
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dojo
The Definitive Guide

www.allitebooks.com

http://www.allitebooks.org

Other resources from O’Reilly

Related titles Adding Ajax

Ajax: The Definitive Guide

CSS Cookbook™

CSS: The Definitive Guide

Dynamic HTML:
The Definitive Reference

JavaScript: The Definitive
Guide

JavaScript: The Good Parts

Learning JavaScript

Painting the Web

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

Dojo
The Definitive Guide

Matthew A. Russell

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Dojo: The Definitive Guide
by Matthew A. Russell

Copyright © 2008 Matthew A. Russell. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Sumita Mukherji
Copyeditor: Colleen Gorman
Proofreader: Sumita Mukherji

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:

June 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Dojo: The Definitive Guide, the image of a lion-tailed monkey, and related trade
dress are trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51648-2

[M]

www.allitebooks.com

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

This book is dedicated to every single

web developer who has lost sleep because of

ridiculous browser idiosyncrasies.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Table of Contents

Foreword . xiii

Preface . xv

Part I. Base and Core

1. Toolkit Overview . 3
Overview of Dojo’s Architecture 3
Prepping for Development 7
Terminology 12
Bootstrapping 15
Exploring Dojo with Firebug 21
Summary 31

2. Language and Browser Utilities . 32
Looking Up DOM Nodes 32
Type Checking 33
String Utilities 34
Array Processing 35
Managing Source Code with Modules 40
JavaScript Object Utilities 48
Manipulating Object Context 52
DOM Utilities 55
Browser Utilities 62
Summary 66

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

3. Event Listeners and Pub/Sub Communication . 67
Event and Keyboard Normalization 67
Event Listeners 70
Publish/Subscribe Communication 76
Summary 79

4. AJAX and Server Communication . 80
Quick Overview of AJAX 80
AJAX Made Easy 82
Deferreds 89
Form and HTTP Utilities 98
Cross-Site Scripting with JSONP 99
Core IO 101
JSON Remote Procedure Calls 110
OpenAjax Hub 112
Summary 113

5. Node Manipulation . 114
Query: One Size Fits All 115
NodeList 121
Creating NodeList Extensions 130
Behavior 131
Summary 135

6. Internationalization (i18n) . 136
Introduction 136
Internationalizing a Module 137
Dates, Numbers, and Currency 140
Summary 143

7. Drag-and-Drop . 144
Dragging 144
Dropping 155
Summary 164

8. Animation and Special Effects . 165
Animation 165
Core fx 176

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

Animation + Drag-and-Drop = Fun! 185
Colors 186
Summary 194

9. Data Abstraction . 196
Shifting the Data Paradigm 196
Data API Overview 197
The APIs 198
Core Implementations of Data APIs 204
Summary 221

10. Simulated Classes and Inheritance . 222
JavaScript Is Not Java 222
One Problem, Many Solutions 223
Simulating Classes with Dojo 227
Multiply Inheriting with Mixins 237
Summary 241

Part II. Dijit and Util

11. Dijit Overview . 245
Motivation for Dijit 245
Accessibility (a11y) 248
Dijit for Designers 251
The Parser 257
Hands-on Dijit with NumberSpinner 261
Overview of Stock Dijits 266
Dijit API Drive-By 270
Summary 271

12. Dijit Anatomy and Lifecycle . 272
Dijit Anatomy 272
Dijit Lifecycle Methods 275
Your First Dijit: HelloWorld 282
Parent-Child Relationships with _Container and _Contained 293
Rapidly Prototyping Widgets in Markup 293
Summary 295

x | Table of Contents

13. Form Widgets . 297
Drive-By Form Review 297
Form Dijits 300
TextBox Variations 304
FilteringSelect 323
MultiSelect 324
Textarea Variations 325
Button Variations 325
Slider 333
Form 338
Summary 339

14. Layout Widgets . 340
Layout Dijit Commonalities 340
ContentPane 342
BorderContainer 346
StackContainer 351
TabContainer 353
AccordionContainer 355
Rendering and Visibility Considerations 357
Summary 358

15. Application Widgets . 359
Tooltip 359
Dialog Widgets 360
ProgressBar 364
ColorPalette 366
Toolbar 367
Menu 369
TitlePane 374
InlineEditBox 375
Tree 377
Editor 388
Summary 395

16. Build Tools, Testing, and Production Considerations 396
Building 396
Dojo Objective Harness (DOH) 407
Browser-Based Test Harness 411

Table of Contents | xi

Performance Considerations 413
Summary 415

A. A Firebug Primer . 417

B. A Brief Survey of DojoX . 428

Index . 431

xiii

Foreword1

Truth be told, it was DHTML that got me kicked out of college.

I still vividly recall the 3 A.M. moments when endless trolling of MSDN documenta-
tion and W3C specifications and hundreds of comp.lang.javascript posts all coa-
lesced into dozens of “what if...” moments. Like hot brands on the hide of my brain,
each of these tiny discoveries would not let their mark off of me until I had
exhausted all inroads into making the browser do what I wanted it to. Back then, a
small community of folks were all doing the same, feverishly one-upping each other
and posting to the DHTMLCentral forums with each new component, technique, or
hack to make things work on Netscape. Nothing about 7 A.M. Latin conjugations or
endless lectures on Java™ held much appeal by comparison to discovering the true
beauty of closures, or finally, completely understanding prototypal inheritance. Even
my Christmas holidays were engulfed in JavaScript learning and hacking. I’m sure
my girlfriend and my parents worried for me greatly, but they never said anything.
From the ashes of my truncated academic career came an understanding of open
source (http://opensource.org), lasting friendships, and, eventually, Dojo.

Over time, the job of the DHTML hacker has changed. We know most of the tricks
that we can expect a browser to do, and where there is overlap between browsers,
we’ve probably already exploited it... just look at the depth and diversity of modules
in Dijit and DojoX. The work of a DHTML/Ajax developer now is to press the avail-
able technology into the service of users and developers in ways that are better for
end users and developers alike. The story of Dojo is the story of that transition. A
beautiful architecture that fails to deliver better things in the lives of users is a fail-
ure. Likewise, beautiful graphics and interfaces that aren’t maintainable, can’t be
coherently understood by developers, and that make designer/developer collabora-
tion harder aren’t going to get us where we want to be. All of us involved with Dojo
have matured along with the Web, and with the release of Dojo 1.0 and this book,
it’s safe to say that Dojo has fully arrived. The roadmap documents we started so
long ago now have all of the boxes checked, sites that serve billions of page views a
month lean on Dojo for their entire user experience, and large teams of designers and
developers work together to create better experiences on top of the toolkit.

http://opensource.org

xiv | Foreword

These kinds of accomplishments aren’t the work of one person, or even a small team.
The number of people who have contributed to Dojo’s evolution, believed in the
project, and worked together to deliver a better Web are too numerous to mention.
We copied what we thought were the best bits of the structures of other projects, and
the result has been a level playing field and rules that are fair to users, contributors,
and sponsors alike. Dojo is proof that open source isn’t just a handy distribution
model for closed systems, but that collaborative, open projects can thrive when they
adopt policies that let users trust a project and when those inside the project finds
ways to trust each other. For all of the technical achievements embodied in the tool-
kit, I’m most proud that we’ve done it in the open, with anyone who will join us, and
done it honestly. We set out to build a project that values all kinds of contributions,
not just code. A project that would help change the tone of open source develop-
ment to encourage collegial, civil discourse. A project dedicated to building with the
community and not to treat users as “them.” “They” are “us” and this book makes
plain the open philosophy under which the toolkit was built, and by which we
encourage all those reading it to help us evolve it for the future.

By the time I met Matthew Russell face-to-face, this book was nearly “in the can.”
Open source is funny like that—you can work for years with someone, yet the pieces
picked up over mailing lists and IRC don’t fall into place until you’re talking about
the mundane and thrilling over a good local ale (or, in a pinch, Guinness). It wasn’t
until Matthew and I were comparing notes in an old, small, quiet pub in San Fran-
cisco’s North Beach district that it clicked: his technical depth, curiosity, and ability
to meet you on your level are the hallmarks of a great teacher. As I reviewed the draft
chapters in turn, I found myself constantly deleting what I’d just written by way of
critique as Matthew laid out the concepts in just the right order. Matthew’s illumina-
tions make Dojo approachable, friendly, and productive. The constant delight of dis-
covery that glows so brightly when you talk to Matthew in person are a true gift to
this volume.

It has been like this for me for nearly four years now as I’ve had the chance to put
faces to the IRC handles and forum posts. In open source, each person enters your
world as a technical problem to be solved, a bug to be fixed, or a feature to be con-
sidered. Only later is the full measure of the people you’re working with made plain,
and it’s nearly always a breathtaking revelation. The kindness, selfless effort, and tal-
ent that are freely given are humbling particularly in light of the personal sacrifices
that each person makes to be a part of the project. Matthew’s book is a credit to the
amazing team I’ve had the honor to work with.

I can’t say that I recommend dropping out of college to work on things that no one
will pay you for, but if that fire starts in your brain, don’t ignore it. If it leads you to
people only half as wonderful as those I’ve met and now count among my friends, it
will be worth every sleepless night.

—Alex Russell
Cofounder, Dojo Toolkit, and Dojo Foundation

President

Preface | xv

Preface2

Users now demand web applications that look and feel like those of the desktop.
Home computers have long since become ubiquitous, web browsers are the enabling
platform, and virtually everyone on the planet is a potential end user. Software devel-
opers are spending more time than ever getting their applications into the browser
for a potential audience of millions—many of them trying to grab a handful of the
multibillion dollar advertising wave, while others are capitalizing on the sheer ele-
gance and convenience of an application that is impressive enough that people will
be willing to pay for access to it.

Of course, just because the web browser is the enabling platform does not mean that
it is the ideal platform—at least not in its current manifestation. Corporate politics,
less than uniform implementations of the various specifications for web browser
technologies, and a curious evolution of protocols and standards over almost two
decades have made deploying an application in the browser a lot more difficult than
anyone might have ever predicted.

But in a world where necessity breeds imagination and innovation, there is always
hope.

Fortunately, the rich and powerful functionality JavaScript provides makes it possi-
ble to manipulate, customize, and augment a web page on the fly, and in doing so,
makes it possible to provide a layer of insulation between the developer and the bare
metal of the web browsers—even all of them at the same time.

This book is about Dojo, a JavaScript toolkit that provides that layer of insulation
between you and the hard knocks of browser inconsistencies by leveraging JavaScript
and other web technologies for all that they’re worth—not by attempting to build a
brittle, superficial layer to reimplement or work around them. Dojo makes a great
addition to a project that’s already using YUI!* or even a server side framework that
might benefit from offloading some of the work over to the client.

* http://developer.yahoo.com/yui/

xvi | Preface

Dojo packs the standard JavaScript library you’ve always wanted, the collection of
drop-in replacements for the customized HTML controls and CSS layout hacks
you’ve implemented again and again, and the build tools and unit tests that would
have been so handy when it came time for migrating to production. Dojo isn’t just a
JavaScript toolkit, Dojo is the JavaScript toolkit—and right now is a great time to
learn how to use it to make your life easier and the experience of your end users
everything that it possibly can be. Dojo is revolutionizing web development, and
gaining momentum fast.

Whatever web development project may be on your horizon, rest assured that Dojo
can help you realize it quickly and with minimal boilerplate so that you’re left with
the cleanest, most maintainable implementation possible. My sincere hope is that
this book relates Dojo’s story so effectively that you’ll spend minimal time scram-
bling around for answers and be able to fully concentrate on engaging the challeng-
ing (and far more interesting) problems that you’ve set out to solve.

Why Dojo?
Undoubtedly, there is a swatch of JavaScript toolkits available today, so you might
already be wondering what Dojo provides that you can’t get somewhere else. Keep-
ing in mind that the very nature of a toolkit or library being built upon a completely
interpreted language makes it theoretically possible for any other toolkit to do the
very same things, it’s not so much what can Dojo do that other can’t do; rather, it’s
more about the effectiveness of getting work done along with the community, philos-
ophy, and licensing aspects that surround it.

You might think of it like this: it’s theoretically possible to build a house using only a
hammer, a shovel, a saw, and a lot of nails—but at what expense? Clearly, some
heavy machinery and some carpenters to support you along the way would be a tre-
mendous boon. The situation with Dojo is quite similar. The following list attempts
to highlight (in no particular order) some of the places where Dojo really shines and
differentiates itself:

Community
Although it could be considered a nontechnical issue, Dojo’s open community is
one of its top strengths. The Dojo Foundation, a nonprofit organization set up for
the purpose of providing a vendor-neutral guardian of intellectual property, backs
the toolkit (and other interesting projects such as Cometd,* DWR,† and Open-
Record‡), and is sponsored and supported by IBM, AOL, Sun, OpenLaszlo,

* See http://www.cometd.com or http://www.cometdaily.com or a great coverage on Comet.

† See http://getahead.org/dwr for more on Direct Web Remoting.

‡ See http://www.openrecord.org for more on OpenRecord.

http://www.cometd.com
http://www.cometdaily.com
http://getahead.org/dwr
http://www.openrecord.org

Preface | xvii

Nexaweb, SitePen, BEA, Renkoo, and a slew of the greatest DHTML hackers in
the world. If that doesn’t tell you that it has good friends backing it, then what
possibly could?

As a liberally licensed open source project with extremely low barriers to entry,
your voice will be heard if you want it to be heard. If you pop into the IRC chat
room #dojo on freenode.net and start talking, there’s virtually no chance that
you won’t be heard by a committer or significant contributor to the project.
Additionally, weekly IRC meetings are currently held on #dojo-meeting each
Wednesday from 3 to 6 P.M. (PST), and you’re more than welcome to pop in
and eavesdrop or participate in the official meetings where both strategic and
tactical issues are routinely discussed.

Knowing there’s transparency in how Dojo is steered strategically and devel-
oped tactically is very compelling. As other JavaScript toolkits and libraries
become increasingly commoditized, the Dojo community really stands out as
different. The organizations and individuals who make up the team of commit-
ters (not to mention the thousands of individual developers out there building
real web sites and applications) all give Dojo a particular character and ground-
ing for success.

Liberal (and clean) licensing
Dojo is open source software that is liberally licensed under the terms of either
the modified Berkeley Software Distribution (BSD) license or the Academic Free
License (AFL) version 2.1. Except as noted in a few per-module license files, you
get to choose the license you want to adopt for your specific work. All external
contributions are required to be compatible with the BSD or AFL licenses, and
all contributors must sign a Contributor License Agreement (CLA) that ensures
the Dojo Foundation has clear title to all contributions—thereby protecting all
users of the toolkit from intellectual licensing conundrums. The benefit of clean
licensing is markedly not the case with several other popular JavaScript toolkits
(that shall be left unnamed).

Depth and breadth
While some toolkits tackle specific pieces of a problem space, Dojo provides an
end-to-end solution for development in the browser. Everything from standard
library utilities to turnkey widgets to build tools and a testing framework—it’s
all in there, so you seldom have to look elsewhere. But don’t let the breadth fool
you into thinking that there is code bloat, because the build tools allow you to
produce custom versions of the toolkit that can be as streamlined as your appli-
cation permits.

While it is often the case that breadth hampers depth, it’s not what happens
with Dojo at all. Even inside of Base, the tiny kernel that provides the founda-
tion for the rest of the toolkit, you have more functionality than you can shake a
stick at—facilities for universally querying the DOM via CSS3 selectors, AJAX

xviii | Preface

utilities, event normalization amongst various browsers—and then some. That
doesn’t even begin to touch of the rich library of application, form, and layout
widgets, or the build tools.

Although the breadth and depth of Dojo produces a lot of complexity, the infra-
structure is painstakingly reviewed on a continual basis by the some of the best
web hackers in the world for high quality coding standards, consistent naming
conventions, performance, maintainability, and overall ease of use for the appli-
cation developer. Rest assured that you will be able to create a great user experi-
ence with Dojo.

Portability
While the JavaScript language is dynamic, powerful, and extremely expressive,
there are still myriad issues that come up routinely that amount to fairly mun-
dane engineering efforts. It’s quite instructive to go through the motions that
solve a central algorithmic problem or engineering conundrum, but at the end of
the day, any code that you develop is code that you have to maintain, update,
debug, and document.

As if those aren’t enough good reasons, the motivation for having a JavaScript
standard library may be especially compelling given the existing state of compat-
ibility amongst browsers for various feature sets. While attempting to develop a
feature that works uniformly across a set of modern browsers may not always be
rocket science, it can be painfully tedious work that can demoralize even the
most seasoned professionals.

The bottom line is that it’s almost a certainty that as an application developer,
you aren’t going to be receiving any return on investment (or having very much
fun) by jumping through all of those hoops. Instead, pick up production quality
code that a community of other developers has developed, debugged, and
tested—and then consider contributing back. Hopefully, that “giving back” part
will come naturally enough once you’ve saved enough time and money by way
of community-supported, open source software.

Pragmatic philosophy
Dojo embraces JavaScript for what it is instead of treating it like it’s something
that’s broken and thereby trying to create a brittle, artificial layer on top of it
that almost redefines it. While Dojo exposes tremendous functionality that pro-
tects you from the bare metal of the browser and does many things like normal-
ize browser events behind the scenes so that you don’t even have to think twice
about them, it never attempts to reinvent JavaScript. For example, you won’t
find Dojo-specific functions for operations like deleting DOM nodes or walking
the DOM tree because operations like childNodes, firstChild, lastChild, and
removeChild work just fine across all browsers. However, whenever there are
known inconsistencies, Dojo steps in to provide you with the tools you need to
write portable code.

www.allitebooks.com

http://www.allitebooks.org

Preface | xix

For that matter, Dojo doesn’t attempt to lockout or constrain your use of other
JavaScript libraries; it is not uncommon to see it used side-by-side with another
technology like DWR or YUI!. And of course, as a client side technology, you are
obviously free to use whatever technologies you’d like on the server since Dojo is
server-agnostic.

A comprehensive survey of all of the popular JavaScript toolkits would reveal that
they all have considerable overlap by virtue of being popular in the first place. So,
when it comes time to make a decision about which toolkit or collection of toolkits is
right for you, it is worth the time to really ponder the value of community, transpar-
ency, licensing, and the philosophy governing the technology in which you are about
to invest time and possibly even money. Namely, you want to have support (commu-
nity and documentation) when you need it, you don’t want to invest in a project
that’s too brittle to be maintained or about to tank, and you want minimize your
time working to plug holes that some other toolkit has already plugged.

What’s in This Book
Part I of this book is very much a standard library reference that exposes you to the
various nooks and crannies of Base and Core, the parts of the toolkit that comprise a
JavaScript standard library. Base comes across the wire* at less than 30KB, and is
feverishly optimized for speed, size, and utility. Packing rich functionality as diverse
as AJAX calls, DOM querying based on CSS selector syntax, standardized event
propagation, and functional programming utilities like map and filter, you’ll quickly
wonder how you ever got by without it. Core includes lots of additional features for
operations like animations and drag-and-drop; while they are incredibly useful, they
just aren’t as common to all use cases as the machinery in Base.

One caveat about Part I of this book is that it defers a full-blown dis-
cussion of the parser until Chapter 11, when Dijit is introduced,
because the most common use case of the parser is for parsing wid-
gets. The parser is briefly mentioned in a Chapter 7 sidebar, though,
because it is quite helpful for conveniently setting up drag-and-drop.

Part I includes the following chapters:

Chapter 1, Toolkit Overview
Provides a quick introduction to the toolkit including topics such as Dojo’s
architecture, how to get and install Dojo, how to get Dojo into a web page, and
some sections that provide some examples so that you can see Dojo in action.

* As we’ll be discussing more in subsequent chapters, “across the wire” refers to the size of content after it has
been gzipped, because that’s normally the way web servers transfer web pages to clients.

xx | Preface

Chapter 2, Language and Browser Utilities
Provides an extensive overview of commonly used utility functions that are
extremely common and useful for any web application. Most of these functions
are designed to smooth out browser incompatibilities, plug holes where JavaScript
or DOM implementations came up a bit short, and otherwise reduce the boiler-
plate you have to write to get some work done.

Chapter 3, Event Listeners and Pub/Sub Communication
Introduces constructs for managing communication within the page. The two
primary paradigms discussed involve directly attaching to a specific event that
happens, whether in the DOM, on an Object, or a standalone function and the
publish/subscribe idiom that involves broadcasting a topic and allowing any
arbitrary subscriber to receive and respond as needed.

Chapter 4, AJAX and Server Communication
Provides a quick overview of AJAX and the toolkit’s machinery for communicat-
ing with the server via the XMLHttpRequest Object. Deferreds are also dis-
cussed, which provide a uniform layer for handling asynchronous events; you
might think of Deferreds as almost providing the illusion of having a thread
available even though you cannot program threads in JavaScript. Other core
facilities such as cross-domain JSON, Remote Procedure Calls, and IFRAME trans-
ports are discussed.

Chapter 5, Node Manipulation
Introduces the toolkit’s mechanism for universally querying the DOM using CSS
selector syntax, processing the lists of nodes that are returned using convenient
built-in functions that allow arbitrary events chains to be built up, and an idiom
for separating the behavior of DOM nodes from specific actions defined in
HTML markup.

Chapter 6, Internationalization (i18n)
Provides a quick overview and examples for internationalizing a web application
using the toolkit’s utilities; also includes an overview of the various constructs
that are available for manipulating inherently international concepts such as
dates, time, currency, and number formatting.

Chapter 7, Drag-and-Drop
Includes a fairly standalone tutorial on how Dojo makes adding drag-and-drop
to an application a breeze.

Chapter 8, Animation and Special Effects
Provides a fairly standalone tutorial on Dojo’s built-in machinery for animating
arbitrary CSS properties via a variety of effects such as wipes, slides, and fades.
Utilities for blending and manipulating colors are also included.

Preface | xxi

Chapter 9, Data Abstraction
Provides a discussion of Dojo’s data abstraction infrastructure, which provides a
mediating layer between application logic and specific backend data formats,
whether they be an open standard or a closed proprietary source.

Chapter 10, Simulated Classes and Inheritance
Ramps up for Part II on Dijit by introducing machinery for mimicking class-based
object-oriented programming with Dojo, which Dijit uses fairly extensively.

Part II systematically explores the rest of the toolkit, including complete coverage of
Dijit, the rich layer of drop-in replacements for all of those customized HTML con-
trols that have been written (and rewritten) so many times. Dijit is designed so that it
can be used in the markup with little to no programming required, and you’ll find
that it’s possible to build fantastic-looking web pages with a fraction of the effort
since they already look and behave much like user interface controls from desktop
applications.

Part II concludes with a discussion of the build system and unit testing framework
provided by Util. The build system includes a highly configurable entry point to
ShinkSafe, a tool that leverages the Rhino JavaScript engine to compress your code—
often by a third or more. DOH stands for the Dojo Objective Harness (and is a pun
on Homer Simpson’s famous “D’oh!” expletive) and provides a standalone system
for unit testing your JavaScript code.

Part II includes the following chapters:

Chapter 11, Dijit Overview
Introduces Dijit, discusses various issues such as design philosophy, accessibil-
ity, the parser (technically a Core facility, but with the most common use case of
parsing a page that contains dijits), and patterns for using dijits. The chapter
ends with an overview of each major Dijit subproject.

Chapter 12, Dijit Anatomy and Lifecycle
Digs deep into how a dijit is laid out on disk as well as how its lifecycle works
once it’s been instantiated and in memory. Provides a number of short examples
that accentuate the finer points of the lifecycle. Understanding the dijit lifecycle
is essential for the chapters that follow.

Chapter 13, Form Widgets
Provides a quick review of normal HTML forms and then jumps right into a
thorough survey of the form widgets, which are by far the most inheritance-
intensive collection available. The form widgets are drop-in replacements for all
of the common form elements that are used in virtually any web design; assort-
ments of commonly used buttons, specialized text boxes, and sliders are a few of
the topics covered. Additional derived elements such as drop-down combo
boxes that have been implemented and reimplemented far too many times by
now are also included.

xxii | Preface

Chapter 14, Layout Widgets
Introduces the layout widgets, a collection of widgets that provide the skeleton
for complex layouts that often involves tricky and tedious CSS, swapping in and
out tiles that go from being hidden to visible based on the application’s state,
tabbed layouts, and more.

Chapter 15, Application Widgets
Covers the remaining widgets in the toolkit, which loosely correspond to com-
mon application controls such as tooltips, modal dialogs, menus, trees, and rich
text editors.

Chapter 16, Build Tools, Testing, and Production Considerations
Wraps up the book with some of the most commonly overlooked yet important
topics for deploying an application; includes an extensive discussion of the build
tools that trivialize the effort entailed in compressing, minifying, and consolidat-
ing JavaScript to minimize file size and HTTP latency incurred, a unit testing
framework, and other production considerations that help to give your app that
last bit of pizzazz.

There are two supplemental appendixes to the book: a concise survey of DojoX, a
collection of specialized and experimental extensions, and a Firebug tutorial. While
DojoX is an absolute treasure chest of widgets and modules for anything from chart-
ing to cryptography to the much acclaimed and highly flexible grid widget, there are
fewer guarantees about stability or API consistency for DojoX subprojects than there
are for Base, Core, and Dijit; thorough coverage on DojoX could easily span multi-
ple volumes of its own.

The other appendix provides a handy Firebug tutorial that gets you up to speed with
all of its great features that will save you time when it becomes necessary to debug or
quickly explore new ideas through its command line style interface. If you haven’t
heard of Firebug, it’s a fantastic Firefox add-on that allows you to literally decon-
struct every facet of a page—anything from inspecting and manipulating style of
DOM nodes to monitoring the network activity to using a command-line interface
for executing JavaScript.

What’s Not in This Book
While this book necessarily attempts to provide the same kind of depth and breadth
of Dojo itself, there were a few topics that just couldn’t quite be squeezed into this
edition:

Web development 101
While this book provides in depth coverage of Dojo, it doesn’t provide a com-
plete web development tutorial that formally introduces elementary constructs
such as HTML, JavaScript, and CSS from scratch.

Preface | xxiii

Redundant API documentation
The vast majority* of Dojo’s API is definitively explained in this book and is gen-
erally captured into tables that are easy to reference. Because there’s so much
breadth to Dojo, it seemed especially helpful to make sure you get exposed to as
much of it as possible so that you’ll know what’s available when the need arises.
Dojo is a fluid project, however, so you’ll always want to double-check the
online documentation at http://api.dojotoolkit.org for the most comprehensive
authority. Unlike programming languages and more rigid application frame-
works, Dojo is a fluid project with a thriving community, so it is not unlikely
that the API may be enhanced for your benefit as new versions are released. But
do know that the project is committed to not breaking the 1.x API until at least
version 2.0, so in general, any API covered in this book will be perfectly valid for
quite some time. Even then, the parts of the API that do change will be well doc-
umented ahead of time.

Nonbrowser host environments
This book also doesn’t elaborate or provide examples on how you can use Dojo
outside of the typical browser environment (such as in a Rhino or Adobe AIR
environment) or include coverage on how you can use Dojo in combination with
other client-side frameworks such as DWR, YUI!, or Domino.

Open Source Software Is Fluid
Dojo is open source software with a thriving community, and as such, may add new
features at any time. This book is written to be completely up-to-date as of Dojo ver-
sion 1.1, but clearly, future versions could add more functionality. To be sure that
you’re as current as possible with the latest Dojo happenings, be sure to read the
release notes for versions more recent than 1.1.

Also, be advised that Dojo’s API is currently frozen until version 2.0, so all of the
examples and information in this book should be correct through the various minor
releases along the way. Even if you’re reading this book and version 2.0 has already
been released, the code examples should still work as the unofficial deprecation pol-
icy is that whatever is deprecated in a major release may not be axed until the next
major release. In other words, anything that is deprecated in version 1.x will survive
through until at least the 2.0 release, and maybe longer.

About You
This book assumes that you’ve done at least a mild amount of web development
with client-side technologies such as HTML, JavaScript, and CSS. You by no means,
however, need to be an expert in any of these skills and you really don’t need to

* From a conservative estimate, over 95% of the API for Base, Core, Dijit, and Util is covered in this book.

http://api.dojotoolkit.org

xxiv | Preface

know anything at all about what happens on a web server because Dojo is a client-
side technology; merely having dabbled with them enough to know what they are
and how they are used is more than enough.

If you are an existing web developer or even a hobbyist who is able to construct a
very simple web page and apply a dab of JavaScript and CSS to liven it up a bit, then
you should definitely keep reading. If you haven’t even heard of HTML, JavaScript,
or CSS, and have never done so much as written a line of code, then you might want
to consider picking up a good introduction on web development as a supplement to
this book.

Development Tools
With regard to development tools, although you could use your favorite text editor
and any web browser to do some effective development with Dojo, this book makes
frequent references to Firefox and the wonderful Firebug add-on that you can use to
debug and deconstruct web pages as well as tinker around with JavaScript in its con-
sole. Although you could use Firebug Lite with another browser like Internet
Explorer, the full version of Firebug is vastly superior and you won’t be disap-
pointed by it. (In general, a practice that’s commonly accepted is to develop with
Firefox using Firebug, but test frequently with IE.) You can get Firefox and Firebug
from http://getfirefox.com and http://getfirebug.com, respectively.

Two other tools you may want to consider for Firefox are Chris Pederick’s Web
Developer Toolbar, available at http://chrispederick.com/work/web-developer/, which
provides some additional tools that are useful during development, and the Clear
Cache Button Firefox add-on, available at https://addons.mozilla.org/en-US/firefox/
addon/1801, which is a button for your toolbar that you can use to quickly clear your
cache. Occasionally, it can be the case that your browser may “act up” and serve you
stale content; clearing the cache sometimes helps.

Essential Working Knowledge
Closures, context, and anonymous functions are some of the most important funda-
mental concepts in JavaScript, and because mastery of the toolkit involves more than
a casual understanding of these topics, this section is worth a careful read. Even
though it may sound like advanced material, these concepts are essential to master-
ing the JavaScript language and really understanding some of the underlying design
within the toolkit. You could try and pick up this knowledge as you go along, but if
you spend a little bit of time up front, you’ll find that many selections from the ensu-
ing chapters are considerably easier to understand.

Closures

A closure is essentially the coupling of data elements and the scope that contains (or
encloses) that data. Although typical situations involving a single global scope that

http://getfirefox.com
http://getfirebug.com
http://chrispederick.com/work/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/1801
https://addons.mozilla.org/en-US/firefox/addon/1801

Preface | xxv

contains some functions are fairly straightforward, nested functions have the ability
to really change things up. To illustrate, consider Example P-1.

Depending on your programming background, the previous code snippet might
actually surprise you. As it turns out, the value 10 is printed to the screen because, in
JavaScript, the entire scope chain is taken into account when evaluating a function.
In this case, the scope chain that is returned is associated with bar, which is returned
from evaluating foo. Thus, when barReference is evaluated, the value for x is looked
up on the fly, and is tracked down in the body of foo. This is directly contrary to
many programming languages, which would look up the context in the most imme-
diate scope.

In JavaScript, functions are “first-class” objects that you can pass
around, assign to variables, etc., and many of Dojo’s design patterns
leverage this characteristic heavily.

Although JavaScript closures are normally considered an advanced topic, the sooner
you have a firm grasp on closures, the sooner you’ll be on your way toward master-
ing the language and the better you’ll understand many pieces of Dojo’s design phi-
losophy. In practical terms, that means you’ll be more productive, able to track
down tricky bugs a lot faster, and perhaps even become a more interesting person.
(Well, two out of three isn’t bad.) Consult David Flanagan’s legendary JavaScript:
The Definitive Guide (O’Reilly) for an excellent analysis of closures.

Context

JavaScript’s extreme dynamism equips it with tremendous flexibility, and one of the
most interesting yet least understood facets of its dynamism involves context. You
probably already know that the default this context for browser-based JavaScript is
the global window object. For example, the following statements should evaluate to
true for virtually every browser implementation:

 //the default context for a document is the window
 console.log(window ==this); //true

Example P-1. Minimalist illustration of closures

function foo() {
 var x = 10;
 return function bar() {
 console.log(x);
 }
}

var x = 5;
var barReference = foo();
barReference(); //What gets printed? 10 or 5

xxvi | Preface

 //document is a shortcut for window.document
 console.log(document == window.document); //true

With respect to Function objects, the keyword this is specifically used to refer to its
immediate context. For example, you may have seen this used in a JavaScript Func-
tion object somewhat like the following:

function Dog(sound) {
 this.sound = sound;
}

Dog.prototype.talk = function(name) {
 console.log(this.sound + "," + this.sound + ". My name is", name);
}

dog = new Dog("woof");
dog.talk("fido"); //woof, woof. my name is fido

If you come from Java or a similar object-oriented background, the way that sound is
looked up relative to the current object probably seems familiar enough. Nothing
interesting is happening yet. However, matters can get more complicated if you bring
in the built-in call function. Take a moment to study the following contrived exam-
ple that introduces the call function at work:

function Dog(sound) {
 this.sound = sound;
}

Dog.prototype.talk = function(name) {
 console.log(this.sound + "," + this.sound + ". my name is", name);
}

dog = new Dog("woof");
dog.talk("fido"); //woof, woof. my name is fido

function Cat(sound) {
 this.sound = sound;
}

Cat.prototype.talk = function(name) {
 console.log(this.sound + "," + this.sound + ". my name is", name);
}

cat = new Cat("meow");
cat.talk("felix"); //meow, meow. my name is felix

cat.talk.call(dog, "felix") //woof, woof. my name is felix

Whoa! That last line did something pretty incredible. Through the cat object
instance, it invoked the talk method that is bound to the cat prototype and passed
in the name parameter to be used as usual; however, instead of using the sound that is
bound to cat’s this, it instead used the sound value that is bound to dog’s this
because dog was substituted in for the context.

Preface | xxvii

It’s well worth a few moments to tinker around with the call function to get more
comfortable with it if it’s new to you. In many less dynamic programming lan-
guages, the ability to redefine this would almost be ludicrous. As a potent language
feature, however, JavaScript allows it, and toolkits like Dojo leverage this kind of
inherent dynamism to do some amazing things. In fact, some of these amazing things
are coming up in the next section.

Although the intent of this book isn’t to provide exhaustive JavaScript
language coverage that you could read about in JavaScript: The Defini-
tive Guide, you may find it instructive to know that apply is a function
that works just like call except that instead of accepting an unspeci-
fied number of parameters to be passed into the target function, it
accepts only two parameters, the latter parameter being an Array,
which can contain an unsaid number of values that become the built-
in arguments value for the target function. Essentially, you’ll choose
the one most convenient for you.

Anonymous functions

In JavaScript, Function objects may be passed around just like any other type.
Although using anonymous functions inline can definitely provide some syntactic
sugar that reduces the clutter and makes code more maintainable, a perhaps more
significant feature of anonymous functions is that they provide a closure that pro-
tects the immediate context.

For example, what does the following block of code do?

//Variable i is undefined.

for (var i=0; i < 10; i++) {
 //do some stuff with i
}
console.log(i); // ???

If you thought that the console statement prints out undefined, then you are sorely
mistaken. A subtle but important characteristic of JavaScript is that it does not sup-
port the concept of blocked scope outside of functions, and for this reason, the
values of i and any other “temporary” variables defined during iteration, conditional
logic, etc., live on long after the block executes.

If it’s ever prudent to explicitly provide blocked scope, you could wrap the block
inside of a Function object and execute it inline. Consider the following revision:

(function() {
 for (var i=0; i < 10; i++) {
 //do some stuff with i
 }
})()
console.log(i); // undefined

xxviii | Preface

Although the syntax is somewhat clumsy, keeping it clear of artifacts can sometimes
prevent nasty bugs from sneaking up on you. Many Base language functions intro-
duced in the following chapters provide closure (in addition to syntactic sugar and
utility) to the code block being executed.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Style Conventions
Two additional conventions should also be noted as they relate to effectively com-
municating the meaning of content:

Qualifying references
Fully qualified namespaces are generally not used when the context is obvious.
For example, if a code listing just introduced a dijit.form.Button widget, then
the following discussion might opt to simply refer to the widget as Button.

www.allitebooks.com

http://www.allitebooks.org

Preface | xxix

Some terms such as constructor may be used in multiple ways within the same
paragraph or context. Whenever this happens, the constant width font is used to
differentiate whenever possible. For example, the sentence, “You create a wid-
get by invoking an ordinary JavaScript constructor function, but a widget also
has a special lifecycle method called constructor that can be used to perform ini-
tialization tasks” attempts to de-conflict the meaning of the term “constructor”
by applying the constant width font.

API listings
In general, this book strives to provide standalone API listings by using a con-
vention that relates the types of parameters by standardized constructor func-
tion names. For example, consider a function that would be invoked along the
lines of loadUpArray("foo", 4) and return back ["foo", "foo", "foo", "foo"].
The API listing would be related as follows:

loadUpArray(/*String*/ value, /*Integer*/ length) //returns Array

Because JavaScript is a very dynamic, weakly typed language, however, there are
some situations in which a parameter or value returned from a function could be
any possible value. In these cases, the convention Any will be used to relate this
feature. Whenever a parameter is optional, a question mark follows its type, like
so: /*Integer?*/.

If you end up browsing Dojo source code, you may notice that some of the
parameter names in the source code differ from the names the API listings use in
this book. Because JavaScript function parameters are unnamed and positional,
their actual names so far as an API listing is inconsequential; this language char-
acteristic was leveraged to relate API listings in the most intuitive manner. As
much care as possible was taken to provide API listings in the most uniform way
possible, but there are bound to be small deviations occasionally.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Dojo: The Definitive Guide, by Mat-
thew A. Russell. Copyright 2008 Matthew A. Russell, 978-0-596-51648-2.”

xxx | Preface

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596516482

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Writing this book has been much more than a brief stint of moonlighting and bap-
tism by fire. Rather, it has been a journey that started long before I’d ever even heard
of Dojo, JavaScript, or computers. This book is the logical fruition of life-changing
events—all involving incredible people. What follows is an ultra-condensed, semi-
chronological storyboard of the key happenings that all played a part in the pages
that you’re about to read.

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596516482
bookquestions@oreilly.com
http://www.oreilly.com

Preface | xxxi

This book is the culmination of seemingly disparate events in my life, but the com-
mon thread amongst all of these events is the incredible people involved in each step
along the way. It is with much delight that I give so many thanks to:

• The LORD, for He is good and His steadfast love endures forever!

• Lucille Tabor, who provided a young child a mother and a home.

• Jerry Russell, who purchased a poor boy his first computer.

• David Kade, who taught a hopeful student how to think in another language.

• Deborah Pennington, who almost single-handedly turned a young punk’s life
around.

• Kellan Sarles, who taught an aspiring writer how to converse on paper.

• Gary Lamont, who engaged an emerging mind to think like a computer scientist.

• Derrick Story, who gave a want-to-be writer an opportunity.

• Abe Music, who first introduced me to Dojo.

• Simon St.Laurent, Tatiana Apandi, Colleen Gorman, Rachel Monaghan, and
Sumita Mukherji, who provided the editorial guidance and insight that
smoothed out so many of this book’s rough edges.

• So many new friends from #dojo, who so generously reviewed this book’s manu-
script and provided feedback that made all of the difference in quality; in no par-
ticular order: Adam Peller, Sam Foster, Karl Tiedt, Bill Keese, Dustin Machi, Pete
Higgins, James Burke, Peter Kristoffersson, Alex Russell, and Dylan Schiemann.

• Baseeret, who is the love of my life.

• The LORD, for He is good and His steadfast love endures forever!

—Matthew A. Russell
June 2008

PART I

I.Base and Core

This part of the book provides a guided tour of Base and Core, the elements of the
toolkit that comprise a powerful JavaScript standard library. Base is the kernel of the
toolkit and is optimized to include an awesome amount of functionality that comes
across the wire at under 30KB. Every feature included in Base has been scrutinized
for utility, speed of execution, and size. You’ll quickly find that once you start using
Base, you won’t want to live without it—nor do you have to: getting Base into your
page is as simple as writing a single SCRIPT tag that can even be cross-domain loaded
from one of AOL’s geographically edge-cached servers. In addition to providing the
logical base of the toolkit, everything in Base is included in the base-level dojo
namespace, so finding the most commonly used functions and data members is
always just a few keystrokes away.

Core supplements Base with additional functionality that you will certainly be using
sooner rather than later, but in an effort to keep Base as lean and mean as possible,
Core was packaged separately because its features are not quite common enough for
all use cases. Still, pulling in resources from Core is just a dojo.require function call
away, which is similar to #include from C programming or import from Java; from
then on out, it’s as though you had it all along. And as you’ll see in Chapter 16 on
Util, you can actually use the Dojo build system to combine exactly which addi-
tional non-Base resources you need into a single script; thus, Core functionality need
not be any further away than Base for production settings. The kinds of features
you’ll find in Core include animation machinery (dojo.fx), drag-and-drop facilities
(dojo.dnd), a data management layer (dojo.data), cookie handling (dojo.cookie), and
more.

Familiarity with the arsenal of tools in Base and Core is absolutely essential to
becoming a productive Dojo developer, and the chances are good that this
machinery can supplement your swath of tools and techniques, regardless of their
origin or how long you’ve already been using them. After mastering Base and Core,
you’ll spend less effort on the common, mundane tasks that many developers
squander precious time on, and spend more time on the far more interesting aspects
of your project that require creativity and out-of-the-box thinking.

Overview of Dojo’s Architecture | 3

Chapter 1 CHAPTER 1

Toolkit Overview1

This chapter provides an overview of Dojo’s architecture, takes you through install-
ing Dojo, introduces some domain-specific jargon, runs through the bootstrapping
process, and then provides some example code that should whet your appetite for
the chapters that follow. Like any other introduction, much of this chapter paints in
broad strokes and sets the tone for the rest of the book. Hopefully, you’ll find it help-
ful as you begin your journey with the toolkit.

Overview of Dojo’s Architecture
As you’re about to see, describing Dojo as a toolkit is no mere coincidence. In addi-
tion to providing a JavaScript standard library of sorts, Dojo also packs a collection
of feature-rich, turnkey widgets that require little to no JavaScript coding at all, build
tools, a testing framework, and more. This section provides an overview of Dojo’s
architecture from a broad point of view, shown in Figure 1-1. As you’ll see, the orga-
nization for the rest of this book is largely driven by the toolkit’s architecture. Even
though DojoX is displayed as an independent entity from Dijit, DojoX resources
could also be built upon Dijit resources, just as your own custom widgets could
leverage any combination of Dijit and DojoX resources.

Figure 1-1. One depiction of how the various Dojo components can be thought of as relating to one
another

Dijit DojoX your widgets

Core

Base

Util

4 | Chapter 1: Toolkit Overview

Base
The kernel of Dojo is Base, an ultra-compact, highly optimized library that provides
the foundation for everything else in the toolkit. Among other things, Base provides
convenient language and AJAX utilities, a packaging system that allows you to pull
in Dojo resources on-the-fly instead of requiring them to all be slurped in when the
page loads. It also supplies you with tools for creating and manipulating inheritance
hierarchies, a means of almost universally querying the DOM using CSS3 selectors,
and a fabric that standardizes DOM events amongst various browsers. Everything
that Base provides is available in the top level of the toolkit’s namespace as a dojo.*
function or attribute. Base comes packaged as a single file, dojo.js, which comes
across the wire at under 30KB, and when you consider that most Flash-based adver-
tisements that inundate the web are considerably larger than 30KB, such a small
number seems quite amazing.

If you look at the actual size of dojo.js on disk, you’ll see that it is
around 80KB, but because web servers generally process content as it
comes “across the wire” to the browser, it’s the size of the compressed
content that drives the amount of time it takes to download. If you
manually apply gzip compression to dojo.js, you should see that it
reduces in size by about one-third of the original size.

One other really interesting thing about Base is that it is designed to bootstrap the
Dojo essentials automatically by simply including the dojo.js file into the page. To
oversimplify things a bit, bootstrapping basically entails detecting the environment,
smoothing out browser incompatibilities, and loading the dojo namespace. Various
configuration options can also be specified to automatically parse any widgets in the
page and perform other initialization tasks. (All coming up in future chapters.)

Base provides a tremendous wealth of utility for many standard operations you’ll
commonly need to achieve when doing just about anything in JavaScript. Even if you
don’t use anything else in the toolkit, Base will probably be a valuable resource that
you won’t want to live without once you’ve experienced the productivity boost it
provides. There is no Dojo without Base; everything in the toolkit depends or builds
on it one way or another.

With the contents of the Base being settled and fairly uniform, the
terms “Base” is being used less and less within the project as time goes
on, and you may even hear the term “Base” used interchangeably with
“dojo.js.”

Overview of Dojo’s Architecture | 5

Core
Core builds on Base by offering additional facilities for parsing widgets, advanced
animation effects, drag-and-drop facilities, internationalization (i18n), back-button
handling, managing cookies, and more. Resources available through Core are often
used frequently and provide fundamental support for common operations, but were
not deemed universal enough to include in Base. Although the distinction between
what did and didn’t make it into Core may not be a perfect boundary, Dojo’s pack-
aging system trivializes the amount of effort required to pull in additional modules
and resources as needed with a simple mechanism that works like a #include from C
or an import statement from Java.

In general, distinguishing between Base and Core is simple: any module or resource
that you have to explicitly import into the page external to dojo.js is a part of Core if
it is associated with the dojo namespace. Core facilities usually do not appear in the
Base level namespace, and instead appear in a lower-level namespace such as dojo.fx
or dojo.data.

Dijit
Describing Dojo as just a JavaScript standard library of sorts would only be telling
you a small part of its story; Dojo also packs a fantastic library of widgets called Dijit
(short for “Dojo widget”) that is ready to use out of the box and often doesn’t
require you to write any JavaScript at all. Dijits conform to commonly accepted
accessibility standards such as ARIA* and come with preconfigured internationaliza-
tion that spans many common locales. Dijit is built directly upon Core (providing a
strong testament to Core’s integrity), so whenever you need a custom widget of your
own devising, you’ll be using the very same building blocks that were used to create
everything else in Dijit. The widgets that you create with Dojo are ultra-portable and
can easily be shared or deployed onto any web server or often even run locally with-
out a web server at all via the file:// protocol.

Plugging a dijit into a page is as easy as specifying a special dojoType tag inside of an
ordinary HTML tag—a dream come true for layout designers and users who aren’t
interested in doing a lot (or any) JavaScript programming. In fact, a key benefit of
using Dijit for application developers is that it allows you to achieve incredibly rich
functionality without having to dig into tedious implementation details. Even if
you’re more of a library-writing type or a custom widget developer, following Dijit’s
style and conventions ensures that your widgets will be portable and easy to use—
essentials for any reusable software component.

* A standard for accomplishing Accessible Rich Internet Applications: http://www.w3.org/WAI/intro/aria.

http://www.w3.org/WAI/intro/aria

6 | Chapter 1: Toolkit Overview

The Dijit battery can be roughly divided into general-purpose application widgets
like progress bars and modal dialogs, layout widgets like tab containers and accor-
dion panes, and form widgets that provide super-enhanced versions of old hats like
buttons and various input elements.

DojoX
DojoX is a collection of subprojects that officially stands for “Dojo Extensions,”
although it is often called “Extensions and Experimental.” The “extensions” sub-
projects in DojoX accounts for stable widgets and resources that while extremely
valuable just don’t fit nicely into Core or Dijit; the “experimental” subprojects
account for widgets that are highly volatile and in more of an incubation stage.

Each DojoX subproject is required to come with a README file that contains a syn-
opsis of its status. Although DojoX subprojects strive to meet accessibility and inter-
nationalization initiatives consistent with Dijit, it is not generally the case that they’re
always quite that refined. Be that as it may, lots of heavy machinery for real world
applications lives in DojoX, including the grid widget, data converters for common
web services, etc. DojoX also provides a sandbox and incubator for fresh ideas, while
simultaneously ensuring that the high standards and stable APIs for resources in
Core and Dijit are not compromised. In that regard, DojoX strikes a sensitive bal-
ance for critical issues central to any community-supported OSS project.

Util
Util is a collection of Dojo utilities that includes a JavaScript unit-testing framework
and build tools for creating custom versions of Dojo for production settings. The
unit-testing framework, DOH,* does not have a specific coupling to Dojo and pro-
vides a simple set of constructs that can be used to automate quality assurance on
any JavaScript code. After all, you do want to implement well-defined, systematic
tests for your JavaScript code, don’t you?

The essence of the build tools is that they shrink the size of your code and can aggre-
gate into a set of layers, where each layer is nothing more than a collection of other
JavaScript files. The compression is accomplished via ShrinkSafe, a patched version
of Mozilla’s powerful Rhino JavaScript engine that compresses JavaScript code with-
out mangling public APIs, and the aggregation is accomplished with a collection of
custom scripts that are also run by Rhino. Other auxiliary components in Util do
things like inline HTML template strings (more on this when Dijit is formally intro-
duced in Chapter 11) into JavaScript files—another trick for reducing latency.

* As you might already have been thinking, DOH is also a pun on Homer Simpson’s famous expletive; the test
runner can optionally play a “D’oh!” sound effect when a test fails.

www.allitebooks.com

http://www.allitebooks.org

Prepping for Development | 7

While reading this section, you may understand what build tools do
for you, but it may not be clear why you’d want them. In short, build
tools that consolidate and minify your JavaScript code significantly
reduce the HTTP latency, which yields a serious performance advan-
tage when it comes time for production.

Like DOH, ShrinkSafe may be used independently of Dojo, and for production set-
tings there is almost never a good reason not to use it, given that it is not uncommon
for it to reduce the JavaScript footprint by 50% or more. The performance difference
between loading many large JavaScript files via a series of synchronous requests and
retrieving one or two compressed JavaScript files can be quite staggering.

Prepping for Development
You don’t need any fancy tools nor do you have to be able to configure a beast of a
web server like Apache to learn how to develop with Dojo. In fact, very few exam-
ples in this entire book require you to interact with a web server at all. Most
resources will be resolved via relative paths on your local machine or they will be
cross-domain loaded, so for the most part, it’s just you, your favorite text editor, and
your web browser.

There are three primary ways you can download Dojo and prep for development:
downloading an official release, checking out the latest and greatest from Subver-
sion, and using a cross-domain (XDomain) build that’s available from AOL’s Con-
tent Developer Network (CDN). Let’s walk through each of these options. Although
downloading an official release to your local machine may be the most typical
approach, there can be specific value in the other approaches as well.

Getting Dojo
There are three primary ways you can use Dojo: downloading an official release to
your local environment, checking out a copy from Subversion to your local environ-
ment, and using an XDomain build from AOL’s CDN. This section walks you
through each of these options.

Downloading an official release

Downloading the latest official Dojo release is by far the most traditional way to prep
for development. An “official” release is really nothing more than a tagged, blessed
snapshot from the Subversion repository that has been well-tested and that comes
with some helpful release notes. You can find official releases of the toolkit at http://
dojotoolkit.org/downloads; the only notable caveat when downloading an official

http://dojotoolkit.org/downloads
http://dojotoolkit.org/downloads

8 | Chapter 1: Toolkit Overview

release is that it does not come packaged with the build tools. To retrieve the build
tools, you either need to use Subversion or download a source release, which you can
find at http://download.dojotoolkit.org/.

When you uncompress the downloaded archive, you’ll find it expands into a folder
that has the general form dojo-release-x.y.z, where, “x,” “y,” and “z” correspond to
the major, minor, and patch numbers for a particular release. To keep your setup
and URLs as generic as possible, you may want to rename the folder in place so that
it is simply called js (short for JavaScript). Other options include using server direc-
tives to alias dojo-release-x.y.z to js, or using symbolic links on Linux and Unix envi-
ronments. In any case, this extra effort has the advantage of allowing you to use a
relative path such as www/js to point to Dojo instead of a more brittle path such as
www/dojo-release-x.y.z.

Creating a symbolic link is easy. On Linux, Mac OS X, or Unix plat-
forms, simply execute a command of the following form from a termi-
nal: ln –s dojo-release-x.y.z js. You can read more about symbolic
links by reading the man page via the man ls command.

Once you have downloaded Dojo, you might initially be surprised that it’s all not in
one JavaScript file, but don’t worry. A quick look at what unpacks reveals that the
code base is broken into the same architectural components that we just talked
about in the previous section—Base (dojo/dojo.js), Core (dojo), Dijit (dijit), DojoX
(dojox), and Util (util). While we’ll systematically work through all of this, the only
action that’s required to get Base into your page is to provide the relative path to the
dojo.js file (located at dojo/dojo.js via a SCRIPT tag in your page just like any other
JavaScript file). Easy as pie.

Downloading from Subversion

The latest official build is probably what you want to use for development. Still, if
you’re interested in maintaining a copy of the Subversion repository to stay up to
date with the bleeding edge, then read this section closely; it walks you through the
steps involved in checking out Dojo from Subversion and getting a convenient devel-
opment environment set up. Developing against the Subversion trunk might be help-
ful if you want to keep a close eye on a bug that’s being fixed, if you want to try out a
new feature that’s in the works, or if you’re a first-class hacker who just can’t rest
easy unless you’re always in the know with the latest.

For the authoritative reference on Subversion, take a look at Version
Control with Subversion, which is available at http://svnbook.red-bean.
com/.

http://download.dojotoolkit.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Prepping for Development | 9

Dojo’s Subversion repository is located at http://svn.dojotoolkit.org/src/, so start there
if you’re interested in skimming some code in your web browser. You’ll want to
check out the code from the externals view that can be accessed at http://svn.
dojotoolkit.org/src/view/anon/all/trunk, however, which keeps things simple by grab-
bing the entire toolkit in one fell swoop.

The Subversion externals property provides a way of constructing a
working copy that would normally require multiple separate check-
outs. You can read more about it at http://svnbook.red-bean.com/en/
1.0/ch07s03.html.

In order to check out the code, execute the following command from a terminal.
(The remainder of this section assumes you’ve performed the checkout from inside
of a folder named www.)

svn co http://svn.dojotoolkit.org/src/view/anon/all/trunk ./svn

Just as if you had downloaded an official release, you’ll have an svn folder that con-
tains subfolders corresponding to each major component of the toolkit (dojo, dijit,
dojox, and util) when your Subversion checkout completes. However, your util folder
will contain the build scripts (and possibly a few other things auxiliary tools used to
support the toolkit). We’ll delay elaboration on Subversion details, but do note that
it is not difficult to have multiple versions of Dojo around—say, the latest official
release, a nightly build, and an actual checkout of the repository—and use a server
directive or other means of toggling between them all, depending on which version
you’d like to use at any given time.

AOL’s CDN

AOL hosts a cross-domain version of Dojo on their Content Delivery Network (AOL
CDN) and makes it available for you to use by simply providing a few configuration
parameters and including a SCRIPT tag that points to the XDomain build of Dojo on
AOL’s CDN server. Because it’s just that easy, all of the examples in this book use
the XDomain build so there is minimal fuss when you are trying things out.

As alluded to in the previous two sections, you normally load Dojo by pointing to
your own dojo.js file; specify a relative path like this one:

<script
 type="text/javascript"
 src="www/js/dojo/dojo.js">
</script>

Using AOL’s XDomain build is just as easy: simply change the src reference and let
Dojo (and AOL) take care of the rest. The following SCRIPT tag illustrates this pro-
cess for Dojo 1.1:

<script
 type="text/javascript"

http://svn.dojotoolkit.org/src/
http://svn.dojotoolkit.org/src/view/anon/all/trunk
http://svn.dojotoolkit.org/src/view/anon/all/trunk
http://svnbook.red-bean.com/en/1.0/ch07s03.html
http://svnbook.red-bean.com/en/1.0/ch07s03.html

10 | Chapter 1: Toolkit Overview

 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
</script>

The dojo.xd.js was emphasized in the code because if you accidentally specify dojo.js,
you’ll probably get an error instead of the Dojo goodness you were looking for. It is
also noteworthy that the 1.1 in the src path references the latest bug release for the
said version. You could request a specific bug fix release by asking for, say, 1.1.0 or
1.1.1. You may want to bookmark http://dev.aol.com/dojo because it’s the ultimate
authority on what versions of Dojo are available via the CDN.

Debugging with Firebug
If you’ve done even a trivial amount of web development, you already know that
debugging can sometimes be quite painful, especially when it involves obscure differ-
ences between browsers or deviations from the W3C standards. Unfortunately,
throwing in a toolkit that wields a lot of power and complexity of its own can some-
times make debugging even tougher, and this might especially be the case for the
JavaScript realm that involves the dynamism of closures, dynamic typing, and incon-
venient ways of producing debug messages with alert boxes. And then there was
Firebug, an amazing Firefox extension that made debugging and web development a
lot easier.

As a rule of thumb, you should strongly consider developing in Firefox, because Fire-
bug in and of itself is nothing short of incredible in terms of speeding up the develop-
ment cycle. You can inspect/manipulate anything in the DOM (including style) in
real time, log events to the Firebug console, and get error information that’s often
specific enough to identify your actual problem. (Compare that to a brilliant alert
box that asks, “Would you like to debug?”)

Of course, do remember to verify that your design is truly cross-platform by fre-
quently sanity testing in IE and other browsers. Although Dojo itself goes to great
lengths to work around browser quirks, it is still possible that anomalies can occur—
and the sooner you discover these, the better.

Firebug is an amazing tool that’s hard to live without once you’ve
experienced it. You can save yourself a lot of time if you develop in
Firefox and use Firebug for all that it’s worth. However, it’s best to fre-
quently test in IE (say, at least every 30 minutes) to catch any hard-to-
find anomalies that might creep into your application. For example, if
you leave a trailing comma after the last key/value pair in a JavaScript
associative array, Firefox forgives you, but IE does not...and the error
message you get back from IE isn’t very helpful either.

By far the most common function you’ll probably use from Firebug is
console.log, which allows you to print information to the Firebug
console from inside of your JavaScript. (We’re all tired of alert boxes
by now, right?)

http://dev.aol.com/dojo

Prepping for Development | 11

Be advised that Dojo aims to integrate as tightly with Firebug as possible, so it comes
packaged with Firebug Lite. Thus, even if you must develop in another browser,
functions such as console.log are always available to you if you want them.

You can download Firefox and Firebug from http://www.getfirefox.com and http://
www.getfirebug.com, respectively. Appendix A contains a Firebug tutorial that you
may find helpful for development.

Browser Security Settings for Running Dojo Locally
Most of the examples in this book are designed to loaded from a locale file:// proto-
col, which generally works fine. However, it appears that users of Firefox 3 may need
to make one small adjustment to load Dojo locally:

1. In the address bar, type about:config and press the Enter key.

2. Change the value of security.fileuri.origin_policy to 3 or greater.

You can read more about this issue at http://kb.mozillazine.org/Security.fileuri.origin_
policy.

Lightweight Server Responses
Almost all of the content in this book can be demonstrated without a web server. To
adequately demonstrate a select few pieces of the toolkit, however, it is helpful to
serve up some dynamic content coming from a server. When these times arise, we’ll
use CherryPy (version 3.1+), an extremely easy-to-use web server that’s written in
Python. You can download and read all about CherryPy at http://cherrypy.org, but
don’t fret, you won’t be derailed on your Dojo learning efforts by getting all bogged
down with the details of having to learn about a new web server.

Installing CherryPy is as simple as downloading it and following a few short instruc-
tions in the README file. CherryPy installs just like any other Python module, so
there isn’t an exposed installation directory, per se. Unlike other, heftier server-side
technologies, CherryPy just becomes readily available for you to use whenever you
include it via an import statement like other Python modules. In fact, a CherryPy
application is nothing more than a standalone Python application that is running its
own multithreaded web server; thus, actually executing a “server-side script” is as
simple as running a single command in a terminal.

All of the (very few) examples involving the need to serve up some
dynamic content or explicitly get a response for the server require
nothing more than a single command in a terminal, so don’t be scared
away—these server-side examples are for the faint of heart! Of course,
you are more than welcome to skip any examples involving server-side
technologies completely; a thorough discussion of what is happening
will always accompany them.

http://www.getfirefox.com
http://www.getfirebug.com
http://www.getfirebug.com
http://kb.mozillazine.org/Security.fileuri.origin_policy
http://kb.mozillazine.org/Security.fileuri.origin_policy
http://cherrypy.org

12 | Chapter 1: Toolkit Overview

For example, if you were asked to invoke the following simple application stored in a
file called hello.py, you’d do nothing more than type python hello.py on the com-
mand line. That’s all that it takes to have CherryPy start up and listen on port 8080
for incoming requests. Having already installed CherryPy, the import cherrypy state-
ment shown in Example 1-1 locates it and makes it available for use.

For Example 1-1, if you navigate to http://localhost:8080/ in your web browser, you
would access the index method (lines 6–7) and get back the response “Hello”,
whereas if you navigate to http://localhost:8080/greet?name=Dojo, you’d access the
greet method (lines 10–11), which processes the name query string parameter and
gives back the response “Hello Dojo”. That’s the general pattern, and given how
inherently readable Python code is, it can’t get much easier than that.

While you’ll never need to write or understand Python code to this book, the previ-
ous walk-through was included just to show you how quick and easy it is to do with
CherryPy and Python in case you ever need or want create dynamic content of your
own. Learning Python by Mark Lutz (O’Reilly) is a great reference on Python if you
find yourself ever needing to work up more complex Python code. Python’s official
web presence at http://www.python.org and CherryPy’s web site at http://www.
cherrypy.org have great documentation as well.

Terminology
It will be helpful for us to take just a moment and clarify some of the terms that we’ll
use in discussions throughout the book. A precise explanation of JavaScript’s
mechanics packs a lot of lingo that requires precise terminology, and the lines only
get blurrier when you start building a powerful toolkit on top of it—not to mention a
toolkit that does things like simulate classes for a language in which proper classes
from an object-oriented context does not exist.

Example 1-1. A very simple CherryPy application

1 import cherrypy
2
3 class Content:
4
5 @cherrypy.expose
6 def index(self):
7 return "Hello"
8
9 @cherrypy.expose
10 def greet(self, name=None):
11 return "Hello "+name
12
13 cherrypy.quickstart(Content())

http://localhost:8080/
http://localhost:8080/greet?name=Dojo
http://www.python.org
http://www.cherrypy.org
http://www.cherrypy.org

Terminology | 13

Hopefully, you’ll find the following list of terms helpful as we progress through some
of these murky waters:

Toolkit
A toolkit is simply a collection of tools. It just so happens that toolkits in the
computer programming realm are frequently used within the context of user
interface design. Dojo is most accurately defined as a toolkit because it’s more
than just a library of supporting code that provides a set of related functions and
abstractions; it also provides items such as deployment utilities, testing tools,
and a packaging system. It’s easy to get wrapped around the axle on library ver-
sus framework versus toolkit, and so forth, but Dojo has been dubbed a toolkit,
so let’s go with it.

Module
Physically, a Dojo module is nothing more than a JavaScript file or a directory
containing a cohesive collection of JavaScript files. As it turns out, this top-level
directory also designates a namespace for the code it contains. In a logical sense,
modules in Dojo are similar to the concept of packages in other programming
languages in that they are used to compartmentalize related software compo-
nents. Do note, however, that while Dojo’s packaging system refers to the actual
mechanism that performs tasks such as determining and fetching dependencies,
Dojo modules themselves are not called “packages.”

Resource
When it becomes necessary to split a Dojo module into multiple files, or when a
module consists of only a single JavaScript file, each JavaScript file is referred to
a resource. Although a resource could strictly be used to logically organize the
various abstractions that are associated with a module, there is also the consider-
ation of minimizing the size of a JavaScript file. The trade-off essentially
amounts to minimizing file size so that you don’t download superfluous code
that isn’t needed, while also not downloading too many small files—all of which
are synchronous requests and incur the overhead of communicating back to the
web server (although using the build tools to create layers can make this over-
head somewhat of a moot point).

Namespace
Physically, Dojo namespaces map to the same filesystem hierarchy that specifies
modules and resources; logically, the concept of a namespace prevents identi-
cally named modules and resources from clashing. Note that while namespaces
themselves are neither modules nor resources, the semantic idea behind what
they represent does directly map to modules and resources. It is also worthwhile
to note that Dojo preserves the global namespace of a page, and any modules
you create with Dojo do not pollute the global namespace if implemented prop-
erly. Recall that everything in Base fits into the top-level dojo namespace.

14 | Chapter 1: Toolkit Overview

First-class
In computer programming, something is first-class when it can be passed around
without restrictions compared to other entities in the same language. For exam-
ple, in many programming languages, you cannot pass around functions in the
same way that you can pass around other data types such as number or string
values. In this particular context, functions would not be considered first-class
objects. In our discussions, the most common way this term will be used is to
highlight the fact that functions are first-class objects in JavaScript. As we’ll see,
operations such as assigning functions directly to variables and/or placing them
in associative arrays are fundamental to many Dojo design patterns.

Function
A function is a code snippet that is defined once, but can be executed multiple
times. In JavaScript, functions are first-class objects that can be passed around just
like any other variable. A constructor function is a function that is used specially via
the new operator, which creates a new JavaScript Function object and performs ini-
tialization on it. Note that all JavaScript objects inherit from JavaScript’s built-in
Object type and have a prototype property that conveys the basis for JavaScript’s
powerful inheritance mechanism that is based on prototype-chaining. In Dojo
parlance, the term constructor may also refer to the anonymous function that
maps to the constructor key in dojo.declare’s associative array and that is used
primarily for initializing properties of a Dojo class.

Object
The most generic concept of an object in JavaScript refers to a compound data
type that can contain any number of named properties. For example, the simple
statement var o = {} uses object literal syntax to create a JavaScript object.
Because the term “object” gets thrown around so much in this document, the
term “associative array” is sometimes used to describe contexts of key-value
pairs such as {a : 1, b : 2} instead of calling them objects. Technically speaking,
JavaScript only has objects and no classes—even though Dojo simulates the
notion of a class via the dojo.declare function, a special function that is used for
this express purpose.

Property
In OOP, any piece of data stored in a class is commonly called a property. In our
Dojo-specific discussions, this term may refer to data contained in Function
objects or to data contained in Dojo classes that are defined by dojo.declare.

Method
A function that is a member of a class is commonly referred to as a method in
broad OOP contexts, JavaScript, and Dojo. Furthermore, in Dojo parlance, the
anonymous functions that appear in the dojo.declare statement are said to be
methods because dojo.declare provides the basis for a class-based inheritance
mechanism. In general, you might just do well to think of a method as a func-
tion defined on a class that is subsequently used through an object context.

Bootstrapping | 15

Class
In Dojo, a declaration that represents a logical entity as defined via the dojo.declare
function (a special function specifically used to simulate classes and inheritance
hierarchies) is referred to as a class. Again, this term is being used loosely, because
JavaScript does not support classes in the same sense that they exist in lan-
guages like Java and C++.

Widget
A Dojo widget is a Function object that is created via a dojo.declare statement
that includes dijit._Widget (a base class for all widgets) as an ancestor. Usually,
a widget has a visible appearance on the screen and logically bundles HTML,
CSS, JavaScript, and static resources into a unified entity that can easily be
manipulated, maintained, and ported around just like a file.

Bootstrapping

This section discusses some material that you may want to initially
skim over and come back to review once you feel well acquainted with
Dojo.

Before you can use Dojo at all, you have to somehow get it into the page. Regardless
of whether you install Dojo locally or load it via AOL’s CDN, you simply provide a
SCRIPT tag that points to the file that loads some JavaScript code, and then magic
elves inside of your web browser miraculously causes everything to “just work,”
right? Well, not quite. Like most other things in computing, it all comes back to pure
and simple automation, and Dojo’s bootstrap process is not different.

The term “bootstrap” refers to the idea of “pulling yourself up by your
own bootstraps.” In other words, it’s the idea of getting up and run-
ning without help from anywhere else. The notional idea of Dojo
bootstrapping itself is the same concept as your computer “booting
up” when you turn it on.

For the record, Example 1-2 is the absolute minimum effort that is generally required
to get some XDomain Dojo goodness into your HTML page. What’s especially nota-
ble about loading Dojo from the CDN is that less than 30KB of data comes across the
wire. Chances are good that you’ll use the previous code block, or some variation of
it, quite often. Save yourself some typing by copying it into a template that you can
reuse.

16 | Chapter 1: Toolkit Overview

The dojo.addOnLoad function accepts another function as its parame-
ter. The examples in this book generally supply this parameter with an
anonymous function, although you could opt to define a function like
var init = function() { /*...*/} and pass it in. Anonymous functions
and some of the reasons they are important were briefly discussed in
the Preface.

Two new constructs in the previous listing include the dojo.require statement and
the dojo.addOnLoad block. The dojo.require statement is discussed at length in the
section “Managing Source Code with Modules” in Chapter 2, but in a nutshell, it
pulls a named resource into the page for you to use the same way that import works
in Java or #include works in C programming. One incredibly important aspect of
dojo.require is that it performs synchronous loading for local installations of the
toolkit but acts asynchronously if you are doing XDomain loading. That distinction is
especially important as it relates to dojo.addOnLoad.

Example 1-2. A minimalist application harness example

<html>
 <head>
 <title>Title Goes Here</title>
 <!-- A lightweight style sheet that smoothes out look and feel across browsers -->
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 /* If needed, Dojo modules may be asynchronously requested into the page here via
 dojo.require statements... */

 dojo.addOnLoad(function() {

 /* Any content that depends upon dojo.require statements goes here... */

 });
 </script>

 </head>
 <body>
 <!-- ... -->
 </body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Bootstrapping | 17

dojo.addOnLoad
Because dojo.require statements act asynchronously over XDomain loads, it is not
necessarily safe to immediately use resources you have requested via dojo.require
when the page loads* because latency and other factors may (and usually will) cause
some delay. Then, when you try to reference a module requested via dojo.require
that is not yet loaded, you get a nice error thrown at you and the entire bootstrap-
ping process most likely screeches to a halt. The technical term for the situation in
which the outcome is undefined because of unpredictable timing constraints that
compete with one another is called a race condition.

