
M A N N I N G

Keith Wood
FOREWORD BY Dave Methvin

www.allitebooks.com

http://www.allitebooks.org

Extending jQuery
www.allitebooks.com

http://www.allitebooks.org

ii
www.allitebooks.com

http://www.allitebooks.org

Extending jQuery

KEITH WOOD

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Technical proofreaders: Renso Hollhumer, Michiel Trimpe
Shelter Island, NY 11964 Proofreader: Andy Carroll

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617291036
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 SIMPLE EXTENSIONS .. 1

1 ■ jQuery extensions 3

2 ■ A first plugin 17

3 ■ Selectors and filters 30

PART 2 PLUGINS AND FUNCTIONS .. 51

4 ■ Plugin principles 53

5 ■ Collection plugins 70

6 ■ Function plugins 97

7 ■ Test, package, and document your plugin 107

PART 3 EXTENDING JQUERY UI . .. 129

8 ■ jQuery UI widgets 131

9 ■ jQuery UI mouse interactions 159

10 ■ jQuery UI effects 182
v

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi
PART 4 OTHER EXTENSIONS .. 201

11 ■ Animating properties 203

12 ■ Extending Ajax 216

13 ■ Extending events 233

14 ■ Creating validation rules 250
www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiv
preface xvi
acknowledgments xviii
about this book xix
about the cover illustration xxiii

PART 1 SIMPLE EXTENSIONS 1

1 jQuery extensions 3
1.1 jQuery background 4

Origins 4 ■ Growth 5 ■ Today 7

1.2 Extending jQuery 8
What can you extend? 8

1.3 Extension examples 11
 jQuery UI 11 ■ Validation 12 ■ Graphical slider 13
Google Maps integration 14 ■ Cookies 14 ■ Color animation 15

1.4 Summary 15
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 A first plugin 17
2.1 jQuery architecture 18

jQuery extension points 19 ■ Selectors 20 ■ Collection
plugins 21 ■ Utility functions 21 ■ jQuery UI widgets 21
jQuery UI effects 22 ■ Animating properties 22 ■ Ajax
processing 22 ■ Events handling 23 ■ Validation rules 24

2.2 A simple plugin 24
Placeholder text 24 ■ Watermark plugin code 25 ■ Clearing
the watermarks 26 ■ Using the Watermark plugin 27

2.3 Summary 29

3 Selectors and filters 30
3.1 What are selectors and filters? 31

Why add new selectors? 31 ■ Basic selectors 32
Pseudo-class selectors 33

3.2 Adding a pseudo-class selector 37
The structure of a pseudo-class selector 37 ■ Adding an exact
content selector 39 ■ Adding a pattern matching content
selector 41 ■ Adding element type selectors 43 ■ Adding a
foreign language selector 43 ■ Selectors from the Validation
plugin 45

3.3 Adding a set filter 45
The structure of a set selector 46 ■ Adding a middle elements set
selector 47 ■ Enhancing the equals selector 48

3.4 Summary 50

PART 2 PLUGINS AND FUNCTIONS 51

4 Plugin principles 53
4.1 Plugin design 54

Plugin benefits 54 ■ Planning the design 54
Modularize the plugin 56

4.2 Guiding principles 56
Provide progressive enhancements 56 ■ Only claim a single
name and use that for everything 57 ■ Place everything under
the jQuery object 57 ■ Don’t rely on $ being the same as
jQuery 58 ■ Hide the implementation details by using
scope 58 ■ Invoke methods for additional functionality 59
Return the jQuery object for chaining whenever possible 60
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
Use the data function to store instance details 60
Anticipate customizations 61 ■ Use sensible defaults 62
Allow for localisation/localization 63 ■ Style your plugin with
CSS 64 ■ Test on the major browsers 66 ■ Create a
repeatable test case suite 66 ■ Provide demonstrations and
documentation 67

4.3 Summary 69

5 Collection plugins 70
5.1 What are collection plugins? 71
5.2 A plugin framework 71

The MaxLength plugin 71 ■ MaxLength plugin operation 72

5.3 Defining your plugin 74
Claiming a namespace 74 ■ Encapsulation 74 ■ Using a
singleton 75

5.4 Attaching to an element 76
Basic attachment 77 ■ Plugin initialization 78 ■ Invoking
methods 79 ■ Getter methods 80

5.5 Setting options 82
Plugin defaults 82 ■ Localisations/localizations 83
Reacting to option changes 85 ■ Implementing MaxLength
options 86 ■ Enabling and disabling the widget 88

5.6 Adding event handlers 89
Registering an event handler 89 ■ Triggering an event
handler 90

5.7 Adding methods 90
Getting the current length 90

5.8 Removing the plugin 91
The destroy method 91

5.9 Finishing touches 92
The plugin body 92 ■ Styling the plugin 94

5.10 The complete plugin 95
5.11 Summary 96

6 Function plugins 97
6.1 Defining your plugin 98

Localization plugin 98 ■ Framework code 99 ■ Loading
localizations 100
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6.2 jQuery Cookie plugin 103
Cookie interactions 103 ■ Reading and writing cookies 104

6.3 Summary 106

7 Test, package, and document your plugin 107
7.1 Testing your plugin 108

What to test? 108 ■ Using QUnit 109 ■ Testing the
MaxLength plugin 111 ■ Testing option setting and
retrieval 113 ■ Simulating user actions 114 ■ Testing
event callbacks 116

7.2 Packaging your plugin 117
Collating all the files 117 ■ Minimizing your plugin 118
Providing a basic example 121

7.3 Documenting your plugin 123
Documenting options 123 ■ Documenting methods and utility
functions 124 ■ Demonstrating your plugin’s abilities 125

7.4 Summary 127

PART 3 EXTENDING JQUERY UI 129

8 jQuery UI widgets 131
8.1 The widget framework 132

jQuery UI modules 132 ■ The Widget module 134
The MaxLength plugin 135 ■ MaxLength plugin
operation 136

8.2 Defining your widget 137
Claiming a name 137 ■ Encapsulating the plugin 137
Declaring the widget 138

8.3 Attaching the plugin to an element 139
Basic attachment and initialization 139

8.4 Handling plugin options 141
Widget defaults 141 ■ Reacting to option changes 142
Implementing MaxLength options 144 ■ Enabling and
disabling the widget 147

8.5 Adding event handlers 147
Registering an event handler 148 ■ Triggering an event
handler 148

CONTENTS xi
8.6 Adding methods 150
Getting the current length 150

8.7 Removing the widget 151
The _destroy method 151

8.8 Finishing touches 152
The widget body 152 ■ Styling the widget 154

8.9 The complete plugin 155
8.10 Summary 158

9 jQuery UI mouse interactions 159
9.1 The jQuery UI Mouse module 160

Mouse-drag actions 160 ■ Mouse options 161

9.2 Defining your widget 161
Signature functionality 161 ■ Signature plugin
operation 163 ■ Declaring the widget 164

9.3 Attaching the plugin to an element 165
Framework initialization 165 ■ Custom initialization 166

9.4 Handling plugin options 167
Widget defaults 167 ■ Setting options 169 ■ Implementing
Signature options 170 ■ Enabling and disabling the
widget 171

9.5 Adding event handlers 171
Registering an event handler 171 ■ Triggering an event
handler 172

9.6 Interacting with the mouse 173
Can a drag start? 173 ■ Starting a drag 174 ■ Tracking a
drag 174 ■ Ending a drag 175

9.7 Adding methods 176
Clearing the signature 176 ■ Converting to JSON 177
Redrawing the signature 178 ■ Checking signature
presence 179

9.8 Removing the widget 179
The _destroy method 180

9.9 The complete plugin 180
9.10 Summary 181

CONTENTSxii
10 jQuery UI effects 182
10.1 The jQuery UI effects framework 183

The Effects Core module 183 ■ Common effects functions 184
Existing effects 186

10.2 Adding a new effect 188
Imploding an element 188 ■ Initializing the effect 189
Implementing the effect 191 ■ Implementing an effect prior to
jQuery UI 1.9 192 ■ The complete effect 193

10.3 Animation easings 194
What’s an easing? 194 ■ Existing easings 195
Adding a new easing 197

10.4 Summary 199

PART 4 OTHER EXTENSIONS 201

11 Animating properties 203
11.1 The animation framework 204

Animation capabilities 204 ■ Stepping an animation 206

11.2 Adding a custom property animation 208
Animating background-position 209 ■ Declaring and
retrieving the property value 210 ■ Updating the property
value 212 ■ Animating background-position in
jQuery 1.7 213 ■ The complete plugin 215

11.3 Summary 215

12 Extending Ajax 216
12.1 The Ajax framework 217

Prefilters 218 ■ Transports 218 ■ Converters 219

12.2 Adding an Ajax prefilter 220
Changing the data type 220 ■ Disabling Ajax processing 220

12.3 Adding an Ajax transport 221
Loading image data 221 ■ Simulating HTML data for
testing 223

12.4 Adding an Ajax converter 226
Comma-separated values format 227 ■ Converting text to
CSV 227 ■ Converting CSV to a table 230

CONTENTS xiii
12.5 Ajax plugins 231
12.6 Summary 232

13 Extending events 233
13.1 The special event framework 234

Binding event handlers 234 ■ Triggering events 235

13.2 Adding a special event 236
Adding a right-click event 236 ■ Disabling right-click
events 238 ■ Multiple right-click events 239
Collection functions for events 242

13.3 Enhancing an existing event 243
Adding right-click handling to the click event 244

13.4 Other event functionality 245
Default actions for events 245 ■ Pre- and post-dispatch
callbacks 246 ■ Prevent event bubbling 247
Automatic binding and delegation 247

13.5 Summary 249

14 Creating validation rules 250
14.1 The Validation plugin 251

Assigning validation rules 252

14.2 Adding a validation rule 253
Adding a pattern-matching rule 254 ■ Generating pattern-
matching rules 256

14.3 Adding a multiple-field validation rule 258
Grouping validations 258 ■ Defining a multiple-field
rule 259

14.4 Summary 261

appendix Regular expressions 263

glossary 273

index 277

foreword
Since jQuery’s debut in 2006, it has grown into the most popular JavaScript library for
managing and enhancing HTML documents. jQuery’s cross-browser design allows
developers to focus on building websites instead of puzzling out browser peculiarities.
In 2013, more than one-half of the top million websites (measured by visitor traffic)
use jQuery. Similarly, the jQuery UI library, which builds on jQuery, is the most popu-
lar source of UI widgets.

 With that popularity comes the temptation for the jQuery team to add features so
that nearly any problem encountered by a developer can be solved with the incanta-
tion of a jQuery method. Yet every feature added to the core code of jQuery means
more bytes of JavaScript for website visitors to download, whether or not a feature is
used in that site’s development. Such a large monolithic library would degrade perfor-
mance just for the convenience of web development, which isn’t a good trade-off.

 To combat the scourge of code bloat, jQuery’s philosophy is to put only the most
common functionality in the library and provide a foundation developers can extend.
An incredible ecosystem of jQuery plugins has grown over the years, driven by each
developer’s need to scratch a particular itch and their generosity in sharing code with
the wider jQuery community. Much of jQuery’s success can be attributed to this ethos
and the team fosters it through sites like plugins.jquery.com.

 Keith Wood is well suited to be your guide through Extending jQuery. He’s been a
regular fixture in the jQuery Forum and a top contributor for several years, providing
high-quality answers to the real-life problems developers encounter. He’s also earned
his street cred by developing several popular jQuery plugins. As a result, Keith has a
xiv

FOREWORD xv
practitioner’s understanding of jQuery extensions combined with an instructor’s intu-
ition about which jQuery topics deserve a deep explanation rather than a passing
mention.

 This book delves into just about every facet of extending jQuery’s functionality,
whether for personal needs or professional profit. The best-known type of extension is
the basic jQuery plugin that extends jQuery Core methods, but the book gives equal
time to jQuery UI widget-based plugins that are often a better foundation for visually
oriented extensions. Detailed documentation on the jQuery UI widget factory is
scarce, which makes these chapters all the more valuable.

 I’m especially pleased that Keith dedicates some time to the topics of unit tests.
Having a set of thorough unit tests seems like needless extra work, right up until the
point a few months later where an innocuous change to a plugin causes the entire web
team hours of debugging on a live site while user complaints flood in. Unit tests can’t
find all bugs, but they act as a sanity check and prevent obvious regressions that man-
ual testing by an impatient developer tends to miss.

 Whatever your reason for learning about jQuery extensions, please consider con-
tributing your work back to the community as open source if it seems that others
might benefit from it. This is a natural fit with jQuery’s own philosophy. Sharing your
knowledge with others not only helps them, but it comes back to you in professional
recognition.

DAVE METHVIN

PRESIDENT, JQUERY FOUNDATION

preface
I first encountered jQuery in early 2007 and immediately found it intuitive and simple
to use. I was quickly selecting elements and showing and hiding them. Next I tried to
use some of the third-party plugins on offer, but found that they varied widely in use-
fulness and usability.

 I was fortunate to start my plugin writing with what was to become a major plugin
in the jQuery community. I came across Marc Grabanski’s Clean Calendar plugin,
which he had converted into a jQuery plugin, and liked the interface it provided for
entering a date. I started playing with it to add more features as a way to explore
jQuery’s capabilities and eventually offered these back to Marc. So started a collabora-
tion on this plugin over the next couple of years.

 At that point the Calendar plugin had been renamed Datepicker and had been
chosen by the jQuery UI team as the basis for its date-picker offering.

 Since that start I’ve been developing other plugins as the need or interest arose.
Some of my most popular ones are an alternative Datepicker that also allows for pick-
ing date ranges or multiple individual dates, a Calendars plugin that provides support
for non-Gregorian calendars, a Countdown plugin to show the time remaining until a
given date and time, and an SVG Integration plugin that allows you to interact with
SVG elements on the web page. During this time I’ve learned a lot about JavaScript
and jQuery and how to write plugins for the latter.

 Creating plugins is an ideal way to capture functionality in a reusable format, mak-
ing it simple to incorporate into other web pages. It lets you more thoroughly test the
code and ensures consistent behavior wherever it is used.
xvi

PREFACE xvii
 jQuery has grown significantly in size and functionality over the intervening years,
but it has remained true to its purpose of making the developer’s life easier. The thriv-
ing plugin community is a testament to the foresight of the jQuery team in providing
a platform that can be easily extended. I hope that the insights presented in this book
allow you to make the most of jQuery in your own projects.

acknowledgments
I’ll begin by thanking John Resig and the jQuery team for providing such a useful tool
for web developers throughout the world.

 Thanks also to Marc Grabanski for allowing me to contribute to the Calendar/
Datepicker plugin and for launching me into plugin development.

 Writing a book is always a group effort, and I would like to acknowledge the edito-
rial team at Manning: Bert Bates, Frank Pohlmann, and Cynthia Kane; the technical
proofreaders Renso Hollhumer and Michiel Trimpe; and the entire production team
for their support and guidance. Special thanks to Christina Rudloff for the initial
approach from Manning regarding a jQuery UI book.

 My thanks to all the developers who have contacted me over the years with com-
ments, suggestions, bugs, and localizations for my plugins, with special thanks to those
who have contributed something to my efforts—I’m enjoying the music and dancing!

 I am grateful to the reviewers of the early versions of the manuscript, for providing
insights that improved the final product: Amandeep Jaswal, Anne Epstein, Brady
Kelly, Bruno Figueiredo, Daniele Midi, David Walker, Ecil Teodoro, Geraint Williams,
Giuseppe De Marco, PhD, Jorge Ezequiel Bo, Lisa Z. Morgan, Mike Ma, Pim Van Heu-
ven, and Stephen Rice.

 Special thanks to Dave Methvin, president of the jQuery Foundation, for contrib-
uting the foreword and for endorsing my book.

 And last, but not least, sincere thanks to my partner, Trecialee, for accepting the
time spent away from her on this project (even though she doesn’t understand the
subject matter).
xviii

about this book
jQuery is the most widely used JavaScript library on the web, offering many abilities
that make web development much easier. But it concentrates on providing features
that are widely applicable and widely used, and can’t do everything that you might
want. You could code your extra requirements inline for each web page, but if you
find yourself repeating code across several pages it may be time to create a plugin for
jQuery instead.

 A plugin lets you package your code in a single reusable module that can then be
easily applied to any number of web pages. You benefit by having a single code base,
with reduced testing and maintenance costs, and a consistent appearance and behav-
ior throughout your website.

 jQuery has been designed to accommodate these plugins, allowing them to
become first-class members of the jQuery environment and to be used alongside the
built-in functionality. This book explains how you can use best practice principles to
produce a jQuery plugin that integrates with jQuery without interfering with other
plugins and that provides a flexible and robust solution.

Who should read this book?

This is a book about extending jQuery to create reusable plugins. Readers may be
technical leads wanting to know what can be extended within jQuery to enable the
production of reusable modules within their projects. Or they may be web developers
with a desire to know the details behind writing robust code for jQuery. Or perhaps
they’re third-party plugin developers who want to build a best practice plugin for gen-
eral release to the jQuery community.
xix

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
 Given the target audience, a certain familiarity with jQuery is assumed. You’re
expected to be able to use jQuery to select elements and then operate upon them to
change properties, show or hide the elements, or attach event handlers. You should be
comfortable with using existing third-party plugins to add functionality to your pages.

 For an introduction to jQuery itself please see jQuery in Action, Second Edition, by
Bear Bibeault and Yehuda Katz (Manning, 2010).

 jQuery is a JavaScript library, so you should also be familiar with the JavaScript lan-
guage. Most of the plugin code is straight JavaScript with a few jQuery calls or integra-
tion points thrown in. The code often uses constructs such as anonymous functions,
ternary operators, and even closures. That’s fine if these terms are known to you.
Otherwise you might want to brush up on your JavaScript first.

 For a deeper insight into the JavaScript language, please see Secrets of the JavaScript
Ninja, by John Resig and Bear Bibeault (Manning 2012).

Roadmap

Extending jQuery is divided into 4 parts. Part 1 (chapters 1-3) covers simple extensions
to enhance your jQuery experience. Part 2 (chapters 4-7) looks at how best to imple-
ment plugins and functions. Part 3 (chapters 8-10) focuses on extending the jQuery
UI to enhance your web pages. Part 4 (chapters 11-14) covers the best of the rest: ani-
mation, Ajax, event handling, and the Validation plugin, which is not part of jQuery
but plays an important role.

■ Chapter 1 presents a short history of jQuery and discusses what you can extend
to add to its abilities in an integrated fashion.

■ Chapter 2 looks at the modules that make up jQuery and goes into more detail
about how you’d extend these. It then develops a simple plugin to show the
basics of plugin development.

■ Chapter 3 shows how you can extend jQuery’s selectors to find more targeted
elements on your web page.

■ Chapter 4 takes a step back and talks about the best-practice principles that
should be applied to development to produce a robust and useful plugin.

■ Chapter 5 develops a collection plugin based around a framework that imple-
ments the principles from the previous chapter. Collection plugins operate on a
set of elements selected from the page.

■ Chapter 6 looks at function plugins that provide additional abilities not related
to particular elements, using localization and cookie processing as examples.

■ Chapter 7 discusses testing and packaging your plugin to ensure it works cor-
rectly and can be easily obtained and used. It also describes how you should
document and demonstrate your plugin so that potential users can get the most
out of it.

■ Chapter 8 shows how you can use the jQuery UI widget framework to also create
collection plugins—ones that integrate with other jQuery UI components in
appearance and behavior.

ABOUT THIS BOOK xxi
■ Chapter 9 explains how to use the jQuery UI Mouse module to interact with
mouse drag operations within your plugin, by producing a widget that captures
a signature.

■ Chapter 10 completes the jQuery UI part with a look at how you can create your
own visual effects, and how to adjust the rate of change for animated properties.

■ Chapter 11 looks at how you can provide for the animation of property values
that aren’t simple numeric values, using background position as an example.

■ Chapter 12 delves into the Ajax processing capabilities of jQuery to show how
you can enhance them through prefilters, transports, and convertors.

■ Chapter 13 discusses the jQuery special event framework and how it can be used
to create new events within jQuery, as well as how to enhance existing events.

■ Chapter 14 shows how to extend the Validation plugin to add extra validation
rules that may be applied to individual elements alongside the built-in rules.

Code conventions and downloads

This book contains many JavaScript code listings and the occasional HTML and CSS
snippet. Source code in listings and in the text is shown in a fixed width font to sep-
arate it from ordinary text. References to variable and function names within the text
are also shown in this format. Bold monospace font highlights key parts of the
code, usually function or variable names. Some code listings have been reformatted to
fit within the bounds of the printed page. Code annotations accompany most of the
source code listings to highlight the important parts. In many cases, numbered call-
outs in the code link to explanations in the following text.

 jQuery and jQuery UI are open source libraries that are released under the MIT
license1 and can be downloaded directly from the corresponding websites: http://
jquery.com/ and http://jqueryui.com/ respectively.

 The source code for all examples in this book is available from the book’s page on
the Manning’s website: http://www.manning.com/ExtendingjQuery.

Author Online

The purchase of Extending jQuery includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other users. To access the forum and
subscribe to it, visit http://www.manning.com/ExtendingjQuery. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of

1 Massachusetts Institute of Technology license agreement, https://github.com/jquery/jquery/blob/master
/MIT-LICENSE.txt.

https://github.com/jquery/jquery/blob/master/MIT-LICENSE.txt
https://github.com/jquery/jquery/blob/master/MIT-LICENSE.txt
http://www.manning.com/wood/
http://www.manning.com/wood/

ABOUT THIS BOOKxxii
the author, whose contribution to the forum remains voluntary (and unpaid). Let
your voice be heard, and keep the author on his toes!

About the author

Keith Wood has been a developer for over 30 years and has worked with jQuery since
early 2007. He has written over 20 plugins—including the original Datepicker, World
Calendar and Datepicker, Countdown, and SVG—and has made them available to the
jQuery community. He frequently answers questions in the jQuery forums and was a
top five contributor for 2012.

 In his day job he’s a web developer using Java/J2EE for the back end and jQuery on
the front end. He lives in Sydney, Australia, with his partner Trecialee and spends his
spare time dancing.

about the cover illustration
The figure on the cover of Extending jQuery is captioned a “Dolenka,” which means a
woman from the village of Dolenci, on the border between Slovenia and Hungary.
This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and
Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Eth-
nographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian
physician and scientist who spent many years studying the botany, geology, and eth-
nography of many parts of the Austrian Empire, as well as the Veneto, the Julian Alps,
and the western Balkans, inhabited in the past by people of many different tribes and
nationalities. Hand-drawn illustrations accompany the many scientific papers and
books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of the Alpine and Balkan regions just 200 years ago. This
was a time when the dress codes of two villages separated by a few miles identified peo-
ple uniquely as belonging to one or the other, and when members of an ethnic tribe,
social class, or trade could be easily distinguished by what they were wearing. Dress
codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitant of one continent from another,
and today’s inhabitants of the picturesque towns and villages in the Italian Alps are
not readily distinguishable from residents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.
xxiii

ABOUT THE COVER ILLUSTRATIONxxiv

Part 1

Simple extensions

The most widely used JavaScript library on the web today, jQuery offers many
functions to make life easy for front-end developers. You can make jQuery even
better by extending it to provide additional functionality in a reusable format.

 Chapter 1 contains a brief history of jQuery, then looks at what you can
extend within jQuery. It finishes with a few examples of existing jQuery plugins,
showing the breadth of possibilities.

 In chapter 2 you’ll find a description of the jQuery architecture and possible
extension points, each of which is discussed in more detail. Then, to get you
started, you’ll see how to develop a simple plugin that you can use immediately.

 The simplest extensions that you can create are enhanced selectors for
jQuery—the building blocks behind finding the right element to operate upon.
These are covered in chapter 3, with numerous examples of how to create your
own.

2 CHAPTER

jQuery extensions
Today, jQuery is the most widely used JavaScript library on the web. It offers many
functions to make life easier as a front-end developer, such as the ability to traverse
the HTML Document Object Model (DOM) to find the elements you want to work
with and apply animations to those elements. Moreover, the developers of jQuery
have recognized that it can’t (and shouldn’t) do everything, and have provided
extension points that allow additional functionality to be integrated into the nor-
mal jQuery processing. This foresight has contributed to its popularity.

 In this book I explain how you can extend various aspects of jQuery to provide
greater reuse and easier maintenance of your code. Alongside the standard plugin
that operates on a collection of elements on a web page, you can create custom
selectors, utility functions, custom animations, enhanced Ajax processors, custom
events, and validation rules. I cover testing, packaging, and documenting your code
to make sure that others can make maximum use of it as well.

This chapter covers
■ jQuery’s origins and purpose
■ What you can extend in jQuery
■ Examples of existing extensions
3

4 CHAPTER 1 jQuery extensions
1.1 jQuery background
The jQuery website defines jQuery as “a fast, small, and feature-rich JavaScript library.
It makes things like HTML document traversal and manipulation, event handling, ani-
mation, and Ajax much simpler with an easy-to-use API that works across a multitude
of browsers” (http://jquery.com).

 It’s a library of JavaScript functions that allows you to easily access the HTML DOM
and inspect or update it, enabling you to provide more dynamic web pages and expe-
riences in keeping with the Web 2.0 paradigm. Its main features are

■ Element selection using a CSS-like syntax, with extensions
■ Element traversal
■ Element manipulation, including removal, content updates, and attribute

changes
■ Event handling, including custom events
■ Effects and animations
■ Ajax support
■ A framework for extending its functionality (the subject of this book)
■ Various utility functions
■ Cross-browser support, including hiding differences between the browsers

jQuery is a freely available, open source library. It’s currently licensed under the MIT
License (http://jquery.org/license/). Previous versions were also licensed under the
GNU General Public License, Version 2.

1.1.1 Origins

jQuery was initially developed by John Resig and was announced in January 2006, at
BarCamp NYC.1 He’d come across the Behaviour code written by Ben Nolan and saw
the potential of its ideas—using pseudo-CSS style selectors to bind JavaScript functions
to various elements in the DOM. But John wasn’t happy with its verbosity and lack of
hierarchical selectors.2 His suggested syntax and subsequent implementation became
the basis for jQuery.

 Listing 1.1 shows Behaviour code to attach a click event handler to all li elements
within an element with the ID example; the click event handler removes the clicked
item. Listing 1.2 shows the now-familiar corresponding jQuery code.

Behaviour.register({
 '#example li': function(e){
 e.onclick = function(){

1 John Resig, “BarCampNYC Wrap-up,” http://ejohn.org/blog/barcampnyc-wrap-up/.
2 John Resig, “Selectors in Javascript,” http://ejohn.org/blog/selectors-in-javascript/.

Listing 1.1 Sample Behaviour code

5jQuery background
 this.parentNode.removeChild(this);
 }
 }
});

$('#example li').bind('click', function(){
 $(this).remove();
});

Why was it given the name jQuery? Originally, the library was called jSelect to reflect its
ability to select elements within a web page. But when John checked for that name on
the web, he found it was already taken, and changed the name to jQuery.3

1.1.2 Growth

Since its initial announcement, jQuery has been through numerous incremental
releases, as shown in table 1.1 (not all versions are shown). Over the years, it’s grown
greatly in terms of functionality and size.

Listing 1.2 Equivalent jQuery code

3 Comments by John Resig, “BarCampNYC Wrap-up,” http://ejohn.org/blog/barcampnyc-wrap-up/.

Table 1.1 jQuery versions (not all are shown)

Version Code date Size Notes

1.0 August 26, 2006 44.3 KB First stable release

1.0.4 December 12, 2006 52.2 KB Last 1.0 bug fix

1.1 January 14, 2007 55.6 KB Selector performance improvements

1.1.4 August 23, 2007 65.6 KB jQuery may be renamed

1.2 September 10, 2007 77.4 KB

1.2.6 May 26, 2008 97.8 KB

1.3 January 13, 2009 114 KB Sizzle selector engine introduced into core, live events,
and events overhaul

1.3.2 February 19, 2009 117 KB

1.4 January 13, 2010 154 KB Performance improvements, Ajax enhancements

1.4.1 January 25, 2010 156 KB height() and width() added, parseJSON() added

1.4.2 February 13, 2010 160 KB delegate() added, performance improvements

1.4.3 October 14, 2010 176 KB CSS module rewrite, metadata handling

1.4.4 November 11, 2010 178 KB

1.5 January 31, 2011 207 KB Deferred callback management, Ajax module rewrite,
traversal performance

1.5.2 March 31, 2011 214 KB
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 jQuery extensions
Although the size of the jQuery library has grown substantially, when you minimize
the code (stripping unnecessary comments and whitespace) it’s reduced to about one-
third of its source size (the latest version is only 91 KB). When that minified version is
served from the web in a gzip format, it’s further reduced to about a third again,
resulting in a download cost of about 32 KB for the latest version. By using one of the
CDNs (content delivery networks) available, that file may already be cached on the cli-
ent, removing the need to download it at all.

1.6 May 2, 2011 227 KB Significant performance improvements to the attr()
and val() functions, prop() added

1.6.4 September 12, 2011 232 KB

1.7 November 3, 2011 243 KB New Event APIs: on() and off(), event delegation
performance

1.7.2 March 21, 2012 246 KB

1.8.0 August 9, 2012 253 KB Sizzle rewritten, animations reimagined, more
modularity

1.8.3 November 13, 2012 261 KB

1.9.0 January 14, 2013 261 KB Tidy up for jQuery 2.0

1.9.1 February 4, 2013 262 KB Bug and regression fixes

2.0.0 April 18, 2013 234 KB Drop support for IE 6-8

1.10.0 May 24, 2013 267 KB Version/feature synchronization with 2.x line

1.10.2 July 3, 2013 266 KB

2.0.3 July 3, 2013 236 KB

Using CDNs

To download jQuery from one of the CDNs that hosts it, include one of the script
tags shown in this sidebar. You may need to change the version of jQuery requested
to suit your requirements.

Using jQuery’s CDN provided by MediaTemple

<script src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>

You can include the jQuery Migration plugin from this site too, to assist in the transition
from older versions of jQuery to jQuery 1.9 and later.

<script src="http://code.jquery.com/

➥ jquery-migrate-1.1.1.min.js"></script>

Table 1.1 jQuery versions (not all are shown) (continued)

Version Code date Size Notes

7jQuery background
jQuery now includes the Sizzle selector engine, which enables the fundamental ability
to find the elements within the DOM upon which you wish to operate. Whenever pos-
sible, Sizzle delegates these selectors to the underlying browser implementation, but
resorts to JavaScript when necessary to ensure a common experience across all the
major browsers.

1.1.3 Today

jQuery has become the most popular JavaScript library on the internet and has been
adopted by many organizations and individuals for use in their websites. It’s formally
supported by Microsoft and ships as part of the Visual Studio product suite. BuiltWith
reports more than 60% of the top 10,000 websites use jQuery, along with more than
50% of the top million.4 W3Techs reports jQuery usage at 55% of all websites and 90%
of those using any JavaScript library.5

 The plugin developer community is thriving, and most make their code freely
available in the spirit of the underlying jQuery library. You can search the web for
appropriate modules, or use the newly revamped “official” repository of jQuery
plugins (http://plugins.jquery.com). Some plugins are great, with solid code, good
documentation, and examples. Others aren’t so good, being hard to use, buggy, and/
or poorly documented. Once you’ve read this book and applied its principles, your
plugins should fall into the former category.

(continued)

Using Google’s CDNa

<script src="http://ajax.googleapis.com/ajax/libs/

➥ jquery/1.9.1/jquery.min.js"></script>

All jQuery releases are available on the Google CDN, but jQuery doesn’t control this
CDN and there may be a delay between a jQuery release and its availability there.

Using Microsoft’s CDNb

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/

➥ jquery-1.9.1.min.js"></script>

All jQuery releases are available on the Microsoft CDN, but jQuery doesn’t control this
CDN and there may be a delay between a jQuery release and its availability there.

a. Google Developers, “Google Hosted Libraries—Developer's Guide,” https://developers.google.com/speed/libraries/
 devguide#jquery.
b. ASP.NET, “Microsoft Ajax Content Delivery Network,” http://www.asp.net/ajaxlibrary/cdn.ashx.

4 BuiltWith, “jQuery Usage Statistics,” http://trends.builtwith.com/javascript/jQuery.
5 W3Techs, “Usage of JavaScript libraries for websites,” http://w3techs.com/technologies/overview/

javascript_library/all.

https://developers.google.com/speed/libraries/devguide#jquery
https://developers.google.com/speed/libraries/devguide#jquery
http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all

8 CHAPTER 1 jQuery extensions
 You can also find a lot of activity on the jQuery forums (https://forum.jquery.com),
with more than 250,000 responses to more than 110,000 questions. Within the forums
you’ll find special sections devoted to using and developing jQuery plugins.

 The ongoing development of jQuery is now managed by the jQuery Foundation
(http://jquery.org). It was formed in September 2009 to look after all the jQuery proj-
ects, including jQuery Core, jQuery UI, jQuery Mobile, Sizzle, and QUnit. Contribu-
tions and donations by the jQuery community provide the financial basis for this
support.

1.2 Extending jQuery
If jQuery offers so much functionality, why would you want to extend it? To keep the
size of the jQuery code manageable, only those functions that are generic and widely
used are included in the core code (although there’s debate over what’s used and use-
ful). Basic element accessing and modification, event handling, animation, and Ajax
handling are provided as functionality that most users require, whereas more special-
ized abilities are left to others to add.

 Fortunately, the jQuery team has recognized that core jQuery can’t do everything,
so they’ve provided numerous integration points where others can extend the func-
tionality of jQuery while benefitting from its existing infrastructure and abilities.

 As well as extending jQuery to provide additional functionality, packaging your
extension as a plugin allows you to easily reuse those abilities on other web pages. As a
result you have only one copy of the code to maintain, and any improvements are
immediately applied wherever they’re used. You can test your plugin code in isolation
and under controlled circumstances to ensure that it works as expected.

1.2.1 What can you extend?

Just as the core library provides many abilities, you’ll find numerous ways to extend
jQuery. The ones I’ll cover in this book are listed in the next sections.

SELECTORS AND FILTERS

jQuery selectors and filters allow you to identify and collect the elements from the web
page that you wish to operate upon. Although standard selectors by node name, ID,
and class are built into jQuery, there’s scope for adding pseudo-class selectors
(extending the CSS-defined pseudo-classes) that allow you to filter a previous selection
consistently and succinctly. You can also add set filters that are aware of the entire col-
lection of previously selected elements and each one’s position within that list. Chap-
ter 3 explains how to create these selectors.

 By creating a custom selector, you can consolidate the selection process into one
location, making it easier to reuse that code elsewhere, ensuring a consistent imple-
mentation across your projects. It’s also easier to maintain the selector and immedi-
ately apply any bug fixes or enhancements to all instances.

COLLECTION PLUGINS

Collection plugins are functions that you can apply to collections of elements as
retrieved by a selector. These functions are what most people think of when the term

9Extending jQuery
jQuery plugin is used, and they make up the largest portion of the available third-party
plugins. The new abilities supplied by a collection plugin are only limited by your
imagination and can range from making simple attribute changes, through behav-
ioral changes from monitoring events on those elements, to completely replacing the
original component with an alternate implementation.

 Chapter 4 presents a series of guidelines to use when you create your plugin, and
chapter 5 describes the plugin framework that I use for my plugins and how it imple-
ments those guidelines. The guidelines encapsulate best practice approaches to writ-
ing your plugin, helping it to integrate well with jQuery while reducing the possibility
of external code interfering with it, or of it affecting other code.

 A key component to writing your plugin is testing its functionality, and using a unit
test tool enables you to easily and consistently run tests on your code, proving that it
works as expected. Once your code is ready to release, it needs to be packaged for dis-
tribution so that others can obtain it easily and integrate it with their own project. You
should also provide a web page that demonstrates your plugin’s capabilities to allow
prospective users to see how it works and what it can do. And you must supply docu-
mentation for every aspect of your plugin to let others get the most out of it. Chapter
7 covers these aspects of plugin development.

FUNCTION PLUGINS

Function plugins are utility functions that don’t directly operate on collections of ele-
ments. They offer additional abilities within the jQuery framework and usually use
jQuery’s own functionality to perform their duties. Chapter 6 details how to add these
utility functions.

 Examples of these function plugins include support for sending debugging mes-
sages to a console for monitoring code execution, or for retrieving and setting cookie
values for a web page. By making these abilities available as a jQuery plugin, you pro-
vide the user with a familiar way to invoke the code and reduce possible interference
with external code. Several of the guidelines mentioned earlier still apply to these
sorts of plugins, as do the steps of testing, packaging, demonstrating, and document-
ing the plugin.

JQUERY UI WIDGETS

jQuery UI “is a curated set of user interface interactions, effects, widgets, and themes
built on top of the jQuery JavaScript Library” (http://jqueryui.com/). It defines a
widget framework that allows you to create plugins that work in a consistent manner
and that can take advantage of the numerous themes available for styling the UI.
Chapter 8 looks at the widget framework and how you can use it to build your own
component.

 The jQuery UI widget framework also implements the plugin guidelines presented
in chapter 4 and provides common functionality to all jQuery UI widgets in a consis-
tent manner. By basing your plugin on this framework, you gain these built-in abilities
automatically and can concentrate on delivering your widget’s unique functionality. If
you apply the classes defined in the ThemeRoller styling to your new widget, it’ll

10 CHAPTER 1 jQuery extensions
immediately be visually integrated with other jQuery UI components and will change
appearance if you apply a new theme.

 Several of the jQuery UI widgets rely on mouse drag actions to implement their
functionality, and the jQuery UI team has recognized the importance of this interac-
tion. By having your widget extend the jQuery UI Mouse module instead of the basic
Widget one, you gain support for drag operations, complete with customizable condi-
tions for starting a drag, and can again focus on implementing the functionality of
your own widget. Chapter 9 describes how to use the Mouse module to create a widget
that depends on using the mouse.

JQUERY UI EFFECTS

jQuery UI also provides a set of effects that may be applied to elements within your
page. You can use many of these to show or hide an element, such as blind, clip,
fold, and slide. Some bring your attention to an element, such as highlight and
pulsate. You can define your own effect and apply it to elements as you would the
standard ones. Chapter 10 shows how to create new UI effects.

ANIMATING PROPERTIES

jQuery provides an animation framework that you can apply to any element style attri-
bute that has a simple numeric value. It allows you to vary that attribute from one
value to another, controlling the duration of the change and the incremental steps
along the way. But if the value you want to animate isn’t a simple numeric value, you
need to implement the functionality yourself. For example, jQuery UI provides a mod-
ule that allows you to animate from one color to another. In chapter 11 we’ll create an
animator for a complex attribute value.

AJAX PROCESSING

jQuery’s Ajax functionality is one of its clear benefits, making it incredibly easy to load
remote data and then process it. As part of the Ajax call, you can identify what type of
data is expected by the success callback: plain text, HTML, XML, JSON. A conversion
process happens behind the scenes to transform the byte stream received by the
remote call into the appropriate format. You can add your own transformations to
allow you to produce specialized formats directly by identifying what type you want
returned. Chapter 12 details how to extend the Ajax processing to handle a common
file format directly.

EVENT HANDLING

jQuery’s event handling capabilities allow you to attach multiple event handlers to ele-
ments to respond to user interactions, system events, and custom triggers. jQuery pro-
vides several hooks to let you create your own event definitions and trigger points,
resulting in code that’s consistent with the existing functionality. Chapter 13 describes
the implementation of a new event to simplify interactions with the mouse.

VALIDATION RULES

The Validation plugin written by Jörn Zaefferer is widely used to validate user entry on
the client side before submitting completed values to the server. Although the plugin

11Extension examples
isn’t part of the core jQuery functionality, it also provides extension points that allow
you to create custom validation rules and have them applied as part of the existing
processing. Chapter 14 illustrates how to create your own validation rules and inte-
grate them with the built-in behavior.

1.3 Extension examples
Hundreds of jQuery plugins are available on the web to improve your web page expe-
rience. The numbers are a testament to the power and simplicity of jQuery itself, and
the developers’ foresight in providing the extensions points that allow it to be
enhanced. I can’t cover all of these plugins in this book, but the following sections
offer a brief sampling to show the extent of the possibilities.

1.3.1 jQuery UI

The jQuery UI project (http://jqueryui.com/) is built on top of the core jQuery
library as a collection of plugins. It encompasses several widgets, including Tabs, Dat-
epicker, and Dialog (see figure 1.1), as well as various UI behaviors such as Draggable
and Droppable. In addition, it provides several animations for use in showing or hid-
ing elements, or in drawing your attention to them.

Figure 1.1
Sampler of jQuery UI
widgets and styles

12 CHAPTER 1 jQuery extensions
jQuery UI uses its own widget framework to provide a consistent base for its UI compo-
nents. The framework manages widget creation and destruction, maintenance of
state, and interactions with the mouse. Chapters 8 and 9 examine the widget frame-
work and describe how to create your own widgets based on it.

 The project integrates its components and behaviors with the ThemeRoller tool
(http://jqueryui.com/themeroller/) to simplify generating a consistent theme that
defines the appearance of all of its widgets.

 Numerous demonstrations and comprehensive documentation accompany jQuery
UI, allowing you to make the most of its abilities. Through the package’s modular
design, you can create a custom download that only includes the parts you need. Alter-
natively, you can load the package from one of the CDNs on which it’s hosted, along
with the standard themes.

1.3.2 Validation

As mentioned earlier, Jörn Zaefferer’s Validation plugin6 is widely used to provide cli-
ent-side validation (see figure 1.2). It simplifies the assignment of validation rules to
elements and manages their state and associated error messages. It aims to be unob-
trusive—only generating an error when the form is submitted or a field is changed.

6 jQuery Validation Plugin, http://jqueryvalidation.org/.

Figure 1.2 The Validation plugin in action, showing various error messages (in
italics) resulting from validation issues, alongside the affected fields

http://jqueryvalidation.org/

13Extension examples
Rules can be specified inline as attributes on each field, in code for named elements,
or via a function chained to a jQuery selection. Numerous built-in validation rules are
available, including required, digits, date, email, and url. Some validation rules
can take additional parameters to modify their behavior, such as minlength and
maxlength. Rules can be made dependent on the state of other elements on the page.

 This plugin provides its own extension point, allowing you to define custom valida-
tion rules that you can then apply to the specified elements in the same manner as
built-in ones. Chapter 14 describes how to write these rules.

 Each rule has an associated error message for display to the user. These messages
can be individually overridden, or can be translated into one of more than 30 other
languages included in the package. You can control the positioning and grouping of
error messages via options to the initialization call.

 The plugin has extensive documentation and examples to assist you in its use. All
told, it’s a well-written and documented plugin, as well as a highly useful one.

1.3.3 Graphical slider

Plugins can enhance your web page by presenting content in a different and more
appealing fashion. For example, the Nivo Slider plugin (http://nivo.dev7studios
.com/) converts a simple list of images into a slideshow with various transitions
between the pictures.

 The eye-catching dis-
play shown in figure 1.3 is
the result of applying the
Nivo Slider to the HTML
in listing 1.3. Although
this is the default presen-
tation, it’s easy to generate
and it looks good. As
you’d expect, you’ll find
numerous options for cus-
tomizing the plugin’s
appearance and behavior.

<div class="slider-wrapper">
 <div id="slider" class="nivoSlider">

 <img src="images/slide2.jpg" alt=""
 title="You can add captions too..." />

 </div>
</div>

Listing 1.3 Markup for a graphical slider

Figure 1.3 The Nivo Slider in action

14 CHAPTER 1 jQuery extensions
1.3.4 Google Maps integration

Some plugins wrap existing APIs to make them easier to access or to hide any cross-
browser differences. The gMap plugin (http://gmap.nurtext.de/) is one such exam-
ple, allowing you to integrate a Google Map into your web page. Although you could
use Google Maps’ own JavaScript API, plugins like this one encapsulate that function-
ality to provide a simpler interface.

 The map shown in figure 1.4 results from the code in the following listing, demon-
strating how easy the plugin is to use.

$('#map').gMap({zoom: 4,
 markers: [{address: 'Brisbane, Australia',
 html: 'Brisbane, Australia', popup: true}]
});

1.3.5 Cookies

The jQuery Cookie plugin (https://github.com/carhartl/jquery-cookie) makes it
easy to interact with the cookies associated with a web page. This plugin differs from
previous examples in that its functionality doesn’t apply to specific elements on the
web page. Instead it offers a utility function that lets you work with cookies for the
entire page.

 Creating a cookie is as simple as providing its name and value:

$.cookie('introShown', true);

Listing 1.4 Adding a Google Map

Figure 1.4 Google Map integration with the gMap plugin

15Summary
You can provide additional parameters to customize the cookie—setting its expiry
period (by default, cookies expire at the end of the current session), the domain and
path to which it applies, whether the cookie requires secure transmission, and
whether the cookie value is encoded.

$.cookie('introShown', true, {expires: 30, path: '/'});

Retrieving a cookie value is only a matter of providing its name. If there’s no cookie
with a given name, a null is returned.

var introShown = $.cookie('introShown');

Delete a cookie by setting its value to null.

$.cookie('introShown', null);

The Cookie plugin is covered in detail in chapter 6.

1.3.6 Color animation

Basic jQuery includes animation abilities for element attributes that consist of a sim-
ple numeric value. Any other format for an attribute requires a special handler to be
able to animate it correctly. As part of the Effects module in the jQuery UI project
(http://jqueryui.com), you can animate colors (http://jqueryui.com/animate/),
which may be set to a hexadecimal value (#DDFFE8 or #DFE), an RGB triplet [rgb(221,
255, 232) or rgb(86%, 100%, 91%)], or a named color (lime).

 After converting the various color formats into a common format, each compo-
nent of the color (red/green/blue) is separately animated from its starting value to its
finishing value. By providing this ability as an animation plugin, you can then use the
standard jQuery functionality to apply it:

$('#myDiv').animate({backgroundColor: '#DDFFE8'});
$('#myDiv').animate({width: 200, backgroundColor: '#DFE'});

Chapter 11 covers animation plugins.

1.4 Summary
jQuery has grown to be the most widely used JavaScript library on the web today.
Although it has a lot of built-in functionality, it concentrates on providing the basic

What you need to know

jQuery is the most widely used JavaScript library on the web.

jQuery provides basic and commonly used functionality, but is designed to be extended
in many different ways.

There is a thriving third-party plugin community built around jQuery.

The abilities of a plugin are only limited by your imagination.
www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 jQuery extensions
infrastructure and features used by many people across many websites. Recognizing
that it can’t provide everything for everyone, it includes numerous extension points
where others can extend its behavior.

 You can add functionality to nearly every part of jQuery, from defining custom
selectors, through animating non-numeric attribute values and generating new
events, to creating full-blown UI components. The only limit is your imagination.

 Creating a plugin for your code lets you more easily reuse it in many of your web
pages. It reduces your testing and maintenance burdens because you have only one
copy of the script.

 You’ll see in the next chapter how easy it is to extend jQuery by creating a simple
plugin, before delving deeper into the best-practice design of more complex plugins.

A first plugin
jQuery is a JavaScript library that makes it much simpler to interact with the ele-
ments on a web page. It’s typically used by finding elements of interest, either by
direct selection or by traversing the DOM, then applying some functionality to
those elements. You can manipulate elements—adding or removing them, or
changing their attributes and properties—and add event handlers to them to
respond to actions from the user. You can animate elements by changing their
properties over time. And jQuery lets you use Ajax to request extra information
from the server easily, without disrupting the current page and its contents.

 In the previous chapter, I mentioned that jQuery can’t do everything, so it offers
a number of extension or integration points, which has led to a thriving third-party
plugin community.

 This chapter looks at the jQuery architecture that allows plugins to operate
alongside the built-in code, and then presents a simple collection plugin (one that
operates on a set of selected elements) to show what can be done. The remaining
chapters examine each extension point in detail, explain how to use them to

This chapter covers
■ The jQuery architecture
■ Creating a simple collection plugin
17

18 CHAPTER 2 A first plugin
enhance jQuery’s abilities, and present a set of guiding principles and best practices
for developing your plugins.

2.1 jQuery architecture
Although the jQuery source code consists of multiple files for development purposes,
during its build phase these are combined into a single JavaScript file, either mini-
mized for production use or in full for debugging use. Each source file focuses on a
particular aspect of the jQuery functionality, and several of these have extension
points to enable other developers to enhance the built-in capabilities.

 An extension point is an attribute or function within jQuery where you can register
new functionality of a particular type (such as collection functions or Ajax enhance-
ments), which is then treated exactly the same as the corresponding standard fea-
tures. Calls are made back into your plugin code at times in processing that reference
your extension.

 Figure 2.1 shows the files or modules that make up jQuery, and the dependencies
between them.

Figure 2.1 jQuery modules, showing dependencies and extension points

attributes

serialize

deferred

Sizzle1

effects5

offset

css

dimensions

export

support

event4

data

queue

callbacks

manipulation

Extension points

traversing

core2

ajax3

Depends on
A B

$.expr.pseudos,
$.expr.setFilters
$, $.fn
$.ajaxPrefilter,
$.ajaxTransport,
$.ajaxSetup
$.event.special
$.Tween.propHooks,
$.easing

1

2
3

4
5

19jQuery architecture
The main modules for extending jQuery (shaded in figure 2.1) are the Sizzle library,
which provides the selection abilities within the DOM; the core module, which has the
jQuery function itself; the ajax module for Ajax processing; the event module for event
handling; and the effects module for animation capabilities.

2.1.1 jQuery extension points

The possible extension points for jQuery and jQuery UI are listed in table 2.1 and are
described in the next sections. Recall that $ is an alias for the jQuery function (unless
released via a noConflict call).

Table 2.1 jQuery extension points

Extension point Purpose Examples See

$ Utility functions $.trim
$.parseXML

Ch 6

$.ajaxPrefilter Ajax prefilters $.ajaxPrefilter('script',
 ...)

Ch 12

$.ajaxSetup Ajax data type
converters

$.ajaxSetup({converters:
 {'text xml',
 $.parseXML}})

Ch 12

$.ajaxTransport Ajax transport mech-
anisms

$.ajaxTransport('script',
 ...)

Ch 12

$.easing Animation easings $.easing.swing
$.easing.easeOutBounce

Ch 10

$.effects jQuery UI visual
effects
(jQuery UI 1.8-)

$.effects.clip
$.effects.highlight

Ch 10

$.effects.effect jQuery UI visual
effects
(jQuery UI 1.9+)

$.effects.effect.clip
$.effects.effect.highlight

Ch 10

$.event.special Custom events $.event.special.mouseenter
$.event.special.submit

Ch 13

$.expr.filters
$.expr[':']
$.expr.setFilters

Selectors
 (jQuery 1.7-)

$.expr.filters.hidden
$.expr.setFilters.odd

Ch 3

$.expr.pseudos
$.expr[':']
$.expr.setFilters

Selectors
(jQuery 1.8+)

$.expr.pseudos.enabled
$.expr.setFilters.first

Ch 3

$.fn Collection plugins $.fn.show
$.fn.append

Ch 5

$.fx.step Attribute animations
(jQuery 1.7-)

$.fx.step.opacity Ch 11

20 CHAPTER 2 A first plugin
2.1.2 Selectors

jQuery includes the Sizzle selection engine as part of its code. This standalone library
performs the selection processing, allowing you to locate elements of interest within
the web page. Where possible, it delegates operations to native functions provided by
the browser for increased performance. It implements the remainder in JavaScript
directly. For example, to find all label elements that immediately follow an input field
(checkbox labels, perhaps) within an element with the ID preferences, you’d use

$('#preferences input + label')...

Sizzle lets you select elements by node name, by ID, by class, by immediate child or any
descendent, or by attribute values. You can also use various pseudo-class selectors,
including those defined in the Cascading Style Sheets (CSS) specification and others
added by Sizzle itself, such as :checked, :even, and :not. By combining multiple selec-
tors in one selection string, you can find exactly the elements you want to work with.

You can add your own pseudo-class selectors and incorporate them into the selection
process by extending $.expr.pseudos (or $.expr.filters in versions of jQuery prior
to 1.8). Ultimately, a selector is just a function that accepts an element as its parameter
and returns true if that element is accepted or false if it is rejected.

 By extending $.expr.setFilters, you can filter elements based on their position
within the current set of matching elements. You provide a function that returns the
filtered set of elements (for jQuery 1.8 or later) or returns a Boolean flag indicating
inclusion (for jQuery 1.7 and earlier).

$.Tween.propHooks Attribute animations
(jQuery 1.8+)

$.Tween.propHooks.scrollTop Ch 11

$.validator.addMethod Validation plugin
rules

$.validator.addMethod(
 'USPhone', ..., ...)

Ch 14

$.widget jQuery UI widgets $.widget('ui.tabs', ...) Ch 8, 9

Pseudo-class selectors

From the CSS specification: “Pseudo-classes classify elements on characteristics oth-
er than their name, attributes, or content; in principle characteristics that cannot be
deduced from the document tree.”a These selectors are identified by a colon (:) and
include positional selection (such as :nth-child(n)), content selection (:empty),
and negation (:not(selector)).

a. W3C, Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification, “5.10 Pseudo-elements and
pseudo-classes,” http://www.w3.org/TR/2011/REC-CSS2-20110607/selector.html#pseudo-elements.

Table 2.1 jQuery extension points (continued)

Extension point Purpose Examples See

21jQuery architecture
 See chapter 3 for more detail on adding custom selectors and filters to jQuery/
Sizzle.

2.1.3 Collection plugins

Collection plugins operate on the set of elements that result from a selection process or
a subsequent DOM traversal. As such, they’re the most common type of jQuery
extension.

 These plugins must extend $.fn with a function that implements their abilities so
that they can be integrated into jQuery’s built-in processing. If you look under the
hood, you’ll see that $.fn is just an alias for $.prototype. This means that any func-
tions added to the former are available on any jQuery collection object, such as the
result of calling jQuery with a selector or DOM element(s). As such, they can be
invoked on that collection with the appropriate context.

 All collection plugins should return the current set of elements, or a new set if they
provide some sort of traversal function, so that they can be chained with other jQuery
calls—a key paradigm of jQuery operations.

 A set of principles encapsulating best practices is presented in chapter 4; chapter 5
then introduces a plugin framework that implements these practices when creating
new collection plugins.

2.1.4 Utility functions

JavaScript functions that don’t operate on collections of elements (such as the built-in
trim and parseXML) can be included in the jQuery world by extending $ directly.
Although there’s no real need to do so (they could be defined as standalone functions
in JavaScript), they often make use of other jQuery capabilities, and their inclusion
offers a consistent approach to using jQuery. Adding them to jQuery also helps to
reduce the clutter in the global namespace, reduces the chance of creating a name
conflict, and keeps the related functions together.

 Utility functions don’t have a fixed parameter list but can accept whatever is appro-
priate for their operation.

 Chapter 6 looks at adding new utility functions to jQuery.

2.1.5 jQuery UI widgets

jQuery UI is an official collection of UI components, behaviors, and effects built on
top of the basic jQuery library. It provides a widget framework that implements the
best-practice principles for creating new components or behaviors.

 Widgets are created by a call to the $.widget function in jQuery UI. This function
accepts the name of the new widget (including a namespace to help avoid name con-
flicts), an optional reference to a base “class” from which to inherit, and a collection
of custom functions and overrides to enhance the basic abilities. The widget frame-
work manages applying the widget to selected elements; setting, retrieving, and stor-
ing options that control the widget’s appearance and behavior; and tidying up when
the widget is no longer required. Behind the scenes, the $.widget.bridge function

22 CHAPTER 2 A first plugin
provides the mapping between the collection function invoked by the user and the
abilities supplied when defining the widget.

 See chapter 8 for further detail on jQuery UI widgets and the framework that they
provide. Chapter 9 examines how to use the Mouse module of jQuery UI to imple-
ment a new component that revolves around mouse drag functionality.

2.1.6 jQuery UI effects

Another major part of jQuery UI is a series of effects for animating elements on a web
page. Most of these animations work when hiding or showing an element, like blind
and drop, but some serve to draw the user’s attention to that element, such as high-
light and shake.

 New effects can be integrated with jQuery UI’s effects processing by extending
$.effects.effect (or $.effects in versions of jQuery UI prior to 1.9). These effects
are then available (identified by name) for use within the effect or enhanced show,
hide, or toggle functions provided by jQuery UI. Each effect is a function that adds a
callback function to the current element’s fx queue to implement its animation when
earlier queued events have completed.

Easings define how an attribute value changes over time, and they may be applied
to animations to control the acceleration and deceleration of the movements.
Although easings are part of basic jQuery, only two instances are offered—linear and
swing. jQuery UI provides an additional 30 easings. To add your own easing, you
extend $.easing to define a function that returns the amount of change in an attri-
bute value (normalized to be between 0 and 1) given the current elapsed time within
the animation duration (also normalized to be between 0 and 1).

 For more information on jQuery UI effects, and easings in general, see chapter 10.

2.1.7 Animating properties

jQuery’s animation capabilities allow you to alter the values of various attributes on
selected elements. These attributes typically affect an element’s visual appearance,
resulting in movement of that element, changes to its dimensions or border sizes, or
adjustments to the fonts of its contents. But jQuery only knows how to animate simple
numeric attributes (including a units specification). To be able to animate more com-
plex attributes, you need to add custom animations.

 You enable the animation of other attribute values by extending $.Tween.prop-
Hooks to provide two functions that retrieve and set that attribute value. In versions of
jQuery prior to 1.8, you extended $.fx.step and supplied a function that performed
one step in the animation.

 Chapter 11 explains how to add new animation abilities to jQuery.

2.1.8 Ajax processing

Ajax processing is a key part of the capabilities provided by jQuery, making it simple to
retrieve information from a server and integrate that into the current page without
the need for a full refresh. Since the retrieved data may be in a variety of formats,

23jQuery architecture
jQuery defines prefilters for controlling the retrieval process before it starts, transports
for retrieving the fundamental data, and converters for processing that data into a
usable format. Each of these mechanisms may be enhanced to meet special require-
ments. Figure 2.2 shows the sequence of processing for a successful standard Ajax call.

 By calling the $.ajaxPrefilter function, you can define a function that’s invoked
when a particular format of data is requested, such as html, xml, or script. Since your
function is provided a reference to the XMLHttpRequest object to be used for the
retrieval, you have control over how each request proceeds, including the ability to
cancel it altogether.

 To handle the actual retrieval of the data, you can call the $.ajaxTransport func-
tion to define a function that’s called for a given data format, which allows you to cus-
tomize access to that data (such as loading image data directly into an Image
element). By default, the XMLHttpRequest object is used.

 Finally, the data returned is generally in a text format, but it may be more useful
after some initial processing, such as parsing XML into a DOM. Through the $.ajax-
Setup function, you can define new converters that transform the incoming content
into another format and return the latter as the result of the Ajax request.

 To enhance the Ajax abilities of jQuery by defining your own prefilters, transport
protocols, and converters, see chapter 12.

2.1.9 Events handling

jQuery allows you to attach event handlers to selected elements to respond to user
actions. These handlers are invoked for basic mouse, keyboard, and state change
events. If necessary, you can define a custom event that enables additional situations
to be dealt with.

 You can add a custom event by extending $.event.special. Each event definition
supplies the type of that event and also provides functions to set up processing for the

jQuery

Check prefilters

Find a transport

XMLHttpRequest

Content returned

Apply converters

Success callback

User

ajax(...)

Remote

Registered by
data type via
$.ajaxPrefilter

Registered by
data type via
$.ajaxTransport

Registered by
data types via
$.ajaxSetup Figure 2.2

Ajax sequence
diagram showing
extension points

24 CHAPTER 2 A first plugin
event, to tear down that setup when no longer required, and to trigger the event when
the appropriate circumstances arise.

 See chapter 13 for details on creating custom events and dealing with them.

2.1.10 Validation rules

Although the Validation plugin isn’t part of the basic jQuery library, it’s a widely used
plugin that also provides an extension point, allowing you to add new validation rules.
These rules can be used in conjunction with the built-in ones, such as required and
number, to ensure that data entered into the fields of a form are present and correct
before being submitted to the server.

 A call to $.validator.addMethod lets you define a custom validation rule by pro-
viding its name, a function that returns true if an element and its value are valid or
false if not, and a message to display in the latter case. You can use the $.validator
.addClassRules function to enable your new rule automatically via the class attri-
bute on individual elements.

 Chapter 14 looks at defining your own validation rules.

2.2 A simple plugin
jQuery plugins can do just about anything, as evidenced by the vast selection of avail-
able third-party offerings. They can range from simple plugins that affect a single ele-
ment to ones that change the appearance and behavior of multiple elements, like the
Validation plugin.

 The most common type of plugin created for jQuery is a collection plugin that
adds functionality to a set of elements retrieved via the jQuery selection process or a
subsequent traversal of the DOM. As a simple example of this type, you could create a
watermark plugin that provides an in-field label when necessary. This will give you a
feel for how a plugin is constructed.

2.2.1 Placeholder text

To conserve space within a form, sometimes the label for a field is omitted and is
replaced by a placeholder (a label value within the field itself that disappears when
you start working with the field). If the field is left blank, the placeholder is redis-
played. For a better user experience, the placeholder text is usually grayed out to show
that it’s not the actual text for that field. This labeling functionality is often referred to
as a watermark.

 The placeholder text could be specified as part of the plugin initialization, but it’s
better to have that text specified against each field, thus allowing multiple fields to be
set up at once, with each one retaining its own label. The title attribute of input
fields is ideal for holding the placeholder text. It’s intended to be a short description
of the field and may be rendered by the browser as a tooltip when hovering the mouse
over the field. For visually impaired viewers, it may be spoken to identify the field
when it gains focus.

25A simple plugin

o

When the field gains focus, you need to remove the placeholder text if it’s present,
and change the styling of the field to clear the grayed look. Similarly, when the field
loses focus, you should restore the placeholder text and styling if the field value is still
blank. Figure 2.3 shows the Watermark plugin in operation at various times when
entering data.

 For maximum flexibility, the styling of the fields when showing the placeholder
text should be controlled via CSS. You can assign a class to the field when displaying
the text and remove that class when it gains focus or a real value is entered. The actual
appearance is then left to a CSS style and can be easily overridden by the user.

2.2.2 Watermark plugin code

Because this plugin applies to elements on the page, it’s a collection plugin, which
means it operates on a collection of elements found via a selection process or subse-
quent traversal through the DOM. As such, it needs to extend $.fn to integrate its abil-
ities into the select and apply process.

 This listing shows the complete code for the Watermark plugin.

$.fn.watermark = function(options) {
 options = $.extend({watermarkClass: 'watermark'}, options || {});
 return this.focus(function() {
 var field = $(this);
 if (field.val() == field.attr('title')) {
 field.val('').
 removeClass(options.watermarkClass);
 }
 }).blur(function() {
 var field = $(this);
 if (field.val() == '') {
 field.val(field.attr('title')).
 addClass(options.watermarkClass);
 }
 }).blur();
};

The plugin extends $.fn by declaring $.fn.watermark b to allow it to be incorpo-
rated into the jQuery select and operate processing. The new attribute is named for
the ability it provides and will be accessed by that name. The attribute’s value is a func-
tion that accepts one parameter (options) and adds the new abilities to the targeted

Listing 2.1 Watermark plugin

Figure 2.3 Watermark plugin in
operation: before interaction, after
entering first name, and ready to submit

Declare
plugin
functionb

Set
ptions c When field

is focused...d
...if showing

placeholder... e ...remove
placeholderf

When field
loses focus...g

 ...if blank... h ...restore
placeholderi

Initialize fieldj
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 A first plugin

Fo
fields. Only one option is expected: the name of the class to use when styling the field
to indicate that it contains placeholder text. You should provide a default value for
that option but allow it to be overridden by the user c. You start by defining the
default as an object with the attribute watermarkClass and value watermark. That
object is extended by any supplied options, which may overwrite the default. The ||
{} construct ensures that the options parameter is replaced by an empty object (one
with no changes) if it wasn’t supplied in the initialization call.

 To allow this plugin to be chained to other plugin calls, a key part of the jQuery
philosophy, the function must return the set of elements that it’s operating upon d.
Because most of the built-in jQuery functions also return that same set, you can return
the result of your application of the standard jQuery functionality.

 You add a focus handler to each selected field d, and within that handler you
save a reference to the current field as a jQuery object, because it’ll be used several
times. Next, you check whether the current field value is equal to the title attribute
of the field e. If so, you remove the placeholder text by setting the field value to
blank f, and remove the marker class specified in the options.

 As you’re working with the same fields and performing the same actions upon
them all, you can chain the addition of a blur handler g. Once again, save a refer-
ence to the current field for repeated use. This time you compare the current field
value with blank h, and restore the placeholder text (from the title attribute) and
marker class if it’s empty i.

 Finally, you should trigger the blur processing just defined j to initialize the field
depending on its current value.

2.2.3 Clearing the watermarks

Because the placeholder text is set as the value of each field, that value would be sub-
mitted and subsequently used unless some additional processing is done. The use of
the placeholder is purely a user interface artifact, so clearing those values before sub-
mission should also be performed on the client.

 A simple way to clear any placeholder values is to define a second collection plugin
that performs the task. The following listing shows this additional function.

$.fn.clearWatermark = function() {
 return this.each(function() {
 var field = $(this);
 if (field.val() == field.attr('title')) {
 field.val('');
 }
 });
};

Once again, you define the plugin function by extending $.fn with $.fn.clear-
Watermark because you’re still working with a collection of elements from the

Listing 2.2 Clearing a watermark

Declare plugin
functionbr each

field... c
 ...if showing
placeholder...

d

...remove ite

27A simple plugin

 Lo
 jQu

rk
When th
DOM ha
loaded.

Whe
is
page b, and allow the plugin to be chained by returning a reference to the current
set of matched elements via the each function c. For each selected element, you
compare the current value with that field’s title d and reset the field value if
they’re the same e.

 You should call this function just before you submit the field values to the server or
otherwise use them for further processing. You can easily restore the placeholder text
if necessary by triggering the blur handler on each field.

