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Preface
In the context of human history, computers are a fairly recent invention. But the idea
of computation—of solving a complex problem by repeated, systematic execution of a se-
ries of simple and straightforward operations—is thousands of years old. Ancient Greek,
Egyptian, and Chinese philosophers discovered many important facts about numbers and
their relationships, and developed computational methods that are still used today. In post-
Renaissance Europe, mathematicians and scientists used computational techniques to fill
books of mathematical tables. Numeric integration, carried out painstakingly by hand, was
used to calculate the future positions the Moon and planets, and the nautical almanacs pro-
duced by “human computers” were essential for navigation well into the twentieth century.

Computation is now an essential part of modern life. Every day we write mail, share
photographs, play music, read the news, and pay bills using our personal computers. Engi-
neers use computers to design cars and airplanes, meteorologists use computers to predict
the weather, pharmaceutical companies use computers to design new drugs, and invest-
ment firms use computational models to predict whether complex transactions are likely to
succeed. Modern astronomers also rely heavily on computation. Computers perform cal-
culations that track the movement of planets, asteroids, and comets, keeping an eye out
for bodies that pose a potential hazard to the Earth. Astrophysicists use computation to
investigate theories on how black holes are formed and how planets coalesce from clouds of
interstellar dust. Telescopes today gather massive amounts of data, requiring sophisticated
new methods to sift through the information and catalog objects.

Computer science is the study of computation. Given the name “computer science” one
might think the field could be characterized as “the study of computers,” but as the discus-
sion above showed, the idea of computing has been around a lot longer than there have
been machines to do the computations. In the words of one influential computer scientist,
Edsger Dijkstra (1930–2002), “computer science is no more about computers than astron-
omy is about telescopes.” Computer hardware plays a huge role, of course, since much of
the motivation for studying computer science comes from the fact that computations are
run on machines that perform a wide variety of essential tasks. For many people, a large
part of the satisfaction of working in computer science derives from the fact that abstract
ideas can be turned into programs that run on real computer systems and address important
real-world problems.

Another misconception is that computer science is the same as “programming” and com-
puter science courses are all about teaching students to write programs. Computer science is
much more than simply writing software. Computer science is a rich intellectual field where
practitioners apply a computational approach to address a wide variety of interesting and
challenging problems. Computer scientists are engaged in research in core areas of theoret-
ical computer science, computer systems design, algorithms, and programming languages,
as well as more application-oriented areas such as databases, networking, and informatics.

vii
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This book is a textbook, intended for courses that are an introduction to computer science.
The emphasis is on how computation helps people solve problems. Computer science is
a huge field, and entire books have been written about algorithms, theory, programming
languages, databases, networks, and other areas. Rather than trying to survey the entire
field and give a brief introduction to each important area, the goals in this book are to
focus on the fundamental idea of computation itself and to give readers some insight into
how computation can be used to solve a variety of interesting and important real-world
problems.

Active Learning

The distinguishing feature of this book is its active learning approach. Each chapter includes
a tutorial project that guides students as they use an interactive environment to explore
important ideas in computing by running programs, modifying them, and trying them out
on different inputs.

One of the inspirations for this approach was the active learning embodied in a role-
playing game called The Oregon Trail. Students who played this game learned about the
great westward migration of the nineteenth century by making decisions for their character
as they traveled from Missouri to Oregon in 1848, trying to manage their resources and
avoid hazards along the way. By actively engaging with the material in a virtual environ-
ment, and making decisions that would affect the outcome of the game, students gained a
much deeper appreciation of what life was like for the people who set out on that journey.
One of the factors often cited for the success of this game is that students were able to
try many different variations. Students could play the game several times, assuming sev-
eral different roles, and often seeing a different outcome, even when they made the same
decisions.

The title of this book, Explorations in Computing, conveys the idea of how we will use a
similar active learning approach to study computation. Each chapter is organized around
a single project that introduces an important concept or application in computer science.
To complete the project, students type commands in Ruby, an interactive programming lan-
guage, following a detailed script set out in the text. The aim is for the students to immerse
themselves in the interactive environment and experience first-hand what goes on inside a
computer as it solves some interesting problems. Many parts of the projects are open-ended,
and students are encouraged to continue exploring on their own, after using the exercises
in the book as a starting point.

An example of this approach is the project in a chapter on the N -body problem, where
students set up an experiment that simulates the motion of the planets in the solar system.
After running the basic exercises, which lead up to a simulation that shows the planets
moving in elliptical orbits around the Sun, students can explore on their own, to see what
happens in a chaotic system when the initial conditions change just slightly, or when the
mass of one of the planets is increased to the point where the system has two bodies the
size of the Sun. Another example is a project on the traveling salesman problem, where
students run experiments based on a genetic algorithm. After running a set of preliminary
experiments to learn how the algorithm evolves an efficient tour through random mutations,
students can run more simulations, varying the simulation parameters to see what effect
each has on the outcome.
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Intended Audience

This book was written for students who want to learn what computer science is about. It was
written with two different audiences in mind: students who intend to continue on to major
in computer science, and would like a general overview of the field, and students who have
chosen to major in a different field, but who would like to take a computer science course
as a science elective.

Although the projects in this book are set up to run in an interactive programming en-
vironment, no prior experience with programming is necessary. To complete a project,
students follow detailed instructions from the text, much like working on a tutorial to learn
how to use a new software application. By working through the projects in each chap-
ter, readers will build up a working knowledge of the concepts and terminology of Ruby
programming, but the projects do not require students to write any of their own programs.

Although students do not need programming experience, they should be proficient com-
puter users. Students who want to do the projects on their own computers will need to
install some software (explained in more detail below), so they should be comfortable with
the process of connecting to the Internet and downloading and installing applications. Sev-
eral projects also require students to create folders and navigate through a file system, and
to open, edit, and save text files.

The projects are based on a variety of different subjects, but none of the exercises assume
any detailed knowledge of the subject area. The introduction to each section should provide
the necessary background to work on the project in that chapter.

As might be expected for a science class, many projects do require a basic proficiency
in math. Students should be comfortable with logarithms, exponents, square roots, and
other basic mathematical functions. Projects do not require students to solve equations or
to work through proofs, as they would in a math course, but students should understand
what the functions are and how they are used. Students will gain a deeper appreciation for
scalability and other important concepts in computer science when they have the necessary
math background.

© Advanced Topics

Some chapters include more challenging ideas or exercises. In some cases there will be an
entire section devoted to an advanced topic, and in other cases there may be recommended
projects for students who want to learn more about a topic or do some more exploration on
their own. These sections and projects are indicated by a © symbol, to indicate material that
requires more advanced skills, like the trails marked with a “black diamond” at a downhill
ski area.

Notes for Students

You have no doubt heard the adage, “What you get out of a course depends on what you
put into it.” That saying is especially true for learning about computation with this book.
Each chapter is built around a project that helps you explore a particular problem and
ways of solving it computationally. If you work through the project and spend some time
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thinking about what your computer is doing as it runs a computation, you will be rewarded
by gaining a deeper insight into how computers can help solve a wide variety of important
problems.

A useful analogy for these projects are the lab projects that go along with an introductory
chemistry course. An instructor selects a set of concepts the students should learn and then
develops a set of lab projects to help students gain some experience and reinforce their
learning of the concepts. The materials and methods are all spelled out in great detail,
and students follow a set of well-specified steps. Those who continue on in chemistry will
later learn to design their own experiments, but for beginners everything is set up by the
instructor.

That same approach is taken here in this book. The “computational experiments” in each
chapter are tutorials that contain detailed instructions for how to start a piece of software
and then what to type in order to run the experiment. As you interact with the software
you will see how the computation unfolds. The tutorials are designed so that you should be
able to complete them in about the same amount of time you would spend on a lab project
in a chemistry class. You could run through the tutorials in less time—about as fast as you
can type, or if you get examples from web pages, as fast as you can cut and paste—but you
should take the time to make sure you understand what your computer is doing as you carry
out each step in the tutorial.

At the end of each chapter you will find a set of exercises. These are similar to the ques-
tions you would find in a more traditional textbook and are designed to test your under-
standing of the material in that chapter. If you have completed the tutorial and understood
what happened at each step along the way you should be able to answer these questions.

Notes for Instructors

This book is an introduction to computer science for premajors and nonmajors, a course
commonly called CS0 in the computer science literature. As part of a program for premajors,
the book would be a suitable text for a first course in an introductory computer science
sequence, or as part of a “great ideas” course. The book would also be a good text for a
stand-alone science elective, or for a course on computational thinking. When augmented
with programming assignments, it could also be used in a programming-first or objects-first
CS1 course.

As mentioned above, the book is organized around a set of projects that give students
an opportunity to experiment with important ideas in computer science. In most cases, the
important concepts are algorithms, and the projects are examples of how algorithms pro-
vide computational solutions to important problems. An interactive programming language
provides a “computational workbench” where students can experiment with algorithms by
typing expressions and seeing the results. The interactive language sets up an environment
where students can run computations and explore the effects of changing parameters or
modifying operations performed at key steps of the computation.

But using an interactive programming language raises a difficult issue: won’t students
have to learn to write programs? The approach taken in this book is to base the experiments
on a set of scripted tutorials. Each project in the book has a detailed set of instructions for
how to perform an experiment by loading software that has been written already. The
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expressions students enter create and manipulate objects and call methods that implement
the algorithm being studied.

The viability of the scripted tutorial approach is based on the fact that is is much easier
to learn to read existing programs than to write new ones. Anyone who has tried to learn a
foreign language knows how much easier it is to read phrases in the new language than it
is to speak or write a sentence. A similar effect applies to programming languages as well.
Beginning students can reach a surprising level of literacy by just learning a few fundamental
concepts of object-oriented programming—objects, classes, methods, variables, and control
flow—with the view that they are learning a language that is a notation for describing
algorithms. Since students are only expected to understand programs, they do not need to
learn how to design, implement, test, and debug their own code, and several messy details
covered in introductory programming courses, like scope rules, call by reference, variable
lifetimes, etc., can safely be ignored.

I chose to use Ruby for these projects for several reasons, the foremost being the inter-
active programming environment that supports experimentation. Ruby has a very clean
syntax, and for most operations it provides an intuitive notation. Ruby is open source and
is easily downloaded and installed on a wide variety of systems.

An important question was whether to try to make the book a comprehensive introduction
to the entire field of computer science, or whether to focus on fewer topics and go into them
in more depth. I chose the latter. I think the projects will be much more interesting, and
students will gain a better overall understanding of what computer science is about and
how computer scientists think about problems, if the book has a few well-chosen examples,
even if it means leaving out several important topics.

The topics presented in the book are outlined below. The general pattern for each chapter
will be to first introduce the concept presented in that chapter; this introductory section will
essentially be an essay that tries to make the case that the idea is interesting and worth un-
derstanding in more detail. The main part of the chapter will be the development, through a
series of projects, of one or more algorithms that illustrate the idea and provide the student
with a chance to experiment.

1 Introduction

The book starts with a general introduction to computation, expanding on the themes men-
tioned in the first section of this preface: computer science is not just about computers and
is not just programming.

2 The Ruby Workbench

The second chapter is a practical introduction to Ruby and how it can be used as a “com-
putational workbench” to set up experiments with computations. The tutorial takes the
students through the construction of a simple program to convert temperature from Celsius
to Fahrenheit, and introduces the ideas of variables, objects, and methods.



xii

3 The Sieve of Eratosthenes

This chapter introduces the first real algorithm studied in the book. It also introduces a few
more practical techniques used later in the book: making lists of numbers and iterating over
a list. The tutorial starts with simple expressions involving integers, shows how to make a
list of numbers, then how to selectively remove composite numbers, and leads finally to an
algorithm that creates a complete list of prime numbers.

4 A Journey of a Thousand Miles

This chapter builds on the basic idea of iteration presented in the previous chapter. The
project shows how iteration can be used to solve two common problems, searching and
sorting, using linear search and insertion sort. An important idea in computing in this
chapter is scalability, and students are introduced to O notation.

5 Divide and Conquer

The important idea in this chapter is that a more sophisticated strategy for solving a problem
can lead to a more efficient computation. The tutorial shows how binary search takes up to
log2 n steps instead of n, and merge sort takes at most n log2 n steps instead of n2.

6 When Words Collide

The new concept in this chapter is that our ability to solve a problem computationally de-
pends not only on the sequence of steps defined by an algorithm, but also on how the data
is organized. The tutorial project is based on a data structure that implements an index for a
large collection of data. Students learn about hash functions and eventually do experiments
with a hash table that resolves collisions with buckets.

7 Bit by Bit

The projects in this chapter are related to encoding data: using patterns of binary digits
to encode numbers and letters, the number of bits required to encode a set of items, text
compression with Huffman trees, and error correction with parity bits.

8 The War of the Words

This chapter introduces the important ideas that functions can also be encoded as a string
of bits and that instructions (bit patterns representing steps that implement functions) are
stored in a computer’s memory along with data. The tutorial uses the game of Corewar,
which is a contest between two programs running in the same virtual machine; a program
wins if it can write a halt instruction over the opponent’s code. The tutorial leads the student
through the phases of a processor’s fetch-decode-execute cycle and emphasizes how a word
that is a piece of data (the constant 0) for one program becomes an instruction (halt) for
the other program.
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9 Now for Something Completely Different

The big idea in this chapter is randomness, and how random numbers can be used in a
variety of algorithms, from games to scientific applications. There is an interesting paradox
here: can we really generate random outputs from an algorithm? Isn’t a method in Ruby
supposed to carry out exactly the same calculations and produce the same result each time
it is called? The answer is that random numbers generated by an algorithm are pseudoran-
dom, and the project takes students through the steps in the development and testing of a
pseudorandom number generator.

10 Ask Dr. Ruby

The tutorial project in this chapter is based on a Ruby implementation of Joseph Weizen-
baum’s ELIZA program, and shows how very simple pattern matching rules can be used to
transform input sentences, giving the illusion that the computer is carrying on a conversa-
tion. By the end of the chapter students will see how difficult natural language processing
is, and how semantics and real-world knowledge are required for effective natural language
understanding.

11 The Music of the Spheres

The big idea in this chapter is computer simulation. The project leads to an ab initio simu-
lation of the motion of planets in the solar system. The chapter introduces issues related to
verification and other topics in computer simulation.

12 The Traveling Salesman

The last chapter introduces the idea of intractable problems, building on ideas of scalability
from earlier chapters. The project is based on a genetic algorithm, and gives students the
opportunity to explore probabilistic solutions. The tutorial has students use predefined code
for Map and Tour classes to create random tours, so they can see how tours can be mutated
and how collections of tours evolve until an optimal or near-optimal solution is obtained.

Pedagogical Considerations

The chapters and projects described above have been used in a course at the University of
Oregon (CIS 170: The Science of Computing). We cover the first two chapters during the first
week, but after that we spend between one and two weeks on the remaining topics chosen
for that term. Lectures emphasize material from the first sections of a chapter, describing the
problem and how it might be solved computationally, and explaining how that week’s lab
project gives some experience with the computation. Students have an option of attending
a lab session, where an instructor is available to help them work through the material, but
many students do the tutorials on their own. Live demonstrations of the tutorial projects,
both in lecture and in lab sessions, have proved to be very effective.
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1: Introduction

2: Ruby Workbench

3: Sieve of Eratosthenes

4: Journey of a Thousand Miles

5: Divide and Conquer

6: When Words Collide

7: Bit by Bit

8: War of the Words

9: Something Completely Different

10:  Ask Dr Ruby

11: Music of the Spheres

12: Traveling Salesman

At the end of each chapter there is a set of exercises that ask questions about issues raised
in the chapter. After the students have completed the tutorial, they are asked to answer
a selected set of questions and submit them as a “lab report” that gives them a chance to
explain what they learned. Similar questions are given on exams.

When selecting topics to use in a course, Chapters 1 through 4 should be used every
term, since they introduce key concepts (algorithms, scalability) and practical lab skills (in-
stantiating objects, calling methods, creating and iterating over containers) used in other
projects. The remaining chapters are mostly independent, and can be selected according to
the interests of the students. The chapters on data representations (Bit by Bit) and machine
language programming (War of the Words) are both based on the idea of encoding informa-
tion, but students will have no trouble completing the Corewar project without having done
the data representation projects. Similarly, The Traveling Salesman uses random numbers,
but students will get a lot out of this project even if they haven’t seen how random numbers
are generated.

It is also possible to organize a course that includes additional topics and activities beyond
those described in this book. In Spring 2008, a few months before the national elections in
the U.S., we used electronic voting as a theme for CIS 170. There were additional units on
the history of elections and the need for privacy and security in voting, and the computer
science topics included networking, encryption, and software engineering, all of which play
a role in the design of electronic voting machines.

Software, Documentation, and Lab Manuals

All of the software used for the tutorial projects is written in Ruby. Students can do the
projects on computers in an instructional lab, or they can install Ruby on their own comput-
ers. Ruby is open-source, and it is a straightforward process to install the Ruby interpreter
and associated applications:

• Users of Microsoft Windows XP can download a “one-click installer” that automates
all the installation steps.
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• A single command typed in a terminal window will install Ruby on a Linux system.

• Ruby is already installed on Mac OS X 10.4 and later (although users running Mac OS
X 10.6 may have to reinstall Ruby to work on labs that have interactive visualizations).

The software students will use for the projects is named RubyLabs. RubyLabs is written
exclusively in Ruby, using only libraries and modules that are part of the standard Ruby
distribution. There is one Ruby module for each lab project. All of the modules have been
collected into a single “Ruby gem,” which makes it easy to install all the lab software in one
step at the beginning of the term. The RubyLabs gem also includes data files and sample
Ruby code that students can copy and modify.

A Lab Manual with step-by-step instructions for installing Ruby and the RubyLabs gem
is available from the book web site at http://www.cs.uoregon.edu/eic. There is a
separate version of the manual for Windows XP, Mac OS X, and Linux. The manual also
includes tips for editing programs and running commands in a terminal emulator.

The web site also has on-line documentation of all the modules in the RubyLabs gem.
After the gem has been installed, this documentation can be read locally by a web browser,
without having to connect to the Internet.

Web Site

The web site for this book is

http://www.cs.uoregon.edu/eic

The web site will have 
• copies of the lab manual (PDF documents that can be

downloaded for free)
• links to the latest versions of the RubyLabs software 

and documentation
• errata and other news

Explorations in Computing

Mac OS X Lab Manual
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Chapter 1

Introduction
In the summer of 1821, an English mathematician named Charles Babbage was working
with his friend, the astronomer John Herschel, to create a book of mathematical tables.
Before computers and calculators were available, people who needed to solve mathematical
equations would find the value of a function by searching a table in a reference book like the
one shown in Figure 1.1. These books were essential for navigators, architects, merchants,
bankers, and anyone else who used math in their profession. There were tables for interest
rates, currency conversion, liquid and dry measures, and just about any other quantity that
could be expressed with numbers. Not surprisingly, there was a strong demand for accurate
tables, and a tremendous amount of time and effort went into creating and checking values
printed in reference books.

Babbage and Herschel were working on a nautical almanac, a book of tables containing
the positions of the Moon, planets, and stars. These almanacs were used by navigators to
determine their location at sea. More than any others, these tables needed to be accurate,
as there were concerns that errors in tables could lead to longer routes than necessary, or
even shipwrecks. Babbage and Herschel would meet periodically to check the tables being
made by a group of people they had hired to work through the tedious steps required to fill
the rows. At one of their meetings, when reviewing the latest results, Babbage showed his
frustration with the large number of errors by exclaiming, “I wish to God these calculations
had been executed by steam!”

Of course Babbage wasn’t attributing any special powers to water vapor. The year 1821
was the height of the Industrial Revolution, when machines powered by steam engines
were beginning to automate tasks previously carried out by humans. Babbage was simply
using the terminology of his time to express his wish that the calculations should be done
automatically, by a machine, so the results would be more accurate and reliable.

The quote from Babbage brings up an interesting question. Steam power was helping
transform physical labor, and machines were beginning to be widely used to augment, or
even replace, human effort. But what about mental labor? What made Babbage think steam
engines could help him solve mathematical problems?

1



2 Chapter 1 Introduction

Figure 1.1: Chambers’s Mathematical Tables, New Edition, London, 1901. Before there were
computers to calculate mathematical functions, if a person wanted to know the value of a
trigonometric function, they would look in a table of sines and cosines. For example, to find the
value of cos 30◦20′, the person would find the page for 30◦, then scan down to the row for 20′

and look in the column labeled “cosine.”

The answer is that the idea of computation—solving a complex problem by repeated,
systematic execution of a series of simple and straightforward operations—was already well
established by the nineteenth century. Mathematicians had developed techniques for cal-
culating entries in tables using using only the most basic operations of arithmetic, such as
addition and subtraction, where the value in one row of the table can be determined using
values from rows filled in previously. Many tables, including the ones in the book being pre-
pared by Babbage and Herschel, were produced by groups of people who had no advanced
mathematical skills, but were hired and trained to fill in a table by doing a specific sequence
of additions and subtractions. Prior to the middle of the twentieth century, the word “com-
puter” was a job title, referring to any person who was engaged in systematic calculation of
values like those found in mathematical tables. Babbage realized that the simple operations
carried out by human computers were mechanical in nature, and he dreamed of one day
building a machine that would be able to carry out the steps in a computation automatically.

Today computation is so familiar we take it for granted. A navigator, surveyor, architect, or
anyone else who needs to know the value of a mathematical function simply enters a number
in a calculator and presses a button labeled with the name of the function. Computation is
also at the heart of computer applications that help us with common tasks that seemingly
have little or nothing to do with mathematics, such as using a word processor to write an
essay, organizing a music library, or playing recorded music.
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This is a book about computation. The focus is on the nature of computation, with the
goal of showing how executing a series of simple steps can eventually lead to the solution of
a complex problem. Computers are widely used, not just in math and science, but in every
facet of modern life. The aims of this book are to explore the computations that take place
in a wide variety of applications and to learn how this powerful idea helps people solve
interesting and important problems.

1.1 Computation

Charles Babbage was not the first person to dream of using a machine to help him with
his math. The idea of solving a complex problem by systematic execution of simple and
straightforward operations is thousands of years old. Ancient Greek, Egyptian, and Chinese
philosophers all discovered many important facts about numbers and their relationships.
These mathematicians developed methods that are still used today to determine whether
a number is prime or how to find the largest common denominator of a pair of numbers.
They also devised many different tools to help them perform their calculations; in fact the
word “calculate” comes from the Latin for “pebble,” since small stones or beads were used
in an abacus or similar device.

Many famous mathematicians in post-Renaissance Europe, including Johannes Kepler
(1571–1630), Blaise Pascal (1623–1662), and Gottfried Leibniz (1646–1716), dreamed that
one day there would be machines to carry out the steps in a computation automatically. As
Leibniz once wrote,

Astronomers surely will not have to continue to exercise the patience which is required
for computation. It is this that deters them from . . . working on hypotheses and from
discussions of observations with each other. For it is unworthy of excellent men to lose
hours like slaves in the labor of calculation which could safely be relegated to anyone
else if machines were used.

Pascal invented a mechanical calculator that was able to perform additions and subtrac-
tions of numbers up to six digits long. Leibniz designed a calculator that could also do
multiplications and divisions. These early machines were able to assist human computers,
in much the way an abacus or other device might. It wasn’t until the nineteenth century
that designs for fully automated machines started to appear. Babbage himself played a key
role. He designed a machine he called the Difference Engine, coming up with ingenious
ideas that later influenced the builders of some of the first successful mechanical computers
in the middle 1900s.

The first electronic computers were developed during World War II. Soon after the end
of the war the idea of using machines to automate the calculations in science and business
began to spread, and several companies started manufacturing computing machines. The
machines were very big and very expensive, though, and were found only in the largest
corporations, government bureaus, or university research labs. They were used for such
diverse tasks as computing the trajectories of rockets and missiles, predicting the weather,
and business data processing applications for payroll and accounting.

Fast forward fifty years, and computation has now become an essential part of modern
life. Every day we write mail, share photographs, play music, read the news, and pay bills
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using our personal computers. Engineers use computers to design cars and airplanes, phar-
maceutical companies use computers to develop new drugs, movie producers generate spe-
cial effects and in some cases entire animated films using computers, and investment firms
use computational models to decide whether complex transactions are likely to succeed.
Not surprisingly, given the role astronomy has played in the history of computing, modern
astronomers also rely heavily on computation. Organizations like the Jet Propulsion Labora-
tory use computers to carry out the calculations that track the locations of planets, asteroids,
and comets with the goal of keeping an eye out for potential threats from impacts, such as
the one involving the comet Shoemaker-Levy and Jupiter in 1994.

Computation plays a much more extensive role in modern science than the straightfor-
ward “number crunching” involved in the calculation of orbits. The phrase computational
science refers to the use of computation to help answer fundamental scientific questions.
Here the word “computational” is an adjective that describes how the science is done. Com-
putational science is, like the more traditional approaches of theoretical science and ex-
perimental science, a way of trying to solve important scientific problems. Computational
physicists use computers to study the formation of black holes, investigate theories of how
planets form, and simulate the predicted collision, three billion years from now, of our Milky
Way galaxy with Andromeda.

As we look at the wide variety of problems that are being solved with the help of com-
putation, several questions naturally arise. Do these problems have anything in common?
Is there some aspect of a problem that would lead one to believe it can be solved computa-
tionally? For that matter, what does it mean to “compute” something?

The generally accepted definition of a computation is that it is a sequence of simple,
well-defined steps that lead to the solution of a problem. The problem itself must be defined
exactly and unambiguously, and each step in the computation that solves the problem must
be described in very specific terms.

Squaring without Multiplying

You might think that to compute the value
of                  you need to know how to
multiply two numbers.  But there is an easy 
way to square a number using only additions.

The diagram at right shows how to compute
    : at the top of a piece of paper write the
first 5 odd numbers.  Add the first two, and
write the sum below them.  Then add the
next odd number to the sum computed on
the previous step.  Keep doing this until you 
have added the last odd number and at the 
end you’ll have the value of    .

This technique is known as the “method of differences.”  The Difference Engine, the 
machine designed by Charles Babbage, was designed to employ this technique to 
compute the value of any polynomial.
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Length (cm)

Stream A

Stream B

40, 39, 69, 57, 50

44, 62, 59, 58

(40 + 39 + 69 + 57 + 50) ÷ 5 = 51

Average (Mean) Length:

(44 + 62 + 59 + 58) ÷ 4 = 56

Figure 1.2: To compare the average length of fish in two different streams, an ecologist would
compute the mean length of fish seen in each stream. The mean length is defined as the sum of
lengths divided by the number of fish.

As a simple example of a computation, suppose an ecologist wants to compare the lengths
of fish found in two different streams. One way to do this is to calculate the average length
of the fish samples from each stream. To solve this problem the ecologist first needs to
specify exactly what is meant by “average” length. The most common definition is the
arithmetic mean. The steps in the computation are to add up the lengths of the fish found
in the first stream, and compute the mean by dividing the sum of lengths by the number of
fish (Figure 1.2). Next find the mean for the second stream by adding the lengths of those
fish and dividing the sum by the number of fish in that stream. This is an example of a
computation because each step (counting, addition, division) is very straightforward, and
there is a clear specification of the starting point and the end result.

Note that there is nothing in the description of computation that involves the word “com-
puter.” A computation is a process, a sequence of simple operations that leads from an initial
state to the desired final result. The process can be carried out entirely by a person, or by
a person using the help of mechanical or electronic calculators, or completely automatically
by a computer. The choice of which technology would be most effective depends on the
situation. For a very small number of fish, an ecologist could write all the numbers in a
single column on a sheet of paper, add them up, and then do the division using paper and
pencil. For a larger sample, a person would likely want to use a calculator or abacus; the
state of the device will show the running total, so that after the last length is added the final
step is to divide the total by the number of fish. For very large samples—for example, using
information in a database made by storing videotaped observations of fish passing through
a ladder next to a dam—it would be most efficient to use a computer and program it to
add the lengths and do the division. No matter what technology is used, these situations
all involve the same basic computation: in each case the average length is determined by
calculating the sum of lengths and then dividing by the number of fish. Note also that the
process of computing the mean of a set of numbers applies to other situations as well. This
same basic computation, of finding the sum of values in the set, and then dividing by the
size of the set, can be applied to (almost) any set of numbers.
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1.2 The Limits of Computation

In looking to the future, a natural question is whether the astonishing growth in the use
of computation will continue. Most people who work in fields related to computing expect
technology to continue to improve, with the components used to build computers getting
smaller, faster, cheaper, and more energy efficient. The phrase “ubiquitous computing”
refers to the prediction that computers will be so small and so inexpensive they will be
everywhere, perhaps even in the clothes we wear. With this sort of explosion in the avail-
ability of computing power, it’s natural to wonder what sorts of tasks these computers might
be asked to perform. One way to address the question is to take a closer look at some of the
areas where computers are being used today and ask whether there are any limitations on
what might be done in the future.

Often the limits to what we can do with a computer are technological barriers that could
be overcome by using a more advanced piece of hardware. In principle one could type an
essay for a literature class on a cell phone or create a full-length animated feature using a
laptop. But it would be more productive to write a paper on a computer with a mouse, a
keyboard, and a screen large enough to show a full page of text. Since each frame in an
animation is the result of hours of computing on a high-speed supercomputer, a personal
computer is not a practical choice for making an animated movie.

There are many important problems that could be solved by computers but are limited by
current technology. To take just one example, equations that model changes in weather are
very well understood by meteorologists, but the accuracy of weather predictions is currently
limited by computing power. With more powerful computer systems (and more detailed
measurement of current conditions) it may be possible to make short-term weather forecasts
with almost perfect accuracy.

In many cases, however, the limits of what a computer can do are things that cannot
be overcome by moving to a more advanced piece of hardware. These barriers might be
characterized as computational limits, since the difficulty lies in specifying how to solve
a problem computationally rather than in the hardware used to carry out the computa-
tion. Here are some problems that would be very difficult, if not impossible, to solve by a
computer:

• When we want to send a text or e-mail to someone, we need to know their contact
information. If the person is in our address book it’s trivial to look up their e-mail
address, but if we don’t know the person we’re stuck. In some cases we can do a web
search, e.g., to find the name or e-mail address at a company we want to correspond
with, but we can’t ask a computer to find the e-mail address of someone we just met
at a coffee shop.

• When using a computer to manage finances we can connect to a bank or credit card
company to download a list of transactions, and we might be able to have a pro-
gram do some calculations for different investment options, based on interest rates or
projected earnings. But we know the computer can’t choose the perfect investment
because it can’t predict which companies will succeed or future interest rates.

• A computer can help find mileage estimates for different types of cars, or admis-
sion and enrollment statistics for different colleges. But a computer can’t determine
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whether the fun of driving a flashy convertible outweighs the practicality of an all-
wheel drive station wagon, and people usually find it difficult to quantify all the at-
tributes of different colleges and universities that would allow a computer to make a
perfect decision on the best school to attend.

• It is common to talk with a computer via telephone to make a train reservation or
arrange air travel. But these “conversations” are very limited, and generally we are
restricted to one-word sentences that relate to a specific reservation. We would not get
very far if we asked the computer for general travel advice, e.g., “What’s the weather
like in Los Angeles this time of year? Should I go to Hawaii instead?”

In the previous section, a computation was defined to be a series of well-defined steps
that lead from an unambiguous starting state to an equally well-defined final result. With
this definition in hand, let’s take a closer look at the situations described above and some
other difficult problems. We will begin to see some interesting and important differences.

Ambiguous Problems

The problem of sending a message to a person we meet at a coffee shop is simply too vague
to be solved computationally. It lacks a well-defined starting point and there is no sequence
of steps a computer can carry out to solve it. It’s worth noting this is a problem that cannot
be solved by a human, either—a friend won’t be able to help any more than a computer
unless we supply a lot more information.

Some attributes students use when deciding which college to attend are well defined. The
cost of tuition, living expenses, and the average GPA and SAT scores of entering freshmen
are important factors. If these easily quantified items are the only criteria that are important,
a computation could lead to a decision of which college is best. For most people, however,
intangible qualities like geographical location and quality of life are important, and these
are hard to put into terms that could be used in a computation (Figure 1.3). People do solve
problems that involve intangibles, and it might seem like this is the sort of thing a person
could do better than a computer. But the “solutions” obtained by people aren’t like the
solutions to the problem of computing the mean length of fish: they are recommendations,
not unambiguous and reliably correct answers.

Figure 1.3: In order to use a computer
to choose a college to attend,
each attribute would have to be
well-defined and quantifiable.

SAT
sports teams

GPA

financial aid

distance to home

skiing and hiking

big city

percent admitted

pre-med program
weather
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Natural Language

It would be nice if we could open a cell phone and say “send a message to Aleah, Katie,
and Erica to see if they want to come over to study calculus.” We could then work on
something else while the phone composes a text message, sends it to our friends’ phones,
and negotiates with the other phones to find a time when everyone wants to meet. This
sort of interaction is not possible with current computers, but researchers in a field known
as artificial intelligence are trying to understand what is involved in these types of com-
munications and developing computational methods to carry them out. A human personal
assistant can accomplish this task, so this is an example of the kind of problem that hu-
mans solve but computers (currently) do not. It is an open question whether this problem
is beyond the limits of computation. It very well might be possible for some future personal
digital assistant to accomplish this task.

Intractable Problems

It’s tempting to think a computer could easily win a chess tournament by considering all
possible moves starting from a given board configuration, then examining each possible
response its opponent could make, and eventually choosing the move that leads to a certain
victory. This is an example of a problem that should be solvable by a computer. The problem
has a well-defined input (the starting configuration of a chessboard), output (configurations
where each move leaves the opponent’s king in “check”), and very specific and well-defined
set of operations (the legal moves for each chess piece).

Before we try to write a program that uses this strategy, however, we should do some back
of the envelope calculations first. The number of possible chess games has been estimated
to be more than 1043. Even if this computation were run on a supercomputer far more
powerful than the fastest computers available today, on a hypothetical machine that could
somehow compute 1 trillion (1012) alternative board combinations per second, it would
require 1043/1012 = 1031 seconds, or roughly 1021 years. To put this in perspective, the
universe is only 1013 years old. So even though this is a well-defined computation, it is one
no computer will ever complete, and in that sense it is well beyond the limits of computation.
It goes without saying that no human will ever do this computation, either. When humans

♜ ♞ ♝ ♛ ♚ ♝ ♞ ♜
♟ ♟ ♟ ♟ ♟ ♟ ♟ ♟

♘
♙ ♙ ♙ ♙ ♙ ♙ ♙ ♙
♖ ♘ ♗ ♕ ♔ ♗ ♖

Figure 1.4: If a computer tries to analyze every
possible sequence of moves in response to
this opening in a game of chess, it will have
to consider over 1043 different games.
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and computers play chess successfully they are using other strategies than simple “brute
force” exploration of all possible moves.

Computer scientists refer to this sort of problem as intractable. Small portions of the
problem, such as different opening strategies or endgames, can be analyzed by considering
every option, but evaluating every move in a full game is beyond reach. Chapter 12 explores
another intractable problem, one that is often faced by organizations that need to do a
substantial amount of scheduling or planning.

© Unsolvable Problems

Mathematicians in the 1930s made a startling discovery that some problems are simply
unsolvable. In logic, these problems are called undecidable. The group of unsolvable prob-
lems includes determining whether paradoxes, like the familiar statement “this sentence is
false,” are true or false. The statement can’t be true, because that would imply it is false,
and likewise it can’t be false, because that would make it a true statement about itself. In
mathematical terms it is simply undecidable.

The computer science equivalent of the undecidable functions are called noncomputable
problems. The most well-known, the Halting Problem, asks whether it is possible to exam-
ine a running program and decide whether that program will ever terminate. Imagine a
situation where a an application is running on a laptop, and an icon appears on the screen
that says the program is busy, so it will not respond to any keystrokes or mouse clicks.
After five minutes we might start to
wonder whether the application is pro-
gressing very slowly or has crashed. It
would be nice to be able to run another
program that would examine the first
one and say “be patient, it will termi-
nate” or “it crashed, you need to kill it
and restart it.” A fundamental result
in theoretical computer science tells us
that this problem is logically equivalent
to an undecidable function and that
it is impossible to write such a “halt-
checking” program.

Unsolvability is a different type
of limitation than intractability, the
limitation encountered by the chess-
playing program. The chess player will
compute the perfect game of chess if
we are patient enough to wait 1021

years, so it is only unsolvable in a prac-
tical sense. The halt-checker requires
us to evaluate an undecidable function,
so it is beyond the limits of computa-
tion in that we know it is impossible to
write a general purpose program that could carry out a sequence of steps that will let it
determine whether another program will terminate.

www.allitebooks.com

http://www.allitebooks.org


10 Chapter 1 Introduction

1.3 Algorithms

Let’s return to the simple example of a computation presented in Section 1.1, where an
ecologist wants to know the average length of fish observed in a stream. We now know
what the computation involves: sum up the lengths and divide by the number of fish. The
next question is, how do we describe the computation in sufficient detail so the steps can be
carried out by a machine?

First consider how the ecologist might enlist the aid of a human research assistant. If
the assistant has taken a statistics class, the ecologist can just give the assistant the data
and expect them to compute the mean lengths. But if the assistant does not know how to
compute a mean, the ecologist needs to describe the operation in detail: write the list of
numbers on a piece of paper, and then cross them off one by one as they are added to a
running sum, and after adding the last piece of data, divide by the number of fish.

A detailed description of how to solve a problem by first specifying the precise starting
conditions and then how to follow a set of simple steps that lead to the final solution is
known as an algorithm. An algorithm is characterized by

• a precise statement of the starting conditions, which are the inputs to the algorithm;

• a specification of the final state of the algorithm, which is used to decide when the
algorithm will terminate;

• a detailed description of the individual steps, each of which is a simple and straight-
forward operation that will help move the algorithm toward its final state.

In short, an algorithm is a specification for how to carry out a computation. Although the
word “algorithm” can be used to refer to any method for systematically solving a problem,
and algorithms were widely used long before anyone thought of building a machine to
perform the steps in a computation, today the term generally refers to a method that will be
carried out automatically by a computer.

In the description of an algorithm, the steps have to be simple enough to be “understood”
by a machine. One way to think of what a machine is capable of doing is to think in terms
of symbols, such as numbers or letters. The steps in an algorithm are basically symbol ma-
nipulations like simple arithmetic operations or comparisons that determine which words

A Brief History of Algorithms

The world algorithm comes from the name of a Persian mathematician, Mohammed 
ibn Mûsâ al-Khwârizmî (ca. 780–850), whose book on the use of Indian numerals 
introduced Europeans to the numeral 0.  The book was translated into Latin with the 
title Algoritmi de numero Indorum (“al-Khwârizmî Concerning the Hindu Art of 
Reckoning”).

The earliest algorithm, now known as Euclid’s Algorithm, dates from at least 300 BC. 
This algorithm is still used today to find the lowest common denominator of two 
numbers.  Other ancient algorithms include the Sieve of Eratosthenes, a method for 
making lists of prime numbers (and the basis for one of the projects in this book), and 
methods used by Sun Tzu and other Chinese mathematicians around AD 200.
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Enter 0 on a calculator

• Use the calculator to add the first item 
on the list

Let N be the number of items in the list

Repeat until the list is empty:

• Cross off the first item on the list

The output is the value shown on the 
calculator divided by N

Write the input data as a list of numbers
(a) (b)

40, 39, 69, 57, 50

(c)

(d)

40, 39, 69, 57, 50

40, 39, 69, 57, 50

0

40

255

Figure 1.5: (a) An algorithm for computing the mean of a set of numbers. (b) The initial state of the
computation defined by this algorithm, after entering a 0 into a calculator and writing the input
data on a sheet of paper. (c) The state of the computation after adding the first number and
crossing it off the list. (d) After the last number has been removed from the list, the calculator
holds the sum of all the numbers. For this data set, the mean is 51, the result of dividing 255 by 5.

come before others in the alphabet. By putting together a large number of simple sym-
bolic operations, a machine can do very complex tasks, such as sorting long lists of names,
counting millions of votes cast in an election, or using words to build an index of web pages
gathered from the Internet.

As an example of how a task can be described as a sequence of symbol manipulations,
the process followed by the research assistant to compute the mean length of a group of
fish is shown in Figure 1.5. On the left is the algorithm, showing what needs to be done at
each step. Three different stages of the computation are shown on the right. To initialize
the computation, the number 0 is entered into a calculator, and all the values in the data
set are written out on a sheet of paper. Each time the assistant removes a number from the
list, it is added to the running total on the calculator and crossed off the list. By the time
the last number has been crossed off, the value displayed on the calculator is the sum of all
the lengths. Each step in the algorithm is a symbol manipulation, where the list becomes
shorter by one item and the sum has been updated through simple arithmetic operations
(which could easily be done by hand as well as a calculator). The final output is a single
number, again the result of a simple arithmetic operation, in this case a division.

Often the descriptions of the steps of an algorithm are given in English or another human
language, as in the algorithm for computing the mean value of a set of numbers shown in
Figure 1.5. This notation, which is sometimes called pseudocode, is sufficient for talking
about the algorithm, for describing the process to another person, or for trying to understand
whether or not the algorithm works. But in order to run the algorithm on a computer, the
steps have to be written more precisely as statements in a programming language. If the
ecologists find they are spending too much of their time computing means by hand, they
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might decide to invest some time in implementing their algorithm in the form of a program
and running it on their computer.

The idea that one can solve a problem through the use of an algorithm is the central
concept in computer science. Computer scientists analyze the theoretical properties of al-
gorithms, develop programming languages used to implement algorithms, and design com-
puter systems to automatically execute the steps in algorithms. As technology opens the
doors for new applications, computer scientists work with researchers in other fields to
find ways to solve important real-world problems, either by inventing new algorithms or
improving and adapting existing algorithms.

1.4 A Laboratory for Computational Experiments

The main goals for this book are to focus on the fundamental idea of computation and to
show readers how computation can be used to solve some interesting and important real-
world problems. A typical chapter will introduce a problem, explain why it is important,
and give an overview of one or more algorithms that have been used to solve the problem.

The heart of each chapter is a tutorial project that has been designed to explore the
algorithms described in that chapter. The tutorials in this book are comparable to projects
in an introductory chemistry lab for nonmajors. Chemistry instructors for these courses
design the projects by selecting materials and methods that are accessible to beginners,
and students follow detailed instructions to carry out experiments that help them learn
fundamental concepts about chemical processes. The computational projects in this book
are similar: the programs and data have been prepared ahead of time, and we will work
through the tutorial project to gain some insight into how an algorithm works by watching
it run and experimenting with it.

The laboratory for these computational experiments can be any small desktop or laptop
computer. The software we will use is an interactive environment based on a programming
language named Ruby. An interactive language works much like a calculator: users type
in expressions, and the system performs a calculation and prints a result. We will start by
becoming familiar with the building blocks provided by Ruby. We will then work on projects
by putting the pieces together in interesting ways to carry out experiments on a wide variety
of algorithms.

In the jargon of computer programming, Ruby belongs to the family of programming
languages known as object-oriented languages. These languages use the word “object”
not only to refer to pieces of data, such as numbers and text, but also to collections of data,
such as lists of numbers, and to things like functions and rules that can be applied to other
objects. In each chapter we will be using Ruby as our computational laboratory, setting up a
small virtual world were we create objects and carry out operations designed to experiment
with algorithms related to the main topic of that chapter.

Here are some examples of how an interactive environment based on an object-oriented
programming language can be used to set up and carry out experiments with computations:

• The first nontrivial algorithm presented in this book is the Sieve of Eratosthenes, a
very old algorithm that has been used since the time of the ancient Greeks to make
lists of prime numbers. The name of the algorithm is a hint to the basic idea: create
a list of numbers, and then sift out those that are not prime. It is easy to set up a
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Figure 1.6: The project in
Chapter 11 (The Music of the
Spheres) uses Ruby objects
on our “computational
workbench” to simulate the
motions of the planets as
they orbit the Sun. This
picture is a snapshot of the
interactive visualization
displayed by Ruby during the
simulation.

straightforward program that repeatedly works its way through the list. After exper-
imenting with the method, we will find that it is not necessary to do as many sifting
operations as one might think, and the insight we gain from the initial experiments
will be used to implement a more elegant version that does the minimal amount of
work.

• One of the early milestones in artificial intelligence was a program named ELIZA, which
gave the appearance of carrying out a conversation by playing the role of a psychia-
trist. A user would type a sentence on a computer terminal, and ELIZA would respond.
For example, if a person typed “I don’t like computers” the program might print “Do
computers worry you?” What was fascinating about ELIZA was how well it seemed
to participate in a conversation, in spite of the fact that it only did very simple syn-
tactic transformations on input sentences. For this project, we will create objects that
represent the transformation rules and run experiments that apply the rules to test
sentences.

• In a modern-day version of the computations supervised by Babbage and Herschel, we
will use Ruby to simulate the motions of the planets as they orbit the Sun (Figure 1.6).
The Sun and each of the planets will be represented as Ruby objects. We will see
how to run the simulation and watch the motions of the planets in an interactive
visualization. We will also be able to change the simulation parameters, for example,
to see what would happen if there were two large objects the size of the Sun.
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• A classic problem from the world of mathematics, known as the Traveling Salesman
Problem, has the same basic structure as several important real-world problems that
require efficient schedules. We will use what is known as a “genetic algorithm” to
experiment with one way of solving the Traveling Salesman Problem. Each object
in this project will represent a complete tour. We will create a set of tours and put
them in a “virtual Petri dish,” then sit back and watch as the tours mutate and evolve,
eventually giving rise to an efficient solution to the problem.

The important point to keep in mind when working through these projects is that Ruby,
like any programming language, is simply a notation for describing an algorithm. Any time
one learns a foreign language there are myriad details to deal with, and that is certainly the
case with a programming language. At times it will seem like this book is more concerned
with teaching the ins and outs of Ruby programming than it is with the ideas of computation.
But remember the goal here is “literacy.” Readers will need to learn this new notation well
enough to understand the basic steps of an algorithm, but will not have to memorize all the
details that would be required to write their own new programs. Anyone who has ever tried
to learn a foreign language knows it is easier to read sentences in a new language than it is
to write a sentence. A similar thing will happen with Ruby. After a bit of practice it will be
possible to understand the basic steps of an algorithm when they are written as statements
in Ruby, even though it might be difficult to write a new Ruby program from scratch.

The reason we are using Ruby is that there is a tremendous benefit from using a real
programming language as the notation for describing an algorithm. After an algorithm has
been implemented in the form of a program, we can run it on a computer: we can apply it
to different inputs, modify it, extend it, and carry out any number of experiments that will
help lead to a deeper understanding of the algorithm.

Important Concepts Introduced in This Chapter

computation A sequence of simple, well-defined steps carried out to solve
a problem

algorithm A description of how to solve a problem computationally; an
algorithm includes a precise statement of the problem (the
input), the desired solution (the output), and the order in
which the steps will be executed during the computation

limitations A problem might not be solvable by computation because it
is ambiguous, it requires too many steps to complete, or it is
mathematically impossible



1.4 A Laboratory for Computational Experiments 15

To Learn More

There are several good books on the history of computing. Three that provided much of the historical
background for this chapter are:

• The Computer from Pascal to von Neumann was written by Herman H. Goldstine, one of the pio-
neers of the field who worked with John von Neumann on one of the first electronic computers.

• When Computers Were Human, by David Alan Grier, tells the story behind several large scale
computing projects in the days before computing machines.

• The Difference Engine: Charles Babbage and the Quest to Build the First Computer, by Doron
Swade, describes the nautical almanac project supervised by Babbage and Herschel.

The Computer History Museum (http://www.computerhistory.org) has a variety of materials on early
computers, including an on-line exhibit of Babbage’s Difference Engine with a video of a complete
reproduction of the machine in action.

Two books that provide introductions to the ideas of logical paradoxes and mathematically unsolvable
problems are:

• Gödel, Escher, Bach: An Eternal Golden Braid, by Douglas Hofstadter, shows how the “self-
referential” nature of the statement “this sentence is false” also appears in drawings by M.
C. Escher and the music of J. S. Bach.

• Logicomix: An Epic Search for Truth, by Apostolos Doxiadis and Christos H. Papadimitriou, is a
graphic novel that tells the story of Bertrand Russell, an English philosopher and mathematician
whose work paved the way toward the discovery of unsolvable problems in the 1930s.

Exercises

1. What are some of the tasks you use a computer for? What are some of the limitations of how
well the computer carries out these tasks? Explain some of the technological limitations you
encounter, e.g., how you could do a better job if you used a more powerful machine. Are there
computational limits, i.e., aspects of the problem that make it difficult or impossible to define
an algorithm for part of the task?

2. Below is a list of fields where computers have been used. In some cases computers are well
established, and people who work in that area rely heavily on computation, but in other cases
the use of computers is still very tentative. Pick an area that interests you and write a short
paper on how computers help solve problems in that area. Start by writing down some initial
impressions and then do some research on the Internet to see what progress is being made by
computer scientists and their colleagues from the problem domain. Questions to ask yourself
as you do your research might include “What are the barriers to the use of computers in this
field? Are those limits technological or computational? What are some of the social impacts
and ethical issues arising from the use of computers in this area?”

a) Medicine: Does your doctor use a computer in his or her practice? Can computers diag-
nose illnesses or prescribe medicines?

b) Pharmacology: What is “rational drug design”? What role does computation play in the
development of new drug treatments?

c) Engineering: What role do computers play in the design and construction of new cars?
airplanes? bridges? How has computing changed the way engineers work?

d) Architecture: How are computers used to plan new buildings? How do they help architects
come up with energy-efficient designs?
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e) Meteorology: Are computer models being used to generate weather forecasts? Do they
track hurricanes and other storms? How well do these models predict weather 24, 48, or
96 hours in advance?

f) Art and Entertainment: How have computers had an effect on music, video, or other
artistic endeavors?

g) Libraries: What impacts are computers having on your school library or local community
public library?

h) Banking and Finance: Do you do your banking on-line? Do you purchase and pay for any
items using the Internet? What is the field of “computational finance” about?

i) Journalism: How does your local paper or school paper use computer technology? How
are blogs and social networking sites changing journalism?

j) Government: What role does computer and information technology play in local govern-
ment in your area? Do you live in a place where electronic voting technology is used?

3. Which of the following methods for finding a book at a library could be considered an algo-
rithm? In each case you can assume you have a precise specification of the book you want to
find, i.e., you know the title, author, and date of publication, and you also know the library
owns the book. The desired outcome of your search is that you either find the book or you
learn the book has been checked out. Which of the following methods provide an effective set
of steps for obtaining the book?

a) Walk up to the first person you see, ask them where the book is.

b) Find a librarian, ask them where the book is.

c) Wait by the book return until the book you want is returned.

d) Use an electronic catalog to find where the book is shelved, then use a map to find the
shelf.

e) Start at the shelf nearest the door, then look systematically, shelf by shelf, through all
shelves in the library.

f) Pick a shelf at random, see if your book is there; if not, pick another shelf at random and
repeat.

g) Recruit ten friends; divide the library into ten regions; assign each friend to a different
region; ask them to search every shelf in their region and report back to you.

4. If you’re a college football fan, you know that “computer polls” are used to rank teams at the
end of the season based on the scores of the games played earlier in the year. There are often
major differences between the rankings, so organizations that rate teams often throw out the
highest and lowest computer rankings and take the average of the rest. Based on what you now
know about algorithms, can you explain why different computers would give different rankings
when they all use the same set of scores?

5. Use a spreadsheet to make a table of squares of numbers using only addition, following the
method shown in the sidebar on page 4. Start by putting the number 1 in cells A1 and B1. Then
use the “fill down” command to tell the spreadsheet that new values in column A should be the
result of adding 2 to the value above; after you do this, the value in row i, column A should be
the ith odd number. Next fill each cell in column B with the sum of the value in the cell to the
left and the cell above, as shown in the picture on the next page. Is the value in row i, column
B the value of i2?
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6. Suppose you need to make a table of squares of numbers, using the same technique as the
previous problem, but you don’t have a spreadsheet application on your computer. Can you
describe the method for computing n2 in enough detail that a friend can make the table? Use a
format similar to that in Figure 1.5 to describe the input and the sequence of operations.





Chapter 2

The Ruby Workbench
Introducing Ruby and the RubyLabs environment for computational
experiments

This chapter is a brief introduction to Ruby, the programming language we will use for the
projects in the rest of the book. The tutorial project for this chapter is a simple program
to convert temperature values from Fahrenheit to Celsius. The algorithm is trivial—the
temperature conversion only requires Ruby to compute the value of a single equation—but
going through the steps of implementing the program in Ruby is a good way to learn about
the language and how we can use it for computational experiments. Once we get through
the basics of how to set up and run experiments with Ruby we’ll be ready to tackle the more
challenging projects in later chapters.

Lab Manual

The instructions for setting up a “computational workbench” 
on your computer are in a Lab Manual that can be
downloaded from the Explorations in Computing web site: 

http://www.cs.uoregon.edu/eic

There are versions of the manual for Microsoft Windows, 
Linux, and Mac OS X.  Each has detailed instructions for
installing and running the software you will use for the 
tutorial projects.

Explorations in Computing

Mac OS X Lab Manual

19
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2.1 Interactive Ruby

A simple application for converting temperatures from Fahrenheit to Celsius is shown in
Figure 2.1. The program has a window with two places (usually called “text boxes”) for
entering numbers. To convert 80◦F to Celsius, the user types the number 80 in the Fahren-
heit box. Then, when the button is clicked, the program will read the number from the
Fahrenheit box, do the conversion, and display the result in the Celsius box.

More complicated programs might have more controls. For example, the application could
have a menu to let the user select degrees Kelvin or some other scale, or a slider to control
the number of digits of accuracy for the output. The parts of a program that get input data
and present results define the program’s user interface. Most programs that run on laptops
or small desktop machines have a graphical user interface, or GUI, that consists of a set of
windows, menus, buttons, and other controls.

If we try to use a graphical interface for the projects in this book we will encounter
two problems. The first is that there would have to be a new interface for each project.
In Chapter 10, the project is based on a program that carries on a conversation with the
computer, so we will need a way to enter sentences and view the computer’s responses. The
experiments with the solar system simulation in Chapter 11 require a panel for 2D graphics
to show the motion of the planets and controls to start and stop the simulation. A different
interface for each project would force us to learn a new set of controls for each experiment.

A more serious drawback is that by its very nature a GUI tries to hide all the details of
what happens inside a computer as a program is running. Users don’t want to see what’s
going on inside the application when they click a button or select a menu item, they just
want the computer to perform some function. For the projects in this book, however, we are
interested in the computations that go on behind the scenes. We want to be able to monitor
the progress being made by an algorithm as a computation progresses.

We can solve both of these problems by adopting an older style of interacting with a
computer. Before mice and other pointing devices, and before large high definition color
monitors, most computers were connected to a teletype or an electric typewriter. Users
typed a command on the keyboard, to tell the computer what to do, and any output from
the command was printed on paper. Teletypes and typewriters were later replaced by video
display terminals (Figure 2.2), but the method for interacting with the computer remained
the same: users typed commands, and the computer displayed results.

Figure 2.1: A graphical user interface,
or GUI, for a program that
converts temperature values.
Users enter a number in one text
box and click the button. The
application will convert the
temperature and display the
result in the other box.
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Figure 2.2: Video display
terminals, like these
from Tektronix, allowed
users to type commands
on a keyboard and see
the output on the
display.

© Tektronix, Inc.  All rights reserved.  Used with permission.

This style of interacting with a computer is known as a command line interface. On
a modern computer, we can run software that has a command line interface by using an
application called a terminal emulator. The application displays a single window on the
computer’s screen. When the terminal emulator is active, it acts just like an old-fashioned
video terminal. Users type a command, and any output generated when the computer
executes the command is displayed in the window.

A terminal emulator with its command line interface is just what we need for our “com-
putational workbench.” At the beginning of a project we will type commands that run small
parts of a computation. Then we will combine the pieces, and we will have Ruby display
information in the terminal window so we can watch the complete algorithm in action. With
this sort of control over the Ruby programs, will be able to make small changes to see what
effect they have, or to run the algorithms several times, with different inputs each time. For
the tutorial project in this chapter, we will start by typing simple arithmetic expressions to
see how to do arithmetic with Ruby. By the end of the project we will be able to convert
temperatures from Fahrenheit to Celsius by entering a single Ruby statement (Figure 2.3).

Figure 2.3: A terminal emulator
application allows us to run
software with a command line
interface. The first line shown
here asks Ruby to compute the
Celsius equivalent of 80◦, and the
second line is the output.
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The system we use to run Ruby is called Interactive Ruby, often abbreviated IRB. When
IRB is ready for us to type a Ruby statement, it displays a prompt in the terminal emulator
window. IRB’s prompt is two greater than signs, so this is what you will see in your terminal
window as soon as IRB is waiting for your input:

>>

Using an interactive programming language is similar to using a calculator, where we en-
ter an equation and the computer displays the result. With IRB, we type a statement in Ruby,
which could be a command to load some software, or a request to evaluate an arithmetic
expression, or a number of other operations. Ruby will then execute the statement, and any
output generated will be displayed in the terminal window.

To have Ruby evaluate an arithmetic expression, simply enter the expression in the ter-
minal emulator window and hit the return key. Ruby will print => and the value of the
expression. For example, to ask IRB to print the sum of 5 and 6, just type 5 + 6, hit return,
and IRB will print the result. This is what you will see in the terminal emulator window:

>> 5 + 6
=> 11

Expressions with addition and subtraction use the familiar plus and minus signs. The
people who designed the first programming languages had to choose symbols that were on
the keyboards available at that time, and the conventions they chose are still used today.
Ruby and other programming languages use an asterisk as the symbol for multiplication and
a slash (/) for division:

>> 5 * 10
=> 50

>> 6 / 3
=> 2

A Note about Displayed Text

In this book interactions with Ruby are typeset in what is known as a fixed-width or 
“typewriter” font.  

Tutorial projects will have Ruby statements you should type into your terminal 
emulator application.  Right below the statement you will see the expected output 
from Ruby.  To help distinguish between text you type and responses from Ruby, 
everything you type will be shown in slanted blue letters, and everything printed by 
Ruby will be shown in black.  For example, in the temperature conversion project, you 
will type an expression to ask Ruby to convert 212°F to Celsius:

  >> celsius(212)
  => 100

The >> on the first line is the prompt from IRB.  The string following that is the 
expression you type to ask Ruby to calculate the temperature conversion.  The text on 
the second line is what Ruby is expected to print as the output of the program.
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Interactive Ruby on Your Computer

Instructions for starting a terminal
emulator application and running 
Interactive Ruby (IRB) vary from one 
operating system to another.  

The Lab Manual that accompanies 
this book has detailed instructions
for Windows XP, Linux, and
Mac OS X.

In Ruby terminology the arithmetic symbols such as + and * are known as operators,
and the numbers are operands. Ruby has several other operators, but we will postpone our
discussion of these other symbols and what they mean until we need them for a project.

When an expression has more than one operator, Ruby applies the operators according to
their precedence. Since multiplication should be performed before addition, the result of
3 + 4× 5 is 23:

>> 3 + 4 * 5
=> 23

If we want Ruby to evaluate the operations in a different order we can use parentheses:

>> (3 + 4) * 5
=> 35

At the end of the session just type quit and IRB will exit:

>> quit

Tutorial Project

The first step in the tutorial project for this chapter is to make sure you can start the Interactive Ruby
application. Open up a terminal window and start IRB (detailed instructions specific to your type of
operating system can be found in the Lab Manual). Once you have started IRB and see the >> prompt
in your terminal emulator window you are ready to start the tutorial project.

T1. Type a simple expression, e.g., 13 + 2 and hit the return key. Ruby should print the result:
>> 13 + 2
=> 15

T2. Try some simple expressions involving other operators:
>> 6 - 3
=> 3

>> 3 * 7
=> 21

>> 8 / 4
=> 2
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T3. Try some expressions with and without parentheses:
>> 3 + 4 * 5
=> 23

>> (3 + 4) * 5
=> 35

>> 8 - 4 / 2
=> 6

>> (8 - 4) / 2
=> 2

Make sure you understand the output in each of these examples. Is Ruby printing what you
expected?

T4. Does Ruby care if you include spaces in the middle of your expressions? For example, do you
get the same result when you type 3+4 with no spaces as you get when you type 3 + 4 with
spaces before and after the plus sign?

T5. What happens if you leave out an operand, e.g., if you type 3 + * 5 instead of 3 + 4 * 5?

T6. Type an expression that mistakenly uses a symbol instead of a number, e.g., 3 + x:
>> 3 + x
NameError: undefined local variable or method ‘x’ for main:Object

The error message has some unfamiliar terminology, but at this point you can glean some
information: the message has the word “undefined,” and “x” is enclosed in quotes, so there’s
a good chance Ruby was complaining about the x in that expression. We’ll see what “method”
and “object” mean later in this chapter.

In grade school you might have learned a mnemonic like “my dear aunt sally” to remember the prece-
dence of arithmetic operators (multiplication, division, addition, subtraction). Ruby and other pro-
gramming languages have a slightly different rule: multiplication and division have the same prece-
dence, as do addition and subtraction. If an expression has two operators with the same precedence,
the one on the left is applied first.

T7. Evaluate the following expressions with IRB to see how Ruby applies these precedence rules:
6 / 3 * 4

8 * 3 / 4

5 - 4 + 2

Would any of these expressions have a different value using the “dear aunt sally” rules?

2.2 Numbers

All of the expressions in the previous section involved integers, i.e., whole numbers with no
fractional parts. We can write expressions that use real numbers as well. The general rule is
that if we want Ruby to treat a number as a real number we have to include a decimal point
when we write the number.

To be more precise, in programming languages, a number like 5.0 is a floating point
number, not a real number. Real numbers are bothersome things like 1/3 and

√
2 that have

an infinite number of digits. Because numbers are stored in a finite amount of space inside a
computer, we have to use an approximate value. Floating point numbers are approximations
of real numbers, usually accurate to around 12 digits.
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The distinction between integers and floating point numbers can be important. Consider
what happens if we ask Ruby to divide 10 by 3. If we have Ruby do the operation using
integers this is what we get:

>> 10 / 3
=> 3

Ruby printed 3 because the two operands are integers, and the result is the largest inte-
ger below the actual result of 3.3333 . . . If we do the same calculation using floating point
numbers, the result is more accurate:

>> 10.0 / 3.0
=> 3.33333333333333

An important thing to remember is that when Ruby does arithmetic with integers, it does
not round off to the nearest integer, it truncates, as shown in this example:

>> 5.0 / 3.0
=> 1.66666666666667

>> 5 / 3
=> 1

The equation for converting Fahrenheit to Celsius is C = (F − 32) × 5/9. We can use
Ruby to help us convert 80◦F to Celsius by typing the expression in IRB:

>> (80 - 32) * 5 / 9
=> 26

Note that all the numbers in this example are integers and that Ruby prints an integer result.
A more precise result (which you would get if you used a temperature conversion program
on the Internet or if you retype the expression using floating point values) is 26.67◦C.

It may seem at this point like Ruby is being rather “pedantic” in the way it forces us
to write 80.0 instead of 80 if we want a more accurate conversion. Why can’t it simply
recognize that we want the result to be 26.67 and not simply 26? The answer is that Ruby
cannot always figure out what we are looking for and give us the result in a format we
might prefer. There may be other situations where the integer value is in fact the correct
value, even if it is truncated and not rounded. We will see many examples of algorithms

Floating Point Numbers

The term “floating point” comes from the fact that the 
internal representation of these numbers is based on 
scientific notation.  The number 141.42 is stored 
internally as something like 1.4142 × 102.  

This format makes it easier to represent very large 
numbers (1.4142 × 1023) or very small numbers 
(1.1412 × 10-10) by letting the decimal point “float” 
to the left or right as the exponent changes.

141.421.4142

Multiplying by 100 shifts the 
decimal point two places

to the right
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throughout the book that rely on the fact that operands and results are all integers. So the
bottom line is that we need to be aware of the fact that algorithms rely on two basic types of
numbers, integers and floating point, and be careful to specify the correct types of operands
when we enter expressions.

Tutorial Project

T8. Use IRB to evaluate a simple expression such as 3 * 5 where both operands are integers:
>> 3 * 5
=> 15

T9. Repeat the previous expression, but use floating point numbers:
>> 3.0 * 5.0
=> 15.0

T10. Use Ruby to evaluate the expression that converts 100◦F to Celsius:
>> (100 - 32) * 5 / 9
=> 37

Is this result what you expected, given the rules Ruby uses for evaluating arithmetic expres-
sions? Is it an accurate calculation of the temperature in Celsius? (To answer this second
question you can use a calculator that has temperature conversions built in, or use a program
from the Internet to do the conversion.)

T11. Repeat the previous exercise, using Ruby to convert these temperature values to Celsius:
90◦F, 70◦F, 212◦F, 32◦F.

T12. The formula for converting from Celsius to Fahrenheit is F = C× 9/5 + 32. Use this formula
to convert the following temperatures to Fahrenheit: 0◦C, 10◦C, 20◦C, 30◦C, 100◦C.

You now have enough experience with numbers in Ruby to complete the tutorial project in the re-
maining sections of this chapter, and you can skip ahead to the next section. The problems below look
at expressions involving numbers in a little more depth, and are recommended if you will be doing
any of the optional projects later in the book.

The first question: What happens if you try to mix integers and floating point numbers in an expres-
sion?

© Ask Ruby to evaluate 3.0 * 5.

© Next ask it to evaluate 3 * 5.0.

© Do you get an error message? If not, is the result an integer or a floating point value?

© Try a few more expressions that mix integers and floating point, e.g., (80 - 32) * 5 / 9

or (80 - 32) * 5.0 / 9.

What Ruby did for these cases turns out to be a general rule: if Ruby is asked to apply an operation
where one of the operands is an integer value, the integer is “promoted” to floating point, and then
the operation is applied, generating a floating point result.

The next set of questions explore what can happen if we rearrange the order of evaluation in the
temperature conversion equation.

© One way of describing the method for converting Fahrenheit to Celsius is “subtract 32 and
multiply by 5/9.” If we follow this prescription exactly, we should tell Ruby to compute the
difference and then multiply it by 5/9: (80 - 32) * (5 / 9). Note how the parentheses
are needed to tell Ruby to calculate 5/9. What happens if you type that expression into IRB?
Can you explain what went wrong?
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© Whenever you find yourself in a situation where Ruby is not evaluating a complicated ex-
pression the way you think it should, the best way to figure out what is happening is to break
the complicated expression into smaller parts. The two parts of this expression are the subex-
pressions inside parentheses. What does Ruby produce for 80 - 32? How about 5 / 9?
Does this help explain how Ruby evaluated (80 - 32) * (5 / 9)?

© We can fix this problem by using floating point values instead of integers. What is the result
of 5.0 / 9.0? What is (80 - 32) * (5.0 / 9.0)?

2.3 Variables

Suppose we want to calculate the area of a countertop shaped like the one shown in Fig-
ure 2.4a. The counter is a square with one corner missing, and the sides of the missing
triangular piece are half as big as the edge of the square. Figure 2.4b shows one strategy for
computing the area. Since it’s straightforward to calculate the area of a square and the area
of a right triangle, we can figure out the size of the countertop by subtracting the area of
the missing triangle from the area of the square. The formula for the area of the countertop
is thus x2 − (x/2)2/2, where x is the length of one edge of the square.

To use Ruby to compute the area, the first step is to calculate x2, the area of the square.
If the length of the edge is 109 cm, we just have to type this expression:

>> 109 * 109
=> 11881

A slightly simpler form uses Ruby’s exponentiation operator, which is written with two as-
terisks in a row, so 1092 is written this way:

>> 109 ** 2
=> 11881

= -

x

x/2

(a)

(b)

Figure 2.4: (a) A countertop with a corner cut out.
Each edge of the missing triangle is half as big
as the edge of the square. (b) The area of the
counter is the area of the square minus the area
of the triangle.
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Layout Rules, Part I: Expressions

Ruby has very few hard and fast rules for
how expressions can be written when we 
type them in IRB.  We are allowed to use 
spaces almost anywhere we like.  

Figuring out where to put spaces in an
expression is mostly a matter of personal
preference.  Often a statement with a
single operator is easier to read if there
are spaces around the operator.

When an expression has several operators,
it may be easier to understand if higher
precedence operators are written without
spaces.

  >> x**2
  => 9

  >> x ** 2
  => 9

  >> x ** 2 + y ** 2
  => 25

  >> x**2 + y**2
  => 25

spaces here 
make it easier to 
see the operator

emphasize the 
fact that ** has a 
high precedence

Similarly, we can calculate the area of the missing triangular piece, which is (x/2)2/2:

>> ((109 / 2) ** 2) / 2
=> 1458

If we want to do the calculation in a single expression, we can put the two pieces together
into one Ruby statement:

>> (109 ** 2) - (((109 / 2) ** 2) / 2)
=> 10423

This final expression is accurate, but it is rather complicated, which makes it hard to type
correctly. It would be very easy to leave out a parenthesis, or enter 190 instead of 109, or
type a single asterisk instead of a double asterisk. Complicated expressions are not only
difficult to type, they are hard to read, and it takes much more effort to try to track down
problems.

As a first step in simplifying this expression, we can use a variable to stand for the length
of the edge. To introduce a variable named x to stand for the width of the countertop, we
simply type

>> x = 109
=> 109

An expression like this is known as an assignment statement. An assignment has a variable
name, an equal sign, and the value we want the variable to represent. Ruby printed 109
because an assignment statement is an expression, just like the other expressions we have
been entering, and IRB always prints the value of any expression typed into the terminal
window. Here is the expression that computes the area of the countertop, rewritten to use
the new variable:

>> (x**2) - (((x / 2)**2) / 2)
=> 10423
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The new version is more readable, but not by much, since it still has a lot of parentheses.
We can simplify the expression even further by introducing two more variables, one to stand
for the area of the square and the other for the area of the triangle. We could use simple
names like y and z for the two new variables, but Ruby allows us to use complete words
as variable names. In this example, the new variable names are square and triangle,
which makes it easier to remember what we want each variable to represent:

>> square = x ** 2
=> 11881

>> triangle = ((x / 2)**2) / 2
=> 1458

Now we can use the new variables to compute the area of the countertop:

>> square - triangle
=> 10423

There is another advantage to using the expressions with variable names. Suppose, after
computing the area the first time, we double-check the measurements and find the edge is
actually 107 cm. To recompute the area we can type another assignment statement that has
x on the left side:

>> x = 107
=> 107

The old value of x is erased and the new value replaces it. We can then ask Ruby to repeat
the expressions that calculates the area, and the new value of x will be used to compute
new values for square and triangle.

The tutorial project for this section will give you some experience with reevaluating ex-
pressions you entered earlier. A feature called “command line editing,” which is imple-
mented in most terminal emulators, will save you a lot of typing when you do these exer-
cises. Be sure to read the section on terminal emulators in the Lab Manual when you are
ready to start the tutorial.

What's in a Name?

In projects later in the book we will be creating several variables in each IRB session.  
In order to keep everything straight it's important to choose meaningful names.

Most mathematical equations use single letters like x and y for variables, but variable 
names in Ruby can be complete words like square and triangle.

There are some restrictions on what can be used for a variable name.
• All names must start with a letter.
• The remainder of the name can have a mix of upper and lowercase letters, digits, 
   or an underscore, e.g., squareSide, square_side, or sq123.
• Case is important: a and A are two different names in Ruby.
• Variable names must begin with a lowercase letter.  We will see names that begin
   with uppercase letters later in the book, but when choosing a name for a variable
   make sure it begins with a lowercase letter.

www.allitebooks.com

http://www.allitebooks.org
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X:

s:

X:

s:

107

"hello"

(a) (b)

107

"hello"
45

X:

s:

Figure 2.5: (a) The computer’s memory (the “object store”) after defining variables named x and s.
(b) If we decide to use s to hold an integer the old object referred to by s is discarded.

So far all the expressions in this chapter have been arithmetic expressions based on nu-
meric values. Ruby also lets us write expressions that use strings as values. Strings are used
in programs that work with names, addresses, product descriptions, and a wide variety of
other kinds of data. To write a string in Ruby, simply enclose a sequence of characters in
double quotes:

>> s = "hello"
=> "hello"

We won’t be using strings in the temperature conversion project, so we will put off the
discussion of what we can do with strings until we need them in other projects. But knowing
that variables can refer to a variety of different types of data will give us a better idea of
what variables are and how Ruby evaluates expressions that contain variable names.

A useful way to visualize how Ruby manages variables is to imagine the computer’s mem-
ory as a large whiteboard, initially empty. When a variable is defined, Ruby finds space for
the value, and it writes the variable’s name and a pointer to the value. Figure 2.5a shows
what the whiteboard might look like during the IRB session after defining the variables x
and s in the previous examples.

The generic name for a piece of data in Ruby is object. Integers, floating point numbers,
and strings are simple kinds of objects, and there are dozens of other kinds of objects, as
well. How Ruby chooses to represent objects inside the computer’s memory is usually not
important for the projects in this book, so objects are shown as abstract quantities inside
clouds in drawings like the one in Figure 2.5. Programmers often refer to the memory that
holds data items as “object storage,” or in a abbreviated form, the object store.

We saw earlier that the value of a variable can change—we updated the value of the
variable x by associating it with a new number. It turns out we can also change what kind
of object is associated with a variable. Ruby doesn’t complain if, after defining s to be a
string, we then type an expression that makes s refer to a number:

>> s = 9 * 5
=> 45
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Ruby is perfectly happy to throw away the string object that used to be the value of s, create
a new object representing the number 45, and associate s with the new object (Figure 2.5b).

There are several important consequences of this flexible and dynamic behavior concern-
ing variable names, and we will come back to this topic in future projects. For now the
important concept to learn is that variables are simply names of objects. When we use a
variable in an expression, Ruby looks in the object store to find the value of the variable,
and it uses that value in its calculations.

Tutorial Project

T13. Type two expressions that define variables x and y:
>> x = 6
=> 6

>> y = 5
=> 5

T14. Try out a few expressions using these variables:
>> x + 3
=> 9

>> x * y
=> 30

>> (x + 3) * y
=> 45

Did you get what you expected?

T15. Change the value of x:
>> x = 2
=> 2

T16. Repeat the three expressions that used x. Did the values of these expressions change after
you changed the value of x?

T17. Set x to the length of the long edge of the countertop:
>> x = 109
=> 109

T18. Define the area of a square that is x centimeters on each side:
>> square = x ** 2
=> 11881

Is the result what you expect, i.e., is it x2?

T19. Define the area of the missing right triangle that is x/2 centimeters on each leg:
>> triangle = ((x / 2)**2) / 2
=> 1458

Is this the correct value?

T20. Ask Ruby to compute the area of the countertop:
>> square - triangle
=> 10423

The next exercise is to recompute the area of the countertop after changing the value of the variable
named x. You can either retype the expressions for square and triangle, or cut and paste the text
from the previous exercises, or, if your terminal emulator supports it, use command line editing to
reevaluate the previous expressions.



32 Chapter 2 The Ruby Workbench

With command line editing you just need to hit the up-arrow key on your keyboard two times, and
then hit the return key. This is a technique we will use in the next section, and often in projects later
in the book, so it’s worth learning how it works on your terminal emulator.

T21. Change the value of x by entering a new assignment statement:
>> x = 107
=> 107

T22. Recompute the values of square and triangle using the new value of x.

T23. For the next exercise define a variable with a string value:
>> s = "hello"
=> "hello"

T24. What do you think will happen if you try to add 3 to s?
>> s + 3
TypeError: can’t convert Fixnum into String

That rather cryptic looking error message has the word TypeError, which is a hint that
Ruby did not know how to add a string and a number, since they are two different kinds of
objects.

T25. Assign s a new, numeric, value:
>> s = 7
=> 7

Now ask Ruby to evaluate s + 3 again. What happened this time?

From this set of experiments with variable names, do you see how names are simply references to
objects? When Ruby evaluates an expression containing a variable, it effectively replaces the name
with the current value of a variable and then evaluates the resulting expression.

2.4 Methods

The examples in the previous sections demonstrated how to build expressions out of num-
bers and arithmetic operators like + and *. Ruby also has an extensive library of mathemat-
ical functions often found on scientific calculators, including logarithms and trigonometric
functions.

To use these functions in Ruby, we write the name of the function, and then the values it
operates on in parentheses following the name. For example, the name of the function that
computes a square root is sqrt, so to ask Ruby to calculate the square root of 16 we would
type this expression:

>> sqrt(16)
=> 4.0

Ruby also allows us to create our own functions. For the tutorial project in this section,
we will see how to define a function named celsius that will convert temperature values,
using the formula described in Section 2.2. Once we make the function, we can use it in
an expression, just like those already defined in Ruby’s library. To convert a temperature to
Celsius we will simply type the value in parentheses right after the name celsius:

>> celsius(80)
=> 26
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In Ruby a function is known as a method. Here is some more terminology associated
with methods:

• When an expression contains a method name, we say Ruby calls the method as it
evaluates the expression.

• A method is often defined in terms of parameters.

• When a method is called, we pass it arguments, which are objects used by the
method.

• The value computed by a method is returned as the result of the method call.

The Ruby statements that define the celsius method are shown in Figure 2.6. The
definition only requires three lines of text. The first line has the name of the method being
defined and the names of parameters that will be used when the method when it is called.
The celsius method has one parameter, but in general methods can have any number of
parameters (including zero).

The parameter is a variable we can use in the statements inside the method. In this
example we’re telling Ruby we want to use a variable named f to stand for the temperature
to convert. When the method is called, the value passed as an argument is stored in the
variable. For example, when we type celsius(50), Ruby will set f to 50 before it starts
to evaluate any of the expressions inside the method.

The remaining lines in the definition, before the word end on the last line, make up the
body of the method. There can be any number of Ruby statements in the body, typically
written one per line. The other method shown in Figure 2.6 has three lines in its body to
compute the area of the countertop in the examples in the last section. The statements in
the body are executed in order when the method is called. The value of the expression that
follows the word return will be the result of the method.

After the new methods have been defined, we can call them by typing their names and
values we want to pass as arguments. To ask Ruby to find the Celsius equivalent of 212◦F,
simply type in an expression which calls the celsius method, passing it the number 212:

>> celsius(212)
=> 100

  def celsius(f)
    return (f - 32) * 5 / 9
  end

# Convert temperature  f to Celsius

  def countertop(x)
    square = x**2
    triangle = ((x/2)**2) / 2
    return square - triangle
  end

# Compute the area of the countertop
# when the long edge has length  x 

Figure 2.6: Examples of how to define new methods in Ruby. The first line specifies the name of a
method and the names of any parameters that should be passed when the method is called.
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Layout Rules, Part II: Methods

It is a good idea to indent statements in the 
body of a method, as shown here, otherwise
it can be difficult to tell where the method
definition starts and where it ends.

There is one place where Ruby is strict when
it comes to writing spaces in expressions:
there cannot be a space between a method
name and the opening parenthesis in a
call to a method.

We can, however, put spaces inside the
parentheses if it helps make the parameters
easier to read.

  def countertop(x)
    square = x**2
    triangle = ((x/2)**2) / 2
    return square - triangle
  end

  >> a = countertop (100)

  >> a = countertop( 10 * 10 )
  => 8750

Ruby will print an error message
if there is a space here

We can create a variable to hold the area of the counter by calling the countertop

method and saving the return value:

>> area = countertop(107)
=> 10045

Note our new methods work like other methods in Ruby: we pass a value, the method
performs a calculation, and we get back a result that can be used like any other value.

One way to enter the method into IRB is to simply type the lines in the definition, one
right after the other. This is what the terminal window would look like if we typed in the
definition of the celsius method:

>> def celsius(f)
return (f - 32) * 5 / 9
end

=> nil

The word nil is a special value that means “nothing.” A method definition, like an assign-
ment and every other statement in Ruby, is an expression, and IRB has to print something
for every expression we type. For historical reasons IRB prints nil after we enter a method
definition, but the method has been defined. Note that IRB does not print a prompt when it
is in the middle of reading the definition.

Typing a method definition in IRB is not very practical. For one thing, if we discover a
mistake on one line, we would have to retype the entire definition, and that can be very
tedious when a method has more than one or two lines in the body. Another drawback is
that all the definitions we enter into IRB are lost when we exit the session. As soon as we
type quit to terminate the session, all the variables and methods we created are thrown
away. If we want to use the same methods in the next IRB session we have to type them all
in again.
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Instead of typing the method definition one line at a time in IRB, we can put the definition
in a text file, and then have IRB read the definition from the file. The main advantage to
this approach is that if we want to change the definition it’s much easier to edit the file and
reread it than it is to retype the entire definition in IRB.

To tell IRB to read the text in a file, use a method named load. If the definition of the
method is in a file named celsius.rb, this is how to tell IRB to read the definition from
the file:

>> load "celsius.rb"
=> true

Note that the argument to load is a string: it’s the name of the file surrounded by double
quotes. If Ruby encounters any problems, e.g., if the file doesn’t exist or if there are “syntax
errors” like missing parentheses, IRB will print an error message, otherwise it prints true.

The .rb at the end of the file name is a common way to indicate a file is a plain text
file containing a Ruby program, similar to the convention that word processor documents
have names ending in .doc or PDF files have names ending with .pdf. Ruby doesn’t care
whether or not the file name ends in .rb, but it’s a good idea to follow this convention so
you can quickly tell which of your files contain Ruby programs.

An important thing to remember is that if you use your text editor to modify a program,
you need to use the editor’s “save” command to update the file on your hard drive. After
saving the changes, you need to let IRB know the method has been modified. To do that,
simply type the load command again, and IRB will reread the file and replace the old
version of the method with the new one.

When a method definition is entered into a text file, it is common to include extra lines
that explain what the program does. These lines are called comments. In Ruby, a comment
begins with a # symbol. The two methods shown in Figure 2.6 both have comments at the
beginning of the file.

Reserved Words

The words def, return, and end used in method definitions have a special meaning 
to Ruby.  Words like these are known as reserved words or keywords in a 
programming language.  They are reserved because we are not allowed to use them as 
the names of variables or new methods.

For example, if you try to define a variable named end IRB will print an error message:

   >> end = 5
   SyntaxError: compile error
   (irb):65: syntax error, unexpected kEND

Unfortunately these error messages are not very helpful, and the message you get will 
vary depending on the context and the word you try to redefine.
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Tutorial Project

The first few exercises in this part of the tutorial will give you some experience writing expressions
that call methods.

T26. Use Ruby’s sqrt method to compute the square root of 25:
>> sqrt(25)
=> 5.0

If you get an error message saying sqrt is not defined, it means Ruby’s Math library was
not loaded; refer to the section in your Lab Manual that has instructions for setting up the
RubyLabs software on your computer so the Math module is loaded automatically each time
you start IRB.

T27. Ruby has a method named rand that will return a random value between 0 and a value you
pass as an argument. Type this expression to get a number between 0 and 99:
>> rand(100)
=> 18

You will probably see a different result than the number shown above. Use the command line
editing feature of your terminal emulator to repeat this expression a few times; you should
see a different result each time you call rand.

Next we’ll experiment with a method we define, instead of methods already built into Ruby. Use your
text editor to create a file named celsius.rb containing the lines shown in Figure 2.6.

T28. Load your celsius method into IRB:
>> load "celsius.rb"
=> true

If you get a message that says “no such file to load” double-check the spelling of the file
name. Also, make sure you are running IRB in the same directory where the file was stored.
If you get a message that says “syntax error” make sure the lines in the file are exactly as
shown in the definition of celsius in Figure 2.6.

T29. Call the new method:
>> celsius(50)
=> 10

>> celsius(95)
=> 35

Go back to your text editor and modify the method so it uses floating point numbers. Change 32 to
32.0, 9 to 9.0, and 5 to 5.0, and then save the file.

T30. Load the new version of the method:
>> load "celsius.rb"
=> true

T31. Test your new version:
>> celsius(100)
=> 37.7777777777778

If the result is a floating point value (as shown above) then you successfully updated the
version of the method used by IRB.
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© Did you notice that in the call to the new version of celsius the argument was an integer,
but the result was printed as a floating point number? Can you explain why? (Hint: what did
you discover by doing one of the earlier optional exercises with mixed integer and floating
point expressions?)

© What do you suppose would happen if you pass a string value to celsius, e.g., if you ask
Ruby to evaluate celsius("forty")? Try it. Was your hypothesis correct?

2.5 RubyLabs

In the Ruby community software that has been written to be shared with other users is
distributed in the form of “Ruby gems.” The software you will be using for the projects
in this book is available as a gem called RubyLabs. One of the steps described in the Lab
Manual, in the section on installing Ruby and setting up your environment, explained how
to run a command line application named gem to download and install the RubyLabs gem.
If you were able to complete this command and configure your environment, the RubyLabs
software will be included automatically at the start of each IRB session.

RubyLabs is a collection of modules. Each module defines objects, methods, and data files
that will be used for the tutorial projects in one chapter. At the start of each IRB session, you
will type a command that loads the module for the project. For example, the countertop
method described in this chapter is part of a module named IntroLab. Including this module
in your IRB session makes the countertop method available for that session:

>> include IntroLab
=> Object

>> countertop(100)
=> 8750

Don’t forget that Ruby is very particular about upper and lower case letters, so make sure
you type the name of the module exactly as it’s shown, with an upper case I and an upper
case L. If you spelled “include” correctly and typed the name exactly as it’s shown, but still
see an error message instead of the word Object, it means the RubyLabs software is missing
or not configured properly, and you will have to refer to the section on “troubleshooting” in
your Lab Manual.