For the reasons just mentioned, using dojo.addOnLoad is a very good habit to get into
because it makes your page as portable as possible—whether or not it is XDomain-
loaded.

A common mistake is not using dojo.addOnLoad to safely and portably
perform logic that should occur after the page loads and all dojo.
require statements have been satisfied. The issue usually comes up
when you have developed locally and then start switching SCRIPT tags
to do XDomain loading.

Given that the previous code snippet uses XDomain loading, there aren’t any extra
steps involving local installation, so it really is a one-step process to bootstrap the
entire toolkit from an existing page.

Although widgets are not introduced for many more chapters, another
nuance of addOnLoad that bears mentioning—because we’re on the
topic—is that addOnLoad does not fire until after widgets have been
parsed in the page (assuming Dojo has been configured to parse wid-
gets on page load).

While bootstrapping is synonymous with “loading a script” at a high level, there’s a
lot more happening with that loading process than meets the eye. From a bird’s eye
view, at least two basic actions occur, though not necessarily in this exact order:

Platform configuration
Takes into account any custom configuration options that may have been speci-
fied through djConfig, an associative array that must be defined before the
SCRIPT tag that loads Dojo is executed or as an attribute of the SCRIPT tag that
loads Dojo. More specifics on djConfig are coming up later in this chapter.

* Generally speaking, the page load occurring consists of either the window’s onload event or possibly the
DOMContentLoaded for Mozilla variations completing.

18 | Chapter 1: Toolkit Overview

Determines Dojo should be cross-domain loaded or loaded locally. XDomain
loading details happen transparently so long as an Internet connection is avail-
able and the inclusion of the XDomain loader was configured at build time. By
default, configuring for XDomain loading produces a dojo.xd.js (and other *.xd.js
build artifacts), which provides a replacement for standard dojo.js.

Based on the environment specified for the particular build of Dojo (usually the
browser but it could also be another option such as Rhino or a mobile device),
sets up any environment-specific features. Even though you won’t generally need
to perform browser-specific configuration when using the default build of Dojo
for the browser, Base still provides data members like dojo.isIE and dojo.isFF
to expose the underlying browser for those few times when you do need them.

Performs browser-specific augmentation such as establishing an XMLHttpRequest
(XHR) object for asynchronous calls using Dojo’s various AJAX utilities.
Workarounds for browser incompatibilities such as normalizing DOM events,
standardizing a map of key codes, and extra measures to minimize and prevent
memory leaks are also handled.

Namespace establishment and loading
Establishes the dojo namespace so that all of the utility provided by the toolkit
does not clobber any existing symbols in the page.

Loads the dojo namespace with the various functions and symbols that consti-
tute Base.

Although less frequently used than dojo.addOnLoad, dojo.addOnUnload
is the preferred vehicle for performing logic that should take place
when the page unloads.

Configuration with djConfig

Much of the content in this section will make a lot more sense once
you’ve spent some time writing code, so don’t feel the need to dwell
on it. It’s here as a reference more than anything.

Upcoming sections introduce djConfig, a configuration switch that you can place in
the SCRIPT tag that bootstraps the toolkit (or define anytime before Dojo bootstraps)
to customize where it looks for resources, whether debugging tools should be wired
in, and so on.

Table 1-1 provides a synopsis of the key/value pairs you can pass into it to configure
the bootstrapping process. (Some of the commentary may introduce constructs that
have not yet been introduced. For now, just skim over those and come back to them
whenever the occasion calls for it.)

Bootstrapping | 19

Defining djConfig anytime after the SCRIPT tag that loads the toolkit
executes has no effect.

Table 1-1. djConfig configuration switches

Key
Value type
(default value) Comment

afterOnLoad Boolean

(false)

Used to facilitate injecting Dojo into a page after it has
already been loaded. Useful for hacking on a page or
developing widgets that are necessarily lazy-loaded, i.e.,
for social networking apps, etc.

baseUrl String

(undefined)

Technically, this parameter allows you to redefine the
root level path of the toolkit for a local or an XDomain
load, usually for the purpose of resolving dependencies
such as custom modules. In practice, however, it is
almost exclusively used to resolve local modules when
bootstrapping over XDomain.

cacheBust String|Date

(undefined)

In the case of a String value, appends the value pro-
vided to requests for modules so that previous version of
the page that is cached locally will be overridden. Typi-
cally, this value will be a random string of characters that
you generate yourself or a unique identifier for your
application version that would prevent nasty bugs from
surfacing that may be caused by older versions of
modules.

During the development cycle, you might provide a
Date value such as (new Date()).getTime(),
which guarantees a new value each time the page loads
and prevents annoying caching problems.

debugAtAllCosts Boolean

(false)

Usually provides more specific debugging information at
the cost of performance. You might specify this value to
better track down the line number where an error
occurred if you are told that an error originated in a build
file like bootstrap.js, dojo.js, or dojo.xd.js.

dojoBlankHtmlUrl String

 (“”)

Used to provide the location for a blank HTML document,
which is necessary for using the IFRAME transport via
dojo.io.iframe.create (discussed in Chapter 4).
A default is located at dojo/resources/blank.html.

dojoIframeHistoryUrl String

(“”)

Used to provide the location for a special file that is used
in combination with dojo.back, a module for manag-
ing the back button (discussed in Chapter 2). A default is
located at dojo/resources/iframe_history.html.

enableMozDomContentLoaded Boolean

(false)

Gecko-based browsers like Firefox may optionally use
the DOMContentLoaded event as the trigger to signal
that the page has loaded because of a technical nuance
related to synchronous XHR request involving a docu-
ment greater than 65536 bytes.a

20 | Chapter 1: Toolkit Overview

extraLocale String or Array

(“”)

Used to specify additional locales so that Dojo can trans-
parently handle the details associated with providing a
localized module. Values may be provided as a String
value or as an Array of String values.

isDebug Boolean

(false)

Loads Firebug or Firebug Lite machinery for debugging.
Note that stubs for debugging functions such as the vari-
ous console methods are in place by default so that
code doesn’t bust if you choose to remove diagnostic
information from your application.

libraryScriptUri String

(“”)

Used to configure nonbrowser environments such as
Rhino and SpiderMonkey (JavaScript engines) in a man-
ner similar to the way that baseUrl works for browser
environments.

locale String

(browser provided)

Used to override dojo.locale with a local other than
the one that is retrieved from the browser.

modulePaths Object

(undefined)

Specifies a collection of key/value pairs that associates
modules with their relative paths on disk. While you’ll
generally place your modules in the toolkit’s root direc-
tory, this parameter allows for variations if they are
needed. When loading Dojo from the CDN or other XDo-
main, a baseUrl parameter is also required.

parseOnLoad Boolean

(false)

Specifies whether to automatically parse the page for wid-
gets on page load (essentially just a dojo.parser.
parse() function call at the appropriate time during the
bootstrap process).

require Array

 ([])

Provides a convenient way of providing modules that
should be automatically required once Base loads. When
used in conjunction with afterOnLoad, it designates
resources that should be loaded when injecting Dojo into
a page after the page has already loaded.

usePlainJson Boolean

(true)

Specifies whether to provide warnings via the console
if comment filtered JSON is not used. This value is true
by default because not using comment filtered JSON is
generally considered more of a security risk than not
using it.

useXDomain Boolean

 (false)

Used to force XDomain loading. This action is taken by
default with XDomain builds. (See “Benefits of Using
XDomain Builds” for benefits of using XDomain loading
locally.)

xdWaitSeconds Number

(15)

Specifies the number of seconds to wait before timing
out a request for resources that are cross-domain loaded.

a http://trac.dojotoolkit.org/ticket/1704

Table 1-1. djConfig configuration switches (continued)

Key
Value type
(default value) Comment

Exploring Dojo with Firebug | 21

The djConfig parameter is modulePaths, while the Base function for
setting up individual module paths is dojo.registerModulePath (no “s”
on the end).

Most of the time, you will define djConfig in the same SCRIPT tag that bootstraps the
toolkit using Object-like syntax. The following example illustrates:

<script
 type="text/javascript"
 src=" http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js "
 djConfig="parseOnLoad:true,isDebug:true">
</script>

However, you might opt to define it prior to the SCRIPT tag that loads the toolkit if
you have a lot of configuration switches, or if it’s just more convenient to do it that
way for your particular situation. Here’s a translation of the previous example that
produces the very same effect:

<script type="text/javascript">
 djConfig = {
 parseOnLoad : true,
 isDebug : true
 };
</script>

<script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js ">
</script>

Exploring Dojo with Firebug
Although the rest of this book systematically works through the entire toolkit, let’s
take a moment to tinker around with Dojo from the Firebug console. During devel-
opment, there may be times when it is helpful to try out a few ideas in isolation, and
the Firebug console provides an environment that behaves much like an interpreter.

Exploring Base
To illustrate, transcribe the minimalist HTML page in Example 1-3 into a local file to
get started. The only Dojo-specific nuance is the script tag that performs the XDo-
main loading. Although we haven’t covered the djConfig parameter that you’ll see is
included in the SCRIPT tag, it’s just a way of passing in configuration information to
Dojo as it bootstraps. In this case, we’re specifying that debugging facilities such as
the Firebug console should be explicitly available to us. Even if you’re using another
browser such as IE, the djConfig="isDebug:true" option ensures that Firebug Lite is
loaded.

22 | Chapter 1: Toolkit Overview

Injecting Dojo
If you decide that you ever want to use Dojo to hack on existing pages out on the Net
somewhere, you can do it via dynamic script insertion via Firebug or a bookmarklet.
As of version 1.1, the configuration switches afterOnLoad and require were added,
which ensure that the normal callback sequence that occurs after page load occurs.

Here’s some code that inserts Dojo into an existing page that you can paste and execute
in the Firebug console. The only nuance is that you must define djConfig as its own
object—not inline with the script tag—if you want to safely inject Dojo after the page
has loaded because of subtleties with how browsers process dynamic script tags:

/*Define djConfig w/ afterOnLoad being set to true. You could also pass in
requests for any additional modules if you needed them. Let's assume you need
the dojo.behavior module.*/
djConfig={afterOnLoad:true,require:['dojo.behavior']}

/* Create the same script tag that would normally appear in the page's head */
var e = document.createElement("script");
e.type="text/javascript";
e.src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js";

/* And insert it. That's it */
document.getElementsByTagName("head")[0].appendChild(e);

Or better yet, you could just create a bookmarkleta and load Dojo via a keyboard short-
cut or by manually clicking on the bookmark: all that’s entailed in creating the book-
marklet is wrapping the previous code block into a function and executing it. In your
browser, create a bookmark called “Dojo-ify” and use this code (all one line) as the
location:

(function() {djConfig={afterOnLoad:true,require:['dojo.behavior']};
var e = document.createElement("script"); e.type="text/javascript";
e.src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js";
document.getElementsByTagName("head")[0].appendChild(e);})()

When you execute the bookmark, this script will load Dojo into the page, giving you
full access to the CDN’s build of Dojo. At that point, you could hack on the page to
your heart’s contentment. Just be aware that as of Dojo 1.1, there isn’t an addOnLoad
equivalent to signal when the toolkit (and any required modules) have completed load-
ing. Dojo 1.2, however, will add in an addOnLoad equivalent. See http://www.oreillynet.
com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html for some helpful
details. When you execute the bookmark, this script will load Dojo into the page, giv-
ing you full access to the CDN’s build of Dojo. At that point, you could hack on the
page to your heart’s contentment. Just be aware that as of Dojo 1.1, there isn’t an
addOnLoad equivalent to signal when the toolkit (and any required modules) have com-
pleted loading. Dojo 1.2, however, will add in an addOnLoad equivalent. See http://www.
oreillynet.com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html for some
helpful details.

—continued—

http://www.oreillynet.com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html
http://www.oreillynet.com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html
http://www.oreillynet.com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html
http://www.oreillynet.com/onlamp/blog/2008/05/dojo_goodness_part_7_injecting.html

Exploring Dojo with Firebug | 23

Once you’ve saved out the file, open the page in Firefox, and click on the little green
circle with the checkmark in it to expand the Firebug console. Then, click on the
caret icon just beside Firebug’s search box to open up Firebug in a new window, as
shown in Figure 1-2. (If you haven’t read the primer on Firebug in Appendix A, this
would be a good time to divert and do so.) Clicking on the “Net” tab reveals that the
XDomain dojo.xd.js file consisting of Base has indeed been downloaded from the
CDN.

Another interesting possibility for injecting Dojo into the page after it loads is for lazy-
loading widgets into profiles on social networking apps, public profiles, and so on.

a Bookmarklets are nothing more than snippets of JavaScript code that can be stored as a bookmark. Generally, bookmarklets are designed
to augment the behavior in a page.

Example 1-3. A really simple HTML page for illustrating a few features from Base

<html>
 <head>
 <title>Fun with Dojo!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="isDebug:true">
 </script>

 <style type="text/css">
 .blue {color: blue;}
 </style>
 </head>
 <body>
 <div id="d1" class="blue">A div with id=d1 and class=blue</div>
 <div id="d2">A div with id=d2</div>
 <div id="d2">Another div with id=d2</div>
 <div id="d4">A div with id=d3.

 This sentence is in a span that's contained in d1.
 The span's id is s1.

 </div>
 <form name="foo" action="">
 A form with name="foo"
 </form>
 <div id="foo"
 A div with id=foo
 </div>
 </body>
</html>

24 | Chapter 1: Toolkit Overview

If you click back on the “Console” tab and type dojo on the >>> prompt followed by
the enter key, you should see a Firebug console message that says something along the
lines of Object global=window isBrowser=true isRhino=false, which shows you that the
global JavaScript object dojo is indeed alive and well. Typing in console.dir(dojo)
would provide an exhaustive tree-view of everything that’s contained in Dojo.
Although you’ll also see a lot of private members that are prefixed with a leading
underscore, go ahead try it out for yourself. Skimming the contents of the output will
give you a small taste of what’s packed up inside of Base.

dojo.byId

Dojo provides dojo.byId as a drop-in replacement for document.getElementById.
Thus, passing in a string value like dojo.byId("s1"), for example, shows that it
returns a reference that you could store in a variable just like you could with a call to
document.getElementById. However, in addition to looking up an id value, dojo.byId
also acts like a no-op if you pass it a DOM node. Internally, the function introspects
its argument, so on the application level, you don’t have to even think twice. Its com-
plete function signature looks like this:

dojo.byId(/*String*/ id | /*DomNode*/ node) // Returns a DOM Node

Throughout the book, the pipe, |, is used to denote the logical “or”
operation in function signatures whenever there is more than one
possibility.

Because it appears that dojo.byId does almost the very same thing as document.
getElementById, you may be tempted to just forget about dojo.byId all together—but
don’t! As it turns out, it smooths out some subtle inconsistencies that might just
burn you when you least expect it. One well-known bug for document.getElementById
surfaces IE6 and IE7. To illustrate, type the following into the Firebug Lite console
for the sample document we’re working on, and you’ll see Figure 1-3:

document.getElementById("foo") //Isn't the answer *so* obvious?!?

Hmm. You probably didn’t expect to have the FORM element returned, did you? As it
turns out, if it had not appeared first in the document, you should have gotten the

Figure 1-2. Firebug reveals valuable information that you can use to sanity check what is
happening with network requests, and more

Exploring Dojo with Firebug | 25

div element returned. This particular bug arises because the name and id attribute
namespaces are merged for IE. So much for cross-browser compatibility on the obvi-
ous things in life! Figure 1-4 shows how Dojo protects you from the cold hard metal
of the browser, saving you from working around the multitude of inconsistencies
that would otherwise prevent your application from being portable.

But in addition to dojo.byId working around that particular quirk, dojo.byId also
returns the first element if more than one element has an id set to the same value,
thereby normalizing corner case behavior. For our example document, you can ver-
ify that dojo.byId always returns the first element by trying out the following
statement:

dojo.byId("d2").innerHTML

More than anything else, the takeaway from this short lesson is that if you’re devel-
oping with a JavaScript toolkit, use its API to get work done instead of ways you may
have learned with raw JavaScript. Occasionally, you may see an API call that doesn’t
seem to add any additional value, and the temptation may be to fall back to your
own tried-and-true method of getting something accomplished—but resist the temp-
tation! Well-designed APIs do not provide useless functionality.

Figure 1-3. The resulting behavior of document.getElementById versus dojo.byId for the previous
document

Figure 1-4. Dojo makes your code more portable by insulating you from browser quirks

your web application

dojo

IE6 IE7 Safari3 Firefox2 …

26 | Chapter 1: Toolkit Overview

Viewing an API call as “worthless” may be an indication that you may
be confused about the exact utility that the call provides. Whenever
this happens, review the documentation to find out what it is you’re
missing. If the documentation still doesn’t convince you, hop on a
mailing list or IRC channel and ask someone about it.

dojo.connect

Grabbing a DOM node is admittedly boring, so let’s look at something slightly
more interesting—like attaching a UI event such as a mouse movement to a node
via dojo.connect, the toolkit’s machinery for dynamically adding and removing
these types of events. Its signature might look complex at first glance, but it’s actu-
ally quite simple in routine use. Take a look:

connect(/*Object|null*/ obj,
 /*String*/ event,
 /*Object|null*/ context,
 /*String|Function*/ method) // Returns a connection handle

To try out connect, execute the following code into the Firebug console, and then
move your mouse over the content of the sentence contained in the SPAN to see that
the mouseover event was set up properly. (You’ll probably want to click on the caret
icon in the lower-right corner to expand the command prompt to multiline mode.)

var handle = dojo.connect(
 dojo.byId("s1"), //context
 "onmouseover", //event
 null, //context
 function(evt) {console.log("mouseover event", evt);} //event
);

You should notice that in addition to seeing confirmation in the Firebug console that
an event has occurred, you get an actual reference to the event that you can click on
and inspect—usually getting vital information relating to where the click occurred on
the screen and more.

As it turns out, dojo.connect, like dojo.byId, does a lot of inspecting so that you
don’t have to think nearly as much about it as you might initially imagine. In fact,
any arguments that may be null can be omitted completely. Thus, the previous func-
tion call could be reduced to the slightly more readable:

var handle = dojo.connect(
 dojo.byId("s1"), //context
 "onmouseover", //event
 function(evt) {console.log("mouseover event",evt);} //event
);

Tearing down the connection so that the function that is executed is based on a
DOM event is even easier, and is important for preventing memory leaks if you are
doing a lot of connecting and disconnecting. Just call dojo.disconnect on the handle
you saved, and Dojo takes care of the rest for you:

dojo.disconnect(handle);

www.allitebooks.com

http://www.allitebooks.org

Exploring Dojo with Firebug | 27

Although it is a simple example, dojo.connect demonstrates a key principle behind
Dojo’s philosophy: make getting from A to B as simple as it should have been all
along. Sure—if you’re well-versed in your JavaScript, you could go through the
motions of setting up, maintaining, and tearing down connections all on your own.
However, you’d still incur the cost of boilerplate that would clutter up your design,
and let’s not forget: every line of code you write is a line you have to maintain. For
the aspiring web developers out there and those among us who prefer to keep things
simple, calling dojo.connect and dojo.disconnect is a fine option.

Dojo doesn’t do anything that JavaScript can’t already do, and for that matter, nei-
ther does any other JavaScript toolkit. The tremendous value that Dojo introduces is
in smoothing out inconsistencies amongst multiple browsers and making common
operations as simple as they should have been all along—protecting you from writ-
ing and maintaining all of that boilerplate, which allows you to be as productive as
possible.

Another neat feature that demonstrates tremendous power in a tiny package is
dojo.query, the toolkit’s mechanism for quickly querying the page with CSS3 style
syntax.

Chapter 5 covers dojo.query in detail and provides a lot more context
about CSS3 selectors, if you want to jump ahead and skim over them.

For example, finding all of the DIV elements on the page is as simple as calling:

dojo.query("div") //find all of the div elements in the DOM

If you try that statement out in the Firebug console, you’ll see that you indeed get
back a list of DIV elements. Querying the page for the existence of a particular named
DIV element is just as easy as it should be as well:

dojo.query("div#d2") //check for the existence of a div with id=d2

And then there’s querying by class:

dojo.query(".blue") //returns a list of elements that have the blue class applied.

Speaking of classes, you could also filter on particular element types, but because
there’s only one DIV that has a class applied to it, we’ll need to apply the blue class to
another element as well. But before you go and start editing the page itself, why not
just use another built-in function from Base, dojo.addClass, to apply the class like so:

dojo.addClass("s1", "blue"); //add the blue class to the SPAN

After we apply the blue class to s1, we can illustrate another query with dojo.query
like so:

dojo.query("span.blue") //returns only span elements with the blue class applied

28 | Chapter 1: Toolkit Overview

Getting the hang of it? Sure, we could do all of these things in our own roundabout
ways, but isn’t it nice to know that the toolkit insulates you from all of that mayhem
and provides a single, easy-to-use function instead?

Exploring Dijit
While we could go on and on showcasing Base’s easy-to-use API, let’s save that for
subsequent chapters and instead divert to a quick example of how easy it is to snap
some dijits into your page without any additional programming.

Suppose you have the page shown in Example 1-4.

Figure 1-5 shows what that page looks like, although it’s not very difficult to imagine.

That might have cut it back in ’92, but it’s wholly unacceptable for this day and age.
Take a moment to consider what your normal routine would be at this point: define
some classes, apply the classes, write some JavaScript to provide validation routines,
etc.

To give you a taste of how the page would look after some Dojoification, take a look
at Example 1-5. Don’t worry about what every little detail is doing; lots of pages

Example 1-4. A very primitive form example

<html>
 <head>
 <title>Fun with Dijit!</title>
 <head>
 <body>
 Just Use the form below to sign-up for our great offers:

 <form id="registration_form">
 First Name: <input type="text" maxlength=25 name="first"/>

 Last Name: <input type="text" maxlength=25 name="last"/>

 Your Email: <input type="text" maxlength=25 name="email"/>

 <button onclick="alert('Boo!')">Sign Up!</button>
 </form>
 </body>
</html>

Figure 1-5. A functional but very ugly form

Exploring Dojo with Firebug | 29

follow on that get into the nooks and crannies of the finer details. For now, just
familiarize yourself with the general structure of a page with some dijits snapped into
it.

Example 1-5. A form that’s not so primitive anymore (thanks to some Dojoification)

<html>
 <head>
 <title>Fun with Dijit!</title>

 <!-- Grab some style sheets for the built-in tundra theme that Dojo offers for
 styling the page, equipping you with a professional style without any additional
 effort required. -->
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <!-- Add in some plain old CSS to line up the form elements more nicely -->

 <style type="text/css">
 h3 {
 margin : 10px;
 }
 label,input {
 display: block;
 float: left;
 margin-bottom: 5px;
 }
 label {
 text-align: right;
 width: 70px;
 padding-right: 20px;
 }
 br {
 clear: left;
 }
 .grouping {
 width:300px;
 border:solid 1px rgb(230,230,230);
 padding:5px;
 margin:10px;
 }
 </style>

 <!-- Load Base and specify that the page should be parsed for dijits after it
 loads -->
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad: true" >
 </script>

30 | Chapter 1: Toolkit Overview

 <!-- Load some dijits via dojo.require in the same manner that you would #include
 some files in C programming or perform an import in Java -->
 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.TextBox");
 dojo.require("dijit.form.ValidationTextBox");
 dojo.require("dijit.form.Button");
 </script>
 <head>

 <!-- Specify that the built-in tundra theme should be applied to everything in the
 body of the page. (Dijit relies heavily on CSS so including the appropriate
 theme is crucial.)-->
 <body class="tundra">

 <h3>Sign-up for our great offers:</h3>

 <form id="registration_form">

 <!-- Weave some widgets into the page by supplying the tags and including
 a dojoType attribute so the parser can find them and swap them out -->

 <div class="grouping">
 <label>First Name:</label>
 <input type="text"
 maxlength=25
 name="first"
 dojoType="dijit.form.TextBox"
 trim="true"
 propercase="true"/>

 <label>Last Name:</label>
 <input type="text"
 maxlength=25
 name="last"
 dojoType="dijit.form.TextBox"
 trim="true"
 propercase="true"/>

 <label>Your Email:</label>
 <input type="text"
 maxlength=25
 name="email"
 dojoType="dijit.form.ValidationTextBox"
 trim="true"
 lowercase="true"
 regExp="[a-z0-9._%+-]+@[a-z0-9-]+\.[a-z]{2,4}"
 required="true"
 invalidMessage="Please enter a valid e-mail address"/>

 <button dojoType="dijit.form.Button"
 onClick="alert('Boo!')">Sign Up!</button>

Example 1-5. A form that’s not so primitive anymore (thanks to some Dojoification) (continued)

Summary | 31

And voilà, Figure 1-6 shows what it looks like, complete simple validation functionality.

If you’re intrigued by the examples in this chapter, and are ready to learn more about
Dojo, then you’ve come to the right place. The following chapters systematically
work through the specifics of the toolkit. But first, let’s take a quick moment to
reflect on what this chapter was all about (as we’ll do in every chapter).

Summary
This chapter barely scratched the surface of your journey with Dojo, but it nonethe-
less covered a lot of ground. After reading this chapter, you should:

• Know where to go to download the toolkit and set up a development environment

• Understand the toolkit’s architecture and the key differences between each
component

• Understand some of the common parlance used in Dojo development

• Realize some of the benefits of using Firebug during the development cycle

• Understand the basic ideas behind how the toolkit bootstraps itself

• Have an appreciation for how easy it is to use Base and plug out-of-the-box dijits
into a page

• Be familiar with the look and feel of Dojo code

• Be excited to read the subsequent chapters and learn more about Dojo

The next chapter will discuss language and browser utilities.

 </div>

 </form>
 </body>
</html>

Figure 1-6. A much better looking form, using out-of-the-box dijits

Example 1-5. A form that’s not so primitive anymore (thanks to some Dojoification) (continued)

32 | Chapter 2: Language and Browser Utilities

Chapter 2CHAPTER 2

Language and Browser Utilities 2

This chapter formally introduces the language utilities that you’ll find in Base. The
language utilities are designed to streamline some of the most commonly worked-
around problems in JavaScript programming, and they’re designed to be ultra-
portable and highly optimized. Regardless of whether you use anything else in the
entire toolkit, the constructs presented in this chapter are worth a hard look
because they provide augmentation that is difficult to imagine living without once
you’ve gotten used to using them. Manipulating arrays, cloning nodes, adding and
removing classes, and calculating margin and content boxes for DOM nodes are
among the topics included in this chapter.

Looking Up DOM Nodes
The previous chapter introduced dojo.byId, a toolkit-specific mechanism for look-
ing up DOM nodes in a manner that is more portable and predictable than document.
getElementById. Although dojo.byId absolutely pervades Dojo development, there is
little value in repeating the previous discussion from Chapter 1; refer back to the pre-
vious chapter for a detailed outline involving some of the issues with document.
getElementById and how dojo.byId alleviates them. As a reminder, though, here’s the
full API call for dojo.byId:

dojo.byId(/*String*/ id | /*DomNode*/ node, /*DomNode*/doc) // Returns a DOM Node

Example 2-1 lists some other common use patterns.

Example 2-1. Quick reminder about dojo.byId

var foo = dojo.byId("foo"); //returns the node with id=foo if one exists
dojo.byId(foo).innerHTML="bar"; //the lookup is a no-op since foo is
 //a node; then sets innerHTML to "bar"
var bar = dojo.byId("bar", baz); //returns the node with id=bar in document
 //referenced by baz if one exists

Type Checking | 33

Type Checking
In a language with dynamic typing like JavaScript, it’s often necessary (and a very
good idea) to test the type of variable before performing any operations on it.
Although it might not seem like much to test for the type of a variable, it isn’t always
a freebie, and in practice can simply result in annoyances and bugs because of subtle
differences. Base provides a few handy functions to simplify the nuances entailed.
Like the other issues we’ve touched on so far, there are subtleties amongst various
browsers involving some of the finer points. The following list summarizes:

isString(/*Any*/ value)
Returns true if value is a String.

isArray(/*Any*/ value)
Returns true if value is an Array.

isFunction(/*Any*/ value)
Returns true if value is a Function.

isObject(/*Any*/ value)
Returns true if value is an Object (including an Array and Function) or null.

isArrayLike(/*Any*/ value)
Returns true if value is an Array but also allows for more permissive possibili-
ties. For example, the built-in arguments value that can be accessed from within a
Function object is especially an oddball in that it does not support built-in meth-
ods such as push; however, it is array-like in that it is a list of values that can be
indexed.

isAlien(/*Any*/ value)
Returns true if value is a built-in function or native function such as an ActiveX
component but does not respect the normal checks such as the instanceof
Function.

Duck Typing
A concept commonly involved in dynamic programming languages like Python and
JavaScript called duck typing provides a common thread for many of the functions
just introduced. Duck typing is based upon the saying that if it walks like a duck and
quacks like a duck, then it’s a duck. Basically, what that means is that if a particular
data member exhibits the minimal necessary properties to be a particular data type,
then that’s good enough to assume that it is that particular data type.

For example, the built-in arguments member qualifying as an array via the
isArrayLike function hopefully ties this theme together. When you consider the
inherent dynamism in a language that does not require you to declare a particular
variable to always be a particular data type (dynamic binding), duck typing is a great
vehicle to inspect the type of an object when necessary.

34 | Chapter 2: Language and Browser Utilities

For example, invoking the typeof operator on an ordinary array such as [] returns
object while Base’s isArray function performs some duck type checks behind the
scenes and returns true for an array such as [].

Duck typing is a fundamental programming concept in JavaScript and
much of the toolkit, so this discussion is more practical to your day-
to-day programming than you might imagine at first glance.

The bottom line is that Base’s type checking functions can save you time and spare
you from nonintuitive browser inconsistencies, so use them well, and use them often.

String Utilities
Trimming any existing whitespace from a string is an increasingly common opera-
tion. The next time you need to do this, use Base’s trim function instead of writing
your own.

There can be subtle performance issues with even the seemingly most
trivial utility functions, and using the toolkit provides you with the
benefits and collective knowledge of a community that has given care-
ful consideration to such issues.

Here’s an example of trim at work:

var s = " this is a value with whitespace padding each side ";
s = dojo.trim(s); //"this is a value with whitespace padding each side"

Core’s string module also includes a few other useful string functions. Each of these
examples assumes that you have already fetched the dojo.string module via a dojo.
require statement.

dojo.string.pad
Pads a string value and guarantees that it will exactly fill a particular number of
characters. By default, padding fills in on the left. An optional parameter causes
padding to fill in from the right:

dojo.string.pad("", 5); // "00000"
dojo.string.pad("", 5, " "); // " "
dojo.string.pad("0", 5, "1"); // "11110"
dojo.string.pad("0", 5, "1", true); // "01111"

dojo.string.substitute
Provides parameterized substitution on a string, optionally allowing a transform
function and/or another object to supply context:

//Returns "Jack and Jill went up a hill."
dojo.string.substitute("${0} and ${1} went up a hill.", ["Jack", "Jill"]);

Array Processing | 35

//"*Jack* and *Jill* went up a hill."
dojo.string.substitute("${person1} and ${person2} went up a hill.", {person1 :
"Jack", person2: "Jill"});
dojo.string.substitute("${0} and ${1} went up a hill.", ["Jack", "Jill"],
function(x) {
 return "*"+x+"*";
});

dojo.string.trim
At the cost of a little more size than Base’s implementation, Core’s string mod-
ule provides a slightly more efficient version of trim that can be used when
performance really matters:

dojo.string.trim(/* your string value */);

Array Processing
Arrays are one of the most fundamental data structures in any imperative program-
ming language, including JavaScript. Unfortunately, however, standardized array
operations are not supported by all mainstream browsers, and as long as that is the
case, it’s immensely helpful to have a toolkit that protects you from the bare metal.
For that matter, even if the next version of each major browser supported arrays in a
completely uniform manner, there would still be way too many people out there
using older browsers to begin thinking about going back to the bare metal anytime
soon.

You may find it interesting that the various language tools have been
optimized for performance, providing wrapped usage of the native
Array implementations wherever possible, but emulating functionality
for browsers like IE when it is missing.

Fortunately, Dojo strives to keep up with Mozilla’s feature rich implementation of
the Array object (http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference).
As long as you have the toolkit with you, you’ll never be caught defenseless again.
And in case you have already forgotten from our discussion of dojo.byId in
Chapter 1 that you really can’t take much for granted in the current browser eco-
system, the next section should reinvigorate your enthusiasm and might even surprise
you.

Finding Locations of Elements
Two very routine array operations involve finding the index of an element, which is
really one and the same as determining if an element exists at all. Base facilitates this
process with two self-explanatory operations, dojo.indexOf and dojo.lastIndexOf.
Each of these functions returns an integer that provides the index of the element if it

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference).

36 | Chapter 2: Language and Browser Utilities

exists; the value -1 is returned if the element was not found at all. These function sig-
natures also include an additional parameter that indicates the value that should be
used as an initial location in case you don’t want to start from the very beginning or
end of the array. The signature is the same for each function:

dojo.indexOf(/*Array*/ array, /*Any*/ value, /*Integer?*/ fromIndex)
//returns Integer

dojo.lastIndexOf(/*Array*/ array, /*Any*/ value, /*Integer?*/ fromIndex)
//returns Integer

If you’ve been primarily developing with Firefox for a while, you may
be surprised to learn that native Array objects in IE6 and IE7 do not
even support the indexOf method. Unfortunately, this kind of seman-
tic misunderstanding about something that may seem so obvious can
be one of the hardest kinds of bugs to track down.

The following code snippet illustrates some basic usage of these methods:

var foo = [1,2,3];
var bar = [4,5,6,5,6];
var baz = [1,2,3];

dojo.indexOf([foo, bar], baz); // -1
dojo.indexOf(foo, 3); // 2
dojo.indexOf(bar, 6, 2); // 2
dojo.indexOf(bar, 6, 3); // 4

dojo.lastIndexOf(bar, 6); // 4

A more subtle point about these methods is that they perform shallow comparisons,
which in the case of complex data types like Array, means that the comparison is by
reference. The following snippet clarifies with a concrete example:

bop = [4,5,6,5,6, foo]; // bop contains a nested Array
dojo.indexOf(bop, foo); //5, because (a reference to) foo is contained in bop
dojo.indexOf(bop, [1,2,3]); //-1, because foo is not the same object as [1,2,3]

Testing Elements for a Condition
It is often the case that you may be interested in knowing if each element of an array
meets a particular condition, or if any element of an array meets a particular condi-
tion. Base provides the every and some functions for performing this kind of testing.
The input parameters are the array, a function that each element of the array is
passed into, and an optional parameter that can supply the context (this) for the
function:

dojo.every([2,4,6], function (x) { return x % 2 == 0 }); //true
dojo.every([2,4,6,7], function (x) { return x % 2 == 0 }); //false

www.allitebooks.com

http://www.allitebooks.org

Array Processing | 37

dojo.some([3,5,7], function f(x) { return x % 2 == 0 }); //false
dojo.some([3,5,7,8], function f(x) { return x % 2 == 0 }); //true

Iterating Over Elements
The forEach function passes each element of an array into a function that takes a sin-
gle parameter and does not return any value at all. It is generally used to iterate over
each element of an array as an ordinary for loop. Here’s the signature:

dojo.forEach(/*Array*/ array, /*Function*/ function) // No return value

In its simplest form forEach works like so:

dojo.forEach([1,2,3], function(x) {
 console.log(x);
});

Some obvious benefits of forEach is that it introduces less clutter than explicitly
introducing a for loop and requiring you to manage a counter variable and also
allows you to introduce the Array variable inline. However, perhaps the most impor-
tant thing that it does is leverage the closure provided by the function as the second
parameter to protect the immediate context from the counter variable and other vari-
ables that may be introduced in the loop’s block from persisting. Like other utility
functions, forEach provides an optional parameter that can supply the context for the
inline functions.

To illustrate how forEach can save you from unexpected consequences, consider the
following snippet of code:

var nodes = getSomeNodes();

for(var x=0; x<nodes.length; x++){
 nodes[x].onclick = function(){
 console.debug("clicked:", x);
 }
}

Which value of “x” would you expect here? Since the enclosure is over the lexical
variable x and not the value of x, all calls get the last value. forEach gets us out of this
handily by creating a new lexical scope. This variation illustrates how to iterate over
the array and produce the expected value:

var nodes = getSomeNodes();
var idx = 0;
dojo.forEach(nodes, function(node, idx){
 node.onclick = function(){
 console.debug("clicked:", idx);
 }
});

38 | Chapter 2: Language and Browser Utilities

Transforming Elements
While the map and filter functions have the same function signature as forEach,
they’re very different in that they apply some custom logic to each element of the
array and return another array without modifying the original one.

While you could technically modify the original array through the cus-
tom map and filter functions, it’s generally expected that map and
filter will be free of side effects. In other words, introduce side effects
with a lot of discretion and an explicit comment saying as much.

As programmers from functional programming languages (or even programming lan-
guages with functional extensions like Python) know all too well, map and filter
grow on you quickly because they provide so much functionality with such concise
syntax.

The map function might almost sound mysterious if you haven’t encountered it
before; it’s actually named self-descriptively because it builds a mapping from the
array you give it via a transform function. The following example illustrates:

var z = dojo.map([2,3,4], function(x) {
 return x + 1
}); //returns [3,4,5]

For comparison purposes, consider how you might compute the value for z in the
example above without the map function:

var a = [2,3,4];
var z = [];
for (var i=0; i < a.length; i++) {
 z.push(a[i] +1);
}

Like forEach, one of the benefits of using map directly is that the overall expression is
clearer, resulting in more maintainable code. You also get the same kind of anony-
mous function benefit in that a closure surrounds the code block, whereas variables
introduced via intermediate calculations would pollute the context without the
closure.

The filter function is also a self-descriptive function in that it filters an array
according to a function’s criteria. Here it is at work:

dojo.filter([2,3,4], function(x) {
 return x % 2 == 0
}); //returns [2,4]

Implementing a block of equivalent code is relatively simple but does require more
bookkeeping and clutter—and more opportunity for typos and bugs:

var a = [2,3,4];
var z = [];
for (var i=0; i < a.length; i++) {

Array Processing | 39

 if (a[i] % 2 == 0)
 z.push(a[i]);
}

Like the other array functions provided by Base, you can also provide additional
parameters that supply context for or map or filter if you need them:

function someContext() { this.y = 2; }
var context = new someContext;
dojo.filter([2,3,4], function(x) {return x % this.y==0}, context); //returns [2,4]

String-As-Function Style Arguments
Base also provides the ability to create the shorthand “string-as-function” type argu-
ments for the forEach, map, filter, every, and some functions. In general, this
approach is less verbose than writing a function wrapper and is especially handy for
really simple cases where you’re doing a quick transform. Basically, you just provide
a string value with the function body in it versus the entire function. Three special
keywords have special context if they appear in the string:

item
Provides a reference to the item that is currently being processed

array
Provides a reference to the entire array that is being processed

index
Provides a reference to the index of the item that is currently being processed

Consider the following example, which demonstrates two equivalent approaches for
achieving the same end:

var a = new Array(1,2,3,...);

//A lot of extra typing for very little purpose
a.forEach(function(x) {console.log(x);}); //approach one

//A lot less typing so that you can get work done quickly
a.forEach("console.log(item)"); //approach two

Using the shortened string-as-function approach to array-like meth-
ods can make your code more concise, but it may make it difficult to
track down bugs, so use discretion. For example, consider the follow-
ing variation of the previous code snippet:

var a = new Array(1,2,3,...);
a.forEach("console.log(items)"); //oops...extra "s" on items

Because there’s an extra “s” on the special term item, it won’t act as
the iterator anymore, effectively rendering the forEach method as a no-
op. Unless you have an especially good eye for tracking down these
types of misspellings, this could cost you debugging time.

40 | Chapter 2: Language and Browser Utilities

Managing Source Code with Modules
If you’ve programmed for any amount of time, you’ve been exposed to the concept
of grouping related pieces of code into related blocks, whether they be called libraries,
packages, or modules, and pulling in these resources when you need them via a mecha-
nism like an import statement or a #include preprocessor directive. Dojo’s official
means of accomplishing the same kind of concept is via dojo.provide and dojo.require,
respectively.

In Dojo parlance, reusable chunks of code are called resources and collections of
related resources are grouped into what are known as modules. Base provides two
incredibly simple constructs for importing modules and resources: dojo.require and
dojo.provide. In short, you include a dojo.provide statement as the first line of a file
that you want to make available for a dojo.require statement to pull into a page. As
it turns out, dojo.require is a lot more than just a placeholder like a SCRIPT tag; it
takes care of mapping a module to a particular location on disk, fetching the code,
and caching modules and resources that have previously been dojo.required. Given
that each dojo.require statement incurs at least one round trip call to the server if
the resource is not already loaded, the caching can turn out to be a tremendous opti-
mization; even the caching that you gain from requiring a resource one time and
ensuring it is available locally from that point forward is a great optimization.

Motivation for Managing the Mayhem
For anything but the smallest of projects, the benefits of using this approach are irre-
futable. The ease of maintenance and simplicity gained in extending or embedding
code in multiple places is a key enabler to getting work done quickly and effectively.
As obvious as it may sound, importing code in the manner just described hasn’t
always been obvious to web developers, and many web projects have turned into
difficult-to-maintain monstrosities because of improper source code management in
the implementation. For example, a typical workflow has been to take a JavaScript
file that’s in a static directory of a web server and to insert it into the page using a
SCRIPT tag like so:

<script src="/static/someScript.js" type="text/javascript"></script>

OK, there’s probably nothing wrong with that for one or two script tags—but what
about when you have multiple pages that need the same tools provided by the
scripts? Well, then you might need to include those SCRIPT tags in multiple pages;
later on down the road you might end up with a lot of loose scripts, and when you
have to start manually keeping track of all of them, the situation can get a little bit
unwieldy. Sure, back in the day when a few hundred lines of JavaScript might have
been all that was in a page, you wouldn’t have needed a more robust mechanism for
managing resources, but modern applications might include tens of thousands of
lines of JavaScript. How can you possibly manage it all without a good tool for fetch-
ing on demand and lazy loading?

Managing Source Code with Modules | 41

In addition to mitigating the configuration management nightmare that might other-
wise await you, the dojo.provide and dojo.require abstraction also allows the build
tools that are provided in Util to do pretty amazing things like condense multiple
files (each requiring a synchronous request) into a single file that can be requested
and endure much less latency. Without the right abstractions that explicitly define
dependences, build tool features that could be freebies suddenly become impossibilities.

A final benefit of a well-defined system like dojo.provide and dojo.require is the
ability to manage related resources by clustering them into namespaces so that over-
all naming collisions are minimized and code is more easily organized and main-
tained. Even though dojo namespaces are really just hierarchies of nested objects
simplified with dot notation, they are nonetheless quite effective for organizing
namespaces and accomplish the very same purpose.

In fact, organizing resources by namespace is so common that Dojo provides a Base
function called dojo.setObject. This function works by accepting two arguments.
The first argument is an object hierarchy that will be automatically created, and the
second value is what will be mapped to the hierarchy:

dojo.setObject(/* String */ object, /* Any */ value, /* Object */ context)
//returns Any

Example 2-2 illustrates.

The use of dojo.setObject is nothing more than syntactic sugar, but it can signifi-
cantly declutter code and the tediousness of matching braces, etc., whenever you do
need it.

The OpenAjax Alliance (http://www.openajax.org), a consortium of
vendors banding together to promote openness and standards
amongst advanced web technologies, strongly encourages the practice
of using dotted object notation to organize namespaces.

Example 2-2. Namespace organization with dojo.setObject

var foo = {bar : {baz : {qux : 1}}}; //nest some objects the 'long' way
console.log(foo.bar.baz.qux); //displays 1

//Or you could opt to do it in one crisp statement without matching all of the braces...
dojo.setObject("foo.bar.baz.qux", 1); //crisper syntax
console.log(foo.bar.baz.qux); //displays 1

//If you supply an optional context, the Object is set relative to the context instead of
//the global context, dojo.global
var someContext = {};
dojo.setObject("foo.bar.baz.qux", 23, someContext);
console.log(someContext.foo.bar.baz.qux); //displays 23

http://www.openajax.org

42 | Chapter 2: Language and Browser Utilities

Custom Module Example Over XDomain
A short concrete example is in order to put dojo.require and dojo.provide into per-
spective. First, consider a simple module that provides a trivial function, such as
Fibonacci. In Example 2-3, the resource is also associated with a module. Although
grouping resources into modules is not strictly necessary, it is almost always good
practice. Throughout this book, you’ll commonly see dtdg (for Dojo: The Definitive
Guide) used to denote a generic namespace for modules.

Fibonacci Sequence
The Fibonacci is a sequence named after the 13th-century mathematician Leonardo of
Pisa and reveals some intriguing properties of numbers. As it happens, Fibonacci num-
bers turn up in pseudorandom number generators, optimization techniques, music,
nature, and are closely related to the golden ratio.

The Fibonacci sequence is defined as follows:

fibonacci(0) = 0
fibonacci(x <= 1) = x
fibonacci(x > 1) = fibonacci(x-1) + fibonacci(x-2)

You can read more about it at http://en.wikipedia.org/wiki/Fibonacci_number.

Example 2-3. Defining a simple simple module (dtdg.foo)

/*
 The dojo.provide statement specifies that this .js source file provides a
 dtdg.foo module. Semantically, the dtdg.foo module also provides a namespace for
 functions that are included in the module On disk, this file
 would be named foo.js and be placed inside of a dtdg directory.
*/
dojo.provide("dtdg.foo");

//Note that the function is relative to the module's namespace
dtdg.foo.fibonacci = function(x) {
 if (x < 0)
 throw Exception("Illegal argument");

 if (x <= 1)
 return x;

 return dtdg.foo.fibonacci(x-1) + dtdg.foo.fibonacci(x-2);
}

http://en.wikipedia.org/wiki/Fibonacci_number

Managing Source Code with Modules | 43

You will almost always want to group your resources into logical mod-
ules and associate them with a namespace. In addition to being a good
implementation practice, it also prevents you from inadvertently clob-
bering symbols in the global namespace as well as preventing anyone
else from doing the same to you. After all, that’s one of the motivators
for using dojo.provide and dojo.require in the first place!

In another page somewhere, you determine that you want to use your dtdg.foo mod-
ule to amaze the elementary school math junkies. Instead of rewriting your well-
tested function from scratch and potentially making a mistake that could lead to
embarrassment, you instead decide to reuse it via dojo.require. Example 2-4 shows
how you would use a local module in conjunction with the rest of the toolkit being
loaded over the CDN. This example assumes that the following HTML file is saved
alongside a directory called dtdg that contains the module from Example 2-3.

The key concept to take away from the previous listing is that it’s fairly straightfor-
ward to dojo.require a resource into the page and then use it. However, there are a
few finer points worth highlighting.

Example 2-4. Using a local module with XDomain bootstrappping

<html>
 <head>
 <title>Fun With Fibonacci!title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="baseUrl:'./'">
 </script>

 <script type="text/javascript">
 dojo.registerModulePath("dtdg", "./dtdg");
 dojo.require("dtdg.foo");
 /* at this point, the dojo.require is being satisfied asynchronously
 because we're using an Xdomain build of Dojo. Better wrap any references
 to dtdg.foo in an addOnLoad block */

 dojo.addOnLoad(function() {
 dojo.body().innerHTML = "guess what? fibonacci(5) = ", dtdg.foo.fibonacci(5);
 });
 </script>

 </head>
 <body>
 </body>
</html>

http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js

44 | Chapter 2: Language and Browser Utilities

For local installations, Dojo looks in the root level directory of the toolkit for mod-
ules—but when you’re performing XDomain loading, the “real” root directory of the
toolkit would be somewhere off on AOL’s server. Thus, a special configuration
switch, baseUrl is passed into djConfig in order to designate the starting point for
looking up local modules—dtdg.foo in this case.

djConfig is simply a means of providing specific configuration parame-
ters to the toolkit. It is covered in the next section, but for now, just
roll with it.

The dojo.registerModulePath function simply associates a top-level namespace, its first
parameter, to a physical directory that is relative to baseUrl, its second parameter.

Don’t forget to take extra care when configuring module paths with
dojo.registerModulePath. It is not uncommon to be off by one level in
the directory structure if you forget that the relative directory is speci-
fied to the dojo.js file—not the root level of the toolkit. Additionally,
ending a module path with a trailing forward slash has been known to
intermittently cause problems, so you should take care to avoid that
practice as well.

Everything that is defined in the custom module is made available via the call to
dojo.require. For example, if the dtdg.foo module had contained additional func-
tions or symbols, they would be available after the dojo.require("dtdg.foo") state-
ment. As usual, we didn’t reference anything provided by dtdg.foo outside of the
addOnLoad block.

There is not necessarily a one-to-one mapping between .js source files
and the functions that are dojo.provided in them, but it is generally
enforced as a matter of style. Exceptions include cases where some
functions might not be exposed because they are considered private as
far as an API is concerned.

You may have also noticed a call to dojo.body() in the previous code listing. Essen-
tially, this call is just a shortcut for returning the body of the current document—as
opposed to document.body, which is considerably less convenient.

Fibonacci Example with Local Toolkit Installation
For comparison purposes, Example 2-5 shows the very same example, but this time
it uses a local installation of Dojo with the dtdg module located at the root level of
the toolkit alongside the dojo directory that contains Core so that no reference to
baseUrl or or a call to registerModulePath is necessary. This convenience is available
because Dojo automatically searches for modules in the directory alongside Core,
which is a logical and convenient location to maintain them.

Managing Source Code with Modules | 45

Building a Magic Genie Example Module
As an example of some of the concepts from this chapter, let’s build a module.
Because life can be so hard at times, a magic genie that can give us answers when-
ever we need it would be a godsend. (Dojo might simply be pure automation that
seems like magic, but genies are real magic.)

To get started building a module, recall that it’s a good idea to namespace it.
Example 2-6 sticks with the dtdg namespace, which we’ve been using so far in this
book, and associates a Genie resource with it. If you don’t already have a local direc-
tory called dtdg, go ahead and create one now. Inside of it, open up a new file called
Genie.js, where we’ll include the magic shown in Example 2-6.

Example 2-5. Using dtdg.foo with a local toolkit installation

<html>
 <head>
 <title>Fun With Fibonacci!title>

 <script
 type="text/javascript"
 src="your/relative/path/from/this/page/to/dojo/dojo.js" >
 </script>

 <script type="text/javascript">
 dojo.require("dtdg.foo");
 /* we use an addOnLoad block even though it's all local as a matter of habit*/
 dojo.addOnLoad(function() {
 dojo.body().innerHTML = "guess what? fibonacci(5) = ", dtdg.foo.fibonacci(5);
 });
 </script>

 </head>
 <body>
 </body>
</html>

Example 2-6. The implementation for a magic genie module

//always include the dojo.provide statement first thing
dojo.provide("dtdg.Genie");

//set up a namespace for the genie
dtdg.Genie = function() {}

//wire in some predictions, reminiscent of a magic 8 ball
dtdg.Genie.prototype._predictions = [
 "As I see it, yes",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",

46 | Chapter 2: Language and Browser Utilities

Essentially, the listing does nothing more than provide a Function object called
dtdg.Genie that exposes one “public” function, initialize.

 "Concentrate and ask again",
 "Don't count on it",
 "It is certain",
 "It is decidedly so",
 "Most likely",
 "My reply is no",
 "My sources say no",
 "Outlook good",
 "Outlook not so good",
 "Reply hazy, try again",
 "Signs point to yes",
 "Very doubtful",
 "Without a doubt",
 "Yes",
 "Yes - definitely",
 "You may rely on it"
];

//wire in an initialization function that constructs the interface
dtdg.Genie.prototype.initialize = function() {

 var label = document.createElement("p");
 label.innerHTML = "Ask a question. The genie knows the answer...";

 var question = document.createElement("input");
 question.size = 50;

 var button = document.createElement("button");
 button.innerHTML = "Ask!";
 button.onclick = function() {
 alert(dtdg.Genie.prototype._getPrediction());
 question.value = "";
 }

 var container = document.createElement("div");
 container.appendChild(label);
 container.appendChild(question);
 container.appendChild(button);

 dojo.body().appendChild(container);
}

//wire in the primary function for interaction
dtdg.Genie.prototype._getPrediction = function() {
 //get a number betweeen 0 and 19 and index into predictions
 var idx = Math.round(Math.random()*19)
 return this._predictions[idx];
}

Example 2-6. The implementation for a magic genie module (continued)

Managing Source Code with Modules | 47

In Dojo, the convention of prefixing internal members that should be
treated as private with a leading underscore is common and will be
used throughout this book. It’s important to really respect such con-
ventions because “private” members may be quite volatile.

The listing is laden with comments, and from a web development standpoint, the
logic should hopefully be easy enough to follow. (If it’s not, this would be a great
time to review some HTML and JavaScript fundamentals elsewhere before reading
on.)

To actually put the magic genie to use, we’ll need to modify the basic template, as
shown in Example 2-7.

This example illustrates the reusability and portability of the dtdg.Genie module.
You simply require it into the page and, once it’s initialized, it “just works.” (And so
long as the user doesn’t read the source code, it truly remains magical.) A finer point
worth clarifying is the use of djConfig to configure Dojo before bootstrapping: the
modulePaths is inlined to qualify the location of the module relative to baseUrl, which
is defined as the current working directory. Thus, from a physical standpoint, the file
structure might look like Figure 2-1.

Example 2-7. A web page utilizing the magic genie

<html>
 <head>
 <title>Fun With the Genie!</title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 djConfig="modulePaths:{dtdg:'./dtdg'},baseUrl:'./'">
 </script>

 <script type="text/javascript">
 // require in the module
 dojo.require("dtdg.Genie");

 // safely reference dtdg.Genie inside of addOnLoad
 dojo.addOnLoad(function() {

 //create an instance
 var g = new dtdg.Genie;

 //fire it up, which takes care of the rest
 g.initialize();
 });
 </script>
 </head>
 <body>
 </body>
</html>

48 | Chapter 2: Language and Browser Utilities

JavaScript Object Utilities
Three of Base’s language utilities facilitate operations you may need to routinely per-
form on objects: mixin, extend, and clone.

Dojo uses mixin and extend in its dojo.declare implementation, which
is the toolkit’s mechanism for simulating class-based inheritance.
dojo.declare is covered extensively in Chapter 10.

Mixins
JavaScript allows you to approximate lightweight classes by housing a collection of
properties and methods inside a constructor function. You may then create object
instances of these classes by invoking the constructor function with the new opera-
tor. As you might expect, it can sometimes be quite convenient to add additional
properties to an object, whether it be to make something dynamic happen on-the-fly
or as part of a well crafted design that maximizes code reuse. Either way, mixin pro-
vides a compact way of handling the implementation details for you.

In terms of object-oriented design with JavaScript, you’ll see mixin
used extensively throughout the toolkit to reuse blocks of code.

The API for using the toolkit’s mixin functions entails providing an indeterminate
number of objects, where the first objects gets the other objects mixed into it:

dojo.mixin(/*Object*/ o, /*Object*/ o, ...) //Returns Object

Figure 2-1. The way that your module should be laid out on disk

www

genie.html
dtdg/

Genie.js

encapsulated
module

JavaScript Object Utilities | 49

Here’s an example of mixin:

function Man() {
 this.x = 10;
}

function Myth() {
 this.y = 20;
}

function Legend() {
 this.z = 30;
}

var theMan = new Man;
var theMyth = new Myth;
var theLegend = new Legend;

function ManMythLegend() {}
var theManTheMythTheLegend = new ManMythLegend;

//mutate theManTheMythTheLegend by mixing in the three objects
dojo.mixin(theManTheMythTheLegend, theMan, theMyth, theLegend);

Note that all parameters to mixin are actual object instances—not
function declarations.

Extending Object Prototypes
Base’s extend function works just like mixin except that it adds all properties and
methods of the mixins to a constructor function’s prototype so that all future
instances created with the constructor will automatically include these new proper-
ties and methods:

dojo.extend(/*Function*/constructor, /*Object*/props, ...) //Returns Function

Here’s an example:

function Man() {
 this.x = 10;
}

function Myth() {
 this.y = 20;
}

function Legend() {
 this.z = 30;
}

var theMan = new Man;
var theMyth = new Myth;

50 | Chapter 2: Language and Browser Utilities

var theLegend = new Legend;

function ManMythLegend() {}

var theManTheMythTheLegend = new ManMythLegend;

dojo.extend(ManMythLegend, theMan, theMyth, theLegend);

var theTheManTheMythTheLegend = new ManMythLegend;

Thus, the primary difference to remember is that mixin produces a single object
instance that is the result of mixing in additional objects while extend actually modi-
fies a function’s prototype.

Another great application for extend is the ability to create classes in a more light-
weight fashion than would normally be required when wiring everything up via the
prototype property of an Object. Using extend in this way is somewhat a matter of
style, although the end result is usually more compact. Here’s a retake of our magic
genie example from Example 2-6 that illustrates:

dojo.provide("dtdg.Genie");

//define the object
dtdg.Genie = function() {}

//and now extend it
dojo.extend(dtdg.Genie, {
 _predictions : [
 "As I see it, yet",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it",
 "It is certain",
 "It is decidedly so",
 "Most likely",
 "My reply is no",
 "My sources say no",
 "Outlook good",
 "Outlook not so good",
 "Reply hazy, try again",
 "Signs point to yes",
 "Very doubtful",
 "Without a doubt",
 "Yes",
 "Yes - definitely",
 "You may rely on it"
],

 initialize : function() {
 var label = document.createElement("p");
 label.innerHTML = "Ask a question. The genie knows the answer...";

JavaScript Object Utilities | 51

 var question = document.createElement("input");
 question.size = 50;

 var button = document.createElement("button");
 button.innerHTML = "Ask!";
 button.onclick = function() {
 alert(dtdg.Genie.prototype._getPrediction());
 question.value = "";
 }

 var container = document.createElement("div");
 container.appendChild(label);
 container.appendChild(question);
 container.appendChild(button);

 dojo.body().appendChild(container);
 },

 getPrediction : function() {
 //get a number betweeen 0 and 19 and index into predictions
 var idx = Math.round(Math.random()*19)
 return this._predictions[idx];
 }
});

Don’t accidentally forget and leave a trailing comma after the final ele-
ment of the Object, which is quite common when refactoring and mas-
sive cut/paste operations occur. While Firefox silently forgives you, it
may actually do more harm than good because IE will just outright
bust.

Cloning Objects
Although JavaScript performs shallow copies in assignments involving JavaScript
objects and DOM nodes, you may often find yourself needing to clone, or perform
deep copies, of object hierarchies. Base’s clone function is a highly efficient ticket to
achieving just that. Consider the following simple example:

function foo() {
 this.bar = "baz";
}

var foo1 = new foo;
var foo2 = foo1; //shallow copy

console.log(foo1.bar);
console.log(foo2.bar);

foo1.bar = "qux"; //changing foo1 also changes foo2

console.log(foo1.bar); // qux
console.log(foo2.bar); // qux

52 | Chapter 2: Language and Browser Utilities

foo3 = new foo
foo4 = dojo.clone(foo3); //deep copy

foo3.bar = "qux";

console.log(foo3.bar); // qux
console.log(foo4.bar); // baz

Manipulating Object Context
Although the global window object provides the outermost layer of context for a web
application, there may be times when you need to swap out the default context for
another one. For example, you may want to persist the exact state of a session when
the user exits an application, or you might have a custom execution environment
that’s already been preconfigured for a particular circumstance. Instead of having
code that manually iterates over sets of conditions to configure the environment each
time, you might opt to use Base’s window facilities to swap out the existing context
for another one.

The following function allows you to change out the dojo.global object and dojo.doc
at will. Note that while dojo.doc is simply a reference to the window.document by
default, it does provide a uniform mechanism for identifying the context’s current doc-
ument, which again can be quite useful for situations in which managed object con-
texts are involved. dojo.body() is a shortcut for obtaining the body of a document.

The body element is not explicitly defined for a strict XHTML docu-
ment and some other documents you may encounter.

At a minimum, you should be aware of the following three functions from Base for
manipulating context:

dojo.doc //Returns Document
dojo.body() //Returns DomNode
dojo.setContext(/*Object*/globalObject, /*Document*/globalDocument)

Finally, in the spirit of flexibility, Base also provides two functions that allow you to
evaluate a function in the context of either a different dojo.global environment or a
different dojo.doc than the one that currently exists:

dojo.withGlobal(/*Object*/globalObject, /*Function*/callback, /*Object*/thisObject,
/*Array*/callbackArgs)
dojo.withDoc(/*Object*/documentObject, /*Function*/callback, /*Object*/thisObject,
/*Array*/callbackArgs)

It should be noted that using a Dojo function to operate extensively in another
document or window is not a well-tested usage of the toolkit, so you may encounter
support issues if going down that route. Standard usage normally entails loading

Manipulating Object Context | 53

Dojo into every document where you plan to use it. For lightweight operations, how-
ever, the context functions discussed in this section should work fine.

Partially Applying Parameters
Base’s partial function allows you to partially apply parameters to a function as they
become available and perform final execution of the function at a later time. Or, you
might just need to apply all of the parameters at once and then pass around a func-
tion reference that can be executed—which is a little less messy than passing around
the function and the parameters all at the same time and a pattern that is commonly
used throughout the toolkit. Here’s the API for partial:

dojo.partial(*/Function|String*/func /*, arg1, ..., argN*/) //Returns Any

To illustrate, here’s a simple example of partial being used to partially apply param-
eters to a function that adds a series of numbers:

function addThree(x,y,z) { console.log(x+y+z);}

//apply two args now
f = dojo.partial(addThree, 100,10);

//apply the last one later
f = dojo.partial(f, 1);

//now evaluate
f(); //111

Curry
Another related concept to partial called currying is also worth knowing about. A
curry function works like partial in that it returns partial functions that you can pass
remaining arguments into; however, these partial functions stand on their own as first-
class functions, allowing you to continue filling in missing parameters one at a time.
Then, once they have all of their arguments filled, curried functions automatically exe-
cute. It may not sound like much, but such behavior is quite sophisticated once you
think about it.

To be clear, partial is not synonymous with currying. partial might allow partial
arguments to be applied, but it never executes the function automatically once all argu-
ments have been applied. Additionally, the partial function has to explicitly be
involved in all instances of applying partial functions and final execution because it
does all of the internal bookkeeping for you, i.e., each intermediate partial function
can’t operate without explicit use of the partial function itself.

If you’re interested in a closer look, an implementation of a curry function is available
in the module dojox.lang.functional.curry. Appendix B provides survey coverage of
DojoX topics.

54 | Chapter 2: Language and Browser Utilities

Hitching an Object to a Specific Context
Base’s hitch function is quite similar to partial in that it allows you partially apply
parameters to a function, but it also has the interesting twist that it also allows you to
permanently bind (or hitch) a function to a specific execution context, regardless of
whatever the final execution context becomes. This can be especially handy for situa-
tions in which you have callback functions and will never fully know what the final
execution context (and thus, this) will be. Here’s the API:

dojo.hitch(/*Object*/scope, /*Function||String*/method /*, arg1, ... , argN*/)
//Returns Any

And to illustrate, here’s a simple example that rewires an Object method:

var foo = {
 name : "Foo",
 greet : function() {
 console.log("Hi, I'm", this.name);
 }
}

var bar = {
 name : "Bar",
 greet : function() {
 console.log("Hi, I'm", this.name);
 }
}

foo.greet(); //Hi, I'm Foo
bar.greet(); //Hi, I'm Bar

/* Bind bar's greet method to another context */
bar.greet = dojo.hitch(foo, "greet");

/ * Bar is now an impersonator */
bar.greet(); // Hi, I'm Foo

To be clear, because the greet function explicitly references a context with this, the
following code would not have successfully rewired the greet method:

bar.greet = foo.greet;
bar.greet();

You might find it interesting to know that with respect to implementa-
tion, hitch provides the basis for partial and calling hitch with null
as the scope is the functional equivalent of calling partial.

The section “Hitching Up Callbacks” in Chapter 4 provides an example of using
hitch to manage the context for data that is used within an asynchronous callback
function—one of its most common use cases because the callback function has a dif-
ferent this context than the containing Object.

DOM Utilities | 55

Delegation and Inheritance
Delegation is a programming pattern that entails one object relying on another object
to perform an action, instead of implementing that action itself. Delegation is at the
very heart of JavaScript as a prototype-based language because it is the pattern
through which object properties are resolved in the prototype chain. Although dele-
gation is at the very crux of JavaScript’s inheritance implementation, which relies on
the prototype chain being resolved at runtime, delegation as a pattern is very differ-
ent from inheritance in true class-based programming languages like Java and C++,
which often (but not always) resolve class hierarchies at compile time instead of run-
time. In that regard, it is especially noteworthy that as a runtime feature, delegation
necessarily relies on dynamic binding as a language feature.

Dojo’s delegate function wraps up the details of dispatching delegation of an
Object’s function through the following API:

dojo.delegate(/*Object*/delegate, properties) //Returns Object

Building on the previous example, the following blurb demonstrates how you might
use delegation to get an Object that dispatches responsibility for a function to its
delegate:

function Foo() {
 this.talk = function() {console.log("Hello, my name is", this.name);}
}

// Get a Function object back that has the name property
// but dispatches, or delegates, responsiblity for the talk function
// to the instance of Foo that is passed in.
var bar = dojo.delegate(new Foo, {name : "Bar"});

// The talk method is resolved through the Foo delegate
bar.talk();

Chapter 10 is devoted to the inheritance pattern facilitated by the toolkit’s dojo.declare
function, which can be used to simulate class hierarchies with JavaScript; the chapter
also includes additional discussion on various approaches to accomplishing inherit-
ance patterns.

DOM Utilities
Recall that Dojo intentionally does not attempt to replace core JavaScript functional-
ity; on the contrary, it only augments it where value can be added so that you can
write portable code and incur less boilerplate. For this reason, you won’t see direct
replacements for common DOM operations such as appendChild, removeChild, and
so on. Still, there are many utilities that could make DOM manipulation a lot sim-
pler, and this section is all about how Base helps to make that happen.

56 | Chapter 2: Language and Browser Utilities

Ancestry
Base packs several useful functions that augment and supplement common DOM
functions. The first of these functions, isDescendant, shown in Table 2-1, is self-
descriptive. You provide it two arguments (id values or actual nodes), where the first
argument is the node of interest and the second argument is a potential ancestor. If
the node of interest is in fact a member of the potential ancestor’s DOM tree, the
function returns true.

Selectability
The need to make a text on the page unselectable via the cursor is not uncommon and
sometimes can actually enhance usability. Virtually every browser has a specific way of
accomplishing this task, but no need to worry—you have Dojo. Whenever the need
arises, just use the dojo.setSelectable function. Here’s the self-descriptive API:

dojo.setSelectable(/*String | DomNode*/node, /*Boolean*/selectable)

Hopefully, it goes without saying that no client-side operation should
ever be relied on to protect sensitive content because if something is
being viewed in the browser as a native display, it can and will be
reverse-engineered.

Styling Nodes
Base’s dojo.style function provides a comprehensive means of getting or setting
individual style values for a particular node. Simply provide the node and a style
value in DOM-accessor format (e.g., borderWidth, not border-width) to fetch a partic-
ular style value. Providing style value in DOM-accessor format as a third argument
causes the function to act as a setter method instead of a getter method. For exam-
ple, dojo.style("foo", "height") would return the height of element with an id of
"foo", while dojo.style("foo", "height", "100px") would set its height to 100 pix-
els. You can also set multiple style properties at the same time by using an Object as
the second parameter, like so:

dojo.style("foo", {
 height : "100px",
 width : "100px",
 border : "1px green"
});

Table 2-1. Base function for manipulating and handling the DOM

Name Return type Comment

dojo.isDescendant(/*String | DomNode*/node,
 /* String | DomNode*/potentialAncestor)

Boolean Returns a Boolean value indicating if a
node has a particular ancestor or not
and works in nested hierarchies as
would be expected.

DOM Utilities | 57

While many applications benefit from dojo.style’s ability to manipulate specific
style attributes, there is just as common a need for adding, removing, toggling, and
checking for the existence of a particular class. Base’s suite of functions for manipu-
lating class can do just that, and they all share a common function signature. The
first parameter is the DOM node of interest, and the second parameter is a string
value indicating the class to manipulate. For example, adding a class to a node is as
simple as dojo.addClass("foo", "someClassName"). Note that the class name does not
include a leading dot as would define it in the stylesheet.

Table 2-2 summarizes the various facilities for manipulating the appearance of a
node.

Manipulating Attributes
Mimicking the same approach as the previous section discussed for styling nodes,
Base also provides functions for normalizing the ability to set, get, check for the
existence of, and remove attributes. Table 2-3 lists the available functions.

The dojo.attr function works just like dojo.style in that it can set values for individ-
ual attributes or multiple attributes depending on whether you use the second and

Table 2-2. Base functions for style handling

Name Comment

dojo.style(/*DomNode|String*/ node,
/*String?|Object?*/style,
/*String?*/value)

Provides a means of getting and setting specific style values
on a node.

dojo.hasClass(/*DomNode*/node,
/*String*/classString)

Returns true only if node has a particular class applied to it.

dojo.addClass(/*DomNode*/node,
/*String*/classString)

Adds a particular class to a node.

dojo.removeClass(/*DomNode*/node,
/*String*/classString)

Removes a particular class from a node.

dojo.toggleClass(/*DomNode*/node,
/*String*/classString)

Adds a class if a node does not have it; removes a class if it
does have it.