2.2.4 Using the Watermark plugin

To use the Watermark plugin, place the preceding code directly into the web page
where it’s required, or move the code into a separate JavaScript file (jquery.water-
mark.js) and load that into your page instead. Similarly, the styling for the plugin can
be included in the page itself, or it can be loaded from a separate CSS file
(jquery.watermark.css). Using separate files for the plugin code and its styling makes it
easier to add the same func-
tionality to other pages.

 Figure 2.4 shows a web page
that uses the Watermark plu-
gin; the next listing shows the
markup behind that page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>jQuery Watermark</title>
<link type="text/css" href="jquery.watermark.css" rel="stylesheet">
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">
</script>
<script type="text/javascript" src="jquery.watermark.js"></script>
<script> type="text/javascript"
$(function() { // Shorthand for $(document).ready(function() {
 $('input.wmark').watermark();
 $('#submit').click(function() {
 $('input.wmark').clearWatermark();
 alert('Welcome ' + $('#first').val() + ' ' + $('#last').val());
 $('input.wmark').blur();
 });
});
</script>
</head>
<body>
<h1>jQuery Watermark</h1>
<p>
 <input type="text" id="first" class="wmark" title="Your first name">

Listing 2.3 Using the Watermark plugin

Figure 2.4 The Watermark plugin sample page

Load Watermark
styling

b

ad
ery c

Load
Waterma
pluginde

s
.. e

 ...apply Watermark
pluginf

n submit
clicked... g ...clear

watermarks h

...restore
watermarks
after usei

The affected
fields

j

28 CHAPTER 2 A first plugin
 <input type="text" id="last" class="wmark" title="Your last name">
 <input type="button" id="submit" value="Submit">
</p>
</body>
</html>

You start by loading the CSS file containing the styling for the Watermark plugin b.
The style causes the placeholder text to be shown grayed out (assuming that the
default marker class is used):

.watermark { color: #888; }

The jQuery library must be loaded first c to ensure that it’s available for use by the
subsequent plugin code d. When the rest of the DOM has been loaded and is ready
for use e, you can use the new plugin.

 You add the plugin abilities to the selected fields (those input fields with the wmark
class) by invoking the plugin function f. Recall that the plugin returns the original
set of selected elements, so further processing on those elements could be chained to
this call here. Because the fields are initially blank, the plugin automatically applies
itself to them and fills them with the placeholder text extracted from each field’s
title attribute.

 When the fields are submitted for further processing g, you should first clear out
any placeholder values from the fields h before using the field values themselves. Fol-
lowing that processing, you can restore the placeholder text by triggering the blur
handler on the affected fields i.

 The actual fields that the Watermark plugin applies to are found within the body
of the document j and are tagged with the wmark class for ease of selection.

 When you open this page in your browser, you’ll see the placeholder text in both
input fields with a grayed out appearance at first. As you move the focus to a field, the
placeholder text disappears and you can enter an appropriate value. If you exit the
field without entering any value, the placeholder text is restored and the field is
grayed again. When the Submit button is clicked, any placeholder text is removed, the
field values are shown in an alert box, and the placeholder text is restored if necessary.

 This simple collection plugin gives you a taste of what a jQuery plugin can achieve
with only a few lines of code. By placing the code in a separate file, you can easily
reuse it on other pages requiring the same functionality. Subsequent chapters will
describe the best-practice principles that you should strive to apply to your plugins to
make them robust and functional. You’ll also see two plugin frameworks that provide
the infrastructure for common plugin requirements and learn how to test, package,
and document your plugin so that others can make the most use of it.

29Summary
2.3 Summary
With much foresight, the jQuery developers concentrated on providing the most
widely used infrastructure and functions in the jQuery library, while including exten-
sion points so that extra abilities could be added later. These enhancements integrate
into the built-in jQuery offerings and are treated no differently.

 There are numerous extension points within jQuery, each allowing you to enhance
one aspect of the library. From custom selectors, to the collection and utility plugins,
through jQuery UI widgets and effects, to custom Ajax processing and events, you
have the ability to make jQuery work the way you want. Each of these extension points
is discussed in detail in the chapters of this book.

 A simple collection plugin illustrates how a basic plugin is constructed, providing
useful functionality in only a few lines of code. Packaging that code in a separate file
allows you to easily reuse its capabilities in other web pages.

 In the next chapter, you’ll see how you can extend jQuery by adding custom selec-
tors to its built-in offerings—one of the simplest extensions you can make.

What you need to know

jQuery is designed to be extended.

jQuery has many extension points that allow you to add different types of functionality
to it.

Creating a simple plugin is easy.

Extend $.fn to add a collection plugin that operates on a set of selected elements.

Place your plugin code in a separate file to allow for reuse on other pages.

Try it yourself

Amend the Watermark plugin to get its placeholder text from the data-label attribute
instead of from the title. This allows you to use the latter for a longer tooltip, while
still providing a label for the field when it’s empty.

Selectors and filters
One of the principles behind jQuery is the select-and-act mode of operation—you
select one or more elements of interest and then do something with them. jQuery
includes an embedded copy of the Sizzle selector engine (“a pure JavaScript CSS
selector engine designed to be easily dropped into a host library”; http://
sizzlejs.com/) to perform your selections. Internally, Sizzle delegates to built-in
browser functionality when available, and it applies the selectors itself in JavaScript
if necessary.

 Although numerous built-in selectors are available, sometimes it’s cleaner and
clearer to create a custom selector that you can integrate with jQuery’s other abili-
ties. Fortunately, adding a new selector is one of the easiest enhancements you can
make to jQuery.

NOTE Although initially developed as part of jQuery, the Sizzle selector
engine has been released as a separate project for use with any JavaScript

This chapter covers
■ Existing types of jQuery selectors
■ Adding your own pseudo-class selectors
■ Adding set filters
30

31What are selectors and filters?
library. To enable development by a wider community, the Sizzle code has
been turned over to the Dojo Foundation (http://dojofoundation.org/; not
to be confused with the Dojo Toolkit). Interest has come from other Java-
Script communities, with the aim of enhancing the engine for everyone’s
benefit.

3.1 What are selectors and filters?
jQuery selectors are based on the selectors defined in the CSS specifications. They’re
string values that identify elements of interest within the HTML DOM. Within jQuery,
filter is another term for selector. Both narrow down the set of matching elements
from an existing collection, which starts with all the nodes in the current context.

3.1.1 Why add new selectors?

jQuery has a vast array of built-in selectors, so why would you want to add new ones? If
you have a multistep selection process to find particular elements on a page, and that
same process is used many times, either on that one page or across several pages, then
you should consider creating a custom selector to implement it.

 Although you could obtain a collection of elements using a combination of jQuery
selectors and functions, creating a custom selector means that your particular selec-
tion process is more legible, concise, and consistent across the multiple web pages
that use it. By choosing an appropriate name, your selector directly indicates what’s
desired, rather than having to work through multiple steps that may obscure the
intent. Similarly, your invocation code is briefer and there’s less chance of forgetting a
step, because there’s only one definition of the underlying selection process. The
selector code is also easier to test, and any bug fixes or enhancements are immediately
applied to all instances where it’s used.

 For example, to pick items other than the first or last in a list, you could use the fol-
lowing combination of built-in selectors:

$('li:not(:first, :last)', list)...

Or you could define your own selector and use that instead:

$('li:middle', list)...

If you want to find all paragraphs with some form of emphasized text in them, you
could write this:

$('p:has(b | i | em | strong)')...

Or you could ensure you don’t omit or mistype an element by defining your own
selector:

$('p:has(:emphasis)')...

The next two subsections briefly review the selectors built into jQuery. After that you’ll
see how to define your own selectors.

32 CHAPTER 3 Selectors and filters
3.1.2 Basic selectors

There are many basic selectors in jQuery, allowing selection by element name, ID,
class, and/or attribute and value (as shown in table 3.1). Most of these are imple-
mented by native functions provided by the browser, so they’ll perform better than
other selectors.

 The selectors can be combined to create specific selections. For example, to find
all the label elements that immediately follow an input element (perhaps these are
checkbox labels), and that are located within the element with the ID of content, you
would use this:

$('#content input + label')...

Table 3.1 Basic jQuery selectors

Name Selector pattern Functionality

All selector * Selects all elements regardless of their name

Element selector element Selects all elements with a matching name;
for example,
input

ID selector #identifier Selects one element with the matching ID;
for example,
#field1

Class selector .class Selects all elements with a matching class;
for example,
div.tabs

Descendant
selector

parent child Selects all child elements that are contained anywhere
within parent elements; for example,
#list1 li

Child selector parent > child Selects all child elements that are the direct children
of parent elements; for example,
#tabs > div

Next adjacent
selector

prev + next Selects all next elements that are immediately
preceded by a sibling prev element; for example,
input + label

Next siblings
selector

prev ~ siblings Selects all siblings elements that follow after prev
elements and have the same parent; for example,
h2 ~ p

Has attribute
selector

[name] Selects all elements that have the named attribute,
regardless of its value; for example,
input[readonly]

Attribute equals
selector

[name="value"] Selects all elements that have the named attribute
with the exact given value; for example,
label[for="field1"]

33What are selectors and filters?
3.1.3 Pseudo-class selectors

In addition, jQuery provides numerous pseudo-class selectors that implement and
extend the CSS-defined pseudo-class offerings. Pseudo-classes are defined in the CSS
specification as classifying elements based on characteristics other than their name,
attributes, or content-criteria that can’t be deduced from the document tree. These
selectors are identified by a colon (:) followed by the selector name and an optional
parameter.

 For example, to find all checkbox controls that have been checked, you could
combine two pseudo-class selectors:

$('input:checkbox:checked')...

Attribute not
equal selector

[name!="value"] Selects all elements that either don’t have the named
attribute or that do have the named attribute but not
with the exact given value; for example,
a[target!="_blank"]

Attribute starts
with selector

[name^="value"] Selects all elements that have the named attribute
with a value that starts with the given value;
for example,
a[href^="http:"]

Attribute ends
with selector

[name$="value"] Selects all elements that have the named attribute
with a value that ends with the given value;
for example,
a[href$=".pdf"]

Attribute
contains selector

[name*="value"] Selects all elements that have the named attribute
with a value that contains the given value;
for example,
a[href*="google"]

Attribute
contains word
selector

[name~="value"] Selects all elements that have the named attribute
with a value that contains the given word, delimited
by spaces; for example,
a[title~="Google"]

Attribute con-
tains prefix
selector

[name|="value"] Selects all elements that have the named attribute
with a value that’s either equal to the given value or
starts with that value followed by a hyphen (-);
for example,
a[class|="ui-state"]

Multiple attribute
selector

[name1="value1"]
[name2="value2"]

Selects all elements that match all of the supplied
attribute selectors; for example,
input[type="checkbox"][disabled]

Multiple selector selector1,selector2 Combines all elements selected by each of the
individual selectors; for example,
input, select, textarea

Table 3.1 Basic jQuery selectors (continued)

Name Selector pattern Functionality

34 CHAPTER 3 Selectors and filters
Note that most of these selectors are implemented in JavaScript and can’t be dele-
gated to the built-in browser functionality, and so will run a little slower than the basic
selectors.

 Pseudo-class selectors come in a number of different types. Normal pseudo-class
selectors only inspect the element itself—its attributes or content—before deciding to
include or exclude it. Some pseudo-class selectors (set filters) take into account the
entire list of elements resulting from a previous selection and filter those based on
their position within that collection. Another type (child filters) looks at the relation-
ship of an element to its siblings, regardless of whether those siblings form part of the
current collection. In normal usage these types make no difference, but they’re
important when writing your own selectors.

 The jQuery built-in pseudo-class selectors are shown in table 3.2.

Table 3.2 jQuery pseudo-class selectors

Name Selector pattern Type Functionality

Animated
selector

:animated Selects all elements currently being animated;
for example,
div.content:animated

Button
selector

:button Selects all button elements and inputs of type
button; for example,
form :button

Checkbox
selector

:checkbox Selects all inputs of type checkbox; for example,
input:checkbox

Checked
selector

:checked Selects all elements (checkboxes and radio
buttons) that are checked; for example,
input[name="gender"]:checked

Contains
selector

:contains(value) Selects all elements that contain text equal to a
given value; for example,
h1:contains(Chapter)

Disabled
selector

:disabled Selects all disabled elements; for example,
input:disabled

Empty selector :empty Selects all elements that have no children,
including text nodes; for example,
span:empty

Enabled selector :enabled Selects all enabled elements; for example,
input:enabled

Equals index
selector

:eq(index) Set Selects the element at the given index (zero-
based) within the previous selection; for example,
li:eq(1)

Even selector :even Set Selects all even-numbered elements (zero-based)
within the previous selection; for example,
tr:even

35What are selectors and filters?
File selector :file Selects all inputs of type file; for example,
input:file

First selector :first Set Selects the first element within the previous
selection; for example,
select option:first

First child
selector

:first-child Child Selects all elements that are the first child of their
parent; for example,
table td:first-child

First of type
selector

:first-of-type Child Selects all elements that are the first among
siblings of the same element name (new in
jQuery 1.9); for example,
p:first-of-type

Focus selector :focus Selects the element that is currently focused;
for example,
input:focus

Greater than
index selector

:gt(index) Set Selects all elements within the previous selection
with an index greater than the given value;
for example,
li:gt(1)

Has selector :has(selector) Selects all elements that contain at least one
element that matches the given selector;
for example,
form:has(input.error)

Header selector :header Selects all header elements: h1, h2, etc.; for
example,
:header

Hidden selector :hidden Selects all elements that are hidden; for example,
form input:hidden

Image selector :image Selects all inputs of type image; for example,
input:image

Input selector :input Selects all input, select, textarea, and button
elements; for example,
form :input

Language
selector

:lang(language) Selects all elements of the given language (new in
jQuery 1.9); for example,
p:lang(fr)

Last selector :last Set Selects the last element within the previous
selection; for example,
#mylist li:last

Last child
selector

:last-child Child Selects all elements that are the last child of their
parent; for example,
table td:last-child

Table 3.2 jQuery pseudo-class selectors (continued)

Name Selector pattern Type Functionality
www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 3 Selectors and filters
Last of type
selector

:last-of-type Child Selects all elements that are the last among
siblings of the same element name (new in
jQuery 1.9); for example,
p:last-of-type

Less than index
selector

:lt(index) Set Selects all elements within the previous selection
with an index less than the given value;
for example,
option:lt(2)

Not selector :not(selector) Selects all elements that don’t match the given
selector; for example,
div:not(.ignore)

Nth child
selector

:nth-
child(index)

Child Selects all elements that are the nth child of their
parent; for example,
table td:nth-child(3)

Nth last child
selector

:nth-last-child
(index)

Child Selects all elements that are the nth child of their
parent counting from the last element to the first
(new in jQuery 1.9); for example,
table td:nth-last-child(3)

Nth last of type
selector

:nth-last-of-
type(index)

Child Selects all elements that are the nth last among
siblings of the same element name (new in
jQuery 1.9); for example,
p:nth-last-of-type(2)

Nth of type
selector

:nth-of-
type(index)

Child Selects all elements that are the nth among
siblings of the same element name (new in
jQuery 1.9), for example,
p:nth-of-type(2)

Odd selector :odd Set Selects all odd numbered elements (zero-based)
within the previous selection; for example,
tr:odd

Only child
selector

:only-child Child Selects all elements that are the only child of their
parent; for example,
li a:only-child

Only of type
selector

:only-of-type Child Selects all elements that have no siblings of the
same element name (new in jQuery 1.9);
for example,
p:only-of-type

Parent selector :parent Selects all elements that are the parent of another
node, including text nodes; for example,
li:parent

Password
selector

:password Selects all inputs of type password; for example,
input:password

Table 3.2 jQuery pseudo-class selectors (continued)

Name Selector pattern Type Functionality

37Adding a pseudo-class selector
3.2 Adding a pseudo-class selector
It’s easy to add your own pseudo-class selectors—you extend $.expr.pseudos (or
$.expr.filters in versions of jQuery before 1.8.0) by defining the name of your
selector and providing the function that evaluates it. Conversely, it’s difficult to add
other types of selectors, as the underlying Sizzle selection engine isn’t designed to be
extended in those ways.

3.2.1 The structure of a pseudo-class selector

An example of a pseudo-class selector from the jQuery code is the :has selector that
returns elements containing at least one element that matches the provided subselec-
tor. For example, the following selector finds all fieldset elements that contain an
input element with the class error:

$('fieldset:has(input.error)')...

NOTE There were substantial changes in the Sizzle selector engine and conse-
quently jQuery’s use of it in release 1.8.0 and later. For completeness, both pre-
and post-1.8.0 versions of the custom selectors are included in this chapter.

Radio selector :radio Selects all inputs of type radio; for example,
input:radio

Reset selector :reset Selects all elements of type reset; for example,
form input:reset

Root selector :root Selects the element that is the root of the
document (new in jQuery 1.9); for example,
:root

Selected
selector

:selected Selects all elements (select options) that are
selected; for example,
#mylist :selected

Submit selector :submit Selects all elements of type submit; for example,
input:submit

Target selector :target Selects the element indicated by the fragment
identifier of the document’s URI (new in jQuery
1.9); for example,
:target

Text selector :text Selects all inputs of type text and text areas;
for example,
form :text

Visible selector :visible Selects all elements that are visible; for example,
span:visible

Table 3.2 jQuery pseudo-class selectors (continued)

Name Selector pattern Type Functionality

38 CHAPTER 3 Selectors and filters
The :has selector as defined in jQuery 1.8.0 is shown in the following listing (listing
3.2 contains the jQuery 1.7.2 version).

var Expr = Sizzle.selectors = {
 ...
 pseudos: {
 ...
 "has": markFunction(function(selector) {
 return function(elem) {
 return Sizzle(selector, elem).length > 0;
 };
 }),
 ...
 },
 ...
};

The jQuery 1.8.0 and later pseudo-class selectors are designed to be more streamlined
than those used in previous jQuery versions, and are ultimately functions that receive
only the current element (elem) as their parameter and return true if the selector
accepts that element or false if it doesn’t. If the selector needs a parameter to com-
plete its selection, that parameter is captured by a closure (a local scope that retains
data values) surrounding the final function. To identify that a parameter is required,
the closure function is marked as such. You don’t need to worry about marking the
function, nor wrapping it in a closure if the selector doesn’t use a parameter.

 The :has selector does need a parameter value—the subselector for the contained
elements to test for—so it needs to wrap the selector function in a closure that sup-
plies the parameter value specified by the user (selector) b, and mark the function
(via markFunction or its alias createPseudo) to indicate how it should be called. This
wrapper function extends Expr.pseudos, which is later aliased by $.expr.pseudos.
The selector function c then searches for elements matching the given subselector. It
invokes the Sizzle function directly to locate corresponding elements using the cur-
rent element as the context d. Based on the number of elements located, it returns
true if any were found or false if there were none.

NOTE For backward compatibility, jQuery 1.8 and later maps the previously
used filters attribute onto the new pseudos attribute. Plugins can use the
older form at the moment, so that they work with all jQuery versions.

The following listing shows the :has selector as defined in jQuery 1.7.2.

var Expr = Sizzle.selectors = {
 ...
 filters: {
 ...
 has: function(elem, i, match) {

Listing 3.1 The :has selector definition (jQuery 1.8.0)

Listing 3.2 The :has selector definition (jQuery 1.7.2)

Mark a selector
that requires
a parameter

b

Define
selector
function c

Accept or reject
current elementd

Define selector
function

b

39Adding a pseudo-class selector
 return !!Sizzle(match[3], elem).length;
 },
 ...
};

The jQuery 1.7.2 :has selector function b receives as parameters the current ele-
ment (elem), its index within the current collection (i), and the array of text frag-
ments (match) that match the pseudo-class regular expression used by Sizzle to extract
these selectors. The array contains the entire selector string at index 0 (match[0]),
the name of the selector at index 1, any quotes (double or single) around the value
within parentheses at index 2, and any selector parameter at index 3 (match[3]).

 The selector function extends Expr.filters—which is also referenced by its alias
$.expr.filters—and returns true if this selector accepts the supplied element or
false if it doesn’t. It does this by searching for a matching subelement within the con-
text of the current element c.

NOTE The !! construct in JavaScript forces any value to be a strict Boolean
one. JavaScript has several falsy values and considers all the following as false:
false, NaN (not a number), '' (empty string), 0 (number), null, and unde-
fined. Applying the ! operator evaluates the value as true or false and then
negates it, whereas the second ! operator restores that Boolean value to its
original sense.

Now that you’ve seen how pseudo-class selectors are implemented, you can create
some for yourself, including an exact content match selector, a pattern matching
selector, a selector for list or emphasized elements, and a selector for elements
marked as containing foreign language content.

3.2.2 Adding an exact content selector

There’s a built-in :contains selector that accepts elements that have the text supplied
as the selector parameter somewhere within that element’s body. But what if you only
want elements with an exact string match of the whole content? You can add a :con-
tent pseudo-class that does just that.

 You’d call this selector as follows to find only those list items with exactly “One” as
their content:

$('li:content(One)')...

In this case, the selector retrieves all the text content from the element body and com-
pares that exactly with the given text, as shown in the next listing for jQuery 1.8.0 and
in listing 3.4 for jQuery 1.7.2.

/* Retrieve all text content of an element.
 @param element (element) the DOM element to get the text from
 @return (string) the element's text content */
function allText(element) {

Listing 3.3 An exact content selector (jQuery 1.8.0)

Accept or reject
current elementc

Normalize
text
content
retrieval

b

40 CHAPTER 3 Selectors and filters
 return element.textContent || element.innerText ||
 $.text([element]) || '';
}
/* Exact match of content. */
$.expr.pseudos.content = $.expr.createPseudo(function(text) {
 return function(element) {
 return allText(element) == text;
 };
});

Because this selector uses a parameter value to specify what should be matched, in
jQuery 1.8.0 and later you need to create a closure to capture that parameter value
(text) and mark the final function as requiring that value (by calling createPseudo)
c. The wrapper function extends $.expr.pseudos and is identified by the name of
the selector. The selector implementation is the innermost function d. It retrieves all
the text content from the element body (hiding any browser differences on the way by
calling allText b) and compares that exactly with the given text, returning true to
accept the current element or false to reject it.

/* Retrieve all text content of an element.
 @param element (element) the DOM element to get the text from
 @return (string) the element's text content */
function allText(element) {
 return element.textContent || element.innerText ||
 $.text([element]) || '';
}

/* Exact match of content. */
$.expr.filters.content = function(element, i, match) {
 return allText(element) == match[3];
};

The jQuery 1.7.2 code is quite similar, but different parameters are received by the
selector function, and it must extend $.expr.filters c. Once more, calling all-
Text retrieves all the text content from the element body b and an exact comparison
with the given text (match[3]) accepts or rejects the current element by returning
true or false.

NOTE At the moment you’ll only add this code inline, before the normal
document.ready callback that contains your jQuery initialization code. In the
next chapters, you’ll see how to structure your code as a standalone plugin
that can be easily reused in other pages.

Listing 3.4 An exact content selector (jQuery 1.7.2)

Selectors for different jQuery versions

To cater for all jQuery versions, you can test for the presence of the new functionality
(the createPseudo function) and create the filter accordingly, as shown here. (The
!! operator was explained in section 3.2.1.)

Define
:content
selector

c

Accept or reject
current elementd

Normalize text
content retrievalb

Define :content
selectorc

41Adding a pseudo-class selector

f

3.2.3 Adding a pattern matching content selector

In the previous section, you saw how to create an exact match selector. Now you can
go one step further and provide a regular expression selector for element content:
:matches. You could call this selector as shown in table 3.3.

As before, the selector function collates all the text content before applying the given
regular expression, as you’ll see in the next listing for jQuery 1.8.0 and in listing 3.6
for jQuery 1.7.2. Note that you must provide the expression as a string, so any embed-
ded backslashes need to be escaped.

/* Regular expression match of content. */
$.expr.pseudos.matches = $.expr.createPseudo(function(text) {
 return function(element) {
 var flags = (text[0] || '') == '~' ? 'i' : '';
 return new RegExp(text.substring(flags ? 1 : 0), flags).
 test(allText(element));
 };
});

(continued)

var usesCreatePseudo = !!$.expr.createPseudo; // jQuery 1.8+

if (usesCreatePseudo) {
 $.expr.pseudos.xxx = $.expr.createPseudo(function(param) {
 ...
 });
}
else {
 $.expr.filters.xxx = function(element, i, match) {
 ...
 };
}

Table 3.3 Pattern matching selectors

Selector Matches

$('p:matches(One)')... All paragraphs containing the text “One”

$('p:matches(One|Two)')... All paragraphs containing the text “One” or “Two”

$('p:matches(~chapter \\d+)')... All paragraphs containing the (case-insensitive) text
“chapter” followed by a space and one or more digits

$('p:matches("\\.\\.\\.$")')... All paragraphs ending with the text “...” (each “.” must
be escaped because they normally have a special
meaning)

Listing 3.5 A pattern matching selector (jQuery 1.8.0)

Define :matches
selectorb Real

selector
unction c

Accept or reject
the current element d

42 CHAPTER 3 Selectors and filters
This selector also requires a parameter to specify what pattern to match, so in jQuery
1.8.0 and later, you wrap it in a marked function (via createPseudo) to capture that
pattern (text) and assign that wrapper to extend $.expr.pseudos b. The selector
function c then creates a regular expression based on the pattern provided and tests
the text content of the current element against it d, returning true if it matches or
false if it doesn’t to accept or reject that element.

 Unfortunately, pseudo-class selectors may only take one argument to modify their
behavior. If you want to be able to specify case-insensitive pattern matches, you need
some way of indicating that within that one parameter. As shown earlier, you could
look for an initial tilde (~) character in the expression and interpret that as request-
ing a case-insensitive match. If you need a tilde as the first character, you can escape it
with a backslash (or two).

/* Regular expression match of content. */
$.expr.filters.matches = function(element, i, match) {
 var flags = (match[3][0] || '') == '~' ? 'i' : '';
 return new RegExp(match[3].substring(flags ? 1 : 0), flags).
 test(allText(element));
};

In jQuery 1.7.2 you define the selector function to extend $.expr.filters and to
receive several parameters identifying the current element (element) and the pattern
to match (match[3]) b. As with the newer version, you generate a regular expression
from the given pattern and test that against the text content of the current element
c, returning true to accept the element or false to reject it.

Listing 3.6 A pattern matching selector (jQuery 1.7.2)

JavaScript regular expressions

The use of regular expressions in JavaScript is an important part of using the language
effectively. Regular expressions appear in many of the plugins in this book to test val-
ues or to break strings up into their component parts. You should be familiar with
their syntax and usage patterns. See the appendix for a summary of regular expression
usage, or see some of the many references and tutorials available on the web on this
subject:

■ JavaScript RegExp Object—www.w3schools.com/jsref/jsref_obj_regexp.asp
■ Regular Expressions—https://developer.mozilla.org/en/JavaScript/Guide/

Regular_Expressions
■ Using Regular Expressions—www.regular-expressions.info/javascript.html
■ Regular Expression Tutorial—www.learn-javascript-tutorial.com/Regular

Expressions.cfm

Define :matches
selectorb

 Accept or reject
current element c

www.w3schools.com/jsref/jsref_obj_regexp.asp
https://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions
www.learn-javascript-tutorial.com/RegularExpressions.cfm
www.learn-javascript-tutorial.com/RegularExpressions.cfm

43Adding a pseudo-class selector
3.2.4 Adding element type selectors

You can also use pseudo-class selectors to make it easier to refer to multiple element
types, just as the built-in :input selector matches input, select, textarea, and but-
ton elements.

 For example, you could collect both ordered and unordered lists under a :list
selector, or all the emphasizing elements under a :emphasis selector. These selectors
could then be used as follows:

■ $('#main :list')... for all ordered and unordered lists in the #main ele-
ment,

■ $('p:has(:emphasis)')... for all paragraphs that contain an emphasized ele-
ment.

Both selectors use simple regular expressions to match the node name of the element,
as shown in the following listing. Because these selectors don’t accept any parameters,
they don’t require any special handling in jQuery 1.8.0, and the code is identical for
all versions.

/* All lists. */
$.expr.filters.list = function(element) {
 return /^(ol|ul)$/i.test(element.nodeName);
};

/* Emphasized text. */
$.expr.filters.emphasis = function(element) {
 return /^(b|em|i|strong)$/i.test(element.nodeName);
};

Because $.expr.filters is defined in jQuery 1.8.x as an alias for $.expr.pseudos,
you can use the former for all versions of jQuery. You add the function for the list
selector to that extension point and test whether the element name is either ol or ul
by using a regular expression b. That expression matches from the start of the text
(^) through to the end ($) looking for either of the given strings (|). Similarly, the
function for the emphasis selector tests for the element name being one of b, em, i, or
strong c, again via a regular expression.

3.2.5 Adding a foreign language selector

You’re not restricted to the element name or content; you can check anything related
to the element. For example, you could create a pseudo-class selector that finds all for-
eign language elements within the document.

 Use the selector as follows:

■ $('p:foreign')... for all paragraphs with a language specified other than the
user’s default language

■ $('p:foreign(fr)')... for all paragraphs marked as being in French

Listing 3.7 Selectors for lists and emphasized markup

Define :list
selectorb

Define :emphasis
selectorc

44 CHAPTER 3 Selectors and filters

E
lan

and co
The selector looks for the lang attribute on an element and operates in one of two
modes. When no parameter is provided, it matches all elements with a lang value set,
but not those that match the browser’s current language. If a particular language is
specified, it returns only those elements marked with that language. Listing 3.8 shows
the code for this selector in jQuery 1.8.0, and listing 3.9 shows the selector in jQuery
1.7.2.

NOTE A :lang selector added in jQuery 1.9.0 provides similar functionality.

/* Browser's default language. */
var defaultLanguage = new RegExp('^' +
 (navigator.language || navigator.userLanguage).substring(0, 2), 'i');

/* Foreign language elements. */
$.expr.pseudos.foreign = $.expr.createPseudo(function(language) {
 return function(element) {
 var lang = $(element).attr('lang');
 return !!lang && (!language ? !defaultLanguage.test(lang) :
 new RegExp('^' + language.substring(0, 2), 'i').
 test(lang));
 };
});

First you create a regular expression that will test for the default language specified
for the browser b. This selector may have a parameter provided, so in jQuery 1.8.0
and later it needs to use the marked function wrapper (createPseudo) to capture that
value (language) c, and have that extend $.expr.pseudos. The selector function
then looks for the lang attribute on the current element d and operates in one of
two modes based on the presence or absence of any parameter value. When no
parameter is provided, it matches all elements with a lang value set, but not those that
match the browser’s current language e. If a particular language is specified, it only
returns true for those elements marked with that language.

NOTE See section 3.2.1 for an explanation of the !! construct.

/* Browser's default language. */
var defaultLanguage = new RegExp('^' +
 (navigator.language || navigator.userLanguage).substring(0, 2), 'i');

/* Foreign language elements. */
$.expr.filters.foreign = function(element, i, match) {
 var lang = $(element).attr('lang');
 return !!lang && (!match[3] ? !defaultLanguage.test(lang) :
 new RegExp('^' + match[3].substring(0, 2), 'i').test(lang));
};

Listing 3.8 A foreign language selector (jQuery 1.8.0)

Listing 3.9 A foreign language selector (jQuery 1.7.2)

Create test for default
browser language

b

Define :foreign
selector cExtract

element
language d

And compare e

Define :foreign
selector

b

xtract
guage
mpare c

45Adding a set filter
The jQuery 1.7.2 code is basically the same as the newer version, except that the selec-
tor function accepts all the parameters directly and extends $.expr.filters b. As
before, it retrieves any lang attribute for the current element and compares that with
the parameter value supplied (match[3]) c.

3.2.6 Selectors from the Validation plugin

The following selectors are defined in Jörn Zaefferer’s Validation plugin.1 These selec-
tors, shown in listing 3.10, allow you to easily find all fields with no value, all fields with
some value, or all unchecked fields. Because they don’t require any parameters, the
selectors are implemented identically in all jQuery versions.

// Custom selectors
$.extend($.expr[":"], {
 // http://docs.jquery.com/Plugins/Validation/blank
 blank: function(a) {return !$.trim("" + a.value);},
 // http://docs.jquery.com/Plugins/Validation/filled
 filled: function(a) {return !!$.trim("" + a.value);},
 // http://docs.jquery.com/Plugins/Validation/unchecked
 unchecked: function(a) {return !a.checked;}
});

Instead of extending $.expr.filters, Jörn extends $.expr[":"] b, which is an alias
for the former. The blank selector function returns true if there is no value (includ-
ing all spaces) in field a c. (Recall that JavaScript evaluates a blank string as false.)
Conversely, the filled selector function returns true if there is some field value for a
d (negating the result of the previous blank function). The unchecked selector func-
tion returns true if the checked attribute of the field a is null or false e.

 Note that these selectors return many elements that you wouldn’t normally expect,
so they should probably be combined with other form element selectors, such as
:checkbox:unchecked.

3.3 Adding a set filter
Another type of pseudo-class selector that can be created is the set filter. Whereas previ-
ous selectors have looked at a single node, set filters take into account the entire col-
lection of elements in the current selection. Typical examples are the :first, :last,
:odd, and :even pseudo-class selectors.

NOTE The Sizzle selector engine contained substantial changes in the version
embedded in jQuery 1.8.0 and later. For completeness, both pre- and post-
1.8.0 versions of the custom selectors are included in this chapter.

1 jQuery Validation Plugin, http://jqueryvalidation.org/.

Listing 3.10 Validation selectors

Add pseudo-class
selectors

b

Match
 blank
fields c

Match
non-blank
fields

d

Match unchecked fieldse
www.allitebooks.com

http://jqueryvalidation.org/
http://www.allitebooks.org

46 CHAPTER 3 Selectors and filters
3.3.1 The structure of a set selector

The :last selector is a built-in set selector that returns the final item in the previously
matched collection of elements. Using it as an example, let’s look at how a set selector
works. It’s defined in jQuery 1.8.0 as shown in the next listing; listing 3.12 contains the
jQuery 1.7.2 version.

var Expr = Sizzle.selectors = {
 ...
 setFilters: {
 ...
 "last": function(elements, argument, not) {
 var elem = elements.pop();
 return not ? elements : [elem];
 },
 ...
 }
};

In jQuery 1.8.0 and later, a new set filter extends Expr.setFilters (or its alias
$.expr.setFilters) by providing the name of the new filter and assigning it a func-
tion to process the current set of elements b. The parameters to this function are the
current array of elements (elements), any parameter value supplied to the selector
(argument), and a Boolean flag indicating whether the filter should be reversed
(not). The function must return the filtered set of elements as an array c. jQuery
1.8.0 makes only a single call to a set filter function, which processes the entire list in
one go and returns either the requested elements or their inverse, depending on the
value of the not flag.

NOTE In jQuery 1.8.2 there were further changes to the setFilters imple-
mentation. Internally jQuery now calls the createPositionalPseudo func-
tion for these filters. But that function isn’t visible externally and new
setFilters can still be created using the techniques described here.

var Expr = Sizzle.selectors = {
 ...
 setFilters: {
 ...
 last: function(elem, i, match, array) {
 return i === array.length - 1;
 },
 ...
 },
 ...
};

Prior to jQuery 1.8.0, the selector function still extends Expr.setFilters (or its alias
$.expr.setFilters) and is called for each element in the set in turn b. As such, the

Listing 3.11 The :last selector definition (jQuery 1.8.0)

Listing 3.12 The :last selector definition (jQuery 1.7.2)

Define :last
set selector

b

Return filtered
element setc

Define :last
set selector

b

Accept or reject
current elementc

47Adding a set filter
parameters for the function are the current element (elem), its position within the list
(i), the match components from the selector expression (match), and the collection
of elements that make up the list (array). The function returns true if the current
element is accepted or false if it’s not c.

Using the templates shown previously, you can create your own set selectors, such as a
middle elements selector and an updated position selector that handles indexing
from the end of the list.

3.3.2 Adding a middle elements set selector

You can define a :middle selector that discards the first and last elements of a set,
which may be useful in list item processing. It’s used as follows:

$('li:middle')...

The selector function is shown in the following listing for jQuery 1.8.0, and in listing
3.14 for jQuery 1.7.2.

$.expr.match.POS = new RegExp(
 $.expr.match.POS.source.replace(/odd/, 'odd|middle'), 'ig');

/* Middle elements. */
$.expr.setFilters.middle = function(elements, argument, not) {
 var firstLast = [elements.shift(), elements.pop()];
 return not ? firstLast : elements;
};

For jQuery versions 1.8.0 and 1.8.1, you need to add the selector’s name into the regu-
lar expression that extracts them from the full selection string, so you redefine the

Identifying set filters prior to jQuery 1.8.2

Because set filters are treated differently from other pseudo-class selectors prior to
jQuery 1.8.2, they must be identified somehow so that they can be invoked correctly.
jQuery does this by explicitly matching their names in the regular expression within
the Sizzle selection engine that extracts them from the selection string: $.ex-
pr.match.POS, for positional selectors.

var pos = ":(nth|eq|gt|lt|first|last|even|odd)(?:\\((\\d*)\\)|)(?=[^-]|$)";
$.expr.match.POS = new RegExp(pos, "ig");

To add a new set filter into earlier jQuery versions, you also need to add its name into
that list. If you don’t, you’ll receive an error: “Syntax error, unrecognized expression:
unsupported pseudo: xxxxxx.” You’ll see how to add the name when creating a new
selector in the next section.

jQuery 1.8.2 identifies set filters automatically, and there’s no longer a need to update
the $.expr.match.POS regular expression.

Listing 3.13 A middle elements selector (jQuery 1.8.0)

Recognize a new set selectorb

Define
:middle set
selector

c

Return filtered
element setd

48 CHAPTER 3 Selectors and filters
$.expr.match.POS regular expression, as defined in the previous section, to place your
new selector name after the last one in the existing list b. The definition of the existing
regular expression is retrieved via its source attribute, before replacing the text odd
with odd|middle, and recompiling the new version of the expression back into the orig-
inal variable. Don’t forget to include the ig flags that indicate case-insensitive matches
and multiple (global) matches. You can omit this change from jQuery 1.8.2.

 From jQuery 1.8.0 on, you must deal with the entire set of elements as a whole and
return the filtered list from the function, which extends $.expr.setFilters c. In
this case, you extract the first and last items from the list (using the standard Array
functions shift and pop) and save them in a new array d. Based on the value of the
not parameter, you then return either those two items (not is true) or the remaining
middle items of the list (not is false) directly.

$.expr.match.POS = new RegExp(
 $.expr.match.POS.source.replace(/odd/, 'odd|middle'));
$.expr.leftMatch.POS = new RegExp(
 $.expr.leftMatch.POS.source.replace(/odd/, 'odd|middle'));

/* Middle elements. */
$.expr.setFilters.middle = function(element, i, match, list) {
 return i > 0 && i < list.length - 1;
};

In the earlier versions of jQuery, you also need to add the name for a new set filter
into the regular expression that distinguishes them and extracts them from the selec-
tion string. Again, you update the $.expr.match.POS regular expression to include
the new name b, although the earlier jQuery versions didn’t add any flags to the reg-
ular expression. But prior to jQuery 1.8.0, you also need to add the new name to a sec-
ond regular expression that is derived from the first (in jQuery 1.8.0 this happens
automatically). If you are using one of these earlier versions of jQuery, you update
$.expr.leftMatch.POS in the same manner as the previous expression.

 The selector function here handles each element from the set separately c. You
compare the position of the element within the set and reject the first and last by
returning false for them d.

3.3.3 Enhancing the equals selector

One thing that’s missing from jQuery is the ability to use a negative index in the :eq
selector to specify positioning from the end of the collection, even though this func-
tionality is available in the corresponding eq() function.

 You could add it fairly easily to bring the two into line. Then you could use the
selector as follows:

■ $('li:eq(1)')... to find the second list item
■ $('li:eq(-2)')... to find the second last list item

Listing 3.14 A middle elements selector (jQuery 1.7.2)

Recognize a new
set selectorb

Define
:middle set
selector

c

Accept or reject
current elementd

49Adding a set filter

Rede
:eq

sele
NOTE From jQuery 1.8.1 on, this functionality is now standard and doesn’t
need to be added as an enhancement.

Currently, though, entering a minus sign into an :eq selector results in the expression
being ignored and the selector returning nothing or throwing an error. You first have
to allow the use of a minus sign for this selector before you can implement the new
functionality.

 This listing shows the code for jQuery 1.8.0; listing 3.16 shows the same for jQuery
1.7.2.

$.expr.match.POS = new RegExp(
 $.expr.match.POS.source.replace(/\\d*/, '-?\\d*'), 'ig');

/* Allow index from end of list. */
$.expr.setFilters.eq = function(elements, argument, not) {
 argument = parseInt(argument, 10);
 argument = (argument < 0 ? elements.length + argument : argument);
 var element = elements.splice(argument, 1);
 return not ? elements : element;
};

You allow the entry of a minus sign by adjusting the expression used for set filters: the
$.expr.match.POS pattern from the Sizzle selection engine. You redefine the expres-
sion to allow an optional minus sign before the numbers within the selector b.
Within the existing POS regular expression, retrieved via its source attribute, you look
for the occurrence of \d*, indicating any number of numeric digits, and replace that
with -?\d*, to add the optional minus sign. Note that the backslashes must be escaped
so that they can be used as literal values.

 Then you can redefine the eq function itself to take a negative value into account
c. If such a number is found, you add it to the length of the list of elements (remem-
bering that it’s negative and will be subtracted) and use the result as the index to com-
pare against d. A positive value is passed through unchanged, retaining the existing
functionality. With the required index computed, you remove the identified element
and return that or the remainder of the list, depending on the value of the not
parameter e.

$.expr.match.POS = new RegExp(
 $.expr.match.POS.source.replace(/\\d*/, '-?\\d*'));
$.expr.leftMatch.POS = new RegExp(
 $.expr.leftMatch.POS.source.replace(/\\d*/, '-?\\d*'));

/* Allow index from end of list. */
$.expr.setFilters.eq = function(element, i, match, list) {
 var index = parseInt(match[3], 10);

Listing 3.15 Enhancing the equals selector (jQuery 1.8.0)

Listing 3.16 Enhancing the equals selector (jQuery 1.7.2)

Allow negative
parameter values b

fine
 set
ctor c

Calculate
position d

Return filtered
element set e

Allow negative
parameter valuesb

Redefine :eq
set selector

c

Calculate positiond

50 CHAPTER 3 Selectors and filters
 index = (index < 0 ? list.length + index : index);
 return index === i;
};

The jQuery 1.7.2 code is similar to the 1.8.0 code. As well as adjusting the normal set fil-
ter pattern ($.expr.match.POS), you must also change the corresponding
$.expr.leftMatch.POS pattern in the same way b, as for the previous middle selector.
Then redefine the eq function c, extract the parameter value from the component
matches (match[3]), and compute the required index based on its sign d. Return
true to accept the current element based on its position or false to reject it e.

3.4 Summary
jQuery works by allowing you to select a collection of elements upon which you per-
form some operation. It offers multiple ways of accessing the elements—by element
name, by ID or class, by attribute value, and by pseudo-class selectors—and can com-
bine these for more specific queries. Although numerous options are available, some-
times it’s more concise, legible, and consistent to define a custom selector to find what
you’re after.

 You’ve seen how to create new simple pseudo-class selectors, such as :matches and
:emphasis, which look at one node in isolation. Then you learned how to define set
filters, such as :middle, which take into consideration the current collection of ele-
ments. Using these techniques you can create your own custom selectors to ease your
development process.

 In the next chapters, you’ll see several design principles for jQuery plugins and a
framework that implements these principles. You’ll also learn how to package your
plugin into a standalone module that can be reused on many pages.

What you need to know

Create a pseudo-class selector to standardize or clarify a selection process.

Extend $.expr.pseudos to add a pseudo-class selector ($.expr.filters before
jQuery 1.8).

Use $.expr.createPseudo to capture a parameter value.

Extend $.expr.setFilters to take into account the entire set of matched elements.

JavaScript regular expressions can help in matching patterns of characters.

Try it yourself

Create a replacement selector for the standard :header selector that includes the
new HTML5 header element in addition to the existing h1 to h6 elements.

Accept or reject
current elemente

Part 2

Plugins and functions

The most common third-party extension is a plugin that operates on a col-
lection of elements selected from the document. This part of the book looks at
how to implement such extensions using best practice techniques.

 Before launching into the plugin itself, chapter 4 discusses a number of best
practice principles that you should apply to your own development efforts.
These guidelines will help to ensure you produce a robust and useful plugin.

 Chapter 5 goes through the process of developing a collection plugin—one
that operates on a collection of elements on the page. The use of a plugin frame-
work helps apply the principles described in the previous chapter, while allowing
you to concentrate on the actual functionality of your plugin.

 A function plugin doesn’t work with selected elements, but provides addi-
tional functionality for the page as a whole in a consistent manner. Chapter 6
examines two examples of this sort of extension to help deal with localization
issues and with cookies for your pages.

 To ensure the widest audience for your plugin you should test it, package it
for distribution, document its abilities, and provide a showcase of what it can do.
Chapter 7 covers all of these aspects of the development process.

52 CHAPTER

Plugin principles
The scope for a jQuery plugin is wide open—from basic class changes and event
handlers, through selectors and animations, to full-blown graphical widgets with
remote access. The only limit is your imagination.

 In the previous chapter you saw how to create custom selectors for use in
jQuery, giving you some simple examples of one way to enhance its abilities. Now
we’ll take a step back and consider the plugin design and creation process as a
whole. Whatever type of plugin you choose to create, you should follow best prac-
tice principles so that your plugin will survive and prosper within the wider jQuery
and JavaScript environments.

 This chapter discusses those principles and explains why they should be applied
to your plugins. It also looks at the benefits of creating a plugin rather than just
coding inline, and presents some questions to consider when designing your own
plugin.

This chapter covers
■ Plugin design
■ Guiding principles for development
53

54 CHAPTER 4 Plugin principles
4.1 Plugin design
Deciding what to implement as a plugin is the first challenge. Generally candidates
arise from a specific need in one of your projects. If you find yourself applying the
same functionality to elements across different web pages, consider creating a plugin
that can be reused as needed. For example, maybe you have several drop-down con-
trols that operate together to allow the user to select a date, and you want to ensure
that the number of days available matches the number of days in the selected month,
to prevent the user from picking an invalid date.

4.1.1 Plugin benefits

The benefits of creating a plugin include the following:

■ Ease of reuse
■ Consistency
■ Reduced maintenance

Maximize your code reuse by creating a plugin for common functionality. Then just
load the plugin code into your page and apply it to your selected elements with a cou-
ple of lines of script, as shown in the following listing. Use your code in similar situa-
tions by providing options to customize the plugin for each instance.

<script type="text/javascript" src="js/jquery.js"></script>
<script type="text/javascript" src="js/jquery.myplugin.js"></script>
<script type="text/javascript">
$(function() {
 $('.myelements').myplugin({option1: true, option2: 'XYZ'});
});
</script>

By reusing the plugin code and styling, you ensure that the same functionality is
applied whenever that plugin is used, and you gain a consistency of look and feel
across your projects.

 If any bugs are found in the code, you only need to make the corrections in one
place to have it apply to all instances in your projects. In-depth testing also only needs
to be done once, as the code base doesn’t change between implementations. Testing
should be simpler and more repeatable, because you have more control over the envi-
ronment for those tests. Similarly, any improvements made to the code are also imme-
diately available throughout the application.

4.1.2 Planning the design

Once you have an idea for a plugin, lay out its basic design and consider these ques-
tions:

■ What will it look like on the page (assuming it has a UI component)?
■ How will it interact with the user—via keyboard, mouse, programmatically?

Listing 4.1 Loading and invoking a plugin

55Plugin design
■ What state does it need to manage for each instance? Or across all instances?
■ How might the user want to customize the plugin’s appearance or behavior?
■ Which internal events would a user be interested in?

Don’t be too ambitious. Keep your plugin focused on the problem it’s designed to
solve. You may be tempted to continually add new functionality to the plugin as new
ideas and circumstances arise. In each case, ask these questions:

■ Are the new abilities closely related to the plugin’s main goal?
■ Are they applicable across a number of instances, or are they just overhead for

most use cases?
■ Could or should the new abilities be implemented in a more generic manner to

apply to a wider audience?

For example, an earlier incarnation of my Datepicker plugin had the built-in ability to
pop up a dialog box to ask for a particular date. At the time, this seemed like useful
and consistent functionality, because it involved obtaining a date from the user. But
this introduced more complexity into the code while reducing its flexibility. It became
obvious that the placement of the Datepicker within a dialog box could be done just
as easily and with much more control over the other contents of the dialog box by
using a separate Dialog plugin. Now the dialog box has additional functionality, such
as being draggable and resizable, without having to duplicate existing code, and the
Datepicker is less complex to boot. Figure 4.1 compares the two versions.

Draggable via title bar

Additional
content

Resizable

Figure 4.1 Previous built-in Datepicker dialog box (left), compared with new jQuery UI dialog box with
embedded Datepicker (right)

56 CHAPTER 4 Plugin principles
4.1.3 Modularize the plugin

If the new functionality is complex enough that you want to avoid repeating the code
numerous times, but it may not be applicable in many circumstances, you can extract
the code into a separate module that can be optionally loaded by those users who
want that specific ability. This way you retain the benefits of the plugin format, allow
basic users to load just the basic functionality, and still have the additional code avail-
able for those who need it.

 For example, a graphing plugin may have one or more separate modules for the
less widely used chart types, such as scatter charts, radar charts, and map charts. Most
users benefit from the reduced size of the main code, but those who want these extra
charts can include them with a single line to import the extra script.

4.2 Guiding principles
I collected the following principles during the development of my plugins. They rep-
resent what I believe to be best practices for plugin design. They help to minimize
your plugin’s interference with the wider jQuery and JavaScript environments, while
protecting your code from outside interference.

NOTE Most of these principles are embodied in the plugin framework
described in chapter 5, and in the jQuery UI widget framework presented in
chapter 8, or are covered in chapter 7. The implementation and more
detailed discussion of these principles is left until then.

4.2.1 Provide progressive enhancements

Ideally, plugins should provide progressive enhancements to your web pages. This
means that the pages still function even if the user doesn’t have JavaScript enabled,
but users receive a richer experience if they do have it active.

 The Datepicker is a good example of this principle. Without JavaScript, you still
have a text input field into which the user can type a date, hopefully in the correct
date format. With JavaScript, you gain the possibility of a popup calendar that the user
can move through to choose their desired date, as shown in figure 4.2. The calendar

Basic input

Popup calendar

Calendar button

Today

Figure 4.2 The Datepicker plugin progressively enhances a standard input field.

57Guiding principles
lets you see the dates in context and may impose restrictions on what can be chosen or
offer additional feedback on the significance of certain days. A selected date popu-
lates the input field, just as if it had been entered manually, but ensures that it’s in the
correct format.

4.2.2 Only claim a single name and use that for everything

You should only claim a single name within the jQuery namespace and use that
throughout to refer to your plugin. The purpose of this principle is to minimize the
possibility that your plugin will clash with another.

 Your name should be long enough to convey the purpose of the plugin and to
reduce the possibility of interference, without being excessive. Good examples are
datepicker and validate. Unfortunately, slider isn’t such a good name. It’s used
within jQuery UI to identify a control to select a value within a range, but also by many
other plugins for a control that manages a series of images or content with transitions
between them.

 Some plugins use one name for applying new functionality to collections of DOM
elements, and then another, or several more, to provide additional features not
directly related to such collections. For example, the Validation plugin uses validate
as its main function, but it also defines valid, rules, and removeAttrs functions for
use with jQuery collections. Every time you use another name, you increase the possi-
bility that one of them will conflict with some other plugin, rendering one or both of
them inoperable.

 If you can choose one name within the jQuery namespace and only use that to
interact with your plugin, then you greatly reduce the likelihood that you’ll interfere
with another plugin.

 Allowing only one name for all your exchanges with the plugin may seem like a
major hurdle to overcome, because you may want to provide additional interactions
with the elements managed by your plugin. One way to provide these extra features, at
least on collections of elements, is the method pattern described in section 4.2.6.

4.2.3 Place everything under the jQuery object

Placing your plugin within the jQuery namespace, either directly or via one of its
extension points, removes the possibility that it’ll interfere with code from other
libraries. In many cases, you need to extend a certain jQuery attribute anyway to have
the plugin integrate with jQuery’s other abilities. Also, because you’re developing a
jQuery plugin, users expect to refer to it via jQuery itself.

 For example, the Debug plugin (http://jquery.glyphix.com/), which allows you to
write logging messages to the browser’s console for debugging purposes, isn’t tied to
any particular elements on the page and could be implemented as a standalone pack-
age. But it uses jQuery’s capabilities to make its own code simpler, so it qualifies as a
jQuery plugin. Its main function is named log and is attached directly to the jQuery
object to be invoked, as follows:

$.log('Debugging message');

58 CHAPTER 4 Plugin principles
Unfortunately, from the viewpoint of these principles, it then adds a collection func-
tion named debug to jQuery, as well as a global DEBUG flag. It’d be better to see this
new function named the same as the main function and to have the global flag as
$.log.debug to avoid potential interference from other libraries.

 There’s still a potential for conflicts between plugins within the jQuery namespace,
but using a single named access point reduces that risk. Also, if you do encounter
another plugin with the same name, it’s likely to be implementing very similar (if not
the same) functionality as your own, so it’s probable that both wouldn’t appear within
one page.

4.2.4 Don’t rely on $ being the same as jQuery

jQuery is a JavaScript library, along with various others such as Prototype, MooTools,
and script.aculo.us. At times, users want to incorporate features from several of these
in one page, and because JavaScript doesn’t have a well-defined package or module
structure, there can be conflicts between the libraries. In particular, all these libraries
use $ as a shorthand for their main library function.

 The designers of jQuery recognize this problem and have included mechanisms
within jQuery to overcome it. Although you could always use jQuery when referring to
the library, developers are often lazy typists and prefer to use fewer characters where
possible, especially when this term is one of the most widely used.

 In order to allow a shorter reference to jQuery and to avoid the use of $ altogether,
you can use the noConflict function to return $ to whatever was using it previously,
while defining a new variable to be used instead. The following listing shows what this
looks like in practice, creating a new variable (jq) that’s a synonym for jQuery.

var jq = jQuery.noConflict();
jq(document).ready(function() {
 jq('p.main')...
});

In chapter 5, you’ll see another mechanism for ensuring that $ does mean jQuery
without the need for the noConflict call, which allows you to use the former through-
out your own code.

4.2.5 Hide the implementation details by using scope

As mentioned earlier, JavaScript doesn’t have a well-defined package or module struc-
ture. Unless otherwise specified, variables are declared within a global namespace
beneath the window object, which may lead to conflicts between different plugins as
they end up altering each other’s variables. This type of interference can be difficult
to track down, and it’s better to avoid it in the first place.

 You need some way to hide the internal workings of your plugin from others on
the page to ensure that you don’t interfere with their operation and, more impor-
tantly, that they don’t interfere with yours. In object-oriented programming (OOP)

Listing 4.2 Avoiding library conflicts

Restore $ variablebUse replacement
variablec

59Guiding principles
this is called encapsulation. Fortunately JavaScript provides a mechanism for doing this
in the form of scope.

 When you define a function in JavaScript, you create a new scope: a new section of
the code that has its own set of variable and function names. Within that function you
can still see items that were declared in surrounding scopes, but code external to the
function can’t access the internally declared items. The following listing demonstrates
this.

var i = 0;

function one() {
 i = 1;
 alert(i);
}

function two(i) {
 i = 2;
 alert(i);
}

function three() {
 var i = 3;
 alert(i);
}

alert(i); // 0 – global variable
one(); // 1 – global variable
two(i); // 2 – parameter variable
three(); // 3 – local variable
alert(i); // 1 – global variable

A global variable i is declared and assigned the value 0 B. When function one is
called, it also references that global variable, updates it, and displays the result c. But
the call to function two copies the value of the global i into a separate parameter of
the same name and only updates and displays the local copy d. Similarly, function
three defines a local variable i that’s separate from the global one, assigns it a value,
and displays that e. When the final alert is executed, it refers back to the global vari-
able i that’s unchanged since the call to one and displays that earlier value f. The
code results in this sequence of alerts: 0, 1, 2, 3, 1.

 To protect your own code, you can wrap it in a function call to create a new scope
around it. See section 5.3.2 for how this technique is used when writing your plugin.

4.2.6 Invoke methods for additional functionality

Having claimed only one name within the jQuery namespace, you then need some
way of providing additional functionality through that name. jQuery UI uses a pattern
in which you call your one function and pass in the name of a method you wish to
invoke, optionally providing additional parameters to modify its action.

Listing 4.3 An example of different variable scopes

Global variable
declarationb

Reference
global variablec

Parameter hides
global variabled

Local declaration
hides global variablee

Unchanged
global variable

f

60 CHAPTER 4 Plugin principles
 You initialize the main functionality of the plugin by calling its function directly on
a collection of DOM elements, such as for the jQuery UI Tabs plugin:

$('#tabs').tabs(); // With optional initial settings

You can then interact with these elements by specifying which method you want and
providing any required parameters:

$('#tabs').tabs('disable'); // Disable the tabs
$('#tabs').tabs('option', {active: 2}); // Open the third tab

The plugin framework described in chapter 5 and the jQuery UI widget framework in
chapter 8 both provide this capability in an easy-to-use manner.

4.2.7 Return the jQuery object for chaining whenever possible

One of the mainstays of jQuery is its ability to chain function calls that apply to the
same collection of DOM elements. This construct allows for compact code, and users
expect new functions to behave in the same manner.

$('#myElement').myplugin({field: value}).show();

This capability is easily provided by returning the this variable, or its equivalent (such
as the result of the each function), from your collection plugin’s main function. Both
the plugin framework described in chapter 5 and the jQuery UI widget framework in
chapter 8 provide this functionality.

 There are times when you want to return specific values from an instance of the
plugin, such as the current value of the wrapped element. Of course you can do this,
breaking the ability to chain further calls. Such deviations should be clearly docu-
mented so that users know what to expect from your plugin.

4.2.8 Use the data function to store instance details

Generally you’ll need to store some state information about each plugin instance,
such as its option values, its current disabled status, or references to other elements
that it manages. Such details must be easily accessible for each targeted element.

 The recommended mechanism is to use the jQuery data() function and add the
details as a single object attached to the element targeted by the plugin. Using your
single plugin name to identify the information once again reduces the likelihood of a
clash with another plugin. As well as being able to access the details within your plu-
gin, there’s the possibility for external access. This may prove useful with tools such as
FireQuery (a FireBug extension for Firefox) for debugging purposes.

 For example, you can store information against an element by calling data and
providing its name and value. The value can be a simple number or string, or even an
object with its own attributes:

$('#myElement').data('simple', 123);
$('#myElement').data('complex',
 {url: 'www.example.com', timeout: 1000, cache: true});

61Guiding principles
You’d then retrieve the stored information by again calling data, but only providing
the name of the required detail:

var simple = $('#myElement').data('simple'); // = 123
var complex = $('#myElement').data('complex');
 // = {url: 'www.example.com', timeout: 1000, cache: true}

You can obtain all information against an element by calling data without any name:

var all = $('#myElement').data();
 // = {complex: {url: 'www.example.com', timeout: 1000, cache: true},
 // simple: 123}

In addition, if the targeted element is removed from the DOM, the associated details
are also cleanly removed, preventing any memory leaks.

4.2.9 Anticipate customizations

Although your plugin provides certain functionality, there are usually aspects that may
change between invocations. Users will always want to customize the way a plugin
works or its appearance to fit their own requirements. If you can predict what users
might want to change and provide options to cater for that, they’re more likely to use
your plugin.

 For example, my Datepicker plugin provides many options for changing its behav-
ior, some of which are shown in figure 4.3.

 Obvious candidates for customization are any text values displayed by the plugin.
These definitely need to be changed if you want to target other languages (see section
4.2.11). Magic numbers (literal values with special meaning) are also candidates for
inclusion as options. These values may apply in the situations you envisage, but some-

Figure 4.3 Datepicker customizations: (top row) default configuration, with buttons
instead of links, with year navigation as well as month traversal; (bottom row) without the
direct selection of month and year, and showing two months.

62 CHAPTER 4 Plugin principles
one will come along and try to apply your plugin in a new way and will want to modify
that setting.

 The plugin framework in chapter 5 and the jQuery UI widget framework in chap-
ter 8 show how options are maintained against an element and how they’re used to
alter a plugin’s appearance or behavior.

 Listen to the feedback from your plugin’s users. They provide valuable informa-
tion about how they use it and what sorts of things they want to alter. Try to incorpo-
rate their suggestions as options for the next person to use, so that you can happily
point to a particular option to solve someone else’s problem.

 Don’t use options to style your plugin. Instead, provide appropriate markup that’s
annotated with classes that can be styled via external CSS files. Such a separation of
content and style is a best practice and makes it much easier for the user to change
your plugin’s appearance. See section 4.2.12 for an example.

4.2.10 Use sensible defaults

Allowing users to configure the plugin to behave the way they want is desirable, and
many options may be available to customize all aspects of the plugin. But you don’t
want to overwhelm the user with choices and force them to provide lots of configura-
tion just to use the plugin in a straightforward application.

 All your options should have default values set—values that make sense in the
majority of cases. This allows the user to apply the plugin with no options (they’re all
really optional) and still have it function in a standard manner. They can then
enhance the plugin’s behavior by overriding options on setup, or at a later stage by
changing an option value.

 For example, my Datepicker plugin has more than 40 options (not counting local-
ization ones), but none of them have to be changed from their default values for the
plugin to function in its basic configuration. Some of the options are shown in the fol-
lowing listing.

this._defaults = {
 pickerClass: '', // CSS class to add to this instance of the datepicker
 showOnFocus: true, // True for popup on focus, false for not
 showTrigger: null, // Element to be cloned for a trigger, null for none
 showAnim: 'show', // Name of jQuery animation for popup,
 // '' for no animation
 showOptions: {}, // Options for enhanced animations
 showSpeed: 'normal', // Duration of display/closure
 popupContainer: null, // The element to which a popup calendar
 // is added, null for body
 alignment: 'bottom', // Alignment of popup -
 // with nominated corner of input:
 // 'top' or 'bottom' aligns depending on language direction,
 // 'topLeft', 'topRight', 'bottomLeft', 'bottomRight'
 fixedWeeks: false, // True to always show 6 weeks,
 // false to only show as many as are needed
 firstDay: 0, // First day of the week, 0 = Sunday, 1 = Monday, ...

Listing 4.4 Options for the Datepicker plugin

63Guiding principles
 ...
 onDate: null, // Callback as a date is added to the datepicker
 onShow: null, // Callback just before a datepicker is shown
 onChangeMonthYear: null, // Callback when a new month/year is selected
 onSelect: null, // Callback when a date is selected
 onClose: null, // Callback when a datepicker is closed
 altField: null, // Alternate field to update in synch
 // with the datepicker
 altFormat: null, // Date format for alternate field,
 // defaults to dateFormat
 constrainInput: true, // True to constrain typed input to
 // dateFormat allowed characters
 commandsAsDateFormat: false, // True to apply formatDate
 // to the command texts
 commands: this.commands // Command actions that may be added
 // to a layout by name
};

Specifying all the possible options and providing default values for them also serves to
document the ways in which the plugin can be configured.

 Not every plugin can be reduced to requiring no options on initialization. For
example, my Countdown plugin isn’t particularly useful without a target time to count
down to, but there’s no one default value that would apply in most cases.

 In a similar vein, you should provide default styling for the plugin as an external
CSS file, based on the markup and classes you use. These default styles can then be
overridden by users, either inline or via their own CSS files.

4.2.11 Allow for localisation/localization

To reach the widest audience for your plugin, you need to consider those parts of the
world that don’t speak English, or use a different variant of English. Any text values
used by the plugin should be grouped together so that they can be easily translated
into another language and then applied to your plugin to override its default values.

 Localizing content doesn’t just apply to text. Don’t forget that date, number, and
currency formats differ between regions. Such options should also be placed along-
side the text options for translation. In addition, several languages read from right to
left, and your plugin should cater to this as well. Figure 4.4 shows some localizations
for my Datepicker plugin.

Figure 4.4 Datepicker localization: French, Japanese, and Arabic

64 CHAPTER 4 Plugin principles
Some of the differences between these versions, other than the obvious textual
changes, are as follows:

■ The drop-downs for selecting month and year appear in different orders.
■ Each calendar starts on a different day of the week: Monday for French, Sunday

for Japanese, and Saturday for Arabic.
■ Arabic reads from right to left, but the other two read left to right.

The plugin framework presented in chapter 5 provides mechanisms for localizing
your plugin to make it simple for others to provide translations. By following this
approach, the Datepicker now has over 70 localizations available, all contributed by
members of the jQuery community.

4.2.12 Style your plugin with CSS

Provide a CSS file with your plugin to style its appearance, as shown in figure 4.5. As
well as being a best practice (separating styling from content), this allows the user to
override or customize the plugin’s display with minimal effort.

Add classes to the elements created and maintained by your plugin to enable them to
be uniquely identified and styled appropriately. Try to use a common prefix (related
to the plugin name) to help distinguish your classes from others that may be on the
elements and to reduce the possibility of clashing with existing styles.

 For example, the Datepicker has the basic structure and associated classes shown
in the next listing. This markup is used in conjunction with the CSS styling from listing
4.6 to achieve the displays shown previously.

<div class="datepick" style="width: 218px;">
 <div class="datepick-nav">
 <Prev
 Today
 Next>

Listing 4.5 Datepicker markup structure

Figure 4.5 Styling the Datepicker plugin with CSS: default, Redmond, and Humanity styles

Overall Datepicker
container

Navigation
container Navigation

links

65Guiding principles
 </div>
 <div class="datepick-month-row">
 <div class="datepick-month">
 ...
 </div>
 </div>
 ...
</div>

.datepick {
 background-color: #fff;
 color: #000;
 border: 1px solid #444;
 border-radius: 0.25em;
 font-family: Arial,Helvetica,Sans-serif;
 font-size: 90%;
}
.datepick a {
 color: #fff;
 text-decoration: none;
}
.datepick-nav {
 float: left;
 width: 100%;
 background-color: #000;
 color: #fff;
 font-size: 90%;
 font-weight: bold;
}
.datepick-cmd {
 width: 30%;
}
.datepick-month-row {
 clear: left;
}
.datepick-month {
 float: left;
 width: 15em;
 border: 1px solid #444;
 text-align: center;
}
...

