vww allitebooks.conl

http://www.allitebooks.org

Effective Akka

Avoid common mistakes when building distributed, asynchronous, high-
performance software with the Akka toolkit and runtime. With this
concise guide, author Jamie Allen provides a collection of best practices
based on several years of using the actor model. The book also includes
examples of actor application types and two primary patterns of actor
usage, the Extra Pattern and Cameo Pattern.

Allen, the Director of Consulting for Typesafe—creator of Akka and the
Scala programming language—examines actors with a banking-service

use case throughout the book, using examples shown in Akka and

Scala. This guide is essential for anyone wanting to sharpen their existing
Akka skills.

Delve into domain-driven and work-distribution actor applications
Understand why it's important to have actors do only one job

Avoid thread blocking by allowing logic to be delegated to a Future

Model interactions as simply as possible to avoid premature
optimization

m Create well-defined interactions, and know exactly what failures
can occur

B Learn why you should never treat actors as you would an
ordinary class

m Keep track of what goes on in production by monitoring everything

m Tune Akka applications with the Typesafe Console

Purchase the ebook edition of this O'Reilly title at oreilly.com and get
free updates for the life of the edition. Our ebooks are optimized for
several electronic formats, including PDF, EPUB, Mobi, and DAISY—all
DRM-free.

Twitter: @oreillymedia
facebook.com/oreilly

liiinn 52.’.5‘5"-”

vww allitebooks.conl

US $14.99 CAN $15.99
ISBN: 978-1-449-36007-8

7814491360078

http://www.allitebooks.org

Effective Akka

Jamie Allen

O’REILLY"

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo

vww allitebooks.cond

http://www.allitebooks.org

Effective Akka
by Jamie Allen

Copyright © 2013 Jamie Allen. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette Cover Designer: Randy Comer

Production Editor: Kara Ebrahim Interior Designer: David Futato
Proofreader: Amanda Kersey lllustrator: Rebecca Demarest

August 2013: First Edition

Revision History for the First Edition:
2013-08-15: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449360078 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Effective Akka, the image of a black grouse, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36007-8
[LSI]

vww allitebooks.cond

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449360078
http://www.allitebooks.org

Table of Contents

Preface. ..o v
1. Actor Application TYPes. ... ovevi ittt ittt it ie s 1
Domain-driven 1
Domain-driven Messages Are “Facts” 2
Work Distribution 2
Routers and Routees 3
BalancingDispatcher Will Be Deprecated Soon! 7
Work Distribution Messages Are “Commands” 8

2. Patterns of ACtOrUsage.oovvveeenneenieeiieeiieeenieenieerneeenneennaenns 9
The Extra Pattern 9
The Problem 9
Avoiding Ask 11
Capturing Context 12
Sending Yourself a Timeout Message 14

The Cameo Pattern 20
The Companion Object Factory Method 23
How to Test This Logic 23

3. BestPractices.........uvuuuiiiiiiiiii 25
Actors Should Do Only One Thing 25
Single Responsibility Principle 25
Create Specific Supervisors 26
Keep the Error Kernel Simple 28
Failure Zones 29
Avoid Blocking 31
Futures Delegation Example 32
Pre-defining Parallel Futures 34

vww allitebooks.cond

http://www.allitebooks.org

Parallel Futures with the zip() Method
Sequential Futures
Callbacks versus Monadic Handling
Futures and ExecutionContext
Push, Don’t Pull
When You Must Block
Managed Blocking in Scala
Avoid Premature Optimization
Start Simple
Layer in Complexity via Indeterminism
Optimize with Mutability
Prepare for Race Conditions
Be Explicit
Name Actors and ActorSystem Instances
Create Specialized Messages
Create Specialized Exceptions
Beware the “Thundering Herd”
Don't Expose Actors
Avoid Using this
The Companion Object Factory Method
Never Use Direct References
Don’t Close Over Variables

Use Immutable Messages with Immutable Data

Help Yourself in Production
Make Debugging Easier
Add Metrics
Externalize Business Logic
Use Semantically Useful Logging

Aggregate Your Logs with a Tool Like Flume

Use Unique IDs for Messages

Tune Akka Applications with the Typesafe Console

Fixing Starvation

Sizing Dispatchers

The Parallelism-Factor Setting
Actor Mailbox Size
Throughput Setting

Edge Cases

35
35
36
36
37
39
39
40
40
42
42
44
46
46
46
47
48
49
49
50
52
52
53
54
55
55
55
55
57
57
58
58
60
60
60
60
61

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Preface

Welcome to Effective Akka. In this book, I will provide you with comprehensive infor-
mation about what I've learned using the Akka toolkit to solve problems for clients in
multiple industries and use cases. This is a chronicle of patterns I've encountered, as
well as best practices for developing applications with the Akka toolkit.

Who This Book Is For

This book is for developers who have progressed beyond the introductory stage of
writing Akka applications and are looking to understand best practices for development
that will help them avoid common missteps. Many of the tips are relevant outside of
Akka as well, whether it is using another actor library, Erlang, or just plain asynchronous
development. This book is not for developers who are new to Akka and are looking for
introductory information.

What Problems Are We Solving with Akka?

The first question that has to be addressed is, what problems is Akka trying to solve for
application developers? Primarily, Akka provides a programming model for building
distributed, asynchronous, high-performance software. Let’s investigate each of these
individually.

Distributed

Building applications that can scale outward, and by that I mean across multiple JVMs
and physical machines, is very difficult. The most critical aspects a developer must keep
in mind are resilience and replication: create multiple instances of similar classes for
handling failure, but in a way that also performs within the boundaries of your appli-
cation’s nonfunctional requirements. Note that while these aspects are important in
enabling developers to deal with failures in distributed systems, there are other impor-
tant aspects, such as partitioning functionality, that are not specific to failure. There is

vww allitebooks.cond

http://www.allitebooks.org

a latency overhead associated with applications that are distributed across machines
and/or JVMs due to network traffic as communication takes place between systems.
This is particularly true if they are stateful and require synchronization across nodes,
as messages must be serialized/marshalled, sent, received, and deserialized/unmarshal-
led for every message.

In building our distributed systems, we want to have multiple servers capable of han-
dling requests from clients in case any one of them is unavailable for any reason. But
we also do not want to have to write code throughout our application focused only on
the details of sending and receiving remote messages. We want our code to be declarative
—not full of details about how an operation is to be done, but explaining what is to be
done. Akka gives us that ability by making the location of actors transparent across
nodes.

Asynchronous

Asynchrony can have benefits both within a single machine and across a distributed
architecture. In a single node, it is entirely possible to have tremendous throughput by
organizing logic to be synchronous and pipelined. The Disruptor Pattern by LMAX is
an excellent example of an architecture that can handle a great deal of events in a single-
threaded model. That said, it meets a very specific use case profile: high volume, low
latency, and the ability to structure consumption of a queue. If data is not coming into
the producer, the disruptor must find ways to keep the thread of execution busy so as
not to lose the warmed caches that make it so efficient. It also uses pre-allocated, mutable
states to avoid garbage collection—very efficient, but dangerous if developers don’t
know what they’re doing.

With asynchronous programming, we are attempting to solve the problem of not pin-
ning threads of execution to a particular core, but instead allowing all threads access in
a varying model of fairness. We want to provide a way for the hardware to be able to
utilize cores to the fullest by staging work for execution. This can lead to a lot of context
switches, as different threads are scheduled to do their work on cores, which aren’t
friendly to performance, since data must be loaded into the on-core caches of the CPU
when that thread uses it. So you also need to be able to provide ways to batch asyn-
chronous execution. This makes the implementation less fair but allows the developer
to tune threads to be more cache-friendly.

High Performance

This is one of those loose terms that, without context, might not mean much. For the
sake of this book, I want to define high performance as the ability to handle tremendous
loads very fast while at the same time being fault tolerant. Building a distributed system
that is extremely fast but incapable of managing failure is virtually useless: failures hap-
pen, particularly in a distributed context (network partitions, node failures, etc.), and

vi | Preface

vww allitebooks.cond

http://lmax-exchange.github.io/disruptor/
http://www.allitebooks.org

resilient systems are able deal with them. But no one wants to create a resilient system
without being able to support reasonably fast execution.

Reactive Applications

You may have heard discussion, particularly around Typesafe, of creating reactive ap-
plications. My initial response to this word was to be cynical, having heard plenty of
“marketecture” terms (words with no real architectural meaning for application devel-
opment but used by marketing groups). However, the concepts espoused in the Reactive
Manifesto make a strong case for what features comprise a reactive application and what
needs to be done to meet this model. Reactive applications are characteristically inter-
active, fault tolerant, scalable, and event driven. If any of these four elements are re-
moved, it’s easy to see the impact on the other three.

Alkka is one of the toolkits through which you can build reactive applications. Actors
are event driven by nature, as communication can only take place through messages.
Alkka also provides a mechanism for fault tolerance through actor supervision, and is
scalable by leveraging not only all of the cores of the machine on which it’s deployed,
but also by allowing applications to scale outward by using clustering and remoting to
deploy the application across multiple machines or VMs.

Use Case for This Book: Banking Service for Account Data

In this book, we will use an example of a large financial institution that has decided that
using existing caching strategies no longer meet the real-time needs of its business. We
will break down the data as customers of the bank, who can have multiple accounts.
These accounts need to be organized by type, such as checking, savings, brokerage, etc.,
and a customer can have multiple accounts of each type.

Conventions Used in This Book

The following typographical conventions are used in this book:

Ttalic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Preface | vii

vww allitebooks.cond

http://reactivemanifesto.org
http://reactivemanifesto.org
http://www.allitebooks.org

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W

by This icon signifies a tip, suggestion, or general note.
LA
w4
)
This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://examples.oreilly.com/9781449360078-files/ .

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Effective Akka by Jamie Allen (O'Reilly).
Copyright 2013 Jamie Allen, 978-1-449-36007-8”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
Safa Pl expert content in both book and video form from the world’s lead-

BooksOntine jng authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

vii | Preface

vww allitebooks.cond

http://examples.oreilly.com/9781449360078-files/
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.allitebooks.org

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/effective-akka.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to my wife, Yeon, and children Sophie, Layla, and James—I couldn’t have done
this without their love, help, and support. And to my parents, Jim and Toni Allen, who
displayed tremendous patience with me while I figured out what I was going to do with
my life. Finally, thanks to Jonas Bonér, Viktor Klang, Roland Kuhn, Dragos Manolescu,
and Thomas Lockney for their help and guidance.

Preface | ix

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/effective-akka
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1
Actor Application Types

One of the questions I encounter the most when speaking at conferences is, “What is a
use case for an Actor-based application?” That depends on what you're trying to ac-
complish, but if you want to build an application that can manage concurrency, scale
outwardly across nodes, and be fault tolerant, actors are a good fit for this role.

Domain-driven

In a domain-driven actor application, actors live and die to represent the state of the
world in a live cache, where the mere existence of these actors and their encapsulation
of state show the data for your application. They are frequently used in systems where
information is provisioned to multiple other servers, which happens in an eventual
consistency fashion. This implies that it is plausible that an actor attempting to supply
another server may not be able to do so at a given point, and therefore must try until it
can.

For example, imagine a large financial institution trying to keep a real-time view of all
of its customers, with all of their accounts and all of the investments that customer owns
via each account at a given time. This information can be created and maintained live
through actor-supervisor hierarchies.

This kind of real-time domain modeling, where you are in essence creating a cache that
also contains behavior, is enabled by the lightweight nature of Akka actors. Because
Akka actors share resources (such as threads), each instance only takes about 400 bytes
of heap space before you begin adding state for your domain. It is plausible that one
server could contain the entire business domain for a large corporation represented in
Akka actors.

The added benefit of using actors for this kind of domain modeling is that they also
introduce fault tolerance: you have the ability to use Akka’s supervision strategies to
ensure high uptime for your system, as opposed to simple caches of domain objects

where exceptions have to be handled at the service layer. An example can be found in
Figure 1-1.

Root
|
I |
Customer 1 Customer 2
I |
Checking Savings Money Market Checking
Account Account Account Account

Figure 1-1. Domain-driven actors

And this truly can fit into Eric Evans’ “Domain-Driven Design” paradigm. Actors can
represent concepts described in the domain-driven approach, such as entities, aggre-
gates, and aggregate roots. You can design entire context bounds with actors. When we
get to the use case to show patterns, I'll show you how.

Domain-driven Messages Are “Facts”

When you build a hierarchy of domain objects represented as actors, they need to be
notified about what is happening in the world around them. This is typically represented
as messages passed as “facts” about an event that has occurred. While this is not a rule
per se, itis a best practice to keep in mind. The domain should be responding to external
events that change the world that it is modeling, and it should morph itself to meet those
changes as they occur. And if something happens that prevents the domain actors from
representing those changes, they should be written to eventually find consistency with
them:

// An example of a fact message
case class AccountAddressUpdated(accountId: Long, address: AccountAddress)

Work Distribution

In this scenario, actors are stateless and receive messages that contain state, upon which
they will perform some pre-defined action and return a new representation of some
state. That is the most important differentiation between worker actors and domain
actors: worker actors are meant for parallelization or separation of dangerous tasks into
actors built specifically for that purpose, and the data upon which they will act is always
provided to them. Domain actors, introduced in the previous section, represent a live

2 | Chapter 1: Actor Application Types

cache where the existence of the actors and the state they encapsulate are a view of the
current state of the application. There are varying strategies for how this can be imple-
mented, each with its own benefits and use cases.

Routers and Routees

In Akka, routers are used to spawn multiple instances of one actor type so that work
can be distributed among them. Each instance of the actor contains its own mailbox,
and therefore this cannot be considered a “work-stealing” implementation. There are
several strategies that can be used for this task, including the following sections.

Random

Random is a strategy where messages are distributed to the actors in a random fashion,
which isn’t one I favor. There was a recent discussion about a startup using Heroku
Dynos (virtual server instances) where requests were distributed to each dyno ran-
domly, which meant that even if users scaled up the number of dynos to handle more
requests, they had no guarantee that the new endpoints would get any requests and the
load would be distributed. That said, random routees are the only ones that do not incur
arouting bottleneck, as nothing must be checked before the message is forwarded. And
if you have a large number of messages flowing through your router, that can be a useful
tradeoff.

Look at Figure 1-2. If I have five routees and use a random strategy, one routee may
have no items in its mailbox (like #3), while another routee might have a bunch (#2).
And the next message could also be routed to routee #2 as well.

Random Routing

Parent

Router

Figure 1-2. Random routing

Work Distribution | 3

Round robin

Round robin is a strategy where messages are distributed to each actor instance in
sequence as though they were in a ring, which is good for even distribution. It spreads
work sequentially amongst the routees and can be an excellent strategy when the tasks
to be performed by all routees are always the same and CPU-bound. This assumes that
all considerations between the routees and the boxes on which they run are equal: thread
pools have threads to use for scheduling the tasks, and the machines have cores available
to execute the work.