Table 2-3. Base functions for manipulating node attributes

Name Comment

dojo.attr(/*DOMNode|String*/node,
/*String?|Object?*/attrs,
/*String?*/value)

Provides a means of getting and setting attributes for a node.

dojo.hasAttr (/*DOMNode|String*/node,
/*String*/name)

Returns true only if node has a particular attribute.

dojo.removeAttr (/*DOMNode|String*/node,
/*String*/name)

Removes an attribute from a node.

58 | Chapter 2: Language and Browser Utilities

third parameters to specify an attribute and its value, or if you provide an associative
array as the second parameter that contains a collection of attributes and values. The
hasAttr and removeAttr functions are self-descriptive and work just as you would
expect.

Placing Nodes
The built-in methods for manipulating DOM content such as appendChild,
insertBefore, and so on can get the job done, but sometimes it’s a lot more conve-
nient to have a uniform means of placing nodes, and the dojo.place function, docu-
mented in Table 2-4, provides just that. In a nutshell, you give it three parameters: a
node to be placed, a reference node, and a position that defines the relative relation-
ship. The position parameter may take on the values "before", "after", "first", and
"last". The values "before" and "after" may be used to for relative placement in a
lateral context, while "first" and "last" may be used for absolute placement in a
context that assumes the reference node is the parent of the node being placed. Posi-
tion may also be supplied as an Integer value, which refers to the absolute position
that the node to be placed should have in the reference node’s child nodes.

The Box Model
The CSS box model is a fairly simple topic, but because there are so many inconsis-
tent implementations of it that are available on the Web, things get messy pretty
quickly. This short section does little more than scratch the surface, because you
really do want to turn to an authoritative reference such as Eric Meyer’s CSS: The
Definitive Guide (O’Reilly) to really get to the bottom of it all.

If various inconsistent implementations of the box model aren’t
enough, there’s also the issue of keeping the CSS2 box model and the
CSS3 box model straight. You can read about the CSS2 box model in
the CSS2 Specification at http://www.w3.org/TR/REC-CSS2/box.html,
while the CSS3 working draft is at http://www.w3.org/TR/css3-box/.

The ultra-condensed version of the story, however, is that the box model was
designed as a way of providing flexible visual formatting that controls the height and
width of content by arranging a series of nested boxes around a page element. Before
any more dialogue, take a look at Figure 2-2, which conveys the basic idea.

Table 2-4. Placing a node

Name Comment

dojo.place(/*String|DomNode*/node,
/*String|DomNode*/refNode,
/*String|Number*/position)

Augments DOM functionality by providing a uniform function for
inserting a node relative to another node. Returns a Boolean.

http://www.w3.org/TR/REC-CSS2/box.html
http://www.w3.org/TR/css3-box/

DOM Utilities | 59

To summarize the differences between content, margin, padding, and border boxes,
review the following relevant blurb from the specification:

The margin, border, and padding can be broken down into left, right, top, and bot-
tom segments (e.g., in the diagram, “LM” for left margin, “RP” for right padding,
“TB” for top border, etc.). The perimeter of each of the four areas (content, padding,
border, and margin) is called an “edge,” so each box has four edges:

1 - content edge or inner edge

The content edge surrounds the element’s rendered content.

2 - padding edge

The padding edge surrounds the box padding. If the padding has 0 width, the pad-
ding edge is the same as the content edge. The padding edge of a box defines the edges
of the containing block established by the box.

3 - border edge

The border edge surrounds the box’s border. If the border has 0 width, the border
edge is the same as the padding edge.

4 - margin edge or outer edge

The margin edge surrounds the box margin. If the margin has 0 width, the margin
edge is the same as the border edge.

As it turns out, two different means of realizing the box model emerged, which is
where the divergence begins: the content-box and the border-box. The basic differ-
ence between the two approaches can be captured by asking what defines how mar-
gins and borders are applied to the content area. With the content-box approach,
any area incurred by padding and borders is accounted for outside of the explicit
width and height of the content, whereas the border-box approach calls for any pad-
ding and borders to be accounted for inside the explicit height and width of the

Figure 2-2. The behavior of width and height as defined by CSS 2.1 Box Model

Bottom

BM

BB

BP

Top

TM

TB

TP

Margin (transparent)

Border

Padding

ContentLeft LM LB LP RightRP RB RM

Margin edge
Border edge
Padding edge
Content edge

60 | Chapter 2: Language and Browser Utilities

content area. In other words, the content-box approach associates a height/width
strictly with only the content, whereas the border-box approach associates a height/
width with the border inward.

Many modern browsers support two modes: standards mode and
quirks mode. The content-box approach is associated with standards
mode while the border-box approach is associated with quirks mode.

If you’re not doing anything very fancy and just want to space out some content, the
differences may not be apparent, and you can generally get the same net effect in a
number of ways. If you need to achieve a very specific look and feel, however, your
decisions may already be made for you—and achieving the same look and feel across
browsers is exactly where the (lack of) fun begins.

Dojo attempts to normalize the differences in calculating various facets of the box
model by exposing the dojo.marginBox attribute, which can take on a value of
"content-box" or "margin-box" as well as the dojo.marginBox and dojo.contentBox
functions, which can be used to retrieve the coordinates for the boxes. By default,
dojo.boxModel is set to "content-box". In all cases, the box parameters provided in
the following table refer to an Object containing values for width and height, along
with an upper-left coordinate that defines the box’s area. A sample margin box
would look something like { l: 50, t: 200, w: 300: h: 150 } for a node offset from its
parent 50px to the left, 200px from the top with a margin width of 300px, and a
margin-height of 150px.

To try it out for yourself, copy the following example into a local file and open it up
in Firefox:

<body style="margin:3px">
 <div id="foo" style="width:4px; height:4px; border:solid 1px;"></div>
</body>

Here’s some sample output you’d see in Firebug if you copied over the page and
experimented with it, and Figure 2-3 shows what it would look like in the browser:

console.log("box model", dojo.boxModel); // content-box
console.log("content box", dojo.contentBox("foo")); // l=0 t=0 w=4 h=4
console.log("margin box", dojo.marginBox("foo")); // l=3 t=3 w=6 h=6

Like other functions you’ve seen in this chapter, calling the functions with only one
parameter corresponding to a node returns a value, while calling it with an addi-
tional second parameter sets the value for the node. Table 2-5 lists all the properties
for working with the box model.

DOM Utilities | 61

Dijit uses the box model facilities extensively to produce portable wid-
gets across browsers.

Figure 2-3. The sample page in the browser

Table 2-5. Box model properties

Name Return type Comment

dojo.marginBox(
/*DomNode|String*/node,
/*Object?*/box)

Object Returns an Object containing the margin box
for a node.

dojo.contentBox(
/*DomNode|String*/node,
/*Object?*/box)

Object Returns an Object containing the content box
for a node.

dojo.coords(/*HTMLElement*/node,
/*Boolean*/includeScroll)

Object Returns margin box data for a node, including
absolute positioning data. In addition to thet,l,
w, and h values, additional x and y values indi-
cate the absolute position of the element on the
page; these values are offset relative to the view-
port if includeScroll is set to true. dojo.
coords does not act as a setter.

Rest of the page …

0 1 2

2

1

0

62 | Chapter 2: Language and Browser Utilities

Browser Utilities
This section provides an overview of the toolkit’s utilities for managing cookies and
the browser’s Back button—two topics that are quite common in any modern web
application. Because both of these topics are provided by Core, you must dojo.
require them into the page before trying to use them.

Cookies
Because HTTP is a stateless protocol, as soon as a web server finishes serving up a
page, it knows nothing else about you. While this aspect of the Web is magnificent
in many respects, it is less than ideal for situations in which an application could per-
sonalize a page based upon preferences you’ve already defined. For example, it might
be nice for a weather-related site to remember your zip code so that you don’t have
to enter it every single time you visit the page.

Cookies are a concept originally devised by Netscape that mitigate this kind of prob-
lem and give browsers a limited form of short-term memory. In short, web page
designers can use JavaScript or server-side scripts to create a cookie that contains

Browser Detection
Although Dojo does virtually all of the heavy lifting to standardize browser anomalies,
there may be times when you need to do some specific detection yourself—for what-
ever reason. When the situation arises, you can access the following attributes and
treat them as Booleans (any value greater than 1 would imply true) in Base to do a
quick check versus cluttering up your design with more boilerplate:

• dojo.isOpera

• dojo.isKhtml

• dojo.isSafari

• dojo.isMozilla

• dojo.isFF

• dojo.isIE

• dojo.isAIR

• dojo.isQuirks

Note that isMozilla will be true if any variation of Mozilla’s Gecko rendering engine
is used, while isFF refers strictly to the Gecko rendering engine as used in the Firefox
browser.

The isQuirks attribute returns true if the browser is operating in backward-compatibility
(quirks) mode. Most browsers default to quirks mode unless the first element of the page
is a specific DTD element that signals otherwise.

Browser Utilities | 63

name-value pairs about your visit to the page. When you visit the page again, scripts
can be used to fetch the cookie and dynamically affect your experience. Cookies gen-
erally have an expiration date and are always associated with the specific domain
from which they originated.

One of the issues with managing cookies from pure JavaScript is that you have to
remember the somewhat strict syntax that is expected and build up the string for
yourself. For example, to set a cookie for the default domain that consists of a name/
value pair of foo=bar with a particular expiration date, you would do this:

document.cookie ='foo=bar; expires=Sun, 15 Jun 2008 12:00:00 UTC; path=/'

Of course, that’s the easy part. When you want to read back out cookie values, you
get to parse the String yourself, which might contain lots of name/value pairs.

Dojo provides a basic wrapper around cookie operations that’s a lot easier to remem-
ber how to use. Table 2-6 outlines the basic API.

For example, you might set and retrieve a cookie value like so:

dojo.cookie("foo","bar", {expires : 30});
//set a foo/bar key-value pair to expire 30 days from now
dojo.cookie("foo"); //get back the value for foo, which is bar

Table 2-6. dojo.cookie functions

Name Comment

dojo.cookie(/*String*/name,
/*String*/value, /*Object?*/properties)

Acts as a “getter” for a cookie value (returned as String)
when you provide only the first argument, which is the name
for a cookie value. Providing the first two values acts as a
“setter,” which sets the name to the value. The final
parameter, properties, may contain the following key/
value pairs for specific cookie properties:

expires (Date|String|Number)

If this is a number, it indicates the days from today at which
the cookie expires; if a date, it provides the date past which
the cookie expires (and if expires is in the past, the cookie is
deleted); if expires is omitted or is 0, the cookie expires when
the browser closes.

path (String)
The path to use for the cookie.

domain (String)
The domain to use for the cookie.

secure (Boolean)
Whether to send the cookie only on secure connections.

dojo.cookie.isSupported() Returns a Boolean value indicating if the browser supports
cookies.

64 | Chapter 2: Language and Browser Utilities

Back Button Handling
For modern web applications, it is pretty much the norm that the entire app lives in a
single page that never reloads, and one issue that immediately comes up is managing
the Back button so that your application can properly respond to state and poten-
tially even bookmarking. The Core module back provides a simple utility that facili-
tates the state-tracking portion of the work by allowing you to explicitly define states
and respond accordingly when the Back or Forward button is pressed. Table 2-7
describes the API.

Be consistent and use either Boolean values or String identifiers for the
changeUrl property for the args Object that is passed to addToHistory.

Example 2-8 illustrates a trivial usage of back to produce callback functions that
could provide custom behavior, which hopefully gets the basic idea across. Note that
the emphasized lines inside of the body tags are necessary to ensure that IE behaves
as expected.

Table 2-7. dojo.back functions

Name Comment

init() Needs to be called from a SCRIPT tag that exists inside of the page
BODY because of a nuance with Internet Explorer. If you know for sure
that your application will not need to run on IE, you can optionally ignore
calling this function.

setInitialState(/*Object*/args) Used to define the callback function that should be executed when the
page returns to its “first” state. In general, it is recommended that this
function be called first thing in addOnLoad.

addToHistory(/*Object*/args) Provides a way of establishing a particular state via the args that pro-
vides callbacks for when the Back and Forward buttons are pressed, as
well as an optional identifier in the URL that may be used for convenient
bookmarking. Specifically, args has the following form:

back (Function)
The callback function to execute when the state is entered via the
Back button being pressed.

forward (Function)
The callback function to execute when the state is entered via the For-
ward button being pressed.

changeUrl (Boolean|String)
If true, a random identifier is inserted into the URL and used inter-
nally for tracking purposes. If a String is provided, the string is
inserted into the URL and used for the same purpose with the nicety
that it also provides convenient bookmarking. Do not mix and match
Boolean and String values; use one or the other.

Browser Utilities | 65

In case you’re wondering why the SCRIPT that is included inside of the
BODY looks really awkward, it’s because of a specific problem with IE
that requires a document.write to execute, which cannot happen after
the page loads. It’s not elegant, but it does work across all browsers
and gets you Back button functionality.

Example 2-8. Example of Back button handling

<html>
 <head>
 <title>Fun with Back!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="dojoIframeHistoryUrl:'iframe_history.html',isDebug:true"
 ></script>

 <script type="text/javascript">

 dojo.addOnLoad(function() {
 initialState = {
 back: function() { console.log("Back to initial state"); }
 };
 state1 = {
 back: function() { console.log("Back to state 1"); },
 forward: function() { console.log("Forward to state 1"); },
 changeUrl : true // could also be an id like "state1"
 };
 state2 = {
 back: function() { console.log("Back to state 2"); },
 forward: function() { console.log("Forward to state 2"); },
 changeUrl : true // could also be an id like "state2"
 };

 //set the initial state and move forward two steps in history
 dojo.back.setInitialState(initialState);
 dojo.back.addToHistory(state1);
 dojo.back.addToHistory(state2);
 });
 </script>
 <head>
 <body>
 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/back.js"></script>
 <script type="text/javascript">dojo.back.init();</script>

66 | Chapter 2: Language and Browser Utilities

Summary
After reading this chapter, you should:

• Understand Base’s general feature set

• Be able to configure djConfig to register module paths and be aware of the vari-
ous other options you can pass into this structure to configure the bootstrap
process

• Understand how to use dojo.addOnLoad and dojo.addOnUnload functions and be
aware of how dojo.addOnLoad can protect you from creating race conditions in
your code

• Be able to construct and namespace your own modules with dojo.provide and
dojo.require

• Understand how (and when) to use the map, filter, and forEach functions

• Know the difference between and be able to effectively use mixin and extend

• Effectively use Dojo’s utilities for manipulating style with hasClass, removeClass,
addClass, and toggleClass

• Understand the basics of the CSS box model and be able to use functions like
coords and marginBox to manipulate the placement of DOM nodes

• Be aware of Base’s Array processing utilities

• Be able to wire up arbitrary connections of Object and DOM events

• Be able to manage cookies

• Be able to use Core’s facilities for managing the back button for a single page
app

Next, we’ll take a look at event listeners and pub/sub communication.

 Press the back button and have a look at the console.
 </body>
 </html>

Example 2-8. Example of Back button handling (continued)

Event and Keyboard Normalization | 67

Chapter 3 CHAPTER 3

Event Listeners and Pub/Sub
Communication3

Base provides extremely useful and versatile utilities for communication between
JavaScript objects, DOM nodes, and any combination thereof. This chapter intro-
duces these constructs as well as guidelines for when each of them might be most
appropriate to employ. As writing portable code that involves DOM events necessar-
ily depends on a standardized event model, you’ll also learn a little bit about how
Dojo works behind the scenes to smooth out some of the inconsistencies amongst
mouse and keyboard events. The chapter concludes with a discussion of publish/
subscribe communication, which provides a great vehicle for realizing an architec-
ture with loosely coupled components.

Event and Keyboard Normalization
Some of the oldest code in the toolkit was written to smooth out inconsistencies with
the underlying event model amongst different browsers. This section provides a brief
overview of the events that you can count on being normalized when you use Dojo to
develop an application. The basis of standardization is the W3C model.

Mouse and Keyboard Event Normalization
The dojo.connect machinery that you’ll read about in the following section often
involves a mouse event on a particular DOM node. Whenever you use Dojo, you can
rest assured that the following mouse and keyboard events are supported in accor-
dance with the W3C standard:

onclick
onmousedown
onmouseup
onmouseover
onmouseout
onmousemove

68 | Chapter 3: Event Listeners and Pub/Sub Communication

onkeydown
onkeyup
onkeypress

In addition to supporting the standardized W3C events, the nonstandard
onmouseenter and onmouseleave events are also supported.

In addition to being able to count on these events firing in a standardized way, you
can also rely on the event objects that are passed to event handling functions to also
be normalized. In fact, if you ever have a need to normalize events yourself, you can
use the following Base function:

dojo.fixEvent(/*DOMEvent*/ evt, /*DOMNode*/ sender) //Returns DOMEvent

DOMEvent is the standard convention that’ll be used in the rest of the
book to refer to the DOM event objects.

In other words, pass in the event and the node that should be treated as the current
target, and you’ll get back a normalized event that you can count on meeting the
W3C specification. Table 3-1 provides a synopsis of some of the most commonly
used properties on a DOMEvent.*

* Dojo currently normalizes against the DOM2 specification, which is available at http://www.w3.org/TR/
DOM-Level-2-Events/events.html. See http://www.w3.org/TR/DOM-Level-3-Events/events.html for an over-
view of the DOM3 Event specification.

Table 3-1. Commonly used properties on DOMEvents

Name Type Comment

bubbles Boolean Indicates whether the event can bubble up the DOM tree.

cancelable Boolean Indicates whether the event can have its default action prevented.

currentTarget DOMNode The current node whose event listeners are being processed. (Useful for when
an event bubbles.)

target DOMNode The node that originally received the event.

type String The type of the event, e.g., mouseover.

ctrlKey Boolean Indicates if the Ctrl key was depressed when the event fired.

shiftKey Boolean Indicates if the Shift key was depressed when the event fired.

metaKey Boolean Indicates if the Meta key was depressed when the event fired. (This is the Com-
mand key on an Apple computer.)

altKey Boolean Indicates if the Alt key was depressed when the event fired.

screenX Integer The X coordinate where the event occurred on the screen.

http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html

Event and Keyboard Normalization | 69

Standardized Key Codes
The toolkit also exposes the following table of named key codes, which are available
via dojo.keys. For example, you might detect whether a Shift + Enter key combina-
tion was processed via the following code snippet:

/* ... snip ... */
 if (evt.keyCode == dojo.keys.ENTER && evt.shiftKey) {
 /* ... */
 }
/* ... snip ... */

Table 3-2 provides a list of the constants for accessing keyboard events.

screenY Integer The Y coordinate where the event occurred on the screen.

clientX Integer The X coordinate where the event occurred on the browser window.

clientY Integer The Y coordinate where the event occurred on the browser window.

Table 3-2. A listing of the constants Dojo provides for accessing keyboard events via
dojo.keys

BACKSPACE DELETE NUMPAD_DIVIDE

TAB HELP F1

CLEAR LEFT_WINDOW F2

ENTER RIGHT_WINDOW F3

SHIFT SELECT F4

CTRL NUMPAD_0 F5

ALT NUMPAD_1 F6

PAUSE NUMPAD_2 F7

CAPS_LOCK NUMPAD_3 F8

ESCAPE NUMPAD_4 F9

SPACE NUMPAD_5 F10

PAGE_UP NUMPAD_6 F11

PAGE_DOWN NUMPAD_7 F12

END NUMPAD_8 F13

HOME NUMPAD_9 F14

LEFT_ARROW NUMPAD_MULTIPLY F15

UP_ARROW NUMPAD_PLUS NUM_LOCK

RIGHT_ARROW NUMPAD_ENTER SCROLL_LOCK

Table 3-1. Commonly used properties on DOMEvents (continued)

Name Type Comment

70 | Chapter 3: Event Listeners and Pub/Sub Communication

Event Listeners
Direct communication channels are constructed by explicitly chaining together func-
tions and/or DOM events so that when one executes, another is automatically
invoked afterward. For example, each time an object changes via a “setter” method,
you may want to automatically trigger a change in the application’s visual interface.
Or, perhaps each time one object changes, you might want to automatically update a
derived property on another object. The possibilities are endless.

The two primary methods involved in a direct communication scheme are dojo.connect
and dojo.disconnect. In short, you use dojo.connect to chain together a series of events.
Each call to dojo.connect returns a handle that you should keep and explicitly pass to
dojo.disconnect whenever you are ready to dispose of the connection. Conveniently, all
handles are disconnected automatically when the page unloads, but manual manage-
ment of the handles may be necessary for preventing memory leaks in long-running
applications that invoke a lot of connections that are used temporarily. (This is par-
ticularly the case on IE.) Coming up is the API that was introduced in Chapter 1.

Don’t ever connect anything until after the page is loaded. Trying to
use dojo.connect before the page is loaded is a very common mistake
and can cause you to sink a lot of time into trying to debug something
that isn’t very easy to track down the first time you run into it. You
should always set up your connections within the function that you
pass into dojo.addOnLoad to stay safe.

Setting up and tearing down connections is easy. Here’s the basic API:

/* Set up a connection */
dojo.connect(/*Object|null*/ obj,
 /*String*/ event,
 /*Object|null*/ context,
 /*String|Function*/ method) // Returns a Handle

/* Tear down a connection */
dojo.disconnect(/*Handle*/handle);

For all practical purposes, you should treat the handle that is returned
from a call to dojo.connect as an opaque object that you don’t do any-
thing with except pass to disconnect at a later time. (In case you’re
wondering, it is nothing special—just a collection of information that
is used to manage the connection internally.)

DOWN_ARROW NUMPAD_MINUS

INSERT NUMPAD_PERIOD

Table 3-2. A listing of the constants Dojo provides for accessing keyboard events via
dojo.keys (continued)

Event Listeners | 71

Let’s take a look at an example that illustrates a kind of problem that dojo.connect
would be suitable for helping us to solve:

function Foo() {
 this.greet = function() { console.log("Hi, I'm Foo"); }
}

function Bar() {
 this.greet = function() { console.log("Hi, I'm Bar"); }
}

foo = new Foo;
bar = new Bar;

foo.greet();

//bar should greet foo back without foo
//ever having to know that bar exists.

As it turns out, we can solve this little conundrum with one line of code. Modify the
previous listing like so, and test this out in Firebug:

function Foo() {
 this.greet = function() { console.log("Hi, I'm foo"); }
}

function Bar() {
 this.greet = function() { console.log("Hi, I'm bar"); }
}

foo = new Foo;
bar = new Bar;

//Anytime foo.greet fires, fire bar.greet afterward...
var handle = dojo.connect(foo, "greet", bar, "greet"); //set up the connection

foo.greet(); //bar automatically greets back now!

The payout for writing that one line of code was pretty high, don’t you think? Notice
that the second and fourth parameters to dojo.connect are string literals for their
respective contexts and that a handle is returned that can later be used to tear down
the connection. In general, you always want to tear down the connection at some
point, whether it be to accomplish some kind of functional requirement in your
design, or when you’re performing some final cleanup—such as when an object is
destroyed or the page is unloaded. Here’s how:

var handle = dojo.connect(foo, "greet", bar, "greet");
foo.greet();

dojo.disconnect(handle);

foo.greet(); //silent treatment this time

72 | Chapter 3: Event Listeners and Pub/Sub Communication

In addition to dojo.connect accomplishing so much with so little effort, notice how
clean and maintainable the source code remains. No boilerplate, no spaghetti code,
no wiring up your own solution, no maintenance nightmare.

Firing methods off in response to happenings in the page is really useful, but sooner
or later you’ll need to pass around some arguments. As it turns out, one additional
feature of connect is that it automatically passes the arguments from the first con-
text’s function to the second context’s function. Here’s an example that shows how:

function Foo() {
 this.greet = function(greeting) { console.log("Hi, I'm Foo.", greeting); };
}

function Bar() {
 this.greet = function(greeting) { console.log("Hi, I'm Bar.", greeting); };
}

foo = new Foo;
bar = new Bar;

var handle= dojo.connect(foo, "greet", bar, "greet");
foo.greet("Nice to meet you");

As you might imagine, having the arguments get passed around automatically is
quite handy, and this is especially the case when a function is connected to a DOM
event such as a mouse click because it gives the function instant access to all of the
important particulars of the event such as the target, the mouse coordinates, and so
on. Let’s investigate with yet another example:

//Note that the third argument is skipped altogether since the handler is a
//standalone anonymous function. Using null to placehold the third parameter would
//have produced the very same effect.

dojo.connect(
 dojo.byId("foo"), //Some DOM element
 "onmouseover",
 function(evt) {
 console.log(evt);
 });

If you set up a sample page, wire up the connection, and watch the Firebug console,
you’ll see that the entire event object is available to the event-handling function,
empowering you with just about everything you’d ever need to know about what just
happened.

“But it’s so easy to specify handlers for DOM events. Why would I even bother with
learning another fancy library function?” you wonder. Yes, it may not take a brain
surgeon to put together some simple event handlers, but what about when you have
a complex application that may need to handle lots of sophisticated event handling
based on user preferences, custom events, or some other event-driven behavior?
Sure, you could handle all of this work manually, but would you be able to connect

Event Listeners | 73

or disconnect in one line of code with a single consistent interface that’s already been
written and battle-tested?

Finally, note that while the examples only illustrated one event being chained to
another one, there’s no reason you couldn’t wire up any arbitrary number of ordi-
nary functions, object methods, and DOM events to fire in succession.

Event Propagation
There may be times when you need to suppress the browser’s built-in handling of
some DOM events and instead provide custom handlers for these tasks yourself via
dojo.connect. Two fairly common cases that occur are when you’d like to suppress
the browser from automatically navigating when a hyperlink is clicked and when
you’d like to prevent the browser from automatically submitting a form when the
Enter key is pressed or the Submit button is clicked.

Fortunately, stopping the browser from handling these DOM events once your cus-
tom handlers have finished is as easy as using dojo.stopEvent or the DOMEvent’s
preventDefault method to prevent the event from propagating to the browser. The
stopEvent function simply takes a DOMEvent as a parameter:

dojo.stopEvent(/*DOMEvent*/evt)

While you can suppress DOM events that participate in a series of
dojo.connect functions, there is no way to stop the dojo.connect event
chain from within an ordinary function or JavaScript object method.

The following example illustrates stopEvent at work:

var foo = dojo.byId("foo"); //some anchor element

dojo.connect(foo, "onclick", function(evt) {
 console.log("anchor clicked");
 dojo.stopEvent(evt); //suppress browser navigation and squash any event bubbling
});

Likewise, suppressing automatic submission of a form is just as easy; simply swap
out the context of the connection and associate with the submit event. This time,
though, we’ll use the preventDefault method of a DOMEvent to suppress the event,
while allowing bubbling to continue:

var bar = dojo.byId("bar"); //some form element

dojo.connect(bar, "onsubmit", function(evt) {
 console.log("form submitted");
 evt.preventDefault(); //suppress browser navigation but allow event bubbling
});

74 | Chapter 3: Event Listeners and Pub/Sub Communication

Leveraging Closures with dojo.connect
This section covers some semi-advanced content that you may want to skim over but
not get bogged down with your first time through this chapter. Do come back to it
though, because sooner or later you’ll find yourself needing it.

One-time connections

Consider a situation in which you need to establish and soon thereafter tear down a
connection that fires only a single time. The following example gets the job done
with minimal effort:

var handle = dojo.connect(
 dojo.byId("foo"), //some div element
 "onmouseover",
 function(evt) {
 //some handler goes here...
 dojo.disconnect(handle);
 }
);

If you’re still getting comfortable with closures, your first reaction might be to object
and claim that what we’ve just done is not possible. After all, the variable handle is
returned from the call to dojo.connect, and yet it is being referenced inside of a func-
tion that gets passed to dojo.connect as a parameter. To better understand the situa-
tion, consider the following analysis of what’s going on:

1. The dojo.connect function executes, and although an anonymous function is
one of its parameters, the anonymous function has not yet been executed.

2. Any variables inside of the anonymous function (such as handle) are bound to its
scope chain, and although they might exist within the function, they aren’t actu-
ally referenced until the function actually executes, so there’s no possible error
that could happen yet.

3. The dojo.connect function returns the handle variable before the anonymous
function ever can ever be executed, so when the anonymous function does exe-
cute, it is readily available and passed to the dojo.disconnect call.

Setting up connections within a loop

Another situation that frequently occurs during development is that you need to set
up connections in the body of a loop. Suppose for now that you simply have a series
of elements on the page, foo0, foo1,...foo9, and you want to log a unique number
when you move the mouse over each of them. As a first attempt, you might end up
with the following code block that will not accomplish what you would expect:

/* The following code does not work as expected! */
for (var i=0; i < 10; i++) {
 var foo = dojo.byId("foo"+i);
 var handle = dojo.connect(foo, "onmouseover", function(evt) {

Event Listeners | 75

 console.log(i);
 dojo.disconnect(handle);
 });
}

If you run the snippet of code in Firebug on a page with a series of named elements,
you’ll quickly find that there’s a problem. Namely, the value 10 is always printed in
the console, which means that the final value of i is being referenced across the
board and that the same connection is erroneously trying to be torn down in each of
the 10 handlers. Taking a moment to ponder the situation, however, it suddenly
occurs to you that the behavior that is happening actually makes sense because the
closure provided by the anonymous function that is passed into dojo.connect doesn’t
resolve i until it is actually executed—at which time it is in a final state.

The following modification fixes the problem by trapping the value of i in the scope
chain so that when it is referenced later it will actually resolve to whatever value it
held at the time the dojo.connect statement executed:

for (var i=0; i < 10; i++) {
 (function() {
 var foo = dojo.byId("foo"+i);
 var current_i = i; //trap in closure
 var handle = dojo.connect(foo, "onmouseover",
 function(evt) {
 console.log(current_i);
 dojo.disconnect(handle);
 }
);
 })(); // execute anonymous function immediately
}

The block of code may seem a little bit convoluted at first, but it’s actually pretty
simple. The entire body of the loop is an anonymous function that is executed inline,
and because the anonymous function provides closure for everything that is in it, the
value of i is “trapped” as current_i, which can be resolved when the event handler
executes. Likewise, the proper handle reference is also resolved because it too exists
within the closure provided by the inline anonymous function.

If you’ve never seen closures in action like this before, you may want to take a few
more moments to carefully study the code and make sure you fully understand it.
You’re probably tired of hearing it by now, but a firm grasp on closures will serve
you well in your JavaScript pursuits.

Connecting in Markup
It is worth noting that it is also possible to set up connections for dijits without even
the minimal JavaScript writing required by using special dojo/connect SCRIPT tags
that appear in markup. You can read more about this topic in Chapter 11 when Dijit
is formally introduced.

76 | Chapter 3: Event Listeners and Pub/Sub Communication

Publish/Subscribe Communication
While there are plenty of times when the direct “chained” style of communication
provided by dojo.connect is exactly what you’ll need to solve a problem, there are
also a lot of times when you’ll want a much more indirect “broadcast” style of com-
munication in which various widgets communicate anonymously. For these circum-
stances, you might instead use dojo.publish and dojo.subscribe.

A classic example is a JavaScript object that needs to communicate with other
objects in a one-to-many type relationship. Instead of setting up and managing mul-
tiple dojo.connect connections for what seems like one cohesive action, it’s consider-
ably simpler to have one widget publish a notification that an event has transpired
(optionally passing along data with it) and other widgets can subscribe to this notifi-
cation and automatically take action accordingly. The beauty of the approach is that
the object performing the broadcast doesn’t need to know anything whatsoever
about the other objects—or even if they exist, for that matter. Another classic exam-
ple for this kind of communication involves portlets—pluggable interface compo-
nents (http://en.wikipedia.org/wiki/Portlet) that are managed within a web portal,
kind of like a dashboard.

The OpenAjax Hub (http://www.openajax.org/OpenAjax%20Hub.
html), which you’ll read more about in Chapter 4, calls for publish/
subscribe communication to be used as the vehicle for effectively
employing multiple JavaScript libraries in the same page.

In many situations, you can achieve exactly the same functionality with pub/sub
style communication as you could by establishing connections, so the decision to use
pub/sub may often boil down to pragmatism, the specific problem being solved, and
overall convenience of one approach over another.

As a starting point for determining which style of communication to use, consider
the following issues:

• Do you want to (and can you reliably) expose an API for a widget you’re devel-
oping? If not, you should strongly prefer pub/sub communication so that you
can transparently change the underlying design without constantly wrangling the
API.

• Does your design contain multiple widgets of the same type that are all going to
be responding to the same kind of event? If so, you should strongly prefer con-
nections because you’d have to write additional logic to disambiguate which
widgets should respond to which notifications.

• Are you designing a widget that contains child widgets in a “has-a” relationship?
If so, you should prefer setting up and maintaining connections.

http://en.wikipedia.org/wiki/Portlet
http://www.openajax.org/OpenAjax%20Hub.html
http://www.openajax.org/OpenAjax%20Hub.html

Publish/Subscribe Communication | 77

• Does your design involve one-to-many or many-to-many relationships? If so, you
should strongly prefer pub/sub communication to minimize the overall burden
of communication.

• Does your communication need to be completely anonymous and require the
loosest coupling possible? If so, you should use pub/sub communication.

Without further delay, here’s the pub/sub API. Note that in the case of dojo.subscribe,
you may omit the context parameter and the function will internally normalize the argu-
ments on your behalf (just as was the case with dojo.connect):

dojo.publish(/*String*/topic, /*Array*/args)
dojo.subscribe(/*String*/topic, *Object|null*/context,
 /*String|Function*/method) //Returns a Handle
dojo.unsubscribe(/*Handle*/handle)

Just as the handle that is returned from dojo.connect should be con-
sidered opaque, the same applies here for dojo.subscribe.

Let’s get to work with a simple example involving dojo.subscribe and dojo.publish:

function Foo(topic) {

 this.topic = topic;

 this.greet = function() {
 console.log("Hi, I'm Foo");

 /* Foo directly publishes information, but not to a specific destination... */
 dojo.publish(this.topic);
 }

}

function Bar(topic) {

 this.topic = topic;

 this.greet = function() {
 console.log("Hi, I'm Bar");
 }

 / * Bar directly subscribes to information, but not from a specific source */
 dojo.subscribe(this.topic, this, "greet");

}

var foo = new Foo("/dtdg/salutation");
var bar = new Bar("/dtdg/salutation");

foo.talk(); //Hi, I'm Foo...Hi, I'm Bar

78 | Chapter 3: Event Listeners and Pub/Sub Communication

Although there is no formal standard, the toolkit uses the convention
of prefixing and using a forward slash to separate the components of
topic names. An advantage of this approach is that the forward slash is
uncommon enough in JavaScript code that it is fairly easy to spot
(whereas using a dot to separate topic names in source code would be
a lot more difficult).

As you can see, whereas connect involves a connection from a specific source to a
specific destination, publish/subscribe involves a broadcast that could be sent from
any source and could be received by any destination that cares to respond to it in
some way. Some amazing power comes built-in with a very loosely coupled architec-
ture because with minimal effort and great simplicity comes the ability to have what
amounts to an application that is conceptually a collection of coherent plug-ins.

Let’s illustrate how to unsubscribe with an interesting variation on Bar’s implementa-
tion. Let’s have Bar respond to the topic that Foo publishes only a single time:

function Bar(topic) {

 this.topic = topic;

 this.greet = function() {
 console.log("Hi, I'm bar");
 dojo.unsubscribe(this.handle);

 //yackety yack, don't talk back
 }

 this.handle = dojo.subscribe(this.topic, this, "greet");
}

Note that you can also send along an array of arguments by providing an additional
second argument to publish that is an Array of values, which gets passed to the
subscribe handler as named parameters.

It’s a common mistake to forget that the arguments passed from
dojo.publish must be contained in an Array and that dojo.subscribe’s
handler receives these arguments as individual parameters.

For a final rendition of our example, let’s say you are not able to reliably change Foo’s
greet method to include a dojo.publish call because an external constraint exists that
prohibits it; perhaps it is code that you do not own or should not be mucking with, for
example. Not to worry—we’ll use another function, dojo.connectPublisher, to take
care of the publishing for us each time a particular event occurs:

function Foo() {
 this.greet = function() {
 console.log("Hi, I'm foo");
 }
}

Summary | 79

function Bar() {
 this.greet = function() {
 console.log("Hi, I'm bar");
 }

}

var foo = new Foo;
var bar = new Bar;

var topic = "/dtdg/salutation";
dojo.subscribe(topic, bar, "greet");
dojo.connectPublisher(topic, foo, "greet");

foo.greet();

In case you’re interested, behind-the-scenes connectPublisher is basi-
cally using dojo.connect to create a connection between a dojo.publish
call each time a particular function is called.

In this final example, the primary takeaway is that the dojo.connectPublisher call
allowed us to achieve the same result as adding a dojo.publish call to its greet
method, but without mangling its source code to achieve that result. In this regard,
foo is an indirect sender of the notification and is not even aware that any communi-
cation is going on at all. Bar, on the other hand, as a subscriber of the notification,
did require explicit knowledge of the communications scheme. This is essentially the
opposite of a typical dojo.connect call in which the object that provides the context
for a connection has explicit knowledge about some other object or function that
provides the “target” of the connection.

Summary
After reading this chapter, you should:

• Be aware that dojo.connect standardizes the event Object that is passed into
event-handling functions, providing portability across platforms

• Understand how dojo.connect allows you to arbitrarily chain DOM events,
JavaScript Object events, and ordinary functions together to create an event-
driven response

• Use publish/subscribe to facilitate connections and achieve a loosely coupled
communications backbone in an application

• Be aware of some of the considerations and trade-offs for using dojo.connect ver-
sus pub/sub in an application architecture

Next up is AJAX and server communication.

80 | Chapter 4: AJAX and Server Communication

Chapter 4CHAPTER 4

AJAX and Server Communication 4

The common thread of this chapter is server-side communications. Performing asyn-
chronous requests, using the IFRAME transport to submit forms behind the scenes,
serializing to and from JavaScript Object Notation (JSON), and using JSONP (JSON
with Padding) are a few of the topics that are introduced in this chapter. You’ll also
learn about Deferred, a class that forms the lynchpin in the toolkit’s IO subsystem by
providing a uniform interface for handling asynchronous activity.

Quick Overview of AJAX
AJAX* (Asynchronous JavaScript and XML) has stirred up considerable buzz and
revitalized web design in a refreshing way. Whereas web pages once had to be com-
pletely reloaded via a synchronous request to the server to perform a significant
update, JavaScript’s XMLHttpRequest object allows them to now behave much like tra-
ditional desktop applications. XHR is an abbreviation for the XMLHttpRequest object
and generally refers to any operation provided the object.

Web pages may now fetch content from the server via an asynchronous request
behind the scenes, as shown in Figure 4-1, and a callback function can process it
once it arrives. (The image in Figure 4-1 is based on http://adaptivepath.com/ideas/
essays/archives/000385.php.) Although a simple concept, this approach has revolu-
tionized the user experience and birthed a new era of Rich Internet Applications.

Using JavaScript’s XMLHttpRequest object directly isn’t exactly rocket science, but like
anything else, there are often tricky implementation details involved and boilerplate
that must be written in order to cover the common-use cases. For example, asyn-
chronous requests are never guaranteed to return a value (even though they almost
always do), so you’ll generally need to implement logic that determines when and

* Even though the “X” in AJAX specifically stands for XML, the term AJAX now commonly refers to virtually
any architecture that employs the XMLHttpRequest object to perform asynchronous requests, regardless of the
actual type of data that’s returned. Although opting to use the umbrella term XHR would technically be
more accurate, we’ll follow common parlance and use AJAX in the broader context.

http://adaptivepath.com/ideas/essays/archives/000385.php
http://adaptivepath.com/ideas/essays/archives/000385.php

Quick Overview of AJAX | 81

how to timeout a request; you may want to have some facilities for automatically vet-
ting and transforming JSON strings into JavaScript objects; you’ll probably want to
have a concise way of separating the logic that handles a successful request versus a
request that produces an error; and so forth.

JSON
JSON bears a brief mention before we move on to a discussion of AJAX because it
has all but become the universally accepted norm for lightweight data exchange in
AJAX applications. You can read about the formalities of JSON at http://json.org, but

Figure 4-1. The difference between synchronous and asynchronous communication for a web
application

Data transm
ission Da

ta
tra

ns
m

iss
io

n Data transm
ission Da

ta
tra

ns
m

iss
io

n
Input

Di
sp

lay

Input

Di
sp

lay
Input

Di
sp

lay

Input

Di
sp

lay

Data transm
ission Da

ta
tra

ns
m

iss
io

n Data transm
ission Da

ta
tra

ns
m

iss
io

n Data transm
ission Da

ta
tra

ns
m

iss
io

n Data transm
ission Da

ta
tra

ns
m

iss
io

n

Classic web application model (synchronous)

Client
User activity User activity User activity

System processing System processing

Time

Server

Ajax web application model (asynchronous)

Client

Browser UI

User activity

Browser UI

Client-side processing

Server-side
processing

Time

Server
Server-side
processing

Server-side
processing

Server-side
processing

http://json.org

82 | Chapter 4: AJAX and Server Communication

basically, JSON is nothing more than a string-based representation of JavaScript
objects. Base provides two simple functions for converting String values and JavaScript
objects back and forth. These functions handle the mundane details of escaping spe-
cial characters like tabs and new lines, and even allow you to pretty-print if you feel so
inclined:

dojo.fromJson(/*String*/ json) //Returns Object
dojo.toJson(/*Object*/ json, /*Boolean?*/ prettyPrint) //Returns String

By default, a tab is used to indent the JSON string if it is pretty-
printed. You can change the tab to whatever you’d like by switching
the value of the built-in attribute dojo.toJsonIndentStr.

Here’s a quick example that illustrates the process of converting an Object to a JSON
string that is suitable for human consumption:

var o = {a:1, b:2, c:3, d:4};
dojo.toJson(o, true); //pretty print
/* produces ...
'{
 "a": 1,
 "b": 2,
 "c":3,
 "d":4
}'

AJAX Made Easy
Base provides a small suite of functions suitable for use in a RESTful design that sig-
nificantly simplifies the process of performing routine AJAX operations. Each of
these functions provides explicit mechanisms that eliminate virtually all of the boiler-
plate you’d normally find yourself writing. Table 4-1 summarizes the property val-
ues for args.

Representational State Transfer (REST)
REST stands for “Representational State Transfer” and describes an architectural style
that is primarily associated with the web. REST is a very resource-centric style, and in
a RESTful architecture, URIs define and address resources. The HTTP methods GET,
PUT, POST, and DELETE describe the semantic operations that generally involve the
action that is being associated with a resource. For example, a GET request on http://
example.com/foo/id/1 implies that you are trying to fetch the foo resource that has an
id value of 1, while a DELETE request on the same URI would imply that the same
resource should be removed.

An excellent reference on REST is the book entitled RESTful Web Services by Leonard
Richardson and Sam Ruby (O’Reilly).

AJAX Made Easy | 83

The RESTful XHR functions offered by the toolkit follow; as of Dojo version 1.1,
each of these functions sets the X-Requested-With: XMLHttpRequest header to the
server automatically. A discussion of the args parameter follows.

All of the XHR functions return a special Object called Deferred,
which you’ll learn more about in the next section. For now, just con-
centrate on the discussion at hand.

Table 4-1. Property values for args

Name Type (Default) Comment

url String
("")

The base URL to direct the request.

content Object
({})

Contains key/value pairs that are encoded in the most appropriate way
for the particular transport being used. For example, they are serialized
and appended onto the query string as name1=value2 for a GET
request but are included as hidden form fields for the case of an IFRAME
transport. Note that even though HTTP allows more than one field with
the same name (multivalued fields), this is not possible to achieve via the
content property because it is a hash.

timeout Integer
(Infinity)

The number of milliseconds to wait for the response. If this time passes,
then the error callback is executed. Only valid when sync is false.

form DOMNode | String The DOM node or id for a form that supplies the key/value pairs that are
serialized and provide the query string for the request. (Each form value
should have a name attribute that identifies it.)

preventCache Boolean
(false)

If true, then a special dojo.preventCache parameter is sent in the
request with a value that changes with each request (timestamp). Useful
only with GET-type requests.

handleAs String
("text")

Designates the type of the response data that is passed into the load
handler. Acceptable values depend on the type of IO transport: “text”,
“json”, “javascript”, and “xml”.

load Function The load function will be called on a successful response and should have
the signature function(response, ioArgs) {/*...*/}.

error Function The error function will be called in an error case and should have the sig-
nature function(response, ioArgs) {/*...*/}.

handle Function A function that stands in for both load and error, and thus should be
called regardless of whether the request is successful.

sync Boolean
(false)

Whether to perform a synchronous request.

headers Object
({})

Additional HTTP headers to include in the request.

postData String
("")

Raw data to send in the body of a POST request. Only valid for use with
rawXhrPost.

putData String
("")

Raw data to send in the body of a PUT request. Only valid for use with
rawXhrPut.

84 | Chapter 4: AJAX and Server Communication

dojo.xhrGet(/*Object*/args)
Performs an XHR GET request.

dojo.xhrPost(/*Object*/args)
Performs an XHR POST request.

dojo.rawXhrPost(/*Object*/args)
Performs an XHR POST request and allows you to provide the raw data that
should be included as the body of the POST.

dojo.xhrPut(/*Object*/args)
Performs an XHR PUT request.

dojo.rawXhrPut(/*Object*/args)
Performs an XHR PUT request and allows you to provide the raw data that
should be included as the body of the PUT.

dojo.xhrDelete(/*Object*/args)
Performs an XHR DELETE request.

dojo.xhr(/*String*/ method, /*Object*/ args, /*Boolean?*/ hasBody)
A general purpose XHR function that allows you to define any arbitrary HTTP
method to perform asynchronsously.

Although most of the items in the table are pretty straightforward, the arguments
that are passed into the load and error functions bear mentioning. The first parame-
ter, response, is what the server returns, and the value for handleAs specifies how the
response should be interpreted. Although the default value is "text", specifying
"json", for example, results in the response being cast into a JavaScript object so that
the response value may be treated as such.

In the load and error functions, you should always return the
response value. As you’ll learn later in this chapter, all of the various
input/output calls such as the XHR facilities return a type called a
Deferred, and returning responses so that callbacks and error han-
dlers can be chained together is an important aspect of interacting
with Deferreds.

The second parameter, ioArgs, contains some information about the final arguments
that were passed to the server in making the request. Although you may not need to
use ioArgs very frequently, you may occasionally find it useful—especially in debug-
ging situations. Table 4-2 describes the values you might see in ioArgs.

Table 4-2. Property values for ioArgs

Name Type Comment

args Object The original argument to the IO call.

xhr XMLHttpRequest The actual XMLHttpRequest object that was used for the request.

AJAX Made Easy | 85

XHR Examples
At an absolute minimum, the arguments for an XHR request should include the URL
to retrieve along with the load function; however, it’s usually a very good idea to
include an error handler, so don’t omit it unless there you’re really sure you can’t
possibly need it. Here’s an example:

//...snip...
dojo.addOnLoad(function() {
 dojo.xhrGet({

 url : "someText.html", //the relative URL

 // Run this function if the request is successful
 load : function(response, ioArgs) {
 console.log("successful xhrGet", response, ioArgs);

 //Set some element's content...
 dojo.byId("foo").innerHTML= response;

 return response; //always return the response back
 },

 // Run this function if the request is not successful
 error : function(response, ioArgs) {
 console.log("failed xhrGet", response, ioArgs);

 /* handle the error... */

 return response; //always return the response back
 }
 });
});
//...snip...

You may not necessarily want plain text back; you may want to time out the request
after some duration, and you might want to pass in some additional information a
query string. Fortunately, life doesn’t get any harder. Just add some parameters, like so:

dojo.xhrGet({

 url : "someCommentFilteredJSON.html",
 // Returns something like: /*{'bar':'baz'}*/

url String The final URL used for the call; often different than the one provided
because it is fitted with query parameters, etc.

query String Defined only for non-GET requests, this value provides the query string
parameters that were passed with the request.

handleAs String How the response should be interpreted.

Table 4-2. Property values for ioArgs (continued)

Name Type Comment

86 | Chapter 4: AJAX and Server Communication

 handleAs : "json",
 // Strip the comments and eval to a JavaScript object

timeout: 5000, //Call the error handler if nothing after 5 seconds
content: {foo:'bar'}, //Append foo=bar to the query string

 // Run this function if the request is successful
 load : function(response, ioArgs) {
 console.log("successful xhrGet", request, ioArgs);
 console.log(response);

 //Our handleAs value tells Dojo to strip comments
 //and convert the data to an object

 dojo.byId("foo").innerHTML= response.bar;
 //Display now updated to say 'baz'

 return response; //always return the response back
 },

 // Run this function if the request is not successful
 error : function(response, ioArgs) {
 console.log("failed xhrGet");
 return response; //always return the response back
 }
});

Do note that not specifying a proper value for handleAs can produce frustrating bugs
that may not be immediately apparent. For example, if you were to mistakenly omit
the handleAs parameter, but try to access the response value as a JavaScript object in
your load function, you’d most certainly get a nasty error that might lead you to look
in a lot of other places before realizing that you are trying to treat a String as an
Object—which may not be immediately obvious because logs may display the values
nearly identically.

Although applications tend to perform a lot of GET requests, you are bound to come
across a circumstance when you’ll need to PUT, POST, or DELETE something. The
process is exactly the same with the minor caveats that you’ll need to include a
putData or postData argument for rawXhrPut and rawXhrPost requests, respectively, as
a means of providing the data that should be sent to the server. Here’s an example of
a rawXhrPost:

dojo.rawXhrPost({
 url : "/place/to/post/some/raw/data",
 postData : "{foo : 'bar'}", //a JSON literal
 handleAs : "json",

 load : function(response, ioArgs) {
 /* Something interesting happens here */
 return response;
 },

AJAX Made Easy | 87

 error : function(response, ioArgs) {
 /* Better handle that error */
 return response;
 }
});

General Purpose XMLHttpRequest Calls
Dojo version 1.1 introduced a more general-purpose dojo.xhr function with the fol-
lowing signature:

dojo.xhr(/*String*/ method, /*Object*/ args, /*Boolean?*/ hasBody)

As it turns out, each of the XHR functions from this chapter are actually wrappers
around this function. For example, dojo.xhrGet is really just the following wrapper:

dojo.xhrGet = function(args) {
 return dojo.xhr("GET", args); //Always provide the method name in all caps!
}

Although you’ll generally want to use the shortcuts presented in this section, the
more general-purpose dojo.xhr function can be useful for some situations in which
you need to programmatically configure XHR requests or for times when a wrapper
isn’t available. For example, to perform a HEAD request for which there isn’t a
wrapper, you could do the following:

dojo.xhr("HEAD", {
 url : "/foo/bar/baz",
 load : function(response, ioArgs) { /*...*/},
 error : function(response, ioArgs) { /*...*/}
});

Hitching Up Callbacks
Chapter 2 introduced hitch, a function that can be used to guarantee that functions
are executed in context. One common place to use hitch is in conjunction with XHR
callback functions because the context of the callback function is different from the
context of the block that executed the callback function. The following block of code
demonstrates the need for hitch by illustrating a common pattern, which aliases this
to work around the issue of context in the callback:

//Suppose you have the following addOnLoad block, which could actually be any
JavaScript Object
dojo.addOnLoad(function() {

 //foo is bound the context of this anonymous function
 this.foo = "bar";

 //alias "this" so that it can be referenced inside of the load callback...
 var self=this;
 dojo.xhrGet({

88 | Chapter 4: AJAX and Server Communication

 url : "./data",
 load : function(response, ioArgs) {
 //you must have aliased "this" to reference foo inside of here...
 console.log(self.foo, response);
 },
 error : function(response, ioArgs) {
 console.log("error", response, ioArgs);
 }
 });

});

While it may not look very confusing for this short example, it can get a bit messy to
repeatedly alias this to another value that can be referenced. The next time you
encounter the need to alias this, consider the following pattern that makes use of
hitch:

dojo.addOnLoad(function() {

 //foo is in the context of this anonymous function
 this.foo = "bar";

 //hitch a callback function to the current context so that foo
 //can be referenced
 var callback = dojo.hitch(this, function(response, ioArgs) {
 console.log("foo (in context) is", this.foo);
 //and you still have response and ioArgs at your disposal...
 });

 dojo.xhrGet({
 url : "./data",
 load : callback,
 error : function(response, ioArgs) {
 console.log("error", response, ioArgs);
 }
 });

});

And don’t forget that hitch accepts arguments, so you could just as easily have
passed in some parameters that would have been available in the callback, like so:

dojo.addOnLoad(function() {

 //foo is in the context of this anonymous function
 this.foo = "bar";

 //hitch a callback function to the current context so that foo can be
 //referenced
 var callback = dojo.hitch(
 this,
 function(extraParam1, extraParam2, response, ioArgs) {

Deferreds | 89

 console.log("foo (in context) is", this.foo);
 //and you still have response and ioArgs at your disposal...
 },
 "extra", "params"
);

 dojo.xhrGet({
 url : "./data",
 load : callback,
 error : function(response, ioArgs) {
 console.log("error", response, ioArgs);
 }
 });

});

If you may have a variable number of extra parameters, you can instead opt to use
arguments, remembering that the final two values will be response and ioArgs.

Deferreds
JavaScript doesn’t currently support the concept of threads, but it does offer the abil-
ity to perform asynchronous requests via the XMLHttpRequest object and through
delays with the setTimeout function. However, it doesn’t take too many asynchro-
nous calls running around before matters get awfully confusing. Base provides a class
called Deferred to help manage the complexity often associated with the tedious imple-
mentation details of asynchronous events. Like other abstractions, Deferreds allow you
to hide away tricky logic and/or boilerplate into a nice, consistent interface.

If the value of a Deferred was described in one sentence, however, it would probably
be that it enables you to treat all network I/O uniformly regardless of whether it is
synchronous or asynchronous. Even if a Deferred is in flight, has failed, or finished
successfully, the process for chaining callbacks and errbacks is the exact same. As
you can imagine, this behavior significantly simplifies bookkeeping.

Dojo’s implementation of a Deferred is minimally adapted from
MochiKit’s implementation, which in turn is inspired from Twisted’s
implementation of the same. Some good background on MochiKit’s
implementation is available at http://www.mochikit.com/doc/html/
MochiKit/Async.html#fn-deferred. Twisted’s implementation of
Deferreds is available at http://twistedmatrix.com/projects/core/
documentation/howto/defer.html.

Some key features of Deferreds are that they allow you to chain together multiple
callbacks and errbacks (error-handling routines) so they execute in a predictable
sequential order, and Deferreds also allow you to provide a canceling routine that

http://www.mochikit.com/doc/html/MochiKit/Async.html#fn-deferred
http://www.mochikit.com/doc/html/MochiKit/Async.html#fn-deferred
http://twistedmatrix.com/projects/core/documentation/howto/defer.html
http://twistedmatrix.com/projects/core/documentation/howto/defer.html

90 | Chapter 4: AJAX and Server Communication

you can use to cleanly abort asynchronous requests. You may not have realized it at
the time, but all of those XHR functions you were introduced to earlier in the chap-
ter were returning Deferreds, although we didn’t have an immediate need to dive
into that just then. In fact, all of the network input/output machinery in the toolkit
use and return Deferreds because of the flexibility they offer in managing the asyn-
chronous activity that results from network calls.

Before revisiting some of our earlier XHR efforts, take a look at the following abstract
example that directly exposes a Deferred, which forms the basis for some of the con-
cepts that are coming up:

//Create a Deferred
var d = new dojo.Deferred(/* Optional cancellation function goes here */);

//Add a callback
d.addCallback(function(response) {
 console.log("The answer is", response);
 return response;
});

//Add another callback to be fired after the previous one
d.addCallback(function(response) {
 console.log("Yes, indeed. The answer is", response);
 return response;
});

//Add an errback just in case something goes wrong
d.addErrback(function(response) {
 console.log("An error occurred", response);
 return response;
});

//Could add more callbacks/errbacks as needed...

/* Lots of calculations happen */

//Somewhere along the way, the callback chain gets started
d.callback(46);

If you run the example in Firebug, you’d see the following output:

The answer is 46
Yes, indeed. The answer is 46

Before jumping into some more involved examples, you’ll probably want to see the
API that a Deferred exposes (Table 4-3).

Deferreds | 91

Be aware that a Deferred may be in an error state based on one or more combina-
tions of three distinct possibilities:

• A callback or errback is passed a parameter that is an Error object.

• A callback or errback raises an exception.

• A callback or errback returns a value that is an Error object.

Typical use cases normally do not involve the canceller,
silentlyCancelled, and fired properties of a Deferred, which provide
a reference to the cancellation function, a means of determining if the
Deferred was cancelled but there was no canceller method registered,
and a means of determining if the Deferred status of the fired, respec-
tively. Values for fired include:

–1: No value yet (initial condition)

 0: Successful execution of the callback chain

 1: An error occurred

Deferred Examples Via CherryPy
Let’s get warmed up with a simple routine on the server that briefly pauses and then
serves some content. (The pause is just a way of emphasizing the notion of asynchro-
nous behavior.)

Table 4-3. Deferred functions and properties

Name Return type Comment

addCallback(/*Function*/handler) Deferred Adds a callback function to the call-
back chain for successes.

addErrback(/*Function*/handler) Deferred Adds a callback function to the call-
back chain for errors.

addBoth(/*Function|Object*/ context,
/*String?*/name)

Deferred Adds a callback function that acts as
both the callback for successes and
errors. Useful for adding code that
you want to guarantee will run one
way or another.

addCallbacks(/*Function*/callback,
/*Function*/errback)

Deferred Allows you to add a callback and an
errback at the same time.

callback(/*Any*/value) N/A Executes the callback chain.

errback(/*Any*/value) N/A Executes the errback chain.

cancel() N/A Cancel the request and execute the
cancellation function provided to
the constructor, if provided.

92 | Chapter 4: AJAX and Server Communication

The complete CherryPy file that provides this functionality follows:

import cherrypy
from time import sleep
import os

a foo.html file will contain our Dojo code performing the XHR request
and that's all the following config directive is doing

current_dir = os.getcwd()
config = {'/foo.html' :
 {
 'tools.staticfile.on' : True,
 'tools.staticfile.filename' : os.path.join(current_dir, 'foo.html')
 }
}

class Content:

 # this is what actually serves up the content
 @cherrypy.expose
 def index(self):
 sleep(3) # purposefully add a 3 sec delay before responding
 return "Hello"

start up the web server and have it listen on 8080
cherrypy.quickstart(Content(), '/', config=config)

Assuming that the CherryPy content is saved in a file called hello.py, you’d simply
type python hello.py in a terminal to startup the server. You should be able to verify
that if you navigate to http://127.0.0.1:8080/ that “Hello” appears on your screen
after a brief delay.

Same Origin Policy
It’s instructive to notice that we go through the extra step of setting up CherryPy to
serve a static file to us, and from the static file, we perform the XHR request. The rea-
son is because the XMLHttpRequest object that JavaScript provides will not allow you to
perform cross-site scripting for security reasons. Hence, we would not be able to open
up a local file such as file:///foo.html in our browser and use dojo.xhrGet to request a
file from http://127.0.0.1:8080/. Yes, they’re both on your local box, but the domains
are still different. As you’ll see in the next section, a technique known as JSONP can
be used to sidestep the security issue and load content from other domains, which
gives way to creating applications like mashups. Other common approaches for load-
ing content from another domain involve opening sockets via Flash-based plug-ins or
ActiveX. In any event, be advised that running untrusted code on your domain is a
security risk and should never be taken lightly.

Deferreds | 93

Using Deferreds returned from XHR functions

Once you have CherryPy up and running save the file below as foo.html and place it
alongside the foo.py file you already have running. You should be able to navigate to
http://127.0.0.1:8080/foo.html and have foo.html load up without any issues:

<html>
 <head>
 <title>Fun with Deferreds!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.addOnLoad(function() {

 //Fire off an asynchronous request, which returns a Deferred
 var d = dojo.xhrGet({
 url: "http://localhost:8080",
 timeout : 5000,
 load : function(response, ioArgs) {
 console.log("Load response is:", response);
 console.log("Executing the callback chain now...");
 return response;
 },
 error : function(response, ioArgs) {
 console.log("Error!", response);
 console.log("Executing the errback chain now...");
 return response;
 }
 });

 console.log("xhrGet fired. Waiting on callbacks or errbacks");

 //Add some callbacks
 d.addCallback(
 function(result) {
 console.log("Callback 1 says that the result is ", result);
 return result;
 }
);

 d.addCallback(
 function (result) {
 console.log("Callback 2 says that the result is ", result);
 return result;
 }
);

 //Add some errbacks
 d.addErrback(

94 | Chapter 4: AJAX and Server Communication

 function(result) {
 console.log("Errback 1 says that the result is ", result);
 return result;
 }
);

 d.addErrback(
 function(result) {
 console.log("Errback 2 says that the result is ", result);
 return result;
 }
);
 });
 </script>
 </head>
 <body>
 Check the Firebug console.
 </body>
</html>

After running this example, you should see the following output in the Firebug console:

xhrGet fired. Waiting on callbacks or errbacks
Load response is: Hello
Executing the callback chain now...
Callback 1 says that the result is Hello
Callback 2 says that the result is Hello

The big takeaway from this example is that the Deferred gives you a clean, consis-
tent interface for interacting with whatever happens to come back from the xhrGet,
whether it is a successful response or an error that needs to be handled.

You can adjust the timing values in the dojo.xhrGet function to timeout in less than
the three seconds the server will take to respond to produce an error if you want to
see the errback chain fire. The errback chain fires if something goes wrong in one of
the callback functions, so you could introduce an error in a callback function to see
the callback chain partially evaluate before kicking off the errback chain.

Remember to return the value that is passed into callbacks and err-
backs so that the chains can execute the whole way through. Inadvert-
ently short-circuiting this behavior causes bizarre results because it
inadvertently stops the callback or errback chain from executing—
now you know why it is so important to always remember and return
a response in your load and error handlers for XHR functions.

Figure 4-2 illustrates the basic flow of events for a Deferred. One of the key points to
take away is that Deferreds act like chains.

Deferreds | 95

Injecting Deferreds into XHR functions

Another great feature of a Deferred is that you have a clean way of canceling an asyn-
chronous action before it completes. The following refinement to our previous exam-
ple illustrates both the ability to cancel an in-flight request as well as “injecting” a
Deferred into the load and error handlers of the request:

<html>
 <head>
 <title>Fun with Deferreds!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.addOnLoad(function() {

Figure 4-2. The basic flow of events through a Deferred

Data source

Deferred

Callback Errback

Callback Errback

Callback Errback

an Error happens or cancel() is called

Result or failure

FailureSuccess

And so forth

96 | Chapter 4: AJAX and Server Communication

 var d = new dojo.Deferred;

 //Add some callbacks
 d.addCallback(
 function(result) {
 console.log("Callback 1 says that the result is ", result);
 return result;
 }
);

 d.addCallback(
 function (result) {
 console.log("Callback 2 says that the result is ", result);
 return result;
 }
);

 //Add some errbacks
 d.addErrback(
 function(result) {
 console.log("Errback 1 says that the result is ", result);
 return result;
 }
);

 d.addErrback(
 function(result) {
 console.log("Errback 2 says that the result is ", result);
 return result;
 }
);

 //Fire off an asynchronous request, which returns a Deferred
request = dojo.xhrGet({

 url: "http://localhost:8080",
 timeout : 5000,
 load : function(response, ioArgs) {
 console.log("Load response is:", response);
 console.log("Executing the callback chain now...");

 //inject our Deferred's callback chain
 d.callback(response, ioArgs);

 //allow the xhrGet's Deferred chain to continue..
 return response;
 },
 error : function(response, ioArgs) {
 console.log("Error!", response);
 console.log("Executing the errback chain now...");

 //inject our Deferred's errback chain
 d.errback(response, ioArgs);

Deferreds | 97

 //allow the xhrGet's Deferred chain to continue..
 return response;
 }
 });
 });
 </script>
 </head>
 <body>
 XHR request in progress. You have about 3 seconds to cancel it.
 <button onclick="javascript:request.cancel()">Cancel</button>
 </body>
</html>

 If you run the example, you’ll see the following output:

xhrGet just fired. Waiting on callbacks or errbacks now...
Load response is: Hello
Executing the callback chain now...
Callback 1 says that the result is Hello
Callback 2 says that the result is Hello

Whereas pressing the Cancel button yields the following results:

xhrGet just fired. Waiting on callbacks or errbacks now...
Press the button to cancel...
Error: xhr cancelled dojoType=cancel message=xhr cancelleddojo.xd.js (line 20)
Error! Error: xhr cancelled dojoType=cancel message=xhr cancelled
Executing the errback chain now...
Errback 1 says that the result is Error: xhr cancelled dojoType=cancel message=xhr
cancelled
Errback 2 says that the result is Error: xhr cancelled dojoType=cancel message=xhr
cancelled

Custom canceller

The various XHR functions all have a special cancellation function that is invoked by
calling cancel(), but for custom Deferreds, you can create your own custom cancel-
ler, like so:

var canceller = function() {
 console.log("custom canceller...");
 //If you don't return a custom Error, a default "Deferred Cancelled" Error is
 //returned
}
var d = new dojo.Deferred(canceller); //pass in the canceller to the constructor
/*interesting stuff happens...*/
d.cancel(); // errbacks could be ready to respond to the "Deferred Cancelled" Error
 //in a special way

DeferredList

While Deferred is an innate part of Base, Core provides DeferredList, an additional
supplement that facilitates some use cases in which you need to manage multiple
Deferreds. Common use cases for DeferredList include:

98 | Chapter 4: AJAX and Server Communication

• Firing a specific callback or callback chain when all of callbacks for a collection
of Deferreds have fired

• Firing a specific callback or callback chain when at least one of the callbacks for
a collection of Deferreds have fired

• Firing a specific errback or errback chain when at least one of the errbacks for a
collection of Deferreds have fired

The API for DeferredList follows:

dojo.DeferredList(/*Array*/list, /*Boolean?*/fireOnOneCallback, /*Boolean?*/
 fireOnOneErrback, /*Boolean?*/consumeErrors, /*Function?*/canceller)

The signature should be self-descriptive in that calling the constructor with only a
single parameter that is an Array of Deferreds produces the default behavior of firing
the callback chain when the callback chains for all of the Deferreds have fired; pass-
ing in Boolean parameters can control if the callback or errback chain should be fired
when at least one callback or errback has fired, respectively.

Setting consumeErrors to true results in errors being consumed by the DeferredList,
which is handy if you don’t want the errors produced by the individual Deferreds in
the list to be directly exposed, and canceller provides a way of passing in custom
cancellation function, just like with an ordinary Deferred.

Form and HTTP Utilities
While certain AJAX designs can certainly be breathtaking if implemented properly,
let’s not forget that certain tried and true elements like plain old HTML forms are far
from obsolete and still have prominent roles to play in many modern designs—with
or without AJAXification. Three functions that Base provides to transform forms
include:

dojo.formToObject(/*DOMNode||String*/ formNode) //Returns Object
dojo.formToQuery(/*DOMNode||String*/ formNode) //Returns String
dojo.formToJson(/*DOMNode||String*/ formNode) //Returns String

To illustrate the effect of each of these functions, let’s suppose we have the following
form:

<form id="register">

 <input type="text" name="first" value="Foo">
 <input type="button" name="middle" value="Baz" disabled>
 <input type="text" name="last" value="Bar">

 <select type="select" multiple name="favorites" size="5">
 <option value="red">red</option>
 <option value="green" selected>green</option>
 <option value="blue" selected>blue</option>
 </select>

</form>

Cross-Site Scripting with JSONP | 99

Here’s the effect of running each function. Note that the disabled form element was
skipped in the transform.

formToObject produces:

{
 first: "Foo",
 last : "Bar",
 favorites: [
 "green",
 "blue"
]
};

formToQuery produces:

"first=Foo&last=Bar&favorites=green&favorites=blue"

formToJson produces:

'{"first": "Foo", "last": "Bar", "favorites": ["green", "blue"]}'

Base provides the following additional convenience functions to you for converting a
query string to an object and vice versa. They’re just as straightforward as you might
imagine with the caveat that the values in query string are converted to strings, even
when they are numeric values:

dojo.queryToObject(/*String*/ str) //Returns Object
dojo.objectToQuery(/*Object*/ map) // Returns String

Here’s a quick snippet to illustrate:

//produces {foo : "1", bar : "2", baz : "3"}
var o = dojo.queryToObject("foo=1&bar=2&baz=3");

//converts back to foo=1&bar=2&baz=3
dojo.objectToQuery(o);

Cross-Site Scripting with JSONP
While JavaScript’s XmlHttpRequest object does not allow you to load data from outside
of the page’s current domain because of the same origin policy, it turns out that SCRIPT
tags are not subject to the “same origin” policy. Consequently, an informal standard
known as JSONP has been developed that allows data to be cross-domain loaded.
As you might imagine, it is this very capability that empowers web applications* to
mash up data from multiple sources and present it in a single coherent application.

* Without loading any external plugins, JSONP is your only means of loading cross-domain data. Plug-ins
such as Flash and ActiveX, however, have other ways of working around the “same origin” limitation that is
placed on the browser itself.

100 | Chapter 4: AJAX and Server Communication

JSONP Primer
Like anything else, JSONP sounds a bit mysterious at first, but it is pretty simple once
you understand it. To introduce the concept, imagine that a SCRIPT tag is dynamically
created and appended to the HEAD of a page that was originally loaded from http://
oreilly.com. The interesting twist comes in with the source of the tag: instead of load-
ing from the oreilly.com domain, it’s perfectly free to load from any domain, say
http://example.com?id=23. Using JavaScript, the operation so far is simple:

e = document.createElement("SCRIPT");
e.src="http://example.com?id=23";
e.type="text/javascript";
document.getElementsByTagName("HEAD")[0].appendChild(e);

Although the SCRIPT tag normally implies that you are loading an actual script, you
can actually return any kind of content you’d like, including JSON objects. There’s
just one problem with that—the objects would just get appended to the HEAD of the
page and nothing interesting would happen (except that you might wreck the way
your page looks).