If you use options for styling purposes and apply them directly to the elements within
your plugin, you run the risk of the user being unable to change the look of the com-
ponents managed by the plugin. Inline CSS styles can only be overridden by external
styles if you add the !important imperative, but you should avoid the use of this
marker when possible.

 Also, many properties are available to style each element, so how do you choose
which ones to provide as plugin options? What if the user wants to change some other
aspect of the style? They would have to mix plugin options with CSS rules, making it
harder to see where the effects originate.

Listing 4.6 Datepicker styling

A row of months

An individual
month

The Datepicker container

The navigation container

Each navigation link

A row of months

An individual month

66 CHAPTER 4 Plugin principles
4.2.13 Test on the major browsers

Once again, to maximize the use of your plugin, it needs to work on all the major
browsers, as shown in figure 4.6. The plugin should behave the same way on all plat-
forms and should look much the same as well.

 I typically develop in Firefox, and the code then generally works in Chrome and
Safari too. Internet Explorer often requires special attention, especially if you want to
support its older versions.

4.2.14 Create a repeatable test case suite

Use an automated testing tool, such as QUnit, to produce a repeatable set of tests that
can be run quickly and easily when making changes. The tests should cover all the
options, methods, and functions available within the plugin. But QUnit doesn’t test
various visual aspects of the plugin, so you still have to fire up a sample page in each of
the browsers.

 I find that creating a demonstration page for your plugin serves two purposes.
First, it shows a prospective user what the plugin can do, and possibly shows them the

Firefox

Chrome

Internet
Explorer

Figure 4.6 Test your plugin in the major browsers to ensure the same appearance and behavior.

67Guiding principles
code that allows them to do it. Second, it provides a visual test bed that lets you see all
aspects of the plugin and check its appearance in all the browsers.

 Chapter 7 looks at testing plugins in more detail using QUnit.

4.2.15 Provide demonstrations and documentation

No matter how great your plugin is, if users don’t understand how to apply it or con-
figure it, it’s not going to be widely used.

 Each plugin should have a demonstration page that shows off most, if not all, of
the plugin’s abilities, as shown in figure 4.7 for the MaxLength plugin. As an added
bonus, you should include the code that you use to achieve the various behaviors so
that users can find what they’re after and immediately copy the code to apply it in
their own pages.

 You should also document all of your plugin’s abilities. Although there are likely to
be comments within the code (at least, there should be), not everyone wants to plow
through the script to find out how to use it. Provide a reference page for the plugin that

Description

Version and
licensing

Download

Demonstrate all
abilities

Increase
maximum

length

Allow text
overflow

Figure 4.7 The MaxLength plugin demonstration page showing the effects of options

68 CHAPTER 4 Plugin principles
lists all of its configuration options, all of its methods, and any other functions that it
provides. Figure 4.8 shows some of the documentation for the MaxLength plugin.

 Each option should show its name, its expected type or types, its default value so
users know what to expect from it, and a description of its purpose. If the option
requires a restricted set of values, list and explain each one. If it has internal structure,
such as an object map, then detail that structure, including inner attributes and their
types and purposes. Provide sample code when the option is more than a simple
string, number, or Boolean flag.

 Similarly, each method should show its name and any parameters that it uses,
along with its expected type, purpose, and whether it’s optional. Identify the return
value from the method, highlighting those that break the chaining of plugins.

Version
documented

Option

Version
difference

Option descriptionDefault
value

Data
type

Option
name

Plugin description

Figure 4.8 The MaxLength plugin documentation page showing option details

69Summary
4.3 Summary
A jQuery plugin can do just about anything, from making basic class changes and add-
ing event handlers, through defining selectors and providing animations, to generat-
ing full-blown graphical widgets with remote access. Choosing what to implement can
be a challenge.

 Plan your plugin in terms of its appearance and behavior. Look at how it interacts
with jQuery, the user, and other elements on the page. Consider how it might be cus-
tomized by the user. Don’t get carried away with making a plugin that loses its focus
and saddles the user with code that’s rarely used.

 To allow your plugin to interact correctly with jQuery and any other JavaScript
libraries that may appear on the page, you should follow the established patterns of
use and best practices. The principles described here lay out a set of guidelines that
encompass best practices, regardless of the type of plugin being created.

 In the next chapter and in chapter 8, you’ll see how these principles are imple-
mented by using two frameworks for plugin development: my own plugin framework,
and the jQuery UI widget framework.

What you need to know

Plan your plugin and its interactions before you start developing.

Where possible, use a plugin to enhance basic functionality.

Prevent name clashes and protect your code through scoping.

Anticipate customizations in your plugin to make it flexible, and then provide sensible
default values.

Unit test your plugin to validate its functionality.

Document and demonstrate your plugin to assist in its adoption.

Collection plugins
Now that you’ve read the theory behind designing and implementing a plugin,
you’ll see how it’s implemented in practice. To make things more concrete, you’ll
create a relatively simple plugin that provides a useful service, while still being com-
plex enough to show most of the techniques involved in any plugin.

 The plugin you’ll build complements existing functionality provided by the
browser. Normal text input fields have a maxlength attribute that allows you to limit
how much text may be entered into a field. Such a restriction helps enforce limits
that may be imposed by databases and other storage mechanisms. But the multiline
textarea field has no such attribute and allows unlimited text entry. To address
this situation, you can create a collection plugin to control the amount of accept-
able text, and provide valuable feedback along the way.

This chapter covers
■ Defining collection plugins
■ Using a plugin framework
■ Applying the design principles
■ Creating a complete collection plugin
70

71A plugin framework
5.1 What are collection plugins?
As you may recall from chapter 3, jQuery usually operates under a select and act pat-
tern. You find the elements of interest, either directly by using selectors and filters, or
by traversing the DOM from an existing selection, and then apply some functionality
to them. For example, to hide all paragraphs with a class of note, you’d use the follow-
ing code:

$('p.note').hide();

These actions are what I call collection plugins—they operate on a collection of DOM
elements that are wrapped in a jQuery object. The majority of third-party jQuery
plugins are of this type.

 Collection plugins are defined by extending $.fn with the name of the new plugin
and assigning that a function that implements the plugin’s purpose. Behind the
scenes, $.fn is an alias for $.prototype, the standard JavaScript mechanism for add-
ing properties and methods to all instances of a type of object. Adding a new function
to $.fn automatically makes it available to all jQuery objects, such as to the collections
of elements found through the jQuery selection processing or a subsequent traversal
of the DOM. These functions are invoked within the context of the current jQuery
instance and therefore have access to the set of elements that it manages.

5.2 A plugin framework
Although you could develop each plugin on its own, as they each provide specific
functionality, it makes sense to reuse code as much as possible, because it interacts
with jQuery in much the same way. To this end, I’ve developed a plugin framework
that has served me well in my own plugins. It provides common capabilities on all col-
lection plugins and makes it easy to add extra options and methods. You’ll see how the
framework implements the guiding principles described in the previous chapter.

5.2.1 The MaxLength plugin

The sample plugin you’ll develop provides a maximum length restriction for text-
area fields, similar to the built-in maxlength attribute for input fields. It’s called as fol-
lows, with default settings:

$('#text1').maxlength();

To customize the plugin, you can provide options to the initialization call:

$('#text1').maxlength({max: 400});

In addition to limiting the text that can be entered, the plugin provides feedback on
how many characters have been used or remain available for input (figure 5.1).

72 CHAPTER 5 Collection plugins

Ini
The plugin also allows you to warn users only when they reach the maximum number
of characters, without preventing them from entering more. In this way, users know that
they have to reduce the text, but they aren’t cut off in the middle of a train of thought.
Instead they can go back and edit the text themselves to bring it back into line. Differ-
ent feedback appears when the length is more than the imposed maximum.

 Feedback may be suppressed altogether, although it’s a better user experience
when it’s provided, or it can be set to show only when the textarea is active—when
hovering over it or when it has focus. And the user may be informed of a textarea
reaching (or exceeding) its maximum via a callback event.

 The MaxLength plugin follows the principle of providing progressive enhancements. It
enriches the user experience with regard to entering limited text into a textarea
field. Without JavaScript, you can still enter text, and the length restriction will be
imposed on the server when the value is submitted (as it should be anyway).

5.2.2 MaxLength plugin operation

The plugin consists of an object containing several functions that interact to provide
the required functionality, allowing the user to initialize and manage the provided fea-
tures. The following listing shows the plugin’s overall structure and the way that these
functions are called during the plugin’s lifecycle.

function MaxLength() {
 this._defaults = {...};
}

$.extend(MaxLength.prototype, {
 setDefaults: function(options) {...},
 _attachPlugin: function(target, options) {...},
 _optionPlugin: function(target, options, value) {...},
 _curLengthPlugin: function(target) {...},
 _checkLength: function(target) {...},
 _enablePlugin: function(target) {...},
 _disablePlugin: function(target) {...},
 _destroyPlugin: function(target) {...}
});

$.fn.maxlength = function(options) {...};

var plugin = $.maxlength = new MaxLength();

Listing 5.1 Plugin function outline

Enhanced
text area

Feedback

Figure 5.1 The MaxLength plugin in operation

Plugin default options

Plugin default overrides

tialization
 Set/retrieve
options

Retrieve
current
length

Enforce length restrictions
Enable element

Disable element
Remove the
functionality

 jQuery bridge

Singleton instance

73A plugin framework
A singleton instance of the plugin object (plugin) is created when you load the plu-
gin code. The user interacts with this object directly via a reference attached to the
jQuery object ($.maxlength) or through the bridging function ($.fn.maxlength)
that allows the plugin’s features to be applied to a collection of elements retrieved by
the jQuery selection processing.

 A set of plugin-wide default option values appears as the _defaults attribute of the
singleton object. You can override these when you call the setDefaults function and
supply the new values. The resulting defaults apply to all subsequent applications of
the plugin.

 You attach the plugin to one or more elements by calling the bridging function on
your selection. That function transfers the call through to the _attachPlugin func-
tion, which initializes the targeted element(s) before calling _optionPlugin to pro-
cess the current options (either from the defaults or from overrides in the
initialization call) for that instance:

$('#text1').maxlength({max: 400});

The _optionPlugin function is also called in response to an option method call to
update the affected element(s) to reflect the new option values. The current option
values and other internal settings are stored against the associated element(s) as data.

$('#text1').maxlength('option', 'onFull', alertMe);

Ultimately, all paths lead to the _checkLength function (upon initialization or option
changes, or when a key is released when the field has focus), which implements the
length restriction of this plugin, and can notify the user if the field is full or over-
flowing.

 To prevent access to the field, you can call the disable method, which results in
the _disablePlugin function being called. Similarly, the enable method calls the
_enablePlugin function to restore field access:

$('#text1').maxlength('disable');

At any time, you can retrieve the number of currently used and remaining characters
by calling the curLength method. The calculated values are returned by the corre-
sponding _curLengthPlugin function:

var lengths = $('#text1').maxlength('curLength');

If the plugin functionality is no longer required, you can remove it by invoking the
destroy method, which in turn calls the _destroyPlugin function. This function
undoes all of the setup performed by the initialization and option calls, returning the
affected element(s) to their original state:

$('#text1').maxlength('destroy');

The following sections describe in more detail the operations of these functions and
how they interact to provide the MaxLength abilities.

74 CHAPTER 5 Collection plugins
5.3 Defining your plugin
You have a few basic steps to take before you can start developing your plugin’s spe-
cific functionality:

■ Claim a name for the plugin.
■ Protect your code from the wider JavaScript environment, and vice versa.
■ Define a singleton-like object to provide access to common settings and behavior.

5.3.1 Claiming a namespace

Every plugin needs a name to identify it and to separate it from other plugins. You
should pick a name that reflects the plugin’s purpose and that you can use through-
out, in keeping with the principle of only claiming a single name and using that for every-
thing within jQuery. You might use a slightly different name within your
documentation for the plugin, but the two should be closely related.

 Note that this name is the access point to your plugin. If you choose the same
name as another plugin, the two won’t be able to operate together on the same page.
Presumably, though, if they have the same name, they’re providing similar, if not the
same, functionality, so there’s less likelihood that they’d both be required together.

 For this plugin, you’ll use the name maxlength, because this is exactly what the plu-
gin provides. It’s not too long, and not so short that it loses its meaning. In the docu-
mentation, you could refer to the plugin as MaxLength.

 In keeping with general jQuery guidelines, the name should be in all lowercase
characters. Also, your plugin code should appear within a file named jquery.<plugin-
name>.js, with related files being named in the same pattern. For this plugin, the code
appears in jquery.maxlength.js, and the associated CSS appears in jquery.maxlength
.css.

5.3.2 Encapsulation

Two of the guiding principles—hide the implementation details by using scope, and don’t rely
on $ being the same as jQuery—can be solved by using some boilerplate code, shown in the
following listing. This code serves to protect your plugin’s implementation from the
rest of the JavaScript environment—known as encapsulation in OOP.

(function($) { // Hide scope, no $ conflict
 ... the rest of the code appears here
})(jQuery);

First, you declare an anonymous function that serves as a new scope B—variables and
functions defined within this function aren’t visible externally. This means you can
apply whatever naming convention you wish to your own plugin’s internal code without
worrying that it’ll conflict with external code or another plugin. Anything that you want
to be accessible from outside your plugin is made available via the jQuery object itself.

Listing 5.2 Encapsulating the plugin code

Declare anonymous functionb

Immediately invoke itc

75Defining your plugin

localiz
 Having declared this wrapper function, you surround it with parentheses to ensure
that it’s available for use, and then immediately call it c. The parameter to the func-
tion call is the jQuery object. Referring to the function declaration, you see that it
takes one parameter, which it calls $. The jQuery object is therefore mapped directly
onto the $ parameter, and the latter may be used within the body of the function
knowing that it’ll always refer to jQuery and not be usurped by some other JavaScript
library.

NOTE You’ve probably seen that most jQuery code is wrapped in a $(docu-
ment).ready(function() {...}) callback, or its shorthand form $(func-
tion() {...}). This is to ensure that the code isn’t executed until the DOM
is available for use. You do not wrap your plugin code in the same structure.
This is because you want it to execute immediately when it’s loaded and to be
subsequently available when you run a normal jQuery initialization. If you do
need to set up something within the DOM as part of your plugin, it should be
deferred until it’s needed—usually when your plugin is applied to a set of ele-
ments—or it can be wrapped in its own document.ready callback from within
the plugin.

5.3.3 Using a singleton

To simplify interactions with the plugin, and to act as a central repository of informa-
tion and behavior, I use aspects of the singleton pattern, where a single instance of an
object has a global access point. In addition to defining the abilities of the object, via
its internal functions, it contains constants and values that apply across all applications
of the plugin to elements on the page. The following listing shows the definition of
this singleton object.

/* Max length manager. */
function MaxLength() {
 this.regional = []; // Available regional settings,
 // indexed by language code
 this.regional[''] = { // Default regional settings
 feedbackText: '{r} characters remaining ({m} maximum)',
 ... Other regional settings
 };
 this._defaults = {
 max: 200, // Maximum length
 ... Other default settings
 };
 $.extend(this._defaults, this.regional['']);
}

$.extend(MaxLength.prototype, {
 ...
});

/* Initialise the max length functionality. */
var plugin = $.maxlength = new MaxLength(); // Singleton instance

Listing 5.3 Defining a singleton manager for the plugin

Declare
JavaScript classbCreate

ations
array c

Declare options and
their default valuesd

Combine default region
with default valuese

Define other constants
and functionsf Create a

singleton
instance

g

76 CHAPTER 5 Collection plugins
A class-like definition is declared in JavaScript as a function B. The name of this func-
tion isn’t visible externally due to your use of the new scope from the previous section,
so it doesn’t have to be the single name you picked for the plugin. In fact, it may be
more clear for your code if the name is different.

 That function may have its own set of internal fields and subfunctions declared to
define its state and behavior. The this variable refers to the current instance of that
“class.” Most importantly, the plugin defines a set of default options that control its
behavior d. Ideally, these options provide the entire configuration necessary to allow
the plugin to be applied to an element and have it work in a default manner. Your
users may override any of these options when they initialize the plugin on their own
elements.

 To allow the options to be easily localized for other languages and cultures, an
array of localizations is defined c and is initialized with the default (English) settings.
These are added to the other default settings once the latter have been defined e. As
other localizations are provided, they can be applied as follows:

$('#text1').maxlength($.maxlength.regional['fr']);

You’ll see more about localizing the plugin in section 5.5.2.
 Additional constants and internal functions are defined by extending the function

prototype f. These functions implement the abilities of the plugin. Several are com-
mon across all plugins, and the rest are specific to the current functionality.

 Finally, to make the singleton available to external code, you create the one
instance of it and assign it to an attribute of the jQuery object (as aliased by $) g, fol-
lowing the place everything under the jQuery object principle. Note that you use the single
name selected for your plugin for this purpose. You also create a local variable,
plugin, to reference the plugin for use within this module, making it easier to reuse
the framework code in other plugins.

 Using this technique makes it easy to reference plugin constants, variables, and
functions even in callback functions that may have a different context. You’ll see how
to use this in later sections.

5.4 Attaching to an element
To apply the plugin functionality to elements on the page, you need to define the func-
tion that allows jQuery to invoke your code. All plugins that operate on collections of
elements must extend $.fn in a fairly straightforward manner. But the situation
becomes more complex when you also need to process methods and getter functions.

 To this end, you’ll see how to

■ Attach the plugin to one or more elements in its simplest form
■ Initialize the plugin as part of the attachment process
■ Handle method names passed to the plugin for additional functionality
■ Return requested values from the plugin

We’ll start with the basics.

77Attaching to an element

jQue
5.4.1 Basic attachment

jQuery provides an extension point for collection plugins, allowing them to be easily
applied to groups of elements resulting from a selection and/or traversal process. Use
this extension point to integrate your own plugin into the procedure, as follows.

/* Attach the max length functionality to a jQuery selection.
 @param options (object) the new settings to use for these
 instances (optional)
 @return (jQuery) for chaining further calls */
$.fn.maxlength = function(options) {
 return this.each(function() {
 plugin._attachPlugin(this, options || {});
 });
};

Extend $.fn to define the function named for your plugin B. The function accepts
one parameter, which contains any overrides to the default option values that control
the behavior of the plugin. If omitted, all the default option values apply. Because the
jQuery object (aliased by $) is globally available, you’re able to access your plugin
through it following this definition. Because you’re extending $.fn, jQuery knows
that your plugin applies to collections of elements and will pass that collection to your
function when it’s invoked as the contents of the this variable.

NOTE The this variable refers to the collection of elements resulting from
the selection/traversal process. It’s a jQuery object already and should not be
wrapped in another jQuery call before accessing it.

To retain one of the key features of jQuery, and to follow another of the principles—
return the jQuery object for chaining whenever possible—you should always return the this
variable from your function c. Following this pattern allows chained calls on the
selected objects and is expected by the users of your plugin. Here’s an example:

$('#text1').maxlength().change(function() {...});

Because you generally want to process every element within the collection, the stan-
dard pattern is to invoke the each function and handle the elements individually. The
result of the each call is the original collection, so it can be returned directly as the
result of your own plugin function for chaining purposes.

 Finally, you call a function within the plugin singleton object (plugin) to apply the
functionality specific to your plugin—the _attachPlugin function d. You pass as
parameters the current element under consideration (this) and the options pro-
vided to customize the plugin behavior. Because the options aren’t required, they
may be undefined. To simplify subsequent code, you ensure that the value is set to an
empty object if currently undefined using the options || {} construct. Effectively
this code evaluates the first expression (options) and returns that if it’s “true” (not
undefined, blank, zero, or false). Otherwise it evaluates the second half of the
expression and returns a new empty object.

Listing 5.4 Applying the plugin to an element

Declare main
plugin function

b

Chain
ry calls c Initialize each

elementd

78 CHAPTER 5 Collection plugins
5.4.2 Plugin initialization

The _attachPlugin function initializes your plugin for a particular element on the
page, as seen in listing 5.5. That element is passed as the first parameter to the func-
tion, and any options for configuring the plugin arrive as the second parameter. Here
you add one-off functionality that manages the state of the plugin for this element and
performs processing that doesn’t depend on option values.

/* Attach the max length functionality to a textarea.
 @param target (element) the control to affect
 @param options (object) the custom options for this instance */
_attachPlugin: function(target, options) {
 target = $(target);
 if (target.hasClass(this.markerClassName)) {
 return;
 }
 var inst = {options: $.extend({}, this._defaults),
 feedbackTarget: $([])};
 target.addClass(this.markerClassName).
 data(this.propertyName, inst).
 bind('keypress.maxlength', function(event) {
 if (!inst.options.truncate) {
 return true;
 }
 var ch = String.fromCharCode(
 event.charCode == undefined ?
 event.keyCode : event.charCode);
 return (event.ctrlKey || event.metaKey || ch == '\u0000' ||
 $(this).val().length < inst.options.max);
 }).
 bind('keyup.maxlength', function() {
 plugin._checkLength($(this));
 });
 this._optionPlugin(target, options);
},

First, you test whether the given element has already been initialized under this plu-
gin B and perform no further actions if it has. Elements should only be initialized
once, as you don’t want multiple event handlers tied to them or other one-off process-
ing applied more than once. You check for a particular class on the element to deter-
mine its current status with regard to this plugin. That class is assigned as one of the
first steps in the initialization process d.

 To keep track of the state of the plugin for this element, you create an instance
object c that stores values specific to that element, including any options or settings
supplied by the user. The settings are created from an empty object, {}, which is
extended by the default settings. If you were to use the _defaults object directly, any
changes would be applied to that object and would then interfere with subsequent use
of the plugin. User settings are applied in the _optionPlugin function g that pro-
cesses changes to options.

Listing 5.5 Initializing the plugin for an element

Don’t reinitialize
plugin

b

Create instance
settings

c

Add marker classd

Attach
instance
settings to
elemente

Bind any event
handlersf

Update the element
with new options

g

79Attaching to an element
 The instance data is stored against the element using the data function e (in keep-
ing with the principle of using the data function to store instance details). A constant name
defined within this module—once more with a value of maxlength—allows easy and
consistent access to data throughout the plugin. Therefore, the state of the plugin can
be retrieved for any particular element and used within other functions in the plugin.
The instance data is automatically cleared if the element is removed from the DOM.

 Other functionality that doesn’t depend on option values is also applied as part of
the attachment process. In this case, you add event handlers that monitor the key-
press and keyup events of the targeted textarea f so that you can check the num-
ber of characters as soon as it changes. When creating event handlers within your
plugin, you should always add a namespace to the event name (maxlength in this
case). By doing so, you can easily remove the handlers added by your plugin without
affecting any other event handlers that may have been added externally.

 Finally, you invoke the _optionPlugin function to apply any option customizations
to the plugin g. This function is covered in section 5.5.3.

5.4.3 Invoking methods

In section 5.4.1 you saw how to initialize the plugin for a collection of DOM elements.
But in keeping with the principles of claiming a single name for the plugin and conse-
quently invoking methods for additional functionality, you need to cater for these other sit-
uations. A string value may be passed to the plugin function to indicate what extra
abilities are required from the plugin. Common examples include enabling or disabling
the controls, or changing or retrieving option values. In the latter case you need to send
extra values along with the call to identify which option is changing and its new value.

 Most of this code, seen in the following listing, is boilerplate and is applicable to all
collection plugins.

/* Attach the max length functionality to a jQuery selection.
 @param options (object) the new settings to use for these
 instances (optional) or
 (string) the method to run (optional)
 @return (jQuery) for chaining further */
$.fn.maxlength = function(options) {
 var otherArgs = Array.prototype.slice.call(arguments, 1);
 return this.each(function() {
 if (typeof options == 'string') {
 if (!plugin['_' + options + 'Plugin']) {
 throw 'Unknown method: ' + options;
 }
 plugin['_' + options + 'Plugin'].
 apply(plugin, [this].concat(otherArgs));
 }
 else {
 plugin._attachPlugin(this, options || {});
 }
 });
};

Listing 5.6 Invoking methods from the plugin

Extract
secondary
parameters

b

 Is this a
method call? c

Check that
method exists

d

Throw an
error if note

Invoke the
method f

80 CHAPTER 5 Collection plugins
Because the number of parameters to the plugin function is unknown and depends
on the particular method being invoked, you use the standard JavaScript arguments
variable to access any after the first one. The slice function of the Array class extracts
items from an array, which is what arguments is, and copies them to another variable
B. otherArgs ends up being an array of all the parameters to maxlength after the first
one, which is assumed to be a method name.

 As before, you step through each element in the collection and process them indi-
vidually. You now check the type of options to determine whether it’s a method c.
For a normal initialization call, options would be undefined or an object containing
option overrides. If the type is a string, you’re handling a method.

 To avoid unpredictable errors, you check whether the given method can be exe-
cuted. The convention for mapping methods to functions is to prefix the method
name with an underscore (_) and suffix it with a standard name (Plugin) d. If such a
function doesn’t exist, an exception is thrown e. For example, the option method
maps onto the _optionPlugin function.

NOTE My convention is to use a leading underscore (_) to indicate functions
that are supposed to be private to the singleton object, although JavaScript
doesn’t enforce this. Functions that are designed to be invoked directly don’t
have this underscore in their name. To further distinguish internal functions
that act as method implementations from those that are purely for internal
use, I append a standard name to the former. So, the function setDefaults is
intended to be called directly, whereas _curLengthPlugin is intended to be
invoked as method curLength and _checkLength is only used internally.

Otherwise the method function is invoked using the standard JavaScript apply func-
tion to ensure that the context for the call is the singleton object (first parameter) f.
Any additional parameters sent to the plugin function, and now held in the other-
Args variable, are concatenated with the current element being processed to become
the full set of parameters for that method.

 You’ll see the implementation of the methods themselves in later sections. Now
that you can handle executing methods passed to the plugin, you also need to deal
with those that return values from the plugin, as shown in the next section.

5.4.4 Getter methods

Although most methods invoke some extra activity on the specified elements, some
are designed to return values, such as the current character count and number of
characters remaining for this plugin. By necessity, these methods break the chaining
pattern of jQuery—the ability to apply multiple actions to the same selection—
because they return values other than the current collection of elements.

 The following listing shows the getter invocation code, most of which is reusable in
all collection plugins.

81Attaching to an element

// The list of methods that return values and don't permit chaining
var getters = ['curLength'];

/* Determine whether a method is a getter and doesn't permit chaining.
 @param method (string, optional) the method to run
 @param otherArgs ([], optional) any other arguments for the method
 @return true if the method is a getter, false if not */
function isNotChained(method, otherArgs) {
 if (method == 'option' && (otherArgs.length ==0 ||
 (otherArgs.length == 1 && typeof otherArgs[0] == 'string'))) {
 return true;
 }
 return $.inArray(method, getters) > -1;
}

/* Attach the max length functionality to a jQuery selection.
 @param options (object) the new settings to use for these
 instances (optional) or
 (string) the method to run (optional)
 @return (jQuery) for chaining further calls or
 (any) getter value */
$.fn.maxlength = function(options) {
 var otherArgs = Array.prototype.slice.call(arguments, 1);
 if (isNotChained(options, otherArgs)) {
 return plugin['_' + options + 'Plugin'].
 apply(plugin, [this[0]].concat(otherArgs));
 }
 return this.each(function() {
 if (typeof options == 'string') {
 if (!plugin['_' + options + 'Plugin']) {
 throw 'Unknown method: ' + options;
 }
 plugin['_' + options + 'Plugin'].
 apply(plugin, [this].concat(otherArgs));
 }
 else {
 plugin._attachPlugin(this, options || {});
 }
 });
};

You need to provide a list of the methods that are getters B because they can’t other-
wise be identified. These methods are treated differently from other ones to return
their value.

 Because the option method has multiple functionality—for either setting or
retrieving an option value—it must be identified as a special case. The isNotChained
function c caters for this special method (based on the number of parameters sup-
plied) and then checks in the list of getters defined previously, returning true for a
getter method.

Listing 5.7 Applying the plugin to an element

List getter methodsb

Test for getter methodsc

If this method
is a getter...

d

...return the method’s
value directlye

82 CHAPTER 5 Collection plugins
 Any method identified as being a getter d is then invoked immediately, with its
value being returned directly as the result of the plugin function e. As with other
methods, you use the apply function to call the method function with the singleton
object as the context and pass along the first element in the collection and any addi-
tional parameters (from otherArgs). You send only the first element because you can
return only one value; this pattern follows the standard practice of the jQuery getters,
such as attr, css, and val.

 You’d call this method as follows:

var counts = $('#text1').maxlength('curLength');

You’ll see the code for the _curLengthPlugin function in section 5.7.1.

5.5 Setting options
Options allow you to configure the plugin to change its behavior. Among the guiding
principles are anticipating customizations and using sensible defaults. Users will always
want to customize the way a plugin works or appears, in order to fit it in with their own
requirements. If you can predict what they might want to change and provide options
to cater for that, they’re more likely to use your plugin. But you want the plugin to be
easy to use with a minimum of configuration, so all options should have default values
that allow it to be used in the most common way.

 To achieve these goals,

■ Define defaults values for all options.
■ Allow the plugin to be easily localized by separating out the applicable options.
■ Handle retrieving and setting option values.
■ Apply any option changes immediately.
■ Allow the plugin to be enabled or disabled.

We’ll look at each of these in turn.

5.5.1 Plugin defaults

You’ve already seen the placement of the default option values in the singleton object.
These values may be overridden by the user when they initialize the plugin on their
own elements. The regional settings are for localization purposes and are described
in greater detail in the next section. The following listing shows all the options for the
MaxLength plugin.

/* Max length manager. */
function MaxLength() {
 this.regional = []; // Available regional settings,
 // indexed by language code
 this.regional[''] = { // Default regional settings
 feedbackText: '{r} characters remaining ({m} maximum)',
 // Display text for feedback message,

Listing 5.8 Default options for the plugin

83Setting options
 // use {r} for remaining characters,
 // {c} for characters entered, {m} for maximum
 overflowText: '{o} characters too many ({m} maximum)'
 // Display text when past maximum,
 // use substitutions above and {o} for characters past maximum
 };
 this._defaults = {
 max: 200, // Maximum length
 truncate: true, // True to disallow further input,
 // false to highlight only
 showFeedback: true, // True to always show user feedback,
 // 'active' for hover/focus only
 feedbackTarget: null, // jQuery selector or function for
 // element to fill with feedback
 onFull: null // Callback when full or overflowing,
 // receives one parameter: true if overflowing, false if not
 };
 $.extend(this._defaults, this.regional['']);
}

To allow global changes to be made to the settings for all instances of your plugin, you
define a setDefaults function on the singleton object, as shown in listing 5.9. The
options provided to this function as a parameter extend the list of default options and
are then applied to any new instantiations of the plugin, as seen in section 5.4.2. The
function returns a reference to the singleton object, which is somewhat useless
because other global functions aren’t available on it, but it follows the chaining princi-
ple of jQuery and it doesn’t hurt.

/* Override the default settings for all max length instances.
 @param options (object) the new settings to use as defaults
 @return (MaxLength) this object */
setDefaults: function(options) {
 $.extend(this._defaults, options || {});
 return this;
},

You’d call this function as follows, prior to invoking the plugin on any elements:

$.maxlength.setDefaults({max: 300, truncate: false});

5.5.2 Localisations/localizations

To make your plugin available to widest audience, you must take into account differ-
ences due to users’ locale (the allow for localisation/localization principle). The obvious
difference here is language—not everyone speaks English—but it also extends to
date, number, and currency formats, and even whether the page reads from left to
right or from right to left. You can make the localization process much easier for users
of your plugin by grouping options affected by locale.

 Within the singleton, you define an array of localizations that’s indexed by the
desired language (and optional region). The default language (English) is accessed

Listing 5.9 Overriding global default values

84 CHAPTER 5 Collection plugins
by a blank string, and these settings are automatically added to the defaults for the
plugin.

 Users who wish to create a localization for your plugin then need to define a new
set of values for the options in the regional settings, make it available in the regional
array, and add it to the defaults for all instances of the plugin.

 For example, the French localization for this plugin is shown in the following list-
ing. The localization should appear in a file named for the plugin, but with a language
extension—jquery.maxlength-fr.js in this case.

/* http://keith-wood.name/maxlength.html
 French initialisation for the jQuery Max Length extension
 Written by Keith Wood (kbwood{at}iinet.com.au) April 2012. */
(function($) { // hide the namespace

$.maxlength.regional['fr'] = {
 feedbackText: '{r} de caractères restants ({m} maximum)',
 overflowText: '{o} de caractères trop ({m} maximum)'
};
$.maxlength.setDefaults($.maxlength.regional['fr']);

})(jQuery);

As for the main plugin, you create a new scope for the localization to ensure that $ is
the same as jQuery and to hide any implementation details B. Then create the new
entry in the plugin regional array, indexed by the language code c. By overriding
the plugin default settings with the new localized settings, you simplify the use of the
localization d. The user only needs to include the plugin code, followed by the local-
ization, and then use the plugin in its default mode to have the desired language
appear, as shown in figure 5.2. Listing 5.11 shows how to load and use the French
localization.

<script type="text/javascript" src="js/jquery.maxlength.js"></script>
<script type="text/javascript" src="js/jquery.maxlength-fr.js"></script>
<script type="text/javascript">
$(function() {
 $('#text1').maxlength(); // Automatically in French
});
</script>

Listing 5.10 French localization for the MaxLength plugin

Listing 5.11 Loading a localization

Encapsulate
internal code

b

Declare
localization
valuesc

Apply as defaults
for all instancesd

French feedback

Figure 5.2
Localizing the
MaxLength
plugin in French

85Setting options
If you want to use a particular localization after loading one or more others, refer to
the plugin’s regional array and use that as your new option:

$('#text').maxlength($.maxlength.regional['fr']);

Or it can be combined with other settings:

$('#text').maxlength($.extend({max: 400}, $.maxlength.regional['fr']));

5.5.3 Reacting to option changes

Recall that you want to anticipate customizations to allow the widest use of your plugin
with minimal effort for the user. Options may be set on the plugin during initializa-
tion and may also be changed throughout the plugin’s lifetime. These options may
affect the appearance and/or behavior of the plugin and so need to be immediately
applied. You might also want to retrieve the value of one or more options from the
plugin. All of these abilities are provided by the option method.

 In retrieval mode, the option method lets you specify the name of an option and
returns its current value (taking default values into account). If you don’t provide a
name, the entire set of options is returned.

var maxChars = $('#text1').maxlength('option', 'max');
var options = $('#text1').maxlength('option');

In setter mode, the option method can change a single named value or multiple
options from a given map.

$('#text1').maxlength('option', 'max', 400);
$('#text1').maxlength('option', {max: 400, truncate: false});

The particular mode of operation is determined by the number and type of parame-
ters supplied in the call, as seen next.

/* Retrieve or reconfigure the settings for a control.
 @param target (element) the control to affect
 @param options (object) the new options for this instance or
 (string) an individual property name
 @param value (any) the individual property value
 (omit if options is an object or
 to retrieve the value of a setting)
 @return (any) if retrieving a value */
_optionPlugin: function(target, options, value) {
 target = $(target);
 var inst = target.data(this.propertyName);
 if (!options || (typeof options == 'string' && value == null)) {
 // Get option
 var name = options;
 options = (inst || {}).options;
 return (options && name ? options[name] : options);
 }

Listing 5.12 Reading and writing option values

Define option
function

b

 Retrieve current
instance settings c

Retrieving
an option
valued

86 CHAPTER 5 Collection plugins
 if (!target.hasClass(this.markerClassName)) {
 return;
 }
 options = options || {};
 if (typeof options == 'string') {
 var name = options;
 options = {};
 options[name] = value;
 }
 $.extend(inst.options, options);
 // Plugin specific code to implement these options ...
},

First you define a function to respond to the option method call B. The function
name follows the pattern established in section 5.4.3, where method calls are automat-
ically mapped onto functions with a name consisting of an underscore (_), followed
by the method name, and the text Plugin.

 Within this function, you retrieve the current instance settings for the target con-
trol (a textarea) c. Then check whether the user has requested the retrieval of one
or more option values d—in which case no name nor any options are supplied, or
only a name is given. Return either all of the instance’s options or the value of the sin-
gle named one.

 Otherwise the option method is being used in setter mode. As with other func-
tions, check that the plugin has been initialized for this textarea e and exit if it
hasn’t initialized. If the call is to set a single named option f, you convert that one
option into a map so that the remaining processing can proceed without duplication.

 Save the new options against the current instance g. Because these options may
affect the appearance or behavior of the plugin, the changes need to be applied to the
target element immediately.

 The code presented here applies to all collection plugins that need to maintain
some state for the affected elements. When changing the value of one or more
options, you then need to apply those to the current element, which is specific to the
functionality that the plugin offers. The details for the MaxLength plugin are dis-
cussed in the next section.

5.5.4 Implementing MaxLength options

Options supplied for the MaxLength plugin change its appearance and/or behavior.
As these values are updated, they need to be reapplied to the affected elements,
removing previous applications if necessary. The code specific to this plugin, as shown
in listing 5.13, appears at the end of the _optionPlugin function from section 5.5.3,
after the standard option processing has completed.

if (inst.feedbackTarget.length > 0) {
 // Remove old feedback element
 if (inst.hadFeedbackTarget) {
 inst.feedbackTarget.empty().val('').

Listing 5.13 Handling specific MaxLength options

Check that plugin
has been initializede

Handle single
named optionf

Update with
new optionsg

Remove previous
feedbackb

87Setting options
 removeClass(this._feedbackClass + ' ' +
 this._fullClass + ' ' + this._overflowClass);
 }
 else {
 inst.feedbackTarget.remove();
 }
 inst.feedbackTarget = $([]);
}
if (inst.options.showFeedback) {
 // Add new feedback element
 inst.hadFeedbackTarget = !!inst.options.feedbackTarget;
 if ($.isFunction(inst.options.feedbackTarget)) {
 inst.feedbackTarget =
 inst.options.feedbackTarget.apply(target[0], []);
 }
 else if (inst.options.feedbackTarget) {
 inst.feedbackTarget = $(inst.options.feedbackTarget);
 }
 else {
 inst.feedbackTarget = $('').insertAfter(target);
 }
 inst.feedbackTarget.addClass(this._feedbackClass);
}
target.unbind('mouseover.maxlength focus.maxlength ' +
 'mouseout.maxlength blur.maxlength');
if (inst.options.showFeedback == 'active') {
 // Additional event handlers
 target.bind('mouseover.maxlength', function() {
 inst.feedbackTarget.css('visibility', 'visible');
 }).bind('mouseout.maxlength', function() {
 if (!inst.focussed) {
 inst.feedbackTarget.css('visibility', 'hidden');
 }
 }).bind('focus.maxlength', function() {
 inst.focussed = true;
 inst.feedbackTarget.css('visibility', 'visible');
 }).bind('blur.maxlength', function() {
 inst.focussed = false;
 inst.feedbackTarget.css('visibility', 'hidden');
 });
 inst.feedbackTarget.css('visibility', 'hidden');
}
this._checkLength(target);

The MaxLength plugin allows feedback to be shown in either an element managed by
the plugin or in an existing element. In the event that feedback isn’t required any lon-
ger, or has changed from internal to external, you’d initially undo/remove any previ-
ous feedback usage B. Then, taking the new options into account, you’d set up the
appropriate feedback element as requested c.

NOTE The !! construct is explained in section 3.2.1.

Similarly, you remove any previous events that dealt with only showing the feedback
when the textarea is active and add that functionality back in if it’s still required d.

Add new feedback
abilities

c

Handle feedback
only when actived

Rerun the
length check

e

88 CHAPTER 5 Collection plugins
Note that by identifying the events with a namespace, you ensure that you don’t inter-
fere with any other handlers on the element.

 Finally, you invoke the _checkLength function e that implements the main pur-
pose of the plugin—to apply a maximum length restriction to the textarea.

5.5.5 Enabling and disabling the widget

Although not explicitly controlled by an option, the ability to enable or disable the
plugin’s functionality is common to many plugins and affects their appearance and
behavior. In this framework you use methods to invoke the enabled/disabled states.

$('#text1').maxlength('disable');
...
$('#text1').maxlength('enable');

Therefore, you need the corresponding _enablePlugin and _disablePlugin func-
tions to implement these methods.

/* Enable the control.
 @param target (element) the control to affect */
_enablePlugin: function(target) {
 target = $(target);
 if (!target.hasClass(this.markerClassName)) {
 return;
 }
 target.prop('disabled', false).removeClass('maxlength-disabled');
 var inst = target.data(this.propertyName);
 inst.feedbackTarget.removeClass('maxlength-disabled');
},

/* Disable the control.
 @param target (element) the control to affect */
_disablePlugin: function(target) {
 target = $(target);
 if (!target.hasClass(this.markerClassName)) {
 return;
 }
 target.prop('disabled', true).addClass('maxlength-disabled');
 var inst = target.data(this.propertyName);
 inst.feedbackTarget.addClass('maxlength-disabled');
},

You attach the functions to their respective method calls by naming them in the pat-
tern of an underscore (_), followed by the method name, and then the text Plugin
B. Control is then transferred to these functions via the processing shown in section
5.4.3.

 Each function accepts a reference to the affected textarea as its only parameter. A
check is made to ensure that the MaxLength plugin has been applied to that textarea
c, and no action is taken if it hasn’t been applied. Otherwise, the disabled attribute
is cleared or set on that field d, and marker classes for styling purposes are removed

Listing 5.14 Enabling and disabling the plugin

Define enable/
disable functions

b

Check that plugin
has been initializedc

Enable/disable the
associated controls d

Define enable/
disable functions

b

Check that plugin
has been initializedc

Enable/disable the
associated controls d

89Adding event handlers
or added appropriately to both the field and its feedback control. You don’t need to do
anything further, as disabling the textarea itself prevents any further entry into it.

5.6 Adding event handlers
Providing event handlers as options enables the user to promptly react to significant
incidents within your plugin’s lifecycle. JavaScript allows you to pass references to
functions as easily as strings and numbers, and provides mechanisms for calling those
functions with the correct context and parameters.

 To add event callbacks to your plugin,

■ Allow the user to register handlers for an event.
■ Trigger those events at the appropriate time.

5.6.1 Registering an event handler

The MaxLength plugin provides one event that users can respond to—the onFull
event. It’s triggered when the textarea has reached its maximum allowed characters.
Because other options allow the textarea to continue accepting characters (trun-
cate: false), you should also inform the user whether the textarea has reached its
limit and is still valid, or has surpassed that limit and must be shortened before sub-
mission.

 The onFull handler appears as another option (see listing 5.15), defaulting to
null to indicate that no callback is required. When used, it should be assigned a func-
tion that accepts a single parameter, being a flag to indicate whether the textarea has
overflowed. Within that callback function, the this variable refers to the textarea
itself, possibly allowing the user to reuse a handler across several instances.

/* Max length manager. */
function MaxLength() {
 this.regional = []; // Available regional settings,
 // indexed by language code
 this.regional[''] = { // Default regional settings
 ...
 };
 this._defaults = {
 ...
 onFull: null // Callback when full or overflowing,
 // receives one parameter: true if overflowing, false if not
 };
 $.extend(this._defaults, this.regional['']);
}

Users register their event handler during the plugin initialization, as shown in the fol-
lowing code, or by updating options at a later stage:

$('#text1').maxlength({onFull: function(overflow) {
 $('#warning').html(overflow ? 'Overflowed' : 'Full').show();
}});

Listing 5.15 Defining an event handler

90 CHAPTER 5 Collection plugins
5.6.2 Triggering an event handler

The event handler is triggered at the end of the _checkLength function in the
MaxLength plugin, once you’ve applied the maximum length restriction, as shown in
the following listing. In other plugins you’d trigger events at other appropriate points
in the code.

/* Check the length of the text and notify accordingly.
 @param target (jQuery) the control to check */
_checkLength: function(target) {
 var inst = target.data(this.propertyName);
 var value = target.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 ...
 if (len >= inst.options.max && $.isFunction(inst.options.onFull)) {
 inst.options.onFull.apply(target, [len > inst.options.max]);
 }
},

You check that the triggering condition is true and that the callback option refers to a
function B, before calling that function appropriately c. The standard JavaScript
apply function lets you set the context of the function call as well as provide any
parameters for that call. Its first parameter is assigned to the this variable within the
callback function.

5.7 Adding methods
Other functionality within the plugin is implemented as custom methods. Because of
the framework, all you need to do is to name a function in a particular way to connect
it to a method request from the user. If the method returns some value other than the
current jQuery collection, it should also be registered in the getters array, as shown in
section 5.4.4.

5.7.1 Getting the current length

The MaxLength plugin allows the user to retrieve the current character counts for a
particular instance. Using the curLength method, shown in the next listing, you
obtain an object with the attributes used, indicating the number of characters
entered, and remaining, to hold the number of characters still allowed. Note that
used may be greater than the max setting and remaining will be negative, if the text-
area is allowed to overflow the imposed limit.

/* Retrieve the counts of characters used and remaining.
 @param target (jQuery) the control to check
 @return (object) the current counts with attributes
 used and remaining */
_curLengthPlugin: function(target) {

Listing 5.16 Triggering an event callback

Listing 5.17 Retrieving the current length

Test trigger and
callback option

b

Invoke callback c

Function for method
curLength

b

91Removing the plugin
 var inst = target.data(this.propertyName);
 var value = target.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 return {used: len, remaining: inst.options.max - len};
},

Follow the naming convention for method functions B: an underscore (_), followed
by the method name, and the text Plugin to link this function with the calling mecha-
nisms shown in section 5.4.4. Return the appropriate value for the given element c,
which is then passed directly back to the user.

5.8 Removing the plugin
Your plugin enhances the elements found on the page by adding functionality to
them, and therefore enriches the user’s experience. But sometimes you may want to
remove all that extra capability and return the elements to their original states. The
destroy method indicates to the plugin that it should remove all traces of itself.

5.8.1 The destroy method

The _destroyPlugin function, shown in the following listing, provides the implemen-
tation of the destroy method. As with other methods, it’s invoked via the main plugin
function, which we covered in section 5.4.3, and receives a reference to the affected
textarea as its only parameter.

/* Remove the plugin functionality from a control.
 @param target (element) the control to affect */
_destroyPlugin: function(target) {
 target = $(target);
 if (!target.hasClass(this.markerClassName)) {
 return;
 }
 var inst = target.data(this.propertyName);
 if (inst.feedbackTarget.length > 0) {
 if (inst.hadFeedbackTarget) {
 inst.feedbackTarget.empty().val('').
 css('visibility', 'visible').
 removeClass(this._feedbackClass + ' ' +
 this._fullClass + ' ' + this._overflowClass);
 }
 else {
 inst.feedbackTarget.remove();
 }
 }
 target.removeClass(this.markerClassName + ' ' +
 this._fullClass + ' ' + this._overflowClass).
 removeData(this.propertyName).
 unbind('.maxlength');
}

Listing 5.18 Removing the plugin functionality

Return current
lengthsc

Define destroy
function

b

Check that plugin
has been initializedc

Remove any
feedback controlsd

Remove plugin
functionality

e

92 CHAPTER 5 Collection plugins
As in other functions, you name the function so that it can be processed from the
destroy method call B. Next, you check that the textarea has been initialized with
this plugin, and exit without any action if that isn’t the case c. Otherwise you have to
undo everything that was done in the _attachPlugin and _optionPlugin functions.

 You start by checking for a feedback element and restore that to its original state
(if provided as an option) or remove it altogether (if created by this plugin) d. Then
remove any marker classes on the textarea, remove the instance data attached to it,
and remove any event handlers attached to it e. By using a namespace when initially
binding the event handlers, it’s easy to remove them all by referring to that
namespace. Any other event handlers connected to the textarea are unaffected.

 Your page has now been returned to its initial state, and the MaxLength function-
ality no longer applies.

5.9 Finishing touches
The framework portion of the plugin is now complete. Most of that framework code
can be reused in other plugins to provide the basic functionality expected of a collec-
tion plugin. But you can apply a couple of finishing touches to improve this plugin:

■ Implementing the main purpose of the plugin
■ Styling it to define its appearance

5.9.1 The plugin body

The purpose of the MaxLength plugin is to restrict the amount of text that may be
entered into a textarea. Previous sections have shown how to implement the main
plugin function that integrates with jQuery and have that farm out specific methods
to their corresponding internal functions. When initializing the plugin or when
changing its options, the path eventually leads to the _checkLength function, which
does the work. The next listing shows how it works.

/* Check the length of the text and notify accordingly.
 @param target (jQuery) the control to check */
_checkLength: function(target) {
 var inst = target.data(this.propertyName);
 var value = target.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 target.toggleClass(this._fullClass, len >= inst.options.max).
 toggleClass(this._overflowClass, len > inst.options.max);
 if (len > inst.options.max && inst.options.truncate) {
 // Truncation
 var lines = target.val().split(/\r\n|\n/);
 value = '';
 var i = 0;
 while (value.length < inst.options.max && i < lines.length) {
 value += lines[i].substring(
 0, inst.options.max - value.length) + '\r\n';
 i++;

Listing 5.19 Restricting the textarea length

 Normalize
line endings

b

Set current
state on
textareac

Apply text
truncationd

93Finishing touches
 }
 target.val(value.substring(0, inst.options.max));
 // Scroll to bottom
 target[0].scrollTop = target[0].scrollHeight;
 len = inst.options.max;
 }
 inst.feedbackTarget.
 toggleClass(this._fullClass, len >= inst.options.max).
 toggleClass(this._overflowClass, len > inst.options.max);
 var feedback = (len > inst.options.max ? // Feedback
 inst.options.overflowText : inst.options.feedbackText).
 replace(/\{c\}/, len).
 replace(/\{m\}/, inst.options.max).
 replace(/\{r\}/, inst.options.max - len).
 replace(/\{o\}/, len - inst.options.max);
 try {
 inst.feedbackTarget.text(feedback);
 }
 catch(e) {
 // Ignore
 }
 try {
 inst.feedbackTarget.val(feedback);
 }
 catch(e) {
 // Ignore
 }
 if (len >= inst.options.max && $.isFunction(inst.options.onFull)) {
 inst.options.onFull.apply(target, [len > inst.options.max]);
 }
},

After retrieving the instance details for this textarea, you determine the current
length of its text content, taking into account browser differences regarding line-end-
ing characters B. Based on that value and the options set for the plugin, you apply one
or two classes to the textarea to indicate its current status—full or overflowing c.

 If the text length is greater than the maximum specified and the user has
requested that extra text be truncated d, then you compute the shortened value,
once more normalizing line endings. When the text is assigned back into the text-
area, it automatically scrolls back to the top. Assuming that most text entry happens at
the end of the content, you move back to the bottom to assist the user. Because you’ve
truncated the text, the calculated length must change to reflect that.

 Now you apply one or two classes to the feedback control e, based on the new
length of the text. As the length may have been reduced in the previous processing,
there might appear to be a disjoint between the textarea and its feedback when trun-
cation occurs. This is intentional, as the feedback has to represent the updated status,
whereas the textarea can show that additional text entry was attempted but failed.

 The status of the textarea is shown in any feedback control, using one of two mes-
sages determined by the overflow state of the plugin f. To allow for maximum flexi-
bility, you let the feedback control be a div, span, paragraph, or an input field. But

Set current state
on feedback

e

Populate and
show feedback
messagef

Invoke
callback when

appropriate

g

94 CHAPTER 5 Collection plugins
these elements have their text set differently, and invoking the wrong one can gener-
ate errors in some browsers. Hence, the two try/catch statements push the status
into the specified control in a protected manner.

 Lastly, you notify the user via any onFull callback when the textarea has filled or
overflowed g. Section 5.6.2 provides greater detail on this subject.

5.9.2 Styling the plugin

With the plugin code complete, you have a fully functioning addition to jQuery’s abil-
ities. But it may not look nice. You should provide an external CSS file to accompany
your plugin and set its appearance, in keeping with the principle of styling your plugin
with CSS. The file is named the same as the plugin code, but with a different exten-
sion—jquery.maxlength.css in this case. By using CSS rather than passing in options to
the plugin that are then applied to its components, you allow the user to override or
customize the plugin’s appearance with minimal effort.

 The following listing shows the CSS for the MaxLength plugin. It uses the classes
associated with the elements created and managed by the plugin to apply the appropri-
ate styles. For example, the error conditions denoted by the maxlength-full and
maxlength-overflow classes are highlighted by changing the field’s background color.

/* Styles for Max Length plugin v2.0.0 */
.maxlength-feedback {
 margin-left: 0.5em;
 font-size: 75%;
}
.maxlength-full {
 background-color: #fee;
}
.maxlength-overflow {
 background-color: #fcc;
}
.maxlength-disabled {
 opacity: 0.5;
}

Based on the classes assigned
to the controls managed by
the plugin, the CSS generates
the desired look. With a few
lines of CSS the user can
change that appearance, as
shown in figure 5.3.

Figure 5.3 Styling the MaxLength
plugin: default style, compact styling,

feedback beneath, and feedback overlaid

Listing 5.20 Styles for the MaxLength plugin

95The complete plugin

Lo
jQue

co
5.10 The complete plugin
You’ve now finished the implementation of a complete plugin that provides maxi-
mum length functionality for textarea fields to complement the built-in functionality
for input fields. You’ve seen my plugin framework and how it applies the guidelines
and design principles described in chapter 4. The complete code for the plugin is
available for download from the book’s website.

NOTE Also available on the book’s website is a stripped-down file
(jquery.framework.js) containing only the basic framework structure and
code. You can use this as the basis for your own plugins.

To use the new plugin in a web page, you load jQuery, then the plugin code and styles,
before attaching the plugin to a particular element. The following listing shows a min-
imal page.

<html>
<head>
<title>jQuery Max Length Basics</title>
<link type="text/css" href="jquery.maxlength.css" rel="stylesheet">
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">
</script>
<script type="text/javascript" src="jquery.maxlength.js"></script>
<script type="text/javascript">
$(function() {
 $('#maxLength').maxlength();
});
</script>
</head>
<body>
<h1>jQuery Max Length Basics</h1>
<p>This page demonstrates the very basics of the
 jQuery
 Max Length plugin.
 It contains the minimum requirements for using the plugin and
 can be used as the basis for your own experimentation.</p>
<p>For more detail see the <a href="http://keith-wood.name/

➥ maxlengthRef.html">documentation reference page.</p>
<p>Default max length:
 <textarea id="maxLength" rows="5" cols="50"></textarea></p>
</body>
</html>

In the header of your HTML document, load the MaxLength plugin styles B, followed
by the jQuery library code c (often from a CDN, as shown here) and the MaxLength
plugin code d. Within a document.ready callback (to ensure that the DOM has
loaded before trying to access it), attach the plugin functionality to the target field e.
The field appears in the body of the document f.

Listing 5.21 Using the MaxLength plugin

Load the
plugin styles

b

ad
ry
de c

Load plugin
code dAttach the plugin

to an elemente

Target
elementf

96 CHAPTER 5 Collection plugins
5.11 Summary
A collection plugin operates on a set of elements resulting from a selection and/or
traversal in jQuery. Such plugins are easily added by extending $.fn to define a new
function that applies the plugin’s capabilities, and they’re immediately integrated into
jQuery’s standard processing.

 The sample plugin built in this chapter illustrates how a plugin framework can
address the various guidelines and design principles described in chapter 4. And as a
result, you have a fully functional plugin that provides useful abilities to complement
the features built into normal input fields.

 In the next chapter you’ll build a different type of plugin—one that doesn’t oper-
ate on collections of elements.

What you need to know

Create a collection plugin to operate on the set of elements resulting from a selection
or traversal process.

Using a framework as the basis for your code provides the common plugin abilities,
allowing you to concentrate on the plugin-specific functionality.

Extend $.fn to add a collection plugin.

Protect your code and prevent name clashes through scoping.

Allow your plugin to be chained to further jQuery calls.

Provide flexible configuration through options, but always initialize them with sensible
default values.

Use named methods to provide additional functionality within the plugin.

Allow a plugin to be removed by adding a destroy method.

Try it yourself

Use the basic framework file (jquery.framework.js) as the basis for a new plugin. Re-
implement the Watermark plugin from chapter 2 in this context. Add an option to iden-
tify the attribute to use when retrieving the label text. Add a method instead of a sep-
arate plugin to clear the label.

Function plugins
The collection plugins from the previous chapter worked by operating on a set of
elements retrieved from the page via a selection and/or traversal process, but you
can also create plugins that don’t apply to such collections but provide utility func-
tions within the jQuery framework. These are function plugins.

 Examples of this type of plugin include the Debug plugin (http://
jquery.glyphix.com/), which provides logging output for debugging purposes, and
the Cookie plugin, which provides interactions with the cookies for a website (cov-
ered in detail in section 6.2). As with the earlier plugins, you’re only limited by your
imagination in what you can create.

 Because function plugins don’t work with sets of elements from the page and
often work without any UI component, they’re considerably simpler to implement.
Although you could define these functions as standalone JavaScript functions,
there are benefits to creating them within the jQuery namespace. Doing so reduces

This chapter covers
■ Defining a function plugin
■ Localizing content via a function plugin
■ Accessing cookies via a function plugin
97

98 CHAPTER 6 Function plugins
the clutter in the global namespace and reduces the risk of a name clash. Often they
make use of jQuery itself, and their inclusion there offers a consistent approach when
using jQuery. They also aim to make the provided abilities easier to use and to hide
any cross-browser differences: key principles behind jQuery itself.

 In chapter 5, you extended $.fn to define your collection plugin, allowing it to be
integrated into the collection processing built into jQuery. For function plugins, you
extend jQuery ($) directly, and invoke them from there as well.

6.1 Defining your plugin
As a concrete example of a function plugin, you can develop a tool to assist in the
localization of your web pages, loading in only the necessary JavaScript files to custom-
ize your site for a particular language and region.

6.1.1 Localization plugin

Based on the localization scheme described in section 5.5.2, this tool assumes the
presence of several related JavaScript files distinguished only by their language or
region code. When requested, the plugin loads in these localization files in order of
increasing language and region specificity, each overwriting the one before, resulting
in the best possible match for a given language and region.

 For example, suppose you have the files shown in table 6.1. Each one represents a
different language and region combination and sets a common variable (greeting)
to the message shown.

To localize your page with a greeting in a particular language, you can use this code:

$.localise('greeting', 'en-AU');
$('#greet').text(greeting);

The plugin would load the following files in order, from least specific to most specific—
greeting.js, greeting-en.js, greeting-en-AU.js—to arrive at the best possible match for a
greeting in Australian English: “G’day”. If the language requested were Canadian Eng-
lish (en-CA), the chain would stop at the second file (standard English), because there
is no greeting-en-CA.js file, and it would produce a greeting of “Good day”. And if you
happened to ask for Xhosa (xh), you’d get the default greeting: “Hello”.

Table 6.1 Localization setup

File Language/Region Message

greeting.js Default Hello

greeting-en.js English Good day

greeting-en-US.js English (US) Hi

greeting-en-AU.js English (Australia) G’day

greeting-fr.js French Bonjour

99Defining your plugin
Once the files are loaded and executed, you can access the variables that they set in
the usual manner.

 If the localise() call is made without any language specified, it uses the default
language as indicated by the browser. To enable easy access to this default language,
it’s made available via $.localise.defaultLanguage.

 Localization isn’t limited to text displayed to the end user. It can affect other
aspects of the display and behavior, as shown in some localizations for the Datepicker
plugin (see figure 6.1).

 There are several differences between these versions, other than the obvious tex-
tual changes:

■ The drop-downs for selecting month and year appear in different orders.
■ Each calendar starts on a different day of the week: Monday for French, Sunday

for Japanese, and Saturday for Arabic.
■ Arabic reads from right to left, but the other two read left to right.

Now that you know what the plugin is designed to do, you can use the principles and
framework from the previous two chapters to help implement it.

6.1.2 Framework code

Although most of the plugin framework presented in the previous chapter doesn’t
apply to function plugins, a couple of its features should be retained. You should still
hide the implementation details by using scope and not rely on $ being the same as jQuery. The
solution is the same as that presented before.

(function($) { // Hide scope, no $ conflict
 ... the rest of the code appears here
})(jQuery);

Create a scope by defining an anonymous function B, calling it immediately to estab-
lish its scope and execute its contained code c. By declaring a parameter of $ and
then supplying a reference to jQuery when invoked, you ensure that both refer to the
same object within the body of the function.

Listing 6.1 Encapsulating the plugin code

Figure 6.1 Datepicker localization: French, Japanese, and Arabic

Declare
anonymous
functionbImmediately invoke itc

100 CHAPTER 6 Function plugins
 The plugin also follows the principles of only claiming a single name and using that for
everything and placing everything under the jQuery object. There can be no chaining here,
as there’s no jQuery collection to work with. The principle of using sensible defaults is
followed by using the default language from the browser if no specific language is
given.

 The next section addresses all of these points as you write the main plugin func-
tion.

6.1.3 Loading localizations

The localise function, shown in the following listing, implements the main action of
this plugin: loading one or more localization files for a particular package based on
the language and region requested.

$.localise = function(
 packages, language, loadBase, path, timeout, async, complete) {
 ...
};

Attach the function directly to the jQuery object by declaring it as an attribute B. The
function is then accessible via the jQuery object within your pages, without needing to
select any elements for it to operate upon, because it applies to the page as a whole.

 The function accepts multiple parameters to alter its behavior. All except for the
first parameter are optional and will use appropriate default values if not provided.
The parameters are distinguished by their types when deciding what they represent.
The following listing shows how the parameters are handled.

if (typeof language != 'object' && typeof language != 'string') {
 complete = async;
 async = timeout;
 timeout = path;
 path = loadBase;
 loadBase = language;
 language = '';
}
if (typeof loadBase != 'boolean') {
 complete = async;
 async = timeout;
 timeout = path;
 path = loadBase;
 loadBase = false;
}
if (typeof path != 'string' && !$.isArray(path)) {
 complete = async;
 async = timeout;
 timeout = path;
 path = '';

Listing 6.2 Declare the plugin function

Listing 6.3 Defaulting and standardizing parameter values

Declare the localise functionb

Handle an optional
language code b

Handle an optional
load base flagc

Handle an
optional pathd

101Defining your plugin
}
if (typeof timeout != 'number') {
 complete = async;
 async = timeout;
 timeout = 500;
}
if (typeof async != 'boolean') {
 complete = async;
 async = false;
}
var settings = (typeof language != 'string' ? $.extend(
 {loadBase: false, path: '', timeout: 500, async: false},
 language || {}) :
 {language: language, loadBase: loadBase, path: path,
 timeout: timeout, async: async, complete: complete});
var paths = (!settings.path ? ['', ''] :
 ($.isArray(settings.path) ? settings.path :
 [settings.path, settings.path]));
var opts = {async: settings.async, dataType: 'script',
 timeout: settings.timeout};

You must supply either a single package name (string) or a set of them (string[])
for the function to work with. Because the remaining parameters are optional, the
code must then determine which is which. The second parameter is an optional lan-
guage code (string) or a collection of settings (object) with attributes named for the
individual parameters. To make further processing simpler, any individual parameter
values are collected into a single settings object, as if it had been supplied originally. If
the second parameter is neither of these items, the parameters are shifted along B
and processing continues with the next one.

 Additional optional parameters include a flag indicating that the base localization
should be reloaded (boolean) c, an optional path (string) or paths (string[])
denoting where to find the base and localization files d, an optional timeout value
(number) e, an optional asynchronous flag (boolean) f, and an optional callback
function on completion of the load. Missing parameters are set to their default values.

 You create an accumulated settings object from one that’s supplied (overriding any
default values), or from the individual parameter values g. Check the path setting to
see whether it’s a single path or many, and convert it into the latter format if necessary
h. Collect together various options applying to the forthcoming Ajax calls for later
ease of use i.

 Once the parameters have been defaulted and standardized, the plugin continues
to process all the specified packages in turn.

var localisePkg = function(pkg, lang) {
 var files = [];
 if (settings.loadBase) {
 files.push(paths[0] + pkg + '.js');
 }

Listing 6.4 Loading localization files

Handle an
optional timeoute

Handle an optional
asynchronous flag

f

Standardize
references
to settings

g

Standardize the
path referencesh

Prepare options for
the Ajax calls to followi

Localize a
single packageb

Load base file
if requiredc

102 CHAPTER 6 Function plugins
 if (lang.length >= 2) {
 files.push(paths[1] + pkg + '-' +
 lang.substring(0, 2) + '.js');
 }
 if (lang.length >= 5) {
 files.push(paths[1] + pkg + '-' +
 lang.substring(0, 5) + '.js');
 }
 var loadFile = function() {
 $.ajax($.extend(opts, {url: files.shift(),
 complete: function() {
 if (files.length == 0) {
 if ($.isFunction(settings.complete)) {
 settings.complete.apply(window, [pkg]);
 }
 }
 else {
 loadFile();
 }
 }}));
 }
 loadFile();
};
var lang = normaliseLang(
 settings.language || $.localise.defaultLanguage);
packages = ($.isArray(packages) ? packages : [packages]);
for (var i = 0; i < packages.length; i++) {
 localisePkg(packages[i], lang);
}

You define an internal function B to process a single package. Each one is loaded as
the base file (if the loading of the base was requested) c, then with a two-character
language code d, and finally with a five-character language and region code (if avail-
able) e. The files are placed in a queue to be read sequentially.

 Loading of the individual files f uses the built-in jQuery ajax function, starting
with the first file in the queue, specifying that the returned content is “script” and
should be executed as such. Because a synchronous load is used by default (to ensure
that subsequent code can rely on the returned values), a timeout is included to con-
tinue in a timely manner. Alternatively, you can use the additional parameters to the
localise call to indicate that asynchronous loads should be performed and to pro-
vide a callback function to be invoked once they’re all completed g. If there are fur-
ther files in the queue, the function is reinvoked to load the next one h.