In Figure 1-3, the work has been distributed evenly, and the next message will go to
routee #3.

Round Robin Routing

Parent

Router

Figure 1-3. Round-robin routing

Smallest mailbox

Smallest mailbox is a strategy which will distribute a message to the actor instance with
the smallest mailbox. This may sound like a panacea, but it isn’t. The actor with the
smallest mailbox may have the least work because the tasks it is being asked to perform
take longer than the other actors. And by placing the message into its mailbox, it may
actually take longer to be processed than had that work been distributed to an actor
with more messages already enqueued. Like the round-robin router, this strategy is
useful for routees that always handle the exact same work, but the work is blocking in
nature: for example, IO-bound operations where there can be varying latencies.

4 | Chapter 1:Actor Application Types

The smallest mailbox strategy does not work for remote actors. The
router does not know the size of the mailbox with remote routees.

In Figure 1-4, the work will be distributed to routee #4, the actor with the least number
of messages in its mailbox. This happens regardless of whether it will be received and
handled faster than if it were sent to #1, which has more items but work that could take
less time.

Smallest Mailbox Routing
Parent
Router
| |
1]
1 2 3 4 5

Figure 1-4. Smallest-mailbox routing

Broadcast

Broadcast is a strategy where messages are sent to all instances of the actor the router
controls. It’s good for distributing work to multiple nodes that may have different tasks
to perform or handling fault tolerance by handing the same task to nodes that will all
perform the same work, in case any failures occur.

Since all routees under the router will receive the message, their mailboxes should the-
oretically be equally full/empty. The reality is that how you apply the dispatcher for
fairness in message handling (by tuning the “throughput” configuration value) will de-
termine this. Try not to think of routers where the work is distributed evenly as bringing
determinism to your system: it just means that work is evenly spread but could still
occur in each routee at varying times. See Figure 1-5 for an example.

Work Distribution | 5

Broadcast Routing

Parent

Router

Figure 1-5. Broadcast routing

ScatterGatherFirstCompletedOf

This is a strategy where messages are sent to all instances of the actor the router controls,
but only the first response from any of them is handled. This is good for situations where
you need a response quickly and want to ask multiple handlers to try to do it for you.
In this way, you don’t have to worry about which routee has the least amount of work
to do, or even if it has the fewest tasks queued, since those tasks won't take longer than
another routee that already has more messages to handle.

This is particularly useful if the routees are spread among multiple JVMs or physical
boxes. Each of those boxes might be utilized at varying rates, and you want the work to
be performed as quickly as possible without trying to manually figure out which box is
currently doing the least work. Worse, even if you did check to see if a box was the least
busy, by the time you figured out which box it was and sent the work, it could be loaded
down chewing through other work.

In Figure 1-6, I'm sending the work across five routees. I only care about whichever of
the five completes the work first and responds. This trades some potential network
latency (if the boxes are more than one physically close hop away) and extra CPU uti-
lization (as each of the routees has to do the work) for getting the response the fastest.

6 | Chapter 1: Actor Application Types

Scatter Gather First Completed of Router

Parent

Router

Figure 1-6. ScatterGatherFirstCompletedOf routing

Consistent hash routing

This is a new routing strategy, recently added in Akka 2.1. In some cases, you want to
be certain that you understand which routee will handle specific kinds of work, possibly
because you have a well-defined Akka application on several remote nodes and you
want to be sure that work is sent to the closest server to avoid latency. It will also be
relevant to cluster aware routing in a similar way. This is powerful because you know
that, by hash, work will most likely be routed to the same routee that handled earlier
versions of the same work. Consistent hashing, by definition, does not guarantee even
distribution of work.

BalancingDispatcher Will Be Deprecated Soon!

I mentioned earlier that each actor in a router cannot share mailboxes, and therefore
work stealing is not possible even with the varying strategies that are available. Akka
used to solve this problem with the BalancingDispatcher, where all actors created with
that dispatcher share one mailbox, and in doing so, can grab the next message when
they have finished their current work. Work-stealing is an extremely powerful concept,
and because the implementation required using a specific dispatcher, it also isolated the
workers on their own thread pool, which is extremely important for avoiding actor
starvation.

However, theBalancingDispatcher hasbeen found to be quirkyand not recommended
for general usage, given its exceptional and somewhat unexpected behavior. It is going
to be deprecated shortly in lieu of a new router type in an upcoming version of Akka to

Work Distribution | 7

handle work-stealing semantics, but that is as yet undefined. The Akka team does not
recommend using BalancingDispatcher, so stay away from it.

Work Distribution Messages Are “Commands”

When you are distributing work among actors to be performed, you typically will send
commands that the actors can respond to and thus complete the task. The message
includes the data required for the actor to perform the work, and you should refrain
from putting state into the actor required to complete the computation. The task should
be idempotent—any of the many routee instances could handle the message, and you
should always get the same response given the same input, without side effects:

// An example of a command message
case class CalculateSumOfBalances(balances: List[BigDecimal])

8 | Chapter 1: Actor Application Types

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2
Patterns of Actor Usage

Now that we understand the varying types of actor systems that can be created, what
are some patterns of usage that we can define so that we can avoid making common
mistakes when writing actor-based applications? Let’s look at a few of them.

The Extra Pattern

One of the most difficult tasks in asynchronous programming is trying to capture con-
text so that the state of the world at the time the task was started can be accurately
represented at the time the task finishes. However, creating anonymous instances of
Akka actors is a very simple and lightweight solution for capturing the context at the
time the message was handled to be utilized when the tasks are successfully completed.
They are like extras in the cast of a movie—helping provide realistic context to the
primary actors who are working around them.

The Problem

A great example is an actor that is sequentially handling messages in its mailbox but
performing the tasks based on those messages off-thread with futures. This is a great
way to design your actors in that they will not block waiting for responses, allowing
them to handle more messages concurrently and increase your application’s perfor-
mance. However, the state of the actor will likely change with every message.

Let’s define the boilerplate of this example. These are classes that will be reused for each
of the iterations of our development process going forward. Note that all of this code is
available in my GitHub repository, should you want to clone it and test yourself. First,
we have a message telling our actor to retrieve the customer account balances for a
particular customer ID:

case class GetCustomerAccountBalances(id: Long)

https://github.com/jamie-allen/effective_akka

Next, we have data transfer objects in which we return the requested account informa-
tion. Because customers may or may not have any accounts of each type, and it is possible
they may have more than one of any of the account types, we return Option
[List[(Long, BigDecimal)]] in each case, where Long represents an account identi-
fier, and BigDecimal represents a balance:

case class AccountBalances(

val checking: Option[List[(Long, BigDecimal)]],

val savings: Option[List[(Long, BigDecimal)]],

val moneyMarket: Option[List[(Long, BigDecimal)]])
case class CheckingAccountBalances(

val balances: Option[List[(Long, BigDecimal)]])
case class SavingsAccountBalances(

val balances: Option[List[(Long, BigDecimal)]])
case class MoneyMarketAccountBalances(

val balances: Option[List[(Long, BigDecimal)]])

I promised in the preface of this book that I would show how this ties back to Eric Evans’
concepts with domain-driven design. Look at the classes I have created to perform this
work. We can consider the entire AccountService to be a context bound, where an
individual CheckingAccount or SavingsAccount is an entity. The number represented
by the balance inside of one of those classes is a value. The checkingBalances, savings
Balances, and mmBalances fields are aggregates, and the AccountBalances return type
is an aggregate root. Finally, Vaughn Vernon in his excellent “Implementing Domain-
Driven Design” points to Akka as a possible implementation for an event-driven context
bound. It is also quite easy to implement command query responsibility separation (per
Greg Young’s specification) and event sourcing (using the open source eventsourced
library) with Akka.

Finally, we have proxy traits that represent service interfaces. Just like with the Java best
practice of exposing interfaces to services rather than the implementations of the classes,
we will follow that convention here and define the service interfaces which can then be
stubbed out in our tests:

trait SavingsAccountsProxy extends Actor
trait CheckingAccountsProxy extends Actor
trait MoneyMarketAccountsProxy extends Actor

Let’s take an example of an actor that will act as a proxy to get a customer’s account
information for a financial services firm from multiple data sources. Further, let’s assume
that each of the subsystem proxies for savings, checking and money market account
balances will optionally return a list of accounts and their balances of that kind for this
customer, and we’ll inject those as dependencies to the retriever class. Let’s write some
basic Akka actor code to perform this task:

import scala.concurrent.ExecutionContext

import scala.concurrent.duration._
import akka.actor._

10 | Chapter2: Patterns of Actor Usage

https://vaughnvernon.co/
https://vaughnvernon.co/
http://bit.ly/16EVCtN

import akka.pattern.ask
import akka.util.Timeout

class AccountBalanceRetriever(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef) extends Actor {
implicit val timeout: Timeout = 100 milliseconds
implicit val ec: ExecutionContext = context.dispatcher
def receive = {
case GetCustomerAccountBalances(id) =>
val futSavings = savingsAccounts ? GetCustomerAccountBalances(id)
val futChecking = checkingAccounts ? GetCustomerAccountBalances(id)
val futMM = moneyMarketAccounts ? GetCustomerAccountBalances(id)
val futBalances = for {
savings <- futSavings.mapTo[Option[List[(Long, BigDecimal)]]]
checking <- futChecking.mapTo[Option[List[(Long, BigDecimal)]]]
mm <- futMM.mapTo[Option[List[(Long, BigDecimal)]]]
} yield AccountBalances(savings, checking, mm)
futBalances map (sender ! _)
}
}

This code is fairly concise. The AccountBalanceRetriever actor receives a message to
get account balances for a customer, and then it fires off three futures in parallel. The
first will get the customer’s savings account balance, the second will get the checking
account balance, and the third will get a money market balance. Doing these tasks in
parallel allows us to avoid the expensive cost of performing the retrievals sequentially.
Also, note that while the futures will return Options of some account balances by ac-
count ID, if they return None, they will not short-circuit the for comprehension—if
None is returned from futSavings, it will still continue the for comprehension.

However, there are a couple of things about it that are not ideal. First of all, it is using
futures to ask other actors for responses, which creates a new PromiseActorRef for
every message sent behind the scenes. This is a waste of resources. It would be better to
have our AccountBalanceRetriever actor send messages out in a “fire and forget”
fashion and collect results asynchronously into one actor.

Furthermore, there is a glaring race condition in this code—can you see it? We're ref-
erencing the “sender” in our map operation on the result from futBalances, which may
not be the same ActorRef when the future completes, because the AccountBalanceRe
triever ActorRef may now be handling another message from a different sender at
that point!

Avoiding Ask

Let’s focus on eliminating the need to ask for responses in our actor first. We can send
the messages with the ! and collect responses into an optional list of balances by account
number. But how would we go about doing that?

The Extra Pattern | 11

import scala.concurrent.ExecutionContext
import scala.concurrent.duration._
import akka.actor._

class AccountBalanceRetriever(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef) extends Actor {

val checkingBalances,
savingsBalances,
mmBalances: Option[List[(Long, BigDecimal)]] = None

var originalSender: Option[ActorRef] = None

def receive = {

case GetCustomerAccountBalances(id) =>
originalSender = Some(sender)
savingsAccounts ! GetCustomerAccountBalances(id)
checkingAccounts ! GetCustomerAccountBalances(id)
moneyMarketAccounts ! GetCustomerAccountBalances(id)
case AccountBalances(cBalances, sBalances, mmBalances) =>
(checkingBalances, savingsBalances, mmBalances) match {
case (Some(c), Some(s), Some(m)) => originalSender.get !
AccountBalances(checkingBalances, savingsBalances, mmBalances)
case _ =>

}

}

}

This is better but still leaves a lot to be desired. First of all, we've created our collection
of balances we've received back at the instance level, which means we can’t differentiate
the aggregation of responses to a single request to get account balances. Worse, we can't
time out a request back to our original requestor. Finally, while we’ve captured the
original sender as an instance variable that may or may not have a value (since there is
no originalSender when the AccountBalanceRetriever starts up), we have no way of

being sure that the originalSender is who we want it to be when we want to send data
back!

Capturing Context

The problem is that we're attempting to take the result of the off-thread operations of
retrieving data from multiple sources and return it to whomever sent us the message in
the first place. However, the actor will likely have moved on to handling additional
messages in its mailbox by the time these futures complete, and the state represented
in the AccountBalanceRetriever actor for “sender” at that time could be a completely
different actor instance. So how do we get around this?

The trick is to create an anonymous inner actor for each GetCustomerAccountBalan
ces message that is being handled. In doing so, you can capture the state you need to
have available when the futures are fulfilled. Let’s see how:

12 | Chapter2: Patterns of Actor Usage

import scala.concurrent.ExecutionContext
import scala.concurrent.duration._
import akka.actor._

class AccountBalanceRetriever(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef) extends Actor {
val checkingBalances,
savingsBalances,
mmBalances: Option[List[(Long, BigDecimal)]] = None
def receive = {
case GetCustomerAccountBalances(id) => {
context.actorOf (Props(new Actor() {
var checkingBalances,
savingsBalances,
mmBalances: Option[List[(Long, BigDecimal)]] = None
val originalSender = sender
def receive = {
case CheckingAccountBalances(balances) =>
checkingBalances = balances
isDone
case SavingsAccountBalances(balances) =>
savingsBalances = balances
isDone
case MoneyMarketAccountBalances(balances) =>
mmBalances = balances
isDone

}

def isDone =
(checkingBalances, savingsBalances, mmBalances) match {
case (Some(c), Some(s), Some(m)) =>
originalSender ! AccountBalances(checkingBalances,
savingsBalances,
mmBalances)
context.stop(self)
case _ =>

}

savingsAccounts ! GetCustomerAccountBalances(id)
checkingAccounts ! GetCustomerAccountBalances(id)
moneyMarketAccounts ! GetCustomerAccountBalances(id)
13D
}
}
}

This is much better. We've captured the state of each receive and only send it back to
the originalSender when all three have values. But there are still two issues here. First,
we haven’t defined how we can time out on the original request for all of the balances
back to whomever requested them. Secondly, our originalSender is still getting a

The Extra Pattern | 13

wrong value—the “sender” from which it is assigned is actually the sender value of the
anonymous inner actor, #not the one that sent the original GetCustomerAccountBalan
ces message!

Sending Yourself a Timeout Message

We can send ourselves a timeout message to handle our need to timeout the original
request, by allowing another task to compete for the right to complete the operation
with a timeout. This is a very clean way to allow the work to occur, while still enforcing
timeout semantics on the request. If the data for all three of the account typesis enqueued
in the mailbox before the timeout message, the proper response of an AccountBalan
ces type is sent back to the original sender. However, if the timeout message from the
scheduled task is enqueued before any one of those three responses, a timeout is returned
to the client.