For example, you might end up with something like the following blurb, where the
emphasized text is the result of the previous JavaScript snippet that dynamically
added the SCRIPT tag to the HEAD of the page:

<html>
 <head>
 <title>My Page</title>
 <script type="text/javascript" >
 {foo : "bar"}
 </script>
 </head>
 <body>
Some page content.
 </body>
</html>

While shoving a JavaScript object literal into the HEAD is of little use, imagine what
would happen if you could somehow receive back JSON data that was wrapped in a
function call—to be more precise, a function call that is already defined somewhere
on your page. In effect, you’d be achieving a truly marvelous thing because you could
now asynchronously request external data whenever you want it and immediately
pass it into a function for processing. To accomplish this feat, all that it takes is
having the result of inserting the SCRIPT tag return the JSON data padded with an
extra function call such as myCallback({foo : "bar"}) instead of just {foo : "bar"}.
Assuming that myCallback is already defined when the SCRIPT tag finishes loading,
you’re all set because the function will execute, pass in the data as a parameter, and
effectively provide you with a callback function. (It’s worth taking a moment to let
this process sink in if it hasn’t quite clicked yet.)

http://oreilly.com
http://oreilly.com
http://example.com?id=23

Core IO | 101

But there’s still a small problem: how do you get the JSON object to come wrapped
with that extra padding that triggers a callback? Easy—all the kind folks at example.com
have to do is provide you with an additional query string parameter that allows you to
define the name of the function that the result should be wrapped in. Assuming that
they’ve determined that you should pass in your function via the c parameter (a new
request that provides c as a query string parameter for you to use), calling http://
example.com?id=23&c=myCallback would return myCallback({foo : "bar"}). And that’s
all there is to it.

Core IO
This section explains the dojo.io facilities that are provided by Core. Injecting
dynamic SCRIPT tags to retrieve padded JSON and hacking IFRAMEs into a viable
transport layer are the central topics of discussion.

Using JSONP with Dojo
You know enough about Dojo by this point that you won’t be surprised to know that it
streamlines the work involved in implementing JSONP. To accomplish the same func-
tionality as what was described in the primer, you could use dojo.io.script.get,
which takes most of the same parameters as the various XHR methods. Notable cave-
ats are that handleAs really isn’t applicable for JSONP, and callbackParamName is
needed so that Dojo can set up and manage a callback function to be executed on
your behalf.

Here’s an example of how it’s done:

//dojo.io.script is not part of Base, so remember to require it into the page
dojo.require("dojo.io.script");

dojo.io.script.get({
 callbackParamName : "c", //provided by the jsonp service
 url: "http://example.com?id=23",
 load : function(response, ioArgs) {
 console.log(response);
 return response;
 },
 error : function(response, ioArgs) {
 console.log(response);
 return response;
 }
});

To clarify, the callbackParamName specifies the name of the query string parameter
that is established by example.com. It is not the name of a function you’ve defined to
act as a callback yourself. Behind the scenes, Dojo manages the callback by creating a
temporary function and channeling the response into the load function, following

102 | Chapter 4: AJAX and Server Communication

the same conventions as the other XHR functions. So, just allow Dojo to remove that
padding for you, and then use the result in the load function and be on your merry
way.

If callbackParamName was not specified at all or was incorrectly speci-
fied, you’d get a JavaScript error along the lines of "<some callback
function> does not exist" because the result of the dynamic SCRIPT
tag would be trying to execute a function that doesn’t exist.

Connecting to a Flickr data source

The following example illustrates making a JSONP call to a Flickr data source. Try
running it in Firebug to see what happens. It is also worthwhile and highly instruc-
tive to examine the error that occurs if you don’t provide callbackParamName (or mis-
spell it):

dojo.require("dojo.io.script");
dojo.io.script.get({
 callbackParamName : "jsoncallback", //provided by Flickr
 url: "http://www.flickr.com/services/feeds/photos_public.gne",
 content : {format : "json"},
 load : function(response, ioArgs) {
 console.log(response);
 return response;
 },
 error : function(response, ioArgs) {
 console.log("error");
 console.log(response);
 return response;
 }
});

Getting back JavaScript from a JSONP call

As it turns out, you could also use dojo.io.script.get to interact with a server
method that returns pure JavaScript. In this case, you’d perform the request in the
same manner, except instead of providing a callbackParamName, you’d provide a
checkString value. The “check string” value is a mechanism that allows for checking
an in-flight response to see if it has completed. Basically, if running the typeof opera-
tor on the check string value does not return undefined, the assumption is that the
JavaScript has completed loading. (In other words, it’s a hack.) Assuming that you
had CherryPy set up with the following simple script, you would use a checkString
value of o to indicate that the script has successfully loaded, as o is the variable that
you’re expecting to get back via the JSONP call (and when typeof(o) != undefined,
you can assume your call is complete).

First, the CherryPy script that serves up the JavaScript:

Core IO | 103

import cherrypy

class Content:
 @cherrypy.expose
 def index(self):
 return "var o = {a : 1, b:2}"

cherrypy.quickstart(Content())

Assuming you have CherryPy running on port 8080, here’s the corresponding Dojo
to fetch the JavaScript:

dojo.require("dojo.io.script");
dojo.io.script.get({
 checkString : "o",
 timeout : 2000,
 url : "http://localhost:8080",
 load : function(response, ioArgs) {
 console.log(o);
 console.log(response)
 },
 error : function(response, ioArgs) {
 console.log("error", response, ioArgs);
 return response;
 }
});

Note that dojo.io.script.get introspects and determines if you’re
loading JavaScript or JSON based on the presence of either
checkString or callbackParamName.

IFRAME Transports
Core provides an IFRAME transport that is handy for accomplishing tasks behind the
scenes that would normally require the page to refresh. While XHR methods allow
you to fetch data behind the scenes, they don’t lend themselves to some tasks very
well; form submissions, uploading files, and initiating file downloads are two com-
mon examples of when IFRAME transports come in handy.

Following the same pattern that the rest of the IO system has established, using an
IFRAME transport requires passing an object containing keyword arguments, and
returns a Deferred. IFRAME transports allow using either GET or POST as your HTTP
method and a variety of handleAs parameters. In fact, you can provide any of the
arguments with the following caveats/additions from Table 4-4.

104 | Chapter 4: AJAX and Server Communication

As of version 1.2, XML is also handled by the IFRAME transport.

File downloads with IFRAMEs

Because triggering a file download via an IFRAME is a common operation, let’s try it
out. Here’s a CherryPy file that serves up a local file when you navigate to http://
localhost:8080/. We’ll use this URL in our dojo.io.frame.send call to the server:

import cherrypy
from cherrypy.lib.static import serve_file
import os

update this path to an absolute path on your machine
local_file_path="/tmp/foo.html"

class Content:

 #serve up a file...
 @cherrypy.expose
 def download(self):
 return serve_file(local_file_path, "application/x-download", "attachment")

start up the web server and have it listen on 8080
cherrypy.quickstart(Content(), '/')

Here’s the HTML file that utilizes the IFRAME. You should be able to load it up, and,
assuming you’ve updated the path in the CherryPy script to point to it, you’ll get a
download dialog when you click on the button.

The first time a call to dojo.io.iframe.send happens, you may
momentarily see the IFRAME get created and then disappear. A com-
mon way to work around this problem is to create the IFRAME by
sending off an empty request when the page loads, which is generally
undetectable. Then, when your application needs to do a send, you
won’t see the side effect.

Table 4-4. IFRAME transport keyword arguments

Name Type (default) Comment

method String ("POST") The HTTP method to use. Valid values include GET and POST.

handleAs String ("text") The format for the response data to be provided to the load or handle
callback. Valid values include"text","html","javascript", and
"json". For any value except "html", the server response should be
an HTML file with a textarea element that contains the response.

content Object If form is another argument, then the content object produce the
same result as if they had been hidden form elements. If there is no
form property, the content object is converted to a query string via
dojo.objectToQuery().

http://localhost:8080/
http://localhost:8080/

Core IO | 105

<html>
 <head>
 <title>Fun with IFRAME Transports!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.io.iframe");

 dojo.addOnLoad(function() {
 download = function() {
 dojo.io.iframe.send({
 url : "http://localhost:8080/download/"
 });
 };
 });
 </script>
 </head>
 <body>
 <button onclick="javascript:download()">Download!</button>
 </body>
</html>

In order to use the “Download!” button multiple times, you may need
to supply a timeout value for the dojo.io.iframe.send function so that
it can eventually time out and make itself available to service another
request.

Form submissions with IFRAMEs

Another common use case for IFRAMEs is submitting a form behind the scenes—
maybe even a form that involves a file upload, which would normally switch out the
page. Here’s a CherryPy script that handles a file upload:

import cherrypy

set this to wherever you want to place the uploaded file
local_file_path="/tmp/uploaded_file"

class Content:

 #serve up a file...
 @cherrypy.expose
 def upload(self, inbound):
 outfile = open(local_file_path, 'wb')
 inbound.file.seek(0)
 while True:
 data = inbound.file.read(8192)
 if not data:
 break

106 | Chapter 4: AJAX and Server Communication

 outfile.write(data)
 outfile.close()

 # return a simple HTML file as the response
 return "<html><head></head><body>Thanks!</body></html>"
start up the web server and have it listen on 8080
cherrypy.quickstart(Content(), '/')

And here’s the HTML page that performs the upload. If you run the code, any file
you upload gets sent in behind the scenes without the page changing, whereas using
the form’s own submit button POSTs the data and switches out the page. An impor-
tant thing to note about the example is that the handleAs parameter calls for an
HTML response.

<html>
 <head>
 <title>Fun with IFRAME Transports!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo.dojo.xd.js"
 djConfig="isDebug:true,dojoBlankHtmlUrl:’/path/to/blank.html’">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.io.iframe");

 dojo.addOnLoad(function() {
 upload = function() {
 dojo.io.iframe.send({
 form : "foo",
 handleAs : "html", //response type from the server
 url : "http://localhost:8080/upload/",
 load : function(response, ioArgs) {
 console.log(response, ioArgs);
 return response;
 },
 error : function(response, ioArgs) {
 console.log("error");
 console.log(response, ioArgs);
 return response;
 }
 });
 };
 });
 </script>
 </head>
 <body>
 <form id="foo" action="http://localhost:8080/upload/" method="post"
 enctype="multipart/form-data">
 <label for="file">Filename:</label>
 <input type="file" name="inbound">

Core IO | 107

 <input type="submit" value="Submit Via The Form">
 </form>

 <button onclick="javascript:upload();">Submit Via the IFRAME Transport
 </button>
 </body>
</html>

The next section illustrates a caveat that involves getting back a response type that’s
something other than HTML.

Non-HTML response types

The previous example’s server response returned an HTML document that could
have been picked out of the response and manipulated. For non-HTML response
types, however, there’s a special condition that you must fulfill, which involves
wrapping the response in a textarea tag. As it turns out, using an HTML document
is the only reliable, cross-browser way that this transport could know when a
response is loaded, and a textarea is a natural vehicle for transporting text-based
content. Internally, of course, Dojo extracts this content and sets it as the response.
The following example illustrates the changes to the previous example that would
allow the response type to be plain text as opposed to HTML.

Note that while the previous examples for uploading and download-
ing files did not require the local HTML file to be served up by
CherryPy, the following example does. The difference is that the
IFRAME transport has to access the DOM of the page to extract the
content, which qualifies as cross-site scripting (whereas the previous
examples didn’t involve any DOM manipulation at all).

The CherryPy script requires only that a configuration be added to serve up the foo.html
file and that the final response be changed to wrap the content inside of a textarea like
so:

import cherrypy
import os

a foo.html file will contain our Dojo code performing the XHR request
and that's all the following config directive is doing

current_dir = os.getcwd()
config = {'/foo.html' :
 {
 'tools.staticfile.on' : True,
 'tools.staticfile.filename' : os.path.join(current_dir, 'foo.html')
 }
}

108 | Chapter 4: AJAX and Server Communication

local_file_path="/tmp/uploaded_file"

class Content:

 #serve up a file...
 @cherrypy.expose
 def upload(self, inbound):
 outfile = open(local_file_path, 'wb')
 inbound.file.seek(0)
 while True:
 data = inbound.file.read(8192)
 if not data:
 break
 outfile.write(data)
 outfile.close()
 return
"<html><head></head><body><textarea>Thanks!</textarea></body></html>"

The only notable change to the request itself is that the handleAs type is different:

dojo.io.iframe.send({
 form : dojo.byId("foo"),
 handleAs : "text", //response type from the server
 url : "http://localhost:8080/upload/",
 load : function(response, ioArgs) {
 console.log(response, ioArgs); //response is "Thanks!"
 return response;
 },
 error : function(response, ioArgs) {
 console.log("error");
 console.log(response, ioArgs);
 return response;
 }
});

Manually creating a hidden IFRAME

As a final consideration, there may be times when you need to create a hidden IFRAME
in the page to load in some content and want to be notified when the content fin-
ishes loading. Unlike the dojo.io.iframe.send function, which creates an IFRAME and
immediately sends some content, the dojo.io.iframe.create function creates an
IFRAME and allows you to pass a piece of JavaScript that will be executed when the
IFRAME constructs itself. Here’s the API:

dojo.io.iframe.create(/*String*/frameName, /*String*onLoadString, /*String?*/url)
//Returns DOMNode

Basically, you provide a name for the frame, a String value that gets evaluated as a
callback, and an optional URL, which can load the frame. Here’s an example that
loads a URL into a hidden IFRAME on the page and executes a callback when it’s
ready:

Core IO | 109

<html>
 <head>
 <title>Fun with IFRAME Transports!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1./dojo/dojo.xd.js"
 djConfig="isDebug:true,dojoBlankHtmlUrl:'/path/to/blank.html'"
 </script>

 <script type="text/javascript">
 dojo.require("dojo.io.iframe");

 function customCallback() {
 console.log("callback!");

 //could refer to iframe content via dojo.byId("fooFrame")...
 }

 create = function() {
 dojo.io.iframe.create("fooFrame", "customCallback()",
 "http://www.exmaple.com");
 }
 </script>
 </head>
 <body>
 <button onclick="javascript:create();">Create</button>
 </body>
</html>

Be advised that some pages have JavaScript functions in them that
break them out of frames—which renders the previous usage of the
transport ineffective.

Although you’ll often immediately load something into an IFRAME, there may also be
times when you need to create an empty frame. If you are using a locally installed
toolkit, just omit the third parameter to dojo.io.iframe.create, and you’ll get an
empty one. If you are XDomain-loading, however, you’ll need to point to a local
template that supplies its content. There is a template located in your toolkit’s direc-
tory at dojo/resources/blank.html that you can copy over to a convenient location.
You also need to add an extra configuration parameter to djConfig before you try to
create the IFRAME as shown in examples in this section.

In addition to the IO facilities provided by Core, DojoX also provides
IO facilities through the dojox.io module. Among other things, you’ll
find utilities for XHR multipart requests and helpers for proxying.

110 | Chapter 4: AJAX and Server Communication

JSON Remote Procedure Calls
By now, you may have noticed that even after using Dojo’s various XHR methods
such as dojo.xhrGet to reduce boilerplate, it is still a somewhat redundant and error-
prone operation to repeatedly provide content to the call and write a load callback
function. Fortunately, you can use Dojo’s RPC (Remote Procedure Call) machinery
to mitigate some of the monotony via Core’s dojo.rpc module. In short, you provide
some configuration information via a Simple Method Description (SMD), create an
instance of this service by passing in the configuration, and then use the service
instead of the xhrGet et al. If your application has a fairly standard way of interacting
with the server and responds in very similar ways for error handling, etc., the benefit
of using the rpc module is that you’ll generally have a cleaner design that’s less error-
prone.

Currently, Core provides a JsonService and a JsonpService, which both descend
from a base class called RpcService.

The dojox.rpc module provides additional RPC capabilities, some of
which may soon be migrated to Core.

JSON RPC Example
To illustrate some basic usage of the RPC machinery, let’s work through an example
that uses JsonService to process a list of numbers, providing the sum of the numbers
or the sum of the sum of each number squared. The client consists of an SMD that
provides two methods, sum and sumOfSquares, which both take a list of numbers:

<html>
 <head>
 <title>Fun with JSON RPC!</title>

 <script type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="isDebug:true">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.rpc.JsonService");
 dojo.addOnLoad(function() {

 //construct the smd as an Object literal...
 var o = {
 "serviceType": "JSON-RPC",
 "serviceURL": "/",
 "methods":[
 {
 "name": "sum",
 "parameters":[{name : "list"}]
 },

JSON Remote Procedure Calls | 111

 {
 "name": "sumOfSquares",
 "parameters":[{name : "list"}]
 }
]
 }

 //instantiate the service
 var rpcObject = new dojo.rpc.JsonService(o);

 //call the service and use the Deferred that is returned to add a
callback
 var sum = rpcObject.sum([4,8,15,16,23,42]);
 sum.addCallback(function(response) {
 console.log("the answer is ", response);
 });
 //add more callbacks, errbacks, etc.

 //call sumOfSquares the very same way...
 });
 </script>
 <body>
 </body>
</html>

Hopefully, you see the connection that if there were lots of methods communicating
with the server in a very standardized way, the general simplicity of calling an RPC
client once you’ve set it up initially declutters the design significantly. Much of the
elegance in using the dojo.rpc.JsonService is that it returns a Deferred so you can
add callbacks and errbacks as needed.

In case you’d like to interact with the example, here’s an example service script. For
simplicity, this script purposely doesn’t bring in a JSON processing library, but
you’d most certainly want to do that for anything much more complicated than this
example:

import cherrypy
import os
a foo.html file will contain our Dojo code performing the XHR request
and that's all the following config directive is doing

current_dir = os.getcwd()
config = {'/foo.html' :
 {
 'tools.staticfile.on' : True,
 'tools.staticfile.filename' : os.path.join(current_dir, 'foo.html')
 }
}

class Content:

 @cherrypy.expose
 def index(self):

112 | Chapter 4: AJAX and Server Communication

 ###
 # for sheer simplicity, this example does not use a json lib.
 # for anything more sophisticated than this example,
 # get a good json library from http://json.org
 ##

 # read the raw POST data
 rawPost = cherrypy.request.body.read()

 # cast to object
obj = eval(rawPost) #MAJOR security hole! you’ve been warned...

 # process the data
 if obj["method"] == "sum":
 result = sum(obj["params"][0])
 if obj["method"] == "sumOfSquares":
 result = sum([i*i for i in obj["params"][0]])

 # return a json response
 return str({"result" : result})

start up the web server and have it listen on 8080
cherrypy.quickstart(Content(), '/', config=config)

Using the JsonpService is very similar to using the JsonService. In your Dojo installa-
tion, there is an example SMD file for Yahoo! services located at dojox/rpc/yahoo.smd
if you want to try it out.

OpenAjax Hub
The OpenAjax Alliance (http://www.openajax.org/) is an organization of vendors and
organizations that have committed themselves to interoperable AJAX-based web
technologies. One of the key issues of the current era of web development is being
able to use multiple JavaScript libraries within a single application. While Dojo and
some of the other frameworks take precautions to cover the bare minimums for
interoperability such as protecting the global namespace, actually using two libraries
concurrently so that they are truly interoperable continues to produce challenges in
regards to actually passing data back and forth as well as overall programming style
and learning curve.

The OpenAjax Alliance has proposed what is known as the OpenAjax Hub, which is
a specification for how libraries should interact. You probably won’t be surprised to
learn that the basic technique for interoperability is the loosely coupled publish/
subscribe idiom. To that end, Core provides an OpenAjax module that implements
the specification and exposes the following methods via a global OpenAjax object:

• registerLibrary

• unregisterLibrary

http://www.openajax.org/)

Summary | 113

• publish

• subscribe

• unsubscribe

As a champion of open standards, you can rest assured that Dojo will strive to stay
current with the latest OpenAjax Hub specification, which you can read about at
http://www.openajax.org/member/wiki/OpenAjax_Hub_Specification.

Summary
After reading this chapter, you should be able to:

• Use Dojo’s XHR machinery to perform RESTful operations with a web server

• Understand how Deferreds provide the illusion of threads, even though JavaScript
does not support threads

• Be aware that the toolkit’s entire IO subsystem uses and generally returns
Deferreds from function calls

• Be able to use Base’s functions for converting forms to and from Objects and
JSON

• Be able to use Core’s IFRAME transport layer for common operations such as
uploading and downloading files

• Understand how the RPC machinery can streamline application logic and pro-
duce a more maintainable design

• Be aware of the infrastructure Core provides for implementing the OpenAjax
Hub

We’ll move on to node manipulation in the next chapter.

http://www.openajax.org/member/wiki/OpenAjax_Hub_Specification

114 | Chapter 5: Node Manipulation

Chapter 5CHAPTER 5

Node Manipulation 5

This chapter provides an overview of query, behavior, and NodeList. These con-
structs provide concise and highly efficient mechanisms for manipulating DOM
nodes. Querying the DOM using query’s CSS selector syntax, decoupling events and
manipulations from an HTML placeholder with Core’s behavior module, and chain-
ing operations together with the syntactic sugar offered by NodeList are among the
fun topics coming up.

Much Ado About Querying
As this chapter was being written, a lot of exciting thing were happening with regard
to querying the DOM. Some particular points of interest:

• The W3C updated its working draft of the Selectors API in late 2007 (http://
www.w3.org/TR/selectors-api/#documentselector)

• WebKit has announced a native implementation of querySelector and
querySelectorAll, the key constructs in the Selectors API (http://webkit.org/blog/
156/queryselector-and-queryselectorall/)

• Firefox 3 implemented native support for getElementsByClassName, a mainstay of
web developers (http://ejohn.org/blog/getelementsbyclassname-in-firefox-3/)

With that said, the facilities you’re reading about in this chapter will continue to be a
staple of the toolkit and of your own toolbox for years to come. Even with native sup-
port for the Selectors API, there will inevitably be quirks that need to be worked around
and smoothed out, and some browsers will likely provide only partial implementations
initially.

Until the day comes when all browsers implement the Selectors API uniformly, rest
assured that the toolkit will keep your code as portable and optimal as it can be by
leveraging native implementations where available and simulating implementations
where they are lacking.

http://www.w3.org/TR/selectors-api/#documentselector
http://www.w3.org/TR/selectors-api/#documentselector
http://webkit.org/blog/156/queryselector-and-queryselectorall/
http://webkit.org/blog/156/queryselector-and-queryselectorall/
http://ejohn.org/blog/getelementsbyclassname-in-firefox-3/

Query: One Size Fits All | 115

Query: One Size Fits All
If you’ve done much JavaScripting, you’ve no doubt needed to query against the
DOM to look up some nodes based on some set of criteria. If you only needed to
look them up by tag name, then you probably used document.getElementsByTagName
and called it a day. However, if you needed to look up a set of nodes by class, a spe-
cific attribute value, or some combination thereof, you may have scratched your
head and wondered why there wasn’t a built-in getElementsByClass function. Appar-
ently, everyone wondered that very same thing, and then set out to write their own
version—some more successful than others.

Although earlier versions of Dojo included specialized implementations of functions
like getElementsByClass, the toolkit now includes a function that universally allows
you to query the DOM with CSS query syntax. To illustrate the use for a DOM que-
rying Swiss army knife, consider a heroic attempt at implementing a
getElementsByClass function (a very common need) yourself:

// Lookup elements from a class name, optionally starting at a particular parent node
function getElementsByClassName(/*String*/className, /*DOMNode?*/node) {
 var regex = new RegExp('(^|)' + className + '(|$)');
 var node = node||document.body;
 var elements = node.getElementsByTagName("*");
 var results = [];

 for (var i=0; i < elements.length; i++) {
 if (regex.test(elements[i].className)) {
 results.push(elements[i]);
 }
 }
 return results;

While this function is only 12 lines of code, that’s still 12 lines that you have to
write, debug, and maintain. If you wanted to query by tags and classes, you’d have to
add in an additional parameter to provide the tag name and pass it into the
getElementsByTagName function. If you wanted to do anything else, you’d get to write
and maintain that logic, too. That’s all in addition to the fact that there’s probably a
corner case or two in which the above function might not work all of the time on all
browsers, and that regular expression that may not be intuitively obvious.

Fortunately, dojo.query makes rolling your own query functions a thing of the past.
Here’s the API that provides universal querying:

dojo.query(/*String*/ query, /*String?|DOMNode?*/ root) //Returns NodeList

Although you won’t be formally introduced to NodeList for a few more
pages, all you really need to know at the moment is that a NodeList is a
subclass of Array that has some specialized extensions for manipulat-
ing nodes.

116 | Chapter 5: Node Manipulation

To accomplish the previous getElementsByClassName example via query, just pass in a
CSS selector for a class name, like so:

dojo.query(".someClassName")

Querying for a tag type like a DIV and a class name is just as easy; you just update the
selector with the additional CSS syntax:

dojo.query("div.someClass")

Starting to see the beauty in using a quick one liner to query the DOM using a uni-
form syntax? You’ll like it even better as you keep reading. First, however, take a
look at Table 5-1 to get a feel for the wide range of common operations you can
accomplish with query. See http://www.w3.org/TR/css3-selectors/ for the definitive
reference on CSS selectors.

Warm Up
Let’s warm up to dojo.query with a page containing some simple markup as part of a
storybook structure. For brevity, only one full scene is included:

Table 5-1. Commonly used CSS selectors

Syntax Meaning Example

* Any element dojo.query("*")

E Elements of type E dojo.query("div")

.C Elements with class C dojo.query(".baz")

E.C Elements of type E having class C dojo.query("div.baz")

#ID Element with ID ID dojo.query("#quux")

E#ID Element of type E with ID ID dojo.query("div#quux)

[A] Elements with attribute A dojo.query("[foo]")

E[A] Elements of type E with attribute A dojo.query("div[foo]")

[A="V"] Elements with attribute A having value “V” dojo.query("[foo='bar']")

E[A~='V'] Elements of type E having a list of space separated
attributes, one of which is exactly equal to “V”

dojo.query("div[foo~='bar']")

E[A^='V'] Elements of type E having an attribute that begins with “V” dojo.query("div[foo^='bar']")

E[A$='V'] Elements of type E having an attribute that ends with “V” dojo.query("div[foo$='bar']")

E[A*='V'] Elements of type E having an attribute that contains the
substring “V”

dojo.query("div[foo*='bar']")

, Boolean OR dojo.query("div,span.baz")

E > F Element F is a child of element E dojo.query("div > span")

E F Element F is an arbitrary descendant of element E dojo.query("E F")

http://www.w3.org/TR/css3-selectors/

Query: One Size Fits All | 117

<div id="introduction" class="intro">
 <p>
 Once upon a time, long ago...
 </p>
</div>

<div id="scene1" class="scene">...</div>

<div id="scene2" class="scene">
 <p>
 At the table in the kitchen, there were three
bowls of porridge. Goldilocks
was hungry. She tasted the porridge from the first bowl.
 </p>
 <p>
 "This porridge is too hot!" she exclaimed.
 </p>

 <p>
 So, she tasted the porridge from the second bowl.
 </p>

 <p>
 "This porridge is too cold," she said
 </p>
 <p>
 So, she tasted the last bowl of porridge.
 </p>

 <p>
 "Ahhh, this porridge is just right," she said
happily and she ate it all up.
 </p>
</div>

<div id="scene3" class="scene">...</div>

As was demonstrated in our earlier example, getElementsByTagName returns an array
of DOM nodes for a given type. The dojo.query equivalent is to simply provide the
tag name as the argument string; so, in order to query a page for all of the div ele-
ments, you’d simply use dojo.query("div"), like so:

dojo.query("div")
//Returns [div#introduction.intro, div#scene1.scene, div#scene2.scene,
//div#scene3.scene]

Note that if you want to query against only the children of a particular node instead
of the entire page, you can specify a second argument to query using that second
argument as the root of the tree. For example, to query only scene2 for paragraph
elements instead of the entire page for paragraph elements, provide the second
parameter as a node or the id of a node, like so:

dojo.query("p", "scene2")
//Returns [p, p, p, p, p, p]

118 | Chapter 5: Node Manipulation

Querying a page for elements of a specific class is just as simple; just indicate the
class you’re looking for using CSS query syntax, which, according to the specifica-
tion, means prefixing the class name with a leading dot. For example, you could
query all of the elements that currently have the food class applied to them, like so:

dojo.query(".food")
//Returns [span.food, span.food, span.food, span.food, span.food,
//span.food, span.food]

Base’s addClass and removeClass functions do not expect a leading dot
to identify class names and won’t return the correct results if you
include it. This can be easy to forget when you’re just starting out with
the toolkit.

Combining the ability to query by tag and class is just as easy: combine the two con-
structs. Consider the case of wanting to query for span elements that have the place
class applied:

dojo.query("span.place")
//Returns [span.place]

Selecting a class is handy and all, but there are plenty of times when you’ll want to
select more than one class. Fortunately, you can accomplish this task using the same
simple approach that you’ve already grown to love. For example, you could select all
of the elements having food and place applied thusly:

dojo.query(".food,.place")
//Returns [span.food, span.food, span.food, span.food, span.food, span.food,
//span.food, span.place]

Parts of a CSS expression that are separated by a comma all stand on
their own. They are not left-associative like some mathematical opera-
tors or parts of grammar.

As a final example of the versatility of query, consider the case of finding descen-
dants of a particular node. For our story, let’s say that you want to find all of the
nodes with the food class applied that are a descendant of scene2:

dojo.query("#scene2 .food")
//Returns [span.food, span.food, span.food, span.food, span.food, span.food,
//span.food]

Note that the child combinator using the > operator would have returned an empty
list because there are no nodes reflecting the food class that are direct children of
scene2:

dojo.query("#scene2 > .food")
//Returns []

Query: One Size Fits All | 119

A common problem is confusing the child combinator (>) with the
descendant combinator (a space). The combinator operator returns
immediate child nodes while the descendant operator returns descen-
dants that appear anywhere in the DOM hierarchy.

Although this example was necessarily brief, a final word worth mentioning is that
reducing the search space as much as possible by providing the most specific query
that you can has a significant impact on performance.

State Tracking Example
In addition to the obvious case of finding nodes in the DOM, a powerful facility like
dojo.query tends to change the way you solve a lot of common problems because it
expands the creative possibilities. As a simple illustration, consider the problem of
tracking state in an application, a very common piece of any reasonably complex
application’s design. Perhaps it involves determining whether a particular section of
text is highlighted or not, or perhaps it involves knowing whether some action has
already been triggered. While you could introduce explicit variables to track every
facet of state, using CSS classes to track state often provides a much more elegant
solution to the problem.

For example, suppose that you’re developing a cutting-edge new search engine for
the web that is capable of tagging entities in the document, and that you’ve indi-
cated that you’d like to explicitly view people in your search results. Let’s assume
that your search results contained Shakespeare’s play Macbeth, and that you had
requested that “people” be tagged in it. You might get the following results:

...
First Witch
When shall we three meet again
In thunder, lightning, or in rain?

Second Witch
When the hurlyburly's done,
When the battle's lost and won.

Third Witch
That will be ere the set of sun.

First Witch
Where the place?

Second Witch
Upon the heath.

Third Witch
There to meet with Macbeth.

...

120 | Chapter 5: Node Manipulation

The long, brittle way

As a developer who has a soft spot for usability, you might want to include a small
control panel on the side of the page that toggles highlighting particular entity types
in the search results. A low-level JavaScript approach in which you directly manipu-
late the DOM yourself might look something like the following:

function addHighlighting(entityType) {
 var nodes = document.getElementsByTagName("a");
 for (var i=0; i < nodes.length; i++) {
 if (nodes[i].getAttribute('rel')==entityType) {
 nodes[i].className="highlighted";
 }
 }
}

function removeHighlighting(entityType) {
 var nodes = document.getElementByTagName("a");
 for (var i=0; i < nodes.length; i++) {
 if (nodes[i].getAttribute('rel')==entityType) {
 nodes[i].className="";
 }
 }
}

That sort of gets the job done, but it’s still a little bit naïve to assume the search
results won’t ever have any other class associated with them than the highlighted
class—because if they did, we’d be directly clobbering it in each of our functions.
Thus, we’d also need to engineer some functions for adding and removing classes
from nodes that may have multiple classes applied, which would involve a more
robust effort requiring us to search over the string value for className and optionally
add or remove a class’s name. You could use Base’s addClass and removeClass func-
tions that you learned about in Chapter 2 to prevent any more cruft from appearing,
but that still doesn’t minimize the existing cruft.

The short, robust way

Here’s the way you could safely attack the problem with query, cruft-free:

function addHighlighting(entityType) {
 dojo.query("span[type="+entityType+"]").addClass("highlighted");
}

function removeHighlighting(entityType) {
 dojo.query("span[type="+entityType+"]").removeClass("highlighted");
}

For this particular example, you rid yourself of low-level DOM manipulation, writ-
ing a for loop, and introducing a conditional logic block in exchange for some ele-
gant CSS syntax—and that’s not to overlook the assumption about there not being
more than one class applied to the entities in the search results document.

NodeList | 121

While there isn’t anything dojo.query can do for you that you can’t do the long way
around, hopefully the previous discussion illustrated that dojo.query does provide a
single, uniform interface for finding and manipulating elements in the DOM at a very
high level and that the additional complexity lies in the query string versus addi-
tional conditional logic statements. Not to mention that it’s a little less awkward
than manipulating the DOM at such a low level in the first place.

If you think there are a lot of cool things you can do with query, just wait until you
see the flexibility that NodeList offers. It’s the return type from a call to query and is
coming up next.

NodeList
A NodeList is a specialized subclass of Array that is expressly designed with some fan-
tastic extensions for manipulating collections of DOM nodes with ease. One of the
more seductive features of a NodeList is its ability to provide chaining via the dot
operator, although many specialized capabilities such as mapping, filtering, and
looking up the index of a node exist as well.

Table 5-2 provides an overview of the NodeList methods available. These methods
are named according to the very same convention as Base’s Array functions. The only
caveats are that they return NodeLists instead of Arrays.

For a review of the fundamentals involving the following Array manip-
ulations, see the section “Array Processing” in Chapter 2.

Table 5-2. NodeList methods

Name Comment

indexOf(/*DOMNode*/n) Returns the first location of an item in the NodeList.

lastIndexOf(/*DOMNode*/n) Returns the last location of an item in the NodeList.

every(/*Function*/f) Returns true if the function returns true for every item in the NodeList.

some(/*Function*/f) Returns true if the function returns true for at least one item in the
NodeList.

forEach(/*Function*/f) Runs each item through a function and returns the original NodeList.

map(/*Function*/f) Runs each item through a function and returns the results as a NodeList.

filter(/*Function*/f) Runs each item through a NodeList, returning only the items that meet
the function criteria, or applies CSS query filtering to the list of nodes.

concat(/*Any*/item, ...) Returns a new NodeList with the new items appended, behaving just like
the Array.concat method except that it returns a NodeList.

splice(/*Integer*/index,
/*Integer*/howManyToDelete,
/*Any*/item, ...)

Returns a new NodeListwith the new items inserted or deleted, behaving
just like the Array.splice method except that it returns a NodeList.

122 | Chapter 5: Node Manipulation

Array-Like Methods
As you may recall, there are several functions available for manipulating arrays that
are included in Base. You’ll be pleased to know that many of these same methods are
available to NodeList. In particular, indexOf, lastIndexOf, every, some, forEach, map,
and filter work just like the corresponding functions for an array—although
NodeList’s filter function offers some additional features depending on the parame-
ter passed. (More on that shortly.)

slice(/*Integer*/begin,
/*Integer*/end)

Returns a new NodeList with the new items sliced out, behaving just like
the Array.slice method except that it returns a NodeList.

addClass(/*String*/class) Adds a class to every node.

removeClass(/*String*/class) Removes a class from every node.

style(/*String|Object*/style) Gets or sets a particular style to every node when style is a String. Works
just like dojo.style to set multiple style values if style is an Object.

addContent(/*String*/ content,
/*String?|Integer?*/ position)

Adds a text string or node to the relative position indicated for each node.
Valid values for position include first, last, before, and after. Posi-
tion values first and last are a function of the node’s parent, while
before and after are relative to the node itself.

place(/*String|Node*/
 queryOrNode,
/*String*/ position)

Places each item in the list relative to node, or to the first item matched by
the query criteria. Valid values for position are the same as with method
addContent (see above).

coords() Returns the box objects for all elements in the list as an Array—not as a
NodeList. Box objects are of the form { l: 50, t: 200, w: 300: h:
150, x: 100, y: 300 }, where l specifies the offset from the left of the
screen,t specifies an offset from the top of the screen,w andh correspond to
the width and height of the box, and x and y provide the absolute position
of the cords.

orphan/*String?*/ filter Removes DOM nodes from the list according to the filter criteria and returns
them as a new NodeList.

adopt(/*String|Array|DomNode*/
queryOrListOrNode,
/*String?*/ position)

Inserts DOM nodes relative to the first element of the list.

connect(/*String*/
methodNameOrDomEvent,
/*Object*/ context,
/*String*/ funcName)

Attaches event handlers to every item in the NodeList, usingdojo.
connect so event properties are normalized internally. The signature is just
likedojo.connect in that you provide a method name or DOM event for con-
necting along with an optional context and function name. DOM event names
should be normalized to all lowercase. For most use cases, you will instead use
the shortcuts discussed later in this chapter in “Dom Event Shortcuts.”

instantiate(/*String|Object*/
declaredClass,
/*Object?*/properties)

Handy for instantiating widgets in bulk.a Assuming the NodeList contains
a number of arbitrary source nodes, this method tries to parse them into the
widget class defined as declaredClass, passing in any widget properties
provided in properties.

a Widgets are not formally introduced until Chapter 11; consequently, no examples in this chapter demonstrate usage of instantiate.

Table 5-2. NodeList methods (continued)

Name Comment

NodeList | 123

To get started, we’ll need to create ourselves a NodeList. You can use the same syn-
tax as you would with an array, which explicitly provides some elements to the
NodeList, or you can also use a NodeList’s built-in concat method to create a NodeList
from an existing Array object.

Here are a few of the possible ways to construct a new NodeList:

var nl = new dojo.NodeList(); //create an empty NodeList

var nl = new dojo.NodeList(foo, bar, baz);
//create a NodeList with some existing nodes

var a = [foo, bar, baz];
// suppose there is an existing Array object with some nodes in it

a = nl.concat(a); //turn the Array into a NodeList

If you create a NodeList with the following approach, you may not end
up with what you expect:

var nl = new dojo.NodeList([foo, bar, baz]);

The previous line of code returns a NodeList that contains an Array
object with three numbers in it—this is the exact same result you’d get
as a result of new Array([foo,bar,baz]).

Chaining NodeList results

While Dojo’s array methods are extremely useful if you don’t need to stream in the
results of a previous operation into another operation, or if you need to strictly deal
with an Array, you may otherwise find NodeLists to be your new data structure of
choice because the syntax is quite elegant. The following example illustrates chain-
ing together some operations:

var nl = new dojo.NodeList(node1,node2,node3,node4,...);

nl.map(
 /* Map some elements... */
 function(x) {
 /* ... */
 }
)
.filter(
 /* And now filter them... */
 function f(x) {
 /* ... */
 }
)
.forEach(
 function(x) {
 /* Now do something with them... */
 }
);

124 | Chapter 5: Node Manipulation

Had we used the standard Dojo functions to accomplish this same workflow, take a
look at the clutter that would have been introduced by way of intermediate state
variables:

var a0 = new Array(node1,node2,node3,node4,...);

/* Map some elements... */
var a1 = dojo.map(a0,
 function(x) {
 /* ... */
 }
);

/* And now filter... */
var a2 = dojo.filter(a1
 function f(x) {
 /* ... */
 }
);

/* Now do something with them... */
dojo.forEach(a2
 function f(x) {
 /* ... */
 }
);

Hacking NodeList
Although the very name NodeList implies that the data structure is expressly designed
for manipulating DOM nodes, be advised that as a bona fide subclass of Array, it can
hold anything you want it to—not just nodes. For example, if you really like the syn-
tactic sugar of chaining together operations with the dot operator, you might end up
adopting NodeList as your Array of choice because of the ability to manipulate numbers
and other primitives like so:

//Suppose you have a NodeList of numbers
var nums = new dojo.NodeList(1,2,3,4,5,6,7,8,9,10)

//You might benefit from this kind of syntactic sugar instead of intermediate
//state variables along the way

nums
.filter(function(x) {/* ... */})
.map(function(x) { /* ... */})
//next operation...
//you get the idea
;

NodeList | 125

Be advised that although chaining together the results of operations
via the dot operator can produce really elegant code, the lack of inter-
mediate state variables can also have a significant impact on your abil-
ity to debug and maintain an application. As always, use discretion.

String-as-Function style Arguments

Just like Base’s methods for manipulating Arrays, you can use the special index,
array, and item identifiers if you choose to use String arguments as described in the
section “Array Processing” in Chapter 2. To recap, consider the following example:

//Suppose you have an existing NodeList called nl...

//Use the item identifier instead of writing out the entire function wrapper
nl.forEach("console.log(item)");

Enhanced filtering

In addition to NodeList’s filter method, which provides the traditional array-like
capabilities like dojo.filter, NodeList also provides CSS query-style filtering when
you pass in a String parameter. For example, the previous code block illustrated
passing a function into NodeList to operate on each individual piece of data. The fol-
lowing block of code uses CSS query syntax to filter an actual list of DOM nodes by
the query string:

dojo.query("div")
.forEach(
 /* Print out all divs */
 function f(x) {
 console.log(x);
 })
.filter(".div2") //filter on a specific class and print again.
.forEach(
 /*Now, print only div.div2 divs*/
 function f(x) {
 console.log(x);
 }
 });

Style
Given that you can use CSS query syntax to fetch a list of nodes, it seems entirely
possible that you may want to perform style operations on them. For this very reason,
NodeList includes a few methods to help you get the job done. NodeList’s style method
is especially noteworthy in that it can act as a getter or as a setter depending upon
whether you provide a second parameter. This behavior is just like the dojo.style
function.

126 | Chapter 5: Node Manipulation

As a reminder of how dojo.style works, recall that dojo.style(someNode, "margin")
would return the margin value of a DOM node, while dojo.style(someNode,
"margin", “10px”) would set the node’s margin to a value of 10 pixels.

Manipulating a NodeList is just the same except that there’s no need for an explicit
first parameter that denotes a particular node anymore. Like any other NodeList
function that processed nodes, the method is applied to each node in the list:

// dojo.style approach...
var a = [];

/* load the Array with some nodes */

// iterate over the nodes and apply style
dojo.forEach(a, function(x) {
 dojo.style(x, "margin", "10px");
});

//NodeList approach...
dojo.query(/* some query */)
.style("margin", "10px");

NodeList also includes methods for adding and removing classes via addClass and
removeClass—again, just like the corresponding dojo.addClass and dojo.removeClass
functions. That is, you can manually set style properties for elements via style, or
explicitly add or remove classes via addClass and removeClass. Note that the style
method is especially useful when you don’t actually have an existing class that
accomplishes the purpose, whereas the addClass and removeClass methods are use-
ful for those times when you already have classes that you want to toggle on or off.
Just like style, the syntax is for these methods is predictable:

dojo.query("span.foo", someDomNode).addClass("foo").removeClass("bar");
dojo.query("#bar").style("color","green");

Placement
Not surprisingly, a few methods for manipulating the placement of nodes on the
page are included as methods of NodeList. You may recognize the coords method,
which, like its dojo counterpart, returns an Array containing the coordinate objects
for each node in the list. Likewise, NodeList’s place method is similar to dojo.place
in that it provides a way to insert the entire NodeList into the DOM in a sequential
fashion based on a specific position.

The addContent method, however, is a method that doesn’t have a corresponding
counterpart elsewhere in the toolkit; it provides a way to add a node or text string to
a relative position for each item in a NodeList.

Here’s an example of using addContent to insert a text string (which gets wrapped as an
inline span) after each page container. This particular example might be useful a method
for an application in which you have various displays involving tab and stack containers:

NodeList | 127

/* Add a footer message after each container identifed by the pageContainer class*/
var nl = dojo.query("div.pageContainer").addContent("footer goes here!", "after");

Recalling that the place method functions by inserting the entire NodeList into the
page relative to another node, you might do the following to insert the entire list
inside of a container node identified by an id value of debugPane:

var nl = dojo.query("div.someDebugNodes").place("#debugPane", "last");

dojo.coords, like its counterpart, returns an object of key/value pairs that represent
the coordinates for each item in the NodeList. Recall that the coords object includes
keys for top and left offsets, length and height, and absolute x and y positions, which
can be transformed to be relative to a viewport.

The result of coords is an Array, not a NodeList. Inspect the output of
the following blurb in the Firebug console and see for yourself:

dojo.forEach(
 dojo.query("div").coords(),
 function(x) { console.log(x); }
);

A somewhat unique method provided by NodeList for placement that does not have
a dojo counterpart is its orphan method, which applies a simple filter (single CSS
selector—no commas allowed) to each of its elements, and each child element
involved in a relationship that matches the filter criteria is removed from the DOM.
These child elements that have been removed—or orphaned—are then returned as a
new NodeList. The orphan method is often used to remove nodes from the DOM in a
much less kludgy manner than the DOM accessor functions otherwise dictate, which
is the following pattern for a node called foo: foo.parentNode.removeChild(foo).

For example, to remove all hyperlink elements that are children of a span from the
DOM and return them as a new NodeList, you’d do the following:

var nl = dojo.query("span > a").orphan()

The > selector is whitespace-sensitive; you must include a whitespace
on each side of the selector.

The adopt method is essentially the inverse of the orphan operator in that it allows
you to insert elements back into the DOM. The function is quite flexible, allowing
you to pass in a particular DOM node, a query string, or a NodeList. The nodes that
will be inserted are positioned relative to the first element in the NodeList that pro-
vides the adopt method. The second parameter providing positional information
allows for the usual positional information (first, last, after, and before):

var n = document.createElement("div");
n.innerHTML="foo";
dojo.query("#bar").adopt(n, "last");

128 | Chapter 5: Node Manipulation

DOM Event Shortcuts
Given that you can do just about everything else with a NodeList, you probably won’t
be too surprised to find out that you can also batch process nodes to respond to par-
ticular DOM events such as blurs, mouse movements, and key presses. Firing cus-
tom actions in response to one or more DOM events is such a common occurrence
that NodeList provides a built-in method for accomplishing this task with ease.

The following DOM events are offered as events for batch processing with NodeLists:

• onmouseover

• onmouseenter

• onmousedown

• onmouseup

• onmouseleave

• onmouseout

• onmousemove

• onfocus

• onclick

• onkeydown

• onkeyup

• onkeypress

• onblur

As an example, consider the use case of capturing mouse movement events over a par-
ticular element. You’d simply fill in the function for the onmouseover function like so:

dojo.query("#foobar").onmousemove(
 function(evt) {
 console.log(evt); // you should really do something more interesting!
 }
);

The event objects that are available via the DOM Event methods are standardized,
because internally dojo.connect is being used. The event model as provided via dojo.
connect is standardized in accordance with the W3C specification.

There is no direct way to manage and disconnect the connections you create with
NodeList’s connect method, although a future 1.x dot release may provide that abil-
ity. If it’s not enough to have these connections automatically torn down when the
page unloads, you can opt to use the normal dojo.connect method inside of a
NodeList’s forEach method if you have a really good reason to manage the connec-
tions yourself.

For example, if you needed to manually manage the connections from the previous
example, you might do it like so:

NodeList | 129

var handles =
 dojo.query("a").map(function(x) {
 return dojo.connect(x, "onclick",
 function(evt) { /* ... */ });
 });

/* Sometime later... */
dojo.forEach(handles, function(x) {
 dojo.disconnect(x);
});

Animation

You may want to skim this section and then read it again more closely
after you’ve read Chapter 8, which provides complete coverage of ani-
mating content.

Producing animations with DHTML has often been perceived as a bit cumber-
some—and it certainly can be. NodeList, however, makes this task just as simple as
anything else you can do with a NodeList. From an application development stand-
point, that means that you can perform fades trivially, and can even perform more
complex operations via the _Animation.animateProperty method.

The _Animation that is operated upon has a leading underscore. In this
particular context, the leading underscore signifies that the API is not
final and, in general, _Animation objects should be treated somewhat
opaquely. While the information presented in this section is current as
of Dojo 1.1 and the _Animation API is fairly stable, future versions of
Dojo could change it.

The methods listed in Table 5-3 involving animation are currently available, but
must be explicitly retrieved via a call to dojo.require("dojo.NodeList-fx"). Each of
these methods takes an associative array of key/value pairs that provide properties
such as the animation duration, position information, colors, etc.

Table 5-3. NodeList extensions for animation

fadeIn Fades in each node in the list.

fadeout Fades out each node in the list.

wipeIn Wipes in each element in the list.

wipeout Wipes out each element in the list.

slideTo Slides each element in the list to a particular position.

animateProperties Animates all elements of the list using the specified properties.

anim Similar to animateProperties except that it returns an animation that is already play-
ing. See dojo.anim for more details.

130 | Chapter 5: Node Manipulation

As you might already be thinking, animations are fun to toy around with. Dojo makes
this so simple to do. Like anything else in the toolkit, you can just open up the Firebug
console and start experimenting. You might start out with simple fades, like so:

dojo.require("dojo.NodeList-fx");

//Once NodeList-fx has loaded...
dojo.query("p").fadeOut().play()

Then, when you’re ready to begin trying more advanced animations, add some
key/value pairs to the associative array and see what happens:

dojo.require("dojo.NodeList-fx");

//Once NodeList-fx has loaded...
dojo.query("div").animateProperty({
 duration: 5000,
 properties: {
 color: {start: "black", end: "green"},
 }
}).play();

Note that the actual result of the various effects method is an _Animation object, and
that its play method is the standard mechanism for activating it.

Creating NodeList Extensions
While the built-in methods for NodeList are quite useful, it’s not going to be long
before you’ll find that there’s this one method that you could really benefit from hav-
ing on hand. Fortunately, it takes very little effort to inject your own functionality
into NodeList. Consider the following use case accomplished via query that returns
the innerHTML for each element of a NodeList:

dojo.query("p").map(function(x) {return x.innerHTML;});

Compared to working up that solution from scratch, you already have a really con-
cise solution, but you could go even further to simplifying matters by using the even
more concise String-as-Function syntax with the following improvement:

dojo.query("p").map("return item.innerHTML;"); //Used the special item identifier

That’s definitely an improvement—would you believe that your code could still be
even more readable and concise? Consider the following extension to NodeList, in
which you embed the mapping inside of a more readable and elegant function call that
is very intuitively named so that it’s completely obvious exactly what is happening:

//Extend NodeList's prototype with a new function
dojo.extend(dojo.NodeList, {
 innerHTML : function() {
 return this.map("return item.innerHTML");
 }
});

Behavior | 131

//Call the new function
dojo.query("p").innerHTML();

What’s great about extending NodeList is that for a very little bit of planning up
front, you can significantly declutter your design and make it a lot more maintain-
able at the same time.

The recommended practice for modularizing up this kind of extension is to create a
submodule called ext-dojo with a resource file called NodeList.js inside of it so that
you end up with a dojo.require statement that is crystal clear to whoever ends up
reading your code. In the end, you have a situation that’s a win for everyone. Your
final usage of the extension might end up looking like the following example once
you’re all finished with it:

/* ... *
dojo.require("dtdg.ext-dojo.NodeList");

/* ...*/

dojo.query("p").innerHTML();

Clearly, you could go as far as to name the resource file NodeList-innerHTML.js if
you wanted to be pedantic; do whatever makes you most comfortable, so long as you
are consistent.

Behavior
Core contains a lightweight extension that builds on top of query to provide a great
way for decoupling events and DOM manipulations from an HTML placeholder via
the behavior module. It may not be intuitively obvious at first, but the ability to
define behavior for nodes irrespective of the markup itself can lend an immense of
flexibility to a design. For example, it allows you to concisely accomplish tasks such
as assigning click handlers to all anchor elements without knowing where or how
many anchor elements there will be. You use the same CSS selectors you learned
about in Table 5-1 to find the nodes for attaching behavior to, so the possibilities are
almost endless.

The behavior module currently provides two API calls; the add method allows you to
queue up a collection of behaviors, and the apply method actually triggers those
behaviors:

dojo.behavior.add(/*Object*/ behaviorObject)
dojo.behavior.apply()

Basically, you use add to assign a new behavior to a collection of DOM nodes, but
the behavior isn’t actually reflected until you call apply. One of the reasons that it’s a
two-step process is because the pattern of performing multiple add operations before
a final apply occurs lends itself to a lot of asynchronous communication patterns,
described in Chapter 4.

132 | Chapter 5: Node Manipulation

Chapter 4 introduced a data structure called Deferred that is a staple
in Dojo’s IO subsystem. Deferreds provide the façade of having a
thread available to operate on and lend themselves to successively
applying multiple callback and error handling functions. After reading
about Deferred patterns, the utility in providing separate functions for
add and apply should be apparent.

The Object that you pass into add and apply is quite flexible and can accept a num-
ber of variations. In short, the behavior Object contains key/value pairs that map CSS
selectors to Objects that supply DOM event handlers. The DOM event handlers
themselves come as key/value pairs. Before the example, though, skim over
Table 5-4, which provides a summary of the possibilities.

Remember to provide the keys to the behavior Objects as actual String
values whenever the CSS selector requires it. For example, a behavior
object of {div : function(evt) {/*...*/} is fine whereas {#foo : "/dtdg/
foo/topic"} would not be valid because #foo is not a valid identifier.

Take a moment to read through Example 5-1, which illustrates some of the possibili-
ties as a working example.

Table 5-4. Behavior Object possibilities

Key Value Comment

Selector (String) Object The Object should contain key/value pairs that map either DOM
event names or the special "found" identifier to event handlers or
topic names.

For example:

{
 onclick : function(evt) {/*...*/},
 onmouseover : "/dtdg/foo/moveover",
 found : function(node) {/*...*/},
 found : "/dtdg/bar/found"
}

In the case of a topic being published, the standardized event object is
passed along for the subscribe handler to receive.

In the case of an event handler, the standardized event object is passed
into the function.

In the case of the special "found" identifier, the matching node itself
is either passed into the handler or passed along with the topic that is
published.

Selector (String) Function For each node matching the selector, the handler is executed with each
node passed in as the parameter.

Selector (String) String For each node matching the selector, the topic name is published. The
node itself is passed along for the subscribe handler to receive.

Behavior | 133

Example 5-1. Example of dojo.behavior at work

<html>
 <head>
 <title>Fun with Behavior!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="isDebug:true"
 ></script>

 <script type="text/javascript">
 dojo.require("dojo.behavior");

 dojo.addOnLoad(function() {
 /* Pass a behavior Object into dojo.behavior.
 This object is automatically added once the page loads*/
 dojo.behavior.add({

 /* The behavior Object is keyed by any combination of CSS
 selectors, which can map to a single behavior or a collection of
 behaviors */

 /* Mapping a key to a function is equivalent to mapping to {found
 : function(node) { ... } } */
 ".container" : function(node) {
 //apply some generic styling

 dojo.style(node, {
 border : "solid 1px",
 background : "#eee"
 }
 },

 /* Map the key to a collection of behaviors */
 "#list > li" : {
 /* DOM events work just like dojo.connect, allowing you to act
 on the event */
 onmouseover : function(evt) {dojo.style(evt.target,
 "background", "yellow");},
 onmouseout : function(evt) {dojo.style(evt.target,
 "background", "");},

 /* String values are published as topics */
 onclick : "/dtdg/behavior/example/click",

 /* "found" is a general purpose handler that allows
 manipulation of the node*/
 found : function(node) {dojo.style(node, "cursor", "pointer")}
 }

134 | Chapter 5: Node Manipulation

As the example demonstrates, any behavior you set up before the page loads is set up
automatically. After the page loads, however, you need to first add the behavior and
then apply it. The following update adds another click handler to list elements:

dojo.behavior.add({
 "#list > li" : {
 onclick : "/dtdg/behavior/example/another/click"
 }

});
dojo.behavior.apply();

dojo.subscribe("/dtdg/behavior/example/another/click", function(evt) {
 console.log("an additional event handler...");

});

Although one of the key observations you should be making is how decoupled the
actual behavior of the nodes are from the markup itself, you hopefully just made the
connection that behavior’s apply function provides you with a great benefit: any
behavior you supply on top of existing behavior is added along with the existing
behavior. In other words, new behavior doesn’t just blow away what was there
before; you are able to add behavior in layers and the book keeping is handled with-
out any additional intervention on your behalf.

 });

 /* Somewhere, out there...a subscription is set up... */
 dojo.subscribe("/dtdg/behavior/example/click", function(evt) {
 console.log(evt.target.innerHTML, "was clicked");
 });
 });
 </script>
 <head>

 <body>
 <div class="container" style="width:300px">
 Grocery List:
 <ul id="list">
 Bananas
 Milk
 Eggs
 Orange Juice
 Frozen Pizzas

 </div>
 </body>
 </html>

Example 5-1. Example of dojo.behavior at work (continued)

Summary | 135

Summary
After reading this chapter, you should:

• Be able to use dojo.query to universally find nodes in the page

• Have a basic understanding of CSS selector syntax

• Be familiar with NodeLists and recognize the various mappings that hold to other
functions such as the Array utilities that the toolkit offers

• Be able to chain together the results from NodeList methods to cleanly and rap-
idly process DOM elements

• Be aware that it’s possible to hack NodeList and instead opt to use other utilities
in the toolkit

• Be able to use NodeLists to place DOM nodes, handle animations, set up con-
nections, and manage style

• Understand the value in extending NodeList with custom operations so as to
minimize the effort in processing the results from dojo.query

• Be aware of the benefits from decoupling DOM events from an HTML place-
holder and how you can achieve this via the behavior module

A discussion of internationalization is coming up next.

136 | Chapter 6: Internationalization (i18n)

Chapter 6CHAPTER 6

Internationalization (i18n) 6

This chapter provides a brief synopsis of the tools Dojo provides for internationaliz-
ing a module. The key topics are defining bundles on a locale basis and using Core’s
facilities for formatting and parsing dates, currency, and numbers. In case it wasn’t
quite obvious, internationalization is usually abbreviated as i18n simply because it is
such a long word to type; thus, the shorthand is the first and last letters, with the
number 18 between them to take place of the 18 letters in between.

Introduction
If you have the good fortune of developing an application that becomes even mildly
popular, you will certainly want to consider supporting more than one language.
Although Dijit, which you’ll learn about in Part II of this book, is already interna-
tionalized with several common locales, custom modules and widgets of your own
devising will require some special attention. Fortunately, the toolkit provides tech-
niques for supporting more than one language in a highly uniform way, saving you
the headache of inventing your own system of mapping tokens back and forth;
because Dojo manages how the loading takes place, you are also freed from thinking
of ways to optimize the loading. Additional utilities also support common opera-
tions involving numeric formatting, currency, and more.

It’s worth pointing out that the i18n facilities are technically part of Core, not Base.
XDomain builds; however, include the dojo.i18n module as part of dojo.xd.js at the
expense of an extra 2KB to workaround some tricky loading issues involving i18n
bundles. Regardless, you should still dojo.require("dojo.i18n") into your page to be
explicit about your intention to use these facilities as a matter of good form.

Internationalizing a module you’ve developed is simple because the details of your
string table stay compartmentalized inside of a special nls directory that appears in
your module directory with your JavaScript source files; nls stands for native language
support. The nls directory itself breaks down all of the various translations by abbrevia-
tions for locales as defined in RFC 3066 (Tags for the Identification of Languages).*

* http://www.ietf.org/rfc/rfc3066.txt.

http://www.ietf.org/rfc/rfc3066.txt.

Internationalizing a Module | 137

For example, the abbreviation for generic English is en, the abbreviation for the dia-
lect of English as it is spoken in the United States is en-us, and the abbreviation for
generic Spanish is es. During the bootstrap process, Dojo queries your browser for your
particular locale, and stores it internally. You can check it by typing dojo.locale in
Firebug. The value of dojo.locale is what Dojo uses to determine the most appropri-
ate translation when loading a module that has been internationalized.

Internationalizing a Module
Let’s assume that you’ve gotten with the times and expanded on your magic genie
module from the “Building a Magic Genie Example Module” in Chapter 2 to pro-
duce a psychic module. Let’s assume that your default language is English, and
you’ve determined that the first additional language you should support is Spanish.

Layout on Disk
Like any other module, your psychic readings module should simply be a source file
contained in a typical directory structure:

dtdg/
 psychic/
 Psychic.js /* Lots of useful stuff in here */

Not surprisingly, an incredible utility provided by your psychic module is the ability
to predict the future. As such, users of your module might stick it in a page and use it
like so:

<script type="text/javascript">
 dojo.require("dtdg.psychic");
 dojo.addOnLoad(function() {
 dtdg.psychic.predictFuture();
 });
</script>

Although there’s an awful lot of real magic that happens in the predictFuture func-
tion, the part that we’re interested in at the moment is where a String value actually
gets written to the screen because that’s where the internationalization work hap-
pens. As it turns out, the output from your module gets written out with the follow-
ing logic:

dojo.byId("reading").innerHTML = predictFuture(/* magic */);

As a first stab at internationalization, start out with plain old English and plain old
Spanish, ignoring any particular dialects. Given this decision, the nls directory might
look something like the following:

dtdg/
 psychic/
 Psychic.js
 nls/
 readings.js /* The default English translation bundle */

138 | Chapter 6: Internationalization (i18n)

 es/
 readings.js /* The Spanish translation bundle */
 en/
 /* The default English translation folder is empty, so
 Dojo looks one level up for it in the nls/ directory */

By convention, each of the .js files containing translation information is called a bun-
dle. The convention used is that the default translation bundle appears in the top
level of the nls directory, but not in a language-specific directory. The basic ratio-
nale for this convention is that you always want a default translation to be available
in the nls directory, which is the most logical place for it, and there’s no value in
including an exact copy of the default translation bundle in its own directory, (en in
this case) because that would just be one more thing to keep up with.

Defining String Tables
Here’s an excerpt from each of the readings.js files that shows some of the strings
that are translated as part of the final reading.

First, the default readings.js file:

{
/* ... */
reading101 : "You're a Libra, aren't ya darling?",
reading102: "Can you please tell me your first name only, and your birthday please?",
reading103: "Yep, that's the Daddy."
/* ... */
}

And now, the es/readings.js file:

{
/* ... */
reading101 : "¿Eres un Libra, no, mi corazón?",
reading102: "¿Me puedes dar el nombre y tu cumpleaños por favor?",
reading103: "Sí, el es papá"
/* ... */
}

One of the beautiful things about localizing your application with Dojo is the simple
manner in which you provide the listing of tokens.

Putting It All Together
It’s time to put it all together and show just how easy it is to support multiple lan-
guages, but first, have a look at the relevant functions, listed in Table 6-1, that are
involved in the process.

Internationalizing a Module | 139

Whereas you previously might have looked up reading102 value from a hash value like
psychic.reading102, you now do it with help from the toolkit. If you’ve provided a
translation for a particular user’s locale, everything “just works.” Looking up symbols
for your various translations is as simple as the following generic piece of logic:

/* Require in Dojo's i18n utilities first... */
dojo.require("dojo.i18n");

/* Then, require in your various translations */
dojo.requireLocalization("psychic", "readings");

function predictFuture() {

 /* Deep inside of your predictFuture function somewhere... */
 var future= dojo.i18n.getLocalization("psychic", "readings").reading597;
 return future;
}

Note that you can change your value of dojo.locale if you’d like to test out various
translations. A good place to change this value is in djConfig block. Here’s an exam-
ple of how you might test out your Spanish translation from a local installation:

<head>
 <script type="text/javascript" src="your/path/to/dojo.js"
 djConfig="dojo.locale:'es'">
 </script>
</head>

<!--
 All of your internationalized modules now use the Spanish translation
-->

Just like any other module or resource, don’t call dojo.i18n.
getLocalization as part of an object property definition; instead, call
dojo.i18n.getLocalization in a dojo.addOnLoad block:

dojo.addOnLoad(function() {
 //Returns a localized Object
 var foo = {bar : dojo.i18n.getLocalization(/* ...*/)}
});

Table 6-1. Localization functions

Name Comment

dojo.i18n.getLocalization(/*String*/moduleName,
/*String*/bundleName, /*String?*/locale)

Returns an Object containing the localization for a
given resource bundle in a package. By default,
locale defaults to dojo.locale; however, pro-
viding an explicit value allows you to look up a spe-
cific translation.

dojo.i18n.normalizeLocale(/*String?*/locale) Returns the canonical form of a locale.

dojo.requireLocalization(/*String*/moduleName,
/*String*/bundleName, /*String?*/locale)

Loads translated resources in the same manner as
dojo.requirewould load modules. Note that this
function is a Base function, not part of Core’s i18n
module.

140 | Chapter 6: Internationalization (i18n)

A nuance you may want to be aware of is that if your default locale is a variant of
English and you are testing the Spanish localization, both the nls/es/readings.js and
the nls/readings.js bundles are loaded. In fact, the default bundle that is contained in
the nls/ directory will always be loaded. You can use Firebug’s Net to verify this
behavior for yourself.

Although this particular example didn’t involve any dialects of either language, note
that dialects are most certainly taken into account when loading localized bundles.
For example, if your locale was en-us and there had been an en-us bundle provided,
Dojo would have attempted to load both the en-us bundle and the en bundles, flat-
tening them into a single collection for you to query via your various dojo.i18n.
getLocalization calls. The working assumption is that when defining locale specific
symbols for English, you want to provide as much general information as possible in
the en bundle and then override or fill in gaps inside of the dialect specific bundles
such as en-us.

Use build tools for snappy performance

As a final yet very important observation about internationalization, note that the
Dojo build tools provided in Util can automatically take care of the myriad details
associated with minimizing the number of synchronous calls and data redundancy
when you perform a custom build of your module. It may not seem like much at
first, but the build tools combine what could be lots of small resource files together
and avoid all of the lookups and the latency that goes along with them. In terms of a
snappy page load, it can really make all the difference. Util and the build tools are
discussed in Chapter 16.

Dates, Numbers, and Currency
Additional Core facilities provide additional support for manipulating and supporting
internationalization of dates, numbers, and currency via the dojo.date, dojo.number,
and dojo.currency modules, respectively. In Part II, you’ll learn that Dijit makes exten-
sive use of these modules to provide advanced support for commonly used widgets.
This section provides a quick inventory of these features.

Dates
Table 6-2 shows a quick overview of the dojo.date module. As you’ll see, there are
some real gems in here if you ever need to perform any routine processing of the
built-in Date object.

Dates, Numbers, and Currency | 141

As of version 1.1 of the toolkit, getTimezoneName is not localized.

Numbers
The dojo.number module provides some handy functions, shown in Tables 6-3 and
6-4, for parsing String values into numbers, formatting a Number in accordance with a
specific pattern template, or rounding to a specific number of decimal places.

Table 6-2. Summary of the date module

Name Return type Comment

dojo.date.getDaysInMonth
(/*Date*/date)

Integer Returns the number of days in date’s month.

dojo.date.isLeapYear
(/*Date*/date)

Boolean Returns true if date is a leap year.

dojo.date.getTimezoneName
(/*Date*/date)

String Returns time zone information as defined by the browser. A
Date object is needed because the time zone may vary
according to issues such as daylight savings time.

dojo.date.compare(/*Date*/
date1, /*Date*/ date2,
/*String?*/ portion)

Integer Returns 0 if the two parameters are equal; returns a positive
number ifdate1 > date 2; returns a negative number if
date1 < date2. By default, both date and time are com-
pared, although providing "date" or "time" for a por-
tion produces a comparison strictly by date or time,
respectively.

dojo.date.add(/*Date*/date,
/*String*/ interval,
/*Integer*/ amount)

Date Provides a convenient way to add an incremental amount to
a Date object by providing a numeric amount and the type
of units. Units may be "year", "month", "day",
"hour", "minute", "second", "millisecond",
"quarter", "week", or "weekday".

dojo.date.difference
 (/*Date*/date1,
/*Date*/ date2,
/*String*/ interval)

Integer Provides a convenient way to calculate the difference
between two Date objects in terms of a specific type of
unit, which may be "year", "month", "day", "hour",
"minute","second","millisecond","quarter",
"week", or "weekday".

Table 6-3. Formatting options for the number module that are used in the dojo.number.format and
dojo.number.parse functions provided in Table 6-4

dojo.number.format options Type Comment

pattern String Can be used to override the formatting pattern.

type String A format type based on the locale. Valid values include
"decimal", "scientific", "percent",
"currency", and "decimal". "decimal" is the
default.

142 | Chapter 6: Internationalization (i18n)

Currency
The dojo.currency module, described in Tables 6-5 and 6-6, is similar to dojo.number
in that it provides a means of formatting numeric values, only this time it is currency
codes as defined in ISO427.*

places Number Provides a fixed number of places to show, which overrides
any information provided by pattern.

round Number Specifies rounding properties based on a multiple. For exam-
ple, 5 would round to the nearest 0.5 and 0 would round to
the nearest whole number.

currency String A currency code that meets the ISO4217 standard. For exam-
ple, “USD” would signify U.S. Dollars.

symbol String A localized currency symbol.

locale String Allows a specific locale to be provided which drives formatting
rules.