 Once the process for a single package and subsequent files has been defined, you
find the language and region required i, and load each package in turn j.

 To implement what the plugin is preaching, a second function is defined to pro-
vide a localized version of the original:

$.localize = $.localise;

The complete plugin code is available for download from the book website.

Load a language
localizationd

Load a language and
region localizatione

Load files
in orderf

When all are loaded,
trigger complete g

Load next file
in sequenceh

Standardize the
language to use

i

Standardize package list
and process each in turn j

103jQuery Cookie plugin
6.2 jQuery Cookie plugin
Another good example of a function plugin is the Cookie plugin (https://
github.com/carhartl/jquery-cookie) written by Klaus Hartl. It allows you to read or
write the cookies associated with a web page in a simple way without having to know
anything about the format and encoding used by those cookies. You can retain some
state information for a website on each user’s computer to personalize and enhance
their experience. As such, it doesn’t operate on collections of elements on the page.

6.2.1 Cookie interactions

Cookies are small amounts of data that are stored on a user’s machine and are associ-
ated with one or more web pages. The information in the cookies for a web page is
accessible on that page and is sent back to the server with each request, allowing some
state to be maintained on the client machine. Cookies expire after a certain time, and
are then removed from the user’s machine.

 To set a cookie for the current web page using the Cookie plugin, you need to pro-
vide its name and value. For example, to track whether you’ve shown an introduction
to each user when they first visit your website, you could save a cookie with that infor-
mation:

$.cookie('introShown', true);

You can also provide additional parameters to customize the cookie, setting its expiry
period (by default, cookies expire at the end of the current session), the domain and
path to which it applies, whether the cookie requires secure transmission, and
whether the cookie value is encoded:

$.cookie('introShown', true, {expires: 30, domain: 'example.com',
 path: '/', secure: true, raw: true});

Retrieving a cookie value is just a matter of providing its name. If there’s no cookie
with the given name, a null is returned. In the website introduction example, you’d
test this value and only show the introduction if it’s null:

var introShown = $.cookie('introShown');

Delete a cookie by setting its value to null:

$.cookie('introShown', null);

As you can see, the plugin follows the principle of only claiming a single name (within
jQuery) and using that for everything. Different functionality is provided based on the
number and types of parameters provided in each call.

 Now that you know what the Cookie plugin can do, you’ll see how it implements its
functionality. Although the Cookie plugin doesn’t use my framework, the basic struc-
ture and principles still apply.

104 CHAPTER 6 Function plugins
6.2.2 Reading and writing cookies

As for the previous plugins, the body of the code is protected from the rest of the
JavaScript world, and the only access point is via the jQuery object itself.

(function($, document) {

 $.cookie = function(key, value, options) {
 ... // Rest of Cookie code appears here
 };

})(jQuery, document);

An anonymous function B hides the plugin from external JavaScript and follows the
principles of hiding the implementation details by using scope and not relying on $ being the
same as jQuery d. This plugin makes minimal use of jQuery itself, and only defines a
single function—cookie—which is added to the jQuery object c, applying two more
principles: only claiming a single name and using that for everything, and placing everything
under the jQuery object.

 The plugin has two modes of operation—reading or writing cookies—and which
one applies is determined by the number and type of parameters supplied to the call.
The initial case handled here is writing a cookie value.

// key and at least value given, set cookie...
if (arguments.length > 1 && (!/Object/.test(
 Object.prototype.toString.call(value)) || value == null)) {
 options = $.extend({}, $.cookie.defaults, options);

 if (value == null) {
 options.expires = -1;
 }

 if (typeof options.expires === 'number') {
 var days = options.expires,
 t = options.expires = new Date();
 t.setDate(t.getDate() + days);
 }

 value = String(value);

 return (document.cookie = [
 encodeURIComponent(key), '=', options.raw ?
 value : encodeURIComponent(value),
 options.expires ? '; expires=' +
 options.expires.toUTCString() : '',
 // use expires attribute, max-age is not supported by IE
 options.path ? '; path=' + options.path : '',
 options.domain ? '; domain=' + options.domain : '',

Listing 6.5 Encapsulating the plugin code

Listing 6.6 Writing a cookie value

Declare anonymous
functionb

Declare
the cookie
functioncImmediately invoke

definition
d

Check for
writing a cookie

b

Check for deleting
a cookiec

Standardize/default
optionsd

Write the cookie value
with settings and exit

e

105jQuery Cookie plugin
 options.secure ? '; secure' : ''
].join(''));
}

If more than one parameter is provided, and the second isn’t an object, then a cookie
is written B. Deleting a cookie is indicated by setting a null value. If that’s the case
c, the expiry time is set to -1, which means the cookie has already expired and will be
discarded. Otherwise, if the expires option is a number, it’s treated as a number of
days from today d. Finally, the cookie value is converted into a string, and the cookie
and its settings are written to the browser e. As expected, the principle of using sensi-
ble defaults applies, resulting in a cookie that applies to the current domain and path
and expires at the end of the current session. The encoded cookie name and value are
returned as the result of the function call, although most times you wouldn’t need to
know or do anything with that value.

 If the cookie value is being retrieved, the plugin processing continues as shown in
the following listing.

// key and possibly options given, get cookie...
options = value || $.cookie.defaults || {};
var decode = options.raw ? raw : decoded;
var cookies = document.cookie.split('; ');
for (var i = 0, parts;
 (parts = cookies[i] && cookies[i].split('='));
 i++) {
 if (decode(parts.shift()) === key) {
 return decode(parts.join('='));
 }
}
return null;

First, any options passed as the second parameter to the call are read B, with default
values being used if none were provided explicitly. The current cookie values (all
cookies for this web page) are retrieved and split into individual name/value pairs c.
Each pair is examined to find the one with the requested name d and the corre-
sponding value returned. If no matching value is found, a null is returned e.

 You can set default options for all cookies by updating $.cookie.defaults:
$.extend($.cookie.defaults, {expires: 7});

The full code for the Cookie plugin is available for download from the book’s website.

Listing 6.7 Reading a cookie value

What you need to know

Develop function plugins to add abilities not directly applied to selected elements.

Extend $ directly to add extra functionality.

Protect your code and prevent name clashes by using scoping.

Process optionsb
Separate
cookie values

c

Retrieve
cookie valued

Return null
if not found

e

106 CHAPTER 6 Function plugins
6.3 Summary
Whereas collection plugins operate on the set of elements resulting from a selection
and/or traversal process, function plugins don’t apply to such collections. Instead
they offer utility functions that serve to simplify various interactions on the web page.
They hide the intricacies of the inner workings of some web page functions and
remove the need to worry about cross-browser differences in these processes.

 Two examples, the Localization and Cookie plugins, showed how function plugins
are created in practice. They demonstrate how the plugin framework applies to this
new type of plugin and why you should still follow the best practice principles.

 Once you’ve built your own plugin, you need to ensure that it works correctly and
that others can easily obtain it and understand its use. The next chapter examines
how to test, package, deploy, and document your plugin to make it ready for the wider
jQuery community.

(continued)

Accept parameters to modify the plugin’s behavior, but provide sensible default values
if they’re not supplied.

Try it yourself

Write a function plugin to format a time, to be called as shown here:

var time = $.formatTime(new Date(0, 0, 0, 12, 34, 0));

Accept a Date object to extract the time from, or use the current time if nothing is
provided. Format the time as hh:mmAP. For more of a challenge, add an optional first
parameter (Boolean) that indicates whether the format should be 12-hour time, as
above, or 24-hour time.

Hints: The Date object has functions getHours and getMinutes. Find the current
date/time with new Date().

Test, package, and
document your plugin
Once you’ve written your new plugin, you probably want to make it available to the
wider jQuery community. To give it the best chance of competing with other
plugins that provide similar functionality, you should ensure that it works as
expected in all situations. Using a testing suite such as QUnit lets you create a series
of repeatable tests for a wide range of scenarios for your plugin, in the familiar
environment of a web browser.

 You should also provide potential users with a package that includes everything
they need to implement your plugin. As well as the plugin code itself, you may need
to include associated stylesheets, images, localizations, and perhaps even a simple
demonstration page. To reduce network requirements when the plugin is being
used, it’s also helpful to include a minimized version of your plugin code, as pro-
vided by one of several online packing tools. All of the related files are then col-
lected into a single archive file for ease of distribution.

 Finally, you need to document your plugin thoroughly so your users know what
to expect and can adapt it to their varying needs. Describe each option that can be

This chapter covers
■ Testing your plugin
■ Packaging your plugin for distribution
■ Documenting and demonstrating your plugin
107

108 CHAPTER 7 Test, package, and document your plugin
set, each callback that can be registered, and each method that can be invoked. You
should also show off your plugin’s abilities with a demonstration page, preferably with
corresponding code snippets that can be easily copied and applied by a user.

 The sections in this chapter address each of these issues to help you publish a plu-
gin that works correctly and can be easily implemented by end users.

7.1 Testing your plugin
Testing your plugin may seem like an obvious requirement, but doing it properly can
be an art form. Even with only a few options available to change your plugin’s behav-
ior, the possible combinations quickly grow and can become unwieldy.

 Initially, you might start with a simple page and adjust options manually to check
their functionality, but as the complexity of the plugin increases, this is no longer
practical and leads to inconsistent testing of various situations. A set of repeatable unit
tests overcomes this problem, allowing you to easily run a full suite of tests without
missing anything.

 A standard set of tests (following the create a repeatable test case suite principle) also
lets you refactor your code more easily, as you can confirm after each change that the
plugin still works as expected.

 This section looks at what you should be testing, and then at how you’d implement
this using the QUnit testing suite. As an example, you’ll create unit tests for the
MaxLength plugin you created in chapter 5.

7.1.1 What to test?

Ideally, you should test everything—all methods for all combinations of options,
applied to varying elements in diverse positions upon the page, in all the major brows-
ers (one of the guiding principles). But this isn’t practical for most plugins, so concen-
trate on testing each option or method separately or in small groups of related settings.

 Start with the basics of setting default values for all plugin instances ($.plugin-
name.setDefaults), followed by the setting and retrieval of individual or groups of
options ($(selector).pluginname('option')...). Next, test the instantiation
($(selector).pluginname()) and destruction ($(selector).pluginname
('destroy')) of your plugin to ensure that it makes the necessary DOM modifications
and then removes them completely. If your plugin can be enabled and disabled, then
test that this happens as expected ($(selector).pluginname('disable')). Check
that other operations don’t work when the plugin is in its disabled state.

 Test each option individually to check that it correctly affects the targeted ele-
ments. For options that accept different types of values, include tests for each of these
types separately. For options that are event callbacks, add tests for each one and
ensure that the parameters passed to it are correct.

 For each method and utility function offered by the plugin, test that it operates as
expected. Check that chaining occurs for methods that don’t return a special value
from the plugin.

109Testing your plugin
 Test user interactions with the elements affected by the plugin using jQuery’s event
methods. Trigger a normal, bubbling event (one that’s passed on to the containing
elements up through the DOM hierarchy) with $(selector).trigger('eventname').
To invoke an event without bubbling, use $(selector).triggerHandler('event-
name') instead. You can also use the named jQuery event functions to initiate events,
such as $(selector).click(). If you need to pass additional information with the
event, such as the position of a mouse click or the key pressed, use the trigger func-
tion but pass it an Event object instead of only the event name.

var e = $.Event('click');
e.pageX = 10;
e.pageY = 20;
$(selector).trigger(e);

7.1.2 Using QUnit

QUnit is a JavaScript test suite developed by John Resig and now maintained by the
jQuery team (http://qunitjs.com/). It’s used by the jQuery and jQuery UI teams to
test jQuery and jQuery UI themselves, and can be applied to any JavaScript code. A
QUnit page contains a suite of tests that you can easily run to verify the functionality of
your plugin.

 To run a QUnit test, you start with an HTML template as shown in listing 7.1. You
load in the QUnit CSS and JavaScript, and add your tests in a separate script element.
In the body of the page, you add two specific divs—one to hold the test results
(#qunit) and the other to hold any elements needed by the tests themselves (#qunit-
fixture). The latter is hidden by moving it off the screen, thus allowing its contents to
be “visible” while not affecting the display of the test outcome. Figure 7.1 shows the
results of loading this sample page—a failed test, because the supplied value doesn’t
match the expected one.

<html>
<head>
 <title>QUnit basic example</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/qunit/qunit-git.css"/>
 <script src="http://code.jquery.com/qunit/qunit-git.js"></script>
 <script>
 test('a basic test example', function() {
 var value = 'hi';
 equal(value, 'hello', 'We expect value to be hello');
 });
 </script>
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
</body>
</html>

Listing 7.1 QUnit page template

110 CHAPTER 7 Test, package, and document your plugin
Your test code consists of one or more calls to the test function, each of which contains
a set of related assertions (statements of expected results). Each section includes code to
set up the appropriate environment and then one or more assertions regarding the out-
come of that test. Each time a test is invoked, the test environment is re-established, with
the contents of the #qunit-fixture div being restored to their original state, protect-
ing tests from each other and allowing each to start from a known state.

 Within the page header is the page title, a status bar colored either green indicat-
ing a successful test run or red indicating some sort of failure, the current browser
identification, and various checkboxes to change the test behavior. The body of the
document shows the results of running the tests. By default, tests that pass are col-
lapsed, whereas those that fail are expanded to show individual assertions. You can
toggle a test by clicking on its header. Click Rerun or double-click a test header to
rerun just that test.

 You can also filter individual tests by matching a portion of their name (ignoring
case) as a parameter to the test page, such as

test.html?filter=basic

Alternately, you can exclude tests matching a filter by prefixing the value with an
exclamation mark (!):

test.html?filter=!event

Checking the Check for Globals checkbox in the header reruns the tests but throws
an error if any global variables are declared. Use this option to monitor the global
namespace and assist in preventing interference with other libraries. Checking the No
Try-Catch checkbox reruns the tests but doesn’t trap any exceptions that may be
raised, allowing them to fall through to the browser and stop the tests at that point.
Normally exceptions are caught and appear as failure messages within the output.

Status color

Test title

Test options

Browser
details

Test
statistics

Test case

Test
outcome

Figure 7.1 Running the QUnit basic example

111Testing your plugin
 Run your test page on all the major browsers to ensure compatibility across all of
these platforms.

 To illustrate how you’d test a plugin, you can create a test suite for the MaxLength
plugin from chapter 5.

7.1.3 Testing the MaxLength plugin

To ensure that the MaxLength plugin works as expected, you should write a QUnit
test suite to validate it.

 For this plugin, you
start off testing the setDe-
faults function. After
checking that the initial
value of a default option is
as expected, you call the
function to change that
value, and check it again
to confirm the update. A
message provided to the
checking call is logged as
is on success, and on fail-
ure is concatenated with the unequal values being compared. Figure 7.2 shows the
(successful) result of running this initial test; the next listing shows the initial page
setup and the code behind this first test.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>jQuery Max Length Tests</title>
<link type="text/css" rel="stylesheet"
 href="http://code.jquery.com/qunit/qunit-git.css">
<script type="text/javascript"
 src="http://code.jquery.com/qunit/qunit-git.js"></script>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.0/jquery.min.js">
</script>
<script type="text/javascript" src="js/jquery.maxlength.js"></script>
<script type="text/javascript">
$(function() {
 test('Set Defaults', function() {
 expect(2);
 init();
 equal($.maxlength._defaults.max, 200, 'Initial max');
 $.maxlength.setDefaults({max: 300});
 equal($.maxlength._defaults.max, 300, 'Changed max');

Listing 7.2 Setting up MaxLength tests

Figure 7.2 Running the first MaxLength test

Load QUnitb

Load jQuery
and plugin

c

Define a testd

Set number
of assertions
to be madeeMake an

assertion f

112 CHAPTER 7 Test, package, and document your plugin
 $.maxlength.setDefaults({max: 200});
 });
});

function init(settings) {
 return $('#txa').val('').maxlength('destroy').maxlength(settings);
}
</script>
</head>

<body>
<div id="qunit"></div>
<div id="qunit-fixture">
 <input type="text" id="fbk1">
 <textarea id="txa" rows="3" cols="30"></textarea>
</div>
</body>
</html>

The testing page starts by loading in the QUnit styling and code B, followed by
jQuery and the plugin code c.

 The body of the page contains the two standard divs: the first (#qunit) to hold the
QUnit interface and the results of running the tests g and the second (#qunit-fix-
ture) to hold any elements required by the tests themselves h. The latter is cloned
and re-created at the beginning of each set of tests to provide a clean environment for
those tests, and is styled to move it out of the normal viewport so that its contents
remain “visible” without overlaying the QUnit results.

 The test appears within a call to the QUnit test function d. This function defines
a name for the set of assertions that it contains and a callback function to run them. A
test should be targeted at a particular aspect of the plugin, and may be run on its own
to focus on that one area. Any changes you make to the environment during a test will
apply until that test is completed.

 To ensure that any code failures are correctly handled, you should start each test
with a call to the expect function, to specify how many assertions are being made
within this set e. This way, if a problem arises that prevents the remaining code from
executing, you’ll still be informed of an error (instead of it failing silently) because the
number of assertions run won’t match what was expected. Alternatively, you can supply
the number of expected assertions as the second parameter to the test function, push-
ing the callback function into third position. Finally, you should initialize the environ-
ment for your test, run the code, and make assertions about the outcome f.

 When testing the setDefaults function, you call the function to alter the value
and check that it did in fact change. The calls to equal are assertions provided by
QUnit. Each one compares the actual value with an expected value (the first two
parameters) and succeeds if these are equal (after type conversion, if necessary). A
descriptive message is provided to the call as its third parameter for logging purposes.

 The init function in the code initializes the textarea within the #qunit-fixture
div by resetting its value, removing any existing MaxLength functionality, and then

Area for QUnit
controls and results

g

Area for elements
used by testsh

https://developers.google.com/closure/compiler/docs/compilation_levels

113Testing your plugin

Set
of as

to b

a
an
adding it back in again. Although it’s not necessary for this particular test, which
relates to global functionality, the init function will be used by later sets of tests. The
input field and span within the fixture div will be used to contain feedback informa-
tion in later tests.

7.1.4 Testing option setting and retrieval

Having checked the setting of default options for the plugin, you can continue by test-
ing the setting and retrieval of options. You can set individual options, or collections
of them, in the one call. Similarly you can retrieve one or all option values from a call.
All of these possibilities should be tested, as shown in the following additional test.

test('Options', function() {
 expect(12);
 var txa = init();
 deepEqual(txa.maxlength('option'), {max: 200, truncate: true,
 showFeedback: true, feedbackTarget: null,
 feedbackText: '{r} characters remaining ({m} maximum)',
 overflowText: '{o} characters too many ({m} maximum)',
 onFull: null}, 'Initial settings');
 equal(txa.maxlength('option', 'max'), 200,
 'Initial max setting');
 equal(txa.maxlength('option', 'truncate'), true,
 'Initial truncate setting');
 txa.maxlength('option', {feedbackText: 'Used {c} of {m}'});
 deepEqual(txa.maxlength('option'), {max: 200, truncate: true,
 showFeedback: true, feedbackTarget: null,
 feedbackText: 'Used {c} of {m}',
 overflowText: '{o} characters too many ({m} maximum)',
 onFull: null}, 'Changed settings');
 equal(txa.maxlength('option', 'max'), 200,
 'Unchanged max setting');
 equal(txa.maxlength('option', 'truncate'), true,
 'Unchanged truncate setting');
 txa.maxlength('option', {max: 100, showFeedback: false});
 deepEqual(txa.maxlength('option'), {max: 100, truncate: true,
 showFeedback: false, feedbackTarget: null,
 feedbackText: 'Used {c} of {m}',
 overflowText: '{o} characters too many ({m} maximum)',
 onFull: null}, 'Changed settings');
 equal(txa.maxlength('option', 'max'), 100,
 'Changed max setting');
 equal(txa.maxlength('option', 'truncate'), true,
 'Unchanged truncate setting');
 txa.maxlength('option', 'truncate', false);
 deepEqual(txa.maxlength('option'), {max: 100, truncate: false,
 showFeedback: false, feedbackTarget: null,
 feedbackText: 'Used {c} of {m}',
 overflowText: '{o} characters too many ({m} maximum)',
 onFull: null}, 'Changed named setting');
 equal(txa.maxlength('option', 'max'), 100,

Listing 7.3 Testing MaxLength options

 Define the options testb
 number
sertions
e made c

Initialize the
testing element

d

Make an
assertion

about
an object e

Make an assertion
about a valuef

Change
n option
d retest g

Test multiple
options are
changed

h

Test individual
option is changed

i

114 CHAPTER 7 Test, package, and document your plugin
 'Unchanged max setting');
 equal(txa.maxlength('option', 'truncate'), false,
 'Changed truncate setting');
});

Define a new test to probe the option capabilities of the plugin B. As done previously,
specify the number of assertions to be made in this test so you’re sure you’re not miss-
ing any c.

 Initialize the test elements with a call to init d, and then confirm that the initial
state is as expected. A call to the option method without any other parameters results
in an object being returned containing all the current option values. Use the deep-
Equal function provided by QUnit to compare the returned value with the expected
one e. This function differs from equal by comparing each attribute of the two
objects separately (and recursively if necessary), rather than only checking that the
two objects are the same one. Use the equal function to check a single simple option
value retrieved when using the option method with a named option f.

 Continue the test by changing an option value, again with the option method g,
and check for the changes that should have resulted. Also test the situations where
several option values are changed at the one time by providing a collection of new val-
ues to the option method h, and where an individual option is altered by providing
its name and new value i.

7.1.5 Simulating user actions

The behavior of the MaxLength plugin depends on interactions with the user, in par-
ticular their entry of text into the affected textarea. You need to test this behavior by
simulating these exchanges. Other plugins may need to test mouse clicks or drags.
The following listing shows how the MaxLength tests handle this requirement.

test('Text', function() {
 expect(28);
 var txa = init({max: 20});
 var rem = txa.nextAll('.maxlength-feedback');
 keyboard(txa, 'abcdefghij');
 equal(txa.val(), 'abcdefghij', 'Entered short text');
 ok(!txa.hasClass('maxlength-full'), 'Not full with short text');
 ok(!txa.hasClass('maxlength-overflow'),
 'Not overflow with short text');
 equal(rem.text(), '10 characters remaining (20 maximum)',
 'Feedback for short text');
 keyboard(txa, 'klmnopqrstuvwxyz');
 equal(txa.val(), 'abcdefghijklmnopqrst', 'Entered full text');
 ok(txa.hasClass('maxlength-full'), 'Full with full text');
 ok(txa.hasClass('maxlength-overflow'), 'Not overflow with full text');
 equal(rem.text(), '0 characters remaining (20 maximum)',
 'Feedback with full text');
 backspace(txa);
 equal(txa.val(), 'abcdefghijklmnopqrs', 'BS');

Listing 7.4 Testing text entry

Define the text
entry testb

Simulate
entering text

c

Test the
entered

text d Make a
true/false
assertion e

115Testing your plugin
 ok(!txa.hasClass('maxlength-full'), 'Not full with BS');
 ok(!txa.hasClass('maxlength-overflow'), 'Not overflow with BS');
 equal(rem.text(), '1 characters remaining (20 maximum)',
 'Feedback with BS');
 keyboard(txa, 'u');
 equal(txa.val(), 'abcdefghijklmnopqrsu', 'More text');
 ok(txa.hasClass('maxlength-full'), 'Full with more text');
 ok(!txa.hasClass('maxlength-overflow'), 'Not overflow with more text');
 equal(rem.text(), '0 characters remaining (20 maximum)',
 'Feedback with more text');
 // Truncate off
 txa = init({max: 20, truncate: false}).val('');
 ...
});

function keyboard(input, chars) {
 for (var i = 0; i < chars.length; i++) {
 var ch = chars.charCodeAt(i);
 input.simulate('keydown', {charCode: ch}).
 simulate('keypress', {charCode: ch}).
 val(function(index, value) {
 return value + chars.charAt(i);
 }).
 simulate('keyup', {charCode: ch});
 }
}

function backspace(input) {
 input.simulate('keydown', {keyCode: $.simulate.VK_BS}).
 simulate('keypress', {keyCode: $.simulate.VK_BS}).
 val(function(index, value) {
 return value.replace(/.$/, '');
 }).
 simulate('keyup', {keyCode: $.simulate.VK_BS});
}

As in the earlier tests, you define the test and give it a name B. The usual setting of
the expected number of assertions and field initialization follow. Then enter text as
though it had been typed via the keyboard c and check the resulting content of the
field d. You can also make assertions about the state of the plugin by using the ok
function provided by QUnit e. This function takes a Boolean value as its first parame-
ter and asserts it to be true. In this case, you test that certain marker classes haven’t
yet been applied to the textarea.

 Having run through a series of actions and assertions, you reinitialize the textarea
with a different option setting and rerun the tests to observe the change in behavior f.

 Two helper functions assist in the simulation of events normally triggered by the
user. The keyboard function g generates keydown, keypress, and keyup events for
each character in the given string, whereas the backspace function h does the same
for a single backspace character. Both use the Simulate plugin (https://github.com/
eduardolundgren/jquery-simulate) to send the events.

 It’s easy to replicate most other user interactions with elements on the page via
jQuery’s standard event handler functions. You can simulate a mouse click by calling

Reinitialize with different
settings and retestf

Simulate
keyboard eventsg

Simulate
backspace key

h

116 CHAPTER 7 Test, package, and document your plugin

Tri

c

click on that element, or via the trigger function (for all matched elements with
event bubbling) or triggerHandler function (for just the first element without any
bubbling).

$('#button1').click();
$('#button1').triggerHandler('click');

7.1.6 Testing event callbacks

Many plugins use event callbacks to notify the user of significant events within the plu-
gin, such as values changing or timeouts expiring. The conditions triggering these
events and the content of any parameters provided to the callback should be tested. In
the MaxLength plugin, an event is triggered when the textarea reaches or exceeds its
allowed limit. This listing shows the event callback tests.

var count = 0;
var overflowing = null;
function filled(overflow) {
 count++;
 overflowing = overflow;
}

test('Events', function() {
 expect(10);
 var txa = init({max: 20, onFull: filled});
 keyboard(txa, 'abcdefghijklmnopqrs');
 equal(count, 0, 'No event');
 keyboard(txa, 't');
 equal(count, 1, 'Full event');
 equal(overflowing, false, 'Not overflowing');
 keyboard(txa, 'u');
 equal(count, 2, 'Full event');
 equal(overflowing, false, 'Not overflowing');
 // Truncate off
 count = 0;
 overflowing = null;
 txa = init({max: 20, truncate: false, onFull: filled});
 keyboard(txa, 'abcdefghijklmnopqrs');
 equal(count, 0, 'No event');
 keyboard(txa, 't');
 equal(count, 1, 'Full event');
 equal(overflowing, false, 'Not overflowing');
 keyboard(txa, 'u');
 equal(count, 2, 'Full event');
 equal(overflowing, true, 'Overflowing');
});

Start by declaring some variables to track the callback invocations B and the actual
function to be called c. You can use a simple counter to record how often the call-
back is invoked and another variable to capture its single parameter.

Listing 7.5 Testing callbacks

Initialize tracking
variablesb

Define the
callback functionc

Define the
events test

d

Check no activity
until expected

e

gger the
callback
ondition f

Check its occurrence
and parametersg

Reinitialize with different
settings and retest

h

117Packaging your plugin
 Define the new test as before d, set the expected number of assertions, and initial-
ize the test elements. You can make some initial assertions to ensure that the callback
isn’t triggered before it should be e. Then perform the triggering action f and ver-
ify that the callback was called and received the expected parameter value g.

 Finally, reinitialize the test environment, change an option and check the callback
behavior under the new conditions h.

 The complete test page for the MaxLength plugin is available for download from
the book’s website. As well as the tests described earlier, it includes tests for enabling
and disabling the plugin, for removing its functionality, and for presenting feedback.

 You’ve seen how to create a unit test suite for the MaxLength plugin, using the
abilities of the QUnit package. But QUnit offers much more than was shown in this
chapter. Additional features include grouping tests into modules, running asynchro-
nous tests, other assertions, and event hooks to monitor QUnit’s progress. For more
information on its capabilities, read the QUnit API documentation (http://
api.qunitjs.com/) and the “Introduction” and “Cookbook” articles on the main web-
site (http://qunitjs.com/).

7.2 Packaging your plugin
Now that you’re satisfied your plugin works correctly in various scenarios, you want to
make it available to the wider jQuery community. To do this, you should package up
everything that the plugin requires to make it simple to distribute and easy for a
potential user to obtain.

 You need to collect all the relevant files, create a minimized version of your code to
reduce download times, and provide a simple implementation of your plugin to start
users off. Then combine all these files in a single archive for a one-step download.
Each of these steps is described in this section.

7.2.1 Collating all the files

Often a complete plugin consists of more than just a JavaScript file—you may also
have any or all of the following:

■ Additional JavaScript modules for less-used functionality
■ Minimized versions of the JavaScript modules (see section 7.2.2)
■ Localization files to adapt your plugin to other languages and countries
■ CSS files to style your plugin in various ways
■ Image and other resource files that are used by the CSS or that may be used via

options of the plugin
■ A basic example of how to use the plugin (see section 7.2.3)
■ Documentation on the plugin (see section 7.3)

As an example, my Datepicker plugin has all of the types of files listed here, except the
documentation, which is available separately. The file list shown in figure 7.3 identifies
the various components.

118 CHAPTER 7 Test, package, and document your plugin
Place all of your files in a single zip archive. As well as reducing the size of the package
through compression, the archive keeps all the required files together in one pack-
age, making it easier to distribute without forgetting anything.

7.2.2 Minimizing your plugin

To reduce your plugin’s download requirements, you can make it smaller by removing
unnecessary text, such as comments and whitespace. This process is known as minimiz-
ing the code.

 By including both the original source code and the minimized version in your
download, you make it easy for potential users to use whichever suits their needs—
debugging or learning with the full code or production use with the minimized one.
The minimized version should be named the same as your original plugin file, but
with a .min addition after the plugin name; for example, jquery.maxlength.min.js.

Figure 7.3 Files that make
up the Datepicker plugin

119Packaging your plugin
 Once you’ve minimized the code itself, you should copy over the header com-
ments from the original code, because these identify the plugin, its version, and
author, and should provide a URL for the plugin website so that users can find
updates, examples, and documentation.

 Several websites offer to minimize your JavaScript code, including the following:

■ Dean Edwards’ Packer (http://dean.edwards.name/packer/)
■ YUI Compressor (http://developer.yahoo.com/yui/compressor/)
■ Google Closure Compiler (https://developers.google.com/closure/compiler/)

DEAN EDWARDS’ PACKER

Dean Edwards’ Packer is available online and lets you generate the standard mini-
mized code by removing comments and whitespace. It also lets you generate a Base62
encoded file, which is usually smaller than the minimized code, but requires addi-
tional processing on the client to reconstruct the original code. The Base62 version
also doesn’t compress further as much as the straight minimized version, so you get
better performance from the minimized code in conjunction with a gzip filter on your
server. In both cases, you can opt to shrink variable names. In addition to further
reducing the file size, this setting provides a measure of code obfuscation.

 To use Dean Edwards’ Packer, open the website, paste your code into the top
panel, select your options, and click the Pack button, as shown in figure 7.4. Then
copy the resulting code from the panel at the bottom and save it locally.

Source code

Minimized
code

Figure 7.4 Dean Edwards’ Packer in action

120 CHAPTER 7 Test, package, and document your plugin
YUI COMPRESSOR

YUI Compressor is available as a Java (1.4+) application that you download and run
locally. This makes it possible to include the minimization step in a local build pro-
cess. It analyzes the source code via the Rhino JavaScript implementation in Java, and
then rewrites it while omitting comments and unessential whitespace, at the same
time replacing internal variable names with shorter values.

>java -jar \path\to\yuicompressor-2.4.7.jar -o jquery.maxlength.min.js

➥ jquery.maxlength.js

GOOGLE CLOSURE COMPILER

The Google Closure Compiler takes a different approach. In addition to removing
unnecessary comments and whitespace, it can scan the code using compiler-like analy-
sis with the aim of rewriting it for equivalent functionality with less code. As a byprod-
uct, it also generates warnings and error messages for (potential) problems found
while parsing the code. The compiler is available as an online tool (see figure 7.5) or
for download as a Java application (http://closure-compiler.appspot.com/home).

Figure 7.5 Google Closure Compiler in action

121Packaging your plugin
When using the former, paste your code in the box on the left, select your options,
and click Compile. Copy the resulting code from the box on the right and save it
locally.

COMPARISON

As a comparison, applying these three tools to the MaxLength plugin results in the
savings shown in table 7.1. There’s not a lot of difference between them for this plu-
gin, particularly when further zipped, but the Google Closure Compiler does come
out on top.

7.2.3 Providing a basic example

Try to include a complete basic example of your plugin’s operations alongside the
code and other supporting files. Such an example demonstrates that the plugin works
before users start experimenting with changing options and invoking methods. The
page should be able to be run as soon as your distribution package is unpacked.

Closure Compiler options

The Closure Compiler offers three levels of optimization. The basic level is Whitespace
Only, which removes comments, line breaks, unnecessary spaces, and other
whitespace. The next level is Simple, which removes whitespace as in the previous
option and renames internal variables to use shortened names. Both of these options
are safe to use on any code, provided you don’t access local variables via string names.

The third level is Advanced, which performs the previous optimizations and then ex-
amines the code to determine whether it can be rewritten to achieve the same result.
This level requires that your code conform to certain assumptions that the compiler
makes, and the resulting code may not run if these aren’t adhered to. See Google’s
“Closure Compiler Compilation Levels” documentation (https://developers
.google.com/closure/compiler/docs/compilation_levels) for more details.

When checked, the Pretty Print option adds back line breaks and indents to make the
code human-readable again, although this does increase the file size a little. When
checked, the Print Input Delimiter option adds a comment into the output indicating
where each of multiple input files starts.

Table 7.1 Comparing minimization implementations

Product Minimized size (bytes) % saving After zip (bytes) % saving

Dean Edwards’ Packer 5238 53.4% 1551 86.2%

YUI Compressor 5192 53.8% 1566 86.1%

Google Closure Compiler 4949 56.0% 1497 86.7%

122 CHAPTER 7 Test, package, and document your plugin

Lo
jQue

from C
 Keep the page as minimal as possible to reduce confusion as to what’s required to
use your plugin. You should load jQuery (and jQuery UI if applicable) from a CDN to
avoid having to include the jQuery library in your download or worry about where
jQuery might be kept in relation to this page. Show the default configuration for your
plugin in this page, and allow users to add options later as they explore the plugin’s
possibilities. Include a link to your plugin’s main demonstration page and any docu-
mentation on the plugin’s abilities.

 The basic page for the MaxLength plugin is shown in the following listing.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>jQuery Max Length Basics</title>
<link type="text/css" href="jquery.maxlength.css" rel="stylesheet">
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.0/jquery.min.js">
</script>
<script type="text/javascript" src="jquery.maxlength.js"></script>
<script type="text/javascript">
$(function() {
 $('#maxLength').maxlength();
});
</script>
</head>
<body>
<h1>jQuery Max Length Basics</h1>
<p>This page demonstrates the very basics of the

 jQuery Max Length plugin.
 It contains the minimum requirements for using the plugin and
 can be used as the basis for your own experimentation.</p>
<p>For more detail see the

 documentation reference page.</p>
<p>Default max length:
 <textarea id="maxLength" rows="5" cols="50"></textarea></p>
</body>
</html>

Start by loading any CSS required by your plugin B followed by the jQuery library c
and your plugin code d. Invoke your plugin with a minimum of configuration e. To
further assist your prospective users, include links to the documentation for the plugin
and to the plugin’s website that demonstrates more of its abilities f. Finally, include
the elements upon which your plugin operates g, again in their simplest form.

Listing 7.6 A minimal MaxLength page

Load plugin CSS b

ad
ry

DN c
Load
plugin
coded

Basic plugin
initializatione

Link to plugin
website

f

Elements
used by
the plugin

g

123Documenting your plugin
7.3 Documenting your plugin
Your plugin may be fantastic and highly configurable, but if users don’t know about its
abilities, they won’t be able to use it to its fullest extent. Most developers include some
comments within the code (at least they should), and the plugin framework does col-
lect all the available options together, but users don’t want to have to wade through
the code to find those descriptions.

 By documenting your plugin and publishing it on the web, you make it easy for
users to evaluate the possibilities offered by your plugin, and then to configure the
plugin for their own use. Clear documentation with examples can reduce your main-
tenance burden, as users can find the answers to many of their questions without hav-
ing to contact you directly.

7.3.1 Documenting options

All the options available to configure your plugin need to be documented. Each one
should list the option’s name, its expected type or types, its default value, and an
explanation of its purpose and effect. Figure 7.6 shows documentation for some
options of the MaxLength plugin.

 For more complicated options, especially those that accept objects or functions,
you should provide a code snippet to illustrate how that option could be used. List
each of the attributes of an object value, along with its expected type, default value,
and description. Similarly, list each parameter passed to a function value with its

jQuery content delivery network

Google provides a CDN that contains multiple versions of jQuery, both in full source
and in minimized format. Change the version number as necessary, and omit the .min
if you want the full source code:

<script type="text/javascript" src="http://ajax.googleapis.com/

➥ ajax/libs/jquery/1.8.2/jquery.min.js">

It also hosts jQuery UI versions:

<script type="text/javascript" src="http://ajax.googleapis.com/

➥ ajax/libs/jqueryui/1.9.2/jquery-ui.min.js">

It even provides jQuery UI ThemeRoller themes. Change the version number and theme
name as required:

<link type="text/css"

➥ rel="stylesheet" href="http://ajax.googleapis.com/ajax/libs/
➥ jqueryui/1.9.2/themes/south-street/jquery-ui.css">

Microsoft and jQuery (via MediaTemple) also provide CDNs for jQuery, jQuery UI, and
the standard ThemeRoller themes.

124 CHAPTER 7 Test, package, and document your plugin
expected type and purpose. For a function, you should also detail what this refers to
within the body of the function, and what return value, if any, is expected back.

 Provide links to related options as appropriate when describing interactions
between them. If the set of possible options is extensive, consider providing an alpha-
betical list of links at the top and/or bottom of the page to provide quick access to
particular settings.

 As your plugin evolves over time, record in which version an option was added or
changed. This will enable users of older versions to easily see what to do when upgrad-
ing to the latest version, or provide a reference if they want to continue using their
existing version.

7.3.2 Documenting methods and utility functions

Any methods recognized by your plugin also need to be documented, along with any
utility functions provided by it.

 Each method or function should detail the manner in which it’s invoked, showing
all the parameters as well as the value returned by the call and a description of its pur-
pose. Be sure to note any methods that don’t return the jQuery object and so can’t be
used for further chaining. Figure 7.7 shows documentation for the first few functions
and methods of the MaxLength plugin.

Option links

Option

Version
difference

Related
option

Code
snippet

Option descriptionDefault
value

Data
type

Option
name

Figure 7.6 Documentation for some MaxLength options

125Documenting your plugin
List each parameter and indicate its expected type, its optionality, any default value,
and its purpose. Provide examples of how to invoke each function or method. Include
links to other methods or back to options as appropriate, and note in which version
items were introduced or changed.

7.3.3 Demonstrating your plugin’s abilities

First impressions count for a lot, so present your plugin in the best possible light by
providing a web page that demonstrates most, if not all, of its abilities.

 First, show the plugin in its default configuration, and then add examples of cus-
tomizing it by setting various options. Where possible, include the code that you run
to produce these examples, allowing users to find a sample that is close to what they
want and to copy the relevant script to achieve that.

 As well as serving as a showpiece and a repository of examples for potential users,
your demonstration page also provides a valuable testing tool for your plugin, espe-
cially its visual aspects that are difficult to test with an automated tool. Open the page
and put it through its paces on all the major browsers.

 You can also include any or all of the following:

■ Instructions on how to implement the plugin on the user’s page
■ Feedback from other users
■ A list of websites that already use the plugin
■ A quick reference to all the options available
■ A link to more detailed documentation for the plugin
■ Access to localizations for the plugin (with appropriate credits)
■ A list of previous versions and the changes therein

Function

Sample call

Version
differences

Parameters

Function
description

Return
type

Function
call

Figure 7.7 Documentation for some MaxLength functions and methods

126 CHAPTER 7 Test, package, and document your plugin
Figure 7.8 shows the main part of the demonstration page for the MaxLength plugin.

What you need to know

Having a unit test suite for a plugin helps ensure that it works correctly in most situ-
ations and browsers.

QUnit provides a JavaScript unit test framework that allows you to comprehensively
test your plugin.

Documentation

Download

Quick
reference

Example

Example
code

Implementation
instructions

Figure 7.8 Demonstrating the MaxLength plugin

127Summary
7.4 Summary
It’s all well and good to have written the best plugin ever, but if users can’t easily find,
deploy, and configure it, they may bypass it for another offering.

 Users expect the plugin to be (relatively) bug free when it’s made publicly avail-
able. To assist in your testing efforts, the QUnit package enables you to write repeat-
able unit tests for your code. Try to test every option, method, and function offered by
your plugin. Having a set of repeatable tests makes it easier to refactor your plugin
code while ensuring that it continues to work as expected.

 Package all of the plugin files into a single zip archive to make it easier to distrib-
ute and to ensure that nothing gets missed. Provide a minimized version of the plugin
code to assist users in reducing the download requirements of your code.

 A demonstration page for the plugin serves as a visual test bed for your own use,
and it highlights all of the possibilities offered by your plugin. Include code samples to
give users a helping hand toward producing similar effects in their own websites.

 Document everything so that users know the full range of the plugin’s abilities and
what to expect when they configure it or interact with it. Describe all of the configura-
tion options available, including event handlers, all of the methods that the plugin
recognizes, and any other functions that the plugin offers. Well-written and compre-
hensive documentation can reduce your maintenance burden as users can often find
the answers to problems themselves.

 In the next part of the book, you’ll see how the jQuery UI package offers its own plu-
gin framework and how to tap into that to write compatible plugins. This chapter on
testing, packaging, and documenting your plugin applies to any plugins you produce.

(continued)

Package all the files for your plugin into one archive for ease of distribution.

Provide minimized versions of your code in your distribution package to reduce network
traffic for potential users.

Document your plugin’s options and methods to assist users in customizing it for their
own needs.

Provide demonstrations of your plugin’s functionality, preferably with code examples,
to help convince users to try it.

Try it yourself

Write tests for the Watermark plugin you developed as an exercise in chapter 5, fol-
lowing the pattern of the MaxLength tests shown in this chapter. Make sure you test
the option to change where the label text comes from and the clear method to erase
a label.

128 CHAPTER 7 Test, package, and document your plugin

Part 3

Extending jQuery UI

The jQuery UI is a collection of user interface plugins built on top of
jQuery. These plugins provide basic behaviors, visual effects, and UI widgets to
enhance your web pages. jQuery UI has its own extension points and its own
plugin framework.

 Chapter 8 examines the widget framework of jQuery UI. This framework also
applies the best practice principles described in the previous part and assists in
creating a consistent appearance and behavior for all jQuery UI widgets. You’ll
see how to develop a complete plugin using the framework.

 A common requirement for UI widgets is to interact with the mouse through
a drag operation. jQuery UI has built-in support for this through its Mouse mod-
ule. Chapter 9 describes how this provided functionality is integrated into your
plugin.

 jQuery UI also provides visual effects for highlighting or showing or hiding
elements on the page. In chapter 10 you’ll see how you can create your own
effects using jQuery UI’s abilities, as well as how to create a new easing, or rate of
acceleration of a change, for an animation.

130 CHAPTER

jQuery UI widgets
In the previous part of the book, you saw how to create a collection plugin by using
a framework to manage basic interactions with jQuery. Now you’ll see how jQuery
UI provides a similar framework to ensure that the collection of plugins that make
up this package work in a standard manner.

 jQuery UI “is a curated set of user interface interactions, effects, widgets, and
themes built on top of the jQuery JavaScript Library” (http://jqueryui.com). It’s an
official jQuery add-on that includes several UI components known as widgets. It uses
the ThemeRoller tool (http://jqueryui.com/themeroller/) to generate a consis-
tent look and feel for all the widgets that it manages.

 If you want to create visual components that integrate with the existing jQuery
UI widgets, you need to write your plugin based upon its widget framework. Both
the jQuery UI widget framework and the framework presented in chapter 5 let you

This chapter covers
■ What jQuery UI widgets are
■ Using the jQuery UI widget framework
■ Applying the design principles
■ Creating a complete jQuery UI plugin
131

132 CHAPTER 8 jQuery UI widgets
concentrate on creating your plugin’s unique functionality, without having to worry
unduly about the underlying infrastructure. They each allow for the storage of state
against an element and manage the setting and retrieval of options for each instance
of the plugin to customize its appearance and behavior. Both let you invoke additional
actions on the plugin by naming the required method and supplying any required
parameters to complete that action. And each framework can remove the applied
functionality to return the affected elements to their original states.

 For a comparison with the previous framework, you’ll re-create the MaxLength
plugin as a jQuery UI widget. Recall that this plugin limits the amount of text accepted
in a textarea and provides valuable feedback along the way. By the end of this chap-
ter, you’ll have a new plugin with the same look and feel as the standard jQuery com-
ponents.

8.1 The widget framework
jQuery UI is highly modularized, allowing you to choose which parts of the package
you want to use, thus reducing the code requirements. You can build a custom down-
load for yourself that takes dependencies between the modules into account (http://
jqueryui.com/download).

 After reviewing the modules that make up the jQuery UI package, we’ll focus on
the Widget module and you’ll start to reimplement the MaxLength plugin based on
the widget framework, which is included in the package.

8.1.1 jQuery UI modules

A quick review of the modules that make up jQuery UI will help to orient you and
make you aware of the options it provides. Basic functionality required by all of jQuery
UI comes from the Core module, which must always be included on your page. It
incorporates the zIndex function, which lets you retrieve or set the z-index of an ele-
ment, denoting its position in front of or behind other elements.

 The Widget module is the subject of this chapter, providing infrastructure that’s
used by all of the jQuery UI components. If a widget or behavior relies on mouse drag
operations for its functionality, the Mouse module makes that process much easier by
converting the mouse movements into callbacks that can be overridden. Chapter 9
examines the Mouse module in more detail. The Position module is a standalone util-
ity that simplifies the placement of one element in relation to another.

 jQuery UI includes several lower-level behaviors in their own modules. The Drag-
gable module lets you drag an element across the page using your mouse, whereas the
Droppable module allows you to define which other elements will accept and process
the dragged element when it’s released.

 You can use the Resizable module to enable dragging the border of an element to
alter its size. The Selectable module lets you choose items from a list, either individually
or via dragging the mouse across them. To reorder items in a list, apply the functionality
from the Sortable module, once again using the mouse to drag the items into position.

133The widget framework
Several widgets are currently available as part of jQuery UI (as shown in figure 8.1),
and others are planned and in development to be included in future jQuery UI
releases.

 The Accordion module allows for vertically expanding content beneath sectional
headings, whereas the Tabs module stacks multiple content sections and activates one
of them from labels across the top. You can use the Dialog module to display a pop-up
dialog box over the page, and optionally, to prevent any other interactions with that
page.

 To obtain a consistent appearance and functionality for action components, such
as buttons and links, you can use the Button module. You can use the Autocomplete
module to suggest values to populate a field, or the Slider module to visually select a
value or range of values within defined limits. To select a date from a pop-up calendar,

Figure 8.1 The jQuery UI widgets with ThemeRoller styling

134 CHAPTER 8 jQuery UI widgets
you can use the Datepicker module, or you can place a calendar inline instead. The
Progressbar module allows you to display progress through a task in a visual fashion.

 New in jQuery UI 1.9 are the Menu module (which provides navigation abilities for
your website), the Spinner module (which allows the selection of numeric values by
adjusting them up or down), and the Tooltip module (which adds customizable,
themeable floating tips for your elements).

 A number of visual effects enhance the basics provided by jQuery itself. Most of
these can be applied to explicitly show or hide an element or to toggle its visibility,
such as Clip or Explode, whereas some serve to draw attention to an element, such as
Highlight or Shake. Common functionality used by several effects is contained within
the Effects Core module. Figure 8.2 shows several effects partway through their anima-
tions. Chapter 10 looks at jQuery UI effects in more detail.

 This chapter looks in detail at the jQuery UI widget framework, which is encapsu-
lated in the Widget module.

8.1.2 The Widget module

The Widget module is the key one when you develop a UI component for use with
jQuery UI. It defines the $.Widget “class” that forms the basis for any new component.
(Although JavaScript doesn’t have classes as a formal construct, you can create objects
that resemble classes as defined in other languages, and I’ll refer to them as such.)
This class provides the basic functionality that’s common to all widgets to ensure that
they operate in the same manner: the widget framework.

 Among the standard abilities are

■ Attaching the widget to an element
■ Processing initial options for a widget instance

Figure 8.2 jQuery UI effects about 60% through their duration. Clockwise from top left: fade,
fold, slide, and clip.

135The widget framework
■ Retrieving and setting option values after initialization
■ Retaining state for a widget instance
■ Handling enabling and disabling the widget
■ Registering and invoking event handlers
■ Invoking custom methods on the widget
■ Integrating with ThemeRoller for a consistent look and feel
■ Removing the widget if no longer required

The lifecycle of a widget (as it applies to the MaxLength plugin) is described in
greater detail in section 8.1.4.

8.1.3 The MaxLength plugin

As mentioned earlier, in this chapter you’ll redevelop the MaxLength plugin from
chapter 5 using the jQuery UI widget framework. This plugin will provide a maximum
length restriction for textarea fields, similar to the built-in maxlength attribute for
input fields. It will be called in the same manner as before, either with default settings
or with customized options:

$('#text1').maxlength();
$('#text1').maxlength({max: 400});

As well as limiting the text that can be entered, the plugin will provide feedback on
how many characters have been used or remain available for input, as shown in figure
8.3. The feedback will use the current ThemeRoller theme to integrate its appearance
with the rest of the page.

 The plugin will include the same functionality as before:

■ Warn users only when they reach the maximum number of characters
■ Suppress feedback altogether
■ Show feedback only when the textarea is active
■ Trigger a callback when reaching or exceeding its maximum

This plugin will follow the principle of providing progressive enhancements. Without Java-
Script, you can still enter text and the length restriction will be imposed on the server
upon submission. With JavaScript, the plugin will restrict the amount of text that may
be entered prior to submission and provides valuable feedback along the way.

Figure 8.3 The MaxLength jQuery UI plugin in operation

136 CHAPTER 8 jQuery UI widgets

h

Enforc
rest
8.1.4 MaxLength plugin operation

The plugin code consists of a number of functions that override or enhance the abili-
ties provided by the widget framework. These are shown in the following listing, and
the way that these are invoked during the lifecycle of the widget is described after the
listing.

var maxlengthOverrides = {
 options: {...},
 _create: function() {...},
 _setOption: function(key, value) {...},
 _setOptions: function(options) {...},
 refresh: function() {...},
 curLength: function() {...},
 _checkLength: function() {...},
 _destroy: function() {...}
};
$.widget('kbw.maxlength', maxlengthOverrides);

As usual, you apply the plugin to one or more textarea elements on the page using
jQuery’s select-and-operate approach. The widget framework creates an instance
object for each affected element to hold the current state of the plugin, and stores
that against the element. Attributes of that instance object include the set of default
options (options in the listing at B) and customized option overrides supplied in the
initialization call. These settings control the plugin’s appearance and behavior. After
performing the necessary setup, the framework calls the _create function c to allow
you to complete the initialization for an element.

 If at a later time the user wants to change the options for an instance of the plugin,
they use the option method. This triggers one call to the _setOptions function e to
deal with the options as a group, and multiple calls to the _setOption function d to
handle individual option changes.

 Both the initialization and option change processes end up calling the custom
refresh function f, which synchronizes the plugin’s appearance and behavior with
the new option values.

 As part of the custom initialization for the plugin, it attaches event handlers to the
textarea to monitor its keystrokes. Each keystroke triggers a call to the _checkLength
function h, which enforces the current maximum length on the entered text and
updates any associated feedback element to reflect the new status. If the textarea is
full and the user has registered a callback for this event, they’re notified of the situa-
tion immediately.

 The user may request the current count of used and remaining characters at any
time by invoking the curLength method, which is mapped onto the curLength func-
tion g:

var lengths = $('#text1').maxlength('curLength');

Listing 8.1 Plugin function outline

Widget defaultsb Initialization
for an element

c

Custom
option

andling d

Custom
options handling

e

Refresh widget
appearancefRetrieve current lengthge length

rictions h Remove maxlength
functionalityi

137Defining your widget
NOTE Functions with names that don’t start with an underscore (_) may be
called directly via the widget framework by supplying the name of that func-
tion when invoking the plugin, as shown in the curLength sample here.
Those that do start with an underscore are hidden by the framework and
aren’t accessible.

The user may remove the MaxLength functionality altogether by calling the destroy
method, which is passed through to the _destroy function i. This process undoes all
the changes made in the initialization steps.

 To begin developing your plugin, you need to declare your new widget so that you
can use the widget framework functionality.

8.2 Defining your widget
You still need to complete a few basic steps before you can start developing the spe-
cific functionality of your plugin. These are

■ Claiming a name for the widget
■ Protecting your code from the wider JavaScript environment, and vice versa
■ Declaring the new widget

Let’s look at these in turn.

8.2.1 Claiming a name

Your plugin needs some way to be identified, and it needs to stay separate from other
plugins. The widget framework helps to apply the principle of only claiming a single
name and using that for everything through its widget definition call. Even so, you still
need to choose an appropriate name and namespace for your plugin.

 The namespace is designed to help isolate plugins from one another, but only the
plugin name is used to access the functionality, so that name must be unique on its
own. As discussed previously, if two plugins with the same name are included on one
page, only one (the last one loaded) will be accessible.

 In this example, you’ll use the same plugin name as before (maxlength) and add a
namespace of kbw (my initials). The plugin name and namespace should contain only
lowercase characters, digits, and hyphens (-) or underscores (_). The ui namespace is
reserved for official jQuery UI plugins and shouldn’t be used for your own plugins.
Other than that, the namespace should indicate where the plugin comes from and
whether it forms part of a collection of plugins.

 The plugin code should appear in a file named jquery.<pluginname>.js. To distin-
guish this plugin from the one developed in chapter 5, name the file
jquery.maxlengthui.js, while keeping the plugin name itself maxlength. The associ-
ated CSS uses the same file name, but with a different extension.

8.2.2 Encapsulating the plugin

Although the widget framework provides a lot of common functionality, you must still
use the same anonymous function construct seen in chapter 5 to apply the principles

138 CHAPTER 8 jQuery UI widgets
of hiding the implementation details by using scope and don’t rely on $ being the same as jQuery.
This serves to protect your plugin’s implementation from the rest of the JavaScript
environment and vice versa, and it can be seen in the following listing.

(function($) { // Hide scope, no $ conflict
 ... the rest of the code appears here
})(jQuery);

The anonymous function B serves as a new scope—variables and functions defined
within this function aren’t visible externally. Internal code won’t interfere with any
external code. You can use the jQuery object itself to provide access to the functional-
ity of your plugin in a controlled manner.

 The wrapper function ensures that within its body, $ refers to the jQuery object, by
declaring $ as a parameter and then supplying jQuery as the value when invoking it
immediately c. Within this function, you include the code for your new widget,
which starts with the declaration of the widget itself.

NOTE As noted previously, do not wrap your plugin code in a $(docu-
ment).ready(function() {...}) callback, or its shorthand form $(func-
tion() {...}). You want the code to execute immediately when it’s loaded,
and to be available subsequently when the normal jQuery initialization is run.

8.2.3 Declaring the widget

The widget framework manages the creation of widgets, allowing it to add standard
functionality to all of them. Common abilities include initializing the plugin for a col-
lection of elements, handling option setting and retrieval, and removing plugin func-
tionality when it’s no longer needed. You create your widget as follows.

var maxlengthOverrides = {

 // Global defaults for maxlength
 options: {
 max: 200, // Maximum length
 ... Other default settings
 },

 _create: function() {...},

 // Other widget code
};

/* Maxlength restrictions for textareas.
 Depends on jquery.ui.widget. */
$.widget('kbw.maxlength', maxlengthOverrides);

The widget framework lets you override or enhance its inherited abilities, so you start
by defining an object with attributes that provide those overrides B, including default

Listing 8.2 Encapsulating the plugin code

Listing 8.3 Declaring the widget

Declare
anonymous
functionbImmediately invoke itc

Define widget
functionalityb

Provide
default optionsc

Declare
new widget

d

139Attaching the plugin to an element
option values and custom methods. The contents of this object are described in detail
throughout the rest of this chapter.

 As in chapter 5, you allow the behavior of the widget to be customized by passing
optional settings to it. Following the principle of using sensible defaults, you define an
options object as part of the widget to hold the default values c. Most of the options
for the MaxLength plugin are identical to those defined in chapter 5. The one differ-
ence is the callback function triggered when the textarea reaches or exceeds its spec-
ified maximum. In chapter 5 it was named onFull, but the standard practice in jQuery
UI is to omit the on part, so here it’s just named full. Part of the reason behind this
change is that jQuery UI allows you to attach an event handler to these internal events
via the standard bind or on functions and connects it to the appropriate event auto-
matically. The event is named from a combination of the plugin name and the option
name. You can then provide an event handler as follows:

$('#text1').maxlength().bind('maxlengthfull', function(event, ui) {
 ...
});

jQuery UI doesn’t have a standard localization strategy, so don’t worry about incorpo-
rating localization support into this widget.

 You must declare your widget by invoking the $.widget function d and provide
the name of the widget, including its namespace, separated by a period (.). The last
parameter is the object that overrides or extends the inherited widget abilities.

 An optional second parameter for this call defines which other widget “class” to
use as the basis for the new one. Because you’re creating a new widget with only basic
inherited functionality, this parameter can be omitted here, and the default $.Widget
is used. Chapter 9 describes a jQuery UI widget that uses this parameter to include
mouse interactions by specifying $.ui.mouse as the class to inherit from.

 Following your widget declaration, the widget framework creates a new function
for jQuery element collections named with the plugin name ($.fn.maxlength in this
case) and connects it to your overrides as provided in the code. Behind the scenes, the
$.widget.bridge function performs the mapping between jQuery’s collection pro-
cessing and your custom widget.

 Now that your new widget is named and inherits the standard widget functionality,
you can start customizing its behavior to meet your requirements.

8.3 Attaching the plugin to an element
The widget framework automatically handles attaching the plugin to a collection of
elements, but you probably want to perform some processing when that occurs. To
add your own code, you extend the basic widget as part of its definition, overriding
the inherited implementation that does nothing.

8.3.1 Basic attachment and initialization

The framework intercepts the plugin initialization call and performs some standard
processing around that. It creates a widget instance object and assigns that to the

140 CHAPTER 8 jQuery UI widgets
selected element via the data function as an attribute named for the plugin. The
name combines the namespace and plugin name separated by a dash, from jQuery UI
1.9 onwards (kbw-maxlength in this case), or it’s just the plugin name, prior to jQuery
UI 1.9 (maxlength). Within that object are two key attributes: element and options.
The former is a reference to the element to which the plugin is applied, and the latter
is a copy of the default options for the plugin, overridden by any customized option
values.

 During the initialization process, the framework calls the _create function, which
you can provide in your plugin code by supplying it as part of the overrides in the wid-
get declaration, as shown in the next listing. Within the _create function, this refers
to the current widget instance object.

/* Initialise a new maxlength textarea. */
_create: function() {
 this.feedbackTarget = $([]);
 var self = this;
 this.element.addClass(this.widgetFullName || this.widgetBaseClass).
 bind('keypress.' + this.widgetEventPrefix, function(event) {
 if (!self.options.truncate) {
 return true;
 }
 var ch = String.fromCharCode(event.charCode == undefined ?
 event.keyCode : event.charCode);
 return (event.ctrlKey || event.metaKey || ch == '\u0000' ||
 $(this).val().length < self.options.max);
 }).
 bind('keyup.' + this.widgetEventPrefix, function() {
 self._checkLength($(this));
 });
 this.refresh();
},

To have the widget framework call your code at the appropriate time, you define the
_create function B. You should add a marker class to the currently selected element
c to help identify affected elements within your page. In chapter 5 this was also done
to indicate that the element had already been initialized for this plugin. The widget
framework uses the presence of the widget instance object as data to indicate the same
thing. The framework provides the this.widgetFullName value (this.widgetBase-
Class prior to jQuery UI 1.9) for your use in this and similar circumstances. Its value is
the plugin namespace and name separated by a hyphen (-).

 The remainder of the code in this function applies processing specific to the plu-
gin. For the MaxLength plugin, you add keystroke handlers to the main element (the
textarea) d to allow its state to be updated as soon as the text content changes. You
should add a namespace to the events to enable them to be easily identified later on
by appending the this.widgetEventPrefix value provided by the framework. Note
the reference to the widget options provides the maximum length given for this

Listing 8.4 Attachment and initialization

Override the
_create functionb

Add a
marker
classc Add event

handlers d

Refresh the widget
appearance

e

141Handling plugin options
textarea, and that an internal function is called (_checkLength). Both are part of the
widget instance object this, which is aliased by self within the event handlers.

 Finally, you should call the custom refresh function e to modify the plugin based
on the options currently set. Section 8.4.3 has more details on this function, but first
you’ll see how the options’ default values are defined and how the framework reacts to
changes in their values.

8.4 Handling plugin options
You can customize a plugin instance by providing options to alter its appearance or
behavior. Recall the guiding principle to anticipate customizations. Attempt to predict
what users might want to change, so that you can supply an option to let them do that.
Then consider the principle to use sensible defaults, and assign an initial value to the
option that’s likely to satisfy most users.

 To achieve these goals, you need to

■ Define default values for all options.
■ Handle retrieving and setting option values.
■ Apply any option changes immediately.
■ Allow the plugin to be enabled or disabled.

8.4.1 Widget defaults

The widget framework automatically handles the initial setting of options for a plugin
instance and assigns them to the widget instance object’s options attribute, which is
usually accessed via this. It copies any default values specified in the widget declara-
tion and overrides these with any values that are supplied in the initialization call.

 The following listing shows how to define the default option values. Recall that this
object forms part of the custom overrides in the widget declaration.

// Global defaults for maxlength
options: {
 max: 200, // Maximum length
 truncate: true, // True to disallow further input,
 // false to highlight only
 showFeedback: true, // True to always show user feedback,
 // 'active' for hover/focus only
 feedbackTarget: null, // jQuery selector or function for
 // element to fill with feedback
 feedbackText: '{r} characters remaining ({m} maximum)',
 // Display text for feedback message,
 // use {r} for remaining characters,
 // {c} for characters entered, {m} for maximum
 overflowText: '{o} characters too many ({m} maximum)',
 // Display text when past maximum,
 // use substitutions above and {o} for characters past maximum
 full: null // Callback when full or overflowing,
 // receives two parameters: the triggering event and

Listing 8.5 Default option values

Define global default
option valuesb

142 CHAPTER 8 jQuery UI widgets
 // an object with attribute overflow set to true
 // if overflowing, false if not
},

The default values end up as an attribute of the widget prototype B. To make them
more accessible, you can map an attribute directly within the plugin onto the set of
default values:

// Make some things more accessible
$.kbw.maxlength.options = $.kbw.maxlength.prototype.options;

You’d then override defaults for all plugin instances as follows, prior to invoking the
plugin on any elements:

$.extend($.kbw.maxlength.options, {max: 300, truncate: false});

8.4.2 Reacting to option changes

The widget framework also automatically handles retrieving and updating option val-
ues throughout the plugin’s lifetime. In retrieval mode, the option method lets you
specify the name of an option and returns its current value (taking default values into
account). If you don’t provide a name, the entire set of options is returned:

var maxChars = $('#text1').maxlength('option', 'max');
var options = $('#text1').maxlength('option');

In setter mode, the option method can change a single named value, or multiple
options from a given map:

$('#text1').maxlength('option', 'max', 400);
$('#text1').maxlength('option', {max: 400, truncate: false});

The particular mode of operation is determined by the number and type of parame-
ters supplied in the call.

 You can hook into the setting process to observe changes and react to them by pro-
viding either or both _setOption and _setOptions functions as part of the widget
overrides supplied during the widget declaration. The following listing shows how to
react to individual option changes.

/* Custom option handling.
 @param key (string) the name of the option being changed
 @param value (any) its new value */
_setOption: function(key, value) {
 switch (key) {
 case 'disabled':
 this.element.prop('disabled', value);
 this.feedbackTarget.toggleClass('ui-state-disabled', value);
 break;
 }
 // Base widget handling
 this._superApply(arguments);
},

Listing 8.6 Handling individual options

Override
_setOption
function

b

Take action specific
to an optionc

Call default
option handling

d

143Handling plugin options
The _setOption function B receives two parameters: the name and new value of the
option being changed. If multiple options are supplied in one call from the user,
they’re processed individually through this function. Depending on the name of the
option c, decide what changes need to be made. For the MaxLength plugin, you
should monitor the disabled status of the widget and adjust its appearance and
behavior accordingly.

 Make sure you call the basic widget handler for setting an option value d to have
it update the value that’s stored in the widget instance object. Prior to calling this han-
dler, you can access both the new option value (value) and the old option value
(this.options[key]) if you need to compare the two.

 As previously mentioned, the _setOption function is called for each changed
option in turn. If you want to add some processing before or after a set of options is
altered, you can provide a _setOptions function for that purpose, as follows.

/* Custom options handling.
 @param option (object) the new option values */
_setOptions: function(options) {
 // Base widget handling
 this._superApply(arguments);
 this.refresh();
},

The _setOptions function B receives one parameter: the new option names and val-
ues as an object. You should always invoke the standard processing of these options,
which includes the individual processing just described, by calling the same function
in the base widget c. Then you can refresh the appearance and behavior of the wid-
get based on its new option values d. By refreshing the widget in this function rather
than the previous one, you reduce the performance cost, because it’s only done once
after a collection of changes is made, instead of repeatedly for each separate option.
The refresh function is described in the next section.