Note that I am using None to represent only when I don't have any data returned from
one of my specific account type proxies. In the case where a customer is looked up and
no data is found, I'm expecting to receive a response of Some(List()), meaning no data
was found for that customer in that account type. This way, I can semantically differ-
entiate whether or not I've received a response and when no data was found.

For the sake of additional clarity, I am using the LoggingReceive block in this example.
This tells Akka to automatically log the handling of each message dequeued from the
mailbox. It is a best practice to give yourself as much information as possible at runtime
so you can debug your actors, and it can easily be turned off in the configuration file
for the application. For more information, see the Akka online documentation.

import scala.concurrent.ExecutionContext

import scala.concurrent.duration._

import org.jamieallen.effectiveakka.common._

import akka.actor.{ Actor, ActorRef, Props, ActorLogging }
import akka.event.LoggingReceive

object AccountBalanceRetrieverFinal {
case object AccountRetrievalTimeout

}

class AccountBalanceRetrieverFinal(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef)
extends Actor with ActorLogging {
import AccountBalanceRetrieverFinal._

def receive = {
case GetCustomerAccountBalances(id) => {
log.debug(s"Received GetCustomerAccountBalances for ID: $id from $sender")
val originalSender = sender

14 | Chapter2: Patterns of Actor Usage

http://akka.io/docs/

context.actorOf (Props(new Actor() {
var checkingBalances,
savingsBalances,
mmBalances: Option[List[(Long, BigDecimal)]] = None
def receive = LoggingReceive {
case CheckingAccountBalances(balances) =>
log.debug(s"Received checking account balances: $balances")
checkingBalances = balances
collectBalances
case SavingsAccountBalances(balances) =>
log.debug(s"Received savings account balances: $balances")
savingsBalances = balances
collectBalances
case MoneyMarketAccountBalances(balances) =>
log.debug(s"Received money market account balances: $balances")
mmBalances = balances
collectBalances
case AccountRetrievalTimeout =>
sendResponseAndShutdown(AccountRetrievalTimeout)

}

def collectBalances = (checkingBalances,
savingsBalances,
mmBalances) match {
case (Some(c), Some(s), Some(m)) =>
log.debug(s"Values received for all three account types")
timeoutMessager.cancel
sendResponseAndShutdown(AccountBalances(checkingBalances,
savingsBalances,
mmBalances))
case _ =>
}
def sendResponseAndShutdown(response: Any) = {
originalSender ! response
log.debug("Stopping context capturing actor")
context.stop(self)
}

savingsAccounts ! GetCustomerAccountBalances(id)
checkingAccounts ! GetCustomerAccountBalances(id)
moneyMarketAccounts ! GetCustomerAccountBalances(id)

import context.dispatcher
val timeoutMessager = context.system.scheduler.
scheduleOnce (250 milliseconds) {
self ! AccountRetrievalTimeout
}
13D

The Extra Pattern

15

Now we can collect our results and check to see if we received the expected values and
place them into the AccountBalances result to return to the caller, while also cancelling
the scheduled task so that it doesn’t waste resources. Finally, we must remember to stop
our anonymous inner actor so that we do not leak memory for every GetCustomerAc
countBalances message we receive, regardless of whether we received all three respon-
ses or the timeout!

So why do we have to send the AccountRetrievalTimeout message to ourselves, into
the queue of our Extra actor, rather than just sending it directly back to the original
Sender in our scheduleOnce lambda? The scheduled task will run on another thread!
If we perform work relative to cleaning up the actor on that thread, we're introducing
concurrency into the actor. While we are only telling our actor to stop itself after sending
the message in this example, it would be very easy to fall into the trap of closing over
some state and manipulating it if you do not send a message to yourself. There are other
interfaces for scheduling that might make it more apparent for some that the operation
is asynchronous, such as the method call style seen here:

val timeoutMessager = context.system.scheduler.
scheduleOnce (250 milliseconds, self, AccountRetrievalTimeout)
You have to be vigilant about this. Sometimes, it can be very easy to fall into the trap of
introducing concurrency into our actors where there never should be any. If you see
yourself using curly braces inside of an actor, think about what is happening inside of
there and what you might be closing over.

Why not use a promise?

Inan earlier version of this example, I tried to use a promise to perform this work, where
either the successful result of the AccountBalances type was put into the future inside
of the promise, or the timeout failure was used to complete it. However, this is unnec-
essary complexity, as we can allow the ordering inside of the Extraactor’s queue of when
messages are enqueued to perform the same basic task. But also, you cannot return a
future value from a promise—they cannot be sent to an actor, which may or may not
be remote. And due to the beauty of location transparency, that is an implementation
detail on which your actors should never focus.

Futures should never be passed between actors because you cannot
A serialize a thread.

How to test this logic

So now that we have some code that we think will work, we need to write tests to prove
that it does. If youre a TDD-adherent, you're probably mortified that I didn't do that
up front. 'm not dogmatic about when someone writes tests; I just care that the tests
get written.

16 | Chapter2: Patterns of Actor Usage

The first thing we have to do is define the test stubs that will be used in our tests and
injected as dependencies to the retriever actor. These stubs can be very simple actors—
when asked for account information of their type by a specific customer ID, each non-
failure test case stub will return an optional list of balances by account ID. Data for each
customer to be used in tests needs to be placed into a map to be found, and if no data
is returned, we must return a value of Some(List()) to meet our API:

import akka.actor.{ Actor, ActorLogging }
import akka.event.LoggingReceive

class CheckingAccountsProxyStub
extends CheckingAccountsProxy with ActorLogging {
val accountData = Map[Long, List[(Long, BigDecimal)]](
1L -> List((3, 15000)),
2L -> List((6, 640000), (7, 1125000), (8, 40000)))

def receive = LoggingReceive {
case GetCustomerAccountBalances(id: Long) =>
log.debug(s"Received GetCustomerAccountBalances for ID: $id")
accountData.get(id) match {
case Some(data) => sender ! CheckingAccountBalances(Some(data))
case None => sender ! CheckingAccountBalances(Some(List()))
}
}
}

class SavingsAccountsProxyStub
extends SavingsAccountsProxy with ActorLogging {

val accountData = Map[Long, List[(Long, BigDecimal)]](
1L -> (List((1, 150000), (2, 29000))),
2L -> (List((5, 860000))))

def receive = LoggingReceive {
case GetCustomerAccountBalances(id: Long) =>
log.debug(s"Received GetCustomerAccountBalances for ID: $id")
accountData.get(id) match {
case Some(data) => sender ! SavingsAccountBalances(Some(data))
case None => sender ! SavingsAccountBalances(Some(List()))
}
}
}

class MoneyMarketAccountsProxyStub
extends MoneyMarketAccountsProxy with ActorLogging {

val accountData = Map[Long, List[(Long, BigDecimal)]](
2L -> List((9, 640000), (10, 1125000), (11, 46000)))

def receive = LoggingReceive {
case GetCustomerAccountBalances(id: Long) =>

The Extra Pattern | 17

log.debug(s"Received GetCustomerAccountBalances for ID: $id")
accountData.get(id) match {
case Some(data) => sender ! MoneyMarketAccountBalances(Some(data))
case None => sender ! MoneyMarketAccountBalances(Some(List()))
}
}
}

In the failure condition (represented by a timeout), a stub will simulate a long-running
blocking database call that does not complete in time by never sending a response to
the calling actor:

class TimingOutSavingsAccountProxyStub
extends SavingsAccountsProxy with ActorLogging {
def receive = LoggingReceive {
case GetCustomerAccountBalances(id: Long) =>
log.debug(s"Forcing timeout by not responding!")
}
}

The following examples show how to write a test case for the successful return of
AccountBalances. Since this example uses stubbed out proxies to what would be serv-
ices from which receive account information, it is trivial to inject test-only stub proxies
that will cause the timeout functionality to occur.

We also want to be sure that the integrity of the context of each message handled is
maintained by our retriever. To do this, we send multiple messages from different
TestProbe instances one after the other, and we verify that the different values were
appropriately returned to each.

Note how I use the within block to verify the timing of expected responses. This is a
great way to verify that your tests are executing to meet the nonfunctional requirements
of your system. Use the within block to specify either a maximum time of execution, or
as we see in the failure case, that we didn’t receive a response too early or too late.

Finally, we test the timeout condition by injecting a timing out stub into our retriever
and making sure that the timeout response is what our test receives in response:

import akka.testkit.{ TestKit, TestProbe, ImplicitSender }

import akka.actor.{ Actor, ActorLogging, ActorSystem, Props }

import org.scalatest.WordSpecLike

import org.scalatest.matchers.MustMatchers

import scala.concurrent.duration._

import org.jamieallen.effectiveakka.common._

import org.jamieallen.effectiveakka.pattern.extra.AccountBalanceRetrieverFinal._

class ExtraFinalSpec extends TestKit(ActorSystem("ExtraTestAS"))
with ImplicitSender with WordSpecLike with MustMatchers {

"An AccountBalanceRetriever" should {
"return a list of account balances" in {

18 | Chapter2: Patterns of Actor Usage

vww allitebooks.cond

http://www.allitebooks.org

val probe2 = TestProbe()
val probel = TestProbe()
val savingsAccountsProxy =
system.actorOf (Props[SavingsAccountsProxyStub],
"extra-success-savings")
val checkingAccountsProxy =
system.actorOf (Props[CheckingAccountsProxyStub],
"extra-success-checkings")
val moneyMarketAccountsProxy = system.actorOf(

Props[MoneyMarketAccountsProxyStub], "extra-success-money-markets")

val accountBalanceRetriever = system.actorOf(

Props(new AccountBalanceRetrieverFinal(savingsAccountsProxy,
checkingAccountsProxy,
moneyMarketAccountsProxy)),
"extra-retriever")

within(300 milliseconds) {
probel.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
val result = probel.expectMsgType[AccountBalances]
result must equal(AccountBalances(
Some(List((3, 15000))),
Some(List((1, 150000), (2, 29000))),
Some(List())))
}
within(300 milliseconds) {
probe2.send(accountBalanceRetriever, GetCustomerAccountBalances(2L))
val result = probe2.expectMsgType[AccountBalances]
result must equal(AccountBalances(
Some(List((6, 640000), (7, 1125000), (8, 40000))),
Some(List((5, 80000))),
Some(List((9, 640000), (16, 1125000), (11, 40000)))))
}
}

"return a TimeoutException when timeout is exceeded" in {
val savingsAccountsProxy = system.actorOf(

Props[TimingOutSavingsAccountProxyStub], "extra-timing-out-savings")

val checkingAccountsProxy = system.actorOf(

Props[CheckingAccountsProxyStub], "extra-timing-out-checkings")

val moneyMarketAccountsProxy = system.actorOf(

Props[MoneyMarketAccountsProxyStub], "extra-timing-out-money-markets")

val accountBalanceRetriever = system.actorOf(

Props(new AccountBalanceRetrieverFinal(savingsAccountsProxy,
checkingAccountsProxy,
moneyMarketAccountsProxy)),
"extra-timing-out-retriever")

val probe = TestProbe()

within(250 milliseconds, 500 milliseconds) {
probe.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
probe.expectMsg(AccountRetrievalTimeout)

}

The Extra Pattern | 19

}
}
}

Now our test checks the success case and that the failure results in expected behavior.

And because the AccountRetrievalTimeout is a case object, it is a “term,” not a “type,”
and I therefore can use the expectMsg() method instead of expectMsgType[].

W a,

. Asynchronous programming is simply not easy, even with powerful

s , tools at our disposal. We always must think about the state we need
" _ak%) and the context from which we get it at the time we need it.

The Cameo Pattern

The Extra Pattern does help in some scenarios, but it could easily be argued that it
muddles your code by putting too many details in once place. It is also similar to lamb-
das, in that using an anonymous instance gives you less information in stack traces on
the JVM, is harder to use with a debugging tool, and is easier to close over state.

The good news is that it is very easily fixed by using pre-defined types. You get infor-
mation specific to the class that you created in stack traces without an obfuscated, gen-
erated name. And you can'’t close over external state, because there is none: you have to
pass the data into the class for it to be visible.

There is a time and a place for everything, and that includes lambdas and anonymous
implementations of interfaces, just like we did in the Extra Pattern. When the code is
trivial, you can generally use these constructs without fear. However, learn to notice
when the code in such literals is crossing a threshold of complexity that will make it
harder to reason about in production when failure occurs.

Those are good reasons for pulling the type you're creating with the Extra Pattern into
a pre-defined type of actor, where you create an instance of that type for every message
handled. To do so, we can move the anonymous implementation of the actor trait out
into its own type definition. This results in a type only used for simple interactions
between actors, similar to a cameo role in the movies.

Let’s pull the anonymous implementation out and bind it to a type. How would that
look?

import scala.concurrent.ExecutionContext
import scala.concurrent.duration._

import org.jamieallen.effectiveakka.common._
import akka.actor._

import akka.event.LoggingReceive

object AccountBalanceResponseHandler {

20 | Chapter2: Patterns of Actor Usage

case object AccountRetrievalTimeout

// Factory method for our actor Props
def props(savingsAccounts: ActorRef, checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef, originalSender: ActorRef): Props = {

Props(new AccountBalanceResponseHandler(savingsAccounts, checkingAccounts,

moneyMarketAccounts, originalSender))
}
}

class AccountBalanceResponseHandler(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef,
originalSender: ActorRef)
extends Actor with ActorLogging {

import AccountBalanceResponseHandler._
var checkingBalances,
savingsBalances,
mmBalances: Option[List[(Long, BigDecimal)]] = None
def receive = LoggingReceive {
case CheckingAccountBalances(balances) =>
log.debug(s"Received checking account balances: $balances")
checkingBalances = balances
collectBalances
case SavingsAccountBalances(balances) =>
log.debug(s"Received savings account balances: $balances")
savingsBalances = balances
collectBalances
case MoneyMarketAccountBalances(balances) =>
log.debug(s"Received money market account balances: $balances")
mmBalances = balances
collectBalances
case AccountRetrievalTimeout =>
log.debug("Timeout occurred")
sendResponseAndShutdown(AccountRetrievalTimeout)

}

def collectBalances = (checkingBalances,
savingsBalances,
mmBalances) match {
case (Some(c), Some(s), Some(m)) =>
log.debug(s"Values received for all three account types")
timeoutMessager.cancel
sendResponseAndShutdown(AccountBalances(checkingBalances,
savingsBalances,
mmBalances))
case _ =>
}
def sendResponseAndShutdown(response: Any) = {
originalSender ! response

The Cameo Pattern

21

log.debug("Stopping context capturing actor")
context.stop(self)
}

import context.dispatcher
val timeoutMessager = context.system.scheduler.
scheduleOnce(250 milliseconds) {
self ! AccountRetrievalTimeout

}
}

class AccountBalanceRetriever(savingsAccounts: ActorRef,
checkingAccounts: ActorRef,
moneyMarketAccounts: ActorRef) extends Actor {
def receive = {
case GetCustomerAccountBalances(id) =>
val originalSender = Some(sender)

// I'm now using a factory method now from the companion object above!
val handler = context.actorOf(
AccountBalanceResponseHandler.props(savingsAccounts,
checkingAccounts,
moneyMarketAccounts,
originalSender), "cameo-message-handler")
savingsAccounts.tell(GetCustomerAccountBalances(id), handler)
checkingAccounts.tell(GetCustomerAccountBalances(id), handler)
moneyMarketAccounts. tell(GetCustomerAccountBalances(id), handler)
}
}

Note that now we have to use the tell method on the ActorRefs for the accounts so
that we can pass the handler reference as the actor to receive all responses. But the code
is much cleaner from having excised the anonymous actor implementation from the
body of the AccountBalanceRetriever.

