends StrokedCircle {

 override protected function init():void {
 _fillColor = 0xE8E8E8;
 _strokeColor = 0xC2C3C5;
 super.init();
 }

 }

}

At this point, you have created four new skins for your buttons in separate class files. The skins all inherit from
Shape, because they are only containers for drawn graphics and don’t require any child objects or interactivity. All you
need to do now is associate the classes with the relevant skin properties of the Button class.

Associating the Skins with the Buttons

Save the StyledList.as document class file created earlier as SkinnedList.as into the same directory. Let’s first
update the file with the new class name. You’ll also import the skins package you just created, as you will need to
reference the classes within the package to assign these classes to your Button instances:

package com.foundationAS3.ch9 {

 import fl.controls.Button;
 import fl.controls.List;
 import fl.controls.TextInput;
 import fl.managers.StyleManager;

CHAPTER 9 ■ WORKING WITH COMPONENTS

356

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextFormat;

 import com.foundationAS3.ch9.skins.*;

 public class SkinnedList extends Sprite {

public function SkinnedList() {
 init();
}

All the rest of the code should remain unchanged.
Now you need to associate the skins you just created in the class files with the properties of the Button class

that determine which skin is used for which state. Just as with the text properties discussed earlier, this is all handled
through the StyleManager and its setComponentStyle() method, if you want to set skins for all instances of a
component. If you want to change the skin on only a single instance, you use UIComponent’s setStyle(). In this case,
you will change the skins for all Button instances.

Within the setStyles() method of SkinnedList, add the following bold lines to associate the new skin classes
with the Button class:

 private function setStyles():void {
 // blue green text for all components' default state
 var format:TextFormat = new TextFormat("Arial", 10, 0x01578F);
 StyleManager.setStyle("textFormat", format);
 // blue green text for Button default state
 format = new TextFormat("Arial", 14, 0x01578F);
 StyleManager.setComponentStyle(Button, "textFormat", format);
 // light gray text for Button disabled state
 format = new TextFormat("Arial", 14, 0x999999);
 StyleManager.setComponentStyle
 (Button, "disabledTextFormat", format);
 // red text for delete button default state
 format = new TextFormat("Arial", 14, 0xFF0000);
 deleteName_bn.setStyle("textFormat", format);
 StyleManager.setComponentStyle(Button, "upSkin", StrokedCircle);
 StyleManager.setComponentStyle
 (Button, "overSkin", StrokedCircleOver);
 StyleManager.setComponentStyle
 (Button, "downSkin", StrokedCircleDown);
 StyleManager.setComponentStyle(Button,
"disabledSkin", StrokedCircleDisabled);
 }

Each component class has different skin properties depending on the type and complexity of the component.
The Button class itself has many more skin properties, but some of these deal only with Button instances that toggle
or with icons. The four skin properties that define the four different states are all that you need to modify here. As
you can see, the value for each skin property is actually a reference to the class itself that should be used to draw the
button in that state.

CHAPTER 9 ■ WORKING WITH COMPONENTS

357

Return to the SytledList.fla file from earlier in the chapter and in the Property inspector change the
Document Class to reflect the new SkinnedList.as file.

If you test your movie now, you should see that the buttons have changed their appearance to a stroked
circle with a solid fill, as shown in Figure 9-28. Using the StyleManager and a little ActionScript in the manner just
demonstrated, it’s easy to reskin your applications for each project.

Figure 9-28. The result of using ActionScript to reskin all Button instances

Creating Components from Scratch
Sometimes you will need functionality that isn’t provided by the default Flash components, and your best course of
action may be to create a component specifically for your purpose. Creating a component is basically like creating a
custom class, with only a few extra steps to plug the class into the Parameters panel so that its configurable parameters
appear. This next example will demonstrate the process as you create a simple UI component for a dial interaction.

Creating the Widget
Let’s start by creating the symbol and graphics needed for the component. Remember that the whole purpose of a
component is to allow for a visual widget that you can position and configure in the Flash IDE; otherwise, you could
do the same without components using ActionScript alone. So creating the visual widget is a good place to begin.

 1. Create a new Flash ActionScript 3.0 file and save it as dial.fla into your Chapter 9 project
directory.

 2. On the stage, draw a 30 × 30-pixel gray circle with no stroke. Use the Line tool to draw a
1-point line that is 15 pixels long. Align the line so that it is centered vertically within the
circle and aligned to its right edge. The result should look like Figure 9-29.

Figure 9-29. The dial graphic created from a circle and a line

CHAPTER 9 ■ WORKING WITH COMPONENTS

358

 3. Select both the circle and line, and convert them into a movie clip symbol (press F8). Name
it Dial_skin and make sure it is aligned in the center, as shown in Figure 9-30. Click OK.

Figure 9-30. Creating a symbol from the graphics for the dial component

 4. In the Property inspector, name the Dial_skin instance still selected on the stage graphic.
Convert this instance into a movie clip symbol as well (press F8 again), but this time, align
the symbol in the top left and name it Dial. Select to export the symbol for ActionScript,
but set its class to be com.foundationAS3.ch9.controls.Dial, as shown in Figure 9-31.
Click OK. You will see an ActionScript Class Warning dialog box letting you know that
there is no class found, but this is OK because you will create the class in the next section.

Figure 9-31. The Dial symbol is created for the dial component

CHAPTER 9 ■ WORKING WITH COMPONENTS

359

Writing the Component Code
Create a new ActionScript file and save it as Dial.as into a new controls subdirectory in the com/foundationAS3/ch9
directory, so the full path is com/foundationAS3/ch9/controls. Add the following code to start the class. This adds
all the imports you will need, including Sprite, from which the Dial class inherits:

package com.foundationAS3.ch9.controls {

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.geom.Point;

 public class Dial extends Sprite {

 public function Dial() {
 }

 }

}

As mentioned previously, the Flash ActionScript 3.0 UI components all extend, either directly or indirectly, the
UIComponent class (the FLVPlayback component, however, does not). Certainly, if you want to take advantage of the
framework and what it offers, such as focus management and styling, you would want to extend UIComponent. But that
requires a bit more work because you need to build the component in particular ways and override certain methods.
To keep things simple for this example, you will just extend Sprite, which is also perfectly valid.

First, you need to call an init() method from your constructor, as you have often done in classes in previous
examples. You know that you have a graphic on the timeline of the symbol, and you will need to manipulate that
graphic. You could do what you have done previously, and just code against the instance name graphic, but
you would lose helpful code hints. So you will assign a reference to this graphic and cast that to Sprite for easier
development. You need to use getChildByName(), because referencing the graphic directly would throw an error
when turning your symbol into a component.

public class Dial extends Sprite {

 private var _graphic:Sprite;

 public function Dial() {
 init();
 }

 private function init():void {
 _graphic = graphic;
 }

Now you can code using the private property _graphic and get those handy-dandy code hints as you type.
Next, you should handle the interaction with the dial.

CHAPTER 9 ■ WORKING WITH COMPONENTS

360

Handling Events

When users click the dial, they should be able to then rotate it. The obvious event to listen for is the MOUSE_EVENT that
is fired when users click the dial. Add the following bold lines to handle this event:

private function init():void {
 _graphic = graphic;
 addEventListener(MouseEvent.MOUSE_DOWN, onClickDial);
}

private function onClickDial(event:MouseEvent):void {
}

Whenever the dial is clicked, the onClickDial() handler will run. Two things will need to happen after this point.
First because the user moves the mouse, the dial should rotate. Second, when the user releases the mouse, the dial
should stop rotating. You can handle the former with the MOUSE_MOVE event, and set up a listener for this only after
the user has clicked the dial. The second item is a little trickier because you want to not only handle when the user
releases the mouse while over the dial, but also if the user moves the mouse off the dial and releases. Adding a listener
to the MOUSE_UP event fired by the dial is not enough to achieve this because that does not account for whether the
mouse is not over the dial when released. In order to account for both circumstances, you can listen to the stage’s
MOUSE_UP event, not the dial’s.

Because MOUSE_UP is a bubbling event, eventually this event will reach the stage from any display object that
causes it to be dispatched. Because of this, you can safely subscribe to this event to catch whenever the mouse
is released, but you want to do this only if the user has first clicked the dial. So you’ll add the listener only in the
onClickDial() method. Add the following lines in bold to handle the mouse move and release events after the dial
has been clicked:

private function onClickDial(event:MouseEvent):void {
 addEventListener(MouseEvent.MOUSE_MOVE, onRotateDial);
 stage.addEventListener(MouseEvent.MOUSE_UP, onReleaseDial);
}
private function onReleaseDial(event:MouseEvent):void {
 removeEventListener(MouseEvent.MOUSE_MOVE, onRotateDial);
 stage.removeEventListener(MouseEvent.MOUSE_UP, onReleaseDial);
}

private function onRotateDial(event:MouseEvent):void {
}

Now the flow is that when the user clicks the dial, onClickDial() is called. Two listeners are added to listen for
when the mouse moves or when the mouse is released. When the mouse moves, onRotateDial() is called, where
you’ll handle rotating the graphic. When the mouse is released anywhere on the stage, onReleaseDial() is called, and
the mouse move and released listeners are removed.

You have taken care of the events. Now you need to rotate the dial as the user moves the mouse.

CHAPTER 9 ■ WORKING WITH COMPONENTS

361

Rotating the Dial

In order to rotate the dial with mouse movement, you need to record the starting angle of the dial when it is first
clicked. As the user moves the mouse, you can measure the angle of the mouse in relation to the center of the graphic
and rotate the graphic accordingly, adjusting for the starting angle. The lines in bold take care of this:

public class Dial extends Sprite {

private var _graphic:Sprite;
private var _startRadians:Number;
private var _startRotation:Number;

public function Dial() {
 init();
}

private function init():void {
 _graphic = graphic;
 addEventListener(MouseEvent.MOUSE_DOWN, onClickDial);
}

private function onClickDial(event:MouseEvent):void {
 _startRotation = _graphic.rotation;
 var click:Point =
 new Point(mouseX-_graphic.x, mouseY-_graphic.y);
 _startRadians = Math.atan2(click.y, click.x);
 addEventListener(MouseEvent.MOUSE_MOVE, onRotateDial);
 stage.addEventListener(MouseEvent.MOUSE_UP, onReleaseDial);
}

private function onReleaseDial(event:MouseEvent):void {
 removeEventListener(MouseEvent.MOUSE_MOVE, onRotateDial);
 stage.removeEventListener(MouseEvent.MOUSE_UP, onReleaseDial);
}

private function onRotateDial(event:MouseEvent):void {
var distance:Point =
 new Point(mouseX-_graphic.x, mouseY-_graphic.y);
 var radians:Number =
 Math.atan2(distance.y, distance.x) - _startRadians;
 var degrees:Number = radians*180/Math.PI;
 _graphic.rotation = _startRotation + degrees;
}

Here, you save the starting rotation of the graphic in _startRotation. You also find the angle of the mouse click
in relation to the center of the graphic using the Math.atan2() method, saving the results into _startRadians. The
Math.atan2() method takes the distance on the y axis and the distance on the x axis, and determines the angle in
radians based on these values.

Whenever the mouse moves after the dial is clicked, you find the current distance from the center of the graphic
and convert this to an angle measured in radians as well, subtracting from this the starting radians value. At this
point, you have an angle that measures the distance the mouse has moved from its initial click. You can convert this to
degrees using the standard formula: degrees = radians × 180/PI. It is this degrees value that you can add to the initial
starting rotation of the graphic to set a new rotation for the graphic based on the mouse position.

CHAPTER 9 ■ WORKING WITH COMPONENTS

362

At this point, you have a working dial that can be clicked and turned, but it doesn’t have much use unless you can
know what the current value of the dial is and when it changes. Your next step is to set up a way to determine when
the value changes and provide access to that value.

Getting and Setting Dial Values

The value of the dial itself can easily and simply be the current rotation of the graphic, but to make the component
useful in multiple environments, let’s allow for a minimum and maximum value to be set.

Add the following new properties at the top of your code with the other property declarations:

 public class Dial extends Sprite {

 private var _graphic:Sprite;
 private var _startRadians:Number;
 private var _startRotation:Number;
 private var _minValue:Number = 0;
 private var _maxValue:Number = 100;

 public function Dial() {
 init();
 }

Next, let’s add getters and setters for these values at the bottom of the class definition:

 private function onRotateDial(event:MouseEvent):void {
 var distance:Point =
 new Point(mouseX-_graphic.x, mouseY-_graphic.y);
 var radians:Number =
 Math.atan2(distance.y, distance.x) - _startRadians;
 var degrees:Number = radians*180/Math.PI;
 _graphic.rotation = _startRotation + degrees;
 }

 public function get minValue():Number {
 return _minValue;
 }

 public function set minValue(min:Number):void {
 _minValue = min;
 }

 public function get maxValue():Number {
 return _maxValue;
 }

 public function set maxValue(max:Number):void {
 _maxValue = max;
 }
 }

}

CHAPTER 9 ■ WORKING WITH COMPONENTS

363

Now, based on the minimum and maximum values (which you’ve defaulted to 0 and 100, respectively), you can
provide a getter for the current value based on the current rotation of the graphic within the specified numeric range.

Add the following getter and setter for the current value of the dial:

private function onRotateDial(event:MouseEvent):void {
 var distance:Point = 
 new Point(mouseX-_graphic.x, mouseY-_graphic.y);
var radians:Number = 
 Math.atan2(distance.y, distance.x) - _startRadians;
 var degrees:Number = radians*180/Math.PI;
 _graphic.rotation = _startRotation + degrees;
}

public function get value():Number {
 var degrees:Number = _graphic.rotation;
 if (degrees < 0) degrees += 360;
 return degrees/360*(_maxValue-_minValue)+_minValue;
}

public function set value(num:Number):void {
 _graphic.rotation = (num-_minValue)/(_maxValue-_minValue)*360;
}

public function get minValue():Number {
 return _minValue;
}

public function set minValue(min:Number):void {
_minValue = min;
}

When the getter is called, you find the current rotation of the _graphic property, making it positive if it is negative
(the rotation will fall between –180 and 180). You can then find where this lies as a percentage of 360 degrees. This
percentage can be multiplied with the full range (maximum value minus the minimum value). If the minimum value
is greater than 0, you can add this to your result.

Let’s plug in some numbers to see how these equations work. If your minimum value is 0 and your maximum
value is 100, and your dial is rotated exactly 180 degrees (halfway), then 180/360 will give you 0.5. This value multiplied
by the full range (100 – 0 = 100) gives 50 (0.5 × 100). You add this to the minimum value (0), for a result of 50.

As another example, if the range is specified with a minimum of 100 and a maximum of 200, and the dial is
rotated 120 degrees, you get a rotation percentage of roughly 0.33 (120/360), and this is multiplied by a range of 100
(200 – 100), which gives a result of around 33. This value added to the minimum value results in around 133.

When the setter for value is called, this formula is simply reversed.
When the value changes for the dial, you should dispatch an event so that listeners can be informed of the

changes. You can take care of this in the onRotateDial() method. Add the following bold line to achieve this:

private function onRotateDial(event:MouseEvent):void {
 var distance:Point =
 new Point(mouseX-_graphic.x, mouseY-_graphic.y);
 var radians:Number =
 Math.atan2(distance.y, distance.x) - _startRadians;

CHAPTER 9 ■ WORKING WITH COMPONENTS

364

 var degrees:Number = radians*180/Math.PI;
 _graphic.rotation = _startRotation + degrees;
 dispatchEvent(new Event(Event.CHANGE));
}

You have now created a working dial that you could use in any project by instantiating it through the code and
setting its properties. To make it into a component, you simply need to specify which of its properties should appear
in the Parameters panel as configurable properties. You do this through the use of metatags in the ActionScript.

Adding Metatags

Metatags are special tags that are ignored by the compiler, but have special significance in the IDE. For components,
there is an Inspectable tag that you can place in your ActionScript to inform the IDE of which properties should be
accessible in the Component Inspector.

Add the following Inspectable metatags to your code:

public function get value():Number {
 var degrees:Number = _graphic.rotation;
 if (degrees < 0) degrees += 360;
 return degrees/360*(_maxValue-_minValue)+_minValue;
}

[Inspectable(defaultValue=0)]
function set value(num:Number):void {
 _graphic.rotation = (num-_minValue)/(_maxValue-_minValue)*360;
}

public function get minValue():Number {
 return _minValue;
}

[Inspectable(defaultValue=0)]
public function set minValue(min:Number):void {
 _minValue = min;
}

public function get maxValue():Number {
 return _maxValue;
}

[Inspectable(defaultValue=100)]
public function set maxValue(max:Number):void {
 _maxValue = max;
}

Not too tough, is it? The only additional piece of information that you provide in this example is the default value
you would like to have set. To find out more about the use of the Inspectable tag and what it allows, consult the
Adobe documentation.

Your code is complete at this point, so save it and return to the dial.fla file you created at the beginning of the
example.

CHAPTER 9 ■ WORKING WITH COMPONENTS

365

Turning the Symbol into a Component
To turn your Dial symbol into a component, all you need to do is right-click it in the Library and select Component
Definition. This opens the Component Definition dialog box, as shown in Figure 9-32.

Figure 9-32. The Component Definition dialog box

In the dialog box, enter the name of your ActionScript class into the Class text box: com.foundationAS3.ch9.
controls.Dial and then click OK. At this point, the symbol icon in the Library should change to the component
symbol, as shown in Figure 9-33.

CHAPTER 9 ■ WORKING WITH COMPONENTS

366

It’s time now to test your component!

Testing the Component
Let’s try out the component in a little movie.

 1. Select the Dial instance you have on the stage in dial.fla (if you have deleted it from the
stage, simply drag a new instance from the Library) and look at the Parameters panel. You
will see that your dial has three configurable parameters: maxValue, minValue, and value.
You can keep the default values (or change them if you would like to see the result),

 2. Name the instance of the component dial in the Property inspector.

 3. Create a dynamic TextField instance next to the dial and name it dialValue. Turn on its
background for better visibility.

 4. Create a new layer on your timeline and select the first frame of this layer.

 5. Open your Actions panel (press F9) and enter the following code.

dial.addEventListener(Event.CHANGE, onDialChange);
dialValue.text = String(Math.round(dial.value));

function onDialChange(event:Event):void {
 dialValue.text = String(Math.round(dial.value));
}

 6. Test your movie. You should see something like Figure 9-34. Turning the dial should
update the number within the text field to show the dial’s current value.

Figure 9-33. The Library gets a swanky new icon for the Dial component

CHAPTER 9 ■ WORKING WITH COMPONENTS

367

And that’s it for creating a component! Of course, you can do a lot more with it, such as limiting the range of
movement and offering multiple states for rollover and disabled, but the basic functionality is there. You have seen
how easy it is to turn a class into a component in your Library.

In this example, you’ve left this class uncompiled so that it is easy to go in and edit the graphic for a project.
However, this simplified approach also means that you cannot have different skins for multiple dials in a single
application. As explained earlier in the chapter, precompiling will also speed up compile times when you have many
components. Finally, precompiling by turning a symbol into an SWC file automatically creates a Live Preview of your
component. This wouldn’t affect the sample component, but if you had a number of parameters that affected visual
properties, the Live Preview feature is a great asset.

This has given you a little taste of what it takes to put together a component, and perhaps you will be encouraged
to explore more and build your own component libraries for your projects. The work is in initially creating the
components, but after you have done it once, the reuse of the components and the speed components can bring to
your development are fantastic advantages.

There can be a whole lot more behind a component than what you saw here. First, components
can be built on top of the Flash component framework to help manage things like skins and focus
management. Live Previews can be built or enabled by precompiling the class into an SWC, and
custom interfaces for setting component parameters can be built and used instead of the Parameters
panel, which has limitations because it requires simple form input. Finally, after a component
is built, it can be distributed using the Adobe Extension Manager so that the component can be
installed by any user acquiring the extension and will appear in the Component panel along with
the default components. Check out the Flash documentation as well as the Flash Developer Center
(http://www.adobe.com/devnet/flash/) for more information about these topics.

Figure 9-34. The simple dial component in action

http://www.adobe.com/devnet/flash/

CHAPTER 9 ■ WORKING WITH COMPONENTS

368

Using Third-Party Components
Of course, sometimes you just don’t have the time to create your own components. Thank goodness that someone else
has probably already done it. Be sure to check out the Adobe Exchange (http://www.adobe.com/cfusion/exchange)
for free components, as well as more complex components available for purchase.

A number of third-party sites also provide a wealth of components to shop through to see what might suit your
needs, such as Flashloaded (http://www.flashloaded.com) and the Flash Components network
(http://flashcomponents.net). Any of these sites, as well as the Flash documentation, should have instructions for
installing the components. In any case, you will need the Adobe Extension Manager, which comes with the Flash CC
installation. You can always check for updates at Adobe’s site.

Summary
The goal of this chapter was to give you some insight into the power and flexibility of using the Flash components,
the speed at which you can build applications that incorporate the framework, and how you might configure these
components to create unique experiences for your users. You’ve also looked at how you might create your own
components for your own needs and acquire ready-made components from third parties. The use of components can
greatly increase your rate of production and ease your workflow, while encouraging you to work in an object-oriented
manner by separating and containing functionality in individual objects.

In the next chapter, we put the IDE aside once more and dive right back into the code, exploring a powerful new
ActionScript feature: regular expressions. If you ever need to do any string manipulation or searching through text,
regular expressions will prove to be your best friends. You might want to take a break and interact a bit with your
human friends first, though. Then come on back, turn the page, and we’ll get into some really nifty programming.

http://www.adobe.com/cfusion/exchange
http://www.flashloaded.com/
http://flashcomponents.net/

369

CHAPTER 10

Regular Expressions

This chapter covers the following topics:

What regular expressions are and why they are useful•฀

The anatomy of regular expressions•฀

How to use regular expressions in ActionScript 3.0•฀

Useful regular expressions•฀

Resources for more information about regular expressions•฀

In this chapter, you’ll spend some time looking at regular expressions, a brand-new feature introduced into
ActionScript 3.0 that has helped make it a proper, grown-up programming language.

Regular expressions have often been considered something of a dark art, reserved for propeller-heads who eat
Perl scripts for breakfast and go back for seconds. Seeing regular expressions in the wild, you would be forgiven for
writing them off as incomprehensible gobbledygook. For example, take a look at the following regular expression:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

Believe it or not, this pattern can be used to make sure that an e-mail address is valid.
By learning a few simple rules, it’s possible to break down even complex regular expressions into understandable

chunks. This chapter is all about learning those simple rules. I promise that by the end of this chapter, you will be able
to break down the preceding regular expression and understand exactly what each part does.

Once you’ve mastered regular expressions, you’ll find a whole bunch of uses for them in your ActionScript
projects. They help you solve a specific kind of problem that would otherwise require a lot of coding. In fact, regular
expressions are not just part of ActionScript 3.0; you can also use them in a number of different programming
languages, from JavaScript to Java, from Perl to PHP, and beyond.

Why you Need Regular Expressions
A regular expression is a string of characters that describes a pattern that you can use to search a string. Those of you
who have used ActionScript in previous versions might very well exclaim, “Hold on just a minute! Isn’t that what the
String.indexOf() method is for?” Well, yes, but regular expressions are like String.indexOf() on steroids.

CHAPTER 10 ■ REGULAR EXPRESSIONS

370

String.indexOf() returns the first position of a character or substring within a string. Here is an example of
its syntax:

var bookTitle:String = "Foundation ActionScript 3.0";
var firstIndex:int = bookTitle.indexOf("n");
trace(firstIndex); // outputs 3

The first appearance of the character n is as the fourth letter in the string. The output is 3 because the first index
position is 0, as in arrays.

One of the first problems with String.indexOf() is that it returns only the first index of the particular substring.
In the previous example, if you wanted to find all instances of n, you might use this script:

var bookTitle:String = "Foundation ActionScript 3.0";
var startIndex:int = 0;
var positionIndex:int;
var stringLength:uint = bookTitle.length;
var positions:Array = [];
while (startIndex < stringLength-1) {
 positionIndex = bookTitle.indexOf("n", startIndex);
 if (positionIndex > -1) {
 positions.push(positionIndex);
 startIndex = positionIndex + 1;
 } else {
 break;
 }
}
trace(positions); // outputs 3,9,16

That seems like a lot of work, doesn’t it? Another problem with using the String.indexOf() method to search
for a string is that you have no control over whether the string you’re searching for is matched against a whole word or
part of a word. For example, consider the following variable:

var tongueTwister:String = 
"Peter Piper picked a peck of pickled peppers";

The variable tongueTwister contains the opening line of a particularly bothersome tongue twister. Now, let’s
say you wanted to see whether this string contained the word pick. Humans can look at the string and confirm that
although the words picked and pickled are there, the word pick is nowhere to be seen. Nonetheless, if you use
String.indexOf() to search the string, it will return a match:

trace(tongueTwister.indexOf("pick")); // outputs 12

What’s happening here is that String.indexOf() isn’t searching for the word pick; it’s searching for any
consecutive sequence of characters containing the letters p, i, c, and k (in that order). The value of the tongueTwister
variable contains this sequence of characters (twice, in fact), so the result is a match.

If your brain works faster than mine, you might think that you could just add a space on
either side of the word you’re searching for in the search string to get a whole-word match with
String.indexOf(). That would work in this instance, but would fail if the word you were searching for
were at the beginning or end of the string, or if it were nudged up against any pesky punctuation.

CHAPTER 10 ■ REGULAR EXPRESSIONS

371

Another potential problem with using String.indexOf() to search strings is that you must be very exact. Let’s
revisit the old chestnut of American English vs. British English. If you need to search a string of text for a word and you
aren’t sure whether the author has used the English or American spelling, you have to search for both (colour vs. color
in this example):

var entry:String = "Purple is my favourite colour";
if (entry.indexOf("color") > -1 || entry.indexOf("colour") > -1) {
 trace("We have a match!");
}

I admit that this example doesn’t seem too bad, but any amount of extra typing seems unnecessary for a word
that differs by only a single letter.

What’s the best way to get around the problems with String.indexOf()? Let me put it this way: this would be a
very short chapter if regular expressions weren’t the answer.

The examples for this chapter are presented so that users of the Flash integrated development
environment (IDE) can copy the code directly into the timeline to test it. The same code can be
wrapped in a document class, as was initially demonstrated in Chapter 2, so it can be tested in
both the Flash IDE and Flash Builder. For brevity’s sake, the chapter text does not include all the
document class code; it concentrates specifically on the regular expression syntax. However, this
chapter’s downloadable files include document classes for both Flash and Flash Builder users to
run all the code included within the chapter.

Introducing the RegExp Class
In ActionScript 3.0, regular expressions are represented by the RegExp class. You can create a new RegExp object in
two ways:

•฀ By using the new keyword with the RegExp constructor: This is the same technique you used
to create instances of almost all the classes you’ve met thus far. The RegExp constructor takes
two arguments: a string specifying the pattern to search for as a string and a series of modifiers
that change the way the regular expression behaves, also specified as a string:

var myFirstRegExp:RegExp = new RegExp("pattern", "modifiers");

•฀ By using a regular expression literal: A regular expression literal is similar to a string literal,
except that it is delineated by forward slashes (/), with patterns placed between the forward
slashes and modifiers placed after them:

var myFirstRegExp:RegExp = /pattern/modifiers;

In terms of functionality, these two techniques are the same; they both create a new RegExp object with the
specified pattern and modifiers. However, depending on which technique you choose and the characters in your
pattern, you might need to slightly change how the pattern is specified. If you use the constructor technique, you
have to make sure that any characters that have special meaning as a string are escaped using the backslash (\). For
example, suppose that you want to define the pattern of letters ABC followed by any number of digits; you add the
letters and then follow with the backslash escape character or metasequence. This example uses \d, which matches a
decimal digit. But because the (*) is added, you tell the pattern to search for any digit:

var pattern:RegExp = new RegExp("/ABC\d*/");

CHAPTER 10 ■ REGULAR EXPRESSIONS

372

I prefer regular expression literals because they require less typing, and anything that reduces the wear and tear
on my poor fingers has to be a good thing. When specifying your pattern as a regular expression literal, you’ll need to
escape the forward slashes and backslashes using a backslash character (much as you escape special characters in a
string literal). You’ll see examples of regular expression literals throughout this chapter.

Having said all that, sometimes you have no choice but to use the RegExp constructor. This is necessary when
either the pattern or the modifiers for the regular expression (or both) come from the value of a variable, as explained
in the “Using variables to build a regular expression” section later in this chapter.

Anatomy of a Regular Expression Pattern
Now that you know how to create a RegExp object, it’s time to look at how the pattern for a regular expression is built
and exactly what you can do with it.

A very simple regular expression pattern might look something like this:

pick

Yes, it really is just a simple string of characters. This signifies a regular expression that will match the character
sequence p, i, c, k–in that order.

If you’re thinking that this is the same as the tongue-twister example you saw earlier, you’re right. You can verify it
by adapting the earlier example to use a regular expression instead of the String.indexOf() method:

var tongueTwister:String = 
"Peter Piper picked a peck of pickled peppers";
var pickRegExp:RegExp = /pick/;
trace(pickRegExp.test(tongueTwister)); // outputs true

Here the test() method of the RegExp object is used to see whether the value of the tongueTwister variable
matches the pattern you’ve defined. This method returns a Boolean value indicating whether the specified string
contains the pattern: true for a match and false for no match. In this case, you should see the value true traced to
the Output panel (or output to the console if you are using Flash Builder).

To see exactly what is being matched, you can use the replace() method of the String object. The String.
replace() method uses a regular expression to replace the text matched by a regular expression with the specified
replacement string:

var tongueTwister:String = 
"Peter Piper picked a peck of pickled peppers";
var pickRegExp:RegExp = /pick/;
var replaced:String = tongueTwister.replace(pickRegExp, "MATCH")
trace(replaced);

If you test this code, you should see the following in the Output panel:

Peter Piper MATCHed a peck of pickled peppers

You can tell that the pickRegExp regular expression matched the first occurrence of the string pick at the
beginning of the word picked, which has been replaced by the string MATCH, the specified replacement string.

CHAPTER 10 ■ REGULAR EXPRESSIONS

373

You might have noticed that the string pick that is part of the word pickled toward the end of the
tongueTwister string wasn’t replaced. Unless you tell it otherwise, a regular expression will stop
searching when it finds the first occurrence of a string that matches the specified pattern. If you
want it to continue and find all matches, you’ll need to use the global modifier (see “Using the
global modifier” section later in this chapter).

In the previous regular expression example, the pattern was just made up of regular characters, so that makes
it as useless as String.indexOf() for solving the tongue-twister problem. However, regular expressions can also
contain metacharacters, which add a lot more power and flexibility to string searches.

Introducing Metacharacters
Metacharacters are characters that have special meaning in the regular expression pattern, and they make regular
expressions a powerful tool. Table 10-1 contains a partial list of the metacharacters.

Table 10-1. Common metacharacters

Metacharacter Description

\b Matches the position between a word
character and a nonword character

\d Matches a single digit

\s Matches any whitespace character such as
a space, tab, or newline

\w Matches any alphanumeric character or
an underscore (_)

The metacharacters listed in Table 10-1 also have exact opposites, which can be specified using the uppercase
version of the same letter. For example, to match any character that is not a digit, you can use the \D metacharacter.
The word boundary metacharacter (\b) is a little trickier in this respect because you need to remember that it matches
a position between two characters. Its opposite, \B, still matches a position between two characters, either two word
characters or two nonword characters.

You might have noticed that one of these metacharacters finally offers the solution to the tongue-twister problem
from earlier. By placing a word boundary metacharacter (\b) on either side of the pick string, you can specify that you
want it to match only as whole word:

\bpick\b

Now the pattern matches only if there is a word boundary (anything that’s not an alphanumeric character or an
underscore) on either side of pick:

var tongueTwister:String = 
"Peter Piper picked a peck of pickled peppers";
var pickRegExp:RegExp = /\bpick\b/;
trace(pickRegExp.test(tongueTwister)); // outputs false

That gives an output of false, which is the desired result because the string being tested does not contain the
word pick. Now you can put away this pesky problem and peruse other possibilities in programming.

CHAPTER 10 ■ REGULAR EXPRESSIONS

374

Using Anchors to Restrict the Position of Matches

Like their heavy-chained nautical counterparts, anchors can restrict the action of your regular expression. Up to this
point, the regular expression examples have been free as a bird—free to hunt the entire search string for a match.
Anchors allow you to specify where in the string to look for a match to the pattern: at the beginning, at the end, or both.

Take the following variable, which gives the recipe for a good story:

var goodStory:String = "beginning, middle and end";

Using Start-of-String Anchors

Let’s say that you want to match the word beginning, but only if it appears at the beginning of the string. You could
indicate that as part of your pattern by preceding it with the start-of-string anchor, represented by a caret (^).
Press Shift+6:

^beginning

This matches the string beginning, but only if it is the first thing in the string being searched.

Using End-of-String Anchors

The start-of-string anchor has a counterpart called the end-of-string anchor, which is represented by a dollar sign
($). You use this anchor if you want the pattern to match only if it appeared at the end of the string. The end-of-string
anchor goes at the end of the pattern:

end$

This matches the string end, but only if it is the last thing in the string being searched.

Combining Anchors

Finally, you can use a combination of both anchors to specify that the pattern should match the entire string:

^beginning, middle and end$

This would match the string beginning, middle and end, but only if the search string contained exactly that
string and nothing else. Let’s see how it works in an example:

var goodStory0:String = "beginning, middle and end";
var goodStory1:String = "beginning, middle and end with epilogue";

var myRegExp:RegExp = /^beginning, middle and end$/;

trace(myRegExp.test(goodStory0)); // outputs true
trace(myRegExp.test(goodStory1)); // outputs false

This example tries to match the exact string beginning, middle and end. Because the first recipe contains this
exactly, running test() on this string returns true. The second recipe does not end with the specified string end, so it
returns false when tested.

CHAPTER 10 ■ REGULAR EXPRESSIONS

375

Providing Alternatives with Alternation
In the examples so far, every character specified in the regular expression patterns must match for the string as a
whole to be considered a match. Alternation allows you to specify a number of alternative patterns to be matched by
separating the strings with a pipe (or vertical bar) symbol (|). As an example, the following pattern will match either
the word one or two:

one|two

You could use alternation to solve the earlier spelling problem to match either color or colour, as follows:

var entry:String = "Purple is my favourite colour";
var colorRegExp:RegExp = /color|colour/;
if (colorRegExp.test(entry)) {
 trace("We have a match!");
}

You can specify as many alternatives as you like:

one|two|three|four|five|six|seven|eight|nine|ten

Alternation operates on the entire pattern. You can force the alternation to act only on a particular part of the
pattern using groups (covered in the “Grouping patterns” section later in this chapter).

Using Character Classes and Character Ranges
Character classes allow you to specify that instead of a specific character, you want one of a number of characters to
be matched at a given position in a pattern. You create a character class by wrapping the characters to be matched
in square brackets. For example, if you want a regular expression to match any of the vowels in the English alphabet,
you could create a character class like this:

[aeiou]

This pattern will match only a single character, but that character can be any one of those specified in the
character class. You can use the character class as part of a larger expression:

b[aeiou]g

This pattern would match bag, beg, big, bog, and bug.
Specifying each character that could possibly match is all well and good, but what if you want to match any letter

of the alphabet? You would end up with the following:

[abcdefghijklmnopqrstuvyxyz]

Thankfully, this can be rewritten much more efficiently as a character range. A character range in a character
class is specified as two characters separated by a hyphen (–). The following pattern is equivalent to the previous
example:

[a-z]

CHAPTER 10 ■ REGULAR EXPRESSIONS

376

You can also combine character ranges in a single character class by specifying them one after another. To match
any alphanumeric digit, you could use the following pattern:

var entry:String = "Purple is my favourite colour";
var colorRegExp:RegExp = /[a-zA-Z0-9]/;

if (colorRegExp.test(entry)) {
 trace("We have a match!");
}

The characters in a character class don’t have to be alphanumeric. For example, you might want to construct a
pattern to match any of the standard punctuation characters:

[.,;:'!?]