Table 6-4. Summary of the number module

Name Return type Comment

dojo.number.format
(/*Number*/value,
/*Object*/options)

String Formats a Number as a String using locale-specific set-
tings. Options may take on the values from Table 6-3.

dojo.number.round
(/*Number*/value,
/*Number*/places)

Number Rounds a number to a given number of places after the
decimal.

dojo.number.parse
(/*String*/value,
/*Object*/options)

Number Converts a properly formatted String to a Number using
locale-specific settings. Valid options include the following
values from Table 6-3: pattern, type, locale, strict,
and currency.

* http://en.wikipedia.org/wiki/ISO_4217.

Table 6-5. Formatting options for the currency module as used by the dojo.currency.format and
dojo.currency.parse functions

Name Type Comment

currency String A three-letter currency code as defined in ISO4217 such as "USD".

symbol String A value that may be used to override the default currency symbol.

pattern String Used to override the default currency pattern.

round Number Used to provide rudimentary rounding: -1 means don’t round at all, 0 means
round to the nearest whole number, and 5 means round to the nearest one-half.

Table 6-3. Formatting options for the number module that are used in the dojo.number.format and
dojo.number.parse functions provided in Table 6-4 (continued)

dojo.number.format options Type Comment

http://en.wikipedia.org/wiki/ISO_4217

Summary | 143

Some of Dojo’s build tools can be used to generate support for arbi-
trary locales and currencies since a lot of this work simply entails
building lookup tables of information. See the file located at util/build-
scripts/cldr/README for more details.

Summary
After reading this chapter, you should be able to:

• Internationalize a module for more than one locale

• Be aware that Core provides utilities for handling currency, numbers, and
dates—all of which may be helpful in various internationalization efforts

Next, we’ll discuss drag-and-drop.

locale String Override the default locale, which determines the formatting rules.

places Number The number of decimal places to accept (default is defined by currency.)

Table 6-6. Summary of the currency module

Name Return type Comment

dojo.currency.format
(/*Number*/value,
/*Object?*/options)

String Formats a Number as a String, using locale-specific set-
tings. Values for options are given in Table 6-5.

dojo.currency.parse
(/*String*/ expression,
/*Object?*/ options)

Number Converts a properly formatted String to a Number. Values
for options are given in Table 6-5.

Table 6-5. Formatting options for the currency module as used by the dojo.currency.format and
dojo.currency.parse functions (continued)

Name Type Comment

144 | Chapter 7: Drag-and-Drop

Chapter 7CHAPTER 7

Drag-and-Drop 7

Drag-and-drop (DnD) can give your application incredible desktop-like functional-
ity and usability that can really differentiate it from the others. This chapter system-
atically works through this topic, providing plenty of visual examples and source
code. You might build off these examples to add some visual flare to your existing
application, or perhaps even do something as brave as incorporate the concepts and
the machinery that Dojo provides into a DHTML game that people can play online.
Either way, this is a fun chapter, so let’s get started.

Dragging
While drag-and-drop has been an integral part of desktop applications for more than
two decades, web applications have been slow to adopt it. At least part of the reason
for the slow adoption is because the DOM machinery provided is quite primitive in
and of itself, and the event-driven nature of drag-and-drop makes it especially diffi-
cult to construct a unified framework that performs consistently across the board.
Fortunately, overcoming these tasks is perfect work for a toolkit, and Dojo provides
facilities that spare you from the tedious and time-consuming work of manually
developing that boilerplate yourself.

Simple Moveables

This chapter assumes a minimal working knowledge of CSS. The
W3C schools provide a CSS tutorial at http://www.w3schools.com/css/
default.asp. Eric Meyer’s CSS: The Definitive Guide (O’Reilly) is also a
great desktop reference.

http://www.w3schools.com/css/default.asp
http://www.w3schools.com/css/default.asp

Dragging | 145

As a warm up, let’s start out with the most basic example possible: moving an object*

around on the screen. Example 7-1 shows the basic page structure that gets the work
done in markup. Take a look, especially at the emphasized lines that introduce the
Moveable class, and then we’ll review the specifics.

The Parser
The parser is one of the most commonly used resources in all of Core. As it turns out,
however, it is most frequently used to parse widgets in the page and, for this reason, a
complete discussion of the parser is delayed until Chapter 11 when Dijit is formally
introduced. Although you can feel free to skip ahead and skim that chapter right now,
this sidebar provides a quick synopsis that contains all that you need for the moment.

The most common use case for the parser is to find and instantiate widgets before
addOnLoad fires as the page is loading. The parser finds widgets by finding all of the tags
that contain a special dojoType attribute, which designates the resource name for the wid-
get that should be swapped in. All you need to do to make all of this happen is require
the parser via dojo.require like any other resource, supply the parseOnLoad:true direc-
tive to djConfig, and include a dojoType tag for each widget placeholder that is in the
page. (Actually, you can manually parse widgets as well, but again, we’ll defer that dis-
cussion until Chapter 11.)

The code listings you’ll see in this chapter use the parser in the same way because it is
performing a very similar function with respect to drag-and-drop. Namely, it is scan-
ning the page for dojoType tags that identify drag-and-drop resources and taking care
of the handiwork behind the scenes that make them interactive.

* The term object is used in this chapter to generically refer to a moveable DOM node. This usage implies noth-
ing whatsoever about objects from object-oriented programming.

Example 7-1. Simple Moveable

<html>
 <head>
 <title>Fun with Moveables!</title>
 <style type="text/css">
 .moveable {
 background: #FFFFBF;
 border: 1px solid black;
 width: 100px;
 height: 100px;
 cursor: pointer;
 }
 </style>

146 | Chapter 7: Drag-and-Drop

As you surely noticed, creating a moveable object on the screen is quite trivial. Once
the Moveable resource was required into the page, all that’s left is to specify an ele-
ment on the page as being moveable via a dojoType tag and parsing the page on load
via an option to djConfig. There’s really nothing left except that a bit of style was
provided to make the node look a little bit more fun than an ordinary snippet of
text—though a snippet of text would have worked just as well.

In general, anything you can do by parsing the page when it loads, you can do pro-
grammatically sometime after the page loads. Here’s the very same example, but
with a programmatically built Moveable:

<!-- ... Snip ... -->

<script type="text/javascript">
 dojo.require("dojo.dnd.Moveable");

 dojo.addOnLoad(function() {
 var e = document.createElement("div");
 dojo.addClass(e, "moveable");
 dojo.body().appendChild(e);
 var m = new dojo.dnd.Moveable(e);
 });
</script>
</head>
 <body></body>
</html>

Table 7-1 lists the methods you need to create and destroy a Moveable.

 <script
 type="text/javascript"
 djConfig="parseOnLoad:true,isDebug:true"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Moveable");
 dojo.require("dojo.parser");
 </script>
 </head>
 <body>
 <div class="moveable" dojoType="dojo.dnd.Moveable" ></div>
 </body>
</html>

Example 7-1. Simple Moveable (continued)

Dragging | 147

A Mover is even lower-level drag-and-drop machinery that Moveable
uses internally. Mover objects are not discussed in this chapter, and are
only mentioned for your awareness.

Let’s build upon our previous example to demonstrate how to ensure text-based
form elements are editable by setting the skip parameter by building a simple sticky
note on the screen that you can move around and edit. Example 7-2 provides a work-
ing example.

Table 7-1. Creating and destroying a Moveable

Name Comment

Moveable(/*DOMNode*/node,
/*Object*/params)

The constructor function that identifies the node that should
become moveable. params may include the following
values:

handle (String | DOMNode)
A node or node’s id that should be used as a mouse han-
dle. By default, the node itself is used.

skip (Boolean)
Whether to skip the normal drag-and-drop action associ-
ated with text-based form elements that would normally
occur when a mouse-down event happens (false by
default).

mover (Object)
A constructor for a custom Mover.

delay (Number)
The number of pixels to delay the move by (0 by default).

destroy() Used to disassociate the node with moves, deleting all refer-
ences so that garbage collection can occur.

Example 7-2. Using Moveable to create a sticky note

<html>
 <head>
 <title>Even More Fun with Moveables! </title>
 <style type="text/css">
 .note {
 background: #FFFFBF;
 border-bottom: 1px solid black;
 border-left: 1px solid black;
 border-right: 1px solid black;
 width: 302px;
 height: 300px;
 margin : 0px;
 padding : 0px;
 }

148 | Chapter 7: Drag-and-Drop

The effect of skip isn’t necessarily intuitive, and it’s quite instructive to
remove the skip=true from the outermost DIV element to see for your-
self what happens if you do not specify that form elements should be
skipped.

Although our sticky note didn’t necessarily need to employ drag handles because the
innermost div element was only one draggable part of the note, we could have
achieved the same effect by using them: limiting a particular portion of the Moveable
object to be capable of providing the drag action (the drag handle) implies that any
form elements outside of the drag handle may be editable. Replacing the emphasized
code from the previous code listing with the following snippet illustrates:

<div id="note" dojoType="dojo.dnd.Moveable" handle='dragHandle'>
 <div id='dragHandle' class="noteHandle"></div>
 <textarea class="note">This form element can't trigger drag action</textarea>
</div>

 .noteHandle {
 border-left: 1px solid black;
 border-right: 1px solid black;
 border-top: 1px solid black;
 cursor :pointer;
 background: #FFFF8F;
 width : 300px;
 height: 10px;
 margin : 0px;
 padding : 0px;
 }
 </style>

 <script
 type="text/javascript"
 djConfig="parseOnLoad:true,isDebug:true"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Moveable");
 dojo.require("dojo.parser");
 </script>
 </head>
 <body>
 <div dojoType="dojo.dnd.Moveable" skip=true>
 <div class="noteHandle"></div>
 <textarea class="note">Type some text here</textarea>
 </div>
 </body>
</html>

Example 7-2. Using Moveable to create a sticky note (continued)

Dragging | 149

Drag Events
It’s likely that you’ll want to detect when the beginning and end of drag action
occurs for triggering special effects such as providing a visual cue as to the drag
action. Detecting these events is a snap with dojo.subscribe and dojo.connect.
Example 7-3 shows another rendition of Example 7-2.

Example 7-3. Connecting and subscribing to drag Events

<html>
 <head>
 <title>Yet More Fun with Moveable!</title>
 <style type="text/css">
 .note {
 background: #FFFFBF;
 border-bottom: 1px solid black;
 border-left: 1px solid black;
 border-right: 1px solid black;
 width: 302px;
 height: 300px;
 margin : 0px;
 padding : 0px;
 }
 .noteHandle {
 border-left: 1px solid black;
 border-right: 1px solid black;
 border-top: 1px solid black;
 cursor :pointer;
 background: #FFFF8F;
 width : 300px;
 height: 10px;
 margin : 0px;
 padding : 0px;
 }
 .movingNote {
 background : #FFFF3F;
 }
 </style>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Moveable");

 dojo.addOnLoad(function() {
 //create and keep references to Moveables for connecting later.
 var m1 = new dojo.dnd.Moveable("note1", {handle : "dragHandle1"});
 var m2 = new dojo.dnd.Moveable("note2", {handle : "dragHandle2"});

150 | Chapter 7: Drag-and-Drop

In the dojo.query function calls, you should recall that the parameter
"#note1 > textarea" means to return the textarea nodes that are chil-
dren of the node with an id of "note1". See Table 5-1 for a summary of
common CSS3 selectors that can be passed into dojo.query.

Note from the previous code listing that you do not connect to the
actual node of interest. Instead, you connect to the Moveable that is
returned via a programmatic call to create a new dojo.dnd.Moveable.

As you can see, it is possible to subscribe to global drag events via pub/sub style com-
munication or zero in on specific events by connecting to the particular Moveable nodes
of interest. Table 7-2 summarizes the events that you may connect to via dojo.connect.

For pub/sub style communication, you can use dojo.subscribe to subscribe to the
"dnd/move/start" and "dnd/move/stop" topics.

 // system-wide topics for all moveables.
 dojo.subscribe("/dnd/move/start", function(node){
 console.log("Start moving", node);
 });
 dojo.subscribe("/dnd/move/stop", function(node){
 console.log("Stop moving", node);
 });

 // highlight note when it moves...
 //connect to the Moveables, not the raw nodes.
 dojo.connect(m1, "onMoveStart", function(mover){
 console.log("note1 start moving with mover:", mover);
 dojo.query("#note1 > textarea").addClass("movingNote");

 });
 dojo.connect(m1, "onMoveStop", function(mover){
 console.log("note1 stop moving with mover:", mover);
 dojo.query("#note1 > textarea").removeClass("movingNote");
 });
 });

 </script>
 </head>
 <body>
 <div id="note1" dojoType="dojo.dnd.Moveable">
 <div id='dragHandle1' class="noteHandle"></div>
 <textarea class="note">Note1</textarea>
 </div>
 <div id="note2" dojoType="dojo.dnd.Moveable">
 <div id='dragHandle2' class="noteHandle"></div>
 <textarea class="note">Note2</textarea>
 </div>
 </body>
</html>

Example 7-3. Connecting and subscribing to drag Events (continued)

Dragging | 151

Z-Indexing
Our working example with sticky notes is growing increasingly sophisticated, but
one noticeable characteristic that may become an issue is that the initial z-indexes of
the notes do not change: one of them is always on top and the other is always on the
bottom. It might seem more natural if the note that was last selected became the
note that is on top, with the highest z-index. Fortunately, it is quite simple to adjust
z-index values in a function that is fired off via a connection to the onMoveStartEvent.

The solution presented below requires modifying the addOnLoad function’s logic and
is somewhat elegant in that it uses a closure to trap a state variable instead of explic-
itly using a module-level or global variable:

dojo.addOnLoad(function() {
 //create and keep references to Moveables for connecting later.
 var m1 = new dojo.dnd.Moveable("note1", {handle : "dragHandle1"});
 var m2 = new dojo.dnd.Moveable("note2", {handle : "dragHandle2"});

 var zIdx = 1; // trapped in closure of this anonymous function

 dojo.connect(m1, "onMoveStart", function(mover){
 dojo.style(mover.host.node, "zIndex", zIdx++);
 });
 dojo.connect(m2, "onMoveStart", function(mover){
 dojo.style(mover.host.node, "zIndex", zIdx++);
 });
 });

Recall from Chapter 2 that dojo.style requires the use of DOM acces-
sor formatted properties, not stylesheet formatted properties. For
example, trying to set a style property called "z-index" would not
work.

Table 7-2. Moveable events

Event Summary

onMoveStart(/*dojo.dnd.Mover*/mover) Called before every move.

onMoveStop(/*dojo.dnd.Mover*/mover) Called after every move.

onFirstMove(/*dojo.dnd.Mover*/mover) Called during the very first move; handy for performing
initialization routines.

onMove(/*dojo.dnd.Mover*/mover),
(/* Object */ leftTop)

Called during every move notification; by default, calls
onMoving, moves the Moveable, and then calls
onMoved.

onMoving(/*dojo.dnd.Mover*/mover),
(/*Object*/leftTop)

Called just before onMove.

onMoved(/*dojo.dnd.Mover*/mover),
(/*Object */leftTop)

Called just after onMove.

152 | Chapter 7: Drag-and-Drop

Constrained Moveables
Being able to move a totally unconstrained object around on the screen with what
amounts to a trivial amount of effort is all fine and good, but sooner than later, you’ll
probably find yourself writing up logic to define boundaries, restrict overlap, and
define other constraints. Fortunately, the drag-and-drop facilities provide additional
help for reducing the boilerplate you’d normally have to write for defining drag-and-
drop constraints.

There are three primary facilities included in dojo.dnd that allow you to constrain
your moveable objects: writing your own custom constraint function that dynami-
cally computes a bounding box (a constrainedMoveable), defining a static boundary
box when you create the moveable objects (a boxConstrainedMoveable), and con-
straining a moveable object within the boundaries defined by another parent node (a
parentConstrainedMoveable). The format for each type of boundary box follows the
same conventions as are described in Chapter 2 in the section “The Box Model.”

Here’s a modification of our previous sticky note example to start out with a
constrainedMoveable:

<html>
 <head>
 <title>Moving Around</title>
 <style type="text/css">
 .note {
 background: #FFFFBF;
 border-bottom: 1px solid black;
 border-left: 1px solid black;
 border-right: 1px solid black;
 width: 302px;
 height: 300px;
 margin : 0px;
 padding : 0px;
 }
 .noteHandle {
 border-left: 1px solid black;
 border-right: 1px solid black;
 border-top: 1px solid black;
 cursor :pointer;
 background: #FFFF8F;
 width : 300px;
 height: 10px;
 margin : 0px;
 padding : 0px;
 }
 .movingNote {
 background : #FFFF3F;
 }
 #note1, #note2 {
 width : 302px
 }
 </style>

Dragging | 153

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Moveable");
 dojo.require("dojo.dnd.move");

 dojo.addOnLoad(function() {
 var f1 = function() {
 //clever calculations to define a bounding box.
 //keep note1 within 50 pixels to the right/bottom of note2
 var mb2 = dojo.marginBox("note2");
 b = {};
 b["t"] = 0;
 b["l"] = 0;
 b["w"] = mb2.l + mb2.w + 50;
 b["h"] = mb2.h + mb2.t + 50;
 return b;
 }

 var m1 = new dojo.dnd.move.constrainedMoveable("note1",
 {handle : "dragHandle1", constraints : f1, within : true});

 var m2 = new dojo.dnd.Moveable("note2", {handle : "dragHandle2"});

 var zIdx = 1;

 dojo.connect(m1, "onMoveStart", function(mover){
 dojo.style(mover.host.node, "zIndex", zIdx++);
 });
 dojo.connect(m2, "onMoveStart", function(mover){
 dojo.style(mover.host.node, "zIndex", zIdx++);
 });
 });

 </script>
 </head>
 <body>
 <div id="note1">
 <div id='dragHandle1' class="noteHandle"></div>
 <textarea class="note">Note1</textarea>
 </div>
 <div id="note2">
 <div id='dragHandle2' class="noteHandle"></div>
 <textarea class="note">Note2</textarea>
 </div>
 </body>
</html>

154 | Chapter 7: Drag-and-Drop

When computing bounding boxes for Moveable objects, ensure that
you have explicitly defined a height and width for the outermost con-
tainer of what is being moved around on the screen. For example,
leaving the outermost div that is the container for our sticky note
unconstrained in width produces erratic results because the moveable
div is actually much wider than the yellow box that you see on the
screen. Thus, attempting to compute constraints using its margin box
does not function as expected.

To summarize, an explicit boundary was defined for the note’s outermost div so that
its margin box could be computed with an accurate width via dojo.marginBox, and a
custom constraint function was written that prevents note1 from ever being more
than 50 pixels to the right and to the bottom of note2.

Attempting to use a constrainedMoveable without specifying a con-
straint function produces a slew of errors, so if you decide not to use a
constraint function, you’ll need to revert to using a plain old Moveable.

Defining a static boundary for a Moveable is even simpler. Instead of providing a cus-
tom function, you simply pass in an explicit boundary. Modify the previous example to
make note2 a boxConstrainedMoveable with the following change and see for yourself:

var m2 = new dojo.dnd.move.boxConstrainedMoveable("note2",
{
 handle : "dragHandle2",
 box : {l : 20, t : 20, w : 500, h : 300}
});

As you can see, the example works as before, with the exception that note2 cannot
move outside of the constraint box defined.

Finally, a parentConstrainedMoveable works in a similar fashion. You simply define
the Moveables and ensure that the parent node is of sufficient stature to provide a
workspace. No additional work is required to make the parent node a special kind of
Dojo class. Here’s another revision of our working example to illustrate:

<!-- ... snip ... -->
.parent {
 background: #BFECFF;
 border: 10px solid lightblue;
 width: 400px;
 height: 700px;
 padding: 10px;
 margin: 10px;
}
<!-- ... snip ... -->
<script type="text/javascript">
 dojo.require("dojo.dnd.move");

 dojo.addOnLoad(function() {

Dropping | 155

 new dojo.dnd.move.parentConstrainedMoveable("note1",
 {
 handle : "dragHandle1", area: "margin", within: true
 });
 new dojo.dnd.move.parentConstrainedMoveable("note2",
 {
 handle : "dragHandle2", area: "padding", within: true
 });
 });

 </script>
 </head>
 <body>
 <div class="parent" >
 <div id="note1">
 <div id='dragHandle1' class="noteHandle"></div>
 <textarea class="note">Note1</textarea>
 </div>
 <div id="note2">
 <div id='dragHandle2' class="noteHandle"></div>
 <textarea class="note">Note2</textarea>
 </div>
 </div>
 </body>
</html>

The area parameter for parentConstrainedMoveables is of particular interest. You may
provide "margin", "padding", "content", and "border" to confine the Moveables to the
parent’s area.

Like ordinary Moveables, you can connect to specific objects or use
pub/sub style communication to detect global drag-and-drop events.
Because constrainedMoveable and boxConstrainedMoveable inherit from
Moveable, the event names for dojo.connect and dojo.subscribe are the
same as outlined in Table 7-2 for Moveable.

Dropping
Thus far, this chapter has focused on dragging objects around on the screen. This
section wraps up the discussion by focusing in on the dropping part of it all. To get
started, let’s first take a look at dojo.dnd.Source, a special container class the toolkit
provides a drag-and-drop source. A Source can also act as a target for a drop, but as
we’ll see in a moment, you can also specify a “pure” target with dojo.dnd.Target.
While a Source may act as an origin and a destination, a Target may only act as a
destination.

Creating a Source is just like creating a Moveable; you call the constructor function
and pass in a node as the first argument and an Object of parameters as the second
argument, like so. Table 7-3 lists the relevant methods.

156 | Chapter 7: Drag-and-Drop

Table 7-4 summarizes key parameters involved in the creation of a Source object.

A very common use for a Source is to eliminate some of the bookkeeping that is
involved in dragging and dropping items that are arranged in a list-like format. The
following code example illustrates:

<html>
 <head>
 <title>Fun with Source!</title>
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dnd.css" />
 <script
 type="text/javascript"
 djConfig="parseOnLoad:true"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Source");
 dojo.require("dojo.parser");
 </script>
 </head>

Table 7-3. Creating and destroying a Source

Name Comment

dojo.dnd.Source(/*DOMNode*/node,
/*Object*/params)

Constructor method for creation. Valid values for params are pro-
vided in Table 7-1.

destroy() Prepares the Object to be garbage-collected.

Table 7-4. Configuration parameters for Source’s params in Table 7-3

Parameter Type Comment

isSource boolean true by default; if false, prevents drag action from being possible.

horizontal boolean false by default; if true, constructs a horizontal layout (inline
HTML elements required).

copyOnly boolean false by default; if true, always copies items instead of moving
them (no Ctrl-key required).

skipform boolean false by default; like Moveable, controls whether to make text-
based form elements editable.

withHandles boolean false by default; when true, allows dragging only by handles.

accept Array ["text"] by default. Specifies the type of object that can be
accepted for a drop.

Dropping | 157

 <body>
 <div dojoType="dojo.dnd.Source" class="container">
 <div class="dojoDndItem">foo</div>
 <div class="dojoDndItem">bar</div>
 <div class="dojoDndItem">baz</div>
 <div class="dojoDndItem">quux</div>
 </div>
 </body>
</html>

Although this initial example may not look like much, there is a tremendous amount of
functionality packed into it. For starters, notice that the only Dojo class that is directly
involved is Source, and to create a container of items that are drag-and-droppable
within that container, you simply provide the token dojoType tag and ensure that the
element is parsed; like most other examples, the parseOnLoad parameter passed to
djConfig takes care of this task.

Next, take a few moments to tinker around with the example. It might be obvious
that you can drag-and-drop single items at a time, but it’s important to also note the
full gamut of functionality that is offered:

• Clicking selects a single element and results in all other elements becoming
unselected.

• Ctrl-clicking toggles the selection state of an item and allows you to build up
multiple items at a time; you can also deselect individual items from a multiple
selection situation.

• Shift-clicking selects a range of elements from the previous-most selection to the
current element being clicked. Any selections before the previous-most selection
become unselected.

• Ctrl-Shift-clicking selects a range of elements from the previous-most selection to
the current element being clicked, but preserves any selections before the
previous-most selection.

• Holding down the Ctrl key while performing a drop results in the selection(s)
being copied. Figure 7-1 illustrates some of these actions.

Pure Targets
As mentioned earlier in the chapter, there are bound to be plenty of times when
you’ll need to employ a Target that can only act as a destination; once items are
placed in it, they may not be moved or reordered. Make the following trivial modifi-
cation to the previous code listing to see a Target in action.

158 | Chapter 7: Drag-and-Drop

<body>
 <div dojoType="dojo.dnd.Source" class="container">
 <div class="dojoDndItem">foo</div>
 <div class="dojoDndItem">bar</div>
 <div class="dojoDndItem">baz</div>
 <div class="dojoDndItem">quux</div>
 </div>
 <!-- Items added to targets cannot be removed or reordered -->
 <div dojoType="dojo.dnd.Target" class="container"></div>
</body>

As you may be able to tell by now, a tremendous amount of functionality is wrapped
up into just a few lines of code, and although div elements were used for the exam-
ple, note that other types of standard HTML elements work equally well. Unordered
lists via the ul and li elements are a common choice.

Custom Avatars
The small icon that temporarily appears when an item from a Source is being moved
around is called an avatar. Although the standard avatar is quite nice, you may want
to construct your own at some point. The following code adjustment illustrates how
to define custom text for an avatar by overriding the creator method because this
method is used to create an avatar representation of one or more nodes. In this par-
ticular circumstance, we’ll choose to override creator in markup. The layout is also
adjusted to a horizontal specification to simultaneously demonstrate how to adjust a
layout:

Figure 7-1. dnd1 shows an initial selection using Ctrl-click; dnd2 is the result of performing a Shift-
click on quux; dnd3 is the result of performing a Shift-Ctrl-click on quux; dnd4 depicts a move
operation by dragging without the Ctrl key; and dnd5 shows a copy operation by dragging with the
Ctrl key applied

dnd1 dnd2 dnd3

dnd4 dnd5

Dropping | 159

<body>
 <div dojoType="dojo.dnd.Source" horizontal=true class="container">
 foo
 bar
 baz
 quux

 <script type="dojo/method" event="creator" args="item,hint">
 // override the creator function and return the appropriate type
 var node = dojo.doc.createElement("span");
 node.id = dojo.dnd.getUniqueId();
 node.className = "dojoDndItem";
 node.innerHTML = "<strong style='color: red'>Custom "+item;
 return {node: node, data: item, type: ["text"]};
 </script>

 </div>
 <div dojoType="dojo.dnd.Target" horizontal=true class="container"></div>
</body>

Note that the arguments passed into creator are item and hint, the actual item being
moved and a value specifying a “hint” for the kind of representation of that should
be created. Unless you implement your own low-level machinery, hint will always be
"avatar". The creator function is expected to return an object representation of item
with keys for an actual DOM node, a data representation, and the type of representa-
tion. Recall that "text" is the default representation accepted by a Source object.

Drop Events
Subscribing and connecting to events via dojo.subscribe and dojo.connect works just
as easy as with Moveable objects. Table 7-5 summarizes public events for pub/sub and
connection-style communications, and a code example follows.

Table 7-5. Drop events

Type Event Parameters Summary

subscribe "/dnd/source/over" /* Node */ source Published when the mouse
moves over a Source con-
tainer; the source parameter
specifies the container. When
the mouse leaves the Source
container, another topic is pub-
lished with null as Source.

160 | Chapter 7: Drag-and-Drop

subscribe "/dnd/start" /* Node */ source
/* Array */ nodes
/* Boolean */ copy

Published when a drag beings.
Parametersource specifies the
Source container that provides
the origin of the drop operations.
Parameter copy istrue for a
copy operation and false for a
move operation. Parameter
nodes is an array of items
involved in the drop operation.

subscribe "/dnd/drop" /* Node */ source
/* Array */ nodes
/* Boolean */ copy

Published when a drop occurs
(and a drag officially) ends.
Parametersource specifies the
Source container that provides
the origin and destination of the
drop operations. Parametercopy
is true for a copy operation
and false for a move opera-
tion. Parameter nodes is an
array of items involved in the
drop operation.

subscribe "/dnd/cancel" N/A Published when a drop opera-
tion is cancelled (for example,
when the Esc key is pressed).

connect onDndSourceOver /* Node */ source Called when a mouse moves
over a Source container;
parametersource specifies the
container. When the mouse
leaves the Source container,
anotheronDndSourceOver is
called again with null as
Source.

connect onDndStart /* Node */ source
/* Array */ nodes
/* Boolean */ copy

Called when a drag begins.
Parametersource specifies the
Source container that provides
the origin of the drop opera-
tions. Parameter copy is true
for a copy operation and false
for a move operation. Parameter
nodes is an array of items
involved in the drop operation.

Table 7-5. Drop events (continued)

Type Event Parameters Summary

Dropping | 161

Go ahead and load up the following full-blown example and use Firebug to inspect
the output that occurs from the various topics that we subscribe to and log to the
console, and remember that you can drag-and-drop from different Source contain-
ers. Figure 7-2 shows the result. Good stuff!

<html>
 <head>
 <title>More Fun with Drop!</title>
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/tests/dnd/dndDefault.css" />

connect onDndDrop /* Node */ source
/* Array */ nodes
/* Boolean */ copy

Called when a drop occurs (and a
drag officially) ends. Parameter
source specifies the Source
container that provides the
origin and destination of the
drop operations. Parameter
copy is true if the operation is
a copy operation and false for
a move operation. Parameter
nodes is an array of items
involved in the drop operation.

connect onDndCancel N/A Called when a drop operation is
cancelled (for example, when
the Esc key is pressed).

Figure 7-2. Firebug is great for learning the ropes of drag-and-drop

Table 7-5. Drop events (continued)

Type Event Parameters Summary

162 | Chapter 7: Drag-and-Drop

 <script
 type="text/javascript"
 djConfig="parseOnLoad:true"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.dnd.Source");
 dojo.require("dojo.parser");

 dojo.addOnLoad(function() {
 dojo.subscribe("/dnd/source/over", function(source) {
 console.log("/dnd/source/over", source);
 });
 dojo.subscribe("/dnd/start", function(source, nodes, copy) {
 console.log("/dnd/start", source, nodes, copy);
 });
 dojo.subscribe("/dnd/drop", function(source, nodes, copy) {
 console.log("/dnd/drop", source, nodes, copy);
 });
 dojo.subscribe("/dnd/cancel", function() {
 console.log("/dnd/cancel");
 });
 });
 </script>
 </head>
 <body>
 <div id="source1" dojoType="dojo.dnd.Source" class="container">
 <div class="dojoDndItem">foo</div>
 <div class="dojoDndItem">bar</div>
 <div class="dojoDndItem">baz</div>
 <div class="dojoDndItem">quux</div>
 </div>
 <div id="source2" dojoType="dojo.dnd.Source" class="container">
 <div class="dojoDndItem">FOO</div>
 <div class="dojoDndItem">BAR</div>
 <div class="dojoDndItem">BAZ</div>
 <div class="dojoDndItem">QUUX</div>
 </div>
 </body>
</html>

All it takes to demonstrate some connections is a different addOnLoad function. Note
that because we need to have a reference to the Source that is created (not the DOM
node), we need to programmatically create the Source instead of relying on the parser
to instantiate widgets that are defined in markup. Substitute the following, turn off
djConfig’s parseOnLoad flag, and take a look at the Firebug console once again:

dojo.addOnLoad(function() {
 //keep a reference to the Source to use for connecting.
 var s1 = new dojo.dnd.Source("source1");

 dojo.connect(s1, "onDndSourceOver", function(source) {
 console.log("onDndSourceOver for", s1, source);

Dropping | 163

 });
 dojo.connect(s1, "onDndStart", function(source, nodes, copy) {
 console.log("onDndStart for ", s1, source, nodes, copy);
 });
 dojo.connect(s1, "onDndStop", function(source, nodes, copy, target) {
 console.log("onDndStop for", s1, source, nodes, copy, target);
 });
 dojo.connect(s1, "onDndCancel", function() {
 console.log("onDndCancel for ", s1);
 });
});

Scripting Droppables
While the previous example demonstrated that you could use the Source constructor
function to make a node droppable, there is considerably more functionality you can
achieve via scripting. Table 7-6 summarizes the functionality that Selector, a lower
level class in dojo.dnd, offers. Because Source inherits from Selector, these functions
are directly available to you though Source, although you might very well find uses
for Selector in and of itself.

Table 7-6. Selector API

Method Comment

getSelectedNodes() Returns an Array of the selected nodes.

selectNone() Deselects all of the nodes.

selectAll() Selects all of the nodes.

deleteSelectedNodes() Deletes all selected nodes.

insertNodes(/* Boolean */ addSelected,
/* Array */ data, /* Boolean */ before,
/* Node */ anchor)

Inserts an Array of nodes, optionally allowing them to be
selected via addSelected. If no anchor is supplied, nodes
are inserted before the first child of the Selector. Other-
wise, they are inserted either before or after the anchor node
according to the value of before.

destroy() Prepares the object for garbage collection.

onMouseDown(/* Object */ event) Can be connected to via dojo.connect for detecting
onmousedown events, although higher-level onDnd
methods should first be considered. Parameter event
provides standard event info.

onMouseUp(/* Object */ event) Can be connected to via dojo.connect for detecting
onmouseup, although higher-level onDndmethods should
first be considered. Parameter event provides standard
event info.

onMouseMove(/* Object */ event) Can be connected to via dojo.connect for detecting
mouse motion, although higher-level onDnd methods
should first be considered. Parameter event provides stan-
dard event info.

164 | Chapter 7: Drag-and-Drop

Summary

For a really practical example of drag-and-drop at work, be sure to
check out ““Drag-and-Drop with the Tree” in Chapter 15, where drag-
and-drop is applied to the problem of manipulating the Tree dijit. The
Tree is a phenomenal piece of engineering and dnd only makes it better!

After reading this chapter, you should be able to:

• Construct unconstrained Moveable objects and drag them around on the screen

• Define constraints for Moveable objects to control their behavior

• Be able to implement Source and Target containers to create collections of items
that can be dragged and dropped to/from/within one another

• Create custom avatars to communicate with the user when a drop operation is
about to occur

• Use dojo.connect and dojo.subscribe to receive event notifications for drag-and-
drop objects

Next, we’ll cover animation and special effects.

onOverEvent(/* Object */ event) Can be connected to via dojo.connect for detecting
when the mouse enters the area, although higher-level
onDnd methods should first be considered. Parameter
event provides standard event info.

onOutEvent(/* Object */ event) Can be connected to via dojo.connect for detecting
when the mouse leaves the area, although higher-level
onDnd methods should first be considered. Parameter
event provides standard event info.

Table 7-6. Selector API (continued)

Method Comment

Animation | 165

Chapter 8 CHAPTER 8

Animation and Special Effects8

Animation can add a splash of character to an otherwise bland application. This
chapter systematically works through the animation utilities that are built right into
Base as well as the dojo.fx (pronounced “effects”) module that Core provides. This
chapter includes a lot of source code and the bulk of the content builds upon only a
few other concepts covered in earlier chapters. As such, this chapter may prove use-
ful as a near-standalone reference.

Animation
The toolkit provides animation facilities in Base and supplements them with addi-
tional functionality offered through dojo.fx. The stock functionality offered by Base
includes _Animation, a class that acts as a delegate in that it fires callbacks accord-
ing to its configuration; these callback functions are what manipulate properties of
a node so that it animates. Once instantiated, all that has to be done to execute an
_Animation is to invoke its play method.

The leading underscore on the _Animation class currently designates at
least two things:

• The API isn’t definitively final yet, although it is really stable and
probably will not change much (if any) between version 1.1 of the
toolkit and when it does become final.

• You generally won’t be creating an _Animation directly. Instead,
you’ll rely on auxiliary functions from Base and dojo.fx to create,
wrap, and manipulate them on your behalf. You will, however,
usually need to run their play methods to start them.

Simple Fades
Before delving into some of the advanced aspects of animations, let’s kick things off
with one of the simplest examples possible: a simple square on the screen that fades
out when you click on it, shown in Figure 8-1. This example uses one of the two fade
functions included with Base. The fadeOut function and its sibling fadeIn function

166 | Chapter 8: Animation and Special Effects

accept three keyword arguments, listed in Table 8-1. Figure 8-1 shows an illustra-
tion of the default easing function.

The node and duration parameters should be familiar enough, but the notion of an
easing function might seem a bit foreign. In short, an easing function is simply a
function that controls the rate of change for something—in this case an _Animation.
An easing function as simple as function(x) { return x; } is linear: for each input
value, the same output value is returned. Thus, if you consider the domain for possi-
ble x values to be decimal numbers between 0 and 1, you notice that the function
always returns the same value. When you plot the function, it is simply a straight line
of constant slope, as shown in Figure 8-2. The constant slope guarantees that the
animation is smooth and occurs at a constant rate of change.

Table 8-1. Parameters for Base’s fade functions

Parameter Type Comment

node DOM Node The node that will be faded.

duration Integer How many milliseconds the fade should last. Default value is 350.

easing Function A function that adjusts the acceleration and/or deceleration of the progress across a
curve. Default value is:

(0.5 + ((Math.sin((n + 1.5) * Math.PI))/2).

Note that the easing function is only defined from a domain of 0 to 1 for fadeIn and
fadeOut.

Figure 8-1. A visualization of the default easing function; an easing function is only defined from a
scale of 0 to 1 for fadeIn and fadeOut

Animation | 167

Example 8-1 demonstrates how to fade out a portion of the screen using the default
parameters.

Figure 8-2. An simple easing function that is linear for values between 0 and 1

Example 8-1. Fading out a node

<html>
 <head>
 <title>Fun with Animation!</title>
 <style type="text/css">
 @import "http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css";
 .box {
 width : 200px;
 height : 200px;
 margin : 5px;
 background : blue;
 text-align : center;
 }
 </style>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 var anim = dojo.fadeOut({node:box});
 anim.play();
 });
 });
 </script>
 </head>
 <body>
 <div id="box" class="box">Fade Me Out</div>
 </body>
</html>

168 | Chapter 8: Animation and Special Effects

To contrast the default behavior with a different easing function, shown in
Figure 8-3, consider the following revision to the previous addOnLoad block. Note
how the default easing function is a relative smooth increase from 0 to 1, while the
custom easing function delays almost all of the easing until the very end. This exam-
ple also uses the dot-operator to run the play method on the _Animation instead of
storing an explicit reference, which is cleaner and more customary.

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 var easingFunc = function(x) {
 return Math.pow(x,10);
 }
 dojo.fadeOut({
 node:box,
 easing : easingFunc,
 duration : 3000
 }).play();
 });});

The dojox.fx.easing module contains a number of excellent easing
functions. Check them out if you find yourself in need of some cre-
ative possibilities.

Figure 8-3. An example of a custom easing function juxtaposed with the default easing function

Animation | 169

Given that simple fades are incredibly common, having them at a distance of one
function call away through Base is wonderful. However, it won’t be long before
you’ll start to wonder about what kinds of other slick animations you can create with
_Animation.

Animating Arbitrary CSS Properties
Let’s build on our current foundation by introducing the rest of the animateProperty
function, which accepts one or more of the configuration parameters shown in
Table 8-2 in the same manner that fadeIn and fadeOut work.

Replace the existing addOnLoad function with this updated one to test out
animateProperty. In this particular case, the width of the node is being animated
from 200px to 400px:

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 dojo.animateProperty({
 node : box,

Table 8-2. The animateProperty function

Parameter Type Comment

node DOM Node | String The node or a node id that will be animated.

duration Integer How many milliseconds the animation should last. Default value is 350.

easing Function A function that adjusts the acceleration and/or deceleration of the progress
across a curve. Default value is (0.5 + ((Math.sin((n + 1.5) *
Math.PI))/2).

repeat Integer How many times to repeat the _Animation. By default, this value is 0.

rate Integer The duration in milliseconds to wait before advancing to the next “frame”.
This parameter controls how frequently the _Animation is refreshed on a
discrete basis. For example, a rate value of 1000 would imply a relative rate
of 1 frame per second. Assuming a duration of 10000, this would result in
10 discrete updates being performed in the _Animation. By default, this
value is 10.

delay Integer How long to wait before performing the animation after its play method is
executed.

properties Object Specifies the CSS properties to animate, providing start values, end values,
and units. The start and end values may be literal values or functions that
can be used to derive computed values:

start (String)
The starting value for the property
end (String)
The starting value for the property
unit (String)
The type of units: px (the default), em, etc.

170 | Chapter 8: Animation and Special Effects

 duration : 3000,
 properties : {
 width : {start : '200', end : '400'}
 }
 }).play();
 });
});

It is worthwhile to spend a few moments experimenting with the animateProperty
function to get a good feel for the kinds of creative things that you can make hap-
pen; it is the foundation of most dojo.fx animations and chances are that you’ll use
it often to take care of routine matters. It accepts virtually any CSS properties all
through the same unified interface. Example 8-2 illustrates that animations adjust
other inline screen content accordingly. Clicking on the blue box causes it to expand
in the x and y dimensions, causing the red and green boxes to adjust their position as
needed.

Example 8-2. Expanding the dimensions of a node

<html>
 <head>
 <title>More Fun With Animation!</title>
 <style type="text/css">
 @import "http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css";
 .box {
 width : 200px;
 height : 200px;
 margin : 5px;
 text-align : center;
 }
 .blueBox {
 background : blue;
 float : left;
 }
 .redBox {
 background : red;
 float : left;
 }
 .greenBox {
 background : green;
 clear : left;
 }
 </style>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">

 dojo.addOnLoad(function() {
 var box = dojo.byId("box1");
 dojo.connect(box, "onclick", function(evt) {
 dojo.animateProperty({
 node : box,

Animation | 171

If some of the animateProperty parameters still seem foggy to you, the previous code
example is a great place to spend some time getting more familiar with the effect of
various parameters. For example, make the following change to the animateProperty
function to produce 10 discrete frames of progress instead of a more continuous-
looking animation (recall that the duration divided by the rate provides a number of
frames):

dojo.addOnLoad(function() {
 var box = dojo.byId("box1");
 dojo.connect(box, "onclick", function(evt) {
 dojo.animateProperty({
 node : box,
 duration : 10000,
 rate : 1000,
 properties : {
 height : {start : '200', end : '400'},
 width : {start : '200', end : '400'}
 }
 }).play();
 });
});

Given that the default easing function being used is fairly smooth, take a moment to
experiment with the effect that various more abrupt functions have on the anima-
tion. For example, the following adjustment uses a parabolic easing function, shown
in Figure 8-4, in which the values increase in value at much larger intervals as you
approach higher domain values, and the discrete effect over the 10 distinct frames
should be apparent:

dojo.addOnLoad(function() {
 var box = dojo.byId("box1");
 dojo.connect(box, "onclick", function(evt) {
 dojo.animateProperty({
 node : box,

 duration : 3000,
 properties : {
 height : {start : '200', end : '400'},
 width : {start : '200', end : '400'}
 }
 }).play();
 });
 });

 </script>
 </head>
 <body>
 <div id="box1" class="box blueBox">Click Here</div>
 <div id="box2" class="box redBox"></div>
 <div id="box2" class="box greenBox"></div>
 </body>
</html>

Example 8-2. Expanding the dimensions of a node (continued)

172 | Chapter 8: Animation and Special Effects

 duration : 10000,
 rate : 1000,
 easing : function(x) { return x*x; },
 properties : {
 height : {start : '200', end : '400'},
 width : {start : '200', end : '400'}
 }
 }).play();
 });
});

Although the examples so far have implied that easing functions are monotonic,* this
need not be the case. For example, try adjusting the working example with an easing
function that is not monotonic, shown in Figure 8-5, to see the effect:

dojo.addOnLoad(function() {
 var box = dojo.byId("box1");
 dojo.connect(box, "onclick", function(evt) {
 dojo.animateProperty({
 node : box,
 duration : 10000,
 easing : function(x) {return Math.pow(Math.sin(4*x),2);},
 properties : {
 height : {start : '200', end : '400'},
 width : {start : '200', end : '400'}
 }
 }).play();
 });
});

Figure 8-4. An example of a parabolic easing function

* Basically, a function is monotonic if it moves steadily in one direction or the other, i.e., if it always increases
or if it always decreases.

Animation | 173

Figure 8-5. An easing function that increases and then decreases in value

Slightly Simplified Syntax
Simplified syntax for properties was added in version 1.1. Previously, you might have
animated a node from its existing width to a new width via:

dojo.animateProperty({
 node: "foo",
 properties: { width: { end: 500 } } //lots of brackets
}).play();

Now, if you provide only an Integer for a properties value, it’s assumed to imply end,
which means the previous block could be reduced to:

dojo.animateProperty({
 node: "foo", properties: { width: 500 } //fewer brackets
}).play();

Another new addition that came with version 1.1, dojo.anim, adds a couple of addi-
tional enhancements; it works much like animateProperty except that it automatically
plays the animation instead of requiring the play function to be called explicitly; thus,
when you receive the _Animation back from it, it has already begun. (Calling play()
again would result in a no-op.) There are also a couple of common properties that have
been moved out of the properties Object as positional arguments.

 The full function signature looks like this:

dojo.anim(/*DOMNode|String*/node, /*Object*/props, /*Integer?*/duration,
/*Function?*/easing, /*Function?*/onEnd, /*Integer?*/delay)
//Returns _Animation that is playing

If these recent enhancements confuses you, don’t feel the need to use them right away;
they’re provided as additional conveniences that are supposed to make your life easier.

174 | Chapter 8: Animation and Special Effects

Programatically Controlling Animations
Although you generally do not create raw _Animation objects, you still have the abil-
ity to control them for most of the common use cases. For example, while an anima-
tion is ongoing, you have the ability to pause, restart, and stop it prematurely,
inquire about its status, or cue it to a specific point. _Animation provides methods for
all of these common tasks, listed in Table 8-3.

Notice that gotoPercent is not mixedCase, like goToPercent. This is one
of the few functions in the toolkit that does not use mixedCase, which
makes it very easy to mistype.

You may also define any of the methods shown in Table 8-4 as an input to
animateProperty. The following table summarizes the functionality provided, and a
block of code follows that illustrates a change to animateProperty that you can try to
set out the method calls.

Table 8-3. _Animation control functions

Method Parameters Comment

stop /* Boolean */ goToEnd Stops an animation. If goToEnd is true, then the
_Animation advances to the end so that when
play is invoked again, it will start from the begin-
ning. goToEnd is false by default.

pause N/A Pauses an animation.

play /* Integer */ delay
/* Boolean */ goToStart

Plays an animation, optionally allowing for a delay
(in milliseconds) before the play operation. For
paused animations, specifying true for
goToStart restarts the animation versus continu-
ing where it left off.

status N/A Returns the status of an animation. Possible values
for status are "paused", "playing", and
"stopped".

gotoPercent /* Decimal */ percent
/* Boolean */ andPlay

Stops the animation and then advances its percent-
age complete between 0.0 and 1.0. Setting
andPlay is true (false by default) restarts the
animation.

Table 8-4. Input methods for animateProperty

Method Parameters Comment

beforeBegin N/A Fired before the animation begins, providing access
to the _Animation and the node for modification
immediately before anything happens.

onBegin /* Object */ value Fires after the animation has begun cycling, so in
effect, this method is somewhat asynchronous. The
value parameter is an object containing the cur-
rent values for the style properties.

Animation | 175

Here’s a small code snippet you can use to tinker around with these methods firing:

dojo.animateProperty({
 node : "box1",
 duration:10000,
 rate : 1000,
 beforeBegin:function(){ console.log("beforeBegin: ", arguments); },
 onBegin:function(){ console.log("onBegin: ", arguments); },
 onAnimate:function(){ console.log("onAnimate: ", arguments); },
 onEnd:function(){ console.log("onEnd: ", arguments); },
 onPlay:function(){ console.log("onPlay: ", arguments); },
 properties : {height : {start : "200", end : "400"} }
}).play();

The following adjustments to the working example illustrate some basic methods for
controlling an _Animation:

 <!-- snip -->
 <script type="text/javascript">
 dojo.addOnLoad(function() {
 var box = dojo.byId("box1");
 var anim;
 dojo.connect(box, "onclick", function(evt) {
 anim = dojo.animateProperty({
 node : box,
 duration : 10000,
 rate : 1000,
 easing : function(x) { console.log(x); return x*x; },
 properties : {
 height : {start : '200', end : '400'},
 width : {start : '200', end : '400'}
 }
 });
 anim.play();

onAnimate /* Object */ value Called for each discrete frame of the animation. The
parameter is an object containing the current values
for the style properties.

onEnd N/A Called automatically when the animation ends.

onPlay /* Object */ value Called each time play is called (including the first
time). The value parameter is an object containing
the current values for the style properties.

onPause /* Object */ value Called each time pause is called. The value
parameter is an object containing the current values
for the style properties.

onStop /* Object */ value Called each time stop is called. The value param-
eter is an object containing the current values for the
style properties.

Table 8-4. Input methods for animateProperty (continued)

Method Parameters Comment

176 | Chapter 8: Animation and Special Effects

 dojo.connect(dojo.byId("stop"), "onclick", function(evt) {
 anim.stop(true);
 console.log("status is ", anim.status());
 });
 dojo.connect(dojo.byId("pause"), "onclick", function(evt) {
 anim.pause();
 console.log("status is ", anim.status());
 });
 dojo.connect(dojo.byId("play"), "onclick", function(evt) {
 anim.play();
 console.log("status is ", anim.status());
 });
 dojo.connect(dojo.byId("goTo50"), "onclick", function(evt) {
 anim.gotoPercent(0.5, true);
 console.log("advanced to 50%");
 });
 });
 });

 </script>
 </head>
 <body>
 <div>
 <button id="stop" style="margin : 5px">stop</button>
 <button id="pause" style="margin : 5px">pause</button>
 <button id="play" style="margin : 5px">play</button>
 <button id="goTo50" style="margin : 5px">50 percent</button>
 </div>
 <div id="box1" class="box blueBox">Click Here</div>
 <div id="box2" class="box redBox"></div>
 <div id="box2" class="box greenBox"></div>
 </body>
</html>

Core fx
The content of this chapter up to this point has concentrated entirely on the anima-
tion facilities that are provided by Base. The existing functionality in Base consisting
of fadeIn, fadeOut, and animateProperty covers a tremendous amount of use cases;
however, there are a few additional functions provided in Core’s fx module that you
can get for the cost of one additional dojo.require statement. These facilities for
effects include functions for sliding nodes and wiping nodes in and out, as well as
chaining, combining, and toggling animations.

Sliding
Sliding nodes is just as easy as fading them. You pass a hash containing configuration
parameters to the dojo.fx.slideTo function just like you would with animateProperty.
Table 8-5 summarizes.

Core fx | 177

A Closer Look at _Animation
As previously emphasized, you will generally be using auxiliary functions, especially
animateProperty, to perform your animations. Functions like animateProperty act like
a wrapper for configuring _Animation objects, although they do return them for you to
play, pause, and so on.

In case you are intrigued by _Animation and exactly what it is doing, it is actually pretty
simple. With the exception of node and properties, it accepts the same parameters as
the animateProperty function from Table 8-2 (not surprising because animateProperty
is acting as a wrapper for creating and manipulating and animation) and one additional
parameter, curve, which defines the domain for the easing function. The built-in ani-
mation functions like animateProperty, fadeIn, and so on have a default domain of 0
to 1, but the curve parameter allows for an arbitrary domain. (And if the term curve
seems like a misnomer, you probably wouldn’t be the first person to think that way. In
this context, a curve is a one-dimensional concept, while curves as we are used to see-
ing them are usually two-dimensional concepts.)

The various parameters, curve, easing, duration, and rate, all fit together and are all
worth summarizing once more:

duration
How long the animation plays.

rate
How often to refresh the animation; the rate divided by the duration is the total
number of discrete frames that appear. The notion of frame rate is important
because the progress of the animation is equivalent to relating the current frame
number to the final frame number.

curve
The domain of possible values that get passed to the onAnimate function. Each
individual value that is passed into onAnimate is calculated by projecting the result
of the easing function on this domain. A curve is represented by an Array accept-
ing two numeric values corresponding to the start and end values for the possible
domain.

easing
A function that accepts input values from 0 to 1, corresponding to the current
progress of the animation. The result of the easing function projected onto the
“curve” is what gets passed to the onAnimate function. Note that if the easing func-
tion returns a value greater than 1.0, the value passed to onAnimate will overextend
the endpoint defined by curve, which is fine.

—continued—

178 | Chapter 8: Animation and Special Effects

Example 8-3 illustrates the sliding functions. The only portions of the page that are
any different from the previous fade examples are emphasized.

To wrap up the various _Animation parameters, let’s assume there is an animation that
lasts 10 seconds, and the rate is set to 1 second. The input domain defined by curve is set
to be 50 through 100, and the easing function is simply function(x) { return 2*x; }.

Based on this configuration, the easing function should be accepting 10 different val-
ues 0.1, 0.2, 0.3,..., 1.0 and scaling these values by a factor of 2 such that it outputs
outputting the values 0.2, 0.4, 0.6,..., 2.0. The output of the easing function is then
projected onto the domain defined by the curve and passed them to the onAnimate
function; thus, the onAnimate function accepts the values 50, 60, 70, 80, 90,..., 150.

Here’s the code to try it for yourself:

new dojo._Animation({
 duration:10000,
 rate : 1000,
 curve: [50,100],
 easing : function(x) {
 console.log("easing: ", 2*x);
 return 2*x;
 },
 onAnimate:function(x){
 console.log("onAnimate: ", x);
 },
 onEnd:function(){
 console.log('all done.');
 }
}).play();

Table 8-5. Parameters for Core’s slide functions

Parameter Type Comment

node DOM Node The node that will be sliding.

duration Integer How many milliseconds the fade should last. Default value is 350.

easing Function A function that adjusts the acceleration and/or deceleration of the progress across a
curve. Default value is (0.5 + ((Math.sin((n + 1.5) * Math.PI))/2).

Note that the easing function is only defined from a domain of 0 to 1 for the fadeIn
and fadeOut.

left Integer Where the node’s left corner should be at the end of the slide.

top Integer Where the node’s top corner should be at the end of the slide.

Example 8-3. Sliding a node

<html>
 <head>
 <title>Animation Station</title>

Core fx | 179

Wiping
Slides and fades are a lot of fun, but wipes are frequently used and have wonderful
utility as well. The basic approach to using them should be no surprise by now. Most
of the same arguments apply. Table 8-6 provides a synopsis.

 <style type="text/css">
 @import "http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css";
 .box {
 width : 200px;
 height : 200px;
 margin : 5px;
 background : blue;
 text-align : center;
 }
 </style>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.fx");

 dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 dojo.fx.slideTo({
 node:box,
 top : "200",
 left : "200"
 }).play();
 });
 });
 </script>
 </head>
 <body>
 <div id="box" class="box">Slide Me</div>
 </body>
</html>

Table 8-6. Parameters for Core’s wipe functions

Parameter Type Comment

node DOM Node The node that will be wiped.

duration Integer How many milliseconds the fade should last. Default value is 350.

easing Function A function that adjusts the acceleration and/or deceleration of the progress
across a curve. Default value is (0.5 + ((Math.sin((n + 1.5) *
Math.PI))/2).

Note that the easing function is only defined from a domain of 0 to 1 for the
fadeIn and fadeOut.

Example 8-3. Sliding a node (continued)

180 | Chapter 8: Animation and Special Effects

Be advised that in some layouts, border, margin, and padding values
associated with nodes have been known to affect the layout once wipe
animations have completed.

Following suit with the other examples in this chapter, Example 8-4 can get you
started.

You may also find it especially interesting to experiment with custom easing func-
tions for wipes. Try our custom, nonmonotonic easing function from earlier and
note the interesting bouncy effect with the following addOnLoad change:

Example 8-4. Wiping a node

<html>
 <head>
 <title>Animation Station</title>
 <style type="text/css">
 @import "http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css";
 .box {
 width : 200px;
 height : 200px;
 text-align : center;
 float : left;
 position : absolute;
 margin : 5px;
 }
 </style>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.fx");

 dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 dojo.fx.wipeOut({
 node:box
 }).play();
 });
 });
 </script>
 </head>
 <body>
 <div class="box">Now you don't</div>
 <div id="box" style="background : blue" class="box">Now you see me...</div>
 </body>
</html>

Core fx | 181

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 dojo.fx.wipeOut({
 node:box,
 easing : function(x) { return Math.pow(Math.sin(4*x),2); },
 duration : 5000
 }).play();
 });
});

Because the easing function increases, decreases, then decreases again, the internal
_Animation that wipeOut uses scales the height of the node accordingly.

Chaining and Combining
There’s something that’s quite remarkable about watching an object slide, fade, and
wipe around the screen, but that’s not all you can do: you can use another function
in Core fx, dojo.fx.chain, to chain together animations. This function is incredibly
simple in that its only argument is an Array of _Animation objects and it returns
another _Animation for you to play. Let’s use it to make the box do something a little
more fancy. Table 8-7 lists the functions for combining and chaining.

As of Dojo version 1.1, the animation functions chain and combine in
this section have several known issues relating to how events such as
beforeBegin and onEnd are processed when multiple animations are
rolled up. The basic gist is that if you are trying to rely on these events
for specific hooks in your application’s logic, you might be better off
using functions like dojo.connect and dojo.subscribe to rig up your
own chains and combinations. Of course, for less advanced tasks,
chain and combine work fine.

Example 8-5 demonstrates a box that makes a zigzag pattern across the screen. Note
that you define custom easing function and other parameters just as normal.

Table 8-7. Animation combination and chaining

Function Comment

dojo.fx.chain(/* Array */ animations) Chains together the animations enclosed in the array that is
passed in as a parameter and returns a consolidated anima-
tion that you can play as usual. The resulting animation is the
sequential result of playing each animation back to back.

dojo.fx.combine(/* Array */ animations) Combines the animations enclosed in the array that is passed
in as a parameter and returns a consolidated animation that
you can play as usual. The resulting animation provides the
effect of playing each of the original animations in parallel.

182 | Chapter 8: Animation and Special Effects

But say you want to fade and slide at the same time. No problem. Following the
same type API call as dojo.fx.chain, the dojo.fx.combine will do it in a jiffy. Any ani-
mations you pass into it through the Array parameter are run in parallel. First, let’s
look at a simple combination of our slide and fade examples. Example 8-6 shows the
relevant change to addOnLoad.

Example 8-5. Chaining animations together

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 var easing = function(x) { return x; };
 var a1 = dojo.fx.slideTo({
 node:box,
 easing : easing,
 duration : 1000,
 top : "150",
 left : "300"
 });
 var a2 = dojo.fx.slideTo({
 node:box,
 easing : easing,
 duration : 400,
 top : "20",
 left : "350"
 });
 var a3 = dojo.fx.slideTo({
 node:box,
 easing : easing,
 duration : 800,
 top : "350",
 left : "400"
 });
 dojo.fx.chain([a1,a2,a3]).play();
 });
});

Example 8-6. Combining animations

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {
 var a1 = dojo.fx.slideTo({
 node:box,
 top : "150",
 left : "300"
 });
 var a2 = dojo.fadeOut({
 node:box
 });
 dojo.fx.combine([a1,a2]).play();
 });
});

Core fx | 183

It’s easy to forget that slideTo is in dojo.fx while fadeIn and fadeOut are
in Base, so take a moment to acknowledge that a call like dojo.fx.fadeIn
would give you an error. If you do not issue a dojo.require("dojo.fx")
before attempting to use anything in dojo.fx, you’ll get an error.

Given that chain returns a single _Animation, let’s try something more advanced (but
still really simple) because it builds on the same fundamentals: in Example 8-7, we’ll
chain together several fade animations and combine them with several slide anima-
tions that we’ll also chain together.

Example 8-7. Chaining and combining animations

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 dojo.connect(box, "onclick", function(evt) {

 //chain together some slides
 var a1 = dojo.fx.slideTo({
 node:box,
 top : "150",
 left : "300"
 });
 var a2 = dojo.fx.slideTo({
 node:box,
 top : "20",
 left : "350"
 });
 var a3 = dojo.fx.slideTo({
 node:box,
 top : "350",
 left : "400"
 });
 var slides = dojo.fx.chain([a1,a2,a3]);

 //chain together some fades
 var a1 = dojo.fadeIn({
 node:box
 });
 var a2 = dojo.fadeOut({
 node:box
 });
 var a3 = dojo.fadeIn({
 node:box
 });
 var fades = dojo.fx.chain([a1,a2, a3]);

 //now combine the two chains together
 dojo.fx.combine([slides, fades]).play();

 });
});

184 | Chapter 8: Animation and Special Effects

Toggling
The dojo.fx.Toggler class is essentially a wrapper for configuring the animations for
toggling (showing and hiding) a node. The class constructor accepts an associative
array of parameters that include the show and hide functions as well as the durations
for the show and hide functions. Toggler is nice in that there is very little thinking
involved about what has to happen. You simply tell it what functions to use, provide
the durations, and then manually call its show and hide function accordingly. Both
the show and hide function optionally accept a parameter that delays the operation by
a said amount of time (Table 8-8).

Table 8-9 provides the method summary for the class.

Example 8-8 provides the compulsory source code and another modification to
addOnLoad for our working example from Example 8-4.

Table 8-8. Parameters for Core’s Toggler function

Parameter Type Comment

node DOM Node The node to toggle.

showFunc Function A function that returns an _Animation for showing the node. Default
value is dojo.fadeIn.

hideFunc Function A function that returns an _Animation for hiding the node. Default value
is dojo.fadeOut.

showDuration Integer The duration in milliseconds to run showFunc. Default value is 200
(milliseconds).

hideDuration Integer The duration in milliseconds to run hideFunc. Default value is 200
(milliseconds).

Table 8-9. Toggler functions

Method Comment

show(/*Integer*/delay) Shows a node over a duration defined by showDuration using
showFunc. The optional delay parameter causes the animation to wait
by the specified amount before starting.

hide(/*Integer*/delay) Hides a node over a duration defined by hideDuration using
hideFunc. The optional delay parameter causes the animation to wait
by the specified amount before starting.

Example 8-8. Toggling a node

dojo.addOnLoad(function() {
 var box = dojo.byId("box");
 var t = new dojo.fx.Toggler({
 node : box,
 showDuration : 1000,
 hideDuration : 1000
 });

Animation + Drag-and-Drop = Fun! | 185

If you try out the example, you should notice that clicking on the “Now you see me...”
box causes it to fade out, while clicking on the “Now you don’t” box causes the first
box to fade back in.

Animation + Drag-and-Drop = Fun!
Drag-and-drop combined with animations are an incredibly powerful combination.
Take a moment to review and experiment with the following block of code, which
combines very basic concepts from drag-and-drop in the previous chapter with what
you’ve been learning about in this one; it’s illustrated in Figure 8-6.

<html>
 <head>
 <title>Animation + Drag and Drop = Fun!</title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 var visible = true;
 dojo.connect(box, "onclick", function(evt) {
 if (visible)
 t.hide();
 else
 t.show();

 visible = !visible;
 });
});

Figure 8-6. A visualization of the x^5 easing function

Example 8-8. Toggling a node (continued)

186 | Chapter 8: Animation and Special Effects

 <script type="text/javascript">
 dojo.require("dojo.fx");
 dojo.require("dojo.dnd.move");
 dojo.addOnLoad(function(){
 var move = new dojo.dnd.Moveable(dojo.byId("ball"));
 var coords;
 dojo.subscribe("/dnd/move/start",function(e){
 // when drag starts, save the coords
 coords = dojo.coords(e.node);
 });

 //now use the coords to control where the image slides back
 dojo.subscribe("/dnd/move/stop",function(e){
 dojo.fx.slideTo({
 node: e.node,
 top: coords.t,
 left: coords.l,
 duration:1200,
 easing : function(x) { return Math.pow(x,5);}
 }).play();
 });
 });
 </script>
 </head>
 <body>
 <!-- Insert any image into the page here in place of ball.png -->
 <img style="position : absolute; left : 300px; top : 300px;"
 id="ball"
 src="ball.png"/>
 </body>
</html>

To summarize, the code example detects the start of a global drag event and remem-
bers the coordinates of where that drag began. Then, it waits until the drag event
ends, and at that point, moves the image back to its original sport according to the
specific easing function. The easing function dictates that the move back will be slow
at first, but will rapidly accelerate toward the end in a trendy sort of way.

Colors
Animations and effects in a page may often depend on computing specific color val-
ues. Base provides an elementary Color class for encapsulating much of the mun-
dane logic in computing colors, converting them to and from hexadecimal values,
and so on. Several auxiliary functions for common operations on colors are also
included.

Colors | 187

Creating and Blending Colors
The Color class has a flexible constructor that can accept a named string value for a
color, a hex string representing a color, or an array of RGB* values. Example 8-9
illustrates the creation of two Color objects and a function Base provides for blend-
ing colors.

The blendColors function accepted the red and blue Color objects and blended them
according to a 50/50 mixture to produce the RGB value (128, 0, 128), a neutral shade
of purple. The alternative to blending colors is to crunch the numbers yourself—not
rocket science, but not very much fun either!

Table 8-10 summarizes the Color class provided by Base.

* RGB is shorthand for “red green blue,” one of the standard ways of representing colors in CSS. RGBA is
shorthand for “red green blue alpha” and expresses a fourth color component, which represents the trans-
parency of a color.

Example 8-9. Blending Color objects

<html>
 <head>
 <title></title>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.addOnLoad(function() {
 var blue = new dojo.Color("#0000ff"); //could also have used "blue"
 var red = new dojo.Color([255, 0, 0]);
 var purple = dojo.blendColors(blue, red, 0.5);
 dojo.style("foo", "background", purple.toCss());
 });
 </script>
 </head>
 <body>
 <div id="foo" style="width:200px; height:200px; padding:5px;"></div>
 </body>
</html>

Table 8-10. Color functionality supported by Base

Method Comment

Color(/* Array | String */color) The constructor function, which accepts an array of
RGB or RGBA values, or a String, which may be a
named color like “blue” or a hex string like “#000ff”. If
no arguments are passed, the Color object is con-
structed with the RGBA tuple (255,255,255,1).

188 | Chapter 8: Animation and Special Effects

Most browsers currently implement a deviation of the CSS2 specifica-
tion, which does not support RGBA tuples for expressing colors, so
Color’s toCss() function (with no parameter passed in) is probably
your choice method of deriving a value acceptable for passing into a
method like dojo.style. If you need to express transparency for nodes
that have color, use the style value for opacity to do so.

setColor(/* Array | String | Object */ color) Works on an existing Color object to configure its
value in a manner analogous to its constructor func-
tion; the preferred way of reusing an existing Color
object.

toRgb() Returns a String value expressing a Color as an
RGB value such as (128, 0, 128).

toRgba() Returns a String value expressing a Color as an
RGBA value such as (128, 0, 128, 0.5).

toHex() Returns a String value expressing a Color as a
hex value such as “#80080”.

toCss(/* Boolean */ includeAlpha) Returns a CSS-compliant String value expressing a
Color as an RGB value such as (128, 0, 128). By
default, includeAlpha is false. This method is
the preferred means of transforming a Color object
for use in styling a node.

toString Returns a standardizedString value for aColor as
an RGBA value.

 RGBA Support in CSS3
The RGBA syntax for representing color values as included in the CSS3 specification is
quite expressive and convenient. The following code snippet provides an illustration
of two overlapping blue and red squares, and Figure 8-7 shows how the overlap blends
the two to show a purple square in their intersection:

<div style="width:200px; height:200px; padding:5px; background:rgba(0,0,255,
0.5)"></div>

<div style="position:absolute; left:100px; top:100px; width:200px; height:
200px; padding:5px; background:rgba(255,0,0,0.5)"></div>

Firefox 3 supports RGBA style values natively. You can read more about the CSS3 sup-
port in Firefox at http://developer.mozilla.org/en/docs/CSS_improvements_in_Firefox_3.

Table 8-10. Color functionality supported by Base (continued)

Method Comment

http://developer.mozilla.org/en/docs/CSS_improvements_in_Firefox_3

Colors | 189

Transparency and opacity are the inverses of one another. If the opac-
ity of something is 1.0, it is fully opaque, and its transparency is there-
fore 0.0. If its opacity were 0.1, it would be 90% transparent, and you
would barely be able to see it.

Named Color Values Available Via Base
One other utility in Base is the configuration of preloaded named colors that is
stored in dojo.Color.named, which maps named colors to RGB values. For example,
to quickly access the RGB values for maroon, simply use the reference to dojo.Color.
named.maroon to get back the RGB array [128,0,0]. Table 8-11 summarizes the
named colors that are built into Base. Although you will probably want to use and
manipulate Color objects directly, dojo.Color.named may still prove useful during
development.

dojo.Color.named is not available from an actual Color object. It is a
static collection of color values and no object creation is required to
use it. Trying to access a color object instance’s .named value will cause
an error.

Figure 8-7. An example of how transparency works through the rgba() description for a color using
Firefox 3

190 | Chapter 8: Animation and Special Effects

Additional Color Values Available Via Core
Although not included directly in Base, you can expand dojo.Color.named with more
than 100 additional colors including all of the CSS3 named colors complete with SVG
1.0 variant spellings by performing a dojo.require("dojo.colors") statement (see
Table 8-12). Note that you can also use the animateProperty function you learned
about earlier to to animate the backgroundColor property. For example, you could pro-
vide start and end values of “black” and “white”, “white” and “#43fab4”, etc.

In addition to expanding dojo.Color.named, dojo.colors provides the
additional enhancement of augmenting the Color constructor to accept
HSL and HSLA color module formats. The HSL color space attempts
to describe perceptual color relationships more accurately then RGB
by representing colors in terms of hue, saturation, and lightness. You
can read more about the CSS Color module at http://www.w3.org/TR/
css3-iccprof.