Despite the fact that we've created a new instance of the AccountBalanceResponseHan
dler for every request to get balances, I'm placing the AccountBalanceRetriever’s
sender into a local variable in the receive block before passing it to the new instance of
the AccountBalanceResponseHandler. Make certain you follow that pattern, since
passing the sender ActorRef without first capturing it will expose your handler to the
same problem (losing the sender of the message to whom we want to send our response)
that we saw earlier where the sender ActorRef changed.

Also note that by using a “named” type, AccountBalanceResponseHandler, we’ll have
more useful information when debugging because anonymous types are assigned names
in the JVM which aren’t very easy to decipher. In my opinion, it is always preferrable to
have named types over anonymous actors for this reason.

22 | Chapter2: Patterns of Actor Usage

The Companion Object Factory Method

You may have noticed the comment in the AccountBalanceResponseHandler com-
panion object that I now have defined a props method as a factory for my actor. See
“The Companion Object Factory Method” on page 50 for more details about why I have

done this.

How to Test This Logic

Testing this code is virtually identical to how we did it previously, and we can reuse the

common stubs that we created as well. After we test the success case, we can inject a

stub that will induce timeout to test the failure case:

import
import
import
import
import
import
import
dler._

class
wi

val
Pr

val
Pr

"An
"

akka.testkit.{ TestKit, TestProbe, ImplicitSender }
akka.actor.{ Actor, ActorLogging, ActorSystem, Props }
org.scalatest.WordSpecLike
org.scalatest.matchers.MustMatchers
scala.concurrent.duration._
org.jamieallen.effectiveakka.common._

org.jamieallen.effectiveakka.pattern.cameo.AccountBalanceResponseHan

CameoSpec extends TestKit(ActorSystem("CameoTestAS"))
th ImplicitSender with WordSpecLike with MustMatchers {

checkingAccountsProxy = system.actorOf(
ops[CheckingAccountsProxyStub], "checkings")
moneyMarketAccountsProxy = system.actorOf(
ops[MoneyMarketAccountsProxyStub], "money-markets")

AccountBalanceRetriever" should {

eturn a list of account balances" in {
val probel = TestProbe()

val probe2 = TestProbe()

val savingsAccountsProxy = system.actorOf(

Props[SavingsAccountsProxyStub], "cameo-success-savings")

val checkingAccountsProxy = system.actorOf(

Props[CheckingAccountsProxyStub], "cameo-success-checkings")

val moneyMarketAccountsProxy = system.actorOf(

Props[MoneyMarketAccountsProxyStub], "cameo-success-money-markets")

val accountBalanceRetriever = system.actorOf(

Props(new AccountBalanceRetriever(savingsAccountsProxy,
checkingAccountsProxy,
moneyMarketAccountsProxy)),
"cameo-retrieveri")

within(300 milliseconds) {
probel.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
val result = probel.expectMsgType[AccountBalances]
result must equal(AccountBalances(
Some(List((3, 15000))),

The Cameo Pattern

23

}

Some(List((1, 150000), (2, 29000))),
Some(List())))
}
within(300 milliseconds) {
probe2.send(accountBalanceRetriever, GetCustomerAccountBalances(2L))
val result = probe2.expectMsgType[AccountBalances]
result must equal(AccountBalances(
Some(List((6, 640000), (7, 1125000), (8, 40000))),
Some(List((5, 80000))),
Some(List((9, 640000), (10, 1125000), (11, 460000)))))
}

"return a TimeoutException when timeout is exceeded" in {

}
}
}

When creating the stubs I use to inject mocks of services for the tests, I am not using
the props() companion object for those actors. Can you see why? In this case, the
instantiation of the Props instance for each stubbed actor is happening inside the context
of a test, not another actor. So I don’t have to worry about closing over “this” from the

val savingsAccountsProxy = system.actorOf(

Props[TimingOutSavingsAccountProxyStub], "cameo-timing-out-savings")

val checkingAccountsProxy = system.actorOf(

Props[CheckingAccountsProxyStub], "cameo-timing-out-checkings")

val moneyMarketAccountsProxy = system.actorOf(

Props[MoneyMarketAccountsProxyStub], "cameo-timing-out-money-markets")

val accountBalanceRetriever = system.actorOf(

Props(new AccountBalanceRetriever(savingsAccountsProxy,
checkingAccountsProxy,
moneyMarketAccountsProxy)),
"cameo-timing-out-retriever")

val probe = TestProbe()

within(250 milliseconds, 500 milliseconds) {
probe.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
probe.expectMsg(AccountRetrievalTimeout)

}

test context.

The cameo pattern allows you to be explicit about the type of the actor that will perform
the work for each GetCustomerAccountBalances message sent to the AccountBalan
ceRetriever, which I generally prefer. I also think it separates concerns nicely, whereas
the extra pattern can begin to make your code more difficult to read because of the

amount of extra code it has inside of the body of the AccountBalanceRetriever.

24 | Chapter2: Patterns of Actor Usage

CHAPTER 3
Best Practices

I have been fortunate enough to have been using Actors and Scala since 2009, but I have
also experienced a great deal of pain from having made many mistakes in that time.
Here are some important rules to follow for actor-based development, though many of
the rules are applicable to asynchronous coding in general.

Actors Should Do Only One Thing

One of the hardest things to do in software development is to design a system based on
primitives. By that, I mean the lowest level of functional decomposition we can achieve.
With actors, we have the ability to define very elemental abstractions of functionality,
and we want to take advantage of this. So how do we do it?

Single Responsibility Principle

Robert Martin, also known as “Uncle Bob,” taught us in Agile Software Development
(Prentice Hall) that we should try to isolate responsibilities into unique classes. In doing
so, we avoid conflating what an object-oriented class should do and keep the imple-
mentation simple. Bob believes, and I agree with him, that each class should be concise
and small, giving you more flexibility for its usage. The more you add to it that is outside
of its base role, the more you have extra functionality and code for usages that may not
require them.

With actors, I believe this to be particularly true. It is very easy to make an actor perform
additional tasks—we simply add new messages to its receive block to allow it to perform
more and different kinds of work. However, doing so limits your ability to compose
systems of actors and define contextual groupings. Keep the actors focused on a single
kind of work, and in doing so, allow yourself to use them flexibly.

25

Create Specific Supervisors

When we are building supervisor hierarchies, where we organize actors into trees of
parents and children, it is easy to spawn children of multiple types (for example, under
aCustomerActor, we could spawn AccountActor and DeviceActor instances) that share
one supervisorStrategy. But this can be bad, because you only have one such strategy
for each parent. There are some actor developers who feel this can largely be overcome
by using very fine-grained exception types to communicate failure of children. However,
because Akka only permits one strategy for each supervisor, there is no way to delineate
between actors of one grouping for which OneForOne is the restart strategy you want,
and another grouping for which AllForOne is the preferred restart strategy. Further-
more, because I believe in the Single Responsibility Principle, I want to separate logic
unrelated from one another as much as possible. Let’s look at an example.

OneForOne is a great strategy when the kind of failures that occur are specific to a single
actor. This can be exceptions that occur when handling work passed in a message, or a
runtime exception focused on a failure that would not affect other actors. AL1ForOne is
a strategy you may want to employ when the kind of failure affects all of the actors under
the supervisor, such as an exception connecting to a database in a child actor that will
affect all—in this case, you can use AllForOne to stop all actors under the supervisor
until the connection is known to have been reestablished.

In Figure 3-1, we have an error kernel that supervises two customers. The customer
actors themselves supervise accounts and devices, and the accounts supervise the vary-
ing types of accounts we can have in our financial institution. Because I have accounts
and devices under one supervisor, I have to define a single supervision strategy that is
applicable to both. However, while I can design my supervisorStrategy failure han-
dling to be common to both, I do not have the flexibility to introduce a different restart
strategy for each of them. Now my system is more rigid and intractable.

26 | Chapter3:Best Practices

Conflated Supervision

Customer

Account 1 Account 2 Device 1 Device 2

F""'l""'T

App1 App2

Figure 3-1. Conflated supervision

However, I can easily fix this problem by introducing a layer of supervision between the
customer and accounts/devices children, as we see in Figure 3-2. In doing so, I can tailor
supervision to be specific to failure that can occur with accounts and that which may
occur with devices. Note that I don’t have to do this for the varying kinds of accounts
below the accounts actor: if T am comfortable that the varying types below a supervisor
are sufficiently similar, there is likely no need to add the extra overhead of more super-
vision layers.

Explicit Supervision

Customer

Account Device
Supervisor Supervisor

I_I_II_I_I

Account 1 Account 2 Device 1 Device 2

I_I_I

App1 App 2

Figure 3-2. Explicit supervision

Actors Should Do Only One Thing | 27

The counter argument might be that you end up having to do more upward escalation
of failure messages because of the additional layer of supervision introduced by follow-
ing this pattern. But since it’s not something I have to do everywhere in my supervisor
hierarchies (only where multiple types of child actors are supervised by one actor), I
find that to be acceptable. And my system is more clearly defined in elemental, primitive
terms.

Keep the Error Kernel Simple

Itisa pattern of actor systems in supervisor hierarchies that the root of the trees compose
an error kernel, the part of an application that must not fail under any circumstances.
And Akka’s ActorSystem provides you with a user guardian actor to supervise all actors
you as the user create directly under that root of the ActorSystem. However, you have
no programmatic control over the user guardian. It merely specifies that for any
java.lang.Exception that percolates up to it, all actors under it are restarted.

Look at the way our actors are organized in Figure 3-3. The problem with flat hierarchies
is that any kind of ALLForOne restarting supervision would result in a lot of actors being
restarted, potentially when they were completely unaffected by the error that occurred.
It can be tempting to put many different kinds of actors directly under the guardian.
Don't. Instead, build layers of failure handling that isolate failure deep in the tree so that
as few actors as possible are affected by something going wrong. Never be afraid to
introduce layers of actors if it makes your supervisor hierarchy more clear and explicit,
as we see in Figure 3-4.

A“Flat” Actor Tree without Layered Supervision

]]]]] |]] |]]]]
Cust || Acct || Acct || Device || Device|] App || App || Cust || Acct || Device || Device|] App || App || App
1 1 2 1 2 1 2 2 3 3 4 3 4 5

Figure 3-3. Flat actor supervisor hierarchy

28 | Chapter3:Best Practices

vww allitebooks.cond

http://www.allitebooks.org

Customers

Accounts
& Devices

Applications

Figure 3-4. Deep actor supervisor hierarchy

Creating shallow actor hierarchies with a substantial number of actors should be a “smell
test” to you. The deeper your hierarchies, the more you can compose layers to handle
failures that can occur. If you have a shallow hierarchy, you are likely not defining the
problems that can occur in your problem domain well enough. Think about whether
or not failures can be made more granular and how you can layer failure into specific,
well-isolated branches within the tree.

Failure Zones

When we build trees of actors, it is a common mistake to continually use the default
dispatcher provided to you as part of an ActorSystem. And when you're just getting
started or trying to prototype something, that can be fine. However, when youre creating
a supervisor hierarchy for a production actor-based application, you want to limit the
impact of what happens in one grouping of actors with any others. How do we do this?
Lets look at a supervision tree using only the default dispatcher of the ActorSystem, as
shown in Figure 3-5.

Actors Should Do Only One Thing | 29

Customers

Accounts
& Devices

Applications

Figure 3-5. No failure zones

In this case, we have our banking customer supervision hierarchy. We have an error
kernel managing customers, who in turn are supervising accounts and devices. How-
ever, because we haven't explicitly created any of the actors with any other dispatchers,
any kind of expensive computation or blocking that takes place in one part of the hier-
archy can lead to actor starvation in another actor that is completely unrelated. That,
of course, would be bad.

Instead, we want to build groupings of actors in our supervisor hierarchy that should
share resources such as thread pools, as we see in Figure 3-6. In doing so, we allow the
failure that can take place in one part of the system to have no bearing on any other
unrelated component.

30 | Chapter3:Best Practices

Customers

0 O e
(@) @ @ ())
m @ @ @ Applications

Figure 3-6. With failure zones

That said, Martin Thompson, and, by extension, Gary Player, developed a measure
called Mechanical Sympathy, where you as the developer must understand how hard-
ware works to get the most out of it. The measure must be applied when defining dis-
patchers. Make sure you think about the following items:

1. What kinds of machines, with how many cores, will run this application?
2. How CPU-bound are the tasks being performed by my actors?

3. How many threads can I realistically expect to run concurrently for this application
on those machines?

The answers to those questions are highly specific to your application and how it runs.
Just keep in mind that it makes no sense to define hundreds of dispatchers with thou-
sands of threads if the tasks are CPU-bound. Try it out on your work machine, and
you'll find that actors are starving for resources not because you didn't define enough
threads for them to use, but because they couldn’t get enough CPU time to take advan-
tage of those resources.

Avoid Blocking

One of the worst offenders when creating high-throughput applications on the JVM is
blocking threads. By blocking the thread, you allow the kernel executing the thread to
release it from its core, which introduces context switching and the resultant loss of
“warmed” caches local to that core. Even if the thread is rescheduled quickly, it is plau-
sible that it will be on another core and data for the thread will have to be reloaded from
main memory. This introduces additional latency, as the instructions to be executed

Avoid Blocking | 31

have to wait for the data required to be processed. It is difficult to quantify the cost of a
context switch, as it varies across hardware and kernel combinations, but it is not un-
reasonable to assert that a context switch has an overhead of several microseconds.

Futures Delegation Example

So how do we avoid blocking? By allowing the logic to be delegated to a future, which
can execute in another context—a new thread, returning a new value and allowing us
to define behavior that can be executed at that time. Is this as fast as sequential opera-
tions? Absolutely not. However it is more scalable. Here’s how.