The only symbols you need to be wary of when using a character class are the hyphen and the opening and
closing square brackets. A hyphen can be specified only as the first or the last character in the character class (to avoid
confusion with a character range). If you want to include square brackets in the class, escape them with backslashes:

var entry:String = "The [colour] Purple";
var colorRegExp:RegExp = /[\[\]-]/;

if (colorRegExp.test(entry)) {
 trace("We have a match!");
}

Simple, no?

Matching any Character using the Dot Metacharacter
Sometimes you want your patterns to be extremely flexible. The dot metacharacter, represented by a period or
full-stop symbol (.), will match any single character in the string, without caring what that character is. The only
exception to this rule is that, by default, it will not match a newline character (you’ll find out how to alter this behavior
in the “Using the dotall modifier” section later in this chapter).

Let’s say that you want to match any string that is exactly five characters long, but you don’t care which five
characters they are. You could construct a pattern that consists solely of five dot metacharacters:

.....

This pattern matches hello, knife, a bag, and even &^%$£’—any string that is five characters in length, provided
that none of those characters is a newline.

As with all the other metacharacters, if you want to match a period character literally in your pattern, you need to
escape it with a backslash:

ActionScript [123]\.0

This expression matches ActionScript 1.0, ActionScript 2.0, or ActionScript 3.0.
Note that the period symbol has no special meaning when specified as part of a character class, there’s no need to

escape it.

CHAPTER 10 ■ REGULAR EXPRESSIONS

377

Matching a Number of Occurrences Using Quantifiers
So far, each character in the regular expression patterns you’ve seen has matched exactly one character in the string
being searched. However, in a regular expression, you can use quantifiers to determine how many times a given
character should be matched. Table 10-2 shows the available quantifiers.

Table 10-2. Regular expression quantifiers

Quantifier Description

? Matches zero or one occurrence of the preceding character

* Matches zero or more occurrences of the preceding character

+ Matches one or more occurrences of the preceding character

I’ll discuss each one of these quantifiers in turn.

Matching Zero or One Occurrence

Earlier you saw an example of the String.indexOf() method, showing that it isn’t ideal for matching a word when
you aren’t quite sure of its spelling. The specific example was matching the British English or American English
spelling of the word colour/color. If your memory is as bad as mine, here’s a little refresher of the rather awkward
solution using String.indexOf():

var entry:String = "Purple is my favourite colour";
if (entry.indexOf("color") > -1 || entry.indexOf("colour") > -1) {
 trace("We have a match!");
}

You then saw a way to solve this problem using a regular expression with alternation, but it wasn’t much of an
improvement:

var entry:String = "Purple is my favourite colour";
var colorRegExp:RegExp = /color|colour/;
if (colorRegExp.test(entry)) {
 trace("We have a match!");
}

You still need to specify the majority of the letters in the word twice. What you really need is a way to specify that
the letter u is optional in the word colour and does not need to be present in the string to match. Using the zero-or-
one quantifier, represented by a question mark (?), you can do just that:

colou?r

You can now rewrite the code to use the regular expression:

var entry:String = "Purple is my favourite colour";
var colorRegExp:RegExp = /colou?r/;
if (colorRegExp.test(entry)) {
 trace("We have a match!");
}

CHAPTER 10 ■ REGULAR EXPRESSIONS

378

Matching Zero or More Occurrences

If you want to say that a given character can appear zero or more times, use the zero-or-more quantifier, which is
represented by an asterisk (*). Like the zero-or-one quantifier, this quantifier is placed after the character you want to
be matched zero or more times in the string.

For example, the following pattern matches any word beginning with i and ending with s, with zero or more other
characters in between. (Remember that \w matches any alphanumeric character, and \b specifies the beginning or
end of the word.)

\bi\w*s\b

This pattern matches the words is, insulates, and inconsistencies with equal aplomb.

Matching One or More Occurrences

The ? and * quantifiers allow zero occurrences of a given character. However, you might need to specify that there
should be at least one occurrence. In these cases, you can use the one-or-more quantifier, which is represented by
the plus sign (+). As with the other quantifiers, you place this symbol after the character that you want to match in
the string.

Modifying the earlier example, you can say that you want to match any word beginning with i and ending with s,
but that there must be at least one character between them by replacing the * quantifier with a + quantifier:

\bi\w+s\b

This pattern would still match insulates and inconsistencies, but would no longer match is because there is no
letter between the i and the s.

How to Prevent Greedy Quantifiers

By default, the * (zero-or-more) and + (one-or-more) quantifiers are greedy—they’ll consume as much as they possibly
can and leave only what is left for the rest of the pattern to match. I feel a demonstration of the problem coming up:

var compassPoints:String = "Naughty elephants squirt water";
var firstWordRegExp:RegExp = /\b.+\b/;
trace(compassPoints.replace(firstWordRegExp, "MATCH"));

Here, you want to match a word boundary (\b), followed by one or more non-newline characters (.+), followed
by another word boundary (\b). You might reasonably expect that Naughty would be replaced by MATCH. What you
actually get in the Output panel is the following:

MATCH

What happened to the rest of the string? The answer is that the .+ portion of the regular expression ate every
last bit of it. The word boundaries that were matched were the very beginning of the string and the very end of the
string, and the rest was consumed by the greedy quantifier because the dot metacharacter matches any non-newline
character, including whitespace characters.

To put the quantifiers on a diet and stop them from being so greedy, you can add a question mark (?) just after
the quantifier symbol:

var compassPoints:String = "Naughty elephants squirt water";
var firstWordRegExp:RegExp = /\b.+?\b/;
trace(compassPoints.replace(firstWordRegExp, "MATCH"));

CHAPTER 10 ■ REGULAR EXPRESSIONS

379

This might seem a little confusing at first because the question mark is also the symbol for the zero-or-one
quantifier. However, when it is placed after either the * or + quantifier, it forces that quantifier to consume as few
characters as possible, while allowing the entire pattern to be matched:

MATCH elephants squirt water

If only it were that easy to correct the appetite of human beings, I could give up my extortionate gym
membership.

Another way to solve the problem is by restricting which characters are allowed to appear between the word
boundaries:

var compassPoints:String = "Naughty elephants squirt water";
var firstWordRegExp:RegExp = /\b\w+\b/;
trace(compassPoints.replace(firstWordRegExp, "MATCH"));

Now, instead of matching one or more non-newline characters (using the . metacharacter) surrounded by word
boundaries, the expression will match only one or more characters that can make up a word (using the \w sequence,
which matches only alphanumeric characters and underscores) surrounded by word boundaries:

MATCH elephants squirt water

You’ll often find that there are many ways to make your regular expression patterns more specific. Be pragmatic,
and don’t be afraid to experiment to see which approach works best for you.

Being More Specific with Bounds

Sometimes being able to specify that you want zero or one or more occurrences of a character isn’t specific
enough. You might want to specify that you want at least four occurrences of this character, or between two and six
occurrences of that character. Although you could do this by stringing together some of the quantifiers you’ve already
met, it wouldn’t be pretty:

\b\w\w\w?\w?\w?\w?\b

This pattern will match words of two to six characters, but you would be forgiven for taking a while to
work that out.

Thankfully, you can use a bound in your regular expression patterns to specify how many characters should be
matched. Like quantifiers, bounds are placed after the character that you want to be affected, and they are denoted by
curly braces ({}).

The simplest example of a bound specifies exactly how many occurrences should be matched. The following
pattern matches words of exactly two characters:

\b\w{2}\b

You can also specify a maximum number of occurrences to be matched. The following pattern matches words of
between two and six characters:

\b\w{2,6}\b

CHAPTER 10 ■ REGULAR EXPRESSIONS

380

Finally, you can leave off the maximum value (keeping the comma) to specify that you want at least the minimum
number of occurrences to match, but without an upper limit. The following pattern matches words of at least two
characters:

\b\w{2,}\b

Beware that bounds that can match a variable number of characters (those that have a maximum value specified
or that are unlimited) are greedy by default. Just like the * and + quantifiers, they will consume as many occurrences
as possible while allowing the rest of the pattern to match. You can demonstrate this by going back to the earlier
example and replacing the + quantifier with a bound looking for two or more occurrences of a non-newline character:

var compassPoints:String = "Naughty elephants squirt water";
var firstWordRegExp:RegExp = /\b.{2,}\b/;
trace(compassPoints.replace(firstWordRegExp, "MATCH"));

This will produce the same result as using the + quantifier; namely that the entire string will be replaced by MATCH.
If you want a bound to be lazy rather than greedy, just append a question mark after the closing curly brace,

just as with the quantifiers:

var compassPoints:String = "Naughty elephants squirt water";
var firstWordRegExp:RegExp = /\b.{2,}?\b/;
trace(compassPoints.replace(firstWordRegExp, "MATCH"));

This results in just the first word being replaced.

Grouping Patterns
Using the quantifiers with single characters is incredibly restrictive. What if you want to apply a quantifier or a bound
to a sequence of characters? You can group them by using parentheses, as in this example:

b(an)+a

This matches the letter b, followed by one or more occurrences of the sequence an, followed by the letter a,
which would include the word banana:

var myFavoriteFruit:String = "banana";
var bananaRegExp:RegExp = /b(an)+a/;
trace(bananaRegExp.test(myFavoriteFruit)); // outputs true

Of course, it would also include the sequence bananananananana because the pattern specifies one or more
occurrences of an. If you want to be more restrictive, you could use a bound instead:

var myFavoriteFruit:String = "banana";
var bananaRegExp:RegExp = /b(an){2}a/;
trace(bananaRegExp.test(myFavoriteFruit)); // outputs true

No more bananananananana for you.
Groups are also useful when using alternation. As you saw earlier, the alternation operator (|) acts on the entire

pattern instead of just the preceding character (as is the case with the quantifiers). Consider the following expression:

\bb(oa|iscui)t\b

CHAPTER 10 ■ REGULAR EXPRESSIONS

381

This would match both boat and biscuit because the parentheses limit the alternation between the substrings
oa and iscui between the opening b and closing t.

Accessing Matched Strings with Backreferences
In addition to allowing you to organize your patterns, groups let you extract certain pieces of information from a
regular expression. When you enclose either part or all of a pattern in a group, the portion of the string matched by
that group, referred to as a capture group, is available later in the pattern via a backreference.

A backreference is a numeric reference to a capture group preceded by a backslash (\), starting at 1 for the first
group and counting up to a maximum of 99.

Working out the index of your group can be quite troublesome, particularly if you have nested groups (groups
within groups) in your pattern, but a simple rule of thumb should see you through: count the number of unescaped
opening parentheses, starting from the left side of your pattern, up to and including the group you want to target.
The number you end up with will be the index of the backreference to that group.

A simple example might make this a little clearer. Suppose that you want to search through a piece of text with
HTML tags and find any references to headings. You could use the dot metacharacter and quantifiers to write the
pattern, like this:

<h[1-6]>.*?</h[1-6]>

This would do the job of matching valid heading tags, but it would also match strings with mismatched opening
and closing heading tags:

var invalidHtmlText:String = "<h1>A mismatched example</h6>";
var headingRegExp:RegExp = /<h[1-6]>.*?<\/h[1-6]>/;
trace(headingRegExp.test(invalidHtmlText)); // outputs true

According to the pattern, the value of the invalidHtmlText variable is perfectly valid. It has an opening header
tag with a level of 1 through 6 (<h[1-6]>), some text (.*?), and then a closing heading tag with a level of 1 through 6
(<\/h[1-6]>). Nothing in the pattern says that the opening and closing tags must be of the same level. Just in case the
expressions are still looking uncomfortably foreign to you, Table 10-3 gives a more detailed breakdown.

Table 10-3. Regular expression breakdown

invalidHTMLText Regular expression decompiled

<h Matches literally the characters <h

[1-6] Matches any one digit 1 through 6

> Matches literally the character >

. Matches any one character

* Matches zero or more occurrences of the preceding character (because it is a
period, it means any character)

? Prevents the preceding qualifier from being greedy, meaning it matches only the
minimal number of characters to fulfill the expression’s requirements

<\/h Matches literally the characters </h (note the need to escape the forward slash)

CHAPTER 10 ■ REGULAR EXPRESSIONS

382

Notice that when translating the pattern to an ActionScript 3.0 regular expression literal, you need
to escape the forward slash in the closing heading tag. This is necessary because regular expression
literals are delineated by forward slashes, and you need to tell the ActionScript compiler that this
forward slash is part of the pattern, not the end delimiter.

To solve this problem, you need a way to tell the regular expression engine that whatever number was used to
open the tag should also be used to close the tag. You can do this by wrapping the portion of the pattern that matches
the contents of the opening tag in parentheses and then using a backreference in the closing tag to specify that they
must match:

var invalidHtmlText:String = "<h1>A mismatched example</h6>";
var validHtmlText:String = "<h1>A matching example</h1>";
var headingRegExp:RegExp = /<(h[1-6])>.*?<\/\1>/;
trace(headingRegExp.test(invalidHtmlText)); // outputs false
trace(headingRegExp.test(validHtmlText)); // outputs true

Similar to the previous example, you are matching the first part of the string. The difference is that you are
matching <\/\1>, which is the number 1 in the heading tag.

Running this example will confirm that only the valid HTML text will match the regular expression.

Using Backreferences with the String.replace() Method

Backreferences can also be used in the replacement string that is passed to the String.replace() method. When
used in this context, backreferences are specified slightly differently: they use a $ (dollar sign) instead of a backslash,
followed by the capture group index.

To demonstrate replacing using regular expressions and backreferences, imagine that you have loaded in HTML
text dynamically to populate a TextField instance. Although a TextField instance can be populated with HTML
text, it understands only the most basic HTML tags. One of the tags not understood is , which needs to be
converted to a tag to display properly in a text field. To go through a string and replace all occurrences of the
 tag and its contents with the tag with the same contents, you can use this code:

var htmlText:String = "This text is important";
var strongRegExp:RegExp = /(.*?)<\/strong>/;
var replaced:String = htmlText.replace(strongRegExp, "$1");
trace(replaced); // outputs: This text is important

Here, the backreference $1 refers to the capture group containing the match for (.*?). Remember that the full
match for the entire expression consists of the opening and closing tags and the contents between. This
full match is replaced by the opening and closing tags, enclosing whatever characters are contained in the first
capture group denoted by the parentheses. In the example, the matched characters for the capture group are This
text is important, so the backreference $1 includes these characters, and you can use this backreference to insert
these characters into your final string.

You can also use the special index 0 (zero) to make use of the part of the search string that was matched by the
whole pattern.

Using Backreferences After the Pattern has been Matched

One of the methods of the RegExp object you haven’t yet explored is the exec() method. It is similar to the test()
method in that it executes the regular expression against the specified string. But instead of just returning true for a
match, you actually get some useful information.

CHAPTER 10 ■ REGULAR EXPRESSIONS

383

The exec() method returns an Object containing the groups that were matched, stored by group index,
including the part of the string matched by the entire pattern at index 0, as well as two other special properties:

•฀ input: the string that was passed to the method

•฀ index: the position within the string in which the matched substring was found

Returning to the example in the previous section, you can see what this means in practice:

var htmlText:String = "This text is important 
while this text is not as important";
var strongRegExp:RegExp = /(.*?)<\/strong>/;
var matches:Object = strongRegExp.exec(htmlText);
for (var i:String in matches) {
 trace(i + ": " + matches[i]);
}

Running this example results in the following text in the Output panel:

0: This text is important
1: This text is important
input: This text is important 
while this text is not as important
index: 0

The array of capture groups contains two indexes. First, the entire matched substring is found in the first index
(0). The second index (1) contains the matched group denoted by parentheses. In addition, the whole string being
searched is contained in the input property. Finally, index traces as 0 because the matched substring begins at the
first character in the string through which you were searching.

Understanding the E-Mail Regular Expression- Pattern
As promised, you can now make sense of the e-mail validation regular expression pattern presented at the beginning
of the chapter;

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

Let’s break down each of its parts. First, notice that the whole pattern in enclosed in start and end anchors
(^ and $, respectively):

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

The pattern matches only if the entire string being searched matches the pattern. If you omit these anchors, the
pattern would match a string that contained a valid e-mail address somewhere within it. This might be what you want
if you’re trying to extract all e-mail addresses from a larger string, but it’s not correct for validating an e-mail address.

Moving on, you can see that there is a group toward the beginning of the expression containing a character range:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

This group contains a character class that matches any alphanumeric character, a period, an underscore, or a
hyphen. This character class then has the one-or-more quantifier applied to it to indicate that you want to match
as many of these characters in a row as possible. This will match the mailbox name portion of an e-mail address.

CHAPTER 10 ■ REGULAR EXPRESSIONS

384

It is grouped for readability only, but it might be useful later on if you want to reference the mailbox name using a
backreference.

Next comes the @ symbol. This symbol has no special meaning in the pattern and is treated as a literal character:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

This matches the @ character that separates the mailbox name from the domain name in an e-mail address.
Following that is another group containing a character range:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

This group is almost identical to the first, except that the character range does not contain an underscore
character because it would be invalid in a domain name. Again, the pattern looks for one or more occurrences of the
character range (which is why you use the + quantifier).

Next is an escaped period:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

Remember that the period needs to be escaped if you want to match it literally because it has special meaning
within a regular expression pattern. Without the preceding backslash, it matches any non-newline character.

The final part of the regular expression pattern is another group:

^([a-zA-Z0-9._-]+)@([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$

This group consists of a character class matching an uppercase or lowercase letter and a bounds operator,
indicating that you want between two and four characters that match that class. This matches the top-level domain
(com, net, org, uk, and so on) for the domain name portion of the e-mail address.

Changing Regular Expression Behavior with- Modifiers
You’ve been concentrating on patterns for so long that you might have forgotten the other element of regular
expressions: modifiers. Modifiers are used to change the behavior of the entire regular expression or just some of the
metacharacters within a pattern. ActionScript 3.0 supports the modifiers listed in Table 10-4.

Table 10-4. Regular expression modifiers

Modifier Property Description

i ignoreCase Specifies that the entire pattern is case-insensitive

g global Specifies that the pattern should be matched as many times as
possible throughout the string being searched instead of just once

m multiline Allows the start-of-string and end-of-string anchors to match the
start and end of a line, respectively

s dotall Allows the dot metacharacter to match newline characters

x extended Specifies that whitespace in the pattern should be ignored

CHAPTER 10 ■ REGULAR EXPRESSIONS

385

The modifiers are separate from the pattern in a regular expression and are specified either as a string passed as
the second argument to the RegExp constructor or after the second forward slash in a regular expression literal. You
can specify more than one modifier (it doesn’t make sense to specify the same modifier more than once). A regular
expression using all the available modifiers (more power, more power) would look something like this:

/pattern/igmsx

And if you use all the modifiers, you’re writing more complex regular expressions than you’ll ever need.
After the modifiers are configured for a RegExp object, you can test to see which ones have been set by using the

equivalent property names (as specified in Table 10-4):

var globalRegExp:RegExp = /abc/g;
trace(globalRegExp.global); // outputs true

The properties are read-only Boolean values, so the preceding example would output true to the Output panel.
Let’s now look at each of the modifiers in turn to see how they affect your patterns.

Using the Case-Insensitive Modifier
Using the i (case-insensitive) modifier allows you to specify that any alphabetic character in your pattern should
match both the uppercase and lowercase versions in the string being searched (an a in the pattern matches either an
a or an A):

var colorRegExp:RegExp = /colou?r/i;
trace(colorRegExp.test("colour")); // outputs true
trace(colorRegExp.test("Color")); // outputs true
trace(colorRegExp.test("COLOUR")); // outputs true

Using the case-insensitive modifier, you can reduce the number of characters in the e-mail validation pattern by
eliminating all the uppercase character ranges:

/^([a-z0-9._-]+)@([a-z0-9.-]+)\.([a-z]{2,4})$/i

Unfortunately, the case-insensitive modifier has no effect on non-English characters, such as è and È. For
occasions when you want to perform a case-insensitive match on a string containing non-English characters, you
have to use character classes or alternation instead.

Using the Global Modifier
The g (global) modifier allows you to use the exec() method to find more than one occurrence of your entire pattern
in the specified search string. For example, without the global modifier, multiple calls to the exec() method in the
following example result in the same word being matched every time:

var compassPoints:String = "Naughty elephants squirt water";
var wordRegExp:RegExp = /\b\w+\b/;
trace(wordRegExp.exec(compassPoints)); // outputs Naughty
trace(wordRegExp.exec(compassPoints)); // outputs Naughty
trace(wordRegExp.exec(compassPoints)); // outputs Naughty
trace(wordRegExp.exec(compassPoints)); // outputs Naughty

CHAPTER 10 ■ REGULAR EXPRESSIONS

386

This occurs because the RegExp object is being reset after each exec() method is called. You can change this
behavior with the global modifier:

var compassPoints:String = "Naughty elephants squirt water";
var wordRegExp:RegExp = /\b\w+\b/g;
trace(wordRegExp.exec(compassPoints)); // outputs Naughty
trace(wordRegExp.exec(compassPoints)); // outputs elephants
trace(wordRegExp.exec(compassPoints)); // outputs squirt
trace(wordRegExp.exec(compassPoints)); // outputs water

This time, the RegExp object remembers the position at the end of the previous match. The next time exec() is
called, it begins its search from where it previously left off.

The global modifier also changes the behavior of the String.match() method. Normally, this method would
return an array containing exactly one element, consisting of the first substring that was matched by the specified
regular expression:

var compassPoints:String = "Naughty elephants squirt water";
var wordRegExp:RegExp = /\b\w+\b/;
trace(compassPoints.match(wordRegExp)); // outputs Naughty

This example outputs the following to the Output panel:

Naughty

However, if you use the global modifier, the array returned from the String.match() call will contain one
element for each time the pattern was matched throughout the entire string:

var compassPoints:String = "Naughty elephants squirt water";
var wordRegExp:RegExp = /\b\w+\b/g;
// outputs Naughty,elephants,squirt,water
trace(compassPoints.match(wordRegExp));

The revised example outputs the following to the Output panel:

Naughty,elephants,squirt,water

The final method affected by the global modifier is the String.replace() method. I trust that you can work out
what the following example does:

var compassPoints:String = "Naughty elephants squirt water";
var wordRegExp:RegExp = /\b\w+\b/g;
// outputs MATCH MATCH MATCH MATCH
trace(compassPoints.replace(wordRegExp, "MATCH"));

CHAPTER 10 ■ REGULAR EXPRESSIONS

387

Using the Multiline Modifier
The m (multiline) modifier changes the behavior of the start-of-string and end-of-string anchors so that they also
match the start and end of a line in a string, respectively. When combined with the global modifier, this modifier
makes it easy to construct a regular expression to take a string containing multiple lines and convert them into
list items:

var list:String = "one\ntwo\nthree\nfour";
var singleLineRegExp:RegExp = /^(.*?)$/mg;
trace(list.replace(singleLineRegExp, "$1"));

This example produces the following output:

one
two
three
four

Notice that the newlines are still present. They weren’t actually consumed by the anchors, so they weren’t
replaced by the replacement string.

Using the Dotall Modifier
The dot metacharacter normally matches any character in a string with the exception of newlines. Using the s (dotall)
modifier means that the dot metacharacter will match any character in the string being searched, including newlines.
This is a subtle shift, but a useful one.

Going back to the tag example, only by allowing newlines to be recognized with other characters would
the following expression be able to find the tag spread across multiple lines. Try the following with and
without the dotall modifier:

var htmlText:String = "This text\nis important";
var strongRegExp:RegExp = /(.*?)<\/strong>/s;
var replaced:String = htmlText.replace(strongRegExp, "$1");
trace(replaced);

Using the Extended Modifier
Using the x (extended) modifier allows you to format your regular expression pattern using whitespace without
actually affecting the pattern itself. This is generally used to aid readability of a pattern. For example, you could use
whitespace to separate the various parts of the e-mail validation pattern, like so:

/^ ([a-z0-9._-]+) @ ([a-z0-9.-]+) \. ([a-z]{2,4}) $/ix

In my experience, the extended modifier is rarely (if ever) used. If other developers pick up your code,
they might assume that the whitespace is part of the pattern, and only when they look at the modifiers
(if they look at them at all) will they realize that the whitespace has no meaning. Sometimes using
the extended modifier makes sense, such as when you have a really long regular expression. If you use
it, make sure that you add in a comment before the regular expression to point it out.

CHAPTER 10 ■ REGULAR EXPRESSIONS

388

Using Variables to Build a Regular Expression
Another (perhaps better) option for breaking up long regular expressions to make them more readable is to build up
the expression using variables. To use variables to construct a regular expression, you must use the RegExp constructor
instead of a regular expression literal. Consider the following example:

var localName:String = "^([a-z0-9._-]+)";
var domain:String = "([a-z0-9.-]+)";
var topLevel:String = "([a-z]{2,4})$";
var emailValidator:RegExp = 
new RegExp(localName + "@" + domain + "\\." + topLevel, "i");
var email:String = "someAddress@someserver.com";
trace(emailValidator.test(email)); // outputs true

This example breaks out each of the groups and assigns them to variables; then constructs the regular expression
and passes it in the RegExp constructor. (Note that because the backslash for the period is within a string, you need
to escape that backslash with another backslash so that it is read literally and not ignored.) Whether this is more
readable than including the expression in a literal declaration is debatable.

var emailValidator:RegExp = 
/^([a-z0-9._-]+)@([a-z0-9.-]+)\.([a-z]{2,4})$/i;
var email:String = "someAddress@someserver.com";
trace(emailValidator.test(email)); // outputs true

At the very least, you have options about how you want to represent your regular expressions and can decide
what works best for you and your group.

Useful Regular Expressions
Table 10-5 shows a list of regular expression patterns that you might find useful in your projects. See if you can work
out how they do what they do. (Note that these regular expression patterns do not include any boundaries, so if you
want to ensure that they are not matched within other words, you should include the \b metacharacter).

Table 10-5. Common regular expressions

Matches Regular expression

U.S. Social Security number \d{3}-\d{2}-\d{4}

24-hour time with optional seconds
(hh:mm[:ss])

([01][0-9]| 2[0-3]) :([0-5][0-9]) (:([0-5][0-9]))?

U.S. date (mm/dd/yyyy) (0?[1-9]| 1[012]) /(0?[1-9]| [12][0-9]| 3[01]) /([0-9]{ 4})

UK date (dd/mm/yyyy) (0?[1-9]| [12][0-9]| 3[01]) /(0?[1-9]| 1[012]) /([0-9]{ 4})

E-mail address ([a-z0-9._ -]+)@([a-z0-9.-]+)\ .([a-z]{ 2,4 })

URL ^http\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(/\S*)?$

http://someAddress@someserver.com/
http://someAddress@someserver.com/

CHAPTER 10 ■ REGULAR EXPRESSIONS

389

Many of the regular expression patterns shown in Table 10-5 could be written differently or more accurately. Half
the job of creating the pattern for a regular expression is to find the right balance between clarity and accuracy. The
official regular expression to validate an e-mail address is more than 6,000 characters long and is almost completely
incomprehensible to mere mortals. The version presented here is 42 characters long, much more understandable,
and good enough in all but the most exceptional cases.

Regular Expression Resources
I hope this chapter has given you an insight into regular expressions, but there’s no way it could possibly tell the whole
story. If you have a taste for regular expressions and want to explore some of the more esoteric features, you could do
no better than getting yourself a copy of Jeffrey Friedl’s Mastering Regular Expressions (O’Reilly). This book will tell
you everything you ever wanted to know—and more—about regular expressions. It then messes with your head with
a look at how regular expression engines work and how to best optimize your patterns to squeeze every last ounce of
performance from them. Be warned that by the time you’ve finished this book, you will either be institutionalized or a
fully paid-up member of the propeller-head club.

If you are averse to institutionalization, you might want to check out Tony Stubblebine’s excellent Regular
Expression Pocket Reference (O’Reilly). All developers who use regular expressions more than once per year should
have a copy of this reference on their desks.

If you’re in a fix and you can’t quite work out how to build a regular expression to suit your needs, chances are
that someone has solved the problem before. If it is solved, it’s probably listed on the Regular Expression Library
website (http://www.regexlib.com), which contains a searchable list of regular expression patterns that have
been contributed by visitors to the site. The collection is ever-growing and driven by the community, so if you find a
solution to a problem that isn’t already listed, you can contribute it to the developer community through this site.

Summary
I covered a lot of ground in this chapter. If you’re still reading, give yourself a pat on the back (and extra pats if you
read it all in one sitting). You started by looking at what regular expressions are and why they are useful. Next, you
spent a long time wading through the various features of a regular expression pattern and how they can be used in a
variety of practical examples, using the various regular expression-capable methods along the way. You then looked
at the modifiers that can be applied to a regular expression and how they affect the way in which a pattern is matched.
Finally, you saw some commonly used regular expressions and were directed to some resources for learning more
about regular expressions.

Regular expressions offer an amazing amount of power for searching through and manipulating string data in
ActionScript. Actually, much of programming comes down to manipulating strings and other types of data. In the
next chapter, you’ll look at using XML, one of the most useful ways of storing and passing data back and forth with the
server. See you on the next page, when you’re ready to add yet another powerful tool to your ActionScript toolkit.

http://www.regexlib.com/

391

CHAPTER 11

Using XML

This chapter covers the following topics:

An introduction to XML and E4X•฀

How XML can be used with ActionScript 3.0•฀

The different methods of constructing XML•฀

Extensible Markup Language (XML) is a simple, tag-based, descriptive language that can be created in any text
editor. XML allows users to describe complex, hierarchical data structures in a simple and logical way. It has become
popular because not only does XML make data portable, but it also ensures that data is digestible by every major
language in modern computer programming.

XML has some simple rules and structural terminology that can be quite complex at times. However, don’t
panic; we will be using simple examples throughout this chapter to help you get up to speed quickly. To use XML with
ActionScript 3.0, you need only adhere to the few basic structural rules that apply to the XML syntax. You can write
your own XML file or, as is often the case, you can access other applications’ XML data sources.

If you have written XML parsers in previous versions of ActionScript in the past, you are probably familiar with
the complex manner in which you had to iterate through the incoming XML object to access the data you needed. This
process could be somewhat time-consuming. As a result many people wrote XML parsers that could be extended for
use in future projects. Other developers used solutions like the ActionScript XPath API to drill down through the XML
document to the required data. XPath also enabled the use of filtered searches on the XML document.

For those of you who have used the XPath API, the new method of interrogating XML, called ECMAScript for
XML (E4X), should feel familiar. E4X is much easier and quicker to use than a traditional XML parser. Traversing XML
is also made lightning fast with the added use of dot notation. Furthermore, E4X automatically ignores whitespace
(carriage returns, tabs, spaces, and line feeds between XML elements). In short, E4X is supercharged and easy to use,
which is a long way from its predecessors.

If you’re new to this topic, don’t be discouraged by all the previous technical jargon. In this chapter, you’ll learn
how to use E4X and understand all of its intricacies. But first, let’s back up and start with some XML basics.

Understanding XML and E4X
Starting at the beginning, XML is a hierarchical data structure that has been given logical meaning through the use
of tags, similar to an HTML document. The XML document refers the actual XML file and the entire data structure
in that document. An XML tree (think family tree) is the term used to describe the XML data’s hierarchical structure.
This information gives you an indication of how the data may be grouped and traversed.

CHAPTER 11 ■ USING XML

392

XML Document Components
Let’s review the main XML document components: the root node, elements, attributes, and text nodes.

The term node is typically used in XML to refer to all items in the XML tree. Using the family tree
analogy, XML data has a parent node. This parent node can have child nodes. Child nodes can
have siblings (the same parent) or child nodes of their own (grandchildren of the original parent),
and so on. Therefore, all XML document components mentioned in the previous statement can
be considered nodes. The type of node depends on how the item is referenced. Parents can also be
children and siblings, right?

Root Node

All XML documents must have a root node. And there can be only one!
This is the first node in an XML document or tree. Usually, the root node will have a fairly descriptive name,

matching the data’s purpose. So if the XML document described TV channels and their associated programs, like an
electronic program guide (EPG), the root node might appear like so:

<programguide> </programguide>

Elements

An XML element is a unit of XML data, delimited by tags. An XML element can also have nested elements. All XML
elements must have matching opening and closing tags, which are hierarchically balanced. This is wrong:

<person>
 <name>John Brown
<person>

Correct XML has a matching closing element tag that begins with </, like this:

<person>
 <name>John Brown</name>
</person>

Another way is to open and close an element in one go. This element is referred to as an empty element. The
empty element is useful when no text node is required. You can create the empty element tag as you normally would,
but add the closing tag / at the end, like so:

<person/>

Text Nodes

A text node is the optional textual content that sits between the opening and closing tags in an XML element. In
ActionScript 2.0, a text node was referred to as an element value. Text nodes are entirely optional. They are useful if
you have large sections of text or if you need to represent special characters in your XML, since attributes cannot do

CHAPTER 11 ■ USING XML

393

this as well. Suppose you want to have descriptive text about a given person but want to allow a third party to format
that text as HTML inside the XML and not have to worry about how ActionScript 3.0 will interpret the HTML tags
(special characters). Here’s an example:

<person>
 <name id="John Brown" location="London" age="30"><![CDATA[
 John Brown:
 Is tall and skinny, he has long hair and a top speed of 40mph

He also likes eggs and <i>custard</i>.
]]></name>
</person>

Ignoring the statement, which is quite untrue (he can only get up to 35mph), you will notice the CDATA tag in
the name text node encapsulates the HTML-formatted text. This way, you can use special characters with impunity
because the interpreter reads them literally rather than interpreting them.

E4X
E4X is a standard maintained by Ecma International (see http://www.ecma-international.org/ publications/
standards/Ecma-357.htm). It allows you to interface with XML through simple, intuitive, dot-syntax notational
methods.

E4X gives you advanced search and filtering control. You’re going to love it. You’ll see examples of using E4X
throughout this chapter.

Attributes

Essentially, attributes are data nodes within the opening tag of an element. They are often used to give descriptive
information about the text node that follows. Additionally, you can use them in tandem with empty elements to
organize data that may not have text associated with it.

Tests have shown that attributes are processed faster by ActionScript 3.0 than text node information. Also, it is
considered appropriate to use attributes for smaller related pieces of information about the element, whereas larger
pieces of information, such as descriptive text paragraphs, are better suited to text nodes.

So, an element might contain attributes like this:

<contact age="30">John Brown</contact>

And an empty element could be structured like this:

<name id="John Brown" location="London" age="30" />

All the data is contained inside the element as attributes and there is no need to add another closing element.

Accessing an XML File
You can write your own XML file for your ActionScript 3.0 project, or, as is often the case, you can draw XML
information from a server back-end via a remote procedure call (RPC), calling PHP, Java, C# pages, or some other
technology that returns an XML object. You may also use an XML socket server to push XML information to your
application from the back-end.

http://www.ecma-international.org/

CHAPTER 11 ■ USING XML

394

Creating an XML Object
Before you can do anything with XML, you need to create an XML object. Here is how to create an XML object in
ActionScript:

private var xmlObject:XML;

Once you have an XML object, there are many ways to populate it. More often than not, you will be reading an
existing external XML file in to your XML object. Populating an XML object internally by creating an XML structure in
your source code is far less common. So, let’s start by looking at how to access an external XML file.

Loading an XML File
For this chapter’s example, you will load in a list of channels and programs for a TV EPG. You will find the XML file
used in this example in the code you downloaded for this chapter, in a file called EPG.xml.

The following is the XML you’ll be using. I’ve kept it simple, as the XML is less important than the code you will
use to manipulate it.