Programmers refer to the file that contains a Ruby method as the source file, and the text
in the file is often called the source code. The RubyLabs module has several methods for
working with the source code for methods we will be using in our experiments. To see the
statements in a method, we just call Source.listing, passing it the name of a method,
and it will print the source code on the terminal:

>> Source.listing("countertop")
1: def countertop(x)
2: square = x**2
3: triangle = ((x/2)**2) / 2
4: return square - triangle
5: end

=> true
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A listing is simply a printout of every line in the program, along with a line number at the
start of each line.

A method named Source.checkout will save a copy of a program in a file. The name
“checkout” comes from software engineering. Programmers who work on large projects
with other people usually save their code in a shared library or repository. When they want
to work on a piece of the project, they check out a copy, make their changes, and check it
back in. If you want to have your own copy of the countertop method, in order to make
changes and to some further experiments on your own, simply call Source.checkout:

>> Source.checkout("countertop")
Saved a copy of source in countertop.rb
=> true

As you can tell by the message it printed, Source.checkout created a file that has the
same name as the method, along with the extension .rb, which is the convention for text
files containing Ruby programs.

There are several other methods that work with the programs in the RubyLabs modules.
These methods will allow us to print the value of a variable each time it is updated, or count
the number of times a statement is executed, or measure how long it takes a program to
run. These other methods will be introduced in the next chapter, when they will be used in
experiments with the first algorithm we will study.

Tutorial Project

T32. Start a new IRB session, and tell IRB to include the methods defined in the IntroLab module:
>> include IntroLab
=> Object

If you get an error message instead of the word Object you need to refer to your Lab Manual
and follow the instructions for installing the RubyLabs gem.

T33. Now that the module has been included you can call the countertop method:
>> countertop(100)
=> 8750

Use a calculator to make sure this the right answer. Did countertop compute 1002− 502/2?

T34. Use the Source.listing method to print the source code for countertop on your ter-
minal window (don’t forget to capitalize the S in Source):
>> Source.listing("countertop")

1: def countertop(x)
2: square = x**2
3: triangle = ((x/2)**2) / 2
4: return square - triangle
5: end

=> true

T35. Use Source.checkout to get your own copy of the method:
>> Source.checkout("countertop")
Saved a copy of source in countertop.rb
=> true

You should now have a file named countertop.rb in your project directory.
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2.6 Summary

The main goal for this chapter was to introduce the programming language named Ruby and
the interactive environment that will be used for “computational experiments” throughout
the rest of the book. The tutorial project illustrated how Interactive Ruby (IRB) works by
implementing a trivial program to convert temperatures from Fahrenheit to Celsius.

Using IRB is similar to using a calculator. We enter an expression, and then Ruby eval-
uates the expression and prints the result. Numeric expressions can have any of the basic
operations from arithmetic. For historical reasons (dating to the time when programs were
created with keypunch machines that had a limited number of characters) Ruby uses an
asterisk as the symbol for multiplication and a forward slash for division. We will see other
arithmetic operators later when there are projects that need them.

The project brought up the point that there are two types of numbers in Ruby: integers
and floating point numbers. Floating point numbers are finite approximations of real num-
bers. Numbers, strings, and other types of data are represented inside a computer as objects.
Since we typically don’t need to know the details of how pieces of data are represented in
memory, we can think of them as abstract objects, drawn as clouds in figures that show the
state of the system. Up to this point we have been describing objects simply as data, but in
computer science the term “object” has a richer connotation. For the first few chapters in
this book, however, we will simply use the word to mean “a generic piece of data.”

Variables are symbolic names associated with objects. When Ruby evaluates an expression
that contains a variable name, it looks in the “object store” for the current value of the vari-
able. The value is substituted in place of the variable so Ruby can compute the value of the
expression. Variables are created by assignment statements that consist of a variable name,
an equal sign, and an expression that defines the value for the variable. We can change the
value of a variable at any time simply by reusing it in another assignment statement.

Interactive Computing

Using the word “interactive” to describe situations where we use a terminal emulator 
to run a program might seem confusing at first.  A person using an application with a 
GUI is certainly interacting with the program, so why use “interactive” to describe a 
language that can be used like a calculator?  

The term has a long and rich tradition in computer science, going all the way back to 
the early 1960s.  At the time, most programs carried out calculations that ran for 
several hours.  A user would start a program, often by loading a deck of punched 
cards through a card reader, and then come back later to pick up the results from a 
printer. 

The developers of LISP, one of the very first programming languages, took a different 
approach.  Programmers typed a LISP expression on a typewriter, and the computer 
evaluated the expression and printed the result.  Since most calculations took only a 
few seconds, the output was printed immediately, and this way of using the computer 
became known as “interactive computing.”
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Concepts and Terminology Introduced in This Chapter

IRB An abbreviation for Interactive Ruby, a program with a com-
mand line interface for interactive computing with Ruby

terminal
emulator

An application that mimics the actions of an old-fashioned
computer terminal

integer A whole number, a number with no fractional parts

floating point A technique for storing approximate values of real numbers
in a computer

string A short piece of text used as data in a program

object A generic piece of data; an object can be an integer, floating
point number, string, or one of the more complex types of
data introduced later in the book

variable A name associated with an object

assignment
statement

A Ruby expression that sets the value of a variable, creating
a new variable if the name has not been used before

method A function or complex operation; includes built-in methods
like sqrt and other operations from Ruby’s Math library, or
user-defined methods like celsius that are collections of
one or more Ruby expressions evaluated when the method
is called

module A collection of methods and data; a RubyLabs module con-
tains objects and methods used for a computational experi-
ment

While simple operations such as addition and multiplication are carried out by operators,
more complicated functions are implemented in the form of methods. Ruby’s Math library
has methods for computing square roots and several other operations. In later chapters we
will learn about methods that operate on strings and other kinds of objects.

We can enclose a set of Ruby statements between the words def and end in order to
define our own methods. The method that converts temperature values from Fahrenheit to
Celsius requires only three lines of text:

def celsius(f)
return (f - 32) * 5 / 9

end

An example of a statement that uses this method is

>> t = celsius(90)
=> 32

In this call to celsius, Ruby creates a variable named f, assigns it the value 90, evaluates
the expression in the body of the method, and returns the value of 32, which is then saved
as the value of the variable t.
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One way to understand what is going on inside the system when we type an expression in
IRB is to think of how we simplify an expression in algebra. Suppose x = 4 and y = x + 5,
and we are asked to find the value of z =

√
y. To solve this problem, we use the value of

x to rewrite the second equation as y = 4 + 5, which is then simplified to y = 9. Now the
third equation can be rewritten as z =

√
9, and one last rewrite gives z = 3.

Ruby operates in much the same way. If we type an expression like

>> a = countertop(x + 2)

Ruby will do a series of operations that are the equivalent of the equation rewriting steps
you would do to perform the same calculation. To evaluate this expression, Ruby would
look up the value of x, and use it to calculate x + 2. The result would be passed as an
argument to the countertop method, and whatever value is returned by the method is
stored in a.

The main thing to remember is that to evaluate an expression, Ruby makes sure it has all
the values it needs. If it sees the name of a variable, it looks up the current value of the
variable and substitutes that value in the expression. When it sees the name of a method,
it calls the method and then substitutes the value returned by the method into the original
expression. In later chapters we will encounter several examples of Ruby expressions that, at
first, may seem very complex. The key to understanding what Ruby will do is to remember
that Ruby will evaluate these expressions by calling methods and substituting values as they
are needed.

Exercises

The exercises below ask you what Ruby would print as the value of an expression. To make sure you
understand how Ruby works you should try evaluating the expressions yourself first, and then going
to IRB to check your answers.

1. Suppose you start an IRB session and enter the following three assignment statements:
>> x = 4

>> y = 7

>> z = 3.5

Show what Ruby will print after it evaluates each of the following expressions:
>> x * 2
=>

>> x ** 2
=>

>> x * y
=>

>> x * z
=>

>> y / x
=>

>> y / z
=>

>> sqrt(x)
=>
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2. Suppose you type the following three assignment statements in IRB:
>> a = 5

>> b = 7

>> c = 11

Show what Ruby will print after it evaluates each of the following expressions:
>> a * b + c
=>

>> a + b * c
=>

>> (a + b) * c
=>

>> sqrt(a + c)
=>

>> 2 * sqrt(a * b + 1)
=>

3. Show what Ruby will print when it evaluates this expression (assuming you have loaded your
celsius.rb) file into IRB):
>> celsius(60)
=>

4. Do you think Ruby will print anything different if you pass a floating point number to celsius?
What would Ruby print for this expression?
>> celsius(60.0)
=>

5. Do you think your celsius method can deal with negative numbers? What will Ruby do with
this expression?
>> celsius(-3)
=>

6. As a quick test of the accuracy of your method suppose you want to see what celsius would
print when you pass it well-known values. What expression would you enter to have Ruby
compute the Celsius temperature of the freezing point of water? The boiling point?

7. One of the expressions in the body of the countertop method calculates the area of the
missing triangular piece:
triangle = (( x/2 ) **2 ) / 2

Are all the parentheses required in this expression? Explain what would happen if the statement
was rewritten in one of these forms:
triangle = (x/2) ** 2 / 2
triangle = x/2 ** 2 / 2

8. What will happen if you pass a negative number to the countertop method? If you try it in
IRB, and you get back a number, it this an error, or do you think Ruby computed the correct
result?
>> countertop(-10)
=>

© Use your text editor to create a file named fahrenheit.rb. Type in the definition of a
method named fahrenheit that converts temperature values from Celsius to Fahrenheit,
using the equation F = C× 9/5 + 32. Load the file into IRB and test your method by calling
fahrenheit(0), fahrenheit(100), and a few other temperatures.
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© If you have driven on an interstate highway, you may have seen “speedometer test sections”
that have a series of signs posted exactly one mile apart. The idea is for you to drive at a
constant speed and measure the time it takes you to travel between signs so you can see if
the speedometer on your car is accurate. To compute how fast you are going, in miles per
hour, calculate 3600/t, where t is the number of seconds it takes to drive between two signs.
Write a Ruby method that will compute the speed of a car given the number of seconds it
takes to travel one mile.

© Look on the Internet to find a formula for computing body mass index (BMI) as a function of
height and weight. Define a Ruby method named bmi that will compute a body mass index
using two parameters corresponding to height and weight values. Load the method into IRB
and test it.





Chapter 3

The Sieve of Eratosthenes
An algorithm for finding prime numbers

Prime numbers have fascinated people for thousands of years. Mathematicians have long
recognized that most integers are composite numbers, meaning they are the product of two
smaller integers, but some special numbers, the prime numbers, are not evenly divisible by
any smaller pair of numbers.

For most of their history prime numbers were only of theoretical interest, but today they
are at the heart of a variety of important computer applications. The security of messages
transmitted using public key cryptography, the most widely used method for transferring
sensitive information on the Internet, relies heavily on properties of prime numbers that
were discovered thousands of years ago.

The project in this chapter explores the Sieve of Eratosthenes, an algorithm that was
invented over two thousand years ago to make lists of prime numbers. When the algorithm
is implemented in Ruby, it will be in the form of a method named sieve. After completing
the tutorial project, we will be able to use sieve to make a list of all the prime numbers
less than a specified limit. For example, if we want to know all the prime numbers less than
1000, we just have to pass that number in a call to sieve:

>> sieve(1000)
=> [2, 3, 5, 7, 11, 13, ... 983, 991, 997]

The main goal for this chapter, as it is in the other chapters in this book, is to understand
the algorithm and the computation it defines. We will start with an informal description of
the process, and use the sieve to make a small list the way it was done for thousands of years,
writing numbers on pieces of paper. Working through the example raises an interesting
question about the algorithm that needs to be resolved before we can get a computer to
carry out the steps of the computation.

45
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Implementing the algorithm in Ruby and doing some experiments on our “computational
workbench” provides an opportunity to introduce some new concepts in computing and
some new features of the RubyLabs software that will be used in later projects. In the
exercises up to this point, all the pieces of data were simple objects like numbers and strings.
The steps in the Sieve of Eratosthenes algorithm work on lists of numbers, not just individual
values. In the process of implementing the sieve method we will see how to create and
manipulate lists as collections of objects in Ruby.

The new features of the RubyLabs module introduced in this chapter are methods that
allow us to take a closer look at a Ruby program as it is running. In much the same way
technicians use a variety of instruments to probe and measure a piece of electronic equip-
ment, we will use Ruby methods that display the state of a computation, count the number
of times key steps are executed, and measure the amount of time it takes to execute a pro-
gram. These new methods are “tools” on our Ruby workbench that will be used in several
other computational experiments throughout the book.

3.1 The Sieve Algorithm

To see how the Sieve of Eratosthenes got its name, imagine numbers are rocks, where the
shape of each rock is determined by its factors. Even numbers, i.e., all the multiples of 2,
have a certain distinctive shape, multiples of 3 have a slightly different shape, and so on.
Now suppose we have a magic bowl with adjustable holes in the bottom. As a first step
in making a list of prime numbers, put a bunch of rocks in the bowl, and then adjust the
holes to match the shape for multiples of 2. When we shake the bowl, all the rocks that are
multiples of 2 will fall through the holes (Figure 3.1). Next adjust the holes so they match
the shape for multiples of 3, and shake again so the multiples of 3 fall out. Keep repeating
the adjusting and shaking steps until only prime numbers are left.

Instead of just starting with a random collection of numbers, and sifting out values in no
particular order, the steps of the algorithm tell us how to proceed in a very precise manner.
As a result of taking a more systematic approach, we are guaranteed that when we’re done
we will have every prime number within a specified range.
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Figure 3.1: The Sieve of Eratosthenes is a
“magic bowl” that lets composite
numbers fall through holes in the
bottom. The first time the bowl is
shaken, even numbers (multiples of
two) fall out.
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Figure 3.2: (a) A list of numbers from 2 to n, where n = 20. (b) The state of the algorithm after the
first scan. The number 2 has been identified as a prime, and the multiples of 2 have been
removed. (c) After the second scan 3 has been identified as a prime and the multiples of 3 have
been removed.

The first step in the algorithm is to make a list containing all the integers between 2 and
some upper limit n. Since we don’t really have a magic bowl, we need to use paper and
pencil or some other real technology. Start by writing down all the integers between 2 and
n on a sheet of paper. We’ll call this the “worksheet.” Figure 3.2a shows the list for n = 20.

To keep things neat, we’ll use a separate piece of paper for our list of prime numbers.
Each time we discover a new prime we’ll write it on this second piece of paper. The first
number on the list, 2, is prime, so copy it to the primes sheet. Multiples of 2 are not prime,
so scan through the worksheet and remove the multiples of 2.

After all the multiples of 2 have been removed, the worksheet will look like sheet in
Figure 3.2b. The lowest remaining number on the worksheet is 3. Add 3 to the list of primes
on the second sheet, and repeat the process of going through the worksheet and removing all
the multiples, this time removing multiples of 3 (Figure 3.2c). Keep repeating this process,
copying the lowest remaining number to the primes list and removing its multiples from the
worksheet, until the only numbers left on the worksheet are prime numbers.

The method is fairly straightforward, but this description leaves out some important de-
tails. The first detail is to define what it means to “remove a number from the worksheet.”
If we’re going to use paper and pencil to carry through the steps of the algorithm, we can
do something like what’s shown in Figure 3.2, and cross out numbers to show they are no
longer part of the list. If we’re using a whiteboard it might be neater and easier to erase
multiples instead of crossing them out. As we work through the tutorial project, we will see
how to use Ruby to organize the numbers in an object that represents a list, and we will
use Ruby methods to remove numbers from the list when we discover they are multiples of
some other number.
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The most important thing missing from the description of the algorithm is a statement
of when we can stop doing the copying and sifting operations. If you do a few more steps
of the example in Figure 3.2, where n = 20, you’ll soon notice you aren’t crossing out any
more numbers. For example, after you “shake the bowl” to cross out multiples of 11, the
only remaining numbers are 13, 17, and 19. You could continue and search for multiples of
13, but you can tell at a glance that there aren’t any. The smallest composite number that
is a multiple of 13 is 2× 13 = 26, and this list only goes up to 20, so clearly there aren’t
any more multiples of 13 in the list. There aren’t multiples of 17 or 19, either, and all the
numbers left are prime.

Simply saying “repeat until all the numbers on the worksheet are prime” might be suf-
ficient if we’re telling another person how to make a list of prime numbers, but it is not
specific enough to include it as part of a Ruby method. If we want to implement this al-
gorithm in a programming language, we need a more precise specification of when the
algorithm is finished.

We’ll return to this question later in the chapter, but the first order of business is to figure
out how to make lists of numbers and how to scan lists to remove composite numbers.

Tutorial Project

Take some time to make sure you understand how the Sieve of Eratosthenes works. Use the algorithm
to make a list of prime numbers less than 50. Make a worksheet like the one shown in Figure 3.2 on a
piece of paper (or a whiteboard, if you have one), then carry out the copying and scanning steps until
you are left with only prime numbers.

How many passes did you make over the full list before you were left with all prime numbers? Can
you think of a formula based on the upper limit n that describes a general rule for when you can stop?

3.2 The mod Operator

If we are going to use Ruby to generate a list of prime numbers, one of the first questions
we need to address is how to determine whether one number is divisible by another. One
way to see if x is a multiple of y is to check the remainder after dividing x by y.

To see why the remainder is relevant, consider a number like 10, which is a composite
number because it is the product 2× 5. An important fact about composite numbers is that
if we divide a number by one of its factors, the remainder will be 0. In the case of the
number 10, 10÷ 5 = 2 R 0 and 10÷ 2 = 5 R 0.

Ruby has an operator that computes the remainder of a division operation. The operator
is called the mod operator, and its symbol is a percent sign. To compute the remainder of
x divided by y, we write

x % y

To try out this operator in IRB, we can just pick some some small values where we know
the remainder. Since 10÷ 3 = 3 R 1, we expect the result of 10 % 3 to be 1:

>> 10 % 3
=> 1
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To verify that the remainder of dividing 10 by either of its two factors is 0:

>> 10 % 2
=> 0
>> 10 % 5
=> 0

The mod operator will come in handy in a surprisingly large number of projects through-
out this book. The name “mod” comes from number theory, which calls this function the
modulo operation. We use modulo arithmetic every day, even though we might not call it by
that name. It is sometimes called “clock arithmetic” since operations are similar to figuring
out the time on a clock. If it is currently 5 o’clock, and you want to know what time it will
be 8 hours from now on a 12-hour clock, you can get the answer with Ruby’s mod operator:

>> (5 + 8) % 12
=> 1

Tutorial Project

Start a new session with IRB.

T1. Type this expression to ask Ruby to do a division operation using floating point numbers:
>> 18.0 / 3
=> 6.0

Since the value after the decimal point is 0, there is no fractional part, i.e., 18 is evenly
divided by 3.

T2. The result of dividing 19.0 by 3, however, does have a fractional part:
>> 19.0 / 3
=> 6.33333333333333

The result is (approximately) 6 1
3 .

T3. As explained in the previous chapter, when Ruby divides two integers, it just throws away
the fractional part. Type the two previous expressions, but this time use integers instead of
floating point numbers:
>> 18 / 3
=> 6

>> 19 / 3
=> 6

T4. Ruby’s mod operator tells us what the remainder of a division operation is. Type this expres-
sion to verify that the remainder of dividing 18 by 3 is 0:
>> 18 % 3
=> 0

T5. Type this expression to see that the remainder of dividing 19 by 3 is 1:
>> 19 % 3
=> 1

T6. Try some experiments on your own. Pick any pair of integers x and y such that x is a multiple
of y (for example x = 25 and y = 5). Ask Ruby to compute the remainder of x divided by y
using the % operator. Is the remainder always 0 when x is a multiple of y?

T7. Try some experiments involving pairs of numbers x and y where x is not a multiple of y. Is
the remainder always nonzero?
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3.3 Containers

Now that we’ve seen how to determine whether a number is prime or composite we are
ready to tackle the problem of how to create the lists of numbers we need for the worksheet
and the list of primes.

In everyday life a list is a collection of items. Some lists are ordered, but many are
just random collections of information. Ingredients in recipes are typically ordered because
cooks like to have them presented in the order in which they are used, but shopping lists
are often just random or semirandom collections of items (even if you’re one of those super-
organized people who arranges grocery lists by sections, the items within a section can be
in any order, e.g., there’s no reason to put radishes before cucumbers in the produce list).

Mathematicians also deal with collections. A set is one of the fundamental concepts in
mathematics. Usually items in a set are not given in any particular order, but if order is
important mathematicians say they have an “ordered set” or a “sequence.”

Computer scientists have a wide variety of ways of organizing collections of data, includ-
ing sets, sequences, graphs, trees, and many other structures. In programming language
terminology, a structure that holds a collection of data items is known as a container.

In Ruby we are going to use a container called an array to represent a list of numbers.
Ruby arrays are ordered collections of data. The items in an array can be numbers, strings,
or any other type of data object we can create in Ruby.

The simplest way to make an array in Ruby is to write the items in the array between
square brackets, separated by commas. To have a variable a refer to a list of the numbers
from 1 to 5 we would write

>> a = [1, 2, 3, 4, 5]
=> [1, 2, 3, 4, 5]

The expression on the first line above is an assignment statement. Like the assignments in
the previous chapter, it has the name of a variable on the left side; the only difference here
is the value on the right side is an array of numbers. Ruby handles this assignment like it
did the others: if the variable a does not exist it is created, and the name a is associated
with an object that represents a list of elements (Figure 3.3).

Arrays vs. Lists

In the computer science and programming literature the words “array” and “list” have 
subtle differences. Both are names for ordered collections of data, but lists are more 
flexible than arrays.  Arrays typically have a predetermined size, but lists can grow 
and shrink.  What Ruby calls an array is really more like a list.

The designers of the Ruby language had historical reasons for choosing the term 
“array” as the name of the data structure we will use for this project, and the name 
has stuck.  For the most part in this book we do not need to be concerned with the 
differences between arrays and lists, and we can simply use Ruby's arrays to 
implement lists of items.
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Figure 3.3: The object store
after creating an array of
numbers. The variable a
is a reference to an array
object, which is a
container that holds
references to other
objects.

[•,•,•,•,•]

a:

21 3 4 5

Note that Ruby responds to this assignment the same way it did the others, by printing
the value of the new variable. To verify that a is an array, we can just ask Ruby to print its
value:

>> a
=> [1, 2, 3, 4, 5]

There are all sorts of interesting things we can do with our new array. We can add items
to the end, insert them in the middle, delete items, invert the order, make copies, and carry
out dozens of other useful operations. For this project, though, we only need to know how
to do a few of these things, and we’ll put off investigating the other operations until we
need them.

Most operations on arrays are performed by calling a method. In the previous chapter, we
saw methods that are called by writing the method name followed by parameters enclosed
in parentheses. Most operations on arrays, however, are specified using a different notation,
where we write the name of an object, a period, and then the method name. For example,
the method named length counts the number of items in an array. After making the array
named a as shown above, we can ask Ruby how many items are in it by typing

>> a.length
=> 5

Here Ruby sees that a is the name of an array object, so the expression a.length means
“call the method named length to operate on the object named a.” As before, the output
from IRB is the result returned by the method, in this case the number of items in the array
a.

Two other examples of methods defined for arrays are first, which returns the value at
the front of the array, and last, which returns the value at the end:

>> a.first
=> 1

>> a.last
=> 5
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Note that, as was the case with the methods we saw in the previous chapter, the values
returned by array methods are plugged into the surrounding expression, where they are
used just like any other values:

>> n = a.length - 1
=> 4

>> a.first + a.last
=> 6

Array methods can have parameters, just like the parameters used to define celsius

and other other methods described in the last chapter. An example of an array method with
a parameter is include?, which returns true or false, depending on whether the value
passed as an argument is contained somewhere in the array:

>> a.include?(2)
=> true

>> a.include?(7)
=> false

To attach an item to the end of an array we write an expression that uses the append
operator, which is identified by the << symbol (two less than signs in a row, with no space
between them). This expression uses the append operator to add 6 to the end of a:

>> a << 6
=> [1, 2, 3, 4, 5, 6]

In Ruby terminology, << is a method, just like first and include?. What distinguishes
this method from the others is simply the syntax used to call it. Instead of writing an object
name, a period, and a method name, we use the operator in an expression.

Before we start the project for this section, let’s look at two special cases for making
arrays. The first is the expression for making an array with nothing in it:

>> a = []
=> []

This array is known as an empty array. It’s analogous to the empty set in math, or, in
real-life terms, to a three-ring binder with no paper. The binder is still a binder, even if it’s
empty. An empty array is an object, just like any other array object, it just doesn’t contain
any references to other objects (Figure 3.4). Empty arrays are very common in a wide
variety of algorithms. An algorithm will often create an initially empty array, and add items
to it in future steps, or start with an array of items and repeatedly delete items until the
array is empty.

The other special situation is a case where we want to make a list of all numbers in a
specified range. Ruby has a notation for specifying ranges: write the lowest value, two
periods, and then the highest value. For example, the range of numbers from 1 to 10 is
written 1..10. We can pass a range to a method named Array, and this method will
create a new array containing every number in the range:

>> a = Array(1..10)
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
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Figure 3.4: In this example
the object store has two
arrays. The array named
a is empty, since it does
not contain references to
any other objects, but b
holds references to two
integers.

[ ]

a: b:

[•,•]
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Looking ahead a little bit, these two techniques for creating arrays will be very useful
when we implement the Sieve of Eratosthenes in Ruby. The initial worksheet will be an
array with every number in the range from 2 up to the maximum value n, and the initial list
of primes will be an empty array.

To summarize this brief introduction to arrays, we saw in this section that arrays are a
new type of object that can be used in Ruby programs and in sessions with IRB. In all of the
examples, IRB followed the same general set of rules it did in the previous chapter: Ruby
waits for you to type an expression, then it evaluates the expression and prints the result.
What we learned in this section is that

• objects in an expression can be arrays as well as numbers and strings

• operations on arrays are performed by methods

• when Ruby sees an array method in an expression it calls the method to perform an
operation using the array, and the method returns a value that is plugged in to the
expression

• most array methods are called by giving the name of an array, a period, and the name
of the operation, but sometimes a method is called when an operator like << is used
in an expression.

Tutorial Project

T8. Use IRB to create an array containing a few even numbers:
>> a = [2, 4, 6, 8]
=> [2, 4, 6, 8]

T9. Use the length operation to find out how many items are in the array:
>> a.length
=> 4

T10. Add a new number to the end of the array:
>> a << 10
=> [2, 4, 6, 8, 10]



54 Chapter 3 The Sieve of Eratosthenes

T11. Did the previous expression change the length of the array? Call the length method to
check your answer.

T12. Type this expression to make a new empty array named b:
>> b = []
=> []

T13. Use the length method to find out how many elements are in b. Did you get 0?

T14. A method named empty? will test whether an array is empty or not. If we invoke this
operation on the new array b Ruby tells us the array is empty:
>> b.empty?
=> true

Note the question mark is part of the name of the operation; make sure you don’t leave a
space between the “y” and the question mark.

T15. Use the empty? method to see if a is empty.

T16. Make an array to hold the sequence of numbers between 1 and 20:
>> seq = Array(1..20)
=> [1, 2, 3, 4, 5, ... 19, 20]

Important: the “A” in this method name is capitalized. Ruby is very fussy about capitalization.

T17. Use the length method to count the items in this array. Are there 20 numbers?

What do you think will happen if we use a variable instead of an integer in a range expression? In
other words, will Ruby allow us to write something like n..m, where n and m are variables we defined
previously? Let’s find out.

T18. Assign values for two new variables n and m:
>> n = 7
=> 7

>> m = 11
=> 11

T19. Create an array with all the numbers in the range from n to m:
>> seq = Array(n..m)

What did you get?

T20. At the beginning of this section there was a claim that arrays can hold any type of item. Let’s
test this by making an array of strings:
>> colors = ["green", "yellow", "black"]
=> ["green", "yellow", "black"]

T21. Use the << operator to add a new string to the end of colors:
>> colors << "steel"
=> ["green", "yellow", "black", "steel"]

T22. Use the length method to figure out how many items are now in colors.

T23. What do you think will happen if you try to add a string to the end of a, which is an array of
numbers? Or if you try to add a number to the end of colors, which is an array of strings?
Will Ruby complain, or will it make a mixed array? Use IRB to test your hypothesis. What
did you learn?
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3.4 Iterators

Recall from the introduction that the Sieve of Eratosthenes makes a list of integers, and
then repeatedly goes through the list to discard composite numbers. We’ve just seen how
to create an array to hold a list of numbers, and now we’re ready to see how we can work
through an array to check numbers to see if they are multiples of some other number.

The general technique for performing an operation on every item in a container is known
as iteration. The word comes from the Latin word iter, which means “road” or “path.” We
often talk about iterating over an array, which means we start at the front and step through
the array, one item at a time, in order to perform some operation.

Ruby and other object-oriented languages have several methods known as iterators that
apply an operation to each item in the container. The simplest iterator for arrays is named
each. This operation is invoked just like length and other methods, by giving the name
of the array we want to work through, a period, and then the name of the operation. But
we also need to tell the iterator what we want it to do with each element in the array. We
do this by writing the operation we want to perform in braces {} following the word each.

As an example of how to call an iterator, let’s use each to display every item in an array.
First, let’s make the array:

>> a = [1,2,3]
=> [1, 2, 3]

To display an object, we’ll use a method named p, which prints objects on the terminal (see
the sidebar on the next page, on Displaying Output). What we want to do is call p once for
each item in the array. Here is the call to each that does it:

>> a.each { |x| p x }
1
2
3
=> [1, 2, 3]

In this expression, Ruby selects the items from a, one at a time. When an item is selected
it is put in a variable named x, and then Ruby evaluates the expression p x. Since p is the
method that prints a value on the terminal, evaluating this expression causes Ruby to print
the value of x. There are three items in a, so the expression p x is evaluated three times,
once for each item in a, and as a result three lines are printed on the terminal.

A useful mnemonic for the notation used with the each iterator is to think of how math-
ematicians specify the members of a set. If we want to describe the set of numbers between
1 and 10, we can write

{ x | 1 ≤ x ≤ 10 }
When read aloud, this expression is “the set of all x such that x is greater than or equal to
1 and less than or equal to 10.” The syntax of the Ruby expression is very similar, except
Ruby uses a pair of vertical bars instead of just one. In Ruby, we give the name of a variable
between a pair of | symbols, followed by an expression that contains this variable. The role
of the iterator is to store items from the array, one after another, in the variable, and for
each item Ruby evaluates the expression to the right of the | symbols.
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Displaying Output in the Terminal Window

Ruby has a method named p, which stands for “print.”  Whenever we call p, we can 
pass it one or more objects as arguments, and Ruby will display the objects in the 
terminal window.

Here is an example that shows how p prints a string on the terminal:

  >> p "Hello"
  "Hello"
  => nil

Notice that there are three lines here.  The first line is the expression that has the call 
to p.  The second line is the string printed by p.  It's just a copy of the string we 
passed it—the argument passed to p was the string "Hello", and that's what p 
displayed.  The third line was printed by IRB as the result of the call to p.  Since p 
always returns nil you will always see this value when you call p from IRB.  

This method isn't very useful in interactive Ruby because IRB prints the results of 
expressions anyway, but it's going to come in very handy when we start experimenting 
with more complicated algorithms.  At various points in an algorithm we are going to 
want to call p to print the values of selected variables so we can keep track of how the 
algorithm is progressing. 

Tutorial Project

T24. Make a small array of strings to experiment with expressions involving iterators:
>> colors = ["red", "yellow", "green", "blue", "white"]
=> ["red", "yellow", "green", "blue", "white"]

T25. Use the each iterator to print each item in a:
>> colors.each { |x| p x }
"red"
"yellow"
"green"
"blue"
"white"
=> ["red", "yellow", "green", "blue", "white"]

T26. Strings, like arrays, have a method named length. If s is a string, a call to s.length will
tell us how many characters are in the string. Make a string and call length to have it count
the number of characters:
>> s = "hello"
=> "hello"

>> s.length
=> 5
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T27. Repeat the previous call to a.each, but this time, instead of printing a string, ask Ruby to
print the length of the string:
>> colors.each { |x| p x.length }
3
6
5
4
5
=> ["red", "yellow", "green", "blue", "white"]

Make sure you understand what happened when Ruby evaluated these calls to colors.each:
Ruby took the items one at a time from the array named colors, put them in the variable named x,
and evaluated the expression between the braces. In the first example, Ruby printed the item from
the array, and in the second it printed the length of the item.

3.5 Boolean Values and the delete if Method

Earlier we saw arrays have a method named include? that will check to see if an array
contains a specified item. Here are some more examples of this method, this time with an
array of strings:

>> cars = ["bmw", "audi", "mini", "prius"]
=> ["bmw", "audi", "mini", "prius"]

>> cars.include?("mini")
=> true

>> cars.include?("alfa")
=> false

The true and false values returned by this method are known as Boolean values.
Another way to produce Boolean values is by writing an expression that compares items.

In Ruby, the operator that compares two objects has the symbol ==, which is written as
two equal signs with no space in between. This operator is called the equality operator.
The result of a comparison is true if the two objects are the same, or false if they are
different. For example, we can ask Ruby if the array of car names has four items:

>> cars.length == 4
=> true

>> cars.length == 6
=> false

The equality operator can also check to see if two strings are the same. Here are some
examples, using the array of car names:

>> cars.first
=> "bmw"

>> cars.first == "bmw"
=> true

>> cars.first == "vw"
=> false



58 Chapter 3 The Sieve of Eratosthenes

Here are some more examples, this time using integers:

>> n = 10
=> 10

>> n % 5
=> 0

>> (n % 5) == 0
=> true

>> (n % 5) == 1
=> false

Note how these last two expressions are evaluated: Ruby first computes the value of n % 5

(i.e., it finds the remainder of dividing n by 5) and then it compares the result to the number
on the right side of the operator. Since n % 5 is 0, the first expression using == has a value
of true, but the second is false.

Expressions such as the ones shown above, where the value of the expression is either
true or false, are known as Boolean expressions. One very useful place for Boolean
expressions is in an iterator named delete_if. As its name implies, it is used to remove
items from an array. The iterator walks its way through the array, putting each item into a
Boolean expression. If the expression evaluates to true the item is deleted from the array.

Here is an example that uses the delete_if iterator to remove all the zeroes from an
array of numbers:

>> a = [3, 0, 2, 5, 0, 1, 4, 0, 6]
=> [3, 0, 2, 5, 0, 1, 4, 0, 6]

>> a.delete_if { |n| n == 0 }
=> [3, 2, 5, 1, 4, 6]

This new iterator operates just like the each method introduced in the last section. It selects
the items from a, one at a time, and stores them in the variable named n. Numbers that
cause the Boolean expression to be true (all the zeroes) are removed from the array.

Here is a slightly more complex example. Since the value of n % 2 will be 0 only when
n is an even number, this expression will remove the even numbers from a:

>> a
=> [3, 2, 5, 1, 4, 6]

>> a.delete_if { |n| (n % 2) == 0 }
=> [3, 5, 1]

The mnemonic for remembering how the each iterator works is also helpful for under-
standing an expression that involves delete_if. In essence, what the expression above
says is “for all items n in the array a, delete n if n mod 2 is 0.”

Before you start the projects in this section, a word of warning: The assignment operator,
written with a single equal sign, and the operator that tests for equality, written with two
equal signs, are very different things! Unfortunately, there are many situations where Ruby
is happy to evaluate an expression that contains either operator. If you are not getting the
results you expect, either in this section or later in the book, double-check to make sure you
are typing the right number of equal signs.
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Tutorial Project

T28. Type these expressions to make sure you understand the == operator:
>> x = 12
=> 12

>> 10 == 12
=> false

>> x % 2
=> 0

>> x % 2 == 0
=> true

>> x == 3 * 4
=> true

T29. One way to see if a number is even is to ask Ruby to check the remainder after dividing by 2;
an even number has a remainder of 0:
>> 3 % 2
=> 1

>> 3 % 2 == 0
=> false

>> 4 % 2
=> 0

>> 4 % 2 == 0
=> true

T30. Make an array of numbers from 1 to 20:
>> a = Array(1..20)
=> [1, 2, 3, 4, 5, ... 18, 19, 20]

T31. Remove the even numbers by calling delete_if to delete the numbers that are evenly
divisible by 2:
>> a.delete_if { |n| n % 2 == 0 }
=> [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

T32. Repeat the expression that creates the array, so you once again have an array of numbers
from 1 to 20:
>> a = Array(1..20)
=> [1, 2, 3, 4, 5, ... 18, 19, 20]

T33. Repeat the expression that removes items, but change the 2 to a 3, so delete_if removes
multiples of 3 (this would be a good place to use command line editing):
>> a.delete_if { |n| n % 3 == 0 }
=> [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20]

T34. Make an array of strings:
>> cars = ["bmw", "audi", "mini", "prius", "vw", "kia"]
=> ["bmw", "audi", "mini", "prius", "vw", "kia"]

T35. This expression will delete the strings that have more than three letters:
>> cars.delete_if { |x| x.length > 3 }
=> ["bmw", "vw", "kia"]

Do you see how Ruby evaluated this expression? It put each string in x, checked to see if the
string had more than 3 characters, and deleted it if it did.
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3.6 Exploring the Algorithm

The projects in the previous sections illustrated the basic building blocks for a Ruby im-
plementation of the Sieve of Eratosthenes. We now know how to make lists of numbers,
and we know how to iterate over lists to remove numbers that are evenly divisible by other
numbers. The next step is to systematically apply these operations, so that after repeating
the sifting operation implemented by delete_if a sufficient number of times we will be
left with a list that contains only primes.

In this section we will use IRB as a “scatchpad.” We’ll make a list pretty much the same
way we did it by hand in the introduction to this chapter, but instead of writing a list of
numbers on a piece of paper and crossing them off one at a time, we’ll let Ruby take care of
all the clerical work. We will create Ruby arrays to keep track of the worksheet and the list
of primes. In the next section we’ll see how to collect all these pieces into a single program,
so Ruby can do everything, not only the clerical work with the number lists but also the
decision making about how many times to repeat the copying and sifting operations.

The steps of the algorithm are shown in Figure 3.5. The first step is to create the arrays
that will represent the worksheet and the list of primes. To show how the algorithm works
we will make a list of primes less than 100, so these two Ruby statements will initialize the
arrays:

>> worksheet = Array(2..100)
=> [2, 3, 4, 5, ... 99, 100]

>> primes = []
=> []

Now we’re ready to carry out Step 2 of the algorithm. Recall that to get the value of the
first item in an array we can call the method named first, so to copy the first item from
worksheet to the end of primes we just type

>> primes << worksheet.first
=> [2]

To make a list of every prime number less than n:

1. Create an array named worksheet with every integer from 2 up to n, and create an 
initially empty array named primes.

2. Copy the first number in worksheet to the end of primes.

3. Iterate over worksheet to remove every number that is a multiple of the most 
recently discovered prime.

4. Halt if every number in worksheet is prime, otherwise go back to step 2.

The Sieve of Eratosthenes

Figure 3.5: The Sieve of Eratosthenes, using Ruby to manage the lists of numbers.
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Note that this step does not remove the 2 from the front of the worksheet; all it does is make
a copy of the first item. We can check the contents of the arrays after this step:

>> primes
=> [2]

>> worksheet
=> [2, 3, 4, ... 99, 100]

For Step 3 of the algorithm, we clearly want to use the delete_if method to iterate
over worksheet. The question is, what expression do we put between the braces? Can
we write an expression that is true when an item x is a multiple of the most recently
discovered prime? Recall from the tutorial project in the previous section that we can tell if
a number x is even (i.e., if it’s a multiple of 2) by seeing if x % 2 is 0. In general, to see if a
number is a multiple of any value n check to see if x % n is 0. That means the expression
between the braces should be x % primes.last == 0. If we try that expression on the
worksheet array, this is what we should see:

>> worksheet.delete_if { |x| x % primes.last == 0 }
=> [3, 5, 7, 9, ... 97, 99]

Note that every even number has been deleted from worksheet because when this expres-
sion was evaluated primes.last was 2.

The worksheet still has several composite numbers, so we have to repeat the expressions
that implement Steps 2 and 3 of the algorithm. This is the result:

>> primes << worksheet.first
=> [2, 3]

>> worksheet.delete_if { |x| x % primes.last == 0 }
=> [5, 7, 11, 13, ... 95, 97]

Note carefully what happened the second time we asked Ruby to execute these statements.
The number at the front of the worksheet was 3, and it was copied to the end of primes.
When delete_if was called the second time, primes.last was 3, so delete_if re-
moved all the multiples of 3 from worksheet.

We’re not done yet. Since 25, 35, and several other multiples of 5 are still in worksheet,
we need to once again repeat the two statements that copy the first item in worksheet to
the end of primes and remove multiples of the most recent prime.

After a few more repetitions we will have sifted out all the composite numbers. This is
what the two arrays will look like after 10 rounds of copying and deleting:

>> primes
=> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

>> worksheet
=> [31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

The array named primes has the small prime numbers that were copied from worksheet,
and the numbers that are still left in worksheet are the rest of the prime numbers less
than 100.
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Tutorial Project

T36. Type the two expressions that initialize the arrays:
>> worksheet = Array(2..100)
=> [2, 3, 4, 5, ... 99, 100]

>> primes = []
=> []

T37. Copy the first number in worksheet to the end of primes:
>> primes << worksheet.first
=> [2]

T38. Since 2 is the last number in primes, this statement will delete the multiples of 2:
>> worksheet.delete_if { |x| x % primes.last == 0 }
=> [3, 5, 7, 9, ... 97, 99]

T39. Repeat the previous two expressions. This is a situation where command line editing will
save a lot of time and prevent a lot of errors due to typing mistakes.

T40. Do you see how, after executing the copying and deleting steps a second time, the multiples
of 3 are now gone from worksheet?

T41. Keep repeating these two expressions until you are convinced all the numbers left in primes
and worksheet are all prime numbers.

T42. Since one number is added to the end of primes in each round of copying and deleting,
asking Ruby to evaluate primes.length will tell you how many times you executed those
steps. How many did you do before you decided there were no more composite numbers
left?

3.7 The sieve Method

The discussion in the previous section described the key steps in the Sieve of Eratosthenes
algorithm. After doing the exercises you should have a fairly good understanding of how
each cycle of the algorithm removes all the multiples of the most recently discovered prime
number.

What we would like to do next is to put these operations into a new method named
sieve. The goal is to be able to call the method from an IRB session to have Ruby generate
an array containing all the prime numbers less than a specified value. For example, to get
the list of primes less than 50 we would type:

>> sieve(50)
=> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

The first step in making the sieve method is to create a file to hold the method definition.
Ruby methods are commonly found in files that have the same name as the method, so the
file to make for this project should be named sieve.rb. A good first step is to simply type
in the outline of the method:

def sieve(n)

end
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This definition tells Ruby that we are making a new method named sieve, and that when
the method is called we will be passing a parameter.

Next we can type in the lines that create the two arrays and an expression that will return
the final result. The only thing different about the assignment statement that initializes the
worksheet is the upper bound, the number n, which will be set to the value passed as an
argument when we call the method. Here is the new outline:

def sieve(n)
worksheet = Array(2..n)
primes = []
return primes

end

At this point we don’t really have an array of prime numbers to return, but don’t worry, we’ll
be adding more statements.

A good habit to get into is to save this version and load it into IRB. It won’t do much if
we call it, but by going through the exercise of loading the outline and calling the method,
we will discover if we accidentally made any typing mistakes. Several things can go wrong,
even in this simple program. People leave out parentheses, or misspell “seive,” or make any
of a number of possible typing mistakes. The more often we check to make sure things are
on the right track, the sooner we catch these sorts of errors.

If we tell Ruby to load the first version of the method, and there are no typing mistakes,
this is what we will see:

>> load "sieve.rb"
=> true

The true means the file was loaded with no errors. If you see an error message, the
message will contain the line number, and you should go to that line number in your text
editor to correct the mistake. As one last test of the outline, we can call the method:

>> sieve(50)
=> []

This is what we expected, since primes is initialized to be the empty list. Once again, by
running this simple test, we can be assured we didn’t make a silly mistake, like leaving off
the end, or typing in the wrong name for the method.

The next phase in the development of the sieve method is to figure out how to have
Ruby repeat the two main operations in the algorithm, the step that copies the front of
worksheet to primes and the step that uses delete_if to remove multiples of that
prime. When we used IRB as a workbench to explore the algorithm we simply repeated the
execution of two expressions until it was “obvious” there were no more composite numbers
left in worksheet. It may be obvious to us, but not to the computer. We need to figure out
how to specify a terminating condition that we can write as an expression in Ruby.

Recall from the previous exercise that every time we call delete_if the worksheet be-
comes shorter by at least one number. So one way to have Ruby control the algorithm
is to have it keep transferring numbers from worksheet to primes until worksheet is
empty. Ruby will do too many steps—it will keep repeating the two operations long after the
last composite number has been sifted out—but let’s go ahead and implement this version
anyway, because it is a good way to introduce a new technique for describing iteration.
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Earlier in the chapter, iteration was defined as a process that “walks” through a container
to perform an operation with every object in the container. A more general definition is that
iteration is any process that repeatedly executes a set of operations. One way to tell Ruby
to repeat the copying and sifting operations is with a while statement that looks like this:

while worksheet.length > 0
primes << worksheet.first
worksheet.delete_if { |x| x % primes.last == 0 }

end

Although this may look complicated, the two lines in the middle are identical to what we’ve
been using in our tests. When you type these two lines into your sieve.rb file, you can just
copy and paste from your terminal emulator window and insert the lines into the method
definition.

The four lines shown above tell Ruby to execute the statements between the line with
the word while and the line with the word end as long as worksheet.length is greater
than 0, i.e., as long as there are numbers in the worksheet. When Ruby gets to the first line,
it evaluates the Boolean expression next to the word while. If the value of this expression
is true, Ruby evaluates the expressions on the following lines, up to the line that has the
word end. Ruby then goes back to the line with while and checks the Boolean expression
again. In this example, as long as there are items in worksheet Ruby will keep copying the
first item from worksheet to the end of primes and sifting multiples of that value from
worksheet.

An old term to describe iteration, dating from the first programming languages, is loop;
the Ruby code above is an example of a while loop. An important fact about every while
loop is that eventually the expression that controls the loop must evaluate to false, other-
wise the program never terminates—it is caught in an infinite loop.

So does the while loop in our sieve method terminate? The answer is “yes,” because
the worksheet shrinks by at least one item on every iteration. To see why, note that the call
to delete_if removes the first item from worksheet because every number is its own

def sieve(n)
  worksheet = Array(2..n)
  primes = []

  while worksheet.length > 0
    primes << worksheet.first
    worksheet.delete_if { |x| x % primes.last == 0 }
  end

  return primes
end

# Make a list of all prime numbers between 2 and n, iterating until worksheet is empty

** preliminary version **

Figure 3.6: The first version of the sieve method, using a while loop that tests for an empty array.
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multiple, i.e., x % x == 0 for any integer x. Eventually the array shrinks down to the
empty array and the while loop will terminate.

After adding the while loop to the method definition in the file, the complete method
should look like the definition in Figure 3.6. Save the file and reload the method, and we
should be able to call sieve to have it make a list of primes:

>> load "sieve.rb"
=> true

>> sieve(50)
=> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Success! We have a method that creates a list of prime numbers!
At this point you might want to try a few more calls, perhaps getting a list of primes up

to 100 or even 1000. But don’t get too carried away—if you ask for a list of primes up to
10,000 you’ll start to see Ruby taking a lot longer to build the list. In the next section we’ll
improve the method so it requires far fewer iterations in the while expression.

Tutorial Project

If you have not already done so, use your text editor to create a file named sieve.rb and type in the
method shown in Figure 3.6. You could simply type in the entire program, as shown, but it is a good
idea to follow the procedure described in this section. First type in the outline, then load it and test it,
and then continue with the next part of the code. This sort of “continual testing” is a helpful way to
find errors soon after they occur. If you wait until you have typed the entire program it can be much
more difficult to figure out which lines contain errors.

Load your new method into IRB and test it by calling it a few times. Once the method is producing
lists of prime numbers you are ready to move on to the next section.

3.8 A Better Sieve

The challenge set out in the tutorial project at the end of Section 3.1 was to devise a formula
for when to stop sifting numbers from the worksheet. It turns out we can stop as soon as
the number at the front of the list is greater than

√
n.

To see why, consider a useful fact about multiplication. Any number that will be removed
from the list is a composite number, which means it is the product of two smaller numbers
a and b. It must be the case that either a <

√
n or b <

√
n. If not, the product ab will be

greater than n, because the product of two numbers that are both greater than
√

n will be
greater than n. Since our worksheet only goes up to n we can stop filtering when all the
numbers in the worksheet are greater than

√
n, which will be the case as soon as we find a

prime that large. In the case of n = 20 the algorithm can terminate after removing multiples
of 3 from primes, because the new head of the worksheet is 5, and 5 >

√
20 ≈ 4.472.

In Chapter 2 we saw Ruby has a method named sqrt that will compute square roots.
It’s easy to change the while statement so it checks to see whether the first number in the
worksheet is greater than

√
n. Simply change the line with the while expression so it looks

like this:

while worksheet.first < sqrt(n)
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def sieve(n)
  worksheet = Array(2..n)
  primes = []

  while worksheet.first < sqrt(n)
    primes << worksheet.first
    worksheet.delete_if { |x| x % primes.last == 0 }
  end

  return primes + worksheet
end

# Make a list of all prime numbers between 2 and n, iterating until the first number in
# worksheet is greater than the square root of n.

★

★

Figure 3.7: The complete definition of the sieve method, which uses the Sieve of Eratosthenes
algorithm to generate a list of prime numbers between 2 and an arbitrary upper limit n. The
stars highlight the differences between this version and the preliminary version of Figure 3.6.

This new Boolean expression still ensures the loop will terminate. Every time the loop body
is executed, the worksheet decreases by at least one number (the number moved to the end
of primes), so the value of the first number in worksheet is always increasing. Eventually
a number greater than

√
n will be seen at the head of the list.

If you edit your file to change the Boolean expression at the head of the while loop, and
then reload the method and test it by calling sieve(100), you will notice that the new
version has a small “bug.” We seem to be missing a lot of numbers all of a sudden. The
program will print a list of prime numbers, but they will only go up to 7. The problem is
that at the end of the while loop the prime numbers are spread across the two arrays: all
the primes less than

√
n are in the primes array and all the remaining primes are still in

worksheet.
To fix this bug we have to figure out how to splice together the primes array and the

worksheet. In Ruby it’s easy to splice together two arrays. If x and y are arrays, the expres-
sion x + y creates a new array that has all the items in a followed by all the items in b. So
the final expression in the method is simply

return primes + worksheet

Tutorial Project

The next section has a number of experiments based on the final version of the sieve method. These
experiments will use a version of sieve that is included with RubyLabs. If you would like to do some
explorations on your own, use your text editor to make the two changes discussed above and indicated
by stars in Figure 3.7.

After making these changes you can reload your file and call the new version of sieve. This new
version is much more efficient. A call to sieve(100000) to make a list of all prime numbers less
than 100,000 should only take a second or two. The experiments in the next section should make it
clear why the new version is so much more efficient.
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Figure 3.8: One way to see if a piece of computer hardware is working is to connect a set of probes
to a meter (left) and then use the probes to measure signals coming from the CPU or other parts
of the system (right). The RubyLabs module has a number of “software probes” that will be used
to monitor the execution of sieve and other methods.

3.9 Experiments with the Sieve

This new version of the sieve method is clearly more efficient than the original version,
since the new termination condition for the while loop means there are fewer calls to the
delete_if method. But just how much more efficient is it?

One way to answer this question is to use a set of “probes” to monitor the progress of
the sieve method. Hardware technicians use probes to measure electrical signals on the
pins of CPUs, memory chips, and other components when they are tracking down hardware
problems. One end of a pair of probes is connected to a meter. When the technician touches
the other end of the probe to the hardware, electrical signals are measured and displayed
on the meter (Figure 3.8).

For our projects we will be using “software probes.” Each probe is a method defined in
RubyLabs. We will call these methods to attach probes to sieve or any other method we
want to watch. After attaching a probe, we can call our method, and the probe will display
outputs in the terminal window that show us what the method is doing.

The tutorial project in this section will use probes to watch the worksheet get shorter and
shorter as composite numbers are filtered out. We will use other probes to count the number
of times the while loop is executed. If we let the loop run until the worksheet array is
empty, the method needs almost 10,000 iterations to make a list of prime numbers between
2 and 100,000. What we are going to see is that with the new terminating condition the
algorithm makes only 65 iterations. Our new version will be over 150 times more efficient!

The first RubyLabs probe to try is named time. Simply type the word time followed by a
Ruby expression enclosed in braces. The time method will measure how long it takes Ruby
to evaluate the expression between the braces. This is how to measure the time it takes
sieve to make a list of prime numbers less than 1000:

>> time { sieve(1000) }
=> 0.015341

The result of this call is the number of seconds Ruby spent during the execution of the call
to sieve(1000). Note that time doesn’t show us the list of prime numbers; all we see is
the number of seconds it took Ruby to make the list.
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>> include SieveLab
=> Object

>> Source.listing("sieve")
  1:    def sieve(n)
  2:      worksheet = Array(2..n)
  3:      primes = []
  4:    
  5:      while worksheet.first < sqrt(n)
  6:        primes << worksheet.first
  7:        worksheet.delete_if { |x| x % primes.last == 0 }
  8:      end
  9:  
 10:      return primes + worksheet
 11:    end
=> true

Figure 3.9: For the projects in this section you need to use the version of the sieve method that
comes with RubyLabs. Start a new IRB session, include SieveLab, and call the listing method
to see the source code for the RubyLabs version of sieve.

A method named trace allows us to watch variables as they change during the execution
of a program. Before we call this method, we have to tell Ruby which variable to watch and
when to print a new value of the variable. This is where the idea of the “software probe”
comes into play.

To explain how probes work, we are going to attach a probe to the sieve method so Ruby
shows us the value of worksheet at the start of each round of sifting. Start by getting a
listing of the method, which will show the line numbers (Figure 3.9). The line we are most
interested in is line 6, which has the statement that copies the first item in the worksheet to
the primes array at the start of each iteration. If we tell Ruby to print the current value of
worksheet just before line 6 is executed, we will be able to see the list getting shorter and
shorter as the algorithm progresses. Here is the command that creates the probe:

>> Source.probe("sieve", 6, "p worksheet")
=> true

The method named Source.probe attaches a software probe. The first argument is a
string that identifies the method we want to watch, the second is a line number within that
method, and the third is a Ruby statement we want to have executed each time the specified
line is executed.

After attaching this probe, we can call trace to monitor the progress of our sieve
method:

>> trace { sieve(20) }
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 19, 20]
[3, 5, 7, 9, 11, 13, 15, 17, 19]
=> [2, 3, 5, 7, 11, 13, 17, 19]
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Notice how trace called p worksheet, the expression in the probe, to print the current
version of the worksheet just before the statement on line 6 was executed. Since it it took
two iterations to make a list of primes up to 20, the statement on line 6 was executed twice.
The first output line shows the worksheet before any numbers were sifted out, and the
second line shows the list after multiples of 2 were removed.

After we have used trace to monitor sieve for small values of n, we will want to run
some more experiments to see how efficient the method is for larger values of n. For these
experiments we don’t really need to see the contents of the worksheet. In fact, if we use
trace to monitor the execution of sieve(1000), the screen will be filled with numbers
and it will be hard to figure out how many rounds of sifting take place.

For experiments that simply need to count the number of times a line is executed, attach
a new kind of probe, called a “counting probe.” Call Source.probe and pass it a special
argument named :count, as shown in this example:

>> Source.probe("sieve", 6, :count)
=> true

The word :count, with the colon at the front, is a special type of string called a symbol.
Symbols are often used in Ruby programs to specify options. In this example, :count tells
Source.probe to attach a counting probe instead of a probe that monitors the state of a
variable.

After attaching a counting probe, using the expression shown above, we can use a method
named count to call sieve and count how many times line 6 is executed:

>> count { sieve(20) }
=> 2

>> count { sieve(100) }
=> 4

According to the output, it only takes two rounds of copying and sifting to make a list of
primes up to 20, and four rounds for the list of primes between 2 and 100.

Symbols in Ruby

Names that start with colons are called symbols in Ruby.  Symbols are special types 
of strings:  they are not enclosed in quotes, but are simply sequences of letters that 
start with a colon.
  
Symbols are commonly used to specify options in Ruby.  For example, passing the 
symbol :count as an option to Source.probe tells Ruby to count the number of 
times a statement is executed.

We'll be using symbols in future labs, as well.  The important thing to remember is 
that a symbol is just another type of string, but one that contains a single word and 
starts with a colon instead of being surrounded by quotes.
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Tutorial Project

Important Note: To work on the projects in this section of the tutorial you need to start a new IRB
session. Type quit to exit if your previous IRB session is still running.

The lab module for this project is named SieveLab. Start a new IRB session, and tell Ruby you want
to use the SieveLab module:

>> include SieveLab
=> Object

Note: if you get an error message saying something about an “uninitialized constant” first make sure
SieveLab is spelled properly (it must be capitalized exactly as you see it here). If you typed SieveLab
correctly, this message means the RubyLabs package is not being loaded into IRB when you start a
new session. Refer to the Lab Manual for suggestions on how to fix this problem.

T43. Try out the time method by using it to measure how long it takes to make some lists of
prime numbers:
>> time { sieve(100) }
=> 0.001292

>> time { sieve(1000) }
=> 0.015364

The number you see will be different, since the execution time depends on processor speed
and many other factors that vary from one computer to another.

T44. Call the listing method to get a printout of the sieve method:
>> Source.listing("sieve")

1: def sieve(n)
...
11: end

=> true

Your output should look like the code shown in Figure 3.9.

T45. Attach a probe to line 6 of the sieve method, so the worksheet is printed just before the
statement on line 6 is executed:
>> Source.probe("sieve", 6, "p worksheet")
=> true

T46. To verify the probe is attached call Source.probes (note the “s” at the end of the name)
to get a list of all probes:
>> Source.probes
sieve 6: p worksheet
=> true

The output confirms that the expression p worksheet will be evaluated each time line 6 in
sieve is executed.

T47. The probe will be activated when we use the trace method. This expression tells Ruby to
call sieve(50), and whenever Ruby reaches a line in the program that has a probe attached
the probe expression is executed:
>> trace { sieve(50) }
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ... 49, 50]
[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, ... 47, 49]
[5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49]
[7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49]
=> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
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Can you see how the probe is working? And can you see why the sieve method terminated
when it did? After removing multiples of 7 from worksheet, the smallest number left is 11.
Since 11 >

√
50 the loop terminates.

T48. Repeat the previous statement a few more times, passing different values to sieve.

T49. Attach a counting probe to line 6 of the sieve method:
>> Source.probe("sieve", 6, :count)
=> true

Note: there can be only one probe per line, so the new probe replaces the one set there
previously.

T50. Use the count method to find out how many times that line is executed when making a list
of primes between 2 and 50:
>> count { sieve(50) }
=> 4

Is this result correct? How many lines were printed by trace when it monitored the same
method call?

T51. Try a few more experiments on your own, passing different values to sieve.

After using count and trace to monitor the execution of the sieve method, you should have a clear
understanding of how the algorithm works and how the while loop terminates when the number at
the front of the worksheet is greater than

√
n.

Next try some experiments with a much bigger list by asking sieve to make a list of primes up to
100,000. As a result of the way the probes are implemented in RubyLabs, having a probe attached
does not interfere with the measurement of execution time when you call time, but sieve will run
much more slowly when you call count.

T52. Measure how long it takes to make a list of primes between 2 and 100,000 (remember Ruby
doesn’t use commas in large numbers, so 100,000 is written as a 1 followed by five 0’s):
>> time { sieve(100000) }
=> 2.720835

T53. Repeat the previous expression, but change time to count. Since the probe is active this
will take a lot longer, but you will eventually see the number of iterations:
>> count { sieve(100000) }
=> 65

3.10 Summary

This chapter explored the Sieve of Eratosthenes, an algorithm that has been used for thou-
sands of years to make lists of prime numbers. To use this algorithm to find all primes
between 2 and some maximum value n, start by making a list of all numbers from 2 to n,
and then systematically “sift out” the composite numbers.

The project introduced an important new idea in computing: programs often need to work
with collections of objects. An array is a simple kind of container, where objects are stored
in a linear order. We saw two different ways to to make arrays in Ruby. We can simply write
a list of items to put in the array, for example a list of strings or numbers enclosed between
square brackets, or we can make an array of numbers in a specified range. Arrays were used
in the Ruby implementation of the sieve to hold the initial list of numbers and the growing
list of prime numbers that will be the eventual output from the method.
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Concepts and Terminology Introduced in This Chapter

array An ordered collection of objects; in this chapter arrays were
used to implement lists of numbers

iteration A technique for solving a problem by repeating a set of steps

iterator A method that applies an operation to each item in a collec-
tion, e.g., to iterate over an array to print the elements or
remove composite numbers

while loop A Ruby statement that repeatedly executes a set of state-
ments

mod operator An operator that computes the remainder of a division; in
Ruby, the remainder after dividing x by y is written x % y

Boolean
expression

An expression that has a value of true or false

Another important idea in computing introduced in this chapter is iteration, which gener-
ally means “repetition.” Two forms of iteration were used in this project: iterating over an
array, to repeatedly perform some operation for each object in the array, and repeating an
operation until a certain condition was met. The first form of iteration was used to filter out
composite numbers: a method named delete_if examines each object in the worksheet
and evaluates an expression to see if the object is a number divisible by the most recently
discovered prime. This second form of iteration was carried out by a “while loop” that
repeated the key steps of the algorithm until no more composite numbers were left in the
worksheet.

Prime numbers play an important role in modern cryptography. Algorithms that encrypt
messages, for example the credit card numbers you submit to a secure web site when you
order something online, use “encryption keys” that are created by multiplying together two
large prime numbers. Encrypted messages are safe as long as an intruder cannot break the
key into its prime factors. The prime numbers used to make keys are huge. To make it very
difficult for an intruder, keys should be around 600 digits long. The programs at secure web
sites that choose prime numbers to make keys can’t simply use the Sieve of Eratosthenes
to generate their primes, since they would have to make an initial worksheet with every
number from 1 to 10600 (to put this in perspective, there are only 1080 atoms in the entire
universe). But the sieve is still used by these web sites. One of the steps in the algorithm
that makes keys relies on a list of small primes, less than 10,000, and Eratosthenes’ sieve is
still used today to make these shorter lists.
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Exercises

Try to answer questions 1 through 5 without using IRB. To answer questions 6 and 7 start IRB and
load SieveLab or your version of sieve.rb so you can run the sieve method.

1. What does Ruby print for each of the following expressions?
>> 12 % 5
=>

>> 12 % 4
=>

>> 97 % 7
=>

2. Suppose we define an array with this expression:
>> names = ["fred", "frodo", "fanny", "fonzie", "phil"]

What would Ruby print for the following two expressions?
>> names.each { |x| p x.length }
=>

>> names.delete_if { |x| x.length % 2 == 0 }
=>

3. Briefly explain what Ruby did to evaluate that last expression (the one that contains a call to
delete_if).

4. The improved sieve method shown at the end of the chapter stops removing numbers from
worksheet as soon as it finds a prime number larger than a certain cutoff value. What is the
cutoff value when we call the method to make a list of primes from 2 to 1000? That is, what is
the value of the number n such that the method can stop filtering after it finds a prime larger
than n?

5. To make a list of prime numbers between 2 and 100,000 we have to filter out multiples of num-
bers up to

√
100, 000, which is 316. At first glance it might seem our new improved algorithm

should have to do 316 iterations. But we just saw that sieve executes the loop only 65 times.
Can you explain why it does not have to make 316 iterations?

Use IRB to answer the following questions about prime numbers.

6. What is the largest prime number less than 1000?

7. The table below shows a count of the number of primes less than x for selected values of x.
The number in the column labeled π(x) is the number of primes less than x. Can you figure out
how to use the sieve method to count the number of primes less than 100? Less than 1000?
Do the numbers agree with those shown in the table?

x π(x)

10 4
100 25

1000 168
10,000 1229

100,000 9592





Chapter 4

A Journey of a Thousand Miles
Iteration as a strategy for solving computational problems

One of the things computers do best is manage information. Computers store everything
from small collections of personal data, like address books, photo catalogs, and financial
records, to huge databases containing scientific data, medical records, and corporate fi-
nances. People constantly use their computers to search for information, whether it’s in
a music library on a personal computer, or at a commercial music site, or even across the
entire Internet. Computers also spend a lot of time rearranging data to make it easier for
users to find what they need.

Two fundamental operations used in this wide variety of information management appli-
cations are searching and sorting. In their most basic forms, search algorithms scan through
a collection to locate a particular item of interest, and sort algorithms reorganize collections
so they are put in a particular order. In this chapter we will study two of the most common
searching and sorting algorithms. The search algorithm, called linear search, scans an array
from beginning to end to see if it contains a specific item. The sort algorithm, insertion sort,
rearranges the items in an array to put them in order.

The two algorithms apply the same problem-solving strategy used by the Sieve of Eratos-
thenes. That algorithm makes a list of prime numbers by repeatedly executing the same
operation, computing remainders, over and over. Instead of doing numerical calculations,
however, searching and sorting simply compare items and move them around in memory.
We will see how the same strategy for solving a problem, namely, setting up iterations that
repeat a set of simple operations, will help applications effectively manage collections of
information.

The experiments with the linear search and insertion sort algorithms will also introduce
one of the most important concepts in computer science: the idea of scalability. These
two algorithms are efficient and work well for small arrays of data, but as a data collection
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grows they become less and less effective. Computer scientists have developed a precise
definition of what it means for an algorithm to be scalable, in order to compare algorithms
on the basis of their ability to work on large problems, and we will use this definition to
analyze the scalability of linear search and insertion sort.

After gaining experience with the basic searching and sorting algorithms in this chapter,
we will look at two different algorithms in the next chapter. Through the use of a more
sophisticated problem-solving strategy, these other algorithms are much more efficient on
large arrays. But simplicity is a virtue, and for small arrays of data the two algorithms we
will study in this chapter are still widely used.

4.1 Searching and Sorting

Searching and sorting are familiar operations in daily life, and their common meanings carry
over into the world of computation. Searching is a process of looking for a particular piece
of data in a large collection, and a sorting algorithm is used to arrange data in a specified
order.

Searching and sorting commands are common features in applications we use every day.
For example, an application that manages a personal music library (Figure 4.1) might sort
songs by artist name, song name, genre, or other attributes. The application can also help
locate a particular song by letting a user search for songs that have a specific string in the
title. Some other examples of searching and sorting are found in spreadsheets and word
processors. We can arrange the data in a spreadsheet by selecting a set of rows and columns
and then invoking a sort operation, and we can search for words and phrases in a word
processing application by invoking a “find” command.

As we begin our exploration of searching and sorting algorithms, we are going to need
some new terminology that will let us be more specific about what we want the algorithms
to do and what we expect to happen at each step. The two algorithms we will study both

"A Journey of a Thousand Miles 
       Begins with a Single Step"

The title of this chapter is based on a quote from
Tao Te Ching, by Lao-Tzu, a Chinese philosopher 
who lived in the 6th century BC.

The quote succinctly captures the nature of
iteration as a strategy for solving computational
problems.  By repeating the same basic steps
over and over, one can eventually solve some very
large problems.

The Sieve of Eratosthenes uses this strategy when
it repeatedly copies and sifts out multiples of
prime numbers.  In this chapter we will see how a 
similar strategy can be used to find an item in an
array or to rearrange the array so it is sorted.
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Absolute Beginners

Acute Schizophrenia Paranoia Blues

Accidentally Like a Martyr

Across The Great Divide

Across The River

Across The Universe

David Bowie

The Kinks

Warren Zevon

The Band

Peter Gabriel

The Beatles

Absolute Beginners

Muswell Hillbillies

Excitable Boy

The Night They Drove Old Dixie Down

Secret World Live

Let It Be

Song AlbumArtist

Lady Writer

Paperback Writer

Tell Him

A Whiter Shade of Pale

Dire Straits

The Beatles

Exciters

Procol Harum

Communiqué

Hey Jude

The Big Chill

The Big Chill

Song AlbumArtist

iter ×

Figure 4.1: Examples of searching and sorting. Top: the user has clicked on the Song column name
to sort the table entries according to the name of the song. Bottom: the user has typed “iter” in
the search box, and the program is showing all the songs that have that string in the song name,
artist name, or album title.

work on lists, which are implemented in Ruby in the form of array objects. The first new
concept is the idea of an array index, which is simply a number that identifies a position
within the array. The first item in an array has the index 0, the next is index 1, and so on up
to n− 1 for an array of n items. Note that the index of the first item is 0, not 1.

To access an item in the middle of an array in Ruby, simply write the name of the array
followed by a number inside “square brackets.” Here is an example, using an array of five
strings:

>> vowels = ["a", "e", "i", "o", "u"]
=> ["a", "e", "i", "o", "u"]

>> vowels[0]
=> "a"

>> vowels[1]
=> "e"

>> vowels[4]
=> "u"

Not surprisingly, since searching and sorting are such important operations, Ruby has a
number of different methods we can use to search through arrays or sort arrays according
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to various criteria. The method named include? looks through an array to see whether it
contains a specified value, returning true if the search succeeds or false if it fails:

>> vowels.include?("e")
=> true

>> vowels.include?("x")
=> false

If we not only want to know if an item is in the array, but where it is, we can call a
method named index. The most important thing to remember about index is that if we
are searching an array that has n items, and the search succeeds, the result will be a number
between 0 and n− 1:

>> vowels.index("e")
=> 1

>> vowels.index("u")
=> 4

If the search fails, index returns a special object named nil, which means “nothing” or
“nowhere”:

>> vowels.index("x")
=> nil

Array Indexes

Computer scientists are famous for beginning at 0 instead of 1 when they start 
assigning labels to things.  Array indexes are a good example.  If an array has 10 
items, the locations in the array are labeled from 0 to 9.

If you type an expression with an array index operator and you see a result that 
doesn't look right, the first thing to check is to make sure you count starting at 0.  If 
you type s[1] expecting to see the first item in an array s you'll get the wrong value. 
You need to remember to type s[0].

    >> s = ["z", "w", "i", "t", "t", "e", "r", "i", "o", "n"]
    
    >> s[1]
    => "w"
    >> s[0]
    => "z"
    >> s.length
    => 10
    >> s[10]
    => nil
    >> s[9]
    => "n"

z

0

w i t t e r i o n

1 2 3 4 5 6 7 8 9
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To sort the items in an array simply call a method named sort:

>> a = ["a", "n", "a", "g", "r", "a", "m"]
=> ["a", "n", "a", "g", "r", "a", "m"]

>> a.sort
=> ["a", "a", "a", "g", "m", "n", "r"]

There are many other searching and sorting operations defines for arrays in Ruby. We
can search for all the items that match a pattern (e.g., all words that start with “a”), or sort
in reverse order, and lots more, but we’ll save the discussion of those methods for a later
project when we need them.

Tutorial

T1. Make a small array of strings to use for testing index expressions:
>> notes = ["do", "re", "mi", "fa", "sol", "la", "ti"]
=> ["do", "re", "mi", "fa", "sol", "la", "ti"]

T2. The array method named first returns the item at the beginning of an array:
>> notes.first
=> "do"

T3. We can use an index expression to do the same thing. Since the first item in an array is at
location 0, asking Ruby to evaluate notes[0] should give the same result as notes.first:
>> notes[0]
=> "do"

T4. Since there are 7 strings in this array we can find the last one at location 6:
>> n = notes.length
=> 7

>> notes[6]
=> "ti"

T5. Try asking Ruby for values at other locations, using any index between 0 and 6.

T6. What do you think will happen if you give an index that is past the end of the array? For
example, if you ask for notes[12]?
>> notes[12]
=> nil

Recall that nil is the special object that stands for “nothing.” This is simply Ruby’s way of
saying you have asked for something that does not exist.

T7. Next try the include? method. This method should return true or false depending on
whether the array contains the specified item:
>> notes.include?("re")
=> true

>> notes.include?("bzzt")
=> false

T8. Use the index method to find out where the items are located:
>> notes.index("re")
=> 1

>> notes.index("bzzt")
=> nil

Do you see why the first expression above returned a value of 1?
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T9. A call to notes.sort will generate a new list containing all the items in notes, but rear-
ranged into ascending (alphabetical) order:
>> notes.sort
=> ["do", "fa", "la", "mi", "re", "sol", "ti"]

T10. Note that the call to sort did not change the array—it returned a copy of the array, with
all the items arranged in ascending order. You can verify this by asking Ruby to print the
original array again:
>> notes
=> ["do", "re", "mi", "fa", "sol", "la", "ti"]

4.2 The Linear Search Algorithm

The include? and index methods described in the previous section use the linear search
algorithm to search through an array. To see how this algorithm works, we will pretend that
these methods are not already part of Ruby and that we have to write our own methods for
doing a search. The project for this section will be to write two new methods, which we’ll
call contains? and search.

As the name implies, a linear search is a simple process that starts at the front of an array
and compares items one by one until it finds what it is looking for. The algorithm “walks
through” an array to look at each successive item. The new twist for this algorithm is that if
we find what we’re looking for we can stop the iteration early—there is no need to continue
on to the end of the array (Figure 4.2).

To stop the iteration early, we need a new programming construct known as conditional
execution. The idea is to tell Ruby to execute a statement only under certain situations.
In the search algorithm, we will have a return statement that will be executed only if Ruby
finds the item it is looking for.

As an example of how to use conditional execution, let’s look at a simple example first.
Suppose we have a set of quiz results stored in an array named scores. If we want to print
all the scores, we just need to use the each method to iterate over the array and print each
item:

>> scores.each { |x| puts x }
86
97
70
...

If we want to see only the highest scores, we can change the statement between braces so
the puts is executed only if the score is greater than a certain value. What we do is attach a
modifier to the end of a statement. In this case the modifier is simply the word if followed
by a Boolean expression. Ruby will execute the statement preceding the word if only when
the expression is true. This statement tells Ruby to print only the scores higher than 90:

>> scores.each { |x| puts x if x > 90 }
97
95
...
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Figure 4.2: Using a linear search to
look for the number 7 in an array
of numbers. The iteration stops
as soon as 7 is found.

8 0 9 2 7 5 3a:

As a second example, this statement tells Ruby to look through the array and print a message
if it finds a perfect score:

>> scores.each { |x| puts "aced it!" if x == 100 }

Conditional execution is a new tool for our “computational workbench.” Let’s put it to
use to create the contains? method. Here is a first “prototype.” This version will scan the
array and print a message when it finds a specified item.

def contains?(a, k)
a.each { |x| puts "found it!" if x == k }

end

The name of the method is contains?, and it takes two parameters, the array to search
and a value to look for. The value is named k because it’s sometimes called a “key” in the
literature on search algorithms. When the method is called, the iterator will look at each
item in the array and print the message if the item matches the key. To see if anyone got a
perfect score the call would be

>> contains?(scores, 100)

This method is almost what we want for the linear search algorithm. It does everything
we need in terms of looking at the items in the array one by one, but the iteration always
continues on to the end of the array, even after it finds the key. What we want to do is exit
the loop as soon as we find a match. This is easy enough: all we need to do is return from
the method as soon as we find the key. Since this method should return true when the key

Save Yourself Some Typing 

The experiments in this chapter will
use versions of contains? and other
methods that are included as part of
the RubyLabs module.

If you want to do some experiments
on your own, you can type in the 
code shown in the figures in this
chapter, or you can check out a copy
of the RubyLabs methods.
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  def contains?(a, k)
    a.each { |x| return true if x == k }
    return false
  end

# Search array a to find item k

Figure 4.3: The RubyLabs
method named contains?

is our version of the built-in
method named include?.

is in the array, all we have to do is change the expression inside the iterator so it looks like
this:

a.each { |x| return true if x == k }

But now we have a new question: what do we do if the array does not contain the value k?
In other words, what happens if the iteration runs all the way to the end, so the return

statement is never executed? This problem also has an easy solution—just tell the method
to return false if the iteration doesn’t terminate early.

The final version of our new method is shown in Figure 4.3. Make sure you understand
how this program works. When the method is called, it is passed an array and a value
named k. The iterator is used to examine each item, starting from the front. If the iterator
ever finds an item that matches k, the return statement is executed, and the result of the
call is true. If the iterator does not find anything that matches k, the last statement in the
method is executed, and the result of the call is false.

Next let’s look at how we might implement the search method, which will be our own
version of Ruby’s index method. The idea here is to do a linear search, but when we find
an item we want to return the location where it was found instead of just true. The easiest
way to do this would be to change the each to a different iterator that is already part of
Ruby and was designed for just this situation, but we’re going to write out the loop using a
while statement. This more verbose form will make it easier to attach a probe to monitor
the execution of our method, and it will also be a piece of code that will form the basis of
the sort method we’ll look at later in this chapter.

Ruby’s while statement was introduced in Section 3.7. It repeatedly executes the state-
ments in the “body” of the loop as long as a Boolean expression is true. An outline of our
new method is

def search(a, k)
i = 0
while i < a.length

...
i += 1

end
end

The variable i holds an index value. This variable is initially set to 0 since the index of the
first item in the array is 0. The iteration continues while the index is less than the length of
the array; recall that if an array has n items the index values range from 0 to n− 1.



4.2 The Linear Search Algorithm 83

Figure 4.4: The RubyLabs
method named search is
our version of the built-in
method named index.

  1:    def search(a, k)
  2:      i = 0
  3:      while i < a.length
  4:        return i if a[i] == k
  5:        i += 1
  6:      end
  7:      return nil
  8:    end

# Return the location of item k in array a

The statement just before the end of the loop uses an operator we haven’t seen yet. This
expression is a combination of addition and assignment that tells Ruby to add 1 to the
index. Adding 1 to a variable is very common in all sorts of algorithms, not just iterative
algorithms. The phrase “increment the variable by 1” or simply “increment the variable”
means a program should use an assignment to add 1 to the current value of a variable.

We can fill in this outline by adding the statements that compare an item in the array with
the key value k and that return the desired values. On each iteration, i is the current index,
so a[i] is the value stored in the array at location i. What we want to do is return i as
soon as we find that a[i] matches k:

return i if a[i] == k

A listing of the search method is shown in Figure 4.4. We will refer to the line numbers
in this figure when setting the software probes that trace the execution of the method. Note
that if the iteration gets all the way to the end of the array, so that the return statement
inside the loop is never executed, the statement at the end returns the value nil.

The computational experiments with our new linear search algorithms will use the Ruby-
Labs trace method that was introduced in the last chapter. In these experiments, we will
attach a “software probe” to a line in a method we want to observe, and then call trace so
we can monitor the state of the computation.

The IterationLab module has a method that was designed to help us follow the progress
of searching and sorting algorithms. The method is named brackets. It makes a string
that has square brackets around some part of an array. The simplest way to use brackets
is to pass it an array and an index. The string that comes back will have square brackets
around the items from the index to the end of the array.

Here are some examples of how brackets works. Suppose we have a small array of
strings:

>> a = ["H", "He", "Li", "Be", "B", "C", "N"]
=> ["H", "He", "Li", "Be", "B", "C", "N"]

If we call brackets(a,2) Ruby will make a string that has an opening bracket right before
the string “Li,” which is at a[2], and a closing bracket after the last item in a:

>> brackets(a, 2)
=> " H He [Li Be B C N]"
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If we call brackets(a,3) the brackets will enclose the items from a[3] to the end of the
array:

>> brackets(a, 3)
=> " H He Li [Be B C N]"

In the linear search experiments we will attach a probe to search to tell Ruby to print
brackets around the part of the array that has not been searched yet. When we call trace
we will see how the unsearched region gets shorter and shorter on each iteration.

Tutorial

The RubyLabs module with the definitions of contains?, search, and other methods used in this
chapter is named IterationLab. When you start an IRB session, remember to include this module:

>> include IterationLab
=> Object

T11. Make a small array of integers to test the each iterator:
>> numbers = [3, 5, 2, 12, 7, 1, 14]
=> [3, 5, 2, 12, 7, 1, 14]

T12. As a reminder of what each does, use it to print the value of every item in numbers:
>> numbers.each { |x| puts x }
3
5
...

T13. Add a modifier to the expression in the block so it prints a number only if it is greater than
10:
>> numbers.each { |x| puts x if x > 10 }
12
14

Do you see how this expression works? Do you see why the first few numbers were not
printed, but 12 and 14 were?

T14. Here is another call to the each method; in this version, the expression in the body prints
the string “found it” if the number 7 is found anywhere in the array:
>> numbers.each { |x| puts "found it¨ if x == 7 }

T15. What do you suppose will happen if we change the 7 to a number that is not in the array?
What will happen if we ask Ruby to evaluate this expression?
>> numbers.each { |x| puts "found it¨ if x == 13 }

Type the expression above. What did you see?

T16. Use contains? to do some searches, including the ones from the previous two problems:
>> contains?(numbers, 5)
=> true

>> contains?(numbers, 7)
=> true

>> contains?(numbers, 13)
=> false

T17. Try a few more searches of your own in this array to make sure you understand what a call
to contains? does. Do you understand how this method works?
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T18. What do you suppose will happen if you ask contains? to search an array of strings instead
of an array of numbers? To find out, make an array of strings, and then call contains? a
couple of times:
>> fruits = ["apple", "orange", "kiwi", "mango", "banana"]
=> ["apple", "orange", "kiwi", "mango", "banana"]

>> contains?(fruits, "kiwi")
=> true

>> contains?(fruits, "ugli")
=> false

So this method works with arrays of strings as well as arrays of numbers (Figure 4.5). In fact
we can have an array of any type of object and use this method to search for objects of that
same type.

T19. Use the search method (the RubyLabs implementation of the search that tells us where an
item was found) to look for strings in the fruits array:
>> search(fruits, "kiwi")
=> 2

>> search(fruits, "ugli")
=> nil

Do you see why the result of the first expression is 2?

T20. An important part of our version of the search method is the increment operator. To see
how this operator works, initialize a variable and use += in a few expressions:
>> n = 5
=> 5

>> n += 1
=> 6

>> n
=> 6

>> n += 3
=> 9

Can you see how the increment operator adds the value on the right side to the variable
named on the left side?

Figure 4.5: The search
method will search
through arrays of
numbers or arrays
of strings.

8 0 9 2 7 5 3nums:

"H" "He" "Li" "Be" "B" "C" "N"elements:
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The next exercises refer to the source code for the search method, which is shown in Figure 4.4. You
can also print a listing for yourself by typing Source.listing("search").

T21. The key step in the search method is at line 4. When this line is executed, the variable i
is the index of the item Ruby will check next. Let’s attach a probe to this line to ask Ruby to
print i before it executes this statement:
>> Source.probe("search", 4, "puts i")
=> true

T22. Now let’s trace the execution of search again after setting the probe:
>> trace { search(fruits, "kiwi") }
0
1
2
=> 2

Can you see how i starts at 0, which is the leftmost location in a, and increases by 1 each
time through the loop? And can you see how the iteration stops when a[i], the value at the
current location, matches the value we’re looking for?

T23. Trace the execution of an unsuccessful search:
>> trace { search(fruits, "ugli") }
0
1
2
3
4
=> nil

Can you see why the iteration terminated in this case?

T24. Type this expression to print the fruits array with all the items from location 1 to the end
enclosed in brackets:
>> puts brackets(fruits, 1)
apple [orange kiwi mango banana]

=> nil

T25. This expression does the same thing, but asks brackets to put the opening bracket before
the item at location 4:
>> puts brackets(fruits, 4)
apple orange kiwi mango [banana]

=> nil

T26. To use brackets to monitor the execution of search, clear the current probes, and then
make a new one that calls brackets at line 4:
>> Source.clear
=> true

>> Source.probe( "search", 4, "puts brackets(a,i)" )
=> true

T27. Now when we trace search again the new probe will show us two parts of a:
>> trace { search(fruits, "kiwi") }
[apple orange kiwi mango banana]
apple [orange kiwi mango banana]
apple orange [kiwi mango banana]

=> 2
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Do you see what the probe is doing? The items before the opening bracket are the items that
have been checked so far. The first item after the opening bracket is the current item, and
search returns as soon as it notices this item is the one it is looking for.

T28. Try an unsuccessful search with the probe in place:
>> trace { search(fruits, "ugli") }
[apple orange kiwi mango banana]
apple [orange kiwi mango banana]
apple orange [kiwi mango banana]
apple orange kiwi [mango banana]
apple orange kiwi mango [banana]

=> nil

Can you see how every item is compared before search returns nil?

This concludes the experiments with the linear search algorithm, and you should be ready to move on
to the next section. But if you are still unsure how the algorithm works, or if you want to play around
with the program, here are some suggestions.

T29. Check out a copy of the search method so you have a copy you can modify:
>> Source.checkout("search")
Saved a copy of source in search.rb
=> true

T30. Use your text editor to add some lines to the program. One idea is to add statements that
print the current value of i and a[i], the current location in the iteration and the item in
the array at this location. Add two new lines after the line with the word while, so your
method looks like this:
while i < a.length
puts i
puts a[i]
return i if a[i] == k
i += 1

end

T31. Save your changes and tell Ruby to load your version of the program:
>> load "search.rb"
=> true

Note that after you load your file, the modified copy of search overwrites the one that came
with RubyLabs.

T32. Now when you call search Ruby will use your modified version. Try it by doing a search in
the fruits array:
>> search(fruits, "kiwi")
0
apple
1
orange
...