Actors receive messages into their mailboxes and process them sequentially. There is
no question of concurrency in actors, and that is by design. We are using an abstraction
to provide us with the ability to write code that is purely declarative. It only describes
what we want to do.

But, by definition, that means that the actor can only handle one message at a time and
therefore is limited by the amount of work that must be accomplished in handling that
message. If we do nothing to change that execution model, the actor could conceivably
be overwhelmed by the time it takes to handle messages relative to the number of mes-
sages being enqueued.

The answer is to perform the behavior dictated by the received message in futures. In
doing so, the actor is able to receive a message, define the work that must be accom-
plished to successfully handle the request, and then immediately handle the next mes-
sage in its mailbox and do the same thing. We delegate the work to be performed at some
time in the future and define how to handle the success or failure of that task. And this
works because the actor is stateless, aside from the DatabaseDriver in use:

case object TransactionSuccess

class CustomerUpdater(dbDriver: DatabaseDriver) extends Actor {
def receive = {
case UpdateCustomer(customer) =>

val originalSender = sender

implicit val ec: ExecutionContext =
ExecutionContext.fromExecutor(new ForkJoinPool())

val future = Future {
// define some JDBC action

}

future.onCompletion(
case Failure(x) => throw new CustomerUpdateException(x)
case Success => originalSender ! TransactionSuccess()

)

32 | Chapter3:Best Practices

In this case, the actor is responsible for performing updates to customer records in a
database. It receives messages to update a customer record, passing the new customer
information. It then performs the database transaction via the database driver passed
to it. In most cases, you would use a pool of such actors, much like a connection pool,
so that you don’t have to spin up new instances of database transaction actors every time
you want to do work, and no one is overloaded.

The key here is that the actor receives the update request. It uses a future to delegate the
work to the transactionActor, and defines what to do if a failure occurs, such as a
SQLException, by throwing a new, more specific exception back to its supervisor. It
wraps the information about the failure and allows the supervisor to determine what
happened and what should be done as a result.

But that’s not the important thing to take away from this. What’s important is that we've
defined all of this work to take place asynchronously, without blocking any threads. The
actor defines this behavior and then is free to handle the next message in its mailbox.
The latency associated with the database interaction is no longer a factor in the actor’s
ability to handle messages.

Think about defining a separate dispatcher for your futures so that you do not impact
the message handling by actors. If you use the same dispatcher as the actors, you can
have the same starvation issues you were trying to avoid by off-loading the work to
another thread to begin with. Give thought to the execution context that should be used
by each component in your asynchronous system.

Java futures are blocking!

A quick digression before we continue. One thing I am continually amazed about is
how few people know or understand the Java Future API. There are only five methods
youcan callan instance ofa java.util.concurrent.Future class, and only two of those
are relevant to getting the expected data out of it.

First, you have get(). This method blocks the current thread until a future instance
completes its work, thus requiring the use of one thread more than the work that must
be performed just to manage what happens when it is done. Second, you have {is
Done(), which merely allows you to define other work and check to see if the Future is
completed. Either way, the calling thread must continue to do work or make itself do a
busy spin until both futures complete. This is a horrible waste of resources!

Think about it. If you have two tasks you want to be performed asynchronously, you
have to define that work from a calling thread in two separate futures. You then have to
make the calling thread block on get() or perform busy spin in a while loop until
isDone() returns true. It is taking three threads to do the work of two.

However, if you use scala.concurrent.Future (or the akka.util.Futures API for
Java), you can define work to be performed asynchronously, as well as the behavior to

Avoid Blocking | 33

manage what happens when it is done or fails, and then release the calling thread.
Threads are valuable resources, as are cores. We should not be wasting them on house-
keeping, but the current Java Future API does just that.

It is possible that Doug Lea will work his magic and have a Java implementation of
CompletableFuture ready for Java 8, but it's impossible to say, at the time I write this,
whether that will be ready in time for the code freeze.

Pre-defining Parallel Futures

The Scala Future API allows us to pre-define work and then stage the way that work is
handled via nested Future instances. If you want to create a pair of futures to run in
parallel, you do so independently and then use a for comprehension to handle the
results. However, this only works when the results are unrelated and not dependent on
one to complete before the next can be handled.

For example, imagine we wanted to display information on a stock trading web page.
The customer has selected the security she wishes to purchase. We need to find out the
current bid, ask prices, find out the price the security trade for last, and then return that
to the view layer to be composed into a response and returned to the customer. We first
define the Future instances to get both pieces of information, and then we define the
behavior for handling the results:

class SecurityPricingActor(exchange: Exchange,
backOffice: BackOffice) extends Actor {
def receive = {
case GetPricingInfo(security: Security) =>
val originalSender = sender
val bidAndAskFuture = Future { exchange.getBidAndAsk(security.id) }
val lastPriceFuture = Future { backOffice.getLastPrice(security.id) }

val response = for {
(bid, ask) = bidAndAskFuture
lastPrice = lastPriceFuture
} yield SecurityPricing(bid, ask, lastPrice)
response map (originalSender ! _)
}
}
It is important to understand the dynamics at play here. We define two futures to get
information from two external services. We then define a for comprehension that will
monadically bind the behavior of what to do when both values are returned. However,
the for comprehension is syntactic sugar for the flatMap and map methods on the future
instance, and just like those methods, intermediate future instances are returned.

So consider the implications of that. The type of response is a Future[SecurityPric
ing]. However, the result of the bidAndAskFuture is a Future[BigDecimal, BigDeci
mal]. If and only if that returns successfully do we get a new Future[BigDecimal] for

34 | Chapter3:Best Practices

the lastPrice. And if and only if that succeeds is the Future[SecurityPricing] going
to be evaluated. But the expensive tasks, which may involve going over some wire to get
the information from the exchange or another external service, is not blocking the
calling thread, nor is the behavior defined about what to do when they complete.

Parallel Futures with the zip() Method

There is another syntax for performing Future execution in parallel, and that is the use
of the zip() method in the Future API This allows you to get around defining the
futures outside of the for comprehension, and some people perfer the syntax. For con-
ciseness, I agree that this is cleaner. However, I find that predefining my futures is more
expressive and allows my for comprehension to be more readable, so I usually eschew
this style:

class SecurityPricingActor(exchange: Exchange,
backOffice: BackOffice) extends Actor {
def receive = {
case GetPricingInfo(security: Security) =>
val originalSender = sender

val response = for {
((bid, ask), lastPrice) = Future {
exchange.getBidAndAsk(security.id)
} zip Future {
backOffice.getLastPrice(security.id)

}
} yield SecurityPricing(bid, ask, lastPrice)
response map (originalSender ! _)
}
}

Sequential Futures

What can be particularly tricky is understanding how to compose the use of futures.
Sometimes, work cannot be performed entirely in parallel and must be executed in a
particular order, due to a dependency between the values returned from multiple calls.

For example, imagine you used a future to get a set of customers from a database, and
then wanted to call another external service to get account information for each cus-
tomer. How would you predefine that behavior so that you didn’t have to block the
calling thread? The answer is to use for comprehensions and embed the work to be
performed in the futures inside of the structure of the for comprehension so that the
second future was only executed if the first one successfully returned the value upon
which it depended:

val accountsForCustomers = for {
customer <- Future { databaseService.getCustomers }

Avoid Blocking | 35

account <- Future { accountService.getAccounts(customer.id) }
} yield (customer, account)

Callbacks versus Monadic Handling

So far, we have used the callback style (onSuccess, onFailure, onComplete) as well as
the monadic style (for comprehensions) for handling the result of future instances. You
may wonder why there are two different syntaxes and when to use each. By convention,
the callback style is to be used for side-effecting responses, such as the database access
call in the CustomerUpdater example. The monadic style is for “pure” functional rep-
resentations, free of side-effecting code. Anyone familiar with functional programming
and the desire for purity will likely recognize the pattern.

However, note that the callback style can be unwieldy if we need to nest futures and
their result-handling callbacks. We want to be able to compose our logic in a meaningful
way, and using for comprehensions allow us to compose how we handle the results of
multiple futures in a clear, succinct way.

Futures and ExecutionContext

While the Future API is very handy for defining work to take place asynchronously,
they require an ExecutionContext in order to perform their tasks. This ExecutionCon
text provides a thread pool from which they draw their required resources. Many peo-
ple start off by using the ActorSystem default dispatcher like so:

val system = ActorSystem()
implicit val ec: ExecutionContext = system.dispatcher
Future { /* work to be performed */ }

However, using the ActorSystem’s default dispatcher can lead to thread starvation very
quickly if it becomes overloaded with potential work. The default configuration of this
dispatcher is to be elastically sized from 8 to 64 threads. So just as we saw when discussing
failure zones, we should consider it important to isolate execution by context.

You can similarly use an actor’s dispatcher. This gives you more resource granularity
but still requires your actor to dedicate a thread to the future every time one is instan-
tiated. This also might not be ideal:

implicit val ec: ExecutionContext = context.dispatcher
Future { /* work to be performed */ }

You always have the option of creating a new ExecutionContext from a new thread
pool on the fly, which can be done like so:

implicit val ec: ExecutionContext =
ExecutionContext.fromExecutor(new ForkJoinPool())
Future { /* work to be performed */ }

36 | Chapter3:Best Practices

However, a best practice I recommend is that you consider when you may want to define
specific dispatchers inside the configuration of each ActorSystem in which futures will
be used. Then you can dynamically apply the dispatcher for use in your code, like this:

implicit val ec: ExecutionContext = context.system.dispatchers.lookup("foo")
Future { /* work to be performed */ }

Push, Don't Pull

It is common for developers new to Akka, and actors in general, to want to control the
flow of actor interactions by “asking” another actor for a response. This may seem fine
from the outset, but as you mature as an actor developer, you have to take into consid-
eration the cost of doing such a thing. First of all, the ask pattern in Akka requires a
future to send the message in the first place, and queues a callback or monadic handler
for the response with the ExecutionContext. It also has a timeout associated with it.

All of these combine to be quite heavy for a simple actor interaction that could be as
simple as sending a message and being prepared to handle the response. Furthermore,
you are making assumptions about time in your system, saying that you expect a re-
sponse within a certain timeframe, and you have to design what to do when that inter-
action does not take place.

It is better to instead use fire and forget semantics for such interactions. It is lighter
weight and makes no assumptions about what must happen at what time. For resilience,
your best bet is to actually become a handler for a specific response and then schedule
a send starting right at that moment to repeat every so many seconds until a response
is received, at which point the send is cancelled:

object MyActor {
case class DataToHandle(bytes: Array[Byte])
case object GetData
}
class MyActor(otherActor: ActorRef) extends Actor {
import MyActor._
import context.dispatcher

var cancellable: Option[Cancellable] = None
def receive = {
case Start =>
context.become(dataHandler)
cancellable = Some(context.system.scheduler.
schedule(0 milliseconds, 500 milliseconds, otherActor, GetData))

}

def dataHandler: Receive = {
case DataToHandle(data) =>
// Do something
cancellable map (_.cancel)
context.unbecome

Avoid Blocking | 37

}
}

You might question whether this is a good idea, as the MyActor instance will now not
handle any Start messages received until a DataToHandle message is received. In some
cases, this may be what you want. However, if you need to handle more Start messages,
you should use the extra or cameo patterns to define a new actor instance to handle
what to do when the response is finally received.

Another option is to chain your receive messages, where you allow an actor to register
receive blocks and handle the messages received in an ordered fashion because the traits
used are linearized (as traits are wont to be). This is accomplished by pre-pending them
to the list of receives you manage, like so:'

trait ChainingActor extends Actor {
private var chainedReceives: List[Receive] = List()

def registerReceive(newReceive: Receive) {
chainedReceives = newRecelve :: chainedReceives

}

def receive = chainedReceives.reduce(_ orElse _)

}

trait IntActor extends ChainingActor {
registerReceive {
case i: Int => println("Int!")
}
}

trait StringActor extends ChainingActor {
registerReceive {
case s: String => println("String!")
}
}
Another aspect to consider is that if all of your interactions stem from making calls until
an appropriate response is received, it won’t matter that each actor is ignoring the other
messages because it will receive each message multiple times. This is critical for building
resilient systems! Never expect guarantees of delivery for any message over any medium,
regardless of whether or not you know you’re sending messages within a JVM or using
Durable Mailboxes or a middleware message broker that supposedly will persist mes-
sages. Failures can happen anywhere: in your application, in the hardware, or over the
network.

1. This idea was gleaned from Dan Simon, as explained in the post on StackOverflow.

38 | Chapter3:Best Practices

vww allitebooks.cond

http://bit.ly/1exCzCF
http://www.allitebooks.org

Resilient systems make no expectations about “guarantees” and al-
. ways keep trying to do what they need to do until it gets done and
o they’re sure of it.

When You Must Block

While it would be ideal to not block threads, the reality is that there will be times when
you must perform a blocking operation. A great example is any time an actor is going
to perform database work via a legacy database driver. And that’s fine—there is no way
for you to communicate with such an external resource and receive a reply without
blocking.

The key is to make sure that you limit the effect of the blocking call. To do that, you
should put any such actor (or multiple actors in a router) with blocking calls inside of
its own dispatcher with resources that aren’t shared by any other actors that perform
nonblocking work. By isolating the blocking calls to actors that don’t share resources
with others, we can be sure that other actors won't be starved for a thread within the
JVM while the blocking actor does its work:

// Code from an actor that will create the blocking actor

val customerRetriever = context.actorOf(Props[CustomerRetrievalActor].
withDispatcher("customer-retrieval-dispatcher"),
"customer-retriever")

// Blocking actor pseudocode
class CustomerRetrievalActor extends Actor {
def receive = {
case GetCustomer(id) =>
// Make a database call to look up a customer by the ID sent

}
}

Managed Blocking in Scala

Scala has a very handy feature called Managed Blocking for controlling the amount of
blocking code that can exist within an application. When you wrap a block of code with
blocking, the thread pool upon which the code will run is notified that the task is block-
ing orlong-running. That thread pool can then elastically spawn and remove additional
threads to ensure that no actor or future sharing it is starved for a thread. See Managed
Blocking in the Scala documentation for more information:

import scala.concurrent.blocking
blocking {
// Do some blocking behavior

}

Avoid Blocking | 39

There is a caveat here, of course. Yes, it is great that you can get more threads if blocked
threads are consuming your thread pool. However, they are not capped at a specific
limit. It is theoretically possible that you can expand the size of your thread pool lim-
itlessly, and that could quickly use up a lot of resources. Keep this in mind when you
use managed blocking, and think about how you can use circuit breakers or some other
mechanism to provide backpressure when the system is being overwhelmed.