<EPG>
 <Channel id="BBC1">
 <Program id="6am News" starttime="6:00">
 The breaking headlines
 </Program>
 <Program id="Good Morning Britain" starttime="6:15">
 Stories from around the UK
 </Program>
 <Program id="EastEnders" starttime="8:00" >
 Catch up with Albert Square
 </Program>
 </Channel>
 <Channel id="ITV">
 <Program id="Healthy Eating" starttime="6:00">
 Meals even our kids will eat
 </Program>
 <Program id="News" starttime="6:35">
 News roundup of the morning's events
 </Program>
 <Program id="Cartoons" starttime="6:50" >
 Keep the kids occupied
 </Program>
 <Program id="Breakfast" starttime="7:00">
 Topical conversation, News
 </Program>

CHAPTER 11 ■ USING XML

395

 </Channel>
 <Channel id="Channel 4">
 <Program id="Scooby Doo" starttime="6:00">
 Watch the kids solve mysteries
 </Program>
 <Program id="Big Brother" starttime="6:30">
 Catch up with the housemates
 </Program>
 <Program id="Big Breakfast" starttime="7:15" >
 Everything you need in the morning
 </Program>
 </Channel>
</EPG>

Now let’s set up the ActionScript 3.0 to load in the XML:

// imports
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.events.Event;
// variables
var urXML:URLRequest;
var ulXML:URLLoader;

//Connect to the XML file
urXml = new URLRequest("EPG.xml");
//Instantiate loader passing in the request object
ulXml = new URLLoader(urXml);
//Add event listener for load complete
ulXml.addEventListener(Event.COMPLETE, xmlLoaded);
//Load XML into loader object
ulXml.load(urXml);

First, we import the classes required to create the URL: URLRequest, URLLoader, and the Event class (without
these three things, we would not be able to initiate a new URLLoader). The purpose of the URLRequest is to capture all
the information in a single HTTP Request. Next, we add the code to create a URLRequest instance for the XML file. We
create a URLLoader instance to load it and an Event listener to handle the data once it has finished loading. Finally, we
execute the load() function on the URLLoader instance. Once URLLoader has fired the COMPLETE event, the XML needs
to be handed off to the XML object we created called xmlEPG. The XML should be defined like so:

private var xmlEPG:XML;

So the handler function should look like this:

private function xmlLoaded(evt:Event){
 xmlEPG = new XML(ulXml.data);
}

CHAPTER 11 ■ USING XML

396

Getting XML from a Remote Source
XML can also come from other external sources. It can be returned to you from a remote procedure call (RPC). RPCs
are a way to execute a procedure from another URL. This normally consists of a request/response from either a PHP
or .NET call on the back-end, for example.

Making the call and assigning the return value should be as simple as this:

this.urlSendVars.sendAndLoad("http://www.domainname.com/php/reg.php", 
this.urlResultVars, "GET");

So now that you have seen a few ways to retrieve your XML data, all you need to do is read what’s in the XML file.

Reading the XML
Reading the XML file is when you really begin to use E4X. You’re going to like it, I guarantee. For this example, you will
use the EPG.xml file. As you can see, this file gives you all of the XML elements and nodes that were introduced earlier
in the chapter. So let’s look at how to access this information.

Reading the Root Node
In truth, you will probably never refer to the root node directly by name. However, when you assign the XML source
to an XML object, that object becomes the root node. So xmlEPG becomes the root node when the onCOMPLETE event
handler calls the handler function and assigns the returned XML data to the XML object:

xmlEPG = new XML(ulXml.data);

If you want to check this, just add the following line to the end of the event handler code:

trace("Root node = " + xmlEPG.name());

You’ll see the EPG root node name appear in the output panel, which is, of course, EPG. This is essential for
allowing you to reference any other data in your XML.

Reading Elements in an XML Tree
Now we will look at interrogating the elements. This is also a good opportunity to introduce XMLList objects.

It may seem odd that we’re reading the elements here, when what we really want to get to is the juicy
data found in the text nodes and attributes. The reason is that the elements act as signposts to the
data within them, so we need to get through them to reach the data.

What is an XMLList object and how does it differ from an XML object? An XML object is a single root object. There is
only one top-level node: the root node. Usually this contains a full hierarchical family of XML elements. The XMLList
object differs only in that it can contain more than one top-level XML object or element; therefore, you could consider
it either as having no root node or having multiple root nodes, where each top-level element constitutes a root node.

http://www.domainname.com/php/reg.php

CHAPTER 11 ■ USING XML

397

Suppose that you want to see all the program information for the ITV channel in your XML file. Your E4X
assignment might look like this:

var xmlITV:XMLList = xmlEPG.Channel[1].children();
trace("Channel ITV = "+xmlITV);

This code interrogates the root node for all the child nodes that live under the second Channel node. Notice that
nodes work the same way as arrays in that the first item in an array is always at position 0; therefore, Channel[1] is
in fact the second Channel node. If you are unfamiliar with arrays, you can skip back to Chapter 2 where we discuss
arrays in detail. Notice that in E4X-formatted XML interrogation, you can still use the child/children syntax that is
associated with more traditional XML parsing methods. The trace() statement in the code will display all of the ITV
channel Program nodes as an XMLList:

Channel ITV =
<Program id="Healthy Eating" starttime="6:00">
 Meals even our kids will eat
</Program>
<Program id="News" starttime="6:35">
 News roundup of the morning's events
</Program>
<Program id="Cartoons" starttime="6:50">
 Keep the kids occupied
</Program>
<Program id="Breakfast" starttime="7:00">
 Topical conversation, News
</Program>

You can be more specific if, for example, you want just the first child node of the second channel:

var xmlITV:XMLList = xmlEPG.Channel[1].child(0);
trace("Channel ITV = " + xmlITV);

This will return the actual text node of the specified element as it interprets that you have interrogated a single
element:

Channel ITV = Meals even our kids will eat

You’ll learn more about accessing text nodes in the “Reading text nodes” section later in this chapter.
So, how easy is that? It gives me goose bumps.
Now let’s say you want to read the attributes of a specific node, rather than just return an XMLList.

Reading an XML Element’s Attributes
It would be nice if reading attributes were as easy and logical as reading an element. Well, it is! But first you need to
be able to access the attributes. To do this, you use a specific syntax: the @ symbol. The following is the basic code
required to read the id attribute of the xmlEPG.Channel[1].child(0) element:

var xmlITV:XMLList = xmlEPG.Channel[1].child(0).@id;
trace("Channel ITV Program id = " + xmlITV);

CHAPTER 11 ■ USING XML

398

This code returns the id attribute information:

Channel ITV Program id = Healthy Eating

This works great if you know where the ITV and specific Program nodes live (xmlEPG.channel[1]. child(0)).
But often you won’t have access to see the XML file or source, or you won’t want to be so specific. You will always be
given the schema in one form or another, so that you know the hierarchical structure of the XML you are receiving,
but that doesn’t tell you where specific data resides. Also, needing to know where the ITV channel node (or any other
node) lives in advance has little time-saving benefit or convenience over traditional XML parsing. It would be much
more useful if you could just interrogate the XML for any Program node that contained a specific id attribute of ITV.
Well, thanks to E4X, you can do exactly that kind of intelligent search.

Searching XML
So far, you can interrogate a node’s attributes, and you can get the program title information from the program’s id
attribute. Now you want to interrogate the XML document so that you can get the program title information from
specific programs on specific channels.

Imagine that you don’t know where the ITV channel element is in the XML document and you want to know
what the first program on ITV (chronologically) is called. You shouldn’t need to know where that specific channel
node is in relation to its siblings to get that information. You know its id attribute is ITV. Shouldn’t that be enough?
From this information, you can indeed perform a search on any XML or XMLList object to see which program is coming
next on the ITV channel. This is a useful search, and E4X makes it quick and easy to perform. The following example
uses the XML document EPG.xml:

var xmlITV:XMLList = xmlEPG.Channel.(@id == "ITV").child(0).@id;
trace("ITV next program = "+xmlITV);

You are still referencing the attributes using the @ symbol. However, here you have made an in-line comparative
call, asking it to return any id information from the first child (Program) node of any Channel XMLList where the
Channel’s id attribute equals ITV, and you have traced the results. The trace returns the following:

ITV next program = Healthy Eating

While this is a search, E4X allows you to do far more compound, intelligent searches. For example, if you were
searching through the program list of a particular channel, say ITV, you might reasonably want to extract information
by start time rather than position in the Program nodes. Let’s say you’re looking for a start time of 6 a.m. You can write
your search code like this:

var xmlITV:XMLList = xmlEPG.Channel.(@id == "ITV").Program. 
(@starttime == "6:00").@id;
trace("ITV at 6am = " + xmlITV);

Here, you are extending your previous code, which returned the program name (the Program node’s id attribute),
to return the same data but based on any Program node whose starttime attribute is equal to 6am and that is
showing the ITV Channel id attribute in its parent Channel node. Not surprisingly, this returns the following trace
information:

ITV at 6am = Healthy Eating

CHAPTER 11 ■ USING XML

399

Now let’s say you want to base your search on any program starting at 6 a.m. on all channels. This requires a very
small change to the last piece of code:

var xmlITV:XMLList = xmlEPG.*.Program.(@starttime == "6:00").@id;
trace("ITV at 6am = " + xmlITV);

All you’ve done is replace the Channel node interrogation with a wildcard symbol (*), and hey presto, the output
traces the following:

ITV at 6am = 6am NewsHealthy EatingScooby Doo

Although this is not a very good representation of the data—all three returned program id attributes are
concatenated together in one unsightly string—it does highlight the results.

Searching for an Attribute or Element at any Level
The previous example worked well, but for the sake of argument, let’s say you don’t even know where the Program
node is to be found hierarchically. And once again, let’s assume that you want to find out what programs start at 6 a.m.
on every channel. In the real world, you may know that there are Program nodes that contain the program titles and
start times, but you might not want to worry about the infrastructure of the XML source code in order to extract that
information.

In my experience, it is entirely possible for the data model to be modified or redesigned after coding has begun.
There are many reasons for such changes. Suffice it to say, none of them are brought about by someone spending a
reasonable amount of time properly planning the schema requirements. It would be nice if you could account for
such changes in advance, or at least easily respond when you must reactively counter them. Thankfully, E4X comes to
the rescue again.

Suppose some bright spark has just realized that he needs to split up the different days of the EPG. Instead of
having thought this through before writing a functional specification, he is now forced to make a panicked knee-jerk
decision to fix the XML. So he just adds in a Day tag. This is a bad solution to the problem, but, believe me, it happens
more often than you might think, so you will likely encounter such situations. This changes the original EPG.xml file by
putting the Program nodes down one level, inside a new tag called Day:

<EPG>
 <Channel id="BBC1">
 <Day id="Monday">
 <Program id="6 oclock News" starttime="6:00">
 The breaking headlines
 </Program>
 <Program id="Good Morning Britain" starttime="6:15">
 Stories from around the UK
 </Program>
 <Program id="EastEnders" starttime="8:00" >
 Catch up with Albert Square
 </Program>
 </Day>
 </Channel>

CHAPTER 11 ■ USING XML

400

 <Channel id="ITV">
 <Day id="Monday">
 <Program id="Healthy Eating" starttime="6:00">
 Meals even our kids will eat
 </Program>
 <Program id="News" starttime="6:35">
 News roundup of the morning's events
 </Program>
 <Program id="Cartoons" starttime="6:50" >
 Keep the kids occupied
 </Program>
 <Program id="Breakfast" starttime="7:00">
 Topical conversation, News
 </Program>
 </Day>
 </Channel>
 <Channel id="Channel 4">
 <Day id="Monday">
 <Program id="Scooby Doo" starttime="6:00">
 Watch the kids solve mysteries
 </Program>
 <Program id="Big Brother" starttime="6:30">
 Catch up with the housemates
 </Program>
 <Program id="Big Breakfast" starttime="7:15" >
 Everything you need in the morning
 </Program>
 </Day>
 </Channel>
</EPG>

These changes have programming implications. Try your XML call to collect the list of programs
starting at 6 a.m.:

var xmlSixAM:XMLList = xmlEPG.*.Program.(@starttime == "6:00").@id;
trace("Programs starting at 6am = " + xmlSixAM);

This will now return the following:

Programs starting at 6am =

As you can see, the * wildcard no longer works. You could modify the XMLList assignment to reflect the new
structure, but there is no guarantee that the data won’t be modified again. You need a way to automatically search
down through the full XML path until you find the Program node, so that you can carry out the same interrogation no
matter where this node resides. And here is that code, care of E4X:

var xmlSixAM:XMLList = xmlEPG..Program.(@starttime == "6:00").@id;
trace("Programs starting at 6am = " + xmlSixAM);

CHAPTER 11 ■ USING XML

401

At a glance, this may look no different from the previous code, but look again. Where the root node ends, there
is a double set of periods (..), known as a double-dot operator, before the Program node. This operator tells the
compiler to search through any and all levels of the XML document, from the root node down, for a Program node.
Once a node is found, you check its starttime attribute to see if it is set to 6am; if it is, you return its id attribute, which
gives the name of the program. This will trace the contents of the entire returned XMLList, like so:

Programs starting at 6am = 6am NewsHealthy EatingScooby Doo

Obviously, this is not how you would interrogate the XMLList once it is populated, as it returns a fairly unusable
and nondelimited list of values. However, it does show exactly what data it holds.

The double-dot operator is comparatively processor intensive. To keep your code optimized, you
should consider whether it is the appropriate solution for your needs.

You can call specific entries in the XMLList by using the array position syntax, like so:

trace("Programs starting at 6am = " + xmlSixAM[2]);

The [2] represents the third array position in the XMLList. In this instance, the trace would return one program:

Programs starting at 6am = Scooby Doo

Of course, in the real world, you would be collecting a list of channels and then iteratively going through the
returned XMLList to display all the programs starting at the same time on those channels.

Reading Text Nodes
You can access text nodes as either XML or Strings—it’s your choice. Reading text nodes technically requires
that you convert the XML text node to a String, and to adhere to good convention, I suggest you do exactly that.
However, ActionScript 3.0 automatically makes that cast conversion for you if you omit it. Here’s a simple example of
interrogating the text node as an XML format:

var xmlTextNode:XMLList = xmlEPG.Channel.Day.Program;
trace("text = " + xmlTextNode.*[0]);

This returns the following:

text = The breaking headlines as they come in

Obviously, this is a very simple example, and in real-life terms, it’s probably of no value. A more realistic use of
this approach would be as follows:

var xmlString:String = xmlEPG.Channel.(@id == "ITV").Day.(@id == 
"Monday").Program.(@id == "Breakfast");
trace("Breakfast text = " + xmlString);

Here, you are searching through the Channel nodes for any channel with the id attribute of "ITV", and then
extracting the text node of any of those that have a Day node with the id attribute of "Monday" and have "Breakfast"
in their Program node’s id attribute. This will trace the following:

Breakfast text = Topical conversation, News, Weather, Sports, Fashion and Gossip

CHAPTER 11 ■ USING XML

402

You’ve read in the XML data and interrogated it in many ways. E4X allows a lot of logical scope to do this. Now it’s
time to see how it assists in modifying an existing node, element, or attribute or creating new ones.

Modifying XML
E4X makes it easy to add elements to an XML object using ActionScript 3.0, as well as remove them. Let’s take a look at
how that works.

Adding Elements to an XML Object
Adding an element to your XML is a common requirement. For example, looking at the sample XML, you may need to
add another Channel element and its associated elements and attributes. Take another look at the XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<EPG>
 <Channel id="BBC1">
 <Day id="Monday">
 <Program id="6 oclock News" starttime="6:00">
 The breaking headlines
 </Program>
 <Program id="Good Morning Britain" starttime="6:15">
 Stories from around the UK
 </Program>
 <Program id="EastEnders" starttime="8:00" >
 Catch up with Albert Square
 </Program>
 </Day>
 </Channel>
 <Channel id="ITV">
 <Day id="Monday">
 <Program id="Healthy Eating" starttime="6:00">
 Meals even our kids will eat
 </Program>
 <Program id="News" starttime="6:35">
 News roundup of the morning's events
 </Program>
 <Program id="Cartoons" starttime="6:50" >
 Keep the kids occupied
 </Program>
 <Program id="Breakfast" starttime="7:00">
 Topical conversation, News
 </Program>
 </Day>
 </Channel>

CHAPTER 11 ■ USING XML

403

 <Channel id="Channel 4">
 <Day id="Monday">
 <Program id="Scooby Doo" starttime="6:00">
 Watch the kids solve mysteries
 </Program>
 <Program id="Big Brother" starttime="6:30">
 Catch up with the housemates
 </Program>
 <Program id="Big Breakfast" starttime="7:15" >
 Everything you need in the morning
 </Program>
 </Day>
 </Channel>
</EPG>

Oops, BBC2 seems to be missing! Let’s fix that now.
First, create your new XML object that will be added to the existing root node:

var xmlBBC2:XML = <Channel/>;

You could build the XML all in one go, like so:

var xmlBBC2:XML = <Channel id="BBC2">
 <Day id="Monday">
 <Program id="
University Challenge" starttime="6:00">Are you smart enough?</Program>
 </Day>
 </Channel>;

But often you will build an XML element as you go along, so let’s treat the additions and modifications as
separate requirements.

In this new XML object, <Channel> is now the root node. However, it is very important to be aware that each node,
element, and attribute is added to the existing XML document as the lastChild, among its peers, by default. If you
want to avoid more complex hierarchical-based additions, I suggest you give the order of addition some thought
before commencing.

You can add all the hierarchical elements in one go when defining a final text node, like so:

var BBC2.Day.Program = "program description";

It is also possible to do this when defining a final attribute:

var BBC2.Day.Program.@id = "program name";

Though you have not specified any text node or attribute for the Day node, it is created by default as part of the
XML path to the Program node. This can be very handy, as it means you can target your final text node or attribute
without having to write many lines of code for the definition of all the intervening nodes. This allows for the creation
of quite complex XML trees from just a few lines of code.

CHAPTER 11 ■ USING XML

404

You can continue to add attributes and text nodes; however, be aware of what happens when you add
same-named sibling nodes. Suppose you have created the following XML:

<Channel id="BBC2">
 <Day id="Monday">
 <Program id="University Challenge" 
starttime="6:00">Are you smart enough?</Program>
 </Day>
</Channel>

Now let’s say you want to add another sibling Program node:

var BBC2.Day.Program = "Live snooker from Wembley";
trace(xmlBBC2.toXMLString());

If you expect E4X to simply add a next child sibling Program node to the existing Day node, then you are in for a
big surprise when you publish it:

<Channel id="BBC2">
 <Day id="Monday">
 <Program id="University Challenge" 
starttime="6:00"> Live snooker from Wembley </Program>
 </Day>
</Channel>

As you can see, it has simply replaced the text node of the existing Program node. The same would be true if you
tried this with attributes. And if your goal was to replace a node, this is how that could be accomplished.

If we want to add a sibling node with the same name, the correct syntax is as follows:

var BBC2.Day.Program[1] = "Live snooker from Wembley";
trace(xmlBBC2.toXMLString());

Now you will see the new extra sibling node:

<Channel id="BBC2">
 <Day id="Monday">
 <Program id="University Challenge" starttime="6:00">Are 
you smart enough?</Program>
 <Program>Live snooker from Wembley </Program>
 </Day>
</Channel>

Next let’s look at adding new attribute nodes to finish the second program entry:

varBBC2.Day.Program[1].@id = "Snooker Finals";
varBBC2.Day.Program[1].@starttime = "6:45";

CHAPTER 11 ■ USING XML

405

Your XML should trace like so:

<Channel id="BBC2">
 <Day id="Monday">
 <Program id="University Challenge" starttime="6:00">Are 
you smart enough?</Program>
 <Program id="Snooker Finals" starttime="6:45">Live 
snooker from Wembley </Program>
 </Day>
</Channel>

Removing Elements and Attributes from an XML Object
E4X, once again, makes removing elements and attributes incredibly simple. To do this you use the delete command,
and follow all previously described protocols and syntax for dealing with elements and attributes.

So, if you wanted to delete the second Program node you just added in the previous section, your code would look
like this:

delete xmlBBC2.Day.Program[0];

Attributes can be deleted in the same way:

delete xmlBBC2.Day.Program[0].@id;

This seems a good time to talk about deleting a text node:

delete xmlBBC2.Day.Program[0].*;

And this demonstrates that you can use the wildcard (*) with delete. You can also use the double period and any
other previously mentioned search or location syntax to carry out most E4X commands.

Summary
In this chapter, you have worked through XML and E4X in reasonable detail. I suggest further reading and
experimentation on your part. For example, Foundation XML and E4X for Flash and Flex by Sas Jacobs (friends of ED,
2009) is devoted to the subject of using XML and E4X with Flash and Flex.

E4X is a huge step forward and incredibly easy to use. It will make working with XML quick and powerful. I can’t
say enough good things about E4X.

In this and the previous chapters, you’ve learned all about ActionScript 3.0. In the next chapter, you’ll put it all
together in a single, real-world application.

407

CHAPTER 12

Case Study: Creating a Dynamic
Image Viewer

This book has covered so much ground—from the core elements of the ActionScript language, through advanced
coding features such as graphic creation and dynamic loading of data, all the way to the use of components and class
libraries to extend functionality. Now it’s time to pull all that knowledge together into a single real-world application
that shows what you can accomplish easily with your newly acquired ActionScript skills. This chapter will help solidify
the concepts that you have been absorbing over the past few hundred pages (and you’ll create something pretty cool
and useful, to boot!).

In just a single project, you’ll use many of the skills taught in the past 11 chapters. This chapter’s example
demonstrates the following:

How to use a document class to act as the main entry point for an application•฀

How to lay out and configure components in the IDE•฀

How to style and customize components•฀

How to take advantage of the ActionScript 3.0 event model•฀

How to use the drawing API to dynamically create graphics•฀

How to apply graphic filters through ActionScript•฀

How to modify the display list at runtime•฀

How to load and parse XML•฀

How to load and display images•฀

How to set and retrieve properties from object instances•฀

How to use loops and conditional constructs•฀

How to create and instantiate custom classes•฀

How to extend a class and use inheritance•฀

And that’s just a high-level list. You will use plenty of supporting skills to reach the end goal, including
manipulating strings and numbers, using numeric and object operators (including casting objects), applying access
modifiers and data type assignments, and exercising a whole list of syntactical skills that should be almost second
nature to you by this point. That’s one of the great things about applying your ActionScript knowledge: the more
you code, the easier it becomes. Then you can spend less time worrying about the lower-level tasks and more time
concentrating on the overall application and how to approach different problems in more elegant ways.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

408

An Overview of the Image Viewer
Loading and displaying images are common tasks in a front-end application, whether it is explicitly for display
of media files, or images are loaded and used to render the GUI. This makes an image viewer a great practical
application for your ActionScript skills.

This chapter’s case study is an interface built using the Flash ActionScript 3.0 components and tied together with
ActionScript. The ActionScript loads an external XML file containing image information such as the name and path to
the file, and a thumbnail representation of the file.

The data, once loaded, will be rendered in one of two forms: a text list or a thumbnail grid. Clicking an item in
either list will load the relevant image and display it within a scrolling pane. A slider will allow users to zoom into the
image. The scrolling pane will allow not only for scrolling but also for panning the image by clicking and dragging.
The completed application appears in Figure 12-1.

Figure 12-1. The completed image viewer application

When you get to the ActionScript, you’ll see that you won’t need a large number of classes or a huge amount of
code to achieve the goal for this application because a good portion of the user interface (UI) logic is encapsulated
in the components (which is a great reason to be using the components in the first place). For this project, you will
create the following classes:

An •฀ ImageViewer document class, which will kick everything off and handle events from the
components

An •฀ ImageData class, which will take care of the loading and formatting of external data

An •฀ ImageHolder class, which will wrap your image-loading code and take care of some simple
transition animation

An •฀ Image class, which will hold the metadata for a single image

A very simple •฀ SimpleImageCell class, which will extend the ImageCell class used by the
TileList component to control the rendering of the images in the TileList instance

You’ll start by building the interface.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

409

Laying out the Interface
Let’s begin the project by laying out the interface for the application using the drag-and-drop components in the Flash
CC integrated development environment (IDE). Before you do this, I want to point out that it is certainly possible to
use components in your applications without placing them on stage. The following would attach and position a Label
instance:

var label:Label = new Label();
label.x = 50;
label.y = 100;
label.text = "This is a Label instance.";
addChild(label);

There is nothing wrong with this approach. In fact, many would argue that it’s even better because it is easier to
manage and develop code stored in external files than to manage FLAs and objects in the timeline. However, visually
positioning and configuring items allows you to easily align and tweak your interface without needing to constantly
recompile your SWF. Also, it certainly is great for quickly creating prototypes of your interfaces, so that is the approach
you will use here. If you want to move the component instantiation, placement, and configuration directly into the
code once you are happy with the appearance of an application, it is not a difficult process.

So let’s get started. Follow these steps:

 1. Create a new Flash ActionScript 3.0 document and save it into a Chapter 12 project
directory as imageViewer.fla.

 2. Use the Document Properties dialog box (Modify ➤ Document) to change the
dimensions to 600 px and 350 px and to set the background color to #CCCCCC,
as shown in Figure 12-2.

Figure 12-2. Document property settings for the image viewer

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

410

 4. Create five new layers in the main timeline, for a total of six layers. Name the six layers
(from top to bottom) Radio, List, TileList, Slider, Labels, and ScrollPane. The timeline
should look like Figure 12-4.

 3. Open the Components panel if it is not already open (Window ➤ Components). From
this panel, drag the following components from the User Interface folder into your file’s
Library (Window ➤ Library): Label, List, RadioButton, ScrollPane, Slider, and TileList.
Your Library should look like Figure 12-3.

Figure 12-3. The image viewer library with all required components

Figure 12-4. The image viewer’s timeline with six layers ready for component placement

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

411

 5. Drag an instance of the ScrollPane component from your Library into the ScrollPane
layer. This will be used to display all loaded images and allow for panning of those images.
Using the Properties panel, position the instance at (10, 40) and set its dimensions to
400 × 300. Name the instance imagePane_sp.

 6. In the Component Parameters (Window ➤ Properties), set the scrollDrag property
to true. This property allows a user to pan an image in the scrolling pane by clicking and
dragging. The result of these settings is shown in Figure 12-5.

Figure 12-5. The properties set for the ScrollPane instance

 7. Drag an instance of the Label component from the Library into the Labels layer. Name the
instance title_lbl. In the Component Parameters, position it at (10, 13) and change its
dimensions to 250 × 22. In the parameters data grid, set the text property to Choose an
image at right. Notice that the Live Preview automatically updates with this new text.

 8. Drag another instance of the Label component into the Labels layer. Set this instance at
(280, 15) and alter its dimensions to 50 × 20. This instance does not require a name
(you will not be manipulating it through ActionScript), but change its text property in the
Component Parameters to Zoom. The result of placing and configuring both labels is
shown in Figure 12-6.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

412

Figure 12-6. Two Label instances are placed and positioned for the interface

Figure 12-7. The properties set for the Slider instance

 9. Drag an instance of the Slider component into the Slider layer and position it at
(325, 22). Name the instance zoom_sl. Its dimensions can remain at their defaults. For
its parameters, set liveDragging to true. This will send change events while the slider is
being dragged instead of waiting until the slider is released. Set its minimum property to 1,
while leaving the maximum at 10. minimum and maximum control the range of values available
to the slider. Because this slider will be setting the scale of your image, you don’t want its
value to go below 1, which is 100 percent. Give the instance a snapInterval setting of .1,
which will force its value to be in increments of 0.1. Finally, set both tickInterval and
value to 1. tickInterval will set tick marks on the component (you should see them
appear in the Live Preview), and value determines the initial value, which you set to 1, or
100 percent scale for the image. The result of all these settings is shown in Figure 12-7.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

413

 10. Going in layer order, the next component to configure is TileList, which will be used to
display a grid of thumbnails that the user can click to load an image. Drag an instance from
your Library and place it in the TileList layer. Use the Properties Panel to position it at
(420, 40) and to set its dimensions to 170 × 300. Name the instance thumbnails_tl. Leave
all its parameters at their default values. The stage, with the TileList instance sized and
positioned, should look like Figure 12-8.

Figure 12-8. The TileList is added to the stage

 11. Drag an instance of List from the Library into the List layer. Like the TileList instance,
this will be used to show data from which the user can choose, but the List instance
will display this data as a list of text. You will code the interface to show the user only
one of the two lists, and allow the user to toggle between the views. Because of this, the
List instance’s size and position should match exactly that of the TileList instance, so
position it at (420, 40) and set its dimensions to 170 × 300. Name the instance names_li.
Leave all its parameters at the default values.

Here is a good example of why it is good practice to utilize the timeline layer options in Flash to
organize your UI elements. By creating a new layer for each element, or at least type of element, it is
easy to toggle visibility or lock certain layers to provide easier access to different elements. Because
the TileList and List instances share the same position on the stage, selecting one or the other
would be difficult if they were not separated by layers.

 12. Drag two instances of the RadioButton component from the Library to the Radio layer.
You will use these buttons to allow the user to toggle between the two different list views.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

414

 13. Place one RadioButton instance at (420, 13) and set its dimensions to 90 × 22. Name this
instance thumbnails_rb. In the Component Parameters, set its label to thumbnails and its
 groupName to listView. This groupName parameter will tie the two radio buttons together.

 14. Set the second RadioButton instance at (520, 13) and set its dimensions to 80 × 22. Give it
the instance name names_rb. In the Component Parameters panel, set its label to names
and its groupName to listView. Because both instances share the same groupName, only
one of the two instances will be selectable at a time, and selecting one will automatically
deselect the other.

You may have noticed that you did not set either radio button as selected. You will set the initial selection through
code, which will cause an event to fire. You can catch that event to set the initial state of the interface as well.

The final interface, completed in the IDE, is shown in Figure 12-9.

Figure 12-9. The completed interface with all the components laid out and configured on the stage

With the interface complete, you are ready to write some code to plug everything together and load data into it.

Creating the Document Class
First, you will take care of creating the document class that will be your entry point for the application and centralize
all the logic.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

415

Create a new ActionScript file and save it as ImageViewer.as into a new com/foundationAS3/ch12 directory within
the Chapter 12 project directory you created for the imageViewer.fla file in the previous section. Within this file, you’ll
add the package, class, and constructor information. You’ll also set up the standard call to an init() method:

package com.foundationAS3.ch12 {

 import flash.display.Sprite;

 public class ImageViewer extends Sprite {

 public function ImageViewer() {
 init();
 }

 private function init():void {
 }

 }

}

I truly believe that here, in the depths of Chapter 12, there is nothing in the preceding code that should surprise you!
In previous examples that included objects set in the IDE, you’ve seen how those objects can be directly referenced

in the ActionScript code of the document class without error. However, the problem with this approach is that it doesn’t
provide all that cool code hinting and code completion as you develop. To enable this, you’ll assign references to your
timeline objects to typed properties of your class. Add the following bold lines to your ImageViewer class:

package com.foundationAS3.ch12 {

 import flash.display.Sprite;

 import fl.containers.ScrollPane;
 import fl.controls.Label;
 import fl.controls.List;
 import fl.controls.RadioButton;
 import fl.controls.Slider;
 import fl.controls.TileList;

 public class ImageViewer extends Sprite {

 private var _imagePane_sp:ScrollPane;
 private var _title_lbl:Label;
 private var _thumbnails_rb:RadioButton;
 private var _names_rb:RadioButton;
 private var _thumbnails_tl:TileList;
 private var _names_li:List;
 private var _zoom_sl:Slider;

 public function ImageViewer() {
 init();
 }

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

416

 private function init():void {
 assignComponentReferences();
 }

 private function assignComponentReferences():void {
 _imagePane_sp = imagePane_sp;
 _title_lbl = title_lbl;
 _thumbnails_rb = thumbnails_rb;
 _names_rb = names_rb;
 _thumbnails_tl = thumbnails_tl;
 _names_li = names_li;
 _zoom_sl = zoom_sl;
 }

 }

}

First, you import all the necessary controls classes at the top of the code. Then each component instance you
need to reference is given a private property and typed to the appropriate class. Finally, within the init() method,
you call a new assignComponentReferences() method, which simply assigns each component instance reference to
the typed private property. Notice that you are using the underscore prefix for all the private properties to differentiate
them from the public instance names for the components that you set in the IDE.

As you type within this class, you should get helpful code hints popping up to speed your development. Give it a
try. At the end of the init() method, type _zoom_sl. As you type the dot operator, a pop-up window with all of Slider’s
public methods and properties should appear. Very nice! (Make sure that you delete this line after you run this test!)

When users interact with the components, you need to account for those events and act accordingly. Add the
following bold lines to your code for this purpose:

package com.foundationAS3.ch12 {

 import flash.display.Sprite;
 import flash.events.Event;

 import fl.containers.ScrollPane;
 import fl.controls.Label;
 import fl.controls.List;
 import fl.controls.RadioButton;
 import fl.controls.Slider;
 import fl.controls.TileList;

 public class ImageViewer extends Sprite {

 private var _imagePane_sp:ScrollPane;
 private var _title_lbl:Label;
 private var _thumbnails_rb:RadioButton;
 private var _names_rb:RadioButton;
 private var _thumbnails_tl:TileList;
 private var _names_li:List;
 private var _zoom_sl:Slider;

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

417

 public function ImageViewer() {
 init();
 }

 private function init():void {
 assignComponentReferences();
 assignHandlers();
 }

 private function assignComponentReferences():void {
 _imagePane_sp = imagePane_sp;
 _title_lbl = title_lbl;
 _thumbnails_rb = thumbnails_rb;
 _names_rb = names_rb;
 _thumbnails_tl = thumbnails_tl;
 _names_li = names_li;
 _zoom_sl = zoom_sl;
 }

 private function assignHandlers():void {
 _thumbnails_rb.addEventListener(Event.CHANGE, onListViewChange);
 _thumbnails_tl.addEventListener(Event.CHANGE, onImageSelected);
 _names_li.addEventListener(Event.CHANGE, onImageSelected);
 _zoom_sl.addEventListener(Event.CHANGE, onZoom);
 }

 private function onListViewChange(event:Event):void {
 }

 private function onImageSelected(event:Event):void {
 }

 private function onZoom(event:Event):void {
 }

 }

}

Within the init() method, you call another new method, assignHandlers(), which adds four event listeners.
The first event listener is for one of your radio buttons to handle toggling the list view between displaying thumbnails
and text. Why is it needed for only one of the two radio buttons? Because of the way the two radio buttons are wired, if
one is selected, the other is deselected, and its CHANGE event is fired. So no matter which of the two in the interface is
clicked, you need to listen for the CHANGE event on only one of them. In fact, if you listened for both, you would receive
multiple events.

The next two listeners are for the two different lists: the List and TileList instances. Selection in either list will
result in the same action, namely loading an image, so you give the same event handler to both.

The final event listener is set up for when the slider is moved. This event will call an appropriately named
onZoom() method within this class.

All three handlers are added at the end of the code, although each is currently empty. And, of course, remember
to import the Event class at the top.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

418

Without image data yet available in your code, you cannot yet fill in the onImageSelected() or onZoom() methods.
You can toggle the list view based on the radio button selection, though. For that, add the following bold code:

package com.foundationAS3.ch12 {

 import flash.display.Sprite;
 import flash.events.Event;

 import fl.containers.ScrollPane;
 import fl.controls.Label;
 import fl.controls.List;
 import fl.controls.RadioButton;
 import fl.controls.Slider;
 import fl.controls.TileList;

 public class ImageViewer extends Sprite {

 private var _imagePane_sp:ScrollPane;
 private var _title_lbl:Label;
 private var _thumbnails_rb:RadioButton;
 private var _names_rb:RadioButton;
 private var _thumbnails_tl:TileList;
 private var _names_li:List;
 private var _zoom_sl:Slider;

 public function ImageViewer() {
 init();
 }

 private function init():void {
 assignComponentReferences();
 configureComponents();
 assignHandlers();
 }

 private function assignComponentReferences():void {
 _imagePane_sp = imagePane_sp;
 _title_lbl = title_lbl;
 _thumbnails_rb = thumbnails_rb;
 _names_rb = names_rb;
 _thumbnails_tl = thumbnails_tl;
 _names_li = names_li;
 _zoom_sl = zoom_sl;
 }

 private function configureComponents():void {
 _names_rb.selected = true;
 }

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

419

 private function assignHandlers():void {
 _thumbnails_rb.addEventListener(Event.CHANGE, onListViewChange);
 _thumbnails_tl.addEventListener(Event.CHANGE, onImageSelected);
 _names_li.addEventListener(Event.CHANGE, onImageSelected);
 _zoom_sl.addEventListener(Event.CHANGE, onZoom);
 }

 private function onListViewChange(event:Event):void {
 _thumbnails_tl.visible = _thumbnails_rb.selected;
 _names_li.visible = !_thumbnails_rb.selected;
 }

 private function onImageSelected(event:Event):void {
 }

 private function onZoom(event:Event):void {
 }

 }

}

You’ll need more component initialization as you develop further, so here you create a configureComponents()
method and call it from within the init() method. All you need to configure at this time is which radio button is
selected, and you default it to _names_li by setting its selected property. Setting this will automatically cause the
CHANGE event to fire on _thumbnails_rb, which will result in onListViewChange() being called.