T33. Try a few more searches, including an unsuccessful search. Does this help you understand
the finer details of how the algorithm works?
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4.3 The Insertion Sort Algorithm

Sorting is one of the most studied problems in computer science. There are hundreds of
different algorithms for sorting information. Insertion sort, the algorithm we will look at in
this chapter, is a simple technique that is easy to understand and easy to implement. The
main reason it was chosen is that the computation carried out by this algorithm is a simple
extension of the iterative solution to the search problem, and it is another example of how
a seemingly complex problem can be solved by repeatedly executing very simple steps.

To get an idea of how insertion sort works, imagine you are playing a card game. When
a hand is dealt you want to sort the cards in your hand, putting them in order defined by
their rank (we’ll ignore suits for now). One way to do this systematically is to first make
sure the two cards on the left are in the right order. Then pick up the third card and place it
in the proper location among the first two. Then pick up the fourth card and place it among
the first three cards. Repeat this operation of picking out a card and finding a location for it
until all cards have been placed.

If we step back from this problem and think about what is going on each time we pick up
a card, an important feature of this algorithm becomes apparent. At any point during this
process there are two parts to the hand. The part on the left is already sorted, and the part
on the right is still unordered. A succinct statement of the main step is that we remove the
first card from the unsorted part and insert it into its proper location in the sorted part (thus
the name of the algorithm, “insertion sort”). Note also that after each round of insertions
the sorted part grows longer, and eventually the algorithm terminates when the last card
has been placed where it belongs and the entire hand is sorted.

To implement this algorithm in Ruby, we just have to modify the description a little bit,
replacing “hand” with “array.” The overall structure of a method that sorts an array is shown
in Figure 4.6. The main loop of the algorithm uses an index variable named i. At any point
during the execution of the algorithm i is the dividing line between the sorted and unsorted
portions of the array. On each iteration of the main loop the algorithm removes a[i], which
is the first item in the unsorted region, and searches back through the sorted region to find
the right place to insert this item back into the array.

  def search(a, k)
    i = 0
    while i < a.length

 i += 1
    end
  end

# Search for item k in array a

# compare k to a[i]

  def isort(a)
    i = 0
    while i < a.length

 i += 1
    end
  end

# Sort items in array a

# move a[i] to a location
# between 0 and i

Figure 4.6: Outline of two iterative algorithms. Both algorithms use an index i as a place holder
that marks a current location in an array.



4.3 The Insertion Sort Algorithm 89

Figure 4.7: A single iteration of
the isort method. (a) At
the start of the iteration, i is
3, and items to the left are
already sorted. (b) The
move left method removes
a[3] and scans left to find a
place for it. (c) The item is
inserted back into a. (d) At
the start of the next iteration
the sorted region is one item
longer.
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The operation of finding the right place for the current item is itself an iterative algorithm.
The idea is to do a search, but in the opposite direction. If i is the current location, we want
to scan left from i− 1 and work back toward the beginning of the array.

The Ruby code that removes an item from a specified location in an array and puts
it back somewhere to the left of that location has been implemented in a method called
move_left. The important things to know about move_left are (a) a call of the form
move_left(a,i) tells Ruby to remove a[i] and find a place for it somewhere to the left
of location i, and (b) that this operation itself is a simple iteration very much like a linear
search.

An example that gives a general idea of what the move_left method does is shown in
Figure 4.7. The figure shows the state of the array when i is 3, meaning the sorted part of
the array goes from a[0] up to a[2]. The call to move_left removes a[3], the first item
in the unsorted region, from the array, and scans left until it finds the correct location for it.
After the item has been put back in the array, the sorted region is one item longer, and the
next iteration of the main loop is ready to begin with i set to 4.

Given a working version of move_left, writing a method to implement the insertion
sort algorithm is straightforward. We simply have to put a call to move_left(a,i) in the
body of the main while loop, so that on each iteration the current item is removed and
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  1:    def isort(array)
  2:      a = array.clone
  3:      i = 1
  4:      while i < a.length
  5:        move_left(a, i)
  6:        i += 1
  7:      end
  8:      return a
  9:    end

# Sort the items in array a Figure 4.8: Ruby implementation
of the insertion sort
algorithm. The clone
method, called on the first
line in the body of the
method, makes a copy of the
array passed as an argument
so isort does not modify
the array.

reinserted somewhere to the left. The code for this method, which we call isort, is shown
in Figure 4.8. For the experiments in this section, we will attach a probe in the main loop,
and watch how move_left picks up each successive item and finds a place for it in the
sorted region.

Tutorial

T34. Make a small array of strings to use in the first experiments with isort:
>> cars = ["mazda", "ford", "bmw", "saab", "chrysler"]
=> ["mazda", "ford", "bmw", "saab", "chrysler"]

T35. The first test is just to make sure the method works as advertised:
>> isort(cars)
=> ["bmw", "chrysler", "ford", "mazda", "saab"]

T36. An important detail is that a call to isort does not modify the original array; instead, it
returns a new array with all the items from the original array in sorted order. Verify this
claim by asking for the value of the cars array again, to see that it hasn’t changed:
>> cars
=> ["mazda", "ford", "bmw", "saab", "chrysler"]

A listing of the isort method is shown in Figure 4.8. If you want, you can print your own listing by
calling Source.listing("isort").

Recall from the previous section that a method named brackets will print brackets around part of
an array. We can use brackets to show us the region of the input array that has not been sorted yet.

T37. As a reminder of how brackets works, call it to put brackets around the part of the test
array that starts at location 2 and goes to the end of the array:
>> brackets(cars, 2)
=> " mazda ford [bmw saab chrysler]"

T38. The first statement in the main loop is at line 5. Attach a probe to this line to ask Ruby to call
brackets to show the already-sorted part (to the left of i) and the to-be-sorted part (from
i to the end of a):
>> Source.probe( "isort", 5, "puts brackets(a,i)" )
=> true



4.4 Scalability 91

T39. Use trace to monitor the progress of isort when it sorts the list of car names:
>> trace { isort(cars) }
mazda [ford bmw saab chrysler]
ford mazda [bmw saab chrysler]
bmw ford mazda [saab chrysler]
bmw ford mazda saab [chrysler]

=> ["bmw", "chrysler", "ford", "mazda", "saab"]

Note how items to the left of the bracketed region are all sorted, how the unsorted region
between brackets shrinks by one word each time through the loop, and how each iteration
takes the first item from the unsorted region and finds the correct place for it in the sorted
region to the left.

T40. If you’d like to do more tests on your own, try sorting some arrays of numbers. You don’t
need to save the array, just pass it directly to isort:
>> isort( [3, 5, 1, 7, 8, 0, 6] )
=> [0, 1, 3, 5, 6, 7, 8]

4.4 Scalability

The projects in the previous two sections are similar to the tests programmers use when they
are developing software. By using “test data,” in the form of small arrays, programmers
can see how the algorithms work and verify the implementations are correct. But these
experiments don’t give any insight into how the methods will perform when they are used
on real data, where the arrays might be much longer than the test arrays. Unfortunately, it
is often the case that software will work well for short test data, but not for longer inputs.
It would be a disaster for a company if the software developers use a dozen songs to test an
application that manages music libraries, only to find the program crashes when users try
to import thousands of tunes, or that it takes the program several minutes to sort lists with
more than a few hundred songs.

The ability of an algorithm to efficiently solve increasingly larger problems is an attribute
known as scalability. The term refers to the fact that we want algorithms to continue to
work well as the size of the input “scales up.”

The experiments in this section will give us some insight into how well the algorithms
used in the search and isort methods work on longer arrays. Since the key step in
each method is the one that compares two array elements, we will measure performance by
counting the number of comparisons made when a method is called.

Counting comparisons in a linear search is straightforward. The method makes one com-
parison on each iteration, so the number of lines printed by trace corresponds to the
number of comparisons. In the worst case, when search does not find what it is looking
for, the method makes n comparisons, where n is the number of items in the array.

Counting the number of comparisons required to sort an array is not as simple. The
output from the trace experiments in the previous section show one line for each iteration
of the while loop, but the problem is the algorithm does not always do the same number
of comparisons on each iteration. Each line printed by trace is the result of a call to
move_left, the “helper method” that moves each item to its correct location, and this
method might make a different number of comparisons each time it is called. If we want
an accurate assessment of the total number of steps, we need to take a closer look at what
happens inside move_left.
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    i = 1
    while i < n
      move_left(a, i)
      i += 1
    end
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Figure 4.9: The dots in the matrix represent potential comparisons made by isort as it sorts an
array of five items. Each row represents comparisons made by a single call to move left, the
helper method that does the comparisons. The label next to a row is the value of i passed to
move left. For example, when i is 2, a[2] might have to be compared with a[1] and a[0].

A call to move_left will remove an item from the array and then scan to the left to
find a location to reinsert it. Each time move_left is called we pass it i, the index of the
item that will be moved. The key observation is that move_left will make as many as i
comparisons to find a home for item a[i]. For example, when i is 3, move_left might
have to compare a[3] with every item to its left: a[2], a[1], and a[0].

If we add up the number of comparisons that isort would make to sort an array with n
items, assuming that each item is compared the maximum number of times, the total will
come to n × (n − 1)/2. This equation can be simplified to n2/2 if we just want a rough
estimate of the number of comparisons instead of an exact count.

The picture in Figure 4.9 shows why n2/2 is an accurate estimate. The matrix on the
right side of the figure has a series of rows, labeled 0 to n− 1. The number in front of a row
refers to an iteration, e.g., the row labeled 3 shows what could happen when i is 3. The
blue dots indicate the three potential comparisons made by move_left. There are dots in
columns 0, 1, and 2 because move_left might have to compare a[3] with a[2], a[1],
and a[0].

The isortmethod initializes i to 1, which means there will never be a call to move_left
when i is 0. But there is a row labeled 0 in the diagram to emphasize the fact that the table
has n rows and n columns, where n is the number of items in the array being sorted. If we
were to draw a line from the upper left to the lower right, it would divide the matrix in half.
As you can see, the dots fill the entire region below the diagonal, and since there are n2 cells
in the matrix the total number of dots is roughly n2/2.

We now have formulas that estimate the number of comparisons made by our two algo-
rithms as they operate on arrays of size n. Linear search will make up to n comparisons,
and insertion sort up to n2/2 comparisons. The equations are simply estimates, because the
actual number depends on the contents of the arrays. Linear search will do fewer compar-
isons when the item it is looking for is found near the front of the array. The helper method
used in insertion sort might only have to do one comparison, if an item is already in the
right location.
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When computer scientists write formulas to describe roughly how many comparison steps
are made by these algorithms, they use the notation O(n) or O(n2). The O comes from the
phrase “on the order of.” When we read these equations out loud we say “oh of n” or “oh
of n squared.” These equations refer to the computational complexity of an algorithm, and
there is a very precise and formal definition for what it means to describe an algorithm as
O(n) or O(n2). In this book, however, we will just use the notation informally to give a
rough sense of how the number of steps executed by an algorithm grows when it is applied
to problems of a specified size.

The “big O” notation can be used to estimate scalability since it gives us an idea of what
to expect as n, the size of the input, grows larger. For example, if we double the size of
the input array passed to isort, we can expect it to make roughly four times as many
comparisons to sort the longer list. When we increase the size of the input list by a factor
of 10, the execution time will increase by a factor of 100. The reason the number of steps
increases so dramatically is because the equation that predicts the number of comparisons
includes the term n2.

In the experiments in this section, we will use a probe to count the number of compar-
isons made during an insertion sort. The RubyLabs implementation calls the helper method
move_left to look for the place to insert an item back into the list. The helper method
calls another method, named less, to do the comparisons. If we want to count the number
of comparisons made by isort all we have to do is attach a probe to the less method and
use count to monitor the execution of a call to isort.

The arrays used to test the scalability of our two algorithms are a special type of array
called a TestArray. To make a new test array, we just need to call TestArray.new, passing
it a number that specifies how big to make the array. For example, to get an array with 100
numbers:

>> a = TestArray.new(100)
=> [778, 686, 840, ... 232, 408, 413]

Arrays for Testing Scalability

In experiments in this chapter and later in the book we are going to test searching 
and sorting methods using arrays with thousands of numbers.  Since it would be 
inconvenient, to say the least, to type in an array with more than a few dozen values, 
RubyLabs has methods that make these arrays for us. The easiest way to make a 
TestArray is to call TestArray.new, passing it the size of the array you want:

>> a = TestArray.new(1000)
=> [8914, 7515, ...  2256, 4787]

You will get back an array with 1000 different random numbers.  You can also get an 
array of car names, or fruits, or other types of strings:

>> a = TestArray.new(5, :colors)
=> ["sky blue", "firebrick", "forest green", "beige", "lime green"]
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Tutorial

T41. If you need to, retype the expression from Problem T34 that makes a list of car names:
>> cars = ["mazda", "ford", "bmw", "saab", "chrysler"]
=> ["mazda", "ford", "bmw", "saab", "chrysler"]

T42. Recall from the last section what the trace method showed for the state of the array at the
start of each iteration when isort was sorting the list of cars:
>> trace { isort(cars) }
mazda [ford bmw saab chrysler]
ford mazda [bmw saab chrysler]
bmw ford mazda [saab chrysler]
bmw ford mazda saab [chrysler]

=> ["bmw", "chrysler", "ford", "mazda", "saab"]

isort made a total of eight comparisons. On the first iteration, “ford” was compared to
“mazda”, on the second “bmw” was compared to “mazda” and then “ford.” But on the third
iteration only one comparison was made (“saab” with “mazda”). Can you see why four
comparisons were made on the last iteration, when looking for a place for “chrysler”?

T43. Type this expression to see the code for the less method:
>> Source.listing("less")
1: def less(x, y)
2: return x < y
3: end

=> true

T44. The listing shows the comparison is made on the second line, so attach the counting probe
there:
>> Source.probe("less", 2, :count)
=> true

T45. Now we can ask Ruby to count the number of comparisons for us:
>> count { isort(cars) }
=> 8

So the count method confirms the analysis above, that 8 comparisons are required to sort
this array of car names.

T46. Make an array of 10 numbers for testing isort by calling TestArray.new:
>> a = TestArray.new(10)
=> [36, 88, 0, 61, 35, 12, 54, 53, 92, 33]

Since the contents of the array are random the result you get will be different, but you should
see an array of 10 different numbers.

T47. Pass your new test array to isort:
>> isort(a)
=> [0, 12, 33, 35, 36, 53, 54, 61, 88, 92]

Do you see a sorted copy of the array you created when you called TestArray.new?

T48. We can combine the two previous operations into a single step. We don’t have to save the
test array, we can just pass it directly to isort:
>> isort( TestArray.new(10) )
=> [6, 17, 20, 23, 27, 34, 42, 55, 61, 65]

Make sure you understand what Ruby did for that last expression: it called TestArray.new to make
an array, and then that array was passed right to isort.
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Repeat the previous expression a few times. You won’t see the original test array, before it’s sorted, but
each time you enter that expression you should see a new random test array, printed in order because
it was sorted by isort.

Next we’ll use the counting probe attached earlier to count the number of comparisons made by isort
when it sorts a test array.

T49. Enclose the previous command in braces and pass it in a call to count (this would be a good
place to practice command line editing—all you need to do is go back one line, insert the
braces and the word “count,” and hit return):
>> count { isort( TestArray.new(10) ) }
=> 27

T50. Repeat the previous expression a couple more times. Do you see how each time Ruby exe-
cutes this command it makes a random array of 10 items, sorts them, and prints the number
of comparisons required to sort the array?

T51. We’re now ready to do the experiments. Repeat the expression, but change the 10 to 100 to
sort a test array of 100 numbers:
>> count { isort( TestArray.new(100) ) }
=> 2857

T52. Repeat the experiment, sorting lists of 200, 400, and 1000 items. Methods run noticeably
more slowly when a probe is attached, so be prepared to wait a while for the longer sorts to
complete.

T53. The section on scalability made the claim that doubling the size of the input list should
quadruple the number of comparisons. Is the count for n = 200 approximately four times
the count for n = 100? Is the count for n = 800 approximately four times the count for
n = 200?

T54. When we increase the size of the array by 10, the number of comparisons should increase
by a factor of 100. Is the count for n = 1000 around 100 times greater than the count for
n = 100?

© If you have a spreadsheet application, make a table with one column for array size and
another column for the number of comparisons used to sort an array of that size. Make a
graph that shows how the number of comparisons grows as a function of array size. Do you
see a curve that grows roughly like n2 (Figure 4.10)?

Figure 4.10: Use a spreadsheet
application to plot the
number of comparisons
needed to sort an array as
a function of array size. 0
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4.5 © Best Case, Worst Case

The discussion in the previous section, on the number of comparisons made by the insertion
sort algorithm, used the worst case scenario to derive a formula for the number of compar-
isons: sorting an array with n items can need as many as n× (n− 1)/2 comparisons.

It’s easy to see when this situation will arise. If the items in the array passed as an
argument to isort are in reverse order, isort will have to move each item the maximum
distance when it goes to find a place for that item.

This observation naturally leads to another question. What will happen if the array passed
to isort is already sorted? In this case, the algorithm will make the fewest number of
comparisons: the program only needs to make one comparison on each iteration, and it will
take only n− 1 comparisons to sort an array of n items.

These situations are both illustrated in Figure 4.11. The diagram on the left shows which
items are compared when isort is given an array that is already sorted. Each row shows
the state of the array at the start of an iteration. The current item, the one that will be
moved to its proper place in the array, is highlighted in a dark gray square. Each item it
is compared to is highlighted in a lighter gray. The picture clearly shows that isort only
needs to compare each item with its neighbor to the left, doing one comparison per iteration,
so in all only n− 1 comparisons are made.

The diagram on the right uses the same highlight colors to illustrate the situation when
the array is in reverse order. Each item is compared to every item to its left, until it is finally
put back in the array at the leftmost location. As explained in the previous section, the total
number of comparisons is 1 + 2 + 3 + . . . + n− 1 = n× (n− 1)/2.

1 0 2 3 5 7 8 9

0 2 3 5 7 8 9

0 2 3 5 7 8 9

0 2 3 5 7 8 9

0 2 3 5 7 8 9

0 2 3 5 7 8 9

9 8 7 5 3 2 0
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a already sorted a in reverse order

Figure 4.11: The best case and worst case scenarios for insertion sort. A row labeled i shows
comparisons made when the algorithm finds a place for a[i]. The dark gray square
corresponds to a[i], the light gray squares are the items it is compared with.
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Tutorial Project

© Attach a counting probe to the helper method that compares items:
>> Source.probe("less", 2, :count)
=> true

© Make a test array with seven strings:
>> notes = ["do", "re", "mi", "fa", "sol", "la", "ti"]
=> ["do", "re", "mi", "fa", "sol", "la", "ti"]

© Count the number of comparisons required to sort this array:
>> count { isort( notes ) }
=> 12

© We can use Ruby’s built-in sort method to make a sorted copy of the test array:
>> notes.sort
=> ["do", "fa", "la", "mi", "re", "sol", "ti"]

© To count how many comparisons are required to sort an array that is already in order, just
pass notes.sort as the argument to isort:
>> count { isort( notes.sort ) }
=> 6

Do you see what Ruby did here? First, it called notes.sort to make the sorted copy of notes, and
then it passed this copy as the argument to isort. As expected, there are 7 notes, and the sort was
done with 6 comparisons.

It’s easy to make an array with the items sorted in reverse order: first call sort to make a sorted
copy of the test array, then call reverse on this sorted copy. Ruby will us do both operations in one
expression.

© Type this statement to verify the fact that we can make a reverse-ordered copy of the test
array with a single Ruby expression:
>> notes.sort.reverse
=> ["ti", "sol", "re", "mi", "la", "fa", "do"]

© Enter that expression as the argument to isort in the statement that counts comparisons:
>> count { isort( notes.sort.reverse ) }
=> 21

© Does the result printed in the previous problem agree with the formula for the worst case,
i.e., is it n× (n− 1)/2?

For the next set of experiments we are going to make several test arrays by calling TestArray.new

to make a random array of numbers, and then passing that array to isort. These experiments will
be easier to run if we have a method that combines these operations into a single step.

© Type this statement to make a new method named istest (which stands for “insertion sort
test”):
>> def istest(n) isort( TestArray.new(n) ) end
=> nil

© Test your new method. A call to istest(7) should make an array of 7 random numbers
and sort it:
>> istest(7)
=> [11, 13, 14, 66, 68, 70, 92]

You will see a different set of 7 numbers, but they should be printed in order.
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© Now count the number of comparisons for a few different arrays of 7 numbers:
>> count { istest(7) }
=> 18

>> count { istest(7) }
=> 12

>> count { istest(7) }
=> 17

You will probably see a different result each time, since each call to istest makes a new
test array.

© Are the counts you see from for these tests with n = 7 items between the minimum of n− 1
and the maximum of n× (n− 1)/2?

© Here is an expression that tells Ruby to run the counting experiment 10 times:
>> 10.times { puts count { istest(7) } }
15
16
...

© What is the average value of the counts? Is it half way between the best case of n− 1 and
the worst case of n× (n− 1)/2?

© Repeat the previous exercise, but have Ruby count comparisons for test arrays with 100 or
more items. What is the average count?

4.6 Summary

The main goals for this chapter were to introduce two important problems—searching and
sorting—and to show how these problems can be solved by iteration, the same basic strategy
used by the Sieve of Eratosthenes to make lists of prime numbers. For searching and sorting,
the individual steps of an algorithm compare items in arrays or move items around in an
array. What we learned is that repeated execution of these simple steps will eventually find
an item in an array or rearrange the order of the items.

The two algorithms we looked at were linear search and insertion sort. An easy way to
implement linear search in Ruby is to use an iterator method, like each, and let it “walk
through” the array to compare items one after another. An alternative is to use a while

statement to control the iteration, which is the approach taken in our implementation of a
method called search.

The insertion sort algorithm has the same basic structure, with a while loop that iterates
over each position in an array, but on each iteration it removes an item and reinserts it
someplace closer to the beginning of the array. The main thing to understand about insertion
sort is that at the start of each iteration an index variable points to the location of the
element that will be moved. The region to the left of this location is already sorted, and the
algorithm just has to find the correct location for the item somewhere in this sorted region.

An important new idea in computing introduced in this chapter is the concept of scala-
bility. Linear search and insertion sort are easy to understand and easy to implement, so
they are widely used for small data sets, but as the lengths of the input arrays grow longer
the algorithms become less and less efficient. “Big-oh” notation, used by computer scientists
to describe the computational complexity of an algorithm, is a quick way to estimate how
many steps an algorithm will perform for a given problem size. Linear search is O(n), and
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Concepts and Terminology Introduced in This Chapter

linear search An algorithm that searches an array one item at a time, start-
ing at the first location and working toward the end

insertion sort An algorithm that sorts an array by repeatedly removing
items and reinserting them in a continually growing sorted
region at the front of the array

index An expression that defines a location in an array; if a is
an array in Ruby, the expression a[i] refers to the item
at index location i

scalability An attribute of an algorithm that determines how well it will
perform on larger data sets

O notation A formula that summarizes the number of steps an algo-
rithm will execute for a particular problem size

the number of comparisons is proportional to the size of the array. Insertion sort is O(n2),
so the number of comparisons grows quadratically with the size of the array.

Scalability is an attribute of an algorithm, not a program. We did our experiments with
Ruby methods that are based on the algorithms, but the same general results would have
been seen no matter which language was used to write the methods that do a linear search
or an insertion sort. Whether they are implemented in Java, C++, or any other language,
these two algorithms will not give the best performance for large inputs. If an application
is going to be searching or sorting very large arrays, we need to consider other algorithms,
like the ones presented in the next chapter.

Exercises

1. Look around in the menus of some of the computer applications you use, and see if they have
a search (or “find”) function. What do you think the search function will do in a web browser?
spreadsheet application? word processor? drawing program?

2. Do any of the menus in your applications have sort functions? What do they do?

3. Suppose an array is defined with this assignment statement:
>> names = ["pete", "john", "paul", "george"]

What are the values of the following Ruby expressions?

a) names.first

b) names[0]

c) names[2]

d) names[4]

e) names[2] == "george"

f) names.last == "george"
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4. Do you think Ruby will let you change an item in an array using an assignment statement?
What do you think will happen if you type this expression (assuming names has been defined
as above)?
>> names[0] = "ringo"

Use IRB to check your answer.

5. Suppose an array is defined with this statement:
>> gases = ["He", "Ne", "Ar", "Kr", "Xe", "Rn"]

What are the values of the following Ruby expressions?

a) gases.include?("Ne")

b) gases.include?("Fe")

c) gases.index("Ne")

d) gases.index("Xe")

e) gases.index("Rb")

6. Suppose an array is defined with this statement:
>> languages = ["perl", "python", "ruby", "java", "c++"]

Explain the meaning of each of the following expressions. First give a one-sentence description
of what Ruby would do to evaluate the expression, then describe what would be printed in your
terminal window if you were to type the expression in IRB.

a) languages.each { |x| puts x }

b) languages.each { |x| puts x if x.length < 5 }

c) languages.each { |x| puts "found it" if x == "fortran" }

7. Briefly summarize, in one or two sentences, how Ruby would execute the following while

loop:
i = 0
while i < 10
puts i * i
i += 1

end

8. Suppose an array a is defined with this statement:
>> a = [11, 0, 6, 12, 7, 8, 3, 15, 4, 10]

How many comparisons will be made by the following searches using the linear search method?

a) search(a, 0)

b) search(a, 3)

c) search(a, 9)

d) search(a, 12)

e) search(a, 10)

9. What would happen if the search method is asked to search through an array that contains
duplicate entries? Explain what the method would do if it searches for 7 in this array:
[6, 2, 7, 8, 2, 9, 7, 4, 5]

10. Use the insertion sort algorithm to sort a set of playing cards. Choose 7 cards from the same
suit, and lay them out face up in a row on a table in front of you. As you work your way through
the array, slide the cards around on the table, using the process illustrated in Figure 4.7.
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11. Assume an array is defined with this statement:
>> halogens = ["F", "Cl", "Br", "I", "At"]

Explain how the array would be sorted by a call to isort. The easiest way to do this is to show
the lines that would be printed when a probe is attached. Here are the first two lines, to get you
started:
>> trace { isort(halogens) }
F [Cl Br I At]
Cl F [Br I At]

Show the remaining lines in the trace. How many lines will be printed before the array is
sorted?

12. Repeat the previous exercise, using this array:
>> heavy = ["U", "Np", "Pu", "Am", "Cm", "Bk", "Cf"]

13. We already know Ruby makes a distinction between upper and lower case letters in variable
names and method names. What do you think it will do with string objects? If Ruby doesn’t
care about upper and lower case, the following comparison would result in true:
>> "MPEG" == "mpeg"

How do you think Ruby will evaluate this expression? Use IRB to check your answer.

14. Use IRB to ask Ruby to compare a string that starts with an upper case letter with a string that
starts with a lower case letter:
>> "Fred" < "fred"

15. Using what you learned from the previous exercise, how do you think Ruby would sort this
array?
>> names = ["Mendeleev", "Pasteur", "Pascal", "da Vinci", "Darwin",

"von Neumann", "Galileo"]

16. © What is the fewest number of comparisons that could be made by isort if it is called to sort
an array with 20 strings? with 50 strings?

17. © What is the most number of comparisons that could be made by isort if it is called to sort
an array with 20 strings? with 50 strings?

18. © Suppose you decide to run an experiment in which you make five different random arrays,
each with 1000 elements, and then use count to determine the number of comparisons isort
will make. What do you expect the average number of comparisons to be?

19. © Write a Ruby method that computes the sum of the numbers in an array. Test your method
with small arrays you make yourself, then try it on some larger arrays made with TestArray.

20. © Write a method to compute the average of a group of numbers in an array, and test the
method as described in the previous problem.

21. © The sieve method from Chapter 3 fails with a strange-looking error message if we pass it a
negative number:
>> sieve(-1)
Errno::EDOM: Numerical argument out of domain - sqrt

A better way to deal with this situation would be to simply return an empty list. Check out a
copy of the method and add a conditional statement that returns an empty list if the integer
passed as the argument is less than 2. Load the new version into IRB and test it by calling
sieve(1) and sieve(-1).





Chapter 5

Divide and Conquer
A new strategy: breaking large problems into smaller subproblems

The previous two chapters introduced important ideas about algorithms and how they
can be implemented in a programming language like Ruby. The algorithms presented in
these chapters—the Sieve of Eratosthenes, linear search, and insertion sort—all used a very
straightforward approach to solving their respective problems. At the heart of the algorithm
is a simple operation, such as dividing one number by another or comparing two objects,
and the problem was solved by repeating these operations until the the final result was
produced.

The problem solving strategy used by these algorithms is often characterized as “brute
force.” There is nothing very sophisticated or clever going on. The algorithms are effective
because a computer can perform divisions and comparisons very quickly, and it was a simple
matter of repeating these operations over and over until the problem was solved.

Brute force works well for searching through small collections or sorting short lists, but as
the problem size grows it is going to be necessary to use a better approach. The important
new concept introduced in this chapter is a problem solving strategy called divide and
conquer, which breaks a large problem into smaller subproblems and then works on each
subproblem independently.

A search algorithm known as binary search uses divide and conquer to look for an item
in a list. The word “binary” in the name of the algorithm comes from the fact that when the
list is divided it is cut into two equal pieces. The strategy is similar to what you would use
to look for a word in a dictionary or for a book on a library shelf. As an example of how this
type of search works, suppose the goal is to find a recipe that starts with the word “eggplant”
in a box of recipe cards sorted by title. First pick a card near the middle of the box, and
compare the title on that card with “eggplant.” Suppose the title on the card is “minestrone.”
Since the cards are sorted, any recipes starting with “eggplant” must be somewhere closer
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Salmon
Risotto

Paella
Minestrone

Eggplant
Chanterelle

Broccoli

Eggplant must be in 
this group of cards

Figure 5.1: If a set of cards is in
alphabetical order we can use a
binary search to find a card. Start
in the middle of the collection,
and then search the cards before
or after the middle card.

to the front of the box. Pick another card somewhere between the “minestrone” card and
the front of the box and check again (Figure 5.1). Repeating this process of picking a card
in the middle of the current group of cards, and then focusing on cards before or after the
chosen card, will eventually zero in on the eggplant recipe. This is an example of divide and
conquer because at each step the process splits the recipes into two groups, one before the
card it just selected and one after, and in the next round the search can be limited to one
group and the other group can be ignored.

Several different sorting algorithms also use a divide and conquer strategy. One famous
algorithm, known as quicksort, applies the divide and conquer strategy by breaking a list to
be sorted into smaller lists and then sorting each sublist. Suppose the recipe box is dropped
on the floor and the cards need to be sorted again so they can be placed back in the box.
To use the quicksort algorithm, divide the cards into two piles, the first containing all the
recipes with titles that start A through M, and the second containing titles N through Z
(Figure 5.2). There is no need to organize these piles when the cards are divided. The goal
at this point is to just look at the title on a card, and then place it on top of one of the piles.
Next, push the N through Z pile to the side of the table, saving it for later, and repeat this
process with the A to M pile. Divide the A to M group into smaller piles, one for A through
F and the other for G through M. Then push G through M to the side, and break A through
F into two more smaller groups, A to C and D to F. Keep repeating this process of making
two piles, saving one, and continuing with the other. Eventually there will only be three or
four cards in a pile, and it can be sorted quickly and put back in the box. At this point, go
pick up the most recently saved pile and start the dividing process again with this pile.

The sorting algorithm we are going to look at in this chapter is known as merge sort.
Quicksort can be characterized as a “top down” approach, since it starts with a big problem
and breaks it into smaller and smaller pieces. Merge sort takes the opposite approach. It
works “bottom up” by starting with small groups and repeatedly merging them into bigger
and bigger lists until it finally has just one complete sorted list. Both approaches have
advantages, and depending on the situation either one might be the best algorithm to solve
a particular problem. We are going to look at merge sort simply because it is easier to
follow the state of the sort, watching how smaller pieces are combined into bigger pieces,
and easier to count the number of comparisons that are made.

The obvious question at this point is whether these algorithms are really that much more
efficient than the simple iterative techniques presented in the last chapter. Does the divide
and conquer strategy lead to fewer steps, or are these new algorithms going to end up
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doing the same number of comparisons and take the same amount of time? The answer
is that for large arrays, binary search is far more efficient than linear search, and merge
sort is far more efficient than insertion sort. In this chapter we will do a set of experiments
that will count the number of comparisons made by the algorithms, and the results of the
experiments will supply empirical evidence that the divide and conquer strategy pays off.
We will also develop equations that characterize the scalability of the new algorithms and
show that divide and conquer is more effective from a theoretical point of view, as well.

“Divide and conquer” is a general term that can be applied to many different situations.
Binary search and quicksort are examples of a special type of divide and conquer, where
each subproblem is a smaller version of the main problem. When a problem can be broken
into two or more smaller problems, where each subproblem is exactly the same type of
problem as the original, we say the problem is recursive or self-similar.

When a programmer uses the term “recursive” it refers to a particular way of writing a
method to solve a recursive problem. If a method is recursive, it means that somewhere in
the body there is a statement where the method calls itself. For example, one way to write
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Figure 5.2: To use the quicksort strategy to sort a set of cards, first divide them into two piles. Save
the N–Z pile for later and use quicksort to sort the A–M pile. Then save G–M and use quicksort
on the A–F pile. When a pile has only a few cards transfer them in order to the box, then go back
and use quicksort to sort the most recently saved pile.
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a program to do a binary search would be to write a method named rbsearch. When the
problem is reduced to searching one of two sublists, the new search can be done simply by
passing the sublist in a call rbsearch, i.e., the method calls itself.

The use of recursion can lead to some very elegant pieces of code that are easy to ana-
lyze and easy to understand. But learning to understand recursive methods takes a bit of
practice, so the Ruby code we will use for the experiments in this chapter has been written
without recursive calls. The important concept, of using divide and conquer to break a prob-
lem into smaller, more manageable pieces, will still be there, and it’s accurate to say that
the problems themselves have a recursive nature, it’s just that to keep the programs simple
we will use familiar iterative statements in our Ruby programs. For students who would like
to see how recursive methods work, an optional section at the end of the chapter will show
how binary search and quicksort can be written as recursive methods in Ruby.

5.1 Binary Search

The basic idea for a binary search is shown in Figure 5.3. The first comparison is made in
the middle of the list. In this example, the number we’re looking for is less than the one
in the middle, so the second comparison is to the item halfway back toward the front of
the list. The number there is less than the one we’re looking for, so the algorithm moves
forward, to a point halfway between the current location and the middle of the list. On each
round, the sublist to check is half as big as the previous sublist.

There is an important caveat, however: for this type of search to work the collection must
be arranged in order. If the items in the array are not sorted, the most reliable and efficient
search is a linear search that checks each item, one after the other, starting at the front of
the list. When we do experiments that apply binary search to arrays, we have to make sure
the arrays are sorted or the method won’t work.

To turn this general idea into an algorithm we need to figure out how to represent the
idea of a “sublist” and how to break the current list into smaller sublists. We also need to
address a detail that has been ignored in the discussion so far: how do we know to stop
searching when the item is not in the list?

One way to implement sublists is to think of them as “regions” in the array passed as
the argument to the search algorithm. The initial region will be the entire list, and as the

a: 2 10 17 21 29 46 50 67 69 70 79 83 87 91 94

Figure 5.3: The arrows show how a binary search looks for the number 46 in a sorted list of
numbers. The first comparison is in the middle of the list; after that the search continually
moves backward or forward, looking at sublists that are cut in half at each step.



5.1 Binary Search 107

(1)

(2)

(3)

2 10 17 21 29 46 50 67 69 70 79 83 87 91 94

2 10 17 21 29 46 50 67 69 70 79 83 87 91 94

2 10 17 21 29 46 50 67 69 70 79 83 87 91 94
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Figure 5.4: The binary search algorithm uses three values to represent the current state of the
search: the lower boundary of the current region (shown as an open parenthesis), the upper
boundary (a closing parenthesis), and the index of the item in the middle of the region
(indicated by the star). The figure shows three “snapshots” taken during the first three rounds of
the search.

algorithm progresses the region will get smaller and smaller. We will define two variables,
named lower and upper, to mark the boundaries of the region that needs to be searched.
At any point in the algorithm, lower will be one less than the index of the first item in the
current region, and upper will be one more than the index of the last item in the region.
Figure 5.4a shows the initial region for a search of an array with 15 items. Since the array
indexes run from 0 to 14, the initial value of lower is −1 and upper is initialized to 15.

Finding the middle of the current region is simple: it’s the index value that is halfway
between lower and upper. A statement to compute this index is

mid = (lower + upper) / 2

If the array item at this location, a[mid], is the one we’re looking for the search terminates
with success.

The key step in the algorithm reduces the current region when the item we’re looking
for (let’s call it k) is not at the middle of the region. The way to do this is to move one of
the boundaries. If k is less than the value at a[mid], we can restrict the region to search
the lower region in the next round simply by setting upper to mid. On the next round of
the search, lower will have the same value, but upper is now at a location we know is
one past the last place where k can be found (Figure 5.4b). To search the upper half of the
current region when a[mid] is less than k simply set lower to mid (Figure 5.4c).

The important thing to keep in mind about this algorithm is that lower and upper mark
locations that are outside the region: lower is just to the left of the first item in the current
region, and upper is just to the right. Each time the region shrinks, either lower or upper
will move, and its new location is the place that was the middle of the current region. Since
mid is half way between lower and upper, the region shrinks to half its size on each
iteration of the algorithm.
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  1:  def bsearch(a, k)
  2:    lower = -1
  3:    upper = a.length
  4:    while true
  5:      mid = (lower + upper) / 2          # find middle of region
  6:      return nil if upper == lower + 1   # fail if the region is empty
  7:      return mid if k == a[mid]          # succeed if k is at the mid
  8:      if k < a[mid]
  9:        upper = mid                      # next search: lower region
 10:      else
 11:        lower = mid                      # next search: upper region
 12:      end
 13:    end    
 14:  end

# Search an array a to find an item k.  Return the location of k if it is found, otherwise nil. 

Figure 5.5: Ruby implementation of the bsearch method.

To answer the question about how to terminate the algorithm for an unsuccessful search,
when the item we’re looking for is not in the list the region will shrink all the way down to
a sublist of size zero. When this happens, lower will be at some location i and upper will
be at the adjacent location i + 1, and there will be nothing in the region between them.
Thus the method will return nil when lower is one less than upper.

A listing of bsearch, our implementation of binary search in Ruby, is shown in Figure 5.5.
After initializing lower and upper so they are next to the first and last elements in the
array, the method goes into a while loop. At the start of each iteration, the method checks
to see whether the current range has shrunk all the way down to zero items. If the item at
the midpoint of the range is the one being searched for, the method returns the midpoint
location. Otherwise the range will be cut in half, by moving the lower or upper boundary to
the midpoint of the current range, and the execution continues on to the next iteration.

The Ruby code on lines 8 through 12 of Figure 5.5 are part of an if statement, a form of
conditional execution we have not seen before. The section on conditional execution in the
Ruby Reference (page 362) has more information about how these statements are executed.

Tutorial Project

The module that contains the methods used for the projects in this chapter is named RecursionLab.
When you start an IRB session remember to include this module:

>> include RecursionLab
=> Object

Like the search method from the previous chapter, a call of the form bsearch(a,x) will look for x
in an array a. The return value will be the location of x, if it is found, or else nil if x is not in a.

T1. Make a small array of strings to use for the initial tests to make sure the method works:
>> consonants = ["b", "c", "d", "f", "g", "h", "j"]
=> ["b", "c", "d", "f", "g", "h", "j"]
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T2. Use bsearch to find the locations of some of these letters:
>> bsearch(consonants, "d")
=> 2

>> bsearch(consonants, "h")
=> 5

T3. Look for a letter that is not in the array:
>> bsearch(consonants, "e")
=> nil

In the experiments in Chapter 4 we used a method named brackets to print an array with brackets
around some if the items. When we call brackets in this lab project we will pass it an additional
location, which will indicate the position of the last item in a region (previously brackets just
assumed the region went all the way to the end of the array).

T4. To see what the brackets method does, type this expression to print the test array with an
opening bracket next to item 2 and a closing bracket next to item 4 (don’t forget the first
item in an array is item 0):
>> puts brackets(consonants, 2, 4)
b c [d f g] h j

=> nil

T5. If you pass a third argument to brackets, it will be used as the value of the midpoint of a
region, and brackets will put a star next to that item:
>> puts brackets(consonants, 0, 6, 3)
[b c d *f g h j]
=> nil

We’re now ready to trace the execution of a call to bsearch. What we want to do is attach a probe
and have it print the state of the array (using Ruby’s puts method) right after the method calculates
the location of the midpoint of the current region.

According to the listing (Figure 5.5) the midpoint is computed on line 5, so we will attach the probe on
line 6 (if you want, call Source.listing("bsearch") to print the code in your terminal window).

T6. Type the expression that attaches the probe (you can type the entire expression on a single
line; it’s broken into two lines here to fit within the margins of the book):
>> Source.probe( "bsearch", 6,

"puts brackets(a, lower+1, upper-1, mid)" )
=> true

Note that lower and upper are locations next to a region, so the values passed to brackets
are adjusted so it attaches the brackets to the proper items.

T7. With the probe in place, trace the execution of a successful search:
>> trace { bsearch(consonants, "d") }
[b c d *f g h j]
[b *c d] f g h j
b c [d] f g h j

=> 2

This output shows the search took three rounds. Notice how the region being searched
shrinks in half on each round. The return value of 2 is what we expect, because the string
“d” is at location 2 in the array.



110 Chapter 5 Divide and Conquer

T8. Now trace an unsuccessful search:
>> trace { bsearch(consonants, "e") }
[b c d *f g h j]
[b *c d] f g h j
b c [d] f g h j
b c d [] f g h j

=> nil

Did this work the way you expected? Do you see why there is an empty region between the
“d” and the “f” on the last line?

T9. Try several more searches on your own, doing searches for letters that are in the list and
others for letters not in the list, until you are sure you know how the algorithm works.

T10. The comparison step in this method is on line 7. Let’s attach a counter to this statement:
>> Source.probe( "bsearch", 7, :count )
=> true

T11. Count the number of comparisons made in the successful search:
>> count { bsearch(consonants, "d") }
=> 3

Look back at the output from the trace. Does this output look correct? Does bsearch make
three comparisons when searching for the letter “d”?

T12. Count the number of comparisons in the unsuccessful search:
>> count { bsearch(consonants, "e") }
=> 3

Can you see why this is also 3? The trace showed four lines were printed for this search. But
since the region has shrunk down to 0 items there is nothing to compare on the last iteration,
and the method returns by executing the statement on line 6 before it gets to the probe.

T13. The probe you created in exercise T6 should still be active. Use a trace to see what happens
if you try to do a search in an unsorted array:
>> ua = ["m", "i", "d", "t", "o", "w", "n"]
=> ["m", "i", "d", "t", "o", "w", "n"]

>> trace { bsearch(ua, "m") }
[m i d *t o w n]
[m *i d] t o w n
m i [d] t o w n
m i d [] t o w n

=> nil

The result of this search should have been 0, not nil. Do you see why the algorithm went
astray?

T14. Try a few more searches in this unsorted array. Some may succeed, just by luck, but it should
be clear why this algorithm requires the input array to be sorted.

© If you would like to look at the execution in more detail, change the tracing probe so it prints
the values of lower, upper, and mid during each iteration:
>> Source.probe( "bsearch", 6, "p [lower, upper, mid]" )
=> true

© Trace the successful bsearch again with this new probe in place:
>> trace { bsearch(consonants, "d") }
[-1, 7, 3]
[-1, 3, 1]
[1, 3, 2]

Does this help explain how the regions are implemented, and how they become shorter and
shorter?
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5.2 Binary Search Experiments

It is not uncommon to see a newspaper or magazine article describe something as “growing
exponentially.” In everyday usage the phrase simply means something is increasing very
rapidly. To a mathematician or scientist, however, the term has a very specific meaning:
if something has exponential growth, the equation that explains the rate of growth has a
term with one of the variables in an exponent. One of the simplest exponential equations is
y = 2x. The y in this equation grows very quickly indeed. Each time x increases by 1 the
value of y doubles, because by definition 2x+1 = 2× 2x.

Exponential growth is relevant to this chapter because it gives us a way to appreciate how
truly efficient a binary search can be. To see why, let’s first turn the problem around, and ask
how big a list we can search if we are given a “budget” of a certain number of comparisons.
Suppose we know already, perhaps by running a binary search and counting the number of
comparisons, that it takes c comparisons to search for something in a list of length n. With
one more comparison, the algorithm would be able to search a list of twice the size, i.e.,
with c + 1 comparisons we can search a list of 2n items. That’s because the comparison in
the first iteration would cut the list down from 2n to n items, and we already know that
finding the item in a list of size n takes only c comparisons. Since the list size n doubles
each time c increases by one, the equation that defines the size of the list we can search with
c comparisons is n = 2c.

Exponential Growth

A fable commonly used to illustrate exponential growth is the story of a 
Brahmin named Sessa, who (according to the legend) created the game of 
chess.  As a reward for his accomplishment his king offered to let him 
choose a prize.  Sessa replied that he would like a chessboard with one 
grain of rice in the first square, two in the second square, four in the 
next square, and so on, doubling the number of grains of rice in each 
successive square.  The unwary king readily agreed, not realizing 
the last square would have 9,223,372,036,854,775,808 grains of rice. 
The amount of rice on the entire board would fill a warehouse
more than 20 km wide, 20 km deep, and 2 km tall!

27 = 128 grains in
the 8th square

215 = 32,768 
grains in the 
16th square

20 = 1 grain in
the 1st square

27 

215 
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n dlog2 ne

2 1
4 2
8 3

16 4

1,000 10
2,000 11
4,000 12

1,000,000 20
1,000,000,000 30

1,000,000,000,000 40

Table 5.1: To estimate the number of
comparisons required to search an
array with n items, calculate log2 n
and round up to the nearest integer.
A binary search through an array of
1,000,000 items will need at most 20
comparisons.

Now let’t go back to the original question, which is how many comparisons it will take
to search a list of a given size. To answer this question, simply invert the equation we just
derived. If n = 2c, that means c = log2 n, using the definition of a logarithm. In other
words, if we have a sorted list of n items, we can determine in log2 n steps whether or not
a particular item is in the list.

Unless n is a power of 2, log2 n will not be an integer; for example, log2 100 is 6.64. In
these cases we simply “round up” to the next integer, so our estimate is that 7 comparisons
will be required to search an array with 100 items. The more formal way to express the
relationship between c, the number of comparisons, and n, the length of the list, is

c = dlog2 ne

where the notation dne means “the smallest integer greater than n,” and is pronounced “the
ceiling of n.” This function grows very, very slowly. The list size n can be quite large—much
larger than the number of items we can fit in a computer’s memory—and a method based
on the binary search algorithm will take only a few dozen comparisons to find any item in
the list (Table 5.1).

In Chapter 4 the notation O(n) was used to describe algorithms where the number of
steps grows linearly with the length of an input list. Because the binary search requires at
most log2 n comparisons to search an array with n items, this algorithm is characterized as
O(log2 n).

Binary search could, like the linear search algorithm, be lucky and find what it is looking
for on the first comparison. But what is the worst case? What situations would cause an
algorithm to make the most comparisons? The answer, for both algorithms, is that the
highest number of comparisons will be made when an item is not in the list. In Chapter 4
we didn’t bother with experiments involving unsuccessful searches: it was obvious that if
a list has n items, a linear search method will make n comparisons before returning nil.
What is so impressive about binary search is that, even for an unsuccessful search, there will
be log2 n comparisons before the algorithm determines the item it is looking for is not in the
list.
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The experiments in this section will help explain why binary search makes at most log2 n
comparisons. We will attach a probe to count comparisons, and then purposely choose an
item we know is not in the list when we call bsearch. The large arrays we will use in
these tests will be a special type of array, known as a TestArray (introduced on page 93 in
Chapter 4). To make an array with n different randomly chosen numbers, we simply have
to call TestArray.new. If we want to use a TestArray object for experiments with binary
search, we have to make sure the array is sorted. The easiest way to do this is to use Ruby’s
built-in sort method. This expression makes a test array with 100 numbers and sorts it
before saving it with the name a:

>> a = TestArray.new(100).sort
=> [4, 20, 41, 44, ... 953, 977]

Arrays made by calling TestArray.new have a method named random that generates a
random value to search for. When we call random, we pass it an option to specify whether
we want a number that is in the array or a number that is not in the array. Here is an
example from an IRB session that makes a test array and then asks it for random numbers:

>> a = TestArray.new(5)
=> [60, 31, 46, 83, 43]

>> a.random(:success)
=> 31

>> a.random(:fail)
=> 57

The symbol :success tells random to return a value that will lead to a successful search,
and the symbol :fail tells random to pick a value that is guaranteed not to be in the array.

It may seem strange to ask a test array to find a random value and then turn around
and call a second method to search for that same value. Here’s one way to think of the
situation. When a magician does a card trick, he asks a member of the audience to pick a
card at random, look at it, and insert it back in the deck. He then does his “magic” to find
the chosen card. We’re doing something similar here. A call to random selects a number at
random, and we can control whether or not the return value is actually in the array. After
we have the value we will ask Ruby to do its magic, in the form of a binary search method,
to look for that number. The reason we’re doing this, of course, is that we want to know
how many comparisons the binary search method makes, since we already know whether
or not the item is in the array.

Tutorial Project

T15. The RubyLabs module has a method named log2 that will compute log2 of a number:
>> log2(8)
=> 3.0

The result is 3 because 8 = 23 and thus, by definition, log2 8 = 3.

T16. Call log2 to compute the logarithms of some numbers that are not powers of 2:
>> log2(10)
=> 3.32192809488736

>> log2(50)
=> 5.64385618977472
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T17. The Ruby math library has a method named ceil that computes the ceiling of a number.
This is one of the methods that is called by writing the method name after an object. Modify
the expressions typed in the previous experiment to get the nearest integer greater than the
logarithms of those numbers:
>> log2(10).ceil
=> 4

>> log2(50).ceil
=> 6

T18. Use log2 and ceil to compute some of the values shown in Table 5.1.

T19. Make a small array of numbers for the first set of tests. Don’t forget to include the .sort at
the end of the line:
>> a = TestArray.new(15).sort
=> [2, 6, 10, 11, 16, 17, 22, 33, 47, 57, 62, 64, 70, 85, 96]

As usual the array you get will be different, but you should see a sorted list of 15 numbers
between 0 and 99.

T20. Ask the array for a random number that occurs somewhere in the array:
>> a.random(:success)
=> 17

T21. Repeat the call to random a few times. You should see a few different values from random
locations throughout the array.

T22. Ask for some numbers that are not in the array. Repeat this expression a few times, making
sure you get back a random number that is not in a:
>> a.random(:fail)
=> 41

When we use trace to monitor the progress of an unsuccessful search we want to do two things:
select a random item and then call bsearch with this item. Ruby lets us put more than one statement
between braces if we separate the statements with a semicolon. Because it might be helpful to know
what bsearch is looking for, we are going to put three Ruby statements between the braces: one to
get a random number, one to print the number, and one to call bsearch.

T23. Attach a probe to the first line in the main loop (this is the same statement that was used in
exercise T6):
>> Source.probe( "bsearch", 6,

"puts brackets(a, lower+1, upper-1, mid)" )
=> true

T24. Use trace to monitor an unsuccessful search:
>> trace { x = a.random(:fail); puts x; bsearch(a, x) }
67
[2 6 10 11 16 17 22 *33 47 57 62 64 70 85 96]
2 6 10 11 16 17 22 33 [47 57 62 *64 70 85 96]
2 6 10 11 16 17 22 33 47 57 62 64 [70 *85 96]
2 6 10 11 16 17 22 33 47 57 62 64 [70] 85 96
2 6 10 11 16 17 22 33 47 57 62 64 [] 70 85 96

=> nil

This output shows us x (the item to look for) was set to 67. The next five lines were produced
by the probe attached to bsearch. The last line shows the search region has shrunk down
to zero elements in the place where 67 would be if it were in the list. Note also that four
comparisons were made. No comparison was done in the last iteration (since there is nothing
to compare).
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T25. This same pattern should occur no matter where the missing item would be found. bsearch
will always start with brackets around the entire array, and then each iteration will cut the
region in half, until finally, on the fifth line, the region is empty. Repeat the previous expres-
sion several more times until you are convinced an unsuccessful search in this array of 15
items will always make four comparisons.

T26. If you want to try more experiments, make some new test arrays. Array sizes that are one
less than a power of two (7, 15, 31, 63, etc.) are best for illustrating the divide and conquer
strategy, but bsearch will work on any size array.

T27. Attach a counting probe to the line that does comparisons (this is the same statement that
was used in exercise T10):
>> Source.probe( "bsearch", 7, :count )
=> true

T28. Count the number of comparisons required for an unsuccessful search:
>> count { x = a.random(:fail); bsearch(a, x) }
=> 4

So the probe agrees with the statement above—an unsuccessful search in an array of 15
items requires four comparisons.

T29. Is the number of comparisons for this array of 15 items the same as dlog2 15e?
>> log2(a.length).ceil
=> 4

T30. Let’s repeat the experiment with a bigger array. Make a new test array, and then repeat the
call to count from exercise T28:
>> a = TestArray.new(1000).sort
=> [1, 5, 11, 16, ... ]

>> count { x = a.random(:fail); bsearch(a, x) }
=> 10

T31. Ask IRB to compute dlog2 1000e? Is 10 comparisons right, i.e., will bsearch make a maxi-
mum of 10 comparisons to search an array of 1000 items?

T32. How many comparisons will it take to search an array of 1,000,000 items? In other words,
what is log2(1000000).ceil?

© Try some more experiments on your own, using even bigger arrays if you want. Is the number
of comparisons for an array with n items equal to dlog2 ne?

© Use the time method to measure the execution time for some of your test cases. Here is an
example that shows how to compare the execution time of search and bsearch, assuming
a test array a has already been defined (in this case the tests were done with an array of
1,000,000 numbers). The first line calls search, and the second line calls bsearch:
>> time { x = a.random(:fail); search(a, x) }
=> 0.467882

>> time { x = a.random(:fail); bsearch(a, x) }
=> 7.2e-05

The output of the second expression is Ruby’s way of printing 7.2× 10−5 seconds; see the
sidebar on scientific notation on page 290.

© Do a systematic test of the number of comparisons and execution time of the two algorithms,
using arrays of size 1000, 2000, etc. up to 10,000, and plot the results using a spreadsheet
or some other graphing application.
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5.3 Merge Sort

The merge sort algorithm uses the same general divide and conquer strategy that makes
binary search so efficient. As explained in the introduction, the process works “bottom up”
by first dividing the input array into several small chunks, and then combining the chunks
into bigger and bigger groups until the final merged group includes the full array. In this
section we will take a look at how to turn this general description into an algorithm, and see
how the algorithm is implemented in Ruby. In the next section we will analyze the algorithm
to come up with an equation that predicts the number of comparisons, and we will see that
this strategy actually does lead to a much more efficient sort.

The key step in the algorithm is an operation that merges two small lists that are already
in order into a single bigger list. Figure 5.6 shows how a merge is done, using stacks of cards
with numbers on them to illustrate the process. In this example, there are two stacks of four
cards, and each stack is in order, with the smallest card on top. The result of the merge will
be a row of eight cards, in order from smallest to largest. The idea is to repeatedly take a
card from one of the stacks and move it to the output area, stopping when all the cards have
been moved. Since the two stacks are sorted, we only have to look at the top card in each
stack when choosing the next item to place in the output. At each step, the merge process
just moves the smaller of the two cards to the end of the output list—it doesn’t have to look
at any of the other cards.

The easiest way to understand how merge sort uses this list-merging process to rearrange
the items in an array is to watch it in action. The RubyLabs implementation of merge sort
is a method named msort. When we run msort, we can attach a probe that tells Ruby
to print the array before each round of merges. This probe, like the ones in the previous
experiments, will print brackets to show the progress of the algorithm. In the case of msort,
that means printing brackets around each of the groups.

(1)

(2)

(3)

1

21

4

11
11

11
14

11
2

11
14

16 11
14

16 11
8 21(4)

Figure 5.6: Example of a merge
operation that combines two stacks
of cards into a single output list. If
each stack is sorted, it is only
necessary to compare the two
cards on top of each stack to
decide which card to move to the
output list. In steps 1 and 2, the
card on top of the left stack is
smaller, so it is moved to the
output. In step 3, the card on top
of the right stack is copied.
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Figure 5.7: This drawing shows how groups of
size two are merged into groups of size
four during a merge sort. To make it easier
to see the groups, all the items in a group
have the same color. The two-item groups
start at locations 0, 2, 4, and 6. After the
merges have been done, there are two
groups of four items, at locations 0 and 4.

0 1 2 3 4 5 6 7

5 8 1 7 2 9 3 6

1 5 7 8 2 3 6 9

0 1 2 3 4 5 6 7

Here is an example that shows how an array of eight items is sorted:

>> a = [8, 5, 1, 7, 9, 2, 6, 3]
=> [8, 5, 1, 7, 9, 2, 6, 3]

>> trace { msort(a) }
[8] [5] [1] [7] [9] [2] [6] [3]
[5 8] [1 7] [2 9] [3 6]
[1 5 7 8] [2 3 6 9]
=> [1, 2, 3, 5, 6, 7, 8, 9]

The first line of the trace shows how there is initially one item in each group. The next line
shows what happened when these groups were merged to form groups of size two. Notice
how [8] and [5] were merged to form [5 8], and how [1] and [7] were merged to
make [1 7]. The following line shows how [5 8] and [1 7] were merged into a group
of four items, namely [1 5 7 8]. The last step merged two four-item groups into the final
sorted array with all eight numbers in order.

Figure 5.7 shows the second round of merges from this example in more detail. At the
start of the round, the groups of two are adjacent pairs of numbers, where the first group
starts at location 0, the second group at location 2, and so on. After the merge has been
done, the array has groups of size four, starting at locations 0 and 4. The most important
thing to notice about the rows in the figure is that the items within a group are always in
order, so that on the next iteration they are ready to be merged into larger groups.

The Ruby code for msort is shown in Figure 5.8. A variable named size holds the
current number of items in a group. It is initialized to 1, because the first round of merges
should combine groups of size 1 into groups of size 2. The main loop of the algorithm,
controlled by the while statement on line 4, keeps iterating until the group size has grown
to include the entire array. The statement on line 6 multiplies size by 2, i.e., it doubles the
group size to get ready for the next round.

The merging operations are performed by a “helper method” named merge_groups.
This method will find the starting location of each group, based on the current group size,
and do all the movements required to merge adjacent groups. If you would like to learn
more about how merge_groups works, you can read the description in the following op-
tional section, otherwise skip ahead to the tutorial project to run msort and watch how it
sorts a few test arrays.
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  1:  def msort(array)
  2:    a = array.clone
  3:    size = 1
  4:    while size < a.length
  5:      merge_groups(a, size)
  6:      size = size * 2
  7:    end
  8:    return a
  9:  end

# Return a sorted copy of array a 

Figure 5.8: Ruby implementation of
the merge sort algorithm. The
variable size represents the
group size, which doubles on each
iteration. The “helper method”
named merge groups combines
groups of the specified size.

© Implementation Details

The definition of merge_groups is shown in Figure 5.9. The method uses a while loop to iterate
over all the groups in the array. On each iteration, the variable named i is the index of the first item
in the first group to merge, and j is the index of the last item in the second group. For example, when
the group size is two, groups start at locations 0, 2, 4, 6, etc. The first iteration merges the groups that
start at location 0 and 2, so i is 0 and j is 3. On the next iteration, i will be 4 and j will be 7.

Another helper method named merge does the actual merge operation. Each call combines two
groups, returning a new array with all the items in the merged group. The key step is the assignment
statement on line 5:

a[i..j] = merge(a, i, gs)

This tells Ruby to replace the current items in locations i through j of the array with the items in the
array returned by the call to merge.

Tutorial Project

T33. Make a small test array:
>> a = TestArray.new(8)
=> [7, 58, 89, 73, 87, 16, 54, 23]

As usual, your array will have a different set of random values, but you should see an array
of 8 numbers.

  1:  def merge_groups(a, gs)
  2:    i = 0                         # start of first group
  3:    while i < a.length
  4:      j = i + 2*gs - 1            # end of second group
  5:      a[i..j] = merge(a, i, gs)   # merge groups at a[i] and a[i+g]
  6:      i += 2*gs                   # start of next group
  7:    end
  8:  end

# Merge all adjacent groups of size gs to form groups of size 2*gs 

Figure 5.9: The “helper method” that merges adjacent groups during merge sort.
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T34. To see how merge sort is called, use msort to sort the test array:
>> msort(a)
=> [7, 16, 23, 54, 58, 73, 87, 89]

T35. A statement of the form puts msort_brackets(a, n) asks Ruby to print a with brackets
around each group of n items. Type this statement to print your test array with groups of
size 2:
>> puts msort_brackets(a, 2)
[7 58] [89 73] [87 16] [54 23]
=> nil

T36. Repeat the previous statement, but use a group size of 4. Can you see how msort_brackets

displays the array with brackets around groups of the specified size?

T37. Attach a probe to the first line inside the while loop in msort:
>> Source.probe( "msort", 5, "puts msort_brackets(a,size)" )
=> true

T38. With the probe in place, trace a call to msort:
>> trace { msort(a) }
[7] [58] [89] [73] [87] [16] [54] [23]
[7 58] [73 89] [16 87] [23 54]
[7 58 73 89] [16 23 54 87]
=> [7, 16, 23, 54, 58, 73, 87, 89]

Do you see how items within a group are always in order, and that groups in each line are
formed by merging two adjacent groups from the line above it?

Notice how the trace produced three lines in the example above. Since the group size doubles on each
iteration, it only took three rounds to have the group size go from 1, to 2, and then to 4. After merging
the two groups of four, the entire array of eight items was sorted.

T39. This statement will create a test array of size 16 and sort it:
>> trace { msort( TestArray.new(16) ) }
[3] [66] [33] [60] [67] [25] [24] [10] ...
[3 66] [33 60] [25 67] [10 24] ...
...
=> [3, 5, 10, 17, 24, 25, 26, 33, 36, 49, 60, 64, 66, 67, 73, 79]

How many iterations did it take to sort this array?

T40. Repeat the previous statement, but make an array with 32 elements. How many lines are
printed in each case? Be careful when you count lines. The lines printed by the trace will be
long, and may wrap around on your terminal, but you should count 5 lines in all.

T41. It’s easier to follow the “divide and conquer” strategy if the size of the array is a power of 2,
but msort will work for any size array. Watch what happens when we ask it to sort an array
of size 10:
>> trace { msort( TestArray.new(10) ) }
[60] [33] [1] [23] [56] [57] [47] [26] [48] [43]
[33 60] [1 23] [56 57] [26 47] [43 48]
[1 23 33 60] [26 47 56 57] [43 48]
[1 23 26 33 47 56 57 60] [43 48]
=> [1, 23, 26, 33, 43, 47, 48, 56, 57, 60]

The “extra” items form a small group of 2 that is put in order on the first round. The small
group hangs around until all the items to the left are merged, and finally on the last step this
small group is merged with the main group to make the final result.
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5.4 Merge Sort Experiments

The trace printed by calls to msort in the previous section followed a pattern that should
be familiar by now: when the array size is some value n, the number of iterations of the
outer loop is log2 n. This should not be surprising. Each time through the loop the group
size doubles, a hallmark of exponential growth. Since the while loop is controlled by the
group size, the loop makes only log2 n iterations before the group size reaches n.

As was the case for the other searching and sorting algorithms, we would like to develop
an equation that predicts the amount of work required to sort an array of n items. The most
straightforward estimate is to simply assume the inner loop does n steps, since each item in
the current array is part of a group, and every group in the array is merged with one other
group. If there are log2 n iterations, and each iteration does n steps, the equation for the
number of operations is n× log2 n.

If we want to be more precise in the way we compare merge sort to insertion sort (the
algorithm described in Chapter 4), we should count the number of comparisons made by
merge sort, not simply the number of items moved around by the merge step. Here the
situation is similar to insertion sort. Depending on how the input array is ordered, the
merge operation will make anywhere between g and 2g comparisons to merge two groups
of size g (see the sidebar on finishing a merge). But since the worst case is equivalent to
making one comparison for each item copied to the output list, we know the number of
comparisons is at most n× log2 n.

Using the “big O” notation introduced in Chapter 4, we can characterize the scalability of
merge sort as O(n× log2 n). This is a significant improvement over the O(n2) for insertion
sort. Table 5.2 shows the maximum number of comparisons that will be made by both

Finishing a Merge

When the merge operation at the heart of merge sort gets to the end of one of the lists, 
it can simply move the remainder of the other list to the output, without doing any 
comparisons.

In the example shown here, the
cards in the stack on the right
are all less than 7, so they are all
moved to the output list before the
7 is moved.

After the 5 is moved, the stack on
the right is empty.  Now all the cards
from the stack on the left can be
moved to the output list without
any more comparisons.

In the best case, a merge of two 
groups of size g requires only g 
comparisons.
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Table 5.2: Estimates of the number of
comparisons required to sort an array of n
items using insertion sort (roughly n2/2
comparisons) and merge sort (roughly
n× log2 n comparisons).

n n2/2 n× log2 n

8 32 24
16 128 64
32 512 160

1,000 500,000 10,000
5,000 12,500,000 65,000

10,000 50,000,000 140,000

algorithms for some different array sizes. In each case, merge sort should make fewer
comparisons. For arrays of 1000 or more items the difference is dramatic.

In the tutorial for this section we are going to do two sets of experiments. One will count
the number of operations that move items to the output list as part of a merge, and the
other will count the number of comparisons made during the sort. The results of these
experiments will be similar to what we saw in the experiments with insertion sort in the last
chapter: the equation n× log2 n is an upper bound that exactly describes the total number
of steps, but for random arrays of data, the actual number of comparisons is lower than this
upper limit.

To count the number of times an item is copied to the output array being built by the
merge helper method we can use a new technique for attaching a probe:

Source.probe("merge", ’<<’, :count)

Instead of supplying a line number, as we have in previous experiments, we pass a string.
This command tells RubyLabs to attach a probe to any line in the merge method that has
a << operator. It turns out there are two of these lines, since there is one statement that
copies from the first group used in a merge and a second statement that copies from the
other group.

To count the number of comparisons, we will do the same thing we did in the last chapter,
and attach a counting probe to the less method, which is the method that compares two
items.

Tutorial Project

T42. If you are still in the same IRB session used for the previous exercises type this expression to
remove all the existing probes:
>> Source.clear
=> true

T43. Attach a counting probe to every line in merge that uses the << operator:
>> Source.probe("merge", ’<<’, :count)
=> true

The merge method is fairly complicated, but if you’re curious you can see the Ruby code by
typing Source.listing("merge"). You’ll see two statements that have the << operator,
one for each group being merged.
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T44. To make sure the probes were attached get a list of all current probes:
>> Source.probes
merge 7: count
merge 10: count
=> true

T45. Make a test array with eight items and sort it:
>> count { msort( TestArray.new(8) ) }
=> 24

T46. The number you see should be exactly n × log2 n, because msort makes log2 n iterations
and each iteration copies n items to the merged groups. What is log2 8? Is 24 the correct
count?

T47. Repeat the experiment, using arrays of size 16, 32, and 64. Is the number of operations
consistently equal to n× log2 n?

T48. Clear the counting probes:
>> Source.clear
=> true

T49. In Chapter 4 we saw that items from the input array are compared by a method named less.
This statement will attach a counting probe to that method:
>> Source.probe("less", 2, :count)
=> true

T50. Repeat the statement that counts operations in a call to msort:
>> count { msort( TestArray.new(8) ) }
=> 17

You will probably get a different count, since the number of comparisons depends on whether
or not a call to merge can simply copy the items at the end of one group.

T51. Repeat the previous expression several more times. The output should always be less than
24, since the number of calls to less should always be less than the number of times an
item is appended to the output array. Is that what you saw?

T52. Try this new experiment several times each with arrays of size 16, 32, and 64. Is the number
of comparisons always less than n× log2 n?

If you did the optional exercises at the end of Section 4.4 and recorded the number of comparisons
made by the insertion sort method (isort) in a spreadsheet, you can repeat the experiments here,
except call msort instead of isort. Add a new column to the spreadsheet, and make a chart that
displays the number of comparisons made by the two methods.

© Repeat this command once for each row in your spreadsheet (n = 100, 200, . . . , 1000):
>> count { msort( TestArray.new(100) ) }
=> 551

>> count { msort( TestArray.new(200) ) }
=> 1318

>> count { msort( TestArray.new(300) ) }
=> 2218
...

© Plot your results. Do you get a general trend like the one shown in Figure 5.10?
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Figure 5.10: For arrays with fewer
than 100 items there might not be
much difference between
insertion sort (O(n2)) and merge
sort (O(n× log2 n)). For n > 100
there is a dramatic difference in
the number of comparisons, as
shown in this plot, which
compares results from
experiments with isort and
msort. 0
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5.5 © Recursive Methods

In programming, a recursive method is one that calls itself. At first this might seem like a
recipe for disaster. Not only is it hard to imagine what such a thing might mean, it can also
lead to an infinite loop. Here is the general outline of a recursive implementation of binary
search; we’ll call it rbsearch:

def rbsearch(a)
... # start here

rbsearch( ... )
...

end

When rbsearch is first called, it executes the statement on the line with the comment
“start here,” and then it makes the recursive call. On this call, Ruby again executes the
line with the comment, and then makes another recursive call. Each time Ruby reaches the
recursive call it goes back to the beginning, and it appears the computer has been caught in
an endless cycle.

Infinite recursion is a problem to watch out for, but there are two simple rules to make sure
it does not happen. First, the parameter value passed in the recursive call must be different
than the one passed in the original call. In most cases recursion is used to implement a
divide and conquer strategy, so the recursive calls are made with one of the smaller pieces
of the input problem. Second, the recursive call needs to be part of an “if statement” that
tests whether or not to make the call. When the recursive call gets smaller pieces of the input
problem, the conditional checks to see if the problem has shrunk all the way down to the
smallest possible problem. If so, the problem is solved without a recursive call, otherwise it
is further divided and the pieces handed off to the recursive calls.

In the case of the two recursive methods we’ll look at in this section, binary search obeys
the two rules because it stops making recursive calls either when it finds what it is looking
for or the region to search shrinks all the way down to the empty list, and the recursive call
always looks at a region that is one half as big. Quicksort follows the same rules: it first
checks to make sure the array has more than one item, and if so the array is divided into
two smaller pieces for the recursive calls.
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The Ruby code for these two methods is shown in Figure 5.11. Both of the methods
illustrate a new construct that hasn’t been used yet in this book. When a method is defined,
we can specify default values for some of the parameters. For example, the statement on
line 1 of qsort says the first parameter is always a reference to the array to sort, but the
second two are optional. If they are not supplied, p will be initialized to 0 and r to one less
than the length of the array. Since these two parameters mark the boundaries of the region
to sort, this definition basically says that if a call to qsort contains only the name of an
array the region should include the entire array. The body of rbsearch is very similar to
bsearch. The main difference is that instead of using a while loop to make the region to
search smaller and smaller the method uses a recursive call to search one of the regions.

All the hard work in qsort is implemented by a “helper method” named partition. In
the brief description of quicksort given in the introduction to this chapter, the partitioning
step was described as putting names that started with A to M in one pile and names starting
N to Z in a second pile. That might work if we always know the method will sort strings,
but what should it do for an array of numbers? The solution is to use the first item in the
region as what is known as a “pivot” value. The partition step will move all the values in the
array that are less than the pivot to the left side of the region and will move the pivot and
all the values greater than the pivot to the right side. The dividing line between these two
subregions is returned as the result of the call to partition, so now qsort just needs to
make recursive calls to sort these two subregions.

  1:    def rsearch(a, k, lower = -1, upper = a.length)
  2:      mid = (lower + upper) / 2
  3:      return nil if upper == lower + 1      # fail if region empty
  4:      return mid if k == a[mid]             # succeed if k found
  5:      if k < a[mid]
  6:        return rsearch(a, k, lower, mid)
  7:      else
  8:        return rsearch(a, k, mid, upper)
  9:      end
 10:    end

  1:    def qsort(a, p = 0, r = a.length-1)       # sort region p..r
  2:      a = a.dup if p == 0 && r == a.length-1  # copy input array
  3:      if p < r
  4:        q = partition(a, p, r)    # q is boundary regions
  5:        qsort(a, p, q)            # sort small items in range p..q
  6:        qsort(a, q+1, r)          # sort large items in range q+1..r
  7:      end
  8:      return a
  9:    end

# Search array a to find an item k in the region between lower and upper 

# Sort the region of array a bounded by p and r

Figure 5.11: Ruby implementation of two recursive methods. Note that the body of each method
contains a call to the same method.
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Tutorial Project

© Make a small test array for rbsearch. Note that it must be sorted, since rbsearch imple-
ments the binary search algorithm:
>> a = TestArray.new(8).sort
=> [6, 21, 24, 28, 37, 39, 45, 47]

© Call rbsearch to try it out:
>> x = a.random(:success)
=> 21

>> rbsearch(a, x)
=> 1

© Try attaching some of the probes used to test bsearch, and run some more tests on your own
to trace the execution and count the number of comparisons. You should see that rbsearch
does exactly the same thing—it’s just coded differently.

© Make an array for testing qsort:
>> a = TestArray.new(10)
=> [38, 0, 33, 39, 45, 2, 63, 36, 20, 15]

© Call qsort to sort the test array:
>> qsort(a)
=> [0, 2, 15, 20, 33, 36, 38, 39, 45, 63]

© Attach a probe to print brackets around the region to sort at the start of each call:
>> Source.probe("qsort", 2, "puts brackets(a, p, r)")
=> true

© Trace a call to qsort. Your output will be different, but you will see something like this:
>> trace { qsort(TestArray.new(10)) }
[16 55 17 2 13 58 25 9 48 43]
[9 13 2] 17 55 58 25 16 48 43
[2] 13 9 17 55 58 25 16 48 43
2 [13 9] 17 55 58 25 16 48 43
2 [9] 13 17 55 58 25 16 48 43
2 9 [13] 17 55 58 25 16 48 43
2 9 13 [17 55 58 25 16 48 43]
2 9 13 [16] 55 58 25 17 48 43

...

The first line shows that for the top level call the region is the entire array. The pivot is the
first item in the array, in this case 16. The call to partition rearranges the array into two
parts, putting numbers less than 16 on the left side and numbers greater than or equal to 16
on the right side. It then makes a recursive call to sort the left part of the array. The second
line shows that all the numbers less than 16 have been moved to the front of the array and
this region is now going to be sorted by the recursive call.

The third line follows the same pattern: the number 9 is the pivot, and the only value less
than 9 has been moved to the front, and the recursive call is sorting this small region.

The most difficult thing to understand about recursion is that when a recursive call finishes,
the method “pops up” to return to the most recent pending call. In this case, after sorting the
region that has only the number 2, the program still has some unfinished business. It has to
sort the values from the right side of the second call. That’s shown on the fourth line above,
where the current region has the two numbers 13 and 9. But don’t forget that there is still
another pending sort: the entire second half of the original array. The program eventually
gets around to this item on its “to do list,” as shown on line 7 of the output.
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© Try tracing a few more examples, experimenting on slightly larger arrays.

© It may be hard to believe given this complicated looking output, but the total amount of
work done by qsort is about the same as msort. Both algorithms make O(n × log2 n)
comparisons. It turns out that in practice quicksort is often even more efficient than merge
sort, mainly because it uses the space allocated for arrays more efficiently. Try some timing
experiments that sort an array with msort and then again with qsort to see the difference.

5.6 Summary

This chapter introduced two new algorithms, binary search and merge sort. These algo-
rithms solve the searching and sorting problems that were introduced in the last chapter.
The difference between the new algorithms and the searching and sorting algorithms from
the last chapter is the problem-solving strategy: linear search and insertion sort use “brute
force” iteration to repeatedly compare items and move them around in an array, but binary
search and merge sort are based on a more sophisticated divide and conquer strategy.

Binary search is very similar to what people do when looking for an item in a sorted list,
such as a dictionary or phone book. The search starts in the middle of the array. If the item
being searched for happens to be at that location, the search is done. Otherwise, since the
collection is sorted, the problem has now been divided in two. The search will continue in
one half of the array, and the other half can be ignored. By repeatedly checking the middle
of a region and continuing with a new region that is half the size the problem will be solved
with far fewer comparisons. In the worst case, only dlog2 ne comparisons are needed to
search a sorted array of n items.

Merge sort starts by repeatedly merging small groups, each of which is already sorted,
into larger groups. The fact that the small groups are sorted makes the merge an efficient
operation, since the comparisons only need to be made to the items at the start of each
group. By the time merge sort has finished, it will have made at most n× log2 n comparisons
to sort an array with n items.

Scalability, a concept introduced in the last chapter, is the motivation for studying binary
search and merge sort. For small arrays containing only a few dozen items, linear search
and insertion sort are perfectly adequate. In fact, since they are simpler to implement, they
may even run faster. But as arrays become longer, the more sophisticated algorithms will be
much more efficient and do far fewer comparisons.

Binary search is a natural way to solve the problem of finding an item in an ordered
collection, and it is something people have been doing intuitively for many years, probably
since the first dictionaries were published. But merge sort and quicksort were invented
by computer scientists who analyzed the problem of sorting arrays of numbers and were
motivated to find more efficient algorithms that would work on large arrays. Merge sort
was first described in 1945, by John von Neumann, and quicksort in 1960, by C.A.R. Hoare.

This raises an interesting question: if merge sort is such an effective algorithm for com-
puters, wouldn’t it also be an efficient way for people to sort real objects? If you drop your
box of recipes, and you need to sort several hundred cards, would a merge sort be more
effective than a more intuitive insertion sort as a way to reorganize the cards so you can put
them back in the box? If you would like to pursue this question further, Exercises 15 and
16 below have some suggestions for how to organize a merge sort using real cards.
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Concepts and Terminology Introduced in This Chapter

divide and
conquer

A problem-solving strategy that breaks a problem into
smaller pieces and addresses each subproblem separately

binary search A divide and conquer search algorithm; it divides an array
into smaller regions so it can search one region and ignore
the other

merge sort An algorithm that sorts an array by combining small groups
into larger groups, using a bottom-up application of the di-
vide and conquer strategy

quicksort An algorithm that sorts an array through a top-down appli-
cation of the divide an conquer strategy

recursive
problem

A problem that can be broken into one or more subproblems
that are each smaller instances of the main problem

recursive
method

A method, written in a programming language like Ruby,
where a statement in the body of the method is a call to the
same method

Exercises

1. Do a web search for newspaper or magazine articles with the phrase “exponential growth.” Is
the term being used in a mathematical sense, i.e., can the situation be described by an exponen-
tial equation, or is it being used in the colloquial sense, of “growing very rapidly”?

2. Here is an array with 15 numbers:
1 3 9 25 26 27 29 32 48 53 64 82 88 94 95

What sequence of values is compared by a binary search algorithm when it searches for the
following values? You can either print the array with brackets and a star, the way Ruby would
if bsearch is called with a probe attached, or draw a picture with arrows, as in Figure 5.3, or
just list the sequence of numbers used in each comparison.

a) 53

b) 25

c) 26

d) 95

e) 42

3. Show how a binary search would look for values in the following array of element names (see
the note at the end of the previous problem):
Ce Dy Er Eu Gd Ho La Lu Nd Pm Pr Sm Tb Tm Yb

a) Pm

b) Nd

c) Dy

d) Rb

e) Ce
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4. Here is an unordered array of numbers:
23 53 39 71 11 92 88 65 16 56 79 95 18 68 86

The following numbers are in the array, but binary search won’t find them. Show which items
are compared to explain why bsearch gets lost:

a) 88

b) 18

c) 39

5. Are there any items in the array for the previous problem that would be found, by luck, even
though the array is not sorted?

6. Does bsearch always make fewer comparisons than search (the linear search method)?
Given the array shown in Problem 2, is there any value that search would find with fewer
comparisons than bsearch?

7. The equation given in Section 5.2 for the number of comparisons made by bsearch is correct
in most cases, but there is one special situation where it is not quite right. Create a test array
with 16 numbers, set a probe so bsearch prints the array with brackets on each iteration (as
shown in Exercise T6), and do several searches for items that are not in the array, using this
expression:
>> trace { x = a.random(:fail); puts x; bsearch(a, x) }

According to the equation, the searches should all use dlog2 16e = 4 comparisons. If you
repeat the expression above often enough, you will encounter a search that takes 5 comparisons.
Repeat the searches several more times, until you have three or four examples of searches that
require 5 comparisons. Can you spot a pattern? Can you explain why these searches take 5
comparisons?

8. © The issue described in the previous problem only occurs when n, the size of the array, is
a power of 2. Can you devise a formula for the actual number of comparisons made by an
unsuccessful search that will always be correct, even when n is a power of 2?

9. Below are several test arrays with 16 numbers. Show how the arrays would be sorted by a call
to msort. The easiest way to do this is to show the groups before each round of merges, the
way Ruby prints them when a probe is attached.

a) 1 99 3 47 50 37 79 71 15 51 87 28 19 93 91 70

b) 25 69 64 92 10 7 27 51 54 12 71 65 59 74 79 46

c) 66 38 79 70 45 20 16 69 52 67 72 13 5 28 39 82

d) 37 61 40 53 89 10 72 68 99 17 67 74 47 36 3 23

e) 14 27 32 57 34 9 56 79 44 89 35 90 84 43 59 41

10. How many comparison or copy operations will msort make when it sorts an array of 128
numbers? Check your answer by attaching a counting probe to lines that match << in merge

(see Exercise T43) and counting the number of operations in a test array with 128 numbers.

11. Repeat the previous problem, but with an array of 200 numbers, then with an array of 500
numbers.

12. © What will happen if merge sort is asked to sort an array that is already sorted? Will it make
fewer comparisons than for a random test array?

13. © Which method will make fewer comparisons when it is passed an array that is already sorted,
isort or msort? Explain why.

14. © Can you develop a formula for the number of comparisons msort will make if it is passed an
array that is already sorted?
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15. If you want to try your hand at using merge sort to organize a real-world collection of objects,
here is one way to do the sort. You can try this method with any group of objects that can be
ordered: a deck of playing cards, recipe cards, homework papers that have been graded and
need to be entered into a gradebook, etc.

a) In the first round, pick up two items, put the smaller one on top, and set them face down
on a table. Pick up two more items, put the smaller one on top, and put this group face
down on top of the first group, but turn them so they are at a right angle to the first group.
Keep picking up pairs of items, sorting them, and placing them at right angles on top of
the pile until all items are in a group of two (unless there is an odd number, in which case
just put the last item on the pile in its own group of one).

b) Turn the pile over, so it is face up.

c) Take the top two groups off the pile and place them side by side on the table. Remove
the smaller of the two items showing on the top of a group and place it face down on the
table. Repeat this step until the two groups have been merged into a new group, which
will be face down.

d) Repeat the previous step, but this time, the new group should be at a right angle to the
first one. Keep removing two groups, merging them, and building up the output pile with
each new group at right angles to the previous one.

e) When the last groups have been merged, begin a new round of merges by repeating this
process from step (b). Eventually the output pile will be a single group with all the objects
in order, at which point you are done.

16. © If a person uses insertion sort to sort a group of real word objects (cards, papers, etc.) do you
think they would do a linear search to find the place to insert each new object? Or could they
use a binary search?

17. © In Chapter 4, the process used by the helper method named insert_left was described as
an iteration that required up to i steps, where i marks the current location in the sort. Since all
the items in the array from 0 up to i− 1 are already sorted, would it be possible to use a binary
search for this operation? Would the new version of insertion sort then be O(n× log2 n)?





Chapter 6

When Words Collide
Organizing data for more efficient problem solving

The binary search algorithm introduced in Chapter 5 is an efficient method for finding an
item in an ordered collection. A real-world example of where this type of search is effective
is looking for a book in a bookstore, where books in each section are arranged by the
author’s last name. To find a book on algorithms by an author named Knuth, we could pick
a starting location near the middle of the computer science section, and then move forward
or backward in the section, at each step narrowing the range of places where the book might
be found.

Sorting the books by author name allows us to quickly find a book when we know who
wrote it, but how do we find a book if we don’t know the author? If all we know is that
the book is called Fundamental Algorithms, we would have to scan the books one by one,
comparing each title to the one we’re looking for. No matter how the books are arranged,
we can make an efficient search using the same criterion as the one used to order the books
on the shelf, but searches based on other criteria will be much more time-consuming.

Libraries solve this problem by using a book numbering system to assign a unique number
(the “call number”) to each book and by arranging books on shelves according to their
call number. In a modern library, a patron can type what they know about a book into a
computer, and the system will return the call number so the person can search the stacks
using the number.

Before computers, libraries kept descriptions of books in card catalogs, which were col-
lections of cards that had the essential information about a book, including its call number.
A typical library had three catalogs, one for titles, one for authors, and one for subjects.
To find a book by Knuth, a patron would go to the author catalog, find the drawer for
authors whose names started “Knu,” and then search within that drawer—using a divide
and conquer strategy, since cards were in alphabetical order—for cards labeled “Knuth.” To
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find Fundamental Algorithms, the person would go to the title catalog (Figure 6.1), find the
drawer labeled “Fun,” and search within that drawer.

The point of this story is that how information is organized plays an important role in
the solution of a problem. Putting descriptions of books on cards and storing the cards in
several different catalogs allowed library patrons to use a new algorithm to search for a
book. Without the catalog, a patron could do a binary search by author (if the books were
sorted by author name) but could only do a linear search when looking for titles. With
the additional information stored in the catalogs, a catalog-based algorithm made searches
based on author, title, or keyword equally efficient.