Avoid Premature Optimization

As a side note, I tell people in my “Effective Actors” presentation never to parallelize
with routers before you have measured the hot spots in your application. Too often,
developers (including myself) make assumptions about where we expect performance
to be slow and try to mitigate those problems up front.

Be careful not to create routers before you have proven at runtime under load that you
absolutely need to. If you suspect you will need to use a router somewhere, Akka team
leader Roland Kuhn recommends that you pass around actor references from supervi-
sors to compute-intensive children so that the context. parent of their children are free
to become a router later on merely by changing the external configuration of the actor.

Start Simple

When designing your Akka application, try to model the interactions in as simple a way
as possible. By that, I mean try not to think in terms of asynchronous interactions or
how specific algorithms will be designed. Instead, think in terms of the flow of the
application, and where possible, try to direct it toward a result.

When I started building actor-based applications, we had teams responsible for building
individual subsystems that flowed from one to another. Each subsystem consisted of a
RESTful API, a domain, and a real-time component where side effects resulting from
the commit of data to the database would be realized. Inside of that real-time realm, we
had to model what to do as a result of a new domain object being added, removed, or
changed. We did not focus on the details, just what had to be accomplished for each
event.

To build an actor-based system from scratch, try to follow this roadmap, as defined by
Jonas Bonér.

Deterministic

Try to think in terms of your application being entirely synchronous in nature. This can
be tricky, since designing an application to be asynchronous does require that you think
about the problem differently than a synchronous application, where you expect a de-
finitive order of execution. But if you can think about your problem as if you have those

40 | Chapter3:Best Practices

guarantees, start there. Worry about nondeterministic behavior once you have defined
your problem and how the logic would flow if it were synchronous.

When I wrote my first actor-based system, we were attempting to manage the realization
of domain types to multiple servers in a cluster: if someone created a customer, we
wanted to create a Customer actor whose sole responsibility was to make sure all servers
for whom that customer should exist were able to update themselves with the customer’s
information. In this case, we could reason about what would happen in the asynchro-
nous part of our application pretty easily: if you added a domain object, it would result
in that domain object being “realized” to a server in our cluster. Assuming no failure
and not taking into account timing issues, the add succeeded, and our system was in a
nominal state. If failure or timing issues (such as the customer being added before type
on which it depended) occurred, the actor continued attempting to realize that domain
object until it succeeded.

Declarative

This applies to nonactor applications as well. When writing Scala, we want to focus on
being as declarative as possible—focus on what you want to do, not how it will be done.
Imperative programming in Java is nondeclarative. When we want to iterate over a
collection and get out only those values that meet some criteria and put the values into
a new collection, we have to write the code like this (assuming we’re not using a non-
standard language library):

List shortWords = new ArraylList();
for (String word : wordList)

{
if (word.length < 5)
{
shortWords.add(word);
}
}

In Scala, we instead focus on what we want to do so that the details of how that work is
done don’t clutter the logic of our application:

val shortWords = wordList.filter(_.length < 5)

This makes our code considerably more concise, which means that it is cognitively easier
for someone else maintaining our code to understand what is going on and make
changes to it with confidence. We want developers to be able to understand semantically
what is happening in our application as quickly as possible and not be bogged down in
details of how things are being accomplished.

Immutable

Like declarative programming, we want to focus on immutability regardless of whether
or not we're writing Akka applications. But the reason it is so important with actors and
futures is that your application will be multithreaded by nature. By focusing on

Avoid Premature Optimization | 41

immutability, you are ensuring correctness of data shared across threads and reducing
the possibility of dead locks or live locks that can occur when using locks to manage
shared, mutable state.

Functional

Again, this is a rule for non-Akka application development as well, and it's somewhat
redundant to the immutability just mentioned. By functional, I mean your code should
be immutable, referentially transparent, and have first-class functions. Actors them-
selves are not functional programming constructs, but we do want to adhere to these
principles within the actors as much as possible. Referential transparency is when you
can substitute a value for a block of code and still have the exact same result: no side
effects have taken place, and no unintended consequences of the evaluation of those
expressions exist. First-class functions mean they can be passed as arguments to meth-
ods, just like a string or a domain object, or they could be composed functionally (such
as through for comprehensions).

Keep mutability and side effects within the actor, and favor vars of immutable data. For
example, because actors prevent concurrent access to internal mutable state, it is easy
to use mutable data structures. However, if you decide to pass that data elsewhere, you've
created a concurrency issue. It is better to use vars of immutable data structures inside
of actors so you do not have to worry about that.

Layer in Complexity via Indeterminism

Once you have built your application following the the functional paradigm, you want
to begin to attack the problem in targeted locations where you've measured that you
need to increase performance. How do we do that? Identify the parts of your system
where additional asynchrony will have the most benefit: for example, blocking I/O or
anywhere you've actually measured a critical section that can’t handle the load. From
there, layer in additional asynchrony via anonymous actors and futures only in those
targeted spots.

Optimize with Mutability

Now you have an application that is functional and asynchronous. This is very desirable,
but the nature of functional programming is that it results in the creation of lots of
(hopefully) short-lived objects on the JVM. That is okay: if the lifespan of such objects
is limited to Eden in the JVM’s garbage collection regions. However, if they begin to leak
into OldGen, they will be costly to clean up and could result in lots of compaction latency.
So, in order to optimize our application, we may begin to look at mutable state in very
targeted locations, where we have proven with measurements obtained from profiling our
application at runtime, to make our code run more efficiently. How can we do that?

42 | Chapter 3:Best Practices

Add mutability with compare and swap (CAS)

This is where things start to get tricky. You've built your asynchronous system, and it
meets your requirements for what it is supposed to do. However, you're finding that it
isn’t able to perform the work as quickly as your nonfunctional requirements dictate,
and parallelism isn’t an option because you don’t have a task that can be performed
independently and concurrently on different JVMs. You need to optimize your code.
One way to do so is to use mutable state.

However, using mutable state can be very tricky. You want to avoid locking as much as
you possibly can, and not just because of the difficulty of managing locks programmat-
ically. Locks, even on an abstracted platform such as the JVM, are arbitrated by the
kernel of the OS on which the JVM is running. This means that lock access happens on
a core executing the kernel, and your thread is paused to arbitrate lock access. When
this happens, the core can be assigned a new thread, and the data specific to your thread
in the warmed caches local to that core is now evicted for the data required by the new
thread. This can have a measurable affect on performance, because even if your thread
was scheduled back to that same core, it is extremely likely that you will encounter cache
misses, and the data your thread needs will have to be reloaded from main memory.

In order to avoid this, we can use Java’s excellent Atomic References. These use compare
and swap (CAS) semantics to discern if a change can be made to the data it protects by
comparing the data to be changed with what it expects the data should still be, assuming
no other changes have taken place, at the time the change will occur. If I use an Atomi
cInteger to wrap a counter, and I want to increment the value from 5 to 6, the change
will fail if the counter is not a value of 5 at the time I'm effecting the change. Java 8 is
adding new Adder and Accumulator types that will greatly facilitate this, if you have the
ability to run with that platform.

Compose CAS with Software Transactional Memory

This will only get you so far, however, as Java’s Atomic References do not compose. By
that, I mean you cannot combine two AtomicInteger instances to have one atomic
operation. To do this, you can use Software Transactional Memory (STM), where you
make changes to the two values within the context of a single transaction, and the
commit only occurs if both values are what was expected at the time the commit takes
place.

However, STM is not some magical awesome-sauce that you spread around your ap-
plication that makes things just magically start working. If the data upon which you
apply STM is changing rapidly via other threads, it is entirely possible that the memory
cannot be committed as collisions in the multifield CAS operations aren’t occurring fast
enough to compensate for the changes occurring. It is a tool that is available to you but
has its limitations.

Avoid Premature Optimization | 43

As a side note, one very nice feature of Scala-STM is the TMap collection, which can
provide you snapshots of the collection’s data in constant time. That can be a handy
feature on some situations. For more information, see the documentation.

Add locks as a last resort

Asanabsolutelast resort, such as when CAS-semantics do not work for your application
because updates to the data are happening too quickly, resulting in too many failures to
effect changes, you have to use locks. But only do so as an absolute last resort. This is
why you were most likely looking at building an actor-based system to begin with.

Locks do not compose, so trying to interleave them can easily lead to deadlock and live
lock situations. Deadlocks are at least relatively easy to find, identified via jstacKs listing
of threads in the JVM or JConsole/Visual VM. Live locks are much trickier because both
threads involved are actively doing work but unable to get out of each others’ way. Think
of it as being analogous to walking down a street where someone is coming in the
opposite direction, and both of you keep stepping in the same direction and can’t get
out of the way of one another.

Furthermore, mutually exclusive locks (MUTEXs) are very expensive when they are
contended. Blocked threads are removed from the core one which they are executing
by the operating system kernel so that other threads have a chance to run. Even if the
contended lock gets access quickly, it has to be rescheduled by the kernel and may not
be placed back on the same core. All of the warmed hardware caches local to that core
are now lost and must be rebuilt where the thread continues its execution.

Prepare for Race Conditions

With asynchronous code (such as Akka actors), we gain tremendous benefits from being
able to leverage threads and maximize the usage of physical hardware resources such
as cores and sockets. However, this comes at the expense of determinism, the guarantee
that providing the same inputs will always result in the same logic path being executed
and the same result. This means that it is entirely plausible, or even likely, that we will
experience race conditions, where we expect something to have a specific value at a
particular time, but it does not.

Avoid coding in a way where timing matters

So how do we avoid writing code that is dependent on time? This goes back to my core
belief that resilient systems never try to do things only once: they continue to do things
until the world around them changes to the way they expect it to be, or they escalate
failure so that higher-level supervisors can recognize that the world needs to be pushed
in a particular direction. If you write asynchronous code, such as Akka actors, with the
expectation that everything will always happen at just the right time, you are going to
fail pretty quickly.

44 | Chapter 3: Best Practices

http://nbronson.github.io/scala-stm/

Here is an example. While working at a large cable company, we were building a repos-
itory of what channels every customer was allowed to watch, based on what they were
paying for. A customer could call in at any time and change those permissions, and
those changes had to be reflected in the data set within 10 minutes. The “source of truth”
database could provide the information, but the relational queries involved too many
joins to be performant enough to meet our nonfunctional requirements for servicing
requests. We came up with two possible solutions:

1. Every day, a master file of all reference data was reloaded from external sources. We
would create a system to poll the “source of truth” database providing all customer
information and then resolve who could watch what channels and load them into
a live cache. That cache would be updated all day long with new information if a
customer’s account changed. However, this is a time-based system: if we missed an
event or if an exception occurred trying to handle a single record, it was possible
that the entire live cache of data would no longer be in synch with the database,
requiring a complete reload, which could take over two hours, during which time
viewing rights could not easily be enforced.

2. Alternatively, we could create a grouping of Akka actors that were each responsible
for a hashed set of customer accounts. At the beginning of their iteration through
a set of customers, they would retrieve all reference data from the database and all
updates to customer accounts. They would then cycle through all customer ac-
countsrelevant to their hash, recalculate the viewing permissions for each, and place
the data into the live cache. When they reached the end of their set, they restarted
their cycle. If failure occurred mid-cycle, the supervisor could ask for all reference
data and customer updates and restart the actor. This is a solution that is completely
independent of time, where the data is self-healing with a worst-case scenario of
being out of synch with the “source of truth” for whatever the amount of time it
took to completely recycle through the set of accounts. This is a resilient solution
providing eventual consistency that is agnostic to time. I call these kinds of actors
“sentinels,” as they guard the system from falling out of synchrony with a known
expectation of what state should exist in the system.

Try to think of how you can approach your problem similarly. It may be easier to first
think about the problem in terms of your blocking, time-based approach. But once
you've properly identified what you have to do, you can think about the same problem
in terms of how to implement it such that time doesn’t matter and the system can heal
itself.

Tell, don't ask

A best practice for actor development is to avoid ask: use fire and forget messages, and
be prepared to handle responses. This is simpler and more expressive than using futures
and having to map over composed responses, but I'm also only using one asynchronous
threaded resource (the anonymous actor I created) as opposed to multiple futures for

Avoid Premature Optimization | 45

the sends and the myriad futures returned within a composed for comprehension to
handle the results. Always try to focus on tell over ask.

Truly fault-resilient systems send messages in fire and forget fashion and prepare to
receive the expected response. They do not make assumptions that sending once means
that the message was definitely received and is being handled, since anything can happen
in between. As such, we should schedule a task to continually resend that message a
pre-defined number of times in some acceptable duration. If no expected response is
received within that timeframe, we should be able to handle or escalate the failure.

Be Explicit

One of the surest ways to get yourself into trouble when using actors is by being vague
or general in your interactions. Instead, you want to make sure that you have well-
defined interactions and know exactly what failures can occur. This way, you can min-
imize the impact on other actors at runtime and keep “event storms” from happening,
which can be very difficult to reason about.

Name Actors and ActorSystem Instances

First of all, give unique names to all of your actors and ActorSystem instances. Not only
will this allow you to create and update external configuration for those objects on the
fly after the fact, but you will be able to write code that references them by name via
actor lookup. If you don’t name them, you will have to add names later on when you
decide you do want to do these things. Furthermore, you’ll find more information in
the Akka trace logs and logging when you name them:

// Create with name
val myActor = context.actorOf(Props[MyActor], "my-actor")

// Lookup

val myActor = context.system.actorFor("my-actor")
Note that, as of Akka 2.2, the old actorFor method has been deprecated due to differ-
ences in behavior between actors found locally versus those that are remote. Instead,
use actorSelection, which looks up actors via absolute or relative paths. See the Akka
documentation for more details.

Create Specialized Messages

Make a point to avoid passing messages that are general and do not get targeted toward
a specific actor instance. You want your messages to flow through your supervisor hi-
erarchy in a direct fashion, routing to the actor instance that is best equipped to handle
the message without being sent down to others outside of its path. Here is an example
of a generic message that you do not want to send through your supervisor hierarchy:

46 | Chapter3:Best Practices

http://bit.ly/17cudgQ
http://bit.ly/17cudgQ

case object AccountsUpdated

This is a general message that will have to go to every CustomerActor in your system,
and all of them will have to determine if that message is relevant to them. This is how
event storms can occur, as all of your customers need to figure out from some service
whether or not they care about this event.

Instead, we want to send messages that are very explicit so that only the CustomerAc
tor for which the account changed is notified and performs work based upon the mes-
sage. Here is an example of an explicit message:

case class AccountRemoved(customerId: Long, accountId: Long)

Create Specialized Exceptions

When creating supervisor hierarchies, it is tempting to try to generalize exception han-
dling so that you can catch virtually every possible failure at the lowest possible level.
However, this defeats the purpose of escalating failure to the appropriate level. What do
I mean be generalizing exceptions?

class MySupervisor extends Actor {
override val supervisorStrategy =

OneForOneStrategy() {
case _: Exception => Restart

}
.