Within onListViewChange(), you set the visibility of the two list components based on which radio button is
selected. If _thumbnails_rb is selected, then _thumbnails_tl will be visible, and _names_li will not. If _thumbnails_rb
is not selected, the opposite will occur.

At this point, you should be able to test your movie. Right now, the only testable functionality will be the toggling
of the list views, but you should give that a try to ensure that all your syntax is correct before going further. Return to
imageViewer.fla and enter com.foundationAS3.ch12.ImageViewer as the document class name in the Property
inspector. Test the movie.

Loading Image Data
Now that your document class is effectively hooked up to all the components, you need to get some image data to
display into your application. For this project, you will load the data from an XML file that is stored relative to the SWF,
which is a common approach. Take a look at the XML file that you will be using, which is included in the files you
downloaded for this chapter (unless you really feel like typing all that XML!):

<?xml version="1.0" ?>
<images>
 

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

420

 
 
 
 
 
</images>

The root node of the XML is <images>. This contains a number of <image> child nodes. Each of these <image>
child nodes contains data for a single image in <name>, <file>, and <thumb> child nodes. Your job will be to load in
this XML and make it usable by your components. Copy this XML file and the images folder into same directory as
imageViewer.fla.

The first thing you will do to handle of this external data is create a class on the ActionScript side that will hold the
data for a single image. Create a new ActionScript file and save it into the same directory as ImageViewer.as.
The following is the entirety of the class (nice and simple!):

package com.foundationAS3.ch12 {

 public class Image {

 private var _name:String;
 private var _file:String;
 private var _thumb:String;

 public function Image(name:String, file:String, thumb:String) {
 _name = name;
 _file = file;
 _thumb = thumb;
 }

 public function get name():String {
 return _name;
 }

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

421

 public function get file():String {
 return _file;
 }

 public function get thumb():String {
 return _thumb;
 }

 }

}

This class has three private properties that map exactly to the <image> node in the XML, with public getters to access
each of these properties. Setting the properties is handled in the constructor, which takes the three values as arguments.

Loading the XML
Now that you have defined the class that will represent the data, your next task is to load the data and create the
necessary Image instances. It is often a good idea to move all code that deals with loading and parsing of data into its
own class or classes. This way, if you ever need to change how the data is loaded—for instance, switching from a static
XML file to a web service—you do not need to worry about how that change might affect other parts of your code.
Abstracting functionality into separate classes that can encapsulate the code to hide the implementation is a common
technique in object-oriented programming (OOP) and one that makes sense for most objects. You’ll follow that
methodology by creating an ImageData class that will load the XML and prepare it for use by other classes.

Create a new ActionScript file and save it into the same directory as Image.as and ImageViewer.as. Add the
following code, which creates the necessary package and class structure, and provides a public method that will kick
off the loading of the external data:

package com.foundationAS3.ch12 {

 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class ImageData extends EventDispatcher {

 private static const DATA_FILE:String = "images.xml";

 private function onXMLLoaded(event:Event):void {
 }

 public function load():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onXMLLoaded);
 loader.load(new URLRequest(DATA_FILE));
 }

 }

}

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

422

This class extends the EventDispatcher class, so that you can broadcast events for an ImageData instance, which
is necessary to let other classes know when data has loaded and is ready.

Within the public load() method, you use a URLLoader instance to load in an external XML file, the path to
which is stored in the constant DATA_FILE. URLLoader’s load() method requires that the parameter passed in is a
URLRequest instance. Before you call load(), though, you set up a listener for when the XML has completed loading.
It is also a good idea to set up listeners for load errors, but for simplicity, this example doesn’t include those listeners.

Parsing the Data
To handle the parsing of the data upon completion, add the following lines in bold:

public class ImageData extends EventDispatcher {

private static const DATA_FILE:String = "images.xml";

private var _data:Array;

private function onXMLLoaded(event:Event):void {
 _data = [];
 var loader:URLLoader = event.target as URLLoader;
 var xml:XML = new XML(loader.data);
 var images:XMLList = xml.child("image");
 var numImages:uint = images.length();
 var image:XML;
 for (var i:uint = 0; i < numImages; i++) {
 image = images[i] as XML;
 _data.push(
 new Image(
 image.child("name").toString(),
 image.child("file").toString(),
 image.child("thumb").toString()
)
);
 }
 dispatchEvent(new Event(Event.COMPLETE));
}

public function load():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onXMLLoaded);
 loader.load(new URLRequest(DATA_FILE));
}

onXMLLoaded() will be called when the XML has successfully loaded. This is a little more complex than methods
you have dealt with thus far in this chapter, so let’s break it down bit by bit.

Within this method, you create a new Array instance and assign it to the _data property, which you declared at
the top of the class. You then find the data within the URLLoader instance that dispatched the event and pass this to
the XML constructor to get the data as XML.

var loader:URLLoader = event.target as URLLoader;
var xml:XML = new XML(loader.data);

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

423

At this point, you can use E4X syntax, which was discussed in Chapter 11, to find all the nodes with the name
image and assign this resulting XMLList to the images variable:

var images:XMLList = xml.child("image");

Using the length() method of XMLList to determine the number of images, you can then loop through each XML
object in the XMLList and create a new Image instance for each one:

var numImages:uint = images.length();
var image:XML;
for (var i:uint = 0; i < numImages; i++) {

To create the Image instances, you can take advantage of a little more E4X syntax. First, you grab a reference to the
XML object in the images XMLList and assign this reference to the variable image:

image = images[i] as XML;

You then create a new Image instance and pass the string values for the name, file, and thumb child nodes of the
image XML to the Image constructor:

new Image(
 image.child("name").toString(),
 image.child("file").toString(),
 image.child("thumb").toString()
)

The child() method of XML actually returns an XMLList, but if the list has only one item, you can refer to it as a
single XML object (pretty sly, but an extremely useful feature). Calling toString() on an XML object will return the node
value for that object. The result of all this is that by calling image.child("name").toString(), you get just the text
value within the <name> node.

Finally, the new Image() call returns a reference to the Image instance (as is the case whenever using the new
operator), so you can push this reference directly into the _data array:

_data.push(
 new Image(
 image.child("name").toString(),
 image.child("file").toString(),
 image.child("thumb").toString()
)
);

After all the Image instances have been created and pushed into the _data array, you dispatch an event so that
other objects can listen and act accordingly when the data is ready:

dispatchEvent(new Event(Event.COMPLETE));

That’s easily the most complex code you will see in this chapter, so if you got through it and everything made
sense, give yourself a pat on the back and know that it’s all downhill from here!

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

424

Accessing the Data
To finish the ImageData class, you need to provide two ways of getting the information from the class. You know that
the application needs to display the images in the TileList instance and the names in the List instance. Let’s make
it easy for the document class and let the ImageData class take care of formatting the data to be passed to the different
components.

First, add a getNameData() method that returns an array that holds the image names and references to the Image
objects. This will be perfect for any lists that need to display just the text data, such as the List instance. Add the
following bold lines:

 public function load():void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onXMLLoaded);
 loader.load(new URLRequest(DATA_FILE));
 }

 public function getNameData():Array {
 var nameData:Array = [];
 var numImages:uint = _data.length;
 var image:Image;
 for (var i:uint = 0; i < numImages; i++) {
 image = _data[i] as Image;
 nameData.push({label:image.name, data:image});
 }
 return nameData;
 }

 }

}

Here, you create a new Array instance, nameData, and then loop through all the Image instances stored in _data.
For each Image instance, you push into the nameData variable an object with two properties: label and data. label
holds the name of the image, and data holds a reference to the Image itself. The resulting nameData array is returned
from the method.

Now you’ll add a getThumbData() method that works similarly to getNameData(), but will return the information
that will be used by your TileList instance or any list that needs to display image data. Add the following bold lines:

public function getNameData():Array {
 var nameData:Array = [];
 var numImages:uint = _data.length;
 var image:Image;
 for (var i:uint = 0; i < numImages; i++) {
 image = _data[i] as Image;
 nameData.push({label:image.name, data:image});
 }
 return nameData;
}

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

425

 public function getThumbData():Array {
 var thumbData:Array = [];
 var numImages:uint = _data.length;
 var image:Image;
 for (var i:uint = 0; i < numImages; i++) {
 image = _data[i] as Image;
 thumbData.push({label:"", source:image.thumb, data:image});
 }
 return thumbData;
 }

 }

}

The structure is similar to getNameData(). In this case, for each iteration of the loop, you create a new object with
three properties: label, source, and data. Once again, data will hold a reference to an Image instance; source will
hold the path to the thumbnail image. You pass an empty string to label because you don’t want the labels to appear
in your TileList, and the easiest way to manage it is to not pass in labels for the tiles. The resulting thumbData is
returned from this method.

That finishes the ImageData class. Housing all loading and parsing of data in this class means that if you needed a
different implementation for loading data, you could change the code without any ill effects on other classes that use
this data. Additionally, dividing responsibilities among multiple classes with specific purposes keeps the code more
manageable.

Displaying Images
With data being loaded into the application and formatted for the lists, you can add the code necessary to initiate this
process and tie the results to your components. This will be handled in your main ImageViewer class.

Return to ImageViewer.as and add the following code to instantiate the ImageData class and have it load in the XML:

package com.foundationAS3.ch12 {

 import flash.display.Sprite;
 import flash.events.Event;

 import fl.containers.ScrollPane;
 import fl.controls.Label;
 import fl.controls.List;
 import fl.controls.RadioButton;
 import fl.controls.Slider;
 import fl.controls.TileList;
 import fl.data.DataProvider;

 public class ImageViewer extends Sprite {

 private var _imagePane_sp:ScrollPane;
 private var _title_lbl:Label;
 private var _thumbnails_rb:RadioButton;
 private var _names_rb:RadioButton;

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

426

 private var _thumbnails_tl:TileList;
 private var _names_li:List;
 private var _zoom_sl:Slider;
 private var _images:ImageData;

 public function ImageViewer() {
 init();
 }

 private function init():void {
 assignComponentReferences();
 configureComponents();
 assignHandlers();
 loadImageData();
 }

 private function assignComponentReferences():void {
 _imagePane_sp = imagePane_sp;
 _title_lbl = title_lbl;
 _thumbnails_rb = thumbnails_rb;
 _names_rb = names_rb;
 _thumbnails_tl = thumbnails_tl;
 _names_li = names_li;
 _zoom_sl = zoom_sl;
 }

 private function configureComponents():void {
 _names_rb.selected = true;
 }

 private function assignHandlers():void {
 _thumbnails_rb.addEventListener(Event.CHANGE, onListViewChange);
 _thumbnails_tl.addEventListener(Event.CHANGE, onImageSelected);
 _names_li.addEventListener(Event.CHANGE, onImageSelected);
 _zoom_sl.addEventListener(Event.CHANGE, onZoom);
 }

 private function loadImageData():void {
 _images = new ImageData();
 _images.addEventListener(Event.COMPLETE, onDataLoaded);
 _images.load();
 }

 private function onDataLoaded(event:Event):void {
 _images.removeEventListener(Event.COMPLETE, onDataLoaded);
 _thumbnails_tl.dataProvider = new DataProvider(_images.getThumbData());
 _names_li.dataProvider = new DataProvider(_images.getNameData());
 }

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

427

 private function onListViewChange(event:Event):void {
 _thumbnails_tl.visible = _thumbnails_rb.selected;
 _names_li.visible = !_thumbnails_rb.selected;
 }

 private function onImageSelected(event:Event):void {
 }

 private function onZoom(event:Event):void {
 }
 }

 }

}

Here, you add one more private property, _images, which will hold a reference to the ImageData instance. Then,
within the init() method, you call a new method: loadImageData(). This new method instantiates a new ImageData
instance and assigns it to your _images property. You add an event listener for when the data has loaded and call
ImageData’s public load() method to initiate the loading of the external data.

The onDataLoaded() method handles the event that fires when the data is ready in the ImageData instance. When
this fires, you first remove the listener and then assign DataProvider instances to the two different lists (remember to
import the DataProvider class at the top of the code). To populate the dataProviders, you call the two methods that you
created in ImageData—getThumbData() and getNameData()—and pass the results to the DataProvider constructor.

If you test your movie now, you should see the List instance populate with the image names. If you click the
thumbnails radio button, the thumbnail images appear in the TileList instance, as shown in Figure 12-10.

Figure 12-10. The interface with thumbnails displayed in the TileList instance, with the data loaded from external XML

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

428

Handling Image Selection
Now you need to handle what happens when an item is selected in one of the lists. This will be taken care of in the
onImageSelected() method, which is the handler for the lists’ CHANGE events.

Fill in the onImageSelected() method in ImageViewer with the following bold lines:

private function onImageSelected(event:Event):void {
 var image:Image = event.target.selectedItem.data as Image;
 var index:int = event.target.selectedIndex;
 _thumbnails_tl.selectedIndex = index;
 _names_li.selectedIndex = index;
 _title_lbl.text = image.name;
 _imagePane_sp.source = image.file;
}

When an item in either list is clicked, the event will cause this method to fire. You can reference the list clicked
by using event.target. The selected item within that list can be obtained through the selectedItem property
(thank goodness—or thank good design—that both lists have the same properties or interface). Items in the list will
have a data property that will hold a reference to the relevant Image instance. Remember that the arrays you pass to
the dataProviders have this reference. These lines are in the ImageData class when you form the arrays:

nameData.push({label:image.name, data:image});

thumbData.push({label:"", source:image.thumb, data:image});

Because the Image instances can be found in the selected item’s data property, you can cast this to Image in your
onImageSelected() handler:

var image:Image = event.target.selectedItem.data as Image;

In the next lines, you find the index of the selected item in the clicked list and make sure that both lists set this
index as selected, so if the user toggles to the other view, the other list shows the same selection:

var index:int = event.target.selectedIndex;
_thumbnails_tl.selectedIndex = index;
_names_li.selectedIndex = index;

In the next and last two lines of the method, you assign the name of the image to the text property of the _title_lbl
label and set the source for the ScrollPane instance to the image file. The result, as can be seen in Figure 12-11, is that
an image loads into the pane and can be scrolled, and the name of the same image appears in the label above.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

429

Scaling an Image
As a final step for the initial working interface, let’s hook up the zoom slider so that dragging the slider will change the
scale of the loaded image.

Add the following bold lines to your code to enable zooming of the images:

private function onImageSelected(event:Event):void {
 var image:Image = event.target.selectedItem.data as Image;
 var index:int = event.target.selectedIndex;
 _thumbnails_tl.selectedIndex = index;
 _names_li.selectedIndex = index;
 _zoom_sl.value = 1;
 _title_lbl.text = image.name;
 _imagePane_sp.source = image.file;
}

private function onZoom(event:Event):void {
 if (_imagePane_sp.content) {
 _imagePane_sp.content.scaleX = _imagePane_sp.content.scaleY = _zoom_sl.value;
 _imagePane_sp.update();
 }
}

Figure 12-11. The image loads when an item is selected in either list

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

430

Easy enough, isn’t it? In the onZoom() method, if there is currently content in the pane, you set the scaleX
and scaleY properties of that content to be the current value of the slider and then call the update() method of
ScrollPane so that the scrollbars adjust to the new content size. You also add a line to the onImageSelected()
method so that when a new image is loaded, you reset the zoom level to 1.

Test your movie now. You should see image data loaded and displayed in your two lists, which you can display
with the radio button toggle. When a list item is clicked, the image appears in the scrolling pane with its name above,
and it can be scaled using the slider instance.

That’s not bad output for your work thus far! However, you can make this application more sleek and aesthetically
pleasing with a few graphic enhancements.

Adding Graphic Enhancements
To enhance the look of the image viewer application, you’ll make four adjustments:

Make the label for the image stand out from the other labels for the components.•฀

Improve the look of the thumbnails within the •฀ TileList instance so that they don’t seem so
crammed together.

Add drop shadows to the lists, so they conform to the look of the scrolling pane, which has a •฀
drop shadow beneath it by default.

Create a more gentle transition when an image is loaded by adding animation.•฀

Changing the Image Label
You can make the image label stand out by changing the TextFormat instance for the label. In the ImageViewer class,
add the following bold line to assign a new TextFormat to _title_lbl and make its text larger:

private function configureComponents():void {
 _names_rb.selected = true;
 _title_lbl.setStyle("textFormat", new TextFormat("Arial", 14));
}

Make sure that in addition to adding this line, you import flash.text.TextFormat with the rest of the class
imports at the top of the class:

import flash.display.Sprite;
import flash.events.Event;
import flash.text.TextFormat;

Test your movie, and you’ll see the result of these changes, as shown in Figure 12-12.

Figure 12-12. The title for an image is made bigger through the use of a TextFormat applied to a style

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

431

Improving the Thumbnail Layout
Next, you’ll improve the thumbnail layout by making the thumbnails larger and adding some space around them.

Add the following bold lines to ImageViewer to make the tiles in the TileList larger to fill the space horizontally:

private function configureComponents():void {
 _thumbnails_tl.columnWidth = 85;
 _thumbnails_tl.rowHeight = 70;
 _names_rb.selected = true;
 _title_lbl.setStyle("textFormat", new TextFormat("Arial", 14));
}

Now let’s create more padding around the images within each cell. To accomplish this, you will create a new cell
renderer for tiles that will have this new padding setting. Creating a new cell renderer for a list is a simple procedure
and allows you to customize exactly how list items appear.

Create a new ActionScript file and save it as SimpleImageCell.as into the same directory as ImageViewer.as.
Add the following code (which is by far the easiest class you have created this book!):

package com.foundationAS3.ch12 {

 import fl.controls.listClasses.ImageCell;

 public class SimpleImageCell extends ImageCell {

 public function SimpleImageCell() {
 super();
 setStyle("imagePadding", 5);
 }

 }

}

The class extends ImageCell, which a TileList instance will use by default. Within the constructor, you set the
imagePadding style property, which is supported by ImageCell, to 5 pixels. All that you need to do now is assign this
cell renderer to your tile list.

Return to ImageViewer and add the following bold line to the configureComponents() method:

private function configureComponents():void {
 _thumbnails_tl.columnWidth = 85;
 _thumbnails_tl.rowHeight = 70;
 _names_rb.selected = true;
 _title_lbl.setStyle("textFormat", new TextFormat("Arial", 14));
 StyleManager.setComponentStyle(TileList, "cellRenderer", SimpleImageCell);

}

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

432

For this to compile, you need to import the StyleManager class at the top of your code:

import fl.containers.ScrollPane;
import fl.controls.Label;
import fl.controls.List;
import fl.controls.RadioButton;
import fl.controls.Slider;
import fl.controls.TileList;
import fl.data.DataProvider;
import fl.managers.StyleManager;

With the new cell renderer applying its 5-pixel padding, you should see something similar to Figure 12-13 when
you test the movie.

Figure 12-13. A custom cell renderer is used to apply padding around the thumbnail images

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

433

Adding Drop Shadows
Next, you’ll add drop shadows beneath the lists to match the shadow of the scrolling pane. To create a shadow, you
need a shape. One option is to apply a drop shadow to both list components because either one or the other is visible
at all times. If you want to ensure that the shadow remains consistent between the two, another option is to draw a
new shape under the lists and use this shape to create the shadow. Let’s take the latter approach.

To create the shape and its shadow, add the following bold lines to the ImageViewer class:

package com.foundationAS3.ch12 {

 import flash.display.Shape;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.filters.DropShadowFilter;
 import flash.text.TextFormat;

 import fl.containers.ScrollPane;
 import fl.controls.Label;
 import fl.controls.List;
 import fl.controls.RadioButton;
 import fl.controls.Slider;
 import fl.controls.TileList;
 import fl.data.DataProvider;
 import fl.managers.StyleManager;

 public class ImageViewer extends Sprite {

 private var _imagePane_sp:ScrollPane;
 private var _title_lbl:Label;
 private var _thumbnails_rb:RadioButton;
 private var _names_rb:RadioButton;
 private var _thumbnails_tl:TileList;
 private var _names_li:List;
 private var _zoom_sl:Slider;
 private var _images:ImageData;

 public function ImageViewer() {
 init();
 }

 private function init():void {
 assignComponentReferences();
 configureComponents();
 drawListShadow();
 assignHandlers();
 loadImageData();
 }

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

434

 private function assignComponentReferences():void {
 _imagePane_sp = imagePane_sp;
 _title_lbl = title_lbl;
 _thumbnails_rb = thumbnails_rb;
 _names_rb = names_rb;
 _thumbnails_tl = thumbnails_tl;
 _names_li = names_li;
 _zoom_sl = zoom_sl;
 }

 private function configureComponents():void {
 _thumbnails_tl.columnWidth = 85;
 _thumbnails_tl.rowHeight = 70;
 _names_rb.selected = true;
 _title_lbl.setStyle("textFormat", new TextFormat("Arial", 14));
 StyleManager.setComponentStyle(å
 TileList, "cellRenderer", SimpleImageCell);
 }

 private function drawListShadow():void {
 var shadowShape:Shape = new Shape();
 shadowShape.x = _names_li.x;
 shadowShape.y = _names_li.y;
 shadowShape.graphics.beginFill(0);
 shadowShape.graphics.drawRect(0, 0, _names_li.width, _names_li.height);
 shadowShape.graphics.endFill();
 shadowShape.filters = [
 new DropShadowFilter(
 2, 90, 0, 1, 4, 4, .7, 1, false, false, true);
 addChildAt(shadowShape, 0);
 }

 private function assignHandlers():void {
 _thumbnails_rb.addEventListener(Event.CHANGE, onListViewChange);
 _thumbnails_tl.addEventListener(Event.CHANGE, onImageSelected);
 _names_li.addEventListener(Event.CHANGE, onImageSelected);
 _zoom_sl.addEventListener(Event.CHANGE, onZoom);
 }

In the drawListShadow() method, which you call from the init(), a new Shape instance is created. This can be
a Shape instead of a Sprite because you don’t need to allow for any interactivity. This shape is placed at the same
screen position as the List instance. Then a solid black rectangle is drawn within the shape, with a width and height
to equal the List instance as well. You then create a new DropShadowFilter instance with some settings that mimic
the look of the drop shadow used by the scrolling pane. The most important setting to note is the final true, which
specifies that the shape itself will not be visible; only the shadow that the shape produces appears, which is great
because you want only the shadow!

The final line of the method adds the shape to the display list at the bottom of the stack. This places the shape
below the two list instances, effectively creating a shadow for both. Test your movie to see the result, which should
look something like Figure 12-14.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

435

Creating an Animated Transition
The final enhancement is to have loaded images animate in order to create a smoother transition. To accomplish this,
you will create a new class to specifically handle loading and animating images.

Create a new ActionScript file and save it as ImageHolder.as into the same directory as ImageViewer.as. Add the
following code, which takes care of loading an image:

package com.foundationAS3.ch12 {

 import flash.display.Loader;
 import flash.display.LoaderInfo;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.net.URLRequest;

 public class ImageHolder extends Sprite {

 public function ImageHolder(file:String) {
 loadImage(file);
 }

 private function loadImage(file:String):void {
 var loader:Loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onImageLoaded);

 loader.load(new URLRequest(file));
 }

Figure 12-14. A drop shadow is added on a new shape below the list instances

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

436

 private function onImageLoaded(event:Event):void {
 var loaderInfo:LoaderInfo = event.target as LoaderInfo;
 loaderInfo.removeEventListener(Event.COMPLETE, onImageLoaded);
 addChild(loaderInfo.content);
 dispatchEvent(new Event(Event.COMPLETE));
 }

 }

}

This class extends Sprite so that you can add other display objects (namely, the loaded image) to it and allows
for event dispatching. The constructor for the class takes a path to an image, which is subsequently passed to
loadImage().

loadImage() creates a new Loader instance and passes the path to the file, wrapped in a URLRequest instance,
to the Loader’s load() method. To be informed when the image has loaded completely, you need to add an
event listener, but not to Loader itself. You add the listener to the LoaderInfo instance, which can be found in the
contentLoaderInfo property of Loader. You pass onImageLoaded as the handler for the COMPLETE event. Note that
it is a good idea to handle load errors as well as successful loads, but that handling is omitted here for brevity and
simplicity.

In the onImageLoaded() method, you first remove the event listener and then add the image that was loaded as
a child of this ImageHolder instance. This image can be found in the content property of the LoaderInfo instance.
Finally, you dispatch a COMPLETE event to inform listeners that the image has loaded.

At this point, you have not added your animation, but you have enough structure in place to ensure that your
image loading is working as expected. You just need to return to ImageViewer to add the necessary lines of code to use
this ImageHolder class for all the image loading.

Return to ImageViewer.as and add or edit the following bold lines in order to use the ImageHolder class to load
and display images in the scrolling pane:

private function onImageSelected(event:Event):void {
 var image:Image = event.target.selectedItem.data as Image;
 var index:int = event.target.selectedIndex;
 _thumbnails_tl.selectedIndex = index;
 _names_li.selectedIndex = index;
 _zoom_sl.value = 1;
 _title_lbl.text = image.name;
 var imageHolder:ImageHolder = _imagePane_sp.source as ImageHolder;
 if (imageHolder) {
 imageHolder.removeEventListener(Event.COMPLETE, onImageLoaded);
 }
 imageHolder = new ImageHolder(image.file);
 imageHolder.addEventListener(Event.COMPLETE, onImageLoaded);
 _imagePane_sp.source = imageHolder;
}

private function onImageLoaded(event:Event):void {
 var imageHolder:ImageHolder = event.target as ImageHolder;
 imageHolder.removeEventListener(Event.COMPLETE, onImageLoaded);
 _imagePane_sp.refreshPane();
}

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

437

private function onZoom(event:Event):void {
 if (_imagePane_sp.content) {
 _imagePane_sp.content.scaleX = _imagePane_sp.content.scaleY = _zoom_sl.value;
 _imagePane_sp.update();
 }
}

In the onImageSelected() method, you no longer pass the image file path directly to the scrolling pane. Instead,
you pass an ImageHolder instance. Before this is done, though, you check to see whether the scrolling pane’s current
source is an ImageHolder instance. This will be the case for all except when the first image is selected to load. If the
ImageHolder instance exists, make sure to remove a previously added event listener. You do this to ensure that if a user
clicks quickly and repeatedly on items in the lists, you don’t have errant event listeners waiting to be fired when they
are no longer needed:

var imageHolder:ImageHolder = _imagePane_sp.source as ImageHolder;

if (imageHolder) {
 imageHolder.removeEventListener(Event.COMPLETE, onImageLoaded);
}

After this initial check and cleanup, a new ImageHolder instance is created and passed the path to the image file
to load. You add a listener to receive notification when the image has completed loading and then set the source of the
scrolling pane to be the new ImageHolder instance:

imageHolder = new ImageHolder(image.file);
imageHolder.addEventListener(Event.COMPLETE, onImageLoaded);
_imagePane_sp.source = imageHolder;

You add the listener so you can refresh the scrolling pane when an image has completed loading, allowing the
scrollbars to adjust for the size of the loaded image. If you do not do this, the scrolling pane will reset its scrollbars
only when its source property is set, which occurs before the image has completed loading and its size is unknown.
The refreshing is therefore handled in the event listener for the COMPLETE event of ImageHolder.

If you test your movie now, the image will appear as before with no apparent change. Don’t worry—that’s good!
You haven’t added the transition animation yet, and the fact that the image loads as before shows you’ve set up your
loading code correctly.

What you’ve done is separate the code for loading an image into its own class to make it easier in the future
(or in the next step) to modify that code without needing to worry about the internal workings of other classes, namely
your main ImageViewer document class. It is good practice in OOP to separate responsibilities into individual independent
classes to create a more modular structure that allows for easier debugging, maintenance, modification, and reuse. Next,
you will add lines to ImageHolder to produce a transition effect. If you want to alter the transition in the future, you can
modify the code within this class, and the transition will update without you needing to alter code anywhere else.

Return to the ImageHolder class and finish it with the code that will animate the alpha property of the instance
from 0 to 1 after the image loads:

package com.foundationAS3.ch12 {

 import flash.display.Loader;
 import flash.display.LoaderInfo;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.net.URLRequest;

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

438

 public class ImageHolder extends Sprite {

 public function ImageHolder(file:String) {
 alpha = 0;
 loadImage(file);
 }

 private function loadImage(file:String):void {
 var loader:Loader = new Loader();
 loader.contentLoaderInfo.addEventListener(å
 Event.COMPLETE, onImageLoaded);
 loader.load(new URLRequest(file));
 }

 private function onImageLoaded(event:Event):void {
 var loaderInfo:LoaderInfo = event.target as LoaderInfo;
 loaderInfo.removeEventListener(Event.COMPLETE, onImageLoaded);
 addChild(loaderInfo.content);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 dispatchEvent(new Event(Event.COMPLETE));
 }

 private function onEnterFrame(event:Event):void {
 alpha += 0.1;
 if (alpha >= 1) {
 alpha = 1;
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }
 }

 }

}

In the constructor of the class, you set alpha to 0. Once the image loads, within the onImageLoaded() handler,
you set up a new listener for the ENTER_FRAME event dispatched by every sprite, each frame of the movie. Each time
this onEnterFrame() handler is called, you increment alpha by 0.1. After the alpha value reaches 1, you remove the
event listener because the animation is complete.

The approach shown here will produce a linear animation (the alpha increases by the same amount
each iteration) that is dependent on the frame rate of the movie because it is using on ENTER_FRAME
event. Because it is tied to the frame rate, the fade in will occur much more quickly in a movie set at
30 frames per second (fps) than one at 12 fps. If you want to have more control over the total time
for the animation or want to more easily use custom easing equations for less of a linear effect, you
might want to look at ActionScript 3.0’s built-in Timer class, which works independently from a
movie’s frame rate.

Test your movie and see the final result, with images animating upon loading. Not too much extra code has given
you a much smoother application.

CHAPTER 12 ■ CASE STUDY: CREATING A DYNAMIC IMAGE VIEWER

439

Summary
How was that? Not a bad little project for a single chapter! Applying many of the skills presented throughout the earlier
chapters, you can now create an application that loads external data in XML form and displays that data in list views
that, when clicked, causes images to load and animate into a pannable, zoomable pane.

The Flash ActionScript 3.0 components were used extensively, with styles and properties and even a custom
cell renderer to configure and customize instances. Event listening and dispatching were used throughout to inform
the interrelated classes when things need to occur. You dynamically created graphics and applied filters, and used
ActionScript to create an animated transition for the images, which are all loaded from external sources.

At a higher level, you created custom classes, taking advantage of inheritance to extend the core ActionScript
classes, to manage your application and provide much of its functionality. At a lower level, you used an entire arsenal
of ActionScript language elements—from variables to operators, statements to expressions, functions to loops to
conditionals—all to create an application that serves a very real and functional purpose.

As a new ActionScript developer, you deserve many kudos for getting to this point in the book and in your
programming education, and for being able to apply such a wealth of new knowledge!

If you are interested in Flex—what it can offer and how it utilizes ActionScript—keep on turning these pages.
All your ActionScript knowledge is immediately applicable to Flex. In the next two chapters, you’ll learn just what Flex
adds to the mix and create a Flex application to explore its capabilities, using both the Flex framework and the core
ActionScript classes with which you are already familiar.

If Flash is your game, and Flex is for another day, congratulations on reaching this point! There is much more to
ActionScript that you can discover, and the best way to do that is to experiment, play, and have fun with the language
and what it can offer. Take advantage of the wealth of free tutorials, blogs, forums, and open source code presented
by others equally excited by ActionScript and its capabilities. And never stop learning because there is never a point
when there isn’t something new to learn and wow you. Good luck!

For all you Flexers, see you at the turn of the page!

441

CHAPTER 13

Getting Started with Flex

This chapter covers the following topics:

What Flex is and how it relates to Flash•฀

How to install and use the Flex SDK•฀

How to install and use Flash Builder 4.7•฀

How to create a simple Flex application with both the Flex SDK and Flash Builder•฀

Before you dig into this chapter, I have a confession to make: there isn’t enough space in this book to teach you
everything there is to know about Flex. It’s not all bad, though. Instead of trying to cover the entire world of Flex in a
couple chapters, I’m going to show you enough of Flex to give you a comfortable grounding and get you started.

If you decide that you want to go ahead and master Flex 4, Apress has just the book for you:
AdvancED Flex 4 by Shashank Tiwari and Elad Elrom (ISBN 978-1-4302-2483-9).

Introducing Flex
Put simply, Flex is a family of products that makes it easier for developers to create so-called rich Internet
applications (RIAs).

If you think back to the discussion of Flash ActionScript 3.0 components in Chapter 9, you’ll recall that it took
quite a bit of work to create a relatively simple application. The components were designed to be easy to skin and use
streamlined code so movies would not have as much overhead and would load more quickly. A lot of the complexity
in the previous version of the Flash components was removed for these reasons.

Flex, on the other hand, has been designed from the ground up with application development in mind. The
components are more robust, and Flex has a large framework of classes designed to manage more complex graphic
user interfaces (GUIs). The Flex framework is heavier than its Flash sibling’s framework, it’s not quite as easy to
configure graphically, and it doesn’t have a timeline to create more expressive content natively (although you
can import other SWFs for that purpose). But Flex blows everything else away if you want to create desktop-style
applications on the Internet.

Understanding Rich Internet Applications
The term rich Internet application is bandied about a lot at the moment, but it’s hard to find a concrete definition of
what an application must have or do to qualify as an RIA. In lieu of anything more official, I’m going to tell you what
I think defines an RIA.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

442

Macromedia (now Adobe) invented the term rich Internet application back in March 2002, giving a name to a
concept that had already existed for some time under various guises. The concept is a simple one: an application that
is delivered over the Internet but behaves more like a desktop application.

Instead of the traditional web application model (client-server model), where all the data and processing are held
on the server and what you see in your web browser is just a static representation of the data, RIAs handle some of the
data and processing themselves. This means that they can give the user instant feedback on operations, rather than
needing to wait for the server to respond.

The ability to process data on the client and give the user instant feedback also means that some of the idioms
traditionally found in desktop software can be re-created on the Web. Features such as drag-and-drop, table sorting,
and tree controls are all common in the latest crop of RIAs.

Meet the (Flex) Family
As I mentioned earlier, Flex is not a single product. Rather, it’s a family of products and technologies that work
together to give you the platform to create truly engaging RIAs.

The Flex Framework
The most important part of Flex is the Flex framework, which is a collection of ActionScript 3.0 classes on top of
which applications are built. When you hear developers talking about how Flex is great, they’re usually talking about
the Flex framework. It is the primary reason that application development is so quick and easy with Flex.

The Flex framework classes include UI components (buttons, data grids, and so on), layout containers, data
formatting and validation libraries, and a whole lot more. The next chapter explores a number of parts of the Flex
framework to give you a taste of what Flex is all about.

The Flash Player
Flex is part of the Adobe Flash Platform, which is a collection of technologies with the Flash Player at its core.
This means that users don’t need to download yet another browser plug-in to view your applications—they just need
the most up-to-date Flash Player. More than 90 percent of regular web users have a recent version of the Flash Player
installed. That’s more than enough to start developing Flex applications targeted at the wider Internet population
(and not just us web geeks).

Targeting the Flash Player also means that your applications will be cross-platform out of the box, opening your
application to audiences on Windows, Mac OS X, and Linux without you having to lift a finger. And that’s nice.

One downside of the reliance of the Flash Player is that your applications will run within a security sandbox and
won’t be able to write to files on the local file system. For this reason, Flex applications tend to be distributed, where
data is stored on a central server and accessed over the Internet. This need not dash any of your hopes of writing the
next version of Microsoft Word as a Flex application, though. Adobe AIR provides a runtime environment for your
Flex applications that has access to the local file system. See the “Adobe AIR” section coming up shortly for more
information about this capability.