Table 8-11. Named color values available through Base

Name Red Green Blue

black 0 0 0

silver 192 192 192

gray 128 128 128

white 255 255 255

maroon 128 0 0

red 255 0 0

purple 128 0 128

fuchsia 255 0 255

green 0 128 0

lime 0 255 0

olive 128 128 0

yellow 255 255 0

navy 0 0 128

blue 0 0 255

teal 0 128 128

aqua 0 255 255

Table 8-12. Additional named color values available through Core

Name Red Green Blue

aliceblue 240 248 255

antiquewhite 250 235 215

aquamarine 127 255 212

http://www.w3.org/TR/css3-iccprof.
http://www.w3.org/TR/css3-iccprof.

Colors | 191

azure 240 255 255

beige 245 245 220

bisque 255 228 196

blanchedalmond 255 235 205

blueviolet 138 43 226

brown 165 42 42

burlywood 222 184 135

cadetblue 95 158 160

chartreuse 127 255 0

chocolate 210 105 30

coral 255 127 80

cornflowerblue 100 149 237

cornsilk 255 248 220

crimson 220 20 60

cyan 0 255 255

darkblue 0 0 139

darkcyan 0 139 139

darkgoldenrod 184 134 11

darkgray 169 169 169

darkgreen 0 100 0

darkgrey 169 169 169

darkkhaki 189 183 107

darkmagenta 139 0 139

darkolivegreen 85 107 47

darkorange 255 140 0

darkorchid 153 50 204

darkred 139 0 0

darksalmon 233 150 122

darkseagreen 143 188 143

darkslateblue 72 61 139

darkslategray 47 79 79

darkslategrey 47 79 79

darkturquoise 0 206 209

darkviolet 148 0 211

deeppink 255 20 147

deepskyblue 0 191 255

Table 8-12. Additional named color values available through Core (continued)

Name Red Green Blue

192 | Chapter 8: Animation and Special Effects

dimgray 105 105 105

dimgrey 105 105 105

dodgerblue 30 144 255

firebrick 178 34 34

floralwhite 255 250 240

forestgreen 34 139 34

gainsboro 220 220 220

ghostwhite 248 248 255

gold 255 215 0

goldenrod 218 165 32

greenyellow 173 255 47

grey 128 128 128

honeydew 240 255 240

hotpink 255 105 180

indianred 205 92 92

indigo 75 0 130

ivory 255 255 240

khaki 240 230 140

lavender 230 230 250

lavenderblush 255 240 245

lawngreen 124 252 0

lemonchiffon 255 250 205

lightblue 173 216 230

lightcoral 240 128 128

lightcyan 224 255 255

lightgoldenrodyellow 250 250 210

lightgray 211 211 211

lightgreen 144 238 144

lightgrey 211 211 211

lightpink 255 182 193

lightsalmon 255 160 122

lightseagreen 32 178 170

lightskyblue 135 206 250

lightslategray 119 136 153

lightslategrey 119 136 153

lightsteelblue 176 196 222

Table 8-12. Additional named color values available through Core (continued)

Name Red Green Blue

Colors | 193

lightyellow 255 255 224

limegreen 50 205 50

linen 250 240 230

magenta 255 0 255

mediumaquamarine 102 205 170

mediumblue 0 0 205

mediumorchid 186 85 211

mediumpurple 147 112 219

mediumseagreen 60 179 113

mediumslateblue 123 104 238

mediumspringgreen 0 250 154

mediumturquoise 72 209 204

mediumvioletred 199 21 133

midnightblue 25 25 112

mintcream 245 255 250

mistyrose 255 228 225

moccasin 255 228 181

navajowhite 255 222 173

oldlace 253 245 230

olivedrab 107 142 35

orange 255 165 0

orangered 255 69 0

orchid 218 112 214

palegoldenrod 238 232 170

palegreen 152 251 152

paleturquoise 175 238 238

palevioletred 219 112 147

papayawhip 255 239 213

peachpuff 255 218 185

peru 205 133 63

pink 255 192 203

plum 221 160 221

powderblue 176 224 230

rosybrown 188 143 143

royalblue 65 105 225

saddlebrown 139 69 19

Table 8-12. Additional named color values available through Core (continued)

Name Red Green Blue

194 | Chapter 8: Animation and Special Effects

Summary
This chapter has systematically walked you through Base and Core’s tools for anima-
tion. A splash of animation, when applied with discretion, can really add that extra
bit of umph that distinguishes your application from the rest of the crowd. After
reading this chapter, you should:

• Be able to use Base’s utilities for fading nodes in and out

• Be able to use Base’s animateProperty function to animate arbitrary CSS properties

• Understand the effect of easing functions, duration, and rate on an _Animation

• Be aware of Core’s facilities that supplement the animation support provided by
Base

• Be able to use Core’s animation support for additional effects, including wipes
and slides

salmon 250 128 114

sandybrown 244 164 96

seagreen 46 139 87

seashell 255 245 238

sienna 160 82 45

skyblue 135 206 235

slateblue 106 90 205

slategray 112 128 144

slategrey 112 128 144

snow 255 250 250

springgreen 0 255 127

steelblue 70 130 180

tan 210 180 140

thistle 216 191 216

tomato 255 99 71

transparent 0 0 0

turquoise 64 224 208

violet 238 130 238

wheat 245 222 179

whitesmoke 245 245 245

yellowgreen 154 205 50

Table 8-12. Additional named color values available through Core (continued)

Name Red Green Blue

Summary | 195

• Be able to chain together animations to run sequentially with dojo.fx.chain as
well as run multiple animations in parallel with dojo.fx.combine

• Be able to use dojo.fx.Toggler to hide and show a node via its simple, uniform
interface

• Understand how to combine animations with drag-and-drop to create highly
interactive page content

• Be able to create and effectively use Color objects to eliminate manual computa-
tion of color values in your code

There are amazing graphics and animation tools backed by SVG, VML,
and Silverlight backends, provided through the dojox.gfx module.

We’re going to cover data abstraction in the next chapter.

196 | Chapter 9: Data Abstraction

Chapter 9CHAPTER 9

Data Abstraction 9

A common bane of web development is writing routines to parse data that is
returned from the server into a conveniently accessible format for the core applica-
tion logic. While many good routines have been developed to parse common
response types such as comma-separated values (CSV) and JSON, a lot of boiler-
plate is still involved in wiring it all up, issuing updates back to the server, poten-
tially maintaining synchronicity between the local store and the server, and so forth.
This chapter introduces Dojo’s data APIs, which provide a uniform interface for han-
dling data sources—regardless of where they’re located, how they’re accessed at the
transport level, and what their format may be.

Shifting the Data Paradigm
The toolkit’s machinery for managing data sources isn’t exactly rocket science, but it
does require shifting the paradigm ever so slightly, in that it requires that data can be
treated as a local resource that is accessed via a uniform API. Traditional approaches
have typically entailed treating data as a remote resource, which necessarily entails
acquiring boilerplate to retrieve it, writing updates to the server, maintaining syn-
chronicity with the server, and handling variable formats. One of the central issues,
historically speaking, is that the wheel was reinvented far too many times and virtu-
ally every application used its own brittle approach to managing the burden of han-
dling data.

Dojo gives a set of APIs via the dojo.data module that provide a standardized means
for interacting with arbitrary data sources, shown in Figure 9-1. This allows applica-
tion programmers to escape entanglement with retrieving, parsing, and managing it.
The dojo.data API provides a standardized manner for interacting with data whether
it’s local or remote, which is a tremendous boon when it comes time to deal with
larger and larger data sets as an application scales. Best of all, once you’ve imple-
mented an interface for a specific data format, it becomes an off-the-shelf resource

Data API Overview | 197

that you can reuse and distribute at will. Generally speaking, these kinds of off-the-
shelf resources allow application developers to be more productive by allowing them
to focus on far more interesting tasks at hand than I/O management.

Data API Overview
The most basic atom of the dojo.data API is called an item, which is composed of
key/value pairs called attributes and attribute values in dojo.data parlance; conceptu-
ally, you can think of an item as a plain old JavaScript Object. However, although the
underlying implementation may very well be a JavaScript Object, be careful to use
the provided APIs for accessing it, as the internal representation may be something
entirely different. For example, some data abstractions may use a DOM model for
storing certain types of data for efficiency reasons, or lazy-load data on the fly even
though it seems like it’s already local. In cases like these, accessing an item like a
plain old JavaScript object would likely cause an unexpected error. We’ll come back
to specific API calls for accessing an item in the next section.

Saying that an item has an attribute—but no value for the attribute—
is the same as saying that the item doesn’t have the attribute at all. In
other words, it’s nonsensical to think about having an attribute with
no value because attributes inherently have a specific state.

Figure 9-1. Left: a traditional pattern for accessing arbitrary data sources from an application;
right: the toolkit’s dojo.data abstraction for accessing arbitrary data sources

Web application

Core Application Logic

Parse and repackage
repsonse for local

consumption

Dojo I/O Transport Layer

Web server

…
CSV
XML
Flickr
OPML

…

Web application

Core Application Logic

Standardized
data interface

dojo.data API

Dojo I/O Transport Layer

… CSV XML Flickr OPML …

Web server

198 | Chapter 9: Data Abstraction

Before getting into the capabilities of any one specific API, it’s helpful to survey the
landscape. Here’s an overview of the various dojo.data APIs with a brief summary of
what these APIs provide to the application developer. These APIs are interfaces, not
implementations; any concrete dojo.data data store would define one or more of the
upcoming APIs:

dojo.data.api.Read
Provides a uniform means of reading, searching, sorting, and filtering data items.

dojo.data.api.Write
Provides a uniform means of creating, deleting, and updating data items.

dojo.data.api.Identity
Provides a uniform means of accessing an item via a unique identifier.

dojo.data.api.Notification
Provides a uniform means of notifying a listener of a change, such as create,
delete, or update operation, for a data item.

The remainder of this chapter systematically works through each of these APIs and
provides plenty of examples so that you can make the most of dojo.data in your own
application.

The APIs
This section provides a summary of the data APIs. If you’re just getting started, you
may want to skim this section to get a feel for the capabilities the APIs and then
come back after you’ve read the rest of the chapter, which has more concrete exam-
ples, to explore it further.

The Read API
All data stores will implement the dojo.data.api.Read API because this API provides
the means of retrieving, processing, and accessing the data—clearly a prerequisite for
any other operation. The complete API specification follows in Table 9-1. The next
section discusses a toolkit-provided implementation: ItemFileReadStore.

The API listings that follow use descriptors like dojo.data.api.Item to
convey the notion of a dojo.data item even though an item is somewhat
of an abstract concept.

The APIs | 199

Table 9-1. The dojo.data.api.Read API

Name Comment

getValue(/*dojo.data.api.Item*/item,
/*String*/attribute, /*Any?*/default)

Given an item and an attribute name, returns the value for
the item. A value of undefined is returned if the attribute
does not exist (whereas null is returned only if null is
explicitly set as the value for the attribute). An optional
parameter of default can be used to return a default value
if one does not exist.

getValues(/*dojo.data.api.Item*/item,
/*String*/attribute)

Works just like getValue except that it allows for multi-
valued attributes. Always returns an array regardless of the
number of items returned. You should always use
getValues for multivalued attributes.

getAttributes(/*dojo.data.api.Item*/item) Introspects the item to return an Array of String values
corresponding to the item’s attributes. Returns an empty
Array in the event that an item has no attributes.

hasAttribute(/*dojo.data.api.Item*/item,
/*String*/attribute)

Returns true if the item has the attribute.

containsValue(/*dojo.data.api.Item*/item,
/*String*/attribute, /*Any*/value)

Returns true if the item has the attribute and the attribute
has the value, i.e., getValues would return true.

isItem(/*Any*/item) Returns true if the parameter is an item and came from the
specified store. Returns false if item is a literal or if the
item came from any other store. (This call is also especially
handy for situations when local variable references to items
can become stable, which is quite ordinary for stores that
implement the Write API.)

isItemLoaded(/*Any*/item) Returns true if the item is loaded and available locally.

loadItem(/*Object*/args) Loads an item to the effect that a subsequent call to
isItemLoaded would return true. The args object pro-
vides the following keys:

item
An Object providing criteria for the item that is to be
loaded (possibly an identifier or subset of identifying
data).

onItem(/*dojo.data.api.Item*/item)
A callback to run when the item is loaded; the loaded item
is passed as a parameter.

onError(/*Object*/error)
A callback to run when an error occurs loading the item;
the error Object is passed as a parameter.

scope
An Object providing the context for callback functions.

200 | Chapter 9: Data Abstraction

fetch(/*Object*/args) Executes a given query and provides an assortment of asyn-
chronous callbacks for handling events related to the query
execution. Returns a dojo.data.api.Request
Object, whose primary purpose is supplying an abort()
method that may be used for aborting the fetch. The argu-
ments may include the following nine options, which should
be honored by all implementations:

query
A String or Object providing the query criteria (simi-
lar to SELECT in SQL). Note that the query syntax for each
store is implementation-dependent.

queryOptions
An Object containing additional options for the query.
All stores should attempt to honor the ignoreCase
(Boolean, default false) parameter, which performs a
case-insensitive search and the deep (Boolean, default
false) parameter can trigger a query of all items and
child items instead of only items at the root level in the
store.

onBegin (/*Integer*/size,
/*dojo.data.api.Request*/request)

Called before the first onItem callback. size indicates
the total number of items and request is the original
request for the query. If size is unknown, it will be –1.
size may not be the total number of items returned
since it may have been pared down with start and
count.

onComplete (/*Array*/items,
/*dojo.data.api.Request*/request)

Called just after the last onItem callback. If no
onItem callback is present, items will be an Array of
all items that matched the query; otherwise, it will be
null.Request, the original request Object.

onError(/*Object*/error,
/*dojo.data.api.Request*/request)

Called if there is an error when executing the query.
error contains the error information and request
contains the original request Object.

onItem(/*dojo.data.api.Item*/item,
/*dojo.data.api.Request*/request)

Called for each item that is returned with each item avail-
able as item; request contains the original request
Object.

Table 9-1. The dojo.data.api.Read API (continued)

Name Comment

The APIs | 201

The Identity API
The Identity API, shown in Table 9-2, builds on the Read API to provide a few addi-
tional calls for fetching items based upon their identity. Note that the Read API has
no stipulations whatsoever that items be unique, and there are certainly use cases
where the notion of an identity may not be pertinent; hence the separation between
the two of them. With respect to databases, you might think of the Identity API,
loosely, as providing a kind of primary key for each item that records can be identi-
fied with. It is often the case that data-enabled widgets require the Identity API, par-
ticularly when providing Write functionality. (The Write API is coming up next.)

fetch(/*Object*/args) (continued) scope (Object)
If provided, executes all of the callback function in this
context; otherwise, executes them in the global context.

start (Integer)
Provides a starting offset for the returned results (similar
to OFFSET in an SQL query).

count (Integer)
Provides a limit for the items to be returned (similar to
LIMIT in a SQL query).

sort (Array)
An Array of JavaScript Objects providing sort criteria
for each attribute. Each Object is applied sequentially
and must present an attribute key identifying the
attribute name and a descending key identifying the sort
order.

getFeatures() Returns an Object containing key/value pairs that specifies
what dojo.data APIs it implements. For example, any API
implementing dojo.data.api.Read would necessarily
return {'dojo.data.api.Read' : true} for a data
store that is read-only.

close(/*dojo.data.api.Request*/request) Used to close out any information associated with a particular
request, which may involve clearing caches, closing con-
nections, etc. The request parameter is expected to be the
Object returned from a fetch. For some stores, this may
be a no-op.

getLabel(/*dojo.data.api.Item*/item) Used to return a human-readable label for an item that is
generally some kind of identifying description. The label may
very well be some combination of attributes.

getLabelAttributes(/*dojo.data.api.Item*/
item)

Used to provide an Array of attributes that will generate an
item’s label. Useful for assisting UI developers in knowing
what attributes are useful for display purposes so that redun-
dant information can be hidden when a display includes an
item label.

Table 9-1. The dojo.data.api.Read API (continued)

Name Comment

202 | Chapter 9: Data Abstraction

The Write API
The Write API, shown in Table 9-3, extends the Read API to include facilities for cre-
ating, updating, and deleting items, which necessarily entails managing additional
issues such as whether items are dirty—out of sync between the in-memory copy and
the server—and handling I/O such as save operations.

Table 9-2. The dojo.data.api.Identity API

Name Comment

getFeatures() See dojo.data.api.Read. Returns:

{
'dojo.data.api.Read' : true,
'dojo.data.api.Identity : true
}

getIdentity(/*dojo.data.api.Item*/item) Returns a unique identifier for the item, which will be a
String or an Object that has a toString method.

getIdentityAttributes
(/*dojo.data.api.Item*/item)

Returns an Array of attribute names that are used to gener-
ate the identity. Most of the time, this is a single attribute
that expressly provides a unique identifier, but it could be
more than one depending on the specifics of the actual data
source. This function is often used to optionally hide
attributes comprising the identity for display purposes.

fetchItemByIdentity(/*Object*/args) Uses the identity of an item to retrieve it; conforming imple-
mentations should return null if no such item exists. The
keyword args may include the following:

identity
A String or Object with a toString function that is
uses to provide the reference for the desired item.

onError(/*Object*/error)
Called if there is an error when executing the query.
error contains the error information.

onItem(/*dojo.data.api.Item*/item)
Called for each item that is returned with each item avail-
able as item.

scope (Object)
If provided, executes all of the callback function in this
context; otherwise, executes them in the global context.

Table 9-3. The dojo.data.api.Write API

Name Comment

getFeatures See dojo.data.api.Read. Returns:

{
'dojo.data.api.Read' : true,
'dojo.data.api.Write : true

 }

The APIs | 203

The Notification API
The Notification API, shown in Table 9-4, is built upon the Read and complements
the Write API by providing a unified interface for responding to the typical create,
update, and delete events. The Notification API is particularly useful for ensuring

newItem(/*Object?*/args, /*Object?*/parentItem) Returns a newly created item, setting the attributes based on
the args Object provided, where generally the key/value
pairs in args map directory attributes and attribute values.
For stores that support hierarchical item creation,
parentItem provides information identifying the parent of
the new item and the attribute of the parent that the new
item should be assigned (which generally implies that the
attribute is multivalued and the new item is appended).
Returns the newly created item.

deleteItem(/*dojo.data.api.Item*/item) Deletes and item from the store. Returns a Boolean value
indicating success.

setValue(/*dojo.data.api.Item*/item,
/*String*/attribute, /*Any*/value)

Sets an attribute on an item, replacing any previous values.
Returns a Boolean value indicating success.

setValues(/*dojo.data.api.Item*/item,
/*String*/attribute, /*Array*/values)

Sets values for an attribute, replacing any previous values.
Returns a Boolean value indicating success.

unsetAttribute(/*dojo.data.api.Item*/item,
/*String*/attribute)

Effectively removes an attribute by deleting all values for it.
Returns a Boolean value indicating success.

save(/*Object*/args) Saves all local changes in memory, and output is passed to a
callback function provided in args, which is in the following
form:

onError(/*Object*/error)
Called if there is an error; error contains the error
information.

onComplete()
Called to indicate success, usually with no parameters.

scope (Object)
If provided, executes all of the callback functions in this
context; otherwise executes them in the global context.
A _saveCustom extension point is available, and if
overridden, provides an opportunity to pass the data set
back to the server.

revert() Discards any local changes. Returns a Boolean value indi-
cating success.

isDirty(/*dojo.data.api.Item?*/) Returns a Boolean value indicating if a specific item has
been modified since the lastsave operation. If no parameter
is provided, returns a Boolean value indicating if any item
has been modified.

Table 9-3. The dojo.data.api.Write API (continued)

Name Comment

204 | Chapter 9: Data Abstraction

visuals properly reflect the state of a store, which may be changing or refreshed via
Read and Write operations. (The dijit.Tree and dojox.grid.Grid widgets are great
cases in point.)

Core Implementations of Data APIs
The previous section provided a summary of the four primary data APIs available at
this time. This section works through the two implementations provided by Core—
the ItemFileReadStore and ItemFileWriteStore. As you’ll see, the ItemFileReadStore
implements the Read and Identity APIs, and the ItemFileWriteStore implements all
four APIs discussed. A good understanding of these two stores equips you with
enough familiarity to augment these existing stores to suit your own needs—or to
implement your own.

Although not explicitly discussed in this book, the dojox.data sub-
project contains a powerful assortment of dojo.data implementations
for common tasks such as interfacing to CSV stores, Flickr, XML,
OPML, Picasa, and other handy stores. Since they all follow the same
APIs as you’re learning about here, picking them up should be a snap.

Table 9-4. The dojo.data.api.Notification API

Name Comment

getFeatures See dojo.data.api.Read. Returns:

{
'dojo.data.api.Read' : true,
'dojo.data.api.Notification: true
}

onSet(/*dojo.data.api.Item*/item,
/*String*/attribute, /*Object|Array*/old,
/*Object|Array*/new)

Called any time an item is modified via setValue,
setValues, or unsetAttribute, providing means of
monitoring actions on items in the store. The parameters are
self-descriptive and provide the item being modified, the
attribute being modified, and the old and new value or val-
ues, respectively.

onNew(/*dojo.data.api.Item*/item,
/*Object?*/parentItem)

Called when a new item is created in the store where item is
what was just created; parentItem is not passed if the cre-
ated item is placed in the root level.parentItem, however,
is provided if the item is not a root-level item. (Note that an
onSet notification is not generated stating that the
parentItem’s attributes have been modified because it is
implied and parentItem gives access to that information.)

onDelete(/*dojo.data.api.Item*/item) Called when an item is deleted from the store where item is
what was just deleted.

Core Implementations of Data APIs | 205

ItemFileReadStore
Although it is quite likely that your particular situation may benefit from a custom
implementation of dojo.data.api.Read to maximize efficiency and impedance
mismatching, the toolkit does include the ItemFileReadStore, which implements the
Read and Identity interfaces and consumes a flexible JSON representation. For situa-
tions in which you need to quickly get something up and running, you need to do lit-
tle more than have your application’s business logic output data in the format that
the ItemFileReadStore expects, and voilà, you may use the store as needed.

One thing to know up front is that the ItemFileReadStore consumes the
entire data set that backs it into memory the first time a request is made;
thus, operations like isItemLoaded and loadItem are fairly useless.

Hierarchical JSON and JSON with references

Although the ItemFileReadStore does implement the Read API, it packs a number of
implementation-specific features of its own, including a specific data format, query
syntax, a means of deserializing specific attribute values, specific identifiers for the
identity of an item, and so on. Before getting into those specifics, however, have a
look at some example data that is compliant for the ItemFileReadStore to consume;
there are two basic flavors that relate to how nested data is represented: hierarchical
JSON and JSON with references. The hierarchical JSON flavor consists of nested ref-
erences that are concrete item instances, while the JSON with references flavor con-
sists of data that points to actual data items.

To illustrate the difference between the two, first take a look at a short example of
the two variations. First, for the hierarchical JSON:

{
 identifier : id,
 items : [
 {
 id : 1, name : "foo", children : [
 {id : 2, name : "bar"},
 {id : 3, name : "baz"}
]
 }
 /* more items... */
]
}

And now, for the JSON with references:

{
 identifier : id,
 items : [

206 | Chapter 9: Data Abstraction

 {
 id : 1, name : "foo", children : [
 {_reference: 2},
 {_reference: 3}
]
 },
 {id : 2, name : "bar"},
 {id : 3, name : "baz"}
 /* more items... */
]
k}

To recap, the foo item has two child items in both instances, but the hierarchical
JSON explicitly nests the items, while the JSON with references uses pointers keying
off of the identifier for the item. The primary advantage to JSON with references is
its flexibility; it allows items to appear as the child of more than one parent, as well
as the possibility for all items to appear as root-level items. Both possibilities are
quite common and convenient for many real-world applications.

The Tree Dijit, introduced in Chapter 15, is a great example that high-
lights the flexibility and power (as well as some of the shortcomings)
of the JSON with references data format.

ItemFileReadStore walkthrough

To get up close and personal with the ItemFileReadStore, consider the data collec-
tion represented as hierarchical JSON, shown in Example 9-1, where each item is
identified by the name identifier. Note that the identifier, label, and items keys are
the only expected values for the outermost level of the store.

Example 9-1. Sample coffee data set

{
 identifier : "name",
 label : "name",
 items : [
 {name : "Light Cinnamon", description : "Very light brown, dry , tastes like
toasted grain with distinct sour tones, baked, bready"},
 {name : "Cinnamon", description : "Light brown and dry, still toasted grain with
distinct sour acidy tones"},
 {name : "New England", description : "Moderate light brown , still sour but not
bready, the norm for cheap Eastern U.S. coffee"},
 {name : "American or Light", description : "Medium light brown, the traditional
norm for the Eastern U.S ."},
 {name : "City, or Medium", description : "Medium brown, the norm for most of the
Western US, good to taste varietal character of a bean."},
 {name : "Full City", description : "Medium dark brown may have some slight oily
drops, good for varietal character with a little bittersweet."},
 {name : "Light French", description : "Moderate dark brown with oily drops, light
surface oil, more bittersweet, caramelly flavor, acidity muted."},

Core Implementations of Data APIs | 207

Assuming the file was stored on disk as coffee.json, the page shown in Example 9-2
would load the store and make it available via the coffeeStore global JavaScript
variable.

Although the parser isn’t formally introduced until Chapter 11, using the parser is
so common that it’s worthwhile to explicitly mention that the markup variation in
Example 9-3 would have achieved the very same effect.

{name : "French", description : "Dark brown oily, shiny with oil, also popular for
espresso; burned undertones, acidity diminished"},
 {name : "Dark French", description : "Very dark brown very shiny, burned tones
become more distinct, acidity almost gone."},
 {name : "Spanish", description : "Very dark brown, nearly black and very shiny,
charcoal tones dominate, flat."}
]
}

Example 9-2. Programmatically loading an ItemFileReadStore

<html>
 <head>
 <title>Fun with ItemFileReadStore!</title>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.data.ItemFileReadStore");

 dojo.addOnLoad(function() {
 coffeeStore = new dojo.data.ItemFileReadStore({url:"coffee.json"});
 });
 </script>
 </head>
 <body>
 </body>
</html>

Example 9-3. Loading an ItemFileReadStore in markup

<html>
 <head>
 <title>Fun with ItemFileReadStore!</title>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dojo.data.ItemFileReadStore");
 </script>

Example 9-1. Sample coffee data set (continued)

208 | Chapter 9: Data Abstraction

Regardless of how you declare the store, the API works the same either way. A great
exercise is to spend a few minutes in the Firebug console with the existing store. The
remainder of this section contains a series of commands and code snippets with the
corresponding response values for most of the Read and Identity APIs that you can
follow along with and use to accelerate your learning about the ItemFileReadStore.

In addition to using the url parameter to point an ItemFileReadStore
at a data set represented as a file, you could also have passed it a vari-
able referencing a JavaScript object that’s already in memory via the
data parameter.

Fetching an item by identity. Fetching an item from the ItemFileReadStore is generally
done in one of two ways, though each way is quite similar. To fetch an item by its
identifier, you should use the Identity API’s fetchItemByIdentity function, which
accepts a collection of named arguments including the identifier, what to do when
the item is fetched, and what to do if an error occurs. For example, to query the sam-
ple coffeeStore for the Spanish coffee, you could do something like Example 9-4.

 </head>
 <body>
 <div dojoType="dojo.data.ItemFileReadStore" url="./coffee.json"
 jsId="coffeeStore"></div>
 </body>
</html>

Example 9-4. Fetching an item by its identity and then inspecting it

var spanishCoffeeItem;
coffeeStore.fetchItemByIdentity({
 identity: "Spanish",
 onItem : function(item, request) {
 //capture the item...or do something with it
 spanishCoffeeItem = item;
 },
 onError : function(item, request) {
 /* Handle the error... */
 }
});

// now do something with the spanishCoffeeItem variable...

//like get its description...
coffeeStore.getValue(spanishCoffeeItem, "description"); //Very dark brown...

//or get its name...
coffeeStore.getValue(spanishCoffeeItem, "name"); // Spanish

//in this case, the name and label are the same...
coffeeStore.getLabel(spanishCoffeeItem); // Spanish

Example 9-3. Loading an ItemFileReadStore in markup (continued)

Core Implementations of Data APIs | 209

A common mistake when you’re just starting out is to accidentally con-
fuse the identity of an item with the item itself, which can be a tricky
semantic bug to find because the code “looks right.” Finding the Spanish
coffee item via var item = coffeeStore.fetchItemByIdentity("Spanish")
reads as though it makes sense, but when you take a closer look at the
API, you realize that it’s wrong in at least two ways: the call doesn’t
return an item back to you, and you have to provide a collection of
named arguments to it—not an identity value.

Fetching an item by arbitrary criteria. If you want to fetch an item by an attribute other
than the identity, you could use the more generic fetch function instead of
fetchItemByIdentity, like so:

coffeeStore.fetch({
 query: {name : "Spanish"},
 onItem : function(item, request){console.log(item);}
});

However, in addition to accepting fully qualified values for attributes, the fetch func-
tion also accepts a small but robust collection of filter criteria that allows for basic
regex-style matching. For example, to find any coffee description with the word
“dark” in it without regard to case-sensitivity, you follow the process illustrated in
Example 9-5.

Always use the store to access item attributes via getValue. Don’t try
to access them directly because the underlying implementation of
the store may not allow it. For example, you would not want to
access an item in the onItem callback as onItem: function(item,
request) { console.log(item.name); }. A tremendous benefit from
this abstraction is that it gives way to underlying caching mecha-
nisms and other optimizations that improve the efficiency of the
store.

//if you had an item and didn't know what its identity was...
coffeeStore.getIdentity(spanishCoffeeItem); //Spanish

Example 9-5. Fetching an item by arbitrary criteria

coffeeStore.fetch({
 query: {description : "*dark*"},
 queryOptions:{ignoreCase : true},
 onItem : function(item, request) {
 console.log(coffeeStore.getValue(item, "name"));
 }
 /* include other fetch callbacks here... */
});

Example 9-4. Fetching an item by its identity and then inspecting it (continued)

210 | Chapter 9: Data Abstraction

If you’re designing your own custom implementation of a store, you may find it help-
ful to know that dojo.data.util.filter is a short mix-in that can give you the same
functionality as the regex-style matching that ItemFileReadStore uses for fetch, and
dojo.data.util.simpleFetch provides the logic for its eight arguments: onBegin,
onItem, onComplete, onError, start, count, sort, and scope.

Querying child items

The existing coffee store is quite primitive in that it is a flat list of items. Example 9-6
spices it up a bit by adding in a few additional items that contain children to pro-
duce a nested structure. The ItemFileReadStore expressly uses the children attribute
to maintain a list of child items, and we’ll use the JSON with references approach to
accommodate the task of grouping coffees into different roasts. Note that the Light
French roast has been deliberately placed into the Medium Roasts and the Dark Roasts
to illustrate the utility of using references. Because each item needs to maintain a
unique identity, it wouldn’t be possible to include it as a child of two different par-
ents any other way.

Although the remainder of this chapter uses a store that consists of
only two levels, there is no reason why you couldn’t use a data set
with any arbitrary number of levels in it.

Example 9-6. Updated sample coffee data set to reflect hierarchy

{
 identifier : "name",
 items : [
 {
 name : "Light Roasts",
 description : "A number of delicious light roasts",
 children : [
 {_reference: "Light Cinnamon"},
 {_reference: "Cinnamon"},
 {_reference: "New England"}
]
 },

 {
 name : "Medium Roasts",
 description : "A number of delicious medium roasts",
 children : [
 {_reference: "American or Light"},
 {_reference: "City, or Medium"},
 {_reference: "Full City"},
 {_reference: "Light French"}
]
 },

 {

Core Implementations of Data APIs | 211

A common task you might find yourself needing to accomplish is querying the chil-
dren of an item. In this case, that amounts to finding the individual names associ-
ated with any given roast. Let’s try it out in Example 9-7 for the Dark Roasts item to
illustrate.

To recap, we issue a straightforward query for the parent item Dark Roasts, and then
once we have the item, we use the getValues function to retrieve the multivalued
children attribute and iterate over each with dojo.forEach—all the while remember-
ing to use the getValue function to ultimately access the child item’s value.

Note that the whole notion of {_reference: someIdentifier} is simply an implemen-
tation detail. There is never a time when you’ll want to attempt to query based on
the _reference attribute because there really isn’t any such thing as a _reference
attribute—again, it’s just a standardized way of managing the bookkeeping. As far as
the dojo.data application programmer is concerned, everything in a dojo.data store
should be considered a good old item.

As you hopefully have observed by now, ItemFileReadStore is quite flexible and
powerful, which makes it a suitable data format for a variety of situations—
especially when you have to prototype an application and get something up and run-
ning quickly. As a simple specification, it’s not difficult to have a server-side routine

 name : "Dark Roasts",
 description : "A number of delicious dark roasts",
 children : [
 {_reference: "Light French"},
 {_reference: "French"},
 {_reference: "Dark French"},
 {_reference: "Spanish"}
]
 },

 {name : "Light Cinnamon", description : "Very light brown, dry , tastes like
toasted grain with distinct sour tones, baked, bready"},
 ...
]
}

Example 9-7. Fetching an item and iterating over its children

coffeeStore.fetch({
 query: {name : "Dark Roasts"},
 onItem : function(item, request) {
 dojo.forEach(coffeeStore.getValues(item, "children"), function(childItem) {
 console.log(coffeeStore.getValue(childItem, "name"));
 });
 }
});

Example 9-6. Updated sample coffee data set to reflect hierarchy (continued)

212 | Chapter 9: Data Abstraction

spit out data that a web client using dojo.data can digest. At the same time, how-
ever, remember that you can always subclass and extend as you see fit—or imple-
ment your own.

ItemFileWriteStore

There’s no doubt that good abstraction eliminates a lot of cruft when it comes time
to serve up data from the server and display it; however, it is quite often the case that
you won’t have the luxury of not writing data back to the server if it changes—and
that’s where the ItemFileWriteStore comes in. Just as the ItemFileReadStore pro-
vided a nice abstraction for reading a data store, ItemFileWriteStore provides the
same kind of abstraction for managing write operations such as creating new items,
deleting items, and modifying items. In terms of the dojo.data APIs, the
ItemFileWriteStore implements them all—Read, Identity, Write, and Notification.

To get familiar with the ItemFileWriteStore, we’ll work through the specifics in
much the same way that we did for the ItemFileReadStore using the same coffee.json
JSON data. As you’ll see, there aren’t any real surprises; the API pretty much speaks
for itself.

Modifying an existing item. You’ll frequently use the setValue function, shown in
Example 9-8, to change the value of item’s attribute by passing in the item, the
attribute you’d like to modify, and the new value for the attribute. If the item doesn’t
have the named attribute, it will automatically be added.

Just like in most other data schemes, it doesn’t usually make sense to
change an item’s identity, as the notion of identity is an immutable
characteristic; following suit, the ItemFileWriteStore does not sup-
port this operation, nor is it recommended in any custom implementa-
tion of your own.

Example 9-8. Setting an item’s attribute

//Fetch an item like usual...
var spanishCoffeeItem;
coffeeStore.fetchItemByIdentity({
 identity: "Spanish",
 onItem : function(item, request) {
 spanishCoffeeItem = item;
 }
});

//And then add a new attribute foo=bar
coffeeStore.setValue(spanishCoffeeItem, "foo", "bar");

coffeeStore.getValue(spanishCoffeeItem, "foo"); //bar

//Likewise, you could have changed any other attribute except for the identity
coffeeStore.setValue(spanishCoffeeItem, "description", "El Matador...?!?");

Core Implementations of Data APIs | 213

One peculiarity to note is that setting an attribute to be an empty string is not the
same thing as removing the attribute altogether; this is especially important to inter-
nalize if you find yourself needing to use the Write API’s hasAttribute function to
check for the existence of an attribute. Example 9-9 illustrates the differences.

While the previous examples in this section have demonstrated how to successfully
modify an existing item, the changes so far have been incomplete in that an explicit
save operation has not occurred. Internally, the ItemFileReadStore keeps track of
changes and maintains a collection of dirty items—items that have been modified,
but not yet saved. For example, after having modified the spanishCoffeeItem, you
could use the isDirty function to learn that it has been modified but not saved, as
shown in Example 9-10. After the item is saved, however, it is no longer dirty. For
now, saving means nothing more than updating the in memory copy; we’ll talk
about saving back to the server in just a bit.

Although it might not be immediately obvious, an advantage of requiring an explicit
save operation to commit the changes lends the ability to revert the changes in case a
later operation that is part of the same macro-level transaction produces an error or
any other deal-breaking circumstance occurs. In relational databases, this is often
referred to as a rollback. Example 9-11 illustrates reverting a dojo.data store and
highlights a very subtle yet quite important point related to local variables that con-
tain item references.

Example 9-9. Setting and unsetting attributes on items

coffeeStore.hasAttribute(spanishCoffeeItem, "foo"); //true

coffeeStore.setValue(spanishCoffeeItem, "foo", ""); //foo=""

coffeeStore.hasAttribute(spanishCoffeeItem, "foo"); //true

coffeeStore.unsetAttribute(spanishCoffeeItem, "foo"); //remove it

coffeeStore.hasAttribute(spanishCoffeeItem, "foo"); //false

Example 9-10. Inspecting an item for dirty status

/* Having first modified the spanishCoffeeItem... */
coffeeStore.isDirty(spanishCoffeeItem); //true
coffeeStore.save(); //update in-memory copy of the store
coffeeStore.isDirty(spanishCoffeeItem); //false

Example 9-11. Reverting changes to an ItemFileWriteStore

var spanishCoffeeItem;
coffeeStore.fetchItemByIdentity({
 identity: "Spanish",
 onItem : function(item, request) {
 spanishCoffeeItem = item;
 }
});

214 | Chapter 9: Data Abstraction

Although it’s theoretically possible to implement a custom store that
prevents local item references from becoming stale via slick engineer-
ing behind the scenes with dojo.connect or pub/sub communication,
the ItemFileWriteStore does not go to such lengths, and you should
use the isItem function liberally if you are concerned about whether
an item reference has become stale.

Creating and deleting items. Once you have a good grasp on the previous section that
worked through the various nuances of modifying existing items, you’ll have no
problem picking up how to add and delete items from a store. All of the same princi-
ples apply with respect to saving and reverting—there’s really not much to it. First,
as shown in Example 9-12, let’s add and delete a top-level item from our existing
store. Adding an item involves providing a JSON object just like the server would
have included in the original data set.

coffeeStore.getValue(spanishCoffeeItem, "description"); //Very dark...

coffeeStore.setValue(spanishCoffeeItem, "description", "El Matador...?!?");

/* Right now, both the spanishCoffeeItemVariable and the store reflect the udpated
description */

coffeeStore.fetchItemByIdentity({
 identity: "Spanish",
 onItem : function(item, request) {
 spanishCoffeeItem = item;
 }
});

coffeeStore.getValue(spanishCoffeeItem, "description"); //El Matador...?!?

coffeeStore.isDirty(spanishCoffeeItem); //true

coffeeStore.revert(); //revert the store.

// Upon revert(), the local spanishCoffeeItem variable
// ceased to be an item in the store
coffeeStore.isItem(spanishCoffeeItem); //false

//Fetch out the item again...
coffeeStore.fetchItemByIdentity({
 identity: "Spanish",
 onItem : function(item, request) {
 spanishCoffeeItem = item;
 }
});

coffeeStore.isDirty(spanishCoffeeItem); //false

coffeeStore.getValue(spanishCoffeeItem, "description"); //Very dark...

Example 9-11. Reverting changes to an ItemFileWriteStore (continued)

Core Implementations of Data APIs | 215

While adding and removing top-level items from a store is trivial, there is just a little
bit more effort involved in adding a top-level item that also needs to a be a child item
that is referenced elsewhere. Example 9-13 illustrates how it’s done. The basic recipe
is that you create it as a top-level item, get the children that you want it to join, and
then add it to that same collection of children.

Example 9-12. Adding and deleting an item from an ItemFileWriteStore

var newItem = coffeeStore.newItem({
 name : "Really Dark",
 description : "Left brewing in the pot all day...extra octane to get you through till
5 o'clock."
});

coffeeStore.isItem(newItem); //true
coffeeStore.isDirty(newItem); //true

/* Query the item, save the store, revert the store, etc. */

//Or delete the item...
coffeeStore.deleteItem(newItem);
coffeeStore.isItem(newItem); //false

Example 9-13. Adding a child item to a JSON with references store

//Create a new item
var newItem = coffeeStore.newItem({
 name : "Really Dark",
 description : "Left brewing in the pot all day...extra octane to get you thorugh till
5 o'clock."
});

//Get a reference to the parent with the children
var darkRoasts;
coffeeStore.fetchItemByIdentity({
 identity : "Dark Roasts",
 onItem : function(item, request) {
 darkRoasts = item;
 }
});

//Use getValues to grab the children
var darkRoastChildren = coffeeStore.getValues(darkRoasts, "children");

//And add it to the children using setValues
coffeeStore.setValues(darkRoasts, "children", darkRoastChildren.concat(newItem);

//You could now iterate over those children to see for yourself...
dojo.forEach(darkRoastChildren, function(x) {
 console.log(coffeeStore.getValue(x, "name"));
});

216 | Chapter 9: Data Abstraction

Remember to use getValues, not getValue, when fetching multivalued
attributes.

Deleting items works in much the way you would expect. Deleting a top-level item
removes it from the store but leaves its children, if any, in place, as shown in
Example 9-14.

Clearly, you could eliminate a top-level item and all of its children by first querying
for the children, deleting them, and then deleting the top-level item itself.

Custom saves. You’ve probably been thinking for a while that saving in memory is
great and all—but what about getting data back on the server? As it turns out, the
ItemFileWrite store provides a _saveCustom extension point that you can implement
to trigger a custom routine that fires anytime you call save; thus, in addition to
updating the local copy in memory and clearing any dirty flags, you can also sync up
to the server—or otherwise do anything else that you’d like. You have the very same
API available to you that you’ve been using all along, but in general, a “full save”
would probably consist of iterating over the entire data set, serializing into a custom
format—quite likely with the help of dojo.toJson—and shooting it off. Just as the
Write API states, you provide keyword arguments consisting of optional callbacks,
onComplete and onError, which are fired when success or an error occurs. An
optional scope argument can be provided that supplies the execution context for
either of those callbacks. Those keyword arguments, however, are passed into the
save function—not to your _saveCustom extension.

Example 9-14. Deleting a top-level item from an ItemFileWriteStore

var darkRoasts;
coffeeStore.fetchItemByIdentity({
 identity : "Dark Roasts",
 onItem : function(item, request) {
 darkRoasts = item;
 }
});

coffeeStore.deleteItem(darkRoasts);

coffeeStore.fetch({
 query : {name : "*"},
 onItem : function(item, request) {
 console.log(coffeeStore.getValue(item, "name"));
 }
});

/* Save the store, or revert the store, or... */

Core Implementations of Data APIs | 217

Example 9-15 shows how to implement a _saveCustom handler to pass data back to
the server when save() is called. As you’ll see, it’s pretty predictable.

As it turns out, _saveCustom is used less frequently than you might think because it
involves passing all of your data back to the server, which is not usually necessary
unless you start from a blank slate and need to do that initial batch update. For many
use cases—especially ones involving very large data sets—you’ll want to use the
interface provided by the Notification API that is introduced in the next section to
take care of changes when they happen in small bite-size chunks.

Responding to notifications. To round out this section—and the rest of the chapter—
we’ll briefly review the Notification API that ItemFileWriteStore implements
because it is incredibly useful for situations in which you need to respond to specific
notifications relating to the creation of a new item, the deletion of an item, or the
modification of an item via onNew, onDelete, or onSet, respectively.

As you’re probably an expert reading and mapping the APIs back to specific store
implementations by now, an example that adds, modifies, and deletes an item from a
store is probably self-explanatory. But just in case, Example 9-16 is an adaptation of
Example 9-13.

Example 9-15. Wiring up a custom save handler for an ItemFileWriteStore

<html>
 <head>
 <title>Fun with ItemFileWriteStore!</title>
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.data.ItemFileReadStore");

 dojo.addOnLoad(function() {
coffeeStore = new dojo.data.ItemFileReadStore({url:"coffee.json"});

 coffeeStore._saveCustom = function() {
 /* Use whatever logic you need to save data back to the server.
 This extension point gets called anytime you call an ordinary
 save(). */
 }
 });
 </script>
 </head>
 <body>
 </body>
</html>

218 | Chapter 9: Data Abstraction

The output you see when you run the example should be something like the following:

Just added Really Dark, which had parent null
Just modified the children attribute for Dark Roasts
Just modified the children attribute for Dark Roasts
Just deleted Object _0=13 name=[1] _RI=true description=[1]

Example 9-16. Using the Notification API to hook events to ItemFileWriteStore

/* Begin notification handlers */
coffeeStore.onNew = function(item, parentItem) {
 var itemName = coffeeStore.getValue(item, "name");
 console.log("Just added", itemName, "which had parent", parentItem);
}

coffeeStore.onSet = function(item, attr, oldValue, newValue) {
 var itemName = coffeeStore.getValue(item, "name");
 console.log("Just modified the ", attr, "attribute for", itemName);

 /* Since children is a multi-valued attribute, oldValue and newValue are Arrays that
 you can iterate over and inspect though often times, you'll only send newValue to the
 server to log the update */
}

coffeeStore.onDelete = function(item) {
 // coffeeStore.isItem(item) returns false, so don't try to access the item
 console.log("Just deleted", item);
}
/* End notification handlers */

/* Code that uses the notification handlers */

//Add a top level item – triggers a notification
var newItem = coffeeStore.newItem({
 name : "Really Dark",
 description : "Left brewing in the pot all day...extra octane to get you thorugh till
5 o'clock."
});

var darkRoasts;
coffeeStore.fetchItemByIdentity({
 identity : "Dark Roasts",
 onItem : function(item, request) {
 darkRoasts = item;
 }
});

var darkRoastChildren = coffeeStore.getValues(darkRoasts, "children");

//Modify it – triggers a notification
coffeeStore.setValues(darkRoasts, "children",darkRoastChildren.concat(newItem));

//And now delete it – triggers two notifications
coffeeStore.deleteItem(newItem)

Core Implementations of Data APIs | 219

In other words, you get the expected notification when you create the top-level item,
a notification for modifying another item’s children attribute when you assign the
new item as a child, another notification when you remove the child item, and a final
notification when you delete the item.

One subtlety to note about Example 9-16 is that the item reference
you receive in the onDelete notification has already been removed
from the store, so its utility is likely to be somewhat limited since you
cannot legally use it in routine store operations.

Serializing and Deserializing Custom Data Types
Although not mentioned until now, you should be aware of one additional feature
provided by ItemFileReadStore and ItemFileWriteStore: the ability to pack and
unpack custom data types. The motivation for using a type map is that it may often
be the case that you need to deal with attributes that aren’t primitives, object liter-
als, or arrays. In these circumstances, you’re left with manually building up the
attributes yourself—introducing cruft in your core logic—or streamlining the situa-
tion by tucking away the serialization logic elsewhere.

Implicit type-mapping

Implicit type-mapping for an ItemFileReadStore happens automatically if two special
attributes, _type and _value, exist in the data; _type identifies a specific constructor
function that should be invoked, which gets passed the _value. JavaScript Date
objects are an incredibly common data type that can benefit from being type-
mapped; a sample item from our existing data set that has been modified to make
use of a date value might look like Example 9-17.

It almost looks too easy, but assuming that the Date constructor function is defined,
that’s it! Once the data is deserialized, any values for lastBrewed are honest to good-
ness Date objects—not just String representations:

Example 9-17. Using a custom type map to deserialize a value

...
{
 name : "Light Cinnamon",
 description : "Very light brown, dry , tastes like toasted grain with distinct sour
tones, baked, bready"
 lastBrewed : {
 '_type' : "Date",
 '_value':"2008-06-15T00:00:00Z"}
 }
}
...

220 | Chapter 9: Data Abstraction

var coffeeItem;
coffeeStore.fetchItemByIdentity({
 identity : "Light Cinnamon",
 onItem : function(item, request) {
 coffeeItem = item;
 }
});
coffeeStore.getValue(coffeeItem, "lastBrewed"); //A real Date object

Custom type maps

Alternatively, you can define a JavaScript object and provide a named deserialize
function and a type parameter that could be used to construct the value. For
ItemFileWriteStore, a serialize function is also available. Following along with the
example of managing Date objects, a JavaScript object presenting a valid type map
that could be passed in upon construction of the ItemFileWriteStore follows in
Example 9-18.

Although we intentionally did not delve into dojox.data subprojects in
this chapter, it would have been cheating not to at least provide a good
reference for using the dojox.data.QueryReadStore, which is the
canonical means of interfacing to very large server-side data sources.
See http://www.oreillynet.com/onlamp/blog/2008/04/dojo_goodness_part_
6_a_million.html for a concise example of using this store along with a
custom server routine. This particular example illustrates how to effi-
ciently serve up one million records in the famed DojoX Grid widget.

Example 9-18. Passing in a custom type map to an ItemFileReadStore

dojo.require('dojo.date');
dojo.addOnLoad(function() {
 var map = {
 "Date": {
 type: Date,
 deserialize: function(value){
 return dojo.date.stamp.fromISOString(value);
 },
 serialize: function(object){
 return dojo.date.stamp.toISOString(object);
 }
 }
 };

 coffeeStore = new dojo.data.ItemFileReadStore({
 url:"coffee.json",
 typeMap : map
 });
});

url:"coffee.json
http://www.oreillynet.com/onlamp/blog/2008/04/dojo_goodness_part_6_a_million.html
http://www.oreillynet.com/onlamp/blog/2008/04/dojo_goodness_part_6_a_million.html

Summary | 221

Summary
After reading this section, you should:

• Be familiar with the dojo.data APIs and understand the basic value provided by
each of them

• Understand that the Read, Identity, Write, and Notification APIs are abstract,
and that any implementation is possible

• Be aware that the dojox.data subproject provides several really useful custom
stores that can save you time accomplishing common tasks such as interfacing to
a store of comma-separated values, Flickr, and so on

• Be aware that the toolkit provides ItemFileReadStore and ItemFileWriteStore as
generic yet powerful dojo.data implementations that you may customize or other-
wise use as a basis for a custom implementation

• Understand the value in using custom type maps to save time manually serializing
and deserializing data types

Next, we’ll move on to simulated classes and inheritance.

222 | Chapter 10: Simulated Classes and Inheritance

Chapter 10CHAPTER 10

Simulated Classes and Inheritance 10

Even though JavaScript loosely approximates classes with Function objects and
offers a prototype-based inheritance mechanism that’s a little different from what
you may be used to if your background is a language like Java or C++, Dojo does a
fine job of building upon native JavaScript constructs to simulate classes and class-
based inheritance. This chapter dives into dojo.declare, the toolkit’s vehicle for wiring
up classes and inheritance and, in doing so, paves the way for a solid understanding of
the Dijit infrastructure, which is coming up in Part II.

JavaScript Is Not Java
Before we get into the core discussion of simulating inheritance hierarchies and
classes with Dojo, you must first grok that JavaScript is not Java, nor does Dojo try
to fight against JavaScript’s style and reimplement portions of the JavaScript lan-
guage under the hood and force a square peg in a round hole—and this is a very
good thing! JavaScript is an incredibly dynamic, weakly typed language, while Java is
a more strongly typed language with real classes and class-based inheritance hierar-
chies that are defined at compile time. JavaScript has prototypal inheritance that can
be used to simulate classes and is purely interpreted.

By embracing JavaScript for what it is and leveraging its language features in the
most complementary way possible, Dojo benefits from enhancements to the lan-
guage as it evolves, avoids the maintenance that comes hand-in-hand with massive
layers of boilerplate. In the end, this provides you with a streamlined, agile imple-
mentation that can keep up with the “release early, release often” philosophy of the
modern technological era.

With the notable exception of the form dijits that are introduced in Chapter 13, you
won’t see a lot of object-oriented design in Dojo because it’s not the Dojo way. The
Dojo way is to embrace prototypal inheritance and Base constructs like mixin and
extend that take advantage of JavaScript’s strengths. At the same time, Dojo does try
to be pragmatic, and some topics do lend themselves to object-oriented design and

One Problem, Many Solutions | 223

are quite awkward to model without it. Actually, the very reason that this chapter is
presented as the last of Part I is because Part II introduces Dijit, which is a topic that
lends itself quite well to a class-based design.

As you read this chapter, keep this preamble in the back of your mind, because if you
come from a strong background in a class-based object-oriented programming lan-
guage like Java or C++, the temptation will be to superimpose that paradigm onto
Dojo and to try to turn everything into an inheritance relationship, which isn’t a very
natural thing to do for reasons of style or performance. While this chapter does dem-
onstrate the ability to use Dojo for the purpose of simulating deep hierarchies of
objects, the assumption is that you’ll use discretion when doing so.

One Problem, Many Solutions
In case you’re locked into the inheritance paradigm, this section demonstrates multi-
ple approaches to achieving similar results for a simple problem: modeling a circle
object. In addition to being a good exercise in demonstrating some out-of-the-box
thinking, this section also applies some of the language tools you learned about in
Chapter 2.

Typical JavaScript Inheritance
JavaScript programmers have been simulating classes with Function objects for quite
a while—sometimes at the expense of abusing the language, other times effectively to
solve a particular problem. The inherent nature of a JavaScript Function object is the
very mechanism that provides the footing for simulating classes. Namely, it acts as a
constructor function that is used in conjunction with the new operator to create object
instances, and it provides the template for those object instances that are created.

Don’t Fight the Style!
JavaScript is a dynamically typed interpreted language with many misunderstood fea-
tures that can take a little getting used to, especially if you’re coming from a statically
typed, compiled language like C++ or Java. If you find yourself having an awfully hard
time solving a problem or fighting too hard to fix a bug, take a moment to back up,
make sure you understand the subtleties of what you’re trying to accomplish, and ask
yourself how you can better leverage built-in features of the language.

If you bend the style enough by translating an algorithm from a language like Java line
by line into JavaScript, you may eventually get what you want—but it’ll cost you time,
code maintainability, efficiency, and a lot of sanity. So, don’t fight the style; seek first
to understand it, and then use it to your advantage.

224 | Chapter 10: Simulated Classes and Inheritance

To illustrate, Example 10-1 provides a short code snippet that approximates a sim-
ple Shape class in JavaScript. Note that by convention, classes usually begin with a
capital letter.

For just an added touch of simplicity, the examples in this chapter do
not use namespaces for qualifying objects. In general, however, you
will want to use namespaces, and we’ll pick back up using namespaces
in Chapter 12.

Once the JavaScript interpreter executes the function definition, a Shape object exists
in memory and acts as the prototypal object for creating object instances whenever
its constructor function is invoked with the new operator.

For completeness, note that you could have defined the Shape object using Base’s
extend function in a slightly more compact fashion:

// Create a Function object
function Shape() {}

// Extend its prototype with some reasonable defaults
dojo.extend(Shape, {
 centerX : 0,
 centerY : 0,
 color : ""
});

Unfortunately, you could only have fun with this class for about three seconds
because you’d start to get really bored and want to model something a little more
concrete—like a specific kind of shape. While you could approximate a new class
such as a circle entirely from scratch, a more maintainable approach would be to
have a circle class inherit from the shape class that’s already defined because all cir-
cles are shapes. Besides, you already have a perfectly good Shape class lying around,
so why not use it?

Example 10-2 demonstrates one approach to accomplishing this inheritance relation-
ship in JavaScript.

Example 10-1. A typical JavaScript class

// Define a class
function Shape(centerX, centerY, color)
{
 this.centerX = centerX;
 this.centerY = centerY;
 this.color = color;
};

// Create an instance
s = new Shape(10, 20, "blue");

One Problem, Many Solutions | 225

While you may have found that to be an interesting exercise, it probably wasn’t as
short and sweet as you might have first thought, and it probably wasn’t terribly cen-
tral to that really cool web application you’ve been trying to finish up.

Mixin Pattern
For the sake of demonstrating an alternate paradigm to the typical inheritance
groupthink, consider Example 10-3’s approach of using mixins to model shapes and
circles in a different way. It’s especially noteworthy to make the connection that mix-
ins heavily leverage duck typing and has-a relationships. Recall that the concept of
ducktyping is based upon the idea that if something quacks like a duck and acts like
a duck, then it may as well be a duck. In our circumstance, the concept translates to
the idea that if an object has the properties you’d expect of a shape or circle, that’s
good enough to call it as much. In other words, it doesn’t matter what the object
really is as long as it has the right properties.

Example 10-2. Typical JavaScript inheritance

// Define a subclass
function Circle(centerX, centerY, color, radius)
{
 // Ensure the subclass properties are added to the superclass by first
 //assigning the subclass a reference to the constructor function and then
 //invoking the constructor function inside of the superclass.
 this.base = Shape;
 this.base(centerX, centerY, color);

 // Assign the remaining custom property to the subclass
 this.radius = radius;
};

// Explicitly chain the subclass's prototype to a superclass so that any new properties
//that are dynamically added to the superclass are reflected in subclasses
Circle.prototype = new Shape;

// Create an instance
c = new Circle(10, 20, "blue", 2);

//The circle IS-A shape

Example 10-3. Mixing in as an alternative to inheritance

//Create a plain old Object to model a shape
var shape = {}

//Mix in whatever you need to make it "look like a shape and quack like a shape"
dojo.mixin(shape, {
 centerX : 10,
 centerY : 20,
 color : "blue"
});

226 | Chapter 10: Simulated Classes and Inheritance

For the record, this mixin example is not intended to be an exact drop-in replace-
ment for the previous example that used prototypal inheritance; rather, this mixin
example is intended to demonstrate that there are various ways of approaching a
problem.

Delegation Pattern
As yet another approach to modeling a relationship between a shape and a circle,
consider the pattern of delegation, shown in Example 10-4. Whereas the mixin pat-
tern actually copies properties into a single object instance, the delegation pattern
passes on responsibility for some set of properties to another object that already has
them.

The key takeaways from this revision are that the radius property defined in the
object literal is mixed into the circle, but the remaining shape properties are not.
Instead, the circle delegates to the shape whenever it is asked for a property that it
does not have itself. To sum it all up:

• Requests for radius are provided directly by circle because radius got mixed in.

• Requests for centerX, centerY, and color are delegated to the shape because they
don’t exist on the circle itself (loosely speaking).

• A request for any other property returns undefined by definition because it
doesn’t exist in either the circle or the shape.

//later on you need something else. No problem, mix it right in
dojo.mixin(shape, {
 radius : 2
});

//Now the shape HAS-A radius

Example 10-4. Delegation as an alternative to inheritance

//Create a plain old Object
var shape = {}

//Mix in what you need for this instance
dojo.mixin(shape, {
 centerX : 10,
 centerY : 20,
 color : "blue"
});

//delegate circle's responsibility for centerX, centerY, and color to shape
//mix in the radius directly
circle = dojo.delegate(shape, {
 radius : 2
});

Example 10-3. Mixing in as an alternative to inheritance (continued)

Simulating Classes with Dojo | 227

Although the working example is so simple that the mixin pattern makes more sense
to use, the delegation pattern certainly has plenty of uses, especially in situations in
which you have large number of objects that all share a particular subset of things
that are in common.

Simulating Classes with Dojo
Now that you’ve had a moment to ponder some of the various inheritance possibili-
ties, it’s time to introduce the toolkit’s fundamental construct for declaring classes
and simulating rich inheritance hierarchies. Dojo keeps it simple by tucking away all
of the implementation details involved with class declarations and inheritance
behind an elegant little function in Base called dojo.declare. This function is easy to
remember because you’re loosely declaring a class with it. Table 10-1 shows the brief
API.

As you might suspect, declare builds upon the patterns provided by
functions like extend, mixin, and delegate to provide an even richer
abstraction than any one of those patterns could offer individually.

Example 10-5 illustrates how you could use dojo.declare to accomplish an inherit-
ance hierarchy between a shape and circle. For now, consider this example as just an
isolated bit of motivation. We’ll discuss the finer points momentarily.

Table 10-1. dojo.declare API

Name Comment

dojo.declare (/*String*/ className,
/*Function|Function[]*/ superclass,
/*Object*/ props)

Provides a compact way of declaring a constructor function.
The className provides the name of the constructor func-
tion that is created, superclass is either a single Function
object ancestor or an Array of Function object ancestors
that are mixed in, and props provides an object whose
properties are copied into the constructor function’s prototype.

Example 10-5. Simulating class-based inheritance with dojo.declare

// "Declare" a Shape
dojo.declare(
 "Shape", //The class name
 null, //No ancestors, so null placeholds
 {
 centerX : 0, // Attributes
 centerY : 0,
 color : "",

 // The constructor function that gets called via "new Shape"
 constructor(centerX, centerY, color)
 {

228 | Chapter 10: Simulated Classes and Inheritance

Hopefully you find dojo.declare to be readable, maintainable, and self-explanatory.
Depending on how you lay out the whitespace and linebreaks, it even resembles
“familiar” class-based programming languages. The only thing that may have caught
you off guard is that Shape’s constructor is called with the same parameters that are
passed into Circle’s constructor. Still, this poses no problem because Shape’s
constructor accepts only three named parameters, silently ignoring any additional
ones. (We’ll come back to this in a moment.)

Talking about JavaScript constructor functions that are used with the
new operator to create JavaScript objects as well as the special
constructor function that appears in dojo.declare’s third parameter
can be confusing. To keep these two concepts straight, the parameter
that appears in dojo.declare’s third parameter constructor will always
be typeset with the code font as constructor, while JavaScript con-
structor functions will appear in the normal font.

 this.centerX = centerX;
 this.centerY = centerY;
 this.color = color;
 }
 }
);

// At this point, you could create an object instance through:
// var s = new Shape(10, 20, "blue");

// "Declare" a Circle
dojo.declare(
 "Circle", //The class name
 Shape, // The ancestor
 {
 radius : 0,

 // The constructor function that gets called via "new Circle"
 constructor(centerX, centerY, color, radius)
 {
 // Shape's constructor is called automatically
 // with these same params. Note that it simply ignores
 // the radius param since it only used the first 3 named args
 this.radius = radius; //assign the Circle-specific argument
 }
 }
);

// Params to the JavaScript constructor function get passed through
// to dojo.declare's constructor
c = new Circle(10,20,"blue",2);

Example 10-5. Simulating class-based inheritance with dojo.declare (continued)

Simulating Classes with Dojo | 229

The Basic Class Creation Pattern
The dojo.declare function provides a basic pattern for handling classes that is
important to understand because Dijit expands upon it to deliver a flexible creation
pattern that effectively automates the various tasks entailed in creating a widget.
Chapter 12 focuses on this topic almost exclusively.

Although this chapter focuses on the constructor function because it is by far the
most commonly used method, the following pattern shows that there are two other
functions that dojo.declare provides: preamble, which is kicked off before
constructor, and postscript, which is kicked off after it:

preamble(/*Object*/ params, /*DOMNode*/node)
 //precursor to constructor

constructor(/*Object*/ params, /*DOMNode*/node)
 // fire any superclass constructors
 // fire off any mixin constrctors
 // fire off the local class constructor, if provided

postscript(/*Object*/ params, /*DOMNode*/node)
 // predominant use is to kick off the creation of a widget

To verify for yourself, you might run the code in Example 10-6.

JavaScript Function Parameters
Many programming languages do not allow you to pass in a variable number of param-
eters without an explicit indication that you are doing so. For example, in C++, you
might use the ... notation to indicate that number of parameters will vary.

JavaScript functions, however, happily accept any number of parameters you want to
pass to them. If they receive more parameters than were named, they ignore the excess,
and if they receive fewer parameters than expected, those unexpected parameters are
assigned the JavaScript type undefined.

Of course, you always have full access to every parameter passed into a function through
the special arguments variable that’s available. Be advised, however, that although you
can access the elements out of it like an array, it’s not a bona fide JavaScript Array. For
example, it has no push or pop methods.

In most situations involving inheritance, however, you won’t want to use arguments
because you need to rely on subsets of the named parameters in each Dojo class’s
constructor function, as demonstrated previously in Example 10-5.

230 | Chapter 10: Simulated Classes and Inheritance

The constructor is where most of the action happens for most class-based models,
but preamble and postscript have their uses as well. preamble is primarily used to
manipulate arguments for superclasses. While the arguments that you pass into the
JavaScript constructor function—new Foo(100) in this case—get passed into Foo’s
preamble, constructor, and postscript, this need not necessarily be the case when
you have an inheritance hierarchy. We’ll revisit this topic again in the “Advanced
Argument Mangling” sidebar later in this chapter, after inheritance gets formally
introduced in the next section. postscript is primarily used to kick off the creation of
a widget. Chapter 12 is devoted almost entirely to the widget lifecycle.

A Single Inheritance Example
Let’s dig a bit deeper with more in-depth examples that show some of dojo.declare’s
power. This first example is heavily commented and kicks things off with a slightly more
advanced inheritance example highlighting an important nuance of using dojo.declare’s
internal constructor method:

<html>
 <head>
 <title>Fun with Inheritance!</title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.addOnLoad(function()

Example 10-6. Basic dojo.declare creation pattern

dojo.addOnLoad(function() {
 dojo.declare("Foo", null, {

 preamble: function() {
 console.log("preamble", arguments);
 },

 constructor : function() {
 console.log("constructor", arguments);
 },

 postscript : function() {
 console.log("postscript", arguments);
 }

});

 var foo = new Foo(100); //calls through to preamble, constructor, and postscript
});

Simulating Classes with Dojo | 231

 //Plain old JavaScript Function object defined here.
 function Point(x,y) {}
 dojo.extend(Point, {
 x : 0,
 y : 0,
 toString : function() {return "x=",this.x," y=",this.y;}
 });

 dojo.declare(
 "Shape",
 null,
 {
 //Clearly define members first thing, but initialize them all in
 //the Dojo constructor. Never initialize a Function object here
 //in this associative array unless you want it to be shared by
 //*all* instances of the class, which is generally not the case.

 //A common convention is to use a leading underscore to denote
 "private" members

 _color: "",
 _owners: null,

 //Dojo provides a specific constructor for classes. This is it.
 //Note that this constructor will be executed with the very same
 //arguments that are passed into Circle's constructor
 //function -- even though we make no direct call to this
 //superclass constructor.

 constructor: function(color)
 {
 this._color = color;
 this._owners = [0]; //See comment below about initializing
 //objects

 console.log("Created a shape with color",
 this._color, "owned by", this._owners);
 this._owners);
 },

 getColor : function() {return this._color;},
 addOwner : function(oid) {this._owners.push(oid);},
 getOwners : function() {return this._owners;}

 //Don't leave trailing commas after the last element. Not all
 //browsers are forgiving (or provide meaningful error messages).
 //Tattoo this comment on the back of your hand.
 }

);

 //Important Convention:
 //For single inheritance chains, list the superclass's args first in the
 //subclass's constructor, followed by any subclass specific arguments.

232 | Chapter 10: Simulated Classes and Inheritance

 //The subclass's constructor gets called with the full argument chain, so
 //it gets set up properly there, and assuming you purposefully do not
 //manipulate the superclass's arguments in the subclass's constructor,
 //everything works fine.

 //Remember that the first argument to dojo.declare is a string and the
 //second is a Function object.
 dojo.declare(
 "Circle",
 Shape,
 {
 _radius: 0,
 _area: 0,
 _point: null,

 constructor : function(color,x,y,radius)
 {
 this._radius = radius;
 this._point = new Point(x,y);
 this._area = Math.PI*radius*radius;

 //Note that the inherited member _color is already defined
 //and ready to use here!
 console.log("Circle's inherited color is " + this._color);
 },

 getArea: function() {return this._area;},
 getCenter : function() {return this._point;}
 }
);

 console.log(Circle.prototype);

 console.log("Circle 1, coming up...");
 c1 = new Circle("red", 1,1,100);
 console.log(c1.getCenter());
 console.log(c1.getArea());
 console.log(c1.getOwners());
 c1.addOwner(23);
 console.log(c1.getOwners());

 console.log("Circle 2, coming up...");
 c2 = new Circle("yellow", 10,10,20);
 console.log(c2.getCenter());
 console.log(c2.getArea());
 console.log(c2.getOwners());
 });
 </script>
 </head>
 <body>
 </body>
</html>

Simulating Classes with Dojo | 233

Trailing commas will most likely hose you outside of Firefox, so take
extra-special care not to accidentally leave them hanging around.
Some programming languages like Python allow trailing commas; if
you frequently program in one of those languages, take added caution.

You should notice the output shown in Figure 10-1 in the Firebug console when you
run this example.

An important takeaway is that a Function object exists in memory as soon as the
dojo.declare statement has finished executing, an honest-to-goodness Function
object exists behind the scenes, and its prototype contains everything that was speci-
fied in the third parameter of the dojo.declare function. This object serves as the
prototypical object for all objects created in the future. This subtlety can be tricky
business if you’re not fully cognizant of it, and that’s the topic of the next section.

A common gotcha with prototype-based inheritance

As you know, a Point has absolutely nothing to do with Dojo. It’s a plain old Java-
Script Function object. As such, however, you must not initialize it inline with other
properties inside of Shape’s associative array. If you do initialize it inline, it will
behave somewhat like a static member that is shared amongst all future Shape objects
that are created—and this can lead to truly bizarre behavior if you’re not looking out
for it.

Figure 10-1. Firebug output from Example 10-6

234 | Chapter 10: Simulated Classes and Inheritance

The issue arises because behind the scenes declare mixes all of the properties into
the Object’s prototype and prototype properties are shared amongst all instances. For
immutable types like numbers or strings, changing the property results in a local
change. For mutable types like Object and Array, however, changing the property in
one location promulgates it. The issue can be reduced as illustrated in the snippet of
code in Example 10-7.