In this case, our supervisor is going to restart every individual actor it is supervising
when any exception is thrown from them. But this is the default supervision behavior
provided by Akka if you do not override it, so it’s actually redundant! But that does not
mean we should ever omit it.

If you do not override the default supervisorStrategy in your supervisor actor, the
default behavior will be to escalate the failure upwards. If there is no handler all the way
to the root of your supervision hierarchy, the “root guardian” actor in Akka, which is
supervising your hierarchy within its ActorSystem context, will catch it and automat-
ically restart everything below! While this can be useful for restarting a system that has
suffered a catastrophic failure, it is hardly the default behavior you likely want for your
application. Akka will handle a few exceptions it knows about explicitly, but everything
else will just be result in the restarting of all of your actors.

y

By default, Akka will stop a child actor on ActorInitializationEx
. ception and ActorKilledException. Akka will restart a child actor
%" on Exception, and all other types will be escalated to the parent actor.

qs
W

Be Explicit | 47

Think about what that would mean. You have a reasonably benign failure somewhere
deep in your supervision hierarchy. That failure bubbles up to the ActorSystenm, re-
sulting in all of the actors you created in that ActorSystem being restarted when they
finish handling their current messages. Whatever transient state they may have had
would be lost, and all because of something that could have been handled more locally.

Thebetter route is to create very specific exception types at the leaves of your supervision
tree. As you flow upward, the exception types defined can be more general, and esca-
lation can be used to make sure the appropriate supervisor ends up handling the
message:

class MySupervisor extends Actor {
override val supervisorStrategy =
OneForOneStrategy() {
case _: SQLException => Resume
case _: MyDbConnectionException => Escalate

}

}

In this case, the SQLException was probably related to bad data in the message being
processed to update the database. How you handle such problems is domain-specific
to your application: maybe you need to tell the user, maybe retry the message that was
handled, etc. But a connection problem may be indicative of something that may be an
issue for all actors trying to access that data store, such as a network partition. Then
again, it might not be, if it is related to an authentication issue. In this case, you want to
escalate the failure to the parent actor responsible for managing all actors with such
database connections, which can decide whether this was an isolated failure or one of
many occurring simultaneously. If the latter, it may decide to stop all actors relying on
those connections until a new connection can be established.

Beware the “Thundering Herd”

One of the drawbacks of using general messages and exceptions is that they can lead to
the unintended consequence of too much activity taking place in your actor application,
too many messages being sent around as a result, or too many actors being affected by
something that could have been handled locally. When this happens, you see “event
storms” that can be difficult to diagnose. Tons of log output to pore over, lots of messages
in the event trace logs of Akka, etc. It is entirely plausible that, despite your best inten-
tions, such storms could happen anyway, as it is highly unlikely you’ll think of every
possible event that could lead to such a happening from the outset. But there are a couple
of ways to handle them.

Dampen message overload

If you know that your system is capable of sending messages in a repeated fashion over
and over again in an effort to provide resiliency, you have to be able to ignore the same

48 | Chapter 3:Best Practices

vww allitebooks.cond

http://www.allitebooks.org

message that may arrive again after you've already handled it. One such pattern I've
seen, based on basic control theory, is to dampen your messages by a unique identifier.
If you have received a message with the same such ID within the past x number of
milliseconds, simply ignore it.

Use circuit breakers for failure overload

This is a feature for handling cascading failures in remote endpoints of your distributed
application. You merely define that you want to implement this behavior, and provide
inputs for how many failures can occur in how much time and how long to wait before
reopening the circuit breaker:

class CircuitBreakingActor extends Actor {
import context.dispatcher

val circuitBreaker = new CircuitBreaker(context.system.scheduler,
maxFailures = 10,
callTimeout = 100.milliseconds,
resetTimeout = 1.seconds).
onOpen(logCircuitBreakerOpen())

def logCircuitBreakerOpen() = log.info("CircuitBreaker is open")

Using circuit breakers allows you to provide fast failure semantics to services and clients.
For example, if they were sending a RESTful request to your system, they wouldn’t have
to wait for their request to time out to know that they’ve failed, since the circuit breaker
will report failure immediately.

Don't Expose Actors

Actors are intended to be self-contained components that do not have any interactions
with the outside world except via their mailboxes. As such, they should never, ever be
treated in the same fashion that you would an ordinary class.

Prior to the creation of the ActorRef proxy for Akka actors, it was entirely plausible to
be able to create an actor and send it a message but also directly call a method on it as
well. This had terrible consequences, in that the actor would have one thread performing
behavior based on handling messages from its mailbox, and another thread could call
into methods on it introducing the exact concurrency issues that we were trying to avoid
in the first place by using actors! Those weren’t happy times for me.

Avoid Using this

If there is one thing you should take away from this book, this is it. Never refer to any
actor class using the open recursive this that is so prevalent in object-oriented pro-
gramming with Java, Scala, and C++. Nothing good can ever come from it.

Don't Expose Actors | 49

Imagine you wanted to register an actor via JMX so that you could keep an eye on its
internal state in production. It sounds like a great idea because no tool is going to be
able to tell you that information unless you expose it yourself. However, the API for
registering an MBean in the JDK involves passing an ObjectName to uniquely identify
the instance and the reference to the MBean that you wanted to get data from:

val mbeanServer = ManagementFactory.getPlatformMBeanServer
def register(actor: InstrumentedActor): Unit = {
Try { mbeanServer.registerMBean(actor, actor.objectName) } recover {
case iaee: InstanceAlreadyExistsException => ??7?
case mbre: MBeanRegistrationException => ???
case ncme: NotCompliantMBeanException => 2??
case roe: RuntimeOperationsException => ???
}
}

See how we need to register the “actor” parameter to the mbeanServer? Now, when you
try to merely view the internal data attributes, thats not that big of a deal because it’s a
read-only operation coming from the mbeanServer’s thread. In fairness, that means you
aren’t concerned with absolute consistency or the possibility of seeing partially-
constructed objects in JConsole or whatever other mechanism you’re using to consume
the JMX MBean. But if you define any operations in your MBean, you could very easily
introduce concurrency issues and you're toast.

JMX is a simple example, but it’s representative of the whole gamut of Observer pattern
implementations you might try to use, especially when interacting with legacy Java code
and libraries. They’ll want you to register the instance of the class to notify when an
event occurs and the method to call inside of them, when you only ever want actor
messages to be sent.

Instead, if you catch yourself using this in an actor, always change it to self. Selfis a
value inside of every Akka actor that is an ActorRef to itself. If you want to perform
looping within an actor, send a message to that self ActorRef. This has the additional
benefit of allowing your system to inject other messages into the looping so they aren't
starved for attention while the actor does its work.

The Companion Object Factory Method

In “The Cameo Pattern” on page 20, I switched how I created the Props for my Ac
countBalanceResponseHandler actor instance to a factory props () method in its com-
panion object. This may seem like an unnecessary implementation detail or a matter of
preference, but it is actually a very big deal. When you create a new Akka actor within
the body of another Akka actor (as of Akka 2.2 and Scala 2.10.x), a reference to this is
captured from the actor in which we created the actor. In the Cameo Pattern example,
the AccountBalanceResponseHandler would have a direct reference to the AccountBa
lanceRetriever actor. This isn't something you will typically notice, but it is something

50 | Chapter3:Best Practices

you would never actually want to have happen because you never want to expose a this
reference to another actor: it opens the door to having multiple threads running inside
of the actor, which is something you should never allow to happen.

There is a proposal to make the Props API based upon the concept of Spores, which are
part of SIP-21 and may be included in an upcoming version of the Scala language. By
forcing users of a library to pass information in a Spore, they would have to explicitly
capture the state they want to pass to the new Akka actor reference, and a this reference
to the one who created it could not leak over.

Roland Kuhn, currently the head of the Akka team, is the person who defined this best
practice with some help from Heiko Seeberger, Typesafe’s Director of Education. But I
also see another benefit to this approach. You are putting the information about how
to create the Props reference in one place—otherwise, those details are spread around
to every place in your code that is creating instances of this actor.

Note that you could use an apply() method instead of a method named props(). I'm
not terribly keen on that idea, however—apply() is a method that should return an
instance of the type for which the companion object was defined. In this case, the actual
return type is an instance of Props. As a result, I don’t think it meets the basic contract
of what an apply() should do, and I think a method name that describes what you’re
actually creating is more appropriate.

Here is an example. Historically, we have grown very comfortable with creating actors
like this:

case object IncrementCount

class CounterActor(initialCounterValue: Int) extends Actor {
var counter = initialCounterValue
def receive = {
case IncrementCount => counter += 1
}
}

class ParentOfCounterActor extends Actor {
val counter = context.actorOf(Props(new CounterActor(0)), "counter-actor")
def receive = Actor.emptyBehavior

}

To avoid this potential issue of closing over this, I recommend you instead instantiate
the Props for your new actor like this:

object CounterActor {
case object IncrementCount

def props(counter: Int): Props = Props(new CounterActor(counter))

}

Don’t Expose Actors | 51

http://docs.scala-lang.org/sips/pending/spores.html

class CounterActor(initialCounterValue: Int) extends Actor {
var counter = initialCounterValue
def receive = {
case CounterActor.IncrementCount => counter += 1
}
}

class ParentOfCounterActor extends Actor {
val counter = context.actorOf(CounterActor.props(0), "counter-actor")
def receive = Actor.emptyBehavior

}
@,
o Use a companion object props() factory method to create the in-
.‘s . stance of Props for an Akka actor so you don’t have to worry about
MYSN

2 closing over a reference to this from the actor that is creating the new
actor instance.

Never Use Direct References

With the exception of using TestActorRef (in Akka’s TestKit implementation) and get-
ting the underlyingActor for unit testing purposes, you should never know the type of
an actor. You should only ever refer to it as an ActorRef, which will only expose an API
of message sending. If you find code that has a reference to an actor by its actual type,
youre making it very easy for someone to introduce the exact concurrency issues we
talked about in the previous section.

Don't Close Over Variables

This is really a good rule for lambdas in general. Any time you have alambda, it becomes
a closure when you reference state external to that lambda’s own scope. And that is okay,
so long as the external state you are referencing is immutable. In Java8’s upcoming
lambdas, they were smart enough to enforce that all closed-over external state must be
final, much like it had to be when creating a nested inner class, or anonymous inner
class implementation. However, with Java, merely making a field final doesn’t mean it
is immutable, as we've all come to know (and much to our chagrin).

However, we often take it for granted in actor development that we can use mutable
state within an actor without worrying about concurrency because we will only ever
have one thread operating inside of it. However, if you close over that mutable state,
especially in a deferred operation like a future, you have no idea what the value of that
mutable state will be when that deferred operation is actually executed. This was pain-
fully apparent in the sender issue displayed in “The Extra Pattern” on page 9:

// BAD!

class MyActor extends Actor {

52 | Chapter3:Best Practices

var counter = 0;

def receive = {
case DoSomethingAsynchronous =>

counter += 1

import context.dispatcher
Future {
if (counter < 10) println("Single digits!")
else println("Larger than single digits!")
}
}
}

This is scary code. We have a counter value that can change with every message that is
received. We then defer printing out some information based on the value of that
counter. We can’t say with any degree of certainty when that future will be executed, as
it’s dependent not only on whether there are threads available in the Actor’s own dis-
patcher, but also on when the kernel will schedule the thread to a physical core! You will
get very indeterministic results if you execute code like this.

If, for whatever reason, you must close over mutable state in a future lambda, immedi-
ately copy it into an immutable local field. This will give you assurance that you've
stabilized the value locally within the lambdas context to ensure that nothing unexpec-
ted can happen to you:

// GOOD!
class MyActor extends Actor {
var counter = 0;
def receive = {
case DoSomethingAsynchronous =>
counter += 1

import context.dispatcher

val localCounter = counter

Future {
if (localCounter < 10) println("Single digits!")
else println("Larger than single digits!")

}

}
}

In this second example, we capture the counter value at the time the message was han-
dled and can be assured that we will have that exact value when the future’s deferred
operation is executed.

Use Immutable Messages with Inmutable Data

Another possible issue is sending data between actors. We all know that while you may
define an immutable value, that does not mean that the attributes of that object are
immutable as well. Java collections have long been the prime example of this: merely

Don't Expose Actors | 53

defining their variables as final means that you can’'t perform reassignment of that vari-
able name to a new instance of the collection, not that the contents of that collection
itself can’t be changed.

If you find yourself in a position where you need to send a mutable variable in a message
to another actor, first copy it into an immutable field. The reasons for this are the same
as stabilizing a variable before using it in a future—you don’t know when the other actor
will actually handle the message or what the value of the variable will be at that time.
The same goes for when you want to send an immutable value that contains mutable
attributes.

Erlang does this for you with copy on write (COW) semantics, but we don't get that for
free in the JVM. Assuming your application has the heap space, take advantage of it.
Hopefully, these copies will be short-lived allocations that never leave the Eden space
of your garbage collection generations, and the penalty for having duplicated the value
will be minimal.

Help Yourself in Production

Asynchronous programming, regardless of the paradigm, is very difficult to debug.
Anyone who tells you otherwise is pulling your leg, being sarcastic, or trying to sell you
something. If you've merely used a ThreadPoolExecutor in Java and spawned runna-
bles, or more recently, tried the ForkJoinPool, what happens if something goes awry
on the thread that was spawned? Was the thread that sent that other thread off and
running notified? No. Unless you made some effort to at least log when errors occur in
that other thread, you may never know that the failure even occurred, if you didn’t create
the ForkJoinPool with the constructor that allowed you to register a generic Thread.Un
caughtExceptionHandler callback.

This is one of the primary reasons that supervisor hierarchies and actors are such pow-
erful tools. Now, we can not only know when failure happens in asynchronous tasks,
but we can also define behaviors appropriate to those failures. The same goes for Scala’s
future implementation, where you can define behavior that is executed asynchronously
depending on whether that deferred operation succeeded or failed.

That said, it is up to you, the developer, to come up with ways to give yourself clues
about what went wrong in production. We can’t merely attach a remote debugging
session to the JVM running the bad code because we would have had to start the JVM
with the -Xdebug flag set, which would have prevented a lot of very important runtime
optimizations in the Just In Time (JIT) compiler from being performed. That would be
terrible for our application’s performance. So what can we do? Monitor everything!

54 | Chapter3:Best Practices

Make Debugging Easier

First of all, you need to give yourself as much visibility as possible. You want to be able
to use tools that will show you what is happening live in production at any time. That
means you need to instrument your application with JMX or do something so that you
can see the state inside of your actors at runtime. The Typesafe Console is a wonderful
tool that will show you all kinds of information based on nonfunctional requirements
about your application, but it will not show you internal state. And no tool that I know
of will. Whatever you must do, you must make state accessible in production.