MXML
ActionScript 3.0 may well be perfect for providing the functionality of a Flex application, but it’s not the ideal medium
for creating UIs. If you’ve ever had to use the Document Object Model (DOM) in JavaScript to create HTML elements,
you have some idea of how painful creating UIs using ActionScript 3.0 can be.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

443

Thankfully, Flex includes an XML-based markup language called Multimedia Extensible Markup Language
(MXML), which provides a structured way to define your UIs. You can think of MXML as the XHTML of the Flex world.
In fact, the relationship between MXML and ActionScript is a direct correlation to the way XHTML and JavaScript
work together. Further, MXML allows you to lay out your application and specify its various states, as well as how and
when to transition between those states.

Having said all that, MXML is about more than just UIs. You can also include script and style blocks to determine
the behavior and appearance of your applications. Script blocks can either contain ActionScript 3.0 code or link to
external ActionScript 3.0 files. Style blocks use CSS syntax to define styles for interface controls, and like the script
blocks, can either contain the style data or link to an external CSS file.

You can also create nonvisual objects that link to web services or other external data sources, and use the magic
of data binding to render the data using the UI components included as part of the Flex framework. In fact, using the
HTTPService class and data binding, you could create a Flex application that consumes a web service (such as a Flickr
photostream) and display the data to the user without needing to write a single line of ActionScript 3.0 code!

The Flex Software Development Kit
Once you have your ActionScript 3.0 and MXML files, you’ll need something to turn those files into an SWF file that
can be loaded into the Flash Player. The Flex Software Development Kit (SDK) includes the entire Flex framework, the
mxmlc compiler for compiling Flex applications, the compc compiler for compiling components, and a command-
line debugger to help you root out problems in your applications.

The Flex SDK is free for both commercial and noncommercial purposes, and is available from the Adobe website
(http://www.adobe.com/devnet/flex/flex-sdk-download.html). It contains everything you need to start writing
Flex applications today, and without spending a single penny. Now that’s what I call a bargain.

Adobe donated Flex to the Apache Software Foundation in 2012 to ensure continued development and success
of Flex as a community-driven open source project. For the latest information on Apache Flex, visit their website
(http://flex.apache.org).

Later in the chapter, in the “Building your first Flex application” section, you’ll build a simple application using
the Flex SDK so you can see how to use the compiler.

Flash Builder
Creating and maintaining large applications using nothing but a text editor and the Flex SDK is perfectly acceptable,
but it’s not the most efficient use of your time.

Flash Builder is an integrated development environment (IDE), like Flash CC. Flash Builder is specifically
designed to help you build Flex applications more quickly and easily than if you were using the simple tools provided
as part of the SDK. It includes a visual interface builder that makes it easy to create and edit the MXML files for your
interfaces, a code editor that understands both MXML and ActionScript 3.0 code, and an integrated debugger to help
you find and fix bugs within applications.

If you want to use Flash Builder, you’ll need to purchase a license from Adobe, but you can download the free 30-
day trial from http://www.adobe.com/products/flash-builder.html if you just want to play around.

To demonstrate how much simpler it is to create applications with Flash Builder as opposed to the Flex SDK,
you’ll create the same application using both tools.

Adobe LiveCycle DS
LiveCycle DS, formerly Flex Data Services (not to be confused with LiveCycle Enterprise Suite) is an enterprise-level
product that makes it easy for your application to communicate with a central server and vice versa. Distributed RIAs
(applications that store data on a central server) require a middle tier to act as an intermediary between the data store
(probably a database) and the application itself, and LiveCycle DS helps fill this role.

http://www.adobe.com/devnet/flex/flex-sdk-download.html
http://flex.apache.org/
http://www.adobe.com/products/flash-builder.html

CHAPTER 13 ■ GETTING STARTED WITH FLEX

444

LiveCycle DS isn’t the only option for the middle tier of a distributed RIA. You could use PHP, ASP,
or any number of other server-side programming languages to roll your own, or even use a third-
party solution.

The services that LiveCycle DS provides include data synchronization, automatic paging of results, the ability to
push data from the server to the application, and collaborative features.

If you’re interested in exploring Flex Data Services, you can download the free LiveCycle DS Express and find out
more information about it on the Adobe website (http://www.adobe.com/products/livecycle.html). There is also
an open source counterpart to the LiveCycle technologies known as BlazeDS (http://opensource.adobe.com/wiki/
display/blazeds/BlazeDS/).

The data services discussion is way out of scope for this introductory look at Flex. However, if you are seeking a
more thorough explanation of these products, check out http://gregsramblings.com/2008/03/27/livecycle-ds-
vs-livecycle-es-clearing-up-the-confusion/ or consider picking up a copy of AdvancED Flex 4.

Adobe AIR
The final part of the Flex puzzle is Adobe AIR (the acronym stands for Adobe Integrated Runtime, and yes, that means
its full title is the redundant Adobe Adobe Integrated Runtime), which is a cross-platform runtime environment for
both desktop (Windows, Mac OS X, and Linux) and mobile devices (iOS and Android), reaching over a billion desktop
systems and mobile app stores for over 500 million devices.

AIR allows you to build and deploy RIAs using a mixture of Flash CC, Flex, HTML, JavaScript, and PDF files
that can be installed and run from the user’s desktop or mobile device rather than their web browser. In addition to
allowing RIAs to run on the desktop, an AIR application has full access to the local file system and is able to integrate
with features of the host operating system such as the clipboard, windowing system, and the network API.

AIR is available for free, meaning that anyone can create desktop applications using Flex without spending any
hard-earned cash. Consider it an early or late birthday present from Adobe (unless it’s actually your birthday today, in
which case, happy birthday).

Getting Started with the Flex SDK
In this section, you’ll get you up and running with the Flex SDK. First you’ll download and install the SDK, and then
you’ll create your first Flex application.

Installing the Flex SDK
The Flex SDK is available as a free download from the Adobe website. Go to http://www.adobe.com/devnet/flex/
flex-sdk-download.html and click the Flex SDK link to download the Flex SDK.

Once the .zip file has downloaded, you’ll need to extract the contents to a sensible location on your computer.
The steps to do this differ greatly depending on which operating system you’re using, so follow the steps under the
appropriate heading in this section.

Windows

If you’re using Windows, first extract the contents of the Flex SDK .zip file into a folder named flex in the root of your
C: drive. Next, add the c:\flex\bin directory to the system path, as follows:

http://www.adobe.com/products/livecycle.html
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://gregsramblings.com/2008/03/27/livecycle-ds-vs-livecycle-es-clearing-up-the-confusion/
http://gregsramblings.com/2008/03/27/livecycle-ds-vs-livecycle-es-clearing-up-the-confusion/
http://www.adobe.com/devnet/flex/flex-sdk-download.html
http://www.adobe.com/devnet/flex/flex-sdk-download.html

CHAPTER 13 ■ GETTING STARTED WITH FLEX

445

Note ■ On Windows 8, this information is found through Settings ➤ Control Panel ➤ System and Security ➤ System ➤

Advanced System Settings. You’ll then see the Environment Variables button and can follow the instructions from Step 2.

 1. From the Start menu, right-click My Computer and select Properties.

 2. In the System Properties dialog box, select the Advanced tab, as shown in Figure 13-1.
Click the Environment Variables button.

Figure 13-1. The Advanced tab of the System Properties dialog box

 3. Under System variables, scroll down the list until you find an entry for Path, select that
entry, and then click the Edit button.

 4. In the Edit System Variable dialog box, shown in Figure 13-2, scroll to the end of the text
in the list box under System variables and add ;c:\flex\bin to the end. Don’t omit the
semicolon at the beginning—it’s used to separate multiple values for the Path variable,
and without it you won’t be able to use the mxmlc compiler.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

446

 5. Click OK in all the open dialog boxes to accept the changes you’ve made.

 6. To test that everything worked, open the Command Prompt window by selecting
Start ➤ All programs ➤ Accessories ➤ Command Prompt. In the window, type mxmlc,
and then press the Enter key. You should see the output shown in Figure 13-3.

Figure 13-2. Adding the c:\flex\bin directory to the system path

CHAPTER 13 ■ GETTING STARTED WITH FLEX

447

Note ■ Windows 8 users will find Command Prompt at the end of the All Apps list, in the Windows System section.

If you got a message saying that mxmlc is not a recognized command, try repeating the preceding steps.

Mac OS X

If you’re using Mac OS X, follow these steps to install the Flex SOFTWARE DEVELOPMENT KIT (SDK):

 1. Extract the contents of the Flex SDK .zip file into a folder named flex in your home folder.

 2. Open a Terminal window by double-clicking the Terminal.app file in the Applications
folder within the Utilities folder.

 3. If you’re using Mac OS X 10.2 or earlier, type the following line, and then press Return:

echo 'setenv PATH ~/flex/bin:$PATH' >> ~/.tcshrc

If you’re using Mac OS X 10.3 or later, type the following line, and then press Return:

echo 'export PATH=~/flex/bin:$PATH' >> ~/.bash_profile

 4. To test that the change has taken effect, quit and reopen Terminal.app, type mxmlc, and
press Return. You should see output showing that the mxmlc compiler is installed.

If you got message telling you the mxmlc command could not be found, try repeating the preceding steps.

Figure 13-3. Verifying that mxmlc is installed on Windows

CHAPTER 13 ■ GETTING STARTED WITH FLEX

448

Linux

If you’re using a Linux distribution on a daily basis, you probably know better than I do where you want to put your
downloaded applications. I suggest somewhere like /usr/local/flex, but feel free to extract the files wherever you
choose. Once that’s done, all you need to do is to edit your .profile file and add the /usr/local/flex/bin directory
to the PATH environment variable, or whatever the equivalent is for the shell you’re using.

Finding a Suitable Editor
After you have the Flex SDK installed, you’ll need a text editor to edit the ActionScript 3.0 and MXML files. You have
several options, depending on whether you’re using Mac OS X or Windows as your operating system of choice.

If you’re using Microsoft Windows, I suggest a great open source editor called FlashDevelop, which is designed
specifically for working with Flash and Flex projects. Download it from http://www.flashdevelop.org. Be sure to
download and configure the extras for ActionScript 3.0 and MXML code completion, as explained on the site.

For Mac OS X, I recommend SE|PY or Eclipse. Of the two, SE|PY offers a more robust toolset, similar to that of
FlashDevelop. But because Eclipse is actually the technology Flex is built on, choosing Eclipse will allow you to make
more advanced customizations to the interface.

Another great IDE that supports Flash and AIR development is IntelliJ IDEA by JetBrains. Functional cross
platform, IntelliJ IDEA runs on Microsoft Windows, Mac OS X, and Linux operating systems and is ideal for
ActionScript and MXML with on-the-fly code analysis, completion, navigation, advanced refactorings, code
generation, UML diagrams, UI designer, interactive debugger, and profiler.

Building your first Flex Application
As I mentioned earlier, you’re going to create a simple application using the Flex SDK, and then re-create it later in the
chapter using Flash Builder. It’s worth following this tutorial through, even if you plan on using Flash Builder to create
all your applications, because I’m going to cover some basic information about the Flex framework and MXML here
that won’t be repeated later.

The application you’re going to create is a reader for the blog on the Adobe Labs website. Oh, and you’re going to
do it without writing a single line of ActionScript code, just to show off how powerful MXML can be. The end result is
going to look something like Figure 13-4.

http://www.flashdevelop.org/

CHAPTER 13 ■ GETTING STARTED WITH FLEX

449

The layout has a table containing all the items from the RSS feed of the Adobe Labs blog, with the summary of the
selected item shown in the area below. The two areas are separated by a draggable divider, so that users can decide
how much space they want to give to the listing and to the summary.

So, let’s build the RSS reader.

 1. Decide where you want to keep your projects. If you have been moving progressively
through this book, you probably have created project directories for each chapter. You can
do the same here and create a Chapter 13 directory. Wherever you choose to create your
projects, create a new directory within it named RSSReader.

 2. Within the RSSReader directory, create two subdirectories, named src and bin.

Although step 2 isn’t strictly necessary, it’s good to keep your files organized in this way. The src
directory will contain any MXML and ActionScript 3.0 files. The final SWF file will be output into
the bin directory. In larger applications, you might also have components, libraries, and assets
directories containing other files related to the project.

 3. Fire up your chosen text editor, create a new blank file, and save it in the src directory with
the name RSSReader.mxml.

 4. Now you can start writing the MXML for your RSS reader application. Because MXML is a
type of XML, you need to start the MXML file with the XML declaration.

<?xml version="1.0" encoding="utf-8"?>

Figure 13-4. The RSS reader you’ll build

CHAPTER 13 ■ GETTING STARTED WITH FLEX

450

The version attribute specifies the version of the XML specification that this document
uses. Since there is only one version of XML at this time, the value of this attribute will
be 1.0. The value of the encoding attribute signifies the character encoding used in the
MXML file. In this case, you’ve used utf-8, since that character set supports all characters
in all countries throughout the world (you do need to make sure your code editor is able to

save UTF-8 encoded files).

If all this character-encoding stuff sounds like complete nonsense, then count yourself lucky—you’re
not quite a geek yet. The short version goes something like this: when characters are stored in a
computer, they are stored as numbers, and determining which number is used for a particular
character is the job of the character encoding.
Many different character encodings are available, but you’re likely to come across only two of
them in Flex development: ISO-8859-1 and UTF-8. Of those two, only UTF-8 properly supports
multilingual content.
Of course, in order to translate those numbers back into their respective characters, somehow you
need to include information about which character encoding is used, and that’s what the encoding
attribute of the XML declaration is all about.

 5. Next, add the root element for the MXML document. When creating Flex applications, this
will always be an <mx:Application> element:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
</mx:Application>

This is the root tag of the MXML document, much like the <html> tag in an XHTML
document. The xmlns:mx attribute is required by the XML standard, and it basically
uniquely identifies the mx namespace that the Flex framework uses. These namespaces are
similar to the namespaces in ActionScript 3.0. You need to make sure you get the value of
this attribute right, or you’ll upset the mxmlc compiler.

 6. You’re now at the stage where you have a perfectly valid Flex application. It doesn’t
actually do anything, but that’s beside the point. Let’s make sure everything is OK before
moving on by compiling the application using the mxmlc command-line compiler. Open
a Command Prompt window (Windows) or Terminal window (Mac) and navigate to the
RSSReader directory you created in step 1.

 7. In Windows, type the following line, and then press Enter:

mxmlc src\RSSReader.mxml -output=bin\RSSReader.swf

In Mac OS X or Linux, type the following line, and then press Enter or Return:

mxmlc src/RSSReader.mxml -output=bin/RSSReader.swf

Make sure there are no errors.

 8. Open the RSSReader.swf file in the bin directory with your web browser. You should see
absolutely nothing but a blue-green gradient background.

http://www.adobe.com/2006/mxml

CHAPTER 13 ■ GETTING STARTED WITH FLEX

451

 9. If you got all that working, it’s time to add the remainder of the MXML in the RSSReader.
mxml file. We won’t go over every little detail here; you’ll explore more details of MXML
tags in the next chapter. But have a look and see if you can get a general feel for how
the structure of the MXML translates into the UI shown in Figure 13-4. I’ve added some
comments to help you.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical" creationComplete="feed.send()">
 <!-- The HTTPService item is used to load the RSS data from -->
 <!-- the specified URL -->
 <mx: HTTPService id="feed" url="http://blogs.adobe.com/labs/feed"/>
 <mx:VDividedBox width="100%" height="100%">
 <!-- DataGrid control populated with entries from the feed -->
 <!-- using data binding -->
 <mx:DataGrid id="entries" dataProvider="
{feed.lastResult.rss.channel.item}" width="100%" height="66%">
 <mx:columns>
 <mx:DataGridColumn dataField="pubDate" headerText="Date"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>
 </mx:columns>
 </mx:DataGrid>
 <!-- TextArea control bound to the description property of -->
 <!-- the selected item from the entries DataGrid -->
 <mx:TextArea htmlText="{entries.selectedItem.description}" 
width="100%" height="34%"/>
 </mx:VDividedBox>
</mx:Application>

Basically, what you have here is an HTTPService object with an ID of feed that fetches the
RSS data from the Adobe Labs website and stores it. This information is displayed in the
DataGrid using the magic of data binding, which essentially means that whenever the
data source is updated, any component bound to that data source will automatically be
updated. The same technique is used to show the description of the currently selected
item in DataGrid in the TextArea control.

 10. Return to the Command Prompt window (Windows) or Terminal window (Mac). You
should still be in the RSSReader directory. In Windows, type the following line, and then
press Enter:

mxmlc src\RSSReader.mxml -output=bin\RSSReader.swf

In Mac OS X or Linux, type the following line, and then press Enter or Return:

mxmlc src/RSSReader.mxml -output=bin/RSSReader.swf

Make sure there are no errors.

If opening the SWF directly produces an error, then open in a browser.

http://www.adobe.com/2006/mxml
http://blogs.adobe.com/labs/feed

CHAPTER 13 ■ GETTING STARTED WITH FLEX

452

 11. Open the RSSReader.swf file in the bin directory with your web browser. You should see
something like Figure 13-4. If you got a bunch of funny-looking errors instead, double-check
your MXML file with the one provided in the files you downloaded for this chapter from the
friends of ED website.

Now that you’ve worked with the free Flex SDK, let’s turn our attention to the commercial Flex IDE—Flash
Builder.

Getting Started with Flash Builder
Installing Flash Builder is a no-brainer. For both Windows and Mac OS X, a lovely installer wizard guides you through
the process. All you need to do is to download the installer from the Adobe website at http://www.adobe.com/
products/flex/flexbuilder (again, registering if necessary), and then double-click the installer file once it has
downloaded to begin the installation.

Understanding the Flash Builder Interface
Flash Builder is a powerful IDE for Flex applications, built on top of the Eclipse open development platform
(http://www.eclipse.org). It’s available both as a stand-alone application and as a plug-in for the Eclipse IDE.
Unfortunately, this power means that Flash Builder isn’t the easiest of applications to get comfortable with, although
if you use Eclipse for other types of projects, using it for Flex will be a natural transition. If you have never used Eclipse,
it can be a bit of a daunting environment. Thankfully, the first thing you see when you launch the application is the
Flex Start Page, which contains links to samples and tutorials to get you started, as shown in Figure 13-5.

http://www.adobe.com/products/flex/flexbuilder
http://www.adobe.com/products/flex/flexbuilder
http://www.eclipse.org/

CHAPTER 13 ■ GETTING STARTED WITH FLEX

453

Building your first Flash Builder Application
As I mentioned earlier, you’re going to create the same RSS reader application as you just did with the Flex SDK but
do it Flash Builder style. You’ll still need to get your hands dirty with a bit of manual MXML authoring, but by the time
you’ve finished this example, the benefits of having a fully integrated IDE over the simple SDK should be clear.

Creating a new Flex Project

You begin by creating a new project in Flash Builder:

 1. Select File ➤ New ➤ Flex Project from the main menu. This will launch the New Flex
Project wizard.

The first screen of the wizard allows you to name your project and set the directory
location of your project. You’re also given the choice to create a Flex or an AIR application
and select your desired server-side technology.

Figure 13-5. The Flex Start Page appears when you first start Flash Builder

CHAPTER 13 ■ GETTING STARTED WITH FLEX

454

 2. Enter RSSReader as the project name, as shown in Figure 13-6. Be sure to set Application
Type to Web. If you would like, use the Browse button to set your project’s location to the
default working directory for this book’s projects. Click Next.

Figure 13-6. Naming a new Flex project

You could have also clicked Finish on the Create a Flex Project screen. This would have
loaded a new Flex project with all of the default settings. However, for this example we
will take the long route (well, it’s not that long) to show you more options for setting up
customized Flex projects.

The first of these options, shown in Figure 13-7, allows you to select the Application server
type and output directory of your Flex project. The contents of this directory will ultimately
be uploaded to a web server. For now, the default setting is sufficient.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

455

 3. Click the Next button.

The final screen in the New Flex Project wizard (see Figure 13-8) lets you set the build
paths for your project. You can change many of your project’s default settings:

The •฀ Source path tab allows you to define additional source paths to be used in your
application. This will aid in the organization of projects, especially across teams.

The •฀ Library path tab allows you to link to additional programming libraries to be used
in your application. For example, you may want to use a third-party ActionScript data
processing library.

By default, both MX Halo (Flex 3) and Spark (Flex 4) •฀ component sets are included in the
project. In some scenarios, you may want MX only such as when working on an existing
Flex 3 project.

By default, Flex •฀ framework linkage uses dynamic linking rather than compiling all
classes into the application SWF file (static linking). Dynamic linking produces smaller
SWFs, which download faster; however, use more memory because all framework classes
are loaded from the runtime shared library (RSL). Runtime shared libraries externalize
common assets from SWF files, eliminating the need to download classes repeatedly,
which is useful when developing numerous applications that use the same components or
symbols.

Figure 13-7. The Configure Output screen of the New Flex Project wizard

CHAPTER 13 ■ GETTING STARTED WITH FLEX

456

To ensure runtime shared libraries loaded from a different domain may be trusted, Flash •฀
Player reads the bytes of the incoming RSL and computes a one-way hash, or digest.
When Verify RSL digests is enabled, this hash must match the hash generated at compile
time. This is recommended for production apps.

•฀ Remove unused RSLs removes unused libraries at compile time to optimize download.

Use local debug runtime shared libraries when debugging •฀ uses local RSLs when
debugging an application, which allows stepping into debug RSL files.

•฀ Automatically determine library ordering based on dependencies enables Flash
Builder to determine the order to load libraries. To customize library order, disable this
option and use the up and down buttons to specify a library order.

•฀ Main source folder is the source folder that exists within your application directory. This
folder will contain most of the code files that you will work on with your project.

•฀ Main application file is the primary MXML file that is used for your project. Currently we
have been using RSSReader.mxml. However, there are situations when you may want to
change this.

•฀ Output folder URL allows you to set the remote location for output of your web
application. This lets you output directly to the web server.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

457

 4. Click the Finish button to begin working on your Flex project.

You’ll now see your new RSSReader project in the Navigator panel in the top left of the Flash Builder 4.7 interface,
as shown in Figure 13-9.

Figure 13-8. Use this screen to set the build paths.

CHAPTER 13 ■ GETTING STARTED WITH FLEX

458

The bin-debug directory is where the final SWF file will be stored, and that directory also contains a variety of
SWF, JavaScript, and HTML files to make it easy for you to deploy your Flex applications with a minimum of fuss.
The JavaScript and HTML files are generated from templates in the html-template directory.

The RSSReader.mxml file has been created and opened in the MXML editor panel, as shown in Figure 13-9, ready
for you to start building the application.

Working with MXML Source

Before you add any components to your application, you need to configure the main mx:Application container to lay
out its children vertically:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical">
</mx:Application>

The first component you need to add to your application is a VDividedBox control. The VDividedBox control
lays out items vertically with a drag bar between them, allowing the user to resize the height of the items. Enter 100%
for both width and height:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:VDividedBox width="100%" height="100%">

 </mx:VDividedBox>
</mx:Application>

Figure 13-9. The RSSReader.mxml file generated by Flash Builder’s new Flex project template

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

CHAPTER 13 ■ GETTING STARTED WITH FLEX

459

Next, add a DataGrid control nested inside the VDividedBox with a height of 66%, and a TextArea control with
a height of 34%. This means that the TextArea component will be inserted below the DataGrid component in the
VDividedBox component.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:VDividedBox width="100%" height="100%">

 <mx:DataGrid width="100%" height="66%">
 </mx:DataGrid>

 <mx:TextArea width="100%" height="34%" />

 </mx:VDividedBox>
</mx:Application>

Now, let’s add the columns for the data grid. As a child of the DataGrid, add two DataGridColumn elements to the
columns array. Then change the headerText of the first column to Date and set the dataField to pubDate. pubDate
is the name of the property of the items in the data grid that will be displayed in that column. Date will be what is
displayed in the column header. For the second column, change the headerText to Title and the dataField to title.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:VDividedBox width="100%" height="100%">

 <mx:DataGrid width="100%" height="66%" >
 <mx:columns>
 <mx:DataGridColumn headerText="Date" dataField="pubDate"/>
 <mx:DataGridColumn headerText="Title" dataField="title"/>
 </mx:columns>
 </mx:DataGrid>

 <mx:TextArea width="100%" height="34%" />

 </mx:VDividedBox>
</mx:Application>

If you run the application, you’ll see all visual components are visible, as shown in Figure 13-10.

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

CHAPTER 13 ■ GETTING STARTED WITH FLEX

460

Figure 13-10. RSS Reader visual components

Next, let’s load some data. As a child of the <mx:Application> tag, insert an <mx:HTTPService> tag. Notice how
the MXML editor automatically gives you suggestions after you start typing, as shown in Figure 13-11.

Figure 13-11. Flash Builder 4.7’s MXML editor suggests tags after you begin typing

CHAPTER 13 ■ GETTING STARTED WITH FLEX

461

You can use the keyboard to navigate up and down the list of suggestions, pressing the Enter key when
you find the one you need. Add an id attribute with the value feed, and a url attribute with the value
http://blobs.adobe.com/labs/feed and then close the element. Save the file.

 1. Add an id attribute with value entries to the <mx:DataGrid>. Like defining a variable
name, this means you can reference the DataGrid using the name entries.

 2. Add a dataProvider attribute with value {feed.lastResult.rss.channel.item} to the
<mx:DataGrid>. This will bind the feed retrieved by the HTTPService to the DataGrid.

 3. Add an attribute named htmlText to the <mx:TextArea> tag with a value of
{entries.selectedItem.description} to bind its contents to the description property
of the currently selected item in the entry’s data grid. This means that whenever the
selection in the data grid changes, it will automatically update the text in the text area.
Sweet automation!

 4. The only thing left to do is to add the creationComplete attribute to the <mx:Application>
tag with a value of feed.send(). This invokes the send() method of the HTTPService
instance you’ve named feed when the application fires its creationComplete event after
all of its children have been created.

 5. Save the file, and then click Run ➤ Run RSSReader. Your application should launch in the
browser, allowing you to view the contents of the feed.

Summary
Phew! We’ve covered a lot of ground for such a short chapter, so I’ll keep the summary short. You should now
have enough of an idea about what Flex is to start exploring more in depth in the next chapter. And you’ve built a
semi-useful application to boot.

I’ll see you in the next chapter when you’re hungry for more.

http://blobs.adobe.com/labs/feed

463

CHAPTER 14

Flex by Example

In this chapter, you’re going to put into practice all that you’ve learned about Flex in the previous chapter and
ActionScript 3.0 throughout this book. Here, you’ll develop the simple RSS reader application you built in Chapter 13 as
a full-featured feed reader application. You’ll see that although the Flex framework and the MXML markup language
are extraordinary and powerful tools on their own, you need to add ActionScript to create truly robust, complex
applications.

This chapter demonstrates the following:

How to conceptualize and plan a Flex project•฀

How to create a new Flex project in Flash Builder•฀

How to import and take advantage of external class libraries•฀

How to lay out a UI using MXML•฀

How to use controls and layout classes in the Flex framework•฀

How to use data binding to wire components together•฀

How to create pop-up dialog boxes•฀

How to create custom classes for use within a Flex application•฀

How to create and dispatch custom events•฀

How to use web services to load data•฀

How to save data between sessions using •฀ SharedObject

You’ll see how all of the ActionScript skills you’ve learned throughout this book can be applied to Flex
development.

Planning the Application
Before you rush headlong into building this application (yes, I saw you reaching for your mouse), you need to
identify exactly what you want it to do and roughly how you want it to look. Proper planning of a large application is
an important step during your development process, helping you to identify potential problems, ensure consistent
architecture, and provide better visibility (both for you and your clients) of what you will be building.

Because planning is so important to creating a good application, I’m going to dispense a few personal opinions
about how a project should be developed. I’m not going to teach you the “right” way to do it (which is just as well
because there is no right way to do it, whatever the fat-cat consultants or hip Extreme Programming gurus might tell
you). The point is to get you thinking about how to develop an application—from an initial idea to the finished article.

CHAPTER 14 ■ FLEX BY EXAMPLE

464

Let’s walk through the five main steps of planning an application:

Gathering the requirements•฀

Creating the functional specification•฀

Designing the UI•฀

Designing the interaction•฀

Designing the data and logic•฀

Gathering the Requirements
The first step in planning an application is to identify the requirements. In a real-world project, this can mean
anything from an informal chat with the people who will be using your application to a full-blown, official
requirements-gathering process. The aim in both cases is the same: make sure that your application is useful to the
people who will be using it every day. Now, that’s not to say that you must try to implement every little feature that
each user says he wants. Part of the headache of the requirements-gathering process is that what your users think they
want isn’t what they really want most of the time, and you need to work hard to decipher their requests into a feasible
requirement. You also have a responsibility to include only the features that will be useful to a significant portion of
your user base. This means that some features will not make the cut, even though they may be good ideas.

So, what are the requirements for the application you’ll build in this chapter? Because this is a practice application,
I get to set the requirements. And because I’m being informal, I can just list what the application should do:

Support multiple feeds, allowing the user to add and remove feeds•฀

Support the most common feed formats•฀

Allow the user to manually refresh feeds•฀

Automatically refresh feeds every five minutes•฀

Show the user the number of articles in a given feed•฀

Provide a way for the user to view the website associated with the feed•฀

Remember the user’s feed between sessions•฀

Of course, this list could include even more features, but I want to keep version 1.0 of this application
manageable, so these requirements will do just fine for now. At the end of chapter, I’ll leave you with a few ideas of
where you can take this application if you feel like tinkering.

When deciding on what you want your application to do, it’s worth giving some thought to the things you won’t
be able to do. In the case of the feed reader application, limitations are imposed by the Flash Player in which the
application will run.

One limitation relates to storage. Although you want to store the user’s feed list, the only local storage medium
available to a Flex application is a local SharedObject, which is limited in terms of how much content it can hold. This
means that you won’t be able to store the list of articles fetched from each feed, as would be the case in a normal feed
reader application, so when the application is restarted, the history of articles in the feed will be lost. (Note that you could
use Adobe AIR, introduced in the previous chapter, to build an application that has direct access to the file system).

The other main limitation is imposed by the Flash Player’s security sandbox. The Flash Player can’t load XML
data from another domain without express permission in the form of a crossdomain.xml file. This file, which is hosted
on the server delivering the data, specifies other domains whose files, like SWFs, may access that data. This won’t be
a problem during development because you’ll be running the application locally, which thankfully means it won’t be
subject to this particular security restriction. However, it does mean that you won’t be able to upload this application
and have it work for every feed.

CHAPTER 14 ■ FLEX BY EXAMPLE

465

You could host the application remotely by creating a server-side proxy script to fetch the feed data
on behalf of the application. Such a proxy would be hosted on the same domain as your application
SWF and would load the data from the remote domain. Because the application SWF would need
to communicate with only the proxy script, hosted on the same domain, there would be no security
restriction in the Flash Player. Adobe has examples of this available at http://kb.adobe.com/
selfservice/viewContent.do?externalId=tn_16520#proxy.

The Flash Player imposes other limitations, such as not being able to interface with the web browsers to have
your application configured as the default feed reader, but these are relatively minor in comparison to the two just
discussed.

Creating the Functional Specification
Now that you know what your application needs to do (and what it does not need to do), you can start thinking
about how it should work. The essence of the process is to convert the requirements you’ve gathered into tangible,
measurable features.

In a more formal setting, this would involve drawing up a functional specification document, which would be
circulated to all interested parties so that everyone knows exactly what is being built. Such a document could run to
hundreds or thousands of pages, depending on the complexity of your application, and it may need to go through
several rounds of revisions before everyone is happy with it.

However, for the sample application, you’ll just flesh out the requirements gathered in the previous step into a list
of features, with some basic details of how each feature will work.

•฀ Feed reading:

The users will be able to view a list of the feeds to which they have subscribed, with the •฀
list showing the title of the feed and the number of articles it contains.

The users will be able to see the date and title of the articles for a given feed, and the title •฀
and excerpt for a given article.

The users will be able to visit the website associated with a given feed, and they will be •฀
able to go to the page for an individual entry if they want to read more than the excerpt.

•฀ Subscription management:

The users will be able to manage their feed subscriptions from within the application. •฀
When subscribing to a feed, the users will be able to specify the URL from the feed. This
URL will then be used to fetch the feed data, and the feed title will be extracted from the
metadata that is part of the feed data.

The system will support the following feed formats: RSS 1.0, RSS 2.0, and Atom 1.0.•฀

The format of a feed will be automatically detected so that the users do not need to know •฀
the type of a given feed when subscribing.

•฀ Refreshing feeds:

When the application is started, each feed in the user’s subscription list will be refreshed, •฀
fetching the latest articles. The feeds will be refreshed automatically every five minutes.

A user will be able to manually refresh a given feed or all feeds in the subscription list.•฀

When refreshing a feed, any old articles that no longer appear in the feed data will be kept •฀
until the end of the session.

http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_16520#proxy
http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_16520#proxy

CHAPTER 14 ■ FLEX BY EXAMPLE

466

Designing the UI
Once you have the functional specification, you can start to think about the user experience. You want your application
to be as easy to use as possible (in line with one of the application requirements), so you’ll stick to a single screen.

Now, you don’t need to go into a whole lot of detail here. You’re not worried about the look and feel of the
application. You just need to know what the major UI elements are and roughly where they sit on the screen. With
that in mind, and having looked at some other feed reader applications for inspiration, I came up with the layout
shown in Figure 14-1.

Figure 14-1. The proposed layout for the RSS application

On the left is the list of feeds to which the user has subscribed, with the number of unread articles in brackets
after the title of the feed. Below the list is a button to add a new subscription (labeled with a + sign) and another
button to remove the selected subscription (labeled with a – sign). Also included in this area are controls for
refreshing the feeds, either manually or automatically at a specified interval.

In the top-right area is the list of articles in the selected feed, displayed in a scrollable grid showing the date and
the title of the article. Beneath that is a label to tell the user when the feed was last checked for updates and a Visit
website button, which will take the user to the website associated with the feed.

Below the article list are the title and excerpt from the selected article, with a label telling the user when the
article was posted and a button that will take the user to the full article.

Although you can probably guess which containers and controls from the Flex framework you might use to build
this, it’s a little too early in the planning stage to be thinking about the implementation. There’s still one crucial step
left that may have an impact on how you build the UI.

Designing the Interaction
Interaction design means deciding how the application will behave in response to user input. The user interaction for
this application will be as simple as the interface.

CHAPTER 14 ■ FLEX BY EXAMPLE

467

For the sample application, the interaction is implied by the UI design. However, in a more formal project,
interaction design is a crucial step to getting your application right.

If you’re going to be doing interaction design as part of your job, I suggest getting hold of a copy
of About Face 2.0: The Essentials of Interaction Design by Alan Cooper and Robert M. Reimann
(Wiley, 2003). This book will help you to determine what your potential users want from the UI
and aid you in avoiding the most common pitfalls when designing a UI. This book was written
with desktop application development in mind, but because RIA development is all about bringing
desktop-style applications to the Web, most of the concepts discussed in this book apply equally well
to our line of work.

Designing the Data and Logic
At this stage, you would normally look at designing the data entities (using UML or entity relationship diagrams) and
the logic of the application (using UML or flowcharts), but this isn’t a book on software design, and that topic is way
too big for me to do it any justice in a page or two. Take a look at the UML website (http://www.uml.org) for the UML
specification and an introduction to its use, plus its benefits for application development.

Setting up the Project
So now we get down to the fun stuff: using the Flex framework to build the application. In order to get a feel for
MXML, you’ll use the Flash Builder IDE to set up and manage the project to save the bother of messing too much with
the command line. If you are using the free Flex SDK, the ActionScript and the MXML covered here will be exactly the
same. You will just need to manually create the directories and files, and compile through the command line (consult
Adobe’s documentation for instructions on compiling through the command line).

You’ll build the application in an incremental fashion, testing new features as you go. This means that you’ll
get the basics working first and then build on them step by step until you have the finished application. Building an
application in this way means that you can spot any problems early instead of waiting until the very end to compile
and test, only to find that the most basic things aren’t working.

The first step in building the application is setting up the project. With Flash Builder open, select File ➤ New ➤
Flex Project from the menus to open the New Flex Project dialog box, as shown in Figure 14-2.

http://www.uml.org/

CHAPTER 14 ■ FLEX BY EXAMPLE

468

Enter IrisReader as the project name. Uncheck Use default location and create a project directory specifically
for this chapter, following the same convention as you have for the examples in previous chapters. Leave the
Application type radio button selected as web application. Click Finish to create the new project.