While card catalogs may have gone the way of the dinosaurs, the need for organization
has not. Computer programs that manage information about what is in a library use the
computational equivalent of a card catalog. More generally, database management appli-
cations are designed to store millions of records. The people who use the information in a
database often need to access it using a variety of different criteria. The applications cannot
afford to spend a lot of time running search algorithms, so database management systems
use sophisticated techniques to organize the data.

The important concept in computing introduced in this chapter is the idea of a data
structure. The term refers to the fact that we often have a choice in how to organize the
data used in a computation. The algorithms we’ve seen so far have all been based on one

Figure 6.1: Libraries used to have a set of card catalogs to help patrons locate books. If a person
wanted to find a book with a particular title, they would search for a card in the title catalog, get
the book’s call number from the card, and then search for the book in the stacks.
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Author

al-Ḵwārizmī

Archimedes

Brahmagupta

......

Title

Al-Kitāb al-mukhtaṣar ...

Arithmetical Classic of ...

Brahma-sphuta-...

al-Ḵwārizmī , Al-Kitāb al-mukhtaṣar fī 
hīsāb al-ğabr wa’l-muqābala

Euclid, Elements, QA31.E875

Zhou Bi Suan Jing, The Arithmetical 
Classic of the Gnomon

Brahmagupta, Brahma-sphuta-siddhanta

Archimedes, The Method of Mechanical 
Theorems, QA300.5 .G46

Book Records

Title Index Author Index

Figure 6.2: An organization for information about books in a library. The main records have
complete descriptions of each book, including author, title, publication date, call number, and
other data. An index is a separate data structure with only author name or title, along with a
link to one of the main records. A search for a book by a particular author finds an entry in the
author index, and then retrieves the complete description in the record linked from the index.

of the simplest data structures, in which items are arranged in a linear array. But often the
most effective way to solve a problem requires more than simply coming up with a clever
set of operations to move data around in an array. We also need to think of new ways of
organizing the data. By arranging data differently, or adding additional information that
helps make a more sophisticated organization, we can develop more effective algorithms
that can be used to solve a wider variety of problems.

Algorithms and data structures both play an important role in developing computational
solutions to problems. Just as having descriptions of books in card catalogs allowed library
patrons to use a new algorithm for finding a book, creating new ways to organize informa-
tion in a computer’s memory will allow us to explore new algorithms based on alternative
approaches to structuring the data. Understanding how the data for a problem can be or-
ganized, and knowing the properties of different data structures, is a crucial part of the
process of solving the problem.

6.1 Word Lists

One way a library might organize the descriptions of its books is shown in Figure 6.2. The
centerpiece of this organization is a set of records, each containing the essential information
about a single book. For this example, we can think of a record as a piece of text that
includes the author’s name, title, call number, and any other information the library thinks
is important. If we were to implement this structure in Ruby, we could use a single Ruby
string object for each book, and make an array object to hold all the strings.

The computational equivalent of a card catalog is a secondary data structure, often called
an index. The name comes from the fact that the data structure is similar to the index at
the back of a book. The organization in Figure 6.2 has two indexes, one for book titles and
one for author names. If patrons type a name in the “author” box in a web form, the system



134 Chapter 6 When Words Collide

will search the author index for a matching name, and if it finds one, follow the link to the
records for books by that author. Users can also type strings in a box labeled “title,” and the
system will search the title index.

The tutorial project in this chapter will explore a data structure that is often used to create
an index. To keep things simple, we won’t try to manage the entire organization shown in
Figure 6.2, which would have records with complete book descriptions and arrows that link
from the index to the main record. Instead, we’ll just focus on the structure of the index
itself. We will make a data structure, called a hash table, and use it to store a set of strings
like the author names and book titles, but we won’t try to associate those strings with any
other information.

The fact that our data structure does not contain links to other data means it won’t be an
effective index, but it will still be a useful way of organizing information. One example of
how to use such a structure would be as a word list. A word list is simply a collection of
words, without reference to their meanings. Common examples in the real world are lists of
words maintained by a spell checker or a crossword puzzle dictionary. People (or computer
programs) who use these lists just want to know if a string is in the list or not. If it is, they
can assume it is a correctly spelled word or a word that can be used in a puzzle.

The exercises in the first few sections will show how a hash table is organized, and how to
add words to a table or search a table to see if it contains a word. At the end of the chapter
we will be ready to see how well our hash tables work on large lists. The experiments
will test the effectiveness of the structure when we try to add over 200,000 words from an
English dictionary.

The words we will use for these experiments are accessible through a type of array called
a TestArray, which was used in Chapters 4 and 5 to build arrays of random numbers. For
the projects in this chapter, we will want arrays of random words. The way to make such
a list is to pass a second argument to TestArray.new, the method that builds the array.
The argument is a Ruby symbol that specifies what kind of words to include in the list.

Web2

A data file included with most versions
of the Unix operating system since the 
1980s is named web2.  It contains a list
of all the words from the 1934 edition of 
Webster's New International Dictionary, 
commonly referred to as “Webster's 2nd.” 
The dictionary is now in the public 
domain, since the copyright has expired.  

The RubyLabs software package includes a modified copy of web2.  Single-letter words 
and capitalized words have been removed.  The result is a file with around 210,000 
English words with American spellings.  Many of the words seem contrived by today's 
standards, and of course the list is missing new words ("downland" is in the list, 
"download" is not).  In spite of these flaws, the word list is a useful source of data for 
experiments based on random words.
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Here is an example. If we want a list of 5 car names, we pass the symbol :cars in the
call to TestArray.new:

>> a = TestArray.new(5, :cars)
=> ["jaguar", "chevrolet", "porsche", "maserati", "audi"]

To make a list of 10 random words from the dictionary, pass the symbol :words as the
second argument:

>> a = TestArray.new(10, :words)
=> ["shrewly", "palliobranchiate", ... "calligraphically"]

We can get the entire list of words of a specified type by using the symbol :all instead
of a number. This is how we would get the complete list of car names:

>> a = TestArray.new(:all, :cars)
=> ["acura", "alfa romeo", ... "rolls-royce", ... "volkswagen"]

As the output from this last example shows, our definition of a “word” is somewhat flexible,
since we are including hyphenated names and compound names like “Alfa Romeo” or “Aston
Martin.”

Tutorial Project

The module with the methods used for the projects in this chapter is named HashLab. When you start
an IRB session remember to include the module:

>> include HashLab
=> Object

T1. Type this expression to make a list of names of 5 different cars:
>> TestArray.new(5, :cars)
=> ["mazda", "fiat", "lexus", "mg", "audi"]

T2. Repeat the previous command a few times. You should see a different list each time.

T3. This command will show a list of the symbols you can pass to TestArray.new:
>> TestArray.sources
=> [:cars, :colors, :fruits, :words]

More options may be added when the RubyLabs software is updated.

T4. Make a list of 10 random words from the English dictionary:
>> TestArray.new(10, :words)
=> ["measly", "aphidolysin", ... "amissness"]

T5. Repeat the previous command a few times.

You will see some odd-looking strings when you ask for a list of random words from the dictionary
(“amissness” is a word?), but these strings will make a nice test set for the hash table experiments at
the end of the chapter.
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mango

apple

elderberry

strawberry

0

1

2

3

4

5

6

7

8

9

h(strawberry) = 8

h(elderberry) = 4

h(mango) = 2

h(apple) = 0

Figure 6.3: A hash table with 10 rows. A row is either
empty (indicated by the gray boxes in this figure)
or it contains a single word. The location for each
word is defined by a hash function.

6.2 Hash Tables

Applications that use a hash table typically start with an empty table and then add entries
over time. A spell checker might have an empty table for each user’s specialized vocabulary,
and as the user adds new words to their personal list the words would be inserted into the
table. If the table is used for an index structure in a product database, new entries would
be created as new products become available, but there could also be situations where data
is removed from the table as products are discontinued.

A small hash table is shown in Figure 6.3. The table consists of a set of rows, each of
which can contain a single word. Note that most of the rows in this table are empty; the
table has 10 rows, but only four have been filled.

From the example it may look like words have been added to random locations in the
table, but in fact each word has a designated location. The row where a word is stored is
defined by a function, called a hash function. The input to the function is a word to store
in the table, and the output is a row number. For example, the hash function used to build
the table in Figure 6.3 determined that the word “mango” would go in row 2:

h(mango) = 2

The same hash function is used to look up words. To look for a word s, simply compute
i = h(s) and then check row i of the table. If s was added to the table earlier, we will find it
in row i, but if the row is empty, it means s is not in the table. For example, to look up the
word “strawberry,” compute

h(strawberry) = 8
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Since “strawberry” is in row 8 of the table, we have found the word we are looking for. To
see whether “guava” is in the table, compute

h(guava) = 6

Since row 6 is empty we can conclude “guava” is not in the table.
The big question, of course, is how to define the function that does the mapping from

words to row numbers. There are several other questions, including the issue of what to do
if the hash function wants to store two different words in the same row, but we’ll put these
questions aside for the moment. The tutorial exercises in this section will explore the basic
table structure, and we’ll take up the question of how to define a hash function in the next
section.

If we want to build a hash table in Ruby, a natural choice is to use an array. Ruby arrays
are collections of objects, and we can store any type of data in an array. The words we
store in our hash tables will be represented by Ruby string objects. Hash functions will
be implemented by Ruby methods that take a string as a parameter and return a number
between 0 and n− 1, where n is the size of the array.

In previous chapters, we saw how to make array objects by writing a set of values between
square brackets or by passing a range to a method that made a list of all numbers in a certain
range. A third way to make an array is to call a method named Array.new, passing it an
integer that specifies how big to make the array. This expression creates an array of size 10
and saves it in a variable named t:

>> t = Array.new(10)
=> [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil]

Each cell in this array contains the special object nil, which stands for “nothing” or “no
object,” so calling Array.new is exactly what we need to make an initially empty hash
table. In previous chapters nil was used to indicate a search was unsuccessful, but here we
are using it as a placeholder to use in a row that does not yet contain a string.

The HashLab module has a method named h that implements the hash function used to
add words to the table shown in Figure 6.3. To build the example table, we just need to
pass a string to h to find a location, and then use an assignment statement to put the string
in the table at that location:

>> i = h("mango")
=> 2

>> t[i] = "mango"
=> "mango"

To see if a table row is empty, we can use a method named nil? (the question mark is
part of the method name). For example, after storing a string in location 2 of the array t,
nil? shows us that row is no longer empty, but others are still empty:

>> t[2].nil?
=> false

>> t[3].nil?
=> true
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  1:  def insert(s, t)
  2:    i = h(s)
  3:    if t[i].nil?
  4:      t[i] = s
  5:      return i
  6:    else
  7:      return nil
  8:    end
  9:  end

# Add string s to hash table t 

  1:  def lookup(s, t)
  2:    i = h(s)
  3:    if t[i] == s
  4:      return i
  5:    else
  6:      return nil
  7:    end
  8:  end

# Return the location of s in hash table t 

initial version initial version

Figure 6.4: Preliminary versions of hash table methods. The insert method calls the hash function
to find where to put a string, and the lookup method calls the hash function to see if a string is
stored in that location. Use Source.checkout to obtain copies of these methods if you want
to do further experiments on your own.

A method named insert, shown in Figure 6.4, will add a string to a hash table. This
initial version checks to see whether there is already a string in the table at the location
computed by the hash function. If so, insert returns nil to indicate it could not insert
the string. If the method was able to store the string in the table it returns the row number
where s was saved. This expression adds a second string to our table t:

>> insert("strawberry", t)
=> 8

The result of this expression means the string was saved in row 8 of the table.
A method named lookup, also shown in Figure 6.4, will check to see if a word is in table.

This expression asks Ruby to look for a string that was inserted previously:

>> lookup("mango", t)
=> 2

If the string is not in the table, the method returns nil:

>> lookup("kiwi", t)
=> nil

The easiest way to see the contents of a table is to just ask Ruby to print the array. This is
what our table t looks like after adding the two strings:

>> t
=> [nil, nil, "mango", nil, nil, nil, nil, nil, "strawberry", nil]

(don’t forget the first cell is t[0], so location 2 is actually the third item in the array).
When we start experimenting with larger tables it’s going to be hard to determine which

cells are full simply by printing the entire table. The HashLab module defines a method
named print_table that will display a table in the terminal window, printing a row
number at the front of a line and skipping any empty rows:

>> print_table(t)
2: "mango"
8: "strawberry"

=> nil
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Tutorial Project

T6. Type the following expression to define an array to represent a hash table with 10 rows:
>> t = Array.new(10)
=> [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil]

Notice how the rows are all initially empty.

T7. Use the hash function to find where the following strings will be placed in the table:
>> h("grape")
=> 6

>> h("lime")
=> 1

>> h("plum")
=> 5

T8. Call the insert method to add the strings from the previous problem to t:
>> insert("grape", t)
=> 6

>> insert("lime", t)
=> 1

>> insert("plum", t)
=> 5

Can you see, by looking at the return value for these calls, how insert placed each string
at the location defined by the hash function?

T9. The first location in the table should be empty:
>> t[0].nil?
=> true

T10. The second row, however, has the string "lime", so it should not be nil:
>> t[1].nil?
=> false

T11. Print the complete array:
>> t
=> [nil, "lime", nil, nil, nil, "plum", "grape", nil, nil, nil]

Do you see how the strings are at the locations specified by the hash function?

T12. Print the array again, this time using the print_table method:
>> print_table(t)

1: "lime"
5: "plum"
6: "grape"

=> nil

T13. Use the lookup method to see if one of the strings inserted in a previous exercise is in the
array:
>> lookup("grape", t)
=> 6

Note the return value is 6, which means the method found the string in location 6 in the
array (which agrees with the output above).

T14. Look for a string that is not in the table:
>> lookup("lemon", t)
=> nil
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T15. The hash function wants to put the string “blueberry” in the same row as “lime”:
>> h("blueberry")
=> 1

T16. If we try to insert “blueberry” the return value will be nil, because this row is already
occupied:
>> insert("blueberry", t)
=> nil

If a hash table has more than 10 rows, we need to pass the table size as a second argument in a call
to h. For example, to find the place for "lime" in a table with 30 rows the call is h("lime",30).

T17. Find out where "mango" would be stored in a hash table with 30 rows:
>> h("mango",30)
=> 12

From the examples in the text we saw that "mango" is placed in row 2 of a table with 10
rows, but this output shows the same string would be put in row 12 if the table has 30 rows.

© Make a test array with 15 random strings:
>> a = TestArray.new(15, :fruits)
=> ["gooseberry", "guava", "watermelon", ... "pomegranate"]

Your array will be different of course, since the strings are random, but you should see 15
different names.

© This expression tells Ruby to sort the array and print each string, followed by its row number
in a 30-row hash table:
>> a.sort.each { |x| puts x; puts h(x,30) }
apple
0
blackberry
1
...

© Do the results of the previous expression give you a hint about how the hash function is
defined?

6.3 The mod Function Again

To recap what we’ve seen so far:

• the goal is to create a data structure, called a hash table, to hold a word list;

• a hash function figures out where to place a word in the table;

• in the Ruby experiments, we are using an array to represent the table, strings to
represent words, and calling a method that implements a hash function to compute
the location for a string.

Whether or not this is a viable approach to implementing a word list clearly depends on
the hash function. In the previous section we used a trivial function that was defined for
tables with only 10 rows, but now it’s time to look at functions that work for tables with
thousands of rows that are capable of storing all the words in a dictionary.
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A key observation is that the function does not need to put similar words close to each
other. There is no reason why two words that are next to each other in a dictionary, like
“abacus” and “abate,” have to be in adjacent rows in the table. All that matters is that we
can determine quickly whether a word is in the table by computing h(abacus) or h(abate);
it doesn’t matter if the two rows are widely separated.

What does matter is that different words be placed in different locations in the table.
Ideally, if we have a collection of n words, we could put them all in a table that had exactly
n rows, and the hash function would assign each word a different row number between 0
and n− 1. It is possible to define what is known as a “perfect hash function,” but it is a very
difficult procedure that is effective only for small groups of words. If the goal is to create a
word list to hold all the words in a dictionary, a more practical technique is required.

In a typical application, programmers make a table with lots of extra space, and then
design a function that spreads the words around in the table. But even with the extra space,
there will be situations, known as collisions, where the hash function puts two words in the
same row. We’ll put off until the next section figuring out what to do when words collide.
For now, we’ll focus on the basic technique for choosing a row based on the letters in a
string.

A single letter can be converted to a number between 0 and 25, using the convention that
a = 0, b = 1, and so on, up to z = 25. A common name for this function that converts
a letter to a number is ord, which stands for “ordinal.” It just means we want the relative
position of the letter in the English alphabet.

A trivial hash function uses the first letter of the input word to figure out which row to
place the word in. We’ll call this function h0:

h0(s) = ord(s0)

where the notation s0 means “the first character in string s.”
The function h0 puts words in different rows as long as they all start with different letters,

but as soon as we try to add a word that starts with the same letter as one already in the
table there will be a collision. A slightly more complex function uses the same basic idea,
but it works with the first two letters in a word. If a word starts with “aa” it will go in row 0;
if it starts “ab” it will go in row 1, and so on, up to words starting “az,” which will go in row
25. Continue by using row 26 for a word that starts with “ba,” row 27 for words starting
“bb,” and so on.

Hash Functions

The “hash” in the term “hash function” comes from cooking, where hash is a dish 
made by chopping up and mixing together different ingredients.

In a program, the first step in implementing a hash function is to chop up a string by 
considering each letter individually.  A selected combination of pieces are then 
reassembled mathematically into a row number.

"mango" m / a / n / g / o 12
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babbage

aardvark

abacus

zymurgy

0

1

...

26

27

...

673

674

675

"a" block: 0..25

"b" block: 26..51

"z" block: 650..675

Figure 6.5: The hash function based
on the first two letters in a word
computes row numbers between
0 and 675. The first 26 rows are
for words that begin with “a,”
the next 26 for words starting
with “b,” and so on.

To use this function a table needs 26× 26 = 676 rows, numbered from 0 to 675. One way
to look at the new table, shown in Figure 6.5, is that it is a set of 26-word blocks, where
each block has words that start with the same letter. The first block of 26 rows is reserved
for words that start with “a,” the next block for words that start with “b,” and the last block
for words starting with “z.” From this point of view, the function uses the first letter to find
the start of the block, and the second letter to find a row within the block.

We can express this idea of using the first letter as a block number and the second letter
as a row number with an equation:

h1(s) = ord(s0)× 26 + ord(s1)

where the notation s0 again means “the first letter in s” and s1 stands for “the second letter
in s.” Some examples of how this function would be applied to words in a dictionary are

h1(bed) = 1× 26 + 4 = 30

h1(cnidarian) = 2× 26 + 13 = 65

h1(zymurgy) = 25× 26 + 24 = 674

It turns out this method of assigning a numeric value to a set of two letters is the same
method used to determine the value of two-digit numbers in a positional number system.
For example, in the octal (base 8) number system the digits “47” represent the number 39,
because the digit 4 in the “eights column” has a weight of 4× 8 = 32 and the digit 7 in the
“ones column” has a weight of 7. If we are using hexadecimal (base 16) the same digits
represents the number 71 because the 4 has a weight of 16, and 4× 16 + 7 = 71.

The new two-letter hash function is equivalent to finding the value of a “number” in a
base-26 number system, where the “digits” are the letters from “a” to “z.” In this base-26
number system, the columns have weights that are powers of 26. The number corresponding
to the first letter has a weight of 261, and the number for the second letter has a weight of
260.
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Radix-26

To store a string in a hash table,  we need to compute a location for it by making an 
integer from the letters in the string.

The technique used in this book is to treat the letters A to Z as "digits" in a number 
system, where A is 0, B is 1, and so on.  Then a string is simply the value of the 
sequence of digits in base 26.  Mathematicians refer to the base as a radix, so we call 
this technique radix-26.

Here is an example of how to compute the value of a string
of digits in octal (base 8), by multiplying each digit by a 
power of 8.  To figure out the value of 3148:

          3 × 82 + 1 × 81 + 4 × 80 = 20410

To make an integer from a sequence of letters we do the same
thing, just using powers of 26.  To make an integer from the 
string "BED" just compute the value of BED26:

          B × 262 + E × 261 + D × 260 = 

          1 × 262 + 4 × 261 +  3 × 260 = 78310

413

808182

DEB

260261262

The new function h1 does a better job of spreading words around than the original func-
tion h0, but it clearly has the same basic problem. All words that start with “be” will go in
row 30 of the table, all words starting “cn” will go in row 65, etc. But now that we have
the general idea that letters in a word correspond to digits in a base-26 number system, it’s
easy to extend the function to work with words of any length. In a three-letter word, the
number for the first letter is multiplied by 262, the second by 261, and the third by 260. In
the general case, the function assigns a weight of 26i to the letter that is i places from the
right end of the string. A common name for this function is radix-26 (abbreviated r26), to
reflect the fact that it is the same as assigning a value to a number in a base 26 number
system.

Here are some examples of the radix-26 values of a few words from an English dictionary:

r26(do) = 3× 26 + 14 = 92

r26(duck) = 3× 263 + 20× 262 + 2× 261 + 10 = 66, 310

r26(zymurgy) = 25× 266 + 24× 265 + . . . + 24 = 8, 013, 894, 328

r26(cnidarian) = 2× 268 + 13× 267 + . . . + 13 = 524, 574, 935, 989

The r26 function assigns a unique integer to every word, or, more precisely, to any sequence
of the 26 letters of the English alphabet.

Now we have a new problem: the radix-26 values for long words are very large numbers.
When a word has more than six or seven letters, its radix-26 value is over 109. These values
are far too big to be used as row numbers for a table we want to fit inside a computer’s
memory.
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There is a way to use r26 in a hash function, however: simply “cut the numbers down to
size” using the mod operator. We first saw the mod function in the Sieve of Eratosthenes
project. x mod y is defined to be the remainder after dividing x by y. In the Sieve project,
the mod function was used to help determine when x is a multiple of y, but in this project
we use it to restrict the range of values produced by r26. The useful fact about division
modulo n for this project is that the result is always a number between 0 and n− 1.

The mod function is exactly what we need for the hash function, since we want the hash
function to compute a number between 0 and n− 1 for a table that has n rows. All we have
to do is use the r26 function to turn the string into a number, and then use the mod function
to trim the result to a value between 0 and n− 1:

hr(s) = r26(s) mod n

The subscript r in the name refers to the fact that the hash function is based on the radix-26
value computed using all the letters in the string.

The r26 function and the three hash functions described in this section have all been
implemented in the HashLab module. When we call a method that implements a hash
function, we pass it a string and a table size. The result returned by the method will be the
row number where the string should be stored. For example, to use the hr function to find
a place for the word “hello” in a table with 1000 rows the call would be

>> hr("hello", 1000)
=> 872

In order to implement a hash function in Ruby, we need to be able to access the individual
letters in a string object. In previous projects we saw how it is possible to select individual
items from an array using the index operator. We can do the same thing with strings. If
s is a string, an expression of the form s[i] refers to the character at location i. For the
projects in this chapter, we want to know the ordinal values of the letters, which we can
find by calling a method named ord. This example shows how to find the ordinal value of
the first letter in a string:

>> s = "duck"
=> "duck"

>> s[0].ord
=> 3

The ord Method

The method named ord we are using in this project to determine the ordinal value of 
a character is part of the RubyLabs gem you installed when you set up your 
computational workbench.  It maps letters A to Z from the English alphabet to the 
corresponding numbers from 0 to 25.

Because some of the “words” in our word lists might by hyphenated or be compound 
names (e.g., “lime green” from the list of colors) the method simply ignores any 
character that is not a letter.  If you're curious, try some experiments on your own, 
comparing the radix-26 values of strings like “lime green” with “lime-green” or 
“limegreen.”
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If you took the challenge at the end of the tutorial project in the previous section, of trying
to figure out the simple hash function used to make the table in Figure 6.3, you probably
noticed the method was only using the first letter in the input string. When there were 30
rows, it was pretty obvious that each word was being placed in a row that depended on the
ordinal value of the first letter.

What may not have been quite as obvious was that for smaller tables, the hash function
used the mod operator to limit the row numbers to a value between 0 and n− 1. For the
table with 10 rows, the row numbers need to be between 0 and 9. The method that created
the table in Figure 6.3 put words starting “a” through “j” in rows 0 to 9, but then it “wrapped
around.” Words starting with “k” went in the first row, “l” in the second row, and so on.

Counting up to a maximum value and then restarting at 0 is another property of the mod
operator. A hash table with 10 rows is a like a clock or a dial with 10 numbers. After
counting up to 9, the maximum value, the next count starts all over at 0 again. The method
named h that was used to find a location for a string in an array with 10 locations simply
used the remainder of the ordinal value of the first letter after dividing by 10:

def h(s)
return s[0].ord % 10

end

Tutorial Project

T18. Make a string to test methods that implement hash functions:
>> s = "mango"
=> "mango"

T19. The first test is to look at the ordinal values of the letters:
>> s[0].ord
=> 12

>> s[1].ord
=> 0

Does these results look correct, remembering the ordinal value of “a” is 0?

T20. You can call a method named each_byte to evaluate an expression for every character in
the string:
>> s.each_byte { |x| puts x.ord }
12
0
...

T21. The method named h0 implements the hash function that looks at only the first letter in a
string. Call h0 to see where it would place the string “guava” in a table with 10 rows:
>> h0("guava", 10)
=> 6

That’s what we expect: the ordinal value of “g” is 6, so any string starting with “g” goes in
row 6.

T22. Repeat the previous expression, but this time with the string “mango”:
>> h0("mango", 10)
=> 2

Do you see why this string will go in row 2? The earlier exercises show the ordinal value of
“m” is 12, and 12 mod 10 = 2.
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T23. Call h0 a few more times, using the words from Figure 6.3, to make sure you understand
why these strings were placed where they were.

T24. The Ruby version of the function r26 is a method named radix26. Test the method on a few
short strings:
>> radix26("i")
=> 8

>> radix26("in")
=> 221

>> radix26("ink")
=> 5756

T25. Print the ordinal values of the three letters in “ink”:
>> "ink".each_byte { |x| puts x.ord }
8
13
10
=> "ink"

T26. Plug these values into the radix-26 equation: use your calculator (or IRB) to compute 8×
262 + 13× 26+ 10. Is the result the same as the value returned by calling radix26("ink")?

T27. Get the radix-26 value of the string “bed”:
>> radix26("bed")
=> 783

T28. Since you know radix26("bed") from the previous exercise, can you predict what Ruby
will print as the value of radix26("bee") without asking IRB to evaluate the expression?
Call radix26("bee") to check your answer.

T29. Make a test array with 15 random strings:
>> a = TestArray.new(15, :fruits)
=> ["gooseberry", "guava", "watermelon", ... "pomegranate"]

We can combine two separate Ruby expressions into a single statement if we separate them by a
semicolon. In the following exercise, we are going to ask Ruby to iterate over the new TestArray. For
each string in the array, we want Ruby to print the string and then a hash function value for that
string. The hash function is the function that uses the r26 function to figure out where to place a string
in a table with 1000 rows.

T30. Type the following command to ask Ruby to print each string in a, followed by the row
number where the string would be placed in a hash table with 1000 rows:
>> a.each { |s| puts s; puts hr(s, 1000) }
gooseberry
94
guava
922
...

T31. Call radix26 for some of the strings in your test array. Can you see how hr always converts
the radix-26 value to a number between 0 and 999? Does it appear that the strings are
scattered randomly throughout the table?

T32. Try calling radix26 with the longest words you can find. How big a number can you make?

T33. Do you think the hash function will treat uppercase letters differently than lowercase? Type
a few expressions in IRB to figure out the answer to this question.
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6.4 Collisions

If we want to use a hash table to implement a word list, we need to make sure all the words
find a place in the table. In the previous section, we learned that the first step is to make a
large array, with more rows than there are words, and to define a hash function that scatters
the words around in the array.

It might seem that to avoid collisions—situations where the hash function wants to place
two words in the same row—we simply have to make a table large enough that the prob-
ability of a collision will be very small. One would think a table with 1000 rows would
have more than enough room for a hash function to find locations for 100 words with a low
probability of a collision.

Table Size Probability of
Collision

1,000 99.29%
10,000 39.04%

100,000 4.83%
1,000,000 0.49%

Table 6.1: The probability of a collision
when adding 100 words to a hash
table.

Unfortunately, this strategy does not work.
Even if a hash function uses techniques similar
to those used to generate random numbers, so
words are distributed randomly and uniformly
throughout the table, there is a high probabil-
ity that two words will be put in the same row.
Using well-established results from probability
theory, if we use the hash function to store 100
words in a table with 1000 rows, the probabil-
ity two words will be placed in the same row is
over 99%. When a table has 10,000 rows, so
there are 100 times as many rows as there are
words, there is a 39% chance that two words
will go in the same location (Table 6.1).

So if collisions are inevitable, what can we
do when when the hash function chooses a row that already has a word in it? One approach,
which we will explore in this section, is to alter the data structure, so there is a place to store
two or more strings in each row. The idea is that, instead of storing a single string in each
row, we make each row a reference to an array, called a “bucket.” When we add a string to
the table, we just append it to the end of the bucket for its row (Figure 6.6).

•

•0

1

2

[ apple, kiwi, ugli ]

[ mango ]mango

apple0

1

2

Hash Table Hash Table with Buckets

Figure 6.6: In the hash tables we have been using so far, each row holds a single string. In the new
organization, each row will have an array of strings, called a “bucket,” so more than one string
can map to the same row number.
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The Birthday Paradox

Imagine there is a lecture hall with 365 chairs, each labeled with a different day of the 
year.  As students arrive for a class, they are directed to the chair that is labeled with 
their birthday.

The first student can take his seat when he arrives.  The second student can usually 
take a seat, but there is a slight chance (1/365, or 0.27%) she has the same birthday 
as the first student and will find her seat taken already.  Three students will probably 
all have different birthdays, but there is a slightly higher chance (0.82%) of a conflict 
between two of them.

The question is, at what point is there a 50/50 chance that two students will want to 
take the same seat?  The answer is surprising:  when there are only 23 students, the 
probability that two of them have the same birthday is 50.7%.  With a group of 50 
students, the probability that two will share a birthday is over 97%.

It's tempting to think that, with 22 students in the room, the probability of a conflict 
is the same as the probability of the 23rd student finding someone in her seat, which 
is only 22/365, or 6.02%.  But this line of reasoning overlooks the fact that two of the 
students who are already there might have the same birthday.  The question is about 
the entire group of students, not just the last to arrive.  

The same probabilities apply to storing strings in a hash table.  Even 
with a well-designed hash function that assigns entries to random 
rows, the probability that two of them will be entered in the same 
row are surprisingly high.  If 100 items are stored in a table 
with 1000 rows, the probability of a collision is 99.3%.  
Even with 1,000,000 rows there is still a slight chance 
(0.49%) of two items being assigned to the same row.

10 Jun
8 Dec

8 Feb

8 Jul

8 Mar

14 Oct
17 Jan

5 Jul

14 Mar
1 May

14 Mar
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  def insert(s, t)
    i = h(s, t.length)
    t[i] = Array.new if t[i].nil?
    t[i] << s
    return i
  end

# Add string s to hash table t 

  def lookup(s, t)
    i = h(s, t.length)
    if t[i] && t[i].include?(s)
      return i
    else
      return nil
    end
  end

# Return the location of s in hash table t 

Figure 6.7: Final versions of hash table methods, using buckets to save more than one string in each
row. These methods are used by a new type of object, called a HashTable, that is defined in the
HashLab module.

As before, a newly created table is is empty, so it is simply an array where every cell is
nil. The first time a string is stored in a row, a new bucket is created for that row, and the
string becomes the first item in the bucket. After that, other strings that hash to that row
are appended to the end of the bucket.

The new versions of the insert and lookup methods are shown in Figure 6.7. Surpris-
ingly, the Ruby code is actually simpler than the code for the preliminary versions. That’s
because every call to insert will succeed. The key step in this new version of insert is
the one that creates a new bucket when a row is empty. Adding a string to the end of bucket
is trivial, since we can just use Ruby’s << operator.

The code for the lookup method introduces a new operator. In Ruby, && means “and.”
There is also an operator written with a single ampersand, but it has a different meaning,
so be careful when you type expressions; in this chapter, we always want the version with a
double ampersand. The key operation in the new version of lookup returns a row number
if two conditions are both met: the row is not nil, and the bucket in that row contains
the string we’re looking for. If both of these are true, the method returns the row number,
otherwise it returns nil, meaning the string is not in the table.

The experiments in this section use a new type of object, called a HashTable, that is
defined as part of the HashLab module. Whenever HashLab is included at the start of a
session with IRB it will automatically load the software that defines these objects.

Each time we want to make a hash table, we will call a method named HashTable.new

to make a new object. Then, to add a string to the table, we call a method associated with
the object. For example, to make a table with 1000 rows, and then add the word “apple” to
the table, we type these expressions into IRB:

>> t = HashTable.new(1000)
=> #<RubyLabs::HashLab::HashTable: 1000 rows, :hr>

>> t.insert("apple")
=> 70
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The RubyLabs Canvas

Several of the projects in this book have methods
that draw pictures on the screen.

The graphics window used for these drawings is
called the RubyLabs Canvas.  When you call a
method that makes a drawing, the method will
open a new window for the canvas, separate from
the window displayed by your terminal emulator.

The software used to create windows and draw
images is in a library that is distributed with Ruby
and should already be installed on your system.
You can find more information in the Lab Manual .

A project in Chapter 11 uses the 
canvas to show the movements 

of a robot explorer. 

There are two reasons for using specially defined objects instead of using arrays like we
did in the previous sections. HashTable objects have additional methods that will be useful
in experiments, and they have methods that will draw a table on the RubyLabs canvas.
Being able to see drawings of tables and watching how buckets are created and extended
when strings are added to the table is an effective way of learning about the data structure.

The default hash function used by the HashTable objects is hr, the function based on the
full radix-26 value of the string. It’s also possible to make a table that uses the simple one-
letter hash function h0 by passing an option in the call to HashTable.new. To make the
small table shown in Figure 6.7 the expression is

>> t = HashTable.new(10, :h0)
=> #<RubyLabs::HashLab::HashTable: 10 rows, :h0>

After we create a HashTable object, we can ask the HashLab module to draw a picture of
it by calling a method named view_table:

>> view_table(t)
=> true

When a table has been drawn on the canvas, each time we call insert to add a new string
to the table the drawing will be updated to show the string at the end of the bucket it was
added to.

The projects in this section will make some small tables and draw them on the canvas to
illustrate how buckets are used to resolve collisions. In the next section we will do some
further experiments to test the performance of these hash tables when we build a word list
for all the words in our English dictionary.
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Tutorial Project

T34. Create a new HashTable object:
>> t = HashTable.new(10, :h0)
=> #<RubyLabs::HashLab::HashTable: 10 rows, :h0>

T35. Call the table’s insert method to add two strings:
>> t.insert("apple")
=> 0

>> t.insert("mango")
=> 2

T36. The print_table method will print the contents of the table in the terminal window:
>> print_table(t)

0: ["apple"]
2: ["mango"]

=> nil

Note how each row is now an array. In this table, the two nonempty rows are each arrays
containing one string.

T37. Call view_table to open a new graphics window and draw the table on the canvas:
>> view_table(t)
=> true

T38. Now add a string that collides with one already in the table:
>> t.insert("kiwi")
=> 0

With the previous version of insert the return value would have been nil, but the value 0
here means the string was added to the bucket in row 0.

T39. You should see “kiwi” at the end of the array in row 0 on the canvas. If you want, you can
also call print_table to see the table in the terminal window:
>> print_table(t)

0: ["apple", "kiwi"]
2: ["mango"]

=> nil

T40. Make an array with some more strings to add to the table:
>> a = ["orange","strawberry","eggplant","ugli"]
=> ["orange", "strawberry", "eggplant", "ugli"]

T41. Add the strings to the table:
>> a.each { |x| t.insert(x) }
=> ["orange", "strawberry", "eggplant", "ugli"]

Does the table on the canvas look like the one in Figure 6.8?

T42. The lookup method should find a string no matter where it is in the bucket:
>> t.lookup("orange")
=> 4

>> t.lookup("eggplant")
=> 4

>> t.lookup("strawberry")
=> 8
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Figure 6.8: A hash table that uses
buckets to resolve collisions has a
list of strings in each row.

T43. As a final test, try looking up some strings that are not in the table. First verify lookup

returns nil if a table row is empty:
>> t.lookup("tangerine")
=> nil

Do you see why this call returned nil? Strings starting with “t” will be in the row after the
strings starting with “s,” and this row is currently empty.

T44. We should also get back nil if the row has a bucket, but the string is not in the bucket:
>> t.lookup("apricot")
=> nil

6.5 Hash Table Experiments

The project for this section will do some experiments with the HashTable objects introduced
in the previous section. We will make HashTable objects of varying sizes and then see how
well they work when we try to add a large number of words.

Recall from previous projects that we get an array of strings from the RubyLabs word list
by calling TestArray.new. For example, to get a list of 10 random words we call

>> a = TestArray.new(10, :words)
=> ["geognosis", "bounding", ... "displant"]

We can get the entire list of words by using the symbol :all instead of a number. But
before you try to make a list of all the words in the dictionary, a word of warning: if you call
TestArray.new to make the full list, IRB will print the entire array on your terminal.

Here’s a trick programmers use to prevent IRB from printing a huge array like this in the
terminal window. Since we can type more than one command on a line, make the call to
TestArray.new the first expression, then type a semicolon, and then type any other Ruby
expression. IRB will do both operations, but only print the result of the second. This is the
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recommended way of reading all the words from the RubyLabs dictionary and saving them
in a variable named words:

>> words = TestArray.new(:all, :words); puts "done"
done
=> nil

Note there are two Ruby commands on this line. The first is the assignment statement that
defines a variable named words, and the second is a call to puts. We can tell IRB executed
the call to puts, since Ruby printed “done.” To see that the assignment statement was also
executed, ask Ruby to print the length of words:

>> words.length
=> 210653

So we now have an array with over 210,000 strings in it.
The first experiment will be based on a subset of the words, just to make sure we know

how to make a hash table from words in the list. After that we will make some larger tables,
using all of the words, in order to understand what effect the number of rows has on the
efficiency of the methods that insert and look up words.

One way to assess the performance of the hash table methods is to simply look at the
structure of the table after all the words have been added. If the hash function has done
a good job, the words will be spread evenly through the table. There will be few empty
rows, and the buckets will have roughly the same number of strings. We will not do any
formal comparisons of the lookup method with the search algorithms from the previous
two chapters. The number of steps made by lookup is simply the number of comparisons
it needs to search through one of the buckets, so the worst case number of comparisons is
determined by the number of strings in the longest bucket.

Tutorial Project

T45. Define a variable named words, assigning it an array that has all of the words in the Ruby-
Labs dictionary:
>> words = TestArray.new(:all, :words); puts "done"
done

T46. To make sure the array was created, ask Ruby to print the number of words in the list:
>> words.length
=> 210653

T47. Look at the first 10 words in the list:
>> words[0..9]
=> ["aa", "aal", "aalii", "aam", "aardvark", ... "abacate"]

T48. Look at the last 10 words (the expression a[-1] refers to the last item in a, so the expression
a[-10..-1] refers to the last 10 items in a):
>> words[-10..-1]
=> ["zymotechnical", ... "zymurgy", "zythem", "zythum"]

T49. Make a small hash table with only 25 rows:
>> t = HashTable.new(25)
=> #<RubyLabs::HashLab::HashTable: 25 rows, :hr>

The output shows this table will use hr, the hash function based on radix-26.
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T50. Initialize the canvas with a drawing of the table:
>> view_table(t)
=> true

You should see a table with 25 empty rows.

T51. Add the first 10 words in the word list to the table:
>> words[0..9].each { |s| t.insert(s) }; puts "done"
done
=> nil

Look at the table in the graphics window (or print the table on your terminal by calling print_table).
Does it look like the words are distributed fairly evenly? Some rows might have two words, but there
shouldn’t be any row with three or more words.

Is there a pattern to the words, or are they more or less random? Are the words in alphabetical order
in the table, or do some of the words at the end appear earlier in the dictionary than some words at
the beginning of the table?

T52. Make a table with 100,000 rows:
>> t = HashTable.new(100000)
=> #<RubyLabs::HashLab::HashTable: 100000 rows, :hr>

T53. You can pass this table to view_table, but it will only show the first few rows:
>> view_table(t)
=> true

Even though you won’t see the whole table, watching what happens in the first 20 or so rows
is useful.

T54. Add all the words in the word list to the table:
>> words.each { |s| t.insert(s) }; puts "done"
done
=> nil

This will take a few seconds, so you won’t see any output from IRB for a bit.

T55. Call a method named print_stats to get some information about the table:
>> t.print_stats
shortest bucket: 0
longest bucket: 15
empty buckets: 18298
mean bucket length: 2.58
=> nil

With 210,000 words and 100,000 rows, we would like the hash function to scatter the words well
enough that there would be an average of two words in each bucket. The output from print_stats

shows the average is 2.58, so that’s not too bad. But it also shows one bucket has 15 strings in it.

T56. Make a hash table with 500,000 rows, and pass it to view_table to view the first few rows:
>> t = HashTable.new(500000)
=> #<RubyLabs::HashLab::HashTable: 500000 rows, :hr>

>> view_table(t)
=> true

T57. Add all the words to this table:
>> words.each { |s| t.insert(s) }; puts "done"
done
=> nil



6.5 Hash Table Experiments 155

T58. Print the table statistics:
>> t.print_stats
shortest bucket: 0
longest bucket: 7
empty buckets: 336216
mean bucket length: 1.29
=> nil

As you might have expected, using more rows allows the hash function to spread the words around
more. The average bucket length is now just over 1.0, which means the majority of words are the only
word in their row. The longest bucket is now only seven strings long. But this improvement has come
at a cost, since about 2/3 of the rows are empty.

The remaining exercises, which are all optional, explore this relationship between table size and
efficiency.

The next experiment shows what happens if the table size is a prime number. First, we’ll make a small
table with 10,000 rows, and then compare it to a table that has almost that many rows, except the
number of rows will be a prime number. According to the Sieve of Eratosthenes, the largest prime less
than 10,000 is 9973.

© Make a table with 10,000 rows:
>> t = HashTable.new(10000)
=> #<RubyLabs::HashLab::HashTable: 10000 rows, :hr>

© Add the words to this table, and print the table statistics:
>> words.each { |s| t.insert(s) }; t.print_stats
shortest bucket: 1
longest bucket: 75
empty buckets: 0
mean bucket length: 21.07
=> nil

© Now make the table with a prime number of rows:
>> t = HashTable.new(9973)
=> #<RubyLabs::HashLab::HashTable: 9973 rows, :hr>

© Repeat the line with the expressions that add words and print table statistics:
>> words.each { |s| t.insert(s) }; t.print_stats
shortest bucket: 5
longest bucket: 42
empty buckets: 0
mean bucket length: 21.12
=> nil

So it looks like having a prime number of rows makes a difference. The shortest bucket has 5 strings,
instead of just 1, and the longest bucket has 42 strings, instead of 75. Overall, the hash function,
which finds the remainder after dividing by the table size, does a much better job of scattering words
evenly when the table size is a prime number. The reason is that when the table size is a prime number,
the equation that defines the hash function is very similar to an equation used by a random number
generator. We’ll come back to this issue in an optional exercise in Chapter 9.
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The next experiment shows what happens if the table size is a power of 26.

© Ask Ruby to compute 264:
>> 26**4
=> 456976

© Make a table with that many rows:
>> t = HashTable.new( 26**4 )
=> #<RubyLabs::HashLab::HashTable: 456976 rows, :hr>

As you can see, the new table has just over 450,000 rows, nearly as many as the table from
Exercise T56.

© Add the words to this table, and print the statistics:
>> words.each { |s| t.insert(s) }; t.print_stats
shortest bucket: 0
longest bucket: 6932
empty buckets: 440375
mean bucket length: 12.69
=> nil

That’s a significant difference! Even though the table is not much smaller—it is about 90% as big as
the table from Exercise T58—it has far worse performance. Over 95% of its rows are empty, and one
of the buckets has almost 7000 strings.

© A method named long_rows will return an array of row numbers, where each row has
more than a specified bucket size. This expression prints the rows that have more than 1000
words:
>> t.long_rows(1000)
=> [966, 7746, 12951, ... 339902]

© Row 966 is one of the very long rows. This expression will print all the strings in the bucket
in row 966:
>> t.table[966]
=> ["abandonable", "abatable", ... "yokeable"]

What do these words have in common? Try printing some of the other long rows, to see if the words
in those rows also have anything in common.

Can you explain why a table size that is a power of 26 gives such terrible performance? Hint: the
hash function finds the radix-26 value of a string, and then computes the remainder mod n, where n
is the table size. Using the fact that 26i ÷ 26 = 26i−1, explain what happens when the radix-26 value
of a string is divided by 26. What is the remainder of that division? What happens when the table has
262 = 676 rows? 264 = 456, 976 rows?

6.6 Summary

The important new idea in computing introduced in this chapter is that data structures play
an important role in how algorithms solve problems. Our ability to solve a problem com-
putationally depends not only on the sequence of steps defined by an algorithm, but also
by the way in which the data is organized. Alternative ways of structuring data open up
possibilities for new approaches for addressing a problem, and an important part of compu-
tational problem solving is considering several different data structures and the algorithms
that work with them.
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A real-world example of a data structure is a card catalog in a library. The “algorithm” for
finding a book in the library was a two-step process that made use of this data structure: first
do a search through a catalog to look up a call number, and then go to the shelf labeled with
the call number. In a modern library the first phase is done by a computer-based search,
where we type a title, or author name, or keyword into a form on a web page, and the
system looks up the call number for us.

Using a card catalog or its computational equivalent to help manage a collection is an
example of indexing. An index is a data structure that contains brief descriptions of the
items in the collection; for a set of books, an index would have author names, or keywords,
or other descriptive information. The data structure we looked at in this chapter, the hash
table, is one way to create an index, but there are several other widely used techniques.

In our experiments with hash tables, we used a Ruby array to represent a table. A hash
table was implemented as an array with a predetermined number of rows. Each row is itself
an array, called a bucket. To store a word in the table, we used a hash function to figure out
which row to store it in, and then added the string representing the word to the end of the
bucket.

The efficiency of this scheme for creating an index depends on the hash function. If the
hash function spreads words around evenly, the buckets will have more or less the same
number of strings, but a poorly designed function will cluster too many strings in just a few
buckets. Long buckets reduce the efficiency of the method that looks for words in the table.
The method needs to do a linear search of a bucket, so it is important to keep buckets as
short as possible.

Hash tables and other index structures play a vital role in information management. The
Online Computer Library Center (OCLC) is a cooperative effort that maintains a catalog
of over 1 billion items maintained by thousands of libraries around the world. A local li-
brary that participates in OCLC will often connect to the worldwide catalog, so that when
we search for an item we can get information on whether it is in the local library or an-
other OCLC library close by. Scientific datasets are also managed by large index structures.
The National Center for Biotechnology Information (NCBI) maintains dozens of different

Concepts and Terminology Introduced in This Chapter

data
structure

A technique for organizing data so it can be accessed effi-
ciently by an algorithm

hash function A function that maps a string (sequence of characters) to an
integer

hash table A data structure, similar to an array, where strings are stored
at a location determined by a hash function

collision A situation where two strings are mapped to the same loca-
tion in a hash table

bucket A data structure for resolving collisions, in which all the
strings that map to the same location in a hash table are
saved in an array
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databases of gene sequence information, and complex index structures make it possible
for researchers to connect information found in one database to data contained in other
databases.

Web search engines are another type of information service where indexing is essential.
In this case, the index consists of a collection of words, and there is a link from each word
to the URLs of web pages that contain the word. By typing a few key words into a form in
a web browser, we can get information from a “search engine” that is essentially a massive
index of the entire Internet.

Exercises

1. What are the ordinal values of the following letters?

q w e r t y

Note: you can use IRB to check your answer:
>> "qwerty".each_byte { |x| puts x.ord }

2. Draw a hash table with 10 rows, then add the following strings, using hash function h0:

a) “bmw”

b) “fiat”

c) “suzuki”

d) “lotus”

e) “peugeot”

3. Compute the radix-26 values of the following strings:

a) “um”

b) “ump”

c) “lump”

d) “lumpy”

e) “clumpy”

Does knowing the radix-26 value of one of the strings make it easier to compute the value for
the next string in the sequence?

4. Compute the radix-26 values of the following strings:

a) “ironic”

b) “clown”

c) “green”

d) “bundle”

e) “garden”

5. Draw a hash table with 10 rows, then add the strings from the previous problem, using the hash
function hr.

6. Can you come up with a formula for giving a rough estimate of the radix-26 value of an n-letter
word?

7. What do you think will happen if you pass a string that has nonalphabetic characters to radix26?
Try some experiments to figure out what the ord method returns for +, :, and some other sym-
bols, then pass a string containing these symbols to radix26.

8. Can a hash table have only one row? What will Ruby do if you call HashTable.new(1) to
make a new HashTable object? What would happen if you add the strings from Problem 4 to
this table?
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9. Is looking for a string in a one-row hash table the same as doing a linear search in an array?
Explain.

10. Is using a hash table to organize a word list with 210,000 words as efficient as sorting the words
and saving them in an ordinary array, and then using binary search to see if a word is in the
list?

11. Suppose a friend is planning on writing a program that will play a word game, and as part of
this project she needs to decide how to represent the word list. What would you advise her to
use? What are some of the pros and cons of a hash table compared to a simple array of strings?

12. © Explain how you might use a hash table in an algorithm that checks to see if an array of
strings has any duplicates.

13. © Check out a copy of the radix26 method, and modify it so it uses digits, spaces, and punc-
tuation characters as part of the calculation. The goal is to define a method that maps strings
like "flip-flop" and "flip flop" and "flipflop" to different integers.

14. © Implement a method that will delete an item from a hash table. Hint: first call lookup to
see which row an item is in (if it’s in the table at all), then remove it from the bucket in that
row.

15. © What would happen if you made a hash table with 26 rows, and then used the hash function
h1 to store words in the table? Would there be any sort of pattern to the row assignments for
words added to the table?





Chapter 7

Bit by Bit
Binary codes and algorithms for text compression and error detection

Computer systems use a variety of technologies to store and transmit data. Processor and
memory chips are based on semiconductor technology; disks are made from magnetic ma-
terials spread over the surface of a thin, circular plate; removable disks have a reflective
surface with tiny pockmarks that are detected by lasers; digital cameras and cell phones
store digital information in “flash” memories that retain their data even when the device is
turned off; networks transfer information in the form of light waves over fiber-optic cables.

As diverse as these technologies are, they have one thing in common that allows them to
be used to store or transmit information: they are physical devices that can be set to one of
two different states. For example, a semiconductor memory cell will be in a state where we
can measure one of two different voltage levels, and a section of a DVD will be smooth or
have an indentation, which can be detected by a laser scanning the surface of the disc.

The role of computer science is to figure out how to represent information in a form
that can be stored or transmitted using these technologies. Real-world objects, things like
pieces of text from a book, images captured by a camera, or sounds recorded in a studio,
can be described by a sequence of symbols. Information can be stored or transmitted using
any of the technologies mentioned above by equating the two possible states with different
symbols. Traditionally, the two symbols are 0 and 1, the digits of the binary number system.

Exactly how the two states are managed physically is in the realm of computer engineer-
ing, or, as programmers like to say, is “a hardware problem.” Engineers designing a memory
system can decide what voltage levels will be used inside the chips, and might assign the
symbol 1 to a level of 3.5 volts and the symbol 0 to a level of 0 volts. Computer scientists
figure out how to represent text and other information as a sequence of binary symbols
and devise algorithms that manipulate these symbols, knowing that engineers are building
systems that will store them and move them from place to place.

161
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Codes (Secret and Otherwise)

In everyday usage the word “code” is commonly associated with secrecy or privacy, as 
in “diplomatic code” or “personal access code.”

In computer science, however, a code is simply a sequence of 0s and 1s used to 
represent data inside a machine or in a message being sent over a network.  

A coding scheme defines codes for a particular set of items.  A good example is ASCII, 
which is a common scheme for representing text.  To transmit a message, each letter 
is translated into a code, a process known as encoding.  At the other end of the 
network, a decoding operation translates codes back into text.  There is no attempt to 
keep the message secret, since anyone with a table of ASCII codes can recover the 
original string.

If someone wants to keep information private they would use encryption.  An 
encryption algorithm uses a password (usually called a key) to scramble the message 
so it looks like a random string of 1s and 0s.  The only way to recover the original 
message is to pass the same key to a decryption algorithm.

Programmers also use the word “code” to simply mean “program,” as in “the Ruby 
code is in this file” or “the compiler generated the object code.”

encode decodehello hello01101000..

encrypt decrypthello hello

rosebud rosebud

????????..

key: key:

The process of transforming information into a sequence of 0s and 1s is known as encod-
ing. An example of how data can be encoded is a system known as Unicode, an international
standard for representing text in a computer. Unicode has a set of tables that define encod-
ings for each letter of the alphabet. There are also codes for punctuation marks, digits, and
other symbols.

Going in the opposite direction, from the coded form back to the original data, is a process
known as decoding. For text, decoding is usually just a matter of reverse translation, of
finding the letters or symbols that correspond to each binary code.

Encoding text is a fascinating and surprisingly complex topic. While it might seem like a
very straightforward process—just look in the table that defines a code to find the sequence
of 0s and 1s for each character and store the result in memory—there are many difficult
and subtle issues. To take just one example, how should the encoding scheme deal with
accents? Should we use two different codes for é and e? Or should we have one code for
the letter e, and a second code for the accent, so that when é appears in a text it is encoded
with two codes? How will this decision affect a sorting algorithm when it compares letters?
In French, putting an accent on a letter does not have any effect on the ordering of words,
so école comes before elegant in a dictionary and the scheme that encodes accents separately
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from letters would make sense. But in Swedish, å and a are considered to be two different
letters. Words starting with å follow words starting with z in a dictionary, which is an
argument in favor of using two different codes for the accented and unaccented letters.

The projects in this chapter explore algorithms that work with encoded text. We will
begin by looking at basic methods for encoding characters as binary numbers, and see how
strings in Ruby are basically sequences of encoded characters.

Errors occur with surprising frequency, both when data is transmitted over a network or
is simply sitting in memory. No matter what sort of technology is used, data will be lost
or changed in transmission, or the storage media can be corrupted. One way to deal with
potential errors is to store extra information along with the data, and then to use this extra
information to see if an error has occurred. In Section 7.3 we will look at algorithms that
figure out the necessary extra information and use it to detect errors.

Another issue related to binary representation is data compression. In some cases, data
can be compressed by coming up with an alternative representation that captures all the
essential information. A good example is audio compression. MP3 files are approximately
1/10 the size of the original digital recordings, but in most cases (especially when played
through earbuds or inexpensive headphones) the music sounds almost as good as the origi-
nal. With text, however, we can’t afford to lose any information. Changing a single letter or
substituting a single punctuation mark can greatly modify the meaning of the text. Although
we can’t replace the original text with an approximate copy, there are ways to reduce the
size of the encoding without losing any information. In Sections 7.4 and 7.5 we will look at
a simple but effective algorithm that generates alternative codes for letters, resulting in an
encoding that is shorter yet retains all the information from the original text.

7.1 Binary Codes

The 0s and 1s in a binary encoding are commonly referred to as bits. In this context the
word “bit” is an abbreviation for “binary digit.” Since the devices that store information or
transmit it from one system to another are binary (two-state) devices, a bit is the smallest
unit of information that can be stored or transmitted.

Unicode

An international standard known as Unicode is a scheme that defines codes for 
thousands of letters, symbols, and ideograms from all over the world.  As of 2009, the 
Unicode standard includes codes for over 100,000 characters, covering most modern 
languages and several ancient languages, including Egyptian heiroglyphics.

あ
Hiragana letter A

Unicode 3042

é
Latin small letter E 

with acute
Unicode 00E9

å
Latin small letter A 

with ring above
Unicode 00E5
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One of the fundamental relationships in computer science is between the number of bits
in a code and the number of items that can be encoded. The relationship is defined by the
formula n = 2k, which says that n, the number of different codes we can construct, grows
exponentially with k, the number of bits in a code.

To see why, start with the fact that there are two possible 1-bit codes, 0 and 1. With two
bits, there are four codes: 00, 01, 10, and 11. When written in this order, one can see a
pattern: the first two codes begin with 0, and the second two begin with 1.

Let’s use this same pattern to write out all the 3-bit codes (Figure 7.1). Write the four
2-bit codes on a piece of paper, and then write them again, so there are two groups of codes
next to each other. Put a 0 in front of each code in the first group, and a 1 in front of each
code in the second group, and you will have all eight possible 3-bit codes. The general rule
is that we can write twice as many codes using n + 1 binary digits as we can with n digits,
because we write each n-bit code twice, and then write a 0 in front of half the codes and
a 1 in front of the other half. There are 22 2-bit codes, 2× 22 = 23 3-bit codes, and, more
generally, 2n n-bit codes.

As a practical example of this relationship, the ASCII code described in the next section
is a 7-bit code, which means we can encode 27 = 128 different characters. This gives
us enough codes for ordinary English text, since we can use 26 of the codes for lowercase
letters, another 26 for uppercase letters, and still have several codes left over for punctuation
marks.

The inverse equation is also an important formula. Often we are given the size of a set,
and we want to know how many bits will be required to encode each item in the set with a
unique sequence of bits. Since n = 2k, it follows that k = log2 n. For example, if we want to
design a code for 26 uppercase letters and 6 punctuation marks, for a total of 32 characters,
we would need only log2 32 = 5 bits.

When the logarithm is not an integer, we just “round up” to the next higher integer. The
more formal way to express the relationship between the size of a set, n, and k, the number
of bits required to encode each item in the set, is

k = dlog2 ne

(recall from Chapter 5 the notation dxe, pronounced the “ceiling of x,” means “the smallest
integer greater than x”).

2-bit codes

3-bit codes

 00  01  10  11  00  01  10  11

000 001 010 011 100 101 110 111

Figure 7.1: To create a three-bit code, make two copies of the two-bit code and put a 0 bit in front of
one copy and a 1 bit in front of the other copy.
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age state team

0011011 010111 10110

A's
Angels

...

Yankees

00000

00001

11101

Alabama
Alaska

...

Wyoming

000000

000001

110001

Figure 7.2: Responses from a survey can be encoded in binary by using dlog2 ne bits for a field that
has n alternatives. The encoding needs 7 bits for numbers between 0 and 127, 6 bits to
represent one of the 50 U.S. states, and 5 bits for one of 30 different baseball teams.

Binary codes can be used to represent more than just numbers and characters. Any type of
data based on a finite set of values can be encoded so it can be stored in a file and analyzed
by a computer. As an example, suppose a research group is collecting data through a survey,
and the questionnaire has places for respondents to fill out their age, the state they live
in, and their favorite baseball team. Age is a number, so techniques for encoding integers
can be used to represent a respondent’s age. If the researchers assume everybody who fills
out the survey will be less than 127 years old, they only have to use dlog2 127e = 7 bits to
encode the age of the respondent. To encode the response for the state a person lives in,
the researchers need to figure out how many bits to use for the encoding, and then assign a
unique pattern to each state. There are 50 U.S. states, which means dlog2 50e = 6 bits are
needed to encode a state name. One way to assign codes is to go in alphabetical order, so
Alabama is 000000, Alaska is 000001, and so on. The same sort of reasoning would lead to
unique 5-bit codes for each of the 30 major league baseball teams (Figure 7.2).

The projects for this chapter begin with experiments on binary codes. The BitLab module
defines a method named code that will create a sequence of 1s and 0s corresponding to
the pattern of bits used to encode a number. For example, to see how the number 23 is
encoded in binary, we simply write

>> 23.code
=> 10111

There will be situations later in the chapter where we want a code that has a specific length,
so we can pass a number of bits as a parameter. To see the same code, but as an 8-bit
number, the expression is

>> 23.code(8)
=> 00010111

This is the same pattern as before, but it has extra 0s at the front (the equivalent of writing
02 instead of 2 when entering a month in a form).

Another method defined for BitLab is make_codes, which assigns a unique binary code
to each item in a set. Suppose we want to design an encoding scheme for musical notes.
Start by defining an array with one Ruby symbol for each note:

>> notes = [:do, :re, :mi, :fa, :sol, :la, :ti]
=> [:do, :re, :mi, :fa, :sol, :la, :ti]
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Associative Array (aka Hash)

Ruby has a special type of array where items are accessed not by their location, but 
instead by their name.  

In a regular array, items are stored in order, and we can ask 
Ruby to get the item at a specified location:

  >> a = ["fee", "fie", "foe", "fum"]
  => ["fee", "fie", "foe", "fum"]
  >> a[2]
  => "foe"

When we make a hash object, we tell Ruby the name of each object, and when we 
want something from the hash we specify its name, not its location:

  >> gp = { :a => 4, :b => 3, :c => 2, :d => 1 }
  => {:d=>1, :a=>4, :b=>3, :c=>2}
  >> gp[:a]
  => 4
  >> gp[:c]
  => 2

The name “hash” comes from the fact that these objects are sometimes stored in 
memory as small hash tables (Chapter 6).  Ruby can choose whatever order it wants 
to save the items; all we care about is that we can get the value of an item associated 
with a name.

Read more about hash objects in the Ruby Reference at the end of the book.

fee

fie

fum

foe

0

1

2

3

1

4

2

3

:d

:a

:b

:c

To define a code that assigns each note its own binary encoding call make_codes, passing
the array of symbols as an argument:

>> code = make_codes(notes)
=> {:re=>001, :do=>000, :fa=>011, ... :ti=>110}

Each item in this list shows a note on the left side of an arrow, and its encoding on the right
side of the arrow. The make_codes method figures out how may items are in the array, and
thus how long each code has to be, and it then just makes a new code for each item, starting
with the code that has all 0s. Since there are seven notes in this list, there are dlog2 7e = 3
bits in each code.

After we have the array of codes we can find the encoding of a syllable by looking it up
with the index operator:

>> code[:re]
=> 001

This example shows that code is an array, just like arrays we’ve seen in earlier chapters, but
the difference is that instead of accessing an item by its position, we access it by name. In
this case, since we want the code for a note, we put the name of the note in between the
square brackets in the index operator (see the sidebar on Associative Arrays).
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Tutorial Project

Include the BitLab module when you start a new IRB session for the projects in this chapter:

>> include BitLab
=> Object

T1. BitLab defines a method that shows the binary representation of an integer. Type this expres-
sion to see the binary form of the number 12:
>> 12.code
=> 1100

T2. In previous chapters we used the iterator named each to print all the items in an array. We
can also use it to print every number in a specified range:
>> (0..3).each { |n| puts n }
0
1
2
3
=> 0..3

T3. Repeat the previous exercise, but this time ask Ruby to print the binary representation of the
number:
>> (0..3).each { |n| puts n.code }
0
1
10
11
=> 0..3

T4. By default the code method shows the minimum number of bits needed to encode an integer.
We can designate a number of bits to use as a parameter. Type this expression to print a 2-
digit representation of each code:
>> (0..3).each { |n| puts n.code(2) }
00
01
10
11
=> 0..3

T5. Repeat the exercise again, but this time ask Ruby to print eight numbers, and change the
argument so you get a list of 3-bit codes:
>> (0..7).each { |n| puts n.code(3) }
000
001
...
110
111
=> 0..7

By looking at the bit patterns printed in the last example, can you see why there are twice as many
3-bit numbers as there are 2-bit numbers? The list of 3-bit numbers has two parts. The first four lines
contain each of the 2-bit numbers, except they are preceded by a 0. The last four lines also have each
of the 2-bit numbers, but these are all preceded by a 1.

This same pattern will occur if you ask Ruby to print all 16 4-bit patterns, and then all 32 5-bit patterns.
Does this exercise help convince you that the number of codes grows exponentially with the number
of bits?
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T6. Make a list of four color names:
>> a = [:yellow, :green, :white, :black]
=> [:yellow, :green, :white, :black]

T7. Call make_codes to create a binary code for each color:
>> code = make_codes(a)
=> {:yellow=>00, :green=>01, :white=>10, :black=>11}

T8. Use print_codes to get a list that shows the code for each color:
>> print_codes(code)
00 yellow
01 green
10 white
11 black
=> true

Notice that each of the possible 2-bit binary numbers was used to make the codes.

T9. Add a fifth color to the end of the array:
>> a << :steel
=> [:yellow, :green, :white, :black, :steel]

T10. Make a new code for the extended array, and print the new code:
>> code2 = make_codes(a); print_codes(code2)
000 yellow
001 green
010 white
011 black
100 steel
=> true

Notice that since every 2-bit pattern was needed for a list of four colors, Ruby has to make
3-bit patterns for the list of five colors.

T11. The formula for figuring out how many bits are needed to give each item in a set a unique
code is dlog2 ne. Ask Ruby to compute the value of the formula for a set of four items:
>> log2(4).ceil
=> 2

T12. For a set of five items we have to “round up” to use one more bit:
>> log2(5)
=> 2.32192809488736

>> log2(5).ceil
=> 3

T13. How many bits do you think it will take to give each of 18 different colors a unique code?
First try answering this question using a call to ceil, and then verify your answer by making
an array of 18 color names and passing it to make_codes:
>> a = TestArray.new(18, :colors)
=> ["lavender", "azure", ... "sky blue"]

>> code = make_codes(a); print_codes(code)
=> ...

T14. Is the code for the first item in your set of 18 colors the binary representation of the number
0? Is the last code the binary representation of the number 17?
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7.2 Codes for Characters

Computer processors generally work with several bits of data at once. When data is trans-
ferred from memory to the processor, or vice versa, it is in a group of 32 or 64 bits, called a
word. A single word can represent a piece of data, in the form of encoded numbers, char-
acters, or other information. A word can also hold the binary form of an instruction that
tells the processor what to do for a single step in an algorithm. Words are often divided into
smaller units, called bytes. There are eight bits in a byte, so a single word will hold four or
eight bytes.

In the early days of commercial computing, transferring data between computers was
rare, and networks were nonexistent, so each system was able to use its own technique for
encoding data. The size of a word varied greatly from computer to computer, and it was not
uncommon to find systems with 12-bit, 18-bit, or even 35-bit words. Not surprisingly, the
number of bits in a byte also varied from system to system; common sizes were six, seven,
or eight bits.

As people started sharing data across multiple computer systems the need for a stan-
dard encoding scheme became apparent. One of the first such standards was the American
Standard Code for Information Interchange, or ASCII, which was formed by a committee
representing several American computer manufacturers. ASCII used seven bits for each
character, with codes for upper and lowercase letters and the symbols commonly found on
a QWERTY keyboard.

Eventually computer designers settled on 32 bits as a typical word size. Later, as technol-
ogy improved, the standard word size increased to 64 bits. An even number of 8-bit bytes
will fit in either 32 or 64 bits, so eight bits became the standard size for a byte. Because it
was convenient to store each code in its own byte when writing data to a file, text files were
collections of 8-bit codes, where the first bit was always 0 and the remaining bits held an
ASCII code. This naturally led to suggestions for extending ASCII to an 8-bit code. Even-
tually ISO, the International Standards Organization, defined a scheme called Latin-1 that
includes codes for accented letters used in European languages, Greek letters, and a variety
of math symbols.

ASCII

The American Standard Code for Information Interchange (ASCII) was developed in 
the 1960s, and formally adopted as a standard in 1968.  It has codes for the symbols 
found on a QWERTY keyboard in the U.S.

0100000

0100001!

0100010"

0100011#

0100100$

01100000

01100011

01100102

01100113

01101004

1100000`

1100001a

1100010b

1100011c

1100100d

1000000@

1000001A

1000010B

1000011C

1000100D
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UTF-8

Unicode defines codes for thousands of letters, symbols, and ideograms from all over 
the world.  As of October 2009, the Unicode standard includes codes for over 100,000 
characters, so according to the formula there should be 17 bits in each code. 

A clever scheme named UTF-8 allows the size of the code to vary, so the most common 
characters require only 8 bits.  The code uses 8-bit groups called octets.

If the first bit in a code is 0 it means the entire code fits in a single octet, and the 
remaining 7 bits are used to hold the ASCII code. This is the encoding of the letter "a":

If the first bit is a 1, the code continues with the next octet, and the remaining 15 bits 
encode the character.  Here is the code for "å" (an "a" with a circle over it):

There can be up to four octets in a code.  The latest version of Unicode now includes 
codes for most of the languages in the world, and several ancient languages, including 
Egyptian heiroglyphics.

0 1100001 one octet

1 100001110100101 two octets

In the late 1980s researchers began to consider how to design an encoding scheme that
would be able to represent a much wider collection of characters, including Arabic and
Hebrew alphabets and the ideograms used in Chinese, Japanese, and Korean. Their effort
led to the definition of Unicode, which is now the most widely used scheme for representing
text. Most operating systems, including versions of Microsoft Windows and Mac OS X, use
Unicode as the default format for encoding text files. E-mail programs and web browsers
are also based on Unicode, which makes it possible to transmit files from one system to
another while preserving all the letters and symbols that were written by the person who
created the text.

Since Unicode supports such a wide variety of symbols—over 100,000 in the latest version
of the standard—you might guess that it takes more bits to represent a single character than
in ASCII. But people who work with Unicode came up with a scheme, called UTF-8, that
allows just one byte to be used for all the symbols that are defined in ASCII. The idea is that
if the first bit in a byte is 0, the remaining seven bits can simply hold an ASCII code. If the
first bit is a 1, however, the code continues into the byte next to it. Accented letters and
letters from Cyrillic, Chinese, Japanese, Arabic, Hebrew, and all the other alphabets require
anywhere from two to four bytes.

In the experiments in this chapter the characters we work with will all be from the original
ASCII code. Since they are represented in Ruby as 8-bit (UTF-8) codes, we will show them
as 8-bit patterns of 0s and 1s. To check on the output from a Ruby expression we just need
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to look up a code in an ASCII table, which is far simpler than finding a code in Unicode, and
we will continue to refer to letter codes as simply ASCII codes.

Ruby’s index operator applies to strings as well as arrays. If a variable s refers to a string,
an expression of the form s[i] returns the character at location i in the string. As with
arrays, the first location is 0, so the expression s[0] refers to the first character in s. In
Ruby, the index operator returns the numeric code for a character.1 Since Ruby assumes we
normally want to see decimal numbers that’s what it prints:

>> s = "Angstrom"
=> "Angstrom"

>> s[0]
=> 65

>> s[1]
=> 110

To see the binary encoding of these numbers just call the code method:

>> s[0].code(8)
=> 01000001

>> s[1].code(8)
=> 01101110

The 8 passed as an argument to code tells it to make an 8-bit code.
Because long binary numbers are hard to read, many tables that show ASCII codes also

give the hexadecimal (base 16) version of the codes. The code method will make the
hexadecimal form if we pass it an option. These expressions ask Ruby to make the 2-digit
hexadecimal code for a letter:

>> s[0].code(:hex, 2)
=> 41

>> s[1].code(:hex, 2)
=> 6E

Several of the codes in ASCII are referred to as control characters. The name comes from
the fact that these characters were once used to control output devices. Control characters
told line printers to start a new line of output, or told a teletype to ring a bell. Some of these
control characters are still used. A character called newline is inserted into text to mark the
end of a line. When you type text in a text editor application, newlines are included in the
document when you hit the return key.

In Ruby, the puts method automatically attaches a newline character to the end of the
string. When the output from a Ruby program is saved in a file, and the file is later opened
with a text editor, the strings are shown as separate lines in the editor window. Without this
newline character we wouldn’t know where one string ended and the next began. When a
string of n characters is written to a file, the number of bits in the encoding of the string is
8× (n + 1) to account for the fact that the newline character is part of the encoding.

1This behavior changed in version 1.9 of Ruby. If you are using Ruby 1.9 see the Lab Manual for an explanation
of how you can access the encoding of individual characters in a string.
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Tutorial Project

Before you start the projects in this section, use your web browser to find a reference page that has
a table of ASCII codes. The Wikipedia entry for ASCII is one source, or you can do a web search for
“ASCII” to find others.

T15. Make a string that has a combination of letters, digits, and punctuation marks:
>> s = "The 19th Century (1801-1900)."
=> "The 19th Century (1801-1900)."

T16. Notice that Ruby includes the spaces and parentheses as part of the string. To verify this,
count the number of characters between the quotes, and then ask Ruby to print the length of
the string:
>> s.length
=> 29

Does your count agree with Ruby’s count?

T17. This expression will return the code for the first character in s:
>> s[0]
=> 84

T18. Use the code method to get the ASCII code for the character:
>> s[0].code(8)
=> 01010100

T19. The method that iterates over each item in a string is called each_byte. Type this expression
to see the ASCII code of each character in s:
>> s.each_byte { |x| puts x.code(8) }
01010100
01101000
01100101
...

T20. If you want to see the codes in hexadecimal, repeat the previous expression, but change the
arguments passed to code:
>> s.each_byte { |x| puts x.code(:hex, 2) }
54
68
65
...

Look up these codes in the ASCII table shown in your web browser. Most tables show the binary forms
as 7-bit numbers, so ignore the leading 0 printed by Ruby (or if you want, repeat the expression in
Problem T19 and tell Ruby to print 7-bit codes). Can you find each of the characters in s, including the
spaces and the punctuation marks? Did you notice there are different codes for upper and lowercase
letters, e.g., the letters T and t?

The following optional exercises refer to “Unix commands” that you can type in a terminal window.
These commands can be typed into any terminal emulator on Linux or Mac OS X. If you use Microsoft
Windows, you can type these commands in a command window that is running with cygwin.

© The paragraph at the end of this section said Ruby’s puts method includes a newline when
it prints a string. Make a string to test this claim:
>> greeting = "hello"
=> "hello"
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© Use puts in two separate statements, both entered on a single line typed into IRB:
>> puts greeting; puts greeting
hello
hello
=> nil

If puts did not attach a newline the output would be hellohello with all the characters
in the string printed on a single line.

© Use your text editor to make a plain text file that has a single line containing the “19th
Century” test string (without the quotes). Save the file as century.txt, and then find how
big the file is. Open a new terminal window and type this Unix command:
% wc century.txt

1 4 30 century.txt

wc stands for “word count.” The output shows the file has 1 line, containing 4 words and a
total of 30 bytes. The 30 bytes are for the 29 characters in the string plus an extra one for
the newline character, which will be included if you hit the return key after typing the line in
your text editor (on a Windows system there might be two characters to mark the end of the
line).

© A Unix command named file looks at the contents of a file and tries to guess what is inside.
Type this command to find out what is in century.txt:
% file century.txt
century.txt: ASCII English text

This output shows that all the characters are part of the ASCII encoding scheme.

© Figure out how to use your text editor to type accented letters, and add this sentence to your
file:

Anders Jonas Ångström was born in 1814.

Save the file and run the file command again:
% file century.txt
century.txt: UTF-8 Unicode English text

Since the accented letters are not part of the original 7-bit ASCII, the text editor had to use
the UTF-8 scheme to encode the two accented letters. If you run wc you should see that the
two accented letters take up two bytes each. You can verify this by replacing the Å with A
and the ö with o and running the command again. The unaccented letters will require only
one byte so the new file will be two bytes shorter.

7.3 Parity Bits

No matter what technology is used to store or transmit character codes, there is always a
chance that errors will occur. Noise can interfere with network communications, or a bump
might disrupt the motion of a disk. Magnetic tapes, and even CDs and DVDs, can lose
information over time, and new data can be stored in a flash memory card only a certain
number of times before the card begins to lose data.

There are a variety of ways of encoding text, music, and images in order to deal with
potential errors. The simplest techniques are for error detection. The idea is to add extra
descriptive information along with the code for the data itself. When the data is retrieved,
an algorithm can compare the description with the data to determine whether anything
has changed. If an error is detected, the data is retrieved again, e.g., in a network the
receiver might send a message back to the sender, to request that a message be sent again.
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More complex schemes allow for error correction. When these codes are used, enough
descriptive information is added to a message to allow the receiver to fix the error, without
having to ask the sender to retransmit.

In this section we will look at the simplest form of error detection. It will work for any
type of data, but we will use character codes in our experiments. The idea is to add a single
bit, called a parity bit, to the end of a code before saving it or transmitting it. The word
“parity” refers to the number of 1 bits in a binary pattern. If there are an even number of 1s
we say the pattern has even parity. For example, the string 0101 has even parity, because
two of the four bits are 1s, but 0111 has odd parity because it has three 1s.

If we start with an 8-bit character code, we will have a 9-bit extended code after adding
a parity bit. When we add the extra bit we have a choice: we can either attach a 1 or
a 0 to the end of the original code. The idea is to attach the bit that will make the total
number of 1s in the new 9-bit code an even number, i.e., we want the new code to have
even parity. At the other end, the receiver will count the number of 1s in the 9-bit extended
code, and if the count is an even number the receiver assumes no bits were changed during
the transmission. The original 8-bit code can be extracted by removing the parity bit from
the end of the 9-bit extended code (Figure 7.3).

This simple scheme works as long as there is only a single error within any 9-bit code. If
an error occurs one of the bits will change: either a 1 will turn into a 0, or a 0 will turn
into a 1. Either way, the total number of 1s in the code seen by the receiver will not be an
even number, and the 9-bit packet can be marked as an error. But, as the last column in
Figure 7.3 shows, the receiver can be misled if two errors occur. Again it doesn’t matter if a
1 changes to a 0 or vice versa; the 9-bit code seen by the receiver will have an even number
of 1s, and the receiver can’t tell that two of the bits were not the same as the ones originally
transmitted.

transmitter sends

receiver reads

01101000  01100101  01101100  01101100  01101111

h e l l o

noisy network

8-bit code

011010001 011001010 011011000 011011000 011011110

011010001 011000010 011011000 011011000 010001110

01101000  01100001  01101100  01101100  01000111 8-bit code

l l Gh

Figure 7.3: When a message is transmitted the sender adds a parity bit to each 8-bit character to
make a 9-bit code. The receiver counts the number of 1s in the entire code. If the code has an
odd number of 1s an error is detected, otherwise the character is taken from the first 8 bits of
the 9-bit code.
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In the experiments for this section we will create a message like the one shown in Fig-
ure 7.3 and then see what happens as errors are deliberately added. Methods defined in the
BitLab module will count 1s in a code and attach a parity bit to the end of a code. A method
named flip will let us change an individual bit (programmers who work with low-level
machine languages refer to “flipping a bit,” as in “flipping a switch” to turn a light switch on
or off).

The BitLab module defines a new type of object to hold a list of codes. We will call a
method named encode to create a message object, passing it a string to encode and an
option that specifies how to encode each letter. For example, to make a message using
ASCII characters, the call would be

>> msg = encode( "hello", :ascii )
=> 01101000 01100101 01101100 01101100 01101111

To ask that a parity bit be added to the end of each letter, pass the option :parity instead
of :ascii in the call to encode:

>> msg = encode( "hello", :parity )
=> 011010001 011001010 011011000 011011000 011011110

Decoding a message, i.e., creating a string of characters from a sequence of binary codes,
is done by a method named decode. The parameters for this method are a coded message
and the scheme originally used to use to encode the message:

>> decode( msg, :parity )
=> "hello"

A method named garbled simulates a noisy network. This method will make a copy of
a message, add random errors, and return the modified message. For example, if msg is
the message created in the example above, this statement will make a copy of it, add one
random error, and save the result in a variable named recvd:

>> recvd = garbled( msg, 1 )
=> 011010001 011001010 111011000 011011000 011011110

To see what is encoded by this new message, simply pass it to decode:

>> decode( recvd, :parity )
=> "he•lo"

The bullet symbol in the third letter means decode found a parity error in the third code.
If we pass two objects in a single call to puts Ruby will print them on separate lines; this

will allow us to compare the original encoding with the copy:

>> puts msg, recvd
011010001 011001010 011011000 011011000 011011110
011010001 011001010 111011000 011011000 011011110

If you compare the two codes in the third column, you can find where a 0 changed to a 1,
and as a result the third code in the message now has odd parity.
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Tutorial Project

T21. Create a test string:
>> s = "hello, world"
=> "hello, world"

T22. Save the codes of the first two letters in variables named c0 and c1:
>> c0 = s[0].code(8)
=> 01101000

>> c1 = s[1].code(8)
=> 01100101

How many 1 bits do you see in each of these codes?

T23. Use the parity_bit method to see which bits need to be added to make even parity codes:
>> c0.parity_bit
=> 1

>> c1.parity_bit
=> 0

Do you see why the parity bit for the first code is a 1, and the parity bit for the second code
is 0?

T24. Call a method named add_parity_bit to attach parity bits to each code:
>> c0.add_parity_bit
=> 011010001

>> c1.add_parity_bit
=> 011001010

Can you see how each code is one bit longer? Do the extended codes each have even parity?

T25. A method named even_parity? will check to see if a code has even parity:
>> c0.even_parity?
=> true

>> c1.even_parity?
=> true

T26. The index operator will work on codes. To see the value of the first bit (bit 0) in code c0:
>> c0[0]
=> 0

T27. Call the flip method to change the first bit in c0:
>> c0.flip(0)
=> 111010001

Do you see how the first bit changed from a 0 into a 1? How many 1 bits do you see in the
new code?

T28. There are now an odd number of 1s in this code:
>> c0.even_parity?
=> false

T29. We just saw how an error that converts a 0 to a 1 causes a change in the parity. Let’s repeat
the experiment, this time changing a 1 to a 0 in the second code word:
>> c1
=> 011001010

>> c1.flip(2)
=> 010001010

Do you see how bit 2 (the third bit from the left) changed?
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T30. This change from a 1 to a 0 also changed the parity:
>> c1.even_parity?
=> false

If you want to try some more experiments on your own, make codes for the letters e, l, and a few other
characters from the test string. First figure out what parity bit needs to be added to these codes, then
check your answer by calling add_parity_bit.

T31. Make a code for the fifth letter in the test string:
>> c4 = s[4].code(8)
=> 01101111

T32. Verify that this binary number is the code for the letter o by calling a method named chr:
>> c4.chr
=> "o"

T33. Add a parity bit:
>> c4.add_parity_bit
=> 011011110

T34. Change two bits in this code, making the changes shown in Figure 7.3:
>> c4.flip(2)
=> 010011110

>> c4.flip(4)
=> 010001110

T35. After two bits change the code will have even parity:
>> c4.even_parity?
=> true

T36. Notice what happens when the receiver decodes this binary number:
>> c4.chr
=> "G"

Make sure you understand what happened in this last exercise. Because the code has even parity, a
receiver can’t tell errors occurred, and it will accept the code. After it removes the parity bit, it has the
binary number 01000111, which is the 8-bit code for the letter G. If you’re not sure how this happened
try some more experiments on your own, where you make a code from a character in the test string,
add two errors, and decode the result.

T37. Call encode to make a message with parity bits attached to each character:
>> msg = encode( s, :parity )
=> 011010001 011001010 011011000 ...

T38. Make a copy of the message with garbled, asking it to add a single random error:
>> recvd = garbled( msg, 1 )
=> 011010001 011001010 011011100...

T39. Decode the copy:
>> decode( recvd, :parity )
=> "hello, wor•d"

Since the error is introduced in a random location you will probably get a different output,
but you should see one error somewhere in your new message.
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T40. Print the two messages so you can compare the bit sequences:
>> puts msg, recvd
011010001 011001010 011011000 011011000 ...
011010001 011001010 011011100 011011000 ...

Find the code that corresponds to the bullet symbol printed in the decoded message, and
compare this code to the original code. Can you find the one-bit error?

T41. Garble the message again, but this time add 10 errors:
>> recvd = garbled( msg, 10 )
=> 011010001 000001010 011011001 ...

T42. Decode this new message:
>> decode( recvd, :parity )
=> "he•l•• •o?ld"

Did the errors go in 10 different codes, i.e., are there 10 bullet symbols?

T43. Print the two bit sequences:
>> puts msg, recvd
011010001 011001010 011011000 ...
011010001 000001010 011011001 ...

Each group of nine bits corresponds to a single character in the message. You should be able
to account for all 10 errors. Places where there is a bullet in the decoded string identify
characters where a single error was introduced, resulting in a parity error. Places where the
second string does not have a bullet, but there is a difference between the original sequence
and the copy, should show two errors.

T44. Try this experiment again, but introduce 30 errors instead of 10. Did you find character
positions where three errors were introduced? Four? What happened at these positions?
Was a parity error detected or was a character decoded?

7.4 Huffman Trees

As stated in the introduction to this chapter, the goal of text compression is to rewrite a
piece of text in a new form that requires fewer bits. One simple way to do this, and the
approach we will take in this chapter, is to simply change the encoding scheme to one that
uses fewer bits. The technique we will look at is known as Huffman encoding, named after
David A. Huffman (1925–1999), who originally described the method in 1952.

A Huffman code relies on the fact that some characters are more common than others.
In ordinary English text the letters e, t, and a appear much more often than q, j, and z. An
encoding scheme that uses fewer bits for the most common letters might be able to encode
a piece of text with a smaller total number of bits than one that uses the same number of
bits for every letter.

To test this idea we are going to use Huffman’s algorithm to develop a special purpose
code for Hawaiian words. The Hawaiian alphabet has a total of 13 letters: five vowels, seven
consonants, and a symbol called the okina that sometimes appears between two vowels. An
encoding scheme that uses the same number of bits to code each letter in this alphabet
would require dlog2 13e = 4 bits per letter. Our goal is to devise a coding scheme that uses
fewer bits for the common letters and more bits for the uncommon letters. After we build
the code, we will test it with a few Hawaiian words to see if in fact the new code uses
fewer bits. Of course, unless we also have a code for commas, periods, spaces, and other
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The Hawaiian Alphabet

If you've ever traveled to Hawaii you may have noticed that
geographical names, names of cities, and other Hawaiian words
didn't have all the letters of the English alphabet.  