Listing 8.7 Handling any option change

Prior to jQuery UI 1.9

The way an inherited function is called changed in jQuery UI 1.9. In the newer jQuery
UI versions, you call the function through a reference to the parent class, like this:

this._superApply(arguments);

In the older versions, you refer to the widget prototype and invoke the same function
there, like this:

$.Widget.prototype._setOption.apply(this, arguments);

Or like this:

$.Widget.prototype._setOptions.apply(this, arguments);

 Override
_setOptions function

b

Call default
options handlingcRefresh widget

appearanced

144 CHAPTER 8 jQuery UI widgets
8.4.3 Implementing MaxLength options

You can change the appearance and/or behavior of the MaxLength plugin by supply-
ing options to it. Figure 8.4 shows the effect of some option changes.

 These values need to be reapplied to the affected elements as they change, poten-
tially removing the consequences of a previous usage. The custom refresh function
performs this task and is called upon initialization (see section 8.3.1) and when an
option is altered (see section 8.4.2). The first half of its definition is shown in listing 8.8.

(continued)

To allow your widget to work in the current and earlier jQuery UI versions, you can test
for the presence of the new function and act accordingly, as in this example:

// Base widget handling
if (this._superApply) {
 this._superApply(arguments);
}
else {
 $.Widget.prototype._setOption.apply(this, arguments);
}

Figure 8.4 MaxLength option changes (from top to bottom): default options, without
truncation, and changing feedback text

145Handling plugin options
/* Refresh the appearance of the maxlength textarea. */
refresh: function() {
 if (this.feedbackTarget.length > 0) {
 // Remove old feedback element
 if (this.hadFeedbackTarget) {
 this.feedbackTarget.empty().val('').
 removeClass((this.widgetFullName ||
 this.widgetBaseClass) + this._feedbackClass + ' ' +
 this._fullClass + ' ' + this._overflowClass);
 }
 else {
 this.feedbackTarget.remove();
 }
 this.feedbackTarget = $([]);
 }
 if (this.options.showFeedback) { // Add new feedback element
 this.hadFeedbackTarget = !!this.options.feedbackTarget;
 if ($.isFunction(this.options.feedbackTarget)) {
 this.feedbackTarget =
 this.options.feedbackTarget.apply(this.element[0],[]);
 }
 else if (this.options.feedbackTarget) {
 this.feedbackTarget = $(this.options.feedbackTarget);
 }
 else {
 this.feedbackTarget =
 $('').insertAfter(this.element);
 }
 this.feedbackTarget.addClass(
 (this.widgetFullName || this.widgetBaseClass) +
 this._feedbackClass + ' ui-state-default' +
 (this.options.disabled ? ' ui-state-disabled' : ''));
 }
 ...
},

You declare the refresh function B as part of the widget overrides supplied during
the widget definition. By using a name without a leading underscore (_), you allow
this function to also be invoked directly as a method:

$('#text1').maxlength('refresh');

Because the feedback options may have changed, any existing feedback element is
removed first. After checking that feedback was previously shown via a reference to
that element c, the feedback element is reset and cleared if it was externally pro-
vided d, or it’s removed altogether if it was internally generated e. In both cases, you
clear the reference to the old feedback element f.

 The new settings are then evaluated to determine whether feedback is now
required, based on the showFeedback option g. If so, you should first remember
whether an external feedback element is provided h so that it can be reset correctly

Listing 8.8 Refresh the widget appearance and behavior

Define refresh
function

b

If there was
feedback
previously...c ...reset

external
feedback
element d

Remove built-in
feedback

e

Clear feedback
target reference

f
If feedback

required, do 7-11
g

Remember
if external
feedback

h

Evaluate
external
feedback
functioni

Find external
feedback element jCreate

internal
feedback
element1) Configure

feedback
element1!

146 CHAPTER 8 jQuery UI widgets
in the future. If external feedback is given as a function i, you must call it to retrieve
the actual element. Otherwise an external feedback element is retrieved via jQuery
j, allowing it to be specified as a selector string, a DOM element, or an existing
jQuery object. If no external feedback element is supplied, you need to create one
yourself and add it after the textarea 1). In each case, the resulting feedback ele-
ment is stored in the feedbackTarget attribute of the instance object (this) for later
access, and is configured with the appropriate ThemeRoller classes 1! to fit its appear-
ance with the rest of the page.

NOTE The !! construct is explained in section 3.2.1.

The second half of the refresh function mainly deals with handling the option to
show feedback only when the element is active.

/* Refresh the appearance of the maxlength textarea. */
refresh: function() {
 ...
 this.element.unbind('mouseover.' + this.widgetEventPrefix +
 ' focus.' + this.widgetEventPrefix +
 ' mouseout.' + this.widgetEventPrefix +
 ' blur.' + this.widgetEventPrefix);
 if (this.options.showFeedback == 'active') {
 // Additional event handlers
 var self = this;
 this.element.
 bind('mouseover.' + this.widgetEventPrefix, function() {
 self.feedbackTarget.css('visibility', 'visible');
 }).bind('mouseout.' + this.widgetEventPrefix, function() {
 if (!self.focussed) {
 self.feedbackTarget.css('visibility', 'hidden');
 }
 }).bind('focus.' + this.widgetEventPrefix, function() {
 self.focussed = true;
 self.feedbackTarget.css('visibility', 'visible');
 }).bind('blur.' + this.widgetEventPrefix, function() {
 self.focussed = false;
 self.feedbackTarget.css('visibility', 'hidden');
 });
 this.feedbackTarget.css('visibility', 'hidden');
 }
 this._checkLength();
},

As with the feedback element in listing 8.8, any previous events that dealt with show-
ing the feedback only when the textarea is active are removed first B. By using a
namespace for all events when setting them up, you can prevent them interfering with
other handlers on that element and make their removal here much simpler. You just
can’t remove all such namespaced events here, as the keystroke events created during
initialization must remain.

Listing 8.9 Refresh the widget event handlers

Remove previous
event handlers

b

If showing feedback
when active, do 3–6

c

Show feedback
when mouseover d

Hide feedback
when mouseout

e

Show feedback
when focused f

Hide feedback
when blurred g

Initially
hide

feedback

h

Apply actual
length checki

147Adding event handlers
 If the user has opted to have only active feedback c, you attach handlers for the
events that indicate its active status. You should show the feedback when the mouse
moves over the textarea d, and hide it again when the mouse leaves e, but only if the
user hasn’t moved focus to that element. Similarly, feedback should be shown when the
textarea receives focus f and hidden when it loses focus g. As noted earlier, you
should specify a namespaced event name, using the widgetEventPrefix value because
it’s unique to each widget, to simplify the later removal of the handlers. In each case,
the visibility of the feedback element is altered so as to show or hide the text, while
still reserving the space that it occupies. Initially the feedback is hidden h.

 Finally, you apply the maximum length restriction to the textarea by invoking the
_checkLength function i. See section 8.8.1 for details about this function.

8.4.4 Enabling and disabling the widget

Within the widget framework, enabling and disabling a widget is standard functional-
ity and doesn’t require any action on your part.

 The widget status is controlled by the disabled option being set to true (disabled)
or false (enabled). The framework also maps the enable and disable methods onto
changes of this option value:

$('#text1').maxlength('disable');
...
$('#text1').maxlength('enable');

Internally, the framework toggles two classes on the main element—<namespace>-

<plugin name>-disabled and ui-state-disabled—and sets the aria-disabled
attribute appropriately. You can add extra processing around enabling and disabling
by watching for changes to the disabled option in a custom _setOption function (as
shown in section 8.4.2).

 Now that users can configure your new widget, let’s look at how they can respond
to changes in its state via events.

8.5 Adding event handlers
You can allow users to react to significant incidents within your plugin’s lifecycle by
providing custom events to which they can subscribe. Sometimes situations arise dur-
ing the plugin’s processing that the user may want to know about immediately, such as
the change event for an input field being triggered whenever new content is accepted.
By listening for such an event, the user can instantly update the page according to the
new state of the plugin. The widget framework provides support for invoking events in
the form of the _trigger function.

 To add event callbacks to your plugin, you need to do two things:

■ Allow the user to register handlers for an event.
■ Trigger those events at the appropriate time.

Let’s look at those two steps.

148 CHAPTER 8 jQuery UI widgets
8.5.1 Registering an event handler

Only one event is provided by this plugin: full. It occurs when the textarea has
reached or exceeded the maximum number of allowed characters. A flag is passed as
one of the event parameters to indicate whether the limit has been exceeded
(because of the truncate option being false), requiring the text to be shortened
before submission.

 The full handler appears as just another option for the plugin, as shown in listing
8.10, and defaults to null when no callback is required. To use it, the user assigns a
function that accepts two parameters, in keeping with other jQuery UI event handlers.
The first parameter is the triggering event and the second is a custom ui object, which
here holds the overflow flag. Within that callback function, the this variable refers to
the main element to which the plugin is applied, possibly allowing the user to reuse a
handler across several instances.

// Global defaults for maxlength
options: {
 ...
 full: null // Callback when full or overflowing,
 // receives two parameters: the triggering event and
 // an object with attribute overflow set to
 // true if overflowing, false if not
},

Users register their event handler during the plugin initialization, as shown in the
next snippet, or by updating options at a later stage:

$('#text1').maxlength({full: function(event, ui) {
 $('#warning').show();
}});

The plugin framework automatically maps a custom event onto this handler so that
you can use the standard bind or on functionality of jQuery to subscribe to the event.
The event is named from the plugin name combined with the option name
(maxlengthfull in this case).

$('#text1').maxlength().on('maxlengthfull', function(event, ui) {
 $('#warning').show();
}});

Once the event handler has been set, you need to invoke it at the proper time within
the lifecycle of the plugin.

8.5.2 Triggering an event handler

The full event is triggered at the end of the _checkLength function in the
MaxLength plugin, once you’ve applied the maximum length restriction, as shown in

Listing 8.10 Defining an event handler

149Adding event handlers
the following listing. In other plugins you’d trigger events at other appropriate points
in the code.

/* Check the length of the text and notify accordingly. */
_checkLength: function() {
 var value = this.element.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 ...
 if (len >= this.options.max) {
 this._trigger('full', null, $.extend(this.curLength(),
 {overflow: len > this.options.max}));
 }
},

You check that the triggering condition is true B before generating the event via the
widget’s _trigger function c. The parameters for the latter are the name of the
event, the original event that caused this trigger to fire, and a custom ui object that
holds information relevant to this widget. Providing a null original event causes
jQuery to create a custom event object with a type named from the plugin name and
the event name: maxlengthfull. Note that if the plugin name is the same as the event
name, then the event type isn’t the doubling of that name, but just a single copy. For
example, the drag event within the drag plugin just has a type of drag.

 If you want the user to be able to cancel an action via a callback, they must call
event.preventDefault() within their handler. This causes the _trigger call that
invoked the handler to return false, allowing you to test the response and act accord-
ingly. For example, your plugin code may look like this:

if (this._trigger('myevent', null, {value: this.value})) {
 ... // Only if not cancelled
}

The user would cancel the event when the value is greater than 10 as follows:

$(selector).myplugin({myevent: function(event, ui) {
 if (ui.value > 10) {
 event.preventDefault();
 }
 }
});

Event callbacks allow you to react to changes initiated by the widget itself. To initiate
other behaviors yourself, you add custom methods to the widget that can be invoked
when necessary by providing their name and possibly some parameters to adjust their
functionality.

Listing 8.11 Triggering an event

Test trigger
conditionbInvoke

event c

150 CHAPTER 8 jQuery UI widgets
8.6 Adding methods
To implement other functionality within the plugin, you use custom methods, passing
that method’s name as part of the widget call, such as enabling or disabling the widget:

$('#text1').maxlength('enable');
$('#text1').maxlength('disable');

The widget framework supports this by allowing any function that doesn’t start with an
underscore (_) to be invoked directly as a method. If that function returns a value, it’s
passed through to the caller. Otherwise the current jQuery collection is returned,
allowing the call to be chained.

 Any function that starts with an underscore is considered an internal one and can’t
be accessed in this manner. But these functions can be accessed directly on the widget
instance object. For example, from jQuery UI 1.9 onward,

$('#text1').data('kbw-maxlength')._setOptions({...});

or prior to jQuery UI 1.9,

$('#text1').data('maxlength')._setOptions({...});

8.6.1 Getting the current length

As an example of a custom method, you can allow the user to retrieve the current
character counts for a particular instance of the MaxLength plugin by using the cur-
Length method, as shown in the next listing. It returns an object with attributes used
(indicating the number of characters entered) and remaining (to hold the number of
characters still allowed). Note that if the textarea is allowed to overflow the imposed
limit, then used may be greater than the max setting, and remaining will be negative.

/* Retrieve the counts of characters used and remaining.
 @return (object) the current counts with attributes
 used and remaining */
curLength: function() {
 var value = this.element.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 return {used: len, remaining: this.options.max - len};
},

To link the custom method to an implementing function, you must name that func-
tion the same as the method to be used B. When appropriate, you return the
requested value from the function c, which is then passed directly back to the user. If
you return nothing from a custom method function, the widget framework automati-
cally returns the original jQuery object, allowing calls to such methods to be chained
in the usual manner.

 You’d call this method as follows:

var lengths = $('#text1').maxlength('curLength');
alert(lengths.remaining + ' characters remaining');

Listing 8.12 Retrieving the current length

Function for
method curLength

b

Return current
lengthsc

151Removing the widget
Custom methods on other plugins may allow or require parameters to control how
they operate, such as setting a new position on a slider:

$('#slider').slider('value', 25);

To implement this, you’d list the parameters in the function definition as usual and
use them in the body of the function, and the widget framework will pass through any
additional values supplied with the method call.

 The code presented so far allows the user to attach the MaxLength plugin to spec-
ified elements, set or retrieve its option values, and register handlers for significant
events. But the user may want to remove the MaxLength functionality at some stage,
as described in the next section.

8.7 Removing the widget
To remove all trace of your widget, the user invokes the destroy method. Like other
methods, this generates a call to the function with the same name within the plugin—
destroy.

8.7.1 The _destroy method

To add your own processing to the destroy method, you must provide a _destroy
function as part of the widget overrides during its declaration. The built-in widget
destroy function automatically calls this to implement the widget-specific behavior.
Within _destroy, you undo whatever was done in the _create and refresh func-
tions, as follows.

/* Remove the maxlength textarea functionality. */
_destroy: function() {
 if (this.feedbackTarget.length > 0) {
 if (this.hadFeedbackTarget) {
 this.feedbackTarget.empty().val('').
 css('visibility', 'visible').
 removeClass((this.widgetFullName ||
 this.widgetBaseClass) +
 this._feedbackClass + ' ' +
 this._fullClass + ' ' +
 this._overflowClass);
 }
 else {
 this.feedbackTarget.remove();
 }
 }
 this.element.removeClass(
 (this.widgetFullName || this.widgetBaseClass) + ' ' +
 this._fullClass + ' ' + this._overflowClass).
 unbind('.' + this.widgetEventPrefix);
}

Listing 8.13 Removing the widget

Define the destroy
function

b

If there was
feedback, do 3–5c

Reset external
feedback element d

Remove built-in
feedback

e

Remove plugin
functionality

f

152 CHAPTER 8 jQuery UI widgets
You start by declaring the function to enhance the destroy method B. For the
MaxLength plugin, you first check to see whether feedback was being shown by test-
ing the attribute that references any feedback element c. If so, you then need to
determine whether it was an external element, in which case it must be reset to its
original state d, or was an internal element that can be removed totally e.

 You should then remove the marker class and any status classes that were added,
and remove any event handlers that were attached f. Clearing the event handlers is
greatly simplified by the use of a namespace when adding them. Just refer to that same
namespace to safely delete all matching handlers, leaving any other handlers intact.

 After executing this method, the MaxLength functionality no longer applies to the
selected elements and your page has been returned to its initial state.

8.8 Finishing touches
Interactions between the plugin and the widget framework are now complete. But
there are a couple of finishing touches to make to this plugin:

■ Implementing the widget body
■ Styling it to define its appearance

The widget body implements the main purpose of this plugin—restricting text in a
textarea.

8.8.1 The widget body

The MaxLength plugin is designed to limit the amount of text that may be entered into
a textarea. Up until now, you’ve been integrating the plugin with the widget frame-
work to provide and then customize the standard widget functionality. Eventually all

Prior to jQuery UI 1.9

Prior to jQuery UI 1.9, you had to override the destroy function instead of _destroy
and had to invoke the inherited functionality by referring to the widget prototype. To
allow your plugin to operate in the current and earlier versions of jQuery UI, you should
extend your plugin overrides to add the destroy function in those earlier versions and
have it call _destroy, like the latest version does. You also need to call the inherited
destroy function from the widget framework. The full code for this is shown here:

if (!$.Widget.prototype._destroy) {
 $.extend(maxlengthOverrides, {
 /* Remove the maxlength textarea functionality. */
 destroy: function() {
 this._destroy();
 // Base widget handling
 $.Widget.prototype.destroy.call(this);
 }
 });
}

153Finishing touches

c

paths lead to the _checkLength function, which does the actual work of determining
the content length and truncating it if necessary. The following listing shows the code
for this function.

/* Check the length of the text and notify accordingly. */
_checkLength: function() {
 var value = this.element.val();
 var len = value.replace(/\r\n/g, '~~').replace(/\n/g, '~~').length;
 this.element.toggleClass(this._fullClass, len >= this.options.max).
 toggleClass(this._overflowClass, len > this.options.max);
 if (len > this.options.max && this.options.truncate) {
 // Truncation
 var lines = this.element.val().split(/\r\n|\n/);
 value = '';
 var i = 0;
 while (value.length < this.options.max && i < lines.length) {
 value += lines[i].substring(
 0, this.options.max - value.length) + '\r\n';
 i++;
 }
 this.element.val(value.substring(0, this.options.max));
 this.element[0].scrollTop =
 this.element[0].scrollHeight; // Scroll to bottom
 len = this.options.max;
 }
 this.feedbackTarget.toggleClass(
 this._fullClass, len >= this.options.max).
 toggleClass(this._overflowClass, len > this.options.max);
 var feedback = (len > this.options.max ? // Feedback
 this.options.overflowText : this.options.feedbackText).
 replace(/\{c\}/, len).
 replace(/\{m\}/, this.options.max).
 replace(/\{r\}/, this.options.max - len).
 replace(/\{o\}/, len - this.options.max);
 try {
 this.feedbackTarget.text(feedback);
 }
 catch(e) {
 // Ignore
 }
 try {
 this.feedbackTarget.val(feedback);
 }
 catch(e) {
 // Ignore
 }
 if (len >= this.options.max) {
 this._trigger('full', null, $.extend(this.curLength(),
 {overflow: len > this.options.max}));
 }
},

Listing 8.14 Checking the field length

Normalize
line endings

b

Set current
state on
textarea

Apply text
truncationd

Set current state
on feedback

e

Populate and show
feedback message f

Invoke callback
when appropriate

g

154 CHAPTER 8 jQuery UI widgets
You begin by determining the current length of content of the textarea, taking into
account browser differences regarding line-ending characters B. Then apply one or
two classes to the textarea to indicate its current status (full or overflowing) based on
that length and the options set for the plugin c. Recall that this refers to the current
widget instance object and that its main attributes are the original element (element)
and the current options (options).

 If the user has requested that extra text be truncated and the length exceeds the
maximum specified d, compute the shortened value, normalizing line endings as
necessary. The textarea automatically scrolls back to the top when the text is assigned
back into it, so you move back to the bottom to assist the user, assuming that most text
entry happens at the end of the content. Update the variable holding the text length
if the content has been truncated.

 Based on the new length of the text, apply one or two classes to the feedback con-
trol e. There might appear to be a discrepancy between the status of the textarea
and its feedback when truncation occurs, because the length may have been reduced
in the previous processing. This is intentional, as the feedback has to represent the
updated status, whereas the textarea can show that additional text entry was
attempted but failed.

 Using a message determined by the overflow state of the plugin, show the status of
the textarea in any feedback control f. The feedback control may be a div, span, or
paragraph, or an input field to allow for maximum flexibility. But these two types of
elements have their text set differently, and invoking the wrong one can generate
errors in some browsers. Hence the two try/catch statements to push the status into
the specified control in a protected manner.

 Finally, you notify the user via a provided full callback if the textarea has filled or
overflowed g. Section 8.5.2 went into greater detail on this subject.

 The functionality of the plugin is complete. The next step is to style it appropri-
ately to fit in with other jQuery UI widgets.

8.8.2 Styling the widget

jQuery UI uses the ThemeRoller tool to generate CSS for its widgets, providing a con-
sistent look and feel for all components, and to follow the principle of styling your plugin
with CSS. Most of your plugin’s appearance is produced by the application of standard
classes to your elements to invoke the ThemeRoller styles. If you need any additional
styling, provide an external CSS file to accompany your plugin, named the same as the
plugin code, but with a different extension: jquery.maxlengthui.css in this case.

 The plugin code assigns several state classes to the elements it manages. These
classes integrate the appearance of the plugin with other jQuery UI components on
the page. The feedback control is initially set to have a class of ui-state-default,
with the classes ui-state-highlight and ui-state-error being added to it and to
the original textarea when the textarea is full or overflowing, respectively. When
the widget is disabled, the standard ui-state-disabled is applied to both the
textarea and its feedback control.

155The complete plugin
 As a result of reusing the ThemeRoller classes, the custom CSS for the plugin is
minimal, providing a default look for any feedback element as shown here.

/* Styles for Max Length UI plugin v1.0.0 */
.kbw-maxlength-feedback {
 margin: 0em 0em 0em 0.5em;
 font-size: 75%;
 font-weight: normal;
}

With a few lines of CSS, the user can change the appearance of the widget as shown in
figure 8.5.

8.9 The complete plugin
The MaxLength jQuery UI widget is now complete, providing maximum length func-
tionality for textarea fields to complement the built-in functionality for input fields.
The widget framework included in jQuery UI makes the implementation of this plu-
gin simple, and assists in applying the guidelines and design principles described in
chapter 4. The complete code for the plugin is available for download from the book’s
website.

Listing 8.15 Styles for the widget

Feedback
element styling

Figure 8.5 Styling the jQuery UI MaxLength plugin (from top to bottom): default style,
compact styling, feedback beneath, and feedback overlaid

156 CHAPTER 8 jQuery UI widgets
Additional widget functionality

The widget framework provides a few more abilities that were not used or covered in
this chapter.

Name constants
You used two name constants in the code of the MaxLength plugin, and the framework
provides a couple more. You access each one from the widget instance object (this)
within your plugin functions.

Create event
Another way of interacting with the widget’s lifecycle is to respond to the create event
generated as part of the initialization process. It’s triggered after the _create function
has finished, and it allows you to make further changes for particular instances once
the widget is ready

$('#text1').maxlength({create: function(event, ui) {
 ...
}});

Widget initialization
You overrode the _create function to initialize the plugin for a particular element (see
section 8.3.1). You can also provide a function to perform further processing for all
instances after the initial creation. The _init function is called following _create and
the triggering of the create event. It receives no parameters, and the this variable
refers to the widget instance object as usual.

$.widget('kbw.maxlength', {
 _init: function() {
 ...
 }
}

Metadata support
The widget framework automatically makes use of the Metadata plugin (https://
github.com/jquery-orphans/jquery-metadata) if it’s available (up until jQuery UI 1.9),
allowing you to configure the elements inline rather than via options. For example, you

Name Purpose Example

namespace The namespace you supplied for the plugin in
its definition

kbw

widgetBaseClass A class name used standalone or as a prefix
(prior to jQuery UI 1.9)

kbw-maxlength

widgetEventPrefix The name used as a prefix for event types maxlength

widgetFullName A class name used standalone or as a prefix
(jQuery UI 1.9 and later)

kbw-maxlength

widgetName The name of the plugin supplied in its defini-
tion

maxlength

157The complete plugin
(continued)

could make a basic initialization call and pick up the required settings from the targeted
element like this:

$('#text1').maxlength();

<textarea id="text1" rows="5" cols="50"
 class="{maxlength: {max: 300}}"></textarea>

From jQuery UI 1.10, the Metadata plugin is no longer supported out of the box. But
it’s easy to add the functionality back in. You test for the absence of the
_getCreateOptions function and restore it if it’s not there:

if ($.Widget.prototype._getCreateOptions === $.noop) {
 $.extend(maxlengthOverrides, {
 /* Restore the metadata functionality. */
 _getCreateOptions: function() {
 return $.metadata && $.metadata.get(
 this.element[0])[this.widgetName];
 }
 });
}

Widget access
You can use the widget method to retrieve a reference to the main element, which the
plugin manages, from outside of the plugin code. By default, this function returns the
original element to which the plugin was applied (this.element), but you can override
this behavior to provide something more useful. For example, the Dialog plugin returns
a reference to the div that’s wrapped around the original element:

$('#dialog').dialog({open: function(event, ui) {
 var wrapper = $(this).dialog('widget');
 ...
}});

What you need to know

Create a jQuery UI plugin when you need to integrate with other jQuery UI widgets.

jQuery UI includes the widget framework to provide the basic functionality needed by
most collection plugins.

Protect your code and prevent name clashes through scoping.

Use the $.widget function to define a new widget.

Override inherited widget functions to customize the new widget’s behavior; in partic-
ular, _create, _setOptions, _setOption, and _destroy.

Provide flexible configuration through options, but always initialize them with sensible
default values.

Use named methods for additional functionality within the plugin.

Add appropriate ThemeRoller classes to your elements to integrate the plugin into an
applied theme.

158 CHAPTER 8 jQuery UI widgets
8.10 Summary
jQuery UI is an official jQuery extension that provides a number of enhancements for
interacting with a web page. It includes basic utility functions, low-level behaviors
(such as drag and drop), high-level components or widgets (such as Tabs and Dat-
epicker), and numerous visual effects. The associated ThemeRoller tool allows a con-
sistent look and feel to be applied to all of the package’s widgets.

 jQuery UI widgets are built on a common infrastructure provided by the widget
framework to ensure that they operate in a consistent manner and are easier to main-
tain. This framework parallels the custom framework presented in chapter 5.

 By re-creating the MaxLength plugin using the widget framework, you’ve seen the
similarities and differences between these two approaches. Both allow you to produce
a plugin that integrates properly with jQuery, maintains state for each plugin instance,
interacts with the user, and clears up after itself. These frameworks enable you to con-
centrate on the functionality specific to your plugin, instead of getting bogged down
in the basic infrastructure underlying it.

 In the next chapter, you’ll look at another jQuery UI module—one that simplifies
interacting with the mouse—and you’ll use it to capture a signature.

Try it yourself

Reimplement your Watermark plugin from the exercise in chapter 5 as a jQuery UI wid-
get. As previously, add an option to control where the label text comes from, and a
method to clear the label text on demand.

jQuery UI mouse
interactions
The last chapter introduced you to the jQuery UI widget framework and walked
you through developing a plugin using its abilities. You saw how the framework pro-
vides basic management of the widget and helps to keep jQuery UI components
consistent in appearance and behavior. Another important part of a web UI is its
interaction with the mouse, and standard jQuery supports this through its numer-
ous mouse event handlers. But these handlers operate at the most basic level, leav-
ing more complex interactions for your own development.

 jQuery UI makes use of mouse drag operations in several of its widgets and has
developed a separate module to deal with these interactions in an easy-to-use and
consistent manner. The jQuery UI Mouse module watches the underlying mouse
events and converts these into drag events you can react to. It’s similar to your car
speedometer, which transforms the individual wheel rotations into an overall speed
for you.

This chapter covers
■ The jQuery UI Mouse module
■ Creating a jQuery UI plugin that uses the

mouse
159

160 CHAPTER 9 jQuery UI mouse interactions
 To see the Mouse module in action, you’ll develop a plugin that lets you capture a
signature drawn with the mouse within a web page and convert it into a text represen-
tation for further processing. Additional functionality will allow you to check that a
signature has been entered (perhaps for validation purposes), clear a signature, and
redisplay it at a later time.

9.1 The jQuery UI Mouse module
jQuery UI recognizes that interactions with the mouse are a fundamental part of many
UI components and provides direct support for drag processing via its ui.mouse mod-
ule. This module is a dependency for the Draggable, Resizable, Selectable, Sortable,
and Slider modules, demonstrating the common requirement for such functionality.
Basic mouse interactions are provided by the standard jQuery library in the form of
various mouse events and their handlers, whereas jQuery UI translates these basic
events into higher-level behaviors and lets you customize when they’re triggered.

9.1.1 Mouse-drag actions

The Mouse module adds wrappers for several mouse events on the targeted element
and converts these low-level events into higher-level ones directly associated with a
drag operation. The result is that widgets based on this module only have to imple-
ment the drag behavior that they want, instead of worrying about how to detect and
start a drag in the first place, and then track its progress.

 So instead of you having to worry about the underlying mousedown, mousemove, and
mouseup events, the widget translates these into calls to the _mouseCapture,
_mouseStart, _mouseDrag, and _mouseStop functions, as shown in figure 9.1. If you
want a new widget to handle a drag, you need only extend the Mouse module and
override these functions to have them invoked at the appropriate times.

Minimum delay
and distance
conditions met

jQuery UI WidgetMouse

mousedown
_mouseCapture

Conditions met?

_mouseStart

Dragging?

_mouseDrag

Dragging?

_mouseStop

mousemove

mouseup

Figure 9.1 Sequence diagram
for jQuery UI Mouse widgets

161Defining your widget
The Mouse module also handles moving the mouse outside of the element where the
drag started and still continues to process the drag normally. It prevents more than
one element from starting drag operations at the same times, removing the possibility
of interference between them.

9.1.2 Mouse options

The Mouse module supports several options to customize its behavior. You can over-
ride these for particular widget instances by including them in the normal customiza-
tion options for that instance, like this:

$('div.item').draggable({distance: 5, delay: 100});

These are the customization options:

■ cancel—You can provide a selector that prevents a drag event from being initi-
ated. The selector is applied to the target element’s parents, and any match
stops further processing. The default is any input field (including textareas,
select boxes, and buttons) or select option: :input,option.

■ distance—Specify the minimum distance that the mouse needs to move to ini-
tiate a drag operation. The default is one pixel.

■ delay—Specify the minimum time (in milliseconds) that the mouse button
must be held down before initiating a drag operation. The default is zero milli-
seconds.

9.2 Defining your widget
As with the MaxLength widget developed in the previous chapter, you need to do some
groundwork before getting into the body of this new widget. First, define the function-
ality that the plugin will provide and the sequence of operations that will produce it.
Then, declare the widget and include the mouse support supplied by jQuery UI.

 We’ll look at these steps in the following subsections.

9.2.1 Signature functionality

The Signature widget you’re going to create lets you capture a signature by monitor-
ing mouse drags over a particular region within a web page (a div or span element). It
uses an embedded canvas element to render those movements into a visual image of
the signature for immediate feedback and can generate a textual representation of
the signature for storage and later reuse.

Canvas element

JavaScript isn’t designed to manipulate images on the fly, but you can create a tem-
porary image of the signature to display immediately. The canvas element of HTML5
provides a standard drawing surface within a web page that you can use to display a
generated image. It has an API that allows it to be manipulated via JavaScript.

162 CHAPTER 9 jQuery UI mouse interactions
Generating an image file for future processing is outside the scope of JavaScript’s abil-
ities, so a textual version of the signature is produced, allowing it to be easily trans-
ferred and stored. We chose JSON as the text format, because it can specify the
signature with a relatively low overhead and is easily processed by JavaScript.

 A signature consists of a number of lines, each of which is made up of a number of
connected points. This translates into an array of lines, each of which is an array of
points, each containing an x and y coordinate. For example, the signature shown in
figure 9.2 would become the JSON text in listing 9.1.

{"lines":[[[38,85],[38,83],[38,82],[39,80],[40,76],
[41,73],[42,69],[42,65],[43,61],[44,58],[44,54],
[44,51],[45,48],[46,44],[48,41],[48,40],[49,37],
[51,36],[52,35],[53,34],[54,33],[55,33],[56,33],
[57,34],[58,36],[59,39],[61,43],[63,47],[65,52],
[66,55],[66,59],[66,64],[67,67],[67,70],[67,72],
[67,73],[68,74],[69,74],[70,74]],
[[41,62],[42,62],[43,62],[45,60],[48,59],[54,56],
[60,54],[66,52],[71,51],[77,50],[80,50],[83,49]]]}

Once the JSON version of the signature is transferred to the server, it could be regen-
erated into an image by appropriate server-side processing, such as a Java or .NET
application, or it could be stored in its textual format. A Java version of image genera-
tion is provided on the book’s website. The widget also supports the redisplay of a sig-
nature from its JSON representation.

 The widget allows the signature to be cleared if a mistake has been made or if your
users aren’t happy with their previous entry. To cater to possible validation require-
ments, the widget can report back if a signature has been captured.

(continued)

Unfortunately, this element isn’t supported in older versions of Internet Explorer, so
additional code is required to add that functionality in those cases. The Explorer-
Canvas script (http://excanvas.sourceforge.net/) adds the methods necessary to ac-
cess and utilize the canvas in these browsers. Include it in your page with the following
tags:

<!--[if IE]>
<script type="text/javascript" src="js/excanvas.js"></script>
<![endif]-->

Listing 9.1 JSON version of a signature

Sign with
the mouse

here

Figure 9.2 Capture a signature and convert it to JSON

163Defining your widget
 The Signature widget uses the name signature, with a namespace of kbw (the
same as the MaxLength widget). The plugin code appears in a file named jquery
.signature.js, and its associated CSS is in jquery.signature.css. An outline of the plugin
code is shown in the next section.

9.2.2 Signature plugin operation

The plugin code consists of a number of functions that override or enhance the abili-
ties provided by the widget framework and its Mouse module. These are shown in list-
ing 9.2, and following the listing we’ll look at how these are invoked during the
lifecycle of the widget.

var signatureOverrides = {

 options: {...},

 _create: function() {...},

 _refresh: function(init) {...},

 clear: function(init) {...},

 _changed: function(event) {...},

 _setOptions: function(options) {...},

 _mouseCapture: function(event) {...},

 _mouseStart: function(event) {...},

 _mouseDrag: function(event) {...},

 _mouseStop: function(event) {...},

 toJSON: function() {...},

 draw: function(sigJSON) {...},

 isEmpty: function() {...},

 _destroy: function() {...}

};

$.widget('kbw.signature', $.ui.mouse, signatureOverrides);

First, the Signature plugin is applied to one or more div elements on the page using
the usual jQuery select-and-operate paradigm. At this point, the widget framework
creates an instance object to store the state of the plugin for each affected element.
Part of that object is the set of options controlling its appearance and behavior, which
derive from the widget defaults (options variable) and any overrides supplied with
the initialization call. Then the _create function is invoked to allow you to perform
any setup specific to this plugin.

 If users want to change options at a later time, they do so via the option method,
which triggers a call to the _setOptions function to let you update the widget accord-
ingly. In this case, you should invoke the _refresh function to apply the new settings
and redisplay the widget.

 When users try to begin a drag operation with the mouse over the widget ele-
ments, the _mouseCapture function prevents it from starting if the widget is disabled.

Listing 9.2 Plugin function outline

Widget defaults
Initialization for an element

Refresh widget appearance

Clear signature
Synchronize changes and notify

Custom options handling

Determine if dragging can start
Start new line

Track mouse for a line
End line

Convert captured lines to JSON text
Draw signature from its JSON description

Determine whether any drawing has occurred

Remove signature
functionality

164 CHAPTER 9 jQuery UI mouse interactions
Otherwise, the _mouseStart function is called to let you initialize a new signature
line, followed by multiple calls to _mouseDrag as the mouse is moved, and a final
_mouseStop call when the drag ceases. The plugin stores the captured points in an
internal array for later processing. At the end of the drag, the _changed function is
also invoked to notify users of the change via a callback event.

 To retrieve the JSON representation of the signature, the user makes a method call
to the toJSON function. The resulting text value can then be sent to the server or used
elsewhere to define the captured lines. Providing that JSON value when making a
method call to the draw function redisplays the signature within the widget element.

var signature = $('#mysignature').signature('toJSON');
...
$('#mysignature').signature('draw', signature);

NOTE Functions with names that don’t start with an underscore (_) may be
called directly via the widget framework by supplying the name of that func-
tion when invoking the plugin, as shown in the toJSON and draw sample here.
Those that do start with an underscore are hidden by the framework and
aren’t accessible.

Users can determine whether or not a signature has been captured via a method call
to the isEmpty function, perhaps for validation purposes, whereas a method call to
the clear function erases any captured lines.

 If users wish to remove the signature functionality altogether, they make a destroy
method call that gets passed through to the _destroy function, which undoes every-
thing that was set up in the initialization processing.

 To start creating your plugin, you declare your new widget and base it upon the
jQuery UI Mouse class.

9.2.3 Declaring the widget

As with the MaxLength widget, you hide the implementation details by using scope and don’t
rely on $ being the same as jQuery by declaring an anonymous function and calling it
immediately, as the following shows:

(function($) { // Hide scope, no $ conflict
 ... the rest of the code appears here
})(jQuery);

You then define the new widget, as shown in the following listing, and let the widget
framework provide the bridging functionality and basic abilities.

var signatureOptions = {

 // Global defaults for signature
 options: {
 background: '#ffffff', // Colour of the background

Listing 9.3 Declaring the widget

Define new
widgetb

Provide
default optionsc

165Attaching the plugin to an element
 ... Other default settings
 },

 _create: function() {...},

 // Other widget code
};

/* Signature capture and display.
 Depends on jquery.ui.widget, jquery.ui.mouse. */
$.widget('kbw.signature', $.ui.mouse, signatureOverrides);

You start by defining an object that provides overrides and enhancements to the built-
in widget functionality B, including default option values c and custom methods.
Then you declare your widget by invoking the $.widget function d and provide the
name of the widget, including its namespace separated by a period (.), with the last
parameter being your overrides for the inherited widget abilities.

 Recall that the second parameter for this call defines which other widget “class” to
use as the basis for the new one. For this plugin you want a widget that interacts with
the mouse, so you specify $.ui.mouse as the parameter value. The capabilities of the
Mouse widget are then included in your new widget, along with those of the base Wid-
get from which Mouse inherits.

 Following this declaration, jQuery has a new function for collections ($.fn.signa-
ture) and has connected that to your overrides, as provided previously. Included in
the basic functionality for this widget is the ability to monitor any mouse drags.

 Before you respond to the mouse movements, though, you need to initialize the
plugin for particular elements on the page.

9.3 Attaching the plugin to an element
To use the plugin, the user selects an appropriate element on the web page and
applies the plugin to it, as is usually done in jQuery. The jQuery UI widget framework
provides commonly required functionality automatically before allowing you to cus-
tomize the affected elements for the specific purposes of the current plugin.

9.3.1 Framework initialization

As with the MaxLength widget in the previous chapter, when the plugin is applied to
an element, the widget framework starts by creating an object to hold the state of the
plugin for that particular element and attaches the object with the data function. You
use a name based on the plugin’s name (kbw-signature for jQuery UI 1.9 or later, or
signature prior to jQuery UI 1.9) to retrieve that instance object.

 Within the instance object, the element attribute refers to the selected element to
which the plugin is being applied, and the options attribute contains a copy of the
default options for the plugin, overridden by any customized option values supplied
in the initialization. In addition, the widget framework checks whether the Metadata
plugin (https://github.com/jquery-orphans/jquery-metadata) is included on the
page. If so, the framework uses it to check for further configuration within attributes

Declare new
widget

d

166 CHAPTER 9 jQuery UI mouse interactions

 Add
on the selected element, again based on the plugin name. By default, the class attri-
bute holds the customizations:

<div id="sign" class="{signature: {guideline: true}}"></div>

NOTE Automatic support for the Metadata plugin was removed in jQuery UI
1.10, but you can restore this functionality as shown in section 8.9.

In addition to the automatic processing provided by the widget framework, you often
need to perform your own initialization steps when attaching the plugin to an element.

9.3.2 Custom initialization

As part of the framework’s initialization processing, it calls the _create function,
which you provide in your plugin declaration to perform any custom initialization, as
shown in the following listing. Recall that within the _create function, this refers to
the current widget instance object.

/* Initialise a new signature area. */
_create: function() {
 this.element.addClass(this.widgetFullName || this.widgetBaseClass);
 try {
 this.canvas = $('<canvas width="' + this.element.width() +
 '" height="' + this.element.height() + '">' +
 this.options.notAvailable + '</canvas>')[0];
 this.element.append(this.canvas);
 this.ctx = this.canvas.getContext('2d');
 }
 catch (e) {
 $(this.canvas).remove();
 this.resize = true;
 this.canvas = document.createElement('canvas');
 this.canvas.setAttribute('width', this.element.width());
 this.canvas.setAttribute('height', this.element.height());
 this.canvas.innerHTML = this.options.notAvailable;
 this.element.append(this.canvas);
 if (G_vmlCanvasManager) { // Requires excanvas.js
 G_vmlCanvasManager.initElement(this.canvas);
 }
 this.ctx = this.canvas.getContext('2d');
 }
 this._refresh(true);
 this._mouseInit();
},

You must define the _create function B as part of the widget overrides to have the wid-
get framework call your code as part of the initialization processing. You can use the
provided this.widgetFullName value (this.widgetBaseClass before jQuery UI 1.9)
to add a marker class to the currently selected element c to help identify affected ele-
ments within your page. Then continue with the processing specific to this plugin.

Listing 9.4 Attachment and initialization

Override _create
function

b

marker
class c

Initialization for
other browsers d

Retrieve
drawing
context

e

Initialization for IEf

Initialize
ExplorerCanvasg

Refresh widget
appearance

h

Initialize mouse
interactionsi

167Handling plugin options
 For browsers that support canvas natively d, you can create and add the new ele-
ment in the standard jQuery way. You retain a reference to the underlying canvas
element within the current widget instance object by assigning it to this.canvas.
Because you’ll be using the canvas continually when drawing the signature, you
should also save a reference to its drawing context in the widget instance object as the
this.ctx value e.

 Because of the differing support for the canvas element in IE, it throws an excep-
tion and must be handled separately f. For IE, you create the new canvas element
and resize it to fill its parent—the element that’s the target of the signature functional-
ity. You should provide some text content for the canvas (taken from an option value)
to be shown if the browser doesn’t support canvas, perhaps because the Explorer-
Canvas code wasn’t loaded correctly. After adding the new element to its container,
you initialize the ExplorerCanvas code for it g. This last step adds in the canvas func-
tions that would be provided natively by a more modern browser. As with the other
browsers, you save a reference to the drawing context e.

 For all browsers, you call the custom _refresh function h to modify the plugin
based on the options currently set. See section 9.4.3 for more details.

 Finally, you must initialize the mouse handling provided by the jQuery UI Mouse
module on which this widget is based i. The mouse setup wraps handlers around the
basic mouse events to convert sequences of these events into the higher-level mouse
drag operations, making it much easier to integrate the latter into your widget.

 The plugin functionality is now attached to an element on the page. The next step
is to allow for the configuration of that plugin instance via options.

9.4 Handling plugin options
Users expect to supply options to alter the widget’s appearance or behavior as part of
its initialization call. You should try to predict what those users might want to alter and
anticipate customizations by providing an option to let them do that. If you always use
sensible defaults for the options, you allow the widget to be used with a minimum of
configuration.

 To achieve these goals you need to

■ Define defaults values for all options
■ Handle retrieving and setting option values
■ Apply any option changes immediately
■ Allow the plugin to be enabled or disabled

We’ll discuss these points in turn.

9.4.1 Widget defaults

Options for a particular instance of the widget are set by the widget framework by
copying any default values specified in the widget declaration and overriding these
with any values that are supplied in the initialization call. The following listing shows
the definition of the default option values.

168 CHAPTER 9 jQuery UI mouse interactions

// Global defaults for signature
options: {
 background: '#ffffff', // Colour of the background
 color: '#000000', // Colour of the signature
 thickness: 2, // Thickness of the lines
 guideline: false, // Add a guide line or not?
 guidelineColor: '#a0a0a0', // Guide line colour
 guidelineOffset: 50, // Guide line offset from the bottom
 guidelineIndent: 10, // Guide line indent from the edges
 notAvailable: 'Your browser doesn\'t support signing',
 // Error message when no canvas
 syncField: null, // Selector for synchronised text field
 change: null // Callback when signature changed
},

By declaring an options attribute B within the overrides provided when first defining
the widget, you list all the possible configuration settings and supply their default val-
ues. This process also lets you document all the options in one place. The effects of
changing some of these options can be seen in the examples in figure 9.3.

Listing 9.5 Default option values

Define global default
option valuesb

Change colors

Change line
thickness

Add guideline

Figure 9.3 Signature options:
line and background color, line
thickness, adding a guideline

169Handling plugin options
The widget framework saves the set of default values as an attribute of the widget pro-
totype. You can map an attribute directly within the plugin onto that set of default val-
ues to make them more accessible:

$.kbw.signature.options = $.kbw.signature.prototype.options;

To override defaults for all plugin instances, you could then use the following code,
prior to invoking the plugin on any elements:

$.extend($.kbw.signature.options,
 {background: '#FFFFE0', guideline: true});

Although the widget framework automatically handles setting and retrieving option
values, you often need to perform additional processing when those values change, to
keep the plugin synchronized with the new values.

9.4.2 Setting options

Two of the abilities provided by the widget framework are setting and retrieving
option values. As seen with the MaxLength widget, you can hook into the setting pro-
cess to add your own functionality as these values change. The Signature widget
doesn’t need to take any actions specific to individual options, so it won’t override the
_setOption function. But it should refresh its appearance when any option is updated
to reflect the latest values.

/* Custom options handling.
 @param options (object) the new option values */
_setOptions: function(options) {
 // Base widget handling
 this._superApply(arguments);
 this._refresh();
},

You can override the _setOptions function B to refresh the widget’s appearance
when any option changes. You must invoke the inherited options processing to ensure
that the new values are stored against the current element c. Then you should call
the custom _refresh function to apply the changes to the elements managed by the
widget d. This function is described in the next section.

Listing 9.6 Handling option changes

Prior to jQuery UI 1.9

The way an inherited function is called changed in jQuery UI 1.9. In the newer jQuery
UI versions, you call the function through a reference to the parent class, like this:

this._superApply(arguments);

In the older versions, you refer to the widget prototype and invoke the same function
there, like this:

$.Widget.prototype._setOptions.apply(this, arguments);

Override _setOptions
function

b

Call default
options handling

c
Refresh widget
appearance

d

170 CHAPTER 9 jQuery UI mouse interactions
9.4.3 Implementing Signature options

As option values are changed, you should refresh the widget elements to reflect those
changes. For the Signature plugin, the options affect the appearance of the visual ren-
dering of the signature. The custom _refresh function performs this task and is
called upon initialization (section 9.3.1) and when an option is altered (section 9.4.2).
The following listing shows its workings.

/* Refresh the appearance of the signature area.
 @param init (boolean, internal) true if initialising */
_refresh: function(init) {
 if (this.resize) {
 var parent = $(this.canvas);
 $('div', this.canvas).css(
 {width: parent.width(), height: parent.height()});
 }
 this.ctx.fillStyle = this.options.background;
 this.ctx.strokeStyle = this.options.color;
 this.ctx.lineWidth = this.options.thickness;
 this.ctx.lineCap = 'round';
 this.ctx.lineJoin = 'round';
 this.clear(init);
},

You start by declaring the _refresh function B as part of the widget overrides sup-
plied during the widget definition. Because of the leading underscore (_), this func-
tion can’t be invoked directly as a method.

 Support for the canvas element in IE isn’t as complete as you might like, so you
need to reset the size of the canvas to match that of its container when it’s shown c.
This function is an appropriate place to do that, as it’s called before any drawing
occurs within that element. The this.resize flag was set in _create (see section
9.3.2) when the IE initialization was performed.

 Next you should initialize the drawing context with the latest option values d,
before erasing any existing content by calling the clear function e (see section 9.7.1

(continued)

To allow your widget to work in the current and earlier jQuery UI versions, you can test
for the presence of the new function and act accordingly. Here’s an example:

// Base widget handling
if (this._superApply) {
 this._superApply(arguments);
}
else {
 $.Widget.prototype._setOptions.apply(this, arguments);
}

Listing 9.7 Refresh the widget appearance and behavior

Define _refresh
function

b

Update canvas
size for IEc

Apply new
graphical
settingsd

Erase canvase

171Adding event handlers
for a description of this function). The next time that the canvas is drawn upon, it’ll
use the new settings.

 As well as changing the appearance of the widget, you can enable or disable its
functionality altogether.

9.4.4 Enabling and disabling the widget

Enabling and disabling a widget is standard functionality provided by the widget
framework and doesn’t require any action on your part. The disabled option controls
the widget’s status, being set to true (disabled) or false (enabled). The framework
also maps the enable and disable methods onto changes of this option value.

$('#sign').signature('disable');
...
$('#sign').signature('enable');

The framework toggles two classes on the main element—<namespace>-<plugin

name>-disabled and ui-state-disabled—and sets the aria-disabled attribute
appropriately. This widget doesn’t add any extra processing around changing the dis-
abled option directly, but checks its value when any mouse drag is about to be started
(see section 9.6.1).

 You can now configure the plugin and have those changes be reflected in its
appearance and behavior. Some of those configuration options may include callback
handlers to let you monitor significant events in the plugin’s lifecycle, as described in
the next section.

9.5 Adding event handlers
The Signature widget allows users to react to changes to the captured signature via an
event. The widget framework provides support for creating events in the form of the
_trigger function.

 To add event callbacks to your plugin, you do the following:

■ Allow the user to register handlers for an event
■ Trigger those events at the appropriate time

The following subsections look at these in detail.

9.5.1 Registering an event handler

The change event for the Signature widget occurs when the signature is altered by
drawing a new line, by redrawing a complete signature from its textual representation,
or by clearing all content.

 The change handler appears as an option for the plugin, as shown in listing 9.8,
and it defaults to null to indicate that no callback is required. When used, its value
must be a function that accepts two parameters—the triggering event and a custom ui
object—in keeping with other jQuery UI event handlers. In this case, there’s no

172 CHAPTER 9 jQuery UI mouse interactions
custom information to return, so the ui value will always be an empty object. Within
the callback function, the this variable refers to the main element to which the
plugin is applied.

// Global defaults for signature
options: {
 ...
 change: null // Callback when signature changed
},

You can register an event handler during the plugin initialization, as shown in the fol-
lowing code, or by updating options at a later stage:

$('#sign').signature({change: function(event, ui) {
 $('#submit').prop('disabled', false);
}});

Alternately, you can use jQuery’s standard bind or on functionality to subscribe to that
event because the plugin framework automatically maps a custom event onto this han-
dler. The event is named from the plugin name combined with the option name
(signaturechange in this case).

$('#sign').signature().on('signaturechange', function(event, ui) {
 $('#submit').prop('disabled', false);
}});

Now that the event handler is known to the plugin, you need to invoke it at the appro-
priate time within the plugin lifecycle.

9.5.2 Triggering an event handler

The change event is triggered whenever the captured signature is altered. This occurs
when the signature is cleared, when a new line is drawn, or when the entire signature
is redrawn from a JSON representation. Each case invokes the _changed function
defined as part of the widget overrides, as shown in this listing.

/* Synchronise changes and trigger change event.
 @param event (Event) the triggering event */
_changed: function(event) {
 if (this.options.syncField) {
 $(this.options.syncField).val(this.toJSON());
 }
 this._trigger('change', event, {});
},

You define the _changed function to be called whenever the signature changes B. If
you specify that a text field is to be kept synchronized with the signature, then you

Listing 9.8 Defining an event handler

Listing 9.9 Triggering an event

Define _changed
function

b

Synchronize signature
with text fieldc

Trigger change
eventd

173Interacting with the mouse
should update that field based on the latest changes at the same time c. See section
9.7.2 for more details on the toJSON function.

 Finally you generate the event via the _trigger function of the widget d. Its
parameters are the name of the new event, the original event that caused this trigger
to fire, and a custom ui object that holds information relevant to this widget. The
event is provided to the _changed function and will be the appropriate mouse event in
the case that a new line is added to the signature. No custom information is sent along
for this widget, so an empty object is specified for the last parameter.

 Having initialized and configured the plugin, you can proceed to the heart of its
functionality—capturing mouse movements over it.

9.6 Interacting with the mouse
The jQuery UI Mouse widget automatically intercepts the standard mouse events and
converts these into higher-level drag events. At the same time, it applies any minimum
distance and time restrictions specified for the widget and only allows one element to
capture and track the mouse during this time.

 Your widget then only needs to respond to the following events:

■ Determining if a drag can start
■ Starting a drag operation
■ Mouse tracking during a drag
■ Ending a drag operation

We’ll discuss each of these in turn.

9.6.1 Can a drag start?

The Mouse module determines whether a drag operation can commence based on var-
ious conditions, including how far the mouse has moved and how long it has been held
down. The module also provides a hook that you can use to add your own conditions—
the _mouseCapture function, as shown in listing 9.10. This function receives one param-
eter—the triggering mouse event—and must return true if a drag is allowed or false
if it should be aborted. The default implementation always returns true.

/* Determine if dragging can start.
 @param event (Event) the triggering mouse event
 @return (boolean) true if allowed, false if not */
_mouseCapture: function(event) {
 return !this.options.disabled;
},

To add a custom drag condition, you override the _mouseCapture function as part of
the widget definition B. For the Signature widget, a drag can only commence if the

Listing 9.10 Allowing a drag operation

Override
_mouseCapture
function

b

Can’t drag if disabledc

174 CHAPTER 9 jQuery UI mouse interactions
widget hasn’t been disabled. The disabled status is maintained by the disabled option
of the widget, so you can return the negated option value as the function result c.

NOTE Within this drag function, as in all the others we’ll cover in this chap-
ter, the this variable refers to the current widget instance object, which has
references to the original targeted element (this.element) and the current
option values (this.options), amongst other attributes.

9.6.2 Starting a drag

You should provide a _mouseStart function as part of the widget overrides to add
your own functionality when a drag operation commences. Details about the mouse
position are supplied by the event parameter to this function.

/* Start a new line.
 @param event (Event) the triggering mouse event */
_mouseStart: function(event) {
 this.offset = this.element.offset();
 this.offset.left -= document.documentElement.scrollLeft ||
 document.body.scrollLeft;
 this.offset.top -= document.documentElement.scrollTop ||
 document.body.scrollTop;
 this.lastPoint = [this._round(event.clientX - this.offset.left),
 this._round(event.clientY - this.offset.top)];
 this.curLine = [this.lastPoint];
 this.lines.push(this.curLine);
},

By default, the _mouseStart function does nothing, so you override that to process
the start of a mouse drag B. The coordinates of the mouse event supplied to this
function are relative to the current viewport—the portion of that page that you can
see within the browser—so you need to convert these positions into ones that are rela-
tive to the canvas managed by the widget.

 You start by computing the offset of the originally targeted element within the view-
port c, taking into account that the underlying web page may have been scrolled. The
offset is stored within the widget instance object for later use as the mouse moves
(this.offset). Based on that offset and the coordinates of the mouse event, create a
point that encodes the mouse location relative to the top-left corner of the original ele-
ment d. Create a new signature line containing only that point, because you’re starting
a new drag operation, and add it to the list of lines for the signature e.

 Once the new line has been started, you can follow the mouse’s progress across the
screen and capture its coordinates as it goes.

9.6.3 Tracking a drag

The _mouseDrag function lets you track the movement of the mouse during a drag
operation. This function is specified as one of the overrides when declaring the

Listing 9.11 Starting a mouse drag

Override
_mouseStart
function

b

Calculate current
mouse positioncCreate

current
point

d

Create new
line and save ite

175Interacting with the mouse

d

widget. Once again, the event parameter contains details about the mouse position.
The following listing shows its implementation.

/* Track the mouse.
 @param event (Event) the triggering mouse event */
_mouseDrag: function(event) {
 var point = [this._round(event.clientX - this.offset.left),
 this._round(event.clientY - this.offset.top)];
 this.curLine.push(point);
 this.ctx.beginPath();
 this.ctx.moveTo(this.lastPoint[0], this.lastPoint[1]);
 this.ctx.lineTo(point[0], point[1]);
 this.ctx.stroke();
 this.lastPoint = point;
},

You should override the _mouseDrag function to add your own mouse tracking B.
Because the location of the mouse obtained from the supplied mouse event is relative
to the page, you should convert it to be relative to the containing element, based on
the latter’s offset as computed at the start of the drag c, and add this point into the
array defining the current line.

 You provide feedback to your users by reflecting their movements on the canvas
that fills the containing element d. Using the drawing context, move to the last
mouse position and draw a line from that to the current position. The styling of the
line drawn was set during initialization (or via an option update) and was applied in
the _refresh function (see section 9.4.3). Finally, you save the current point as the
last point for the next mouse movement e.

 Monitoring the drag movements lets you capture the lines drawn by your users.
Once they complete a line, you have some housekeeping to do.

9.6.4 Ending a drag

At the completion of a mouse drag operation, the _mouseStop function is called. To
add your own processing here, override it as part of the widget declaration. Details
about the mouse position are provided by the event parameter to this function. The
following listing shows the completion processing.

/* End a line.
 @param event (Event) the triggering mouse event */
_mouseStop: function(event) {
 this.lastPoint = null;
 this.curLine = null;
 this._changed(event);
},

To add processing at the end of a mouse drag, you define the _mouseStop function B.
You should tidy up the plugin by clearing out the last point and current line

Listing 9.12 Tracking a mouse drag

Listing 9.13 Ending a mouse drag

Override _mouseDrag
function

b

Calculate current
mouse position c

Draw
from last
position Save new last

position
e

Override _mouseStop
function

b

Clear last
point and linec

Invoke signature-
changed processingd

176 CHAPTER 9 jQuery UI mouse interactions
references c before calling the signature-changed processing d to synchronize any
associated field and to trigger the change event (see section 9.5.2).

 The plugin can now capture a signature based on mouse movements over its can-
vas and record them into an array of line definitions. But there’s more to do yet, as
you make use of those captured points in further processing.

9.7 Adding methods
The Signature plugin provides additional custom functionality to allow you to interact
with the signatures that are captured. These abilities include clearing a signature, con-
verting a signature to a text format for transfer and storage, redrawing a signature from
a saved text version, and determining whether any signature has been entered at all.

 Recall that the widget framework provides support for custom methods within a
plugin by attempting to invoke such methods by name directly on the widget instance
object. Any function that starts with an underscore (_) is deemed to be an internal
function and can’t be called in this manner. Methods that return a value have that
value passed straight through to the caller. Otherwise, the current jQuery collection is
returned, allowing the call to be chained.

9.7.1 Clearing the signature

If your users make a mistake when signing the allocated element, or they’re unhappy
with the result, they can erase their signature and start again. The clear method pro-
vides this functionality.

/* Clear the signature area.
 @param init (boolean, internal) true if initialising */
clear: function(init) {
 this.ctx.fillRect(0, 0,
 this.element.width(), this.element.height());
 if (this.options.guideline) {
 this.ctx.save();
 this.ctx.strokeStyle = this.options.guidelineColor;
 this.ctx.lineWidth = 1;
 this.ctx.beginPath();
 this.ctx.moveTo(this.options.guidelineIndent,
 this.element.height() - this.options.guidelineOffset);
 this.ctx.lineTo(
 this.element.width() - this.options.guidelineIndent,
 this.element.height() - this.options.guidelineOffset);
 this.ctx.stroke();
 this.ctx.restore();
 }
 this.lines = [];
 if (!init) {
 this._changed();
 }
},

Listing 9.14 Clearing the signature

Function for
clear method

b

Erase canvasc

Draw
requested
guidelined

Clear line
definitions

e

Trigger change event
if not initializingf

177Adding methods
Name the function the same as the method to be used, to have the widget framework
map from one to the other B. Clear the canvas by drawing a filled rectangle via the
saved drawing context, using the background color specified previously (see listing
9.7) c.

 If a guideline to write the signature upon is requested, draw that in the specified
color and position d. The styling of the signature lines themselves is maintained by
saving the current styles of the drawing context (save()) before drawing the guide-
line, and then restoring those styles afterwards (restore()).

 You then clear any existing lines captured by the widget e and invoke the
_changed function f to synchronize the textual version of the signature (if required)
and to inform users of the change. The changed processing isn’t required during ini-
tialization of the widget, so it’s bypassed here based on the value of the init flag
passed in. Although this function takes a parameter, it’s only intended for internal
use, and the end user wouldn’t need to provide it.

 You’d call this method as follows:

$('#sign').signature('clear');

9.7.2 Converting to JSON

The signature can be represented as a JSON object for ease of transmission and stor-
age. This object contains a single attribute (lines) that is an array of the lines that
make up the signature. Each line consists of an array of points (the x and y coordi-
nates). To obtain a textual version of such a JSON object, use the toJSON method.

/* Convert the captured lines to JSON text.
 @return (string) the JSON text version of the lines */
toJSON: function() {
 return '{"lines":[' + $.map(this.lines, function(line) {
 return '[' + $.map(line, function(point) {
 return '[' + point + ']';
 }) + ']';
 }) + ']}';
},

You provide the code for the toJSON method by defining a function with the same name
B. The conversion process starts by defining the outermost object and its lines attri-
bute, before processing each line in turn and adding its definition to the JSON text c.
For each line, step through each of its points and add them to the JSON text d.

NOTE This is only a partial JSON-to-string implementation. For a full conver-
sion, see the stringifyJSON function on GitHub: https://gist.github.com/
JaNightmare/2051416.

You can retrieve the JSON version of a signature as follows:

var jsonText = $('#sign').signature('toJSON');

Listing 9.15 Converting to JSON

Function for
toJSON method

b

Add each linecAdd each
 point d

https://gist.github.com/JaNightmare/2051416
https://gist.github.com/JaNightmare/2051416

178 CHAPTER 9 jQuery UI mouse interactions
The resulting string may look like this, which defines two lines made up of numerous
points:

{"lines":[[[38,85],[38,83],[38,82],[39,80],[40,76],
[41,73],[42,69],[42,65],[43,61],[44,58],[44,54],
[44,51],[45,48],[46,44],[48,41],[48,40],[49,37],
[51,36],[52,35],[53,34],[54,33],[55,33],[56,33],
[57,34],[58,36],[59,39],[61,43],[63,47],[65,52],
[66,55],[66,59],[66,64],[67,67],[67,70],[67,72],
[67,73],[68,74],[69,74],[70,74]],
[[41,62],[42,62],[43,62],[45,60],[48,59],[54,56],
[60,54],[66,52],[71,51],[77,50],[80,50],[83,49]]]}

As an alternative, you can provide a synchField option to the widget, which identifies
a text field to be kept synchronized with the JSON text for the signature. You can pro-
vide a jQuery selector string, a DOM element, or an existing jQuery object as the
option value. The synchronization happens as part of the processing in the _changed
function (see section 9.5.2).

 Although you can now capture a signature and convert it to JSON text for storage,
at some future time you’ll need to redisplay that signature.

9.7.3 Redrawing the signature

If a signature is to be redisplayed, it may need to be redrawn from that JSON represen-
tation. The draw method accepts a JSON string or object and renders the signature
that it defines onto its canvas, as shown in listing 9.16.

/* Draw a signature from its JSON description.
 @param sigJSON (object) object with attribute lines
 being an array of arrays of points or
 (string) text version of the JSON */
draw: function(sigJSON) {
 this.clear(true);
 if (typeof sigJSON == 'string') {
 sigJSON = $.parseJSON(sigJSON);
 }
 this.lines = sigJSON.lines || [];
 var ctx = this.ctx;
 $.each(this.lines, function() {
 ctx.beginPath();
 $.each(this, function(i) {
 ctx[i == 0 ? 'moveTo' : 'lineTo'](this[0], this[1]);
 });
 ctx.stroke();
 });
 this._changed();
},

To implement the draw method, you declare the draw function B. It accepts a single
parameter, which is the object that defines the lines that make up the signature or the
JSON text representation of that object.

Listing 9.16 Redrawing the signature

Function for
draw method

b

Erase
canvas c

Copy line definitionsd

Draw each linee

Trigger
change event

f

179Removing the widget
 You erase any existing signature by invoking the clear function c. If the signature
value supplied is in a text form, you should convert it to the corresponding JavaScript
object d. Otherwise use the JSON object as is. Then transfer the new line definitions
from that object into the widget instance object and draw each line in turn e. Recall
that this drawing uses the styles established previously in the _refresh function (see
section 9.4.3). Once it’s drawn, you handle data synchronization and user notification
via the _changed call f (see section 9.5.2).

9.7.4 Checking signature presence

It’s likely that a signature block is a required field when it appears on a web page. To
assist in the validation process, and to hide the internal workings of the widget, the
isEmpty method returns a Boolean value indicating the field’s status.

/* Determine whether or not any drawing has occurred.
 @return (boolean) true if not signed, false if signed */
isEmpty: function() {
 return this.lines.length == 0;
},

You define the isEmpty function to implement the corresponding method B. From
that function, you return the empty status by comparing the number of captured lines
with zero c.

 Note that this method returns a Boolean value and can’t be used in the middle of a
jQuery function chain. You could use the method like this, with the outcome shown in
figure 9.4:

if ($('#sign').signature('isEmpty')) {
 alert('Please enter your signature');
}

That completes the interactions with the Signature plugin. But you may want to
remove the Signature functionality altogether from the affected elements.

9.8 Removing the widget
You invoke the destroy method to remove all trace of your widget. As with other meth-
ods, this generates a call to the function with the same name within the plugin—destroy.

Listing 9.17 Checking signature presence

Function for
isEmpty method

b

Return empty statusc

Empty signature
fails validation

Figure 9.4 The result of
validating a signature

180 CHAPTER 9 jQuery UI mouse interactions
9.8.1 The _destroy method

The widget framework contains a destroy function that tidies up any framework ini-
tializations. At the appropriate time during that process, it calls the _destroy func-
tion, which does nothing by default. By providing a _destroy function as part of the
widget overrides during its declaration, you can hook into the destroy method call
and undo whatever was done in your _create function.