To guard against ever even thinking about making the mistake of inadvertently
initializing a nonprimitive data type inline, perform all of your initialization—even
initialization for primitive types—inside of the standard Dojo constructor, and
maintain a consistent style. To keep your class as readable as possible, it’s still a great
idea to list all of the class properties inline and provide additional comments where it
enhances understanding.

To illustrate the potentially disastrous effect on the working example, make the fol-
lowing changes indicated in bold to your Shape class and take a look at the console
output in Firebug:

//...snip...

dojo.declare("Shape", null,

 {
 _color: null,
 //_owners: null,
 _owners: [0], //this change makes the _owners member
 //behave much like a static!

 constructor : function(color) {
 this._color = color;
 //this._owners = [0];

Example 10-7. Prototype properties are shared amongst all instances

function Foo() {}
Foo.prototype.bar = [100];

//create two Foo instances
foo1 = new Foo;
foo2 = new Foo;

console.log(foo1.bar); // [100]
console.log(foo2.bar); // [100]

// This statement modifies the prototype, which is shared by all object instances...
foo1.bar.push(200);

//...so both instances reflect the change.
console.log(foo1.bar); // [100,200]
console.log(foo2.bar); // [100,200]

Simulating Classes with Dojo | 235

 console.log("Created a shape with color ",this._colora
 " owned by ", this._owners);
 },

 getColor : function() {return this._color;},
 addOwner : function(oid) {this._owners.push(oid);},
 getOwners : function() {return this._owners;}
 }

);

//...snip...

After you make this change and refresh the page in Firefox, you’ll see the output
shown in Figure 10-2 in the Firebug Console.

Calling an inherited method

In class-based object-oriented programming, a common pattern is to override a
superclass method in a subclass and then call the inherited superclass method before
performing any custom implementation in the subclass. Though not always the case,

Figure 10-2. Firebug output

236 | Chapter 10: Simulated Classes and Inheritance

it’s common that the superclass’s baseline implementation still needs to run and that
the subclass is offering existing implementation on top of that baseline. Any class
created via dojo.declare has access to a special inherited method that, when called,
invokes the corresponding superclass method to override. (Note that the constructor
chain is called automatically without needing to use inherited.)

Example 10-8 illustrates this pattern.

And here’s the corresponding Firebug output on the console:

Foo constructor [100]
Bar constructor [100]
Foo custom [4, 8, 15, 16, 23, 42]
Bar custom [4, 8, 15, 16, 23, 42]

Example 10-8. Calling overridden superclass methods from a subclass

 dojo.addOnLoad(function() {
 dojo.declare("Foo", null, {

 constructor : function() {
 console.log("Foo constructor", arguments);
 },

 custom : function() {
 console.log("Foo custom", arguments);
 }

 });

 dojo.declare("Bar", Foo, {

 constructor : function() {
 console.log("Bar constructor", arguments);
 },

 custom : function() {
 //automatically call Foo's 'custom' method and pass in the same arguments,
 //though you could juggle them if need be
 this.inherited(arguments);
 //without this call, Foo.custom would never get called
 console.log("Bar custom", arguments);
 }

 });

 var bar = new Bar(100);
 bar.custom(4,8,15,16,23,42);
});

Multiply Inheriting with Mixins | 237

Multiply Inheriting with Mixins
The previous section introduced how Dojo simulates class-based inheritance and
pointed out some critical issues involving JavaScript’s finer points that are central to
developing with Dojo. Although the primary example demonstrated single inherit-
ance in which a Shape superclass provided the basis for a Circle subclass, Dojo also
provides a limited form of multiple inheritance.

The process of defining inheritance relationships by weaving together Function objects
in this way is referred to as prototype chaining because it’s through JavaScript’s Object.
prototype property that the hierarchy is defined. (Recall that Example 10-2 illustrated
this concept within the boilerplate of manually defining an inheritance relationship
between a shape and a circle.)

Dojo simulates class-based inheritance by building upon the concept of prototype
chaining to establish the hierarchy for single inheritance contexts. However, employ-
ing multiple-inheritance relationships is a little bit different because JavaScript limits
Function objects to having only one built-in prototype property.

As you might imagine, there are a number of approaches that could be used to cir-
cumvent this issue. The approach that Dojo uses is to leverage prototype chaining so
that you define a single prototypical ancestor that is the basis for prototype
chaining—but at the same time, allowing you to provide other mixins that get
injected into the prototypal ancestor. In other words, a class can have only one pro-
totype, but the Function objects that the class creates can get “stamped” with as
many constructor functions as you want to throw at it. Granted, the prototypes of
those constructor functions won’t be taken into account later in the life of the object,
but they can be leveraged in very powerful ways nonetheless. Think of these mixins
as “interfaces that actually do stuff” or “interface + implementation.”

In multiple-inheritance relationships, the ancestors are provided to
dojo.declare inside of a list. The first element of the list is known as
the prototypical ancestor, while the latter is commonly a mixin ances-
tor, or more concisely, a “mixin.”

Here’s what multiple inheritance looks like with Dojo. The only thing that’s differ-
ent is that the third parameter to dojo.declare is a list instead of a Function object.
The first element in that list is the prototypical ancestor, while the other is a mixin:

<html>
 <head>
 <title>Fun with Multiple Inheritance!</title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

238 | Chapter 10: Simulated Classes and Inheritance

 <script type="text/javascript">
 dojo.addOnLoad(function() {
 //A perfectly good Dojo class with a reasonable constructor and no
 //direct ancestors.
 dojo.declare("Tiger", null, {
 _name: null,
 _species: null,

 constructor : function(name)
 {
 this._name = name;
 this._species = "tiger";
 console.log("Created ",this._name +,"the ",this._species);
 }
 });

 //Another perfectly good Dojo class with a reasonable constructor
 //and no direct ancestors.
 dojo.declare("Lion", null, {
 _name: null,
 _species: null,

 constructor: function(name) {
 this._name = name;
 this._species = "lion";
 console.log("Created ",this._name +," the ",this._species);
 }
 });

 //A Dojo class with more than one ancestor. The first ancestor is the
 //prototypical ancestor, while the second (and any subsequent
 //functions) are mixins. Take special note that each of the
 //superclass constructors execute before this subclass's constructor
 //executes -- and there's really no way to get around that.
 dojo.declare("Liger", [Tiger, Lion], {
 _name: null,
 _species: null,

 constructor : function(name) {
 this._name = name;
 this._species = "liger";
 console.log("Created ",this._name , " the ", this._species);
 }
 });

 lucy = new Liger("Lucy");
 console.log(lucy);
 });
 </script>
 </head>
 <body>
 </body>
</html>

Multiply Inheriting with Mixins | 239

If you open the previous example and look at the console output in Firebug shown in
Figure 10-3, you’ll see that both a Tiger and Lion are created before a Liger is cre-
ated. Just like the previous example with shapes, you do get your subclass, but not
until after the necessary superclasses have been created, complete with constructor
methods running and all.

Multiple Inheritance Oddities
In the earlier example involving shapes, there was no particular need to be con-
cerned with the argument list from a Circle getting passed up to a Shape because a
Circle built directly upon a Shape. Furthermore, it made good sense and was even
convenient to include Shape’s constructor argument as the first argument of Circle’s
constructor. In this past example with lions, tigers, and ligers, the constructors are
all single argument functions that do the same thing, so there’s no real issue there,
either.

But wait—what if Tiger and Lion each had custom constructors? For example,
Tiger’s constructor might specify arguments corresponding to the name and num-
ber of stripes, while Lion’s constructor might specify the name and mane length.
How would you define a Liger’s constructor to handle a situation like that? The very
same arguments that are passed into Liger’s constructor will be passed into Tiger’s
constructor as well as Lion’s constructor, and that just doesn’t make any sense.

In this particular instance—when two or more superclasses each require their own
custom parameters—your best bet, if you have the option, is to pass in an associa-
tive array of named parameters and use these in your constructor instead of relying
on the arguments list directly. Passing in custom parameters to superclasses in a
multiple-inheritance relationship is not well-supported as of Dojo 1.1, although dis-
cussion for this kind of impedance matching is under consideration for a future
release.

Figure 10-3. Although you do eventually get your Liger, it’s not until after the necessary
superclasses have been created and properly initialized

240 | Chapter 10: Simulated Classes and Inheritance

Advanced Argument Mangling
Dojo 1.0 introduced a new feature, originating in dojo.declare, that approaches the
more sophisticated kind of impedance matching that may be used for situations in
which you may need to mangle the arguments that are passed into a superclass’s
constructor.

In short, preamble gets run as a precursor to constructor, and you can use it to change
around the arguments that get passed into superclass constructors; as of version 1.1,
whatever arguments are returned from preamble will be passed into all superclass
constructor functions. While this doesn’t alleviate the problem illustrated in our ear-
lier Liger example, it may be quite useful for many other situations.

Here’s a quick code snippet to illustrate how preamble works:

dojo.declare("Foo", null, {
 preamble: function(){
 console.log("Foo preamble: ", arguments);
 },

 constructor: function(){
 console.log("Foo constructor: ", arguments);
 }
});

dojo.declare("Bar", null, {
 preamble: function(){
 console.log("Bar preamble: ", arguments);
 },

 constructor: function(){
 console.log("Bar constructor: ", arguments);
 }
});

dojo.declare("Baz", [Foo, Bar], {
 preamble: function(){
 console.log("Baz preamble: ", arguments);
 return ["overridden", "baz", "arguments"];
 },

constructor: function(){
 console.log("Baz constructor: ", arguments);
 }
});

var obj = new Baz("baz", "arguments", "go", "here");

—continued—

Summary | 241

In general, a convenient pattern is to design multiple-inheritance relationships such
that superclasses don’t have constructors that require any arguments. The advantage
of this approach is that purposefully defining superclasses without arguments allows
the subclass to receive and process as many custom arguments as it needs, while
ensuring that any superclasses up the inheritance chain won’t be affected by them.
After all, because they don’t use them in any way, they can’t be affected.

Summary
After learning the content in this chapter, you should:

• Understand how to use dojo.declare to simulate classes in Dojo

• Be able to implement single- and multiple-inheritance relationships in Dojo

• Be aware of the dangers involved in initializing JavaScript Objects outside of a
Dojo class’s constructor

• Know that Function objects are the mechanism used to approximate classes in
JavaScript; remember, there aren’t “real” classes in JavaScript

• Understand some of the distinctions between prototype-based inheritance and
class-based inheritance

• Have a general understanding of how Dojo leverages JavaScript’s prototype-
based inheritance behind the scenes to simulate class-based inheritance

Part II is next, in which we’ll cover Dijit and Util.

The output that you’ll see in your Firebug console follows and represents the chrono-
logical order of the preamble and constructor calls involved in instantiating Baz. Note
how the arguments that are passed into the constructor for the Foo and Bar super-
classes are what get returned from preamble. The Baz constructor, however, receives
the same arguments that were passed into its own preamble:

 Baz preamble: ["baz", "arguments", "go", "here"]
 Foo preamble: ["overridden", "baz", "arguments"]
 Foo constructor: ["overridden", "baz", "arguments"]
 Bar preamble: ["overridden", "baz", "arguments"]
 Bar constructor: ["overridden", "baz", "arguments"]
 Baz constructor: ["baz", "arguments", "go", "here"]

PART II

II.Dijit and Util

The first part of this book covered Base and Core, a JavaScript library that can facili-
tate virtually any web development effort. Part II shifts gears to cover the visual ele-
ments of the toolkit, Dijit—delivering the much-acclaimed widgets—and Util, which
provides build tools and a standalone unit-testing framework.

Dijit is a fantastic layer of widgets that provides a complete collection of out-of-the-box
form elements, layout containers, and other common controls for achieving a rich user
experience on the web. Dijit builds directly on the foundation provided by Base and
Core, and is a prime example of the kind of achievement that is possible from using a
powerful standard library that insulates you from browser inconsistencies and reduces
the boilerplate that you normally write, debug, test, and maintain along the way. In
that regard, Dijit is very much the natural outworking of Base and Core.

While Part I of the book presented the fundamental building blocks of the toolkit in
a way that empowered you to be a better JavaScript developer, this part of the book
focuses on exposing you to all the various dijits (Dojo widgets) that you can simply
pull off the shelf, snap into your page, and have it all “just work,” with little or no
coding required. Designers should especially enjoy this part of the book because it
provides a comprehensive survey of the advantages Dijit makes available and how
they can be put to work in HTML markup.

Of course, there is tremendous power in having the ability to write your own custom
dijits—whether totally from scratch or as a composition of existing stock dijits—so
there will be plenty of coverage on that front as well. Digging deep into the anatomy
and lifecycle of widgets, mapping out the parallels between declaring widgets in
markup versus programmatic creation, and discussing accessibility (a11y, which is
an abbreviation for “accessibility” in that the word starts with “a,” ends with “y,”
and has 11 letters in between) are all on the agenda.

After providing complete coverage for Dijit, Part II ends with a discussion of Util, a
fantastic collection of build tools including ShrinkSafe, a JavaScript compression
system based on the battle-tested Rhino JavaScript engine, and the Dojo Objective
Harness (DOH), a standalone unit-testing framework that facilitates testing and
quality assurance efforts surrounding your application.

Motivation for Dijit | 245

Chapter 11 CHAPTER 11

Dijit Overview11

Dijit is the fantastic layer of widgets that the toolkit provides as drop-in replace-
ments for the standard HTML web controls. This chapter paves the way for Part II
by starting out with a fairly nontechnical discussion of Dijit’s motivation, philoso-
phy, and goals as an off-the-shelf resource, which dovetails into a discussion of how
designers and ordinary page creators can use dijits in markup with little to no pro-
gramming. The chapter concludes with a guided tour that provides a thorough
overview of everything included in Dijit.

Motivation for Dijit
Web development is very much an engineering problem, and it has quite an intrigu-
ing history, filled with clever hacking and ingenuity. Although the web browser may
be the ultimate platform from a conceptual standpoint, the problem from an engi-
neering perspective is that virtually every interesting use case for delivering a rich
user experience requires workarounds and augmentation of some form or another.
From a very conservative estimate, the lack of conformance to standards by major
industry players has produced a landscape littered with more than a half-dozen via-
ble configurations, and along the increase of powerful mobile devices with web
browsing capabilities, that number is only going to continue growing.

Consequently, developing maintainable applications for the Web has become more
difficult than ever; if you don’t support as many configurations as possible, you lose
market share, popularity, and revenue. Coupling support for various configurations
with the already unwieldy yet fairly common practices of mixing HTML, CSS, and
JavaScript in fairly ad-hoc ways makes the effort a seemingly impossible effort.

You already know that Base and Core insulate you from browser inconsistencies and
minimize the time you spend writing workarounds; Dijit leverages all of the goods
from Base and Core to provide an extensible framework for building modular, reus-
able user interface widgets.

246 | Chapter 11: Dijit Overview

Although technically incorrect, many Dojo users think of “Dijit” as synonymous
with “Dojo” because its widgets are in high demand. Still, Dijit is its own subproject
in the toolkit and its logical segmentation from the rest of the toolkit makes it easier
to manage and improve as time goes by. In addition to providing you with a collec-
tion of off-the-shelf widgets, Dijit provides the infrastructure for you to build your
own widgets—the same infrastructure that Dijit uses.

Some specific goals of Dijit include:

• Developing a standard set of common widgets for web development in an analo-
gous manner to the way that Swing provides an interface for Java applications or
Cocoa provides interface controls for an OS X application

• Leveraging existing machinery from Core and Base to keep the implementation
of widgets as simple and portable as possible

• Conforming to accessibility (a11y) standards in accordance with the ARIA
(Accessibility for Rich Internet Applications) specification to support the visu-
ally impaired and users who need cannot use a mouse

• Requiring that all widgets be globalized, which simplifies internationalization
initiatives by ensuring that widgets are localized and supporting cultural formats
and bidirectional (bidi) content

• Maintaining a coherent API so that developers can transfer knowledge across
multiple widgets and reuse patterns for solving problems

• Supporting a consistent look and feel with stylesheets, yet making widgets easily
customizable

• Ensuring that the creation of widgets in markup is just as easy as with JavaScript
(or easier)

• Making it simple to augment an existing page with a widget or to scale multiple
widgets into a full-blown application

• Providing full support for bidirectional text (realized as of version 1.1)

• Supporting the most common browsers across multiple platforms, including
Internet Explorer 6+, Firefox 2+, and Safari 3+*

Low Coupling, High Cohesion
Perhaps the most important advantage that Dijit brings to your web development
efforts is the ability encapsulate user interface components into standalone widgets. If
you’ve done web development for any amount of time, you’ve no doubt run into the

* Dijit does not officially support exactly the same array of browsers as Base and Core. The pragmatism behind
the decision is that there just isn’t a wide enough user base to justify the additional coding, testing, and main-
tenance for additional browsers like Opera or Konqueror. However, just because “official” support does not
exist doesn’t mean that it’s necessarily difficult to get Dijits working on these platforms—especially when
you consider that Konqueror, Firefox, and WebKit (the core of Safari) are all open source projects.

Motivation for Dijit | 247

problem of trying to wrap up the HTML, CSS, and JavaScript source files for a user
interface into a portable package that is capable of instantiating itself and delivering
the intended functionality at the right time with minimal intervention.

In programming lingo, the problem of developing modular user inter-
face components is well explained by the terms cohesion and coupling.
Cohesion is a measure of how well the source code and resources
work together to deliver a piece of functionality, while coupling is a
measure of a module’s dependency on other modules. When design-
ing things like widgets, your goal is almost always to maximize cohe-
sion and minimize coupling.

Dijit answers the call admirably, and even better, it is a layer of infrastructure that
you don’t have to write, debug, and maintain. Building off of Base’s dojo.declare
function for simulating classes, as shown in Figure 11-1, Dijit throws in standard life-
cycle methods for creation and destruction, a standardized means of responding to
events such as key strokes and mouse movements, and the ability to wrap up the visi-
ble presentation. It also makes it possible to manage it all via markup or JavaScript—
delivering the very same functionality to two distinct audiences.

As a designer, snapping a dijit into a page via markup is as simple as including a spe-
cial dojoType tag that the parser recognizes and instantiates into an event-driven
DHTML entity. For example, the following snippet, adapted from Chapter 1, illus-
trates how simple it is to include a customized text box for approximately validating
an email address as part of a form—all in markup:

<input type="text"
 length=25
 name="email"

Figure 11-1. Juxtaposing a dijit as a collection of physical resources on disk versus a dijit as a
JavaScript Function object

foo/

templatesBar.js themes/

Bar.html foo.css

A collection of resources on disk Bar

<template string from Bar.html>

<widget properties from Bar.js>

<standard JavaScript object machinery>

<prototype>

A JavaScript Function Object

248 | Chapter 11: Dijit Overview

 dojoType="dijit.form.ValidationTextBox"
 trim="true"
 lowercase="true"
 regExp="[a-z0-9._%+-]+@[a-z0-9-]+\.[a-z]{2,4}"
 required="true"
 invalidMessage="Please enter a valid e-mail address"/>

That’s it. Not a single line of JavaScript is required to actually use the widget. Sure,
many developers may need to develop or extend widgets, which entails writing
JavaScript, but the beauty is that once it’s written, it becomes a part of your off-the-shelf
arsenal. When the page loads, the parser finds the dojoType tag, requests any addi-
tional resources that are needed (if any) from back on the server, and transplants a
DHTML widget into the page. Laying out a user interface should be that easy!

Of course, anything you can do in markup is also possible with JavaScript. You can
dynamically create the very same widget just like any ordinary JavaScript object and
insert it into the page with a trivial amount of effort.

As a general pattern, dijit constructor functions have the following signature that
accepts a collection of configuration properties and a node reference:

dijit.WidgetName(/*Object*/props, /*DOMNode|String*/node)

Each dijit has a DOM node reference that is its visible representation, and inserting
the DOM node reference into the page is all that is necessary to present it to the user.
Once visible, its event handlers are exposed, and it behaves as though they were
there all along. Here’s how you would programmatically construct the same dijit for
validating an email address; the parallel between the two approaches is apparent:

<script type="text/javascript">
 var w = new dijit.form.ValidationTextBox({
 length : 25,
 name : "email",
 trim : true,
 lowercase : true,
 regExp : "[a-z0-9._%+-]+@[a-z0-9-]+\.[a-z]{2,4}",
 required : true,
 invalidMessage : "Please enter a valid e-mail address"
 }, n); // n is a node reference somewhere in the page
</script>

Accessibility (a11y)
Accessibility is an increasingly important topic in the information age. In addition to
a common goal of delivering content to the widest audience possible (with or with-
out disability), political power such as Section 508* and other established legislation that
sets a minimal standard for technology being accessible to persons with disabilities, and

* Section 508 refers to a statutory section in the United States’ Rehabilitation Act of 1973, requiring federal
agencies to make reasonable accommodations to Americans with disabilities.

Accessibility (a11y) | 249

there are economic incentives as well: the U.S. Department of Labor estimates that the
discretionary spending of people with disabilities is in the neighborhood of 175 bil-
lion dollars (http://www.usdoj.gov/crt/ada/busstat.htm). No matter how you look at it
and what your motives might be, a11y is an issue that’s hard to ignore.

Common a11y Issues
While this short section cannot even begin to address the myriad details associated
with successfully implementing a web application, it should raise your awareness of
the issues involved and highlight the ways that Dijit addresses them. Two of the
most common accessibility tasks involve supporting users with impaired vision who
need screen readers and users who require the ability to completely navigate an
application using only the keyboard.

By default, Dijit inherently supports both audiences. Accessibility for users with
impaired vision is addressed by detecting if the browser is operating in high-contrast
mode and by detecting whether images are disabled for Internet Explorer or Firefox.*

If either accessibility-enabling condition is detected, dijits are rendered according to
augmented style, images, and templates as necessary.

For example, Figure 11-2 illustrates the rendering for a dijit.ProgressBar in both
standard and high-contrast mode.

Although some of the implementation details can be tedious, here’s a basic rule of
thumb that goes a long way to achieving accessible widgets for the blind: don’t use
images (CSS background images or standard images placed with the IMG tag) in such
a way that the functionality of a page is impaired if they go missing. A corollary that
follows is to ensure alt descriptions are provided; it may seem dirt simple, and it’s
not always pretty, but it can often get the job done.

The stock widgets provide full keyboard support via standardized use of the tabIndex
attribute for controlling the movement of the focus across the application. Additional

* The detection of high-contract mode works quite well on Internet Explorer for Windows, but not so well on
the Mac or other browsers. Unfortunately, not all platforms or browsers currently support a11y facets to the
same extent (or at all), so your mileage may vary.

Figure 11-2. Top: the automatic rendering of dijit.ProgressBar when accessibility conditions are
detected; bottom: the standard dijit.ProgressBar

http://www.usdoj.gov/crt/ada/busstat.htm)

250 | Chapter 11: Dijit Overview

machinery explicitly manages the focus of complex controls so that tool tips can be
displayed as needed—which might always be the case if a screen reader is in use .*

WAI-ARIA
Accessibility initiatives for users with impaired vision and keyboard access are
increasing, but in the modern era of Rich Internet Applications, additional support is
needed. Common examples of additional support include ensuring users remain
aware of changes in state from an XHR call that did not explicitly reload a page, and
adequately handling Back button functionality for select actions.

The W3C Web Accessibility Initiative for Accessible Rich Internet Applications
(WAI-ARIA) is an effort to ensure that AJAX-powered applications that mimic
desktop-like functionality have a set of guidelines for delivering functionality to
impaired users. Back in the early 1990s, screen readers could pretty much just read
good old HTML. Nowadays, however, widgets are hacked out by lots of nested DIV
elements and manipulated with AJAX, which has no meaning to a screen reader.
Thus,WAI-ARIA provides the semantics needed to effectively convey information to
the blind. For example, these semantics may inform the screen reader that a particu-
lar collection of nested DIV elements is a tree, a particular node in the tree currently
has the focus, and pressing the Tab key switches focus to the “next” element.

Dijit exposes a collection of functions inspired by WAI-ARIA that are specifically tai-
lored to facilitate adding accessibility to widgets. The W3C working draft “Road-
map for Accessible Rich Internet Applications” (http://www.w3.org/TR/aria-
roadmap/) is a great starting point to start learning about ARIA and the overall Web
Accessibility Initiative. Specific coverage of roles is outlined in “Roles for Accessible
Rich Internet Applications” (http://www.w3.org/TR/aria-role/), while states are cov-
ered in “States and Properties Module for Accessible Rich Internet Applications”
(http://www.w3.org/TR/aria-state/).

Table 11-1 summarizes the WAI functions.

* A screen reader is an assistive device that audibly manages the focus and valid actions that can be performed
on active controls.

Table 11-1. WAI functions

Function Comment

onload() Automatically called to detect if the page is in high-contrast
mode or has disabled images. You will normally not call this
method directly because it is automatically called when the
page loads.

hasWaiRole(/* DOMNode */ node) Returns true if the node has a role attribute.

getWaiRole(/* DOMNode */ node) Returns the role attribute for a node.

http://www.w3.org/TR/aria-roadmap/)
http://www.w3.org/TR/aria-roadmap/)
http://www.w3.org/TR/aria-role/),
http://www.w3.org/TR/aria-state/).

Dijit for Designers | 251

In terms of WAI-ARIA, role describes the purpose of a control, and examples of role
values might be link, checkbox, toolbar, or slider. state describes the status of a
control and is not necessarily a binary function. For example, a control with checkbox
role may have a “checked” state that is set to mixed for a partial selection. Other
examples of state include checked and disabled, which are both binary (true/false)
values.

Dijit for Designers
The fundamentals for using an existing dijit in markup are quite simple: a dojoType
tag specifies the type of dijit that should be placed in the page, attributes pass data
into the widget upon creation, and extension points allow you to override existing wid-
get behavior. While the dojoType tag is required, attributes usually are set to reasonable
default values, and extension points always fall back to a reasonable implementation.

The difference between “methods” and “extension points” is purely a
semantic one: methods are operations that the application program-
mer call directly to control a dijit. Extension points are methods that
the application programmer does not call directly; the dijits calls them
itself when an appropriate condition arises. For example, a widget
might have an explicit method like setValue that could be called to
programmatically adjust it, while a method like onKeyUp would be an
extension point in that it gets called automatically each time a key is
pressed.

There are several attributes, listed in Table 11-2, that are especially important to be
aware of for out-of-the-box usage because these attributes are set directly on a wid-
get’s DOM Node. These attributes ultimately ensure that the dijit’s underlying
HTML markup is as customizable and “proper” as possible.

setWaiRole(/* DOMNode */ node,
/* String */ role)

Sets a role attribute for a node.

removeWaiRole(/* DOMNode */ node) Removes the role attribute from an element.

hasWaiState(/* DOMNode */ node,
/* String */ state)

Returns true if a node has a particular state.

getWaiState(/* DOMNode */ node,
/* String */ state)

Returns the state value attribute for a node.

setWaiState(/* DOMNode */ node,
/* String */ state,
* String */ value)

Sets a state value for a node.

removeWaiState(/* DOMNode */ node,
/* String */ state)

Removes a state from an element.

Table 11-1. WAI functions (continued)

Function Comment

252 | Chapter 11: Dijit Overview

A Word on DOCTYPE Validation
Technically speaking, it is possible to include dijits on pages and meet HTML 4.01
Strict DOCTYPE validation, but only if the dijits are programmatically created, and their
templates meet the specification. When defined in markup, the dojoType tag and any
nonstandard attributes single-handedly bust the validity rules for most validators, even
though it is certainly possible to write a custom Document Type Definition (DTD) that
includes nonstandard attributes like dojoType. For this reason, none of the examples in
this book include DOCTYPE tags at the top of the page.

Although standards are important, it’s equally important to weigh the cost of not meet-
ing them in some circumstances. For example, using nonstandard attributes in Dojo—
a robust, open source, community-supported effort that is about as transparent as any
project could possibly get—is a little bit different than incorporating nonstandard
attributes as a result of carelessness or ignorance. Dojo pushes the cutting edge, and
careful consideration by some of the greatest DHTML hackers in the world goes into
decisions that will so obviously cause a few ripples here and there.

In that regard, Dojo has never claimed to be a project that is fully standards-compliant
or always loyal to any one metric (and 4.01 Strict DOCTYPE validation is a metric just like
any other). It does, however, guarantee specific functionality on a specific subset of
browsers, which is—you guessed it—just another metric.

Table 11-2. Common dijit attributes

Attribute Type Comment

id String A unique identifier for the widget. By default, this value is automatically generated
and guaranteed to be unique. If an explicit value is provided that is known already
to be in use, the value is ignored, and a unique value is generated.

lang String The language to use for displaying the widget. The browser’s locale settings are used by
default. If an additional locale is desired, specify it via djConfig.extraLocale so
the bundle will be available. (In general, this attribute is not used unless it’s necessary
to display multiple languages on a single page.)

dir String Bidirectional support as defined by the HTML DIR attribute. By default, this value is
set to ltr (left to right) unless rtl is provided. No other values are valid.

style String HTML style attributes that should be passed into the widget’s outermost DOM node.
By default, no additional style attributes are passed.

title String The standard HTML title attribute that can be used for displaying tooltips when
hovering over a dijit’s DOM node.

class String CSS class information to apply to the outermost DOM node. This attribute is particu-
larly useful for overriding all or part of a default theme.

Dijit for Designers | 253

Themes
A Dijit theme is a fully consistent collection of CSS rules that span across the entire
set of widgets. To say that another way, you might think of Dijit as being skinnable,
where a theme is a kind skin that you apply. If you need to pull some widgets off the
shelf and put together something quickly, themes are especially good because CSS
becomes one less thing that you have to worry about implementing. As of version 1.1,
Dojo includes three great-looking, prepackaged themes:

Tundra
Predominantly light grey and light blue hues named after the Arctic landscape.

Soria
Predominantly blue on blue, both of which are fairly light hues. Controls have a
noticeably glossy “Web 2.0 sheen” look to them. The inspiration for this theme
was the beautiful blue sky from a set of photos from Soria, Spain.

Nihilo
Predominantly white with soft grey outlines with some greyish blue text. Some
controls use a yellow shade to denote color. It is rumored that the inspiration for
this theme is inspired from the ex nihilo concept (to create something out of
nothing), with the goal of minimalist elegance—you barely notice it’s there.

In your toolkit checkout, you can find a theme tester at dijit/themes/themeTester.html
that demos the various dijits with a theme of your choice. Actually looking at the
themes on your own screen is the best way to feel them out, as a black and white
page can’t really do them justice.

The structure of the themes directory has the following pattern, although each pri-
mary CSS file generally includes @import statements that pull in various other CSS
files as part of a maintainable design (the build tools consolidate CSS files, so official
builds only deliver the final file, which minimizes HTTP latency in fetching
resources):

themes/
 tundra/
 tundra.css
 images/
 lots of static images
 soria/
 soria.css
 images/
 lots of static images
 nihilo/
 nihilo.css
 images/
 lots of static images
 <your custom theme could go here; just follow the pattern...>

254 | Chapter 11: Dijit Overview

Example 11-1 explicitly emphasizes the parts of the page that are pertinent to the
theme.

You’ll notice that actually using a theme is as simple as pulling in a stylesheet and
applying the appropriate class name to the BODY tag, although you could have applied
the class name to a different tag on the page if you had a good reason not to style the
entire page with a single theme. Themes are designed to be applied to any arbitrary
page element, whether it is the entire page, a specific DIV section, or a particular wid-
get. This listing also shows that the dojo.css file is also retrieved, which is generally
assumed to be the case because it contains some baseline style.

Switching out the theme would be as simple as replacing all of the tundra references
with either soria or nihilo. That’s it. And that’s also as easy as it should be to reskin
the page.

We won’t belabor the topic of themes because it’s really just a system of well-
engineered CSS rules, and while it absolutely and positively makes all of the differ-
ence to the credibility and desirability of Dijit, it just isn’t a topic that lends itself well
to the current discussion. If you’re interested in themes, however, be sure to pick up
a good reference on CSS and start reading through the various CSS files. You’ll see
definitions like .tundra .dojoButton { /* style goes here */ }, which are usually self-
descriptive and easy to locate in Dijit template files or in the page if you are inspect-
ing with Firebug.

Example 11-1. Using a theme

<html>
 <head>
 <title>Fun With the Themes!</title>

 <!-- pull in the tundra theme -->
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 ></script>

 <script type="text/javascript">
 //require your dijits here
 </script>
 <head>

 <body class="tundra">
 <!-- use your dijits here -->
 </body>
</html>

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

Dijit for Designers | 255

Nodes Versus Dijits, DOM Events Versus Dijit Methods
Important distinctions must be made between a dijit versus a DOM node: a dijit is a
JavaScript Function object that is instantiated from a collection of resources that may
include HTML markup, CSS, JavaScript, and static resources like images; the dijit’s
visible manifestation is inserted into the page by assigning its domNode attribute (the
outermost node in its template) into the page.

The distinction between a dijit and DOM node can be further highlighted by juxta-
posing the dojo.byId function, which returns a DOM node given a string value, and
Dijit’s own dijit.byId, which returns the dijit that is associated with a particular
DOM node. The differences are listed in Table 11-3. Using Firebug to execute the
two commands on the following Button accentuates the differences:

<button id="foo" dojoType="dijit.form.Button">click me</button>

The dojo.byId command returns the DOM node that provides the visible manifesta-
tion of an instantiated dijit.form.Button, while the dijit.byId returns a JavaScript
Function object that can be examined for all of the standard dijit machinery.

An incredibly common mistake is to try and run a method on the
result of a dojo.byId command. Remember that DOM nodes do not
have dijit-related methods.

The corollary to the distinction between a dijit and a DOM node is the analogous
distinction between a Dijit event and a DOM event. While many dijits have an
onClick event, this event is quite different from a DOM node’s onclick event in spite
of the obvious similarity in naming convention. Take a moment to load and run the
following page in the Firebug console; the output highlights the crux of the matter:

Table 11-3. Difference between dojo.byId and dijit.byId

Command Firebug console result

dojo.byId("foo") <button
 id="foo"
 class="dijitStretch
 dijitButtonNode
 dijitButtonContents"
 waistate="labelledby-foo_label"
 wairole="button"
 type="button"
 dojoattachpoint="focusNode,titleNode"
 role="wairole:button"
 labelledby="foo_label"
 tabindex="0"
 valuenow=""
 disabled="false">

dijit.byId("foo") [Widget dijit.form.Button, foo] _connects=[4] _attaches=[0]
id=foo

256 | Chapter 11: Dijit Overview

<html>
 <head>
 <title>Fun with Button Clicking!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true"
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 ></script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.Button");
 dojo.addOnLoad(function() {
 dojo.connect(dojo.byId("foo"), "onclick", function(evt) {
 console.log("connect fired for DOM Node onclick");
 });

 dojo.connect(dijit.byId("foo"), "onclick", function(evt) {
 console.log("connect fired for dijit onclick"); //never!
 });

 dojo.connect(dijit.byId("foo"), "onClick", function(evt) {
 console.log("connect fired for dijit onClick");
 });
 });
 </script>
 <head>
 <body class="tundra">
 <button id="foo" dojoType="dijit.form.Button" onclick="foo">click me
 <script type="dojo/method" event="onClick" args="evt">
 console.log("Button fired onClick");
 </script>
 </button>
 </body>
</html>

To summarize, this page defines a simple method in markup for a simple Button,
provides an implementation for its onClick method, and defines three connections:
one for the DOM node’s onclick event, and connections for the dijit’s onclick and
onClick events. However, dijits do not have an onclick event, so the example demon-
strates that the common mistake of trying to connect to it is a pitfall that can pro-
duce bugs that are quite hard to track down and fix.

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

The Parser | 257

The Parser
The Dojo parser is a Core resource that is the standard means of instantiating a wid-
get defined in markup and ensuring that its visible representation, linked via its
domNode, gets inserted into the page. Once the domNode is assigned into the page, the
browser renders it on the page. So, while a widget’s DOM node is the vital part of
the dijit that makes it visible, the totality of the dijit is considerably more. This sec-
tion provides an introduction to the parser, as well as play-by-play coverage on
exactly how it works.

Parsing a Widget When the Page Loads
Aside from seeing some references in the introductory material in Chapter 1 and
some exposure in the drag-and-drop examples from Chapter 7, the parser hasn’t
been formally introduced because its most common use case is instantiating widgets
in a page. Without further ado, here’s an official example of the parser instantiating a
widget from markup. Note the emphasized lines in Example 11-2, which highlight
where the parser-related action is happening.

Example 11-2. Automatically parsing a widget

<html>
 <head>
 <title>Fun With the Parser!</title>

 <!-- pull in the standard CSS that styles the stock dijits -->

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true"
 ></script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.Button");
 </script>
 <head>

 <body class="tundra">
 <button dojoType="dijit.form.Button" >Sign Up!</button>
 </body>
</html>

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

258 | Chapter 11: Dijit Overview

To summarize what’s happening, there’s just a simple page that includes an off-the-shelf
button from Dijit that does absolutely nothing except look pretty—but for the purposes
of introducing the parser without diving into Dijit specifics, this is just fine. The only
thing you need to know about the Button dijit at this time is that it is fetched via a call
to dojo.require and inserted into the page via the dojoType tag.

Any custom addOnLoad logic you could include is executed after the
widgets are parsed—making it safe for you to reference them.

You won’t see any direct invocations of the parser in Example 11-2; that’s by design.
The vast majority of the time, you simply dojo.require dijits into your page, set the
parseOnLoad flag in djConfig, and let the rest happen behind the scenes. In fact, that’s
all that occurs in this example. It’s worth taking a moment to ponder just how abso-
lutely elegant it is that you can take a dijit off the shelf and, in just a few keystrokes,
insert it into the page. No additional headache, hassle, or fuss is required.

Manually Parsing a Widget
There are bound to be times when you will need to manually parse a page or some
node in the DOM. Fortunately, it’s just one function call away. Consider
Example 11-3, a variation that manually parses the widget in the page.

Example 11-3. Manually parsing a page

<html>
 <head>
 <title>Hello Parser</title>

 <!-- pull in the standard CSS that styles the stock dijits -->

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad: false"
 ></script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.Button");
 dojo.addOnLoad(function() {

dojo.parser.parse(); //manually parse after the page loads
 });
 </script>

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

The Parser | 259

Although manually parsing the entire page is useful, you’ll more often need to manu-
ally parse a DOM node. The parser accepts an optional argument that provides the
root of a node in the DOM tree that it scans for dojoType tags and instantiates. Thus,
you provide the parent of the node you wish to parse to the parse function. Here’s
one possible modification of the previous code block that illustrates:

<script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.Button");
 dojo.addOnLoad(function() {
 //The parser traverses the DOM tree passed in and instantiates widgets.
 //In this case, the button is the only leaf in the tree, so it is all that
 //gets parsed
 dojo.parser.parse(document.getElementsByTagName("button")[0].parentNode);
 });
</script>

Trying to manually parse a widget on the page by passing the widget’s
DOM node into the parse method will fail, and you may not receive
any visible indication that parsing failed. Fortunately, if you can locate
a reference to a node, referencing its parent through the parentNode is
just a few keystrokes away.

Demystifying the Parser
Although what the parser accomplishes really does seem like magic, it really just
boils down to rigorous, well-designed automation. As you now know, the parser has
two primary use cases: parsing the page on load via djConfig="parseOnLoad:true" or
manually parsing a widget. This section elaborates on the details that go into mak-
ing those two things happen.

Parsing a widget when the page loads entails three basic requirements:

• Include parseOnLoad:true as a key/value pair to djConfig, which the parser will
detect when it is loaded and use to trigger automatic parsing.

• Require the parser via dojo.require("dojo.parser") so that the parser is avail-
able and can register an automatic call to dojo.parser.parse() when the page
loads. Because no arguments are passed to the call, the entire body of the page
provides the basis for parsing.

• Provide dojoType tags as needed in the markup for widgets that should be
parsed.

 <head/>
 <body class="tundra" >
 <button dojoType="dijit.form.Button" >Sign Up!</button>
 </body>
</html>

Example 11-3. Manually parsing a page (continued)

260 | Chapter 11: Dijit Overview

Manually parsing a widget that has already been defined in markup after the page
loads is similar:

• Require the parser via dojo.require("dojo.parser"). Because parseOnLoad is not
detected to be true, no automatic call to dojo.parser.parse() occurs.

• Provide the corresponding dojoType tag in the markup for a widget—maybe even
dynamically after the page has already loaded.

• Manually call dojo.parser.parse(), optionally providing a specific DOM node
as an argument as the starting point for the parsing operation.

But what about the actual parsing process? You know—the part about finding all
of the dojoType tags and instantiating them into widgets? Again, it’s all simple auto-
mation when you get right down to it. Here’s exactly what happens:

• dojo.query("[dojoType]") is called to deterministically fetch the nodes in the
page that need to be parsed.

• Class information (as in dojo.declare type classes) is distilled from each node;
attributes are iterated over and lightweight type conversion is performed. Recall
that attributes may provide information to a class’s constructor.

• Any dojo/method or dojo/connect script tags internal to the node are detected
and scheduled for processing. (More on these in the upcoming section “Defin-
ing Methods in Markup.”)

• An instance of the class is created by using its constructor unless a
markupFactory method is defined, in which case it is used. markupFactory is a spe-
cial method that allows you to define a custom constructor function for widgets
that need different initialization in markup than they do via programmatic cre-
ation. All dijits inherit from a base class, _Widget, which fires off a standard
series of lifecycle methods. One of these lifecycle methods inserts the dijit’s
domNode into the page, which makes it visible. Lifecycle methods are discussed in
detail in the next chapter.

• If a jsId attribute is present, then the class instance is mapped to the global
JavaScript namespace. (Common for data stores and widgets that you have a rea-
son to make global.)

• Any connections provided via dojo/connect or dojo/method SCRIPT tags in
markup are processed (more on this later in the chapter) and each widget’s
startup lifecycle method is called. startup is another standard lifecycle method
inherited from _Widget (coming up in the next chapter) which allows you to
manipulate any widgets that are contained in the one being instantiated.

Hopefully, that didn’t make you feel the same way that you did when you learned
that Santa Claus wasn’t real, but you had to learn sometime. The next chapter
focuses exclusively on dijit lifecycle methods where dedicated coverage of these con-
cepts is provided.

Hands-on Dijit with NumberSpinner | 261

Hands-on Dijit with NumberSpinner
This section provides some hands-on usage for a pretty intuitive dijit—the dijit.
form.NumberSpinner—to warm you up for the chapters that follow. First, we’ll work
through creating the dijit in markup, and then we’ll follow up with programmatic
creation.

Creating from Markup
As you learned from an earlier section on the parser, it’s pretty trivial to stick a dijit
into the page. You require in the resources, provide the dojoType attribute in a tag,
and have the parser go to work. For completeness, Example 11-4 shows how we’d
follow that very same pattern to instantiate a NumberSpinner dijit.

Example 11-4. Creating the NumberSpinner widget in markup

<html>
 <head>
 <title>Number Spinner Fun!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad: true"
 ></script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.NumberSpinner");
 </script>
 <head>
 <body class="tundra">
 <form> <!-- some really awesome form -->
 <input dojoType="dijit.form.NumberSpinner"
 constraints="{min:0,max:10000}" value=1000>
 </input>
 </form>
 </body>
</html>

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

262 | Chapter 11: Dijit Overview

Programmatic Creation
While you’ll often create dijits in markup, programmatic creation is no less common
and the process is the very same as creating any other Function Object because that’s
exactly what a dijit is—a Function Object. In general, the constructor for a dijit
accepts two parameters. The first is an Object that provides properties that should be
passed in, and these are the same properties that you would be including in the tag if
you were creating in markup. The second parameter is a source node or the id for a
source node that identifies the placeholder that the dijit should replace:

var d = new module.DijitName(/*Object*/props, /*DOMNode|String*/node)

Example 11-5 programmatically creates the NumberSpinner and produces the very
same effect as Example 11-4.

Example 11-5. Programmatically creating the NumberSpinner widget

<html>
 <head>
 <title>Number Spinner Fun!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 ></script>

 <script type="text/javascript">
 dojo.require("dijit.form.NumberSpinner");
 dojo.addOnLoad(function() {
 var ns = new dijit.form.NumberSpinner(
 //props
 {
 constraints : {min:0,max:10000},
 value : 1000
 },
 "foo" //node id
);

 // do other stuff with ns here...

 });
 </script>
 <head>
 <body class="tundra">
 <form>
 <input id="foo"></input>
 </form>
 </body>
</html>

http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css

Hands-on Dijit with NumberSpinner | 263

Lots of Niceties
This particular example displays a nice little text box with a control that allows you
to adjust the value from either the arrow keys on the keyboard, by clicking the arrow
controls on the dijit itself, or though manual keyboard entry. In any case, the min and
max and key/value pairs are part of the constraints attribute that can be customized
to form the upper and lower values for the spinner with the arrow keys or when
clicking on the controls; the value attribute provides the default value just like in
ordinary HTML. Manually changing the value via manual keyboard entry, however,
still changes the value, which may trigger a tooltip-style error message. Figure 11-3
illustrates what happens.

Recall that Dojo attempts to supplement the existing fabric for devel-
oping web applications—not override it. Thus, common attributes for
form elements such as the value attribute in the previous code list-
ing’s input element still work just like normal.

While techniques from djConfig showed key/value pairs expressing
objects constructed in markup without the surrounding curly brack-
ets like djConfig="parseOnLoad:true,isDebug:true", it is more the
exception than the rule. Dijit requires that Object attributes in markup
be expressed using braces like constraints="{min:0, max:100}".

You’ve probably already made the connection about the NumberSpinner’s keyboard
entry and a11y, but there are some other niceties that are worth trying out right
away. You’ve no doubt noticed the numeric formatting that is automatically applied
to separate every three digits of numbers greater than 999. Note that if you were ren-
dering the page for a supported locale that used a different separator for the digits, it
would have happened automatically: locales like en-us use commas to separate val-
ues, like 1,000, while Spain, the es-es locale, for example, uses dots to separate the
digits, like 1.000. Figure 11-4 demonstrates. Try it for yourself by modifying your
default locale in djConfig. For example, to set a default locale of Spain, you could do
the following:

djConfig="locale:'es-es'"

Figure 11-3. Left: a NumberSpinner dijit changing its value via keyboard or mouse control; right:
the default display when manual keyboard entry enters a value that is out of bounds

264 | Chapter 11: Dijit Overview

Remember that any values in djConfig that are strings need to contain
additional quotes around them. The syntax for declaring an associa-
tive array inline makes this easy to forget, and unfortunately, the error
messages that can result from forgetting it are not always helpful to
point you in the right direction. Any djConfig settings need to be load-
ing prior to Base bootstrapping.

Another great out-of-the-box feature that Dijit supports is the notion of controls
being typematic—that is, they respond in special ways to holding down a mouse but-
ton or keyboard key. If you try holding down the mouse button on one of the con-
trols for the NumberSpinner, you should notice that it gradually increases for the first
10 or so numbers and then eventually speeds up and moves rapidly. Not surpris-
ingly, keyboard navigation works the very same way. The Page Up and Page Down
buttons also work and adjust the values by multiples of 10 by default.

Defining Methods in Markup
In addition to being able to programmatically write ordinary JavaScript to control
and extend widgets, Dojo also provides the ability to define the JavaScript directly in
markup by including a special type="dojo/method" attribute in SCRIPT tags. This can
be very convenient for designers as well as anyone who needs to rapidly prototype a
new idea. What’s especially notable about defining methods in markup is that the
keyword this refers to the containing widget, so you have instant access to the con-
text you’d expect.

Consider the following update to the example code listing that defines methods in
markup:

<!-- snip -->

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.NumberSpinner");
 dojo.require("dijit.form.Button");
 </script>
 </head>
 <body class="tundra">
 <form>
 <div dojoType="dijit.form.NumberSpinner" jsId="mySpinner"

Figure 11-4. Dijits handle special formatting for the supported locales right out of the box with no
additional configuration required; the top NumberSpinner was configured with en-us while the bottom
NumberSpinner was configured with es-es; the dijit internally took care of the formatting details

Hands-on Dijit with NumberSpinner | 265

 constraints="{min:0,max:10000}" value=1000>
 <script type="dojo/method">
 dojo.mixin(this, {
 reset : function() { this.setValue(1000); }
 });
 </script>
 </div>
 </form>
 <button dojoType="dijit.form.Button" onClick="mySpinner.reset()">reset</
button>
 </body>
</html>

To sum up the effect of the changes, the jsId attribute gave the NumberSpinner a glo-
bal variable name mySpinner, which was referenced in a Button’s onClick method.
The actual body of the reset method was established by the special script tag
included inside of the dijit. The script tag providing anonymous dojo/method is exe-
cuted after its constructor runs, so that any values passed in via attributes included
in markup would be available.

Also, note that whereas the previous listing used an input element to create the spin-
ner, the new listing uses a div tag. The reason why an input tag will not work with
the updated listing is that it does not allow innerHTML. The tag had to be switched to
a type that does allow innerHTML in order for it to work. If you’re wondering why a
div tag wasn’t used all along, it really comes back to one primary issue: the ability to
have a semantically correct page that works without any JavaScript involved. In other
words, the previous form using an input element is a semantically correct input con-
trol even if JavaScript were disabled (for whatever reason), whereas the div-based
spinner is not. Most of the time, this isn’t an problem, but when designing a degrad-
able page, it is very important to know your basic HTML and be aware of these
issues.

The dojo/method and dojo/connect script tags do not work inside of
marked up elements that do not allow innerHTML. This isn’t a Dojo thing;
it’s in accordance with the HTML specification. Although not demon-
strated with this example, SCRIPT tags containing a type="dojo/connect"
attribute allow you to set up connections in markup using the same
pattern.

While the additional reset button may make a great addition for a mouse-based con-
trol, note that pressing the Escape key on the keyboard would have reset the spinner
to its original value without any additional work at all.

As an improvement that produces the very same effect but with less code, consider
the following change to the dojo/method script tag:

<script type="dojo/method" event="reset">
 this.setValue(1000);
</script>

266 | Chapter 11: Dijit Overview

Instead of being executed automatically a single time after the constructor, which is
the case for anonymous dojo/method script tags, this approach performs the work of
actually creating the reset method and attaching it to the widget on your behalf. If
there had been arguments involved, an additional args attribute could have been
specified. For example, args="foo,bar,baz" would have allowed for passing in three
named arguments to a method defined in markup.

Overview of Stock Dijits
Because Dojo’s widget collection is incredibly extensive, it can be easy to get lost.
This section presents a concise inventory of dijits so that you may be familiarized
with what’s available.

Form Dijits
The very naming convention for a category of “form dijits” implies that the dijits are
designed to be used inside of a form. While this is certainly true, form dijits may also
be used outside of forms or in a special dijit.form.Form dijit that provides some
extra methods and extension points. Here’s a very brief overview of what is included
in each of those chapters. Recall that all dijits are a11y compatible and easily interna-
tionalized, where applicable.

Go to http://archive.dojotoolkit.org/nightly/ to view the Dijit test har-
nesses that contain all of these widgets. It’s a great way to get a feel for
just how much breadth and depth there really is.

Form
A special container for form widgets that provides handy methods and exten-
sion points for serializing to JSON, validating the entire form’s contents, setting
values for the form all at once, and event handling when the form is submitted.

Button variations
Drop-in replacements for ordinary buttons based on BUTTON elements as well as
other button-like controls based on INPUT elements like checkboxes and radio
elements. Additional button variations include menu-style buttons that have
drop-down values (sort of like combo boxes) that are commonly shown in tool-
bars, and toggle buttons that commonly appear in toolbars such as bold and
italic buttons.

ComboBox
A combination of the functionality provided by an ordinary SELECT combo box
and a text field defined with an INPUT element, allowing users to choose from
pre-filled selections or typing in their own values.

http://archive.dojotoolkit.org/nightly/

Overview of Stock Dijits | 267

FilteringSelect
A drop-in replacement for an ordinary SELECT element. It may be populated
dynamically, making it great for situations in which a very large number of selec-
tions may be possible.

NumberSpinner
Similar to a text box based on an INPUT element except that controls allow for
making incremental adjustments to the value.

Slider
A draggable handle attached to a scale that may be laid out vertically or horizon-
tally. This widget provides a more interactive way of adjusting a value and is
commonly used in conjunction with a display that involves resizing two-
dimensional objects in real time.

Textarea
A drop-in replacement for an ordinary TEXTAREA element, but resizes as neces-
sary to fit its enclosed content so that valuable screen real estate isn’t lost when
the potential size of content may not be predictable or always annotated.

SimpleTextarea
A drop-in replacement for an ordinary TEXTAREA element with some additional
machinery to interact with the Form dijit container and layout dijits.

MultiSelect
A drop-in replacement for an ordinary SELECT element that has the multiple=true
attribute set. Like SimpleTextarea, it contains some extra machinery for interac-
tion with the Form dijit.

TextBox variations
An entire family of feature-rich widgets based upon the INPUT element with a
special emphasis for custom validation of values and formatting for common
fields like date, time, currency, numbers, etc. An incredible amount of function-
ality is packed into this family of widgets.

Layout Dijits
Traditional techniques for complex layouts used to involve extensive CSS work.
While CSS may not be rocket science, writing, maintaining, and testing it on multi-
ple browsers requires nontrivial effort—especially if you’re not a CSS guru. Layout
dijits allow the layout to be constructed in markup—without resorting to nested
tables—which seems to have made laying out a page a lot simpler. Layout dijits, in
general, may be arbitrarily nested, which allows for extremely sophisticated designs
at a fraction of the time involved with more traditional CSS-based techniques. Here’s
a synopsis of what Dijit provides:

268 | Chapter 11: Dijit Overview

ContentPane
The most basic building block for a layout and provides the actual wrapper for
layout tile. Although they could be used as standalones, one or more
ContentPane dijits generally exist as part of a container widget.

TabContainer
A means of providing a familiar, tabbed layout with the tabs appearing horizon-
tally or vertically. Simple layouts with TabContainers generally involve a
TabContainer combined with a ContentPane, although arbitrary nesting is always
a possibility. Content for tabs that are not initially displayed may be lazy loaded.

StackContainer
Provides a means of displaying multiple containers of information, but with only
one container shown at a time. For example, multiple ContentPanes might con-
tain individual slides for a presentation, and a StackContainer could be used to
combine them all into a presentation. StackContainers are also very handy for
applications that have multiple “screens” that need to be displayed without the
page ever reloading.

AccordionContainer
Displays one tile at a time, and when another tile is selected, the previously dis-
played tile folds up with a smooth animation. Content for tiles that are not ini-
tially displayed may be lazy-loaded.

BorderContainer
Provides a convenient way to easily achieve a typical “headline” style or “side-
bar” style layout where there are multiple tiles on the screen and some of them
span the entire height and width while others do not. Achieving a more complex
layout “border-style” layout with up to five tiles on the screen (four tiles around
the edges and a center tile that fills in the remainder) is trivial to achieve.

Application Dijits
Application dijits are the “other” category; they are all very common elements for
any application that even begins to approach RIA functionality. Menus, toolbars,
dialog overlays, and rich text editors are all part of the mix, and these dijits are so
easy to use that you can’t avoid wanting to:

Menu
Provides a contextual popup menu similar to what is commonly seen from right-
clicking in a desktop application. Menu is also used to build complex buttons like
ComboButton and DropDownButton to offer advanced functionality.

Toolbar
Provides a container for complex buttons such as ToggleButton that supply the
controls for a toolbar, although any button dijit may be included in a toolbar.

Overview of Stock Dijits | 269

Dialog
Simulates an ordinary desktop dialog box, complete with a translucent overlay
that prevents interaction with content “below” the dialog. Dialog dijits are a fan-
tastic, easily maintainable alternative to pop-up windows for many use cases,
especially when any kind of communication or DOM manipulation would be
necessary between multiple windows.*

TooltipDialog
A combination of Tooltip and Dialog, which allows for delivering a dialog-style
input in a tooltip. A key difference between Dialog and TooltipDialog is that the
TooltipDialog may be dismissed by clicking anywhere not on the TooltipDialog,
whereas a Dialog provides a translucent underlay that prevents interaction with
the rest of the page until the Dialog is explicitly closed.

ProgressBar
Models ordinary progress bars as commonly seen in virtually every desktop
application. ProgressBar dijits are the standard way of providing feedback on a
long-running operation or an asynchronous call back to the server that takes
longer than a few seconds. ProgressBar dijits may be determinate, providing a
percentage complete as the indicator, or indeterminate, providing an arbitrary
animation that indicates something is happening.

TitlePane
Offers functionality for displaying a pane of information with a title area on top.
While the content of the pane may be closed or opened by clicking on an icon in
the title area, the title area is always visible.

Tooltip
A much more flexible alternative to the ordinary title attribute for ordinary
HTML controls. Timing and arbitrary HTML may be included in the tooltip
text.

InlineEditBox
A sort of widget wrapper that displays the widget’s value, which appears like a
label; however, the widget transforms into its editable form when the text is
clicked. (Very rich functionality.)

ColorPalette
By default, displays a 3 × 4 or 7 × 10 matrix of commonly used colors for users to
select in a highly useful way. ColorPalette may be extended to display arbitrary
color configurations.

Editor
Provides the equivalent of a minimally function rich-text editor, complete with a
toolbar that is pre-configured for cut/copy/paste, undo/redo, text-alignment, basic
markup such as bold/italic/strikethrough, and the ability to create bulleted lists.

* For some browsers, manipulating DOM nodes that are in another window isn’t even possible because of
security restrictions.

270 | Chapter 11: Dijit Overview

The toolbar may be customized as needed. A ridiculous amount of functionality is
packed into this dijit, and it’s much more lightweight than you might think, as
Editor builds off of specific native controls such as Firefox’s Midas rich text editor.

Tree
Delivers a tree with nodes that may be arbitrarily nested and closed/expanded as
needed. This interface control is commonly used to deliver long, hierarchical
lists of information. Content for nodes that are not expanded by default may be
lazy-loaded; this dijit uses the terrific dojo.data API to deliver its content.

Dijit API Drive-By
The functions listed in Table 11-4 are too commonly used not to especially call out.
They’re available as part of Dijit Base and get pulled in whenever you require Dijit
resources into the page. You can also fetch them by issuing a dojo.require("dijit.
dijit") statement, as they are included in the standard build profile, which you’ll
read more about in Chapter 16.

For comprehensive API documentation, visit Dojo’s online documen-
tation at http://api.dojotoolkit.org.

Table 11-4. Commonly used Dijit functions

Function/Member Comment

dijit.registry() The registry contains a complete record of all dijits that
are on the page and may be used to explicitly iterate
through them, to check for the existence of a particular
dijit, etc. For example, you could uniformly manipulate
every dijit on a page via the dijit.registry.
forEach function or you could query the page for a
particular type of widget via dijit.registry.
byClass (where “class” is in the OOP sense).

dijit.byNode(/* DOM Node */ node) Given a node, returns the dijit that represents this
node.

dijit.getEnclosingWidget(/* DOM Node */ node) Given a node, returns the dijit whose DOM tree con-
tains this node. This method is especially handy for sit-
uations in which you need a quick reference to a dijit
via a DOM event. For example, you might use this
method to easily find a dijit via the target property
of the event object that is associated with a mouse
click when a user clicks the mouse on some part of a
dijit.

http://redesign.dojotoolkit.org/
http://api.dojotoolkit.org

Summary | 271

While these aren’t the only API methods you’ll want to be aware of, they’re some of
the most common ones, and they will save you a lot of time if you can remember that
they exist.

Summary
After reading this chapter, you should understand:

• The basic philosophy behind the design of Dijit

• The importance of low coupling and high cohesion in developing a complex
application and the way that Dijit leverages these concepts to encapsulate func-
tionality in dijits

• The importance of accessibility (a11y) in an application, as well as W3C Web
Accessibility Initiative for Accessible Rich Internet Applications, and the basic
a11y approach taken by Dijit

• That dijits can be implemented in markup such that they provide the same func-
tionality as they would had they been created programmatically, and how to
apply dojo/method and dojo/connect SCRIPT tags to a dijit in markup

• The difference between a DOM node and a dijit; the difference between dojo.byId
and dijit.byId; the difference between DOM events and dijit events

• The basic steps the parser takes to instantiate a dijit that is defined in markup

• The basic architectural breakdown of Dijit into form dijits, layout dijits, and gen-
eral purpose application dijits, as well as where to start looking for a particular
kind of dijit

Next we’re going to take a look at Dijit’s anatomy and lifecycle.

dijit.getViewport() Returns the dimensions and scroll position of the view-
able area of a browser window—extremely useful for
programmatically placing objects on the screen when
the exact screen resolution or window size cannot be
assumed. Often used in animations.

dijit.byId(/* String */ id) Looks up a dijit on the page by the id value included
in its original dojoType tag or passed in through
programmatic creation. This function differs from
dojo.byId in that dojo.byId returns a DOM
node, whereas this function returns an actual dijit (a
Function object).

Table 11-4. Commonly used Dijit functions (continued)

Function/Member Comment

272 | Chapter 12: Dijit Anatomy and Lifecycle

Chapter 12CHAPTER 12

Dijit Anatomy and Lifecycle 12

Like object-oriented concepts from any other programming paradigm, Dojo
widgets—dijits—follow particular patterns for lifecycle events such as creation and
destruction, are composed according to a particular an anatomical style, and are
described by a somewhat specialized vocabulary. This chapter provides a summary
of these topics with an extended discussion on the fundamentals of custom dijit
design.

Dijit Anatomy
Although you already know that dijit is short for “Dojo widget,” it’s helpful to elabo-
rate just a bit before we proceed any further. To be precise, a dijit is any Dojo class
that inherits from a foundational class from Dijit called _Widget. This class is part of
the toolkit’s foundational dijit module, so the fully qualified name of the class is
dijit._Widget. There are several other foundational classes from Dijit that you’ll
learn about, but _Widget is the one that provides the primary ancestor for any dijit.

As you learned in Chapter 10, dojo.declare saves you from writing a lot of mundane
boilerplate; dijits follow suit by tucking away a lot of complexity in classes like _Widget.
As you’re about to see, there are a number of method stubs that you can override to
achieve custom behavior, as opposed to engineering your own boilerplate.

You may be wondering why the _Widget class is prefixed with a leading
underscore. When used in relation to dijits, the leading underscore
almost always means that it should not be instantiated on its own.
Rather, it is usually used as a superclass for an inheritance relationship.

Let’s start out our discussion on dijits with the familiar constructs that define a dijit
on a physical level—the HTML, CSS, JavaScript, and other static resources that
you’ve been developing with all along. Then, with both feet firmly planted, we’ll dig
deeper into the dijit lifecycle model by building upon your knowledge of dojo.declare
and work through a number of increasingly complex code examples that involve the
design of a custom dijit.

Dijit Anatomy | 273

Web Development Review
As anyone who’s ever touched a computer knows, HTML is the de facto standard for
displaying information in a web browser. You can standardize headings, paragraph
division, form fields, and generally provide just about any kind of markup that’s use-
ful for displaying textual information and images. Still, HTML alone isn’t very pleas-
ing to the eye: there’s no nice formatting involved, and the content is static. The
overall structure of a page is quite simple, and it doesn’t change in response to user
interaction. Given what we’ve come to expect over the years, the web would be intol-
erably boring with HTML alone.

Bring in a dash of CSS, however, and the scene changes significantly. Suddenly, the
aesthetic nature of the page improves. Whereas HTML alone provides content with
very little visual appeal, CSS adds value by improving a page’s layout and typeset-
ting. But style alone still results in a static page that leaves the inherent dynamism of
human interaction longing for something with a little more life. You could create
some nicely typeset pages with HTML and CSS, but that’s about it.

JavaScript provided the dynamism that styled HTML so sorely lacked and gave rise
to DHTML, which fueled the increasingly interactive online experience that blos-
somed into this modern era of rich Internet applications. JavaScript brings a web
page to life and enables that sheer contentment we enjoy when a simple mouse click,
selection in a combo box, or casual keystroke makes you wonder if the computer is
reading your mind.

Although we’ve all come to know a well-designed, interactive web page when we see
one, the experience itself can still be quite difficult to achieve; the JavaScript that
controls the HTML and CSS can often be quite complex, and even the cleverest of
implementations may not be maintainable or especially noteworthy. The central
issue at stake is that the HTML, CSS, and JavaScript can be difficult to integrate into
a single, cohesive framework. With little cohesion amongst them in ad-hoc designs,
synergy is difficult to achieve, and massive amounts of energy is lost in implement-
ing the not-so-interesting boilerplate. Unfortunately, this laborious process can
quickly drain motivation and creativity from the parts of the application that really
matter.

Dijits to the Rescue
Fortunately, dijits make matters much easier by providing the foundation upon
which you can build a more complex design. They unite the HTML, CSS, and Java-
Script into a unified medium, and although not perfect, dijits allow you to think in
an object-oriented context much more quickly than you would without them: the
end result is that you can quickly get to the heart of your own application before so
much of the energy and creativity dries up. Whereas you previously had to provide
your own means of uniting the HTML, CSS, and JavaScript, Dojo now does that tire-
some work for you, and leaves you to get to the good stuff more quickly.

274 | Chapter 12: Dijit Anatomy and Lifecycle

Just like standalone classes, dijits are self-contained inside of a single directory that
corresponds to a namespace. In addition to a single JavaScript file, however, the
directory also contains dependencies such as image file and stylesheets. The inherent
familiarity of a directory structure provides an innate portability that makes it trivial
to share, deploy, and upgrade dijits. Maintenance is also eased because there are no
binary formats to unravel, and each component of a dijit can be checked into a ver-
sion control system like Subversion as a separate file.

While all of the resources that compose a dijit could just be thrown into a single
directory in the one-big-pair-of-clown-pants approach, Figure 12-1 displays a com-
mon convention for laying out a dijit on disk. Basically, the convention is to just
compartmentalize the various facets into subdirectories to make things more
manageable.

Dijits unite the HTML, CSS, and JavaScript that are so very central to any web devel-
opment effort and provide you with a single, unified means of structuring the creativ-
ity required of your own application. In the end, you’ll save time, effort, and likely
obtain a more efficient design. Note that the layout for a minimal dijit that doesn’t
include a template or CSS is simply a directory with a JavaScript file.

The layout shown in Figure 12-1 shows the template contained in its own separate
HTML file, and this setup is typical during the development cycle because it allows
members of the development team to work on the template, CSS, and JavaScript files
separately.

Fetching the template requires the JavaScript engine to issue a synchronous call back
to the server; however, Dojo provides a wonderful way to optimize that synchro-
nous call out the picture entirely: you can include the template as an inline string
that’s inside of the JavaScript file. Plenty of examples are coming up that illustrate
how simple it is to make this happen.

Figure 12-1. Anatomy of a dijit on disk

module

templates/Widget.js themes/

Widget.html widget_theme/

widget_theme.css

Dijit Lifecycle Methods | 275

Dijit Lifecycle Methods
Let’s now turn our attention to the central dijit lifecycle methods that _Widget pro-
vides. As you’re about to see, _Widget packs a lot of power with only minimal effort
required on your part. By simply including it as the primary superclass ancestor in
the inheritance hierarchy, your subclass has immediate access to the standard dijit
lifecycle methods it provides, and you may override any of these method stubs to
produce custom behavior during the construction and destruction of the dijit.

For example, _Widget provides stubs to override before a dijit appears on screen,
immediately after a dijit becomes visible, and when a dijit is just about to be
destroyed. Each of these choke points can be immensely valuable times to synchro-
nize with the server-side model, explicitly destroy objects (so as to avoid well-known
memory leaks), or do some tactical DOM manipulation. Regardless of the particu-
lars for each and every situation, this is boilerplate that you don’t have to write; it’s
already in place, and you can use it if and when you need it.

To introduce what _Widget offers, Example 12-1 shows a simple class that defines a
class inheriting from _Widget and overriding the key methods involved in construc-
tion and destruction to produce debugging messages in the Firebug console. As you
know from the last chapter, this file would be named Foo.js, and would be located in
a directory named after the module—nothing more than a class mapped to a
namespace.

The key point to observe in this example is that you override the inherited methods
from _Widget just like you would expect. Take a look, and then we’ll review each of
these methods in more detail.

Example 12-1. Subclassing from _Widget

dojo.require("dijit._Widget");
dojo.addOnLoad(function() {
 dojo.declare(
 "dtdg.Foo", // the subclass
 dijit._Widget, // the superclass
 {
 /* Common construction methods in chronological order */
 constructor : function() {console.log("constructor");},
 postMixInProperties : function() {console.log("postMixInProperties") ;},
 postCreate : function() {console.log("postCreate");},

 /* Your clever logic goes here */
 talk : function() {console.log("I'm alive!");},

 /* Canonical destructor, implicitly called via destoryRecursive() */
 uninitialize : function() {console.log("uninitialize");}
 }
);
});

276 | Chapter 12: Dijit Anatomy and Lifecycle

When you run that example, you should notice the following output in the Firebug
console:

constructor
postMixInProperties
postCreate
I'm alive!
uninitialize

The _Widget Lifecycle
To come full circle to the discussion about the creation pattern dojo.declare pro-
vides from back in Chapter 10, here’s how the _Widget lifecycle plugs in:

preamble(/*Object*/ params, /*DOMNode*/node)
 //precursor to constructor; can manipulate superclass constructor args

constructor(/*Object*/ params, /*DOMNode*/node)
 // fire any superclass constructors
 // fire off any mixin constrctors
 // fire off the local class constructor, if provided

postscript(/*Object*/ params, /*DOMNode*/node)
 //_Widget implements postscript to kick off the create method...
 _Widget.create(/*Object*/params, /*DOMNode*/node)
 _Widget.postMixInProperties()
 _Widget.buildRendering()
 _Widget.postCreate()

The take away is two-fold:

• _Widget builds right on top of what dojo.declare already provides and hooks
into the postscript method in order to fire off the create method that systemati-
cally calls _Widget specific lifecycle methods.