It turns out Hawaiian words are spelled with the same five
vowels -- A, E, I, O, and U -- but use only seven consonants:  
H, K, L, M, N, P, and W.  

A 13th symbol, called the okina, is used between two vowels
when they are to be pronounced as separate syllables.  For 
example, a‘a is pronounced "ah-ah" (it's one of the words
for lava).

The table at right (from the American Cryptogram Association)
shows the frequency of each letter.  A is by far the most common, 
making up 26% of all the letters in Hawaiian words.  W is least 
common, used just 1% of the time.

'  0.068
A  0.262
E  0.072
H  0.045
I  0.084
K  0.106
L  0.044
M  0.032
N  0.083
O  0.106
P  0.030
U  0.059
W  0.009

punctuation we won’t be able to encode complete sentences, but this simple scheme will be
enough to encode a word list like the one we used in Chapter 6.

Huffman’s algorithm uses two data structures that we have not seen yet in this book. The
first is known as a priority queue. Structurally, a priority queue is just like an array: it’s a
container that basically consists of a list of references to other objects. What distinguishes
a priority queue from a regular array is that the objects in the list are always sorted. Each
time we add a new item to a priority queue, the item is automatically saved in a location
that preserves the order.

The priority queues we will be using for the project in this section are a type of object
called a PriorityQueue. This statement will make a new, empty, queue:

>> pq = PriorityQueue.new
=> []

The method that adds an item to a queue has the same operator, <<, as the method that
adds an item to the end of an array. It’s important to be aware of the fact that there are
actually two different methods—one for array objects, the other for priority queue objects—
even though both methods are identified by the same operator. When Ruby evaluates an
expression of the form obj << x, the first thing it does is figure out what sort of object is
referred to by the variable named obj. If the object is an array, Ruby uses the method that
attaches x to the end of the array. If the object is a priority queue, Ruby uses a method that
compares x to the other objects already in the list and inserts it into the correct location.
We’ve already seen this operation: it’s part of the inner loop of the insertion sort algorithm.

Because priority queues decide for themselves where items go, there is no method named
insert for these kinds of objects. Not surprisingly, several other methods we can use
with arrays, such as reverse, are also not defined for priority queues. The main thing to
remember when you are working on this project is that although a priority queue might
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root

leaves

Figure 7.4: A binary tree is a collection of
nodes. Lines connecting nodes define
relationships similar to those in a family
tree. At the top of the tree is a single node,
the root, that has no predecessors. Nodes
that have no descendants are called leaves.

look like an array, the types of things you can do with it are restricted in order to make sure
the queue is always sorted.

The second new data structure is a binary tree. A tree can be seen as another type of
container, an alternative to a linear structure like an array or queue. The items that make
up a tree are called nodes (Figure 7.4). When we add an object to a tree, we will make a
node to refer to the object and then insert the node into the tree somewhere by attaching it
to one or more existing nodes. Every tree has one special node called the root. Computer
scientists (like genealogists) prefer to draw trees with the root at the top of the picture, as
shown in Figure 7.4. Nodes at the bottom of a tree are known as leaves.

Trees are very important structures in computer science, used to organize information in
a wide variety of algorithms. Most of these algorithms use iterators that have been specially
designed for trees. These iterators serve the same purpose as iterators for arrays, allowing
us to “walk through” a tree to visit each node in order to perform some operation. For this
project, however, we’ll simply use a tree as a container and not concern ourselves with how
to visit the nodes.

One way to envision how Huffman’s algorithm works is to imagine a set of tinker toys,
where the circular pieces correspond to nodes, and sticks are used to connect nodes to
each other. The algorithm starts with a collection of unconnected circular pieces that will
eventually be the leaves of the tree. Each step of the algorithm will find two pieces of
the tree that were built on a previous step and connect them to each other, as shown in
Figure 7.5. The new piece of the tree will be an interior node that has the existing parts
as its children. Since the only pieces available initially are leaf nodes, the first step will
connect two leaves. Later steps might connect a leaf to an interior node, or connect two
interior nodes. Eventually all the nodes will be connected and the final product will be a
tree that looks like the one in Figure 7.4.

The objects in the tree we are going to build with Ruby are another new type of object,
called a Node. The leaf nodes in Huffman’s algorithm contain two pieces of information:
the name of a letter from the alphabet, and the frequency of that letter. For example, the
letter M has a frequency of 0.03 in Hawaiian words (meaning 3% of the letters in random
Hawaiian text should be the letter M). An expression that makes a node for this letter is:

>> leaf = Node.new("M", 0.03)
=> ( M: 0.030 )
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Figure 7.5: Building a Huffman tree is
analogous to making a tree shape with
tinker toys. (a) At the start of the
project all the circle pieces that will be
leaves of the tree are not connected to
anything. (b) Each step will take two
existing pieces and connect them to a
new piece. The new piece will be the
common ancestor of the two existing
pieces.

zyxw(a)

(b)

xw

zy

The string printed by Ruby is a shorthand notation that tells us the node has a label of M
and a frequency of 0.03. The parentheses surrounding the label and frequency are intended
to look like the sides of a circle in a drawing of a tree.

A second way to make a new node object is to call a method named combine. This
method is used when the algorithm wants to make a new interior node in the tree (or, to
use the tinker toy analogy, when two existing nodes are attached to a new round piece). A
call to combine must include references to two existing nodes. The result of the call will be
a new node object that has the existing nodes as its children. Here is an example. Suppose
two existing nodes are named t0 and t1:

>> t0 = Node.new("X", 0.1)
=> ( X: 0.100 )

>> t1 = Node.new("Y", 0.2)
=> ( Y: 0.200 )

This statement shows how to make a new interior node with t0 and t1 as descendants:

>> t2 = Node.combine(t0, t1)
=> ( 0.300 ( X: 0.100 ) ( Y: 0.200 ) )

The string printed by Ruby to describe the new node is a little harder to understand, but if
you look closely you’ll see three nodes are included in this string. The outer set of parenthe-
ses identify the new interior node, and next to the opening parenthesis is the frequency of
the new node, which is the sum of the frequencies of its two children. The two descendants
are shown as they were before, printed one after the other, but inside the outer parentheses
to indicate they are now below this new interior node.

Now that we have the two main pieces—a new type of object that implements a priority
queue and a second new type of object to represent nodes in a tree—the Huffman tree
algorithm is very simple. The first step is to make leaf nodes for every symbol in the alphabet
and put the resulting nodes into the priority queue. Then remove the first two nodes from
the queue, make a new interior node with these two nodes as its children, and insert the
new interior node back into the queue. Repeat the step of removing two nodes and inserting
one until the queue has been reduced to a single node; this node will be the root of the final
Huffman tree.
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Figure 7.6: The first two steps in building a Huffman tree for vowels, using their relative frequency
in the Hawaiian alphabet. (a) The initial queue has only leaf nodes. (b) The first step makes an
interior node for the two least frequent letters.

Figure 7.6 shows the first two steps in the construction of a small tree for the five vowels,
using their relative frequency in Hawaiian words. The first step initializes the priority queue
with a new node for each letter. Note the letters are sorted, with the least frequent letters
at the front of the queue. The second row in the figure shows what happens on the first
iteration. The two letters at the front of the queue, which are the two least frequently used
vowels, are removed from the queue. They are connected by a new interior node, and the
new node is put back in the queue. The number above each node is its frequency. For
letters, the frequency is taken from the table, but for interior nodes the frequency is the
sum of the frequencies of the letters below it. The two important things to remember about
this algorithm are (1) at each step the nodes in the queue are ordered, according to their
frequency, and (2) the queue grows shorter at each step, so the algorithm is guaranteed to
terminate after n− 1 steps.

As you work on the project in this section, you will be able to view a drawing of the
current state of the priority queue. After you initialize the queue, call a method named
view_queue to draw the queue on the RubyLabs canvas. Initially each queue entry will be
a leaf node, but at each iteration you will see new interior nodes appearing in the queue.

Tutorial Project

T45. Make a new priority queue object and save it in a variable named pq:
>> pq = PriorityQueue.new
=> []

As you can see from the result above the new queue is empty.
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T46. Priority queues, like arrays in Ruby, can contain any type of object, as long as the objects
can be compared (if they can’t be compared to one another there is no way to keep them in
order). Try adding a couple of strings to your new queue:
>> pq << "lemon"
=> ["lemon"]

>> pq << "grape"
=> ["grape", "lemon"]

Note how the << method found the right place for the second string. The queue figures out
where to insert the object and automatically puts it in a place that makes sure the queue
remains sorted.

T47. Add a few more strings to your queue:
>> ["kiwi","strawberry","pear"].each { |x| pq << x }
=> ["kiwi", "strawberry", "pear"]

T48. Check to make sure the queue now has five items, and that they are stored in the queue in
alphabetical order:
>> pq.length
=> 5

>> pq
=> ["grape", "kiwi", "lemon", "pear", "strawberry"]

T49. Even though the queue looks like an array, it is not an array. If you try to call methods that
work for arrays you will get an error message:
>> pq.insert("orange")
NoMethodError: undefined method ‘insert’ for ...

>> pq.reverse
NoMethodError: undefined method ‘reverse’ ...

This makes sense, because if we were allowed to apply these other operations the order of
the items in the queue might change, and the items would no longer be stored according to
their priority.

© Do you think Ruby will allow you to make a priority queue containing numbers? Try some
experiments on your own, making PriorityQueue objects and adding numbers to them.

The way to remove an item from a priority queue is to detach the item at the front. The method that
does this is named shift. It’s an unusual name, but it is the name of a similar operation defined for
arrays, and is a name that is used in many different programming languages.

T50. Type these expressions to remove the first two strings from your queue:
>> s = pq.shift
=> "grape"

>> t = pq.shift
=> "kiwi"

T51. Ask Ruby to print the queue, and double-check to make sure there are three items left in the
queue after removing the first two:
>> pq
=> ["lemon", "pear", "strawberry"]

>> pq.length
=> 3
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T52. To make a new leaf node (a node that corresponds to a single letter) call Node.new and pass
it a letter and its frequency:
>> t0 = Node.new("A", 0.2)
=> ( A: 0.200 )

>> t1 = Node.new("B", 0.3)
=> ( B: 0.300 )

T53. A method named combine will create a new interior node by combining two existing nodes:
>> t2 = Node.combine(t0, t1)
=> ( 0.500 ( A: 0.200 ) ( B: 0.300 ) )

The string printed by Ruby for an interior node is slightly more complicated, but it follows
the same pattern for leaf nodes. The outer set of parentheses show that this is a node. The
0.5 after the open parenthesis means the combined node has a frequency of 0.5, which is the
sum of the frequencies of the two nodes passed as arguments. The two descendants of this
interior node are shown following the frequency.

The next set of exercises will use the letter frequency data for vowels in Hawaiian words to make
the Huffman tree shown in Figure 7.6. The frequency data is in a file that is installed along with the
RubyLabs gem.

T54. Use a method named read_frequencies to make an associative array (a “hash”) to hold
the data:
>> vf = read_frequencies(:hvfreq)
=> {"A"=>0.45, "O"=>0.18, "E"=>0.12, "I"=>0.15, "U"=>0.1}

The name vf is short for “vowel frequency.”

T55. To see the frequency of one of the letters, just access that item in the hash:
>> vf["A"]
=> 0.45

>> vf["E"]
=> 0.12

Are these the frequency values shown in the table in the figure?

T56. A method named init_queue will make a priority queue, make a node object for each item
in the hash, and add the nodes to the queue:
>> pq = init_queue(vf)
=> [( U: 0.100 ), ( E: 0.120 ), ... ( A: 0.450 )]

Does this look accurate to you? Are the items in the queue node objects? Are they sorted?
How many are there?

T57. Call view_queue to draw the queue on the RubyLabs canvas:
>> view_queue(pq)
=> true

T58. Type this expression to remove the first node from the queue and save it in a variable named
n1:
>> n1 = pq.shift
=> ( U: 0.100 )

Notice that the queue shown on the canvas now has only four nodes.

T59. Call shift again, and save the node in a second variable named n2:
>> n2 = pq.shift
=> ( E: 0.120 )

The queue should now be down to three nodes.
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T60. Call Node.combine to make a new node from the two you just removed, and put the new
node back in the queue:
>> pq << Node.combine( n1, n2 )
=> [( I: 0.150 ), ( O: 0.180 ), ... ( A: 0.450 )]

T61. Can you see how, as a result of the previous three expressions, the nodes for U and E were
removed, and the front of the queue is now the node for I? Is the new interior node in the
correct location in the middle of the queue?

T62. How long is the queue after this first iteration of the algorithm?

T63. To continue building the tree, repeat the previous three steps. You can put all three operations
on a single line for IRB:
>> n1 = pq.shift; n2 = pq.shift; pq << Node.combine( n1, n2 )
=> [( 0.220 ( U: 0.100 ) ( E: 0.120 ) ), ... ( A: 0.450 )]

T64. Repeat the expression above until there is only one node left in the queue. This single node
represents the complete tree for all five vowels.

T65. If you want to watch the steps for the construction of the Huffman tree for the entire alphabet,
get the set of frequencies from a data set called :hafreq:
>> vf = read_frequencies(:hafreq)
=> {"K"=>0.106, "W"=>0.009, ... "U"=>0.059}

Now repeat the steps that initialize the queue, draw it on the canvas, and combine the nodes.

7.5 Huffman Codes

After we build a tree using Huffman’s algorithm we can use the structure of the tree to
define Huffman codes for each letter. Start by attaching labels to the lines that connect
interior nodes to their children. At every interior node, including the root, the line going
down to the left child should be labeled with a 0, and the line going down to the right child
should be labeled with a 1. The labels on the connections in the final tree for the Hawaiian
vowels are shown in Figure 7.7.

The labels in the tree can now be used to define codes for letters. Each letter of the
alphabet used to make the tree appears somewhere in the tree as a leaf node, because the
tree construction algorithm initialized the priority queue with one leaf for each letter, and

Figure 7.7: The Huffman tree for the Hawaiian
vowels, with labels attached to each
connection.
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Figure 7.8: Huffman tree for the Hawaiian alphabet. The frequencies in this table are the same as
the ones on page 179, but here they are sorted by frequency.

the leaves were eventually all added to the tree. The code for a letter is defined by the labels
on the path from the root to the leaf for that letter. For example, the three connections from
the root to the leaf for the letter U in Figure 7.7 are labeled 1, 0, and 0, so the code for U is
100. The path to O goes down the other side of the tree, and the bits on this path give 111
as the code for O.

The Huffman tree for the full 13-character Hawaiian alphabet is shown in Figure 7.8. An
important thing to notice about the tree is that the most common letters are closest to the
root, so the codes for these letters use fewer bits.

It’s easy to see why the least frequently used letters are farthest from the root. They
correspond to nodes that were toward the front of the queue when it was initialized, and
were thus the first to be attached to interior nodes. Now that these letters are below an
interior node the path to these leaves will be longer than paths to letters at the end of the
queue.

As an example of what happens to infrequent letters, the two letters that were initially at
the front of the queue for the complete Hawaiian alphabet were W and P. The first iteration
attached these two letters to a new interior node and put the new node back in the queue.
This new combined node still had a low frequency (0.039), so it remained near the front
of the queue, where it was picked up and combined with another node, moving the letters
even farther down the tree.
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The experiments in this section will use the codes defined by a Huffman tree to encode
Hawaiian words. The hope is that by using shorter codes for more common letters, the
total number of bits to encode a word will be smaller, i.e., using a Huffman code will help
compress the text. Words with lots of As will require fewer bits, since the code for A is the
shortest code defined by the tree. The question is, will the benefit of using a shorter code
for A be negated by the fact that W and P have longer codes, so there is no overall benefit
from using a Huffman code?

The BitLab module contains a method named assign_codes that will iterate over the
tree to collect the codes for all the leaf nodes and put them in a hash:

>> hc = assign_codes(tree)
=> {"K"=>001, "W"=>110010, "A"=>10,

If you want to see the code for a letter, just look it up in the hash:

>> hc["H"]
=> 0001

Or, if you want to see a complete list of codes, pass the hash to the print_codes method
you used for projects in Section 7.1:

>> print_codes(hc)
0000 L
0001 H
001 K
...

Now that we know the bits that will represent each letter, encoding a Hawaiian word
is simply a matter of writing the bits for each letter in one long string. For example, the
encoding of ALOHA is

100000010000110

The first two bits are the code for A, the next four bits are the code for L, the next three the
code for O, then four bits for H, and finally two bits for the last A.

Decoding a string of bits in order to determine the original word is also defined in terms
of the tree. The idea is to use the sequence of bits in a code to choose a direction at each
step on a journey that starts at the root of the tree. As an example, suppose we want to
decode the string 1101. The first bit is 1, so the first step goes down the right path from the
root. From this node, the second step is also a 1, so we go down the right side again. The
third step is a 0, so we go left, and the last step is a 1, so we go right again. Now we’re at a
leaf node, and the label there is E, so we’re done: the code 1101 is for the letter E.

To decode a longer bit string that corresponds to a complete word, we just need to repeat
the process described in the previous paragraph. Each time we reach a leaf node we can
write the letter at that node, and then go back to the root and continue decoding with the
next bit in the input. Suppose we want to decode the bits 10011110. Start walking from
the root, and after two steps (10) we’re at the letter A. Go back to the root, and start a new
path from the third bit (since the first two have already been decoded). This path takes us
to the okina, or glottal stop symbol, after four steps (0111). Go back to the root again, and
the last two bits take us again to A. There are no more bits to decode, so this input string
contained the encoding of the word A‘A.
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  1:  def build_tree(f)
  2:    pq = init_queue(f)
  3:  
  4:    while pq.length > 1
  5:      n1 = pq.shift
  6:      n2 = pq.shift
  7:      pq << Node.combine( n1, n2)
  8:    end
  9:  
 10:    return pq[0]
 11:  end

# Make a Huffman tree using the frequencies in f 

Figure 7.9: Ruby implementation
of the algorithm that makes a
Huffman tree.

For the projects in this section we will be using the Huffman tree shown in Figure 7.8.
The letter frequencies for the complete alphabet are in a file named hafreq (for “Hawaiian
alphabet frequencies”). A method named build_tree (Figure 7.9) automates the steps of
the tree-building algorithm and creates a tree that we can use to encode and decode words.
For example, if the letter frequencies are in a hash object named f this statement creates
the Huffman tree:

>> tree = build_tree(f)
=> ( 1.000 ( 0.428 ( 0.195 ( ... ) ) ) )

Earlier in the chapter we saw how to call a method named encode to generate a binary
encoding of a string. One of the arguments we passed was a specification of how to do the
encoding, either plain ASCII or with a parity bit attached. For this project, we will pass a
Huffman tree to encode, and it will encode the string using Huffman codes:

>> msg = encode("ALOHA", tree)
=> 100000010000110

To go in the opposite direction, and convert a message that was encoded with Huffman
codes back into a string of letters, pass the tree to the decode method:

>> decode(msg, tree)
=> "ALOHA"

The BitLab module has a set of Hawaiian words that can be used to test the encoding
process. To load the words into your IRB session, call a method named read_words, and
it will return an array containing all the words:

>> words = read_words
=> ["A’U", "ALI’I", ... "UA"]

To test your understanding of the encoding process, you can try encoding one of the words,
using the tree in Figure 7.8, and then check your answer by passing the word to encode.

There is also an array of binary codes, which you can get by calling read_codes:

>> codes = read_codes
=> [011010, 001010, 0011111, ... ]

For one set of exercises, you will select a code from the list, see if you can decode it by hand
using the tree in Figure 7.8, and then check your result by passing the code to decode.
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Tutorial Project

T66. Read the letter frequencies for the full Hawaiian alphabet:
>> f = read_frequencies(:hafreq)
=> {"K"=>0.106, "W"=>0.009, "L"=>0.044, ... }

T67. Make the tree shown in Figure 7.8 by passing the frequencies to build_tree:
>> tree = build_tree(f)
=> ( 1.000 ( 0.428 ( 0.195 ( ... ) ) ) )

T68. Assign binary codes to each node in the tree:
>> hc = assign_codes(tree)
=> {"K"=>001, "W"=>110010, "A"=>10, ... }

T69. According to the tree, what is the code for the letter U? the letter P?

T70. Check your answers by looking up the codes for the same letters:
>> hc["U"]
=> 0110

>> hc["P"]
=> 110011

Were you able to figure out a code by tracing a path from the root to the leaf for a letter? Try
some more examples on your own until you are sure you understand how Huffman codes
are defined.

T71. Use the print_codes method to get the full list of codes. In order to print them so they are
sorted by letter, pass the option :by_name as the second parameter:
>> print_codes(hc, :by_name)
’ 0111
A 10
E 1101
H 0001
...

T72. Make an array of the test strings that come with the BitLab module:
>> words = read_words
=> ["A’U", "ALI’I", ... "PO", "UA"]

T73. Define a variable named s to be one of the test strings. You can either pick out a word
on your own, or ask Ruby to choose one at random. For example, to work on the word in
location 1 of the array, type
>> s = words[1]
=> "ALI’I"

To choose a random word, type
>> s = words[ rand(words.length) ]
=> "MOANA"

T74. Using the codes printed by the call to print_codes, write down the binary code for the
word you selected. Check your answer by passing the word to encode:
>> encode(s, tree)
=> 100000111101111111

The code shown above is for "ALI’I" but you will naturally see a different code if you chose
to use your own word.

T75. Try encoding some more words, by selecting them from the words array, encoding them by
hand, and then passing them to encode to check your results.
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When you are confident you understand how words are encoded in binary, you are ready for the next
set of projects, which will decode binary strings to recover the original text.

T76. According to the tree in Figure 7.8, which letter is encoded by the bits 010? By 110011?

T77. You can check your answer to the previous problem by calling print_codes again, but this
time pass the option :by_code so the codes are ordered by code:
>> print_codes(hc, :by_code)
0000 L
0001 H
001 K
...

T78. Make an array of codes using the predefined codes that come with the BitLab module:
>> codes = read_codes
=> [011010, 001010, 0011111, 110011010, ... ]

As you can see, the array is sorted by code length, with the shortest codes first.

T79. Define a variable named x to be the first binary code in the list:
>> x = codes[0]
=> 011010

T80. Try decoding this binary number, using the codes printed by the call to print_code. Check
your result by passing the code to decode:
>> decode(x, tree)
=> "UA"

T81. Try decoding some more codes by repeating the previous two exercises with different items
from the codes array.

The idea behind Huffman codes is that a word should be encoded with fewer bits when the encoding
scheme has a short bit pattern for more common letters. In the next set of exercises we’ll do some
tests to see whether this idea works for Hawaiian words.

T82. The alphabet we are using has 13 letters. This expression will tell us how many bits it would
take to encode each letter if we use a fixed-width code, i.e., if we used the standard method
of using the same number of bits for each letter:
>> log2(13).ceil
=> 4

T83. The length of the code for a word would be the number of bits per letter times the number
of letters:
>> word = "ALOHA"
=> "ALOHA"

>> word.length * 4
=> 20

T84. To count the number of bits used by a Huffman code we can ask Ruby to print the number of
bits in a message created by a call to encode:
>> encode("ALOHA", tree)
=> 100000010000110

>> encode("ALOHA", tree).length
=> 15

So the Huffman code for this test word saves five bits. That’s not surprising, since the word
has two A’s, and the Huffman code for A is the shortest code.
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11000 10 0001 10 0000 010

0100 0010 1010 0010 0011 0110fixed length code (4 bits per letter):

Huffman code (variable number of bits per letter):

Figure 7.10: A code with the same number of bits for each letter would use 24 bits to encode
“MAHALO,” but the Huffman code requires only 20 bits.

T85. Since we’re going to run this same test a few more times let’s define a method that will print
the number of bits in each encoding:
>> def test(s, t) puts s.length * 4; puts encode(s, t).length end
=> nil

T86. Pass a string and the tree to this new method:
>> test("MAHALO", tree)
24
20
=> nil

The first number printed is the number of bits for a fixed-width code, the second is the
number of bits for the Huffman code (Figure 7.10).

T87. Try a word that has one of the infrequent letters:
>> test("WIKI", tree)
16
17
=> nil

Even though the code requires six bits for the W, the K is shorter, so the total number of bits
is almost the same.

T88. Try a few more tests:
>> test("KAKA", t)

>> test("POHAKU", t)

>> test("HUMUHUMUNUKUNUKUAPUA’A", t)

© Make a new method named diff that is just like test (defined in Problem T85) except
instead of printing the two lengths, it returns the difference of the lengths. For example:
>> diff("MAHALO", tree)
=> 4

because the encoding of MAHALO with the Huffman tree is 4 bits shorter.

© Use a call to words.each to iterate over all of the test words, calling diff to see how many
bits are saved by the Huffman code. What is the total over all the words in the test set?

© What do you think will happen if an error occurs in a message encoded by a Huffman tree?
Encode a long word or place name, e.g.,
>> msg = encode("HONOLULU", tree)
=> 000101011100100000011000000110

Next enter an expression that decodes a garbled copy of the message:
>> decode( garbled(msg, 1), tree )
=> "HEWLULU"

Can you explain what happened to this message?
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7.6 Summary

The general topic for this chapter was data representation: how to encode information as
a sequence of 1s and 0s so it can be stored in a computer’s memory, saved in a file, or
transmitted over a network.

We focused on techniques for encoding text. The simplest method simply assigns a unique
pattern for each letter in an alphabet. The number of bits to use in a code depends on the
size of the alphabet. For example, to encode the 26 letters used for English words, we need
5 bits for each letter. That’s because there are 25 different 5-bit numbers, and since 25 = 32
there are enough patterns to assign a different sequence of 1s and 0s to each letter.

The general formula for figuring out how many bits are needed to encode a set of items
is dlog2 ne, where n is the number of items, and the notation dxe means “round x up to
the next integer.” So to include upper and lowercase letters, digits, and punctuation marks
in a coding scheme, we would simply add up the number of symbols, compute the base-2
logarithm, and round up. The same idea works for any type of data; an example used in
Section 7.1 was a coding scheme for answers on a questionnaire, where there are a fixed
number of choices for each response.

We also looked at algorithms that work with binary encodings. An error detection algo-
rithm examines a bit pattern to see if anything has changed since the data was originally
encoded. The simplest algorithms are based on the idea of parity, which is just a count of
the number of 1 bits in a piece of data. When the data is first encoded, an extra bit, called
the parity bit, is added to the end of the code. The bit that is added is chosen so the total
number of 1s is an even number. Then, if any one of the bits changes, the total will be an
odd number, and we know something has gone wrong. More sophisticated algorithms can
detect more than one change, and in some cases can even figure out which bits changed
and correct the error.

Another type of algorithms that works with encoded information is a data compression
algorithm. We looked at a simple technique that is based on the frequency of the letters in
an alphabet. The idea is to use only a few bits to encode common letters, and more bits
for uncommon letters, and as a result (on average) a complete piece of text will require a
smaller number of bits to encode.

The Huffman tree algorithm touches on many of the themes from earlier chapters. Chap-
ter 6 introduced the idea of a data structure, and made the point that how data is organized
plays an important role in computation. That’s certainly the situation for the Huffman tree
algorithm, since the steps are defined in terms of a priority queue. The fact that nodes are
always sorted in the queue makes it easy to see how a process that repeatedly removes the
first two items always selects the two with the lowest frequency. Being able to save a new
node in the queue, knowing that it will find its proper place in line, leads to the definition
of a simple, yet elegant, algorithm for building a tree.

Another theme from earlier chapters is the strategy of using iteration to repeat the same
basic steps. The goal of the Huffman tree algorithm is to assemble a collection of nodes into
a final tree structure. The algorithm starts with a list of disconnected nodes. Each iteration
makes definite progress toward the goal, since each step connects two pieces of the tree,
and the number of disconnected pieces shrinks by one on each iteration.
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Concepts and Terminology Introduced in This Chapter

encoding A method for representing a piece of data as a sequence
of bits (binary digits 0 and 1)

decoding The opposite of encoding, a process for figuring out what
is represented by a sequence of bits

error detection An algorithm that decides whether a binary code was
altered since it was first created

parity A simple technique for error detection, attaches an extra
bit to a code

text compression An algorithm that reduces the number bits needed to en-
code a piece of data

binary tree A data structure that represents relationships between
objects; each node in a binary tree has at most two de-
scendants

Huffman tree A binary tree where each leaf node corresponds to a char-
acter, and the path from the root to a leaf defines the
code for that character

priority queue A data structure, similar to an array, except objects are
always in order

Exercises

1. Figure 7.2 shows how responses to a questionnaire can be encoded in binary. Suppose the list
of states is extended to include the District of Columbia and the U.S. Territories (e.g., Guam
or Puerto Rico). How many additional responses can be encoded before the code needs to be
expanded to 7 bits?

2. Suppose the survey asks which country a person lives in, instead of which state. How many bits
would be needed to encode a country ID? (There are 192 member states in the United Nations.)

3. If the survey is expanded to include other sports, how many different team IDs could be encoded
if the code used 9 bits for a person’s favorite team?

4. What are the ASCII codes of the following characters?

Q w e r t !

Note: you can use IRB to check your answer:
>> "Qwert!".each_byte { |x| puts x.code(7) }

5. What characters are encoded by the following binary numbers (based on the ASCII coding
scheme)?

(a) 1111000 (d) 1101111 (g) 0101000

(b) 0101110 (e) 1100100 (h) 0110111

(c) 1100011 (f) 1100101 (i) 0101001

6. Extend each of the codes shown in the previous problem with a parity bit that results in an 8-bit
code with even parity (i.e., an even number of 1 bits).
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7. The codes shown below were originally made by a transmitter that added an even parity bit.
Which codes have a single-bit error somewhere in the code?

(a) 11100111 (d) 11100001 (g) 11000111

(b) 11111011 (e) 11100100 (h) 11001010

(c) 11100100 (f) 11010000 (i) 01000010

The next questions all refer to the Huffman tree in the figure at the top of this page. The tree
defines a code for the 20 letters used to abbreviate amino acids, based on their frequency in
protein molecules. If you want to check your answers, the letter frequencies can be read by
calling read_frequencies(:aafreq).

8. Which letters have the shortest codes?

9. Which letters have the longest codes?

10. What is the code for the letter M? For V?

11. Use the tree to encode the following sequences of letters:
a) MGF
b) GARW
c) VAEYNK

12. Which letter is encoded by the bits 1001? By 101011?

13. Use the tree to decode the following strings of bits (note: the decoded words are all common
English words):

a) 10110011

b) 011011001001

c) 01101100101101011110

14. DNA sequences can be written as strings made up of the letters A, T, C, and G. Describe the
code you would get if you built a Huffman tree for these characters, assuming each letter has
the same probability (0.25).
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15. © Find a web site with a Hawaiian-English dictionary, or another source of Hawaiian words.
Can you find a word that would be longer if encoded with a Huffman code than with a standard
4-bit code?

16. © Explain what would happen if an error changes a single bit in a message encoded with a Huff-
man code. Try some experiments that make encoded Hawaiian words and then call garbled
to change one bit. Can you still decode the resulting bit string?

17. © After working on the previous project, try some experiments that add a single error to some
long words with 7 or more letters. Instead of calling garbled to add a random error, call
flip to introduce an error somewhere toward the front of the message. Now pass the result to
decode. What happens? Is the decoding process hopelessly lost, or does it eventually recover
and start correctly decoding letters toward the end of the word?





Chapter 8

The War of the Words
An introduction to computer architecture and assembly language
programming

The first machines capable of carrying out the steps of an algorithm were based on the
technology that was available when the machines were designed. Early computers used
basic mechanical devices like gears, levers, pulleys, and rotating axles.

From the early 1800s, when the first computing machines were conceived, until the mid
1940s, when the first fully automatic computers were working, progress in computing went
hand in hand with progress in technology. Improved materials and better manufacturing
techniques allowed steady improvement in calculators and computers. The introduction of
the vacuum tube, which was basically an “electronic switch” that could take the place of
older mechanical switches, was a major step. The ENIAC, the first electronic machine, could
carry out its arithmetic operations 1000 times faster than its electromechanical predeces-
sors.

It was another innovation from this era that made it possible for later computers to evolve
into the machines we use today. This innovation was more than simply an improvement in
technology. It was a conceptual breakthrough in how computers were organized.

Up until 1945, the program that controlled the sequences of operations carried out by a
machine was external to the machine itself. The data processed by the machine was stored
internally, encoded in the form of decimal or binary digits, using techniques similar to those
described in the last chapter. The programs that controlled the machines, however, were
typically written on punch cards or paper tapes, and the operations were read one at a time
as the machine worked its way through the algorithm. To program the ENIAC, cables were
plugged into a panel on the front of the machine (Figure 8.1). These cables connected
different parts of the processor, so that output from one component was fed as input to
another component.

197
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Figure 8.1: The ENIAC was programmed by plugging cables into a panel on the front of the machine.

The major innovation that changed computer science and enabled the phenomenal growth
in computing since the 1940s was the idea that the steps in a program could be stored in-
side the computer along with the data. Computer scientists use the word “architecture”
to describe how a set of processors, memories, and I/O devices are interconnected. This
new design eventually became known as the von Neumann architecture, after John von
Neumann (1903–1957), the Hungarian-born American mathematician who wrote the first
paper that proposed storing both programs and data in a computer’s main memory unit
(Figure 8.2).

It would be hard to overstate just how important this idea has been in the development
of computer science, since it has had a major impact on almost every area, including com-
puter technology, programming languages, software engineering, and theoretical computer
science. In terms of computer technology, modern systems would not be able to execute
programs anywhere nearly as quickly if programs were still stored externally. Computer
chips today can execute billions of arithmetic operations each second, but all that comput-
ing power would be wasted if processors had to read instructions from an external source

 CPU   Memory

fetch

store

Figure 8.2: In a von Neumann
(stored-program) computer, the
memory holds the encoded forms
of both instructions and data.
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that couldn’t provide commands quickly enough to keep the processor running at full speed.
When the program is in the same memory as the data, processors can access instructions
just as quickly and easily as data.

The idea of a stored-program computer opened up the possibility of implementing algo-
rithms by using programming languages like Ruby, Java, or C++ to describe the steps in an
algorithm. The first stored program computers were programmed by writing out extremely
detailed step-by-step instructions, where each step corresponded to one of the operations
the machine was capable of executing. This type of program is called called a “machine lan-
guage” program, because the operations were defined in terms of what the machine could
do. Now, however, we write programs in “high level languages” that describe operations in
more abstract mathematical terms. Text editors, compilers, and other applications can treat
programs as data. A compiler reads instructions written in a high level language and trans-
lates them into the encoded form that is stored in memory where a processor can execute
them.

In this chapter we will explore the idea that programs are, like numbers and strings, a
form of data that can be encoded in binary and stored in memory. The projects are based
on an old computer game named Corewar. The game is essentially a computerized version
of Battleship. Two programs are loaded into a computer’s memory, and they take turn
executing instructions. The idea is for a program to lob a “bomb” at the other program that
will cause it to stop executing. The bombs are the encoded form of the machine language
instruction that tells the machine to halt. A program will pick up a bomb and store it
somewhere else in memory, hoping to write it over the code of the other program, so that
when the second program executes the instruction it halts and loses the game.

The games are run inside a specially constructed machine that is organized along the lines
suggested by von Neumann, where a processor is connected to a memory that holds both
instructions and data. To the first program, the bomb is simply a piece of data that can be
moved around from one place to another in memory. To the second program, however, the
bomb is a machine instruction that tells the program to halt. The fact that instructions and

Core Memory

The “core” in “Corewar” comes from the main type of
technology used to implement computer memories from
the 1950s through the 1970s.

A core was a small “donut” made of a material that
could be magnetized in a clockwise or counterclockwise
direction.  Wires threaded through a core could read 
the direction or set the field to either direction.

The word “core” is still used as a synonym for main memory in a computer system.  
An “in-core” algorithm is one that carries out all its steps on data that has been read 
into memory, while an “out-of-core” algorithm can work on data that is too large to 
read into memory all at once.  A “core dump” is a file created by writing the entire 
contents of memory out to a disk or CD.
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data are both encoded and stored in the same memory unit is the central concept explored
in the projects in this chapter.

Computer architects refer to an item that can be stored in a single location in memory
as a “word.” In a von Neumann architecture, a word can be either an instruction or a
simple piece of data like a number or a character. The title of this chapter summarizes what
is going on inside the machine during a game of Corewar: two collections of words are
throwing data at each other until one of them is forced to halt.

8.1 Hello, MARS

The computer used to play Corewar is named MARS. In order to play a game, we don’t
need to build a MARS system out of processor and RAM chips, but instead we can write
a program in Ruby that mimics the actions of a real system. A program that emulates the
actions of a computer is known as a virtual machine, or VM..

MARS and other processors based on the von Neumann architecture execute programs
according to what is known as the fetch-decode-execute cycle. The cycle starts when the
machine reads an instruction from memory. This is the “fetch” portion of the cycle.

When the instruction arrives, the processor decodes it in order to figure out what to do.
Often this phase performs additional memory operations; for example, if the instruction tells
the machine to add two numbers, the decode phase is when the machine reads the values
from memory. Finally, after all the necessary information has been gathered, the machine
carries out the last phase of the cycle and does the actual instruction execution. When the
operation is complete, e.g., after the two numbers have been added and the result saved,
the cycle repeats with the next instruction in the program.

In our virtual machine simulator, memory is simply a large array. The items in the array
will be a new type of object, called a Word, that will represent either a single MARS machine
language instruction or a single piece of integer data. When the virtual machine fetches
a word from memory, it specifies the array index of the item it wants. For example, if
the memory is named mem, and the processor wants to execute the instruction in the first
location in memory, it retrieves the word from mem[0]. When computer architects talk

Virtual Worlds

The word “virtual” was originally used in computer architecture to describe something 
that was not really present but was implemented instead by software.  

For example, some old computers had 64KB of physical memory, meaning there 
were 65,536 locations to store information in the RAM chips. By special techniques 
implemented in the operating system, a program could behave as if there were several 
megabytes of memory.  This extended memory was known as the virtual memory.

The idea of a virtual machine is still widely used in computer science.  A familiar 
example is the Java Virtual Machine, or JVM.  Web designers write “applets” in Java, 
and when users connect to a web site, the applet is downloaded and executed by a 
JVM that is part of a web browser. 
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x       DAT #7
y       DAT #4
hello   ADD x, y      ; add the contents of x to y
        DAT #0        ; a DAT instruction halts the machine
        end hello

; test_hello.txt -- a "hello, world" program for MARS

Figure 8.3: A “hello, world” program in Recode, the assembly language of the MARS virtual machine.
This program executes one instruction (the ADD on the line labeled hello) and then halts.

about reading or writing items in memory, they use the term address to refer to a memory
location, so they would say “the processor fetches the word from memory address 0.”

To run a MARS program, we will use a text editor to create a file that has a single MARS
instruction on each line. But instead of trying to figure out what the binary encoding of
each instruction might be, we can use a symbolic notation known as assembly language.
An assembly language program is a plain text file that has one line for each machine instruc-
tion, along with comments and a few other lines that tell the computer how to execute the
program. The assembly language for our virtual machine is known as Redcode. The name
of the machine, “MARS,” is an acronym for Memory Array Redcode Simulator.

Our first project with MARS will be the machine language equivalent of a “hello, world”
program. This program doesn’t print a message, like a normal “hello, world” program, but
it serves the same general purpose: it’s a trivial program that illustrates how to use the
machine. The MARS version of “hello, world” will just add two numbers and then halt. The
Redcode instructions for this program are shown in Figure 8.3.

The main thing to remember when looking at an assembly language program is that
each instruction in the program will be translated into a word object that will be stored in
memory. The program of Figure 8.3 has four instructions, and when we test it, the program
will be loaded into memory locations 0 through 3. The first two lines define the data values
that will be added, the third has the instruction that performs the addition, and the fourth
is the word that halts the program.

At the front of each line there can be a label, which is like a variable name or method
name in a Ruby program. Labels are typically simple names, written in lowercase, that
remind us what is stored in memory at that location. If a line does not have a label, there
need to be spaces at the front of the line so the machine knows there is no label.

The most important part of each line is the opcode, which is short for “operation code.”
It is the opcode that specifies what the processor should do when it fetches this word. The
two kinds of instructions used in this trivial little program are ADD and DAT. ADD, as you
might expect, tells the machine to add two numbers, and DAT indicates that the word holds
a piece of data.

Following the opcode there will be one or two operands. ADD instructions have two
operands. When the machine executes an instruction of the form ADD x, y it goes out to
memory to find the values in locations specified by x and y, adds them, and stores the result
back in memory at location y. Notice that this instruction updates memory, and that the old
value in location y will be replaced by the sum.
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For our programs, each DAT instruction will have just one operand, which will be a piece
of data used by the program. MARS programs can only operate on integer data, but the
numbers can be positive or negative.

The last line in the program in Figure 8.3 is a special statement. It just has the word end

followed by a label. This tells MARS that when the program is loaded into memory the first
instruction to execute is the one on the line labeled hello.

For the first set of experiments with MARS programs we will make a small “test ma-
chine” (called MiniMARS) to run our test programs. These machines have a tiny mem-
ory unit that is just big enough to hold a single program. You can think of it as a USB
“memory stick” containing a machine language program being inserted into the side of a
MARS processor. To make one of these test machines, pass the name of the program to a
method named make_test_machine. If you have your own program in a file, for example
my_redcode.txt, you would call

make_test_machine("my_redcode.txt")

The “hello, world” program and some other small tests are included as part MARSLab, the
module we will use for projects in this chapter. To make a test machine using one of these
programs, put a colon in front of the name, instead of enclosing it in quotes. This statement
in IRB will create a test machine for the “hello, world” program:

>> m = make_test_machine(:test_hello)
=> #<MiniMARS ... >

If you pass make_test_machine a symbol it will look for one of the predefined programs
included in the MARSLab module, otherwise it will look for a file in your project directory.

When a program is loaded into memory, the method that translates the Redcode instruc-
tions into machine language removes the labels and converts the opcodes and operands into
an internal binary representation. But for our projects, in order to be able to follow the ex-
ecution of a program, the MARS simulator will print instructions and data in a format that
looks like the original Redcode. To see what a program looks like in memory, call a method
named dump. Here is the machine language translation of the “hello, world” program:

>> m.dump
0000: DAT #0 #7
0001: DAT #0 #4
0002: ADD -2 -1
0003: DAT #0 #0

Notice how the labels in the ADD instruction have been translated into addresses. Since
the word labeled x in the Redcode program is two places before the ADD, the assembler
replaced the x with -2. Similarly, the word labeled y is one location in front of the ADD,
so y was replaced by -1. In later examples we might see positive numbers as operands, in
cases where an instruction refers to data that is later in the program. The important thing
to remember is that when MARS executes an instruction it uses these numbers to create
addresses, not as the data to be added. We’ll come back to this point later in the chapter.
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Tutorial Project

The MARS virtual machine and other Ruby methods you will use for this project are in a module
named MARSLab. Start a Ruby session and include this module:

>> include MARSLab
=> Object

T1. The “hello, world” program described in this section is in a file named test_hello. Make
a test machine for this program:
>> m = make_test_machine(:test_hello)
=> #<MiniMARS mem = [DAT #0 #7, ... pc = [ *2 ]>

This statement asked Ruby to make a MiniMARS test machine object and save a reference to
it in the variable named m.

T2. Call the dump method to get a “core dump” showing the complete contents of the memory
of this machine:
>> m.dump
0000: DAT #0 #7
0001: DAT #0 #4
...

The number at the front of each line is the memory address where an item translated from
the original Redcode program was stored.

You may have noticed the dump method prints two operands for the DAT instructions. That’s because
the internal machine language always has two operands, even though some Redcode instructions just
have one. In our programs the first operand on a DAT instruction will always be #0 and we can safely
ignore it. The data we use will always be the second item printed after DAT.

T3. When this test machine was initialized it was set up so the first instruction will come from
memory location 2. Call a method named step to tell the machine to fetch and execute this
instruction:
>> m.step
=> ADD -2 -1

The value returned by this method is the instruction that was just executed. As expected, the
machine executed the ADD instruction.

What we want to do now is see if the ADD instruction did in fact add the contents of the two locations
specified in the instruction. The ADD instruction should have added the contents of the memory cell
two places in front of the instruction to the memory cell one place in front of the instruction. Since
the instruction is in memory address 2, the contents of cell 0 should have been added to cell 1.

T4. Call the dump method again:
>> m.dump
0000: DAT #0 #7
0001: DAT #0 #11
...

Do you see how the item in memory location 1 is now the sum of 7 and 4?

Every time we call step the machine keeps track of which instruction it just executed and updates the
address used to fetch instructions so the next call to step will get the next instruction in the program.
There is also an “on/off” switch inside the machine. Executing a DAT instruction halts the current
program by setting this switch to :halt.
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T5. Call a method named status to get some information about the current state of the ma-
chine:
>> m.status
Run: continue PC: [ *3 ]

This output means the program is still running (“continue” means the MARS program has not
halted yet) and the program counter (the address of the next instruction to fetch) is memory
location 3.

T6. Call the step method again:
>> m.step
=> DAT #0 #0

As expected, the machine executed the DAT instruction in location 1.

T7. Call the status method again:
>> m.status
Run: halt

The state has changed to halt because the DAT instruction terminated the program.

T8. If we try to call step again we’ll get an error message because there are no more steps to
execute:
>> m.step
=> "machine halted"

8.2 The Temperature on MARS

As a way to introduce some of the other operations that can be used in Redcode programs,
let’s look at a program that converts temperatures from Fahrenheit to Celsius. When we did
this calculation in Ruby we wrote it as a single expression:

c = (f - 32) * 5 / 9

If we want to do this same computation with MARS we need to write a Redcode program
that has DAT instructions for the variables f and c and a sequence of machine instructions
that carry out the steps in the calculation. When the program halts we’ll look in the memory
cell designated to hold the value of c to find the converted temperature value.

MARS is a very simple machine, with a total of only 11 instructions. There are ADD
and SUB instructions, to do addition and subtraction, but there are no multiply or divide
instructions. We can still do multiplication and division, though. We just have to implement
the algorithms that do these operations in the form of a sequence of MARS instructions.

To multiply x times y we can initialize a memory cell to 0, and then add x to it y times.
We can implement this operation using three Redcode instructions, as shown in Figure 8.4.
The first instruction is one we’ve seen already. It just tells the machine to add the contents
of x to a cell named acc, which has presumably been initialized with a DAT #0 instruction.
The label acc is short for “accumulator.”

The second instruction subtracts 1 from the memory cell that holds the value of y. What
is new about this instruction is the # symbol in front of the 1. The # tells MARS to subtract
the number 1, instead of using the 1 to create an address to fetch a piece of data from
memory. An operand with a # in front is called an immediate operand, and it means “use
this number as the data” instead of “use this number as an address to fetch the data from.”
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Figure 8.4: To multiply x by y, set an
accumulator to 0 and then add x
to it y times.

mult    ADD x, acc
        SUB #1, y
        JMN mult, y

; a loop to compute x * y 

The third instruction is what is known as a branch instruction, or a “jump.” This instruc-
tion tells MARS to look at the value in y, and if it is not 0, to go back to the cell labeled
mult and continue execution there. The JMN opcode stands for “JuMp if Not zero.” The
two operands are the label on an instruction to jump to, and the name of a memory location
to check to see if it is 0.

These three instructions define an iteration, in this case a simple loop that is executed
over and over until y counts down to 0. The number of loop executions depends on the
value initially stored in memory location y. As an example, if x contains DAT #6, and y

contains DAT #7, this loop will be executed seven times, each time adding 6 to acc. In
other words, it will compute 6× 7.

The complete code for the Celsius program is in a file named test_celsius (it’s also
shown in Figure 8.5). The input temperature is placed in the memory location labeled fahr.
When the program halts, the output will be in the location labeled cels. The first step is
to subtract 32 from the input temperature. Next, we want to multiply this value by 5, so
the accumulator is set to 0, and a counter is set to 5. The loop that starts at the instruction
labeled mult is iterated five times, and after the last iteration the product of (fahr-32)*5
is stored in the cell labeled acc.

fahr    DAT #80             ; input temperature
cels    DAT #0              ; store result here
ftmp    DAT #0              ; save fahr-32 here
start   MOV fahr, ftmp      ; (1) subtract 32
        SUB #32, ftmp
mult    ADD ftmp, acc       ; (2) multiply by 5
        SUB #1, count
        JMN mult, count
div     SUB #9, acc         ; (3) divide by 9
        SLT #0, acc
        DAT #0              ; stop here when division done
        ADD #1, cels
        JMP div
acc     DAT #0              ; accumulator
count   DAT #5              ; counter
        end start

; compute cels = (fahr - 32) * 5 / 9 and halt

Figure 8.5: A Redcode program to convert a temperature value from Fahrenheit to Celsius. The
input temperature is the value of the DAT instruction with the label fahr. After the program
runs, the DAT instruction labeled cels will hold the output temperature.
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The division is implemented by a loop that is similar to the multiply loop. The algorithm
for dividing x by y is to count how many times y can be subtracted from x. Since we want to
divide the value in acc by 9, this second loop repeatedly subtracts 9 from acc, and keeps
track of the number of times the loop is executed by adding 1 to cels each time through
the loop. The test for the end of this second iteration is a little trickier. The instruction
SLT #0, acc means “skip the next instruction if 0 < acc” (SLT is an abbreviation for
“Skip Less Than”). So as long as acc has a value greater than 0, the machine skips over the
halt instruction, adds 1 to cels, and jumps back to the top of the loop at the instruction
labeled div. As soon as acc becomes less than 0 the machine does not do the skip, but
instead executes the DAT #0 instruction and halts.

Tutorial Project

Before running the complete Fahrenheit-to-Celsius program, we will do some experiments with the
loop that does the multiplication. A small test program is in a file named test_mult. The Recode
program is shown at the bottom of the page. The first three lines are DAT instructions that define
locations for the input values and the place where the result will go, and the next three lines have the
instructions for the multiplication loop.

T9. You can ask MARS to print the source code for a program by calling a method named
listing. Type this expression to see the Recode instructions for the multiplication test
program:
>> MARS.listing(:test_mult)

T10. Make a test machine that has this program loaded into its memory:
>> m = make_test_machine(:test_mult)
=> #<MiniMARS ... >

T11. Use the dump method to look at the machine language. Since all we want to do is look at
the DAT instructions in memory locations 0 through 2, pass those two addresses to dump so
it prints only those locations:
>> m.dump(0,2)
0000: DAT #0 #7
0001: DAT #0 #6
0002: DAT #0 #0

What these lines show is that the two values that will be multiplied are 7 and 6, and the
result is initialized to 0.

x       DAT #7            ; multiplicand
y       DAT #6            ; multiplier
acc     DAT #0            ; accumulator
mult    ADD x, acc        ; add x to acc
        SUB #1, y         ; subtract 1 from y
        JMN mult, y       ; repeat if y is not 0
        DAT #0            ; algorithm halts here
        end mult

;redcode
;name test-mult
;strategy   multiplication demo: compute acc = x * y
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T12. Call the step method three times, so that each instruction in the loop is executed once:
>> m.step
=> ADD -3 -1

>> m.step
=> SUB #1 -3

>> m.step
=> JMN -2 -4

The lines printed by step are machine language instructions, where labels have been turned
into addresses. ADD -3 -1 means “add the contents of the word three locations before this
instruction to the word one location before this instruction.” Do you see what the SUB in-
struction is supposed to do? And how the JMN instruction means “jump back two instructions
if the value in the word four locations back is not zero”?

T13. Call dump again to look at the memory cells that hold the data:
>> m.dump(0,2)
0000: DAT #0 #7
0001: DAT #0 #5
0002: DAT #0 #7

Can you see how the number 7 was added to acc (memory location 2), and how the counter
(memory location 1) decreased by 1?

T14. Instead of calling step three times, we can call another method named run. run will call
step for us, and return either when the program stops or it has called step the specified
number of times:
>> m.run(3)
=> 3

The return value is the number of instructions that were executed.

T15. Call dump again:
>> m.dump(0,2)
0000: DAT #0 #7
0001: DAT #0 #4
0002: DAT #0 #14

Once again 7 was added to acc, and 1 was subtracted from count.

T16. This expression will execute the loop four times by repeatedly calling run and then dump:
>> 4.times { m.run(3); puts "--"; m.dump(3,5) }
--
0003: ADD -3 -1
0004: SUB #1 -3
0005: JMN -2 -4
--
0003: ADD -3 -1
0004: SUB #1 -3
0005: JMN -2 -4
...

T17. The next instruction should be the DAT instruction that terminates the algorithm:
>> m.step
=> DAT #0 #0

If you don’t see the DAT instruction, call run(3) a few times until the return value is 0.

T18. Finally, look at the memory location that holds the final answer. Does acc contain 6× 7?
>> m.dump(0,2)
0000: DAT #0 #7
0001: DAT #0 #0
0002: DAT #0 #42
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T19. If you want to play around with this algorithm some more, save a copy of the program in a
file in your project directory by calling checkout:
>> MARS.checkout(:test_mult, "my_test_mult.txt")
Copy of test_mult saved in my_test_mult.txt

Now you can edit the file (e.g., to change the value of x or y), save it, make a new test
machine for it, and running it again. When you make a test machine for your copy of the
program, enclose the name in quotes:
>> m = make_test_machine("my_test_mult.txt")
=> #<MiniMARS mem = [DAT #0 #7, ... pc = [ *3 ]>

T20. Make a test machine that has the temperature conversion program loaded into its memory:
>> m = make_test_machine(:test_celsius)
=> #<MiniMARS ... >

T21. Look at the first two locations in memory. The first is the input temperature, and the second
is where the output temperature will be placed when the program is done:
>> m.dump(0,1)
0000: DAT #0 #80
0001: DAT #0 #0

T22. Run the program:
>> m.run
=> 124

The return value means the machine executed 124 instructions before it halted.

T23. Look at the first two memory locations again:
>> m.dump(0,1)
0000: DAT #0 #80
0001: DAT #0 #26

Does the second location hold the Celsius equivalent of 80◦F?

You can now move on to the next section, which will explain how MARS runs two or more programs
that compete against each other in a game of Corewar, but if you want to explore the division algorithm
you can work on the following exercises.

© The test program for the division algorithm is in a file named test_div:
>> m = make_test_machine(:test_div)
=> #<MiniMARS ... >

© Use dump to look at the first three memory locations:
>> m.dump(0,2)
0000: DAT #0 #20
0001: DAT #0 #9
0002: DAT #0 #0

© When the program runs, it should compute 20÷ 9 and store the result in memory location 2.
Run the program and look at memory after the program halts. Are the results correct?

© Check out a copy of the program, and try some experiments with other data values:
>> MARS.checkout(:test_div, "my_test_div.txt")
Copy of test_div saved in my_test_div.txt
=> nil

© There is a bug in this code: it gives the wrong answer for x÷ y when y divides x evenly, i.e.,
when the remainder is 0. Try the program with x = 20 and y = 10. Can you see what the
problem is?
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Figure 8.6: The Dwarf program stores
DAT instructions in every fourth
memory cell.

bomb    DAT #0
dwarf   ADD #4, bomb
        MOV bomb, @bomb
        JMP dwarf
        end dwarf

;redcode
;name Dwarf
;author A. K. Dewdney
;strategy Throw DAT bombs at every 
;         4th memory cell.

8.3 Corewar

In Battleship, a classic board game, players choose where to place a set of ships on a rect-
angular grid that cannot be seen by the other player. When both players are set up, they
take turns calling out board locations, defined by a row and column. For example, player
A might call out “C-5.” If player B has a ship on square C-5 it is hit, and when a ship takes
enough hits it sinks.

In Corewar, our computer-based version of Battleship, two Redcode programs are assem-
bled and loaded into the MARS machine’s memory at random locations. Our VM is set up
to have a default memory size of 4096 words, so instructions can be loaded into any loca-
tion between 0 and 4095. Neither program is given any information about where the other
program is located.

When the machine starts it will alternate instructions from the different programs, first
executing a single instruction from Program A, then an instruction from Program B, then
A again, and so on. The idea is for a program to lob a “bomb” onto a random location in
memory, hoping to hit the other program. A bomb is simply a DAT instruction—if the other
program tries to fetch and execute the DAT, instead of the instruction that was originally
there, it will halt because a DAT serves as a halt instruction in Redcode. When a program
runs into a halt instruction it loses, and the other program is declared the winner. If both
programs are still running after a predefined number of rounds the game ends in a draw.

A very simple Corewar program, named Dwarf,1 illustrates one strategy for playing the
game. The program is very small: it has one DAT instruction (the bomb) and a three-
instruction loop (Figure 8.6). The DAT instruction in the location labeled bomb serves two
purposes in this program: it is the address of where the bomb should be thrown, and, since
it is a DAT instruction, it’s also the bomb itself. The main idea is to add 4 to this address
each time through the loop, so the bomb is stored in every fourth location in memory.

The first and third instructions in the loop are straightforward: the ADD instruction adds
4 to the address where the bomb will go, and the JMP branches back to the top of the loop.
The MOV, which stores the bomb at the specified address, illustrates a new programming
technique, called indirect addressing. Notice that there is an @ symbol before the second
operand. Without the @, an instruction like MOV x, y means “copy x to location y.” But
when the operand includes @, as in MOV x, @y, it means “copy x to the location pointed
to by y.” In other words, y is not the destination, it holds the address of the destination.

1Corewar programs often have names inspired by Dungeons and Dragons or Lord of the Rings.
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0048
0096
0144

4000
4048

Figure 8.7: Visual display of MARS memory, showing the progress of a Corewar tournament with
two Dwarf programs.

In this program the word labeled bomb holds the address where we want to throw the
DAT instruction, and by adding 4 to it each time through the loop we end up storing DAT
instructions every four locations in memory.

As the programs start getting more complex, and especially when there are two programs
in memory at once, it becomes harder and harder to follow the execution of the programs
by simply calling dump to print the contents of memory. The MARSLab module includes
another method for viewing the contents of memory. This method, called MARS.view,
opens the RubyLabs canvas (described on page 150) and draws a series of gray boxes, one
per memory cell. Since there are 4096 memory cells, they can’t all be displayed on a single
line, so they are split into a set of rows. The window shown in Figure 8.7 has 48 cells per
row. The top row has boxes for memory cells 0 through 47, the next row for cells 48 through
95, and so on.

When the MARS virtual machine is running a set of programs the view will be updated.
Each time the machine fetches a word from memory or writes a word into memory, the
corresponding box will change color. The viewer uses different colors for each program to
make it easier to watch the progress of the different programs.

Figure 8.7 shows what you might see during a tournament being played by two Dwarf
programs. A cluster of four colored cells in a row indicates where the instructions are being
executed; each time MARS fetches an instruction it colors one of these cells. When you
watch the display in action it will be easier to see, but as the programs iterate over the three
instructions in the body of the loop these cells will be changing color so you can watch the
progress of each program. The other colored cells indicate where bombs are dropped. As
the programs run you will see how bombs are placed in every fourth cell.

Figure 8.7 also helps explain how MARS deals with two issues related to memory ad-
dresses. The pointer used in indirect addressing to specify where a bomb is written out to
memory is initially set to 0, and then on successive iterations it is set to 4, 8, 12, etc. As
you can see from the pattern of colored squares in the figure, MARS interprets the pointer
to be a distance from the start of the program. Just as the number -2 in an instruction like
JMP -2 tells the machine to go to an address relative to the current instruction, a value
in a pointer tells the machine to use an address relative to where the pointer is located.
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This is a fussy little detail that you will need to understand if you want to write your own
Redcode programs, but for the “big picture” it’s enough to know that the Dwarf program
always tosses bombs at locations that start at the same address the program is loaded into.
The leftmost colored cell for each program in Figure 8.7 is the location of the pointer. The
first bomb went into a memory cell 4 places after this one, and each new bomb goes into a
location 4 places past the previous one.

The other issue is, what happens when a pointer value reaches the end of memory? With
a 4096-word memory, the addresses run from 0 to 4095. If a Dwarf program is loaded at
location 4000, will it only be able to put bombs in locations 4004, 4008, etc., up to location
4092, before it runs out of room? If that were the case, the contest wouldn’t be very fair,
since the program loaded closer to address 0 would always have an advantage. To deal with
this, MARS memory references “wrap around” to the start of memory again. If you watch
the display, you will eventually see that bombs reach the end of memory and then start over
again in the low addresses.

Tutorial Project

T24. Create the graphics window that will display the state of the MARS machine by calling the
MARS.view method:
>> MARS.view

You should see a grid of gray cells similar to the one in Figure 8.7.

T25. To play a game using two programs, call a method named contest, passing the IDs of the
programs. This command will start a game with two Dwarf programs:
>> MARS.contest(:dwarf, :dwarf)

As the programs run, the squares in the graphics window will start filling in. The contest method
will return either when one program halts or after a predefined number of rounds have been executed
(the default is 1000).

If both programs are still running and you want to continue the game for another 1000 rounds just
type MARS.run. You can pass an argument to run to specify the number of rounds to execute, e.g.,
MARS.run(50) will run 50 rounds and then return. If you want to stop the program before 1000
rounds have been executed just type ∧C (hold down the control key while typing C).

Some things to look for in the display:

• Can you see how each program is in a three-instruction loop?

• Bombs are being dropped on every fourth location, starting at the end of the set of instructions
for each program and moving toward higher addresses.

• If the programs run long enough, you should see bombs “wrap around” from high addresses to
low addresses.

T26. If you’re still not sure how the Dwarf program works, and you’d like to do some more
experiments with it, create a test machine. You can use a second parameter to tell the
make_test_machine method to make a memory with extra words:
>> m = make_test_machine(:dwarf, 20)
=> #<MiniMARS ... >

Using the techniques shown in the previous section, call dump to look at the contents of
memory, run the machine for a few steps, and then look at memory again.
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8.4 Self-Referential Code

The MARS projects up to this point have demonstrated the main idea of the von Neumann
architecture. The two major components in a computer are the processor and memory. The
memory holds encoded forms of both instructions and data, and programs are executed
through a fetch-decode-execute cycle.

One of the implications of this design is that programs can be treated as data. Programs
can make copies of other programs—or even themselves—and modify code by writing new
instructions. The project in this section will explore this idea in a little more depth.

The Dwarf program tries to force the other program in memory to halt by writing DAT #0

over the code of the other program. But the Dwarf is not limited to writing DAT instructions;
it could write any MARS instruction. One possibility is to write JMP 0 to every fourth
location. Recall that the operand in a JMP instruction is the distance, relative to the location
of the JMP, to the next instruction in the program. The Dwarf itself implements its loop
through a JMP -2 that means “go back two instructions.” So JMP 0 means “go to the
instruction in the same location as this instruction.” In other words, any program executing
this instruction would be caught in an infinite loop! It’s a small loop, containing only one
instruction, but it’s a loop nonetheless.

In more abstract terms, a program that writes JMP 0 instead of DAT #0 is trying to “stun”
the other program instead of kill it. The other program will still remain in the game, but it
can’t make any progress, since it will be stuck in the location of the JMP instruction. This
strategy might be effective in certain situations that will be explained in the next section.

The fact that a program can use any instruction as a type of data opens up another Core-
war strategy: a program can copy itself, and then jump to the location of the copy and
continue execution there. For example, suppose the Dwarf program has executed 1024 iter-
ations of its loop and the other program is still running. Since the memory size in our MARS
virtual machine is 4096 words, and the Dwarf drops a bomb on every fourth location, the
next 1024 iterations will just write DATs over the same locations. One way to get the pro-
gram to write DATs to different locations is to copy the four instructions in the Dwarf code
to a new location in memory and then jump to this new location. If the difference between
the address of the copy and the address of the original is not a multiple of four, the copy
will start writing DATs over new locations.

MOV 0, 10:

1:

2:

3:

MOV 0, 10:

MOV 0, 1

MOV 0, 1

1:

2:

3:

(a) (b)
Figure 8.8: A program named Imp

copies itself. (a) When it is first
loaded it occupies only one
memory cell. (b) After two
rounds the program has copied
itself twice, and is ready to
make a new copy.
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A very simple program that copies itself is named Imp (Figure 8.8). This program has
just one instruction: MOV 0, 1. An instruction of the form MOV x, y means “copy the
contents of location x to location y.” Here again the 0 and the 1 are interpreted as mem-
ory locations relative to the address of the instruction. The 0 means “the address of this
instruction” and the 1 means “the address following this instruction.” When the machine
executes the MOV, the instruction copies itself one location ahead in memory. When MARS
goes to fetch the next instruction for this program, it sees the newly made copy, and the
cycle repeats.

This tiny little one-instruction program simply moves through the entire memory of the
machine. Unless it is stopped or modified by the other program, after 4096 cycles the entire
MARS memory will be filled with MOV 0, 1 instructions. The natural question is, how
effective is this strategy? What will happen when the IMP writes itself over the code of the
other program?

The project in this section will be to run a contest between an Imp and a Dwarf. Before
you start, make some predictions about what might happen in this game:

• What will happen if the Imp writes its code over the Dwarf?

• Can the Imp ever cause the Dwarf to halt?

• What are the odds of the Dwarf being able to stop the Imp by writing a DAT instruction
over it?

Tutorial Project

T27. Load the Imp program into a small test machine with 10 words:
>> m = make_test_machine(:imp, 10)
=> #<MiniMARS mem = [MOV 0 1, nil, ... nil] pc = [ *0 ]>

T28. Call dump to look at the memory:
>> m.dump
0000: MOV 0 1
0001: DAT #0 #0
0002: DAT #0 #0
...

As you can see, the program is only one instruction long, and it is loaded into location 0.

T29. Tell the machine to execute one instruction, and print the memory again:
>> m.step
=> MOV 0 1

>> m.dump
0000: MOV 0 1
0001: MOV 0 1
0002: DAT #0 #0
...

Do you see how the Imp copied itself by simply moving a copy of what is in location 0 to
location 1?

T30. Step the machine a few more times, and print the memory again. Each time the machine
executed the Imp instruction it made a new copy one location further down in memory.
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T31. If you are still in the same IRB session you were in for the previous projects, type this com-
mand to clear the Dwarf programs from the MARS virtual machine and clear the display:
>> MARS.reset
=> []

T32. Start the game that pits an Imp against a Dwarf:
>> MARS.contest(:imp, :dwarf)

As these programs run it should be easy to see how the Imp moves through memory. If the contest
stops before the Imp catches up to the Dwarf, type MARS.run to run for another 1000 cycles.

Did you successfully predict what would happen when the Imp caught up to the Dwarf? If not, can you
explain what actually happened? There are two different outcomes, depending on which instruction
the Dwarf is executing when the Imp arrives. Try running the contest a few times until you see both
situations.

8.5 © Clones

In the previous section we saw how a Redcode program can make a copy of its instructions,
and then branch to the copy so that it starts executing from a new location. We can take this
idea one step further—we can also split the current program into two parts, so that both
copies are active. Not only is the program executing instructions from the new location, but
it also continues to execute the original instructions. It’s as if the program was able to clone
itself, so that two identical copies are running.

The MARS instruction that activates the second copy of the program is named SPL. When
the machine executes an instruction of the form SPL x, it starts running a new program
located at memory address x. But it also keeps the current program running, and the
instruction immediately following the SPL is also executed.

It is not necessary for the program at label x to be an exact copy of the original. Corewar
programs often have separate little pieces that each do a specialized task. A piece can be
activated by executing a SPL instruction that tells the machine to start that piece running
while also keeping the original program going.

In modern computing terminology, we would say that the SPL instructions starts a new
thread. Writing a program that has two or more threads is more difficult than programming
with a single thread, but it can be very useful for complex applications. For example, web
browsers typically have multiple threads, with threads for the different windows and for
pieces of code that manage menus and operations inside browser windows.

Monitoring a program on the visual display when it executes a SPL instruction is similar
to playing an old video arcade game named Centipede. A worm-like creature winds its
way down the screen, and when a player shoots the centipede it splits in two, and each
piece becomes a new, shorter worm. When you watch a MARS program that contains SPL
instructions, you will see a new thread appear in the display. For example, if you were to
run a version of Dwarf that copies itself and then uses SPL to start the copy, you would soon
see two places on the screen running the 3-instruction main loop of the Dwarf program. To
let you know that both copies are from the same player, both will have the same color.

Making new threads of execution comes at a cost, both in real applications and in MARS
programs. In MARS, the new thread alternates steps with the old thread. Suppose program
A executes a SPL, breaking itself into two threads, but program B still has a single thread.
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The machine will execute one instruction from A, then one from B, then one from the second
thread in A, then back to B, then back to the first thread in A again. In other words, the
machine cycles are still split evenly between A and B, but within program A, the machine
will switch back and forth between the two threads. Even though A has two threads, the
programs running in those threads proceed half as quickly as the single program before the
split.

What this means in terms of Corewar strategy is that there is an advantage in breaking
into multiple threads. A program is still alive as long as any of its threads is still running.
But this advantage is offset by the fact that each thread is running more slowly, and as a
result it will be easier for the other program to knock it out.

In the previous section there was a discussion of whether it made sense for a program to
try to “stun” an opponent by writing JMP 0 instead of killing it by writing DAT #0. One
place where this strategy might be advantageous is if a program expects to compete against
an opponent that starts several threads. If a thread is killed, the surviving threads will all
speed up slightly because there is one less thread to share that program’s machine cycles.
But if a thread is stunned, it still consumes its share of machine cycles. All of the opponent’s
threads still run at the same slow speed, and it may eventually be easier to kill them all off.

Tutorial Project

© A program named test_threads has an example of how to use the SPL instruction. Type
this expression to get a listing of the program (or call MARS.checkout if you want to get a
copy you can view in your text editor):
>> MARS.listing(:test_threads)
start SPL imp

JMP start
imp MOV 0, 1

© Make a test machine to try out this program. Since the program uses the Imp strategy to fill
memory with copies of itself, pass a second argument to make_test_machine to add extra
room in the memory:
>> m = make_test_machine(:test_threads, 10)
=> #<MiniMARS mem = [...] pc = [ *0 ]>

© Get the machine’s status:
>> m.status
Run: ready PC: [ *0 ]

The program counter (PC) shows there is one thread, and that the next instruction for this
thread is in location 0.

© Call step to execute the first instruction in the program:
>> m.step
=> SPL 2 #0

© Now get the status again:
>> m.status
Run: continue PC: [ *1 2 ]

There is a lot of new information here. First, notice there are two threads. The next instruc-
tion to be executed for the first thread is in location 1. That’s the JMP instruction that will
be executed by the original thread. The new thread is starting at location 2, which is where
the Imp is located.



216 Chapter 8 The War of the Words

© Call step again, and then look at the machine status:
>> m.step
=> JMP -1 #0

>> m.status
Run: continue PC: [ 0 *2 ]

The new status shows that the first thread executed the JMP, so its next instruction will come
from location 0. It also shows that the next instruction for this program will come from the
second thread. The asterisk in front of an address indicates the address that will has the
instruction that will be executed next.

If you keep calling step for this test machine, you will see that it continually launches new Imps
(MOV 0, 1 instructions). More and more threads will be added to the list printed for the PC, and you
should see that the machine cycles between all active threads.

© A program named mice uses the strategy of cloning itself, making so many copies that it
would be hard for the opponent to stop them all. Run a contest that uses mice and one of
the other programs, e.g.,
>> MARS.contest(:mice, :dwarf)
=> nil

Don’t forget to call MARS.reset if you need to clear the machine after a previous contest.
Can you see how the mice program is making copies of itself?

© When mice runs, do the copies also make copies? Will the number of mice “clones” grow
exponentially?

8.6 Summary

The important idea introduced in this chapter is the concept of a stored program computer.
Proposed by mathematician John von Neumann in 1945, the plan of connecting a processor
to a memory that holds both instructions and data is the dominant architecture used in
practically every computer system today. Modern systems have a variety of different kinds of
memories, sophisticated “multi-level cache” systems to improve performance, and separate
caches for instructions and data, but these are all methods for efficiently implementing the
basic plan of the stored program computer.

Being able to encode programs as data has had far-reaching implications beyond the area
of computer engineering. In order to store a program in memory, it has to be encoded in
the form of binary symbols. The first computer programs were written in a binary machine
language, but over the years more abstract notations were developed. An assembly lan-
guage, like the Recode language we used in this chapter, has symbolic names like ADD and
MOV for machine operations, and allows us to assign names to memory locations. Modern
programmers use higher level (more abstract) programming languages. Compilers, debug-
gers, and other applications used for software development are all based on this notion that
programs are data that can be operated on by other programs.

The projects in this chapter played a game called Corewar, a computer-based version of
Battleship, a classic board game where players try to guess the location of their opponent’s
ships. In Corewar, the contestants are programs, and the goal is for one program to halt the
execution of the other program. The game depends on the fact that a program can overwrite



8.6 Summary 217

Concepts and Terminology Introduced in This Chapter

von Neumann
architecture

A design for a computer system in which programs are
encoded in binary and stored in memory

processor The part of a computer system that contains the logic
circuits that carry out steps of an algorithm

memory The component that stores data and instructions

virtual machine A piece of software that simulates the actions of a pro-
cessor and memory

assembly
language

A programming language where each statement is a sin-
gle instruction that can be carried out by a processor

opcode The part of an assembly language statement that tells the
processor which operation to perform

operand Part of an assembly language statement that specifies
data to be used in an instruction or where in memory
to store a result

thread A sequence of instructions that implements a single pro-
gram or method

instructions in the other program, copy itself to a new location in memory, or use any of a
variety of other strategies derived from having instructions and data in the same memory.

Our Corewar contests were played on a virtual machine named MARS, a simulator written
in Ruby that mimics the actions of a real processor. The simulator allows us to test programs
in isolation, executing the program one step at a time and watching what each instruction
does. We can also load two programs into the machine and let them run until one program
stops or until a predetermined number of instruction cycles have been executed.

The technique of using software to implement virtual machines is widely used in comput-
ing. One familiar example is the Java Virtual Machine, or JVM, which is a standard part of
almost every web browser. When you connect to a web site that contains an “applet” written
in Java, the web server sends your browser the encoded form of the JVM instructions for
the applet, allowing the program to run on your computer as the browser executes the JVM
instructions. A growing new technology known as “cloud computing” is also based on the
notion of a software description of a real machine. Computer administrators can configure
a machine as if it were a real piece of hardware, but then hand the machine specification off
to a server on a network that will eventually find a place to execute programs on an actual
piece of hardware that matches the description of the virtual machine.

The advanced section on “clones” introduced the idea of a thread. The SPL instruction
splits MARS programs into two pieces that appear to run in parallel. In reality, however,
the virtual machine divides its time among the different threads in a round-robin manner,
running one instruction at a time. Threads are also widely used in real-world programming,
especially in complicated applications where threads execute separate tasks.
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The fact that applications are often organized as a group of threads that all cooperate to
solve a complex problem brings up an interesting question: can we build a computer system
with more than one processor, so that all the threads can run at the same time on different
processors? New generations of processor chips do in fact use “multi-core” technology that
is able to speed up these sorts of applications. Systems known as “multi-CPU clusters” are
built from hundreds, and in some cases thousands, of processors, and are being used to solve
very large problems in science and other areas that require high performance computing.

About Corewar

The game of Corewar was first described by A. K. Dewdney in a series of columns written
for Scientific American in 1984. The MARS virtual machine we used for our projects is based
on a 1988 standard, but the most widely used virtual machines today are based on a newer
standard that was published in 1994.

If you would like to try your hand at writing your own Corewar programs you can find
more information on the web at http://corewar.co.uk. There you will find tutorials,
articles on the history of the game, and implementations of the newer virtual machine that
you can download and install on your own computer.

© Proc Objects in Ruby

We’ve seen several examples of programs as data in projects in earlier chapters. The Ruby-
Labs methods that trace the execution of a program are based on that fact that we can make
a Ruby object that represents a program. The methods named trace, count, and time

are all defined in terms of a single parameter, and they all tell Ruby to execute the program
represented by the block object passed to the method.

Here is the definition of time, which measures measures the execution time of a program:

def time(&f)

tstart = Time.now

f.call

return Time.now - tstart

end

The notation &f means time expects us to pass an object that represents a piece of Ruby
code. In the body of the method the expression f.call means “invoke the code in the
object f.” All time has to do is record the system time (by calling Time.now) before and
after executing the code defined by f and then return the difference.

Here is an example of how we used time:

>> time { isort(a) }
=> 0.622742

When IRB sees a Ruby expression enclosed in braces it creates an object that represents the
expression, and it is this object that is passed as an argument to time. In Ruby, the object
is called a “Proc,” which is short for “procedure,” an older term for “method.”

The idea that programs and data can both be encoded in the form of binary numbers so
they can be stored in the same memory can be traced to work in mathematical logic in the
1930s. One of the most important implications of that work is that it even though programs
can be encoded and used as data, there are limits to what we can do with this type of data.
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We might be able to create an object to represent a piece of Ruby code, but the only thing
we can do with this object is tell Ruby to execute the code. Programs often have statements
like

if x == y ...

that compare numbers x and y and carry out some operation if they have the same value.
But no programming language allows us to write an expression of the form

if p1 == p2 ...

where p1 and p2 both refer to programs. It is possible to prove, using the theories in logic
that were derived in the 1930s, that there is no way to compare two arbitrary programs to
see if they compute the same thing.

Exercises

The first questions are about the multiplication and division algorithms presented in Section 8.2. The
multiplication algorithm computes x × y by repeatedly adding the contents of a word labeled x to
an “accumulator.” The division algorithm computes x ÷ y by counting how many times y can be
subtracted from x.

1. How many iterations does the multiplication algorithm make if it is asked to compute 2× 8?

2. How many iterations are required to compute 8× 2?

3. Will the algorithm give the correct result when x = 0? Explain what the program named
test_mult would do if the instruction labeled x is changed from DAT #7 to DAT #0.

4. Repeat the previous problem, but explain what would happen if y = 0, i.e., what would the
algorithm do if the instruction labeled y is changed from DAT #6 to DAT #0.

5. Will the multiplication algorithm work if either input is negative? For example, would the
algorithm give the correct result if asked to multiply −3× 4? What about 3×−4?

6. What would the division algorithm do if it is asked to compute x÷ 0?

7. When the bombs thrown by the Dwarf program reach the end of memory they “wrap around”
and start going into low addresses. Will the bombs ever overwrite the Dwarf’s own instructions,
so it accidentally “shoots itself in the foot” and causes itself to halt?

8. What would happen if the ADD instruction in a Dwarf program is changed from ADD #4, bomb

to ADD #2, bomb? Would this change your answer to the previous question?

© Check out a copy of the test_celsius program and save it in a file in your project directory.
Modify the program so it converts temperatures in the opposite direction, from Celsius to
Fahrenheit.

© Check out a copy of test_div and fix the bug that causes the program to give the wrong
answer when x is a multiple of y. Hint: add a test that checks to see if x− y = 0.

© Explain what would happen if a program executes the instruction SPL 0.

© Check out a copy of the dwarf program, and modify it so it uses the strategy described in
Section 8.4 (page 212), where the program throws 1024 bombs and then copies itself to a
new location an odd number of words away.





Chapter 9

Now for Something Completely
Different
An algorithm for generating random numbers

Most popular games involve some element of chance. Players roll dice, shuffle a deck of
cards, spin a wheel, or use some other method for making a random selection in the game.
Computer-based versions of these games are played the same way, but instead of using real
dice or using a real deck of cards a computer program manages the game. Somewhere
inside the application is an algorithm that generates the next roll of the dice or shuffles the
deck of cards.

As you might imagine, a computer-based game would not be very popular if the algorithm
that generates moves is not realistic. If you’re playing a board game like backgammon, you
expect rolls of the dice to be similar to rolls of real dice, and you would start to become
suspicious if your opponent rolls doubles far more often than you do. Some people like to
practice playing poker against a computer to prepare for tournaments. If the program they
train with doesn’t deal the same kinds of hands that will be seen in the tournament, the
software is not going to be very useful.

The word that best describes our expectations for the computer-based games is random.
When we play a board game we want the computer to generate a pair of numbers that is
just as random as rolling a pair of real dice, and when we play cards we want the computer
to generate an ordering for a deck of cards that is as random as what we would get if we
carefully shuffle a real deck.

The natural question, of course, is how to define what we mean by “random.” Colloquially,
random often means “unusual” or “unexpected.” But in games, and in other situations where
random values are required, something is random if it is unpredictable. To be more precise,
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what we are looking for is an algorithm that generates a sequence of values in which there is
no apparent pattern or relationship between one value and the next. If the algorithm is used
to simulate rolls of a six-sided die, each new number should be independent of the previous
number, and if it is used to deal cards, each new hand should be unrelated to the previous
hand. In other words, to use the phrase in the title of this chapter, each value produced by
the algorithm should be “completely different” from the previous value.1

The goal for this chapter is to explore techniques for using a computer to generate random
values. We will take a closer look at the idea that a sequence of values is random if successive
values are independent of one another, and explore various ways of trying to determine
whether the values are, in fact, random, or whether there are some unexpected connections
between them.

9.1 Pseudorandom Numbers

Before you read this section, here is a simple experiment to try. Start your text editor and
create a new file. Type 50 numbers between 1 and 6, putting one number on each line. Try
to write the numbers as if you were rolling a die; in other words, each number should be
unrelated to the one on the previous line.

As you were thinking of numbers to write, were you able to concentrate on each new
number, forgetting about what you had written before? Or did you find yourself thinking
something like “I haven’t written a 3 in a while, I’d better write one now” or “hmmm, that’s
two 6s in a row, I’d better write something else.” If you gave in to the temptation to think
about previous values you were starting to add a bias to your results. It is very hard for
people to generate a truly random sequence of values.

Engineers, statisticians, and other professionals have used random sequences for many
years. Before the algorithms described in this chapter were available, people who needed a
random sequence would look in a book of random numbers. A well-known reference book,
published in 1955 by the RAND Corporation, was A Million Random Digits, a 400-page book
with 2500 random digits between 0 and 9 on each page. The authors used what they called
an “electronic roulette wheel” to generate random electronic pulses. The electronic circuit
was connected to a computer, and a device that measured the pulses converted them to
digital form. Another way to generate random signals is to use a white noise generator, an
audio device that produces something that sounds like static.

To play a game with a computer we do not need to connect to a roulette wheel, white
noise generator, or other physical device that behaves randomly. Instead, applications use
an algorithm that produces a different value each time it is called. For example, there is a
method built into Ruby called rand. If we pass a number n to rand, it will return a value
between 0 and n− 1:

>> rand(100)
=> 54

>> rand(100)
=> 39

1The title is a catch-phrase from the BBC comedy series, Monte Python’s Flying Circus.
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There is an interesting paradox here. According to the definition given in Section 1.3,
an algorithm has a well-defined set of inputs, and a precise and unambiguous sequence of
steps that leads to the output. If that’s the case, how can an algorithm produce a different
result each time it is run? Or, in terms of Ruby programs, how is it possible for a method to
return a different value each time we call it?

The answer to these questions is the method appears to be random, but in fact it follows a
predefined set of rules, just like any method. The general idea is to produce a long sequence
of numbers, and if we look at a small set of numbers in the middle of the sequence, they
will appear random. Even though they are not truly random, many applications, such as
computer games, can use them in place of actual random values. Because the numbers
are created by an algorithm, and not an external source of random data like the RAND
corporation’s roulette wheel, we refer to them as pseudorandom, and the algorithm that
produces the sequence is a pseudorandom number generator, or PRNG.

As an introduction to how a PRNG might work, imagine a situation where an event needs
to be scheduled at regular intervals throughout a day. Perhaps a nurse in a hospital needs
to periodically administer medications to a patient, or a researcher needs to collect data
from an experiment, and it is our job to schedule these events. If the events occur every
eight hours the schedule is simple and easy to remember. One plan would be to schedule
the first three events at midnight, 8 A.M., and 4 P.M. The next event would be at midnight
again, and the schedule would repeat. Since the schedule is the same every day it is easy to
remember, and we can simply tell people what the schedule is (Figure 9.1).

However, if the events need to occur every seven hours the schedule is more complicated.
If the first event is at midnight, the next two events would be 7 A.M. and 2 P.M. But now
the fourth event will be at 9 P.M., and the second day would not be like the first.
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Figure 9.1: If an event occurs every eight hours (top row), a schedule is very predictable, and events
occur at the same time every day. However, if events are seven hours apart (bottom row) each
day is different, and it is more difficult to keep track of when events are scheduled to occur.
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It’s very straightforward to use Ruby to figure out the schedule. Start by making a list
named t and initializing it so it has the time for the first event:

>> t = [0]
=> [0]

For now we will use a 12-hour clock. Let’s assume we can tell by context whether “0” is
midnight or noon, and whether a “4” means 4 A.M. or 4 P.M. (one of the exercises at the
end of the chapter will be to modify the schedule to use a 24-hour clock).

To add the time for the next event, the list needs to be extended with a time that is seven
hours later than the one currently at the end of the list. Since we’re using a 12-hour clock,
the expression is

>> t << (t.last + 7) % 12
=> [0, 7]

Recall from previous chapters that an expression of the form a << x means “attach x to the
end of array a,” and that the % symbol is Ruby’s mod operator, i.e., the expression x % 12

means “the remainder after dividing x by 12.”
If the above operation is repeated several more times, this is what the list would look like:

[0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]

That’s a pretty difficult schedule to remember, but it matches the specification, and we could
either put it on a poster, or ask people to store it in the calendar on their cell phone.