/* Remove the signature functionality. */
_destroy: function() {
 this.element.removeClass(
 this.widgetFullName || this.widgetBaseClass);
 $(this.canvas).remove();
 this.canvas = this.ctx = this.lines = null;
 this._mouseDestroy();
}

You declare the _destroy function to intervene in the destroy method call B.
Within your function, you should remove the marker class c, canvas element, and
associated references d that were added during setup. Allow the integrated mouse
widget to tidy up after itself by calling the _mouseDestroy function e.

 After executing this method, the affected elements will have been returned to
their initial states and the Signature functionality no longer applies.

9.9 The complete plugin
That completes the jQuery UI Signature widget, allowing you to capture a signature in
an area on a web page, encode that signature for further external processing, and

Listing 9.18 Removing the widget

Prior to jQuery UI 1.9

Prior to jQuery UI 1.9, you had to override the destroy function instead of _destroy,
and invoke the inherited functionality by referring to the widget prototype. To allow
your plugin to operate in the current and earlier versions of jQuery UI, you should extend
your plugin overrides to add the destroy function in those earlier versions and have
it call _destroy, like the latest version does. You also need to call the inherited de-
stroy function from the widget framework. The full code for this is shown here:

if (!$.Widget.prototype._destroy) {
 $.extend(maxlengthOverrides, {
 /* Remove the maxlength textarea functionality. */
 destroy: function() {
 this._destroy();
 // Base widget handling
 $.Widget.prototype.destroy.call(this);
 }
 });
}

Define the destroy
function

b

Remove marker classc

Remove canvasd

Tidy up mouse processinge

181Summary
decode and redraw it as necessary. Interacting with the mouse to handle drag opera-
tions is greatly simplified by the use of the jQuery UI Mouse module. The complete
code for the plugin is available for download from the book’s website.

9.10 Summary
Although jQuery provides support for basic mouse interactions via its mouse event
handling, jQuery UI provides a higher-level interaction in dealing with mouse-drag
operations. The jQuery UI Mouse module intercepts the basic mousedown, mousemove,
and mouseup events and converts these into calls to the _mouseStart, _mouseDrag, and
_mouseStop functions, allowing you to concentrate on reacting to the mouse drag,
rather than worrying about the underlying infrastructure. jQuery UI makes use of the
drag functionality in several of its own modules.

 You add the Mouse module to your own widget by using it as the starting point in
your widget declaration. Then override the drag functions listed previously to add
your own processing. All of the functionality of the basic Widget is still available
because the Mouse module extends that component.

 The Signature plugin developed in this chapter shows how you can use the mouse
interactions to develop useful functionality within your web page. It allows you to cap-
ture a signature within an area on the page by dragging the mouse over it, and then
converts that signature into a JSON representation for storage and further processing.

 The last chapter in this part looks at the jQuery UI effects framework and how this
can be extended to provide eye-catching animations for your web pages.

What you need to know
Inherit from the jQuery UI Mouse module when you need to incorporate mouse drag
operations into your widget.

Call _mouseInit to initialize the mouse handling and _mouseDestroy to remove its
effects.

Override the _mouseCapture function to indicate whether to start a mouse drag.

Override the _mouseStart, _mouseDrag, and _mouseStop functions to respond to the
drag operation.

The standard widget functionality is still available to handle option processing and
setup and teardown of the plugin.

Try it yourself
Create a plugin for a simple sketchpad, also based around the HTML5 canvas ele-
ment. Allow the user to drag across the canvas and draw a rectangle within the bounds
of the dragged region. You can use an Image element to save the state of the canvas
while dragging, to simplify the drawing of a feedback rectangle:

this.img.src = this.canvas.toDataURL(); // Save initial state
this.ctx.drawImage(this.img, 0, 0); // Restore initial state

jQuery UI effects
Alongside the various widgets provided by jQuery UI (discussed in the previous two
chapters) are additional behaviors, including user interactions, such as draggable
and droppable, and visual effects for presenting elements. These effects enhance
the showing or hiding of elements on your web page or serve to highlight a particu-
lar element by animating various aspects of their appearance. Underlying the built-
in effects is a core of functionality that’s useful in creating such animations. As
you’d expect, you can add your own effects and have them integrate into jQuery UI
along with the built-in ones.

 In a similar way, easings enhance an animation by modifying the rate of change
of an attribute value over the duration of the animation. jQuery UI provides many
such easings to greatly expand the range available beyond the two defined in
jQuery itself. You can also add your own easings to make the animation behave
exactly as you want it to.

This chapter covers
■ The jQuery UI effects framework
■ Adding a new effect
■ What easings are
■ Adding new easings
182

183The jQuery UI effects framework
 Together, these visual effects can liven up a page and provide a unique look and
feel for your website. You can make an element disappear by collapsing into its center
line, similar to the way television screens used to turn off. Or bring an element that’s
been updated by an Ajax call to the user’s attention by flashing its background color.
You can use an easing to simulate a physical process when moving an element, such as
having it bounce as if under the effect of gravity. These effects may allow a user to bet-
ter relate to that element within the context of the rest of the web page.

10.1 The jQuery UI effects framework
The jQuery UI effects framework is modularized, just like the widget framework,
allowing you to choose which parts of the package you want to use and reduce the
code requirements. You can create a custom download for yourself (http://jque-
ryui.com/download), which takes into account dependencies between the modules.

 Before looking at how to create a new effect, you should be aware of the other
functionality already offered by the jQuery UI effects framework, so that you can use it
when developing your own effects.

10.1.1 The Effects Core module

Underlying the individual jQuery UI effects modules is a core of commonly used func-
tionality. These abilities are implemented here so that you don’t need to re-invent
them and can apply them immediately to your own effects. Along with color anima-
tion, you’ll find animation from the attributes of one class to another, and several low-
level functions that may be useful in developing new effects.

COLOR ANIMATION

The Effects Core module adds custom animation support for style attributes that con-
tain color values: foreground and background colors, and border and outline colors.
jQuery itself only allows the animation of attributes that are simple numeric values, with
an optional units designator such as px, em, or %. It doesn’t know how to interpret more
complex values, like colors, or how to increment those values correctly to achieve the
desired transition, such as from blue to red via an intermediate purple color.

 Color values are made up of three components: the red, green, and blue contribu-
tions, each with a value between 0 and 255. They can be specified in HTML and CSS in
a number of different ways, as listed here:

■ Hexadecimal digits—#DDFFE8

■ Minimal hexadecimal digits—#CFC

■ Decimal RGB values—rgb(221, 255, 232)

■ Decimal RGB percentages—rgb(87%, 100%, 91%)

■ Decimal RGB and transparency values—rgba(221, 255, 232, 127)

■ A named color—lime

The red, green, and blue components must be separated out and individually ani-
mated from their initial values to their final ones, before being combined into the
new composite color for the intermediate steps.

http://jqueryui.com/download
http://jqueryui.com/download

184 CHAPTER 10 jQuery UI effects
 jQuery UI adds animation steps for each affected attribute to correctly decode the
current and desired colors, and to change the value as the animation runs. In addition
to the color formats described in the previous list, the animate call can also accept an
array of three numeric values (each between 0 and 255) to specify the color. Once
these functions are defined, you can animate colors the same way you would do for
other numeric attributes:

$('#myDiv').animate({backgroundColor: '#DDFFE8'});

jQuery UI contains an expanded list of named colors that it understands, from the
basic red and green to the more esoteric darkorchid and darksalmon. There is even a
transparent color.

 Chapter 11 looks at how you can add animation functions for other non-numeric
attribute values.

CLASS ANIMATION

Standard jQuery lets you add, remove, or toggle classes on selected elements. jQuery
UI goes one better by allowing you to animate the transition between the before and
after states.

 It does this by extracting all the attribute values that can be animated (numeric val-
ues and colors) from the starting and ending configurations, and then invoking a
standard animate call with all of these as properties to change. This new animation is
triggered by specifying a duration when calling the addClass, removeClass, or tog-
gleClass functions:

$('#myDiv').addClass('highlight', 1000);

jQuery UI also adds a new function, switchClass, which removes a class and adds a
class, with the optional transition between the two states (when providing a duration):

$('#myDiv').switchClass('oldClass', 'newClass', 1000);

10.1.2 Common effects functions

To better support the various effects of jQuery UI, the Effects Core module provides
several functions that are of use to these effects, and perhaps to your own. To illustrate
how several of these functions are used, the following listing shows the relevant parts
of the slide effect.

$.effects.effect.slide = function(o, done) {

 // Create element
 var el = $(this),
 props = ["position", "top", "bottom",
 "left", "right", "width", "height"],
 mode = $.effects.setMode(el, o.mode || "show"),
 ...;

Listing 10.1 slide effect using common functions

Determine mode
of operation

b

185The jQuery UI effects framework
 // Adjust
 $.effects.save(el, props);
 el.show();
 distance = o.distance || el[ref === "top" ?
 "outerHeight" : "outerWidth"](true);

 $.effects.createWrapper(el).css({overflow: "hidden"});

 ...

 // Animation
 animation[ref] = ...;

 // Animate
 el.animate(animation, {
 queue: false,
 duration: o.duration,
 easing: o.easing,
 complete: function() {
 if (mode === "hide") {
 el.hide();
 }
 $.effects.restore(el, props);
 $.effects.removeWrapper(el);
 done();
 }
 });
};

You can use the setMode function B to convert a mode of toggle into the appropriate
show or hide value based on the current visibility of the element (el, a jQuery object).
If the provided mode is show or hide, it retains that value, and in this case, defaults to
show if not given at all.

 Before starting the animation for the effect, you might want to use the save func-
tion c to remember the original values of several attributes (from the names in
props) on the element (el), so that they can be restored when finished. The values
are stored against the element using the jQuery data function.

 To facilitate the movement of an element for an effect, you can wrap a container
around that element with the createWrapper function d to use as the reference
point for the motion. Positional information is copied from the specified element
(el) onto the wrapper so that it appears directly atop the original element. The ele-
ment is then positioned within the new container at its top left so that the overall
effect is unnoticeable by the user. The function returns a reference to the wrapper.
Any changes to the left/right/top/bottom settings for the original element will
now be relative to its original position, without affecting the surrounding elements.

 Having saved certain attribute values earlier, you’d use the restore function at the
completion of the animation to return them to their original settings e. At the same
time, you should remove any wrapper that you created previously with the remove-
Wrapper function f. This function returns a reference to the wrapper if it was
removed, or to the element itself if there was no wrapper.

Save current
settingsc

Create
wrapper for
animationd

Restore original
settings

e

Remove
animation
wrapperf

186 CHAPTER 10 jQuery UI effects
 There are some other functions provided by the jQuery UI Effects Core module
that may be of use:

■ getBaseline(origin, original)—This function normalizes an origin speci-
fication (a two-element array of vertical and horizontal positions) into frac-
tional values (0.0 to 1.0) given an original size (an object with height and
width attributes). It converts named positions (top, left, center, and so on) to
the values 0.0, 0.5, or 1.0, and converts numeric values into the proportion of
the relevant dimension. The returned object has attributes x and y to hold the
fractional values in the corresponding directions. For example,
var baseline = $.effects.getBaseline(['middle', 20],
 {height: 100, width: 200}); // baseline = {x: 0.1, y: 0.5}

■ setTransition(element, list, factor, value)—To apply a scaling factor to
multiple attribute values at once, use this function. For each attribute name in
list, retrieve its current value for element, and update that by multiplying it by
factor. Set the result into the value object under the name of the attribute,
and return that object from the function. For example, to reduce certain values
by half, you might do this:
el.from = $.effects.setTransition(el, ['borderTopWidth',
 'borderBottomWidth', ...], 0.5, el.from);

■ cssUnit(key)—To separate a named CSS attribute (key) into its amount and
units (em, pt, px, or %), returned as an array of two values, use this function. If the
units aren’t one of these known types, an empty array is returned. For example,
var value = el.cssUnit('width'); // e.g. value = [200, 'px']

The functions presented in this section are used by many of the effects provided by
jQuery UI. These effects are reviewed in the next section, before we look at how you’d
create your own effect.

10.1.3 Existing effects

Numerous effects are provided by jQuery UI. Most of these are designed to enhance
how an element appears or disappears (such as blind and drop), whereas others serve
to bring your attention to an element (such as highlight and shake). Table 10.1 lists
the available effects, along with the options that may be used to alter their behavior.

Table 10.1 jQuery UI effects

Name Effect Options

blind Element expands or contracts vertically (default) or hori-
zontally from its top or left

direction

bounce Element drops into or out of view and bounces a few
times

direction, distance,
times

clip Element expands or contracts vertically (default) or hori-
zontally from its center line

direction

187The jQuery UI effects framework
drop Element slides into or out of view from the left (default)
or top, and fades to or from full opacity

direction, distance

explode Element breaks up into sections and flies apart, or reas-
sembles itself from flying parts

pieces

fade Element fades to or from full opacity -

fold Element expands or contracts first in one direction then
in the other (horizontally then vertically by default)

horizFirst, size

highlight Element changes background color briefly color

puff Element decreases or increases in size, and fades to or
from full opacity

direction, from, origin,
percent, restore, to

pulsate Element fades out and in several times times

scale Element expands or contracts from or to its center point
by a percentage amount

direction, from, origin,
percent, restore, scale,
to

shake Element moves from side to side several times direction, distance,
times

size Element decreases or increases in size to given dimen-
sions

from, origin, restore,
scale, to

slide Element slides horizontally (default) or vertically from its
own edge

direction, distance

transfer Element is moved and resized to match a target element className, to

Table 10.1 jQuery UI effects (continued)

Name Effect Options

Figure 10.1 Some jQuery UI effects in
operation (clockwise from top left): slide,
clip, and explode

188 CHAPTER 10 jQuery UI effects
These effects may be used in conjunction with the enhanced jQuery UI show, hide,
and toggle functions by providing the name of the desired effect as the first parame-
ter. You can also supply additional options that change the behavior of the effect, the
duration of the animation, and a callback function that’s triggered on completion.

$('#aDiv').hide('clip');
$('#aDiv').toggle('slide', {direction: 'down'}, 1000);

Figure 10.1 shows a sample of the available effects midway through their operation.
 Now that you’ve seen what effects are currently available, it’s time to discover how

to add your own effect so that it can be used in the same manner.

10.2 Adding a new effect
Adding a new effect to those available in jQuery UI involves extending
$.effects.effect to add a function that implements your requirements. As with pre-
vious plugins, you need to follow several of the guiding principles to ensure a robust
solution.

NOTE Prior to jQuery UI 1.9.0, you extended the $.effects variable with your
new effect. The requirements for such a call are somewhat different for
jQuery UI 1.9.0 and later versions. The differences are covered in section
10.2.4.

10.2.1 Imploding an element

There’s an existing jQuery UI effect called explode that takes an element, breaks it up
into several pieces, and then moves these away from each other while fading them
out, to simulate it being blasted to pieces. When used to show a hidden element, this
effect fades in the various pieces and reassembles the original element. To demon-
strate how you can create your own effect, you can write a similar one that implodes
an element rather than exploding it. Instead of the component pieces flying out when
hiding an element, they’ll collapse into the center and fade away, as shown in figure
10.2. When showing an element with the imploding effect, the individual pieces will
move out from the center and fade in to recreate the whole element.

Figure 10.2 The implode effect, showing the initial element (left) and part way
through its hiding (right)

189Adding a new effect
You need to choose a name for the effect to be able to identify it to jQuery (keeping in
mind the principle of only claiming a single name and using that for everything), such as
implode. Existing effects are contained within files with names of the format
jquery.ui.effect-<name>.js. Although this naming convention isn’t required, it’s good
practice to follow it to indicate that the new effect relies on the jQuery UI Effects Core
module.

 As always, surround your code with an anonymous function to hide the implementa-
tion details by using scope and to not rely on $ being the same as jQuery. Within that function,
you define your new effect and integrate it into the standard jQuery effect offerings
(placing everything under the jQuery object). The following listing shows the declarations
for the new effect.

(function($) { // Hide scope, no $ conflict

$.effects.effect.implode = function(options, done) {
 ... // Implement the effect
};

})(jQuery);

You define the implode effect by extending $.effects.effect to add a function that
accepts two parameters B, which encapsulate all the parameters supplied to the effect
call (options) and provide a callback to process any further animations (done). The
options parameter object has attributes for any user-provided options to customize
the effect, for the duration of the animation (duration, which has already been con-
verted into a numeric value if provided as a name, such as slow), for the mode of
operation (mode), and for any callback function that’s invoked upon completion of
the animation (complete).

 Your effect function is called to run the effect at the appropriate time, because this
effect may be part of a sequence of animations applied to the element. The remainder
of the processing (shown in listings 10.3 and 10.4) takes place within this context.

10.2.2 Initializing the effect

When an effect is requested, the function defined in listing 10.2 is called for the
affected elements. Before it can implement the actual animation, it must interpret any
provided options and initialize the environment for its subsequent actions. Listing
10.3 shows this part of the effect processing.

var rows = cells = options.pieces ?
 Math.round(Math.sqrt(options.pieces)) : 3;

options.mode = $.effects.setMode($(this), options.mode);
var el = $(this).show().css('visibility', 'hidden');

Listing 10.2 Defining an implode effect for jQuery UI

Listing 10.3 Implode effect initialization

Define implode
effect

b

Default number
of piecesb

Set show/hide
modec

190 CHAPTER 10 jQuery UI effects
var offset = el.offset();
// Subtract the margins - not fixing the problem yet
offset.top -= parseInt(el.css('marginTop'), 10) || 0;
offset.left -= parseInt(el.css('marginLeft'), 10) || 0;

var cellWidth = el.outerWidth(true) / cells;
var cellHeight = el.outerHeight(true) / rows;

var segments = $([]);
var remaining = rows * cells;
var completed = function() { // Countdown to full completion
 if (--remaining == 0) {
 options.mode == 'show' ? el.css({visibility: 'visible'}) :
 el.css({visibility: 'visible'}).hide();
 if (options.complete) {
 options.complete.apply(el[0]); // Callback
 }
 segments.remove();
 done();
 }
};

The process starts by providing default values for options that aren’t defined B. To
compress the element you break it up into a number of pieces and move each of these
separately, so you need to know how many pieces to use. For this effect, you calculate
the square root of the number supplied (options.pieces), rounding to an integer
value, to make the effect symmetrical. If no pieces count is given, you default to an
appropriate value (in this case, 3).

 The jQuery UI effects use a mode option (options.mode) to determine whether
the element is being shown or hidden, with a call to show or hide setting the corre-
sponding value. Alternatively the user can toggle the current visibility, so you should
translate a mode of toggle into the appropriate show or hide value using the setMode
function c. The original element has its visibility set to hidden to make it invisible
but still occupy the space it normally uses within the page. A reference to that element
(el) is saved for later use.

 Continue the initialization by calculating several values to be used to render the
animated effect d, including the offset of the original element within the page and
the width and height of each component piece. By computing the values here, you
avoid having to recalculate them multiple times later on.

 To ensure cleanup of the effect once it has run, you define a completed callback
for the animation of each of the individual pieces e. This callback is invoked once for
each piece that moves, but you only want to tidy up when they have all finished, so you
decrement a count of the completed animations (remaining), and only continue
when that count reaches zero. When they’re all done, you completely show or hide
the original element, which was only made invisible previously, according to the
requested mode of the effect. If a user-defined callback was supplied for the effect as a
whole, you invoke that at this time f, providing the current element (el[0]) as the
context of that call. Remove the cloned pieces of the original element and invoke the
done callback to process any further animations for that element g.

Calculate
offsetsd

Completed
callback

e

Trigger user
callbackf

Tidy up and
continueg

191Adding a new effect
10.2.3 Implementing the effect

Having prepared the groundwork for the effect, the next step is to implement its func-
tionality, animating the affected element(s) in the desired way. Figure 10.3 shows how
the element is broken up into sections, each of which is moved separately toward its
common center.

 Listing 10.4 shows the code that animates the implode effect.

for (var i = 0; i < rows; i++) {
 for (var j = 0; j < cells; j++) {
 var segment = el.clone().appendTo('body').wrap('<div></div>').
 css({position: 'absolute', visibility: 'visible',
 left: -j * cellWidth, top: -i * cellHeight}).
 parent().addClass('ui-effects-implode').
 css({position: 'absolute', overflow: 'hidden',
 width: cellWidth, height: cellHeight,
 left: offset.left + j * cellWidth +
 (options.mode == 'show' ?
 -(j - cells / 2 + 0.5) * cellWidth : 0),
 top: offset.top + i * cellHeight +
 (options.mode == 'show' ?
 -(i - rows / 2 + 0.5) * cellHeight : 0),
 opacity: options.mode == 'show' ? 0 : 1}).
 animate({left: offset.left + j * cellWidth +
 (options.mode == 'show' ? 0 :
 -(j - cells / 2 + 0.5) * cellWidth),
 top: offset.top + i * cellHeight +
 (options.mode == 'show' ? 0 :
 -(i - rows / 2 + 0.5) * cellHeight),
 opacity: options.mode == 'show' ? 1 : 0
 }, options.duration || 500, completed);
 segments = segments.add(segment);
 }
}

Listing 10.4 Apply the implode effect

Figure 10.3 Break the element up into pieces, and move them separately toward the center.

For each imploding piece...b

 ...clone the
original and
wrap in a divc

Position the
content within

its wrapper d

Access
the wrapper

e

Position the
wrapperf

Animate this
piece via
its wrapperg

Remember
this segmenth

192 CHAPTER 10 jQuery UI effects

c

En
The implosion effect results from breaking the original element up into smaller sec-
tions and having each of those move toward the center, fading as they go. Start by step-
ping through each of the requested pieces B (rows and cells) and create a wrapped
clone of the original element, so you can show a portion of the latter c by positioning
the contents (left and top) within the new div d. The result is separate divs, each
showing a portion of the original element that can be moved independently.

 The wrapping div for each piece (parent) is then marked with a class (ui-
effects-implode) to help identify it e (in the completed callback in listing 10.3).
The wrapper is sized to show just one part of the original element, while hiding any-
thing outside those dimensions, and is positioned absolutely to its starting location f.
When using the effect to hide an element, each piece starts atop the corresponding
section of the original element, as calculated from the current indexes (i and j) and
the individual cell width and height. When showing an element with this effect, the
starting position is all pieces overlaying each other in the center before they move out-
ward to their original locations to reconstruct the entire element.

 Finally, you animate the location of the wrapping div to its final position g, which
is the inverse of the starting positions. The completed callback from the previous sec-
tion is invoked at the end of each individual animation to eventually tidy up and
remove the segments that are added here h.

10.2.4 Implementing an effect prior to jQuery UI 1.9

The implementation of effects changed in jQuery UI 1.9.0, and several changes need
to be made to allow the effects code to function in earlier versions. Fortunately, most
of the code is directly reusable, as shown in this listing.

var newEffects = !!$.effects.effect; // Using new effects framework?

if (newEffects) {
 $.effects.effect.implode = function(options, done) {
 implodeIt.apply(this, arguments);
 };
}
else {
 $.effects.implode = function(o) {
 var options = $.extend({complete: o.callback}, o, o.options);
 return this.queue(function() {
 var el = $(this);
 implodeIt.apply(this, [options, function() {
 el.dequeue();
 }]);
 });
 };
}

/* Apply the implode effect immediately.
 @param options (object) settings for this effect

Listing 10.5 Implementing an effect for earlier jQuery versions

Using new
effects? bIf so, declare

jQuery 1.9
effect

Invoke
effect
functiond Otherwise,

declare earlier
jQuery effect

e

Convert options fqueue effect
processing g

Invoke effect
functionh

193Adding a new effect
 @param done (function) callback when the effect is finished */
function implodeIt(options, done) {
 ... // Same code as for jQuery UI 1.9.0 effect
}

You should start by determining whether the new effects framework is available by
checking for the existence of $.effects.effect B. If it’s present, declare the new
effect as shown previously c, but this time you invoke a common function that imple-
ments the actual effect d.

 If you’re not using the new effects framework, you declare the effect under
$.effects, still with the same name, and assign it a function that receives only a single
parameter (o) e that contains any options to customize the effect. The provided
options are structured differently from those given in jQuery 1.9.0, so you need to
translate from this format to the newer version for use in the common implementa-
tion function f. The new options are flattened out, so you bring the user-defined set-
tings (o.options) up to the top level, alongside the attributes already at that level. In
addition, the end-user’s complete callback has a different name (callback) that
needs to be converted.

 Your effect function must return a reference to the jQuery collection it’s being
applied to in this version, and it does this via the queue function g. The call to queue
adds a callback function to the standard fx queue for each selected element, to run
the effect functionality at the appropriate time as the queue is processed. jQuery 1.9.0
handles the queues for you, removing this requirement in the newer version.

 The enqueued function invokes the common implementation function, passing
along the converted options and a done callback that triggers the next item in the ele-
ment’s standard fx queue by calling dequeue h.

 The common implementation function is defined using the parameters for a
jQuery 1.9.0 effect i and contains exactly the same code as presented earlier to actu-
ally animate the effect.

 Using the code presented here, your effect will run under all jQuery versions with-
out any effort on the part of the user.

10.2.5 The complete effect

That completes the implementation of a new jQuery UI effect that hides or shows an
element by collapsing it to or expanding it from its center. All the code for the plugin
is available for download from the book’s website.

 To use the new effect, you need to load both the jQuery and jQuery UI code (at
least the Effects Core module) into your page, followed by the plugin code. Then
apply the effect to an element by providing its name to the appropriate show, hide, or
toggle call. Additional options may be supplied at that time to customize the effect.

$('#aDiv').hide('implode');
$('#aDiv').toggle('implode', {pieces: 25}, 1000,
 function() { alert('Done'); });

Extracted
effect functioni

194 CHAPTER 10 jQuery UI effects
By default, all animations proceed by changing attribute values in a near-constant
manner from their start value to their final one. Instead, you can use other ways to
vary the values and so achieve interesting and more realistic motion. Such methods
are described next.

10.3 Animation easings
Animations work by changing an attribute from one value to another, causing the
appearance of the element on the web page to alter accordingly. But varying the value
at a constant pace doesn’t always match our expectations, as we relate elements on the
page to real-world objects. Fortunately, jQuery provides for such nonlinear changes,
enabling you to achieve additional effects for your animations.

10.3.1 What’s an easing?

Easing is the acceleration or deceleration of an object in motion. In the real world,
this could be due to external forces such as gravity or friction. In animation terms, it’s
a definition of the way that the speed of an attribute change varies over time.

 An ease-in is an acceleration from a stopped position. An ease-out is a deceleration
down to a stop. Sometimes these are combined in one easing, an ease-in-out that starts
slowly, speeds up, and then slows to a halt again.

 An easing is implemented as a function that returns the attribute value for a given
time period. To cater to user-defined durations for an animation and for any attribute
range, the function is normalized to expect a time between 0.0 at the start and 1.0 at
the end, and to generate an output value also between 0.0 and 1.0. The following list-
ing shows the definition of the swing easing function.

jQuery.easing = {
 ...
 swing: function(p) {
 return 0.5 - Math.cos(p*Math.PI) / 2;
 }
};

NOTE The way that animation easing functions operate changed in jQuery
1.7.2 and jQuery UI 1.8.23 to the description given in this section. Prior to
those versions, the easing function was responsible for calculating the actual
attribute value at a particular point in time, and was supplied with the attri-
bute’s starting value and the difference between start and end values as
parameters. The rest of the text here concentrates on the newer version only.

To use an easing with your animation, you supply its name as one of the options for
that animation. For example, to have the height of an element spring from its current
value to a new one, you might use the easeInOutElastic easing:

$('#mydiv').animate({height: 200}, 1000, 'easeInOutElastic');

Listing 10.6 The swing easing function

195Animation easings
You can apply different easings to different portions of one animation by specifying
the required easing on a per-attribute basis. For example, to use the easeInOut-
Elastic easing for all attributes except for the background color, which uses a linear
easing, you’d use this:

$('#mydiv').animate({height: 200, backgroundColor: ['red', 'linear']},
 1000, 'easeInOutElastic');

The easiest way to see the effect of an easing is to graph its function. Figure 10.4 shows
the easing graph for the swing easing. Time increases from left to right across the
graph, while the attribute changes from its initial value at the bottom to its final value
at the top (indicated by the horizontal gray lines). In this case, you can see that the
attribute value starts out changing slowly, then speeds up, before once more slowing
down as it reaches the final value. Hence, it’s an ease-in-out type of easing.

10.3.2 Existing easings

jQuery itself defines only two easings, linear and swing, with the latter being the
default. The easings offered by jQuery UI come from the jQuery Easing plugin (http:/
/gsgd.co.uk/sandbox/jquery/easing/), which was incorporated into the jQuery UI
Effects Core module. These functions are a porting to JavaScript of the easing func-
tions defined by Robert Penner (http://www.robertpenner.com/easing/). The stan-
dard jQuery swing easing is renamed as jswing, and the default easing changes to
easeOutQuad.

 Figure 10.5 shows the graphs for the jQuery and jQuery UI easings.
 The linear easing is a constant change from the attribute’s starting value to its end-

ing one, whereas the swing easing is based on a cosine curve and has a slight accelera-
tion to start and a corresponding deceleration to finish. The next group of easings
(easeInQuad through easeInOutExpo offer ever faster accelerations and decelerations,
which are based on mathematical functions of increasing power (quadratic, cubic,
quintic, and exponential). Each has an ease-in, ease-out, and combination version.

Figure 10.4 An easing graph showing the change in
an attribute’s value over the duration of an animation

http://gsgd.co.uk/sandbox/jquery/easing/
http://gsgd.co.uk/sandbox/jquery/easing/

196 CHAPTER 10 jQuery UI effects

Figure 10.5 jQuery and jQuery UI
easing graphs

197Animation easings
Next are easings based on a sine function and the shape of a circle. The elastic and
back easings are of interest in that they extend the attribute value outside of its initial
range to achieve their effects. The elastic easings oscillate an attribute value about
its initial or final value, as if it were attached to a spring, whereas the back easings
briefly roll back or overshoot the starting or ending value. The bounce easings simu-
late an increasing or decreasing bounce effect to reach the desired value. All of these
easings have an ease-in, ease-out, and combination form.

10.3.3 Adding a new easing

You can produce some attention-grabbing effects with easings, like the bounce easings
shown in the previous section. To make your animations stand out from the crowd,
you can define custom easings to achieve exactly the outcome you want. One such
effect would be to have the attribute value backtrack a little halfway through the tran-
sition to add more interest to a standard animation (see the bump easing ahead).

 To add your own easing, you extend $.easing to provide a function named for the
new motion. The function takes one parameter representing the portion of the time
elapsed in the duration of the animation (from 0.0 to 1.0), and returns the proportion
of the attribute value difference that applies at that time (from 0.0 at the start to 1.0 at
the end). jQuery converts the calculated proportion into the actual attribute value.

 Figure 10.6 shows graphs of the two standard easings, linear and swing, along
with several custom easings; listing 10.7 shows the code behind the latter.

Figure 10.6 Standard and custom jQuery easing graphs

198 CHAPTER 10 jQuery UI effects
/* Bump easing. */
$.easing.bump = function(p) {
 return (p < 0.5 ? Math.sin(p * Math.PI * 1.46) * 2 / 3 :
 1 - (Math.sin((1 - p) * Math.PI * 1.46) * 2 / 3));
};

/* Zigzag easing. */
$.easing.zigzag = function(p) {
 return 3 * (p < 0.333 ? p : (p < 0.667 ? 0.667 - p : p - 0.667));
};

/* Runup easing. */
$.easing.runup = function(p) {
 return (p < 0.333 ? p :
 (p < 0.667 ? (p - 0.333) * 2 : (p - 0.667) * 3));
};

/* Flash easing. */
$.easing.flash = function(p) {
 return Math.floor(p * 4 + 1) % 2;
};

The bump easing B makes an attribute value move toward its final value and then
retreat slightly, before continuing on to its end. It links together two portions of a sine
curve to achieve this. The zigzag easing c varies the attribute value linearly up to its
final value, back to its initial one, and again up to its final setting, with each transition
lasting one third of the overall duration.

 The runup easing d varies the attribute value linearly, but resets itself to the start
after each third of the duration, moving closer to the final value each time. The flash
easing e switches directly between the initial and final values with no intermediate
steps, resulting in a flashing effect.

 You use these easings by specifying their name as part of an animation request,
either for all animated values,

$('#aDiv').animate({height: 300}, 1000, 'runup');

or as an override for an individual attribute, following its ending value:

$('#aDiv').animate({height: [300, 'bump'], opacity: 0.0}, 1000, 'runup');

The complete code for these easings is available for download from the book’s website.

Listing 10.7 Custom easing functions

Easings in earlier jQuery versions

To convert these easings to support all versions of jQuery, you should define the basic
easing function separately and then provide a direct link to that function for newer
jQuery versions (when $.support.newEasing is true). Otherwise, for older versions,
include a wrapper function that computes the actual value using the result of the basic
easing function, the initial attribute value, and its difference from the final value.

The bump
easingb

The zigzag
easing

c

The runup
easingd

The flash
easinge

199Summary
10.4 Summary
Included in the jQuery UI modules are some basic utility functions, low-level behav-
iors (such as drag and drop), high-level components or widgets (such as Tabs and
Datepicker), and numerous visual effects. You can use these effects to enhance the

(continued)

$.support.newEasing = ($.easing.linear(1.0) == 1.0);

function bumpEasing(p) {
 return (p < 0.5 ? Math.sin(p * Math.PI * 1.46) * 2 / 3 :
 1 - (Math.sin((1 - p) * Math.PI * 1.46) * 2 / 3));
}

if ($.support.newEasing) {
 $.easing.bump = bumpEasing;
}
else {
 $.easing.bump = function(p, n, firstNum, diff) {
 return firstNum + diff * bumpEasing(p);
 };
}

What you need to know

Create a custom effect or easing to add a unique visual look to your web pages.

jQuery UI includes effects that alter the appearance of affected elements—either when
they’re appearing or disappearing, or to bring them to the user’s attention.

jQuery UI provides common functionality used by effects.

Extend $.effects.effect to add a new effect ($.effects before jQuery UI 1.9).

Easings control the rate of change of the animated property values over time.

Extend $.easing to add new easings (but it’s implemented differently before jQuery
1.7.2 and jQuery UI 1.8.23).

Try it yourself

Develop a new effect called spiral. Break the affected element up into four sections,
and have the top-left one slide down, the top-right slide left, the bottom-right slide up,
and the bottom-right slide left. Each section fades out as it moves. Reverse the slide
directions when showing the element instead of hiding it.

Add a new easing that overshoots the final value by 10% before ending at the correct
value. For more of a challenge, implement this easing using a parabolic path instead
of a linear one.

200 CHAPTER 10 jQuery UI effects
presentation of elements on your web page, or to bring a particular element to the
user’s attention. To assist you in creating your own effects, there’s a core of commonly
used functions available.

 You can add your own effects that operate alongside the existing ones by extend-
ing $.effects.effect to define the function that implements the desired changes.
The implode effect described here complements the existing explode one, causing an
element to collapse in upon itself.

 Basic jQuery also provides the ability to modify the timing of an attribute change
for an animation by specifying an easing. It defines only two such easings, but jQuery
UI adds many new ones, allowing you to achieve interesting effects with your own ani-
mations. As expected, you can add your own easing functions to define new ways of
getting from the start to the end of an attribute change.

 That completes our foray into jQuery UI, its modules, and extension points. In the
last part of the book, you’ll see other aspects of basic jQuery that can be enhanced to
provide new abilities, starting with the animation of attributes that don’t contain sim-
ple numeric values.

Part 4

Other extensions

There are still several extension points provided by jQuery that need cov-
ering; this part collects them together.

 jQuery can automatically animate simple numeric values, but more complex
or multivalued properties are beyond it. In chapter 11 you’ll see how to add ani-
mation capabilities for these other property values, enabling you to incorporate
them into your existing animations.

 The use of Ajax to retrieve remote content and process it without requiring a
full page refresh is well supported by jQuery. Chapter 12 shows how you can
hook into the Ajax processing to enhance the built-in capabilities, from pre-
processing a request, through providing an alternate retrieval mechanism, to
converting returned data into a more useful format.

 Event handling is another aspect of web development that jQuery simplifies
by providing cross-browser consistency. The special events framework of jQuery
described in chapter 13 lets you augment the event handling process to add new
events or alter how existing events are dealt with.

 Finally, chapter 14 discusses adding new validation rules for use with the Vali-
dation plugin. Although not a part of jQuery itself, this plugin is commonly used
and provides its own extension point.

202 CHAPTER

Animating properties
One of the most widely used of jQuery’s features is its animation functionality, which
provides support for animating various properties of elements, resulting in visual
changes on the web page. Besides the basic show and hide functions that provide an
animated transition if a duration is specified, several slide and fade animations are
also available as standard, such as slideDown and fadeIn. If you want something
more exotic, you can request a custom animation to move an element to a particular
position or to change its dimensions or font size by using the animate function.

$('#myDiv').slideDown('slow');
$('#myDiv').animate({width: '20%', left: '100px'});

But the built-in animation functions can only deal with properties that contain sim-
ple values: a numeric value followed by an optional units specification, such as 200
(pixels), 2em, or 50%. To enable jQuery to work with more complicated property val-
ues, such as colors (#CCFFCC), you must define a custom animation handler that
knows how to interpret an existing complex value, compute changes to that value
as the animation proceeds, and set the new value back into that property.

This chapter covers
■ The jQuery animation framework
■ Adding custom property animations
203

204 CHAPTER 11 Animating properties
 jQuery UI includes custom animations for those properties that contain color val-
ues, such as color and background-color. These functions know how to interpret the
CSS color values, which may be specified as hexadecimal values, as RGB triplets, or as
named colors, to extract the red, green, and blue components. Each component is
animated separately, before being combined back into the current composite value at
each step of the animation. Using the color animation plugin lets you specify color
values alongside the standard format properties when you request an animation.

$('#myDiv').animate({fontSize: '20px', backgroundColor: '#DDFFE8'});

To be able to animate other non-standard property values, you’ll need to find an
appropriate animation plugin or develop your own, as described in this chapter. Once
you have such a plugin, that property is treated the same as the standard ones,
enabling you to apply all of the animation functionality to it as well. For example, you
could apply a custom easing to your property animation, or have a callback triggered
when its animation is complete.

 In this chapter, you’ll create an animation handler for the background-position
style to demonstrate how to provide an animation for a complex value, and how to
deal with differences between the animation frameworks in various jQuery versions.

11.1 The animation framework
jQuery’s animate function lets you animate one or more properties of the selected
elements. You specify the list of properties to change and the final values desired for
each one. The animation processing then gradually transforms each property from its
current value to the new one, altering the appearance of the web page as it proceeds.

 Note that jQuery imposes some limitations on what can be animated. Besides the
restriction on properties with simple numeric values, jQuery can’t interpret some
property values that are set from standard named values. For example, when animat-
ing an element’s border width, you should start with a number value rather than the
terms thin or thick. Also, you shouldn’t mix units when animating, such as animating
from a starting pixel value to an ending percentage one, because jQuery can’t handle
the conversion automatically.

 The following sections describe the built-in abilities of jQuery animations, such as
setting the duration of the change, using alternative easings for additional effects, and
being notified when the animation completes, as well as offering a behind-the-scenes
look at how jQuery accomplishes these tasks.

11.1.1 Animation capabilities

For common effects, jQuery defines more targeted functions than the basic animate
call that encapsulate a number of related properties. If you provide a duration to a show,
hide, or toggle call, the affected element fades in or out and expands from or contracts
to the top-left corner, as shown in figure 11.1. Similarly, the fadeIn, fadeOut, and

205The animation framework
fadeToggle functions reveal or conceal an element by changing its opacity, whereas the
slideDown, slideUp, and slideToggle functions alter the element’s height.

 Multiple animations on the same element, from different animate or related calls,
are placed into a queue (named fx) to be executed one after the other. You can
request that an animation run immediately by setting its queue option to false.

 New property values can be given as a single number (which assumes pixels as the
units) or as a number in conjunction with a units specifier, such as 2em or 50%. In addi-
tion, you can request a relative change by prefixing the value with -= or +=, where-
upon the supplied amount is subtracted from or added to the current value to derive
the final quantity.

 You can provide additional options to alter the behavior of the animate call.

$('#myDiv').animate({left: '50px', width: '-=50px'},
 {duration: 500, easing: 'linear', complete: function() {
 $('#myDivController').attr('src', 'img/expand.gif');
 }});

Figure 11.1
Animation progress from a
show() call at (from the
top) 35%, 85%, and 100%
of the duration elapsed

206 CHAPTER 11 Animating properties
The duration specifies how long the animation takes to complete, as either a numeric
amount in milliseconds or one of the named speeds (slow, normal, or fast). Supply an
easing to define how the property values vary over time (easings were covered in more
detail in chapter 10). Since the release of jQuery 1.4, you can specify per-property
easings for more control over your animation.

 To be notified when an animation finishes, provide a complete callback as part of
the options to the call. This function is triggered once for each element being ani-
mated when the animation ends for that element, regardless of the number of proper-
ties that are changing. Although no parameters are passed to the callback, within it
the this variable refers to the current element.

 For callbacks as the animation proceeds, specify a step option and assign it a func-
tion that accepts two parameters—the current property value (now) and an object
containing details about the property and animation (tween)—and that has the this
variable set to the current element. The function is called once for each element for
each property at each stage of the animation, allowing you to monitor and/or alter its
progress.

 But what’s jQuery doing when you make an animate call? Read on to find out.

11.1.2 Stepping an animation

Behind the scenes, jQuery uses its Deferred objects to manage the animation prog-
ress, but ultimately it relies on the standard JavaScript setInterval function to intro-
duce the delay. That delay is set to 13 milliseconds by default, as held in the
$.fx.interval variable. At each step of the animation, jQuery calls a function to
update the affected properties with their new values. Note that jQuery calculates the
elapsed time at each step, rather than relying on counting iterations, allowing it to
provide a more accurate rendering of the animation.

NOTE Prior to jQuery 1.8.0, the animation process didn’t use the Deferred
handling, but called the setInterval function directly.

The animation handlers are held in the $.Tween.propHooks object and are indexed
by the property name. A standard handler, named _default, is used when no custom

Deferred objects

jQuery.Deferred(), introduced in jQuery 1.5, is a chainable utility object that can
register multiple callbacks into callback queues, invoke callback queues, and relay
the success or failure state of any synchronous or asynchronous function (http://
api.jquery.com/category/deferred-object/).

jQuery.Deferred() introduces several enhancements to the way callbacks are man-
aged and invoked. In particular, jQuery.Deferred() provides flexible ways to provide
multiple callbacks, and these callbacks can be invoked regardless of whether the orig-
inal callback dispatch has already occurred.

207The animation framework
override is provided, as shown in listing 11.1. This handler only understands the basic
amount and units format for a property value, and can cater to properties that are
directly set on the element itself and those that are managed as style settings via the
css function.

Tween.propHooks = {
 _default: {
 get: function(tween) {
 var result;

 if (tween.elem[tween.prop] != null &&
 (!tween.elem.style ||
 tween.elem.style[tween.prop] == null)){
 return tween.elem[tween.prop];
 }

 // passing any value as a 4th parameter to .css will
 // automatically attempt a parseFloat and fallback to a
 // string if the parse fails so, simple values such as
 // "10px" are parsed to Float. complex values such as
 // "rotate(1rad)" are returned as is.
 result = jQuery.css(tween.elem, tween.prop, false, "");
 // Empty strings, null, undefined and "auto"
 // are converted to 0.
 return !result || result === "auto" ? 0 : result;
 },
 set: function(tween) {
 // use step hook for back compat –
 // use cssHook if its there - use .style if its
 // available and use plain properties where available
 if (jQuery.fx.step[tween.prop]) {
 jQuery.fx.step[tween.prop](tween);
 } else if (tween.elem.style && (tween.elem.style[
 jQuery.cssProps[tween.prop]] != null ||
 jQuery.cssHooks[tween.prop])) {
 jQuery.style(tween.elem, tween.prop,
 tween.now + tween.unit);
 } else {
 tween.elem[tween.prop] = tween.now;
 }
 }
 }
};

The default handler (named _default c) is defined as part of the Tween.propHooks
object B (and later aliased as $.Tween.propHooks). Each handler is an object that has
two attributes: a getter function (get) d to retrieve the current property value, and a
setter function (set) g to update and apply the new value during the animation.

NOTE How you define custom animations changed in jQuery 1.8.0. Prior to
that you provided a single setter function to extend $.fx.step to cater to

Listing 11.1 The default animation handler

Animation extension pointb
Default
property
handlerc

Retrieve
property valued

Get an
attribute
valuee

Get a
style value f

Set property
valueg

 jQuery 1.8
fallback h

Update
a stylei

Update an
attribute j

208 CHAPTER 11 Animating properties
your custom property. The main discussion in the next section concentrates
on the later versions, but later sections do show how to define the same ani-
mation for the earlier versions.

The parameter passed to the getter and setter functions (tween) contains information
about the current animation. It has a reference to the current element (tween.elem),
the name of the property being animated (tween.prop) e j, and the name of the
easing being used (tween.easing) for this property. It also has an object
(tween.options) that holds the options passed to the animate call, with default values
if applicable. These include the duration of the animation (duration), the default
easing for the animation (easing), and any completed (complete) or stepping (step)
callbacks.

 The getter function attempts to retrieve the value as a CSS property f before con-
verting unknown values to 0.

 For the setter function g, the tween parameter contains additional information
concerning the current step in the animation. It provides the initial (tween.start)
and final (tween.end) values for the property, as well as the current value
(tween.now) i, all of which are straight numeric values. The units for these values
are found in the tween.unit attribute, whereas the tween.pos attribute contains a
value between 0 and 1 indicating the portion of the animation duration that has
elapsed.

 For backwards compatibility, the function checks for a $.fx.step implementation
for the property h and invokes that if found. Otherwise, you calculate the current
value for an animation step as the portion of elapsed time multiplied by the difference
between the end and start values, plus the starting value.

tween.pos * (tween.end – tween.start) + tween.start

You’d append the units to the result before setting it back into the nominated property.
 An animation handler is found based on the name of the property being ani-

mated, and its get and set functions are invoked at the appropriate times throughout
the duration of the animation process. jQuery manages this process to calculate initial
property values and the differences from the requested final values, to schedule regu-
lar updates for the properties, to call the handler at each step, and to tidy up and
notify the user (if necessary) at the end of the animation.

 To see how you can develop your own animation handler, you’ll create one for the
background-position style, which isn’t a simple numeric value.

11.2 Adding a custom property animation
Many property values fall into the category handled by the built-in animation func-
tions, such as a numeric value and an optional units specifier. But you may want to ani-
mate other properties that don’t fit this format. Without knowing how to interpret
and update these property values, jQuery can’t provide for their animation. The
background-position animation handler described in the next section deals with a

209Adding a custom property animation
composite value made up of two numeric and unit values, and it will let you smoothly
change this combined value over a defined period.

 Custom property animations must extend $.Tween.propHooks to define a getter
and a setter for the particular property format. jQuery can then integrate those func-
tions into its standard animation processing to update those properties as well.

11.2.1 Animating background-position

The background-position CSS property has one of these nonstandard formats. Its
value consists of position definitions for the horizontal and vertical offsets of the top-
left corner of the background image (if two values are given), or for both offsets (if
only one value is given). You can achieve interesting effects through animating the
position of a background image, such as scrolling scenery or highlighting a particular
part of the image, making your website more attractive to visitors. An example transi-
tion is shown in figure 11.2.

 In addition to the standard numeric-followed-by-units format, the positions may be
specified as named values: left, center, or right for horizontal offsets and top,
center, or bottom for vertical ones. These names correspond to 0%, 50%, and 100%
respectively in each direction. You must also allow for relative positions, such as those
that start with -= or +=, when specifying a final property value.

.uluru { background-image: url(img/uluru.jpg);
 background-position: 'left top'; }

Figure 11.2 Animating the background image’s position (in the direction of the
arrow) at 0%, 50%, and 100% of the elapsed duration

210 CHAPTER 11 Animating properties

c

Once the custom animation is available, you could then move the background image,
as follows:

$('div.uluru').animate({'background-position': '200px 150px'});

NOTE For property names that contain a hyphen (-), you can specify that
name using camel-case instead and remove the need to quote it. jQuery auto-
matically converts between the two formats: $('div.uluru').ani-
mate({backgroundPosition: '200px 150px'});.

First you need to define the animation handler for this property and provide a func-
tion to retrieve the current property value.

11.2.2 Declaring and retrieving the property value

You start your custom animation plugin by defining the getter function to retrieve the
current property value as part of an extension to the jQuery Tween processing. The
following listing shows the basic plugin declaration.

(function($) { // Hide scope, no $ conflict

$.Tween.propHooks['backgroundPosition'] = {
 get: function(tween) {
 return parseBackgroundPosition($(tween.elem).css(tween.prop));
 },
 set: setBackgroundPosition
};

})(jQuery);

As with all plugins, you should start with an anonymous function wrapper B that
serves to hide your code from the outside world and ensures that $ is the same as
jQuery within your code through the use of its declared and supplied parameter f.

 You define the animation functions as an object extending $.Tween.propHooks,
named for the new property c. If the property would normally contain a hyphen (-),
you should use the corresponding camel-case name, as is done here: backgroundPo-
sition instead of background-position. jQuery will convert a hyphenated name into
the camel-case version before its use.

 The object then contains two functions: a getter to retrieve the current property
value d and a setter to update the property with a new value e. In each case, pass the
processing on to further internal functions. The parameter for both of these func-
tions (tween) is an object that encapsulates the settings for the animation for this
property. Its attributes include a reference to the current DOM element (elem), the
name of the property (prop), the easing being used (easing), and the options sup-
plied to the animate call (options).

Listing 11.2 Defining for jQuery 1.8.x

Declare anonymous functionb

Add custom
property
animator

Define value
getter d

Define
value settereImmediately invoke

scope function
f

211Adding a custom property animation

c

e

 The next listing shows the workings of the internal function that extracts posi-
tional values from the property.

/* Parse a background-position definition: horizontal [vertical]
 @param value (string) the definition
 @return ([2][string, number, string]) the extracted values –
 relative marker, amount, units */
function parseBackgroundPosition(value) {
 var bgPos = (value || '').split(/ /);
 var presets = {center: '50%', left: '0%', right: '100%',
 top: '0%', bottom: '100%'};
 var decodePos = function(index) {
 var pos = (presets[bgPos[index]] || bgPos[index] || '50%').
 match(/^([+-]=)?([+-]?\d+(\.\d*)?)(.*)$/);
 bgPos[index] = [pos[1], parseFloat(pos[2]), pos[4] || 'px'];
 };
 if (bgPos.length == 1 &&
 $.inArray(bgPos[0], ['top', 'bottom']) > -1) {
 bgPos[1] = bgPos[0];
 bgPos[0] = '50%';
 }
 decodePos(0);
 decodePos(1);
 return bgPos;
}

Because the property value isn’t a simple numeric value, you have to locate the rele-
vant parts of that value for later use. You can define a separate function to interpret
those values B. As the property value may consist of two parts for the horizontal and
vertical components, the first step is to separate them via the split function c.

 Each portion is then decoded to extract the parts of the position value via an inter-
nal function (decodePos) d. The value is converted from a named position if neces-
sary (via the presets object) or defaults to 50% (center) if not provided at all. Then
you can use a regular expression to look for an optional leading += or -= indicating a
relative value, followed by a numeric entry (including optional minus sign and frac-
tional portion), and any units specification. Each of these components is captured
into a regular expression group (by surrounding their patterns with parentheses ()).
Finally, you update the corresponding entry in the position array (bgPos) to be an
array of these components (relative indicator, amount, and units). Separating the
components here makes it easier to use them later during the animation.

 A background-position may consist of only a single value, which is interpreted to
be a horizontal value with the vertical value defaulting to center, unless it’s a named
vertical value (top or bottom), in which case the horizontal one defaults to center.
You should check for this situation and transfer the values accordingly e.

Listing 11.3 Parsing background-position value

Function to
interpret

position value b
Separate
horizontal
and vertical
components

Break up
position

into amount
and units d

Handle
vertical-only
position

Decode position values
and return themf

212 CHAPTER 11 Animating properties
 Then you apply the decoding function to each portion of the position in turn f
and return the updated value, now containing the extracted positional components,
to the caller.

 You complete the animation handler definition by creating a setter function to
alter the property value.

11.2.3 Updating the property value

The next step is to update the position value as the animation progresses, and set that
value back onto the element to change the display. The following listing shows the set-
ter function for the background-position animator.

/* Set the value for a step in the animation.
 @param tween (object) the animation properties */
function setBackgroundPosition(tween) {
 if (!tween.set) {
 initBackgroundPosition(tween);
 }
 $(tween.elem).css('background-position',
 ((tween.pos * (tween.end[0][1] - tween.start[0][1]) +
 tween.start[0][1]) + tween.end[0][2]) + ' ' +
 ((tween.pos * (tween.end[1][1] - tween.start[1][1]) +
 tween.start[1][1]) + tween.end[1][2]));
}

You define an internal function to update the property with a new value as the anima-
tion proceeds B. The parameter to this function is an object containing details about
the current animation. jQuery calls the function many times as each step of the anima-
tion occurs, so try to minimize the amount of work done within it to improve perfor-
mance.

 The first time that the function is called, you should perform some initialization,
such as calculating values that don’t change throughout the animation. To avoid the
overhead of initializing on each call, you can control entry to the process via a flag
that gets set on the parameter object c. The initialization function is described in list-
ing 11.5.

 For each step in the animation, you update the property on the current element
(tween.elem) with its new value d via the standard css function. You calculate that
value based on the portion of the animation that has elapsed, as indicated by the
tween.pos value set by jQuery, which ranges from 0 at the start of the animation to 1
at the end. In general, you’d multiply this factor by the difference between the ending
and starting values for the property (the change required over the entire duration),
add back in the starting value, and append any unit specifier, as the following does:

(tween.pos * (tween.end – tween.start) + tween.start) + tween.unit

Listing 11.4 Setting background-position

Define property
setter

b

Initialize settings if
not already donec

Set new
property valued

213Adding a custom property animation

D
e

po
 For the background-position, you need to do that for the horizontal and vertical
components separately before combining them into the new composite value.

/* Initialise the animation.
 @param tween (object) the animation properties */
function initBackgroundPosition(tween) {
 tween.start = parseBackgroundPosition(
 $(tween.elem).css('backgroundPosition'));
 tween.end = parseBackgroundPosition(tween.end);
 for (var i = 0; i < tween.end.length; i++) {
 if (tween.end[i][0]) { // Relative position
 tween.end[i][1] = tween.start[i][1] +
 (tween.end[i][0] == '-=' ? -1 : +1) * tween.end[i][1];
 }
 }
 tween.set = true;
}

To reduce the amount of processing required for each step of the animation, define
an initialization function B that’s called once at the start of the process. The contents
of this function will depend on the structure of the property being animated, but in
general you’d extract the component parts of the starting and ending values so that
they can easily be combined in the setter shown previously.

 For the background-position, you calculate the starting and ending attributes of
the animation object (tween) as an array of its component values via the parseBack-
groundPosition function (c and d).

 For each of the ending positional values e, check whether it’s a relative value,
such as one starting with += or -=, by examining the first item of the corresponding
tween.end entry f. If it is, add the relative value to, or subtract it from, the current
one (from tween.start) to obtain the final value.

 Finally, you should set a flag to indicate that the initialization process has been per-
formed g and doesn’t need to be done again for this animation.

 The new Background Position plugin is now ready for use, allowing you to ani-
mate the position of the background image in the same manner as other element
properties.

 As noted previously, jQuery changed how it handled animations in version 1.8,
so the following section describes how to create the same animation in the older
versions.

11.2.4 Animating background-position in jQuery 1.7

Prior to jQuery 1.8.0, you had to extend $.fx.step to add a custom property anima-
tion and only needed to supply a setter function. Fortunately, the internal processing
for the animation steps is nearly the same between the older and newer jQuery

Listing 11.5 Initialize background-position animation

Define animation
initialization

b

Decode starting
positionsc

ecode
nding

sitions

d

For each
decoded value...e ...calculate

relative
positions f

Mark as initializedg

214 CHAPTER 11 Animating properties
versions, so you can reuse most of what was developed for the newer version in the
older one, as follows.

(function($) { // Hide scope, no $ conflict

// Enable animation for the background-position attribute
$.fx.step['backgroundPosition'] = setBackgroundPosition;

})(jQuery);

As in the newer jQuery version, you start with an anonymous function B to hide the
plugin code and enable the use of $ for jQuery d. Within that scope, you extend
$.fx.step with an attribute named for the property being animated, and assign it the
function that sets the new property value c. Once again, if your property name nor-
mally contains a hyphen, use the camel-case version of the name when defining the
step function. The setBackgroundPosition function is the same as for the newer
jQuery versions and can be reused.

 By testing for the newer version of the jQuery animation framework, you can
define the appropriate animation handler.

var usesTween = !!$.Tween;

if (usesTween) { // jQuery 1.8+
 $.Tween.propHooks['backgroundPosition'] = {
 get: function(tween) {
 return parseBackgroundPosition(
 $(tween.elem).css(tween.prop));
 },
 set: setBackgroundPosition
 };
}
else { // jQuery 1.7-
 // Enable animation for the background-position attribute
 $.fx.step['backgroundPosition'] = setBackgroundPosition;
};

NOTE The !! construct is explained in section 3.2.1.

You can determine which animation framework is present by testing for the presence
of the $.Tween value B. Based on that test, define either the $.Tween.propHooks
object required by the newer framework c or the $.fx.step function required by the
older one d. Now your animation plugin will work in all jQuery versions.

NOTE Prior to jQuery 1.5, the standard animation processing corrupts the
initial value of the background-position setting, so the code presented here
won’t work in those earlier versions.

Listing 11.6 background-position animation for jQuery 1.7

Listing 11.7 Define the appropriate animation handler

Declare anonymous
functionb

Define custom
property animatorc

Immediately invoke scope functiond

Determine which
animation frameworkb

Define jQuery
1.8+ handlerc

Define
jQuery
1.7- handler

d

215Summary
11.2.5 The complete plugin

You’ve completed building the jQuery Background Position plugin. With it you can
animate movement of the image in the background of an element. This plugin also
lets you use all of the features of jQuery’s animation framework, such as positioning by
em units or percentages, relative movements, easings for more effects, and completion
callbacks. The complete code for the plugin is available for download from the book’s
website.

11.3 Summary
jQuery provides support for animating various properties of elements, resulting in
visual changes on the web page. In addition to the built-in show, hide, fade, and slide
functions that generate animations, you can request other animations directly
through the animate function. Only element properties with a simple value and units
format can be handled automatically in an animation.

 For properties that don’t conform to the standard format, you’ll need to obtain or
develop an animation plugin that knows how to interpret these values. jQuery UI
includes animation plugins for properties that contain color values, allowing these to
be animated alongside the more standard properties.

 In the example in this chapter for the background-position style, you saw how to
create a plugin that could extract relevant information from the property value, calcu-
late the current value as the animation progresses, and update the element with that
new value. This plugin enables the new property to be animated like all the others.

 In the next chapter, you’ll examine the jQuery Ajax framework and discover how
to extend that to cater to additional requirements.

What you need to know

Standard jQuery can only animate simple numeric properties.

Create a custom animator to animate more complex property values.

Extend $.Tween.propHooks to add animation abilities for a new property.

Provide getter and setter functions for the property values.

Prior to jQuery 1.8 you extend $.fx.step instead.

Try it yourself

Develop an animation plugin for the border-width property. It may consist of up to
four simple numeric values, indicating the top, right, bottom, and left border settings
respectively. If only one value is given, it applies to all borders. If two values are pro-
vided, they apply to the top/bottom and right/left borders. When three values are sup-
plied, the missing left border is equal to the right one.

Extending Ajax
Support for Ajax (Asynchronous JavaScript and XML) is one of the key features of
jQuery, making it easy to request content from the server and to process the
returned data and update the current page accordingly, without requiring a full
refresh. You specify the URL to access, you can provide parameters to be sent along,
and you can process the returned content in a callback function, as shown here:

$.ajax('product.php', {data: {prod_id: 'AB1234'},
 success: function(info) {...}});

jQuery also contains several convenience functions that encapsulate the Ajax abili-
ties. For a simple request and response, you can use the get function, or to use an
alternate parameter encoding, you use the post function. To load specific types of
data, you can use the getScript or getJSON functions for JavaScript and JSON

This chapter covers
■ The jQuery Ajax framework
■ Adding Ajax prefilters
■ Adding Ajax transporters
■ Adding Ajax converters
216

217The Ajax framework
(JavaScript Object Notation) content respectively. If you want to place HTML content
directly into an element on the page, you can use the load function on that element.

$.get('product.php', {prod_id: 'AB1234'}, function(info) {...});
$.getScript('product.js');
$('#mydiv').load('product.php', {prod_id: 'AB1234'}, function(info) {...});

jQuery offers additional abilities to set default values for all Ajax processing and to
register handlers for events that occur during the Ajax lifecycle.

 Although there’s a lot of built-in functionality, if you retrieve content in an unusual
format, you may find it necessary to process that content yourself. Fortunately, jQuery
includes several extension points within its Ajax framework to let you customize the
downloading and handling of the requested content.

12.1 The Ajax framework
Underlying the Ajax support of jQuery is its management of an XMLHttpRequest
object (or the corresponding ActiveX object in some versions of IE) to perform the
actual download of the remote content. jQuery carries out several steps as it executes
an Ajax request. You can add your own processing at various stages to implement spe-
cial requirements for retrieving information.

 A request starts by applying prefilters that may affect how the call proceeds, before
selecting a transport mechanism to use for the actual download. When the content is
received, it may be run through a converter to obtain an alternate format for the user
to work with. Figure 12.1 shows the sequence of operations for a basic Ajax call.

 The whole process is driven by the data type specified for your request, the standard
ones being text, html, xml, script, json, and jsonp. jQuery will try to determine the

Figure 12.1 Sequence diagram for a standard Ajax call, showing extension points

218 CHAPTER 12 Extending Ajax
data type for retrieved content, if it wasn’t given, by inspecting the returned MIME type.
The conversion process is invoked if the returned data type doesn’t match the
requested one.

 Since version 1.5, jQuery wraps the native XMLHttpRequest object to provide addi-
tional functionality, with the enhanced object being known as a jqXHR object. The
wrapper also acts as a Deferred object,1 allowing you to add extra callbacks to be trig-
gered when the Ajax processing succeeds or generates an error.

NOTE The success, error, and complete functions of the jqXHR object have
been deprecated in jQuery 1.8 and should be replaced by the corresponding
done, fail, and always functions.

12.1.1 Prefilters

A prefilter is a function that’s called before the actual request to the server is made. It
allows you to preprocess that request and alter how it proceeds, and it’s useful when
creating custom data types. For example, you could add extra headers to the request,
or even cancel it entirely.

 The prefilters are called after parameter serialization has occurred—after any data
option is converted to a string (assuming processData is true), but before the Ajax
framework looks for an appropriate transporter. Prefilters are identified by the data
type to which they apply, such as html or script, and can be set to operate on all data
types by using *. The filters specific to a data type are executed first, before continuing
on to those for all types.

 You can register a new prefilter by calling the $.ajaxPrefilter function and pro-
viding the associated data type and the function to be called for it. The parameters to
your function include the Ajax options and a reference to the jqXHR object being used
for the remote access. To cancel a request, you call the abort function on the latter.

 For example, to change the user agent identity for all html requests, you could use
a prefilter like this:

$.ajaxPrefilter('html', function(options, originalOptions, jqXHR) {
 jqXHR.setRequestHeader('User-Agent', 'Unknown');
});

12.1.2 Transports

An Ajax transport provides the underlying mechanism to retrieve the requested data
from the server. Although the XMLHttpRequest object is normally used, there are
other means available to load content, such as the src attribute of an img element (to
download an image).

 New transports are registered by calling the $.ajaxTransport function and provid-
ing the data type to which this transport applies and the function that returns the cus-
tom retrieval object. This transport object supplies two callback functions: one to

1 jQuery API Documentation, “Category: Deferred Object,” http://api.jquery.com/category/deferred-object/.

219The Ajax framework
perform the actual retrieval, and another to clean up if a request is aborted. As for
prefilters, you can use * to define a transport for all data types. Only the first matching
transport is used, starting with those for specific data types in preference to those for
all data types.

 For example, to forbid access to any xml documents, you could use a transport like
this:

$.ajaxTransport('xml', function(options, originalOptions, jqXHR) {
 return {
 send: function(headers, complete) {
 complete('403', 'Forbidden', {});
 },

 abort: function() {}
 };
});

jQuery uses this ability itself to deal with cross-domain requests for the script data
type.

12.1.3 Converters

Once the data is retrieved from the server, it’s not necessarily in the most useful for-
mat. A converter implements the conversion process, accepting the text-based content
as input and generating the appropriate output.

 For example, when you request XML from the server, you specify a dataType of
xml. This triggers a converter to parse the returned text as an XML document and pro-
duce an XML DOM as the final value of the Ajax call. You can then immediately start
traversing that DOM to extract the information relevant to your current situation.

 Converters are registered in the converters attribute passed to an $.ajaxSetup
call. You specify the source and destination data formats in a single string to identify a
converter, and associate that value with the function that performs the transforma-
tion. You can use * to represent any data type in the converter identifier. For example,
the XML converter just described is defined as shown here—converting from text to
XML by calling the jQuery parseXML function.

ajaxSettings: {
 ...
 converters: {
 ...
 // Parse text as xml
 "text xml": jQuery.parseXML
 },
 ...
}

You can define your own converters to transform custom data formats into alternative
formats in a similar manner.

 Each of these extension points is covered in greater detail in the following sec-
tions, starting with the prefilters.