At this point, you have a project structure set up with the root directory containing your main MXML file, IrisReader.
mxml, and a number of properties files, which you will not edit. In addition, four subdirectories have been created:

•฀ bin-debug: This directory contains all the files needed to deploy your application, including
HTML for embedding the SWF; JavaScript for player detection, writing the SWF to the page,
and history management; and the SWFs themselves, both normal and debug versions.

•฀ html-template: This directory contains the files that are used to produce the output in the
bin directory, with tokens that can be replaced, based on your application. For instance, if you
set the background color or width and height in your MXML, these values can be written into
your HTML in the bin directory using the template in the html-template directory.

•฀ libs: This directory can be used to store external or third-party libraries or resources that are
used in your Flex project.

•฀ src: This directory contains all source code files that a developer has created for the given
project.

Figure 14-2. The New Flex Project dialog box in Flash Builder

CHAPTER 14 ■ FLEX BY EXAMPLE

469

Creating the Basic UI
Now that you have set up the project, you can start to build the UI. In Flex, this generally means starting with the
container components that will control the layout of your application. Let’s take the wireframe from Figure 14-1 and
break that down into a hierarchy of Flex containers, as shown in Figure 14-3.

Figure 14-3. The container components in the application

As you can see, Panel containers (the boxed elements with title bars) separate the different elements of the
UI, encapsulated in a combination of HDividedBox and VDividedBox containers. These containers position items
horizontally or vertically, respectively, and provide a means to drag to resize the internal elements, giving the UI
maximum flexibility.

Creating the Containers
You should be in Source view of the IrisReader.mxml file. Begin by changing the layout attribute of the
<mx:Application> element to vertical. Then add an HDividedBox container with both width and height attributes
set to 100%.

<mx:Application xmlns:mx=
"http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:HDividedBox width="100%" height="100%">
 </mx:HDividedBox>
</mx:Application>

Within the HDividedBox, add a Panel container with a title of Subscriptions, a width of 40%, and a height of 100%.

<mx:Application xmlns:mx=
"http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:HDividedBox width="100%" height="100%">
 <mx:Panel title="Subscriptions" width="40%" height="100%">

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

CHAPTER 14 ■ FLEX BY EXAMPLE

470

 </mx:Panel>
 </mx:HDividedBox>
</mx:Application>

As a sibling of the Panel, add a VDividedBox with a width of 60% (so it occupies the remainder of the width of the
HDividedBox parent) and a height of 100%.

<mx:Application xmlns:mx=
"http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:HDividedBox width="100%" height="100%">
 <mx:Panel title="Subscriptions" width="40%" height="100%">
 </mx:Panel>
 <mx:VDividedBox width="60%" height="100%">
 </mx:VDividedBox>
 </mx:HDividedBox>
</mx:Application>

Finally, add two Panel containers as children of the VDividedBox, with titles of Articles and Article from top to
bottom, and both with 100% width and 50% height (so they take up half the VDividedBox each).

<mx:Application xmlns:mx=
"http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:HDividedBox width="100%" height="100%">
 <mx:Panel title="Subscriptions" width="40%" height="100%">
 </mx:Panel>
 <mx:VDividedBox width="60%" height="100%">
 <mx:Panel title="Articles" width="100%" height="50%">
 </mx:Panel>
 <mx:Panel title="Article" width="100%" height="50%">
 </mx:Panel>
 </mx:VDividedBox>
 </mx:HDividedBox>
</mx:Application>

Creating Basic Feed Integration
With the very basic UI created, you can turn your attention to loading feeds. One of the requirements for the
application is support for RSS 1.0, RSS 2.0, and Atom 1.0 syndication formats.

The proper approach for feed integration is to abstract the common functionality from all three feed formats into
a set of classes and specialize those classes for each individual feed format. Creating these classes would be a lot of
work and wouldn’t necessarily teach you anything about building Flex applications (the whole point of this chapter).
Thankfully, Adobe has already done the hard work for you with its XML syndication library, which is available from
Adobe Labs.

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

CHAPTER 14 ■ FLEX BY EXAMPLE

471

Installing the XML Syndication Library
The XML syndication library provides code that parses the XML feed formats into ActionScript objects that you can
handle natively in your application. All you need to do is download this library and integrate it into your project:

 1. The XML syndication library is available through Google’s code repository. Visit
http://code.google.com/p/as3syndicationlib/ and download the featured .zip file.

 2. Extract the .zip file to your working directory. The file of interest is xmlsyndication.swc,
located in the bin directory of the extracted files.

 In the doc directory, you’ll find API documentation for the XML syndication library, which
is worth reviewing, as you’re going to be using several of these classes and interfaces in the
feed reader application.

 3. In the Flex Navigator panel, right-click (Control-click for Mac OS X) the libs folder and
select Import. Select File system under the General folder in the Select screen of the
Import window, as shown in Figure 14-4, and then click Next.

Figure 14-4. Choosing to import resources from the file system

 4. Click the Browse button at the top right of the File system screen. Find and select the bin
directory from the files extracted in step 2 and click OK (Windows) or Choose (Mac OS X).

 5. Select the bin directory on the left side of the File system screen of the Import window,
and check the check box next to the xmlsyndication.swc entry on the right side, as shown
in Figure 14-5.

http://code.google.com/p/as3syndicationlib/

CHAPTER 14 ■ FLEX BY EXAMPLE

472

 6. Click the Finish button in the Import window to import the xmlsyndication.swc file into
your project.

 7. Now you need to tell Flash Builder that you want this file compiled as part of your project.
Right-click (Windows) or Control-click (Mac OS X) the IrisReader project in the Navigator
panel and select Properties from the context menu.

 8. Select Flex Build Path from the left side of the Properties for IrisReader window, and
then select the Library path tab on the right side, as shown in Figure 14-6.

Figure 14-5. Choosing to import the xmlsyndication.swc file

CHAPTER 14 ■ FLEX BY EXAMPLE

473

 9. Click the Add SWC button and then click the Browse button in the Add SWC dialog
box. Select the xmlsyndication.swc file within the libs directory of your main project
directory. Then click OK (Windows) or Choose (Mac OS X).

 10. Your Library path tab should look like Figure 14-7. Click OK in the Properties for
IrisReader window to close it.

Figure 14-6. Setting the Flex build path

CHAPTER 14 ■ FLEX BY EXAMPLE

474

If you’re using Flex SDK 4, you can just create a lib directory in your chosen project directory and copy
the xmlsyndication.swc file into that directory. Then all you need to do is add the xmlsyndication.
swc file to the library-path option of the mxmlc compiler, which you can do as part of your compile
command. In Windows, type this:

mxmlc -library-path+=lib\xmlsyndication.swc -output bin\
IrisReader.swf src\IrisReader.mxml

Figure 14-7. Use the Add SWC button to have the xmlsyndication.swc file compile with your project

CHAPTER 14 ■ FLEX BY EXAMPLE

475

In Mac OS, type this:

mxmlc -library-path+=lib/xmlsyndication.swc -output bin/
IrisReader.swf src/IrisReader.mxml

Creating the Subscription Class
You’re going to encapsulate all the information about a subscribed feed in a class named Subscription. The following
is the bare minimum information that your feed class will need to contain:

The URL of the feed•฀

The title of the feed (derived from the feed data)•฀

The URL of the feed’s website (derived from the feed data)•฀

A list of articles for the feed•฀

The date the feed was last checked•฀

Adding a New Class to Your Project
Armed with this information, you can sketch out the skeleton of your Subscription class:

 1. Right-click (Windows) or Control-click (Mac OS X) the IrisReader project in the Navigator
panel and select New ➤ ActionScript Class to open the New ActionScript Class wizard.

 2. Enter com.foundationAS3.ch14.irisreader in the Package text box and Subscription in
the Name text box, as shown in Figure 14-8.

CHAPTER 14 ■ FLEX BY EXAMPLE

476

 3. Click Finish to create the class file and necessary package directories, as shown in
Figure 14-9. Flash Builder will automatically open the file, ready for editing.

Figure 14-8. Creating the new Subscription class

CHAPTER 14 ■ FLEX BY EXAMPLE

477

Fleshing out the Subscription Class
Now you can start to add the properties you need, beginning with feedURL, which is obviously going to be a String. At
the moment, I can’t see any reason why the URL of the feed will need to be changed from outside the Subscription
class, so let’s make it private with a public getter function and have the initial value passed through in the constructor:

package com.foundationAS3.ch14.irisreader {

 public class Subscription {

 private var _feedURL:String;

 public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 }

 public function get feedURL():String {
 return _feedURL;
 }

 }

}

Figure 14-9. The project directory structure in the Navigator panel showing the new class

CHAPTER 14 ■ FLEX BY EXAMPLE

478

The other properties—title, url, articles, and lastChecked—will need to be visible from outside the
Subscription class, but only for reading. With that in mind, let’s add them as private variables, with each having a
simple getter function:

package com.foundationAS3.ch14.irisreader {

 import mx.collections.ArrayCollection;

 public class Subscription {

 private var _feedURL:String;
 private var _title:String;
 private var _url:String;
 private var _articles:ArrayCollection;
 private var _lastChecked:Date;

 public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 _articles = new ArrayCollection();
 }

 public function get feedURL():String {
 return _feedURL;
 }

 public function get title():String {
 return _title;
 }

 public function get url():String {
 return _url;
 }

 public function get articles():ArrayCollection {
 return _articles;
 }

 public function get lastChecked():Date {
 return _lastChecked;
 }

 }

}

Notice that you’re using an ArrayCollection for the articles property instead of a simple Array. This means
that you can take advantage of data binding, which is available in the Flex framework’s ArrayCollection class,
when dealing with the articles list (if you need to), and maybe save yourself a few lines of code later on. You’re also
initializing the articles property in the constructor so that it’s ready to be filled with articles from the feed.

CHAPTER 14 ■ FLEX BY EXAMPLE

479

Testing the Subscription Class
You have a way to go with the Subscription class, but I get nervous if I go too long without at least testing to check
that a class compiles without errors. With that in mind, let’s add some script to the IrisReader.mxml file that imports
the Subscription class and creates a new instance of it.

Switch to the IrisReader.mxml document in Flash Builder and add an <mx:Script> element after the
<mx:Application> tag. This element will allow you to write ActionScript directly into your MXML file.

Add an import statement for the Subscription class and then create a private variable to hold your test instance.
Because you’re here, you may as well make that variable an ArrayCollection that will hold all the Subscription
objects for your application—there’s no sense in adding extra work for yourself, now is there?

<mx:Application xmlns:mx=
"http://www.adobe.com/2006/mxml" layout="vertical">
 <mx:Script>
 <![CDATA[
 import com.foundationAS3.ch14.irisreader.Subscription;
 import mx.collections.ArrayCollection;

 private var _subscriptions:ArrayCollection;
]]>
 </mx:Script>
 <mx:HDividedBox width="100%" height="100%">
 <mx:Panel title="Subscriptions" width="40%" height="100%">
 </mx:Panel>
 <mx:VDividedBox width="60%" height="100%">
 <mx:Panel title="Articles" width="100%" height="50%">
 </mx:Panel>
 <mx:Panel title="Article" width="100%" height="50%">
 </mx:Panel>
 </mx:VDividedBox>
 </mx:HDividedBox>
</mx:Application>

Again, you used an ArrayCollection, instead of a simple Array, for its data-binding benefits.
Finally, you need to write the code to initialize the _subscriptions variable and feed it an instance of

the Subscription class. This function needs to run once the application is ready to go, so you’ll tie it into the
creationComplete event of the Application class. You can add a listener for this event directly within the MXML tag for
the Application. The handler for the event will be passed an instance of FlexEvent, so you’ll import that class as well:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
layout="vertical" creationComplete="onCreationComplete(event)">
 <mx:Script>
 <![CDATA[
 import com.foundationAS3.ch14.irisreader.Subscription;
 import mx.collections.ArrayCollection;
 import mx.events.FlexEvent;

 private var _subscriptions:ArrayCollection;

 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 _subscriptions.addItem(
 new Subscription("http://foundationas3.org/feed"));

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml
http://foundationas3.org/feed

CHAPTER 14 ■ FLEX BY EXAMPLE

480

 }
]]>
 </mx:Script>
 <mx:HDividedBox width="100%" height="100%">
 <mx:Panel title="Subscriptions" width="40%" height="100%">
 </mx:Panel>
 <mx:VDividedBox width="60%" height="100%">
 <mx:Panel title="Articles" width="100%" height="50%">
 </mx:Panel>
 <mx:Panel title="Article" width="100%" height="50%">
 </mx:Panel>
 </mx:VDividedBox>
 </mx:HDividedBox>
</mx:Application>

With that done (and once you save any changes to the project files), you’ll see any compile errors in the
Problems panel. If you do see errors, don’t fret. Just double-click each error to go to the appropriate line in the source
code and see if you can figure out what’s wrong.

Loading the Data
Let’s continue adding functionality to the Subscription class. You still need some way of retrieving the feed data, and
you need to make use of the Adobe XML syndication library to process that feed data into something you can use in
your application.

Don’t forget to keep saving your files as you proceed so that Flash Builder can compile your
application after each step. Not only will that prevent you from losing too much work should Flash
Builder crash but it will also detect any errors in your code early, so you can fix them right away.

You’ll use the HTTPService class of the Flex framework to load the feed data, so the first thing you need is a
private variable of this type that gets initialized with the feed URL in the constructor function:

package com.foundationAS3.ch14.irisreader {

 import mx.collections.ArrayCollection;
 import mx.rpc.http.HTTPService;

 public class Subscription {

 private var _feedURL:String;
 private var _title:String;
 private var _url:String;
 private var _articles:ArrayCollection;
 private var _lastChecked:Date;
 private var _service:HTTPService;

 public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 _articles = new ArrayCollection();

 _service = new HTTPService();
 _service.url = _feedURL;
 }
...
}

CHAPTER 14 ■ FLEX BY EXAMPLE

481

By default, the HTTPService class returns its data as an Object, but the XML syndication library will deal only
with either an XML object or a string containing the XML data. With that in mind, you need to change the resultFormat
property of the _service object to HTTPService.RESULT_FORMAT_E4X so you get the data back in the desired format:

...
public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 _articles = new ArrayCollection();

 _service = new HTTPService();
 _service.url = _feedURL;
 _service.resultFormat = HTTPService.RESULT_FORMAT_E4X;
}
...

Next, you need to add event listeners to the _service object to detect when a response is received from the server
and to handle any errors that might occur:

package com.foundationAS3.ch14.irisreader {

 import mx.collections.ArrayCollection;
 import mx.rpc.http.HTTPService;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 ...
 public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 _articles = new ArrayCollection();

 _service = new HTTPService();
 _service.url = _feedURL;
 _service.resultFormat = HTTPService.RESULT_FORMAT_E4X;
 _service.addEventListener(ResultEvent.RESULT, onServiceResult);
 _service.addEventListener(FaultEvent.FAULT, onServiceFault);
 }

 private function onServiceResult(event:ResultEvent):void {
 }

 private function onServiceFault(event:FaultEvent):void {
 }
...
}

With that done, you can turn your attention to fleshing out the onServiceResult() event handler method of the
Subscription class. Here is where you use the XML syndication library you went to all that bother to integrate into
your project.

Within the generic package of the library, the FeedFactory class analyzes the feed data and parses it into the
appropriate object. This class has two static methods: getFeedByString(), for dealing with a String containing XML
data, and getFeedbyXML(), for dealing with an XML object. Both functions return an object that implements the IFeed

interface (which is also part of the generic package).

CHAPTER 14 ■ FLEX BY EXAMPLE

482

Interfaces are constructs in object-oriented languages that specify a group of methods that
a class must implement. This is often described as a “contract” for a class that the class must
fulfill. The reason to do this is so that objects of different classes that have different superclasses
can all implement a common known interface. This allows other objects to call methods that are
guaranteed to be defined on those classes implementing the interface. The methods in an interface
do not contain any body, so therefore have no functionality. The methods exist only to specify which
methods a class implementing the interface must define.

For example, suppose that you have a Farmer class, and a Farmer instance must feed both its
Chicken instances and its Pig instances. Chicken extends Bird, while Pig extends Mammal. In
the case of this farm, the inheritance stops there, without a grand Animal class from which all
the animals extend. How can the farmer be guaranteed that both the chickens and the pigs will act
the same way? An interface solves this problem.

You define an interface named IFeedable (interfaces usually have a capital I prefix) that specifies
an eat() method. Pig and Chicken implement IFeedable, which will require them to define an eat()
method. Then, if the farmer had an array of animals, and that array contained only classes that
implemented IFeedable, it would not matter whether an index contained a pig or a chicken or
whatever—the interface could be used to allow for the eat() method to be called without a compile-
time error, as in the following code:

for each (animal:IFeedable in animals) {
 animal.eat();
}

Because an interface can be used for a data type just as a class can be used, the animal variable can
be cast to the interface, so eat() can be called successfully.

Consider needing to check whether an animal actually had an eat() method, and having to use
loose typing with Object, and you will begin to appreciate the value of interfaces:

for each (animal:Object in animals) {
 if (animal.hasOwnProperty("eat")) {
 animal.eat();
 }
}

Import all classes from the com.adobe.xml.syndication.generic package, and add a call to the FeedFactory.
getFeedByXML() method in the onServiceResult event handler to parse the resulting XML into a local IFeed object:

package com.foundationAS3.ch14.irisreader {

 import mx.collections.ArrayCollection;
 import mx.rpc.http.HTTPService;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import com.adobe.xml.syndication.generic.*;
...
 private function onServiceResult(event:ResultEvent):void {
 var feed:IFeed = FeedFactory.getFeedByXML(event.result as XML);
 }
...

CHAPTER 14 ■ FLEX BY EXAMPLE

483

You can now expand the onServiceResult() handler to use the information contained in your feed object,
starting with pulling the feed title and URL out of the object’s metadata property:

...
private function onServiceResult(event:ResultEvent):void {
 var feed:IFeed = FeedFactory.getFeedByXML(event.result as XML);

 _title = feed.metadata.title;
 _url = feed.metadata.link;
}
...

Next, you need to loop through the items array of the feed and add any new items to the articles collection of
our Subscription object.

Each element of the items array is an object that implements the IItem interface. This interface has a date
property, which is a Date object representing the time the article was posted. All you need to do is compare this date
to the lastChecked property of your Subscription object to see whether the article is new:

...
private function onServiceResult(event:ResultEvent):void {
 var feed:IFeed = FeedFactory.getFeedByXML(event.result as XML);

 _title = feed.metadata.title;
 _url = feed.metadata.link;
 for each (var item:IItem in feed.items) {
 if (lastChecked == null ||
 item.date.getTime() > lastChecked.getTime()) {
 articles.addItem(item);
 }
 }
}
...

Notice that you add an extra check to the conditional to ensure that lastChecked exists before you call the
getTime() method. If lastChecked didn’t exist, which would happen when the class is first initialized, then calling
getTime() would throw an error.

For this event handler, you need to set the lastChecked property to the current date, so that the next time you
refresh the feed, you deal only with articles that have subsequently been added to the feed:

...
private function onServiceResult(event:ResultEvent):void {
 var feed:IFeed = FeedFactory.getFeedByXML(event.result as XML);

 _title = feed.metadata.title;
 _url = feed.metadata.link;
 for each (var item:IItem in feed.items) {
 if (lastChecked == null ||
 item.date.getTime() > lastChecked.getTime()) {
 articles.addItem(item);
 }
 }

CHAPTER 14 ■ FLEX BY EXAMPLE

484

 _lastChecked = new Date();
}
...

Now you need to add a public refresh function that can be called to refresh the feed by calling the send()
method of the _service object. You also need to call this function internally from the constructor function to fetch the
initial feed data.

...
 public function Subscription(feedURL:String) {
 _feedURL = feedURL;
 _articles = new ArrayCollection();

 _service = new HTTPService();
 _service.url = _feedURL;
 _service.resultFormat = HTTPService.RESULT_FORMAT_E4X;
 _service.addEventListener(ResultEvent.RESULT, onServiceResult);
 _service.addEventListener(FaultEvent.FAULT, onServiceFault);

 refresh();
 }
...
 private function onServiceFault(event:FaultEvent):void {
 }

 public function refresh():void {
 _service.send();
 }

 public function get feedURL():String {
 return _feedURL;
 }
...

Allowing Subscription Instances to be used for Data Binding
The last thing you need to do with the Subscription class is to prepare it so that it can be used as the source for data
binding. This involves marking the relevant parts of the class for data binding and dispatching appropriate events
when you change the values.

Because the properties of the Subscription class are read-only, you’ll need to manually dispatch
propertyChange events to enable them to be used as the source of data-binding expressions. This also means that you
need your class to extend EventDispatcher so you can dispatch the necessary events.

Import the EventDispatcher class from the flash.events package and change the class definition so that the
Subscription class extends EventDispatcher.

...
 import mx.rpc.events.ResultEvent;
 import com.adobe.xml.syndication.generic.*;
 import flash.events.EventDispatcher;

public class Subscription extends EventDispatcher {
...

CHAPTER 14 ■ FLEX BY EXAMPLE

485

Add the [Bindable] metadata tag just before the class definition. This tag informs the Flex compiler that the class
will broadcast a change event that can be used for data binding.

...
 import mx.rpc.events.ResultEvent;
 import com.adobe.xml.syndication.generic.*;
 import flash.events.EventDispatcher;

 [Bindable]
 public class Subscription extends EventDispatcher {
...

Because you have a lot of properties that need to dispatch the propertyChange event, let’s create a helper
function so you don’t need to keep repeating the event-dispatching code. This function needs the name of the
property that changed, the old value, and the new value, so it can create the PropertyChangeEvent object.

...
 import mx.rpc.events.ResultEvent;
 import mx.events.PropertyChangeEvent;
 import com.adobe.xml.syndication.generic.*;
 import flash.events.EventDispatcher;

 [Bindable]
 public class Subscription extends EventDispatcher {
...
 public function refresh():void {
 _service.send();
 }

 private function notifyPropertyChange(name:String, 
 oldValue:Object, value:Object):void {
 if (value !== oldValue) {
 dispatchEvent(PropertyChangeEvent.createUpdateEvent(
 this, name, oldValue, value));
 }
 }

 public function get feedURL():String {
...

Notice that the value parameters for this function are of type Object so that they can be passed data of any type.
Within the function, you’re comparing the old and new values to make sure they are not the same before creating and
dispatching the event, because you don’t want to invoke the data-binding mechanism if nothing has changed.

CHAPTER 14 ■ FLEX BY EXAMPLE

486

Now you need to give each read-only property a private function that you can use to update the value and then
call the notifyPropertyChange() function with the appropriate values. Let’s start with feedURL:

...
 public function get feedURL():String {
 return _feedURL;
 }
 private function setFeedURL(value:String):void {
 var oldValue:Object = _feedURL;
 _feedURL = value;
 notifyPropertyChange("feedURL", oldValue, value);
 }
...

Here, the setFeedURL() function first stores the old value of the _feedURL property before overwriting
it with the value passed it. It then passes the name of the public property along with both these values to the
notifypropertyChange function to invoke the data-binding mechanism.

Now add the remaining public properties:

...
 public function get title():String {
 return _title;
 }
 private function setTitle(value:String):void {
 var oldValue:Object = _title;
 _title = value;
 notifyPropertyChange("title", oldValue, value);
 }

 public function get url():String {
 return _url;
 }
 private function setURL(value:String):void {
 var oldValue:Object = _url;
 _url = value;
 notifyPropertyChange("url", oldValue, value);
 }

 public function get articles():ArrayCollection {
 return this._articles;
 }
 private function setArticles(value:ArrayCollection):void {
 var oldValue:Object = _articles;
 _articles = value;
 notifyPropertyChange("articles", oldValue, value);
 }

 public function get lastChecked():Date {
 return this._lastChecked;
 }
 private function setLastChecked(value:Date):void {
 var oldValue:Object = _lastChecked;

CHAPTER 14 ■ FLEX BY EXAMPLE

487

 _lastChecked = value;
 notifyPropertyChange("lastChecked", oldValue, value);
 }
...

Finally, change the code in the onServiceResult() event handler to use these new functions instead of directly
setting the private variable values. This will mean that the appropriate data-binding events will be dispatched and any
associated UI controls will be updated.

...
 private function onServiceResult(event:ResultEvent):void {
 var feed:IFeed = FeedFactory.getFeedByXML(event.result as XML);

 setTitle(feed.metadata.title);
 setURL(feed.metadata.link);
 for each (var item:IItem in feed.items) {
 if (lastChecked == null ||
 item.date.getTime() > lastChecked.getTime()) {
 articles.addItem(item);
 }
 }

 setLastChecked(new Date());
 }
...

That’s it. You’re finished with the Subscription class. It’s time to turn your attention to hooking up the UI.

Creating the Subscriptions List
The list of feeds that a user has subscribed to will be displayed in a simple List control. You already have a private
_subscriptions property of the IrisReader.mxml file that will hold the user’s Subscription objects, so all you need
to do is to create a List control within the Subscriptions panel and bind it to the _subscriptions ArrayCollection.

Add a [Bindable] metatag just before the definition of the _subscriptions variable in the code block in the
IrisReader.mxml file. While you’re there, add a few more Subscription objects to the _subscriptions collection so
that you can see more than one feed.

...
<mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import com.foundationas3.irisreader.Subscription;
 import mx.events.FlexEvent;

 [Bindable]
 private var _subscriptions:ArrayCollection;

 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 _subscriptions.addItem

CHAPTER 14 ■ FLEX BY EXAMPLE

488

 (new Subscription("http://blogs.adobe.com/labs/feed"));
 }
]]>
</mx:Script>
...

Within the Subscriptions <mx:Panel> element, add a List control with its dataProvider property bound to the
_subscriptions variable. Use title as the labelField, and set its width and height to 100%.

...
<mx:Panel title="Subscriptions" width="40%" height="100%">
 <mx:List id="subscriptionsList" dataProvider="{_subscriptions}" 
 labelField="title" width="100%" height="100%"/>
</mx:Panel>
...

You’ve given the List control an id of subscriptionsList here because at some point in the future, you’ll need
to get the currently selected entry from that control in order to populate the Articles panel’s data grid (shown in
Figure 14-1). Any controls you need to refer to from other parts of the code should have id attributes. It’s possible to
refer to them without using IDs, but that’s a painful process.

If you test your application now, you should see a list of feeds in the left panel, as shown in Figure 14-10. Once
they have loaded, you’ll see their titles.

Figure 14-10. The list of feeds appears in the Subscriptions panel

http://blogs.adobe.com/labs/feed

CHAPTER 14 ■ FLEX BY EXAMPLE

489

Before you get drunk on the power of data binding, you should know that a couple of things are amiss here:
before the feed data has loaded, each Subscription object is shown as [object Subscription] (yuck), and you’re not
displaying the total number of articles in each feed.

To set these misdemeanors right, you will need to tell the List control how you want the label for each item to be
rendered, by using a custom label function.

Remove the labelField attribute from the List control and replace it with a labelFunction attribute with a
value of renderSubscriptionsListLabel:

...
<mx:Panel title="Subscriptions" width="40%" height="100%">
 <mx:List id="subscriptionsList" dataProvider="{_subscriptions}"
 labelFunction="renderSubscriptionsListLabel"
 width="100%" height="100%"/>
</mx:Panel>
...

Now you need to create the renderSubscriptionsListLabel() function in the <mx:Script> block. Label-
renderer functions get passed the object for a given item in the list and should return a String of the label to be
displayed. In this case, you want to test to see whether the title of the Subscription object passed in is null, and if it
is, display the feedURL property instead of the title. In any case, you also want to add the number of items in the feed
after the URL or title in brackets. That all translates into a function that looks like this:

...
<mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import com.foundationas3.irisreader.Subscription;

 [Bindable]
 private var _subscriptions:ArrayCollection;

 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 _subscriptions.addItem
 (new Subscription("http://foundationas3.com/feed"));
 _subscriptions.addItem
 (new Subscription("http://dynamicflash.com/feed"));
 _subscriptions.addItem(
 new Subscription("http://weblogs.macromedia.com/mxna/xml/rss.cfm"));
 }

 private function renderSubscriptionsListLabel(
 subscription:Subscription):String {
 var title:String = subscription.title;
 if (title == null) {
 title = subscription.feedURL;
 }
 title += " (" + subscription.articles.length + ")";
 return title;
 }
]]>
</mx:Script>
...

http://foundationas3.com/feed
http://dynamicflash.com/feed
http://weblogs.macromedia.com/mxna/xml/rss.cfm

CHAPTER 14 ■ FLEX BY EXAMPLE

490

If you test the application now, you should see the feed URLs displayed in lieu of titles before the feed data is
loaded, and each entry shows the number of items in that feed in brackets, as shown in Figure 14-11.

Figure 14-11. The list of feeds fixed to show URLs before data is loaded and the number of items in each feed

You’ll come back to the Subscriptions panel later on to add the additional controls shown in Figure 14-1. Now
let’s get the basics of the other panels working.

Creating the Articles Data Grid
From the wireframe, you can see that the articles for a feed are displayed in a DataGrid control with two columns,
showing the date and title of each article. You’ll use data binding to display the articles from the Subscription object
currently selected in the subscriptions list.

Within the Articles <mx:Panel> element, add a 100% width and height DataGrid control with two columns
displaying the date and title properties of each item in the articles collection:

...
<mx:Panel title="Articles" width="100%" height="50%">
 <mx:DataGrid id="articlesGrid" width="100%" height="100%">
 <mx:columns>
 <mx:DataGridColumn dataField="date" headerText="Date"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>

CHAPTER 14 ■ FLEX BY EXAMPLE

491

 </mx:columns>
 </mx:DataGrid>
</mx:Panel>
...

Once again, you gave this control an id attribute so you can refer to it later in the code (specifically, for populating
the Article panel with information about the currently selected entry in the data grid).

Next, add a dataProvider property to the DataGrid object with the value shown:

...
<mx:Panel title="Articles" width="100%" height="50%">
 <mx:DataGrid id="articlesGrid" width="100%" height="100%"
 dataProvider="{subscriptionsList.selectedItem.articles}" >
 <mx:columns>
 <mx:DataGridColumn dataField="date" headerText="Date"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Panel>
...

Go ahead and test your application now. Once the feeds have loaded, select each one in turn and marvel once
again at the magic of data binding. Figure 14-12 shows an example.

Figure 14-12. The list of feed articles in the Articles panel

CHAPTER 14 ■ FLEX BY EXAMPLE

492

But look again, and you’ll see that something is not quite right with the way the application is working. According
to the wireframe shown in Figure 14-1, the title of the Articles panel should change to be the title of the currently
selected item in the subscriptions list. Luckily, you can use data binding to get around that, too.

Change the value of the title attribute of the Articles Panel component to match the following:

...
<mx:Panel title="{subscriptionsList.selectedItem.title}"
 width="100%" height="50%">
 <mx:DataGrid id="articlesGrid" width="100%" height="100%"
 dataProvider="{subscriptionsList.selectedItem.articles}" >
 <mx:columns>
 <mx:DataGridColumn dataField="date" headerText="Date"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Panel>
...

Test the application again, and the results should look something like Figure 14-13.

Figure 14-13. The Articles panel shows the title of the feed selected in the subscriptions list

You still have a little work to do on the Articles panel. The date format looks a little funky, and you’re missing
the last updated timestamp and a button to take the user to the website. But for now, let’s move on to populating the
Article panel.

CHAPTER 14 ■ FLEX BY EXAMPLE

493

Populating the Article Panel
The majority of the Article panel is taken up by a TextArea control that displays the excerpt of the currently selected
item in the articlesGrid control. Let’s add that now.

Add a 100% width and height TextArea control as a child of the Article <mx:Panel> container, and set the
editable property to false (because there’s no sense in allowing the user to change what’s displayed in this control):

...
<mx:Panel title="Article" width="100%" height="50%">
 <mx:TextArea id="excerptTextArea" editable="false"
 width="100%" height="100%"/>
</mx:Panel>
...

Yet again, you’ve added an id attribute, and you should know why by now.
Set the htmlText property of the new TextArea control to be bound to the excerpt.value property of the

currently selected item in the articlesGrid control:

...
<mx:Panel title="Article" width="100%" height="50%">
 <mx:TextArea id="excerptTextArea" editable="false"
 width="100%" height="100%"
 htmlText="{articlesGrid.selectedItem.excerpt.value}" />
</mx:Panel>
...

You used excerpt.value because excerpt is an object with several properties. In this case, you’re interested
in only the value property, so you read that directly. Flash Builder will warn you that it won’t be able to detect
assignments to the value property, and there’s nothing you can do about that because it’s an internal part of the XML
syndication library, which doesn’t seem to have been built with data binding in mind. However, it doesn’t affect the
functionality of the completed application.

You know that the title of the Article panel should be the title of the currently selected item from the
articlesGrid control, so let’s set that up next. Change the value of the title attribute of the Article panel to be
bound to the title property of the currently selected item from the articlesGrid control:

...
<mx:Panel title="{articlesGrid.selectedItem.title}"
 width="100%" height="50%">
 <mx:TextArea id="excerptTextArea" editable="false"
 width="100%" height="100%"
 htmlText="{articlesGrid.selectedItem.excerpt.value}" />
</mx:Panel>
...

Now test your application’s newfound capability to display the excerpt from the selected item in the Article
panel. The result should look something like Figure 14-14.

CHAPTER 14 ■ FLEX BY EXAMPLE

494

Go ahead and take a break. When you’re ready, you’ll start fine-tuning the panels.

Completing the Subscriptions Panel
Although your application is technically working, you still have a way to go to satisfy the requirements drawn up
earlier in the chapter. The most glaring omission at the moment is that the subscriptions are hard-coded, which is no
good unless you fancy recompiling the application every time you want to add or remove a feed. Let’s fix that now.

Allowing Users to Subscribe to a Feed
If you glance back at the application’s UI in Figure 14-1, you’ll see add/remove buttons below the list of subscribed
feeds, which allow the users to manage their subscriptions. The section on interaction design mentioned that a dialog
box should be shown when the user clicks the add button, but the dialog box wasn’t part of the original wireframe.
Figure 14-15 shows how that dialog box should appear.

Figure 14-14. The Article panel shows an excerpt of the article selected in the Articles list

Figure 14-15. The dialog box for adding a feed

CHAPTER 14 ■ FLEX BY EXAMPLE

495

This is a very simple dialog box with a Label, a TextArea, and a couple of Button controls, all neatly wrapped in a
TitleWindow container. You need to create this as a component that you can then reference in your application to be
opened as a modal window.

Laying out the SubscribeDialog Component

Let’s begin by creating the new component and setting up its basic layout.
Right-click (Windows) or Control-click (Mac OS X) the IrisReader project in the Navigator panel of Flash Builder

and select New ➤ MXML Component from the context menu. In the New MXML Component dialog box, enter
SubscribeDialog in the Filename text box and pick TitleWindow from the Based on drop-down list. Select vertical from the
Layout drop-down list, and enter 300 in the Width text box. Clear the value from the Height text box (so that the height of the
dialog box will be based on its content). Your dialog box should look like Figure 14-16. Click Finish to create the component.

Figure 14-16. Creating the SubscribeDialog component

Now you have a new MXML file containing the values you selected for the TitleWindow container. In that file, set
the title property of the TitleWindow container to "Subscribe to feed". Then add a 100% width HBox container
containing Label and TextInput controls with the following configurations:

<mx:TitleWindow xmlns:mx="http://www.adobe.com/2006/mxml"
 title="Subscribe to feed" layout="vertical" width="300">
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Feed URL"/>
 <mx:TextInput id="feedURL" width="100%"/>
 </mx:HBox>
</mx:TitleWindow>

http://www.adobe.com/2006/mxml

CHAPTER 14 ■ FLEX BY EXAMPLE

496

Add another HBox as a sibling of the previous one. It contains the two Button controls for the dialog box.