To get back to the subject of generating random numbers, at first it looks like the list
above might be random. If we gave the list to a person who did not know the numbers were
times from a 12-hour clock, they would probably have a hard time guessing the list was
generated by a simple rule, or what that rule was. On closer inspection, however, we can
see some regularity in the list. For one thing, every hour appears exactly once in the first
12 places in the list (assuming we interpret 0 as 12 o’clock). When we are rolling a 6-sided
die, it would be very rare to see a sequence of rolls in which every number between 1 and 6
showed up before any number appeared again. In fact, it’s not at all uncommon to have the
same number appear twice in a row. The fact that we used a rule that forces every number
to occur once before the first number appears again means the list is not truly random.

If we add a few more items to the list, using the same rule, we will see conclusive evidence
that the list is not random. As soon as the first number is generated again, the pattern will
start to repeat itself. In other words, as soon as the rule attaches a 0 to the end of the list, all
the values that followed 0 the first time will occur again, and in exactly the same order. If
we want to know what follows 2 in the list shown above, we can either apply the rule again
and evaluate (2 + 7) mod 12, or we can find the 2 earlier in the list and look at the number
came after it.

The rule of adding 7 and taking the remainder mod 12 does not create a very useful list of
pseudorandom numbers, but it is a good starting point. A more general formula for adding
a new value xi+1 to the end of a list is

xi+1 = (a× xi + c) mod m

where a, c, and m are all constants and xi is the previous item in the list. The “add seven to
the current time” rule follows this general pattern, since it has a = 1, c = 7, and m = 12.
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0 m− 1

x0 x3x2 x1

Figure 9.2: A pseudorandom sequence defined by the rule xi+1 = (a× xi + c) mod m. If values of a,
c, and m are chosen carefully, every value between 0 and m− 1 will appear in the first m
numbers in the sequence and the number line will be completely filled in.

If a and c are defined properly, this rule will place every value from 0 to m− 1 in the list
before it repeats (Figure 9.2). As we saw previously, with a = 1 and c = 7, the rule makes a
list of all 12 values between 0 and 11. But if we use c = 8 (which is what we did originally,
when the schedule called for events every eight hours) the list is much shorter:

[0, 8, 4, 0, 8...]

The number of items in the list before it starts to repeat is called the period. The period
when c = 8 is 3, because the list only has 3 items before it starts repeating. The period
when c = 7 is 12 because all 12 numbers are in the list before it repeats.

If we use a large value of m, and values of a and c that work well for that m, we can
make a very long list of unique numbers. Furthermore, if we look at small portions of the
list, it will be very difficult to figure out what rule is used to generate the numbers. In
practical terms, we will have a list of random numbers. Even though they were produced
by a pseudorandom number generator, and will not be truly random, for many applications
they might be “random enough.”

The formula shown above was used in some of the earliest pseudorandom number gen-
erators, and is still widely used because it is very easy to implement and does a reasonable
job for games and other casual applications. In current implementations, m is typically 232,
or roughly 4× 109, so this technique will generate a list of over four billion numbers before
it repeats. The PRNG built into Ruby is based on a newer and more sophisticated algorithm
that has a period of 219937.

In the next section, we will see how to put this formula to use in making random numbers
for games and other applications. Later in the chapter we will come back to the claim that
the sequence is “random enough” by looking at different ways to measure randomness and
using these techniques to assess the randomness in the sequence of values produced by a
PRNG.
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Tutorial Project

The first exercises will explore the formula for making pseudorandom numbers. Start an IRB session
and load the module that will be used in this chapter:

>> include RandomLab
=> Object

T1. Make the schedule for events that occur every eight hours. Initialize the schedule with the
time for the first event:
>> t = [0]
=> [0]

T2. Apply the rule that adds a new event that will occur eight hours after the previous event:
>> t << (t.last + 8) % 12
=> [0, 8]

T3. Apply the rule three more times. Enclose the previous expression in braces and call the
times method to make a schedule that repeats the basic pattern of 0, 8, 4:
>> 3.times { t << (t.last + 8) % 12 }
=> 3

>> t
=> [0, 8, 4, 0, 8]

See the sidebar below for an explanation of the times method.

T4. Start a new schedule by typing the first expression again:
>> t = [0]
=> [0]

T5. Repeat the expression that adds new events, but make 16 events scheduled 7 hours apart:
>> 16.times {t << (t.last + 7) % 12}
=> 16

>> t
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2, 9, 4]

Can you see how the period for this new schedule is 12, i.e., how all 12 numbers between 0
and 11 appear in this list before it starts to repeat?

The times Method

The projects in this chapter use a Ruby method
named times.  This method is used to repeat 
an operation a specified number of times.  The
first example right tells IRB to print a string
three times.

We can also put a variable name to the left of
the method, as shown in the second example,
which appends 10 random numbers to an array.
The value returned by times is just the number
of times the operation was executed. 

>> 3.times { puts "hello" }
hello
hello
hello
=> 3

>> n = 10
=> 10
>> n.times { a << rand(100) }
=> 10
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The RandomLab module defines a method named prng_sequence that implements the general form
of the equation that creates a list of pseudorandom numbers. The three parameters to the method
are the values of a, c, and m to plug into the equation. The list returned by this method will have m
numbers, and with the right combination of a and c all values from 0 to m− 1 will be in the list.

T6. As a first test, use the prng_sequence method to make the schedule of events that occur
every eight hours:
>> sched8 = prng_sequence(1, 8, 12)
=> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]

As expected, this sequence is not very random.

T7. Ruby arrays have a method named uniq that will return a list of all the unique values in an
array, i.e., the method returns a copy of the array with all the duplicates removed. Apply this
method to the schedule you just made:
>> sched8.uniq
=> [0, 8, 4]

Do you see how the uniq method confirms the fact that only 0, 8, and 4 are used in this
array?

T8. Now make a second schedule for events that occur every seven hours:
>> sched7 = prng_sequence(1, 7, 12)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5]

T9. Get a list of unique numbers in this list:
>> sched7.uniq
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5]

T10. One way to see whether every number between 0 and m − 1 is in the list is to count the
number of unique values. If an array has no duplicates, the length of the list returned by
uniq will be the same as the length of the original list:
>> sched8.uniq.length
=> 3

>> sched7.uniq.length
=> 12

T11. This combination of parameters will generate a list of numbers between 0 and 999:
>> seq = prng_sequence(3, 337, 1000)
=> [0, 337, 348, 381, 480, ... 97, 628, 221, 0]

Look at the list of 1000 numbers in your terminal emulator window. Does it look “random”
to you?

T12. Let’s see if this combination of a, c, and m made a list with a period of m:
>> seq.uniq.length
=> 100

So this combination of a, c, and m yields a list that has the same 100 numbers repeated 10
times—not very random at all.

T13. Here is a better combination. Change the first argument to 81 instead of 3:
>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

T14. How many unique numbers are in this list?
>> seq.uniq.length
=> 1000

Just what we were looking for. Does this list look random?
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Figure 9.3: The first 100 values produced by a PRNG with a = 81, c = 337, and m = 1000.

The RandomLab module includes methods that will draw pictures based on the values produced by a
pseudorandom number generator. The next set of exercises will plot the values returned by a PRNG
on a number line, so you can get a sense of how the values are scattered over a specified range
(Figure 9.3).

T15. Create a window with a number line for values between 0 and 999:
>> view_numberline(1000)
=> true

You should see a canvas with a line running through the middle of it.

T16. A method named tick_mark will display a mark at a specified point on the line. Type this
expression to display a tick mark in the middle of the line:
>> tick_mark(500)
=> nil

T17. This command will draw 100 tick marks, at locations 0 through 99:
>> 100.times { |i| tick_mark(i) }
=> 100

T18. Reinitialize the display by calling view_numberline again (Exercise T15).

T19. Type this expression to plot the points from the pseudorandom sequence that contained only
100 different numbers:
>> prng_sequence(3, 337, 1000).each { |i| tick_mark(i) }
=> [0, 337, 348, 381, ... 97, 628, 221]

Can you see how only about 1/10 of all the points are filled in? So even though the call to
prng_sequence made a list of 1000 numbers, the list has 100 different values repeated 10
times.

T20. Reinitialize the drawing, and repeat the call to prng_sequence, but change the 3 to 81 so
you get the sequence with all 1000 numbers:
>> view_numberline(1000)
=> true

>> prng_sequence(81, 337, 1000).each { |i| tick_mark(i) }
=> [0, 337, 634, 691, 308, 285, ... 749, 6, 823]

Now your number line should be completely filled in. There are 1000 numbers in the list,
and each value from 0 to 999 will occur exactly once.

The expression in Exercise T20 filled in each point in the number line. But we could have done that by
repeating Exercise T17 and telling it to draw 1000 tick marks. When you were watching the display,
were the numbers created by prng_sequence added in a random order?
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9.2 Numbers on Demand

Although the sequences produced in the exercises for the previous section may appear to be
random, appearances can be deceiving. Later in the chapter we’ll look at some techniques
for evaluating sequences to test randomness, but first we’ll see how the random number
generator can be implemented in a method intended for games and other applications that
need random numbers.

As a practical matter, applications do not generate a list of all numbers in a pseudoran-
dom sequence. A game may need only a few hundred rolls of the dice, and it would be a
big waste of time and space to generate the full list of billions of pseudorandom numbers
defined by the best random number generators. Instead, games and other applications use
a programming technique that creates random numbers “on demand.”

As an analogy for how this might work, imagine a scenario where a statistician has a lab
assistant who is in charge of random numbers. The situation where the full sequence is
generated ahead of time would correspond to the lab assistant carrying around the RAND
book of random digits. Each time the statistician needs a random value, the assistant would
look up the current digit in the book, and then move his bookmark one place to the right.
However, when the numbers are generated by an algorithm, the assistant just needs to
keep track of one number on a small piece of paper. When the statistician needs a random
number, the assistant plugs the number into the equation to compute the next value in the
sequence and then erases the old number and replaces it with the new value.

The RandomLab module has the definition of a new type of object called a PRNG that
uses the one-number-at-a-time strategy to implement a pseudorandom number generator.
To make a PRNG object, pass the a, c, and m parameters to the method that makes a new
object. For example, in the last section we made a pseudorandom sequence of m = 1000
numbers using a = 81 and c = 337:

>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

To make a PRNG object based on this sequence, we pass these same values to PRNG.new:

>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

A method named advance moves to the next pseudorandom number in the sequence. If
we call advance a couple of times, it should return the first two values in the sequence:

>> p.advance
=> 337

>> p.advance
=> 634

Each time advance is called it acts like the assistant with the piece of scrap paper. It sets
the value of x to the current value in the sequence. It then evaluates (a× x + c) mod m.
The value of this expression is saved as the new state of the sequence, and it’s also returned
as the value of the call to advance.
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Tutorial Project

T21. If you started a new IRB session since you worked on the project in the previous section, type
this expression again to make a pseudorandom sequence:
>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

T22. Print the first 10 numbers in the sequence:
>> seq[0..9]
=> [0, 337, 634, 691, 308, 285, 422, 519, 376, 793]

T23. Make a PRNG object using the same values of a, c, and m:
>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T24. A method named state will show us the current number in the sequence (the number
written on the “scrap paper”):
>> p.state
=> 0

So the PRNG object starts out with the same value as the array made by prng_sequence.

T25. If you call the advance method you should get back the next value in the sequence:
>> p.advance
=> 337

T26. Call advance a few more times. Do you get the same numbers you see at the front of the
list named seq?

T27. Call p.state to see what the current number is, and then call p.advance again. Do
you see how each call to advance simply computes the next value in the pseudorandom
sequence?

9.3 Games with Random Numbers

The previous two sections showed how it is possible to create a list of numbers that appear
to be random. We looked at the equation that defines how each element in the list is derived
from the previous one, and then saw how we might implement this technique in a way that
lets us get new numbers “on demand” instead of creating the entire list at once. The goal for
this section is to show how a pseudorandom sequence can be put to work by an application
that uses random numbers.

If the three parameters (named a, c, and m) that define the relationship between succes-
sive numbers are chosen carefully, the pseudorandom sequence will have values from 0 up
to m− 1. However, if we are writing a program to play a game like backgammon, which is
based on rolling a pair of dice, we want a series of numbers between 1 and 6.

A simple approach to simulating random rolls of a six-sided die is to get a value from the
pseudorandom sequence, find its remainder after dividing by 6 (which will yield a number
between 0 and 5), and then add 1. Here is a Ruby expression that transforms a number
from a PRNG object named p into a number between 1 and 6:

>> (p.advance % 6) + 1
=> 2
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Figure 9.4: If pseudorandom numbers are used by a
program that plays a game with dice, the values
in the pseudorandom sequence are mapped to
numbers between 1 and 6.

If we evaluate this expression several more times and save the results in a list, we can see
something interesting:

>> rolls = []
=> []

>> 10.times { rolls << (p.advance % 6 + 1) }
=> 10

>> rolls
=> [2, 5, 2, 3, 4, 3, 4, 5, 2, 1]

As expected, all the numbers in the list are between 1 and 6. But notice the numbers that
follow the 2s in this list: the first 2 is followed by 5, the second by 3, and the third by 1.

The fact that a number can be followed by different values adds to the illusion that this
sequence is truly random, and not just pseudorandom. Because 1000 was passed as the
value of m when the PRNG was created, the pseudorandom sequence generated by p will
have every number between 0 and 999. But when we divide these numbers by 6, the
remainders will be between 0 and 5. Each remainder will show up hundreds of times, and
the value that follows a remainder can be any one of the 6 numbers between 0 and 5.

PRNG objects have a method named random that does this conversion for us. This
method takes two parameters, min and max. The method gets the next value from the
pseudorandom sequence, and then it uses the mod operator to turn that value into an inte-
ger between min and max. For example, a program that wants to use the PRNG object to
simulate rolls of a die would call p.random(1,6) to get numbers from 1 to 6:

>> p.random(1,6)
=> 1

>> p.random(1,6)
=> 2

There is one more issue that needs to be addressed if we want to use a PRNG in an
application, and that is how to initialize the sequence. Each time a new PRNG object is
created, the initial state is set to 0. Since the application alway uses the same values of a, c,
and m to create the PRNG, it will always get the same sequence of numbers at the start of
each game. Our backgammon program will always start off with the same rolls of the dice:
2, 5, 2, 3, 4, 3, 4, 5, 2, etc. Players will soon recognize that every game starts the same way,
and they will lose interest.
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One way to address this problem is to set the state of the PRNG to a particular value. We
can create the new object, letting the new method set the state to 0, but then we can change
the state to any value we choose. This process of changing the state of a PRNG is called
“seeding.” If we want to seed one of our PRNG objects we just have to call a method named
seed, e.g.,

>> p.seed(226)
=> 226

The next call to advance will get the number that follows 226 in the underlying pseudo-
random sequence.

But now the question becomes, which value do we use for a seed? If we’re using the
simple PRNG that has m = 1000 we can choose any number from 0 to 999. But if we just
choose our favorite number, and write that number into the program, we will have the same
problem. The game will start out with a different set of rolls than if the sequence started
with 0, but since the PRNG always starts in the same state players are again going to see the
same set of rolls at the start of each game.

A common solution is to use the system clock. Ruby has a module named Time that has
a collection of methods for dealing with dates and times. Calling Time.now will return the
current date:

>> Time.now
=> Mon Dec 28 09:30:34 -0800 2009

It’s also possible to turn a date into an integer by calling the to_i method:

>> Time.now.to_i
=> 1262021437

This value is the number of seconds since January 1, 1970 (the date of the “Big Bang” when
time started in the Unix world).

To initialize each new game, an application typically gets the current time, converts it
to an integer, and uses that value to seed the random number generator. Although the
time value is increasing in a predictable way, the values that follow in the pseudorandom
sequence will be very different, and the games will start out with a different sequence of
rolls each time.

Tutorial Project

T28. Make a PRNG object with the same values of a, c, and m used previously:
>> p1 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T29. Get 10 rolls of a die by calling the random method and asking it for values between 1 and 6:
>> 10.times { puts p1.random(1,6) }
2
5
2
3
...
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T30. Make a second pseudorandom number generator using the same parameter values:
>> p2 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T31. Now print the first 10 rolls of the die produced by this PRNG:
>> 10.times { puts p2.random(1,6) }
2
5
2
...

Do you see why they are the same rolls? Each new PRNG object is initialized to start at the
same place in the pseudorandom sequence, so each will create the same sequence of values.

T32. Call the method that gets the current date and time:
>> Time.now
=> Mon Dec 28 10:33:57 -0800 2009

Obviously the result you get will be different, but you should see a string that contains a date
formatted according to the conventions you set for your operating system (this string is in
the format seen by users in the United States).

T33. Type the expression again after adding to_i to convert the time into an integer:
>> Time.now.to_i
=> 1262025240

T34. If you want to use the current time to set the seed for the PRNG, convert the time to a number
between 0 and m− 1:
>> rs = Time.now.to_i % 1000
=> 574

T35. Create a third PRNG, and then set its seed using the current time:
>> p3 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

>> p3.seed(rs)
=> 574

T36. Now get 10 rolls of the die from this new PRNG:
>> 10.times { puts p3.random(1,6) }
4
1
4
...

T37. Set the seed for p3 again, but this time use a value that is one greater than the previous seed,
and then get 10 rolls of the die:
>> p3.seed(rs+1)
=> 575

>> 10.times { puts p3.random(1,6) }
1
6
3
...

After doing these last two exercises, do you see how a slight change in the seed leads to a big change
in the pseudorandom sequence? Just a slight difference in the time used to set the seed will result in
a completely different sequence of random numbers at the start of each game.
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9.4 Random Shuffles

If we want to write a program to play bridge, poker, or some other card game we are going
to need a method that makes random collections of cards. Simulating the roll of six-sided
die just involved computing a number between 1 and 6, but here the problem is slightly
different. It would be easy enough to label each card in the deck with a number between
0 and 51, and then use a pseudorandom number generator to compute a number between
0 and 51 as a way of choosing a card at random. But if we want to deal a hand there is a
chance that we could end up with two copies of the same card. In bridge, each hand has
13 cards, and if we make a hand by just calling random(0,51) 13 times, odds are we will
have a collection where the same number appears twice.

One way to solve this problem is to use a method that “shuffles” a deck of cards. We will
start with a collection of all 52 cards, and then each time we play a game we can shuffle
the collection by rearranging the items in a random order. The goal for this section will be
to develop a method that rearranges objects in an array. The method will use values from a
pseudorandom number generator to produce a random ordering.

To make the project more realistic, the RandomLab module defines a type of object named
Card. A card object will have a rank (ace, king, queen, etc.) and a suit. We will represent a
deck of cards as an array of 52 objects that each represent a different card from a standard
deck. As with other kinds of objects, an expression with the name of the type followed by
the word new will create an object of that type. If you don’t pass an argument to new you
will get back a random card:

>> Card.new
=> 10ª

>> Card.new
=> 2¨

When we make a deck of cards, we don’t want 52 random cards, but instead we want one
of each possible card. You can pass an integer between 0 and 51 to the new method to tell
it which card to make:

>> Card.new(0)
=> A«

>> Card.new(1)
=> K«

>> Card.new(50)
=> 3¨

>> Card.new(51)
=> 2¨

As a convenience, we can get a complete deck by calling new_deck, which makes each of
the 52 card objects for us:

>> d = new_deck
=> [A«, K«, Q«, ... 3¨, 2¨]
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Mathematicians refer to an ordering of items as a permutation. The goal for the project
in this section is to define a method named permute! that we can use to make a new
random ordering of the items in an array. For example, after making a full deck of cards as
shown above, we can call permute! to shuffle the deck. Each time we call permute! it
will make a new random permutation:

>> permute!(d)
=> [9«, A¨, 4¨, Q¨, 7«, J¨, 4ª, ... ]

>> permute!(d)
=> [10¨, Q¨, 7ª, A©, 6¨, 2ª, 8¨, ... ]

Unlike the sorting methods we developed in Chapters 4 and 5, which returned sorted copies
of the input arrays, each call to permute! changes the order of items in the array it is
passed.

A program that plays poker would probably “deal” the cards the same way we would in a
real game. After calling permute! to shuffle the deck, it would then give d[0] to the first
player, d[1] to the next player, and so on. For our experiments with poker hands, however,
we’ll just need one hand, and we can make this hand by using the first five cards in the deck.
This Ruby expression shuffles the deck and makes an array containing the first five cards in
the new deck:

>> permute!(d).first(5)
=> [2¨, A«, 5©, 10¨, 7¨]

We’ve seen the method named first before: the expression a.first returns the item at
the front of the array a. This time we’re passing the number 5 as an argument so it returns
an array of the first 5 items.

One straightforward algorithm for permuting the items in an array is based on an iteration
that exchanges two items at each step. Begin by picking up the first item and exchanging it
with a random item somewhere to the right. Then exchange the second item with a random
item somewhere to its right, then exchange the third item with a random item somewhere
to its right, and so on until you reach the end of the array. This algorithm is reminiscent of
the insertion sort algorithm: on each iteration the array has two regions, where items in the
left part of the array have been exchanged and items to the right are waiting to be moved.

It’s easy to exchange the values of two items in Ruby by using a construct known as
parallel assignment. A normal assignment statement has a single variable on the left side
of the assignment operator, e.g.,

>> x = 7

A parallel assignment has two or more variable names on the left, as in

>> x, y = 3, 4

The variables on the left are assigned the corresponding values from the right, so in this
example x is set to 3 and y is set to 4. It’s called a “parallel” assignment because we can
think of the two assignments happening at the same time.
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i = 0 A 2 J 9 3 Q 7 r = random(0,6)

i = 1 J 2 A 9 3 Q 7 r = random(1,6)

J Q A 9 3 2 7i = 2 r = random(2,6)

Figure 9.5: On each iteration, the item at location i changes places with an item at a random
location to the right.

To use a parallel assignment to exchange the value of two variables, write the names of
the variables in different orders on the left and right sides of the assignment operator:

>> x, y = y, x

Ruby executes this statement by fetching the current values of y and x and then writing
them to the specified locations. It might help to think of a juggler picking up two balls and
tossing them to different hands in the same motion: while the value of y is being tossed to
x the value of x is being tossed to y.

Parallel assignment also works for locations in an array. For example, to exchange the
values in the first two locations of an array a we can just write

>> a[0], a[1] = a[1], a[0]

Now that we know how to exchange two items in an array, writing the method is straight-
forward. The algorithm is an iteration in which a variable named i takes on values from
0 to n− 2, where n is the length of the array. At each step, we just need to set a variable
r to a random value between i and n− 1, which is the last location in the array. We then
exchange the items at locations i and r using a parallel assignment. One small detail to
notice here: it’s possible that i and r will have the same value, in which case the exchange
operation has no effect.

An example showing the progress of the permute! method as it scrambles an array of
7 items is shown in Figure 9.5. On the first iteration, i is 0, and the program sets r to a
random value between 0 and 6. After assigning r the value 2, the program exchanges r[0]
and r[2]. In the second iteration, r is a random value between 1 and 6, and this time the
program exchanges r[1] and r[5]. Note that it is possible for an item to be moved several
times. The “A” that originally started out in location 0 is going be moved again on the third
iteration (unless the call to random(2,6) returns 2).
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Figure 9.6: A Ruby method that
makes a random permutation
of the items in x (which can
be a string or an array).

  1:  def permute!(x)
  2:    for i in 0..x.length-2
  3:      r = random(i, x.length-1)
  4:      x[i], x[r] = x[r], x[i]
  5:    end
  6:    return x
  7:  end

# Rearrange the items in x in a random order 

In the exercises below we will use the trace method to monitor the progress of a permu-
tation and see how successive items from an array are exchanged with random items. The
listing of the permute! method is shown in Figure 9.6. The parallel assignment is on line
4, so if we attach a probe here we will be able to see the state of the array just before the
current item is exchanged with another one to its right.

Tutorial Project

The Ruby code for the permute! method is shown in Figure 9.6. If you would like to print a version
in your IRB session you can call the listing method:

>> Source.listing("permute!")

You can also “check out” a copy if you want to view it in your text editor:

>> Source.checkout("permute!")

T38. Make a small array of strings:
>> a = TestArray.new(5, :colors)
=> ["plum", "thistle", "khaki", "chocolate", "hot pink"]

T39. Type a parallel assignment expression that exchanges the values in the first and third loca-
tions, and then print the array again:
>> a[0], a[2] = a[2], a[0]
=> ["khaki", "plum"]

>> a
=> ["khaki", "thistle", "plum", "chocolate", "hot pink"]

Can you see how Ruby exchanged the strings at a[0] and a[2]?

T40. Make an array of numbers to use when tracing the permute! method:
>> a = Array(0..9)
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

T41. A method named brackets (similar to the one used in the searching and sorting labs) will
print the contents of an array. Attach a probe to the permute! method so brackets is
called just before line 4 is executed:
>> Source.probe( "permute!", 4, "puts brackets(x,i,r)" )
=> true
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T42. Trace the execution of a call to permute! as it scrambles your test array:
>> trace { permute!(a) }
4: [0 1 2 3 4 5 6 7 8 9]
2: 4 [1 2 3 0 5 6 7 8 9]
6: 4 2 [1 3 0 5 6 7 8 9]
3: 4 2 6 [3 0 5 1 7 8 9]
...
=> [4, 2, 6, 3, 8, 9, 7, 1, 5, 0]

Each line above shows the current state of the array. The number at the front of the line, before the
colon, is the value of r, which is the location where an item will be moved. The left bracket is printed
just in front of a[i], which means the item to the right of the bracket is the one that will be moved.
The first line shows that the 0 in a[0] is going to be swapped with the item in a[4]. You can see the
effect of this change in the array printed on the second line.

The actual result you get will be different, since the location used for the exchange is chosen at
random. But you should be able to follow the steps of the algorithm by looking at the front of each
line to see which location was chosen, and then noticing on the following line how the item next to
the bracket was swapped with the item at the chosen location.

T43. Call Card.new a couple of times to make some random cards:
>> Card.new
=> 8ª

>> Card.new
=> 3©

T44. Type this expression to make an array named a with 13 random cards, and then print the
array after sorting it:
>> a = []; 13.times { a << Card.new }; a.sort
=> [K«, J«, J«, 4«, ... ]

There is a chance that by simply calling Card.new 13 times to deal a hand we will get a
duplicate card. Does your array have any duplicates? Repeat the expression a few times.
How often do you get duplicate cards?

T45. Make a full deck of cards containing each of the 52 cards:
>> d = new_deck
=> [A«, K«, Q«, J«, ... 3¨, 2¨]

T46. Call the permute! method to see if it shuffles the deck:
>> permute!(d)
=> [2ª, Q«, 9©, K¨, 4ª, 4¨, 2«, ... ]

Repeat the expression a few times. Does it look like a random shuffling after each call?

T47. Shuffle the deck, and save the first five cards in an array named h:
>> h = permute!(d).first(5)
=> [9©, 3©, A¨, 5«, 7«]

Repeat this expression a few times. Do you get a random poker hand each time?

T48. The following expression is like the one above, except it deals a bridge hand (13 cards) and
it sorts the hand before it is displayed:
>> h = permute!(d).first(13).sort
=> [J«, 10«, 9«, 5«, 3«, 2«, Kª, 10ª, 9ª, 6ª, 9©, 10¨, 9¨]

Repeat the expression a few times. Since the hand is a random shuffle of a full deck you
should never see any duplicates.
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9.5 Tests of Randomness

So far we’ve been relying on our intuition that the output from our pseudorandom number
generators looked random. In this section we’ll perform some tests on the sequence of
numbers produced by a PRNG to investigate the question of whether the sequences are
random or not.

The two techniques we will use are both informal tests that use graphical displays. Vi-
sualization is a very powerful method for seeing whether there are any biases or hidden
patterns in the data. These informal tests will not give us a definitive answer, of the form
“yes, this sequence is random” or “no, this sequence is not random,” but the tests are simple
to do. If a sequence of numbers is not random, the nonrandomness often shows up in the
form of patterns in the display.

The first type of display is a histogram (often called a “bar chart”). To test a sequence
of simulated rolls of a die, we can just count the number of times each number from 1 to
6 occurs in the sequence. The histogram will have one bar for 1s, another bar for 2s, and
so on, where the height of a bar indicates how often that number showed up in the random
sequence (Figure 9.7).

The algorithm we have been using for making pseudorandom sequences should create
what is known as a uniform distribution. In an experiment with 1000 rolls of the die,
we expect each number will occur roughly 1000÷ 6 = 167 times. But suppose there is a
problem with the PRNG, and it gives us 300 6s. If all the other rolls occur equally often,
the bar for 6s will be over twice as high as the others, and we can tell at a glance that the
sequence is biased. But if all six bars are roughly the same height we could then do some
further statistical tests if we wanted to know for certain whether the sequence is random.

The RAND corporation used a similar approach to test the numbers in their book of ran-
dom digits. One of their tests was called the “poker test.” If we want to apply this test to
our random number generator, we can use the PRNG to deal 1000 poker hands. According
to the laws of probability we should see 420 hands that have two cards with the same rank
(i.e., a pair), 21 hands with three cards of the same rank (three of a kind), and so on. If
we plot the results with a bar chart, and see a lot more straights and full houses than pairs,
then something is clearly wrong.

To draw a histogram on the RandomLab canvas, we first need to create a set of “bins,”
with one bin for each result in the experiment. For example, we need six bins for the

Figure 9.7: A histogram (bar chart) showing
the frequency of random rolls of a die
based on the first 100 numbers from the
pseudorandom sequence.
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experiment with simulated dice, one for each of the numbers from 1 to 6, so the command
to initialize the histogram is

>> view_histogram([1,2,3,4,5,6])
=> true

To add one to the count in a bin, call a method named update_bin, passing it the ID of
the bin to increment. This expression adds one to the count for bin 6:

>> update_bin(6)
=> true

When Ruby evaluates the expression you should see the bar for bin 6 grow slightly.
Another approach to test whether the sequence of values generated by a PRNG is random

or not is to look for patterns or correlations between successive numbers in the sequence. It
turns out there is a pattern in the sequence produced by the PRNG we used earlier in this
chapter. Here is the expression we typed to make a list of 1000 numbers:

>> seq = prng_sequence(81, 337, 1000)

and these are the first 10 numbers in the sequence:

>> seq[0..9]
=> [0, 337, 634, 691, 308, 285, 422, 519, 376, 793]

From this short sample it’s not clear what the pattern is, but it starts to become more ap-
parent if we convert each of these numbers into a value between 1 and 6, which is what we
would do if we’re using the numbers in a game based on rolling dice. If you want to try to
figure out the pattern yourself, cover up the paragraph below the IRB output shown below.
Here are the first 20 numbers in the sequence, converted to values between 1 and 6. Do you
see the pattern?

>> seq[0..19].map { |x| (x % 6) + 1 }
=> [1, 2, 5, 2, 3, 4, 3, 4, 5, 2, 1, 4, 3, 2, 3, 4, 5, 2, 3, 2]

Based on this short list it looks like the numbers alternate between even and odd. If the
computer used this pseudorandom sequence to play a game, every time it rolled an even
number it would follow with an odd number, and vice versa. It wouldn’t take long for a
person playing a game based on this PRNG to suspect something was wrong. In a game
with two die, the computer would never roll “doubles.”

A visual display that makes this type of pattern easy to see is known as a dot-plot. As
the name implies, the drawing will be a set of dots on a canvas. To make a dot-plot on the
RubyLabs canvas, call a method named view_dotplot:

>> view_dotplot(500)
=> true

The argument is the number of pixels for the height and width of the plot.
To display a dot on the canvas call plot_point, passing it the x and y coordinates of

the dot. For example, this expression will draw a dot in the middle of the canvas:

>> plot_point(250,250)
=> nil
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Figure 9.8: In these images the x and y coordinates of a dot are determined by two successive
numbers from a pseudorandom number generator (PRNG). The image on the left is from a
PRNG that alternates between even and odd numbers. The image on the right is based on Ruby’s
own rand method.

One way to look for patterns in values from a pseudorandom sequence is to plot a set of
points in which the x and y coordinates of a dot are determined by getting two successive
numbers from the PRNG. If we make a PRNG named p, this loop will paint 1000 points
using p to set the x and y coordinates:

>> 1000.times {
x = p.random(0,499);
y = p.random(0,499);
plot_point(x,y)

}

If there is no correlation between successive numbers, the points will be scattered at random
all over the canvas. But if there are any hidden patterns in the data, even if they are very
subtle, the dots will line up or form some other distinctive shapes.

The dot-plot for our pseudorandom number generator with a = 81, c = 337, and m =

1000 is shown on the left in Figure 9.8. It’s obvious from this plot that the sequence of num-
bers is not at all random. Even if we had not noticed that the sequence alternated between
even and odd numbers, this plot would have told us there was some sort of pattern, and we
would not use this set of parameters in an application that requires random numbers.

As was the case with histograms, the visualization is convenient for getting an initial
impression. When there are hidden patterns in the data they often jump out when the data
is displayed with a dot-plot. But to truly check to see whether the data is random it would
be necessary to perform a detailed statistical analysis of the x and y coordinates. For this
chapter, however, we will simply do informal tests using pictures.
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Tutorial Project

The first set of projects will plot a histogram for rolls of a die produced by the pseudorandom number
generator we used in previous projects.

T49. Type this expression to clear the canvas and draw an empty histogram to count the rolls of a
die:
>> view_histogram( [1,2,3,4,5,6] )
=> true

You should see six lines in the middle of the screen, each representing a bin with zero items.

T50. Type this command to increment bin number 5:
>> update_bin(5)
=> nil

Do you see how the rectangle for this bin got slightly taller?

T51. Repeat the previous command a few times, using different bin numbers, until you’re confi-
dent you know how this expression updates the histogram.

T52. Make a new pseudorandom number generator using the same parameters from earlier in the
chapter:
>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T53. This command will get a random number between 1 and 6 from the PRNG and then pass it
to update_bin to increment the count for that number:
>> x = p.random(1,6); update_bin(x)
=> nil

T54. Repeat the command several more times. Do you see how a different bin is updated each
time the expression is evaluated?

T55. Clear the histogram by entering the expression from problem T49 again:
>> view_histogram( [1,2,3,4,5,6] )
=> true

T56. Put the command that draws a random number and then plots it inside a call to times so it
is executed 100 times:
>> 100.times { x = p.random(1,6); update_bin(x) }
=> 100

What does your histogram look like? Are the numbers fairly evenly distributed?

If any of the bins reaches the top of the canvas the drawing methods will automatically rescale the
histogram to make it smaller. So if you see the histogram suddenly shrink, don’t worry. It just means
the drawing methods are “zooming out” and making room for more data.

T57. In an earlier exercise we saw how this PRNG generates every number between 0 and 999.
That means there should be the same number of 1s, 2s, 3s, etc., when those numbers are
converted to values between 1 and 6. To verify this claim, repeat the previous loop 900 more
times, so a total of 1000 numbers are in the histogram:
>> 900.times { x = p.random(1,6); update_bin(x) }
=> 900

What did you see? Are the results what you expected?
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The next set of exercises make another histogram, this time using poker hands.

T58. The classification of a poker hand is often called its “ranking.” To get an array of names of
poker hands, call a method named poker_rankings:
>> poker_rankings
=> [:high_card, :pair, ... :four_of_a_kind, :straight_flush]

Note that the rankings are ordered, with the most common hands on the left.

T59. Pass the array of names to the method that creates a new histogram:
>> view_histogram(poker_rankings)
=> nil

Since there are nine names in the list, you should see nine empty bins.

T60. Make a new deck of cards:
>> d = new_deck
=> [A«, K«, Q«, ... 4¨, 3¨, 2¨]

T61. This expression will shuffle the deck and copy the first five cards to an array named h:
>> h = permute!(d).first(5)
=> [Qª, K©, 5«, Jª, K¨]

It’s OK to cheat if you want to repeat that expression until you get an interesting hand.

T62. A method named poker_rank will figure out what sort of hand is in the array:
>> poker_rank(h)
=> :pair

T63. Since the result from poker_rank is one of the histogram labels, we can increment the
count for that type of hand by passing the label to update_bin:
>> update_bin(poker_rank(h))
=> true

T64. The next command combines all the operations into a single expression: it shuffles the deck,
makes a hand from the first five cards, figures out what sort of hand it is, and updates the
corresponding bin in the histogram:
>> h = permute!(d).first(5); update_bin(poker_rank(h))
=> nil

T65. Repeat that command several times. Are the bins updating? Are they mostly on the left, for
the most common hands?

T66. If you want to repeat the experiment for a larger number of hands, put the expression in the
body of a loop:
>> 1000.times {h = permute!(d).first(5); update_bin(poker_rank(h))}
=> 1000

© The histogram methods keep track of the number of each type of item. If you want to see the
final counts, call a method named get_counts:
>> get_counts
=> {:straight_flush=>0, :high_card=>524, :two_pair=>41,

:three_of_a_kind=>29, :full_house=>1, :straight=>5,
:four_of_a_kind=>1, :flush=>4, :pair=>395}

This output shows there were no straight flushes, 524 hands classified as “high card,” 41 with
two pair, and so on. Find a table of poker probabilities on the Internet, and compare your
results with the expected frequency for each type of hand. Do you think there is any bias in
these hands, or does it seem like permute! did a good job of shuffling the deck?
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9.6 Summary

Making lists of random values is a subtle problem. It’s hard for humans to do, and it turns
out it’s not quite so easy for machines, either.

In this chapter we saw how to make a long list of numbers where short stretches appear
to be random. Given the right combination of parameters, the equation that defines how to
add a new value to the list as a function of the previous value will make sure every number
between 0 and n− 1 eventually appears in a list of n numbers.

But even though the list has all n numbers, and they appear to be in a random order,
there can be some hidden patterns. For example, when we took a closer look at one of the
sequences we studied, we saw that it alternated between even and odd numbers. Even more
subtle patterns might be hidden in the data. We explored two methods for testing random-
ness by drawing pictures based on values produced by the random number generator. These
informal methods can help us tell, at a glance, whether there is a hidden bias or pattern.

Random number generators are among the most important and widely used algorithms in
computer science. They are used in games, of course, but there are many other application
areas where random values play a key role. We used random sequences in Chapters 4 and
5 to test searching and sorting algorithms. Many scientific algorithms also use random
numbers. For example, some algorithms that reconstruct the evolutionary history of a set
of genes use a method based on taking a random sample of all possible family trees to find
the one that is most likely given the similarities between the genes. Later in this book,
Chapter 12 describes a type of problem known as optimization, where the goal is to find
the optimal solution to a problem, and one common approach also uses random samples.
E-commerce, Internet banking, and other network traffic depends on encryption algorithms
to turn a piece of text into what appears to be a random sequence of letters; many of the
important concepts used to design effective random number generators are also used in
encryption algorithms.

Concepts and Terminology Introduced in This Chapter

random A sequence of items is random if the values are inde-
pendent of one another

pseudorandom A pseudorandom sequence is one produced by an algo-
rithm; pseudorandom sequences are not truly random,
but small subsequences may appear to be random

PRNG Pseudorandom number generator, an algorithm that
creates a sequence of pseudorandom values

permutation A reordering of the items in a list or array

uniform
distribution

The result of generating random values where each
value is equally likely

histogram Also known as a bar chart; a visual display that shows
the number of times various events occur
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Exercises

1. The schedule in Section 9.1 for events that occur every seven hours had a period of 12, i.e.,
every number between 0 and 11 appears once in the schedule before it repeats. Can you find
other intervals besides 7 hours that also lead to a period of 12?

2. Suppose the schedule for events that occur every seven hours starts on a Monday at 12 A.M.,
so the next events are Monday at 7 A.M., 2 P.M., and 9 P.M. Will this pattern ever repeat? That
is, will there ever be another Monday with this same schedule? If so, can you determine how
many days will pass before this same schedule is used?

3. Redo the schedule for events that occur every seven hours using a 24-hour clock. Is the period
still 12? Or is it now 24?

4. What are some intervals that lead to schedules with a period of less than 24 when a 24-hour
clock is used?

5. What are some intervals that lead to a full schedule with 24 times and every time between 0
and 23 occurring exactly once?

6. What do the answers to the last problem have in common? Is there a common attribute for
intervals that lead to schedules with a period of 24, vs. those the lead to a period of less than
24?

7. The first day of each month usually falls on a different day of the week. Is the pattern of
weekdays random? Pseudorandom?

8. Use the Ruby expressions starting on page 241 to create a dot-plot on the RubyLabs canvas.
Then make a plot of 3000 points drawn at random from Ruby’s own random number generator
(the built-in method named rand) instead of numbers from a pseudorandom sequence. Do the
points appear to be spread uniformly all over the canvas?

9. The Ruby expression given in Exercise T14 used a call to uniq to see if all of the numbers
between 0 and m-1 were in a pseudorandom sequence. Another way to check the sequence
would be to sort it so you can compare it to an array that has every number from 0 to m-1. Can
you write a Ruby expression that will do this test?

10. If you took the challenge at the beginning of Section 9.1 and entered a series of random digits
in a file, make a histogram from your numbers. One way to make a histogram is to load the
numbers into a spreadsheet application and use its “chart” command. Were you able to make a
uniform distribution? Or are some numbers a lot more frequent than others?

11. © Here are some values of a, c, and m that should generate much better pseudorandom se-
quences than the ones we used in this chapter:2

a c m
1255 6173 29282
171 11213 53125
421 54773 259200

Repeat some of the experiments in this chapter to evaluate the quality of the pseudorandom
sequences. Make PRNG objects, and use values from the objects to make histograms (not just
of values from 1 to 6, but for other ranges, too) and dot plots.

2From Numerical Recipes in C, by W. H. Press, et al.





Chapter 10

Ask Dr. Ruby
A program that understands English (or does it?)

In 1950, Alan Turing (1912–1954), one of the founders of modern computer science, pub-
lished a paper with the title “Computing Machinery and Intelligence.” Electronic computers
were just starting to be used outside of math and science, and they were being adopted by
businesses and other organizations. There was widespread interest in this new technology,
and people began to wonder just what these machines were capable of doing. The topic of
Turing’s paper was the nature of human intelligence, specifically whether a machine could
ever be able to handle problems routinely solved by humans.

To answer the question of whether a computer was intelligent or not, Turing proposed
a simple criterion, based on language. He argued that if a computer could carry on a
conversation with a person, without the person ever suspecting they were interacting with
a machine, then the computer should be considered intelligent.

Building a robot that looks and sounds like a human is, by itself, a daunting prospect.
Turing suspected that if a person talked with a robot, no matter how well the robot could
converse in English, the person would be biased, and would never accept the machine as
being intelligent.

To separate the question of intelligence from questions of looking and sounding human,
Turing proposed a simple “thought experiment.” In this experiment, which is now known
as the Turing Test, a person, called the judge, is asked to carry on a conversation using
a computer terminal. In modern terminology, we would say the judge would use a chat
application, running on their laptop or desktop personal computer. The judge chats with two
other participants over a local network connection (Figure 10.1). The other two participants
will be in two different rooms, behind closed doors, labeled A and B. In one room there is a
human, and in the other there is a computer, but the judge will not know which participant
is in which room.
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Figure 10.1: In the Turing Test, three
participants are using “chat” software
over a local network to carry on a
conversation. The judge knows there
is a human in one room, and a
computer in the other, but does not
know which room holds the computer.
The object is for the judge to ask
questions of both participants, and
then decide which one is the
computer.

Human

Judge

Computer

A B

Local
Network

The judge is allowed to direct questions at either of the other participants. For example,
the judge might type “A, what color is a fir tree?” or “B, should the NCAA establish a playoff
system for all levels of college football?” A and B each try to convince the judge they are
human, and that the participant in the other room is a computer. If, at the end of the
conversation, the judge can’t decide which room holds the computer, we can conclude the
machine possesses a high degree of human intelligence.

It is interesting to note that 60 years after Turing’s paper was published, his test is being
applied in a real way. If you use an instant messaging service or participate in on-line
chats at any of the popular social networking web sites, you might have seen a posting by
a “chatbot,” a computer program that generates posts. Malicious chatbots generate spam
messages that fill chat rooms with advertising, and some chatbots have reportedly tried
to pose as real users to fool people into revealing credit card numbers and other financial
information. Chatbots don’t need to be able to converse about subjects in general, and they
don’t even need to fool a high percentage of people. If just a few users are tricked, even
temporarily, the chatbot will have served its purpose.

Issues related to writing computer programs that can converse with humans are part of
an active area of research, with many unsolved problems and open questions. The goal is to
develop methods for representing everyday knowledge, concepts we take for granted (e.g.,
that fact that most trees are green), and to design algorithms that use this knowledge to
carry on a conversation. The name of this research area is natural language processing
to distinguish it from another area of computer science, which is concerned with computer
programming languages.

One of the first programs to attempt to converse in English was named ELIZA . It was writ-
ten by Joseph Weizenbaum (1923–2008), a computer scientist at MIT, in 1966. ELIZA was
a remarkable program, not only because it was able to generate realistic English sentences,
but also because of how people reacted to it. Weizenbaum was amazed by how often people
were willing to open up and converse at length with ELIZA, even when they knew they were
getting responses from a computer and not another human being. In Computer Power and
Human Reason, a book he published in 1976, Weizenbaum compared this “ELIZA effect” to
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going to the theater: we know the people on stage are actors, but we suspend our disbelief
for a few hours and think of the characters as real people with real lives. When users were
typing sentences into ELIZA, they seemed perfectly happy to carry on a conversation, even
when they knew it was a computer on the other end.

This chapter is an introduction to natural language processing. We will use a version of
ELIZA, written in Ruby and included as part of the RubyLabs software package, to explore
some of the issues faced by programs that attempt to use natural language. Unlike the
other chapters, where the goal is to show how a problem can be solved by computation,
the project in this chapter will raise new questions instead of illustrating various solutions.
As we look at how our version of the program works, we will start to see how difficult it is
to even define the problem, much less figure out how to solve it computationally. Natural
language processing is a huge challenge, and there is still a long way to go before computers
routinely converse in English or any other human language.

10.1 Overview of ELIZA

Weizenbaum’s idea for ELIZA was to make a program that would respond by simply rear-
ranging the words in an input sentence. The rearrangements were defined by a set of rules.
For example, if a user types “I don’t like rain,” the computer could simply pick out impor-
tant words, apply a rule that reorders them, and respond with “Why don’t you like rain?” To
test this idea, Weizenbaum developed rules that would have his system mimic a Rogerian
psychologist, so the rules were designed to look for words or phrases a person might use
during a therapy session.

The simplest type of rule is to have the program recognize key words and reply with one
of several predefined responses for that word. For example, if the input contains “mother”
or “father” or other family relationships, the response could be one of several generic sen-
tences about families. Here is a part of a transcript from a session with Eliza, the RubyLabs
implementation of ELIZA:

H: My father wouldn’t buy me a puppy.
C: Tell me more about your family.

Whenever Eliza sees any sentence with a word that refers to a family member, it can respond
with a generic sentence like the one above. The word “dream” is another key word, and
the program will respond to any sentence containing the word “dream” with something like
“What does that dream suggest to you?” or “Do you dream often?”

More complicated rules extract a large chunk of the input and use it as part of the re-
sponse. As an example of how this works, consider statements like “I am sad because my
team lost the big game” or “I am sad I never got a puppy.” In general, sentences that start
out with “I am sad...” continue with a description of a situation or a reason the speaker is
sad. The rule Eliza uses to respond to this type of sentence requires the program to find the
words following “sad” and use them as part of the response:

H: I am sad I never got a puppy.
C: Can you explain what made you sad you never got a puppy?
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Conversations with Eliza

To help distinguish between the original program defined by Weizenbaum and the 
Ruby module you will use for the tutorial project in this chapter, the name of the 
original program will be written as it was spelled by Weizenbaum, in all capital letters: 
ELIZA.  The Ruby module will be referred to as Eliza, using the Ruby convention that 
module names start with an uppercase letter.

There are several examples throughout the chapter that show a transcript from a 
conversation with Eliza.  In these examples, lines that begin with H indicate sentences 
typed by a human, and lines that begin with C are responses printed by the computer.

When you run Eliza in the tutorial projects, Eliza will print an H as its prompt 
character, to indicate that it is ready for you to type a sentence.

In this second example, the key word is “sad.” The program took the words following “sad,”
in this case “I never got a puppy,” made a simple transformation that changed “I” to “you,”
and used the result with its predefined response of “Can you explain what made you...”

Of course not all sentences that start out “I am sad...” fit this general pattern, and this
rule can easily construct a response that looks pretty strange:

H: I am sad we never had a chance to play fetch.
C: I am sorry to hear you are sad we never had a chance

to play fetch.

The problem, of course, is that the word “we” can be interpreted two different ways. Did
the speaker mean “my puppy and I” or “you and I”? A human psychologist would assume
the speaker had the first meaning in mind, but Eliza, using very simple rules to transform
input sentences, generated a sentence that looks like it is based on the second meaning.

The idea of applying rules to input sentences is the central concept in ELIZA. In the
sections below we will explore the details of what defines a rule and how to create new rules,
but for now the main idea is to realize that ELIZA’s ability to participate in a conversation
depends entirely on the set of rules it uses. With only a few rules, where ELIZA always
responds with set phrases associated with key words, a person interacting with ELIZA would
soon realize they are conversing with a machine. But with more complex rules that analyze
several parts of the input, it’s possible to have ELIZA generate responses that give more of
an appearance that it “understands” the person typing the sentences.

The set of rules used by ELIZA to transform an input sentence is called a script. Weizen-
baum chose the name “Eliza” for his program to emphasize the fact that the rules in a script
determine how the program will respond. Just as Eliza Doolittle, the fictional character
from George Bernard Shaw’s Pygmalion, became more refined by learning more rules of
language and etiquette, ELIZA the program should become better at conversing as more
rules are added to its script.

Weizenbaum envisioned a situation where different scripts could be written for different
applications; for example, one might make a script with rules based on key words used in
cooking and baking to make a system that would give the illusion of conversing with a chef.
The original script that Weizenbaum wrote, and the one that made the program famous,
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User

Eliza

H: Hello
C: Hello
H: Nice to see you
C: Nice to see you

User

Eliza

H: I'm depressed
C: I am sorry to
   hear you are
   depressed.

Doctor

(b)(a)

Figure 10.2: (a) When the Eliza module is first loaded it does not have any transformation rules,
so any sentences typed by a user are simply echoed. (b) The rules in the DOCTOR script extract
key words and phrases and transform an input sentence into a response.

was named DOCTOR (Figure 10.2). The DOCTOR script that played the role of Rogerian
psychotherapist contained rules based on words like “sad,” “depressed,” “dream,” “wish,”
and “family.”

To begin the project for this chapter we will just run Eliza, using rules based on those
from Weizenbaum’s DOCTOR script. When you read the responses the “doctor” makes to
your statements, see if you can get a sense for what sort of rules the program is applying. In
the next section we will start learning how to write our own sentence transformation rules.

Tutorial Project

T1. Start IRB, and load the module that will be used for this project:
>> include ElizaLab
=> Object

T2. Call the method named Eliza.run to start a conversation. When Eliza is running the
prompt changes to H: to let you (the human) know Eliza is waiting for you to type a sentence:
>> Eliza.run

H:

T3. Since Eliza does not have a script yet, it can only apply a default rule that does not change
the input. Type a few sentences. Everything you type will simply be echoed right back:
>> Eliza.run

H: Hello.
C: Hello

H: How are you?
C: How are you

H: Stop repeating what I say
C: Stop repeating what I say

T4. Unlike an annoying sibling, Eliza will quit when you tell it to. Type the single word bye, or
quit, or hit ∧D (hold down the control key while typing D) to end a conversation:

H: quit
=> nil

Note that the prompt has changed back to the normal IRB prompt. The Eliza.run method
has returned nil.
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T5. Call the Eliza module’s load method to read the “doctor” script:
>> Eliza.load :doctor
=> true

If you pass Eliza.load a symbol it will look for one of the predefined scripts included in
the ElizaLab module, otherwise it will look for a file in your project directory.

T6. Call Eliza.run again. Now the rules defined in the “doctor” script will be used to transform
every sentence you type into a response:
>> Eliza.run
How do you do. Please tell me your problem.

H: I need a puppy.
C: What would it mean to you if you got a puppy?

H: I remember my cousin had a puppy.
C: Do you often think of your cousin had a puppy?

T7. Try a few more sentences on your own. Don’t forget to type quit when you are ready to
continue with the next problem in the tutorial.

Eliza uses a set of key words to generate responses. In the example described earlier in this section, a
sentence containing the word “mother” or “father” is transformed by a rule defined for family members
to produce “Tell me more about your family.” If a sentence does not contain a key word Eliza just
responds with something noncommittal, like “Go on.”

T8. To see a complete list of key words in the current script call Eliza.info:
>> Eliza.info
Script: ./../data/eliza/doctor.txt
28 rules with 51 sentence patterns
78 key words: alike, always, am, are, because, ...

T9. Start a new conversation by typing Eliza.run again, and make up some input sentences
on your own. You can type anything you would like, but you are more likely to keep up the
illusion of chatting with a psychologist if your statements include key words from the list
printed by the info method.

10.2 Sentence Patterns

To implement a program like Eliza in Ruby, one of the first decisions to make is how to look
for key words in sentences. The program needs to scan sentences like “My father wouldn’t
buy me a puppy” to look for words like “father,” and to scan sentences like “I’m sad I don’t
have a dog” to break it into the parts before and after the word “sad.”

The easiest way to look for words in a sentence is to do a string search. Ruby has several
methods that scan a string to look for a specified word or substring. For example, suppose
we have a sentence named s1 defined as

>> s1 = "I was afraid of the cow."

A script with rules about farm animals would probably want to see if words like “cow,”
“horse,” and “pig,” are in a sentence. The include? method, which we first saw in Chap-
ter 4, is all we need. A call of the form s.include?(w) does a linear search from the
beginning of the string s to see if another string w appears as a substring. The method
returns true if the letters in w can be found anywhere in s, or false if w is not in s.
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To see if a sentence contains a word, just pass the word as an argument in a call to
include?. This example asks if “cow” is in the sentence s1:

>> s1.include?("cow")
=> true

There are two problems with this simple plan, however. We don’t want Eliza to respond
to “My cat is scowling at me” with something like “Tell me more about your farm,” which it
might do with this sentence because it will find “cow” in the middle of the input string:

>> s2 = "My cat is scowling at me."
=> "My cat is scowling at me."

>> s2.include?("cow")
=> true

What we want is for Eliza to look for “cow” as a complete word, but to not match the letters
“cow” in the middle of “scowl.”

The second problem is that we are going to end up with a lot of patterns if we have to
create a new one for each word. The farm script should respond to sentences with “cow,”
“pig,” “horse,” and so on, and it would be nice if we didn’t have to write a separate pattern
for each word.

Ruby provides an alternative type of search that addresses both of these problems. This
more advanced type of search uses what is known as a regular expression. A word search
based on regular expressions is basically a search for a string that matches a pattern. In-
stead of looking for a specific string, the search method will look for any string that fits the
description specified by the regular expression.

Regular Expressions in Ruby

The pattern-matching operations in Eliza are 
based on regular expressions.  In Ruby, a
regular expression is an object, just like a
string or integer.  Regular expressions look
like strings, but they are enclosed in slashes,
not quotes.

Inside a regular expression, characters like
periods and asterisks have special meaning.
For example, /.ow/ defines a pattern that 
means “any letter followed by an o and a w.”
As the examples at right show, Ruby can use
regular expressions when it does a string
search, either to look for an individual word or
for all substrings that match the pattern.

For the Eliza project we will use only a few of the special symbols.  The main thing to 
know is that strings enclosed in slashes are regular expressions that will be used to 
see if an input sentence matches a particular pattern.

>> s = "how now brown cow"

>> r = /cow/
>> r.class
=> Regexp
>> s.index(r)
=> 14

>> r = /.ow/
>> s.scan(r)
=> ["how", "now", "row", "cow"]
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You may have encountered regular expressions when you visited a web site that asked
you to enter information in a form. A web page that expects a user to type a phone number,
date, social security number, or other information with a specific format will often check to
see if the text entered into the form matches the general pattern for that type of data. A web
interface with a “search box” is another place regular expressions are commonly used. For
example, you might want to search an on-line crossword puzzle dictionary to find a 6-letter
word that starts with s and ends with e. If you know how to write regular expressions, you
can enter a pattern that describes the words you’re looking for. When you click the “search”
button, the web application will find all words in the dictionary that match the pattern.

For this project we will be using a new type of object, implemented as part of the ElizaLab
module, to represent sentence patterns. The objects are called Patterns (short for “sentence
patterns”). Making a regular expression can be quite involved, but the method that creates
new pattern objects will do most of the work for us. All we have to do is pass a simple
string in a call to Pattern.new, and the method will transform the string into a regular
expression.

The simplest type of sentence pattern is one that specifies a key word. Suppose we want
a pattern that tells Eliza to reply to any sentence that contains the word “cow” with either
“Tell me more about your farm” or “Go on.” This expression makes a new pattern object
and saves it in a variable named p:

>> p = Pattern.new( "cow",
["Tell me more about your farm", "Go on"] )

=> cow: ["Tell me more about your farm", "Go on"]

The first argument is the string we want to look for in an input sentence; in this case, it’s a
single word, and it means the object can be applied to any sentence that contains the word
“cow.” The second argument is a list of strings that will be used as responses when this word
is found in an input sentence. The Pattern.new method creates the regular expression
that will find “cow” as a complete word, so the pattern will not match sentences that contain
“scowl” or other words with the letters “cow” in the middle.

H: We had a cow.
C: Tell me more about 
your farm.   /cow/ 

"Tell me more about your farm."
"Go on."H: I never liked that cow.

C: Go on.

H: The cow jumped at me.
C: Tell me more about 
your farm.

Figure 10.3: A pattern object (shown in the gray box) has a regular expression and a list of strings.
The apply method will see if an input sentence matches the regular expression. If so, apply
returns one of the responses. The object cycles through the list of responses, so that each match
gets a different response.
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Recall that our goal is to devise a set of rules for transforming input sentences into re-
sponses. A pattern object implements a very basic type of rule, where strings that match the
regular expression lead to responses defined by the list of strings. A method named apply

will carry out this operation. If p is a pattern object, a call to p.apply(s) will try to match
s with the regular expression, and if the match is successful, return one of the response
strings. Here is an example of our new pattern being applied to a sentence that contains the
word “cow”:

>> p.apply("I milked the cow")
=> "Tell me more about your farm"

When there is more than one response, Eliza will cycle through them (Figure 10.3). The
next call to p.apply will use the second response in the list:

>> p.apply("That cow was scary")
=> "Go on"

If a sentence does not match the pattern, the call to apply will return nil. This sentence
does not contain the word “cow” so the call to apply fails:

>> p.apply("There were pigs, too")
=> nil

Because the pattern object makes sure the regular expression matches only complete words,
our pattern will not apply to sentences where “cow” appears in the middle of a word:

>> p.apply("The cat was scowling at me")
=> nil

The second advantage of using regular expressions to match input sentences is the ability
to make a single pattern for a set of related words. Instead of having to make separate
patterns for different animals, we can make one pattern, using a regular expression that
effectively says “match an input sentence that contains any of the following words.” All we
need to do is list the words, separated by a | character.

Here is an example of a pattern that can be applied to any sentence that contains “cow,”
“pig,” or “horse”:

>> p = Pattern.new( "cow|pig|horse",
["Tell me more about your farm", "Go on"] )

=> cow|pig|horse: ["Tell me more about your farm", "Go on"]

Now a call to apply will generate a response if any of the three words is in the input
sentence:

>> p.apply("The cow slept in a barn")
=> "Tell me more about your farm"

>> p.apply("The horse jumped the fence")
=> "Go on"

A set of words separated by vertical bars is known as a group. As seen in this example,
groups make it easy to define rules that can be applied to any one of a set of alternative
words. Later in the chapter we will see how groups also let us extract part of the input
sentence so words can be echoed to the user when Eliza constructs a response.
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Tutorial Project

Before you start this section of the tutorial, remove the DOCTOR script. Either start a new IRB session,
or call a method that erases all the sentence patterns currently in the system:

>> Eliza.clear
=> true

T10. Make a pattern that will apply to sentences that contain the word “cow”:
>> p = Pattern.new( "cow", ["Tell me more about your farm."] )
=> cow: ["Tell me more about your farm."]

Note there is only one response in this example, but it is still enclosed in brackets.

T11. If you want to test the pattern, a method named match will return true if a string matches
the sentence pattern:
>> p.match("Don’t have a cow, man")
=> true

>> p.match("He scowled")
=> false

T12. Try applying the pattern to see how Eliza will respond to sentences containing the word
“cow”:
>> p.apply("I milked the cow")
=> "Tell me more about your farm."

T13. You can add more sentences to the list of responses by calling add_response:
>> p.add_response("What made you think of cows just now?")
=> ["Tell me more ...", "What made you think ..."]

T14. Now when you enter sentences that match the pattern Eliza will cycle through the responses.
Type a few sentences with the word “cow”:
>> p.apply("The cow slept in the barn")
=> "Tell me more about your farm."

>> p.apply("She had a cow")
=> "What made you think of cows just now?"

>> p.apply("No, not a real cow, she had a fit")
=> "Tell me more about your farm."

T15. Make a new pattern that will apply to more than one word:
>> p2 = Pattern.new("Ruby|Perl|Python" )
=> Ruby|Perl|Python: []

T16. Add a response string to the new pattern:
>> p2.add_response("Is that your favorite language?")
=> ["Is that your favorite language?"]

T17. This new pattern should match any sentence that has one of the three words:
>> p2.apply("We wrote programs in Ruby")
=> "Is that your favorite language?"

>> p2.apply("Some people wanted to use Python")
=> "Is that your favorite language?"

>> p2.apply("No, I like Java")
=> nil

Try some more tests on your own to explore the limits of these sentence patterns. Does the regular
expression inside the pattern care about capitalization? What about plurals? If you make a pattern for
a word like “cow” will the pattern match sentences that contain “cows”?
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10.3 Building Responses from Parts of Sentences

To add to the illusion that the computer is actually carrying on a conversation, Eliza should
be able to create responses that use parts of the sentence typed by the user. For example,
suppose the input is “I’m afraid of cows.” Using the technique we saw in the last section, we
could make a pattern that looks for the word “afraid” and responds with generic question
like “Why are you scared?” But it would be more realistic if the reply was something like
“What is it about cows that worries you?” because the response contains “cows,” a word
from the input sentence. In order to create these kinds of responses, Eliza needs to be able
to extract substrings from the input sentence and then use those substrings as part of the
response. In this example, we need to be able to extract the word that follows “afraid of” so
we can use it in the response.

If a pattern contains a group—defined in the previous section as a set of words separated
by vertical bars—the part of the input sentence that matches the group is saved so it can be
used later to make the response. The diagram in Figure 10.4 shows how this process works.

First note that the regular expression in the pattern object (the gray box) has a group of
three words, one of which is “cow.”. When the apply method finds the word “cow” in the
input sentence, Ruby will save the word. Words are saved in special variables that have
names of the form $n, where the n is the group number (since in general a pattern can have
more than one group). In this example, the word “cow” is saved in $1.

Notice that the response string also has a variable name. When a response has a variable
name, the apply method “plugs in” the variable’s value at that location. In this example,
since the letters “cow” were saved in $1, the response becomes “You had a cow?” A variable
name in the response string is basically a “placeholder.” Before the response is printed, the
apply method fills in the output sentence by substituting the value of a variable for the
placeholder.

Here are the lines from the IRB session that created the pattern shown in Figure 10.4.
The first step is to make the pattern object, supplying it with a string that has a group of
words:

>> p = Pattern.new( "cow|pig|horse" )
=> (cow|pig|horse): []

  /cow|pig|horse/ 
"You had a $1?"
"How many $1s were on the farm?"

H: The cow slept in the barn.

C: You had a cow?

$1: cow

Figure 10.4: The animal names in this pattern define a group. When an input sentence contains one
of these words, the apply method saves the word in a variable so the word can become part of
the response.
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Next, add some response strings that have placeholders:

>> p.add_response("You had a $1?")
=> ["You had a $1?"]

>> p.add_response("How many $1s were on the farm?")
=> ["You had a $1?", "How many $1s were on the farm?"]

Now when the apply method creates a response, it will insert the word it found in the
input sentence:

>> p.apply("The cow slept in the barn.")
=> "You had a cow?"

>> p.apply("The horse jumped the fence.")
=> "How many horses were on the farm?"

>> p.apply("The pig wallowed in the sty.")
=> "You had a pig?"

In this example there was only one group, but in general there can be any number of
groups. When a pattern has more than one group, however, there is some ambiguity in how
the groups are defined. Here is an example:

>> p = Pattern.new("hamster|guinea pig|gerbil")

Should Ruby treat this as two groups, one for the words “hamster” and “guinea” and the
other for the “pig” and “gerbil”? Or is it one group, with “guinea pig” considered to be an
alternative to “hamster” and “gerbil”? The answer is that Ruby considers this pattern to
have a single group with three alternatives.

If you really do want two different groups, you need to use parentheses to surround the
words in each group. Parentheses in a pattern are just like parentheses in an arithmetic
expression: they alter the default precedence, so that Ruby evaluates the expression the
way you intend and not by using its default. Here is a pattern that has two groups of words:

>> p = Pattern.new("I (like|love|adore) my (dog|cat|ducks)")
=> I (like|love|adore) my (dog|cat|ducks): []

Now when we make response strings we can use two placeholders, since there are two
groups in the pattern:

>> p.add_response("Why do you $1 your $2?")
=> ["Why do you $1 your $2?"]

>> p.add_response("Your $2?")
=> ["Why do you $1 your $2?", "Your $2?"]

Notice how the words from each part of the input are inserted into the right place in the
response:

>> p.apply("I adore my cat")
=> "Why do you adore your cat?"

>> p.apply("I love my dog")
=> "Your dog?"
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Let’s go back to the idea at the beginning of the section, where we want to define a pattern
that responds to a sentence like “I’m afraid of . . . ” with “What is it about . . . that worries
you?” Now that we know about word groups, we can make a pattern that plugs in the word
from the input sentence:

>> p = Pattern.new("I’m afraid of (cows|dogs|ghosts)")
=> I’m afraid of (cows|dogs|ghosts): []

>> p.add_response("What is it about $1 that worries you?")
=> ["What is it about $1 that worries you?"]

Unfortunately, this pattern only works for the words specified in the group. If we are writing
a script to play psychologist, we have to anticipate everything a person could be afraid of.

Another very useful feature of regular expressions allows us to write patterns that save
more than just a single word in a placeholder. A regular expression can contain wild cards
that match any piece of text. A wild card is written with two characters: a period followed
by an asterisk. Here is how we would write the same pattern, using a wild card:

>> p = Pattern.new("I’m afraid of .*")
=> I’m afraid of (.*): []

All the words following “of” in an input sentence are saved in a variable, and they can be
inserted into the response:

>> p.add_response("Why are you afraid of $1?")
=> ["Why are you afraid of $1?"]

Metacharacters (Special Characters in Regular Expressions)

Many symbols have special meanings when 
they are used in regular expressions.  

From a previous sidebar, we saw that inside
a regular expression, a period means “any 
character can be in this location.”  

The asterisk means “any number of the things 
to the left,”  so the pattern .* means “any
number of any character” — in other words, 
an arbitrary string of characters that may 
appear in an input sentence.  

The vertical bar means “or.” It is used in 
situations where we want a pattern to apply to
a group of words.

◆ A question mark means the preceding item is optional.  One place to use it is when 
making a pattern that matches a singular or plural form of a word.  For example, 
/(cow|horse)s?/ matches “cow” or “horse” or “cows” or “horses”.

. match any single 
character

.* match any number of 
characters

x|y|z match x or y or z

(x|y)s? x or y, optionally 
followed by an s
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Here’s what happens when we apply this pattern to some sentences:

>> p.apply("I’m afraid of the dark")
=> "Why are you afraid of the dark?"

>> p.apply("I’m afraid of little green men")
=> "Why are you afraid of little green men?"

Note that the wild card doesn’t just match a single word; the regular expression saves an
arbitrarily large part of the input sentence in the variable.

To recap what was introduced in this section:

• If the regular expression that defines a sentence pattern has a group (a set of words
separated by vertical bars) or a wild card the regular expression saves the part of the
input sentence that matches this part of the pattern.

• The pieces of the input that match a group are saved in variables named $1$, etc.

• A response can include variable names, and as a result, the output string will contain
parts of the input string.

Tutorial Project

T18. Create a pattern that has a group of words:
>> p = Pattern.new("green|yellow|red|blue")
=> (green|yellow|red|blue): []

T19. Check to see if the pattern matches a sentence that contains one of these words:
>> p.match("The sky is red")
=> true

T20. Add a response string with a variable, so that the matching word is included in the response:
>> p.add_response("That’s my favorite color, $1")
=> ["That’s my favorite color, $1"]

T21. Now call apply, to see what sentence is constructed in response to the input:
>> p.apply("The sky is red")
=> "That’s my favorite color, red"

T22. If the pattern is given any sentence with one of the four colors listed you should see a re-
sponse that contains the color name:
>> p.apply("The green bird flew away")
=> "That’s my favorite color, green"

T23. Make a pattern that has two groups, and add a response that uses both saved substrings:
>> p = Pattern.new("The (dog|cat|frog) (ran|jumped)")
=> The (dog|cat|frog) (ran|jumped): []

>> p.add_response("Are you sure the $1 really $2?")
=> ["Are you sure the $1 really $2?"]

T24. First see if the pattern matches a sentence that has one word from each group:
>> p.match("The dog ran after the car")
=> true
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T25. Try applying the pattern to some sentences that contain words from both groups:
>> p.apply("The cat ran away")
=> "Are you sure the cat really ran?"

>> p.apply("The dog jumped over the fence")
=> "Are you sure the dog really jumped?"

T26. Next make a pattern that has a wild card, and add a response that uses the saved text:
>> p = Pattern.new("I’m afraid of .*")
=> I’m afraid of (.*): []

>> p.add_response("What is it about $1 that scares you?")
=> ["What is it about $1 that scares you?"]

T27. Try some sentences that match the pattern:
>> p.apply("I’m afraid of clowns")
=> "What is it about clowns that scares you?"

>> p.apply("I’m afraid of speaking in public")
=> "What is it about speaking in public that scares you?"

T28. Make a pattern that has three wild cards:
>> p = Pattern.new("I’m .* my .* was .*")
=> I’m (.*) my (.*) was (.*): []

Notice that Ruby put parentheses around the wild cards for you.

T29. The response can use the matching pieces of the sentence in any order:
>> p.add_response("How did the fact your $2 was $3 make you $1?")
=> ["How did the fact your $2 was $3 make you $1?"]

T30. Try out this new pattern:
>> p.apply("I’m glad my plane was on time")
=> "How did the fact your plane was on time make you glad?"

>> p.apply("I’m totally disappointed my midterm exam
was rescheduled for a week later")

=> "How did the fact your midterm exam was rescheduled for a
week later make you totally disappointed?"

T31. Make a new pattern with a single wild card:
>> p = Pattern.new("I like .*", ["Why do you like $1?"])
=> I like (.*): ["Why do you like $1?"]

T32. Try out the new pattern on some sentences:
>> p.apply("I like to solve crossword puzzles")
=> "Why do you like to solve crossword puzzles?"

>> p.apply("I like your hat")
=> "Why do you like your hat?"

>> p.apply("I like her attitude")
=> "Why do you like her attitude?"

>> p.apply("I like my new computer")
=> "Why do you like my new computer?"

Some of the replies in the last exercise seem realistic, but others aren’t quite right. Can you tell what
the odd ones have in common, and how they differ from the realistic ones?
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10.4 Substitutions

The exercise at the end of the last section showed how the simple strategy of just “cutting
and pasting” entire fragments from an input sentence to build up a response doesn’t always
work. The pattern object from Exercise T32 responded to “I like my new computer” with
“Why do you like my new computer.” If we want the “doctor” to respond to statements of
the form “I like ...” with “Why do you like ...?”, the program cannot simply echo the parts
that match the wild card.

The problem with the strange-looking replies is that they have personal pronouns. When
the program just plugs parts of the input containing pronouns into the response template,
the result can be silly. If the only way Eliza could respond to sentences was through the
cut-and-paste operations described in the previous section, Eliza would respond to “I am
happy to see you” with “Why are you happy to see you?” In a normal conversation, words
like “I” or “you” are typically (but not always) replaced by their opposite. If a patient says “I
am happy to see you” a real doctor would reply “Why are you happy to see me?” The “you”
in this sentence was replaced by “me” in the response, but the other words (“to see”) are
unchanged.

In order to handle situations like this, Eliza uses an operation called postprocessing.
After breaking the input into pieces with a regular expression, but before reassembling the
pieces into a response, Eliza does an additional pattern matching operation on each of the
variables $1, $2, etc. This second pattern matching step does single-word replacements.
Every “I” is replaced with “you,” every “my” with “your,” and so on. The result isn’t perfect,
but with a large enough set of replacement strings Eliza can maintain the illusion of carrying
on a conversation.

Words substituted during the postprocessing step are kept in a list of associations. During
the postprocessing phase, Eliza looks in the association list for each word in $1, $2, etc.,
and if a word is found it is replaced by the corresponding string.

Here are some examples of how postprocessing leads to more realistic responses. The
pattern is:

>> p = Pattern.new("I am (.*)", ["Are you really $1?"])
=> I am (.*): ["Are you really $1?"]

Without postprocessing, responses can be very strange:

>> p.apply("I am out of my mind")
=> "Are you really out of my mind?"

>> p.apply("I am sorry I dropped your computer")
=> "Are you really sorry I dropped your computer?"

To add a new word to the association list used for postprocessing, just use an assignment
statement. These two assignments tell Eliza to replace “me” with “you” and “my” with
“your”:

>> Eliza.post["me"] = "you"
=> "you"

>> Eliza.post["my"] = "your"
=> "your"
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The list is an associative array named Eliza.post.1 The word to substitute is on the left
side of the assignment, between square brackets, and the word it should be replaced by is
on the right side.

Now if you ask Ruby to show you the contents of the list you’ll see it has saved these two
associations:

>> Eliza.post
=> {"my"=>"your", "me"=>"you"}

After defining a few more postprocessing rules the responses are more realistic:

>> p.apply("I am out of my mind")
=> "Are you really out of your mind?"

>> p.apply("I am sorry I dropped your computer")
=> "Are you really sorry you dropped my computer?"

Eliza will also do substitutions to a sentence before it tries to apply a pattern. These
substitutions, performed during a preprocessing phase, are typically used to replace con-
tractions with their more formal counterparts. Suppose we have a pattern for sentences that
start “you are”:

>> p = Pattern.new("You are (.*)", ["I am not $1"])
=> You are (.*): ["I am not $1"]

As expected, the pattern works for sentences that contain these two words:

>> p.apply("You are crazy")
=> "I am not crazy"

But the pattern will not apply to sentences that have the less formal version that uses a
contraction:

>> p.apply("You’re kidding)̈
=> nil

We can fix this problem by defining a preprocessing rule:

>> Eliza.pre["you’re"] = "you are"
=> "you are"

The variable named Eliza.pre is, like Eliza.post, an associative array that tells Eliza
how to replace certain strings. Eliza scans every input sentence, and each time it finds a
string from the left side of a rule in Eliza.pre, the string is replaced the by the word(s)
on the right side of the rule. According to the rule shown in the example, “you’re” will
be replaced by “you are.” After adding this item to Eliza.pre the pattern will apply to
sentences that have the contraction:

>> p.apply("You’re kidding")
=> "I am not kidding"

1In Ruby, an associative array is called a Hash. Hashes were introduced in the Huffman Code project in Chapter 7
(see the sidebar on page 166). They are also described in the Ruby Reference section on page 357.
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C: I am not going to laugh at you.

➀

➁

➂

  /You are (.*)/ 
"I am not $1."
"Why would I $1?"

H: You're going to laugh at me.   "you're" => "you are"

You are going to laugh at me.

  "me" => "you"$1: going to laugh at me

Figure 10.5: Preprocessing and postprocessing help transform an input sentence into a response.
The first step in responding to an input sentence is to expand contractions in the input, using
rules in Eliza.pre. Next, see if the input matches the regular expression in a sentence pattern,
and if so, save the parts of the input that match wild cards or word groups. Finally,
postprocessing replaces pronouns according to rules in Eliza.post.

Note that substitutions defined in Eliza.pre are performed before a pattern matching
operation is tried, in order to transform an input into a form that will match a pattern.
Substitutions defined in Eliza.post are applied after a pattern matching operation has
succeeded, but before the pieces are reassembled into a response.

The complete process used to transform a sentence is illustrated in Figure 10.5. The first
step is preprocessing, where the apply method sees the string “you’re” in the input and
replaces it with “you are.” Now the sentence matches the pattern, and the words following
“are” are saved in $1. The postprocessing step replaces the word “you” with “me.” After all
the pattern matching steps are complete, the pieces are put back together, and the contents
of $1 are substituted into the response string to create the output.

Tutorial Project

T33. Make a pattern to use for testing preprocessing and postprocessing:
>> p = Pattern.new("you are (.*)", ["I am not $1"])
=> you are (.*): ["I am not $1"]

T34. Since the pattern starts with “you are” it will not match a sentence that uses “you’re”:
>> p.apply("You’re going to laugh at me")
=> nil

T35. Define a preprocessing rule that tells Eliza to replace “you’re” with “you are” before it tries
to apply the pattern:
>> Eliza.pre["you’re"] = "you are"
=> "you are"

T36. Tell Ruby to print the preprocessing rules to verify the one you just defined is there:
>> Eliza.pre
=> {"you’re"=>"you are"}
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T37. Apply the pattern to some sentences that have the string “you’re”:
>> p.apply("You’re right")
=> "I am not right"

>> p.apply("You’re going to laugh at me")
=> "I am not going to laugh at me"

>> p.apply("You’re killing me")
=> "I am not killing me"

The pattern now works equally well for sentences with “you are” or “you’re.” We’ve fixed one problem,
but now we need to define some postprocessing rules to make the output convincing.

T38. Define a postprocessing rule that tells Eliza to change “me” into “you” when it assembles an
output string:
>> Eliza.post["me"] = "you"
=> "you"

T39. Again it’s a good idea to make sure the new rule is there:
>> Eliza.post
=> {"me"=>"you"}

T40. Try your example sentences again:
>> p.apply("You’re going to laugh at me")
=> "I am not going to laugh at you"

>> p.apply("You’re killing me")
=> "I am not killing you"

Try some more sentences on your own. Can you figure out how to define pre- and postprocessing rules
that will allow the pattern

p = Pattern.new("I am (.*)", ["Are you really $1?", "$1?"])

to respond to “I’m sorry I dropped your computer” with “Are you really sorry you dropped my com-
puter?”

10.5 An Algorithm for Having a Conversation

To summarize what we’ve seen so far:

• a pattern object is defined by a regular expression and a set of response strings;

• when we call an object’s apply method, it uses the regular expression to see if a
sentence matches the pattern;

• pattern matching variables ($1, $2, etc.) along with preprocessing and postprocessing
help the apply method extract parts of the input sentence and reuse them as part of
the response.

As you might imagine, there are many more enhancements we might make to give the
apply method more flexibility in the types of sentences it can transform. At this point,
however, we will turn our attention to the problem of how to use patterns as part of an
algorithm that will carry on a conversation. Any sentence typed by the user is likely to match
several different patterns, and we need to define an algorithm that will choose among all
the patterns that might be applied.
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A straightforward algorithm would be to simply try patterns until we find one that matches
an input sentence. We could make an array of pattern objects, and then write a program
that uses an iterator to try the patterns in order. The first time we find a pattern that applies
to the input sentence, we would use the response generated by that object. The problem
with this approach is that patterns will always be applied in the same order. If any of the
patterns at the front of the array have regular expressions that match common words, they
will be used fairly often, and responses will become predictable.

Weizenbaum’s solution to this problem was to assign a priority to each word. He ex-
pected people would ask the program questions like “Are you a computer?”, or “Am I talking
to a machine?”, so the original DOCTOR script had patterns to respond to inputs with the
words “computer” or “machine.” To make sure ELIZA responded directly to these questions,
Weizenbaum developed an algorithm that tried to match inputs to high priority words like
“computer” before trying any patterns for sentences containing more common words like
“are” or “you.”

Another issue that needs to be addressed is that some common words, like “I”, are going
to appear in several different patterns. For example, there might be different sentence
patterns to respond to inputs like “I am worried . . . ”, “I remember . . . ”, or “Why can’t I . . . ”.
We want to make sure Eliza tries all the patterns for a word before moving on to a lower
priority word.

A new type of object, called a Rule, is simply a list of pattern objects. When we say Eliza
has a “rule for x,” what we mean is there is a rule object that has a set of patterns that all
pertain to sentences containing the word x. When x is found in an input sentence, Eliza will
try to match the sentence with each of these patterns.

Given this definition of a sentence transformation rule, the algorithm for responding to
a sentence typed by a user is straightforward (Figure 10.6). The algorithm uses a priority
queue to manage the words in the input sentence. A priority queue is a container, similar
to an array, but it has the special property that items in the container are always sorted
according to some priority. Each sentence is broken into individual words, and if there is
a rule for a word, the rule is added to the queue. After all words in the input sentence
have been scanned, Eliza starts applying rules according to their order in the queue. If a

To respond to a sentence typed by a user:

1. Break the sentence into words.

2. If there is a rule for a word, add the rule to a priority queue.

3. Try the rules in order of decreasing priority.

4. If a rule applies to the input sentence (i.e., the rule has a pattern that matches the 
sentence) apply postprocessing rules to placeholder variables and return the response.

The ELIZA Algorithm

Figure 10.6: An algorithm for having a conversation.
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  /computer|machine/ 
"Do $1s worry you?"
"Why do you mention $1s?"

H: Are you a computer?

  /you .* me/
    "Why do you think I $1 you?"
    "Really, I $1 you?"

  /can you .*/
    "You believe I can $1, don't you?"
    "You want me to be able to $1?"

C: Do computers worry you?

computer

you

are

queue

Figure 10.7: The rules for each word in an input sentence are saved in a priority queue. Eliza tries
the rules in order, starting with the highest priority word at the front of the queue. In this
example, the word “computer” has the highest priority of all the words in the input sentence,
and the response comes from a pattern associated with the word “computer.”

rule applies to the sentence, the response made by that rule is returned, otherwise Eliza
continues with the next rule in the queue.

An example of how the algorithm processes a sentence is shown in Figure 10.7. The
input is “Are you a computer?” The DOCTOR script has patterns for sentences with the words
“computer,” “you,” and “are,” so rules for these words are saved in the priority queue. Since
“computer” has the highest priority, it will be at the front of the queue, and on the first
iteration Eliza will try to match the input to the regular expression for this rule. Since the
regular expression matches the input, the response generated by this rule (“Do computers
worry you?”) is the sentence that will be printed as the output. If Eliza did not have a
priority queue, it might have tried other patterns first, and the output could have come from
a pattern for sentences with the word “are” or “you.”

For the project in this section we will see how Eliza uses its priority queue to select from
a set of several different rules that might apply to an input sentence. After a script has
been loaded, you can call a method named rule_for to see whether there is a rule for a
particular word. For example, to see if the script has a rule for the word “remember” you
would type

>> Eliza.rule_for("remember")
=> [5] --> [

/I remember (.*)/
"Do you often think of $1?"

... ]
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  def Eliza.transform( s )
    queue = PriorityQueue.new
    Eliza.scan( s, queue )
    response = nil
    while queue.length > 0
      rule = queue.shift
      response = Eliza.apply( s, rule )
      return response if response != nil
    end
    return nil
  end

# Transform a sentence using rules in a script,  
# return nil if no rule applies Figure 10.8: The RubyLabs

implementation of the ELIZA
algorithm. Eliza.scan splits
a sentence into individual
words and adds rules to a
priority queue. PriorityQueue
objects were introduced in the
Huffman tree project; see
Exercises T45 to T51 in
Section 7.4.

The output means there is a rule, and it has a priority of 5 (the higher the number, the
higher the priority). Following the priority, you should see a set of one or more regular
expressions, and for each expression, a set of one or more response strings. If a script does
not have a rule for a word, the rule_for method returns nil:

>> Eliza.rule_for("cow")
=> nil

To see how Eliza will respond to a string, call the transform method:

>> Eliza.transform("I’m afraid of cows")
=> "Is it because you are afraid of cows that you came to me?"

This method will break the sentence into words, look to see if there is a rule for each word,
and add those rules to the priority queue. It then starts to apply the sentence patterns in
order of the rule priorities. So even though there isn’t a rule for “cow,” Eliza was able to
generate a response using a rule for one of the other words in the sentence, in this case a
rule for “afraid.”

A Ruby implementation of the complete algorithm is shown in Figure 10.8. The method
named Eliza.scan applies the preprocessing rules, e.g., to expand contractions like “I’m”
into complete words like “I am.” It then splits the sentence into individual words, and adds
rules for the words to the priority queue. The call to Eliza.apply will see if a rule has a
pattern that matches a word, and if so do all the necessary postprocessing and return the
response string.

If we want to trace the execution of the algorithm, we can see all the details of how Eliza
processes a sentence by calling a method that turns on “verbose mode”:

>> Eliza.verbose
=> true

Now when we call transform, Eliza will print out the details of every step, showing which
words are added to the priority queue, and then which sentence patterns are tried.
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Tutorial Project

T41. Load the sentence patterns in the DOCTOR script:
>> Eliza.load :doctor
=> true

T42. See if the script has a rule for sentences that contain the word “if”:
>> Eliza.rule_for("if")
=> [3] --> [
/if (.*)/
"Do you think it’s likely that $1?"
"Do you wish that $1"
... ]

T43. Call the transform method to see how Eliza responds to a sentence that contains the word
“if”:
>> Eliza.transform("If wishes were horses")
=> "Do you think it’s likely that wishes were horses?"

T44. If you call transform with another sentence containing the word “if” Eliza should use the
second response string:
>> Eliza.transform("If wishes were horses")
=> "Do you wish that wishes were horses?"