220 CHAPTER 12 Extending Ajax

sp
12.2 Adding an Ajax prefilter
Ajax prefilters let you preprocess an Ajax call and potentially alter how it proceeds,
such as by changing the timeout setting for a slow server, or even preventing the
remote call. jQuery uses prefilters itself to handle the json and jsonp data types,
allowing it to install the appropriate callbacks for these requests. You’ll see two exam-
ples of prefilters next: one to change the data type for a request and the other to can-
cel a request altogether.

12.2.1 Changing the data type

Prefilters let you modify settings on the XMLHttpRequest object (wrapped as jqXHR)
before a request is sent. In addition, they can be used to change the data type for a
request by returning the desired data type as its value. This has the effect of making all
subsequent operations use the new data type, including a reprocessing of the prefilter-
ing based on that new value.

 The following listing shows how to enforce a data type based on the requested URL.

/* Set CSV data type. */
$.ajaxPrefilter(function(options, originalOptions, jqXHR) {
 if (options.url.match(/.*\.csv/)) {
 return 'csv';
 }
});

You call $.ajaxPrefilter to register a new prefilter function B. Note that you don’t
have to provide a data type to match against, as * is assumed for all types. In this case,
you want all requests for files with the .csv extension to be treated as the csv data
type, so you test the provided URL to see whether it ends in the required text c and
return the new data type if so d.

 To continue with the standard processing, you don’t return anything. Section 12.4
describes how you might deal with this CSV content via a converter.

12.2.2 Disabling Ajax processing

There may be times when you don’t want Ajax calls to be made at all, or perhaps you
want to prevent certain types of calls. The next listing shows how a prefilter can meet
this requirement by cancelling selected requests.

/* Disable Ajax processing. */
$.ajax.disableDataTypes = [];

$.ajaxPrefilter('*', function(options, originalOptions, jqXHR) {
 if ($.inArray(options.dataType, $.ajax.disableDataTypes) > -1) {
 jqXHR.abort();
 }
});

Listing 12.1 Changing the data type

Listing 12.2 Disabling Ajax processing

Define prefilter
for all types

b

If filename
is *.csv...c...change

data typed

List of disabled
data types

b

Define prefilter
 for all types c

Disable
ecified
types d

221Adding an Ajax transport
You should start by declaring a list of data types that are to be disabled B. The user
can then add selected types as necessary:

$.ajax.disableDataTypes.push('html');

You create the prefilter via a call to $.ajaxPrefilter c, providing the data type to
which the filter applies and the function to be used in those circumstances. The data
type is specified as one or more values separated by spaces, such as html or json
jsonp. You can also use the value * (or omit the data type altogether) to apply to all
data types. In addition, you can indicate that the filter should be called before any oth-
ers for a data type by prefixing that type with +.

 Your prefilter function receives several parameters: options holds all the Ajax set-
tings for this request, whether they’ve been defaulted by jQuery or provided on the
Ajax call, whereas originalOptions only has the settings specified by the user, and
jqXHR is a reference to the jQuery jqXHR object that will be used. You can examine the
options given (specified or defaulted) and can modify the request accordingly
through the provided object. In this case, you see whether the requested data type is
one of those listed in the set to be disabled, and abort the request if so d.

 Other actions that you could take on the jqXHR object include adding headers to
the request via the setRequestHeader(name, value) function or changing the
requested MIME type via the overrideMimeType(mimeType) function.

 If you need to remove a value from the list of disabled data types, you can use the
$.map function of jQuery. For example, to remove the html data type, you’d write this:

$.ajax.disableDataTypes = $.map($.ajax.disableDataTypes, function(v) {
 return (v == 'html' ? null : v);
});

You could extend this prefilter to include particular types of requests (GET or POST) or
other Ajax settings.

12.3 Adding an Ajax transport
Ajax transports provide the mechanism for downloading the requested content, and
they default to using the standard XMLHttpRequest object. But you can implement
alternative means for specific data types by adding your own transport function. You
can also alter the retrieval procedure for standard data types and add your own func-
tionality to it. Both of these extensions are illustrated in the examples ahead.

12.3.1 Loading image data

Suppose you wanted to preload images onto your page. You could create Image ele-
ments and go through the process of setting them up, initiating the load requests and
reacting when they’re ready. Or you could tie into the Ajax framework to get the ben-
efits of all the functionality that jQuery provides surrounding its use, such as authenti-
cation and error handling.

 To load images via an Ajax call, you could define an image transport function that
knows how to handle this format, because it’s not text-based, using the download abil-

222 CHAPTER 12 Extending Ajax

c

ities of the DOM Image object to perform the actual transfer. The following listing
shows how you might define the transport to achieve this.

/* Transport image data. */
$.ajaxTransport('image', function(options, originalOptions, jqXHR) {
 if (options.type === 'GET' && options.async) {
 var image;
 return {
 send: function(headers, complete) {
 image = new Image();
 function done(status) {
 if (image) {
 var statusText = (status == 200 ?
 'success' : 'error');
 var tmp = image;
 image = image.onreadystatechange=
 image.onerror = image.onload = null;
 complete(status, statusText, {image: tmp});
 }
 }
 image.onreadystatechange = image.onload = function() {
 done(200);
 };
 image.onerror = function() {
 done(404);
 };
 image.src = options.url;
 },

 abort: function() {
 if (image) {
 image = image.onreadystatechange =
 image.onerror = image.onload = null;
 }
 }
 };
 }
});

You start by calling $.ajaxTransport to define the transport function for the image
data type B. As for prefilters, the data type can be several types separated by spaces, can
be * for all types, and can have a prefix of + per type to make it the first in the list for
that type. Your function’s options parameter contains the complete set of Ajax options
for this call, including those set by jQuery as default values; the originalOptions
parameter only contains the options specified explicitly by the user on this call. jqXHR
holds a reference to the jQuery jqXHR object normally used by the request. Because
you’re using an alternative mechanism to load the image, this last parameter is ignored.

 Your new transport only applies if the user requested the GET format and an asyn-
chronous load (due to the limitations of the actual mechanism you’re using), so you
need to test for these conditions c. If the transport does apply, you return a transport

Listing 12.3 Loading image data

Define
transport
for image b

Only if using GET
asynchronously

Return transport
object

d

Define send
request functioneCallback

when request
is completed f

Invoke complete
callback g

 Initialize image
callbacks h

Load the imagei

Handle aborted
requestj

223Adding an Ajax transport
object that allows jQuery to invoke the load process at the appropriate time d. The
transport object contains two functions: send to initiate a download and abort to tidy
up if it terminates in error.

 The send function e is used instead of the standard Ajax processing to request
content for this data type. Its parameters are a reference to the headers for the
request (headers) and a callback function to complete the processing (complete)
within the Ajax framework. As you’re using the inherent abilities of the Image element
to load the data, you start by creating a new Image element to work with.

 Define a callback function f to be executed when the image load has finished.
Within that function, you determine the success or failure of the load and set the sta-
tus accordingly. Then clean up the internally created Image by clearing its callbacks
and then setting the variable itself to null, allowing the assigned memory to be recov-
ered and preventing memory leaks. The image is still accessible via the local tmp vari-
able, but it’s no longer available outside of the done callback.

 Finally, you invoke the complete callback provided as a parameter to the send call,
to inform the jQuery Ajax framework of the outcome of the request g. The parame-
ters to the complete call are the numeric and text versions of the status, an object con-
taining details about the response, and a string (optional) containing all the response
headers—one to a line. This object must contain an attribute named for the data type
being requested (image in this case) that refers to the actual result. Here you provide
a reference to the Image element that was loaded.

 Having defined the function to handle the load outcome, you assign functions to
the standard callbacks on the Image element that calls it, and pass along the appropri-
ate status code h. The last step is to start the loading process by setting the src attri-
bute of the Image element to the URL supplied in the Ajax call i, which eventually
triggers one of the registered callbacks.

 The abort function of the returned transport object j lets you tidy up if the
request fails. In this case, you again clean up the internal Image element by setting
everything to null.

 To invoke this alternate transport, you could then make an Ajax call for the new
data type, and you’d receive a reference to the loaded image as the parameter to the
success callback.

$.ajax({url: 'img/uluru.jpg', dataType: 'image', success: function(image) {
 $('#img1').replaceWith(image);
}});

This transport illustrates how you can use alternative load mechanisms to obtain data
from the server. The next example shows how you can simulate normal HTML
retrieval by overriding the standard transport.

12.3.2 Simulating HTML data for testing

While testing a plugin that uses Ajax to implement its functionality, you might want to
avoid loading from a live site so that you’re not dependent on a remote connection. You
can use the Ajax transport handling to override the default retrieval and substitute

224 CHAPTER 12 Extending Ajax
known content inline instead. This keeps the data used for testing alongside the tests
themselves, reducing the possibility of that data getting out of sync or being lost.

 To provide a proper simulation of remote access, you should provide a mapping
from requested files to their testing content. In addition, you can specify a delay
before the content is returned, mirroring network delays during real processing. You
could also control the return status of a page for additional test coverage.

 Listing 12.4 shows how you might define an Ajax transport override for a GET
request for html content.

/* Simulate HTML loading. */
$.ajax.simulateHtml = {};

$.ajaxTransport('html', function(options, originalOptions, jqXHR) {
 if (options.type === 'GET') {
 var timer;
 return {
 send: function(headers, complete) {
 var fileName = options.url.replace(
 /.*\/([^\/]+)$/, '$1');
 var simulate = $.ajax.simulateHtml[fileName] ||
 $.ajax.simulateHtml['default'];
 timer = setTimeout(function() {
 complete(simulate.html ? 200 : 404,
 simulate.html ? 'success' : 'error',
 {html: simulate.html});
 }, Math.random() * simulate.variation + simulate.delay);
 },

 abort: function() {
 clearTimeout(timer);
 }
 };
 }
});

You start by declaring an object ($.ajax.simulateHtml) to hold mappings between
particular pages and the content that should be returned B. The key for attributes in
this object could be just the name of the file being requested, depending on whether
the server or path names affect the testing outcome. Each attribute value is an object
containing several fields: html for the actual content returned, delay for the mini-
mum delay in milliseconds before the content comes back, and variation for a maxi-
mum additional delay in milliseconds above that (randomized for each call). If the
content is set to a blank string, a 404 (“page not found”) error is generated. Allow for
handling any provided filename by including an entry indexed by default. For exam-
ple, you could map the test.html file as follows:

$.ajax.simulateHtml['default'] = {delay: 500, variation: 1000, html: ''};
$.ajax.simulateHtml['test.html'] = {delay: 500, variation: 1000,
 html: '<p>Try this instead</p>'};

Listing 12.4 Simulate HTML data for testing

Define file mappingsb Override
transport

for html

c

Only if
a GET
requestd

Return transport objecte

Define send
request functionf

Extract filename
and settings g

Introduce delayhInvoke complete
callback i

Handle aborted requestj

225Adding an Ajax transport
To override the default html transport handling, you define a new transport for that
data type c. The parameters for the associated transport function are the same as for
the previous image example: all the options, specified options only, and a jqXHR refer-
ence. You only use the alternate transport if a GET request is made, so you check for
that condition before continuing d.

 The transport function returns a transport object that jQuery can use to imple-
ment the Ajax processing e. Its send function f is called when a request for content
for the nominated data type is made, and it receives as parameters the headers for the
request and a callback to complete the Ajax processing within the framework.

 Within this function, you first extract the name of the file being requested g. You
can use a regular expression to retrieve the filename—matching everything (.*) up to
the last slash (\/), and then capturing the remainder without any slashes (([^\/]+))
up to the end of the string ($). The captured remainder (referred to via $1) then
replaces the entire matched string (everything), to leave you with just the desired file-
name. From that filename you obtain the mapped response details from the $.ajax
.simulateHtml object, or use the default settings if there is no mapping for that file.

 To simulate network delays, you can use the standard JavaScript setTimeout func-
tion to introduce a delay h made up of a random variation plus the minimum delay
specified. When the time expires, you invoke the complete callback provided to the
send function to notify the jQuery Ajax framework that the requested content is avail-
able i. As before, the parameters to the complete call are the numeric and text ver-
sions of the status (being 404 and error respectively, if there was no return content),
an object containing the actual content as indexed by the data type (html in this
case), and an optional string containing all the headers.

 If the request is aborted for some reason, the abort function of the transport
object lets you tidy up the environment j. Here you cancel the timer, if it’s still run-
ning, via a call to clearTimeout.

 To use this custom transport within a QUnit test (see chapter 7), you’d provide
mappings as shown previously for the test.html page. If you then make an Ajax call for
that page, you can test the expected content based on your definition, with the result
shown in figure 12.2 for the code in listing 12.5. Remember that you must create asyn-
chronous tests, because the process involves the use of Ajax.

Figure 12.2 Running simulated Ajax tests

226 CHAPTER 12 Extending Ajax

asyncTest('Ajax simulation', function() {
 expect(1);
 $.ajax('test.html', {dataType: 'html', success: function(data) {
 equal($(data).text(), 'Try this instead', 'Ajax substitution');
 start();
 }});
});

asyncTest('Ajax not found', function() {
 expect(1);
 $.ajax('other.html', {dataType: 'html', success: function(data) {
 ok(false, 'Page found');
 start();
 }, error: function(jqXHR, textStatus, errorThrown) {
 ok(jqXHR.status == 404 && textStatus == 'error', 'Page missing');
 start();
 }});
});

You define an asynchronous test via a call to asyncTest instead of test B, and expect
one assertion to be made in this test c. You make the ajax call to load the test.html
page d, which should be substituted by the custom transporter. Note that you need to
specify the dataType for the Ajax call to have the framework use the new functionality.
Within the success callback, you confirm that the returned content is indeed that
from the file mapping e. Because this is an asynchronous test, you must call the
QUnit start function to inform the testing framework that the test has finished and
that its results can be shown f.

 You should add a second test to confirm that the default and error processing
paths also work in the custom transporter g, once more expecting only one assertion
to be made. This time you request a page that doesn’t have a mapping specified
(other.html) to revert to the default mapping. Because the content specified for the
default is blank, the transporter should generate a 404 error in its place. Within the
success callback, you fail the test, as this path shouldn’t occur h. Instead, the error
callback should be invoked, allowing you to assert that the status and status text are as
expected i. As before, you need to call start to resume the QUnit processing once
the Ajax call has completed j.

12.4 Adding an Ajax converter
Ajax converters let you transform a text-based document into another format that’s
more directly usable as the result of an Ajax call. jQuery does this already for XML and
JSON content by calling the parseXML and parseJSON functions respectively. You can
add your own converters to preprocess your own custom data formats.

Listing 12.5 Testing with HTML simulation

Define an asynchronous testb

Expect one
assertionc

Ajax load of
 test page d

Assert correct content eContinue test
processingf

Define page
not found test

g

Fail if page
foundh

Assert
correct error i

Continue test
processingj

227Adding an Ajax converter
12.4.1 Comma-separated values format

CSV (comma-separated values) is a common text format and is often used to transfer
tables of information. Each line in a CSV file represents a single record, with field val-
ues for that record being separated by commas within that line (hence the name).
The first line in a CSV file usually contains the names of the fields, again separated by
commas, and isn’t treated as a record.

First Name,Last Name
Marcus,Cicero
Frank,Zappa
Groucho,Marx
Jane,Austen

Things become more complicated when you want to include a comma within a field
value. As this would normally be interpreted as the delimiter for the next field, you
must indicate that you want it treated as a literal value instead. To achieve this, you sur-
round the entire field value with quotes ("), but then you have a problem if you want
to include a quote in your field value. The solution for this is to double up the embed-
ded quote characters to escape them.

First Name,Last Name,Quote
Marcus,Cicero,"""A room without books is like a body without a soul."""
Frank,Zappa,"""So many books, so little time."""
Groucho,Marx,"""Outside of a dog, a book is man's best friend. ..."""
Jane,Austen,"""The person, be it gentleman or lady, who has not ..."""

Due to these additional requirements for including reserved characters within CSV
files, it’s not so easy to process them directly in JavaScript. To make things simpler, you
could convert the CSV text format into a corresponding JavaScript object with a list of
field names (fieldsNames) and a list of data rows (rows). Each row would contain a
further list of field values, corresponding in position to the field names already pro-
vided. Creating a custom converter lets you integrate the transformation into the stan-
dard Ajax processing.

12.4.2 Converting text to CSV

When you request a CSV file from the server, you receive the straight text version of
that file by default. To transform that text into a corresponding JavaScript object, you
define an Ajax converter, as shown in the following listing.

/* Convert CSV file into a JavaScript object.
 @param csvText (string) the CSV text
 @return (object) the extracted CSV with attributes
 fieldNames (string[]) and rows (string[][]) */
function textToCsv(csvText) {
 var fieldNames = [];
 var fieldCount = 9999;

Listing 12.6 Convert CSV text to object

Define conversion
functionb

228 CHAPTER 12 Extending Ajax
 var rows = [];
 var lines = csvText.match(/[^\r\n]+/g); // Separate lines
 for (var i = 0; i < lines.length; i++) {
 if (lines[i]) {
 // Separate columns
 var columns = lines[i].match(/,|"([^"]|"")*"|[^,]*/g);
 var fields = [];
 var field = '';
 for (var j = 0; j < columns.length - 1; j++) {
 // Found a column delimiter
 if (columns[j] == ',') {
 // Save field
 if (fields.length < fieldCount) {
 fields.push(field);
 }
 field = '';
 }
 else { // Remember field value
 field = columns[j].
 replace(/^"(.*)"$/, '$1').
 replace(/""/g, '"') || '';
 }
 }
 if (fields.length < fieldCount) { // Save final field
 fields.push(field);
 }
 if (fieldNames.length == 0) {
 // First line is headers
 fieldNames = fields;
 fieldCount = fields.length;
 }
 else {
 // Fill in missing fields
 for (var j = fields.length; j < fieldCount;j++){
 fields.push('');
 }
 rows.push(fields);
 }
 }
 }
 // Return extracted CSV data
 return {fieldNames: fieldNames, rows: rows};
}

You start by defining a new standalone function to process the conversion B. It
accepts one parameter, which is the full CSV text (csvText). After declaring some
working variables, you separate the CSV text into individual lines c, and then process
each one in turn d. The splitting of the text is done by a regular expression supplied
to the match function. You look for sequences of characters that aren’t line feeds or
carriage returns ([^\r\n]+), and continue that throughout the string (g flag). The
result of this call is an array of the matching sections (lines) from the text.

Separate
lines of
CSV textc

Process each lined

Separate fields
within a line eProcess

each field f

Save field
valueg

Set field names
from first lineh

Add missing
 fields i

Return
CSV object

j

229Adding an Ajax converter
 If a line isn’t empty, you further separate it into its component fields e, taking
into account quoted fields. As before, a regular expression is used to break up the
line, matching with one of the following (separated by |):

■ A comma (,)
■ A sequence of characters delimited by double quotes ("([^"]|"")*"), which

may include escaped quotes ("") within it
■ A sequence of characters that doesn’t contain a comma ([^,]*)

These sequences may be repeated throughout the string (g flag). The resulting array
of matches will contain field values (possibly quoted) as well as comma delimiters.

 For each field f, if the current match is a comma delimiter, you add a previously
found field value (field) to the list of fields (fields) and reset the field value, but
only if you have fewer fields than were identified by the first CSV line (the field
names). If the current match isn’t a comma, save that match as the next field value g
after removing any quotes surrounding it and converting embedded escaped quotes
back to a single character. It’s necessary to post-process the fields in this manner to
cater to sequences of commas with no intervening field values. After examining all the
matches from a line, save the last found field value as well.

 If this is the first line from the CSV file (meaning there are no field names saved as
yet), transfer the field values to the list of field names instead (fieldNames) h. Other-
wise, fill in any missing field values up to the number expected from the list of field
names i, and add the current row to the list of those already processed (rows).

 After processing all the lines from the CSV file, return the extracted field names
and row contents in a JavaScript object j.

NOTE For a more complete text on CSV implementation, see the jQuery CSV
plugin at https://code.google.com/p/jquery-csv/.

You’d register the new converter via the $.ajaxSetup function by providing a con-
verters setting that has an attribute named for the source and destination data types,
and which associates that with the conversion function:

$.ajaxSetup({converters: {
 'text csv': textToCsv
}});

To use the converter, you make an ajax call and specify the dataType that you desire as
csv. The success callback is then supplied with the converted object, and you can pro-
cess it directly, instead of having to deal with the CSV-formatted text. Figure 12.3 shows
the results of loading the CSV data into a table, based on the code from listing 12.7.

Figure 12.3
CSV data loaded
into a table

230 CHAPTER 12 Extending Ajax
$.ajax({url: 'quotes.csv', dataType: 'csv', success: function(csv) {
 var table = '<table><thead><tr>';
 for (var i = 0; i < csv.fieldNames.length; i++) {
 table += '<th>' + csv.fieldNames[i] + '</th>';
 }
 table += '</tr></thead><tbody>';
 for (var i = 0; i < csv.rows.length; i++) {
 table += '<tr>';
 for (var j = 0; j < csv.fieldNames.length; j++) {
 table += '<td>' + csv.rows[i][j] + '</td>';
 }
 table += '</tr>';
 }
 table += '</tbody></table>';
 $('#tableResult').append(table);
}});

You load your CSV file by making an ajax call and specifying the URL and dataType of
csv B. Note that if you include the prefilter from section 12.2.1 in your page, you
don’t need to specify the data type, as it would be set automatically based on the URL
extension.

 Once jQuery has loaded the file, it determines how to convert from the default for-
mat (text) to the requested one, finds the registered converter, and applies it. The
result is the JavaScript object that contains the extracted CSV data, and that object is
passed to the success callback for further processing.

 Within the callback, you build up the new table as a string value (table), starting
with heading cells for each field name c. Next, you process each row d and add
detail cells to the table to show the field values e. Finally, you add the new table to the
page f.

12.4.3 Converting CSV to a table

Because presenting CSV content in a table is a common occurrence, you can take the
conversion process one step further and transform the CSV object extracted in listing
12.7 into a table for direct inclusion in the page, as shown by the converter in listing
12.8.

/* Convert JavaScript CSV object into a HTML table.
 @param csv (object) the CSV object
 @return (jQuery) the data in a table */
function csvToTable(csv) {
 var table = '<table><thead><tr>';
 for (var i = 0; i < csv.fieldNames.length; i++) {
 table += '<th>' + csv.fieldNames[i] + '</th>';
 }
 table += '</tr></thead><tbody>';

Listing 12.7 Retrieving a CSV object

Listing 12.8 Converting a CSV object to a table

Request CSV
file and convert bCreate

table
headerc

Process each rowd

Create
table rowse

Add table
to the page

f

Define conversion
function

b

Generate
CSV tablec

231Ajax plugins
 for (var i = 0; i < csv.rows.length; i++) {
 table += '<tr>';
 for (var j = 0; j < csv.fieldNames.length; j++) {
 table += '<td>' + csv.rows[i][j] + '</td>';
 }
 table += '</tr>';
 }
 table += '</tbody></table>';
 return $(table);
}

As before, you create a standalone function, but this one converts the CSV object into
an HTML table B. The body of this function c is identical to the success callback
used in the previous converter (see listing 12.7). Generate a table as a string value by
stepping through each field name for header cells, then through each row for detail
cells. The resulting text is instantiated as DOM elements by jQuery, and that object is
returned d.

 Make the new converter available by calling $.ajaxSetup again with the new trans-
formation listed in its converters option. Note that the starting data type is the CSV
object created by the previous converter:

$.ajaxSetup({converters: {
 'csv table': csvToTable
}});

Now the code required to load the CSV file, convert it into a table, and display it is
much shorter. Invoke ajax and pass it the URL of the CSV file to load. Specify the data
type as a chain—first converting the text to a CSV object, then transforming that into a
table. Note that using the prefilter from section 12.2.1 alongside these converters
would remove the need to specify the initial csv data type, as that would be set auto-
matically. The resulting table element is received as the parameter to the success
callback and can be added to the page directly:

$.ajax({url: 'quotes.csv', dataType: 'csv table',
 success: function(table) {
 $('#tableResult').append(table);
 }
});

Creating your own converters lets you consistently transform one data format into
another, starting from the straight text retrieved by the basic Ajax processing, and pos-
sibly progressing through one or more intermediate steps, before arriving at the for-
mat that’s most appropriate for the task at hand.

12.5 Ajax plugins
The Ajax plugins described in this chapter are available for download from the book’s
website. Included is a web page that demonstrates how the various extensions work in
conjunction with the Ajax framework.

Return created
table element

d

232 CHAPTER 12 Extending Ajax
12.6 Summary
jQuery makes using Ajax simple by hiding the use of the XMLHttpRequest object
behind an easy-to-use interface. The ajax function gives you complete control over
the process, whereas the associated convenience functions enable simpler interactions
more readily. As a request is executed, the Ajax framework first sees whether any pre-
filters need to be applied to it, possibly modifying or even cancelling it. Next, a trans-
port mechanism is found that understands the requested data format and can
download the content appropriately. Finally, a converter may be invoked to transform
the retrieved content into a more usable format.

 You can extend jQuery’s Ajax processing at each of these points. Add a prefilter to
customize access to remote content, or disable that access completely, as shown in this
chapter. Provide an alternate download mechanism for special content with your own
transport function, such as for downloading images, or replace or enhance an existing
mechanism, as we did with the HTML simulation for testing purposes. Obtain data in
the most useful format for the task at hand by integrating a converter into the Ajax
process. Together these extension points let you make jQuery’s Ajax processing work
the way you want it to.

 The next chapter looks at jQuery’s event handling and examines how you can pro-
vide custom events for interested parties to respond to.

What you need to know

jQuery simplifies accessing remote resources through its ajax and related functions.

Extend the Ajax processing when you have additional requirements for remote access
and data formats.

You can enhance or prevent a remote request by registering a prefilter via $.ajax-
Prefilter.

Use $.ajaxTransport to register a new mechanism for retrieving remote content.

Provide additional data conversion options via the converters attribute within an
$.ajaxSetup call.

You can chain data types to create a conversion pipeline to obtain the data format
best suited to the task at hand.

Try it yourself

Create a new convertor, similar to the CSV-to-table example, that converts a CSV object
into a list. Each list entry contains multiple lines showing the label for each field fol-
lowed by its value in that record. Register the new converter and apply it to the quotation
data provided.

Extending events
jQuery makes it simple to connect an event handler to one of the standard events
that occur on a web page, such as mouse clicks and keystrokes. In addition to spe-
cific functions that work on collections of elements, like click and keyup, you can
use the generic bind or on functions to attach a handler to a named event.

 jQuery enhances the basic event handling by supporting the attachment of mul-
tiple event handlers for the same event on an element and by adding the use of
namespaces to help distinguish between these event handlers. It also enables event
delegation, where you can connect an event handler to a container element, but
operate it on one of the contained elements, which allows you to reduce the num-
ber of registered event handlers. Additionally, event delegation gives you the ability
to supply event handlers for elements that don’t exist within the DOM at the time of
attachment.

 But within the web page, other things are happening that don’t correspond to a
standard JavaScript event, such as disabling and enabling controls. Yet these non-

This chapter covers
■ jQuery’s special event framework
■ Adding a special event
■ Enhancing an existing event
233

234 CHAPTER 13 Extending events
standard events could benefit from the same event handling approach. For these situ-
ations, jQuery provides the special event framework. Special events may include custom
initialization and finalization code as event handlers are attached to or removed from
elements. They can alter a triggered event or even generate other events entirely.
Using this framework, you can define your own events, which can be (but don’t have
to be) tied to normal JavaScript events, and integrate them into the standard process-
ing, giving you access to the additional functionality that jQuery provides.

 jQuery uses the special event framework to provide consistent cross-browser
events, and you can tap into the same process for your own events. You’ll see how to
create an event for a mouse click using the right button, first as a standalone event,
and later integrated into the normal click processing. In addition, you’ll see how
these clicks can be disabled for individual controls and how you’d handle multiple
clicks as a single event.

13.1 The special event framework
jQuery’s special event framework works alongside the handling of native events, allow-
ing you to define your own events with specific behavior, or even to customize existing
events by adding extra functionality around them.

 A special event is expected to deal with the new event entirely, by providing its own
initialization and finalization code and internal event handler. But you can also merely
enhance an existing normal event and delegate the event monitoring back to jQuery.

 jQuery uses the special event framework to create consistent cross-browser events
such as mouseenter and mouseleave. These two events only fire when the selected ele-
ment is hovered over and left, whereas the native mouseover and mouseout events also
fire for that element when any contained element is hovered over or left.

 In this section, you’ll see how the
special event framework lets you create
handlers for new events, and then
invokes that code when the user binds
an event of your new type to an element,
and again when the event is triggered.

13.1.1 Binding event handlers

To use the special event framework, you
register an event handler object that
contains certain functions and/or attri-
butes that override the default event
processing. jQuery then uses that object
for the corresponding events to handle
their interactions.

 Figure 13.1 shows the sequence of
actions taken when a user attaches or
removes a callback for a special event.

jQuery

is special?

add

unbind

User

bind

Handler

setup1

is special?

1 First/last time only

teardown1

remove

Figure 13.1 Sequence diagram for binding and
unbinding special events

235The special event framework
When the user attaches a special event to an element, using the bind or on functions,
jQuery checks whether a special event handler exists for that event type. If not, jQuery
uses the standard JavaScript event handling. If a special event handler object does exist
for this type, its setup function is invoked, but only if this is the first such event attached
to the current element. The add function on the handler object is always invoked to
allow for customizations for each callback for a type of event on an element.

 Depending on the level of customization allowed for your events, one of these two
functions will establish a handler that responds to the events being monitored and will
subsequently invoke the user callbacks at the appropriate times in the future.

 Similarly, when the user removes a special event from an element, using unbind or
off, jQuery again checks for a special event handler and reverts to the standard pro-
cessing if it doesn’t find one. If jQuery locates a handler object, its remove function is
called every time to let you tidy up each callback for an event type on an element.
Thereafter, the handler object’s teardown function is called, but only if this is the last
callback of this event type for the element. In this function you tidy up from any ini-
tialization done in the setup function.

13.1.2 Triggering events

Having established a link to the triggering of the event underlying your special event
in the setup or add functions, as covered previously, you then sit back and wait for that
event to occur.

 Figure 13.2 shows the flow of control through the system once the underlying
event happens.

 Whatever triggering mechanism applies, it invokes an internal event handler
within your special event handler. After applying any logic to determine whether the
event should be passed on, such as seeing the minimum number of mouse clicks for a
multiclick event, the event object is updated and passed to the standard jQuery dis-
patch processing.

 jQuery once more checks to see whether this event type has a special event handler
registered. If so, it calls any preDispatch function on that object for any additional

Handler

dispatch

preDispatch

callback

Trigger

trigger

jQuery

postDispatch

User

Figure 13.2
Sequence diagram for
triggering an event

236 CHAPTER 13 Extending events
processing required, including aborting the event handling process. Next, the user
callback is invoked and is passed the event details object created or modified by the
special event handler. Lastly, jQuery calls the postDispatch function on the special
event handler for any final processing.

 To see all of this in action, you’ll create a special event handler for a mouse right-
click event.

13.2 Adding a special event
Suppose you want to add functionality when the user clicks the right mouse button. In
theory you’d attach a handler for the click event and check which button was used
(via the event.which attribute). But browsers intercept the right-click event to display
their own pop-up context menus without passing control to your handler. You can
overcome this problem by defining a special event handler for right-clicks, as
described in this section. Then you’ll be able to register callbacks for the right-click
event as easily as a normal left-click.

 You add your own events by extending $.event.special to define an object that
knows how to monitor and notify you about events of interest. The event handler
object usually defines a setup function to let you initialize the processing for an ele-
ment and a teardown function to undo whatever initialization was performed.

 When users bind event handlers to your new event, the jQuery event framework
uses this special event definition to call the required functionality at the appropriate
times. Your event can then take advantage of all the features surrounding event han-
dling, such as using namespaces, event delegation, and event propagation.

13.2.1 Adding a right-click event

The browser intercepts mouse clicks from the right (or even center) mouse button for
its own purposes, so how can you trap a right-click to perform some custom function
within your application? The event that’s triggered in this situation goes by the name
contextmenu. By developing your own special event, you can change that name to the
more intuitive rightclick and provide additional functionality around the event.

 You’ll attach the new event directly to your selected elements using the standard
bind or on calls, with the results shown in figure 13.3.

$('#myDiv').on('rightclick', function(event) {
 alert('Notified of event ' + event.type);
});

Figure 13.3
Right-clickable div with custom cursor and
the alert box resulting from user clicks

237Adding a special event

e

Listing 13.1 shows the special event object for the rightclick event. As usual, you sur-
round the new event code with an anonymous function to introduce a new scope for
your variables and to ensure that $ is the same as jQuery.

(function($) { // Hide scope, no $ conflict

/* Provide an event for a right mouse click. */
$.event.special.rightclick = {

 /* The type of event being raised. */
 eventType: 'rightclick',

 /* Initialise the right-click event handler.
 @param data (object, optional) any data values passed to the bind
 @param namespaces (string[]) any namespaces passed to the bind */
 setup: function(data, namespaces) {
 $(this).addClass('right-clickable').
 bind('contextmenu', $.event.special.rightclick.handler);
 },

 /* Destroy the right-click event handler.
 @param namespaces (string[]) any namespaces passed to the unbind*/
 teardown: function(namespaces) {
 $(this).removeClass('right-clickable').
 unbind('contextmenu', $.event.special.rightclick.handler);
 },

 /* Implement the actual event handling.
 @param event (Event) the event details
 @return (boolean) false to suppress default behaviour */
 handler: function(event) {
 event.type = $.event.special.rightclick.eventType;
 return $.event.dispatch.apply(this, arguments);
 }
};

})(jQuery);

You register your new event definition by extending $.event.special with an object
named for that event B. By convention, event names are all lowercase. Although not
required, it’s useful to add an attribute to this object to hold the event type c for con-
sistent use throughout the plugin.

 The setup function d is called once for the first event of each type on an element,
allowing you to perform any one-off initialization required to support the new event.
It accepts two parameters: any data values passed to the binding call (data), and any
namespaces used in that binding (namespaces). If the event has no provided data,
then the parameter value is undefined. If the event has no namespace, the parameter
value is an array with a blank string as its only entry. Within the function, the this vari-
able refers to the target element.

Listing 13.1 Adding a right-click event

Define special
event object

b

Set event typec

Initialize for first
event on an element d

Tidy up
for an
element

Internal event
handler

f

Invoke the user
handler(s)g

238 CHAPTER 13 Extending events
 For the rightclick event, you can add a class to the affected element, allowing
you to style such elements consistently to indicate that they can be right-clicked. For
example, you might change the cursor when hovering over these elements. You must
also register an internal handler to respond to the standard contextmenu event that
you’re transforming into a rightclick.

 Conversely, the teardown function e lets you undo the one-off initializations from
setup, as it’s called once on the removal of the last event of each type on an element.
It also receives the list of namespaces used for the event as a parameter. For the right-
click event, you remove the marker class and unbind from the contextmenu event.

 The internal event handler that was registered with the contextmenu event f allows
you to convert the type of the event (passed in as a parameter) before dispatching it to
all the attached event handlers via the $.event.dispatch function g. Although the
setup and teardown functions are only invoked once per element, you can register
multiple handlers for this event type, and they’re all invoked through this call.

 As an extra feature, you can add the ability to disable this event for individual
elements.

13.2.2 Disabling right-click events

You may have times when you want to disable the right-click functionality for some or
all of the affected elements, perhaps to prevent double-clicks from happening.
Because you now have control over the handling of these events, you can achieve this
enhancement easily, as shown in the following listing.

$.event.rightclickDisabled = $([]);

/* Provide an event for a right mouse click. */
$.event.special.rightclick = {

 ...

 /* Implement the actual event handling.
 @param event (Event) the event details
 @return (boolean) false to suppress default behaviour */
 handler: function(event) {
 if ($.event.rightclickDisabled.length &&
 $(this).is($.event.rightclickDisabled)) {
 event.stopPropagation();
 event.preventDefault();
 return;
 }
 event.type = $.event.special.rightclick.eventType;
 return $.event.dispatch.apply(this, arguments);
 }
};

You start with a variable to hold the list of disabled elements B. Remember that this
variable must be accessible from outside the plugin, so it must extend $ in some

Listing 13.2 Disabling right-click events

List of disabled
elementsb

If this
element

 is in list... c ...prevent further
processingd

239Adding a special event
manner, preferably $.event to indicate its area of concern. Initially the list is an empty
jQuery collection that you can replace or add to as necessary. To add elements, you
could use the add function:

$.event.rightclickDisabled = $.event.rightclickDisabled.add('#elemID')

To remove an element you could use the filter function:

$.event.rightclickDisabled =
 $.event.rightclickDisabled.filter(':not(#elemID)')

The new functionality is added to the beginning of the handler function. You check
whether the current element (as referenced by this) is contained within the list of
those disabled by using the is function c. If so, you call the event’s stopPropagation
and preventDefault functions to halt the event processing at this point d.

 The event created previously deals with single right-clicks on an element, but what
if you want to monitor two or more right-clicks? The next section looks at such a spe-
cial event definition.

13.2.3 Multiple right-click events

Handling multiple right-clicks is more complicated than dealing with single clicks
because you must now keep track of how many clicks have been made. Also, you
should allow the events to be configured as to how many mouse clicks are required
to fire the final event handler, and how much time can elapse between the clicks for
them to be considered the one
event.

 Using this event, you can mon-
itor multiple right-clicks on an
element. You can even track more
than one sequence of clicks, as
shown in figure 13.4, where the
clickable area outputs a message
when the right mouse button
clicks it twice or three times in a
given period (see listing 13.3).

$('#multiRightClick').
 bind('rightmulticlick', function(event) {
 $('#multiOutcome').val($('#multiOutcome').val() +
 'Right-double-clicked\n');
 return false;
 }).
 bind('rightmulticlick', {clickCount: 3}, function(event) {
 $('#multiOutcome').val($('#multiOutcome').val() +
 'Right-triple-clicked\n');
 return false;
 });

Listing 13.3 Responding to double and triple right-click events

Figure 13.4 Multiple right-click event handler after
clicking twice and then three times in quick succession

240 CHAPTER 13 Extending events

E

Although you could enhance the special event developed previously to cater to multi-
ple clicks, we’ll develop it as a separate event type here so you can compare the two.
Listing 13.4 shows the new event handler.

/* Provide an event for a right mouse multi click. */
$.event.special.rightmulticlick = {

 /* The type of event being raised. */
 eventType: 'rightmulticlick',

 /* Initialise the right-multi-click event handler.
 @param data (object, optional) any data values passed to the bind
 @param namespaces (string[]) any namespaces passed to the bind */
 setup: function(data, namespaces) {
 $(this).addClass('right-clickable');
 },

 /* Initialise the settings.
 @param handleObj (object) details about the binding */
 add: function(handleObj) {
 var data = $.extend({clickCount: 2, clickNumber: 0,
 lastClick: 0, clickSpeed: 500,
 handler: handleObj.handler}, handleObj.data || {});
 var id = $.event.special.rightmulticlick.eventType +
 handleObj.guid;
 $(this).data(id, data).
 bind('contextmenu.' + id, {id: id},
 $.event.special.rightmulticlick.handler);
 },

 /* Remove the settings.
 @param handleObj (object) details about the binding */
 remove: function(handleObj) {
 var id = $.event.special.rightmulticlick.eventType +
 handleObj.guid;
 $(this).removeData(id).unbind('contextmenu.' + id);
 },

 /* Destroy the right-click event handler.
 @param namespaces (string[]) any namespaces passed to the unbind*/
 teardown: function(namespaces) {
 $(this).removeClass('right-clickable');
 },
 ...
};

As before, you register the new special event definition with $.event.special B and
provide an attribute that holds the event type c. In the setup function d you only
need to add the class to distinguish these elements for styling purposes. Because each
event handler that your users register may have its own options, you won’t use a single
handler for all such events.

Listing 13.4 Multiple right-click events

Define special
event objectb

Set event typec

Initialize for first
event on an elementd

Initialize for
every event

e

vent-specific
data f

Bind data and
internal event
handlerg

Tidy up for
every eventh

Unbind data
and internal
event handleri

Tidy up for
an elementj

241Adding a special event
 Instead, you define an add function e that’s called every time an event of this type
is bound to an element, allowing you to deal with each one separately. The function
receives a single parameter (handleObj) that encapsulates all the information about
the current event handler. This object has attributes for any data (handleObj.data)
and namespace (handleObj.namespace) provided for the event, for the user’s call-
back function (handleObj.handler), and for a unique identifier (handleObj.guid),
among others. As you read previously, the this variable refers to the current target
element for the event.

 You start by collating the options for this event handler f, beginning with a set of
default values and possibly overriding those with settings from the binding call.
Because the supplied data values may be null, you should default them to an empty
object (|| {}).

 To retrieve the options later, you create an identifier for them based on the event
type and the unique ID from the parameter object. You use that identifier to associate
the options with the current element (this) g and then bind a namespaced event
handler to the standard contextmenu event, passing along the identifier as additional
data to that handler. The handler itself is explained next.

 When an event handler is unbound from an element, the remove function is called
h. It also receives the event information object as its parameter (handleObj). You recal-
culate the identifier used for this event from the event type and unique ID, and use that
to delete the saved options data and to unbind the namespaced event handler i.

 To counteract the actions of the setup function, the teardown function j need
only remove the added class.

 As with the single right-click event, an internal handler deals with the contextmenu
events and transforms them into your new events. But in this case, you’ll need to do
additional processing to keep track of how many clicks have occurred, as shown in the
following listing.

$.event.special.rightmulticlick = {
 ...

 /* Implement the actual event handling.
 @param event (Event) the event details
 @return (boolean) false to suppress default behaviour */
 handler: function(event) {
 if ($.event.rightclickDisabled.length &&
 $(this).is($.event.rightclickDisabled)) {
 event.preventDefault();
 return;
 }
 var data = $(this).data(event.data.id);
 event.timeStamp = event.timeStamp || new Date().getTime();
 if (event.timeStamp - data.lastClick <= data.clickSpeed) {
 data.clickNumber++;
 }

Listing 13.5 Multiple right-click handler

Internal
event handlerbIgnore if

disabled c

Retrieve event
options

d

Calculate
current

timestamp e If within event
timeout, count click f

242 CHAPTER 13 Extending events
 else {
 data.clickNumber = 1;
 data.lastClick = event.timeStamp;
 }
 var result = false;
 if (data.clickNumber == data.clickCount) {
 event.type = $.event.special.rightmulticlick.eventType;
 result = data.handler.apply(this, arguments);
 }
 return result;
 }
};

You define an internal handler function B that’s called in response to the standard
contextmenu events. As for the single right-click handler, you should check for ele-
ments that have been disabled and prevent any further processing as the first step c.
If the element isn’t disabled, you retrieve the options data for the current element
(this) d, using the identifier that was passed as event data when the callback was
bound (event.data.id).

 To restrict the time allowed for multiple clicks to be seen as a single event, you must
first determine the timestamp for the event e, using either a provided value or the cur-
rent date and time (expressed as milliseconds since a base point). If the difference
between the event timestamp and the start of the last sequence of clicks (as held in the
data.lastClick attribute) is less than or equal to the specified limit (data.click-
Speed), you increment the count of multiple clicks f. If the delay is outside that limit,
you must reset the count of clicks and set the starting time for this new sequence g.

 Now that you’ve computed the number of clicks you’ve seen so far, you compare
that to the number required to trigger this event (data.clickCount) h. If the num-
bers match, you transform the received event into the new type and invoke the han-
dler for this event directly (data.handler) i. Because registered events are being
dealt with individually due to the possibility of them having differing options, you
don’t use the $.event.dispatch function for the single right-click special event. The
result of any handler call is stored and returned as the final value of the internal han-
dler function j.

 As a convenience to your users, you can also provide collection functions to con-
nect to your special event, which we’ll discuss in the next section.

13.2.4 Collection functions for events

Using the special events defined previously, you can now attach event handlers to ele-
ments for these events using the bind and on functions (and remove them with
unbind or off). You can take advantage of other event features via these functions,
such as using namespaces, event delegation, and event propagation. But you don’t
have any convenience functions to attach to, nor to trigger your events, like the click
function for normal mouse click events.

Otherwise,
reset click countg

If the required
number is reached...

h

...invoke user
handler i

Return
outcomej

243Enhancing an existing event
 Adding such functions allows users to interact with your events in the manner they
prefer—using bind/on/trigger or the function named for the event—in the same
way as the built-in events.

$('#myDiv').rightclick(function() {
 ... // Handle a right-click
});

These functions, which are collection plugins in their own right, can be defined as
follows.

/* Add collection functions for these events. */
$.each([$.event.special.rightclick.eventType,
 $.event.special.rightmulticlick.eventType],
 function(i, eventType) {
 $.fn[eventType] = function(data, fn) {
 if (fn == null) {
 fn = data;
 data = null;
 }
 return arguments.length > 0 ?
 this.on(eventType, null, data, fn) :
 this.trigger(eventType);
 };
 }
);

You want to register a function for each event type, so you start by processing each of
the event names from an inline array B. You define a new collection plugin (extend-
ing $.fn) named for each event type c that accepts two parameters, which are any
data to pass through to the event (data, optional) and the function to call when the
event occurs (fn).

 Within the collection plugin, you deal with an optional data parameter (which
means you don’t have a second parameter value) d by transferring its value to the
function parameter and clearing data. If the number of arguments passed to the
collection function is greater than zero e, you want to bind the given function to
the current element for the current event type. Otherwise, you want to trigger any
existing handlers for this event type, as you did with the existing comparable
functions.

13.3 Enhancing an existing event
In addition to defining your own custom events, you can replace or enhance existing
events in the same manner by defining a special event with the same name as that
existing event. For example, you could modify the click event to ensure that every
clickable element has its cursor changed to a pointer, as suggested by David Walsh and

Listing 13.6 Add collection functions for events

Process
event typesb

Create
collection

function c
Cater to
no datad

Attach or
trigger handlere

244 CHAPTER 13 Extending events

c

implemented by Brandon Aaron.1 Or you could log every event by intercepting each
one to record its details before continuing with the default processing.

NOTE Take care when replacing an existing event with a custom special
event, because your new handler will be used for all events of this type and
you may experience unintended side effects.

You could also enhance the click event to handle right-clicks, as described in the
next section. In this example, you’ll monitor the contextmenu event as before, but this
time you’ll convert it into a normal click event with the event.which attribute identi-
fying which button was used.

13.3.1 Adding right-click handling to the click event

It would be more convenient to use the existing click event to handle right-clicks,
instead of creating a separate rightclick event. The click event is supposed to do
this, resulting in the event object’s which attribute being set based on the button used.
But the browser seems to hijack these events before they get through.

 You could instead recast the separate rightclick event as an enhancement to the
standard click handler. When using this special event plugin instead of the previous
one to react to a right-click, you’d attach a click event as usual, but you’d check the
event.which attribute to determine which button was pressed.

$('#myDiv').click(function(event) {
 alert('Clicked ' + (event.which == 3 ? 'right' : 'left') +
 ' mouse button');
});

Here’s the code for the enhanced click event.

/* Add support for right mouse click. */
$.event.special.click = {

 /* Add a right-click event handler.
 @param data (object, optional) any data values passed to the bind
 @param namespaces (string[]) any namespaces passed to the bind */
 setup: function(data, namespaces) {
 $(this).addClass('right-clickable').
 bind('contextmenu', $.event.special.click.handler);
 return false;
 },

 /* Destroy the right-click event handler.
 @param namespaces (string[]) any namespaces passed to the unbind*/

1 Shown in slide 15 at http://www.slideshare.net/brandon.aaron/special-events-beyond-custom-events (origi-
nally posted on Brandon Aaron’s blog, http://brandonaaron.net/blog/2009/06/17/automating-with-spe-
cial-events).

Listing 13.7 Adding right-click to click

Override
click handlerb

Initialize for
first event on
an element Bind internal

event handler d
Attach default
event handlere

http://brandonaaron.net/blog/2009/06/17/automating-with-special-events
http://brandonaaron.net/blog/2009/06/17/automating-with-special-events

245Other event functionality

g

 teardown: function(namespaces) {
 $(this).removeClass('right-clickable').
 unbind('contextmenu', $.event.special.click.handler);
 return false;
 },

 /* Implement the actual event handling.
 @param event (Event) the event details
 @return (boolean) false to suppress default behaviour */
 handler: function(event) {
 event.type = 'click';
 event.which = 3;
 return $.event.dispatch.apply(this, arguments);
 }
};

This time you override the handling of the standard click event B by declaring a
special event version of it. The new handler’s setup function c once more marks the
element as right-clickable and binds an internal event handler to the contextmenu
event to be notified of right-clicks d. You must return false from the setup function
e to inform the jQuery event framework that you want it to continue with its normal
processing of this event—to attach the standard click event handler itself. You’re
relying on this standard processing to deal with normal click events, but you’re
enhancing it by also listening for right-clicks.

 As before, the teardown function f needs to undo whatever was done in setup—
removing the marker class and unbinding from the contextmenu event g. Once
more, you must return false from this function h to have jQuery also tidy up the
standard click event handler.

 Your internal event handler i is called when the contextmenu event occurs. You
translate this event into a replacement click event, but set the event.which attribute
to indicate that the right mouse button was used (the documented value for this is 3—
http://api.jquery.com/event.which/). Then you continue with the standard event
handling (using the altered event object) by calling the built-in $.event.dispatch
function j.

13.4 Other event functionality
The special event framework also provides some additional functionality that you can
use to further customize your event handling. You can define a default action for an
event, suppress event bubbling, and add callbacks before and after the dispatching of
the event through the standard processing. These are described in more detail in the
next sections.

13.4.1 Default actions for events

The default action for an event executes when the event has finished bubbling up
through the DOM hierarchy and all of the appropriate event handlers on this path
have been called, such as an anchor tag loading the content of the location specified

Tidy up for
an elementf

Unbind internal
event
handler

Detach default
event handlerh

Internal
event handleri

Change settings
and notifyj

246 CHAPTER 13 Extending events
in its href attribute. Any of those other handlers in the chain may prevent the default
action by calling the preventDefault method on the provided event object.

 You specify a default action for your special event handler by adding a _default
function to the event handler object, such as for a hypothetical destroy event, as in
this listing.

$.event.special.destroy = {
 ...

 _default: function(event) {
 $(event.target).remove();
 }
};

Within your default function B, the this variable refers to the document, because
the event has bubbled all the way to the top of the DOM hierarchy. The event parame-
ter to this function contains all the information you need. Its target attribute refers
to the element on which the event was initially triggered, whereas the handleObj attri-
bute provides access to all of the same values as the setup and teardown functions.

13.4.2 Pre- and post-dispatch callbacks

You can add extra processing before your special event is passed to any event handlers
by adding a preDispatch function to the event handler object. This function is called
as part of the standard event dispatch processing and allows you to abort the event
handling by returning false.

NOTE The preDispatch function was added in jQuery 1.7.2.

For example, you could implement the disabling functionality of the rightclick
event in the preDispatch function, instead of in the internal handler, as shown previ-
ously. Within this function, the this variable refers to the current element, whereas
the event parameter holds the usual details about the event itself. See listing 13.9 for
a possible implementation.

$.event.special.rightclick = {
 ...

 handler: function(event) {
 event.type = $.event.special.rightclick.eventType;
 return $.event.dispatch.apply(this, arguments);
 },

 preDispatch: function(event) {
 return !($.event.rightclickDisabled.length &&
 $(this).is($.event.rightclickDisabled));
 }
};

Listing 13.8 Adding a default action

Listing 13.9 Adding preDispatch functionality

Default
action handlerb

Handler only
translates event

b

Add preDispatch
processing

c

Return false
to disabled

247Other event functionality
You can remove the disabling code from the handler function B and define a pre-
Dispatch function instead c. Within that, you return false if the current element is
in the list of those to be disabled d.

 In a similar way, you can add extra code at the end of the standard event process-
ing by adding a postDispatch function to the event handler object. This function is
called after passing the event to any event handlers and can’t change the normal flow.

NOTE The postDispatch function was added in jQuery 1.7.2.

For example, you could add logging of events at this point, as shown in the following
listing. As with the preDispatch callback, the this variable refers to the current ele-
ment and the event parameter holds other details about the current event.

$.event.special.rightclick = {
 ...

 postDispatch: function(event) {
 console.log(event.type + ' on ' + event.target.nodeName);
 }
};

You define a postDispatch function B to add processing following the normal event
handling. In this case, you could log the type of the event and the name of the ele-
ment on which it was triggered.

13.4.3 Prevent event bubbling

Special events also support the prevention of event bubbling by setting the noBubble
attribute on the event handler object to true. jQuery uses this internally to forestall
the bubbling of load events back to the window object.

$.event.special.load = {
 // Prevent triggered image.load events from bubbling to window.load
 noBubble: true
};

NOTE The noBubble attribute was added in jQuery 1.7.1.

13.4.4 Automatic binding and delegation

The bindType and delegateType attributes on the event handler object let you spec-
ify the event type to use when binding or delegating a special event, and jQuery will
automatically respond to those events and call the provided user event handler. For
example, jQuery uses this mechanism to map the mouseenter and mouseleave special
events directly onto the native mouseover and mouseout events.

 To further automate this process, the event framework looks for a handle function
within the event handler object to respond to the mapped events. You’d provide such

Listing 13.10 Adding postDispatch functionality

Add postDispatch
processing

b

248 CHAPTER 13 Extending events
a function if you wanted to change the processing in some manner, such as altering
the event type. Otherwise the user callback is triggered directly.

NOTE The bindType and delegateType attributes were added in jQuery
1.7.1.

But when you use this technique, the setup and add functions are no longer invoked,
as it’s assumed that direct mapping onto the native event eliminates the need for
these calls. Consequently, teardown and remove functions aren’t necessary (although
these are still called for some reason).

 For example, the rightclick event handler presented previously could be rewrit-
ten using automatic binding and delegation, as follows.

$.event.special.rightclick = {

 bindType: 'contextmenu',
 delegateType: 'contextmenu',
 eventType: 'rightclick',

 handle: function(event) {
 event.type = $.event.special.rightclick.eventType;
 return event.handleObj.handler.apply(this, arguments);
 }
};

You define the rightclick special event B as before, but provide an alternative
implementation. You use the bindType and delegateType attributes c to map this
event onto an existing native event—contextmenu. The handle function d is
attached to that native event and allows you to change the event type before invoking
the user’s handler e, as accessed via the event.handleObj object.

 Note that this implementation doesn’t add the right-clickable class to the
affected elements. You could include the disabled functionality from the handler
function of the original rightclick implementation in the handle function here.

 The complete code for these special events is available for download from the
book’s website.

Listing 13.11 Using automatic delegation and binding

What you need to know

Create a new event to provide common event handling across browsers.

jQuery provides the special event framework to handle events in a standard manner.

Extend $.event.special to add a new event processor or to replace an existing one.

Your event processor can monitor other events and modify them or trigger custom
ones in their place.

Define right-click eventb

Map to native eventc

Automatic handler
for native event

d

Call user
handlere

249Summary
13.5 Summary
jQuery makes dealing with native JavaScript events simple by providing multiple ways
to attach an event handler to a particular event on a given element. It also supports
event delegation to allow you to create one handler for many subordinate elements,
or to process events for elements that don’t even exist within the DOM as yet.

 To allow new events to operate within the same jQuery processes, it provides the
special event framework. You register a new event with the framework and define an
object that knows how to initialize itself for these events, how to tidy up afterward, and
how to signal those events to attached event handlers.

 You saw how to use the special event framework to transform the native context-
menu event into the more recognizable rightclick. Then you enhanced that to pro-
duce the rightmulticlick event handler that tracked multiple right-clicks on a per-
element basis. And finally, you replaced the standard click processing to incorporate
notifications about right-click events.

 In the final chapter, we’ll look at the Validation plugin and how it can be extended
with custom validation rules.

(continued)

Within your processor, setup and teardown are called once per element, whereas
add and remove are called for each event handler that’s bound or unbound.

Return false from setup and teardown to allow jQuery to continue with the normal
processing of the event.

Try it yourself

Create a reset event for a form to ask for confirmation from the user before proceed-
ing. There’s a built-in reset event for a form, so you’ll need to let jQuery process that
as well. Cancel the reset request by calling the event.preventDefault function.

Creating validation rules
Although not part of jQuery itself, the Validation plugin from Jörn Zaefferer is a
widely used plugin that has its own extension point (http://jqueryvalidation.org).
The plugin helps to ensure that only valid data is sent to the server when a form is
submitted, avoiding unnecessary requests that would only result in a user-correct-
able error, such as missing required fields or incorrectly formatted email addresses.

 The built-in rules provided by the plugin include required for mandatory
fields, digits or number for numeric input, min and max for minimum and maxi-
mum values, email and url for email address and URL formats, and equalTo for
field comparisons. You can combine these for a single field to create more complex
validations, such as a mandatory numeric field with a maximum value.

 The plugin manages the application of these rules at the appropriate times—
for instance, when field entry occurs or when the form is submitted—and dis-
plays suitable error messages if a field is invalid. The aim is to provide an unobtru-
sive user experience: to display error messages only after some user action, and
to remove them as soon as possible. Placement of error messages and their

This chapter covers
■ The jQuery Validation plugin
■ Adding validation rules
250

251The Validation plugin
appearance can be controlled by the user if necessary, although the default behav-
ior is often appropriate.

 If the built-in rules aren’t sufficient for your needs, you can always define your
own rules and have them integrated into the normal processing of the plugin. At its
simplest, a new rule provides a function that returns true if a field is valid and false
if it’s not.

 In this chapter, you’ll see how to define custom validation rules that check entered
text against expected patterns of characters and rules that apply to conditions cover-
ing multiple fields, along with how to apply them within your applications.

14.1 The Validation plugin
The Validation plugin is applied to a form, and it lets you ensure that the fields within
that form are valid before they can be submitted to the server (as shown in figure
14.1). By performing such validations on the client, you can prevent network usage
that will only result in an error on the returned page. Note that you should never rely

Figure 14.1 The Validation plugin in action, showing various error messages resulting from validation
issues alongside the affected fields

252 CHAPTER 14 Creating validation rules
solely on client-side validations for your websites. You should always apply the same
rules to all values received at the server before processing them further.

 This section describes how the Validation plugin assigns specific rules to particular
fields within a web page, either through metadata attached to each HTML element or
via an option passed to the plugin initialization call.

14.1.1 Assigning validation rules

This plugin allows you to assign validation rules to fields in a number of different ways,
allowing for flexibility in your page design and framework usage. The two main meth-
ods of assignment are via classes and attributes attached to the fields (metadata), and
via the rules option in the plugin initialization.

ELEMENT METADATA

To use the first of these methods, you add classes corresponding to the desired rules
to the applicable input fields, for those rules that don’t need any parameters. If you do
need to provide a value for a rule to work, that rule is specified as an attribute named
for the rule, with its value being the necessary parameter value. Then, when you ini-
tialize the plugin for the form as a whole, these classes and attributes trigger the
appropriate rules.

 For example, listing 14.1 shows how you might use inline attributes to apply valida-
tion to a form.

<script type="text/javascript">
$(function() {
 $('#myform').validate();
});
</script>
...
<form id="myform" method="get">
 <input type="text" name="firstName" class="required">
 <input type="text" name="age" class="digits" min="18">
 <input type="submit" value="Submit">
</form>

The Validation plugin applies to the form itself B, causing its fields to be scanned for
inline attributes that invoke specific validation rules. By having a class of required, the
firstName field becomes mandatory C. Although the age field is optional, if entered
it must consist of digits only (an integer value), courtesy of the digits class D. In addi-
tion, the min attribute indicates that the minimum value validation rule should also be
applied, and that it should use a parameter value of 18 to set the lower limit.

RULES OPTION

To specify the validation rules during initialization, you provide a rules option to the
plugin call. The value of this option is an object with attributes for each field and the
corresponding validation rules as their values.

Listing 14.1 Applying validation rules inline

Validate the
whole formB

First name
is required

C

Age must be
a number >= 18D

253Adding a validation rule
 Listing 14.2 shows the same form as earlier, but with the validations defined in the
initialization call.

<script type="text/javascript">
$(function() {
 $('#myform').validate({
 rules: {
 firstName: 'required',
 age: {
 digits: true,
 min: 18
 }
 }
 });
});
</script>
...
<form id="myform" method="get">
 <input type="text" name="firstName">
 <input type="text" name="age">
 <input type="submit" value="Submit">
</form>

Once more, the Validation plugin is called for the form as a whole B. But this time,
the supplied rules option connects validation rules to fields. The attributes of rules
are identified by the names of the affected fields (note that the name attribute is used,
not the id). Each attribute’s value is the validation rule name when a single simple
rule applies (one that doesn’t require any parameters, such as required). When mul-
tiple validations apply, or when a validation needs a parameter (such as a minimum
value), the attribute value is another object with attributes named for the desired rules
and having the parameter as their values. If no parameter is needed in this second
case, the value true is used. As before, the firstName field is mandatory C and the
age field, if present, must consist of digits with a minimum value of 18 D. The actual
form fields have no additional classes or attributes under this scheme E, helping to
separate the form content from its functional requirements.

NOTE If your field name contains non-alphanumeric characters, you should
surround it with quotes when using it as an attribute name within the rules
option. For example, rules: {'first-name': 'required'}.

14.2 Adding a validation rule
Although there are numerous validation rules built into the plugin, sometimes you
need something more specific, such as a rule to check the format of a U.S. Social Secu-
rity number (SSN). By calling the addMethod function of the validator, you can define
your own rules to be applied alongside the built-in ones. Your rule is added to the list
of available validation rules using the name you provided to identify it. You then use
that same name to assign the rule to a particular field in your web page.

Listing 14.2 Applying validation rules during initialization

Validate the
whole form

b

First name
is required C Age must be

a number >= 18d

Fields have no
extra attributes

E

254 CHAPTER 14 Creating validation rules

Cre
 A common requirement is to match the entered data against a pattern of charac-
ters, such as for a phone number. In fact, the Validation plugin contains an additional-
methods.js file that provides these sorts of rules, including pattern for a user-
specified pattern and phoneUS for a particular implementation of a pattern.

 Next, you’ll re-implement the pattern-matching validation rule to see how it’s
done, before creating a validation-rule generator for these types of rules to make
them easier to define in the future.

14.2.1 Adding a pattern-matching rule

When testing values for patterns in JavaScript, you should use the regular expression
objects built into the language (see appendix A for a primer on JavaScript regular
expressions). Regular expressions are defined as strings of characters that must be
matched literally or that have a meaning within the expression, such as indicating alter-
native values, denoting repeating characters, or representing classes of characters.

 To make a pattern-matching rule that can be used in any number of situations, you
should allow the pattern to be passed as a parameter to the rule initialization. You
might specify a field requiring a U.S. SSN with the following:

$('#myform').validate({rules: {
 ssn: {matches: /^\d{3}-\d{2}-\d{4}$/}
}});

This pattern states that the field value must start (^) with three digits (\d{3}), fol-
lowed by a hyphen (-), two digits (\d{2}), another hyphen (-), and finish ($) with
four digits (\d{4}). You should allow the pattern to be provided as a string value
instead of the literal RegExp object shown here for even more flexibility. Note that you
must escape backslashes (\) and quote (') characters when using a string value for the
pattern, which, in this example, would become '^\\d{3}-\\d{2}-\\d{4}$'.

 Listing 14.3 shows how you’d define the pattern-matching validation rule. As for
previous plugins, you should surround your code with an anonymous function to pro-
vide a new scope to hide internal variables and to ensure that $ is equivalent to
jQuery.

/* Custom validator to match a regular expression.
 @param value (string) the current field value
 @param element (jQuery) the current field
 @param param (string or RegExp) the pattern to match
 @return (boolean) true if valid, false if not */
$.validator.addMethod('matches', function(value, element, param) {
 var re = param instanceof RegExp ? param : new RegExp(param);
 return this.optional(element) || re.test(value);
 },
 $.validator.format('Please match this format "{0}".'));

Listing 14.3 Adding a pattern-matching rule

Define new
validation

rule

B

ate regular
expression C Validate the valueD

Format error
messageE

255Adding a validation rule
To define your new rule, you must call the $.validator.addMethod function B. The
parameters to this function are the name of your new rule (so that it can be assigned to
individual fields), the validation function that tests an element and its value to ensure
its correctness, and an error message to display if that field is found to be invalid.

 The validation function also accepts three parameters, which are the current value
of the element being validated (value), a reference to that DOM element (element),
and any parameters supplied as part of the validation initialization (param).

 You start by creating a regular expression to test against C. If a regular expression
object was provided as the parameter, you use that directly. Otherwise, you create a
new RegExp object using the pattern given.

 The validation function returns true if the field and its value are correct, or false
if they’re not D. You should allow for an empty field by calling the standard optional
function and passing along the element reference. Otherwise, you apply the regular
expression to the current value, using its test function to check that it matches.

 If a value doesn’t match, the error message given in the addMethod call is displayed
to the user E. You can provide a static message as a string, but if you want to include
dynamic values from the parameters, you should use the $.validator.format func-
tion. It accepts a string message as its parameter and returns a function to be called to
generate the final message. You indicate where you want parameter values placed by
using the sequence {n}, where n is a sequential number corresponding to the index
of the value from the parameters array, or is 0 for a single parameter value.

 You’d use this validation rule by providing a pattern to match against as its param-
eter value. You can also combine this rule with others for more complex validations.
Figure 14.2 shows the results of applying the pattern-matching validation rule to
ensure the correct entry of U.S. SSNs, using the definitions shown in listing 14.4.

$('#myform').validate({
 rules: {
 ssn1: {
 required: true,
 matches: '^\\d{3}-\\d{2}-\\d{4}$'
 },
 ssn2: {
 matches: /^\d{3}-\d{2}-\d{4}$/
 }
 },

Listing 14.4 Using the pattern-matching rule

Figure 14.2 Using the pattern-matching validation rule

Match a string
pattern

B

Match a regular
expression

C

256 CHAPTER 14 Creating validation rules
 messages: {
 ssn2: {
 matches: 'Please enter a valid SSN'
 }
 }
});

Within the rules definition for your validation setup, you apply the matches rule to the
first SSN field by providing a string version of the SSN pattern B. This field is also
defined as being mandatory through the use of the required rule. For the second
field you provide the pattern as a regular expression object instead C, and the field
isn’t mandatory. You can also override the error message for particular fields and rules
to provide more meaningful feedback to the user D. Within the messages option, you
identify the fields by name, as for the rules option, and then supply a new message
for a particular rule, identified by its name.