<mx:TitleWindow xmlns:mx="http://www.adobe.com/2006/mxml"
 title="Subscribe to feed" layout="vertical" width="300">
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Feed URL"/>
 <mx:TextInput id="feedURL" width="100%"/>
 </mx:HBox>
 <mx:HBox width="100%" horizontalAlign="right">
 <mx:Button id="okButton" label="OK"/>
 <mx:Button id="cancelButton" label="Cancel"/>
 </mx:HBox>
</mx:TitleWindow>

Now the main layout for the SubscribeDialog component is complete.

Wiring up the Buttons

Next, you need to add the necessary buttons to the Subscriptions panel and wire up the subscribe button so that it
opens the SubscribeDialog component you just created.

Switch back to the IrisReader.mxml file and add a ControlBar container below the List control in the
Subscriptions <mx:Panel> container, containing the subscribe and unsubscribe buttons:

...
<mx:Panel title="Subscriptions" width="40%" height="100%">
 <mx:List id="subscriptionsList" dataProvider="{_subscriptions}"
 labelFunction="renderSubscriptionsListLabel"
 width="100%" height="100%"/>
 <mx:ControlBar>
 <mx:Button id="subscribeButton" label="+"/>
 <mx:Button id="unsubscribeButton" label="-"/>
 </mx:ControlBar>
</mx:Panel>
...

To make the subscribe button open the dialog box, you need to add a click event handler for the subscribeButton
component. While you’re there, you may as well do the same for the unsubscribeButton component. Have them call
functions named subscribe and unsubscribe, respectively. You’ll create those functions next.

...
<mx:Panel title="Subscriptions" width="40%" height="100%">
 <mx:List id="subscriptionsList" dataProvider="{_subscriptions}"
 labelFunction="renderSubscriptionsListLabel"
 width="100%" height="100%"/>
 <mx:ControlBar>
 <mx:Button id="subscribeButton" label="+"
 click="subscribe(event)"/>
 <mx:Button id="unsubscribeButton" label="-"
 click="unsubscribe(event)"/>
 </mx:ControlBar>
</mx:Panel>
...

http://www.adobe.com/2006/mxml

CHAPTER 14 ■ FLEX BY EXAMPLE

497

Create the subscribe() and unsubscribe() functions, adding them to the bottom of the <mx:Script/> block in
the IrisReader.mxml file:

...
 return title;
 }

 private function subscribe(event:MouseEvent):void {
 }

 private function unsubscribe(event:MouseEvent):void {
 }
]]>
</mx:Script>
...

Import the PopUpManager class from the mx.managers package and use it in the subscribe() function to create a
modal window from your SubscribeDialog component. You’ll also call the PopUpManager’s centerPopUp() method to
center the dialog box within the application window:

...
import mx.events.FlexEvent;
import mx.managers.PopUpManager;
...
private function subscribe(event:MouseEvent):void {
 var dialog:SubscribeDialog = PopUpManager.createPopUp(this, 
SubscribeDialog, true) as SubscribeDialog;
 PopUpManager.centerPopUp(dialog);
}
...

If you test the application now and click the new subscribe button in the Subscriptions panel, you should see the
dialog box you just created pop up in the center of the screen, as shown in Figure 14-17.

CHAPTER 14 ■ FLEX BY EXAMPLE

498

This dialog box doesn’t actually do much at the moment. You can’t even close it once it has been opened. But it’s
a start.

Next, you need to wire up the OK and Cancel buttons so they at least close the dialog box. You can do that by
using various methods of the PopUpManager class in response to the button clicks.

Switch back to the SubscribeDialog.mxml file in Flash Builder and add in an <mx:Script> element at the top.
Then import the PopUpManager class from the mx.managers package.

<mx:TitleWindow xmlns:mx="http://www.adobe.com/2006/mxml"
 title="Subscribe to feed" layout="vertical" width="300">
 <mx:Script>
 <![CDATA[
 import mx.managers.PopUpManager;

]]>
 </mx:Script>
 <mx:HBox width="100%" verticalAlign="middle">

To close the dialog box, you need to use the PopUpManager.removePopUp() method, passing a reference to this
so it knows which window to close. You’ll do this in click event handlers for the two buttons.

<mx:TitleWindow xmlns:mx="http://www.adobe.com/2006/mxml"
 title="Subscribe to feed" layout="vertical" width="300"
 <mx:Script>
 <![CDATA[
 import mx.managers.PopUpManager;

Figure 14-17. The Subscribe to feed dialog box

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

CHAPTER 14 ■ FLEX BY EXAMPLE

499

 private function onOKButtonClick(event:MouseEvent):void {
 PopUpManager.removePopUp(this);
 }

 private function onCancelButtonClick(event:MouseEvent):void {
 PopUpManager.removePopUp(this);
 }
]]>
 </mx;Script>
 <mx:HBox width="100%" verticalAlign="middle">
...
<mx:HBox width="100%" horizontalAlign="right">
 <mx:Button id="okButton" label="OK"
 click="onOKButtonClick(event)"/>
 <mx:Button id="cancelButton" label="Cancel"
 click="onCancelButtonClick(event)"/>
 </mx:HBox>
</mx:TitleWindow>

With that done, you should now be able to close the dialog box by clicking either the OK or Cancel button.
That’s not the end of the story, however. You still need to be able to get the feed URL from the dialog box and

create a new Subscription object for it when the user clicks the OK button.

Getting the Feed

To get the new feed, you’ll create an Event class to hold the feed URL and dispatch this event when the dialog box is
being closed. Then you will have the main IrisReader class listen for this event being dispatched and act accordingly.

Right-click (Windows) or Control-click (Mac OS X) the IrisReader project in the Navigator panel and select
New ➤ ActionScript Class from the context menu. In the New ActionScript Class dialog box, enter details for a
class named SubscribeDialogEvent in the com.foundationAS3.ch14.irisreader.events package, with Event as the
superclass, as shown in Figure 14-18. Click Finish to create the new class.

CHAPTER 14 ■ FLEX BY EXAMPLE

500

In the newly created SubscribeDialogEvent.as file, add a constructor function that accepts the event type and
feed URL, both as a String, as well as the bubbles and cancelable properties, and passes them to the superclass
Event constructor:

package com.foundationAS3.ch14.irisreader.events {

 import flash.events.Event;

 public class SubscribeDialogEvent extends Event {

 public function SubscribeDialogEvent(
 type:String,
 feedURL:String,
 bubbles:Boolean=false,
 cancelable:Boolean=false

Figure 14-18. Creating the SubscribeDialogEvent

CHAPTER 14 ■ FLEX BY EXAMPLE

501

) {
 super(type, bubbles, cancelable);
 }

 }

}

Create a read-only feedURL property and modify the constructor to store the feedURL parameter in this property:

package com.foundationAS3.ch14.irisreader.events {

 import flash.events.Event;

 public class SubscribeDialogEvent extends Event {

 private var _feedURL:String;

 public function SubscribeDialogEvent(
 type:String,
 feedURL:String,
 bubbles:Boolean=false,
 cancelable:Boolean=false
) {
 super(type, bubbles, cancelable);
 _feedURL = feedURL;
 }

 public function get feedURL():String {
 return _feedURL;
 }

 }

}

Finally, add a public static constant to represent the event type. The constant name is completely arbitrary but is
generally a verb, so let’s call it SUBSCRIBE. You also need to override Event’s clone() method, which should be done
for any child class of Event.

package com.foundationAS3.ch14.irisreader.events {

 import flash.events.Event;

 public class SubscribeDialogEvent extends Event {

 public static const SUBSCRIBE:String = "subscribe";
 private var _feedURL:String;

 public function SubscribeDialogEvent(
 type:String,

CHAPTER 14 ■ FLEX BY EXAMPLE

502

 feedURL:String,
 bubbles:Boolean=false,
 cancelable:Boolean=false
) {
 super(type, bubbles, cancelable);
 _feedURL = feedURL;
 }

 override public function clone():Event {
 return new SubscribeDialogEvent
 (type, feedURL, bubbles, cancelable);
 }

 public function get feedURL():String {
 return _feedURL;
 }

 }

}

Next, modify the onOKButtonClick() method of the SubscribeDialog.mxml to dispatch your new event before
the dialog box is closed, passing the text from the feedURL control as the feedURL parameter:

...
 import mx.managers.PopUpManager;
 import 
 com.foundationAS3.ch14.irisreader.events.SubscribeDialogEvent;

 private function onOKButtonClick(event:MouseEvent):void {
 dispatchEvent(new SubscribeDialogEvent(
 SubscribeDialogEvent.SUBSCRIBE, feedURL.text));
 PopUpManager.removePopUp(this);
 }
...

In the subscribe() method in the IrisReader.mxml file, you need to listen for the subscribe event of the
SubscribeDialog, and when it has fired, add a new Subscription object to the _subscriptions array using the
feedURL that is included as part of the event data:

...
 import mx.managers.PopUpManager;
 import 
 com.foundationAS3.ch14.irisreader.events.SubscribeDialogEvent;

 [Bindable]
 private var _subscriptions:ArrayCollection;
...
 private function subscribe(event:MouseEvent):void {
 var dialog:SubscribeDialog =
 PopUpManager.createPopUp(this, 
SubscribeDialog, true) as SubscribeDialog;

CHAPTER 14 ■ FLEX BY EXAMPLE

503

 PopUpManager.centerPopUp(dialog);
 dialog.addEventListener(SubscribeDialogEvent.SUBSCRIBE, 
 onSubscribeDialogSubscribe);
 }

 private function unsubscribe(event:MouseEvent):void {

 }

 private function onSubscribeDialogSubscribe(
 event:SubscribeDialogEvent):void {
 _subscriptions.addItem(new Subscription(event.feedURL));
 }
...

That’s all that needs to be done to allow users to add their own subscriptions. Give it a try using feed URLs from
your favorite blogs or news sites. Figures 14-19 and 14-20 show an example of adding a subscription.

Figure 14-19. Subscribing to Yahoo! News feed

CHAPTER 14 ■ FLEX BY EXAMPLE

504

Before moving on to the unsubscribe functionality, you need to tidy up a couple of subscription areas. First, a
number of hard-coded subscriptions are in the application, and now that users can add their own subscriptions, you
can get rid of the hard-coded ones. Change the init() method of the IrisReader.mxml file to remove the creation of
the three Subscription objects:

...
 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 }
...

Another slight problem is that the user can click the OK button in the Subscribe to feed dialog box without
having entered a feed URL. You could solve that by implementing a regular expression to check that what the user has
entered is a valid URL, but for the sake of simplicity, you’ll just disable the OK button if the feedURL control is empty.

If this were a production-quality application being developed for a client, I would definitely make
sure the URL entered was a valid URL. Depending on the requirements, I might even go so far as
loading the contents of the URL to check that it is a valid feed before allowing the user to click the
OK button.

In the SubscribeDialog.mxml file, bind the enabled property of the OK button using a data-binding expression to
check that the length of the feedURL control’s text property is greater than zero:

<mx:Button id="okButton" label="OK" 
 click="onOKButtonClick(event)" 
 enabled="{feedURL.text.length > 0}"/>

Figure 14-20. Yahoo! News has been added to the subscriptions list

CHAPTER 14 ■ FLEX BY EXAMPLE

505

Allowing Users to Unsubscribe from a Feed
Now that users can subscribe to a feed, they’ll need some way of unsubscribing if the feed becomes boring (or, like
mine, dormant for long periods of time). You already have a button in the Subscriptions panel for this purpose, and
it’s wired up to the unsubscribe method. So, all you need to do is to remove the selected item in the list from the
_subscriptions collection when this button is clicked.

In the IrisReader.mxml file, modify the unsubscribe() method to remove the currently selected item in the
subscriptionsList control from the _subscriptions collection:

...
 private function unsubscribe(event:MouseEvent):void {
 _subscriptions.removeItemAt(subscriptionsList.selectedIndex);
 }
...

You’re removing the selected item by index in the list because the ArrayCollection class doesn’t have a
removeItem method; it has only a removeItemAt method.

To tidy up, you want the unsubscribe button enabled only if there is something selected in the _subscriptions
list. To handle this, bind the enabled property of the unsubscribeButton using a data-binding expression that checks
the selectedItem property of the subscriptionsList control to make sure it’s not null.

...
<mx:Button id="unsubscribeButton" label="-"click="unsubscribe(event)"
 enabled="{subscriptionsList.selectedItem !== null}"/>
...

Users can now add and remove subscriptions at their leisure. However, if they restart the application, all of their
subscriptions are lost. Because one of the requirements was that the application remember the subscriptions list
between sessions, let’s tackle that now.

Saving the Subscriptions List Between Sessions
As a Flex developer, you have basically two choices for data storage: store the data on the client in a local
SharedObject or store it on the server using one of the variety of remote communication protocols that Flex supports.
Because this section of the book is about Flex application development, you’ll go with the former approach. Local
SharedObjects aren’t without their limitations, though. They’re the Flash equivalent of browser cookies, and like
cookies, they can store only a limited amount of information. With this in mind, the plan is to store only a list of URLs
for the user’s subscriptions list instead of the Subscription objects themselves and all the articles they contain.

Let’s start by creating a function to save the subscriptions list to a local SharedObject.
In the IrisReader.mxml file, import the SharedObject class from the flash.net package, and then create a new

function named saveData() that initially loads the local SharedObject named IrisReader:

 import mx.managers.PopUpManager;
 import com.foundationAS3.ch14.irisreader.
 events.SubscribeDialogEvent;
 import flash.net.SharedObject;
...
 private function unsubscribe(event:MouseEvent):void {
 _subscriptions.removeItemAt(subscriptionsList.selectedIndex);
 }

CHAPTER 14 ■ FLEX BY EXAMPLE

506

 private function saveData():void {
 var so:SharedObject = SharedObject.getLocal("IrisReader");
 }
...

Create a new feedURLs array, and then loop through all the Subscription objects in the _subscriptions
collection and add the feedURL property of each to the feedURLs array:

...
 private function saveData():void {
 var so:SharedObject = SharedObject.getLocal("IrisReader");
 var feedURLs:Array = new Array();
 for each (var subscription:Subscription in _subscriptions) {
 feedURLs.push(subscription.feedURL);
 }
 }
...

Finally, add the feedURLs array to the data property of the so object and call the flush() method to write the
data to disk:

...
 private function saveData():void {
 var so:SharedObject = SharedObject.getLocal("IrisReader");
 var feedURLs:Array = new Array();
 for each (var subscription:Subscription in _subscriptions) {
 feedURLs.push(subscription.feedURL);
 }
 so.data.feedURLs = feedURLs;
 so.flush();
 }
...

With that done, you need an equivalent function to get the feed URLs from the SharedObject and re-create the
_subscriptions collection. Create a function named loadData() that initially clears the _subscriptions collection
and then loads the local SharedObject named IrisReader:

...
 so.data.feedURLs = feedURLs;
 so.flush();
 }

 private function loadData():void {
 _subscriptions.removeAll();
 var so:SharedObject = SharedObject.getLocal("IrisReader");
 }
...

CHAPTER 14 ■ FLEX BY EXAMPLE

507

After checking to make sure the feedURLs array exists as part of the SharedObject’s data (which is necessary
because it won’t exist the first time the user uses the application), loop through all the entries and create a
Subscription object for each one, adding it to the _subscriptions collection:

...
 private function loadData():void {
 _subscriptions.removeAll();
 var so:SharedObject = SharedObject.getLocal("IrisReader");
 if (so.data.feedURLs) {
 for each (var feedURL:String in so.data.feedURLs) {
 _subscriptions.addItem(new Subscription(feedURL));
 }
 }
 }
...

With these functions ready to go, you’ll load the data when the application starts and save the data whenever
it changes. Loading the subscriptions list when the application starts can be taken care of in the handler for the
application’s creationComplete event. Saving the data can be done whenever a new feed is added or removed in the
onSubscribeDialogSubscribe() and unsubscribe() methods.

Add a call to the loadData() method just after the initialization of the _subscriptions collection in the
onCreationComplete() method of the IrisReader.mxml file:

...
 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 loadData();
 }
...

Next, add calls to saveData() in both the onSubscribeDialogSubscribe() and unsubscribe() methods:

...
 private function unsubscribe(event:MouseEvent):void {
 _subscriptions.removeItemAt(subscriptionsList.selectedIndex);
 saveData();
 }
...
 private function onSubscribeDialogSubscribe(
 event:SubscribeDialogEvent):void {
 _subscriptions.addItem(new Subscription(event.feedURL));
 saveData();
 }
...

And that’s another feature you can check off your list. If you run the application now, subscribe to a few feeds,
and then restart the application, you should see your feed list reloaded. Nice.

At this point, you’re almost finished with the Subscriptions panel, with one last feature to add.

CHAPTER 14 ■ FLEX BY EXAMPLE

508

Refreshing the Subscriptions List
Of course, the users will want to see updates to their feeds. Let’s take care of that now.

Automatically Refreshing the Subscriptions List

The big feature that the feed reader application is missing is automatic checking of the subscriptions list and fetching
of new articles. Users won’t want to need to repeatedly click a refresh button just to see if there have been any updates
to their favorite feeds. Let’s get the feed to automatically refresh itself every five minutes.

Create a function named refreshAll() in the IrisReader.mxml file that loops through all the Subscription
objects in the _subscriptions collection and calls their refresh methods:

...
 }
 }

 private function refreshAll(event:Event):void {
 for each (var subscription:Subscription in _subscriptions) {
 subscription.refresh();
 }
 }

 private function onSubscribeDialogSubscribe(
 event:SubscribeDialogEvent):void {
 _subscriptions.addItem(new Subscription(event.feedURL));
 saveData();
 }
...

Now create a new private variable named refreshTimer to hold the Timer object and initialize the timer in the
onCreationComplete() function. While you’re there, add an event listener for the TimerEvent.TIMER event.

...
 import com.foundationAS3.ch14.irisreader.
 events.SubscribeDialogEvent;
 import flash.net.SharedObject;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 [Bindable]
 private var _subscriptions:ArrayCollection;
 private var _refreshTimer:Timer;

 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 loadData();

 _refreshTimer = new Timer(5 * 60 * 1000);
 _refreshTimer.addEventListener(TimerEvent.TIMER, 
 onRefreshTimer);

CHAPTER 14 ■ FLEX BY EXAMPLE

509

 _refreshTimer.start();
 }
...

Now add the onRefreshTimer() event handler function, which just needs to call the refreshAll() method you
wrote earlier:

...
 private function refreshAll(event:Event):void {
 for each (var subscription:Subscription in _subscriptions) {
 subscription.refresh();
 }
 }

 private function onRefreshTimer(event:TimerEvent):void {
 refreshAll(event);
 }
...

That handles automatic refreshing. Now let’s allow for manual updates.

Manually Refreshing the Subscriptions List

You can finish the Subscriptions panel by adding some buttons to allow the users to manually refresh the selected
feed or all feeds in their subscriptions list.

In the IrisReader.mxml file, add a Label and two Button controls to the ControlBar container within the
Subscriptions Panel component and give them appropriate labels. Add a 100% width Spacer to push the
subscription buttons over to the right side of the control bar:

<mx:Panel title="Subscriptions" width="40%" height="100%">
 <mx:List id="subscriptionsList" dataProvider="{_subscriptions}"
 labelFunction="renderSubscriptionsListLabel"
 width="100%" height="100%"/>
 <mx:ControlBar>
 <mx:Label text="Refresh: "/>
 <mx:Button label="Selected"/>
 <mx:Button label="All"/>
 <mx:Spacer width="100%"/>
 <mx:Button id="subscribeButton" label="+"
 click="subscribe(event)"/>
 <mx:Button id="unsubscribeButton" label="-"
 click="unsubscribe(event)"
 enabled="{subscriptionsList.selectedItem !== null}"/>
 </mx:ControlBar>
</mx:Panel>

Add a click handler to the All button, which calls the refreshAll() function you created earlier:

<mx:Button label="All" click="refreshAll(event)"/>

CHAPTER 14 ■ FLEX BY EXAMPLE

510

Add a click handler to the Selected button, which calls a function named refreshSelected() (you’ll create that
in a moment). While you’re there, bind the enabled property of this button using a data-binding expression to check
that the selectedItem property of the subscriptionsList control isn’t null.

<mx:Button label="Selected" click="refreshSelected(event)"
 enabled="{subscriptionsList.selectedItem !== null}"/>

Create the refreshSelected() function, which needs to cast the selectedItem property of the
subscriptionsList control as a Subscription object and then call its refresh method:

private function refreshAll(event:Event):void {
 for each (var subscription:Subscription in _subscriptions) {
 subscription.refresh();
 }
}

private function refreshSelected(event:Event):void {
 (subscriptionsList.selectedItem as Subscription).refresh();
}

If you test your application, you should be able to refresh all subscriptions or just the selected feeds using the
buttons you’ve just added, which are shown in Figure 14-21.

Figure 14-21. The Selected and All buttons added to the Subscriptions panel

You’ll be glad to know that you’re now finished with the Subscriptions panel. However, you could make some
improvements, as I’ll suggest at the end of the chapter.

CHAPTER 14 ■ FLEX BY EXAMPLE

511

Completing the Articles and Article Panels
The hard work is complete. Now you just need to add some finishing touches to the Articles and Article panels.

Finishing the Articles Panel
The Articles panel is actually very nearly complete. If you look at the original UI design (refer to Figure 14-1), all that’s
missing is a label showing when the feed was last checked and a button to take users to the website for the feed.

However, before you get to those items, you have a little housework to do. The display formats for the dates
in the application are not what you would call human-friendly. To make the dates prettier, you need to create a
DateFormatter object and use this to render all the dates in the application.

Add a new private DateFormatter variable to the IrisReader.mxml file and initialize this variable in the init
method to use DD MMM YYYY HH:MM as its format. This will display dates in a format such as 25 Dec 2007 18:47.

...
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import mx.formatters.DateFormatter;

 [Bindable]
 private var _subscriptions:ArrayCollection;
 private var _refreshTimer:Timer;
 private var _dateFormatter:DateFormatter;

 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 _loadData();

 _dateFormatter = new DateFormatter();
 _dateFormatter.formatString = "DD MMM YYYY HH:NN";

 _refreshTimer = new Timer(5 * 60 * 1000);
 _refreshTimer.addEventListener (TimerEvent.TIMER, onRefreshTimer);
 _refreshTimer.start();
 }
...

Now create a new private function that accepts a string and returns that string formatted using your
DateFormatter instance:

...
 private function onCreationComplete(event:FlexEvent):void {
 _subscriptions = new ArrayCollection();
 _loadData();

 _dateFormatter = new DateFormatter();
 _dateFormatter.formatString = "DD MMM YYYY HH:NN";

 _refreshTimer = new Timer(5 * 60 * 1000);
 _refreshTimer.addEventListener

CHAPTER 14 ■ FLEX BY EXAMPLE

512

 (TimerEvent.TIMER, onRefreshTimer);
 _refreshTimer.start();
 }

 private function formatDate(date:String):String {
 return _dateFormatter.format(date);
 }
...

Add a ControlBar container to the Articles panel containing a Label and a Text control. Bind the text
property of the Text control to the lastChecked property of the currently selected Subscription object in the
subscriptionsList control, formatting it by calling your new formatDate() method.

...
 <mx:Panel title="{subscriptionsList.selectedItem.title}"
 width="100%" height="50%">
 <mx:DataGrid id="articlesGrid" width="100%" height="100%"
 dataProvider="{subscriptionsList.selectedItem.articles}" >
 <mx:columns>
 <mx:DataGridColumn dataField="date" headerText="Date"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:ControlBar>
 <mx:Label text="Last checked:"/>
 <mx:Text text= 
 "{formatDate(subscriptionsList.selectedItem.lastChecked)}"/>
 </mx:ControlBar>
 </mx:Panel>
...

That takes care of the last-checked date display and format, as shown in Figure 14-22, but what about the values
in the Date column of the articlesGrid control? You can use a custom label function to render these dates using the
same DateFormatter object.

CHAPTER 14 ■ FLEX BY EXAMPLE

513

Set the labelFunction property of the DataGridColumn instance representing the Date column of the
articlesGrid control to renderArticlesGridDate(). While you’re there, set the width of the column to 150, because
you won’t need so much space for the date once it has been property formatted.

...
 <mx:DataGrid id="articlesGrid" width="100%" height="100%"
 dataProvider="{subscriptionsList.selectedItem.articles}">
 <mx:columns>
 <mx:DataGridColumn dataField="date" headerText="Date"
 labelFunction="renderArticlesGridDate" width="150"/>
 <mx:DataGridColumn dataField="title" headerText="Title"/>
 </mx:columns>
 </mx:DataGrid>
...

Now create the renderArticlesGridDate() function to return the formatted date. Label-renderer functions for
DataGrid controls receive references to the item currently being rendered and the DataGridColumn in question. In this
case. the current item will be an IItem object from the com.adobe.xml.syndication.generic.IItem package, which
has a date property that you need to format. You need to feed this date to the format method of your DateFormatter
object and return the resultant string.

...
 import flash.events.TimerEvent;
 import mx.formatters.DateFormatter;
 import com.adobe.xml.syndication.generic.IItem;

Figure 14-22. The last-checked date properly formatted

CHAPTER 14 ■ FLEX BY EXAMPLE

514

...
 private function formatDate(date:String):String {
 return _dateFormatter.format(date);
 }

 private function renderArticlesGridDate(
 item:IItem,
 column:DataGridColumn
):String {
 return _dateFormatter.format(item.date);
 }
...

Test the application again to see the prettier dates in all their glory, as shown in Figure 14-23.

Now that you have pretty dates all round, you just need to add the Visit site button. In the ControlBar for the
Articles panel, add a 100% width Spacer and a Button control with a label of "Visit site" and click handler of
visitSelectedSite(). Bind the enabled property of the button using a data-binding expression to check that there is
something selected in the subscriptionsList control.

...
 <mx:ControlBar>
 <mx:Label text="Last checked:"/>
 <mx:Text text=  "{formatDate(subscriptionsList.selectedItem.lastChecked)}"/>

Figure 14-23. The Articles panel shows formatted dates

CHAPTER 14 ■ FLEX BY EXAMPLE

515

 <mx:Spacer width="100%"/>
 <mx:Button label="Visit site"
 click="visitSelectedSite(event)"
 enabled="{subscriptionsList.selectedItem !== null}"/>
 </mx:ControlBar>
...

Now create the visitSelectedSite() function, which should use the url property of the selected Subscription
object in the subscriptionsList control to open a new window to the site using the built-in navigateToURL()
function:

...
 private function refreshSelected(event:Event):void {
 (subscriptionsList.selectedItem as Subscription).refresh();
 }

 private function visitSelectedSite(event:Event):void {
 var subscription:Subscription = 
 (subscriptionsList.selectedItem as Subscription);
 navigateToURL(new URLRequest(subscription.url));
 }
...

That’s all there is to it. If you test the project now, you’ll see the Visit site button, as shown in Figure 14-24. You
can click it to visit the site referenced in the metadata of your subscribed feeds.

Figure 14-24. The Visit site button added to the Articles panel

CHAPTER 14 ■ FLEX BY EXAMPLE

516

With that, you’ve finished your work on the Articles panel and can turn your attention to the Article panel.

Finishing the Article Panel
As with the Articles panel, the Article panel needs very little to satisfy the application’s requirements. It’s missing
a label to show the date of the currently selected item in the Articles panel and a button to take users to the URL
associated with the item so they can read the rest of the article.

Let’s start with the article date. Add a ControlBar to the Articles panel in the IrisReader.mxml file, containing
a Label and a Text control. Bind the text property of the Text control to the date property of the currently selected
item in the articlesGrid control, passing it through the DateFormatter object so it’s nice and pretty:

...
 <mx:Panel title="{articlesGrid.selectedItem.title}"
 width="100%" height="50%">
 <mx:TextArea id="excerptTextArea" editable="false"
 width="100%" height="100%"
 htmlText="{articlesGrid.selectedItem.excerpt.value}" />
 <mx:ControlBar>
 <mx:Label text="Posted:"/>
 <mx:Text text= 
 "{formatDate(articlesGrid.selectedItem.date)}"/>
 </mx:ControlBar>
 </mx:Panel>
...

Figure 14-25 shows the date added to the Article panel.

Figure 14-25. The date appears at the bottom of the Article panel

CHAPTER 14 ■ FLEX BY EXAMPLE

517

Well, that was easy. Now you just need to add in and wire up the Read more button.
In the ControlBar for the Article panel, add a 100% width Spacer and a Button control with a label of "Read

more" and click handler of readSelectedArticle(). Bind the enabled property of the button using a data-binding
expression to check that there is something selected in the articlesGrid control.

...
 <mx:ControlBar>
 <mx:Label text="Posted:"/>
 <mx:Text text= 
 "{formatDate(articlesGrid.selectedItem.date)}"/>
 <mx:Spacer width="100%"/>
 <mx:Button label="Read more"
 click="readSelectedArticle(event)"
 enabled="{articlesGrid.selectedItem !== null}"/>
 </mx:ControlBar>
...

Now create the readSelectedArticle() function, which should use the link property of the selected IItem
object in the articlesGrid control to open a new window to the site using the built-in navigateToURL() function:

...
 private function visitSelectedSite(event:Event):void {
 var subscription:Subscription = 
 (subscriptionsList.selectedItem as Subscription);
 navigateToURL(new URLRequest(subscription.url));
 }

 private function readSelectedArticle(event:Event):void {
 var item:IItem = (articlesGrid.selectedItem as IItem);
 navigateToURL(new URLRequest(item.link));
 }

And now you can relax. You have finally nailed down the final feature of our feed reader application, as shown in
Figure 14-26. Save your changes, run the project, and bask in the reflective glow of your achievement.

CHAPTER 14 ■ FLEX BY EXAMPLE

518

Improving the Feed Reader
While putting this chapter together, I made a conscious decision to omit some features that you would want to have
in a high-quality feed reader application. That’s not to say that the application you’ve built is useless. In fact, I’m using
this application every day to keep an eye on the feeds that I subscribe to in a simple and unobtrusive way. However,
the application would be even more useful if it had some of the following features:

•฀ User-specified refresh interval: Currently, the feeds are refreshed every five minutes. This
may be too frequent (or not frequent enough) for some users, so allowing them to specify their
own interval (using a Slider or a NumberStepper, for example) would be a good idea. You
would need to save their interval along with the subscriptions list in the local SharedObject;
otherwise, the users would need to reset this value every time they started the application,
which wouldn’t be ideal.

•฀ Control columns in the panel: The Articles panel could contain more information about an
item. Some extra fields may be important to users, so allowing them to specify which fields are
visible (and in what order) would be a good idea.

•฀ The ability to organize subscriptions into folders: Subscriptions can get a bit overwhelming
if you’ve subscribed to hundreds of feeds, so the ability to add folders to the subscriptions
list would be ideal. This would involve swapping the List control for a Tree control, and you
would need to tweak how you get the data into it in the first place.

•฀ Reading list support: You could add the ability to read Outline Processor Markup Language
(OPML) files, which contain lists of feeds supplied by someone else. This would involve
extending the Adobe XML syndication library to add support for OPML files. OPML files can
contain folders, so the feature suggested in the previous item would be good to go with this one.

Figure 14-26. The feed reader application with all its features

CHAPTER 14 ■ FLEX BY EXAMPLE

519

Summary
I hope that this chapter has been a bit of an eye-opener about the power of Flex framework when coupled with your
own ActionScript for rapidly building high-quality, complex web applications. We started from the conceptualization
stage and went all the way through full implementation, utilizing the built-in UI, utility, and management classes in
Flex to wire together a set of common widgets to display remote data in an intuitive, straightforward manner that is
both easy to use and aesthetically pleasing.

Flex in itself is a fantastic tool, but it can go only so far. It takes extra knowledge of the underlying ActionScript 3.0
language to truly bring out its full potential. The topics presented in this book—from the basic constructs of
ActionScript all the way through event handling, graphic creation, and remote communication—can all be applied
when developing Flex applications.

And remember that the Flex framework is built on ActionScript. The source code is available to peruse to gain
insight into how some of its powerful features were implemented. Use it to learn more. Build your own classes that
suit your own needs. The beauty of ActionScript is that it can be used to accomplish so many varied tasks, ranging
from scripting animation, to building games, to creating full-blown e-commerce and social media sites.

Take advantage of ActionScript’s potential and create what you want to create.