Do you see how the patterns for “if” tell Eliza to extract all the words following “if” and plug them
into the response strings?

T45. Print the rule for transforming sentences that contain the word “remember”:
>> Eliza.rule_for("remember")
=> [5] --> [
/I remember (.*)/
"Do you often think of $1?"
...

/do you remember (.*)/
"Did you think I would forget $1?"
...

You should see there are two patterns, one for sentences that match “I remember” and one
for sentences that match “Do you remember.”

T46. Call the transform method with a sentence that matches the first pattern:
>> Eliza.transform("I remember that cow")
=> "Do you often think of that cow?"

T47. Now try a sentence that matches the second pattern for “remember”:
>> Eliza.transform("Do you remember why I’m afraid of them?")
=> "Did you think I would forget why you are afraid of them?"

T48. Turn on Eliza’s “verbose mode”:
>> Eliza.verbose
=> true

T49. Transform a sentence that has several words that are key words in the DOCTOR script:
>> Eliza.transform("I remember my sister had a computer")
preprocess: line = ’I remember my sister had a computer’
...
=> "Do computers worry you?"



270 Chapter 10 Ask Dr. Ruby

You will see several output lines as Eliza transforms this sentence. The first set of lines will tell you
that Eliza found rules for “I,” “remember,” “my,” and “computer.” Then Eliza will print the contents of
the priority queue, and since “computer” is the highest priority word in this sentence, Eliza tries that
pattern first. Can you see why the final output was a question about computers, and not any of the
response strings for the word “remember”?

Try calling transform with a few more sentences of your own. In each case, you should see one or
more words being added to the priority queue, and then see how Eliza tries the rules for those words
in order, from highest priority to lowest. If you want to see what the rule is for any of the words in
the queue, just call Eliza.rule_for (or you can use your text editor to open the text file for the
DOCTOR script).

T50. To turn off verbose mode, and go back to the normal way of interacting with Eliza, call a
method named quiet:
>> Eliza.quiet
=> false

10.6 © Writing Scripts for ELIZA

Making patterns and experimenting with them by typing expressions in IRB is a good way to
learn both how Eliza uses regular expressions to break an input sentence into smaller parts
and how it creates an output sentence by transforming and reassembling the pieces. But to
get Eliza to carry on a conversation, there will be too many patterns to type in interactively.
What we need to do is write down the patterns in the form of a script. Then, each time we
want to try out the transformation rules, we just have to load the script, and all the patterns
defined in the script will be available for Eliza to use.

One way to get started on your own script is to make a copy of the DOCTOR script that
comes with Eliza. This command will save a copy of the script in a file named “doctor.txt”
in your project directory:

>> Eliza.checkout(:doctor)
Copy of doctor saved in doctor.txt

Once you have a copy, you can either add new rules to it or just use it as a guide for writing
your own new script with a completely new set of rules. To have Eliza use your updated
copy of the script, pass the file name to the load method. For example, if you check out a
copy of the DOCTOR script, as shown above, and then rename it “farm.txt” after adding some
rules that respond to sentences with farm animals, use this command to load the modified
script:

>> Eliza.load "farm.txt"
=> true

Script files are plain text files that can be created with the same text editing application
you use for Ruby methods. The main part of the file will be a set of rule definitions, but there
can also be other information, for example, a specification of which words are expanded
during the preprocessing phase and the substitutions to perform during postprocessing.

Scripts have a very simple syntax. There are only two kinds of things in a script: di-
rectives, which are commands for Eliza, and rules, which are specifications for how to
transform an input sentence.
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:pre you're "you are

:post me "you"
:post myself "yourself"
:post my "your"

was 2 
  /was i (.*)/
    "What if you were $1?"
    "Do you think you were $1?"
  /i was (.*)/
    "Were you really?"
    "Why do you tell me you were $1 now?"

i
  /i (want|need) (.*)/
    "What would it mean to you if you got $2?"
    "Why do you $1 $2?"
  /i am (.*)(sad|unhappy|depressed|sick)(.*)/
    "I am sorry to hear you are $2$3."
    "Do you think coming here will help you not to be $2$3?"
  /i am (.*)(happy|elated|glad|better)(.*)/
    "How have I helped you to be $2$3?"
    "Has your treatment made you $2$3?"

remember 5
  /I remember (.*)/
    "Do you often think of $1?"
    "Does thinking of $1 bring anything else to mind?"
    "What else do you remember?"
  /do you remember (.*)/ 
    "Did you think I would forget $1?"
    "Why do you think I should recall $1 now?"

# A portion of the "Doctor" script for the RubyLabs version of Eliza in Ruby

Figure 10.9: An excerpt from the “doctor” script. Lines beginning with # are comments, lines
beginning with a word that starts with a colon are directives, and the remaining lines are all
parts of rules. A rule starts with a line that has a single word. Regular expressions (sentence
patterns) begin and end with a slash character. Response strings are surrounded by double
quotes. Although it’s not strictly necessary, if you indent regular expressions by two spaces, and
response strings by four spaces, as shown here, it is easier to tell which strings go with which
patterns, and which patterns go with which words.
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Directives are words that start with a colon. The two directives you should know about
are :pre, which tells Eliza to add a new word to the set of words it expands during the
preprocessing step, and :post, which tells Eliza to add a new item to the association list it
uses during postprocessing (described in Section 10.4). Some examples from the DOCTOR

script are:

:pre don’t "do not"
:post your "my"

The :pre command tells Eliza that whenever the letters don’t are seen in an input sen-
tence they should be replaced by do not. The :post command says that “your” should
be replaced by “my” in the parts of the input that are echoed back to the user, e.g., when
converting “I like your hat” into “Why do you say you like my hat?”

Directives like those shown above are specified on a single line, but rules need several
lines, as shown in Figure 10.9. The first line has the word that triggers the rule. So, for
example, if you are writing a rule that will process sentences related to cows, the first line
in the rule will just have the word “cow.” The default priority for a rule is 1, but if you want
the rule to have a higher priority put the priority number right after the word.

Following the line with the key word there can be one or more sentence patterns. The first
line in a sentence pattern is the regular expression that defines the pattern, and following
that are the response strings Eliza will use when an input sentence matches the regular
expression. There can be any number of response strings for each regular expression and
any number of patterns for any word.

A complete description of how script files are organized and a few more examples can be
found in the Eliza section of your Lab Manual.

Project Ideas

If you would like to experiment with Eliza, here are some suggestions for scripts.

© Use the checkout method to get a copy of the DOCTOR script, and then add some rules for
new topics. For example, you can add rules for farm animals, movies, books, or any other
subject.

© Write a new script for “small talk” at a party. Add rules for a few specific items, like your
favorite sports team, but if the input does not match one of the script patterns have it reply
with something like “strange weather we’ve been having” or “did you watch the game last
night?”

© Search the Internet for a transcript of the old Abbott and Costello routine called “Who’s on
First?” See if you can devise a set of rules so that when a person types something like “Tell
me, what is the name of the first baseman?” your script replies “What’s on second.” How
many other formulaic responses can you generate?

© Search for a transcript of the Monte Python skit called “The Argument Clinic.” In this skit, the
“clinician” tries to carry on an argument by negating every sentence spoken by the “client.”
If the input is “Yes it is” the response is “No it isn’t” and vice versa. Can you make a script that
argues with the user?
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10.7 ELIZA and the Turing Test

From the projects in the previous sections, it may seem that all Eliza needs to pass the
Turing Test is a script with rules to respond to a wider variety of questions, and perhaps a
few more features, like preprocessing and postprocessing, to deal with new special cases.
Human languages are very complex, however, and there are limits to the sorts of things we
can “teach” Eliza to respond to.

The first barrier for Eliza is that it does not take into account the structure of a sentence.
It simply breaks each input into individual words, without trying to figure out whether a
word is an important part of a sentence. When faced with any sentence consisting of more
than a few words, Eliza is not likely to make a good choice:

You said I wouldn’t be afraid of cows if I visited a dairy, but when I was there I was chased
by a duck, and now I’m having nightmares about birds.

It’s unlikely that any ordering of the words in this sentence will lead to a realistic response.
A human would recognize there are four separate topics (a suggestion for overcoming a
fear, a trip to a dairy, an episode with a duck, nightmares) and try to make an appropriate
response based on the topics. Eliza just dumps all the words in a queue, and the highest
priority rule is applied, regardless of the context of the rest of the sentence. If you typed
any long sentences when you were first experimenting with Eliza you no doubt realized it
did not do a very good job with complex sentences.

There are algorithms, called parsers, that will use rules of English grammar to break
sentences into their constituent parts. But even if we replace Eliza’s word-oriented strategy
with a more complicated algorithm, one that uses a parser to break a sentence into noun and
verb phrases, we would soon run into another problem. Consider this short conversation:

The cows were lying down in the field.
Go on.

They were quiet.
Why do you say the cows were quiet?

In order for the computer to make this second response, it would need to have some sort of
memory, to keep track of the fact that the conversation was about cows. Eliza has no way
to connect the word “they” in the second sentence with “cows” in the first sentence. Every
input is the start of a new conversation for Eliza, and all it can do is make a response from
the words in the current sentence.

Here is an example of another conversation that is not possible for a computer that uses
Eliza’s rule-based algorithm:

That cow was huge.
How big was it?

This response requires the computer to understand the meanings of words. English speakers
know the word “huge” means “very large,” and a response that substitutes “big” for “large” is
natural. Eliza, of course, knows nothing about the meanings of words. It has no data struc-
ture to correlate words with possible meanings, and no algorithm for considering whether
or not to replace a word with a similar one.
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Researchers in natural language processing refer to the general problem of assigning
meanings to words as semantics. Semantics is about much more than meanings of indi-
vidual words, however. It is not simply a matter of giving Eliza a dictionary so it can look up
synonyms. Meanings are based on what computer scientists refer to as “real-world knowl-
edge” or “common sense knowledge.” Here is another simple example that illustrates the
challenge:

The cow fell into the canal.
Was it able to get out?

A dictionary that simply associates “canal” with “channel used to convey water for irrigation”
would not help a program make this response. The reply is based on knowledge that canals
have water, the cow was in danger because it was in the water, and the cow might have had
some difficulty because canals usually have steep walls. A duck is also an animal commonly
found on a farm, but a human’s response to “the duck fell into the canal” would be very
different. All of this knowledge is something we, as humans, have built up over many years
of learning and using language, and without it a computer would not be able to carry on a
natural sounding conversation.

Human

Judge

Eliza

A B

IRB

Doctor

Even if we were able to put all the pieces de-
scribed above into a program, so we have an ap-
plication that can parse complex sentences, can
keep track of statements in order to remember
the context of a conversation, knows the mean-
ings of words, and has a substantial amount of
real-world knowledge, there is yet another diffi-
cult challenge. When we see or read a sentence,
we are continually making inferences. Infer-
ence is such a common phenomenon that we
take it for granted, and don’t even realize that
we are doing it. Consider this simple statement:

The cows walked across the pasture
while my dad waited at the barn.

When you read that sentence, did you immediately think that the cows were walking toward
the barn? A perfectly reasonable response to that statement might be “What happened
when the cows got to the barn?” But there is nothing in the statement that said anything
about where the cows were headed. We simply inferred that the cows were walking in the
direction of the barn, because the phrases “cows walked” and “at the barn” were both part
of the same sentence.

Depending on the larger context, there could be several different interpretations. Dad
could have been waiting for a taxi, or waiting for someone to bring his lunch. Even if the
program knows the meanings of the words, and has built up a context from earlier state-
ments, it will have to be able to make inferences in order to respond like a human. People
are constantly “connecting the dots” when they hear or read a sentence, and a response
from a human will use inferences based on the sentence and the context.
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Tutorial Project

The conversation shown below is from a hypothetical program that pretends to converse in English.
The responses from this program are each examples of replies that Eliza is unlikely to or unable to
generate. Can you explain why Eliza would not make these responses? If it helps, you can type a
sentence into the RubyLabs version of Eliza (after loading the DOCTOR script), or use the rule_for
method to see if DOCTOR has a rule for a particular word. Some comments about these responses can
be found in the section with Answers to Selected Exercises on page 344.

H: I remember when I lived in the country and there were
cows and chickens everywhere.

C: Why do you mention cows just now?

H: They were always looking at me.
C: The cows were looking at you?

H: Our parents got mad when we tipped the cows.
C: Did you really push over a cow?

H: The one with the big horns was the scariest.
C: Are you referring to a bull?

H: Yeah, that guy was pretty aggressive.
C: Did the horns seem dangerous?

10.8 Summary

In his 1950 paper on the nature of intelligence, Alan Turing was optimistic about the
prospects for natural language processing. He wrote:

I believe that in about fifty years time it will be possible to programme computers . . . to
make them play the imitation game so well that an average interrogator will not have
more than 70 per cent chance of making the right identification after five minutes of
questioning.

Another famous “prediction” that natural language processing would be well established
by the year 2000 was Arthur C. Clarke’s 2001: A Space Odyssey. The movie, which was
released in 1968, featured a computer named Hal that spoke flawless English with the crew
of a spaceship on a journey to the planet Jupiter.

Actual achievements in natural language processing have fallen far short of these predic-
tions. There have been some notable successes, but only in very limited areas. Reservation
systems for airlines and call centers for banks are examples where natural language inter-
faces are being used effectively. None of these systems are able to converse on a wide variety
of subjects, however.

One area where there has been some success is in parsing sentences. If you do an Internet
search for “English parsers” you will find several web sites at research labs that are working
on methods for analyzing complex sentences. Many of these sites allow you to type a
sentence into a form in your browser and submit it for analysis. The parser will return a
page that shows the overall sentence structure, with noun phrases, verb phrases, and other
parts of speech.

The Turing Test itself has become a source of controversy in recent years. One criticism is
that programs can do well in a contest simply by appealing to the judges, and do not actually
have to carry on a conversation. If a programmer knows judges are influenced by quirky
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Concepts and Terminology Introduced in This Chapter

natural language
processing

The area of computer science research concerned with
algorithms for understanding human language

Turing Test A proposal for assessing machine intelligence; a pro-
gram would pass the test if it could carry on a natural
language conversation

ELIZA The first program to attempt to converse in English;
it used simple rules to transform input sentences into
responses

regular expression A type of expression used for pattern matching; used by
the RubyLabs implementation of Eliza to process input
sentences

semantics The meaning of a word or sentence; a difficult chal-
lenge for natural language processing

responses, even to the point of changing topics at random, then a program that spits out
non sequiturs every now and then has a better chance of winning. Is this the sort of thing
people do, during a conversation, or simply a strategy to win a contest? Should the test
be amended, to require programs to try to emulate how people think and talk? Or should
Turing’s original rules still apply, so that any program that carries on a realistic conversation
for five minutes will earn the distinction of being called “intelligent”?

A computer program that truly does converse with a human would be one that remembers
what was said earlier in the session, knows the meanings of words, and is capable of making
inferences based on what it hears. It will be a long time before such programs are available.

Exercises

The first set of questions ask “what would Eliza do?” Try to answer these questions based on your
experience with Eliza in the tutorial projects. To check your answers, you can either look at the text
for the DOCTOR script, or start an IRB session with Eliza.

1. Here are some sentences typed by a user, and the responses generated by Eliza (after loading
the DOCTOR script). Explain why Eliza responded the way it did.
H: I can’t remember the date.
C: How do you know you can’t remember the date?

H: I can’t remember her name.
C: I am not interested in names.

H: There is no beer left.
C: Are you saying ’no’ just to be negative?

2. Does Eliza handle plural forms of nouns? Would it generate the same response for “My brother
lives in Hawaii” and “Both of my brothers are younger”?

3. Does Eliza work equally well with sentences that have the past, present, and future forms of a
verb?
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4. Some of the reasons a program like Eliza would have difficulty passing the Turing Test were
presented in Section 10.7. Can you think of an example sentence, or a sort of conversation, that
illustrates each situation?

a) A sentence structure that is too complex, i.e., that would require a parsing algorithm.

b) A conversation that depends on remembering something from a previous sentence.

c) A response that requires Eliza to know the meanings of words.

d) A response that requires real-world knowledge.

e) © A response based on an inference.

5. Here is the definition of a sentence pattern in a session with ElizaLab:
>> p = Pattern.new("I (hope|wish|want) (.*)")
>> p.add_response("Do you really $1 $2?")
>> p.add_response("Have you always $1ed $2?")

Show what Ruby will print for the following expressions, assuming no postprocessing rules have
been defined yet:
>> p.apply("I want a new computer")
>> p.apply("I wish you would stop putting words in my mouth")

6. What postprocessing rules are necessary for Eliza to respond the way it does in the following
examples (using the pattern object defined in the previous exercise)?
H: I want my computer to understand me.
C: Do you really want your computer to understand you?

H: I wish you would be more sympathetic.
C: Have you always wished I would be more sympathetic?

H: I hope you can help me understand why our cow used to scare us.
C: Do you really hope I can help you understand why your cow

used to scare you?

7. Define sentence patterns that would “teach” Eliza how to respond to the following types of
sentences:

a) Reply to sentences containing the word “coffee” with “No thanks.”

b) Reply to sentences containing “coffee,” “tea,” or “latte” with “No thanks, I don’t drink x,”
where x is one of the three key words.

c) Reply to sentences of the form “I drink x” with “Tell me why you like x,” where x can be
any word or phrase.

d) Reply to sentences containing both drinks and food, for example, respond to “I drink coffee
with a scone in the morning” with “Do you really have a scone with your coffee?” Make
up your own list of drinks and foods.

e) Reply to sentences with the words “comics,” “books,” or “web site” with “Why do you
mention x?” or “Do you often read x?” or “I don’t like x, myself.”

8. Suppose there is a program that will translate spoken words into text, so Eliza could respond to
verbal sentences. Discuss some of the issues that would have to be resolved before Eliza could
be used to handle telephone calls from customers, for example,

• credit card customers inquiring about their current balance, or about specific transactions;

• airline customers calling to make reservations, or ask about itineraries;

• customers who purchased software who have questions about how the software works or
are reporting errors.

9. The Ruby implementation of Eliza’s algorithm for transforming a sentence was given in Fig-
ure 10.8 on page 268. Could this algorithm be considered a type of search? How does it
compare to a linear search?





Chapter 11

The Music of the Spheres
Computer simulation and the N-body problem

Before the seventeenth century, comets were thought to be random, unrelated occurrences.
Astronomers who studied the motions of comets thought they moved in a straight line
through space, and there was no reason to suspect a strange object appearing in the sky
was the same body that had last shown up dozens of years earlier. But by 1687, when Isaac
Newton (1643–1727) published Principia Mathematica, astronomers realized comets, like
planets, were celestial bodies that orbited the Sun. Newton, using his new theory of gravi-
tational attraction, showed that comets followed highly elliptical orbits, so they were only
visible from Earth for short periods when they were close to the Sun.

A few years later, in 1705, Edmund Halley (1656–1742) analyzed records from previous
comet sightings, and proposed that a body most recently observed in 1682 was a comet
that orbited the Sun every 76 years. If this was the case, Halley needed to account for
large differences in the lengths of previous orbits. The time between appearances in 1531
and 1607 was 76.1 years, but the period between the sightings in 1607 and 1682 was only
74.9 years (Figure 11.1). Being familiar with Newton’s new theory, Halley proposed that
these differences were the result of the gravitational pull of Jupiter and Saturn. Comets are
very small, so their orbits would be easily influenced by the two largest planets in the solar
system. If Halley was right, the comet would appear again some time around 1758. It was
the first time anyone had tried to predict a future appearance of a comet.

One of the landmark achievements in the era before there were machines to carry out
computations was the calculation of the orbit of Halley’s Comet by the French astronomer
Alexis-Claude Clairaut (1713–1765). In the summer of 1758, before the comet was sighted,
Clairaut decided to test Newton’s equations and Halley’s prediction by computing the exact
orbit of the comet. He began by assuming the comet travelled mainly along a smooth
elliptical orbit, and then performed a series of adjustments to account for the gravitational

279



280 Chapter 11 The Music of the Spheres

effects of the two large planets. Clairaut spent five months, working with his colleagues
Joseph Jérôme Lalande (1732–1807) and Nicole-Reine Lepaute (1723–1788), on detailed
corrections to the orbit, each step depending on the result of earlier calculations.

The group began their work in June, and by November Clairaut and his colleagues had
determined that Jupiter and Saturn would cause the current orbit to be 618 days longer
than the previous one. On November 14, 1758, Clairaut predicted Halley’s Comet would be
closest to the Sun in the middle of April, with a margin of error of one month. When the
comet finally did reappear, astronomers were able to record the actual date it was closest to
the Sun, which was March 13, 1759.

The calculations by Clairaut are interesting not only because they are an example of
a significant computation from a time well before there were electronic computers, but
because they were an important scientific result, as well. Newton’s equations of motion
were still not universally accepted, and the computation of the gravitational effects of the
outer planets was one of the first major confirmations of Newton’s theory.

Before Newton, astronomers had attempted to describe the motions of planets by geo-
metric equations. Most ancient philosophers believed the planets rotated around the Earth,
following circular paths. In the Middle Ages astronomers began to question this view, and
gradually adopted the position of Nicolaus Copernicus (1474–1543), who argued that the
planets revolved around the Sun. Johannes Kepler (1571–1630) made an important con-
tribution when he proposed that the orbits were elliptic, rather than circular. This allowed
him to simplify the equations for the orbits, and as a result the apparent movements of the
planets were described with more accuracy.

Newton’s theory, that planets and other bodies simply move according to the gravitational
effects of the objects around them, was a major break from previous descriptions of the
motions of the planets. According to Newton, the planets appear to move with such regular
circular or elliptical orbits because the Sun is so much larger than all the planets. The mass
of the Sun is about 1030 kg, which is more than 300,000 times the mass of the Earth and
1000 times more than Jupiter, the largest planet. This large mass causes the planets to
circulate in orbits that are, for all practical purposes, ellipses.

Copernicus (1543)

Kepler (1605)

Newton (1687)

Halley (1705)

Clairaut (1758)1500

☄
1531

☄
1607

☄
1682

☄
1759

1800
* * * * *

Figure 11.1: This time line shows the dates of important results in the study of comets. In 1705
Edmund Halley predicted an object last seen in 1682 would reappear in 1758. Alexis-Claude
Clairaut used Isaac Newton’s law of gravitational attraction to compute the effects of Jupiter and
Saturn on the orbit of Halley’s comet. Before the comet was visible Clairaut successfully
predicted the date it would be closest to the Sun.
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(a) (b)

Figure 11.2: (a) In a binary star system, with two bodies that are approximately the same size, one
can solve a set of equations to predict the future location of each star. (b) The more general case
is an N-body system. There is no set of equations that will describe the motion of each body, and
the only way to predict the future location of each body is through computation.

The fact that bodies do not follow a prescribed orbit, but simply move according to the
force of gravity, means there is no equation that will tell us precisely where any body will
be some arbitrary point in the future. One of the first formulas students learn in a science
class is d = v× t, which describes the distance d an object will travel when it moves with
constant velocity v for a period of time t. If we know how fast an object is moving, and
we assume it keeps moving at the same constant speed, we can use this equation to predict
where the object will be at any point in the future by simply multiplying the velocity by the
time. But for planets, moons, and comets moving under the influence of gravitational forces
there is no such formula.

For certain special situations—a binary star system where two similarly sized objects orbit
each other, or a small falling object near the Earth’s surface—there are equations that de-
scribe the motions, and it is possible to solve these equations to predict the future locations
of the objects. But in the general case there are no equations to predict exactly where each
body in a system will be at any future date. Astronomers use the term chaotic to describe
this sort of motion. When used in this technical context, chaotic basically means “unpre-
dictable.” One of the consequences of a system being chaotic is that very small changes in
the current conditions may lead to very different positions after a period of time.

As soon as Newton published his theory of gravity, he and others began an effort to
develop a set of equations to describe the relative motions of the Earth, Moon, and Sun,
in what became known as the “3-body problem.” Eventually mathematicians were able to
prove that it would not be possible to derive simple equations that would predict exactly
where any one of N ≥ 3 bodies would be at any arbitrary point in time. Physicists today
refer to the problem of trying to describe the motion of a collection of bodies as the N -body
problem (Figure 11.2).

While it may not be possible to solve an equation to determine the precise locations at
any point in the future, it is possible to estimate where a set of bodies will be by doing a
series of calculations. The idea is to start with the current locations and headings of each
body. We can compute the effect of gravity on each of the objects and adjust their headings
accordingly. We then assume the bodies will move in the direction defined by their updated
heading, which will tell us where the objects will be a short time later. By repeating this
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The Music of the Spheres

Johannes Kepler, like most astronomers before him, 
believed the planets traveled in regular orbits that 
could be described by mathematical equations.  
Kepler's main contribution was the realization that 
the orbits were elliptical and not circular.  In his 
work The Harmony of the Worlds (1619), Kepler 
described a correspondence between harmonic 
ratios in musical notes and ratios of the orbital 
speeds of planets.  But unlike vibrating strings on a 
musical instrument, the motions of planets cannot 
be described by equations that will predict a location 
at an arbitrary point in time.  Instead, computer 
simulations, based on calculations of motions over 
very small time steps, are used to track the positions 
of planets, comets, and asteroids.

process, recomputing the gravitational attractions from each new position and computing
new positions a short time later, we can estimate where the bodies will be at some future
point in time. Mathematicians refer to this type of operation as numeric integration.

Clairaut used this technique when he computed the orbit of Halley’s comet in 1759. He
began by assuming the comet would follow an orbit that was basically an ellipse, and when
the comet was far away from any planet he computed its trajectory using formulas for
elliptical paths. When the comet was relatively close to Jupiter or Saturn he applied numeric
integration to make a series of corrections based on the gravitational attraction of the planet.

Our project for this chapter will explore computations that predict the motions of the
planets in the solar system. SphereLab, the Ruby module with the software we will use,
defines a new type of object, called a Body, that can be used to represent planets and other
celestial bodies. When we make a body object, it will encapsulate all the necessary infor-
mation, such as the planet’s mass and position. We will then be able to call methods that
compute the gravitational attraction between bodies and update their positions in response
to these forces. By repeatedly computing the forces acting on the planets, and moving them
for a small amount of time, we will see how an algorithm can paint an accurate picture of
the orbits of the solar system.

Using computation to solve problems like predicting the future positions of planets is an
example of computer simulation. Simulation is an important area in applied computer sci-
ence, used by professionals in a wide variety of areas, including science, medicine, engineer-
ing, and business. Computer-generated imagery (CGI), a growing part of the entertainment
industry, is also a form of computer simulation.

Today astronomers use computers to calculate the orbits of several thousand bodies, in-
cluding comets and asteroids. Simulations are used to predict the locations of satellites,
to help plan launches or return trips from the International Space Station, and to track
asteroids that are potential threats to Earth. The project in this chapter is a scaled down
and simplified version of the algorithms used by astronomers, but it is nonetheless a good
introduction to some of the issues in computer simulation.
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11.1 Running Around in Circles

One of the decisions Clairaut had to make when planning his computation of the orbit of
Halley’s Comet was how many times to adjust the comet’s orbit to account for the gravi-
tational attraction of Jupiter and Saturn. A single adjustment half way through the orbit
might have improved the estimate of the full orbit time, but the calculation would be more
accurate if several small adjustments were made at points evenly spaced throughout the
orbit. On the other hand, planning to do a calculation for every 24-hour period would lead
to far too many steps in the computation. That level of detail might not be necessary, since
the effects of Jupiter and Saturn are negligible when the comet is at the farthest reach in its
orbit. Clairaut eventually settled on a combination of the two strategies, making detailed
calculations when the comet was closest to Jupiter and Saturn, but using the elliptical orbit
when the comet was far away.

To begin the project for this chapter, we will explore the tradeoff between how often
positions are calculated and the overall accuracy of the computation. For the first set of
experiments, imagine a situation where a robot has landed on a distant planet, and we
want to send it out on a mission to explore its surroundings. We want the robot to travel a
path that is a perfect circle, and we want it to end up at the same location where it started.
We can transmit instructions to the robot to tell it to move straight ahead, or to turn so it is
heading in a new direction. When we tell the robot to move, it will advance straight ahead
for a specified amount of time, and then wait for further instructions.

Figure 11.3 shows how we can get the robot to make a trip that will move along a circular
path that brings it back to its starting point. With only six corrections the path would be a
hexagon. However, if the goal is to make a smooth circle, we need to correct the path more
often. The tradeoff is that the more corrections we make, the longer it will take the robot to
make the circuit, since it has to pause to wait for a new heading at the end of each leg.

For the lab project, we will monitor the progress of the robot in the RubyLabs graphics
window. To initialize the canvas, call a method named view_robot. The method initializes
the window to show a map of a square piece of terrain, 400 meters on each side. The robot
is initially on the west (left) edge of the map.

Figure 11.3: If we tell the robot to correct its heading six times, the path it travels will be a hexagon,
as shown on the left. With more frequent updates the path will look more like a smooth circle.
The path on the right was made by sending 16 corrections.
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Command Action

advance(t) Move ahead for t hours
turn(a) Turn clockwise by a degrees
plant flag Place a marker at the current location
orient Rotate until the marker is 90◦ to the right
heading Return the current direction (in degrees) the robot

is headed
speed Return the robot’s velocity (in meters per hour)
track(:on) Turn on the tracking option
track(:off) Turn off tracking

Table 11.1: Commands that can be transmitted to the robot explorer.

The Ruby expressions that tell the robot what to do are all of the form robot.x, where
x is the command to execute. For example, if we type

robot.turn(30)

the robot will change its current heading by turning clockwise 30◦. The complete list of
commands is given in Table 11.1.

When we send the command that tells the robot to move forward, we need to tell it how
long to move before it stops to wait for the next command. The distance an object moves
in an amount of time t is defined by the simple formula d = v× t, where v is the velocity
at which the object moves. Our robot will move at 10 meters per hour. So if we want it to
move 50 meters, we have to send the command to tell it to advance straight ahead for 5
hours:

robot.advance(5)

After the robot advances for the specified amount of time it will stop. At this point, if
we want it to move in a circle, we need to send it a command to turn clockwise before it
advances again. The question is, how far should we tell it to turn?

One way to answer this question is to imagine the robot has an arm sticking straight out
from its right side, at a 90◦ angle from the direction it is heading. If the robot moves in
a perfect circle, the arm will always be pointing at a flag at the center of the circle. After
advancing in a straight line for a while, the flag will be behind the robot. To get the robot
back on track, we want it to turn until the arm is pointing at the center again.

Figure 11.4 illustrates how the robot moves and turns. At the start of its journey, the
robot is facing north, and its arm is pointing due east at the flag. After moving straight for
a while, the flag is behind it. Before continuing, the robot should turn until the arm is once
again pointing at the flag. The robot actually turns a little further, so the flag is slightly in
front of where the arm is pointing; if you’re curious about the exact calculation, refer to the
SphereLab documentation in your Lab Manual.
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(a) (b) (c)

Figure 11.4: (a) The initial position of the robot explorer. (b) The robot’s position after moving
straight ahead. (c) After reorienting and moving ahead again, the robot is back on the circular
path and the arm is again pointing at the flag.

The orient command tells the robot to turn until it is facing a direction that will put it
back on the correct path:

>> robot.orient
=> 41.112090439167

The return value is the number of degrees the robot turned.
The first step in the project is to plant a flag to mark the center of the circular path. When

the robot first lands, it will be facing due north. We want it to move some distance to the
east, plant the flag, turn around, and move back to the starting position. Then we’ll send it
out to the north, and periodically have it reorient as it moves clockwise around the flag. If
we repeatedly tell the robot to advance and reorient, it will eventually move in a complete
circle and end up back where it started.

Tutorial Project

T1. Start IRB and load the module that will be used for this project:
>> include SphereLab
=> Object

T2. Initialize the RubyLabs canvas to display the map and robot:
>> view_robot
=> true

You should see a new window, with the robot on the left side, pointing north (straight up).

T3. Call the location method to get the x and y coordinates of the robot:
>> robot.location
=> [40, 200]

The coordinates represent distances from the point at the southwest corner of the map. The
robot starts out at a point 40 meters in from the left, and 200 meters up from the bottom.

T4. The speed and heading methods will tell you how fast the robot will move (in meters per
hour) and the direction it is currently headed (360◦ is north):
>> robot.speed
=> 10.0

>> robot.heading
=> 360.0
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To plant the flag in the center of this territory, we need the robot to turn so it is heading east, travel
160 meters (since the robot’s current x coordinate is 40, and the center is at x = 200), plant the flag,
turn back to the west, and travel the same amount of time to get back to the starting point.

T5. Point the robot to the east:
>> robot.turn(90)
=> 90

You should see the arrow that represents the robot on the screen turn so it points toward the
center of the map.

T6. Since the robot moves at 10 meters/hour, we have to tell it to travel for 16 hours to get to
the center of the map:
>> robot.advance(16)
=> 16

T7. Get the new location of the robot:
>> robot.location
=> [200.0, 200.0]

Can you see how it has moved 160 meters to the east? The previous x coordinate was 40,
and the new one is 200.

T8. Plant the flag:
>> robot.plant_flag
=> 0

T9. Turn the robot around, send it back to the starting point, and tell it to turn to the north again:
>> robot.turn(180)
=> 180

>> robot.advance(16)
=> 16

>> robot.turn(90)
=> 90

T10. It will be easier to follow the robot’s progress on its circular trip if it leaves a track behind as
it moves. Type this command to turn on the tracking option:
>> robot.track(:on)
=> :on

T11. Tell the robot to move for 3 hours in the direction it is currently heading:
>> robot.advance(3)
=> 3

You should see the robot icon move a short distance toward the top of the map, leaving a
line segment on the canvas to show where it has been.

T12. Tell the robot to turn 90◦:
>> robot.turn(90)
=> 90

T13. You can turn the robot counterclockwise by passing a negative number to turn:
>> robot.turn(-30)
=> -30

T14. After turning 90◦ clockwise, and then 30◦ counterclockwise, the new heading should be 60◦:
>> robot.heading
=> 60.0

Is the robot icon on your screen pointing to 60◦ (toward the northeast)?
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Figure 11.5: (a) The location and orientation of the robot after moving for three hours, turning 60◦,
and moving another 10 hours. (b) © The second part of the path traveled by the robot is the
hypotenuse of a right triangle. The distance moved in the x and y dimensions corresponds to the
cosine and sine of the angle adjacent to the hypotenuse.

T15. Move the robot for 10 hours along its new heading:
>> robot.advance(10)
=> 10

Your canvas should now look something like the screen snapshot in Figure 11.5a.

© Get the robot’s new location:
>> robot.location
=> [126.602, 280.0]

Use your calculator to check to see if this location is correct (see Figure 11.5b).

Do some more experiments on your own. Can you use calls to advance_robot and turn_robot

to have the robot travel a circular path around the flag in the middle of the terrain and return to its
starting point?

T16. Clear the canvas and reposition the robot at its starting location by calling view_robot

again. Since the remaining experiments will want to track the motion of the robot around
the flag in the middle of the map we can pass options to view_robot so the screen is
initialized with a flag and with tracking turned on:
>> view_robot(:flag => [200,200], :track => :on)
=> true

T17. Tell the robot to move straight ahead for 5 hours:
>> robot.advance(5)
=> 5

T18. Call orient to have the robot turn so it’s arm it pointing at the center again:
>> robot.orient
=> 34.70

The return value indicates the robot turned 34.7◦.

T19. Move the robot ahead and orient it again:
>> robot.advance(5); robot.orient
=> 0.0

The 0.0 means that this time the robot decided it was still going the right direction, so the
turn angle was 0◦.
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T20. Enclose the two statements on the previous line in a call to times, so they are repeated 18
more times:
>> 18.times { robot.advance(5); robot.orient }
=> 18

Is the robot progressing on a path that will take it back to its “home base”?

T21. Repeat the command that initializes the system with a flag in the middle of the map:
>> view_robot(:flag => [200,200], :track => :on)
=> true

T22. Repeat the previous exercise, but this time have the robot travel for only 2 hours instead of
5 before it reorients, and have it make a journey involving 50 segments instead of 20:
>> 50.times { robot.advance(2); robot.orient }
=> 50

In the first experiment the path was adjusted once every 5 hours, but in the second experiment the
robot turned once every 2 hours. Do you see that when the robot is told to adjust its direction more
frequently the path looks more like a circle?

© What do you suppose would happen if the time interval is increased, instead of decreased?
Think about where the robot would go if it moved north for 12 hours, and then reoriented
and advanced again. Would the line segments that make up the path still be tangent to the
circular path we want the robot to make?

© Check your answer to the previous question by repeating Exercises T21 and T22, passing 12
in the call to robot.advance.

© An even more extreme path is made if the robot travels for 24 hours or more, but there isn’t
room to show this path on the map. But you can get the same effect if you move the robot
closer to the flag before it starts, which will have it make a smaller circle. Type this after
initializing the map:
>> robot.turn(90); robot.advance(8); robot.turn(-90)
=> -90

Now send the robot off on a journey that moves for 12 hours before reorienting. What do
you see? Is it a circle?

© Suppose the robot leaves a monitoring instrument each time it stops. Describe the pattern
defined by the locations of the instruments. Are they all equally distant from the flag? Do
the locations define a circle? Two circles?

11.2 The Force of Gravity

To simulate the movement of the planets in the solar system, we are going to use the strategy
introduced in the last section, where we simulated the motion of an object for a short period
and then corrected its heading. The solar system simulation starts with the current location
and heading of each planet. The basic equations of motion predict where planets would be a
short time later if they all traveled in a straight line. From these new positions the simulator
uses gravitational forces between bodies to calculate adjustments to headings, and we will
simulate straight-line motions for another short period of time.

The amount of time the bodies move is called the time step. As was the case with the
robot experiment, the size of a time step is a critical factor in the accuracy of the simulation.
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The more often new trajectories for the planets are computed, the more accurate their
simulated movements will be.

One difference between the robot experiment and the planet simulation is that we do not
have any preconceived notion of where the planets are supposed to move. The adjustments
to a planet’s heading will be determined only by the gravitational forces from all the other
bodies in the system.

Another difference is that the robot always moves with a constant velocity. We simply
assumed that once it receives an advance command the robot will immediately start off
at 10 m/sec. A real robot, like a car, will need some time to accelerate before it reaches
the final velocity. Similarly, planets and other bodies in the solar system change velocity,
speeding up the closer they get to the Sun.

The next step in the development of our simulation is to explore situations where velocity
changes. When a body changes velocity, it is because some external force is being applied
that causes the body to accelerate. The project in this section will show how we can simulate
the motion of a body when it is accelerating as a result of gravitational forces. We will set
up a very simple system with just two bodies: a watermelon and the Earth. We will create
an object for each of these two bodies and then simulate the motion of the watermelon as
it falls toward the Earth.

The advantage in using a simple “two-body” system for our initial experiment is that there
is an equation that predicts how far the melon will fall in a given amount of time, and we
can use this equation to check the accuracy of the simulation. Recall from the discussion in
the introduction to this chapter that for a general situation, with N ≥ 3 bodies, there are no
formulas to explain how each body will move, but a small object falling toward the Earth is
a special case that can be described precisely by a simple equation (Figure 11.6).

Assuming an object is initially stationary, and that it does not slow down because of wind
resistance, the equation that predicts how far it will fall in t seconds is d = 1/2 g × t2.
The g in this equation stands for the acceleration due to gravity, which is the effect of
the gravitational force exerted by the Earth. Since we are measuring distances in meters,
the value of g is 9.8 m/sec2. As an example of how this equation can be applied, if the
watermelon is dropped from a balcony of a tall building, the distance it falls in 2.0 seconds
is d = 1/2× 9.8× 2.02, or 19.6 meters.

Figure 11.6: A small object near the surface of
the Earth is pulled toward the center of the
Earth by the force of gravity. A simple
equation predicts how far the object will
move in t seconds.

d =
1

2
g × t2
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By rearranging the terms in the equation, we can turn it into a formula that defines t as a
function of d:

t =
√

2× d/g

In this form, the equation tells us how long it will take an object to fall a distance of d meters.
For example, if the balcony is 35 meters high, it will take the watermelon

√
2× 35/9.8 =

2.67 seconds to hit the ground. This prediction will be accurate if the watermelon is perfectly
stationary when it is let go (i.e., the person holding it doesn’t give it a downward push
in order to make a bigger splat) and if there is no appreciable air resistance to slow the
watermelon down.

The SphereLab module includes a type of object named Body that can be used to represent
small bodies like the watermelon, as well as larger bodies like the Earth, Sun, and planets.
Each body object has a mass, a position, and a velocity. The methods defined for bodies will
do all the necessary calculations for us; all we need to do is create the objects and then call
the methods to update their velocities and positions.

A method named make_system sets up a computational experiment for a system of
bodies. For the watermelon experiment, we pass the symbol :melon as an argument to
make_system:

>> b = make_system(:melon)
=> [melon: 3 kg ..., earth: 5.9736e+24 kg ...]

The method creates an array containing two body objects, one for the watermelon and one
for the Earth. The string printed for each object shows its name and mass, followed by the
object’s position and velocity. The details of how the position and velocity are represented
will be explained in the next section; for now we just need to know that they are included
in the representation of each body.

We can monitor the progress of the watermelon experiment by watching the bodies move
on the RubyLabs canvas. To initialize the drawing, pass the array of body objects to a
method named view_melon:

>> view_melon(b)
=> true

Scientific Notation in Ruby

Since the mass of the Earth (in kilograms) is a very large number, it is usually shown 
in scientific notation:  5.9736 × 1024 kg.

Unfortunately, Ruby can't use superscripts, so it has an alternative notation.  The 
same number, when printed by Ruby, is 5.9736e+24.

An e in the middle of a floating point number mean the digits to the right are an 
exponent, and the value of the number is multiplied by 10 raised to this power.  The 
number to the right of the e can be negative, which will be the case when Ruby prints 
a very small number.
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Figure 11.7: Each line segment in the
drawing represents the motion of a
falling melon over a period of one
time step. The length of a line
segment indicates the distance
traveled on that time step.

The drawing will show the watermelon is initially on the Earth’s surface. The first step in
the experiment is to raise the melon to a specified height above the ground. A method
named position_melon sets the melon at a specified height (in meters) above the Earth’s
surface, e.g.,

>> position_melon(b, 50)
=> 50

The key step in the simulation is performed by a method named update_melon, which
simulates the motion of the melon for a specified length of time. The argument passed to
update_melon is the size of the time step. The method will use the force acting on the
melon to update its trajectory and compute the new position after the specified amount of
time. For example, this expression calculates the predicted height of the melon using a time
step of 0.5 seconds:

>> update_melon(b, 0.5)
=> 47.54

The melon was initially 50 meters above the ground, and the result of this call shows the
simulator has determined that after falling for one half second the melon will be 47.54
meters above the ground.

If we repeat the call to update_melon we’ll see something interesting:

>> update_melon(b, 0.5)
=> 42.63

It’s not surprising that the new height is lower, but notice how much more the melon moved.
In the first time step, the melon moved 50− 47.54 = 2.46 meters, but in the second time
step it moved 47.54− 42.63 = 4.91 meters. This is exactly what we expect, since the melon
is accelerating. Its velocity is continually increasing as it falls, and the longer it falls the
faster it should move.

As we watch the melon’s progress on the canvas, we will see a series of dashed lines. The
length of a line segment corresponds to the distance the melon moved during one time step.
Since the melon is falling faster and faster, it is moving farther on each time step, and we
should see the dashes growing longer with each new time step (Figure 11.7).
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A method named drop_melon will repeatedly call update_melon and return as soon
as the melon hits the ground. The value returned by drop_melon is the amount of time,
according to the simulation, required for the melon to drop to the Earth’s surface. For
example, after initializing the experiment and positioning the melon at 50 meters, a call to
drop_melon shows it takes 3.0 seconds for the melon to hit the ground:

>> drop_melon(b, 0.5)
=> 3.0

Note that the return value will always be a multiple of the time step size. One way to
interpret this result is that drop_melon had to call update_melon 6 times before the
melon dropped all the way to the ground, because 6 times steps at 0.5 seconds per step
adds up to 3.0 seconds.

We can check the accuracy of this result by plugging the melon’s initial height into the
equation that predicts the time it will take an object to fall this distance:

t =
√

2× d/g =
√

2× 50/9.8 = 3.19

So the simulation was off by 0.19 seconds, which is a sizable error. The project in this section
will experiment with shorter time steps to see if they lead to a more accurate simulation.

Tutorial Project

T23. Use the make_system method to create the body objects for the “two-body” problem with
a watermelon and the Earth:
>> b = make_system(:melon)
=> [melon: 3 kg ..., earth: 5.9736e+24 kg ...]

T24. The variable b is now an array with two objects:

>> b[0]
=> melon: 3 kg ...

>> b[1]
=> earth: 5.97e+24 kg ...

The output shows the melon has a mass of 3 kilograms (about 6.6 pounds), and the Earth
has a mass of 5.97× 1024 kg (a lot bigger). The other information printed after the mass are
the location and velocity vectors (these will be explained in the next section).

T25. Call view_melon to make a drawing showing the two bodies in this system:
>> view_melon(b)
=> true

You should see the melon resting on the surface of the Earth.

T26. Type this expression to raise the melon to a position 100 meters above the Earth’s surface:
>> position_melon(b, 100)
=> 100

You can specify any height between 0 and 100 meters. On the canvas, the circle representing
the melon should have moved to the top of the drawing.

T27. When you set up an experiment by calling position_melon Ruby adds a method named
height to the object that represents the melon. To find the current height of the melon:
>> b[0].height
=> 100.0
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T28. Call update_melon to compute the melon’s new position after a time step of one second:
>> update_melon(b, 1.0)
=> 90.18

The return value is the new height of the melon. You should also see the melon move toward
the ground in the drawing.

T29. Repeat the previous call:
>> update_melon(b, 1.0)
=> 70.55

Do you see how the melon accelerated during this second time step? The first time step
moved it about 10 meters, and the second time step moved it about 20 meters. On the
screen, the circle moved twice as far on the second update.

The equation for the distance traveled by a falling object predicts that in one second the melon should
fall 1/2 g t2 = 1/2× 9.8× 12 = 4.9 meters. But in our simulation the melon fell 9.81 meters in the
first time step. The reason for this large error is because the time step was too big. If we move the
melon gradually, over smaller time steps, the simulation will be more accurate.

T30. Position the melon 100 meters above the Earth again:
>> position_melon(b, 100)
=> 100

T31. Call update_melon with a time step of 0.1 seconds:
>> update_melon(b, 0.1)
=> 99.90

As expected, the melon moves a much shorter distance in 1/10 second.

T32. Call the method that updates the position nine more times and get the height of the melon:
>> 9.times { update_melon(b, 0.1) }; b[0].height
=> 94.60

So in this second simulation, using 10 time steps of 0.1 seconds each, the melon moved
100− 94.6 = 5.4 meters. This is much closer to the real-world value of 4.9 meters.

You’re now ready to run the complete simulation. The method named drop_melon will repeatedly
call update_melon until the height of the melon reaches or falls below 0 meters.

T33. Reinitialize the drawing and reposition the melon at 50 meters:
>> view_melon(b)
=> true

>> position_melon(b, 50)
=> 50

T34. Call drop_melon to run the complete simulation with a time step size of 0.5 seconds:
>> drop_melon(b, 0.5)
=> 3.0

The simulator predicts it will take the melon 3.0 seconds to fall from 50 meters.

T35. Repeat the simulation using a smaller time step:
>> position_melon(b, 50)
=> 50

>> drop_melon(b, 0.1)
=> 3.2

Compare these results with the value predicted by the formula t =
√

2× d/g. Is the simula-
tion with the smaller time step more accurate?
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Figure 11.8: When the melon is given a
shove sideways it moves horizontally
with a constant velocity while gravity
is causing it to accelerate vertically.
The resulting path is a parabola that
gets steeper the longer the melon falls.

T36. Use the formula to figure out how long a melon will fall if it is dropped from a seventh floor
balcony that is 35 meters above the ground.

T37. Use the simulator to predict how long it will take the melon to fall 35 meters:
>> position_melon(b, 35)
=> 35

>> drop_melon(b, 0.1)
=> 2.7

We can specify a horizontal motion to cause the melon to move to the right as it is falling, as if the
person who drops the melon were to give it a sideways shove when releasing it. Gravity will cause the
melon to move with increasing speed toward the ground, but it will move with a constant velocity to
the right (Figure 11.8).

T38. Clear the screen, reposition the melon at 100 meters above ground, and assign a velocity of
5 meters/second in the x (horizontal) dimension:
>> view_melon(b)
=> true

>> position_melon(b, 100)
=> 100

>> b[0].velocity.x = 5
=> 5

T39. Run the simulation using a 0.1 second time step:
>> drop_melon(b, 0.1)
=> 4.5

T40. How far to the right should the melon move in the amount of time it takes to fall 100 meters?

T41. If the scale of the drawing is such that the vertical distance in the path shown on your
screen is 100 meters, is the horizontal distance consistent with your answer to the previous
problem?
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© In the next section we will see that the equations of motion implemented in body objects are based
on Newton’s law of universal gravitation, which says the force pulling the melon toward Earth is
balanced by an equal force that moves the Earth toward the melon.

© Make a fresh set of body objects:
>> b = make_system(:melon)
=> [melon: 3 kg ..., earth: ...]

© Type this expression to get the (x, y, z) coordinates of the center of the Earth:
>> b[1].position
=> (0,0,0)

© Raise the melon up to 100 meters and drop it:
>> position_melon(b, 100)
=> 100

>> drop_melon(b, 0.1)
=> 4.5

© Check the Earth’s position again:
>> b[1].position
=> (0,5.1022e-23,0)

The y coordinate in this output shows the Earth moved 5.1× 10−23 meters.

The Earth was pulled toward the melon, but only by a tiny distance. Look up the diameter of a
hydrogen atom in a physics text or on the Internet. How many diameters did the melon cause the
Earth to move?

11.3 Force Vectors

The exercise near the end of the previous section showed that an object can be moving in
two dimensions at once: an initial sideways shove caused the melon to move horizontally,
and gravity caused it to move vertically. In the case of planets, we need to be concerned
with motions in three dimensions.

One way to describe these more complex motions is to use vectors. Mathematically, a
vector is a set of three numbers, corresponding to x, y, and z coordinates. For example,
when we assigned a horizontal motion to the melon, the result was a set of three numbers
that specified the melon’s initial velocity in the x, y, and z dimensions:

>> b[0].velocity.x = 5
=> 5

>> b[0].velocity
=> (5,0,0)

The 5 in the first position means this body is moving 5 meters per second horizontally (the x
dimension), and the 0 in the other two coordinates mean the body initially had no velocity
in the y and z dimensions.

The Ruby objects that represent bodies use vectors to keep track of positions, velocities,
and accelerations. For this project, we can simply think of these vector as arrows; for
example, a velocity vector is an arrow that points in the direction the body will move in the
next time step. If you are curious about how the methods carry out the arithmetic operations
in terms of vectors, you can read about them in your Lab Manual.
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The equation that describes the force that pulls two bodies toward each other is Newton’s
law of universal gravitation:

F ∝
m1 ×m2

d2

The symbols m1 and m2 stand for the masses of the two bodies, and d is the distance between
them. This equation describes a general relationship between the gravitational force (F),
the size of the bodies, and how far apart they are. When the bodies are larger, i.e., for higher
values of m1 or m2, the force is larger. Similarly, as the distance grows larger, the force will
be smaller, because the value of a fraction shrinks as the denominator grows.

Newton’s law is shown pictorially in Figure 11.9. The arrows in the figure represent
acceleration vectors. This figure emphasizes the fact that gravity is pushing the bodies in
a particular direction, indicated by the arrows that point from each body toward the other
one.

An important point to notice is that the length of an arrow corresponds to the magnitude
of the acceleration. If the two bodies were the same size, they would each experience the
same acceleration. But when they have different masses, the smaller one is accelerated
more. This is what we saw at the end of the previous section: the melon moves rapidly
toward the Earth, as a result of the large acceleration caused by gravity, while the Earth
barely moves toward the melon.

We now come to one of the most important points about the physics behind the motion
of the planets: the forces acting on a body are additive. What this means is that if we want
to figure out how body A will move when it is accelerated by the force of gravity from two
other bodies B and C, we can calculate the force moving A toward B, then calculate the
force moving A toward C, and then add the two forces together to get the cumulative force.

One reason to use arrows to represent vectors is that it is easy to see how vectors are
added together. To add two arrows, simply connect the head of one arrow to the tail of
the other. You can imagine using a computer graphics application, and picking up one
arrow and dragging it on your canvas until its tail lines up with the head of the other arrow
(Figure 11.10). When there are more than two other bodies, the forces can be added one
after the other, in any order, because vector addition is like ordinary addition: the sum
x + y + z can be computed by adding x + y and then adding z to the result.

F ∝ m1 ·md

d2

Figure 11.9: The force attracting two
bodies toward each other generates an
acceleration that depends on a body’s
mass. The smaller body will be
accelerated more, as indicated by the
longer arrow.
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Figure 11.10: (a) Body A is simultaneously being pulled toward bodies B and C, defined by two
different vectors. (b) The two vectors can be added together to compute the cumulative force.
(c) Body A will be pulled in the direction defined by the cumulative force.

To get a sense of how force vectors are added together in an N -body simulation, the
tutorial exercises in this section will set up an experiment with a set of random bodies. One
of the bodies will have a position a little farther from the center of the system than the
others. When we start the simulation, all the bodies will be stationary. We will then let the
body farthest from the center “fall” toward the others. Just like the melon in the two-body
experiment, this body will start slowly, and gradually accelerate as it is drawn toward the
other bodies.

Note that this experiment is not intended to be a simulation of a real system of bodies
acting under the influence of gravity. In a real system, all the bodies would be in motion.
The goal here is simply to illustrate that forces are additive, by focussing on a single body
in order to see how it is pulled in a direction that is the sum of the forces acting on it by all
the other bodies.

To create the initial data for this experiment, pass the option :fdemo in the call to
make_system:

>> b = make_system(:fdemo)
=> [f1: 1e+13 kg (81.472,145.85,0) (0,0,0), ...]

When we want this simulation to advance by a single time step, we call a method named
update_one. The parameters are the body we want to move, an array with all the other
bodies, and the time step size. In this data set, the first body in the list is the “falling” body,
and the remaining objects represent the stationary bodies, so this expression will simulate
the motion of the falling body for a time step of one second:

>> update_one(b[0], b[1..5], 1.0)
=> true

The main thing to watch for as we run the experiment for several time steps is that at each
step the gravitational force acting on the moving body will be the sum of the forces pulling
it toward all the others.

What’s interesting about this experiment is that it is impossible to predict where the falling
body will end up after any given amount of time. We will be able to predict the general direc-
tion for the first few time steps, but after that any future motions will be determined by the
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gravitational effects exerted at the new position, and these effects need to be recalculated
at each time step.

One of the hallmarks of chaotic systems is that very small differences in the starting
conditions often lead to significantly different states, even after just a few time steps. To
demonstrate this effect, before we start the simulation with the falling body, we will make
two copies of the object. Then we will run the simulation again, except the copies of the
falling body will start in slightly different locations. It will be apparent after 100 time steps
that the trajectories of these bodies are very different and that it is impossible to predict
where they will be after the next 100 time steps.

Tutorial Project

T42. Load the data set with the six bodies used in this experiment:
>> b = make_system(:fdemo)
=> [f1: 1e+13 kg (81.472,145.85,0) (0,0,0), ... ]

T43. Call a method named view_system to display the bodies on the canvas:
>> view_system(b, :pendown => :track)
=> true

You should see a canvas with six circles, similar to the one shown in Figure 11.11. One circle,
representing the falling body, will be red, and the other five will be blue. The :pendown

option tells the canvas to draw a line as the falling body moves.

T44. Save the first body in the list in a variable named f1, and make two copies of the object,
calling them f2 and f3:
>> f1 = b[0]
=> f1: 1e+13 kg (81.472,145.85,0) (0,0,0)

>> f2 = f1.clone
=> f1: 1e+13 kg (81.472,145.85,0) (0,0,0)

>> f3 = f2.clone
=> f1: 1e+13 kg (81.472,145.85,0) (0,0,0)

T45. Run the simulation with the first falling body for 10 time steps:
>> 10.times { update_one(f1, b[1..5], 1.0) }
=> 10

Figure 11.11: In the “falling planet”
simulation one body is allowed to
move according to the sum of the
gravitational forces acting on it while
all the others remain stationary.
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You should see the red circle move slightly on the screen. As was the case with the watermelon
simulation, the falling body will move very slowly at first, and then pick up speed. Initially the body
will be drawn toward the center of the system. Eventually it will be pulled close to one of the stationary
bodies. When that happens, the moving body will speed up the closer it gets to the stationary body.
Eventually you will see the falling body get so close to a stationary body that it speeds up fast enough
to be flung out of the system in a “slingshot” effect.

T46. Repeat the previous expression to move the falling body for 10 more time steps:
>> 10.times { update_one(f1, b[1..5], 1.0) }
=> 10

T47. Can you guess where the body will be after the next 10 time steps? Keep repeating the
previous expression and watch the progress of the falling body. After about 75 time steps this
body will be flung from the system (at which point its trajectory is very predictable).

T48. This expression asks Ruby to print the current location of the first clone:
>> f2.position
=> (81.472,145.85,0)

The three numbers are the x, y, and z coordinates of the body.

T49. Move this second body slightly to the right by adding 1 to its x coordinate:
>> f2.position.x += 1
=> 82.4717

T50. Run the simulation for 10 time steps. This expression is the same as in previous calls to
update_one, except it uses body f2 instead of f1:
>> 10.times { update_one(f2, b[1..5], 1.0) }
=> 10

T51. The track for f2 starts out almost identically with the track for f1. But now run the simula-
tion for 50 time steps, and watch what happens:
>> 50.times { update_one(f2, b[1..5], 1.0) }
=> 50

Can you guess where this body will be after 50 more time steps? Make your guess, and then
run the simulation.

T52. Prepare for the next simulation by moving body f3 (the second clone) just a little bit farther
to the right than the starting position for f2:
>> f3.position.x += 2
=> 83.4717

T53. Run the experiment with f3 for 50 time steps:
>> 50.times { update_one(f3, b[1..5], 1.0) }
=> 50

Again the trajectory is very similar for the first few time steps, and then the path starts to
diverge.

As long as f2 or f3 is on the screen you can keep repeating the calls to update_one. When they are
ejected from the system do they head out in the same general direction as f1?

If you would like to try some more experiments, the SphereLab module has methods for creating sets
of random bodies, using parameters that will make systems similar to the one in the fdemo data set.
There are also methods that will simulate the motions of all the bodies, not just one “falling planet.”
To learn how to set up and run your own experiments refer to the documentation in the Lab Manual.
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11.4 N-Body Simulation of the Solar System

We’re now ready to put all the pieces together to carry out a simulation of the movement of
the planets in the solar system.

What we did in the last section for one body—calculate all the force vectors influencing
the body, add the vectors together to determine the cumulative force, and then move the
body in the direction determined by that force—needs to be done for all the bodies in the
system at each time step. The Ruby method that implements this algorithm is shown in
Figure 11.12.

The calculation of the gravitational forces between two bodies is carried out by a method
named Body.interaction, which is called from line 6 of this method. An important
detail is that this method computes both accelerations at the same time. Since the force
pulling body j toward body i is the same as the force pulling i to j, the method only needs
to do the force calculation once. The force is then used to update two different vectors: the
force pulling i toward j, and the force pulling j toward i.

If the loops in this algorithm looks familiar, it’s because they have same overall structure
as the nested loops in the insertion sort algorithm from Chapter 4. When an array of size n
is passed to this method, the total number of calls to Body.interaction will be n× (n−
1)/2. As a result, the algorithm does O(n2) force calculations on each time step.

For the solar system simulation, we need an array of body objects for the Sun and each of
the nine planets. To make this array, we can pass the :solarsystem option in the call to
make_system:

>> b = make_system(:solarsystem)
=> [sun: 1.99e+30 kg ... pluto: 1.31e+22 kg ...]

  1:    def step_system(bodies, dt)
  2:      nb = bodies.length
  3:    
  4:      for i in 0..(nb-1)      # compute all pairwise interactions
  5:        for j in (i+1)..(nb-1)
  6:          Body.interaction( bodies[i], bodies[j] )
  7:        end
  8:      end
  9:    
 10:      bodies.each do |b|
 11:        b.move(dt)            # apply the accumulated forces
 12:        b.clear_force         # reset force to 0 for next round
 13:      end
 14:    end

# Compute the new positions for objects in array bodies after a time step of size dt

Figure 11.12: The Ruby implementation of the N-body simulation algorithm. The method uses
nested loops to iterate over all pairs of bodies to do O(n2) force calculations on each time step.
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Figure 11.13: A snapshot of the RubyLabs canvas during the solar system simulation. The simulation
uses all 10 bodies, but only the Sun and inner planets are shown on the canvas.

The parameters for each body are from a solar system database and represent the positions
and headings of each body on January 1, 1970. The positions have all been adjusted so the
Sun is at the center of the system, i.e., its x, y, and z coordinates are (0,0,0).

To monitor the simulation, we can simply pass the array to view_system. But if we do,
we’ll discover a slight problem: Pluto and the outer planets are so far from the Sun that
the inner planets are all crowded together in the middle of the display. A better strategy
for viewing the simulation is to pass only the first five bodies in the call to view_system.
The simulation will still use all 10 bodies, but the drawing will show only the Sun and the
planets Mercury, Venus, Earth, and Mars (Figure 11.13).

To run the simulation we need to choose a time step size. To start with, we can use the
number of seconds in one Earth day. The fastest moving planet, Mercury, makes a complete
orbit in 88 days, so a time step of one day should lead to an ellipse made from 88 line
segments, which will be reasonably accurate for our purposes. There are 24× 60× 60 =

86, 400 seconds in one 24-hour period. If we want to be a little more precise, we should use
86, 459 seconds as our time step size, since there are 365.25 days in a year.

As you run this simulation, watch to see if the planets travel in realistic orbits. Are the
paths ellipses? If you run the simulation for 365 time steps, does Earth end up more or less
where it started, i.e., does it make one complete orbit? Do the planets move faster when
they are closer to the Sun?

Tutorial Project

T54. Call make_system to create an array of body objects for the Sun and planets:
>> b = make_system(:solarsystem)
=> [sun: 1.99e+30 kg ... pluto: 1.31e+22 kg ...]
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T55. There should be 10 objects in the array:
>> b.length
=> 10

T56. The first object represents the Sun:
>> b[0]
=> sun: 1.99e+30 kg (0,0,0) (0,0,0)

As you can see, its position and velocity vectors are both (0,0,0). The Sun starts out at the
center of the system, and it is not moving.

T57. Call view_system to plot the positions of all the bodies:
>> view_system(b)
=> true

The distances are scaled so all the bodies will fit on the canvas. As a result, the inner planets
are all scrunched together in the center of the canvas.

T58. It will be easier to watch the orbits if you tell view_system to track only the first five bodies
(Sun, Mercury, Venus, Earth, Mars):
>> view_system( b[0..4], :dash => 1 )
=> true

The :dash option tells the system to mark the progress of each body with a dashed line.

T59. Run the simulation for 10 time steps, using a step size of 1 day:
>> 10.times { update_system(b, 86459) }
=> 10

You should see the planets move on the canvas. The length of a dash corresponds to the
amount of movement in one time step. Mercury is moving much faster than Earth and Mars,
as indicated by the longer dashes.

T60. Type this expression to continue the simulation for another 355 days, so the total simulation
runs for 365 time steps:
>> 355.times { update_system(b, 86459) }
=> 355

Did you see what you expected?

When evaluating the previous expression, Ruby updated the drawing as quickly as it could, and the
motion may not have been very smooth. If you add a call to sleep, Ruby will update the drawing
and then pause, and the motion will be smoother.

T61. Type these two expressions to clear the screen and run the simulation with a 1/10 second
pause between each update:
>> view_system( b[0..4], :dash => 1 )
=> true

>> 365.times { update_system(b, 86459) ; sleep(0.1) }
=> 365

The next set of exercises will use a RubyLabs probe to count the number of force calculations in
each time step. From Figure 11.12 (or by calling Source.listing(:step_system)) you should
see that the call to the method that computes forces is from line 6 of the method that does the
computations for one time step.

T62. Attach a counting probe to line 6 of step_system:
>> Source.probe("step_system", 6, :count)
=> true
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T63. Use the count method to count the number of times line 6 is executed in a single time step:
>> count { update_system(b, 86400) }
=> 45

The discussion of the N -body algorithm claimed there would be n× (n− 1)/2 force calcula-
tions. Is that what you got?

T64. Count the number of force calculations made for a simulation that runs for 100 days. Re-
member that Ruby programs run much more slowly when a counting probe is attached, so
you might have to be patient:
>> count { 100.times { update_system(b, 86400) } }
=> 4500

Do you see how the number of calculations per time step depends on the number of bodies?
And that the total number of calculations is simply the product of the number of calculations
per time step times the number of time steps?

As explained at the beginning of the chapter, the reason the planets appear to move in nice, orderly
elliptical orbits is that the Sun is much more massive than the other bodies. A small object like a comet
will be greatly affected by Jupiter and Saturn, the two biggest planets, but the other planets are both
too big and too far away from Jupiter for it to have much of an effect on them.

For the next part of the project, we’ll make one of the planets much larger and see what effect that
has on the motion of the other planets.

T65. Reinitialize the simulation by making a new list of bodies and a new canvas:
>> b = make_system(:solarsystem)
=> [sun: 1.99e+30 kg ... pluto: 1.31e+22 kg ... ]

>> view_system( b[0..4], :dash => 1 )
=> true

T66. Type this expression to have Ruby print the parameters for the Sun:
>> b[0]
=> sun: 1.99e+30 kg (0,0,0) (0,0,0)

The string printed right after the name “sun” is Ruby’s way of printing 1.99× 1030.

T67. Type this expression to see the parameters for Mars:
>> b[4]
=> mars: 6.42e+23 kg ...

T68. A method named mass will return the mass of a body object:
>> b[4].mass
=> 6.4185e+23

As you can see, Mars has a mass of 6.4× 1023 kg, roughly 3× 106 times smaller than the Sun.

T69. Type this expression to multiply the mass of Mars by 1× 106:
>> b[4].mass *= 1e6
=> 6.4185e+29

The circle representing Mars on the canvas does not change, but the planet’s effect on the
other bodies will be apparent.

T70. Run the simulation for 365 time steps:
>> 365.times { update_system(b, 86459); sleep(0.1) }
=> 365

Can you explain why each of the planets moved the way they did?
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© Try some more experiments on your own. Start each experiment by making a fresh array of bodies
and reinitializing the display. Some ideas:

• Vary the time step size, and see what effect that has on the accuracy of the simulation. What
happens if you increase the time step to the number of seconds in three days? In 30 days?

• View different planets. For example, passing b[0..5] to view_system will include Jupiter in
the display.

• Can you figure out how to view only the Sun and the outer planets (Jupiter, Saturn, Uranus,
Neptune, and Pluto) during a simulation? Hint: make a new array that has only these six
bodies.

• How many steps (with a time step size of 86,459) do you have to run to have Jupiter make a
complete orbit?

• Multiply the mass of Mars by different values, e.g., by 105 instead of 106.

• Increase the mass of different planets, including Jupiter or Saturn. The goal is to have two or
more bodies that have roughly the same mass as the Sun.

11.5 Summary

The important concept from the field of computer science introduced in this chapter is the
idea of computer simulation. We set up computational experiments in which a set of Ruby
objects served as “models” of various real-world objects, and then we used equations of
motion to move the objects around in their simulated world.

The main goal for these experiments was to learn about issues involved with computer
simulation. One issue we looked at was the tradeoff between the size of a time step and
the accuracy of the simulation. Using a smaller time step, so positions are updated more
frequently, leads to a more accurate simulation, but it comes at the cost of a higher number
of calculations. The idea was introduced by simulating the movements of a hypothetical
robot explorer, and we also saw how the size of a time step affected simulations of a falling
object and the motions of the planets.

The key ideas used to compute the motions of bodies in the solar system simulation are
the fact that bodies move according to the force of gravity and that forces are additive. To
determine which direction a body is being pulled, we can compute the force that is pulling
it toward each of the other bodies and then compute the sum of the individual forces.
Forces are represented in a program in the form of vectors, which can be visualized as
arrows pointing in the direction of the force. Computing the sum of forces is equivalent to
connecting the arrows, drawing the tail of one arrow next to the head of another.

Several factors besides the size of a time step can have an impact on the accuracy and
reliability of a computer simulation. The first, of course, is making sure the software is
implemented correctly. But even assuming there are no bugs in the application, there are
many other ways in which a simulation can give a misleading result. In our solar system
simulation, we assumed the mass of each body remains constant, which is a reasonable as-
sumption for planets. But comets lose a small amount of their mass each time they approach
the Sun, so an accurate simulation that includes comets will need some way to update their
mass. Asteroids have a very irregular shape, and a typical asteroid is very “lumpy,” so its
mass is not evenly distributed. That means equations that treat the asteroid as a single
uniform object may not give the best results.
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Concepts and Terminology Introduced in This Chapter

N -body problem The problem of trying to predict the motions of a group
of three or more celestial bodies; no exact solutions are
possible, so positions must be computed

acceleration A change in velocity; for the N -body problem, acceler-
ation is caused by the force of gravity

computer
simulation

A method for solving problems like the N -body prob-
lem where computational objects represent real-world
objects

time step An amount of time simulated objects move before ad-
justing their trajectories

vector In an N -body simulation, a vector is a set of three
points, used to represent the (x, y, z) coordinates of a
body’s location or its heading

accuracy In a computer simulation, accuracy is determined by
how closely the computed results match real-world
measurements

Accuracy is the central issue in simulation. For the falling watermelon or solar system,
it’s easy to check accuracy by comparing the program’s results with what happens in the
real world. For example, our solar system data was taken from observations of the actual
positions of the planets on January 1, 1970. To see how accurate our simulation was, we
could go to the same database to retrieve the recorded locations of the planets on January 1,
1971, and compare them to our simulated positions. Once we are convinced the program is
working correctly, we can start adding other simulated objects, or use the model to predict
future locations.

For other applications, it may be much more difficult to determine the accuracy of a
simulation. One important factor is deciding which attributes of a real system need to
be included in a computer model. For example, to simulate fuel consumption for a car,
attributes like the color of the car can obviously be omitted, but other factors, like the size
of the tires, and whether they are inflated properly, will have an effect. But adding additional
attributes makes the software much more complicated, and with added complexity there is
also a greater chance for programming mistakes.

In spite of the difficulty in designing and testing simulations to make sure they are as
accurate as possible, modeling and simulation is an important area in applied computer sci-
ence. One of the main reasons scientists and people in other fields use computer simulations
is that they provide an effective way to understand the workings of a complex system.
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Exercises

1. Problem 2 on page 15 listed several fields where computers play in important role. Choose one
of these areas and do some research to find out how computer simulation is used in this area.

2. Do you think the Sun moves during the solar system simulation? How could you find out?

3. What would you type in IRB to tell the robot of Section 11.1 to travel in a path that would draw
a square?

4. Can you figure out how to get the robot to draw a five-pointed star? Hint: each leg of the star
will be the same length, and the angle the robot turns will be the same at the end of each leg.

5. Suppose the watermelon simulation is set up so the melon is positioned 75 meters above the
ground.

a) Use the equation t =
√

2d/g to calculate how many seconds the melon will fall before it
hits the ground.

b) Here is the result of a call to drop_melon which simulates the fall with a 1/4 second
time step:
>> drop_melon(b, 0.25)
=> 4.0

How far off is the computer simulation?

6. Copy the picture of five bodies in Figure 11.14 to a piece of paper, or, if you have a drawing
application, make a new document and add five circles of the same size and location as the
ones in the figure. Sketch vectors that represent the forces acting on each body, similar to those
shown in Figure 11.9 on page 296.

7. Update the drawing you made for the previous exercise to show the cumulative force acting on
each body, i.e., for each body draw a new vector that is the sum of the forces pulling that body
toward the others.

8. Suppose the solar system data is updated to include the locations and headings of 15 moons, so
there are now a total of 25 bodies in the data set. How many force calculations would be made
on each time step?

9. In the solar system simulation with 25 bodies, how many force calculations would be made if
the program runs for 350 time steps?

Figure 11.14: In this drawing, the mass of a body is
proportional to its size.
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10. The experiments at the end of Section 11.3 were based on bodies named f1, f2, and f3. The
three were identical, except f2 and f3 started out in a slightly different position:
>> f2.position.x += 1
=> 82.4717

>> f3.position.x += 2
=> 83.4717

What do you suppose would happen if f3 started out half the distance between f1 and f2? In
other words, what if the x coordinate for f3 was defined by this expression?
>> f3.position.x += 0.5
=> 81.9717

Would its final position be halfway between the final positions of f1 and f2? Explain why or
why not.

11. If you want to use IRB to explore your answer to the previous question, set up some more
experiments, using even smaller differences, e.g., start f3 at 0.5, 0.25, or 0.125 units to the
right of f1. Are the results still chaotic?





Chapter 12

The Traveling Salesman
A genetic algorithm for a computationally demanding problem

Imagine a situation where a group of friends or relatives have come to visit, and you want
to take them on a tour to show them your campus or your home town. For a tour with only
a few destinations, the most efficient route may be obvious. But if the tour has more than
four or five stops you might need to do some planning. A simple strategy, like moving from
a location to the one closest to it, might be all you need (Figure 12.1).

As more and more destinations are added to the tour, however, the simple strategy of go-
ing to the nearest location that hasn’t been seen already begins to break down. Figure 12.2
shows a larger map, with 25 destinations, and a tour that starts at the location at the top of
the map. After visiting the first four locations, the strategy of moving on to the closest point
would select the location shown by the dashed line, but it turns out this choice would not
lead to the shortest possible tour.

Figure 12.1: A simple strategy for planning the
shortest tour with only a few sites is to start at a
random location, and then after each site move
on to the nearest location not yet visited.

start

309
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?

start

Figure 12.2: With a larger set of
destinations the strategy of
moving to the closest point
does not always lead to the
shortest tour. Before looking
at the solution (which is
shown in Figure 12.13 at the
end of the chapter) can you
try to figure out on your own
what the shortest tour is?
Hint: the best tour does not
include the line segment
drawn with a dashed line in
this picture.

It’s not likely you will ever be called upon to devise a tour that includes 25 destinations.
But the same basic idea, of planning the optimal route that connects several different points,
is an important part of several real-life situations, and mathematicians and computer scien-
tists have devoted considerable effort to developing algorithms to solve this problem. Some
familiar examples are a courier service that wants to plan the most efficient route for their
delivery trucks at the start of each day, or a school district that needs to design the shortest
route for a set of school buses that pick up and drop off students. A problem that has the
same essential structure is figuring out how to connect circuits on the surface of a computer
chip. In this case, the “destinations” are electronic components, and the goal is to figure out
how to best place metal pathways on the chip to connect the components.

In computer science this problem is known as the Traveling Salesman Problem, or TSP
for short. The input to an algorithm that solves the TSP is a map with a set of cities, where
the distance between each pair of cities is defined in a table. The goal is to create the
shortest tour that includes all the cities. A tour can start at any city, but it must visit every
other city exactly once and then return to the starting point.

In applications of the TSP there are several ways to define the places to visit and the cost
of moving from one place to another. For transportation problems, like finding the best route
for a delivery truck, the “cities” are simply addresses where a package needs to be dropped
off, and the cost can either be the driving distance between points or the expected amount
of time it will take to drive between two addresses. For the computer chip layout problem,
the “cities” are the components on the chip, and one of the factors in the the overall cost of
the design is the total distance along the metal layers that make up the connections between
the components.

A simple algorithm guaranteed to find the lowest cost tour is to systematically check every
tour. If we define a type of object to represent a map and an iterator to create each tour
based on cities on the map, we can use the linear search algorithm presented in Chapter 4
to scan all tours and record the one with the lowest cost. The map objects we will use for
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projects in this chapter have a method named each_tour that creates each possible tour
of that map. If a tour is represented by an object named t, a call to t.cost will compute
the cost of the tour. This expression is all we need to find the optimal tour of a group of
cities defined in a map object named m:

>> m.each_tour { |t| best = t if t.cost < best.cost }

But before we start applying this iterator to a map with 25 cities it would be a good idea
to do a few back of the envelope calculations to estimate how long it might take to find
the optimal tour. For reasons that will be explained in Section 12.2, there are (n− 1)! / 2
different ways to visit n cities and then return to the starting point. For a small map with five
cities, there are only 12 different itineraries that visit each city exactly once, so the simple
linear search would be a reasonable strategy. But if the number of cities doubles, so there
are 10 cities on the map, all of a sudden there are over 180,000 different tours. For a map
like the one in Figure 12.2, with 25 cities, there are 3× 1023 different tours. To put this
in perspective, even if your computer could somehow compute the cost of one billion tours
every second, it would take almost 1,000,000 years to iterate over all possible tours of 25
cities!

In previous chapters, we’ve referred to iterators as methods that “walk through” a string
or an array. In this case, however, the method named each_tour does not actually make
an array of tours. It uses an algorithm that generates one tour at a time, in such a way that
it is guaranteed to eventually make every possible tour. Since the tours are not kept in a list,
using the term “linear search” might be misleading, so computer scientists prefer the term
exhaustive search to describe the algorithm that examines every possible alternative.

The Traveling Salesman Problem is another example of a problem that is at the boundary
between what is computable and what is not computable. Like finding a winning move in
chess (a problem described in Chapter 1), searching for the best possible tour of a set of
cities seems like a very straightforward computation. The computation is relatively simple
when there are only a few cities, but is beyond the limits of what is possible for any machine
when the map has more than a dozen or so cities.

Factorial Function

The notation n!, pronounced “n factorial,” 
stands for the product of the integers 
from 1 to n.

The factorial function grows even faster 
than the exponential function introduced 
in Chapter 5.  For every value of n > 3,

n! > 2n

As you can see from this table, n! is a 
very large number, even when n is as 
small as 30.

n     n!

3

4

5

10

15

30

3 × 2 × 1 = 6

4 × 3 × 2 × 1 = 24

5 × 4 × 3 × 2 × 1 = 120

10 × 9 × ... × 1 = 3,628,800

15 × 14 × ... × 1 ≈ 1.3 × 1012

30 × 29 × ... × 1 ≈ 2.7 × 1032
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This chapter introduces a new type of algorithm, called an evolutionary algorithm, to
tackle problems like the traveling salesman where an exhaustive search is simply too ex-
pensive. The algorithm begins by making an initial set of random tours and evaluating the
cost of each one. A random tour is one that starts at an arbitrary city, and then moves on
to random destinations not yet visited, until arriving back at the starting point. While we
can’t expect any one random tour to be a very good solution, some of them will be much
shorter than the others. Evolution comes into the picture when we select the “strongest” of
the initial tours and use them as the basis for forming new tours. The idea is to select the
most efficient tours, throw out the rest, and then develop new tours that are similar to the
“survivors.” Usually the new tour is the same as the one it is based on, except for a small
“mutation” that changes the tour, perhaps by visiting two of the cities in the opposite order.
If we keep iterating this process, of tossing out the most inefficient tours and replacing them
with slight modifications of the better tours, eventually a good solution—and in many cases
the best possible solution—will emerge.

The project in this chapter will explore how an evolutionary approach can be used to
solve the Traveling Salesman Problem. In the first section we will see how to implement a
map as an object in Ruby and do some initial experiments that emphasize the point that an
exhaustive search of all tours is not feasible. We will then see how to create random tours
and how to make slight modifications to them so that eventually an optimal tour evolves
from a primordial soup of random tours.

12.1 Maps and Tours

In the days when road maps were printed on paper, one could usually find a table of driving
distances between major cities. The entry in row x, column y, would have the distance
between cities x and y. Since the distance from x to y is the same as the distance from y
to x the tables were often presented with a triangular layout, as shown in the example in
Figure 12.3.

In mathematical terms, a rectangular table of numbers like the one shown in the figure is
called a matrix. Driving distances are a special type of matrix, called a symmetric matrix,
since the distances are the same for each direction.

TSPLab, the RubyLabs module we will use for this project, includes a type of object named
Map that defines the distances between cities. When we create a map object, we can either
pass it the name of a file that contains distances between real locations, or we can make up
a random map when we want to test our algorithm on maps with more cities.

Here is how to create a matrix to represent the distances between the cities shown in
Figure 12.3:

>> m = Map.new(:ireland)
=> #<TSPLab::Map [dublin,cork,limerick,galway,belfast]>

This assignment statement creates a variable named m and makes it a reference to a map
object. The string printed by IRB contains the list of cities that are on the map. As in previous
projects, if the argument passed to Map.new is a symbol (a string that starts with a colon)
Ruby looks for a data file that is included as part of the RubyLabs software package. You can
pass a file name instead of a symbol, and the method will look in your project directory for
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Figure 12.3: Matrix of driving distances in Ireland.

a file with that name. Later in the chapter we will see examples where an integer is passed
to Map.new in order to make a random map with a large number of cities.

We can use Ruby’s index operator to look up the distance between a pair of cities. Just as
a[i] refers to the value stored at location i in an array a, the expression m[x,y] means
“the distance between cities x and y on map m.” For example, to find the distance from
Dublin to Galway, two of the cities on our test map named m, the expression is

>> m[:dublin, :galway]
=> 219.0

A method named make_tour will create an object that represents a tour between two or
more cities. One way to create a tour object is to put the names of the cities, in order, in an
array and pass the array as an argument to a method named make_tour. For example, an
object that represents a three-city tour from Dublin to Galway to Limerick and back is made
by this expression:

>> t = m.make_tour( [:dublin, :galway, :limerick] )
=> #<TSPLab::Tour [:dublin, :galway, :limerick] (522.00)>

Note that this example has only three cities, so it’s not a potential solution to the problem
of finding the shortest tour of all five cities. However, the ability to make shorter tours like
this one will be useful for testing methods that operate on tour objects.

The cost of a tour is the sum of all the distances between destinations in the tour. The
total cost of a tour is shown in parentheses at the end of the line when a tour is printed
on the terminal; the total cost for the three-city tour shown above is 522. Since this map
is based on driving distances, the number 522 represents a distance, in kilometers, but in
other maps the cost could be based on travel time or ticket price or some other metric. An
important note is that the tour is a round trip, so the total cost of the tour shown above
includes the final leg from Limerick back to Dublin (which you can verify by adding the
distances between these cities shown in the table in Figure 12.3).
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If an algorithm needs information about a tour it can call one of several different methods
defined for tour objects. Two of the attributes of a tour that we will be interested in are the
path (the list of cities visited) and the cost. Using the example tour object from above:

>> t.path
=> [:dublin, :galway, :limerick]

>> t.cost
=> 522.0

Tutorial Project

Start IRB and load the module that will be used for projects in this chapter:

>> include TSPLab
=> Object

T1. Create the map that has the driving distances (in kilometers) between five cities in Ireland:
>> m = Map.new(:ireland)
=> #<TSPLab::Map [dublin,cork,limerick,galway,belfast]>

T2. A method named display will print the distance matrix on your terminal:
>> m.display

dublin cork limerick galway belfast
dublin 0.00
cork 257.00 0.00

limerick 198.00 105.00 0.00
galway 219.00 209.00 105.00 0.00

belfast 167.00 425.00 323.00 306.00 0.00
=> nil

Note: as a result of the way the city names are represented inside the object they may not be
printed in the order you see here or in Figure 12.3, but each pair of cities should be in the
matrix.

T3. Use the index operator (square brackets) to find the distance from Cork to Dublin:
>> m[:cork, :dublin]
=> 257.0

T4. You should get the same distance if you reverse the order of the cities:
>> m[:dublin, :cork]
=> 257.0

T5. Use the index operator to find distances between other pairs of cities. Do the results agree
with the values in the matrix that was printed on your terminal?

T6. Make a three-city tour and save it in a variable named t:
>> t = m.make_tour([:dublin, :belfast, :galway])
=> #<TSPLab::Tour [:dublin, :belfast, :galway] (692.00)>

T7. The string printed as the result of the last expression includes the tour length. You can get
the total cost of a tour object by calling its cost method:
>> t.cost
=> 692.0

T8. Verify this value is correct by summing the individual distances of each leg of the trip:
>> m[:dublin, :belfast] + m[:belfast, :galway] + m[:galway, :dublin]
=> 692.0
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T9. Can you type an expression that makes a tour of the same three cities, but starting in Belfast
instead of Dublin?

T10. Can you figure out the expression that makes a tour of the same three cities, but goes in the
opposite direction (i.e., goes from Dublin to Galway to Belfast)?

Try some more experiments on your own, including some tests with tours of four or five cities. Does
it matter which city is the start of the tour, or is the cost the same as long as you visit all the cities in
the same order? Do you get the same length tour if the cities are visited in the opposite order?

12.2 Exhaustive Search

The goal for the project in this section is to emphasize just how many tours are possible,
even for a small map with as few as 10 cities.

In mathematical terms, the different tours are permutations. It’s easier to see why tours
are permutations if we represent a tour by a string of letters, using just the first initial of each
city name. For example, the tour that starts in Dublin and goes to Cork, Galway, Limerick,
and Belfast can be described by the string “DCGLB.” A better tour, which goes to Limerick
after Cork, is represented by the string “DCLGB.” A tour that visits the cities in alphabetical
order is “BCDGL.” Each of these tours have all five letters, but the letters appear in a different
order, i.e., they are different permutations of the string “BCDGL” (Figure 12.4).