 If you wanted to use the inline method for assigning validation rules, you’d need to
mark up your field as follows to create a mandatory SSN-formatted input element.

<input type="text" id="ssn1" name="ssn1"
 class="required" matches="^\d{3}-\d{2}-\d{4}$">

You’ve seen how the matches rule would be applied to a field to validate it by supply-
ing an arbitrary regular expression to cater to whatever format you desire for your
fields. But these expressions can be difficult to understand and maintain, so the next
section looks at how you can retain the functionality of the pattern-matching rule
while clarifying its purpose.

14.2.2 Generating pattern-matching rules

The validation function from the pattern-matching rule shown in the previous sec-
tion, and repeated in listing 14.5, accepts the expression to match against as a param-
eter from the validation framework (param). Instead, you could supply that pattern
when creating the new validation rule and produce a more targeted rule that’s easier
to use and understand, as shown in figure 14.3.

function(value, element, param) {
 var re = param instanceof RegExp ? param : new RegExp(param);
 return this.optional(element) || re.test(value);
},

Listing 14.5 Previous pattern-matching rule

Custom error
messageD

Figure 14.3 Validation error resulting from the pattern-matching rule generator for an SSN

257Adding a validation rule

r
expr

val
fu
The following listing shows how to write a function that generates similar pattern-
matching validation functions for use in defining rules.

/* Create a validation rule for a given regular expression.
 @param pattern (string or RegExp) the pattern to match
 @return (function) the validation function */
function createRegExpRule(pattern) {
 var re = pattern instanceof RegExp ? pattern : new RegExp(pattern);
 return function(value, element, param) {
 return this.optional(element) || re.test(value);
 };
}

You define the createRegExpRule function to generate your new validation rule func-
tions B. It accepts one parameter, which is the pattern to match against (pattern),
and it returns a function that may be used by the validation framework to test a value.

 As before, you process the provided pattern to create a regular expression object
for use in the actual validation C, using an existing object if supplied or creating a
new one if necessary. This may be done before returning the validation function to
avoid having to recalculate it every time this rule is applied.

 You then return the actual validation function D. Although the function takes
three parameters, the last one (param) is no longer used and is ignored. The function
code duplicates the last line of the generic validation function from the previous sec-
tion, checking whether the field is optional before matching the current value against
the expression computed earlier E, which returns true if the value is acceptable or
false if it’s not.

 Using this generator function, it’s easy to create a custom pattern-matching valida-
tion rule, as shown next.

/* Custom validator to match a US Social Security number.
 @return (boolean) true if valid, false if not */
$.validator.addMethod('ssn',
 createRegExpRule('^\\d{3}-\\d{2}-\\d{4}$'),
 'Please enter a SSN - nnn-nn-nnnn.');

Once again, you call the $.validator.addMethod function to register the new valida-
tion rule B. You provide the name of the rule, which can be specific to the pattern
being used, the validation function as produced by the createRegExpRule function
for the actual pattern to match C, and a custom error message D as a simple string
because no parameters values are required.

 To apply this new rule to a particular field, you no longer need to provide any
parameters and can identify the rule just by its name.

$('#myform').validate({rules: {
 ssn3: 'ssn'
}});

Listing 14.6 Generating a pattern-matching rule

Listing 14.7 Using the regular expression rule generator

Define generator
function

B

Create
egular
ession C

Return
validation

rule function DValidate the value e

Define new
validation rule

BCreate
idation
nction

C

Provide error messaged

258 CHAPTER 14 Creating validation rules
If you want to apply several validations to this field, you list them in an object and use
the parameter value true for your new rule. For example, to make this field manda-
tory as well, you’d use the following:

$('#myform').validate({rules: {
 ssn3: {required: true, ssn: true}
}});

The validation rules just presented only apply to a single field and its value, but you can
also create validation rules that check multiple fields, as described in the next section.

14.3 Adding a multiple-field validation rule
Validation rules don’t have to apply to a single field but can work with several related
fields (such as a date that’s separated into day, month, and year components), because
the individual field values may be valid but the combination may be invalid.

 The Validation plugin already has the equalTo rule that confirms that the value in
one field is the same as that in another field, as is often required for password or email
address entry. Furthermore, you can add a dependency to a rule so that it’s only
applied in certain situations. For example, you can make a field mandatory only if
another field is checked:

$('#myform').validate({rules: {
 myField: {required: '#otherField:checked'}
}});

If these options aren’t sufficient, you can create your own custom rules to check
related fields. Suppose that in a survey you have a number of votes that you can allo-
cate between several items to indicate a weighted preference for these items, and you
must assign all of your votes for your submission to be valid. Checking an individual
field won’t tell you whether the overall allocation is correct. A new validation rule
could handle this, but first you need to be able to group the fields so that only one
error message is shown.

14.3.1 Grouping validations

As part of the options you can provide when initializing the Validation plugin, you can
define groups of related fields. You give each group a name, and list the names of the
fields that make up that group (space-separated). Note that you must use the field
names, not their IDs.

$('#myform').validate({groups: {
 address: 'address1 address2 city state postcode'
}, ...});

Each group will only generate one error message at most, and you should use the
errorPlacement option to position that error message appropriately for the group as
a whole.

259Adding a multiple-field validation rule

Co
wi
14.3.2 Defining a multiple-field rule

Returning to the need to validate the
full allotment of a number of votes
across several fields for a survey, you
want a validation rule that will sum
those votes for all such fields and
compare the result with the
accepted number. The result of
applying this validation rule is shown
in figure 14.4, with a single error
message being displayed if any of the
fields is changed and the total is
invalid. Note that the expected total
appears in that error message.

 In the interests of flexibility and
reusability, the total count and the
way to select the related fields
should be retrieved from the param-
eters to the rule. The following list-
ing shows such a rule.

/* Custom validator to ensure a summed total.
 @param value (string) the current field value
 @param element (jQuery) the current field
 @param param (number and string) the total required
 and the selector for all fields
 @return (boolean) true if valid, false if not */
$.validator.addMethod('totals', function(value, element, param) {
 var sum = 0;
 $(param[1]).each(function() {
 sum += parseInt($(this).val(), 10);
 });
 return sum == param[0];
 },
 $.validator.format('The total must be {0}.'));

You call the addMethod function to register your new validation rule B, naming it
totals. As before, the validation function receives as parameters the current field
value (value), the field itself (element), and the parameters from the validation setup
(param). Of these, only the last is used in this rule because you’re concerned with the
situation across all the fields every time.

 After initializing a variable for the sum, you select all the related fields (from the
second entry in the parameters array) and process each one in turn C. You retrieve
the current value for each field and ensure that it’s treated as a numeric value (parse-
Int) before adding it to the total. Once all values have been accumulated, you

Listing 14.8 Defining a multiple-field rule

Figure 14.4 The totals validation rule in action,
showing an error message when the sum of the set of
fields is incorrect

Define new
validation rule

B

Sum values from
each related fieldCmpare sum

th expected
total

D

Dynamic error
message

E

260 CHAPTER 14 Creating validation rules
compare the sum with the expected total (from the first entry in the parameters
array), and return the result as the outcome of the validation D.

 If the total isn’t correct, the associated error message E is shown. To provide bet-
ter feedback to the user, you should include the expected total number of items in the
message by calling the $.validator.format function and indicating with {0} where
the first parameter value (the total) should be shown.

 To use this rule on your page, you initialize the Validation plugin for your form
and provide the necessary customizations, as shown in listing 14.9.

var allVotes = {
 totals: [4, 'select.item']
};
$('#myform').validate({
 groups: {
 items: 'item1 item2 item3 item4 item5'
 },
 rules: {
 item1: allVotes,
 item2: allVotes,
 item3: allVotes,
 item4: allVotes,
 item5: allVotes
 },
 errorPlacement: function(error, element) {
 if (element.hasClass('item')) {
 error.appendTo(element.closest('fieldset'));
 }
 else {
 error.insertAfter(element);
 }
 }
});

Because the new validation rule will be applied to several fields with identical settings,
it makes sense to define that combination once and re-use it as necessary. Thus the
allVotes object B identifies the new totals validation rule and specifies that the
counts should sum to 4 and that the affected fields are selected by select.item. Mul-
tiple parameters are presented as items in an array.

 When initializing the Validation plugin, you define the group of related fields C
so that they only create a single shared error message. Next you apply the new valida-
tion rule to each of these fields in turn D, using the common settings defined earlier.
In this way, you’ll trigger the validation if any of the field values changes.

 To control the display of the error message for these fields, you override the
errorPlacement function E. If the current element is one of those from your group
(as identified by their common class) F, you position the error message at the end of
its container—the closest surrounding fieldset element G. Otherwise, you revert
back to the standard error placement H, which puts the error message immediately
after the affected field.

Listing 14.9 Applying this rule

Define validation
rule settingsB

Define group of
related fieldsC

Assign validation
to fieldsD

Customize error
placement

E

If a grouped
item ... F ... move error

 messageG

Otherwise, use
default placementH

261Summary
 The complete code for these validation rules is available for download from the
book’s website.

14.4 Summary
The Validation plugin is a widely used plugin that simplifies the process of applying
validation rules to fields in a form on the web page and dealing with any resulting val-
idation errors. Although it has many built-in validators, including additional ones in
an extra module, sometimes the supplied rules don’t apply to your situation. Fortu-
nately, the plugin allows you to add custom rules that are then processed in the same
manner as the built-in ones by providing a validation extension point.

 You register your own rules by calling the $.validator.addMethod function to pro-
vide a validation function that returns true if valid, or false if not. By adding a generic
pattern-matching rule, you can then apply that in a number of situations with patterns
specific to the task at hand. That approach can then be enhanced to allow the creation
of custom pattern-matching rules for simplified application and better readability.

 You can also create validation rules that apply to multiple fields at once, and use
the grouping and error-placement abilities of the Validation plugin to help manage
their integration into your page.

 When you create your own plugin, consider how others might want to use and
extend it. By adding an extension point yourself, you can make it easier for them to
enhance your plugin and improve its acceptance and usability in a variety of situations.

What you need to know

The Validation plugin lets you define rules to be applied to fields to check their content
before form submission.

Create new rules to meet specific validation requirements.

Call $.validator.addMethod to register a new validation rule.

Rules may accept parameters to modify their behavior.

Error messages for these rules may include the parameter values.

Rules aren’t restricted to single field validation.

Use the groups option to define related fields that will only show one error message
at most between them.

Try it yourself

Create a new validation rule that requires a value in a field, but only one from a given
array of values.
field: {oneof: ['one', 'two', 'three']}

Then re-implement this rule using the regular expression rule generator instead.

Hint: use the | character to separate alternatives.

262 CHAPTER 14 Creating validation rules

appendix:
Regular expressions

In JavaScript, a regular expression is a JavaScript object that describes a pattern of
characters. It’s used to match strings or parts of strings and for search and replace
operations. jQuery uses regular expressions extensively for such diverse applica-
tions as parsing selector expressions, determining the type of browser in use, and
trimming whitespace from text.

 The use of regular expressions in JavaScript is an important part of using the
language effectively. Regular expressions appear in many of the plugins in this
book to test values or to break up strings into their component parts. You should be
familiar with their syntax and usage patterns.

Regular expression basics
You can create a regular expression using the RegExp function

var re = new RegExp(pattern, modifiers);

Online resources

More information on, and examples of, JavaScript regular expressions are available
on the web. The following list contains a few of the many references and tutorials
on this subject:

■ JavaScript RegExp object—www.w3schools.com/jsref/jsref_obj_regexp.asp
■ Regular expressions—https://developer.mozilla.org/en/JavaScript/Guide/

Regular_Expressions
■ Using regular expressions—www.regular-expressions.info/javascript.html
■ Regular expression tutorial—www.learn-javascript-tutorial.com/Regular

Expressions.cfm
263

https://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions
www.learn-javascript-tutorial.com/RegularExpressions.cfm
www.learn-javascript-tutorial.com/RegularExpressions.cfm

264 APPENDIX A Regular expressions
or by using its literal form:

var re = /pattern/modifiers;

The pattern in the former version is a string value, whereas in the latter it’s specified as
a regular expression literal, without any surrounding quotes. The two are identical
except when you need to escape reserved characters by prefixing them with a back-
slash (\). In the string version, you need to escape the quotes used to delimit the
string (" or ') and backslashes, whereas in the literal version you only need to escape
slashes (/). The modifiers are optional and can be omitted if not required. They’re
specified as a single string in the former version, and as only literal characters in the
latter. The modifiers are shown in table A.1.

The pattern is a sequence of literal characters to match, along with meta-characters
that indicate more complex patterns. Typical patterns are shown in table A.2 and their
syntax is explained in greater detail in the next section.

Regular expression syntax
Regular expressions are constructed from literal characters to be matched exactly,
intermixed with sequences of meta-characters that define more complicated patterns.
You can combine simpler patterns recursively to generate the precise match you
require.

Table A.1 Regular expression modifiers

Modifier Functionality

i Performs case-insensitive matching

g Finds all matches (global) instead of only the first one

m Matches ^ and $ with all newline characters (multiline)

Table A.2 Typical regular expressions

Purpose Expression Explanation

U.S. Social
Security
Number

^\d{3}-\d{2}-\d{4}$ Three digits, a hyphen, two digits, a hyphen,
four digits

Email address
(simplified)

^[\w.]+@[\w.]+\.\w{2,3}$ One or more alphanumerics, underscores, or
periods; an at symbol; one or more alphanu-
merics, underscores, or periods; one period;
two to three alphanumerics or underscores

U.S. date
(mm/dd/yyyy)

^(0[1-9]|1[0-2])\/(0[1-
9]|[12][0-9]|3[01])\/\d{4}$

Two digits (01 to 12), a slash, two digits (01
to 31), a slash, four digits—note that this
still allows invalid dates such as 02/31/
2012

265Regular expression syntax
NOTE In the patterns we’ll discuss in the next section, characters shown in
italics are placeholders or examples and should be replaced with text appro-
priate to your own requirements.

To specify those literal characters that you can’t directly enter, you use one of the for-
mats shown in table A.3. You can match any of the meta-characters as a literal value by
escaping it with a preceding backslash (\).

You can match groups or classes of characters by using one of the predefined class des-
ignators, or you can specify your own collection of acceptable characters, as shown in
table A.4.

Table A.3 Literal expressions

Pattern Functionality

\0 Match the null character.

\f Match the form feed.

\n Match the newline character.

\r Match the carriage return character.

\t Match the tab character.

\v Match the vertical tab character.

\cx Match the control character x.

\ooo Match the character with the octal value ooo.

\xhh Match the character with the hexadecimal value hh.

\unnnn Match the character with the Unicode value nnnn.

\x Escape the following character (x, where x isn’t alphanumeric).
Interpret x as a literal value.

other chars Match these characters directly.

Table A.4 Character class expressions

Pattern Functionality

. Match any character (except newline).

[abc] Match any of the characters within the brackets. Special characters don’t have any
special meaning within brackets and don’t need to be escaped.

[^abc] Match any character except those within the brackets.

[a-z] Match any character in the range a to z.

[0-9A-Za-z] Match any ASCII alphabetic or numeric character.

266 APPENDIX A Regular expressions
Restrict the positioning of your matches via the constructs shown in table A.5. The
expression E used in this table represents any other regular expression pattern.

You can specify that characters may be optional or may/must be repeated, as shown in
table A.6. Without any of these meta-characters applied, each literal character must
only appear once. The expression E used in table A.6 represents any other regular
expression pattern.

\w Match any word character (alphabetic, numeric, underscore). Equivalent to
[0-9A-Za-z_].

\W Match any nonword character (not those in the previous pattern). Equivalent to
[^0-9A-Za-z_].

\d Match any numeric character (the digits 0 through 9). Equivalent to [0-9].

\D Match any nonnumeric character (not those in the previous pattern). Equivalent to
[^0-9].

\s Match any whitespace character (space, tab, form feed, line feed, and so on). Equiv-
alent to [\f\n\r\t\v\u00A0\u1680\u180e\u2000\u2001\u2002\u2003\
u2004\u2005\u2006\u2007\u2008\u2009\u200a\u2028\u2029\u202f\
u205f\u3000].

\S Match any nonwhitespace character (not those in the previous pattern). Equivalent
to [^ \f\n\r\t\v\u00A0\u1680\u180e\u2000\u2001\u2002\u2003\
u2004\u2005\u2006\u2007\u2008\u2009\u200a\u2028\u2029\u202f\
u205f\u3000].

Table A.5 Position-matching expressions

Pattern Functionality

^E Match expression E at the beginning of the string. For example, ^foo matches foo in
food but not in junk food.

E$ Match expression E at the end of the string. For example, bar$ matches bar in rebar but
not in embargo.

\b Match any word boundary (space, newline character, punctuation character, or the start or
end of the string), except when used within brackets, in which case it matches the back-
space character. For example, \\bion\\b matches ion in a positive ion but not in addi-
tional info.

\B Match any nonword boundary (not those in the previous pattern). For example,
\\Bion\\B matches ion in additional info but not in a positive ion.

Table A.4 Character class expressions (continued)

Pattern Functionality

267Regular expression syntax

Define alternative matches or group and capture portions of your pattern to create
more complex expressions, as shown in table A.7. As before, the expressions E and F
used in this table represent any other regular expression pattern.

You can also refer to previously captured portions of your pattern to match again later
in your expression, as described in table A.8. You could use this construct to ensure a
matching double or single quote is found at the end of a string.

Table A.6 Repetition expressions

Pattern Functionality

E? Match zero or one instances of expression E. For example, ba?r matches br in broom
and bar in embargo but not baaaar in baaaargain.

E* Match zero or more instances of expression E. For example, ba*r matches br in broom
and bar in embargo and baaaar in baaaargain.

E+ Match one or more instances of expression E. For example, ba+r matches bar in
embargo and baaaar in baaaargain but not br in broom.

E{n} Match exactly n instances of expression E. For example, t{2} matches tt in committee
but not t in title.

E{n,m} Match n to m instances of expression E. For example, t{1,2} matches t in title and tt in
committee.

E{n,} Match n or more instances of expression E. For example, t{2,} matches tt in committee
but not t in title.

Table A.7 Alternatives or group expressions

Pattern Functionality

E|F Match expression E or expression F. May be continued with further alternatives; for exam-
ple, ise|ize matches localise and localize but not localisation.

(E) Match expression E and capture it.

(E|F) Match either expression E or F and capture it.

(?:E) Match expression E but don’t capture it.

E(?=F) Match expression E if it’s followed by expression F. For example, one(?= two) matches
one in one two but not in one of.

E(?!F) Match expression E if it isn’t followed by expression F. For example, one(?! two)
matches one in one of but not in one two.

Table A.8 Back reference expressions

Pattern Functionality

\1 to \9 Match a previously captured group in the expression, indexed from 1. For example,
(["'])(.*)\1 matches "real" in the "real" world but not in the 'real" world.

268 APPENDIX A Regular expressions
RegExp functions
The RegExp object has several functions that you can apply to the contained regular
expression.

■ compile(pattern, modifiers)—Compile, or recompile, a regular expression
pattern. Use this to change the regular expression for an object. For example,
to first change the word man to person, and then the word woman to person, you
could use the following:

var re = /\bman\b/g;
text = text.replace(re, 'person');
re.compile(/\bwoman\b/g);
text = text.replace(re, 'person');

■ exec(string)—Apply the regular expression to the given string and return the
first match found, or null if no matches are found. Each match is an array with
the entire matched expression in [0], followed by each parenthesized capture
group from that match. For example, to extract the protocol and host name
from a possible URL you could use this:

var re = /^(http|https):\/\/([^\/]+).*/;
var match = re.exec(text);
if (match) {
 alert('protocol: ' + match[1] + ', host: ' + match[2]);
}

Note that this function may be applied multiple times to the same string (by
adding the g modifier) and will continue on from the last match, allowing you
to process multiple occurrences of the specified pattern.

■ test(string)—Apply the regular expression to the given string and return
true if any matches are found, or false if none are found. For example, to
determine whether or not a string starts with http: or https: you could use the fol-
lowing code:

var re = /^(http|https):/;
if (re.test(text)) {
 ...
}

String functions
Several String object functions also make use of regular expressions.

■ match(re)—Apply the regular expression to the current string and return the
array of matches, or null if none are found. The array contains all matches for
the entire expression if the re is global. Otherwise, the array contains the entire
first match in the string, followed by each parenthesized capturing group from
the match. For example, to extract the protocol and host name from a possible
URL, you could use this code:

var re = /^(http|https):\/\/([^\/]+).*/;
var match = text.match(re);

269Usage patterns
if (match) {
 alert('protocol: ' + match[1] + ', host: ' + match[2]);
}

Note that this function is similar to the exec function on the RegExp object, but
starts from the string instead.

■ replace(re, replacement)—Apply the regular expression (re) and replace
matches with the replacement value (replacement), returning the updated
value. Note that the original string isn’t changed by this function.

The replacement may contain back references of the form $n, where n is a
number that corresponds to the parenthesized (capture) groups within the
expression. For example, to reorder a person’s first and last names, you could
use the following code with back references:

var re = /^(\w+)\s+(\w+)$/;
text = text.replace(re, '$2, $1');

The replacement may also be a function that takes as parameters the text of each
match, followed by the text within any parenthesized groupings in the expres-
sion, and returns the replacement text. For example, to convert lowercase char-
acters to their uppercase equivalents, you could use a callback function:

var re = /[a-z]/g;
text = text.replace(re, function(lower) {
 return lower.toUpperCase();
});

■ search(re)—Apply the regular expression and return the index of the first
match, or -1 if not found. For example, to find the first position of a number
within a string, you could do the following:

var index = text.search(/\d/);

■ split(re)—Break up the string into an array using the expression as the delim-
iter. A simple string can also be used as the delimiter. For example, to split a
string at any comma (,) or tab character, you could use this code:

var fields = text.split(/[,\t]/);

Usage patterns
Some common usage patterns become apparent when you use regular expressions. A
sampling of these is shown in this section.

Validation usage patterns

You can test a field value for a particular pattern of characters and display a validation
error if it doesn’t match. For example, to ensure that the field with the ID ssn contains
a validly formatted Social Security Number, you could do this:

var ssnRE = new RegExp('^\\d{3}-\\d{2}-\\d{4}$');
if (!ssnRE.test($('#ssn').val())) {

270 APPENDIX A Regular expressions
 alert('Invalid SSN');
}

Note that this example uses a string-style regular expression, so it needs to escape the
backslashes (\) required for the digit class of characters.

Extract information

Extract useful information from a string by using capture groups surrounded by
parentheses within your regular expression. For example, to break up a URL into its
component parts—protocol (before ://), host name, optional host port (with leading
:), path, and filename (after final /)—you could use the following:

var urlRE = /^(.*):\/\/([^/:]*)(:\d+)?\/(.*)\/(.*)$/;
var matches = url.match(urlRE);
alert('Protocol: ' + matches[1] + ', server: ' + matches[2] + ', port: ' +
 matches[3] + ', path: ' + matches[4] + ', file: ' + matches[5]);

Process multiple matches

You can scan for multiple occurrences of a pattern within a string and use the exec
function, which remembers its position within the string, to process each one sepa-
rately. For example, you could process a string that contains multiple instances of a
number followed by a period designator (y for year, o for month, w for week, and so
on) with the following code:

var re = /([+-]?\d+)\s*([yowdhms])/gi;
var match;
while (match = re.exec(text)) {
 switch (match[2]) {
 case 'y': case 'Y':
 ... // process match[1] years
 break;
 case 'o': case 'O':
 ... // process match[1] months
 break;
 case 'w': case 'W':
 ... // process match[1] weeks
 break;
 case 'd': case 'D':
 ... // process match[1] days
 break;
 case 'h': case 'H':
 ... // process match[1] hours
 break;
 case 'm': case 'M':
 ... // process match[1] minutes
 break;
 case 's': case 'S':
 ... // process match[1] seconds
 break;
 }
}

271Summary
Summary
Regular expressions are an important tool in using JavaScript effectively. They allow
you to verify the format of string values, to amend strings in a controlled manner, and
to extract information from string values. Although the regular expression syntax
takes a while to get used to, it’s well worth the investment.

272 APPENDIX A Regular expressions

glossary
$

A JavaScript variable, defined by jQuery as a
synonym for the jQuery object.

ActiveX

A Microsoft framework for defining reusable
software components in a programming language-
independent way.

Ajax

Asynchronous JavaScript and XML. A web
development technique to send data to, and
retrieve data from, a server asynchronously (in the
background) without interfering with the display
and behavior of the existing page.

API

Application Programming Interface. A protocol
intended to be used as an interface by software
components to communicate with each other.

Assertion

A statement of an expected result in a unit test.

Base62 encoding

An encoding scheme that represents strings of
characters as numbers in a base 62 sequence, using
the characters 0 to 9, a to z, and A to Z as digits.

Behaviour

A JavaScript library that inspired jQuery.

Boolean

A data type consisting of the values true and false.

Callback

A reference to a piece of executable code that’s
passed as an argument to other code, allowing a
lower-level software layer to call a function defined
in a higher-level later. In JavaScript these are often
used in response to asynchronous events.

Canvas

An HTML5 element that allows for dynamic,
scriptable rendering of 2D shapes and bitmap
images.

CDN

Content Delivery Network. A large distributed
system of servers deployed to serve content
to end users with high availability and high
performance.

Chaining

The jQuery paradigm of returning the current set
of elements as the result of a function so that
further functions may be applied to it.

Chrome

A freeware web browser developed by Google.

Closure

An expression (typically a function) that can
have free variables together with an environment
that binds those variables (that “closes” the
expression). See http://jibbering.com/faq/
notes/closures/.
273

GLOSSARY274
Collection plugin

A jQuery plugin that operates on a collection of
elements found via a selector or via DOM traversal.
Most third-party jQuery plugins are of this type.

Cookie

Usually a small piece of data sent from a website
and stored in a user’s web browser to be returned
to the server when a user again browses that site.

CSS

Cascading Style Sheets. Styling definitions separate
from the HTML markup.

CSV

Comma-separated values. A file format that stores
tabular data (numbers and text) in plain-text
form, with fields delimited by commas.

Dance

It’s something that can’t be explained in words. It
has to be danced.

Deferred

A chainable jQuery utility object that can register
multiple callbacks into callback queues, invoke
callback queues, and relay the success or failure
state of any synchronous or asynchronous function.

DOM

Document Object Model. The model of the
HTML document to make it easier to manipulate
in. JavaScript

Ease-in

An acceleration from a stopped position. A form
of easing.

Ease-out

A deceleration down to a stop. A form of easing.

Ease-in-out

A combination of an ease-in and ease-out that
starts slowly, speeds up, and then slows to a halt
again.

Easing

The acceleration or deceleration of an object in
motion. Used in animations to vary the rate of
change of an attribute value.

Effect

A prepackaged animation for use on elements in a
web page.

Encapsulation

A language mechanism for restricting access to
some of the object’s components and a language
construct that facilitates the bundling of data with
the methods (or other functions) operating on
that data. See http://en.wikipedia.org/wiki/
Encapsulation_(object-oriented_programming).

Escape

The use of a character that invokes an alternative
interpretation on subsequent characters in a
character sequence.

Filter

Another term for a jQuery selector.

Firebug

A web development tool that facilitates the
debugging, editing, and monitoring of any
website’s CSS, HTML, DOM, XHR, and
JavaScript. An add-on for Firefox.

Firefox

A free and open source web browser developed by
the Mozilla Foundation.

Function plugin

A jQuery plugin that doesn’t operate on a
collection of DOM elements but provides utility
functions instead.

GZip

A software application used for file compression
and decompression.

HTML

Hypertext Markup Language. The common
definition for the content of web pages.

IE

See Internet Explorer.

Internet Explorer

A graphical web browser developed by Microsoft
and included as part of the Microsoft Windows
line of operating systems.

http://en.wikipedia.org/wiki/Object_%28computer_science%29

GLOSSARY 275
Java

A general-purpose, concurrent, class-based, object-
oriented programming language originally
developed at Sun Microsystems.

JavaScript

A scripting language commonly implemented as
part of a web browser in order to create enhanced
user interface and dynamic websites.

jQuery

A fast and concise JavaScript library that simplifies
HTML document traversing, event handling,
animating, and Ajax interactions for rapid web
development.

jQuery UI

A separate project that builds on the jQuery
library to provide common and consistent UI
widgets and behaviors.

JSON
JavaScript Object Notation. A lightweight data-
interchange format based on a subset of the
JavaScript Programming Language-see http://
www.json.org/.

Localisation
See Localization.

Localization

Customizing an application for a different
language and culture.

Method

An additional function invoked on a plugin by
passing its name to the plugin’s main function; for
example $('#tabs').tabs('disable').

Minimizing code

Making code smaller by removing unnecessary
text, such as comments and whitespace.

MooTools

A JavaScript library similar to jQuery. See http://
mootools.net/.

Namespace

An abstract container or environment created to
hold a logical grouping of unique identifiers or
symbols (names).

.Net

A software framework developed by Microsoft that
includes a large library and provides language
interoperability.

Plugin

Packaged script that integrates with jQuery via one
of its extension points so that its functionality is
integrated with jQuery’s built-in abilities.

Prototype

A JavaScript library similar to jQuery. See http://
www.prototypejs.org/.

Pseudo-class selector

A selector that classifies elements based on
characteristics other than their name, attributes,
or content.

QUnit

A powerful, easy-to-use JavaScript test suite used by
the jQuery team. See http://qunitjs.com/.

Refactor

A disciplined technique for restructuring an
existing body of code, altering its internal
structure without changing its external behavior.

Regular expression

A concise and flexible means to “match” (specify
and recognize) strings of text, such as particular
characters, words, or patterns of characters.
Common abbreviations for regular expression
include regex and regexp.

RGB

Red/Green/Blue. A color encoding that defines
the contributions of the three named colors.

Rhino

An open source JavaScript engine. See
www.mozilla.org/rhino.

Safari

A web browser developed by Apple.

Scope

The context within a program in which a variable
name or other identifier is valid and can be used.

GLOSSARY276
script.aculo.us

A JavaScript library similar to jQuery. See http://
script.aculo.us/.

Selector

A pattern that matches against elements in a DOM
to retrieve them for further processing.

Singleton

A design pattern where there’s only one instance
of an object with a global access point.

Sizzle

The standalone selection engine embedded in
jQuery. See http://sizzlejs.com/.

SSN

Social Security Number. A nine-digit number
issued to U.S. citizens, permanent residents, and
temporary (working) residents for Social Security
purposes.

Theme

The styling for the appearance of jQuery UI
widgets.

ThemeRoller

A tool to design custom jQuery UI themes for
tight integration in your projects.
See http://jqueryui.com/themeroller/.

this

A reserved JavaScript variable that denotes the
current context of a function.

UI

User interface.

Unit test

A series of tests that confirm the functionality of a
module/plugin on its own (as a unit).

URL

Uniform resource locator (originally called
universal resource locator). A specific character
string that constitutes a reference to an Internet
resource.

Validation

The checking of element values for correctness
before submission to the server.

Widget

A synonym for a UI plugin that usually applies to
one of the jQuery UI modules.

XML

Extensible Markup Language. A hierarchically
structured document rendered in plain text.

XHR

See XMLHttpRequest.

XMLHttpRequest

A native JavaScript object that enables Ajax
processing.

Zip

A file format used for data compression and
archiving.

index
Symbols

!! 39
|| 77
$ 19
$ alias

example 75
function plugin 98
jQuery 58

$.easing 197
$.effects.effect

addition of 188
extension 188
implementation 193
jQuery UI 188

$.event.special 236
$.fn

attachment 77
collection plugin 76

A

Aaron, Brandon 244
access point 75
Accordian module

definition 133
jQuery UI 11

actions
canceled 149
event callback 149

additional-methods.js file 254
Ajax (Asynchronous JavaScript

and XML)
$.ajaxPrefilter function 218,

220
ajax module 19

converter 23, 219, 226–231
data type 217, 220
disabling of 220
extension point 23
framework 217–219
function, defining 23
jQuery support 216
prefilter 23, 218, 220–221
process 10, 22–23
sequence diagram 217
support 4
transformation 10
transport 23, 218, 221–226

ajax module, Ajax processing 19
ajaxSetup function 19, 229, 232
ajaxTransport function 19
animation 4

class animation 184
color 15, 183
complete callback 206
custom 22, 208–215
duration 194, 204, 206
easing 22, 194–198
effects module 19
framework for 204–208, 214

capabilities 204–206
limitations 204

handler 206
getter function 208
jQuery version 214
setter function 208

jQuery UI effect 22
non-standard value 204
properties 10, 22
queue 205
stepping 206

unit 204–205
value 203
wrapper 185, 192
See also property animation

archive file
content 107, 117
package 118

argument, pseudo-class
selector 42

assertion
definition of 110
equal 112
example 112, 115

Asynchronous JavaScript and
XML. See Ajax

attachments
attribute 100
basic 77
element 76–82
extension point 77
plugin 95

_attachPlugin function 73, 78
attributes 100, 123, 142, 169

class animation 184
easing 194

Autocomplete module
definition 133
jQuery UI 11

B

back easing 197
Background Position

plugin 209
declaration 210
277

INDEX278
Base62 encoded file 119
Behaviour code 4
best practice

browser 66
customization 61
default value 62
demonstration 67
documentation 67
localization 63
name 57
plugin design 56–68
progressive enhancement 56
style 62, 64–65
test case suite 66

bindType attribute 248
Boolean value

example 179
JavaScript 39
validation 179

bounce easing 197
bridging function 73
browser

best practice 66
canvas element 167
click event 236
line-ending character 93
Sizzle 7
test 66

build phase 18
bump easing

code 198
graph 197

Button module
definition 133
jQuery UI 11

C

callback function 76
cancel option, Mouse

module 161
canvas element

browser 167
clear 177
guideline for signature 177
Internet Explorer 167
size 170

Cascading Style Sheets. See CSS
CDN (content delivery network)

Google 7
jQuery 6, 122–123
Microsoft 7

chain 60
test 108
widget 150

_checkLength function 73,
92–94

child filter, pseudo-class
selector 34

classes
animation of 184
example 64–65
prefix 64
style 64

Clip, visual effect 134
closure 38
code

comments 67
demonstration 125
documentation 68, 123
minimized code 118

collection plugin 8
common 24
creation of 71
definition of 71
description 21
event handling, special 243
extension point 77
getter method 80
invocation method 79
option method 86
return 21
watermark plugin 24

color animation
Effects Core module 183
overview 15
style attributes 183

color values 183
comma-separated values format.

See CSV
completed callback 190
constant 76
:contains selector 39
content delivery network.

See CDN
content selector

addition of 39
exact content 39–40

converters
CSV file to table 230
data conversion 231
definition 23, 219
demonstration 231
example 229
JavaScript object 229
jQuery, role of 230
parameter 228
prefilter 231
purpose 226
registered 219, 229

table 231
text separation 228
text to CSV file 227
values 229

Cookie plugin 14, 103–105
default value 105
function plugin 97
Hartl, Klaus 103
name 103
parameter 103, 105
reading mode 104–105
retrieved value 103
value 103
writing mode 104

cookies
definition of 103
deletion 105
name 15, 103
parameter 103
retrieved value 103
value 9, 15, 103

Core module
jQuery module 19, 132–134
requirement 132

_create function 136, 140, 163,
166

createPseudo function 38, 40,
42, 44

cross-browser support 4
CSS (Cascading Style Sheets)

color values 183
default value 63
example 94
external file 62, 94
inline 65
override 63
style best practice 64–65
widget 154

cssUnit function 186
CSV (comma-separated values)

format 227
custom feedback 62
custom text values 61

D

data function 60, 79
date validation rule 13
Datepicker module

customization 61
default value 62
definition 134
design 55
jQuery UI 11
localization 63

INDEX 279
Datepicker module (continued)
option 62
progressive enhancement 56
style 64

Dean Edwards’ Packer
minimized code 119
tools comparison 121

Debug plugin
function plugin 97
jQuery plugin 57

debugging messages 9
deepEqual assertion 114
default value

best practice 62
documentation 63
example 62, 73
global change 83
option 82
override 82, 169
test 108
widget 167–169

Deferred() method 206
delay option, Mouse

module 161
delegateType attribute 248
demonstration

best practice 67
code 67, 125
package 125–126
test 66
visual test bed 127

dependency, jQuery module 18
design

best practice 56–68
focus 55
module 56
plan 54
plugin 54–56

_destroy function 137, 164
destroy method

overview 91
test 108
widget removal 151

_destroyPlugin function 73, 91
Dialog module

definition 133
jQuery UI 11

digits, validation rule 13
distance option, Mouse

module 161
documentation

best practice 67
chain function calls 60
code comments 67, 123
default value 63

methods 68, 124
options 68, 123, 168
packages 123–126
plugins 9, 74, 107, 124

Dojo Foundation 31
DOM (Document Object

Model) 3
Draggable module

definition 132
jQuery UI 11
Mouse module 160

draw method 178
Droppable module

definition 132
jQuery UI 11

duration
animation 194, 204
easing 206
example 205
value 206

E

easing
back 197
bounce 197
custom 197
definition 22, 194
ease-in 194
ease-in-out 194
ease-out 194
Easing plugin 195
elastic 197
function 197
graph 195–197
jQuery UI 22, 182, 195, 198
linear 195
swing 195

Edwards, Dean
See Dean Edwards’ Packer

$.effects 19, 188
effects 4

addition of 188–194
completed callback 190
example 187
implementation 191
integrated effects 22
jQuery UI 22, 192
list of 186

Effects Core module
color animation 183
definition 134
functionality 183
functions 184, 186
jQuery module 19

elastic easing 197
element type selector, addition

of 43
elements

access 50
collections 8
filter 20
manipulation 4
selection 4
traversal 4

email, validation rule 13
emphasis selector 43
encapsulation

code 74
definition of 59, 74
plugin 59, 74
scope 59
widget 137

enhancement, progressive 56, 72
:eq selector 48–49
equals selector

assertion 112
deepEqual assertion 114
enhancement of 48–49
jQuery version 49–50
QUnit 112

errors
displaying 250–251
jQuery UI 11
overriding 256

event handling
$.event.special 236
addition of 89, 236–238
attribute 237
binding 234–236
canceled action 149
click handler 244
collection functions 242
custom event 23
disabling of 238
event delegation 233
event enhancement 243
event name 237
event replacement 243
example 236
internal handler 238, 241, 245
multiple clicks 239–242
namespace 79, 233
option 241
override 245
parameter 237
process 245
registered event 89, 148,

171–172, 234, 237, 240
right-click handling 244

INDEX280
event handling (continued)
special event 235–243
test 115
trigger 90, 148, 172
user action 23
widget 147–149

events
bubbling event 109
callbacks

purpose 116
test 116–117
use 171

jQuery event function 109
jQuery module 19
test 109
widget creation 156

exceptions 110
Explode

description 188
visual effect 134

Explorer Canvas script 162
$.expr[':'] 19
$.expr.createPseudo 50
$.expr.filters 19–20, 37, 40, 42

in jQuery 1.8.x 43
$.expr.match.POS 50
$.expr.pseudos 19, 50
$.expr.setFilters 46, 50
extension 4

example 11–15
filter 8
selector 8

extension point
Ajax 23
attachment 77
collection plugin 77
definition 18
jQuery module 18
list of 19

F

Fade 134
filters. See selector
FireBug 60
Firefox 60, 66
FireQuery 60
flash easing

code 198
graph 197

Fold 134
foreign language selector 43
form validation 251
forum support 8
functions

attribute 100

convention 80
data() function 60
default value 99
definition of 9, 97
documentation 124
easing 194
example 9, 98
function call 59
global variable 59
jQuery namespace 97
jQuery UI 59, 143
localization 100
name 100, 137, 164
plugin framework 99
reference 76
scope 59, 99
utility function 106

fx queue 22
$.fx.step 22, 207–208, 213–214

G

getBaseline function 186
getter method 80–82
global variable 59
gMap plugin 14
GNU General Public License 4
Google

content delivery network 7, 123
Google Closure Compiler

119–121
jQuery UI 123
ThemeRoller tool 123

Google Chrome 66
Google Closure Compiler

example 120
minimized code 119
options 121
tools comparison 121
use 120

Google Maps 14
GZip filter 119

H

Hartl, Klaus 103
:has selector

definition 37
jQuery version 38

hide
effect 188
element 190
transition 203
value 185

Highlight
jQuery UI 11
visual effect 134

HTML (HyperText Markup Lan-
guage)

browser 167
canvas element 161
color values 183
documentation

Document Object Model 4
header 95
plugin 95

I

implode effect
declaration 189
example 188, 191
implementation 191
initialization 189
jQuery version 193
name 189
scope 189

_init function 156
initialization

custom 166
element 78
implode effect 189
plugin 78
widget 156

:input selector 43
:lang selector 44
instance

data 79
data() function 60
test 108

integration point 8
interference

name 57
plugin 58

Internet Explorer 66, 162, 167,
170

invocation
example 79
method 79–80

J

Java
Google Closure Compiler

120–121
image generation 162
Rhino JavaScript 120
YUI Compressor 120

INDEX 281
JavaScript
!! construct 39
Boolean value 39
function plugin 97
image file 162
jQuery 58
library 3
MooTools 58
progressive enhancement 56
Prototype 58
pseudo-class selector 34
reference 89
regular expression 42, 263
script.aculo.us 58
Sizzle 20

JavaScript Object Notation.
See JSON

jQuery Core 8
jQuery function 109

$ alias 19
HTML Document Object

Model 3
jQuery Migration plugin 6
jQuery Mobile 8
jQuery plugin 9
jQuery Project 8
jQuery UI 11–12

$.effects 188
Accordian 11
Ajax encapsulation 216
animation 183, 206
architecture of 18–24
Autocomplete 11
background of 4–8
background-position

property 213–214
bindType attribute 248
Button 11
content delivery network 6,

123
custom animation 207
Datepicker 11
definition 4, 9, 21, 131
delegateType attribute 248
Dialog 11
download 6
easing 22, 182, 194–195, 198
effects framework 10, 22,

183–188, 192–193
Error 11
event name 139
features 4
forum 8
Highlight 11
JavaScript library 58

jQuery Project 8
jqXHR object 218
localization 139
maintenance 3
method 59
modules 132–134

ajax module 19
core module 19
dependency 18
effects module 19
event module 19
extension point 18
Sizzle 19

namespace 57
noBubble attribute 247
options.mode 190
origin 4
Overlay 11
popularity 3, 7, 203
postDispatch function 247
preDispatch function 246
Progressbar 11
property name 210
reuse 3
size 6
Slider 11
source code 18
special event framework

234–236
Tabs 11
versions 5, 38, 143, 152, 166,

169, 180
widget 21
XMLHttpRequest object 218
See also Ajax

jSelect 5
JSON (JavaScript Object Nota-

tion)
conversion from 178
conversion to 177
example 162
JavaScript 162
object 177
redisplayed lines 178
retrieved value 164
string 178
synchronized text field 178
trigger 172

L

lang attribute 44
:last selector 46
licenses 4
linear easing 195

:list selector 43
localisation 63
localization

array 83
best practice 63
default language 82, 99
example 76, 84, 99
increasing specificity 98, 102
language 83
load 84
nontext content 63, 83, 99
option 83
plugin 98
text 63

M

magic number, custom 61
maintenance 3, 54
marked function, pattern match-

ing selector 42
:matches selector 41
maxlength

attribute 70
validation rule 13

MaxLength plugin
_checkLength function 92–94
_optionPlugin function 86
bridging function 73
default value 73
demonstration 67, 126
disabling of 147
documentation 68, 124–125
enabling of 147
example 72, 135, 144
feedback 87, 145
functionality 72, 135
implementation 152–154
localization 84
method 150
method addition 90
name 137
operation 136
option value refresh 144, 146
package example 122
plugin options 144–147
progressive enhancement 72,

135
purpose 71, 92, 135
structure 72
style 94, 155
test 111–117
widget removal 152

memory leak 61
Menu module 134

INDEX282
metadata support 156
methods

addition of 90, 150, 176–179
documentation 68, 124
getter 80–82
invocation 79–80
naming convention 91
test 108

Microsoft
content delivery network 7,

123
support 7

:middle selector 47
minimized code

Dean Edwards’ Packer 119
definition 118
example 120
Google Closure

Compiler 119–121
header 119
name 118
tools comparison 121
YUI Compressor 119–120

minlength validation rule 13
MIT License 4
MooTools, JavaScript library 58
mouse drag action 10
Mouse module

_mouseDestroy function 180
custom processing 175
definition 132, 159
drag actions 160, 173–176
drag start 173
functionality 160–161
interference 161
jQuery library vs. jQuery

UI 160
mouse movement 160, 174
mouse setup 167
multiple clicks 239–242
options 161
position 174–175
sequence diagram 160

_mouseInit 181
_mouseStart 181
_mouseStop 181
multiple field validation rule

addition of 258–261
error message displayed 260
example 259
groups 258
parameter 259–260
related fields 258

N

name constant
access 74
best practices 57
documentation 74
functionality 57
interference 57
lowercase 74
method pattern 57
non-alphanumeric

characters 253
plugin 74
widget framework 156

namespace claim 74
negative index 48
Nivo Slider plugin 13
noconflict function 58
Nolan, Ben 4

O

open source library 4
option method

default value 82
documentation 68
global change 83
implementation 170
localization 83
option updates 163
parameters 85
purpose 82
respond 86
retrieval mode 85–86, 142
sample code 68
setter mode 85–86, 142
setting of 82–89, 169
test 108, 113–114

options attribute 168
options.mode 190
Overlay, jQuery UI 11

P

packages
content 107
demonstration 125–126
documentation 123–126
example 118
files 117
jQuery UI 122
minimized code 118–121
plugin 117–122

parameters
default value 100
documentation 123
example 100
missing 101
optional 101

parseXML 21, 219, 226
pattern-matching rule 254
pattern-matching selector 41
pattern-matching validation rule

addition of 254–256
example 256
generation of 256–258
regular expression 255

Penner, Robert 195
placeholders

definition 24
watermark plugin 25–26

plugins
application of 54
body 92
collection 8, 21
conflict 58
Cookie 14
customization 54, 61
demonstration 9
design of 54–56
developer community 7
disabling of 88
documentation 9
enabling of 88
encapsulation 59
framework

code comments 123
purpose 71

functionality 9, 54
gMap plugin 14
initialization 78, 89
inline addition of 40
jQuery plugin 9
naming 74
Nivo Slider 13
package 117–122
predevelopment steps 74–76
purpose 92
removal of 91
repository 7
reuse 28, 54
testing 8–9, 54, 108–117
watermark 25
watermark, clearing 26
web page 95

Position module 132

INDEX 283
prefilters
addition of 220–221
data type, changed 220
definition 23, 218
parameter 221
process cancelation 220
registered 218

prefix 64
principles

$ vs. jQuery 58, 74, 99, 104,
138, 164, 189

anticipate customizations 61,
85, 141, 167

chain where possible 60, 77
claim a single name 57, 74,

100, 137, 189
demonstrations and

documentation 67
everything under jQuery

object 57, 76, 100, 104, 189
hide implementation 58, 74,

99, 104, 138, 164, 189
invoke methods 59, 79, 150,

176
localisation/localization 63, 83
progressive enhancement 72,

135
repeatable test cases 66, 108
style with CSS 64, 94, 154
test in major browsers 66, 108
use data function 60, 79
use sensible defaults 62, 82,

100, 105, 139, 141, 167
Progressbar module 11, 134
property animation 208–215

background-position
property 209, 211, 213

declaration 210
example 209
getter function 210
initialization 213
jQuery version 213–214
position value 211–212
setter function 210, 212
value calculations 212

$.prototype 21, 71
Prototype, JavaScript library 58
pseudo-class selector 33–37

addition of 20, 37–45
argument 42
child filter 34
CSS-defined 8
JavaScript 34
jQuery version 38
list of 34

multiple element types 43
set filter 34, 45–50
structure 37–39

pseudos attribute 38

Q

QUnit
documentation 117
environment 112
event callback, test of 116–117
example 111–117
exception 110
features 117
jQuery Project 8
option, test of 113–114
page header 110
Resig, John 109
result 110
steps 109
template 109
test case suite 66, 107–108
test filter 110
transport test 225
user action, test of 114–116

R

_refresh function, custom 170
RegExp object 268
regular expression

alternatives 267
back reference

expressions 267
character class

expressions 265
definition 254, 263
examples 264
JavaScript 42
literal expressions 265
modifiers 264
online resources 263
pattern 264
position matching

expressions 266
repetition expressions 267
String functions 268
usage patterns

information extraction 270
multiple matches 270
validation using

patterns 269
validation rule 255

repository plugin 7

required validation rule 13
Resig, John

initial developer 4
QUnit 109

Resizable module
definition 132
Mouse module 160

reuse plugin 3, 28, 54
Rhino JavaScript 120
rightclick event

declaration 236
disabling 238
multiple clicks 239

runup easing
code 198
graph 197

S

Safari 66
save function 185
scope

creation of 59
definition of 59
encapsulation 59
example 74
function call 59
function plugin 99

script.aculo.us 58
select-and-act mode 30, 71
Selectable module

definition 132
Mouse module 160

selector 50
addition of 31
basic selectors 32
benefits of customization 31
:contains selector 39
content selector, addition

of 39
custom 8
definition 20, 31
element type selector 43
extension 8
foreign language 43
pseudo-class selector 8, 33–37
Validation plugin 45

set filter
addition of 45–50
example 45
pseudo-class selector 34

set selector
addition of 45–50
last elements 46
middle elements 47
structure 46

INDEX284
setFilters function 46
_setOption function 136, 142
_setOptions functions 136, 163,

169
setTransition function 186
Shake effect 134
show

effect 188
element 190
transition 203
value 185

Signature widget
abilities 163
attachment 165–167
clear 162, 176
declaration 164
default value 167
event handling 171–173
functionality 161–163
method addition 176–179
Mouse module 165
mouse movement 163,

173–176
operation 163–164
option values 167–171
options example 168
validation 162

singleton pattern 75
Sizzle

Dojo Foundation 31
JavaScript 20
jQuery module 19
jQuery Project 8
selection processing 20
selector engine 7, 30
set filter 45
versions 37

slide effect 184
Slider module

definition 133
example 134
jQuery UI 11
Mouse module 160

Sortable module
definition 132
Mouse module 160

special event framework 234–236
automated binding 247
cross-browser events 234
default action, addition

of 246
definition 234
delegation 247
event bubbling 247
event enhancement 243–245

event handler binding
234–235

JavaScript 235
postdispatch callback 246
predispatch callback 246
purpose 234
special event, addition

of 236–243
trigger sequence diagram 235

Spinner module 134
stepping 206
style

best practice 62, 64–65
class 64
color 183
custom 62
default value 63
external CSS file 94
line 175
properties 65
widget 154–155

support
forum 8
Microsoft 7

swing easing 195

T

Tabs module
definition 133
jQuery UI 11

test
best practice 66
browser 66
demonstration 66
environment 112
event callback 116–117
items 108
option 113–114
plugin 54
plugin code 8
plugin initialization 78
test case suite 66, 107
unit test tool 9
user action 114–116

test case suite
automated 66
QUnit 66, 107–108
repeatable 66, 108

textarea field
disabling of 89
overview 70

theme 10
ThemeRoller tool 12, 123, 131,

133, 154

this variable 60, 77, 174
Tooltip module 134
transition, class animation 184
translation 63
transport

addition of 221, 225–226
data format 221
definition 23, 218
HTML data 223
image data 221
parameter 222
prefilter 222
purpose 221
registered 218
status 223
testing 224

trigger
event handler 90, 148, 172
example 90, 149
multiple clicks 242
test of 116

_trigger function 147, 171
truncation 154
$.Tween.propHooks 206, 209

U

$.ui.mouse 165
unit test tool 9
url validation rule 13
utility function 4, 9

description 21
documentation 124
test 108

V

Validation plugin 12, 24
built-in rules 250
example 251
form validation 251
popularity 250
purpose 250
selector 45
Zaefferer, Jörn 10, 12, 250

validation rule 10
addition of 253–258
assigned via metadata 252
assigned via rules option 252
character pattern 254
custom 24
date 13
digits 13
email 13

INDEX 285
validation rule (continued)
example 255
form 253
generation of 256–258
initialization 252
maxlength 70
metadata option 252
multiple field rule, addition

of 258–261
pattern-matching rule 254–256
required 13
rules option 252
rules triggered 252
url 13
Validation plugin 24

$.validator.addMethod 20, 255,
261

$.validator.format 255, 260
variables 76

conflict 58
global variable 59, 110

version differences
_destroy function 152, 180
_setOption function 143, 169
_setOptions function 143, 169
animation end value 213
animation stepping 22, 206,

213
animation using

Deferred 206
automatic binding and delega-

tion of events 247
easings 194, 198
effects 22, 188, 192
jQuery UI Widgets 132
jqXHR object 218
metadata 156, 166
noBubble variable 247
postDispatch function 247
pre-property easings 206
preDispatch function 246
selectors 20, 33–50

widget framework 139, 142,
150, 152, 156, 169, 180

widgetBaseClass 140, 156, 166
widgetFullName 140, 156, 166

viewports 174
visual effects

Clip 134
Explode 134
Highlight 134
Shake 134

Visual Studio 7

W

Walsh, David 243
watermarks

addition of 25–26
blur 26
chain 26
clear 26
code 25–27
collection plugin 24
default value 26
definition 24
process 27
result 28
use 27–28

$.widget 20, 139
Widget module

$.Widget 134
abilities 134
definition 132, 134
widget framework 134

$.widget.bridge 21, 139
widgets 9, 132–137

access 157
appearance 10
attachment 139
creation of 21
custom overrides 141
declaration 138
defaults 141
definition 131

disabled option 147
disabling of 147, 171
enabling and disabling 88
enabling of 147, 171
encapsulation 137
event creation 156
event handling 147–149
implementation 152–154
initialization 139, 156
metadata support 156, 165
method addition 150
name constant 156
namespace 137
option value processing 143
option value update 142
plugin options 141–147
predevelopment steps 137–139
removal 151, 179–180
style 154
Widget module 134

window object 58
wrapper

animation 185
implementation 192
overview 75

X

XMLHttpRequest object 217

Y

YUI Compressor
minimized code 119–120
tools comparison 121

Z

Zaefferer, Jörn 10–12, 45, 250
zigzag easing

code 198
graph 197

jQ
c
a

ever
exte
plu

Exte
jQu
how
wri
you
anim

Wh
●

●

●

Th i
and
exte

Keit
orig

To d
own

WEB DEVELOPMENT

Keith Wood

uery, the most popular JavaScript library, helps make
lient-side scripting of HTML easy. It off ers many built-in
bilities to traverse and alter the DOM, but it can’t do
ything. Fortunately, you can tap into jQuery’s numerous
nsion points to create your own selectors and fi lters,

gins, animations, and more. Th is book shows you how.

nding jQuery teaches you to build custom extensions to the
ery library. In it, you’ll discover how to write plugins and
 to design them for maximum reuse. You’ll also learn to

te new widgets and eff ects for the jQuery UI. Along the way,
’ll explore extensions in key areas including Ajax, events,

ation, and validation.

at’s Inside
 Create jQuery UI widgets and eff ects
 Make extensions available for distribution and reuse
 Build your own libraries

s book assumes intermediate-level knowledge of jQuery
 JavaScript. No experience writing plugins or other
nsions is required.

h Wood has developed over 20 jQuery plugins including the
inal Datepicker, World Calendar, Countdown, and SVG.

ownload their free eBook in PDF, ePub, and Kindle formats,
ers of this book should visit manning.com/ExtendingjQuery

Extending jQuery

“Delves into just about
every facet of extending

 jQuery’s functionality.”
—From the Foreword by
Dave Methvin, President

jQuery Foundation

“A must-read for all serious
web developers.”—Ecil Teodoro, IBM

“Finally, a complete resource
on the extension of jQuery

 and its framework.”—Daniele Midi
Whitelemon Design Studio

“A well-written and
 technically excellent guide.”—Brady Kelly

Erisia Web Development

SEE INSERT
$44.99 / Can $47.99 [INCLUDING eBOOK]M A N N I N G

	Extending jQuery
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1 Simple extensions
	1 jQuery extensions
	1.1 jQuery background
	1.1.1 Origins
	1.1.2 Growth
	1.1.3 Today

	1.2 Extending jQuery
	1.2.1 What can you extend?

	1.3 Extension examples
	1.3.1 jQuery UI
	1.3.2 Validation
	1.3.3 Graphical slider
	1.3.4 Google Maps integration
	1.3.5 Cookies
	1.3.6 Color animation

	1.4 Summary

	2 A first plugin
	2.1 jQuery architecture
	2.1.1 jQuery extension points
	2.1.2 Selectors
	2.1.3 Collection plugins
	2.1.4 Utility functions
	2.1.5 jQuery UI widgets
	2.1.6 jQuery UI effects
	2.1.7 Animating properties
	2.1.8 Ajax processing
	2.1.9 Events handling
	2.1.10 Validation rules

	2.2 A simple plugin
	2.2.1 Placeholder text
	2.2.2 Watermark plugin code
	2.2.3 Clearing the watermarks
	2.2.4 Using the Watermark plugin

	2.3 Summary

	3 Selectors and filters
	3.1 What are selectors and filters?
	3.1.1 Why add new selectors?
	3.1.2 Basic selectors
	3.1.3 Pseudo-class selectors

	3.2 Adding a pseudo-class selector
	3.2.1 The structure of a pseudo-class selector
	3.2.2 Adding an exact content selector
	3.2.3 Adding a pattern matching content selector
	3.2.4 Adding element type selectors
	3.2.5 Adding a foreign language selector
	3.2.6 Selectors from the Validation plugin

	3.3 Adding a set filter
	3.3.1 The structure of a set selector
	3.3.2 Adding a middle elements set selector
	3.3.3 Enhancing the equals selector

	3.4 Summary

	Part 2 Plugins and functions
	4 Plugin principles
	4.1 Plugin design
	4.1.1 Plugin benefits
	4.1.2 Planning the design
	4.1.3 Modularize the plugin

	4.2 Guiding principles
	4.2.1 Provide progressive enhancements
	4.2.2 Only claim a single name and use that for everything
	4.2.3 Place everything under the jQuery object
	4.2.4 Don’t rely on $ being the same as jQuery
	4.2.5 Hide the implementation details by using scope
	4.2.6 Invoke methods for additional functionality
	4.2.7 Return the jQuery object for chaining whenever possible
	4.2.8 Use the data function to store instance details
	4.2.9 Anticipate customizations
	4.2.10 Use sensible defaults
	4.2.11 Allow for localisation/localization
	4.2.12 Style your plugin with CSS
	4.2.13 Test on the major browsers
	4.2.14 Create a repeatable test case suite
	4.2.15 Provide demonstrations and documentation

	4.3 Summary

	5 Collection plugins
	5.1 What are collection plugins?
	5.2 A plugin framework
	5.2.1 The MaxLength plugin
	5.2.2 MaxLength plugin operation

	5.3 Defining your plugin
	5.3.1 Claiming a namespace
	5.3.2 Encapsulation
	5.3.3 Using a singleton

	5.4 Attaching to an element
	5.4.1 Basic attachment
	5.4.2 Plugin initialization
	5.4.3 Invoking methods
	5.4.4 Getter methods

	5.5 Setting options
	5.5.1 Plugin defaults
	5.5.2 Localisations/localizations
	5.5.3 Reacting to option changes
	5.5.4 Implementing MaxLength options
	5.5.5 Enabling and disabling the widget

	5.6 Adding event handlers
	5.6.1 Registering an event handler
	5.6.2 Triggering an event handler

	5.7 Adding methods
	5.7.1 Getting the current length

	5.8 Removing the plugin
	5.8.1 The destroy method

	5.9 Finishing touches
	5.9.1 The plugin body
	5.9.2 Styling the plugin

	5.10 The complete plugin
	5.11 Summary

	6 Function plugins
	6.1 Defining your plugin
	6.1.1 Localization plugin
	6.1.2 Framework code
	6.1.3 Loading localizations

	6.2 jQuery Cookie plugin
	6.2.1 Cookie interactions
	6.2.2 Reading and writing cookies

	6.3 Summary

	7 Test, package, and document your plugin
	7.1 Testing your plugin
	7.1.1 What to test?
	7.1.2 Using QUnit
	7.1.3 Testing the MaxLength plugin
	7.1.4 Testing option setting and retrieval
	7.1.5 Simulating user actions
	7.1.6 Testing event callbacks

	7.2 Packaging your plugin
	7.2.1 Collating all the files
	7.2.2 Minimizing your plugin
	7.2.3 Providing a basic example

	7.3 Documenting your plugin
	7.3.1 Documenting options
	7.3.2 Documenting methods and utility functions
	7.3.3 Demonstrating your plugin’s abilities

	7.4 Summary

	Part 3 Extending jQuery UI
	8 Extending jQuery UI
	8.1 The widget framework
	8.1.1 jQuery UI modules
	8.1.2 The Widget module
	8.1.3 The MaxLength plugin
	8.1.4 MaxLength plugin operation

	8.2 Defining your widget
	8.2.1 Claiming a name
	8.2.2 Encapsulating the plugin
	8.2.3 Declaring the widget

	8.3 Attaching the plugin to an element
	8.3.1 Basic attachment and initialization

	8.4 Handling plugin options
	8.4.1 Widget defaults
	8.4.2 Reacting to option changes
	8.4.3 Implementing MaxLength options
	8.4.4 Enabling and disabling the widget

	8.5 Adding event handlers
	8.5.1 Registering an event handler
	8.5.2 Triggering an event handler

	8.6 Adding methods
	8.6.1 Getting the current length

	8.7 Removing the widget
	8.7.1 The _destroy method

	8.8 Finishing touches
	8.8.1 The widget body
	8.8.2 Styling the widget

	8.9 The complete plugin
	8.10 Summary

	9 jQuery UI mouse interactions
	9.1 The jQuery UI Mouse module
	9.1.1 Mouse-drag actions
	9.1.2 Mouse options

	9.2 Defining your widget
	9.2.1 Signature functionality
	9.2.2 Signature plugin operation
	9.2.3 Declaring the widget

	9.3 Attaching the plugin to an element
	9.3.1 Framework initialization
	9.3.2 Custom initialization

	9.4 Handling plugin options
	9.4.1 Widget defaults
	9.4.2 Setting options
	9.4.3 Implementing Signature options
	9.4.4 Enabling and disabling the widget

	9.5 Adding event handlers
	9.5.1 Registering an event handler
	9.5.2 Triggering an event handler

	9.6 Interacting with the mouse
	9.6.1 Can a drag start?
	9.6.2 Starting a drag
	9.6.3 Tracking a drag
	9.6.4 Ending a drag

	9.7 Adding methods
	9.7.1 Clearing the signature
	9.7.2 Converting to JSON
	9.7.3 Redrawing the signature
	9.7.4 Checking signature presence

	9.8 Removing the widget
	9.8.1 The _destroy method

	9.9 The complete plugin
	9.10 Summary

	10 jQuery UI effects
	10.1 The jQuery UI effects framework
	10.1.1 The Effects Core module
	10.1.2 Common effects functions
	10.1.3 Existing effects

	10.2 Adding a new effect
	10.2.1 Imploding an element
	10.2.2 Initializing the effect
	10.2.3 Implementing the effect
	10.2.4 Implementing an effect prior to jQuery UI 1.9
	10.2.5 The complete effect

	10.3 Animation easings
	10.3.1 What’s an easing?
	10.3.2 Existing easings
	10.3.3 Adding a new easing

	10.4 Summary

	Part 4 Other extensions
	11 Animating properties
	11.1 The animation framework
	11.1.1 Animation capabilities
	11.1.2 Stepping an animation

	11.2 Adding a custom property animation
	11.2.1 Animating background-position
	11.2.2 Declaring and retrieving the property value
	11.2.3 Updating the property value
	11.2.4 Animating background-position in jQuery 1.7
	11.2.5 The complete plugin

	11.3 Summary

	12 Extending Ajax
	12.1 The Ajax framework
	12.1.1 Prefilters
	12.1.2 Transports
	12.1.3 Converters

	12.2 Adding an Ajax prefilter
	12.2.1 Changing the data type
	12.2.2 Disabling Ajax processing

	12.3 Adding an Ajax transport
	12.3.1 Loading image data
	12.3.2 Simulating HTML data for testing

	12.4 Adding an Ajax converter
	12.4.1 Comma-separated values format
	12.4.2 Converting text to CSV
	12.4.3 Converting CSV to a table

	12.5 Ajax plugins
	12.6 Summary

	13 Extending events
	13.1 The special event framework
	13.1.1 Binding event handlers
	13.1.2 Triggering events

	13.2 Adding a special event
	13.2.1 Adding a right-click event
	13.2.2 Disabling right-click events
	13.2.3 Multiple right-click events
	13.2.4 Collection functions for events

	13.3 Enhancing an existing event
	13.3.1 Adding right-click handling to the click event

	13.4 Other event functionality
	13.4.1 Default actions for events
	13.4.2 Pre- and post-dispatch callbacks
	13.4.3 Prevent event bubbling
	13.4.4 Automatic binding and delegation

	13.5 Summary

	14 Creating validation rules
	14.1 The Validation plugin
	14.1.1 Assigning validation rules

	14.2 Adding a validation rule
	14.2.1 Adding a pattern-matching rule
	14.2.2 Generating pattern-matching rules

	14.3 Adding a multiple-field validation rule
	14.3.1 Grouping validations
	14.3.2 Defining a multiple-field rule

	14.4 Summary

	appendix: Regular expressions
	Regular expression basics
	Regular expression syntax
	RegExp functions
	String functions
	Usage patterns
	Validation usage patterns
	Extract information
	Process multiple matches

	Summary

	glossary
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Extending jQuery-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