A���������
Abstract classes, 104
Accessing

components, 320–322
matched strings with backreferences, 381–382
properties and calling methods, 69–70
properties/methods, 85–90
stage property, 135–136
sound iles with sound class, 275
XML ile, 393–396

ActionScript
addName_ti ield, 344–345
arrays (see Arrays)
bufering BEG, 237
camera (see Camera class)
CHANGE event, 342
comments, 63–65
constants, 32
decision-making/conditional statements, 41–46
document class, 27
EditableList.as ile, 345
EditableList class, 341–342
editing or removing items, 343
expression, 24
lash package, 341
functions (see Functions)
init() method, 341, 343–344
list instance, 342
loops, 47–53
NetConnection class, 234–235
NetStream class, 236
onAddName() method, 342
onNameEnter() method, 345
onNameSelected(), 345
operators, 32–35
output panel, 28
playing videos, 234
to play sound

ID3info class, 277–278
microphone class, 278
soundchannel class, 276
sound class, 275
SoundLoaderContext class, 276
SoundMixer class, 277
SoundTransform class, 276

statements, 24
variables, 25–31

ActionScript 3.0
Actions panel, 4
animation, 4
bouncing balls, 15–21
class properties, 6
document class, 11–12
ECMAScript, 1
iles organization, 6
Flash applications, 1
Flex 2
functionality, 4
IDE, 2
importing code, 9–11
library assets, 12–14
memory lane, 1
MXML, 2
OOP, 3
programming language, 1
prototype-based programming, 2
rapid prototyping, 6
RIA, 2
settings screen, 290
storyboards, 4
support for abstract

classes, 104
SWFs, 2
timeline, 7–9
UML, 5
working with ilters, 122, 135
working with the display, 101, 150

Index

521

addChild() method, 119–120
Adobe audition, 274
Adobe LiveCycle DS, 443–444
AdvancED ActionScript 3.0 Animation, 150
Alternation, 375
Animation

ActionScript, 146
copying from the timeline, 146
copying the code, 148
creation, 146–148
properties, 150

Apple iMovie, 227
Application programming interface (API)

ActionScript code, 151
DisplayObject, 153
gradient line Styles, 174
IDE, 151
lines (see Lines, API)runtime graphic creation, 152
shapes (see Shapes, API)
Smiley, 154–155
sound visualization, 152
Sprite class, 153
vector graphics, 151

Arguments, 57, 59, 165, 421
Arithmetic operators, 33
Array literal, 68
Arrays

constructor, 36
copying, 70
description, 36
literal, 37
looping through, 51–52
manipulating, 38–39
new operator, 37
objects, 69
parameters, 37
subscript notation, 38
vs. vectors, 39, 41
zero indexed, 38

ASDoc comment, 65
Assignment operator, 25
Attributes, 78, 393, 397–398, 405
Audio

bufer preloading, 279–280
button functionality, 300–304
FF and RW sound, 282–283
ID3 information, 273–274
importing and converting, 271
Main.as ile, 291–292
pausing sound, 281
sound ile loading, 294
sound player (see Sound player)
stopping sound, 281–282
to MP3 format, 272
volume control, 283–284

AVM1Movie class, 104

B���������
Backreferences

after the pattern matching, 382
String.replace() method, 382

Ball symbol, adding to movie, 141, 143
Base class

animation creation, 146
library resources, 141
overriding methods, 95–96

Binary operators, 33
BitmapFilter class, 122–123
BlazeDS, 444
BlMode class, 121–122
BlMode property, 121
Block comment, 63
Boolean data type, 30
Boolean expression

conditional statements, 44–45
description, 43
operators, 43, 45–46

Boolean variable, 30, 35, 46, 71, 260, 281
Bouncing balls, ActionScript 3.0

ColorTransform, 18
external class ile, 17
FLA, 20
Flash ile, 15–17
Flex-tastic, 15
multibounce.la ile, 20
programming language, 17
random directions, 19

Break statement, 52, 211–212
Bufering

sound, 294
video, 237

Button components, 320
ButtonManager.as class

adding event listener, 260
completed BEG, 261

ButtonManager
MediaControlEvent, 305, 307–308

C���������
Calling methods, 69–70
Camel case notation, 29
Camera class

methods, 241
public properties, 240–241
user’s webcam, 240

Case-insensitive modiier, 385
Casting objects, 71–72
CheckBox component

label parameters, 320
labelPlacement parameters, 320
selected parameters, 320

■฀INDEX

522

Classes
choosing names, 79
creation, 77
deinition, 68, 78
grouping with packages, 96–97, 99
importing from package, 99
naming conlicts, imported, 99

ColorPicker components, 320
ComboBox component, 320, 322
Comments in ActionScript

bad vs. good, 64
block comment, 63
description, 63
documentation, 64–65
line comment, 63

Compile-time error, 30
Components

access
ActionScript, 322
FLVPlayback component, 320–321
List and TextInput components, 322
subcomponents, 322
UI controls, 320

beneits, 325–326
Button, 320
CheckBox component, parameters, 320
code, writing

Dial class, 359
init() method, 359
UIComponent class, 359

ComboBox, 320
Component Deinition, 365–366
dial rotation, 361
dial values, 362–364
events handling, 360
lash (see Flash component framework)
interaction

adding components, 339–340
adding ActionScript, 341–345

metatags, 364
parameters

Button component, 323
emphasized property, 324
Flash CC and ActionScript 3.0, 325
groups, 323
labelPlacement property, 324
Live Preview, 324
selected property, 325

skinning (see Skinning components)
styling (see Styling components)
testing, 366–367
third-party, 368
UI widgets, 320
widgets

Dial_skin instance, 358
drag-and-drop, 319
visual creation, 357

Components directory
subdirectory, default Flash CC installation, 332–333
User Interface FLA, 333–334

Component source directory
ActionScript 3.0 Settings dialog box, 338
ActionScript source code, 335–336
ComponentShim.la ile, 335
source code modiication, 336–337
User Interface directory, 335

Concatenating strings, 34
Constants,capitalizing, 29
Const keyword, 32
Constructor method, 68, 84–85
ConvolutionFilter, 134
Copying objects, 70
Copy Motion as ActionScript 3.0, 150
countToTen()function, 55
Crosshair movement

break statement, 211
diagonal movement, 208
Event.ENTER_FRAME, 208
keyboardDrawing.la, 213
KeyboardEvent class, 209
lowerHeartrate(), 211
onCanvasEnterFrame() method, 212
onCanvasKeyDown(), 209
raiseHeartrate(), 211
switch statement, 211

Custom event class creation, 318

D���������
Decision-making/conditional statements

Boolean expression, 43–45
if statement, 41–43
logical operators, 45–46

Decrement operator, 35
Dictionaries vs. objects, 76–77
DisplacementMapFilter, 134–135
Display list

ActionScript 3.0 development, 101
AVM1Movie class, 104
description, 104
DisplayObjectContainer, 102
MovieClip class, 103–104
removing display objects, 120
user interaction

ActionScript 3.0, 195
click.la document, 198
colors constants, 204–205
com.foundationAS3.ch6 package, 195

■฀INDEX

523

crosshair movement, 208–214
doubleClickEnabled property, 197
InteractiveObject, 199, 205
keyboard drawing, 206–208
keyCode and charCode, 205
MouseEvent.DOUBLE_CLICK, 195, 199
MouseEvent.MOUSE_OVER, 199
MouseEvent.MOUSE_UP, 195
MouseEvent.ROLL_OUT, 199
onSquareDoubleClick() methods, 197
onTextFieldTextInput(), 216
preventDefault() method, 214
rollover event, 200–204
Sprite class, 196
String object, 217
TextField.restrict property, 214

Display Objects
altering index, 117, 119
class, 102–103
Container class, 104, 113
creating new, 119–120
discovering depth of objects, 113, 115
display list, 120
ilter, 123, 126
depth of objects

managing, 113
manipulating, 115–117
swapping, 117–119

in display list, 102
manipulating, 109–113
removing from display list, 120
working, 105–108, 120

DisplayState property, 136
Document class, 106–107
Document Object Model (DOM), 442
Dotall modiier, 387
Dot metacharacter, 376
Downcasting, 71–72
drawListShadow() method, 434
DropShadowFilter instance

creating new, 127–128
setting angle property, 131

E���������
End-of-string anchors, 374
Event handler, 138
Event listener

addEventListener(), 186–187
DisplayObject, 187–188
drawingApplication.la, 194
handler method, 186
localX and localY properties, 191
MouseEvent.MOUSE_DOWN, 190

MouseEvent.MOUSE_MOVE, 193
multiple objects, 194
onCanvasMouseDown(), 190
onCanvasMouseMove(), 192
onCanvasMouseUp(), 192
onPhotohumbnailClick, 188
removeEventListener() method, 187
type parameter, 186
useCapture parameter, 187
useWeakReference, 187

exec() method, 382–383, 385–386
Explicit getter/setter methods, 87
Expression, deinition, 24
Extensible Markup Language (XML)

accessing, 393
and E4X, 391, 393
attribute/element, searching, 399–400
attributes, 393
creation, 394
description, 391
document components, 392
element’s attributes, reading, 397
loading, 394–395
modiication, 402
object

adding elements, 402–404
creation, 394
removing elements and attributes, 405

reading, 396
reading text nodes, 401–402
remote source, 396
root node, 392, 396
searching, 398–399
text nodes, 392
tree, reading elements, 396–397

External asset, 143, 145–146
External iles, 143, 146

F���������
Fast-forward end (FFEND) event, 264
Fast-forward (FF) event, 264
Fast-forward (FF) sound, 282–283
Filters

applying in speciic order, 127–128
applying to display object, 123, 126
assigning to square2ís ilter property, 128
introducing advanced, 134–135
making changes to existing, 129, 132
property, overwriting with new array, 129
reassigning ilters array, 131–132
removing existing, 132–133
working with ActionScriptís, 122, 135

FilterTest class, 133
FilterTest class constructor, 126–128

■฀INDEX

524

Display list (cont.)

Flash 3D, API
localX parameter, 181
onNewPosition(), 181
Perspective Angle ield, 180
smiley object, 182
view panel, 180

Flash ActionScript 3.0, 408
Flash Builder, 26

application, 453
interface, 452–453
MXML Source

4.7’s MXML editor, 460
coniguration, 458
DataGrid control, 459
RSS Reader visual components, 460–461
VDividedBox control, 458

project creation
default settings, 455–457
naming, 453–454
output screen, coniguration, 455
RSSReader.mxml ile, 458

Flash component framework
ActionScript 3.0 ile, 330
button skin symbols, 330
Component Assets folder, 330
Component_avatar symbol, 331
components and component source, 332
components directory, 332, 334
ComponentShim symbol, 331
component source directory, 334–338
coniguration directory, 332
on stage, 328
_private folder, 331
Shared folder, 331
UI components, 326–328
video components, 328–329

lash.display.DisplayObjectContainer, 102
lash.display package, 102
lash.ilters package, 122–123
Flash player, 442
Flash Video Encoder

adding video ile, 227
opening, 227
Proiles tab BEG, 228
starting encoding process, 230–231
using BEG, 227
Video tab options, 229

Flex
Adobe AIR, 444
Adobe LiveCycle DS, 443–444
articles and article panels

ControlBar, 516–517
DateFormatter object, 511–512
feed reader application, 517
formatted dates, 514

last-checked date display and format, 512–513
visit site button, 514–516

containers, 469–470
description, 463
Flash ActionScript 3.0 components, 441
lash builder, 443, 452–461
lash player, 442
feed reader improvement, 518
framework, 442
GUIs, 441
MXML, 442–443
planning, application

data and logic design, 467
feed reading, 465
interaction design, 466
refreshing feeds, 465
requirements, 464–465
subscription management, 465
UI designing, 466

RIAs, 441
SDK, 443–445, 447–451
set up, 467–468
subscription class

adding new Class, 475–476
Article panel, 493
data binding, 484–487
DataGrid, articles, 490–492
data loading, 480–484
list of feeds, 487–490
properties, 477–478
testing, 479

subscriptions panel
automatic refreshing, 508
buttons, 496–499
component and setup, layout, 495–496
data storage, 505–507
dialog box, 494
Event class, 499–503
manually refreshing, 509–510
unsubscribe method, users, 505
Yahoo!, 503–504

XML syndication library, 471–474
Frame rate option, 229
Functions

countToTen(), 55
creating, 54–55
default value for function parameters, 58
deinition, 54
parameters, 57–58
passing values and references, 60–61
returning values from, 55–57
scope, 62
trace(), 53
variable parameters, 59
variables, 54

■฀INDEX

525

G���������
getChildIndex() method, 113
getNameData() method, 424
Getter methods, 87–90
gethumbData() method, 424
GlowFilter

changing properties, 126
parameters, 126
using, 123, 126

Gradient line Styles
beginGradientFill(), 174
drawEllipse() method, 178
lash.display package, 174
lineGradientStyle(), 177
solid-color lines, 174

Graphic user interfaces (GUIs), 3, 441
GUI. See Graphic user interfaces (GUIs)

H���������
H.264 iles, 245–246
hasOwnProperty(), 73

I���������
ID3

information, 273–274
tags, 287–289
track metadata, 299

if statement, 41–43, 45, 47, 211
Image viewer

animated transition, 435–438
data access, 424
displaying, 425–427
document class, 414, 416–417, 419
drop shadows, 433–434
Flash ActionScript 3.0, 408
graphic enhancements, 430
handling selection, 428
label, 430–432
lay out, interface

component parameters and placement, 410
components laid out and coniguration, 414
document property, 409
Flash ActionScript 3.0 document, 409
label component, 411
label instance, 409
list instances and TileList, 413
ScrollPane component, 411
slider instance, 412

loading
data, 419, 421
XML, 421–423

scaling, 429–430
user interface (UI) logic, 408

iMovie HD, 226
Implicit getter/setter methods, 87
Increment operator, 35, 49
indexOf() method, 69
Inheritance

extends keyword, 91
fundamentals, 91
nextPhoto() method, 94
overriding methods, 95–96
properties and methods, 91
showPhoto() method, 94
super() method, 92–93
tracks property, 95

Integer data types, 31
Integrated development environment (IDE), 2, 78, 371, 443
Interaction, ActionScript

Component Inspector, 340
editableList.la ile, document properties, 339
interface, creation, 339

InteractiveObject class, 103
iPod analogy, 67
is operators, 72, 131, 219
iTunes, 271–273

J���������
JavaScript Object Notation (JSON), 77

K���������
Keyboard drawing

crosshair position, 206
lineStyle() method, 207
Sprite and Shape instances, 206
stage.focus property, 208

Key frame placement option, 229

L���������
Length property, 69
Library

assets
Create New Symbol, 13
document class, 12
external class ile, 14

resources, 141, 143
symbols

adding instance of movie, 141, 143
creating instances, 141, 143

Line comment, 63–64
Lines, API

alpha parameter, 159
CapsStyle, 160
clear() method, 158
Color panel, 159
computer graphics, 157

■฀INDEX

526

curveTo() method, 160–161
JointStyle, 160
lineStyle() method, 156, 158
lineTo() method, 156
miterLimit, 160
moveTo() method, 157
pixelHinting, 160
scaleMode, 160
thickness, 158

Loader class, 143–144, 146
LoadExternalTest class, 144
Loading progress bar, 247, 253–254, 295
load() method, 144
Local variable, 62–63, 85, 144, 196
Logical negation operator, 35
Logical operators, 45–46
Loops

break statement, 52
control variable, 48
description, 47
do . . . while loop, 50
for each loop, 75–76
for in loop, 74
for loop, 50–52
looping through an array, 51–52
vector, 53
while loop, 47–49

M���������
mdHandler() method, 244
MediaControlEvent, 260
Metacharacters, 373
Metadata callback handler, 244
Metadata events, 244, 255
Methods

adding, 81–83
constructor, 84–85
controlling access, 85–90
getter/setter, 87–89
overriding, 95–96
static, 90–91

Microphone class, 278
Modiiers

case-insensitive, 385
dotall, 387
extended, 387
global, 385–386
multiline, 387
output panel, 385
regular expression, 385
regular expressions, 384

Modulo operator, 33
Moov atoms, 246
Motion Tween option, 147

Mouse events, 242
Movie clip

Ball symbol, 141
changing opacity, 111–112
creating and placing on stage, 105, 108
setting rotation property, 112–113

MovieClip
class, 102–104
instance, 119
symbol, 105, 108

Multimedia Extensible Markup Language
(MXML), 442–443

N���������
Naming

imported classes, 99
methods, 81
packages, 97–98
property, 80
variables, 28–29

NetConnection class
connections management, 234
FLV ile, 235
public properties, 234–235

NetStream class
loading and controlling video, 236
onStatus events and errors, 243
public properties, 236

NetStream.pause() function, 264
Number data type, 31

O���������
Object(s)

accessing properties, 69–70
array literals, 68
as operators, 71–72
calling methods, 69–70
casting, 71–72
copying, 70
creation, new operator, 68–69
vs. dictionaries, 76–77
for each loop, 75–76
for in loop, 74
initializing with constructor method, 84–85
instances, 73–74
JSON, 77
length property, 68
object, 73–74

Object-oriented programming (OOP)
description, 67
GUIs, 3
iPod analogy, 67
objects, 3

■฀INDEX

527

programming methodology, 3
user interaction, 3
XML loading, 421

onDataLoaded() method, 427
onImageLoaded() method, 436
onImageSelected() method, 428, 437
OOP. See Object-oriented programming (OOP)
Operators

arithmetic, 33
as, 72
is, 71
overloaded, 34
precedence, 34
string, 34
unary, 35

Overriding methods, 95–96

P���������
Packages

deinition, 78, 96
importing class, 99
logical groups, 96
naming, 97–98

Parameters
deinition, 37
functions, 57–58

pause() command, 264
Pausing sound, 281
PEMDAS, 34
pickRegExp regular expression, 372
Playhead bar, 296–297
Postix increment, 49
Preix increment, 49
Preloading, bufer, 279–280
Primitive data types

Boolean data type, 30
compile-time error, 30
description, 29
numeric data types, 31

Private properties, 86–88, 90, 416
Properties

adding, 79–81
controlling access, 85–90
creating read-only with getter

methods, 90
static, 90–91

Property variable, 75
Public namespace attribute, 78
Public properties, 86

Q���������
Quality option, 229

R���������
Read-only properties, 90
References and passing values, 60–61
RegExp class

backslash (\), 371–372
constructor, 371
new keyword with RegExp constructor, 371
pattern/modiiers, 372
regular expression literal, 371

Regular expressions
ActionScript, 389
ActionScript 3.0, 369
alternation, 375
anchors, 374
backreferences (see Backreferences)
bounds, 379–380
character classes and ranges, 375–376
character sequence, 372
class (see RegExp class)
combination of anchors, 374
dot metacharacter, 376
e-mailpattern, 383–384
end-of-string anchors, 374
greedy quantiiers, 378–379
grouping patterns, 380–381
matched strings with backreferences, 381–382
metacharacters, 373
modiiers (see Modiiers)
one/more occurrences, 378
propeller-hea, 369
quantiiers, 377
resources, 389
start-of-string anchors, 374
String.indexOf() method, 369–373
use, 388–389
variables, 388
zero/more occurrences, 378
zero/one occurrence, 377

Remote procedure call (RPC), 393, 396
removeChildAt() method, 120
removeChild() method, 120
Removing dependency, 100
Reserved word, 29
resume() function, 264
Return keyword, 55–56
Rewind end (RWEND) event, 264
Rewind (RW) event, 264
Rewind (RW) sound, 282–283
RIA. See Rich Internet applications (RIAs)
Rich Internet applications (RIAs)

client-server model, 442
deinition, 441
Flex 2, 2
Macromedia (now Adobe), 442

■฀INDEX

528

Object-oriented programming (OOP) (cont.)

Rollover event
ClickTest.as, 200
drawSquare(), 202
Flash IDE, 203
graphics.clear() method, 202
onSquareRollOut(), 200
onSquareRollOver(), 200
SimpleButton class, 204

RPC. See Remote procedure call (RPC)
runFF() function, 265
runRW() function, 265

S���������
SDK. See Software Development Kit (SDK)
Seekpoints, 246
setChildIndex() method, 115

description, 116
manipulating depth of objects, 115–116

Shapes, API
beginFill() method, 165
beginGradientFill(), 167
createGradientBox() method, 170
custom shapes, 164–165
drawCircle() method, 161–162
drawRoundRect(), 161–162
endFill(), 166
eyeglass frames creation, 163
focalPointRatio, 169–170
interpolationMethod, 169
Matrix, 172
spreadMethod, 168

Signature, function deinition, 59
Singleton, 247
Skinning components

ActionScript, 357
Button’s Other States, 354–355
Button’s Up State, 353–354
classes, 353
Focus Rect Skin, 351
graphic editing, 351–352
List symbol, 350
ScrollBar skin, 351
SkinnedList, 355–356
symbol-editing mode, 349

slice() method, 70
Smiley, API

lash.display package, 155
foundationAS3.ch5, 154
Shape instance, 154
Software Development Kit (SDK)Flex, 64, 443
installation, 444
Linux

irst Flex application, 448–451
RSS reader, 449
text editor, 448

Mac OS X, 447
Windows, 444–445, 447

SoundChannel class, 276
SoundLoaderContext class, 276
SoundMixer class, 277
Sound

.as ile, 292–293
player

application, 279
classpath, 291
MP3 player, 289
spectrum, 284–286, 297–298
volume and panning, 308, 310, 312, 314

SoundTransform class, 276
splice() method, 133
Sprite class, 106
Sprite object, 104
Square symbol

changing width and height, 110–111
moving on the stage, 109–110

stageHeight property, 135
StageScaleMode class, 135–136
stageWidth property, 135
Start-of-string anchors, 374
Statement

complete command, 24
terminator, 24

Static properties and methods, 90–91
Status events, 243
String.indexOf() method, 369–373, 377
String literal, 25
String.match() method, 386
String objects, 69
String operations, 34
String.replace() method, 372, 382, 386
Styling components

ActionScript 2.0, 346
ActionScript 3.0 components, 346
deinition, 346
setStyles(), 347
StyledList, 346
StyleManager’s setComponentStyle()

method, 348
StyleManager’s setStyles() method, 348
text formats, 347
UIComponent class’s setStyle() method, 349

T���������
Terminator, statement, 24
Ternary operator, 33
Timed text, 329
Timeline, ActionScript 3.0

Actions panel, 7–8
FLA iles, 7
Flash developers, 9

■฀INDEX

529

output panel, 8
software development group, 9

Timeline code, 100
togglePause() function, 264
toString() method, 73
trace() function, 26, 73
trace() statements, 106, 118

U���������
UI components

button, 326
CheckBox, 326
ColorPicker, 326
ComboBox, 326
datagrid, 327
label, 327
list, 327
NumericStepper, 327
ProgressBar, 327
RadioButton, 327
ScrollPane, 327
slider, 327
TextArea, 327
TextInput, 327
TileList, 328
UILoader, 328
UIScrollBar, 328

Unary operations, 33, 35
Uniied Modeling Language (UML), 5
Unsigned integer data types, 31
URLRequest class, 144
User interaction

API, 188
bubble phase, 219
canvas object, 190
capture phase, 219–220
display list (see Display list,

user interaction)
drawingApplication.la, 188
Event class, 186
event dispatcher, 185
event listener (see Event listener)
Flash Player, 185
metaphor, 186
microwave, 185
NetStatusEvent, 186
screen refresh, 194
Sprite class, 188
stopPropagation(), 220

V���������
Values

assigning to variables, 25
default for function parameters, 58
passing variables, 60–61
returning from function, 55–57
variables, retrieving, 26–28

Variables
assigning value, 25
data types, 29–31
description, 25
naming, 28–29
parameters, 59
passing by values and references, 60–61
retrieving values, 26–28

Vectors vs. arrays, 39–41
Video

adding button functionality, 258
adding to display list, 239
.as ile

adding mdHandler function to
END, 256

assigning references for, 250
calling and playing, 251
creating event handler, 252
declaring variables for, 249
getting NetStream.Time information, 254
netConnection and netStream

class setup, 251
capturing, 225, 227
codec option, 229
components

FLVPlayback, 328–329
FLVPlayback 2.5, 329
FLVPlaybackCaptioning, 328–329

controlling, 257–258
creating, video class, 239
custom event, 270
delivering, 231
embedded method, 232–234
encoding, 225
experience of BEG, 223
LVideos.as class ile, 263–264
marketing use, BEG, 223
modern Web BEG, 223
pausing, 237
player

controlling, 252
handling cue points, 256
handling metadata, 255

■฀INDEX

530

Timeline, ActionScript 3.0 (cont.)

loading progress bar, 253
Main.as ile, 249
Main.as ile creation, 248
playhead bar, 254
setting up project, 248
setting up status text ield, 252–253
videos.as ile, 249

playing with ActionScript END, 234
progressive and streamed methods, 232–234
public properties, 239
software for capturing, 225
stopping, 237

Visual objects, 113, 119
VolumeLevel property, 79–80

W���������
Web site addresses

Ask a Ninja, 224
Brightcove, 224
Crackle, 224

Eyespot, 224
GolfSpan, 224
Great Pockets, 223
Hulu, 224
Jumpcut, 224
mommetv.com, 224
Motionbox, 224
Revver, 224
stickam.com, 223
YouTube, 224

while loop, 47–50
Windows Movie Maker, 226

X, Y���������
XML. See Extensible Markup

Language (XML)

Z���������
Zero indexed, 38, 82, 88, 115

■฀INDEX

531

Foundation

ActionScript 3

Second Edition

Darren Richardson

Paul Milbourne

Foundation ActionScript 3, Second Edition

Copyright © 2014 by Darren Richardson and Paul Milbourne

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0585-3

ISBN-13 (electronic): 978-1-4842-0583-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Jason Sturges
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http:/orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

v

Contents

About the Authors ... xvii

About the Technical Reviewer ... xix

Layout Conventions ... xxi

Chapter 1: Getting Started with ActionScript 3.0 ■ ..1

A Brief History of ActionScript ...1

The Rise of ActionScript 3.0 ..2

ActionScript and Object-Oriented Programming ...3

The Development Process ...4

Organizing Your Files ...6

Adding ActionScript to Your Projects ...7

Placing Code on the Timeline .. 7

Importing Code from an External File .. 9

Specifying a Document Class .. 11

Linking Library Assets to External Classes .. 12

Bouncing Balls ..15

Creating the Flash File ... 15

Creating the Ball Class .. 17

Adding More Balls ... 19

ActionScript in Action ..21

Summary ...21

■ CONTENTS

vi

Chapter 2: ActionScript 3.0 Fundamentals ■ ..23

Statements and Expressions ...24

Introducing Variables ...25

Assigning a Value to a Variable .. 25

Retrieving the Value of a Variable .. 26

Naming Your Variables ... 28

Understanding Data Types ... 29

Using Constants ..32

Performing Operations ..32

Arithmetic Operators ... 33

Specifying Precedence .. 34

String Operations ... 34

Unary Operations ... 35

Introducing Arrays ...36

Manipulating Arrays ... 38

Vectors vs Arrays ...39

Understanding Type Checking ... 41

Making Decisions ..41

Introducing the if Statement .. 41

Forming Boolean Expressions ... 43

Booleans in Conditionals ... 44

Using Logical Operators .. 45

Looping the Loop ...47

The while loop ... 47

The do . . . while loop .. 50

The for Loop ... 50

Looping through an Array .. 51

More for Loops .. 52

Breaking Out of a Loop .. 52

Looping through a Vector ... 53

■ CONTENTS

vii

Introducing Functions ..53

Creating a Function ... 54

Returning a Value from a Function .. 55

Using Function Parameters ... 57

Providing a Default Value for Function Parameters ... 58

Allowing for Variable Parameters .. 59

Passing Values and References ... 60

Function Scope .. 62

Commenting Your Code ...63

Bad vs. Good Comments .. 64

Commenting for Documentation .. 64

Summary ...65

Chapter 3: Objects and Classes ■ ...67

iPod Analogy ..67

Working with Objects ..68

Creating Objects using the New Operator ... 68

Accessing Properties and Calling Methods ... 69

Copying Objects ... 70

Casting Objects to a Type .. 71

The Object Object .. 73

Iterating Over Objects .. 74

Dictionaries vs Objects .. 76

Native JSON ... 77

Creating Your First Class ...77

Choosing Suitable Names for your Classes ... 79

Adding Properties ..79

Adding Methods ..81

Initializing Your Objects with a Constructor Method .. 84

■ CONTENTS

viii

Controlling Access to Properties and Methods ..85

Adding Getter/Setter Methods ...87

Creating Read-Only Properties with Getter Methods ... 90

Static Properties and Methods ..90

Taking Advantage of Inheritance ...91

Overriding Methods of the Base Class ... 95

Using Packages to Group Your Classes ...96

Naming Your Packages .. 97

Importing a Class from a Package ... 99

Importing all Classes in a Given Package .. 99

Resolving Naming Conflicts among Imported Classes .. 99

Removing Dependency on Timeline Code ...100

Summary ...100

Chapter 4: Working with the Display ■ ...101

Introducing the Display List ...101

Working with Display Objects ..105

Manipulating Display Objects .. 109

Managing Depth .. 113

Creating new Display Objects .. 119

Removing Display Objects from the Display List ... 120

Specifying Bl Modes ..121

Working with Filters ..122

Applying a Filter to a Display Object .. 123

Applying Filters in a Specific Order ... 127

Making Changes to an Existing Filter .. 129

Removing an Existing Filter ... 132

Introducing the Advanced Filters ... 134

Accessing the Stage ..135

Using Stage Properties .. 135

Making a Movie Full Screen .. 136

■ CONTENTS

ix

Using Library Resources ...141

Loading from External Files ...143

Loading an External Asset ... 143

Manipulating the Loaded Asset ... 145

Making Things Move ...146

Copying Animation from the Timeline .. 146

Animating other Properties .. 150

Summary ...150

Chapter 5: Creating Vector Graphics with the Drawing API ■ ..151

Why we Need a Drawing API ...151

Understanding the Drawing API...153

Setting up Mr. Smiley ..154

Drawing Lines ...156

Creating Straight Lines .. 156

Controlling the Line Style... 158

Drawing Curved Lines ... 160

Drawing and Filling Shapes ...161

Drawing Primitive Shapes ... 161

Creating Custom Shapes ... 164

Filling Shapes with a Solid Color ... 165

Filling Shapes with Color Gradients ... 167

Simplifying the Code ...172

Creating Gradient line Styles ...174

Flash 3D ..179

Summary ...183

Chapter 6: User Interaction and More with Events ■ ..185

Understanding Events ...185

Listening for an Event .. 186

Removing an Event Listener .. 187

Naming Your Event Listener Methods .. 188

■ CONTENTS

x

Creating a Simple Drawing Application ... 188

Using One Event Listener for Multiple Objects .. 194

Using Events with the Display List ..195

Handling Single and Double Mouse Clicks .. 195

Handling Mouse Hover States ... 199

Handling Key Presses .. 205

Preventing an Event’s Default Action ... 214

Capturing and Bubbling: The Event Flow ...218

Listening for Events in the Bubble Phase .. 219

Listening for Events in the Capture Phase ... 219

Stopping an Event from Propagating ... 220

Removing Capture Phase Event Listeners ... 221

Summary ...221

Chapter 7: Working with Video ■ ..223

Video on the Modern Web ...223

The Video Experience .. 223

Where ActionScript Comes in .. 224

Encoding Your Video ..225

Capturing Your Video.. 225

Using the Flash Video Encoder .. 227

Delivering Your Video ...231

Using ActionScript to Play Videos ..234

Managing Connections with the NetConnection Class .. 234

Loading and Controlling Video with the NetStream Class ... 236

Creating Video Objects with the Video Class ... 239

Creating Camera Objects with the Camera Class .. 240

Handling Video Events ... 242

■ CONTENTS

xi

Building a Video Player ..246

Setting up the Project .. 248

Controlling the Video Player ... 252

Controlling the Video on the Stage .. 257

Creating a Custom Event ... 270

Summary ...270

Chapter 8: Using Audio ■ ..271

Importing and Converting Sound Files ..271

Using iTunes .. 271

Using Adobe Audition ... 274

Using ActionScript to Play Sound ..274

Accessing Sound Files with the Sound Class ... 275

Controlling Sound Channels with the SoundChannel Class ... 276

Doing Security Checks with the SoundLoaderContext Class ... 276

Controlling Volume and Panning with the SoundTransform Class ... 276

Controlling Sounds Globally with the SoundMixer Class ... 277

Getting ID3 Data with the ID3Info Class ... 277

Using a Microphone with the Microphone Class .. 278

Understanding the Basics of a Sound Player Application .. 279

Building a Sound Player ..289

Setting up the Project .. 290

Adding Display Items ... 295

Controlling the Audio as it Plays .. 299

Controlling the Sound Volume and Panning... 308

Creating the Custom Event Class .. 318

Summary ...318

■ CONTENTS

xii

Chapter 9: Working with Components ■ ...319

Just What are Components? ...319

Accessing Your Components ... 320

Adjusting Component Parameters ... 322

Benefits of Working with Components ..325

Exploring the Flash Component Framework ...326

UI Components .. 326

Video Components ... 328

Going Behind the Scenes ... 330

Finding the Files .. 332

Scripting Interaction ..339

Adding the Components .. 339

Adding the ActionScript ... 341

Styling and Skinning ...346

Styling Components ... 346

Skinning using the Timeline .. 349

Skinning using Classes .. 353

Creating Components from Scratch ..357

Creating the Widget ... 357

Writing the Component Code ... 359

Turning the Symbol into a Component... 365

Testing the Component .. 366

Using Third-Party Components ..368

Summary ...368

Chapter 10: Regular Expressions ■ ..369

Why you Need Regular Expressions ..369

Introducing the RegExp Class..371

Anatomy of a Regular Expression Pattern ...372

Introducing Metacharacters .. 373

Providing Alternatives with Alternation ... 375

■ CONTENTS

xiii

Using Character Classes and Character Ranges ... 375

Matching any Character using the Dot Metacharacter .. 376

Matching a Number of Occurrences Using Quantifiers ... 377

Grouping Patterns .. 380

Accessing Matched Strings with Backreferences ... 381

Understanding the E-Mail Regular Expression- Pattern ...383

Changing Regular Expression Behavior with- Modifiers ..384

Using the Case-Insensitive Modifier .. 385

Using the Global Modifier .. 385

Using the Multiline Modifier... 387

Using the Dotall Modifier ... 387

Using the Extended Modifier.. 387

Using Variables to Build a Regular Expression ..388

Useful Regular Expressions ...388

Regular Expression Resources ..389

Summary ...389

Chapter 11: Using XML ■ ..391

Understanding XML and E4X ...391

XML Document Components ... 392

E4X .. 393

Accessing an XML File ..393

Creating an XML Object ... 394

Loading an XML File .. 394

Getting XML from a Remote Source .. 396

Reading the XML ...396

Reading the Root Node .. 396

Reading Elements in an XML Tree ... 396

Reading an XML Element’s Attributes .. 397

■ CONTENTS

xiv

Searching XML ..398

Searching for an Attribute or Element at any Level ... 399

Reading Text Nodes ... 401

Modifying XML ...402

Adding Elements to an XML Object ... 402

Removing Elements and Attributes from an XML Object ... 405

Summary ...405

Chapter 12: Case Study: Creating a Dynamic Image Viewer ■ ...407

An Overview of the Image Viewer ...408

Laying out the Interface ..409

Creating the Document Class ..414

Loading Image Data ..419

Loading the XML .. 421

Parsing the Data .. 422

Accessing the Data .. 424

Displaying Images ...425

Handling Image Selection .. 428

Scaling an Image ... 429

Adding Graphic Enhancements ...430

Changing the Image Label ... 430

Improving the Thumbnail Layout ... 431

Adding Drop Shadows ... 433

Creating an Animated Transition .. 435

Summary ...439

Chapter 13: Getting Started with Flex ■ ...441

Introducing Flex ...441

Understanding Rich Internet Applications ...441

Meet the (Flex) Family ...442

The Flex Framework .. 442

The Flash Player .. 442

■ CONTENTS

xv

MXML ... 442

The Flex Software Development Kit ... 443

Flash Builder ... 443

Adobe LiveCycle DS ... 443

Adobe AIR .. 444

Getting Started with the Flex SDK ...444

Installing the Flex SDK ... 444

Finding a Suitable Editor ... 448

Building your first Flex Application .. 448

Getting Started with Flash Builder ..452

Understanding the Flash Builder Interface .. 452

Building your first Flash Builder Application .. 453

Summary ...461

Chapter 14: Flex by Example ■ ...463

Planning the Application ..463

Gathering the Requirements .. 464

Creating the Functional Specification .. 465

Designing the UI .. 466

Designing the Interaction .. 466

Designing the Data and Logic .. 467

Setting up the Project ..467

Creating the Basic UI ...469

Creating the Containers ... 469

Creating Basic Feed Integration ..470

Installing the XML Syndication Library .. 471

Creating the Subscription Class ..475

Adding a New Class to Your Project ... 475

Fleshing out the Subscription Class .. 477

Testing the Subscription Class .. 479

Loading the Data ... 480

Allowing Subscription Instances to be used for Data Binding ... 484

■ CONTENTS

xvi

Creating the Subscriptions List.. 487

Creating the Articles Data Grid .. 490

Populating the Article Panel... 493

Completing the Subscriptions Panel ...494

Allowing Users to Subscribe to a Feed .. 494

Allowing Users to Unsubscribe from a Feed .. 505

Saving the Subscriptions List Between Sessions .. 505

Refreshing the Subscriptions List .. 508

Completing the Articles and Article Panels ...511

Finishing the Articles Panel ... 511

Finishing the Article Panel ... 516

Improving the Feed Reader ...518

Summary ...519

Index ...521

xvii

About the Authors

Darren Richardson became a Flash addict way back in 1999 when he started the now-deceased actionscripts.
co.uk. Since then he has worked in a number of creative agencies as a technical director. He is currently in the same
position at de-construct. Darren has written a large number of articles for two popular web magazines, Practical Web
Projects and Web Designer, and now writes on a regular basis for Web Designer Magazine on the subject of Flash and
ActionScript. Darren is also the technical editor for a couple of books by Apress.

In his spare time, he blogs at www.playfool.com/blog on the subject of all things digital and creates web sites,
iPhone apps, and online branding solutions on a freelance basis

Paul Milbourne has been a software developer in the Washington-Baltimore metropolitan area for over decade.
His journey as allowed him to work with such clients as the Washington Redskins, Baltimore Ravens, Zynga Games
and many others.

For the most part, Paul has made a handsome career putting out ires and dealing with edge cases. his
experience has exposed him to most aspects of development through a multitude of industries and platforms.

Paul is also a former chef, avid musician, and a practicing ine artist.

http://www.playfool.com/blog

xix

About the Technical Reviewer

Jason Sturges is a cutting edge creative technologist focused in ubiquitous delivery of immersive user experiences.
Coming from a visualization background, he’s always been taken by computer graphics and was immediately
drawn to the dynamic runtime of the Flash platform and ActionScript Virtual Machine to bring designs to life while
supporting diferent media with consistent user experience cross-platform to multiple devices. From interactive
graphics, animations, and creative design, he has worked with numerous creative agencies on projects from kiosks to
video walls to Microsoft Kinect games. Most recently the core of his work has been mobile, developing applications for
top tier media tiles.

Committed to the open source community, he is also a frequent contributor to Stack Overlow. As a top answerer
of ActionScript questions, he is a community resource leveraging modern standards, solid design patterns, and best
practices in multiple developer tool chains for web, mobile, and desktop apps.

xxi

Layout Conventions

To keep this book as clear and easy to follow as possible, the following text conventions are used throughout.
Important words or concepts are normally highlighted on the irst appearance in bold type.
Code is presented in fixed-width font.
New or changed code is normally presented in bold fixed-width font.
Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.
Where I want to draw your attention to something, I’ve highlighted it like this:

Ahem, don’t say I didn’t warn you.

Sometimes code won’t it on a single line in a book. Where this happens, I use an arrow like this:
This is a very, very long section of code that should be written all on
the same line without a break

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Layout Conventions