One way to count the possible permutations is to start by considering the choices for the
first city. In the case of the 5-city Ireland tour, there are five choices, corresponding to the
strings that start with each of the five letters. There are then four choices for the next city.
Since there are four choices for each different starting place, there are 20 different ways
to start a tour: the four that start with B (“BC,” “BD,” “BG,” “BL”), the four that start with
C (“CB,” “CD,” “CG,” “CL”), and so on. Each of the two-city tours can continue in three
different ways, since there are still three cities left to visit, which means there are 60 ways
to make a tour that includes three of the five cities.
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Figure 12.4: Different tours correspond to permutations of a string made from the first letter of each
city name. Tours can start in any city, and can travel in either direction.
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Continuing with this line of reasoning, it should be clear that the total number of strings
made from five different letters is 5× 4× 3× 2× 1, or 5!, which is 120. In the general case,
for any string with n different letters, there are n! different permutations.

To experiment with permutations, the TSPLab module defines a new iterator named
each_permutation. When it is called, it will make all possible permutations of a string
or array. Like the each iterator we’ve used before, each_permutation expects us to call
it with a Ruby expression enclosed in braces. The iterator will evaluate the expression once
for each different permutation of the string or array.

Here is an example that shows how to print all combinations of letters in a string using
each_permutation:

>> s = "ABC"
=> "ABC"

>> s.each_permutation { |t| puts t }
ABC
ACB
BAC
BCA
CAB
CBA
=> nil

The iterator makes a permutation, stores it in the variable t, and then evaluates the ex-
pression in the body of the block. Since there are 3! = 6 possible permutations of the
three letters, the puts statement is executed six times, and the six different permutations
are printed on the terminal. If we repeat this experiment using a string with five letters,
each_permutation will generate the 120 strings described above:

>> s = "ABCDE"
=> "ABCDE"

>> s.each_permutation { |t| puts t }
ABCDE
ABCED
...

To relate permutations to tours, first consider that valid tours can start in any city. All that
matters is that a tour visits every city and returns to the starting place. Given a permutation,
we can “rotate” it so it starts at a different letter but otherwise has all the letters in the same
relative order (Figure 12.5). For example, “ABCDE” follows the same roads and has the
same cost as “BCDEA,” it just starts with B instead of A. Since there are n ways to start a
tour, only n!/n = (n− 1)! permutations correspond to different tours.

Note also that our hypothetical traveling salesman can travel in either direction on the
tour. For the TSP, the tour “ABCDE” is the same as “EDCBA.” They both follow the same
“roads,” but the cities are visited in the opposite order. Since the costs of these tours are the
same, we will consider them to be the same solution.

Putting this all together—the fact that (n− 1)! permutations correspond to unique paths
and that tours can go in either direction—we end up with the formula given in the intro-
duction: an algorithm that searches for the minimal cost tour of a set of n cities potentially
has to consider (n− 1)! / 2 ways of ordering all n cities.
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Figure 12.5: These five permutations all represent the same tour. The starting position has rotated to
a different city in the strings that represent the tour, but the path is the same in each case.

If we have a map object we can call an iterator named each_tour to generate tours.
The main difference between this iterator and each_permutation is that each_tour
generates only those permutations that correspond to different tours. If the map has n
cities, the iterator makes only (n − 1)! / 2 orderings, corresponding to the different paths
between the cities. Another difference is that each_tour makes tour objects and passes
these objects to the block of code. Here is an example, using the map of Ireland:

>> m.each_tour { |t| puts t }
#<TSPLab::Tour [:dublin, :cork, ... :belfast] (940.00)>
#<TSPLab::Tour [:dublin, :cork, ... :galway] (1210.00)>
...

In all, this iterator passes 12 different tour objects to the block, and the puts statement
is evaluated 12 times, because for a map with 5 cities there are (5− 1)! / 2 = 12 possible
tours.

With this new iterator it is very easy to do an exhaustive search for the minimal cost tour.
Simply start by picking any tour to use as an initial value for the best tour found so far. If we
call the make_tour method without any arguments it will just make a tour with the cities
in alphabetical order:

>> best = m.make_tour
=> #<TSPLab::Tour [:belfast, :cork, ... :limerick] (1329.00)>

Now use each_tour to generate every possible tour. Each time we get a new tour, check
to see if that tour is better than the best tour seen so far, and if so make it the best tour:

>> m.each_tour { |t| best = t if t.cost < best.cost }

After the call to each_tour returns, just ask Ruby to print the tour object stored in best,
and you will see the lowest cost tour of the five cities:

>> best
=> ... [:dublin, :cork, :limerick, :galway, :belfast] (940.00)>

Of course this strategy won’t work if we have a map with more than a few cities since there
will be far too many tours to check them all. After experimenting with permutations and
the each_permutation and each_tour iterators we’ll start looking into the evolutionary
algorithm that will work on larger maps.
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Tutorial Project

T11. Make a string for the permutation experiments:
>> s = "1234"
=> "1234"

T12. Before calling the iterator that generates all permutations of this string, can you predict how
many permutations are possible?

T13. Use the each_permutation iterator to print every possible ordering of the letters in the
string:
>> s.each_permutation { |t| puts t }
1234
1243
1324
...

Do you see how this list is organized? The first group of lines all start with 1, then there are lines
starting with 2, and so on. The same sort of pattern occurs within a group, also. Did you notice that
the six lines in the group that start with 1 are all the permutations of the digits 2, 3, and 4?

T14. The TSPLab module includes a method named factorial that will compute the factorial
of a number. To compute 4!:
>> factorial(4)
=> 24

Did you get 4! = 24 output lines from the previous expression?

T15. Another way to count permutations is to save the result of a call to each_permutation,
instead of using it as an iterator. This expression saves all the permutations of s in a variable
named a:
>> a = s.each_permutation
=> ["1234", "1243", ... "4321"]

T16. To find out how many permutations were created ask Ruby for the number of strings in a:
>> a.length
=> 24

By looking at the pattern of the strings generated by each_permutation you should be convinced
there are n! different ways to arrange the letters in a string with n characters.

T17. Make a map object with the driving distances between cities in Ireland:
>> m = Map.new(:ireland)
=> #<TSPLab::Map [dublin,cork,limerick,galway,belfast]>

T18. Call a method named size to get the number of cities in a map:
>> m.size
=> 5

T19. A method named ntours will compute (n − 1)! / 2, the number of tours in a map of a
specified size. To compute the number of tours in the 5-city map:
>> ntours(m.size)
=> 12

T20. Let’s check to see if this number agrees with the formula. Since there are n = 5 cities, we
should have (5− 1)! / 2 tours:
>> factorial(5-1)/2
=> 12
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T21. This expression will use the each_tour iterator to print all 12 tours:
>> m.each_tour { |t| puts t }
#<TSPLab::Tour [:dublin, :cork, ... :belfast] (940.00)>
...
#<TSPLab::Tour [:dublin, :belfast, ... :limerick] (985.00)>

It’s not as easy to see a pattern in these tours as it was to see a pattern in the permutations
of strings. The each_permutation and each_tour methods use different algorithms for
reordering the items in a list, but you should see all 12 tour objects.

T22. Make a tour of these five cities, and save the tour object in a variable named best. When
make_tour is called without an argument the cities are in alphabetical order:
>> best = m.make_tour
=> #<TSPLab::Tour [:belfast, :cork, ... :limerick] (1329.00)>

T23. Use each_tour to generate all tours again, but this time compare the cost of each tour to
the best cost seen so far, and update the best tour each time a new lower cost tour is found:
>> m.each_tour { |t| best = t if t.cost < best.cost }
=> nil

T24. Print the best tour and its cost:
>> best.path
=> [:dublin, :cork, :limerick, :galway, :belfast]

>> best.cost
=> 940.0

If you want to try some more experiments to get a sense of how big a number n! can be, even for
strings with as few as 15 letters, try the following optional project, otherwise you can move on to the
next section.

© Make a new test string with 15 characters:
>> s = "ABCDEFGHIJKLMNO"
=> "ABCDEFGHIJKLMNO"

© Find out how many permutations will be printed if you use each_permutation as an
iterator:
>> factorial(s.length)
=> 1307674368000

In scientific notation, that number is 1.3× 1012, or about one trillion.

© You can ask Ruby to print all the permutations of the new 15-letter string, but be ready to
interrupt the computation by typing ∧C:
>> s.each_permutation { |t| puts t }
ABCDEFGHIJKLMNO
ABCDEFGHIJKLMON
ABCDEFGHIJKLNMO
...
ˆC IRB::Abort: abort then interrupt

As Ruby was printing these strings did you see how the computation was progressing? The
letters on the right side of the string were changing places, but the further to the left you
looked, the slower the letters were changing.

© Redefine s, so it is a string with 7 characters:
>> s = "ABCDEFG"
=> "ABCDEFG"
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© Enclose the expression that prints the permutations of s in a call to time. This statement
will ask Ruby to measure how long it takes to generate 7! = 5040 permutations:
>> time { s.each_permutation { |t| puts t } }
ABCDEFG
ABCDEGF
ABCDFEG
...
GFEDCBA
=> 0.184829

The output shows it took around 0.18 seconds to create and print 5040 permutations (the
execution time for your computer will probably by different). At this rate, how long would it
take your computer to make and print all permutations of the 15-letter string?

12.3 Random Search

It should be clear by now that for all but the smallest sets of cities it is not going to be
possible to find the shortest path connecting all the cities by evaluating every possible tour.
The strategy used by the evolutionary algorithm outlined in the introduction is to start with
a set of random tours and then apply small adjustments until the optimal tour is found. To
prepare for experiments with the evolutionary algorithm, this section will explain in more
detail what it means to make a random tour of the cities on a map.

One explanation of a random tour is to imagine the traveling salesman making up his
itinerary as he goes. At the start of the day, when he needs to pick the next city to visit,
instead of using a strategy such as going to the nearest city, he might just flip a coin and go
to a random city he hasn’t visited yet.

We can use this same basic idea in a search algorithm by making tours that are a random
permutation of the list of cities. The method named permute!, first described in Chapter 9,
rearranges the items in an array or string and puts them in a random order (note that the
exclamation mark is part of the method name). If we want to make a random tour, all we
need to do is get a list of city names and then ask Ruby to generate a random permutation.
Here is an example, using an object m that contains a map of Ireland:

>> a = m.labels
=> [:dublin, :cork, :limerick, :galway, :belfast]

>> permute!(a)
=> [:cork, :belfast, :dublin, :galway, :limerick]

As a convenience, the make_tour method will carry out these steps for us. All we need to
do is pass the symbol :random when we call make_tour and it will create a random tour:

>> t = m.make_tour(:random)
=> #<TSPLab::Tour [:limerick, :belfast, ... :dublin] (1293.00)>

The algorithm we will look at in this section tries to find the optimal tour simply by
generating lots of random tours and selecting the one that has the lowest cost. We don’t
really expect the algorithm to find the best tour, or even a reasonably good tour. But this
method does establish a baseline. When we start testing the evolutionary algorithm in the
next section, we will want to know how well it performs, and one way to do this is to
compare the tours it produces with the results of random searches.
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Figure 12.6: A map of 15 cities placed at random locations by a calling Map.new(15), and a tour
made by calling make tour(:random).

In a random search algorithm we take a “random sample” of all the possible tours and
keep track of the best one we find. The Ruby expression to implement this algorithm is
very similar to the iteration that does an exhaustive search. The difference is that instead of
using the each_tour iterator to examine all tours, we just use the times method to select
a specified number of random tours. For example, to make 100 random tours and save the
lowest cost tour in a variable named best, the expression is

>> 100.times { t = m.make_tour(:random);
best = t if t.cost < best.cost }

=> 100

To test this algorithm and the evolutionary algorithm in the next section we need to make
bigger maps. What we want are maps that have enough cities so there are too many tours
to be able to find the best one by checking all possible orders, but small enough to be able to
display a map and understand at a glance whether a tour is efficient or not. The technique
for making larger maps is the same one used in earlier chapters to make large arrays of
numbers for testing searching and sorting algorithms. If, instead of passing a file name to
Map.new, we give it an integer n, we will get back a new map with n cities placed at random
locations. For example, this assignment statement will make a map with 15 random cities
and save it in the variable named m:

>> m = Map.new(15)
=> #<TSPLab::Map [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]>

Note that the “names” of the cities are just the numbers from 0 to 14.
A method named view_map displays a map on the RubyLabs canvas by drawing a small

gray circle for each city (Figure 12.6). For these maps, the x coordinate is the distance from
the left edge of the map, and the y coordinate is the distance from the top of the map, i.e.,
the origin is in the upper left corner of the map. The distance between a pair of cities is the
geometric distance defined by their map coordinates.
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After displaying the map, we can call view_tour to see the connections between the
cities defined by a particular tour. Each time we call view_tour, any tour that was dis-
played previously will be erased, and roads used in the new tour will be drawn on the
map.

The iteration that makes a series of random tours and saves the lowest cost tour has been
implemented in a method named rsearch. When we call rsearch, we will pass it a map
object and tell it the number of random tours to make. It will update the map on the screen
each time it finds a new tour with a lower cost, and when it is done it will return the tour
object corresponding to the best tour it found.

Tutorial Project

T25. Start by making a map with 15 randomly placed cities:
>> m = Map.new(15)
=> #<TSPLab::Map [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]>

T26. Display the map in a RubyLabs canvas window:
>> view_map(m)
=> true

T27. A method named coords will give the (x, y) coordinates of a specified city. Type these
expressions to see the locations of the first two cities in your map:
>> m.coords(0)
=> [111, 50]

>> m.coords(1)
=> [214, 373]

As is always the case for experiments based on random numbers, the actual values you get
will be different than the ones shown here. Locate cities 0 and 1 on your canvas, and verify
the coordinates that were printed in your terminal window are accurate.

T28. Get the distance between cities 0 and 1:
>> m[0,1]
=> 339.02

Does the value you got seem accurate? Is it the Euclidean distance, defined by the equation√
(x0 − x1)2 + (y0 − y1)2 ?

T29. To see how a random tour is created, first make an array containing the names of the cities:
>> a = m.labels
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

T30. Call permute! a few times:
>> permute!(a)
=> [5, 8, 7, 4, 0, 10, 11, 2, 14, 12, 9, 1, 3, 6, 13]

>> permute!(a)
=> [12, 6, 2, 4, 7, 10, 8, 5, 13, 11, 3, 9, 14, 0, 1]

Do you see how each call to permute! makes a new random permutation?

T31. Make a random tour of the 15 cities on your map m:
>> t = m.make_tour(:random)
=> #<TSPLab::Tour [12, 1, 9, 3, 14, 5, 6, ...] (3257.60)>

The make_tour method calls permute! whenever we ask for a random tour.
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T32. Tell Ruby to draw this tour on the map:
>> view_tour(t)
=> true

The view_tour method should have connected the cities that were already on the canvas,
using the path defined by the tour object t.

T33. This expression tells Ruby to make 10 random tours, displaying each one for one second:
>> 10.times { t = m.make_tour(:random); view_tour(t); sleep(1) }
=> 10

You should see a series of very different-looking tours, with no relationship between any tour
and the one that follows it.

T34. Initialize a variable named best with a random tour:
>> best = m.make_tour(:random)
=> #<TSPLab::Tour [12, 3, 2, 11, 0, 9, 7, ...] (3377.35)>

Note the cost of this tour, which is shown in parentheses at the end of the line.

T35. Type this expression to make 100 random tours, updating best whenever a new tour has a
lower cost (you can type the entire expression on one line; it has been split into two lines
here so it fits the margins of the book):
>> 100.times { t = m.make_tour(:random);

best = t if t.cost < best.cost }
=> 100

T36. Print out the best tour:
>> best
=> #<TSPLab::Tour [0, 6, 14, 8, 1, 11, 2, ...] (2256.23)>

Did the iteration find a tour with a lower cost than the original random guess?

We’re now ready to try the rsearch method, which collects the steps in the previous exercises into a
single method.

T37. Type this expression to find a tour of the cities of map m using 100 random samples:
>> rsearch(m, 100)
=> #<TSPLab::Tour [3, 5, 9, 7, 2, 11, 12, ...] (2264.95)>

The result is the tour object that had the lowest cost of the 100 random tours made by
rsearch.

T38. Repeat the experiment, but change the 100 to 1000 so the search looks at 1000 random
tours:
>> rsearch(m, 1000)
=> #<TSPLab::Tour [3, 4, 11, 2, 9, 10, 5, ...] (2033.24)>

What you should see is that it’s pretty easy for rsearch to find a better tour early on, but as the
search continues it becomes harder and harder to find a better tour, as indicated by the longer intervals
between updates on the canvas.

You should also begin to notice something about the better tours as they are displayed. In general, the
fewer the number of roads that cross over other roads, the lower the cost. In fact, the optimal tour
will be a loop where no road crosses over any other road in the tour.

Try running the rsearch algorithm a few more times, looking at as many as 105 tours (written as
100000 in Ruby) or even 106 tours (written as 1000000). You can always type ∧C if you get tired
of waiting for the method to finish. Can you see how the best tour on the screen generally improves?
Also, can you see that improved tours are harder to find the longer the search goes on?
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12.4 Point Mutations

The random search algorithm of the previous section is not likely to find the best tour on
a map of 15 cities. There are 14!/2 ≈ 3× 1010 different tours, so even if we let rsearch
make 106 random tours the probability of its picking the best tour is about 1/30, 000.

It may seem silly to even try to find the best tour just by making random guesses, but the
reason we went through the exercise is that it sets the stage for the algorithm described in
this chapter, which also works by generating lots of random tours. The difference between
the random search algorithm and the evolutionary algorithm is that the latter tries to im-
prove upon the tours it finds. Rather than simply record the fact that it has found a good
tour, and going back to guessing, this new algorithm will make minor changes to the good
tours to try to make them even better.

It is the idea of making a series of modifications to tours that gives rise to the term
“evolutionary algorithm.” The approach we are going to look at is a particular kind of
evolutionary algorithm known as a genetic algorithm. The name comes from the fact that
making a series of small changes to tours is reminiscent of the way changes in genes are
passed from one generation to the next, as in a culture of yeast growing in a Petri dish.

In our experiments, an array of city names will serve as the “DNA” that defines a single
tour. The main step of the algorithm weeds out the most expensive tours—the less fit
organisms—and replaces them with new tours that are based on minor modifications of the
least expensive tours.

The technique for making a slight change to a tour is called a point mutation, based on
the terminology used in molecular biology to describe the smallest possible change to the
DNA in a real gene. In the TSP, a point mutation corresponds to selecting a city and then
exchanging its place with the city that follows it. As an example, suppose a tour named t

visits five cities in this order:

>> t.path
=> [:belfast, :dublin, :limerick, :cork, :galway]

Biologically Inspired Algorithms

The genetic algorithm described 
in this chapter is an example of 
what computer scientists call a 
biologically inspired algorithm.

The goal for these algorithms is 
not to simulate real biological 
systems, but simply to use data 
structures and operations that 
are similar to those found in 
nature to solve computational 
problems.

    Biology     Computation

organism tour object

DNA sequence of city names

population array of tour objects

natural selection lower cost tours survive

point mutation rearrange order of cities

crossover combine subtours
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Figure 12.7: The tour on the left has a small twist, where the road from C to F crosses the road from
I to J. The tour can be improved by changing the segment CFIJ to a new segment CIFJ, as shown
on the right. The change is the result of a single mutation that switches the position of the letter
F with the letter that follows it, transforming the string “...CFIJ...” into a new string “...CIFJ...”

The city in location 2 of this array is Limerick (remember that the first item in an array
is at location 0). A point mutation at this location would exchange Limerick with the city
that follows it. The method that makes this change is named mutate!, and this is how we
would call the method to make a mutation at location 2 in the array:

>> t.mutate!(2)
=> #<TSPLab::Tour [...] (940.00)>

>> t.path
=> [:belfast, :dublin, :cork, :limerick, :galway]

Notice how Cork and Limerick have traded places in the tour.
Another example of a point mutation is shown in Figure 12.7. On this map, the city names

are single letters, and the tour on the left includes a segment that visits cities C, F, I, and J,
in that order. One can tell at a glance by looking at this map that the tour is not optimal,
because the “road” that connects C to F intersects the road from I to J. A more efficient tour,
shown on the map on the right, visits these cities in the order C, I, F, J, and since these
paths do not intersect each other the total length of this segment of the tour is shorter. The
change in the array that represents this tour, from [C,F,I,J] to [C,I,F,J], is a single
point mutation that swapped F with the city that followed it.

Figure 12.7 shows the general case of what we hope to achieve with point mutations. At
any stage during the search for an optimal tour, there will be tours that have one or more
segments like the one shown on the left, where the tour crosses over itself. If we imagine a
tour as being a string or rubber band, the change that improves the tour is like untwisting
or removing a “kink” from the tour. The optimal tour will be a single loop that has no kinks.
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Tutorial Project

T39. Make a map object for the five cities in Ireland:
>> m = Map.new(:ireland)
=> #<TSPLab::Map [dublin,cork,limerick,galway,belfast]>

T40. Make a new tour with the cities in this order:
>> t = m.make_tour( [:dublin, :cork, :limerick, :belfast, :galway] )
=> #<TSPLab::Tour [:dublin, :cork, ... :galway] (1210.00)>

Note the cost of this tour is 1210 km.

T41. Draw the map and tour on the canvas:
>> view_map(m)
=> true

>> view_tour(t)
=> true

You should see a map with five circles, and a tour that looks like a rubber band with a single
“twist” in it.

T42. Note that Belfast is in location 3 in the array that represents the tour:
>> t.path
=> [:dublin, :cork, :limerick, :belfast, :galway]

T43. If we exchange the order that this tour visits Belfast and Galway we will remove the twist.
Call t.mutate!(3) to exchange the cities at locations 3 and 4:
>> t.mutate!(3)
=> #<TSPLab::Tour [:dublin, ... :galway, :belfast] (940.00)>

T44. Print the new path:
>> t.path
=> [:belfast, :dublin, :cork, :limerick, :galway]

Do you see how the cities at locations 3 and 4 changed places? And that the cost was reduced
from 1210 to 940?

T45. Call view_tour again to update the canvas to show the mutated tour:
>> view_tour(t)
=> true

Notice how the mutation improved the tour, since it is now a simple loop where no line
segment intersects any other segment.

Try some more experiments on your own, adding a point mutation at selected places in the array, until
you are sure you understand what the mutate! method does. Note that some mutations will make
the cost higher; not every mutation is beneficial.

12.5 The Genetic Algorithm

The general outline of the complete genetic algorithm is shown in the box at the top of the
next page. The main data structure is an array of tour objects; we will call this array the
“population,” and we will refer to the size of the population as a number p. After initializing
the population with random tours, the main steps of the algorithm remove the higher cost
tours and rebuild the population using slightly modified copies of the tours that remain (the
“survivors”).
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1. Create an array of p objects, each representing a different tour.

2. Iterate over the array to remove tours with higher costs.

3. Add new tours to the array, until there are once again p objects.  New objects are 
slightly modified copies of objects left in the array after Step 2. 

4. Halt if any tour in the array is optimal or close to optimal, otherwise continue at 
Step 2.

A Genetic Algorithm for the Traveling Salesman Problem

The initialization step is straightforward. To create an array of tour objects, the algorithm
just makes p calls to make_tour(:random) to get a collection of random tours. Each
tour object will have its own path, i.e., its own array of city names. Most of the paths will
undoubtedly be wild zigzag tours with several roads crossing each other, but we expect
some of the tours to have fewer twists than others.

In Step 2, when the program iterates over the population to remove some of the tours,
an important question is how to decide which tours to delete from the array. One approach
would be to remove a fixed percentage of tours. For example, suppose p = 10 and the goal
is to remove half the tours. We could implement this operation by sorting the array by cost
and then deleting items p/2 through p− 1, i.e., removing items 5 through 9. But a more
subtle approach is one that mimics what happens in nature. The goal is to maintain the
“genetic diversity” of the population by allowing some of the less fit tours to survive while
removing some of the stronger (less expensive) tours. The idea is that even if a tour is
very expensive, after a few generations one of its descendants might be radically different,
and that descendant might be a better solution than one derived from the best tours in the
founding population.

The technique used in the RubyLabs implementation is to sort the array by cost, so the
lower cost tours are at the front of the array. Then, when iterating over the array, the tour
in location i is deleted with probability i/p. For example, with p = 10 the first tour is
always kept because 0/10 = 0. The probability of removing the second tour is 1/10, and so
on (Figure 12.8). As a result, the best tour in any generation is always preserved, but the
others are deleted with a probability that depends on their relative fitness.

The operation in the third step is implemented by the make_tour method. Instead of
passing :random as the argument, we can pass the symbol :mutate and a reference to an
existing tour. Here is an example, assuming m is a map object and t1 is a tour that survived
the round of cuts:

>> t2 = m.make_tour(:mutate, t1)

This expression makes a copy of the existing tour t1, applies a point mutation at a random
location, and stores the result in the variable t2. Note that t1 is not modified. To use the
analogy from biology, t1 is the parent of t2, and the descendant t2 is slightly different as
a result of the mutation in its “DNA.”
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0/5 1/5 2/5 3/5 4/5

Figure 12.8: The tour objects in the population array are sorted according to cost, with the lowest
cost tours at the front of the array. The probability of removing a tour is based on its position in
the array, e.g. the probability of removing tour 3 is 3/5 = 0.6.

After rebuilding the population, the algorithm must decide whether to continue and begin
another round of selection and rebuilding. That poses a difficult question for our genetic
algorithm, one we have conveniently ignored up until this point. How long should we
let the algorithm run? How many generations should we let a population evolve before
the algorithm halts? There are several different ways to solve this problem, but we will
postpone this discussion for later. For our first experiments we will simply pick some number
of generations ahead of time and tell the algorithm to execute that many iterations of its
main loop.

The RubyLabs implementation of the genetic algorithm is a method named esearch,
which stands for for evolutionary search. The top-level esearch method has several “helper
methods” to carry out the individual steps in the algorithm:

• The initial population is created by a method named init_population, which re-
peatedly calls make_tour to create a set of random tours.

• The step that removes tours as a function of their fitness is implemented by a method
named select_survivors.

• To process of creating new offspring by copying survivors and adding mutations is
implemented by a method called rebuild_population.

As we work through the tutorial project for this section, we will be call each of these meth-
ods individually, to get a sense of how they work, and then call esearch to run complete
experiments that search for the optimal tour in maps of varying sizes.

If a map has been displayed on the RubyLabs canvas, a call to init_population will
draw a histogram, or bar chart, using one bar to represent each tour (Figure 12.9). The
height of a bar is proportional to the cost of the corresponding tour. There can be up to 50
bars in the histogram. When a population has 50 or fewer tours there is one bar per object,
but when there are more than 50 tours each bar is the average of two or more tours, e.g., if
there are 100 individuals each bar represents the average cost of two tours.
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Figure 12.9: The methods that
implement the genetic algorithm
update the canvas to show the
progress of the search for the best
tour. The lowest cost tour found
so far is displayed on the map,
and a histogram shows the cost of
each tour in the population. In
this snapshot, gray bars
correspond to tours that have
been deleted; they will be
replaced on the next call to
rebuild population.

The project will set up some experiments with the genetic algorithm so we can compare
tours found by esearch with tours found by calling the random search method rsearch

for the same map. A natural question is, how many tours will be created by the esearch
method? If it makes just as many tours as rsearch, and the results aren’t that much better,
then we might as well not bother, and just stick with a random search.

What we will see is that not only does esearch produce much better solutions, it does
so by looking at far fewer tours. On each iteration, esearch replaces about half of the
population: the tours at the front of the array have a low probability of being deleted, but
this is balanced by the fact that tours at the end of the array have a higher probability of
being removed. The number of tours deleted by the esearch method is thus approximately
one half of the population on each iteration, and these tours are replaced with new tours by
the rebuild_population method. At the end of the search, given a population of size p
evolving over g generations, we can expect the number of tour objects made by the genetic
algorithm to be roughly (p/2)× g.

The genetic algorithm gives noticeably better results than the random search, but there
is still room for improvement. With the strategy of making a series of small adjustments
to tours, the small “kinks” in the paths will be smoothed out, but there will be many sit-
uations where evolution won’t make any progress unless it is able to make more dramatic
changes. We’ll come back to this idea in the next section, where we introduce a second type
of mutation that makes much larger changes to a tour.

Tutorial Project

T46. Make a new tour with 20 cities:
>> m = Map.new(20)
=> #<TSPLab::Map [0,1,2,3,4,5,6,7,8,9,10,...]>

T47. Use the ntours method to compute the number of possible tours:
>> ntours(20)
=> 60822550204416000

That’s about 6× 1016, which is 10 quadrillion (or 10,000 trillion!).
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T48. Recall from the last section that make_tour can be used to make a random tour. Type this
expression to make a tour and save it in a variable named t:
>> t = m.make_tour(:random)
=> #<TSPLab::Tour [11, 17, 5, 7, 6, 12, 10, 9, ...] (4115.27)>

You will see a different result, of course, but you should see a path with the numbers from 0
to 19 in some random order. The cost of the tour is shown in parentheses at the end of the
line.

T49. Call make_tour again, but this time have it create a new tour that is a copy of t with a
mutation added at a random location:
>> m.make_tour(:mutate, t)
=> #<TSPLab::Tour [11, 17, 5, 7, 12, 6, 10, 9, ...] (4120.13)>

In this example the mutation exchanged cities 6 and 12. Can you spot the change in the
tours you got in your own IRB session?

T50. The mutation in the example shown above also increased the cost of the tour, from 4115.27 km
to 4120.13 km. Did the mutation in your own IRB session increase or decrease the cost?

T51. Type this expression to make 10 copies of t, printing each new tour in the terminal window:
>> 10.times { puts m.make_tour(:mutate, t) }
#<TSPLab::Tour [11, 17, 5, 7, 6, 12, 10, 9, ...] (4179.23)>
#<TSPLab::Tour [11, 5, 17, 7, 6, 12, 10, 9, ...] (4169.07)>
...

How many of these “descendants” of t have a “beneficial mutation” that gives them a lower
cost than t?

T52. Display the map on the canvas:
>> view_map(m)
=> true

T53. Call init_population to make an array of 10 random tours based on the map m, saving
the array in a variable named pop:
>> pop = init_population( m, 10 )
=> [ ... ]

In your canvas window you should see a histogram with 10 bars, one for each tour.

T54. It will be easier to see the tours if you print the array with puts (since puts prints each item
in an array on a separate line):
>> puts pop
#<TSPLab::Tour [4, 8, 0, 9, 14, 12, 1, 10, ...] (3263.49)>
#<TSPLab::Tour [14, 12, 7, 10, 18, 3, 2, ...] (3627.96)>
...
#<TSPLab::Tour [14, 13, 1, 12, 2, 8, 5, ...] (4467.65)>
=> nil

You should see one tour object on each line. Notice they are sorted, with the lowest cost
tours at the front of the array. Do the heights of the bars on the canvas correspond to the
costs of these tours?

T55. The select_survivors method will delete some of the tours from the array, with a higher
probability of keeping the lower cost tours at the front of the array:
>> select_survivors( pop )
=> [...]

The histogram should now have some gray bars, to indicate the tours that will be deleted
from the population, and there should be more gray bars toward the right side, where the
most expensive tours are.
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T56. Call rebuild_population to add new tours to replace the ones marked for deletion by
select_survivors:
>> rebuild_population( pop, 10 )
=> [...]

There should now be 10 blue bars in the histogram again. The ones left from the previous generation
are shifted left, and the new ones will be on the right.

An important point is that the new tours are all copies of tours from the previous generation, and the
new tours all differ from their “parents” by a single mutation.

T57. Print the population array:
>> puts pop
#<TSPLab::Tour [4, 8, 0, 9, 14, 12, 1, 10, ...] (3263.49)>
#<TSPLab::Tour [18, 4, 1, 7, 6, 0, 11, 10, ...] (3588.86)>
...

Can you find the new tours? Can you can tell which of the earlier tours they are derived
from? Are any of these new tours improvements?

T58. This expression will repeat the calls you typed above 10 times, telling Ruby to pause for a
half second after each method call (you should type this entire expression on a single line):
>> 10.times { select_survivors(pop); sleep(0.5);

rebuild_population(pop, 10); sleep(0.5) }
=> 10

By watching the histogram, do you see how tours are being deleted, survivors being shifted
left, and empty places being refilled with new random tours based on the survivors?

The method named evolve will do what you did in the last exercise (except without the pauses).

T59. Call evolve to tell it to continue the process of selecting survivors and rebuilding the array.
This expression tells evolve to run for 10 generations:
>> evolve(pop, 10)
=> #<TSPLab::Tour [8, 19, 14, 18, 15, 3, 17, ...] (2284.48)>

The return value is the lowest cost tour in the population.

T60. Repeat the previous expression a few more times, perhaps running for 100 generations or
more. Is the best tour continually getting better?

We’re now ready to run some experiments with esearch. At the start of each experiment, esearch
calls init_population to make a set of random tours, and then repeatedly call evolve. As we
will see, we can also pass it options to tell it to vary the population size and control a number of other
parameters.

T61. Type this expression to have esearch run for 100 generations to find a tour for map m:
>> esearch(m, 100)
=> #<TSPLab::Tour [2, 17, 11, 10, 19, 4, 18, ...] (2465.38)>

Notice that esearch also displays some text on the canvas to tell you how the search is
progressing.

T62. Call esearch a few more times, and record the costs of the tours you get.

One of the pieces of data displayed on the canvas is the number of tours created by esearch. If the
population size is p = 10 and the algorithm runs for g = 100 generations, esearch should make
roughly (p/2)× g = 500 tours. Is that about how many you saw next to #tours on the canvas?
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Next let’s see how rsearch will do if it checks the same number of tours.

T63. Use the random search algorithm to find the best tour out of 500 random samples:
>> rsearch(m, 500)
=> #<TSPLab::Tour [13, 19, 1, 17, 5, 2, 3, 4, ...] (2782.08)>

T64. Repeat the previous expression a few times, and record the costs of the tours you get from
rsearch.

What do you conclude from these experiments? Is esearch generally producing better tours than
rsearch when both are generating the same number of tours?

The number of tours in a population has a big effect on the search. When there are more tours to
choose from, the evolutionary algorithm has a better chance of finding a high-quality tour.

T65. To increase the population size, pass an option named :popsize in the call to esearch.
Run the genetic algorithm for 200 generations on a population of size 50:
>> evolve(m, 200, :popsize => 50)
=> #<TSPLab::Tour [19, 16, 2, 6, 8, 9, 18, 4, 1, ...] (1656.45)>

T66. Repeat the previous expression a few more times. Does a larger population size give better
results?

T67. Do a few more experiments on your own, running for up to 500 generations and using a
population size of up to 100. Remember that if the algorithm is not making progress you can
always halt it by typing ∧C.

How would you characterize the tours made by esearch? In most cases, they should appear less
jumbled than the random tours found by rsearch, but they will still have a few large “twists” or
“kinks” where one segment of the path crosses over another one (Figure 12.10)

© Try some more experiments on your own, perhaps with a map of 30 or 40 cities, or with a larger
population size or running for more generations. In most cases the genetic algorithm will make lots
of improvements at first, and then make fewer and fewer improvements as the search continues, and
eventually seem to get stuck on a tour with one or more large twists.
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Figure 12.10: A tour produced with point mutations only. These tours typically have one or two
large loops that are hard to “untwist” by exchanging a city with the one next to it on the tour.
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12.6 Crossovers

Most of your experiments with esearch probably ended with a tour that looks like the one
in Figure 12.10, where there are several large regions that look like they might be part of
the optimal tour along with other areas where there are twists or “kinks” in the path. The
tour in Figure 12.10 would be improved if a mutation exchanged cities 2 and 8, making the
tour one large loop with no roads that cross each other. But there are other cities in the
path between 2 and 8. The mutate! method cannot exchange 2 and 8 because they are
not right next to each other in this tour.

The reason it is so difficult for esearch to work out this sort of wrinkle is that smaller
changes that are a step in the right direction, such as exchanging 2 with 1 to make the loop
one path shorter, often increase the overall cost, so any tour that has the change doesn’t
survive long enough to pass its “genes” to succeeding generations.

One approach to solving this problem is to use a second type of mutation, one that makes
larger changes in the “DNA” of a tour. A common type of mutation, and one that is imple-
mented in TSPLab, is based on another process that occurs naturally in real DNA in real
cells. In genetics, a crossover mutation occurs when two chromosomes (which are very
long strands of DNA) break apart. When the pieces are brought back together, to form
whole chromosomes again, there is often some mixing, and as a result new chromosomes
can have a mixture of parts from the original chromosomes. This is the source of genetic
recombination, and it is the reason we all have a combination of traits from both of our
parents.

In a genetic algorithm for the TSP, a crossover is basically a “cut-and-paste” operation. An
array of city names from one tour is appended to an array of city names from a second tour,
resulting in a third tour that has large pieces from each of the original tours (Figure 12.11).
We won’t go into the details of how this operation works; for the tutorial project, it is suffi-
cient to know that it is implemented by the same make_tour method that creates random
tours and tours based on point mutations. If you are interested in how this operation is
implemented, you can find a description in the TSPLab documentation section of the Lab
Manual.

To make a new tour that combines large pieces of the paths of two other tours, the ex-
pression is

>> t3 = m.make_tour(:cross, t1, t2)

Here t1 and t2 are references to two existing tour objects. The return value is a new tour
object that has a path made from large subpaths from t1 and t2.

Having a second type of mutation to use when making new tours raises a new question,
however: when the rebuild_population method creates new tour objects, how does
it decide whether to make the new tour with a point mutation or with a crossover? How
does it know whether to call make_tour with the old :mutate parameter or with the
new :cross parameter? The answer is that rebuild_population basically just “flips a
coin.” Each time it goes to make a new tour, the method uses a random number generator
to decide which argument to pass to make_tour (Figure 12.12).

The coin flipping analogy is a little misleading, since the odds are not always 50-50 for
each kind of mutation. The probability of each type of mutation is defined by a parameter
called the distribution. By default, if we call esearch without any extra parameters, it
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Figure 12.11: In a crossover mutation, portions of two existing tours (shown in gray) are spliced
together to form a new tour. The new tour often combines the best portions of its “parents.”

uses a distribution that forces all the mutations to be point mutations. If we want to include
crossovers, the easiest way is to use a distribution named :mixed, as in this example:

>> esearch(m, 100, :distribution => :mixed)

There are several different sorts of distributions defined in TSPLab, and it is possible to
define new ones, e.g., to tell rebuild_population to make 90% point mutations and
10% crossovers (see the Lab Manual for details).

The project for this section will carry out some experiments on maps with 20 or more
cities, using various combinations of the different types of mutations. What we will see
is that both types of mutations are necessary. Without crossovers, as we have seen, the
evolutionary search algorithm cannot make changes it needs to get “unstuck” from solutions
that have large twists. On the other hand, using only crossovers will lead to wild changes
almost like those seen in a random search, and the algorithm won’t be able to “fine-tune”
any solutions that are almost optimal. With a combination of both types of mutations, some
very low cost tours, and perhaps even the optimal tour, will eventually emerge.

Tutorial Project

T68. If you still have the map with 20 cities from the previous section you can use it for this
project, otherwise make a new map and display it:
>> m = Map.new(20)
=> #<TSPLab::Map [0,1,2,3,4,5,6,7,...]>

>> view_map(m)
=> true
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T69. Call esearch with these parameters to see what kind of tour it can find using point muta-
tions only:
>> esearch(m, 500, :popsize => 50)
=> #<TSPLab::Tour [6, 15, 9, 11, 1, 19, 14, ...] (1969.10)>

It’s possible this search may lead to a tour with no twists, but usually there will be one or
two places where roads intersect each other.

T70. Repeat the previous expression, but this time tell esearch to use a combination of point
mutations and crossovers:
>> esearch(m, 500, :popsize => 50, :distribution => :mixed)
=> #<TSPLab::Tour [2, 3, 13, 4, 0, 8, 12, 7, ...] (1522.62)>

Was the algorithm able to find a better tour?

Try each of these searches a few more times, to convince yourself that using crossovers helps esearch
find better tours. You can also try each search (with and without the :distribution parameter)
on different maps of size 20. Some maps may be laid out in such a way that only point mutations are
required, and some may have regions that are difficult even when both types of mutations are used.

T71. At this point you might be wondering, if crossovers are so effective, why even have point
mutations? Type this expression to tell esearch to use only crossover mutations:
>> esearch(m, 500, :popsize => 50, :distribution => :all_cross)
=> #<TSPLab::Tour [13, 3, 2, 5, 17, 16, 11, 1, ...] (1606.77)>

T72. Repeat the previous expression a few more times. Do the tours made using only crossovers
have anything in common?

  def rebuild_population( a, n )
    prev = a.length

    while a.length < n
      r = rand
      if r > pcross
        mom = a[ rand(prev) ]
     kid = map.make_tour( :mutate, mom )

 else
        mom = a[ rand(prev) ]
        dad = a[ rand(prev) ]
     kid = map.make_tour( :cross, mom, dad )
      end
      a << kid
    end

  end

# Add new Tour objects to array a until there are n objects in a.  The variable named 
# pcross is a number between 0 and 1 that represents the probability of making 
# the new tour as a crossover of two existing tours.

Figure 12.12: Outline of the Ruby code for the rebuild population method. The actual code can
be seen by calling Source.listing.



336 Chapter 12 The Traveling Salesman

When esearch is not able to use any point mutations it usually finds a tour that has the best overall
“shape,” but there will be several places where a point mutation that exchanges two cities right next
to each other would make a better tour. But such small changes are not likely when the only way to
make a new tour is to “cut and paste” from two different tours.

If you would like to try some more experiments on larger maps here are some suggestions.

© Make a map with 30 cities and draw it on the canvas:
>> m = Map.new(30)
=> #<TSPLab::Map [0,1,2,3,4,5,6,7,8,9,10,...,28,29]>

>> view_map(m)
=> true

© Call esearch using the same parameters you used for the map with 20 cities:
>> esearch(m, 500, :popsize => 50, :distribution => :mixed)
=> #<TSPLab::Tour [15, 18, 23, 6, 17, 20, 24, ...] (2113.99)>

© One way to see if esearch can find a better tour is to let it run longer. Repeat the previous
expression, but increase the number of generations to 1000:
>> esearch(m, 1000, :popsize => 50, :distribution => :mixed)
=> #<TSPLab::Tour [4, 11, 28, 2, 29, 14, 10, ...] (2103.86)>

© Another possibility for getting a better tour is to use a larger population size. Type this
expression to use the original number of generations (500) but twice the population size:
>> esearch(m, 500, :popsize => 100, :distribution => :mixed)
=> #<TSPLab::Tour [26, 8, 2, 5, 15, 29, 23, ...] (2043.61)>

© If you ever see a search that seems like it would produce an answer if only it could run for
a few more generations, you can tell esearch to continue the previous search. Just repeat
the expression that started the search, but increase the number of generations, and pass an
option named :continue. For example, to continue the search from the previous exercise
for another 100 generations (so the total is 600 generations) the command is:
>> esearch(m, 600, :continue => true)
=> #<TSPLab::Tour [23, 19, 27, 15, 7, 5, 20, ...] (2030.86)>

All the other parameters (population size, etc.) will have the same value as in the previous
search.

© Do some more experiments on your own. Try increasing the number of generations up to
2500, and the population size up to 300. In general, which strategy is more effective, letting
the search run for more generations or increasing the population size?

© If you want to see how well this method works on larger maps try making maps of up to 100
cities, and using population sizes of up to 1000. The canvas only has room for 400 cities, so
with more than 100 cities the map will be very crowded. The population size can be as big
as you want, but obviously the larger the population size the longer it will take to make each
new generation.

12.7 Summary

This chapter introduced an important problem in computer science known as the Traveling
Salesman Problem. Although it sounds like a simple puzzle or brain-teaser, it is actually a
very challenging problem faced by professionals in a wide variety of different areas. Trav-
eling to a set of cities on a tour that visits each city exactly once before returning to the
starting point is the same basic problem as driving a delivery truck to drop off packages for
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Concepts and Terminology Introduced in This Chapter

Traveling Salesman
Problem

An optimization problem where the goal is to find the
lowest cost tour that visits each city on a map exactly
once

random search An algorithm that looks at random solutions; for the
TSP, the algorithm evaluates random tours

genetic algorithm A biologically inspired algorithm that begins with
random tours and then tries to “evolve” better tours
through a series of mutations

point mutation A small change in DNA, or, in the TSP, in the order in
which two cities are visited

crossover A process that combines DNA from two sources, or, in
the TSP, makes a new tour by combining large parts
of existing tours

customers, laying out components on a circuit board, and a variety of other problems in
transportation and manufacturing.

What makes this problem so difficult is the huge number of alternatives to consider. There
are (n − 1)! / 2 different itineraries for visiting n cities. This equation grows very quickly
with increasing n, so that for as few as 20 cities there are far too many alternatives for an
algorithm to examine each possible tour.

Instead of doing an exhaustive search that considers every tour, we tried two approaches
that examine random tours. A method named rsearch simply makes random tours, hoping
to find a reasonably good one. Building on that idea, a method named esearch implements
an evolutionary search that tries to improve on any good tours it finds.

The idea behind a genetic algorithm is to mimic how a population of real organisms
changes over time. The algorithm starts with a collection of random tours, and over a series
of iterations throws out the more costly tours and replaces them with slight variations of
the better tours. Under the right conditions, involving a mixture of the different kinds of
“mutations” that modify tours and a large enough “population” to work with, a very good
tour eventually emerges.

One of the curious things about the Traveling Salesman Problem is that it is possible to
calculate the cost of the optimal tour without knowing the actual path for the best tour.
There are algorithms that use distances between cities to compute a lower bound on the
cost of a tour. One might think that the algorithm to compute the cost of the best tour
could also be used to find the tour itself, but unfortunately that’s not the case. Some more
advanced algorithms for the TSP do the same sort of calculations used to find the lower
bound, but they still need to carry out some form of search to actually find a tour that has
that lowest cost.

Knowing the lower bound for the cost of a tour allows different strategies for halting the
algorithm. The simple technique used in the lab projects was to specify a fixed number of
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start

!

Figure 12.13: A tour of the 25
cities from the map in
Figure 12.2. This tour was
made by a call to esearch,
using a combination of point
mutations and crossovers.

generations ahead of time, and then just see what the method would produce in that number
of generations. But if we know the cost of the optimal tour, we can tell the algorithm to run
until it finds a tour with this cost.

In many cases, such as a courier company planning the routes for a delivery truck, it may
not be necessary to have the very best tour. The company may be happy to know the driver
will follow a tour that is almost as good as the best possible tour. In this case, they might
be satisfied with a computer program that runs for half a minute to produce a tour that
is within 5% of the lowest cost, instead of a program that runs for five hours to find the
absolute best tour.

A resource for learning more about the Traveling Salesman Problem, including the history
of the problem, real-world applications based on the TSP, and information about computing
lower bounds, is a web site maintained by a research group at the Georgia Institute of
Technology.1 This site also has a Java applet that will allow you to try to solve the TSP
yourself. If you open this applet with your web browser, it will display a set of cities, like
the one shown earlier in Figure 12.2, and let you click on the cities to try to make the best
tour.

If you took the challenge at the beginning of the chapter, to find the optimal tour of the
map in Figure 12.2, you can compare your solution to the one found by esearch, which is
shown here in Figure 12.13. After visiting four cities, it’s tempting to move on to the closest
city, as shown by the dashed line, but that would be a mistake. The best tour has to skip
over this city, and then visit it on the way toward the cities at the bottom of the map. How
did your solution compare to the one found by Ruby?

1http://www.tsp.gatech.edu
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Figure 12.14: This map with 7 cities is
used in problems 1 to 6. If you want to
check your answers to these problems
you can use IRB, and make a map with
these cities by calling
Map.new(:test7).
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B
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Exercises

The map in Figure 12.14 is used in the first set of problems. The distances between the cities on the
map are defined by this matrix:

A B C D E F G
A 0.00
B 151.54 0.00
C 202.99 187.45 0.00
D 82.02 199.41 284.85 0.00
E 142.56 185.95 325.58 89.55 0.00
F 167.36 302.42 242.33 202.43 290.11 0.00
G 253.62 404.88 383.51 239.02 323.36 144.51 0.00

1. What is the distance between these pairs of cities?

A—E F—C B—E

2. What is the length of the three-city tour A—D—E?

3. What is the length of the seven-city tour shown by the solid lines in Figure 12.14?

4. The variable t contains the tour shown by the solid lines in the figure. Its path is:
>> t.path
=> [:C, :F, :G, :A, :E, :D, :B]

What parameter would you pass in a call to t.mutate? to “straighten out” the tour so it uses
the connections shown by the dotted lines?

5. What is the cost of the path that follows the dotted lines in Figure 12.14? That is, find the cost
of the path

[:C, :F, :G, :A, :D, :E, :B]

6. Draw the map that would result from calling t.mutate!(1).

7. Suppose you have a tour named t, and you call t.mutate!(2) to exchange the cities in
locations 2 and 3 of the path. What would happen if you called t.mutate!(2) a second time?

8. How many possible tours are there for a map with 16 cities?

9. What proportion of the possible tours of 16 cities would rsearch consider if it looked at 106

random tours?

10. Approximately how many tours of a map with 16 cities would be evaluated when esearch is
called with the following sets of parameters?

a) population size = 25, number of generations = 50

b) population size = 50, number of generations = 100

c) population size = 100, number of generations = 1000
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11. In the previous problem, will the number of tours evaluated by esearch change if a different
size map is used? Or is the number of tours created independent of the map size?

12. © A formula for estimating the number of tours created by a genetic algorithm was given on
page 331. It turns out this formula overestimates the number slightly. In each generation, the
best tour is never thrown out. Devise a formula that is a more accurate prediction of the number
of tours that will be created, and compare the number of tours made in your experiments with
this new formula.
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Answers to Selected Exercises
Introduction

1.3: Which of these methods for finding a book in a library are algorithms?

• Ask the first person you see: Not an algorithm, since the person probably won’t know where the
book is, and may or may not want to help you look in the catalog.

• Find a librarian: Maybe an algorithm. If the library always has a librarian on duty, and the
librarian is always in a designated location (e.g., a reference desk) you know how to find, and
the librarian on duty is always willing to look in the catalog and give you directions, then
this method would be considered an algorithm. Theoretical computer scientists often analyze
properties of algorithms where key steps are carried out by “oracles” that always give the right
answer.

• Wait by the book return: Not an algorithm. Even if you are very patient, this method will never
terminate unless someone else checks out and then returns your book.

• Use an electronic catalog: Probably the most effective algorithm for this task.

• Work systematically, shelf by shelf: This is an algorithm, but not the best way to solve this
problem. Note that you would have to search every shelf to learn the book has been checked
out.

• Pick shelves at random: The key word here is “random.” The project in Chapter 9 explores
algorithms that generate sequences of numbers that appear to be random (they are called pseu-
dorandom number generators), and if you use one of these algorithms you can set it up so that it
eventually chooses every shelf. If you use some other method for selecting shelves (e.g., rolling
dice to get shelf numbers) then many people would argue this method is not an algorithm
because there is a chance it could go on forever.

• Ten friends each search a designated area: This is an example of a “parallel algorithm.” Parallel
algorithms are used on systems that have more than one processor, and are especially useful in
large scientific problems where a calculation is divided into smaller parts for each processor to
work on.

341
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1.6: An algorithm for making a table of squares of numbers:

• Input: a number n. Result: a table that shows the values of i2 for every number i between 1
and n.

• Start by making a table with n rows and three columns.

• Write the numbers between 1 and n in the first column.

• Put a 1 in the second and third columns of the first row.

• Fill in the second column from top to bottom, setting each cell to a value 2 greater than the
value in the cell above.

• Fill in the third column from top to bottom, setting each cell to the sum of the number above
and the number to the left.

The Ruby Workbench

2.5: Ruby should handle this expression with no problem. The equation for converting from Fahren-
heit to Celsius works for negative temperatures as well as positive temperatures.

2.6: To find the freezing point of water call celsius(32). To find the boiling point call
celsius(212).

The Sieve of Eratosthenes

3.3: Ruby removes every string with an even number of letters.

3.4:
√

1000 = 31.62, so as soon as the first number in the worksheet is greater than 31 the algorithm
can stop.

3.7: To find the number of primes less than some number n call sieve(n-1) to make a list and
use the length method to find the number of items in the list. This can be done with a single Ruby
expression. For example, to count the number of primes less than 1000:

>> sieve(999).length
=> 168

A Journey of a Thousand Miles

4.6: (a) Ruby will print every string in the array named languages. (b) Ruby will print strings
shorter than 5 characters in length. (c) Ruby will print “found it” if the string "fortran" is in the
array; since it isn’t there, nothing is printed on the terminal.

4.9: The linear search methods stop after they find the first occurrence of the item they are looking
for. Since there is a 7 in the third location in this array the search stops after doing three comparisons.

4.16: Insertion sort will make the fewest comparisons when the list is already sorted. It only makes
one comparison on each iteration, and it does n− 1 iterations to sort an array with n items, so it would
make 19 comparisons for an array of 20 items and 49 comparisons for an array of 50 items.

4.17: Iteration sort makes the most comparisons if the array is sorted, but in the opposite order. The
algorithm needs to make a comparison for each dot shown in Figure 4.9. For an array with 20 items,
isort will make 20× 19/2 = 190 comparisons, and for an array with 50 items, 50× 49/2 = 1225
comparisons.
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Divide and Conquer

5.6: If the item being sought is in the first location in the array, search will find it on the first
comparison, but bsearch will have to “zero in” on the item and do four comparisons.

5.12: If the array is already sorted, the merge operation needs to do half as many comparisons as
it would in the worst case. To see why, suppose it is merging two groups of size four. The algorithm
does four comparisons, each time moving something from the left group to the output. But then it
can copy all four items from the right group without doing any comparisons. In the worst case, there
would be seven comparisons to merge two groups of four items.

When Words Collide

6.6: A 3-digit decimal number has a value between 100 and 999, so an “average” three-digit number
would be around 500, or 103/2. By analogy, a rough estimate for the numeric value of an n-digit
radix-26 string would be 26n/2.

6.8: A hash table with one row would put all the items in one long bucket in row 0. Since the bucket
would not be sorted, looking for an item in the table would be a linear search (plus the wasted cost of
computing the value of the hash function, which would be 0 for every string).

Bit by Bit

7.1: A 6-bit code has 26 = 64 different patterns, so there is room for 64− 50 = 14 additional locations
before the code has to be extended to 7 bits.

7.2: Encoding 192 countries would require dlog2 192e = 8 bits.

7.3: If 9 bits are used to encode team names, 29 = 512 different names could be encoded.

7.7: Codes b, f, and g have an odd number of 1 bits.

7.14: If each letter has the (roughly) the same probability, there will be the same number of bits in
each code, and the Huffman code will not be any shorter than a regular code. To see why, consider
what happens when the first interior node is created: its value is the sum of the two letters, and when
it is added to the queue it will go at the end, after the last letter. The same will be true of every new
interior node, so the final tree will be “balanced.”

The War of the Words

8.1: To multiply 2× 8, the algorithm makes 8 iterations.

8.3: Multiplying 0× n means adding 0 n times. It doesn’t matter how many iterations are made, the
answer is always 0.

8.4: The way the Redcode program is written, the loop always does at least one addition before
testing to see if the counter has reached 0. That means x will be added to acc one time, and the
answer will be wrong.

8.5: Having x < 0 is no problem, but if y < 0 the program will give the wrong answer (it’s the same
bug that gives an error when y = 0, described above).
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8.6: If y = 0 the subtract instruction sets x to x− 0, i.e., it doesn’t modify x. That means the program
will be stuck in an infinite loop! Does this exercise give you any insight into why calculators give an
error message (or ∞ ) when you try to divide something by 0?

8.7: Since the Dwarf occupies only four words in memory, and the first bomb goes in the word
right after the end of the program, the bombs will not hit the program’s instructions when they wrap
around.

8.8: If bombs go in every other word, then yes, the Dwarf will bomb itself after the addresses wrap
around. Since there are 4096 memory locations in the RubyLabs version of MARS, the Dwarf can run
2048 iterations before it bombs itself.

Now for Something Completely Different

9.1: An interval of 5 hours leads to a schedule with all 12 times. To make a schedule that includes all
12 numbers, the interval and 12 must be relatively prime, i.e., there is no other number that divides
both evenly. For a 12-hour clock, the only numbers that fit this criterion are 5 and 7.

9.6: Any interval that is relatively prime with 24, so any interval that is a prime number will work,
e.g., 7, 11, 13, 17.

9.9: To see if an array a contains every number between 0 and m-1:

>> a.uniq.sort == Array(0..(m-1))

Ask Dr. Ruby

Here are some reasons Eliza would not be able to respond to the statements given in the
exercises for Section 10.7 (page 275).

H: I remember when I lived in the country and there were
cows and chickens everywhere.

C: Why do you mention cows just now?

This sentence is too complex. Eliza would probably apply a rule for the word “re-
member,” which has a high priority, and make a suspicious response like “Do you
often think of when you lived in the country and there were cows and chickens
everywhere?” instead of simply “Do you often think of cows?”

H: They were always looking at me.
C: The cows were looking at you?

This response depends on the previous sentence. The program would need some
sort of memory to record the fact that the first sentence was about cows, and
then be able to figure out the word “they” in the second sentence refers to the
“cows” in the previous sentence.
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H: Our parents got mad when we tipped the cows.
C: Did you really push over a cow?

This response requires the program to have some real-world knowledge and to
be able to associate words with their meanings. It would need to know that,
in this context, “tipping” is the same as “pushing,” and that when something is
tipped far enough it will fall over. The context is important, too, since the correct
meaning is the one in “he tipped the cup” but not in “he tipped the waiter.”

H: The one with the big horns was the scariest.
C: Are you referring to a bull?

For a computer to give this response, it would have to remember that the con-
versation was about cows, so “horns” refers to the things on the bull’s head, not
musical instruments, and it would require some real-world knowledge that cows
(females) often don’t have horns.

H: Yeah, that guy was pretty aggressive.
C: Did the horns seem dangerous?

This response is based on context (a conversation about cows and horns) and on
the meaning of the word “horns” – that they are sharp, pointy, and, when on the
head of a live animal, potentially a threat.

The Music of the Spheres

11.2: Every body is influenced by the gravitational pull of the others, so yes, the Sun moves. Since
the Sun is the first body in the array, ask Ruby to print that object’s position:

>> b[0].position
=> (-7.3353e+07,-4.4832e+07,1.4706e+06)

11.3: Repeat the advance and turn commands four times, e.g.,

>> 4.times { robot.advance(10); robot.turn(90) }
=> 4

11.8: With 25 bodies, the simulation does (25× 24)/2 = 300 force calculations on each time step.

11.10: If f3 starts out at a position halfway between f1 and f2, its track will initially stay between
the tracks for the other two bodies, but at some point f3 will veer away and head off on its own track.
One of the important attributes of chaotic systems is that small changes in the starting conditions may
lead to very big changes later on, so it is impossible to predict where the body will end up.
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The Traveling Salesman

12.2: The cost of the tour A–D–E is the cost of the path from A to D, plus the cost of the path from D
to E, plus the cost of the path from E back to A: 82.02 + 89.55 + 142.56 = 314.13.

12.4: The current path is

[:C, :F, :G, :A, :E, :D, :B]

The path that follows the dotted lines is

[:C, :F, :G, :A, :D, :E, :B]

The difference in these paths is the two cities in locations 4 and 5 of the array, so the call to mutate!
is

>> t.mutate!(4)
=> #<TSPLab::Tour [:C, :F, :G, :A, :D, :E, :B] (1185.43)>

12.6: If the current path is

[:C, :F, :G, :A, :E, :D, :B]

a call to t.mutate!(1) would produce this path:

[:C, :G, :F, :A, :E, :D, :B]

The new tour is

E

C

D

B

A

G

F

12.7: A second mutation at the same location would simply change the path back to what it was
before the first mutation.

12.9: There are 15!/2 = 653, 837, 184, 000 possible tours of a map with 16 cities. This is approxi-
mately 6.5× 1011. Dividing by 106 means the random search would look at 1 out of every 650,000
tours. We can use IRB to get the exact percentage:

>> 1000000.0 / ntours(16)
=> 1.52943274636396e-06

If you convert this to a percentage, it’s .000153% of the total number of tours.

12.10: The evolutionary search will replace roughly half the tours on each generation, so just multiply
the population size by the number of generations and divide by 2.
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Ruby Reference
This appendix is a quick reference guide to numbers, strings, arrays, and other types of
objects used in projects throughout the book. The types of data described here are those that
are defined already as part of the Ruby programming language. The types of object created
specifically for the projects in this book – RandomArray, Body, Tour, etc. – are described in
the Lab Manual (since they may have been updated since the book was published). The
Explorations in Computing web site also has an on-line reference section for the RubyLabs
software:

http://www.cs.uoregon.edu/eic

Objects and Classes

In Ruby (and other object-oriented programming languages) each piece of data is called an
object. There are many different kinds of objects, from simple pieces of data like numbers
and characters, to more complicated data structures like arrays, which are lists of objects.
Each of these categories is called a class, and we say each individual object belongs to a
class, or is an instance of a class.

Here is a simple example. We can define a variable named n to have the value 42 with
this assignment statement:

>> n = 7 * 6
=> 42

The class that represents integers in Ruby is named Fixnum. The statements “n is an integer,”
“n belongs to the Fixnum class,” and “n is an instance of Fixnum” are three different ways
of saying what type of object n refers to.

A second example defines a string:

>> s = "Hello"
=> "Hello"
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The name of this class is String, so we would say “s is an instance of the String class,” or
simply “s is a String.”

If you ever forget what an object is, or are curious to find out what the name of its class
is, you can call a method named class:

>> n.class
=> Fixnum

>> s.class
=> String

Every class in Ruby has a name that starts with an uppercase letter. Most classes have a
method named new that can be called to create a new object of that class. For example,
another way to make a new String object is

>> t = String.new
=> ""

As you can see by the output from IRB, a String made by calling new has no characters in it;
this method for making a string might be used by a program that needs to initialize a string
and later add new text as it works its way through an algorithm.

Object-oriented languages allow programmers to define their own new classes. The Body
class used in the solar system simulation, the Tour class used in the traveling salesman, and
several other classes are all defined in the RubyLabs module. Defining new types of data
is beyond the scope of this book, but if you’re curious you can find more information in
any book on Ruby, and you can also look at the source files for the RubyLabs gem that you
installed when you set up your system to run the tutorial projects.

Modules

A module is a software package that contains the definition of several related classes and
methods. Ruby’s math library is an example of a module, and the RubyLabs software used
for the tutorial projects in this book is also organized as a group of modules.

Normally, to use a function in the math library, we need to put the module name in front
of the function name. For example, to ask Ruby to compute

√
5, we would type:

>> Math.sqrt(25)
=> 5.0

If we are going to be using a lot of math library functions, we can tell Ruby to get the entire
library and include it as part of IRB, so all of the library’s functions are available for the
remainder of that IRB session:

>> include Math
=> Object

Then we can just call a math function directly:

>> sqrt(36)
=> 6.0
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If you installed the RubyLabs software and configured your system according to the guide-
lines in the Lab Manual, the Math module and RubyLabs are automatically included at the
start of each new IRB session. Then you simply have to type an include command to
specify which particular part of the RubyLabs package you want to use. For example, at the
start of an IRB session to work on the traveling salesman project, you would type

>> include TSPLab
=> Object

Variables

Variables in Ruby are simply labels for objects. A variable is defined in an assignment state-
ment, which has the name of a variable, an equal sign, and an expression:

>> x = 3
=> 3

>> y = x * 2
=> 6

Note that the second statement above has a variable name in an expression on the right
side. To evaluate this expression, Ruby looks to see if x has been defined, and if so, it uses
the value of the object x refers to, which is how y got the value 6.

Variable names in Ruby always begin with a lowercase letter. After the initial letter, names
can have any combination of upper and lowercase letters, digits, or an underscore character.

Something that seems strange at first is to see the same name on the left and right side of
an assignment:

>> x = x + 1
=> 4

Ruby treats this just like it does any assignment: it first evaluates the expression on the right
side, using the current value of x to produce the number 4, and then it updates x to refer
to this new object. Updating a variable by adding a value to it is such a common operation
there is a special symbol for it:

>> x += 1
=> 5

The notation n += m is shorthand for n = n + m, where the value on the right side of the
operator is added to the variable named on the left side.

Ruby does not care what type of object a variable refers to. We can have a variable refer
to any type of object, and we can even have it refer to different types of objects at different
times. After telling Ruby we want x to be a number in the previous example, we can later
tell Ruby we want x to refer to a string:

>> x.class
=> Fixnum

>> x = "aloha"
=> "aloha"

>> x.class
=> String
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Changing the kind of object referred to by a variable is not something you will see in the
text, but it does help illustrate that a variable is nothing more than a label for an object, and
that we are allowed to modify a variable by updating it to refer to a new object.

Methods

In an object-oriented programming language, objects are the individual pieces of data, and
methods are operations that use the data. Each different kind of object has methods that are
defined specifically for that type of object. A large part of learning how to use a language is
learning what sorts of things can be done with the different kinds of objects.

Most methods have names, and the operation defined by the method is performed when
we use the name in an expression. A simple example is a method named length, which
counts the number of characters in a string. If s is a String object, we can use the length
method to count the number of characters:

>> s = "abcde"
=> "abcde"

>> s.length
=> 5

The notation shown above is the most common way to use a method, where we write the
name of an object, a period, and the name of the method.

Some other terminology associated with methods:

• When Ruby evaluates an expression that has a method name, we say Ruby calls the
method.

• A value computed by a method is returned to be used in the expression.

• When we call a method, we often pass it a set of arguments to use in its calculation;
arguments are simply objects that have been created already.

An example of a method that expects us to pass it an argument is include?, which
searches through a string. For example, given the definition of s above, if we want to know
whether or not s contains the substring "bc" we would type this expression:

>> s.include?("bc")
=> true

Note the question mark is part of the method name. Ruby methods that return true or
false often have question marks at the end of their name.

Often methods are called without putting an object name in front of the method name.
This is especially true of methods that we write ourselves, to test an algorithm. For exam-
ple, the project in Chapter 2 shows how to define a new method to convert temperatures
from Fahrenheit to Celsius. To call this method, we just write its name, followed by the
temperature value we want to convert:

>> celsius(100)
=> 37
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A few methods are associated with symbols that can be used in expressions. An example
is a method used often in projects in this book to attach a new item to the end of an array:

>> a = [2, 3, 5]
=> [2, 3, 5]

>> a << 7
=> [2, 3, 5, 7]

The “name” of this method is <<, and we can use this symbol in an expression, just like we
use + and other arithmetic operators in expressions with numbers.

It turns out there really is a method with this name, and if you want, you can use the
normal method-calling syntax to call it. To add the number 11 to the end of a you could
type

>> a.<<(11)
=> [2, 3, 5, 7, 11]

That expression is not very readable, compared to the example above that appended 7 to
the list, but it does show that the operation that attaches items to the end of an array is a
method, just like other methods in Ruby. In an object-oriented language, every piece of data
is an object, and every operation is a method.

Numbers

By default, every number we use in an expression in Ruby is an integer. An integer in Ruby
is called a “Fixnum,” as shown by this example:

>> n = 20
=> 20

>> n.class
=> Fixnum

If we want to make a real number, we need to include a decimal point:

>> n = 20.0
=> 20.0

>> n.class
=> Float

The word “Float” is short for “floating point,” which refers to the fact that these numbers
are stored internally in a type of scientific notation.

An important thing to remember is that when the operands in an expression are inte-
gers, the result is an integer. This can lead to unexpected results, especially in a division
operation:

>> 7 / 10
=> 0

>> 100 / 40
=> 2
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Arithmetic Operators in Ruby

+ addition * multiplication ** exponentiation

- subtraction / division % modulo

When Ruby divides one integer by another, the result is truncated, i.e., Ruby just keeps the
quotient and throws away the remainder.

Sometimes we want the remainder and don’t care about the quotient. These are places
where the modulo operator comes into play. The meaning of x % y is “the remainder after
dividing x by y.”

If either or both of the operands is a Float, the result will be a Float. We can make a
number a Float by adding “.0” to the end:

>> 100.0 / 40.0
=> 2.5

If an integer is stored in a variable, we can call a method named to_f to convert it to a
Float:

>> x = 100
=> 100

>> x / 6
=> 16

>> x.to_f / 6
=> 16.6666666666667

Ruby has a third type of number, named Bignum. This kind of number is used when the
result of a numeric operation is very large. For example, we can compute 30! using a method
named fact defined for the traveling salesman project:

>> n = fact(30)
=> 265252859812191058636308480000000

>> n.class
=> Bignum

For the projects in this book we don’t have to worry about whether an object is a Fixnum
or a Bignum; Ruby switches over to using Bignum when it needs to, and switches back to
Fixnum when it can:

>> m = n / fact(29)
=> 30

>> m.class
=> Fixnum
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Strings

Strings are pieces of text. The easiest way to make a String object in an IRB session is to
simply type a sequence of characters enclosed in double quotes:

>> s1 = "green"
=> "green"

>> s2 = "fields"
=> "fields"

Some operations on strings are associated with symbols. For example, the + operator,
when applied to String objects, tells Ruby to append one string to the end of another:

>> s1 + s2
=> "greenfields"

>> s2 + " of " + s1
=> "fields of green"

Ruby has several more operations for string objects. Most of the operations have English
or English-sounding names, and what they do is self-explanatory:

>> s2.length
=> 6
>> s2.reverse
=> "sdleif"

>> s2.upcase
=> "FIELDS"

An important detail is that methods usually do not modify a string. Instead, methods like
reverse and upcase make a new String object by copying the existing string, and then
performing their operation on the copy.

A few methods do change the string. These almost all have names that end with an
exclamation mark:

>> s2.reverse!
=> "sdleif"

>> s2
=> "sdleif"

Note that as far as Ruby is concerned, reverse and reverse! are different methods, with
two different names. The exclamation mark is not a special operator that tells Ruby it can
modify the string, it’s an extra character added to the name to make a new method name.

We can access individual characters in a string using the index operator, which consists
of an integer between two square brackets. The first character is at location 0, and the
last character in an n-letter string is in location n− 1. In Ruby 1.8.7 and earlier, the value
returned by the index operator is the numeric code for the character at the specified position:

>> s1[0]
=> 103
>> s1[1]
=> 114

Numeric codes are the topic of Chapter 7. You can also find more information by searching
for “ASCII” at Wikipedia or another Internet reference.
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Symbols

A Symbol in Ruby is a special type of string used when a program needs an object to repre-
sent a simple name. Instead of putting quotes around the characters in the string, we just
write a colon and then the name:

>> color = :green
=> :green
>> hash_function = :h0
=> :h0

As always, after storing an object in a variable, we can call a method named class to
ask Ruby what type of object is referred to by the variable:

>> color.class
=> Symbol

If a Symbol is basically a string, why have a new kind of object? Why not just use String
objects? The first assignment above could just as easily have been written this way:

>> color = "green"
=> "green"

The answer is that Symbol objects and String objects have different properties, so they
behave differently in a program. In general, a String object is used when the object might
change. Strings have methods like reverse, which reverses the order of the characters, or
upcase, which capitalizes all the letters in the string. Strings also have a method named
length, which counts the number of characters. We can access the individual letters, e.g.,
by calling color[0] to get the code for the first letter in a string, or by calling each_byte
to iterate over all the characters.

A Symbol object is used when we just want to identify something or give a name to a
value. The RubyLabs method that creates a new TestArray object expects a parameter that
specifies what kind of items to include in the array:

>> a = TestArray.new(10, :cars)
=> ["chevrolet", "oldsmobile", ... "bentley"]

The previous example made an array of car names, but if we want an array of colors:

>> a = TestArray.new(10, :colors)
=> ["black", "coral", ... "bisque"]

The symbol tells the method what type of string to include in the output. The method won’t
do anything with the Symbol – it doesn’t need to count the letters or do anything other than
just make sure it refers to one of the known types of data.

Internally, Symbols are neat and tidy little packages, so programmers often prefer to use
Symbol objects instead of String objects when all they need is a name.
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    i = 1
    while i <= n
      puts i ** 2
      i += 1
    end

    for i in 1..n
      puts i**2
    end

Figure B.1: Two different ways to print the values of i2 for numbers ranging from 1 to 10.

Ranges

A Range in Ruby is written as pair of numbers separated by two periods.
One place to use a range is when asking Ruby to make a list of numbers:

>> a = Array(1..10)
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

As you might expect, the notation n..m means “numbers between n and m.” In this case
Ruby uses the range as a specification for the items to include in an array.

Another place ranges are used in the text is in asking for a substring or a part of an array.
In this case, the range is written between the square brackets of an index operator:

>> s = "abracadabra"
=> "abracadabra"

>> s[3..6]
=> "acad"

>> a = [2, 3, 5, 7, 11, 13, 17]
=> [2, 3, 5, 7, 11, 13, 17]

>> a[2..4]
=> [5, 7, 11]

Ranges can also be used to control iterations. A concise way to write a loop that iterates
over every number in a specified range is shown in Figure B.1. The statement on the left uses
a while statement. Before the while loop begins, we need to initialize the control variable
i, and inside the loop we need to increment the variable so the terminating condition is
eventually false. The statement on the right takes care of these details for us and is a
convenient way to write a loop that executes a specific number of times (see page 359).

Arrays

An array is a container, meaning it is an object that holds references to other objects. The
easiest way to make an array in Ruby is to simply make a list of objects that go in the array,
separated by commas and enclosed in square brackets:

>> a = [53, 20, 28, 56, 47]
=> [53, 20, 28, 56, 47]
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Most operations on arrays are performed by calling a method. Many of the method names
defined for strings are also defined for arrays. For example, we can ask Ruby to count the
number of items, or reverse the items:

>> a.length
=> 5
>> a.reverse
=> [47, 56, 28, 20, 53]

As is the case with Strings (and most other classes), calling a method like reverse does
not change the object, but instead makes a copy of the object, so a.reverse returns a copy
of a but with the items in the opposite order.

In another similarity with strings, some array operations come in two “flavors.” There is a
version that returns a modified copy of the array, and a version (usually with an exclamation
mark in its name) that modifies the array:

>> a.reverse => [53, 20, 28, 56, 47]
>> a
=> [53, 20, 28, 56, 47]

Here are some other examples of array operations:

>> a[0]
=> 53
>> a.sort
=> [20, 28, 47, 53, 56]
>> a.insert(1,99)
=> [53, 99, 20, 28, 56, 47]

The first example uses the index operator to access a single item in the array, the second
returns a sorted copy of the array, and the third adds a new item to the array at the specified
location (note that this method does modify the array).

Arrays can contain references to any type of object – including other arrays.

>> fruits = ["apple", "lime", "kiwi"]
=> ["apple", "lime", "kiwi"]
>> matrix = [ [0,1], [2,3] ]
=> [[0, 1], [2, 3]]

Besides listing all the items we want to put in an array, we can make an array by calling
the method named new. By default, a call to Array.new makes an empty array, but we
can also ask for an array of a particular size, or an array of a specified size initialized with a
certain value:

>> Array.new
=> []
>> Array.new(10)
=> [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil]
>> Array.new(10,0)
=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

A special case is making an array with a range of values – note the word new is not used in
this expression:

>> Array(2..10)
=> [2, 3, 4, 5, 6, 7, 8, 9, 10]
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Figure B.2: Hashes and arrays are both containers, meaning they are collections of references to
other objects. Items in an array are accessed by their location in the array, but items in a hash
are accessed by their name.

Hashes

A type of object known as a “hash” is a container that holds references to other objects.
In Ruby, a hash is much like an array. To access an object in a hash, use the same index
operator as for arrays: write the name of the hash, followed by a specification of an item
in square brackets. The difference between an array and a hash is in how the items are
identified. In an array, items are identified by their location in the array, but in a hash items
are identified by name.

As an example of how (and why) to use a hash, suppose a program needs to represent the
attributes of a rectangle that will be displayed on a canvas. The attributes are the height,
width, border color, interior color, and the width of the border. It would be possible to put
all these values in an array:

>> box = [10, 10, :green, :blue, 1]
=> [10, 10, :green, :blue, 1]

Then the attributes would be accessed by their location. For example, to fill in the color, the
program would call a method named fill_rectangle, passing it the attribute stored in
the array:

>> fill_rectangle( box[3] )

There are several problems with this approach. It’s hard to understand, from looking
at this expression, what box[3] means. It also forces the programmer to remember the
order in which attributes are stored in the array, and it makes it easy for errors to creep
into the program, e.g., if the programmer forgets where the fill color is stored and calls
fill_rectangle(box[2]) by mistake.

A better solution is to use a hash to represent the attributes, so the attributes could be
referred to by their names (Figure B.2). This is how to define the hash:

>> box = { :height => 10, :width => 10, :border_color => :green,
:fill_color => :blue, :border => 1 }

=> {:border_color=>:green, :fill_color=>:blue, :width=>10,
:border=>1, :height=>10}
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When written out in this form, the hash is a set of name-value pairs, separated by commas,
and enclosed in curly braces. Each item in the hash has an attribute name on the left side,
an arrow (written with an equal sign and a greater-than sign, with no spaces between),
and the attribute value on the right side of the arrow. Ruby doesn’t care if we put spaces
between the items, or spread the definition out over several lines.

Note that in this example the attribute names (and some of the values, as well) are Ruby
symbols. This is one of the main uses for Symbol objects in Ruby, but a hash can use strings,
numbers, or almost any kind of object for attribute names.

Once the hash object is created, we refer to attributes by their name, not their location.
For example, to get the height of the box:

>> box[:height]
=> 10

To pass the fill color to the method that draws the box:

>> fill_rectangle( box[:fill_color] )

This version of the program is much easier to write, and less error-prone. Ruby takes care
of figuring out where the attributes are stored, and we just have to remember the attribute
names.

A typical application will first create an empty hash, and then add items to it as the
program runs. Two ways to make a hash are to write a pair of braces with nothing in
between:

>> circle = { }
=> {}

Or we can call a method named Hash.new, which creates a new, empty, hash object:

>> circle = Hash.new
=> {}

To add an item to a hash, just use an assignment statement, e.g.,

>> circle[:radius] = 10
=> 10
>> circle[:fill_color] = :red
=> :red

Now if we ask Ruby to print the hash object, it will show the two new name-value pairs:

>> circle
=> {:radius=>10, :fill_color=>:red}

There are several methods in Ruby for working with hash objects. A method named keys
will return an array of all the attribute names:

>> box.keys
=> [:border_color, :fill_color, :width, :border, :height]

Note that several methods defined for arrays don’t make sense for hashes, so they are not
allowed for Hash objects. For example, since the items in a hash are not in any particular
order, there are no methods for sorting or reversing a hash.
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Iterators

An iterator is a method that repeats an operation several times.
Most of the iterators used in projects in this book are methods that “traverse” an array in

order to perform an operation with every item in the array. The simplest example is each,
which tells Ruby to execute the statements between braces for every item in an array:

>> a = ["He", "Ne", "Ar", "Kr", "Xe", "Rn"]
=> ["He", "Ne", "Ar", "Kr", "Xe", "Rn"]

>> a.each { |s| puts s }
He
Ne
...
Rn
=> ["He", "Ne", "Ar", "Kr", "Xe", "Rn"]

The items in the array are fetched, in order, and assigned one at a time to the variable
named between vertical bar characters. After storing a value in the variable Ruby executes
the statement(s) between the braces.

A method named delete_if selectively removes items from an array. The statement
between the braces is expected to be a Ruby expression that evaluates to either true or
false. If the expression is true for any item in the array, that item is removed from the
array. Using the array from the previous example, this call to delete_if removes every
string that would follow "Mg" in an alphabetical listing of elements:

>> a.delete_if { |s| s > "Mg" }
=> ["He", "Ar", "Kr"]

To iterate over the characters in a string, use each_byte:

>> s = "Curie"
=> "Curie"

>> s.each_byte { |i| puts i }
67
117
114
105
101
=> "Curie"

In Ruby 1.8.7 and earlier, the each_byte iterator works with the ASCII codes of the char-
acters in the string.

Many of the projects also used iterators that do not operate on arrays. The simplest is
named times:

>> 5.times { puts "yeah" }
yeah
yeah
yeah
yeah
yeah
=> 5
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If the code between the braces includes a variable name, the variable will be set to increasing
values on each successive iteration. The values start at 0:

>> n = 5
=> 5

>> n.times { |i| puts 5 * i }
0
5
10
15
20
=> 5

To perform the same sort of iteration, but on a decreasing set of values, call downto:

>> 10.downto(5) { |i| puts 5*i }
50
45
40
35
30
25
=> 10

The starting value is the value of the object before the period, the ending value is the
argument passed to downto, and the variable named between vertical bars takes on every
value in this range.

Finally, there is something called a “for statement” (shown earlier in Figure B.1) that is
not technically an iterator, but is a convenient notation that is translated into an iterator.
This statement asks Ruby to execute the statements between the line with the word for

and the line with the word end, setting the variable i to each value in the specified range:

for i in 1..10
....

end

This type of statement is awkward to type in IRB, since we have to use an alternative syntax
to mark the beginning and ending of the statements to iterate. If you want to try it, just
remember to type do instead of an opening brace and end instead of a closing brace:

>> for i in 2..7 do puts 2**i end
4
8
...
128
=> 2..7
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Conditional Execution

There are situations in a program where we want Ruby to execute a statement only under
the right circumstances. The general idea is to have Ruby evaluate a Boolean expression
(one that evaluates to true or false) and then perform an operation only when the ex-
pression is true.

The simplest form of conditional execution is to attach a modifier to the end of a state-
ment. A modifier consists of the word if followed by a Boolean expression. Here is a simple
example. Assuming a is an array of color names, this statement prints every string in a:

>> a.each { |s| puts s }
almond
antique white
...

But suppose we just want to see the names that contain a space in the middle (e.g., “spring
green”). If s is a string, the expression s.contains?(" ") will be true if a space occurs
anywhere in s. We can edit the previous expression by adding a modifier after the call to
puts so Ruby prints only those color names that contain a space:

>> a.each { |s| puts s if s.include?(" ") }
antique white
cadet blue
dodger blue
...

Attaching a modifier to an expression is the simplest (and often the easiest to read) tech-
nique for writing a conditional operation, but there are many situations where it is necessary
to perform two or more operations when a condition is met. The way to do this is to write
an if statement. Figure B.3 has two examples. An if statement is similar in structure to a
while statement. The first line has the word if followed by a Boolean expression. Fol-
lowing this line there can be any number of Ruby statements, followed in turn by a line
that just has the keyword end. When Ruby sees an if statement in a method, it evaluates
the expression, and the statements in the body (the statements up to the closing end) are
executed only if the expression is true.

The method named emphasize in Figure B.3 expects us to pass it a string. If the string is
one of the words “red,” “green,” or “blue” (the || operator means “or” in Ruby) the method
converts all the letters to upper case and adds an “S” to the end of the word:

>> emphasize("red")
=> "REDS"

If the argument passed to emphasize is not one of these three words the method doesn’t
do anything:

>> emphasize("white")
=> "white"
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def emphasize(s)
  if s == "red" || s == "green" || s == "blue"
    s.upcase!
    s += "S"
  end
  return s
end

def drink_cup(n)
  if n == 12
    return "tall"
  elsif n == 16
    return "grande"
  elsif n == 20
    return "venti"
  else
    return n.to_s + " ounce"
  end
end

Figure B.3: Examples of if statements.

The other method in Figure B.3 shows that we can add one or more “else clauses” to
an if statement. As you might expect, Ruby evaluates the Boolean expressions in order,
and as soon as it finds one that evaluates to true the statements following it are executed.
The method named drink_cup expects us to pass an integer, and it will return one of the
strings in the body of the if statement:

>> drink_cup(16)
=> "grande"

>> drink_cup(20)
=> "venti"

Note that only one of the groups of statements is executed. If all of the Boolean expressions
are false, the last group (the one preceded by the keyword else) is executed:

>> drink_cup(8)
=> "8 ounce"

Blocks

There are times when we want Ruby to operate on two or more expressions as a single
group. A good example is when we iterate over an array. Suppose we want to compute the
sum of a set of numbers. This expression tells Ruby to add each item to the sum, and to
print the partial sum after each addition:

a.each { |x| sum += x; puts sum }
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In Ruby, a collection of statements, enclosed between braces and separated by semicolons,
is known as a block. Several methods, defined in a wide variety of Ruby classes, work with
blocks. Iterators, like each and delete_if, are the most common examples. Another one
is sort. By default, a call to sort arranges an array of strings in alphabetical order:

>> a = TestArray.new(10, :cars)
=> ["peugeot", "maserati", "pontiac", ... "kia"]
>> a.sort
=> ["chevrolet", "fiat", "honda", "kia", ...]

But we can also supply a block of code when we call sort, and the method will use the
block to compare items. This is how we can sort the array of strings by their length, so the
shortest car names are at the front:

>> a.sort { |x,y| x.length <=> y.length }
=> ["kia", "fiat", "honda", ... "chevrolet"]

In our lab projects we use blocks when monitoring a call to a method or measuring ex-
ecution time. For example, to ask Ruby to report the amount of time required to sort an
array with a method named isort, we make a block of code containing the call, and use
the block with a method named time:

>> time { isort(a) }
=> 0.6108

Blocks are also used by the trace method. Several projects put “software probes” in
place, where they can be monitored when a block of code is executed by trace. To allow
the probes to work with any arbitrary Ruby expression, trace allows us to write a block
expression. Here is an example from Chapter 5:

>> trace { x = a.random(:fail); puts x; bsearch(a, x) }

This block chooses a random value that is known to not be in an array, prints the value,
and then calls a search method. Since there is a probe in place, we can watch the search in
action, and see how it tries to find the missing item.
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