Add Metrics

One of the best things you can do is use metrics inside of your application to provide
insight as to how well it is performing. I highly recommend you consider using Coda
Hale’s Metrics library. However, you have to think about what you want to capture before
you can add them, such as possibly writing your own Akka actor mailbox to capture
information about how quickly messages are handled. Nonetheless, using tools like
metrics in your application is extremely helpful, especially when you want to make
internal state externally visible, which cannot be provided by profiling tools such as the
Typesafe Console.

Externalize Business Logic

One thing that we’ve learned in object-oriented programming is that encapsulation is
key. And generally speaking, I agree. However, before Akka’s TestKit came along, the
only way to write functional logic that could be tested in isolation (without firing up
actors and sending messages that could result in side effects) was to write all business
logic in external function libraries.

This has a few added benefits. First of all, not only can we write useful unit tests, but we
can also get meaningful stack traces that say the name of where the failure occurred in
the function (but only if we define them as def methods, not as val functions, due to
the way Scala’s Scope works). It also prevents us from closing over external state, since
everything must be passed as an operand to it. Plus, we can build libraries of reusable
functions that reduce code duplication.

Since the introduction of Akka TestKit, this is no longer a rule to me. However, I still
find it prudent and useful to follow this best practice.

Use Semantically Useful Logging

Let’s be honest, it’s a pain to write log output. Sometimes we aren’t consistent with the
logging levels across all developers on a team. And each call to the logger, regardless of
whether or not the logging actually occurs, can hurt performance in the aggregate.
However, with asynchronous execution of your logic, it is your best tool to figuring out

Help Yourself in Production | 55

http://metrics.codahale.com/
http://metrics.codahale.com/

what is happening inside of your application. I've yet to see a tool that replaces it for
me.

That said, merely logging isn't enough. We take it for granted that Scalas case classes
will provide us with a useful toString method, and it certainly beats having to write
our own. However, how many times have you looked through such output, with your
head going side to side like you're watching a tennis match, looking for just one value
inside of some long output string, like that of a collection?

Pretty printing will help you immensely. Be profligate in your logging, but note that
Akka’s own logging does not have a trace level. At the debug level, include output that
will print out in a useful way so that you can quickly look at the output and discern the
important field and value, using tabs and carriage returns. For example:

// Using the new Scala 2.10 String Interpolation feature here
if (log.isDebugEnabled)
log.debug(s"Account values:\n\t" +
s"Checking: ScheckingBalances\n\t" +
s"Savings: $savingsBalances\n\tMoneyMarket: $mmBalances")

The reason we check to see if the debug log level is enabled first is so that we don't go
through the expense of assembling the output string if we’re not actually going to write
the statement.

So how do you enable logging in Akka? First of all, set up your configuration file
(application.conf if this is for your application; library.conf if this is for a library JAR)
with the following:

I'm using flat config for space considerations, but anyone familiar

with the Typesafe Config library should understand what I'm doing here
akka.loglevel = "DEBUG"

akka.event-handlers = ["akka.event.slf4j.Slf4jEventHandler"]
akka.actor.debug.autoreceive = on

akka.actor.debug.lifecycle = on

akka.actor.debug.receive = on

akka.actor.debug.event-stream = on

An example of the logback.xml file could be like so:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration scan="true" scanPeriod="5 seconds"s>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender"s
<encoder>
<pattern>
%date{IS08601} %-5level %logger{36} %X{sourceThread} - %msg%n
</pattern>
</encoder>
</appender>

<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"s
<file>effective_akka.log</file>

56 | Chapter3:Best Practices

<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
<fileNamePattern>/tmp/tests.%1.log</fileNamePattern>
<minIndex>1</minIndex>
<maxIndex>10</maxIndex>
</rollingPolicy>

<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggering
Policy">

<maxFileSize>500MB</maxFileSize>

</triggeringPolicy>

<encoder>

<pattern>

%date{IS08601} %-5level %logger{36} %X{sourceThread} - %msg%n

</pattern>

</encoder>

</appender>

<logger name = "akka.actor" level = "DEBUG" >
<appender-ref ref = "FILE" />

<appender-ref ref = "STDOUT" />

</logger>

<root>
<level value="INFQ" />
<appender-ref ref="STDOUT" />
</root>
</configuration>

Just put these two files in your classpath (i.e., sr¢/main/resources folder). Now you have

access to all of the output possible from Akka itself, without having to result to logging
each message receive and actor lifecycle event yourself.

Aggregate Your Logs with a Tool Like Flume

If you have a distributed actor application across multiple nodes, you want to use a tool
like Flume to aggregate all of your actor logs together. Akka logging is asynchronous
and therefore nondeterministic: it’s entirely possible that the ordering of the aggregated
log output will not be exactly right, but that’s okay. Having one rolling log file as opposed
to having to look at them across multiple machines is a much simpler task. Just imagine
the timestamp variance possibilities if you don’t aggregate.

Use Unique IDs for Messages

This is a critical tool for debugging. Every one of your messages should be a case class
instance with an ID associated with it. As a general rule, do not pass literals and do not
pass objects (though I've always felt it’s okay when you pass a case object Start).

Help Yourself in Production | 57

Why do I want to do this? Because it makes debugging via log files that much easier.
Now, if I know the specific message ID that led to a problem, I can grep/ack/ag (ag is
the command of The Silver Searcher) the output logs for all messages containing that
ID and view the flow of that message through my system. That is, assuming I logged the
output when the message was received and handled.

I've seen implementations where every actor message was passed with a UUID to
uniquely identify it. That is great, since the odds of two UUIDs ever being exactly the
same is infinitesimal. However, java.util.UUID instances are expensive to create, so
unless you're generating billions of messages daily, this may be more unique than you
actually need.

For example, would it suffice to use some value where the likelihood of a collision over
a day or a few hours was low? We generally know when an error occurs, as far as the
timestamp we should expect to see associated with that ID. If we grep the logs, and it
returns a bunch of output for when the error occurred, as well as some from the day
before or several hours after, we've at least whittled down the output to something
manageable, and the ID has been useful. And hopefully cheaper to create. There are
GUID generation libraries available with a simple search of the Internet, if you are so
inclined.

Tune Akka Applications with the Typesafe Console

One of the biggest questions I encounter among users of Akka is how to use dispatchers
to create failure zones and prevent failure in one part of the application from affecting
another. This is sometimes called the Bulkhead Pattern. And once I create the failure
zones, how do I size the thread pools so that we get the best performance from the least
amount of system resources used? The truth is, every application is different, and you
must build your system and measure its performance under load to tune it effectively.
But here are some tips and tricks.

Note that the Typesafe Console is available for free to all developers and will be integrated
into the Typesafe Activator to make it easier to set up and use quickly.

Fixing Starvation

Most people building an Akka application start out with a single ActorSystem, using
the default dispatcher settings with a minumum number of threads of 8 and a maximum
number of threads of 64. As the application grows, they notice that futures time out
more frequently, since futures in Akka actors often use the actor’s dispatcher as their
ExecutionContext implicitly. Eventually, as more functionality is assigned to be run on
threads, the default dispatcher begins to become overloaded, trying to service too many
simultaneous tasks.

58 | Chapter3:Best Practices

vww allitebooks.cond

http://typesafe.com/activator
http://www.allitebooks.org

How do you fix it?

Because of the limited resources of one thread pool for all actors and futures in their
application, resource starvation is occurring. When that happens, I recommend that
you identify actors using futures and consider where you can use a separate dispatcher
or ExecutionContext for those futures so that they do not impact actors with their
thread usage. We want to limit the impact of the work of those futures on the actors
handling messages in their mailbox. If you have the Typesafe Console, you can see the
starvation occuring as the maximum latency in handling messages at the dispatcher
level increases.

Does PinnedDispatcher help?

As a temporary workaround, I have noticed some people try to use a PinnedDispatch
er for each actor so that starvation is less likely. Actors created with PinnedDispatch
er will receive their own dedicated thread that lives up until the keep-alive-time con-
figuration parameter of the ThreadPoolExecutor (default of 60 seconds) is not excee-
ded. However, this is really not a viable solution for production except for very specific
use cases, such as service-oriented actors handling a lot of load. For most other tasks,
you want to share resources among actors with similar roles and risk profiles so that
you aren’t using large amounts of resources dedicated to each actor. In addition, starting
and restarting threads takes time, and each has a default size of 512 KB. You will use up
your memory very quickly in a system that relies primarily on actors created with
PinnedDispatcher.

Failure zones

The key to separating actors into failure zones is to identify their risk profile. Is a task
particularly dangerous, such as network 10? Is it a task that requires blocking, such as
database access? In those cases, you want to isolate those actors and their threads from
those doing work that is less dangerous. If something happens to a thread that results
in it completely dying and not being available from the pool, isolation is your only
protection so that unrelated actors aren't affected by the diminishment of resources.
With the Typesafe Console, you can visualize the performance of your dispatchers so
that you can be certain that you have properly provided “bulkheads” between actors
doing blocking work and those that should not be affected.

Routers

You also may want to identify areas of heavy computation through profiling, and break
those tasks out using tools such as routers. For those tasks that you assign to routers,
you might also want them to operate on their own dispatcher so that the intense com-
putation tasks do not starve other actors waiting for a thread to perform their work.
With the Typesafe Console, you can visualize the isolation of work via actors and their
dispatcher to be certain that the routers are effectively handling the workload.

Tune Akka Applications with the Typesafe Console | 59

Sizing Dispatchers

Now the question becomes how to size your dispatchers, and this is where the Typesafe
Console can be very handy. In systems where you have several or many dispatchers,
keep in mind that the number of threads that can be run at any time on a box is a function
of how many cores it has available. In the case of Intel boxes, where hyperthreading is
available, you could think in terms of double the number of cores if you know that your
application is less CPU-bound. I recommend sizing your thread pools close to the
number of cores on the box where you plan to deploy your system and then running
your system under a reasonable load and profile with the Typesafe Console. You can
then externally configure the thread pool sizes and check the impact at runtime.

The Parallelism-Factor Setting

When using the Typesafe Console, watch the dispatcher’s view to see if the latency of
message handling is within acceptable tolerances of your nonfunctional requirements,
and if not, try adjusting the number of threads required upward. Remember, you're
setting the minimum number of threads, the maximum number of threads, and the
parallelism-factor. This is the ceiling of the number of cores on your box multiplied by
that factor is calculated to determine the thread pool size, bounded by the max and min
settings you give.

Actor Mailbox Size

The Typesafe Console also shows you something else that is very important to watch—
the size of each actor’s mailbox. If you see an actor whose mailbox is perpetually in-
creasing in size, you need to retune the threads for its dispatcher or parallelize its task
by making it a router so that it has the resources it needs to keep up with the demands
placed on it by the system. The receipt of messages into an actor’s mailbox can be bursty
in nature, but you shouldn’t have actors with mailboxes that aren’t handling the traffic
coming to them fast enough to keep up with the load.

Once you have an idea of the number of threads you need to handle burstiness in your
application (if any), sit down with your team and determine the minimum and
maximum bounds of each thread pool. Don’t be afraid to add a few extra threads to the
max to account for possible thread death in production, but don’t go overboard.

Throughput Setting

Also, pay close attention to your throughput setting on your dispatcher. This defines
thread distribution “fairness” in your dispatcher, telling the actors how many messages
to handle in their mailboxes before relinquishing the thread so that other actors do not
starve. However, a context switch in CPU caches is likely each time actors are assigned
threads, and warmed caches are one of your biggest friends for high performance. It

60 | Chapter3:Best Practices

may behoove you to be less fair so that you can handle quite a few messages consecutively
before releasing it.

Edge Cases

There are a few edge cases. If you have a case where the number of threads is equal to
the number of actors using the dispatcher, set the number extremely high, like 1,000. If
your actors perform tasks that will take some time to complete, and you need fairness
to avoid starvation of other actors sharing the pool, set the throughput to 1. For general
usage, start with the default value of 5 and tune this value for each dispatcher so that
you get reasonable performance characteristics without the risk of making actors wait
too long to handle messages in their mailboxes.

Tune Akka Applications with the Typesafe Console | 61

About the Author

Jamie Allen is the director of consulting for Typesafe, the company that makes the Scala
programming language, the Akka toolkit, and Play Framework. Jamie has been building
actor-based systems with Scala since 2009. Jamie lives in the San Francisco Bay Area
with his wife, Yeon, and their three children.

Colophon

The animal on the cover of Effective Akka is the black grouse (Tetrao tetrix).

The cover image is from Meyers Kleines Lexicon. The cover font is Adobe ITC Gara-
mond. The text fontis Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What Problems Are We Solving with Akka?
	Distributed
	Asynchronous
	High Performance

	Reactive Applications
	Use Case for This Book: Banking Service for Account Data
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Actor Application Types
	Domain-driven
	Domain-driven Messages Are “Facts”

	Work Distribution
	Routers and Routees
	BalancingDispatcher Will Be Deprecated Soon!
	Work Distribution Messages Are “Commands”

	Chapter 2. Patterns of Actor Usage
	The Extra Pattern
	The Problem
	Avoiding Ask
	Capturing Context
	Sending Yourself a Timeout Message

	The Cameo Pattern
	The Companion Object Factory Method
	How to Test This Logic

	Chapter 3. Best Practices
	Actors Should Do Only One Thing
	Single Responsibility Principle
	Create Specific Supervisors
	Keep the Error Kernel Simple
	Failure Zones

	Avoid Blocking
	Futures Delegation Example
	Pre-defining Parallel Futures
	Parallel Futures with the zip() Method
	Sequential Futures
	Callbacks versus Monadic Handling
	Futures and ExecutionContext
	Push, Don’t Pull
	When You Must Block
	Managed Blocking in Scala

	Avoid Premature Optimization
	Start Simple
	Layer in Complexity via Indeterminism
	Optimize with Mutability
	Prepare for Race Conditions

	Be Explicit
	Name Actors and ActorSystem Instances
	Create Specialized Messages
	Create Specialized Exceptions
	Beware the “Thundering Herd”

	Don’t Expose Actors
	Avoid Using this
	The Companion Object Factory Method
	Never Use Direct References
	Don’t Close Over Variables
	Use Immutable Messages with Immutable Data

	Help Yourself in Production
	Make Debugging Easier
	Add Metrics
	Externalize Business Logic
	Use Semantically Useful Logging
	Aggregate Your Logs with a Tool Like Flume
	Use Unique IDs for Messages

	Tune Akka Applications with the Typesafe Console
	Fixing Starvation
	Sizing Dispatchers
	The Parallelism-Factor Setting
	Actor Mailbox Size
	Throughput Setting
	Edge Cases

	About the Author