• A widget, as an ancestor of _Widget, is a bona fide JavaScript Function object.
Sure, there’s a lot of flare and pizzazz involved, but in the end, it comes right
back to the basics.

Lifecycle methods

A flattened version of the lifecycle follows along with a short synopsis of what each
_Widget lifecycle method accomplishes. It’s flattened out and starts with preamble
because it’s quite uncommon to override postscript or the create method yourself
(although you could if you wanted to devise your own widget lifecycle methods
instead of using the standard ones). Expanded examples that more thoroughly cover
each method appear later in this chapter.

foo = new dtdg.Foo();
foo.talk();
foo.destroyRecursive(); /* Calls uninitialize, among other things */

Example 12-1. Subclassing from _Widget (continued)

Dijit Lifecycle Methods | 277

preamble (originating from dojo.declare)
Preamble provides an opportunity to manipulate arguments before constructor
receives them. If you override preamble, know that the same arguments that
would normally be passed to constructor are passed to preamble and whatever
preamble returns is what gets passed into constructor. This method is somewhat
of an advanced feature and used infrequently compared to other lifecycle meth-
ods such as, for example, postCreate.

constructor (originating from dojo.declare)
This is the first method that you can override to perform custom behavior dur-
ing dijit construction. There are two particularly common operations that are
performed in constructor. One is including the initialization of dijit properties
that are not primitive types. (Recall from Chapter 10 that declaring a complex
type like an object or list inline as an object property causes it to be shared by all
object instances.) Another common operation is adding any additional proper-
ties that are relied upon by other lifecycle methods downstream.

postMixInProperties (originating from dijit._Widget)
This method is called just after Dojo has walked the inheritance hierarchy and
mixed all of the ancestors into the class. Thus, the name postMixInProperties liter-
ally refers to the time at which all a widget’s properties have been mixed into the
particular object instance. Therefore, by the time this method executes, your class
has full access to those inherited properties and can manipulate them before the
dijit visibly appears on the screen. As we’ll soon see in an example that illustrates
dijits that derive from a template, this method is typically the place where you’ll
modify or derive placeholders (indicated by ${someWidgetProperty} style notation)
that appear in the template’s markup.

buildRendering (originating from dijit._Widget)
In _Widget’s implementation, this method simply sets the internal _Widget.domNode
property to an actual DOM element so that the dijit physically becomes a part of
the page. Given that this method fires directly after postMixInProperties, it should
now be all the more apparent why postMixInProperties is the canonical location
for modifying a widget’s template.

As you’ll soon learn, another foundational Dijit class, _Templated, overrides this
method to perform all of the myriad details that are involved in fetching and
instantiating a dijit’s template. Finally, note that just after buildRendering is
called, the dijit itself is added to Dojo’s dijit manager object so that the dijit can
be properly destroyed during explicit destructor methods and/or when the page is
unloaded. Some browsers do have well-known memory leaks that become rele-
vant for long-running applications, and tracking widgets through a centralized reg-
istry is Dojo’s way of helping to alleviate that problem. It is quite uncommon to
override this method; you’ll normally use the default implementation from _Widget
or _Templated.

278 | Chapter 12: Dijit Anatomy and Lifecycle

postCreate (originating from dijit._Widget)
This method executes once the dijit has been created and visibly placed in the
page, so you can use it to perform any actions that might not otherwise be possi-
ble or prudent until that time. Take special care to perform actions that affect
things such as a dijit’s style or placement on the screen in postMixInProperties
so that they occur before the dijit becomes visible. Performing those actions in
postCreate may sometimes cause intermittent display “jerks” because you’re
manipulating the already visible dijit in this method; these issues can be difficult
to locate and fix if you’ve forgotten the fundamental differences between
postMixInProperties and postCreate. Additionally, note that if your dijit con-
tains any child dijits, these children are not safely accessible here. To safely
access child dijits, use the lifecycle method startup instead. To safely access
other nonchild widgets, wait until the page has loaded via using dojo.addOnLoad.

startup (originating from dijit._Widget)
For child widgets declared in markup, this method automatically fires once the
widget and all child widgets have been created. As such, this is the first safe
place that a child widget could safely reference a child. As simple as it sounds,
this task is often attempted in postCreate, which can lead to inconsistent behav-
ior that can is difficult to detect and repair. For programmatically created wid-
gets that contain other child widgets as part of a has-a relationship, you’ll need to
manually call startup yourself when you’re sure that all child widgets have been
created. The reason that you need to call it yourself for programmatically created
widgets containing children is because it wouldn’t make sense to proceed with siz-
ing and rendering unless all child widgets have been added. (Otherwise, there
could very well be lots of false starts.) This method is the final method stub that
you can override for custom behavior to occur during dijit construction.

destroyRecursive (originating from dijit._Widget)
This method is the generic destructor to call in order to cleanly do away with a
dijit and any of its child dijits. In the processing of destructing a dijit, this
method calls uninitialize, which is the primary stub method that you can over-
ride to perform custom tear down operations. Do not override destroyRecursive.
Provide custom tear-down operations in uninitialize and call this method (it
does not get automatically called), which takes care of the rest for you.

uninitialize (originating from dijit._Widget)
Override this method to implement custom tear-down behavior when a dijit is
destroyed. For example, you might initiate a callback to the server to save a ses-
sion, or you might explicitly clean up DOM references. This is the canonical
location that all dijits should use for these destruction operations.

Dijit Lifecycle Methods | 279

Knowing the intricacies that distinguish the various lifecycle methods
from one another is absolutely essential. Take special care to remem-
ber what type of behavior should be occurring in each method.

Especially common mistakes include:

• Trying to manipulate a template after postMixInProperties has
been called

• Modifying a widget’s initial appearance after postMixInProperties
has been called

• Trying to access child widgets in postMixInProperties instead of
startup

• Forgetting to perform any necessary destruction in uninitialize

• Calling uninitialize instead of destroyRecursive

Essential properties

In addition to the _Widget methods just described, there are also some especially
notable properties. Just like dijit methods, you can reference these properties with
dot notation. You’ll generally treat these properties as read-only:

id
This value provides a unique identifier that is assigned to the dijit. If none is pro-
vided, Dojo automatically assigns one. You should never manipulate this value,
and in most circumstances, you won’t want to use it at all.

lang
Dojo supports features for internationalization, and this value can be used to
customize features such as the language used to display the dijit. By default, this
value is defined to match the browser’s setting, which usually matches that of
the operating system.

domNode
This property provides a reference to the dijit’s most top-level node. This prop-
erty is the canonical node that is the visible representation of the dijit on the
screen, and although you’ll probably want to avoid direct manipulation of this
property, it is helpful for some debugging scenarios. As previously mentioned,
_Widget’s default implementation of buildRendering sets this property, and any
methods that override buildRendering should assume this responsibility or else
strange, mysterious things may happen. If a dijit doesn’t appear on screen, this
value resolves to undefined.

Just in case you’re wondering, here’s a simple code snippet with the corresponding
Firebug console output that illustrates dijit properties. Again, all of the properties are
inherited from _Widget and are available via this, when this refers to the context of
the associative array that is the third argument to dojo.declare:

280 | Chapter 12: Dijit Anatomy and Lifecycle

dojo.require("dijit._Widget");
dojo.addOnLoad(function() {
 dojo.declare(
 "dtdg.Foo",
 dijit._Widget,
 {
 talk() : function() {
 console.log("id:", this.id);
 console.log("lang:", this.lang);
 console.log("dir:", this.dir);
 console.log("domNode:", this.domNode);
 }
 }
);
});
foo = new dtdg.Foo();
foo.talk();

Mixing in _Templated
While _Widget provides the foundational stub methods that you can override for cre-
ation and destruction events that occur during the lifecycle, _Templated is the previ-
ously alluded-to ancestor that actually provides the basis for defining a widget’s
template in markup and using substitutions and attach points to add functionality to
it. Overall, it’s a nice separation that lends itself to tooling and separates designer
tasks from coding.

The vast majority of _Templated’s work involves parsing and substituting into a tem-
plate file. An important part of this work entails overriding _Widget’s buildRendering
method, which is where all of the template mangling takes place. Three very impor-
tant concepts for templates include:

Substitution
Dijit uses the dojo.string module to perform substitutions into templates using
the ${xxx} style dojo.string syntax. This is handy for taking widgets attributes
that are passed in on construction and using them to customize templates.

Attach points
When the special dojoAttachPoint attribute is used in a template node, it pro-
vides the ability to directly reference the node via the attribute value. For example,
if a node such as ... appears in a template,
you could directly reference the node as this.foo (in postCreate or later).

Event points
Similar to attach points, you can use the special dojoAttachEvent attribute to cre-
ate a relationship between a DOM event for a node in a template and a widget
method that should be called when in response to the DOM event. For example, if
a node were defined, such as ...,
the widget’s foo method would be called each time a click occurred on the node.
You can define multiple events by separating them with commas.

Dijit Lifecycle Methods | 281

Like _Widget, _Templated is given more thorough coverage with some isolated exam-
ples in just a moment. You’re being exposed to it now so that you have a general idea
of its overall purpose.

Lifecycle methods

The most notable effect of mixing in _Templated is that it results in overriding _Widget’s
buildRendering method. Here’s a synopsis of buildRendering:

buildRendering
While _Widget provides this method, _Templated overrides it to handle the messy
details associated with fetching and instantiating a dijit’s template file for on
screen display. Generally speaking, you probably won’t implement your own
buildRendering method. If you ever do override this method, however, ensure
that you fully understand _Templated’s implementation first.

Essential properties

Here are _Templated’s essential properties:

templatePath
Provides the relative path to the template file for the dijit, which is simply some
HTML. Note that fetching the template for a dijit requires a synchronous net-
work call, although Dojo will cache the template string after it is initially fetched.
A discussion of producing a custom build of your dijits with tools from Util so
that all template strings are interned is included in Chapter 16.

templateString
For dijits that have been designed or built to have their template strings interned

inside of the JavaScript file, this value represents the template. If both
templatePath and templateString are defined, templateString takes precedence.

widgetsInTemplate
If dijits are defined inside of the template (either path or string), this value

should be explicitly set to true so that the Dojo parser will know to search for
and instantiate those dijits. This value is false by default. Including dijits inside
of other dijit templates can be quite useful. A common mechanism for passing
values into child widgets that appear in a parent widget’s template is via the
${someWidgetProperty} notation that is used for substitution.

containerNode
This value refers to the DOM element that maps to the dojoAttachPoint tag in the
web page that contains your dijit. It also specifies the element where new children
will be added to the dijit if your dijit is acting as a container for a list of child dijits.
(Dijits that act as containers multiply inherit from the Dijit _Container class, and
the dijits that are contained inherit from the Dijit class _Contained.)

282 | Chapter 12: Dijit Anatomy and Lifecycle

Your First Dijit: HelloWorld
After all of that narrative, you’re no doubt ready to see some code in action. This sec-
tion provides a series of increasingly complex “HelloWorld” examples that demon-
strate fundamental concepts involved in custom dijit design.

Let’s build a canonical HelloWorld dijit and take a closer look at some of the issues
we’ve discussed. Although this section focuses exclusively on what seems like such a
simple dijit, you’ll find that there are several intricacies that we’ll highlight that are
common to developing any dijit.

Figure 12-2 illustrates the basic layout of the HelloWorld dijit as it appears on disk.
There are no tricks involved; this is a direct instantiation of the generic layout pre-
sented earlier.

HelloWorld Dijit (Take 1: Bare Bones)
The first take on the HelloWorld dijit provides the full body of each component. For
brevity and clarity, subsequent iterations provide only relevant portions of compo-
nents that are directly affected from changes. As far as on disk layout, these exam-
ples assume that the main HTML file that includes the widgets is located alongside a
dtdg module directory that contains the widget code.

HTML page

First, let’s take a look at the HTML page that will contain the dijit, shown in
Example 12-2. Verbose commenting is inline and should be fairly self-explanatory.

Figure 12-2. Basic layout of a minimalist HelloWorld dijit

dtdg

templates/HelloWorld.js themes/

HelloWorld.html hello/

hello.css

Your First Dijit: HelloWorld | 283

Example 12-2. HelloWorld (Take 1)

<html>
 <head>
 <title>Hello World, Take 1</title>

<!--
 Because Dojo is being served from AOL's server, we have to provide a
 couple of extra configuration options in djConfig as the XDomain
 build (dojo.xd.js) gets loaded.

 Thus, we associate the "dtdg" namespace w/ a particular relative path
 on disk by specifying a baseUrl along with a collection of namespace mappings.
 If we were using a local copy of Dojo, we could simply stick the
 dtdg directory beside the dojo directory and it would have been
 found automatically.

 Specifying that dijits on the page should be parsed on page load
 is normally standard for any situation in which you have dojoType tags in the page.

-->
 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig=isDebug:true,parseOnLoad:true,baseUrl:'./',modulePaths:{dtdg:'dtdg'}">
 </script>

<!--
 You'll normally include the dojo.css file, followed by
 any of your own specific style sheets. Remember that if you're not using
 AOL's XDomain build, you'll want to point to your own local dojo.css file.
-->
<link
 rel="stylesheet"
 type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css">
</link>

<link
 rel="stylesheet"
 type="text/css"
 href="dtdg/themes/hello/hello.css">
</link>

<script type="text/javascript">

 dojo.require("dojo.parser");

 //Tell Dojo to fetch a dijit called HelloWorld that's associated
 //with the dtdg namespace so that we can use it in the body.
 //Dojo will use the values in djConfig.modulePaths to look up the location.
 dojo.require("dtdg.HelloWorld");
</script>

284 | Chapter 12: Dijit Anatomy and Lifecycle

What you just saw is almost the bare minimum that would appear in any page that
contains a dijit. There is a token reference to any relevant style sheets that are spiff-
ing up the dijits, the customary reference to Base that bootstraps Dojo, and then we
explicitly dojo.require in the parser and HelloWorld dijit we’re using in the body of
the page. The only remotely tricky thing about any of these things is properly map-
ping the dtdg module to its path on disk in djConfig.modulePaths.

CSS

A widget’s style consists of ordinary CSS and any static support that may be neces-
sary, such as images. The neat thing, however, is that the actual style for the dijit is
reflected in the dijit template—not in the DOM element where the dojoType tag is
specified. This is particularly elegant because it essentially makes your dijits skinna-
ble, or in Dojo parlance, you can define themes for your dijits and change these
themes by swapping out stylesheets.

In our example dijit, the style for an individual DIV element is purely pedagogical but
does illustrate how you could style your own dijits. Our HelloWorld theme consists
of a single CSS file with nothing more than the following style in it:

div.hello_class {
 color: #009900;
}

Template

Just like the style, our HTML template for the HelloWorld is minimal. We’re simply
telling Dojo to take the DIV tag that was specified in our HTML page and swap it out
with whatever our template supplies—in this case, our template just happens to sup-
ply another DIV element with some style and inner text that says “Hello World”.

Our actual template file contains nothing more than the following line of HTML:

<div class="hello_class">Hello World</div>

</head>
<body>
 <!--
 This is where the Dojo parser swaps in the dijit from the
 dojo.require statement based on our parseOnLoad:true option.
 Any styles applied to the dijit are provided by the style sheets imported.
 -->
 <div dojoType="dtdg.HelloWorld"></div>
</body>
</html>

Example 12-2. HelloWorld (Take 1) (continued)

Your First Dijit: HelloWorld | 285

JavaScript

Although it looks like there’s an awful lot going on in the JavaScript, most of the
substance is simply extra-verbose commenting. We’re still dealing with the basic
constructs that have already been reviewed, and you’ll see that it’s actually pretty
simple. Go ahead and have a look, and then we’ll recap on the other end. As you’ll
notice, the JavaScript file is just a standard module:

//Summary: An example HelloWorld dijit that illustrates Dojo's basic dijit
//design pattern

//The first line of any module file should have exactly one dojo.provide
//specifying the resource and any membership in parent modules. The name
//of the resource should be the same as the .js file.
dojo.provide("dtdg.HelloWorld");

//Always require resources before you try to use them. We're requiring these
//two resources because they're part of our dijit's inheritance hierarchy.
dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

//The feature rich constructor that allows us to declare Dojo "classes".
dojo.declare(
 "dtdg.HelloWorld",

 //dijit._Widget is the prototypical ancestor that provides important method
 //stubs like the ones below.
 //dijit._Templated is then mixed in and overrides dijit._Widget's
 //buildRendering method, which constructs the UI for the dijit from
 //a template.
 [dijit._Widget, dijit._Templated],
 {
 //Path to the template of this dijit. dijit._Templated uses this to
 //snatch the template from the named file via a synchronous call.
 templatePath: dojo.moduleUrl("dtdg", "templates/HelloWorld.html")
 }
);

In the inheritance chain, _Widget provides the prototypical ancestor that our dijit
inherits from to become a dijit. Because this first example is minimalist, we didn’t
need to override any of _Widget’s lifecycle methods, but examples that override these
methods are coming up. The mixin ancestor, _Templated, provides functionality that
pulls in the template by overriding _Widget.buildRendering. The actual template was
located via the templatePath property. Although using templatePath instead of
templateString incurred the overhead of a synchronous call back to the server, the
template gets cached after it has been retrieved. Therefore, another synchronous call
would not be necessary if another HelloWorld dijit came to exist in the same page.

286 | Chapter 12: Dijit Anatomy and Lifecycle

The first time Dojo fetches a template file for a dijit, the overhead of a
synchronous call back to the server is incurred. Afterward, the tem-
plate gets cached.

Although this example entails your screen simply displaying a message to the screen,
there’s a lot more than a print statement behind the scenes that makes this happen.
Moreover, the effort involved in HelloWorld is pretty much the minimal amount of
effort that would ever be required of any dijit.

Let’s solidify your understanding a bit more by filling in some of the method stubs to
enhance the dijit. Only instead of taking the direct route, we’ll take a few detours.
After all, what better way to learn?

HelloWorld Dijit (Take 2: Modifying The Template)
Suppose you want your dijit to be a little less generic. Instead of displaying the same
static message every time the page is loaded, a good first step might be to make the
custom message that is displayed dynamic. One of the wonderful mechanisms that
Dojo employs for keeping the logical concept of a dijit cohesive is that you can refer-
ence dijit properties that are defined in your JavaScript source file inside the tem-
plate. Although referencing dijit properties from inside the template is only useful
prior to _Templated’s buildRendering method executing, you’ll find that initializing
some portion of a dijit’s display before it appears on the screen is a very common
operation.

Referencing a dijit property from inside of the template file is simple. Consider the
following revision to the HelloWorld template file:

<div class="hello_class">${greeting}</div>

In short, you can refer to any property of the dijit that exists from inside of the tem-
plate file and use it to manipulate the initial display, style, etc. However, there is a
small but incredibly important catch: you have to do it at the right time. In particu-
lar, dijit properties that are referenced in templates are almost always most appropri-
ately manipulated in the postMixInProperties method. Recall that
postMixInProperties is called before buildRendering, which is the point at which
your dijit gets inserted into the DOM and becomes visible.

Recall that the canonical location to manipulate template strings is
within the dijit lifecycle method postMixInProperties, which is inher-
ited from _Widget. Manipulating template strings after this point may
produce undesirable intermittent display twitches.

Your First Dijit: HelloWorld | 287

Without further ado, Example 12-3 shows how the dijit’s JavaScript file should
appear if we want to manipulate the properties in the template to display a custom
greeting.

HelloWorld Dijit (Take 3: Interning the Template)
As alluded to earlier, you can save a synchronous call back to the server by specify-
ing the template string directly inside of your JavaScript file. The next variation on
the HelloWorld in Example 12-4 demonstrates just how easy this is to do manually,
but keep in mind that the Dojo build scripts found in Util can automate this process
for all of your dijits as part of a deployment routine.

Example 12-3. HelloWorld (Take 2: postMixInProperties)

//An example of properly manipulating a dijit property referenced
//in a template string via postMixInProperties
dojo.provide("dtdg.HelloWorld");

dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

dojo.declare(
 "dtdg.HelloWorld",
 [dijit._Widget, dijit._Templated],
 {

greeting : "",

 templatePath: dojo.moduleUrl(
 "dtdg",
 "templates/HelloWorld.html"
),

 postMixInProperties: function() {
 //Proper manipulation of properties referenced in templates.

this.greeting = "Hello World"; //supply as static greeting.
 }
 }
);

Example 12-4. HelloWorld (Take 3: templateString)

dojo.provide("dtdg.HelloWorld");
dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

dojo.declare(

288 | Chapter 12: Dijit Anatomy and Lifecycle

In this example, templateString provides the template inline, so there’s no need for a
separate template file. This, in turn, saves a synchronous call to the server. If you can
imagine lots of dijits with lots of template strings, it’s pretty obvious that baking the
template strings into the dijit’s JavaScript files can significantly reduce the time it
takes to load a page. For production situations, you won’t want to do without the
Util’s build system (Chapter 16) to automate these kinds of performance optimiza-
tions for you.

HelloWord Dijit (Take 4: Passing in Parameters)
As yet another improvement to our HelloWorld dijit, let’s learn how to pass in cus-
tom parameters to dijits through the template. Given the previous example, let’s sup-
pose that we want to supply the custom greeting that is to appear in our widget from
its markup that appears alongside the dojoType tag. Easy; just pass it in like so:

<div dojoType="dtdg.HelloWorld" greeting="Hello World"></div>

Passing in the parameter for a widget that is programmatically created is just as simple:

var hw = new dtdg.HelloWorld({greeting : "Hello World"}, theWidgetsDomNode);

Of course, you are not limited to passing in values that are reflected in the template.
You can pass in other parameters that are used in other ways as well. Consider the
following DIV element containing a reference to your HelloWorld dijit that specifies
two extra key/value pairs:

<div foo="bar" baz="quux" dojoType="dtdg.HelloWorld"></div>

Wouldn’t it be handy to be able to pass in custom data to dijits like that so that they
can use it for initialization purposes—allowing application-level developers to not

 "dtdg.HelloWorld",
 [dijit._Widget, dijit._Templated],
 {
 greeting : "",

 //Provide the template string inline like so...
templateString : "<div class='hello_class'>${greeting}</div>",

 postMixInProperties: function() {
 console.log ("postMixInProperties");

 //We can still manipulate the template string like usual
 this.greeting = "Hello World";
 }
 }
);

Example 12-4. HelloWorld (Take 3: templateString) (continued)

Your First Dijit: HelloWorld | 289

even have to so much as even peek at the source code and only hack on the template
a bit? Well, ladies and gentlemen, you can, and the JavaScript file in Example 12-5
illustrates just how to do it.

As you might have noticed, there’s an emphasis on making the point that you can
only pass in values for dijit properties that exist; you cannot create new dijit proper-
ties by tossing in whatever you feel like into the element that contains the dojoType
placeholder tag. If you run the previous code example and examine the Firebug con-
sole, you’ll see the following console output:

constructor: foo=bar
constructor: baz=undefined

While passing in string values to dijits is useful, string values alone are of limited util-
ity because life is usually just not that simple—but not to worry: Dojo allows you to
pass in lists and associative arrays to dijits as well. All that is required is that you
define dijit properties as the appropriate type in the JavaScript file, and Dojo takes
care of the rest.

Example 12-5. HelloWorld (Take 4: custom parameters)

dojo.provide("dtdg.HelloWorld");

dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

dojo.declare(
 "dtdg.HelloWorld",
 [dijit._Widget, dijit._Templated],
 {
 templateString : "<div class='hello_class'>Hello World</div>",

 foo : "",

 //you can't set dijit properties that don't exist
//baz : "",

 //tags specified in the element that supplies the dojoType tag
 //are passed into the constructor only if they're defined as
 //a dijit property a priori. Thus, the baz="quux" has no effect
 //in this example because the dijit has no property named baz
 constructor: function() {

 console.log("constructor: foo=" , this.foo);
 console.log("constructor: baz=" , this.baz);
 }

 }
);

290 | Chapter 12: Dijit Anatomy and Lifecycle

The following example illustrates how to pass lists and associative arrays into the
dijit through the template.

Including the parameters in the element containing the dojoType tag is straightforward:

<div
 foo="[0,20,40]"
 bar="[60,80,100]"
 baz="{'a':'b', 'c':'d'}"
 dojoType="dtdg.HelloWorld"
></div>

And the JavaScript file is just as predictable:

dojo.provide("dtdg.HelloWorld");

dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

dojo.declare(

 "dtdg.HelloWorld",

 [dijit._Widget, dijit._Templated],

 {
 templateString : "<div class='hello_class'>Hello World</div>",

 foo : [], //cast the value as an array
 bar : "", //cast the value as a String
 baz : {}, //cast the value as an object

 postMixInProperties: function() {
 console.log("postMixInProperties: foo[1]=" , this.foo[1]);
 console.log("postMixInProperties: bar[1]=" , this.bar[1]);
 console.log("postMixInProperties: baz['a']=", this.baz['a']);
 }

 }
);

Here’s the output in the Firebug console:

postMixInProperties: foo[1]=20
postMixInProperties: bar[1]=6
postMixInProperties: baz['a']=b

Note that even though the value associated with the dijit’s property bar appears to be a
list in the page that includes the template, it is defined as a string value in the JavaScript
file. Thus, Dojo treats it as a string, and it gets sliced as a string. In general, the parser
tries to interpret values into the corresponding types by introspecting them via duck
typing.

Your First Dijit: HelloWorld | 291

Take extra-special care not to incorrectly define parameter types in the
JavaScript file or it may cost you some debugging time!

HelloWorld Dijit (Take 5: Associating Events with Dijits)
As yet another variation on our HelloWorld dijit, consider the utility in associating a
DOM event such as a mouse click or mouse hover with the dijit. Dojo makes associ-
ating events with dijits easy. You simply specify key/value pairs of the form
DOMEvent: dijitMethod inside of a dojoAttachEvent tag that appears as a part of your
template. You may specify multiple key/value pairs or more than one kind of native
DOM event by separating them with a comma.

Let’s illustrate how to use dojoAttachEvent by applying a particular style that’s
defined as a class in a stylesheet whenever a mouseover event occurs and remove the
style whenever a mouseout event occurs. Because DIV elements span the width of the
frame, we’ll modify it to be an inline SPAN, so that the mouse event is triggered only
when the cursor is directly over the text. Let’s apply the pointer style to the cursor.

The changes to the style are simple. We change the reference to an inline SPAN
instead of a DIV and change the mouse cursor to a pointer:

span.hello_class {
 cursor: pointer;
 color: #009900;
}

The JavaScript file in Example 12-6 includes the updated template string, illustrating
that the use of dojoAttachEvent is fairly straightforward as well.

Example 12-6. HelloWorld (Take 5: dojoAttachEvent)

dojo.provide("dtdg.HelloWorld");

dojo.require("dijit._Widget");
dojo.require("dijit._Templated");

dojo.declare(
 "dtdg.HelloWorld",
 [dijit._Widget, dijit._Templated],
 {
 templateString :
 "<span class='hello_class' dojoAttachEvent='onmouseover:onMouseOver, onmouseout:
 onMouseOut'>Hello World",

 onMouseOver : function(evt) {
 dojo.addClass(this.domNode, 'hello_class');
 console.log("applied hello_class...");

292 | Chapter 12: Dijit Anatomy and Lifecycle

See how easy that was? When you trigger an onmouseover event over the text in the
SPAN element, style is applied with the dojo.addClass function, which is defined in
Base. Then, when you trigger an onmouseout event, the style is removed. Neat stuff!

Did you also notice that the event handling methods included an evt parameter that
passes in highly relevant event information? As you might have guessed, internally,
dojo.connect is at work standardizing the event object for you. Here’s the Firebug
output that appears when you run the code, which also illustrates the event informa-
tion that gets passed into your dijit’s event handlers:

applied hello_class...
mouseover clientX=64, clientY=11
removed hello_class clientX=65, clientY=16
mouseover clientX=65, clientY=16

Take care not to misspell the names of native DOM events, and ensure
that native DOM event names stay in all lowercase. For example,
using ONMOUSEOVER or onMouseOver won’t work for the onmouseover
DOM event, and unfortunately, Firebug can’t give you any indication
that anything is wrong. Because you can name your dijit event han-
dling methods whatever you want (with whatever capitalization you
want), this can sometimes be easy to forget.

To be perfectly clear, note that the previous example’s mapping of onmouseover to
onMouseOver and onmouseout to onMouseOut is purely a simple convention, although it
does make good sense and results in highly readable code. Also, it is important to
note that events such as onmouseover and onmouseout are DOM events, while
onMouseOver and onMouseOut are methods associated with a particular dijit. The dis-
tinction may not immediately be clear because the naming reads the same, but it is
an important concept that you’ll need to internalize during your quest for Dijit mas-
tery. The semantics between the two are similar and different in various respects.

 console.log(evt);
 },

 onMouseOut : function(evt) {
 dojo.removeClass(this.domNode, 'hello_class');
 console.log("removed hello_class...");
 console.log(evt);
 }

 }
);

Example 12-6. HelloWorld (Take 5: dojoAttachEvent) (continued)

Rapidly Prototyping Widgets in Markup | 293

Parent-Child Relationships with _Container and
_Contained
After you’ve been rolling with _Widget and _Templated for a while, it won’t be long
before you find that it’s convenient to have a widget that contains some children
widgets. The “has-a relationship” pattern is quite common in programming and it is
no different with Dojo. The _Container and _Contained mixins are designed to facili-
tate the referencing back and forth between parents and children that often needs to
happen. Table 12-1 summarizes the API.

You’ll see these mixins used extensively when you learn about the layout dijits. Next,
we’ll look at an example.

Rapidly Prototyping Widgets in Markup
Now that you have a feel for exactly how the widget lifecycle works and have seen
plenty of examples, it’s time to demonstrate a tool that you can use for quick, light-
weight prototyping. Declaration is a Dijit resource that allows you to declare a wid-
get in markup without resorting to a separate JavaScript file; this approach can be a
tremendous boon during a development cycle when you need to rapidly capture or
test out an idea.

Example 12-7 shows our very first HelloWorld widget using Declaration to create a
widget in a completely self-contained page.

Table 12-1. _Container and _Contained mixins

Name Comment

removeChild(/*Object*/ dijit) Removes the child widget from the parent. (Silently fails if
the widget is not a child or if the container does not have any
children.)

addChild(/*Object*/ dijit,
/*Integer?*/ insertIndex)

Adds a child widget to the parent, optionally using the
insertIndex to place it.

getParent() Allows a child to reference its parent. Returns a dijit instance.

getChildren() Allows a parent to conveniently enumerate each of its chil-
dren dijits. Returns an Array of dijit instances.

getPreviousSibling() Allows a child widget to reference its previous sibling, i.e.,
the one “to the left.” Returns a dijit instance.

getNextSibling() Allows a child widget to reference its next sibling, i.e., the
one “to the right.” Returns a dijit instance.

294 | Chapter 12: Dijit Anatomy and Lifecycle

Example 12-7. HelloWorld (Take 6: Declaration)

<html>
 <head>
 <title>Hello World, Take 6</title>

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="isDebug:true,parseOnLoad:true">
 </script>

 <link
 rel="stylesheet"
 type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css">
 </link>

 <!-- define your CSS inline -->
 <style type="text/css">
 span.hello_class {
 color: #009900;
 cursor: pointer;
 }
 </style>

 <script type="text/javascript">
 dojo.require("dijit.Declaration");
 dojo.require("dojo.parser");
 </script>
 </head>
 <body>

 <!-- delcare the widget completely in markup -->
 <div
 dojoType="dijit.Declaration"
 widgetClass="dtdg.HelloWorld"
 defaults="{greeting:'Hello World'}">
 <span class="hello_class"
 dojoAttachEvent='onmouseover:onMouseOver, onmouseout:onMouseOut'>
 ${greeting}

 <script type="dojo/method" event="onMouseOver" args="evt">
 dojo.addClass(this.domNode, 'hello_class');
 console.log("applied hello_class...");
 console.log(evt);
 </script>

 <script type="dojo/method" event="onMouseOut" args="evt">
 dojo.removeClass(this.domNode, 'hello_class');
 console.log("removed hello_class...");
 console.log(evt);

Summary | 295

Hopefully you made the immediate connection that Declaration is terrific for quickly
working up an example with no hassle. There’s no switching between and keeping
track of multiple files, declaring module paths, and otherwise spending time on any-
thing except the core task—so you can stay focused on the task at hand and get your
work done as effectively as possible. Table 12-2 shows the Declaration API.

The mixins attribute for a Declaration declared in markup must be an
Array. This is different from dojo.declare, which allows for the possi-
bility of either an Object ancestor or an Array of Object ancestors.

You’ll generally want to refactor the work you do with Declaration after your idea
settles, but there’s really no faster way to mock-up a good idea in a hurry.

Summary
After reading this chapter, you should:

• Be able to explain how dijits encapsulate the HTML, CSS, and JavaScript into a
standalone, portable unit of code

• Understand the key lifecycle events that _Widget provides with stub methods,
including the order they execute and the stubs they provide

• Understand how _Templated acts as a mixin ancestor for _Widget and provides
supplemental functionality for adding template support to dijits

• Understand the differences and trade-offs between using templatePath and
templateString in templated dijits

• Be able to successfully manipulate a dijit’s template before it is displayed on
screen

• Be able to pass in parameters to dijits through their templates

 </script>
 </div>

 <!-- now include it into the page like usual -->
 <div dojoType="dtdg.HelloWorld"></div>
 </body>
</html>

Table 12-2. Attributes of Declaration

Attribute Comment

widgetClass The widget’s class

defaults Attribute values that you’d normally pass in as parameters for construction

mixins An Array that defines any mixin ancestors

Example 12-7. HelloWorld (Take 6: Declaration) (continued)

296 | Chapter 12: Dijit Anatomy and Lifecycle

• Be able to programmatically create a widget and place it into the page

• Know how to add support for DOM events such as onmouseover in your dijits

• Be able to use Declaration to rapidly prototype in markup

A discussion of form widgets is next.

Drive-By Form Review | 297

Chapter 13 CHAPTER 13

Form Widgets13

This chapter provides systematic coverage of the various dijits that enable you to cre-
ate fantastic-looking forms with minimal effort. Like everything in Dijit, the controls
you’ll learn about in this chapter can be defined entirely in markup, require very lit-
tle JavaScript, and were designed with accessibility considerations in mind. With
that said, realize that you’re about to embark upon reading a very hefty chapter. The
functionality offered by dijit.form is quite intense, packing tons of breadth and
depth; the form dijits are by far the most object-oriented widgets in the toolkit, so
you’ll see deeper inheritance hierarchies via dojo.declare in this chapter than any-
where else in the book.

Drive-By Form Review
While the HTML 4.01 specification (http://www.w3.org/TR/html401/) provides the
authoritative specification on forms and is quite worthy of careful reading on its
own, this section attempts to summarize some of the most useful content about
forms that will help you to get the most out of this chapter. If you’re reading this
book, a working assumption is that you’ve designed a form or two, so it is not neces-
sary to belabor fact that a form is a collection of one or more controls that capture
information and send it back to a server for processing.

However, it is noteworthy to highlight that the AJAX revolution has really skewed
the paradigm of passing data to a server for processing. Previously, data would be
submitted to a server handler that broke it into convenient key/value pairs, used
these hashes as part of a processing routine, and then returned a new page that
somehow reflected these form choices. To make the whole process more elegant, the
form might have even been included in an iframe so that the effect of the page reload
would be minimized. Now, however, the XMLHttpRequest (XHR) object makes it easy
to asynchronously send small chunks of data to a server without an explicit form
submission or a page reload of any kind.

http://www.w3.org/TR/html401/

298 | Chapter 13: Form Widgets

Of course, the XHR object, AJAX, and slicker ways of interacting with the user cer-
tainly don’t make forms obsolete. Forms are still a battle-tested standard; they work
even when JavaScript is disabled, and they are important for accessible implementa-
tions. In general, it’s almost always a good idea to make sure that any fancy way of
passing information back to the server is degradable and accessible. In other words,
it isn’t a matter of “either forms or AJAX”; it’s a matter of “both forms and AJAX.”

For example, consider Example 13-1, an enhanced version of the plain vanilla form
from Chapter 1.

Example 13-1. Simple form

<html>
 <head>
 <title>Register for Spam</title>
 <script type="text/javascript">
 function help() {
 var msg="Basically, we want to sell your info to a 3rd party.";
 alert(msg);
 return false;
 }

 //simple validation
 function validate() {
 var f = document.getElementById("registration_form");

 if (f.first.value == "" || f.last.value == "" || f.email.value == "") {
 alert("All fields are required.");
 return false;
 }

 return true;
 }
 </script>
 <head>
 <body>
 <p>Just Use the form below to sign-up for our great offers:</p>
 <form id="registration_form"
 method="POST"
 onsubmit="javascript:return validate()"
 action="http://localhost:8080/register/">

 First Name: <input type="text" name="first"/>

 Last Name: <input type="text" name="last"/>

 Your Email: <input type="text" name="email"/>

 <button type="submit">Sign Up!</button>
 <button type="reset">Reset</button>
 <button type="button" onclick="javascript:help()">Help</button>

 </form>
 </body>
</html>

Drive-By Form Review | 299

While as bland as it can possibly get, this form is quite functional, and would behave
properly on virtually any browser; the incorporation of a nice CSS stylesheet could
make it look quite nice. There’s even a Help button to tell the user why the form
really exists. On the server side, a simple script would process the form, probably
after a web server has already distilled the named fields in the form out of their raw
format. A functional CherryPy script might process the form, as in Example 13-2.

While extremely simple, the previous example did touch on several fundamentals
regarding forms:

• Forms controls should be enclosed in a FORM tag.

• The FORM tag almost always includes name, method, onsubmit, enctype, and action
attributes that provide pertinent information about how the form should be
processed.

• The onsubmit attribute is the standard way of performing client-side validation.
Returning false from a validation routine prevents the form from being submit-
ted to the server.

• The action attribute provides the URL for submitting the form.

• Form fields that represent meaningful state should include a name attribute,
which is what most server-side frameworks will collect into key/value pairs and
pass to the specific routine that handles the form submission.

Example 13-2. CherryPy script to process a form

import cherrypy
class Content:
 """
 A routine for processing a form submission.
 Named form fields are easily accessible.
 """
 @cherrypy.expose
 def register(self, first=None, last=None, email=None):

 #add user information to evil database here...

 #send back this customized html page
 return """
 <html>
 <head><title>You're now on our spam list!</title></head>
 <body>
 <p>Congratulations %s %s, you're gonna get spammed!</p>
 </body>
 </html>
 """ % (first, last) #substitute in variables

cherrypy.quickstart(Content())

300 | Chapter 13: Form Widgets

• Forms are innately accessible with the keyboard; tabs move between fields* and
the Enter key submits the form. Although not demonstrated, the tabindex
attribute can change the default tab order.

• In general, there are multiple kinds of controls, as specified by the type attribute.
This particular example illustrated three different kinds of buttons: one for trig-
gering the onsubmit event, one for resetting the form, and one for handling a cus-
tom action.

• Submitting a form necessarily reloads the page with whatever the server returns if
an action attribute is provided in the form. If no action attribute is provided,
custom JavaScript or DHTML actions could be taken by attaching scripts to
DOM events such as onlick.

Throughout this chapter, the term “attribute” is frequently used to
describe both form attributes and object attributes. The intended
usage should be apparent from context and is not anything to get
hung up over.

While nowhere near exhaustive, hopefully this brief review sets the stage for a dis-
cussion of the various form dijits. For a great desktop reference on HTML forms,
consider picking up HTML & XHTML: The Definitive Guide by Chuck Musciano
and Bill Kennedy (O’Reilly).

Form Dijits
Form dijits that are explicitly declared suitable for use in bona fide HTML forms, as
defined with the FORM tag, are a part of the dijit.form namespace. This section walks
through all of the dijits included in this namespace, providing example code and
sample screenshots that use Dijit’s built-in tundra theme. But first, it’s worth reiterat-
ing that all form dijits are designed to be fully degradable and accessible; in other
words, they remain fully functional even if JavaScript, CSS, and images aren’t avail-
able, and if a keyboard is the only input device available. Accessibility attributes on
Windows environments also support high-contrast mode and screen readers.

Figure 13-1 shows the general inheritance structure of the dijit.form module. The
diagram does not show every single mixin class along the way, but does convey the
general relationships amongst the widgets. The hope is that you’ll be able to use it to
get a better idea of how the source code is laid out when it comes time to cut your
teeth on it.

* Mac OS X Firefox 2.0+ users may need to download the Configuration Mania add-on at https://addons.
mozilla.org/en-US/firefox/addon/4420 to enable tabbing into buttons.

https://addons.mozilla.org/en-US/firefox/addon/4420
https://addons.mozilla.org/en-US/firefox/addon/4420

Form Dijits | 301

In addition to the standard dijit attributes inherited from _Widget, such as domNode, et
al., and ordinary HTML attributes included in the HTML 4.01 spec, such as
disabled and tabIndex, form dijits all inherit from a base class that explicitly sup-
ports the attributes, methods, and extension points listed in Table 13-1.

Figure 13-1. The inheritance-rich dijit.form module

Table 13-1. Supported attributes, methods, and extension points for form dijits via
 _FormWidget

Name Data type Category Comment

value String Attribute The current value of the
dijit; works just like its pure-
HTML equivalent.

name String Attribute The named value for the
dijit; works just like its pure-
HTML equivalent; useful for
form submissions to a server
handler.

HorizontalSlider

SimpleTextarea

Textarea

Form

_FormWidgetMulitSelect

TextBox
Button

DropDownButton
ComboBoxMixin

ValidationTextBox
ToggleButton

CheckBox

RadioButton

ComboButton

VerticalSlider
MappedTextBox

RangeBoundTextBox

ComboBox

FilteringSelect

NumberTextBox

NumberSpinner

CurrencyTextBox

DateTextBox TimeTextBox

_DateTimeTextBox

302 | Chapter 13: Form Widgets

alt String Attribute Alternate text that should
appear should the browser
not be able to display—a
somewhat uncommon
event for forms, although
still common enough for
images; works just like its
pure-HTML equivalent.

type String Attribute Specifies the type of the ele-
ment when more than one
kind is possible. For exam-
ple, a button might have
type="submit" to trig-
ger the form’s onsubmit
action; works just like its
pure-HTML equivalent. By
default, this attribute is
"text".

tabIndex Integer Attribute Used to provide an explicit
tab index for keyboard navi-
gation; works just like its
HTML equivalent. By
default, this attribute is
"0".

disabled Boolean Attribute Disables a control so that it
cannot receive focus and is
skipped in tabbing naviga-
tion; do not attempt to use
this attribute on an ele-
ment that does not support
it, which per the HTML 4.01
spec include button,
input, optgroup,
option, select, and
textarea. Controls that
are disabled are not
included in form submis-
sions. This attribute is
false by default.

Table 13-1. Supported attributes, methods, and extension points for form dijits via
 _FormWidget (continued)

Name Data type Category Comment

Form Dijits | 303

readOnly Boolean Attribute Disables a control so that its
value cannot be changed;
however, it can still receive
focus, is included in tabbing
navigation, and is included
in form submissions. Do not
attempt to use this attribute
on an element that does not
support it, which per the
HTML 4.01 spec include
input and textarea.
This attribute is false by
default.

intermediateChanges Boolean Attribute Whether to fire the
onChange extension point
for each value change. This
attribute is false by
default.

setAttribute
(/* String */ attr,
/* Any */ value)

Function Method The proper way to set an
attribute value for a dijit.
For example, setting a dijit’s
value attribute to "foo"
would be accomplished via
<dijit name>.
setAttribute
("value", "foo").

focus() Function Method Sets the focus on the
control.

isFocusable() Function Method Returns information about
whether the control can
receive focus.

forWaiValuenow() Function Extension point By default, returns the cur-
rent state of the widget to
be used for the WAI-ARIA
valuenow state, which
may be set via dijit.
removeState and
dijit.setWaiState.

onChange(/* Any */
val)

Function Extension point Override to provide a cus-
tom callback function that
fires each time the value
changes.

Table 13-1. Supported attributes, methods, and extension points for form dijits via
 _FormWidget (continued)

Name Data type Category Comment

304 | Chapter 13: Form Widgets

For great online documentation on HTML 4.01 forms, see http://www.
w3.org/TR/html401/interact/forms.html.

TextBox Variations
Ordinary text input via the HTML input element is by far the most commonly used
form field. Countless hours have been spent formatting and validating what are gen-
erally small snippets of text, and the auxiliary scripts that have supported input
boxes may single-handedly account for the most collective boilerplate that’s even
been written to support web pages. If any one of those comments resonates deep
within your soul, the Dijit TextBox family will seem like a godsend.

Let’s take a look at each member of the TextBox family and improve our example
form from earlier in this chapter. The most basic member is the ordinary TextBox
itself, which comes packed with several custom formatting operations as well as the
ability to create your own using the format and parse extension points. The follow-
ing listing summarizes TextBox’s attributes and extension points. A TextBox is techni-
cally a kind of input element, so remember that the standard HTML attributes, if not
listed here, still apply.

TextBox’s attributes and extension points are inherited by all other
dijits in this family; they are especially important to be aware of
because they are widely used.

TextBox

Table 13-2 provides a listing of pertinent features to the most basic TextBox dijit.

Table 13-2. TextBox attributes and extension points

Name Category Comment

trim Attribute Removes leading and trailing whitespace. This attribute is
false by default.

uppercase Attribute Converts all characters to uppercase. This attribute is false by
default.

lowercase Attribute Converts all characters to lowercase. This attribute is false by
default.

propercase Attribute Converts the first character of each word to uppercase. This
attribute is false by default.

maxLength Attribute Used for passing through the standard HTML input tag’s
maxlength attribute. This attribute is "" by default.

http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/interact/forms.html

TextBox Variations | 305

As of version 1.1, _FormWidget’s setValue and getValue methods were
deprecated in favor of using the setAttribute('value', /*...*/) func-
tion for setting values and getting values via the .value property where
appropriate. TextBox, its subclasses, and a few other dijits, however,
override the setValue and getValue methods for legitimate use. The
rule of thumb is that setValue and getValue are used for widget values.
For example, a TextBox has an obvious value (hence, the use of
setValue and getValue), whereas you would use the setAttribute
method for something like a Button because it does not have a widget
value even though a value is submitted with the form.

To illustrate the most basic usage possible, Example 13-3 plugs some text boxes into
our earlier form example, and switches on the propercase and trim attributes for the
first and last fields in the form.

format(/* String */ value,
/*Object*/constraints)

Extension
point

A replaceable function to convert a value to a properly formatted
String value. The default implementation returns the result of
a value’s toString method if it has one; otherwise, it returns
the raw value as a last resort. Returns an empty string for null
or undefined values.

parse(/* String */ value) Extension
point

May be used to provide a custom parsing function to convert a
formatted String to a value, a function that is common to all
form dijits, before returning the value. The default implementa-
tion returns the raw String value.

setValue(/*String*/value) Method Used to set the String value for a TextBox and any subclass
of TextBox. Do not use the _FormWidget's
setAttribute('value', /*…*/) function for this
subclass hierarchy.

getValue() Method Used to fetch the String value for a TextBox and any sub-
class of TextBox. Do not access the value property directly and
sidestep this method.

Example 13-3. Updated form with TextBox and theming

<html>
 <head>
 <title>Register for Spam</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"

Table 13-2. TextBox attributes and extension points (continued)

Name Category Comment

306 | Chapter 13: Form Widgets

 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.TextBox");

 function help() {
 var msg="Basically, we want to sell your info to a 3rd party.";
 alert(msg);
 return false;
 }

 //simple validation
 function validate() {
 var f = document.getElementById("registration_form");

 if (f.first.value == "" ||
 f.last.value == "" ||
 f.email.value == "") {
 alert("All fields are required.");
 return false;
 }

 return true;
 }
 </script>
 <head>
 <body class="tundra">
 <p>Just Use the form below to sign-up for our great offers:</p>
 <form id="registration_form"
 method="POST"
 onsubmit="javascript:return validate()"
 action="http://localhost:8080/register/">

 First Name:
 <input dojoType="dijit.form.TextBox" propercase=true
 trim=true name="first">

 Last Name:
 <input dojoType="dijit.form.TextBox" propercase=true
 trim=true name="last">

 Your Email:
 <input dojoType="dijit.form.TextBox" length=25 name="email">

 <button type="submit">Sign Up!</button>
 <button type="reset">Reset</button>
 <button type="button" onclick="javascript:help()">Help</button>
 </form>
 </body>
</html>

Example 13-3. Updated form with TextBox and theming (continued)

TextBox Variations | 307

If you try to use dijits without properly including the dojo.css file and
the relevant theme, your dijits may still be accessible—but they’ll also
look horrible. A common frustration with beginners to Dijit is either
forgetting to load the CSS or forgetting to set the appropriate class
attribute in the BODY tag.

In addition to the TextBox dijit improving the appearance of the control, it also saves
you the work of implementing a dozen or so lines of custom scripting. Of course,
you could override the format extension point to implement your own custom for-
matting by simply defining a JavaScript function and passing it into format. For
example, the following formatting function would take a string and turn it into
MiXeD CaPiTaLiZaTiOn like so:

function mixedCapitalization(value) {
 var newValue = "";
 var upper = true;

 dojo.forEach(value.toLowerCase(), function(x) {
 if (upper)
 newValue += x.toUpperCase();
 else
 newValue += x;

 upper = !upper;
 });

 return newValue;

}

Using the function in the TextBox dijit is just as easy as it should be:

<input dojoType="dijit.form.TextBox" format="mixedCapitalization"
 trim=true name="first">

If you interact with the form and cause a blur event by moving the cursor out of it,
you’ll see the conversion take place. The parse function may be overridden in the
very same manner as format to standardize values when they are returned. Common
operations include converting numeric types into Number values, or standardizing
String values.

The custom format and parse extension points are invoked every time
a setValue or getValue operation is called—not just in response to
explicit user interaction with the form.

ValidationTextBox
One thing that’s probably on your mind is that pesky validation function that ensures
the fields are not empty—and the fact that it wasn’t all that great in the first place since
it didn’t validate an email address properly. ValidationTextBox to the rescue!

308 | Chapter 13: Form Widgets

Table 13-3 includes a complete listing of additional functionality that ValidationTextBox
offers.

Table 13-3. Attributes of ValidationTextBox

Name Type Comment

required Boolean Attribute that determines whether the field is
required. If left empty when this attribute is
set, the field cannot be valid. false by
default.

promptMessage String Attribute used to define a hint for the field
when the field has the cursor.

invalidMessage String Attribute that provides the message to dis-
play if the field is invalid.

constraints Object Attribute that provides a user-defined object
that can be defined to (dynamically, if neces-
sary) feed constraints to the regExpGen
attribute. This object is used extensively for
other dijits such asDateTextBox to provide
custom formats for display.

regExp String Attribute that provides a regular expression to
be used for validation. Do not define this
attribute ifregExpGen is defined. By default
this attribute is ".*" (a regular expression
that allows anything/everything).

regExpGen Function Attribute that denotes a user-replaceable
function that may be used to generate a cus-
tom regular expression that is dependent
upon the key/value pairs in the constraints
attribute; useful for dynamic situations. Do
not define this attribute ifregExp is defined.
By default, this attribute is a function that
returns ".*" (a regular expression that
allows anything/everything).

tooltipPosition Array Attribute used to define whether the tooltip
should appear above, below, to the left, or to
the right of the control. By default, this
attribute returns the value of dijit.
Tooltip.defaultPosition, which is
defined internally to the dijit.Tooltip
widget.

isValid() Function Method that calls the validator extension
point to perform validation, returning a Bool-
ean value.

validator(/* String */ value,
/* Object */ constraints)

Function Extension point that is called by onblur,
oninit, and onkeypress DOM events.

displayMessage(/* String */ message) Function Extension point that may be overridden to
customize the display of validation errors or
hints. By default uses a dijit.Tooltip.

TextBox Variations | 309

The dijit.Tooltip widget is covered in Chapter 15.

Drop-in usage for a ValiationTextBox in our example is as straightforward as adding
required attributes to the various controls and tacking on an additional regex to vali-
date the email address. The change in Example 13-4 incorporates a ValidationTextBox
and eliminates the need for all of the JavaScript that was previously written; the Help
button was also removed now that a tooltip more elegantly accomplishes that purpose.

Example 13-4. Updated form to use ValidationTextBox

<html>
 <head>
 <title>Register for Spam</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.ValidationTextBox");
 </script>

 <!-- lots of ugly JavaScript was removed -->

 <head>
 <body class="tundra">
 <p>Just Use the form below to sign-up for our great offers:</p>
 <form id="registration_form"
 method="POST"
 action="http://localhost:8080/register/">

 First Name:
 <input dojoType="dijit.form.ValidationTextBox"
 properCase="true" trim=true required="true"
 invalidMessage="Required." name="first">

 Last Name:
 <input dojoType="dijit.form.ValidationTextBox"
 properCase="true" trim=true required="true"
 invalidMessage="Required." name="last">

310 | Chapter 13: Form Widgets

And with very little effort, you suddenly have richer, better-looking functionality,
with less code to maintain.

We still need to do some work to those buttons in the next section, but first, let’s
work through the remaining members of the TextBox family.

MappedTextBox and RangeBoundTextBox
Two well-defined form dijit classes that are not covered in this chapter include
MappedTextBox and RangeBoundTextBox. Basically, MappedTextBox provides some meth-
ods for serializing its data into a String value via a custom toString method, and
RangeBoundTextBox facilitates ensuring that a value is within a specified range by allow-
ing you to pass in max and min values to the constraints object. Although it might intu-
itively seem like the “validation” in ValidationTextBox should be handling tasks like
range checking, keep in mind that ValidationCheckBox uses regular expressions to vali-
date String values. RangeBoundTextBox explicitly deals with numeric types.

In short, these two classes provide some intermediate machinery that is used to
enable the remaining form dijits in this chapter and are in place largely to facilitate
the internal design. While you may want to be aware of these two classes if you plan
on creating a highly custom form dijit, they are not really intended for general-
purpose consumption.

TimeTextBox and DateTextBox
Custom validation routines for validating dates and times are another implementa-
tion detail that just about any web developer who has been around a while has had
to produce at some point or another. Although dates and times have well-defined
formats that are quite universal, the ultra-generic HTML INPUT element offers no
support, and the load is pushed off to JavaScript for validation and custom format-
ting. Fortunately, Dijit makes picking dates and times just as easy as it should be.
These dijits are also preconfigured to work with the most common locales, and
extending them beyond the stock locale collection is straightforward.

 Your Email:
 <input dojoType="dijit.form.ValidationTextBox"
 promptMessage="Basically, we want to sell your info to a 3rd party."
 regExp="[a-z0-9._%+-]+@[a-z0-9-]+\.[a-z]{2,4}" required
 name="email">

 <button type="submit">Sign Up!</button>
 <button type="reset">Reset</button>
 <!-- tooltip message replaced need for help button -->

 </form>
 </body>
</html>

Example 13-4. Updated form to use ValidationTextBox (continued)

TextBox Variations | 311

The DateTextBox and TimeTextBox dijits use the Gregorian calendar,
which is the default for the dojo.date facilities.

Let’s suppose that instead of spamming you, an organization would instead like to
bother you over the telephone once you get home from a long, hard day of work.
Naturally, they would like to collect information from you ahead of time so as to
avoid any unnecessary overhead of their own. Assuming they’re smart enough to be
using Dojo to minimize costs on the programming budget, they might produce some
form fields like so:

<!-- Remember to dojo.require these dijits before using them! -->

Best Day to call:
<input dojoType="dijit.form.DateTextBox">

Best Time to call:
<input dojoType="dijit.form.TimeTextBox">

That’s it! No additional effort is required. The DateTextBox in Figure 13-2 automati-
cally pops up a beautiful little calendar for picking a date when the cursor enters the
INPUT element, and a scrolling list containing times, broken into 15-minute incre-
ments, appears for the TimeTextBox in Figure 13-3.

As a reminder, programmatic creation is just as simple:

var t = new dijit.form.TimeTextBox();
var d = new dijit.form.DateTextBox();

/* now place them in the page via their domNode attribute*/

In addition to ease of use, these dijits allow for customized formatting of their dis-
played values—allowing you to do anything that you could do via dojo.date, which
they use internally. Specifically, the formatLength, timePattern, and datePattern
attributes may be specified within the constraints object to produce the correspond-
ing effect.

Figure 13-2. The DateTextBox pop up that appears

312 | Chapter 13: Form Widgets

Tables 13-4 and 13-5 summarize the various options available. In general, either the
format length or one of the time or date patterns are specified, depending on the
degree of granularity desired.

Figure 13-3. The TimeTextBox popup that appears

Zulu, Greenwich, Gregorian…What?!?
This chapter has been throwing around a lot of terms that you may have heard of but
never quite got around to looking up. Here’s the abbreviated version to partially satisfy
your curiosity:

• Zulu time refers to the UTC (Coordinated Universal Time) time zone, which is
local to parts of Western Europe and is said to originate from the Greenwich
Observatory in London. This time zone has historically been denoted with the
letter Z, and, as it turns out, the phonetic alphabet that the military and other
organizations use maps the word Zulu in place of the letter Z when reading out
alphanumeric codes (so as not to confuse letters that sound alike).

• Greenwich Mean Time is essentially the same thing as UTC, as far as time zones
are concerned.

• The Gregorian calendar is named after Pope Gregory XIII, who decreed it in the
late 1500s as a reform to the Julian calendar (as decreed by Julius Caesar as a
reform to the Roman calendar in the first Century), which was slightly too long
and was causing issues with the Christian holiday of Easter drifting forward in
time with respect to the seasons.

TextBox Variations | 313

Table 13-4. Attributes for DateTextBox

Attribute Comment

formatLength Used to format a value for the default locale. Valid values are full, long, medium, or
short. Custom values for specific locales are honored. Examples for the en-us locale
include:

full
Thursday, January 10, 2008

long
January 10, 2008

medium
Jan 10, 2008

short (default)
1/16/2008

datePattern Used to provide a custom format for all locales. Accepts a string formatted according to Java-
like conventions. See http://www.w3.org/TR/NOTE-datetime. Common values with examples
include:

yyyy
2008

yyyy-MM
2008-01

MMM dd, yyyy
Jan 08, 2008

strict When true, allows for slight relaxations of some abbreviations and whitespace. This
attribute is false by default.

locale Allows for overriding the default locale for this specific widget only. Be sure to configure the
extra local via djConfig.extraLocale or you may receive an error or unexpected
results.

selector When submitting a form, the value of selector determines whether the date, the time, or
both get passed with the submission, even though only a date or time is visible as a displayed
value. By default, both are passed, specifying either date or time accordingly.

Table 13-5. Attributes for TimeTextBox

Attribute Comment

clickableIncrement A String representing the amount every clickable element in the time picker should
increase. This value should be set in non-Zulu time without a time zone and divide
visibleIncrement evenly. For example, the default value of "T00:15:00" would
denote a 15-minute increment.

visibleIncrement A String representing the increment that should visibly provide a text value indicating a
time increment. The default value of "T01::00:00" creates text in one-hour increments.
This value should be set in non-Zulu time without a time zone.

visibleRange A String representing the time range to display. This default value is "T05:00:00",
which is five hours of time. This value should be set in non-Zulu time without a time zone.

http://www.w3.org/TR/NOTE-datetime

314 | Chapter 13: Form Widgets

In markup, the constraints object is provided like any other attribute:

<input constraints="{datePattern:'MMM dd, yyyy'}" dojoType="dijit.form.DateTextBox">

Just like always, the programmatic approach is a direct translation:

var d = new dijit.form.DateTextBox({datePattern:'MMM dd, yyyy'});

Commonalities between DateTextBox and TimeTextBox

Two additional methods that are available for TimeTextBox and DateTextBox are
getDisplayedValue and setDisplayedValue. The difference between these methods
and the ordinary getValue and setValue approaches involves the difference in what is
actually displayed in the dijit versus what data type is used internally by the dijit.
Both TimeTextBox and DateTextBox use JavaScript Date objects internally, and getting
this Date object is just one method call away.

formatLength A String value used to format a value for the default locale. Valid values arelong and
short. Custom values for specific locales are honored. Examples for theen-us locale include:

long
10:00:00PM CST

short
10:00 PM

timePattern Used to provide a custom format for all locales. Accepts a string formatted according to Java-
like conventions. See http://www.w3.org/TR/NOTE-datetime. Common values with examples
include:

hh:mm
08:00

h:mm
8:00

h:mm a
8:00 PM

HH:mm
22:00

hh:mm:ss
08:00:00

hh:mm:ss.SSS
08:00:00.000

strict When true, allows for slight relaxations of some abbreviations (am versus a.m., etc.) and
whitespace. This attribute is false by default.

locale Allows for overriding the default locale for this specific widget only. Be sure to configure the
extra local via djConfig.extraLocale or you may receive an error or unexpected
results.

selector When submitting a form, the value of selector determines whether the date, the time, or
both get passed with the submission, even though only a date or time is visible as a displayed
value. By default, both are passed, specifying either date or time accordingly.

Table 13-5. Attributes for TimeTextBox (continued)

Attribute Comment

http://www.w3.org/TR/NOTE-datetime

TextBox Variations | 315

Recall that the machinery inherited from RangeBoundTextBox also allows for min and
max values to be provided, which is highly useful for preventing a user from ever
selecting an invalid value from the pop up. For example, to constrain a date from
December 1, 2007 through June 30, 2008:

<input constraints="{min:'2007-12', max:'2008-06', datePattern:'MMM dd, yyyy'}"
dojoType="dijit.form.DateTextBox">

Additionally, MappedTextBox wires in facilities for serialization via the toString
method; you can also get an ISO-8601 compliant string if you should need one,
which can be quite useful for sending back to the server.

It’s important to understand the duality between datePattern,
timePattern, and the ISO-8601 specification: basically, there isn’t a
connection. The datePattern and timePattern values are used for
opaquely manipulating user-visible formatting for widgets, while the
ISO-8601 formatting is what the parser accepts and sends to the server
for processing.

Two additional methods provided by these two dijits include getDisplayedValue and
setDisplayedValue. While setDisplayedValue produces the same results as
setAttribute('value', /*...*/), getDisplayedValue returns the values you see in the
dijit, while resolving the dijit’s .value property to return a JavaScript Date object.

Table 13-6 provides a quick synopsis of these additional features that both
DateTextBox and TimeTextBox provide.

Table 13-6. DateTextBox and TimeTextBox commonalities

Name Comment

getDisplayedValue() Retrieves the formatted value that is actually displayed in the
form element, whereas getValue retrieves an actual Date
object.

setDisplayedValue(/*Date*/ date) Sets both the displayed as well as the internal value for the
dijit. (Calling setValue accomplishes exactly the same
thing.)

toString() Returns an ISO-8601-compliant date or time value.

min and max values for the constraints object Provided to constrain the values that are available via the
pop ups.

serialize() An extension point that can be used to specify a custom
implementation for the toString method. This extension
point manipulates the value that is presented to the server
when a form is submitted.

316 | Chapter 13: Form Widgets

Serializing data to the server

As it turns out, the serialize extension point can be especially useful when transfer-
ring data to and from a server-side component that is expecting a date to be format-
ted in a special way. For example, you might use the code in Example 13-5 to extend
the DateTextBox and provide a custom format when the toString method is used.
Example 13-5 illustrates using a custom DateTextBox to submit a custom value that is
different from what is displayed.

Example 13-5. Custom serialization of data to the server with a DateTextBox

<html>
 <head>
 <title>Custom DateTextBox</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:false",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>
 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.form.DateTextBox");

 dojo.addOnLoad(function() {
 dojo.declare("dtdg.CustomDateTextBox",[dijit.form.DateTextBox], {
 serialize: function(d, options) {
 return dojo.date.locale.format(d,
 {
 selector:'date',
 datePattern:'dd-MMM-yyyy'}).toUpperCase();
 }
 });
 dojo.parser.parse(dojo.body());
 });
 </script>
 </head>
 <body class="tundra">
 <form action="http://localhost:8080" type="POST">
 <input dojoType="dtdg.CustomDateTextBox" name="customDate"/>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

TextBox Variations | 317

A minimal CherryPy class can accept the form submission and display it for you:

import cherrypy

class Content:
 @cherrypy.expose
 def index(self, **kwargs):
 return str(kwargs)

cherrypy.quickstart(Content())

Don’t forget about inherited properties

Although the inheritance hierarchy is getting a little bit deep by this point, recall that
all of the methods inherited from TextBox and ValidationTextBox are also available to
use and are essential for many common use cases. A review of dojo.date, as pre-
sented in Chapter 6, is also helpful for brushing up on some of the finer details asso-
ciated with these dijits.

NumberTextBox

NumberTextBox inherits all of the great features you’ve grown to love from
RangeBoundTextBox and its ancestors and expands upon them with customization for
numeric types via the dojo.number facilities. In a nutshell, numeric value formatting
defaults to the current locale and allows you to provide the constraints listed in
Table 13-7.

For example, to require a value to have exactly two places after the decimal and a
percent sign, the following does the trick:

<input constraints="{pattern: '#.##%'}" dojoType="dijit.form.NumberTextBox">

Although there is only a single hash before the decimal place, note that you can have
multiple digits. Should you not want any dijits before the decimal, however, you can
provide a pattern without a leading hash, such as {pattern:'.##%'}. Also note that
when editing begins, the displayed values automatically convert to a pure numeric
value; when editing ends, the value converts back to a formatted number.

Table 13-7. NumberTextBox constraints

Name Comment

min and max constraints Used to check the bounds of the input, just like any other RangeBoundTextBox descendant.

pattern Used to provide the number of digits to require after the decimal, along with any additional for-
matting, such as a percent sign that follows.

type Used to designate that the value should be a decimal or percentage.

places Used to designate the number of places to require after the decimal (providing this value in
addition to a custom pattern overrides the pattern).

318 | Chapter 13: Form Widgets

Recall that dojo.number as presented in Chapter 6 is your one-stop shop for tons of
custom facilities for number formatting and related operations. NumberTextBox
directly builds upon these facilities.

NumberSpinner

The NumberSpinner was introduced in Chapter 11, and you can think of the
NumberSpinner and a fancier NumberTextBox with small buttons on the edge that allow
for incrementally increasing the value. The buttons are typematic in that you can
hold them down and they will repeatedly affect the value. The NumberSpinner also has
slightly different min and max constraints in that if min and max constraints are pro-
vided, the NumberSpinner’s buttons will not allow you to move outside of those
boundaries.

NumberSpinner offers the attributes listed in Table 13-8.

Creating a NumberSpinner is just like creating any other dijit:

<input dojoType="dijit.form.NumberSpinner" smallDelta="2" largeDelta="4"
constraints="{min:100,max:120}" value="100">

CurrencyTextBox

The CurrencyTextBox is the farthest dijit from the common ancestor, inheriting from
NumberTextBox, and utilizes dojo.currency for much of its formatting handiwork.

This dijit, however, provides only one additional attribute, currency, which is for-
matted according to its specific locale. Values for currency must be one of the three
letter sequences specified in the ISO4217 currency code standard, available from
http://en.wikipedia.org/wiki/ISO_4217.

Table 13-8. NumberSpinner attributes

Name Comment

defaultTimeout The number of seconds a key or button is held down before it becomes typematic. This
attribute is 500 by default.

timeoutChangeRate The fraction of time that is used to change the typematic timer between events. A value of 1.0
means that each typematic event fires atdefaultTimeout intervals. A value of less than1.0
means that each typematic event fires an increasingly faster rate proportional to this value. This
attribute is0.90 by default.

smallDelta The value to adjust the spinner by when using arrow keys or buttons. This attribute is 1 by
default.

largeDelta The value to adjust the spinner by when using the Page Up or Page Down keys. This attribute
is 10 by default.

http://en.wikipedia.org/wiki/ISO_4217

TextBox Variations | 319

Anytime international characters such as currency symbols are used,
you’ll want to be especially aware of the encoding that your browser is
using so that all symbols are rendered properly. There is always the
possibility that the web server may not include this information in the
header.

In HTML pages, the standard way of specifying an encoding is by
placing a special META tag in the head of the page, and the Dijit project
encourages this technique as a best practice. The following example is
a META tag for the UTF-8 character set, which is almost always a safe
bet:

<META http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>

Note that as of version 1.1, you will need to use this tag if serving up
Dojo from AOL’s CDN because the server currently does not include
encoding information in the headers, which is another means of
achieving the same result. (Otherwise, currency and certain unicode
symbols may not display properly.)

The following snippet illustrates a currency dijit for U.S. dollars that requires a value
for the cents to be explicitly provided after the decimal point via the fractional con-
straint, which is the only additional constraint of interest that this dijit provides
besides those that have already been inherited:

<input dojoType="dijit.form.CurrencyTextBox"
constraints="{min:1,max:100,fractional:true}" currency="USD"/>

Like NumberTextBox, the values for this dijit change to vanilla numeric values when
editing begins, and format back to currency values once editing ends via a blur event.

ComboBox

ComboBox provides a drop-down list of values much like an HTML SELECT element;
however, a ComboBox is based on an ordinary input element, so if an acceptable value
is not identified by the list of possibilities, you may opt to type in any value you’d
like. ComboBox inherits from ValidationTextBox, so you have the full gamut of features
for validation available to you; some additional enhancements are that it also provides
a filtered list of possible values based on the prefix you’ve entered. The list of values
can be a static list that is established a priori or a dynamic list from a dojo.data store
that may be fetched from a server.

In its simplest manifestation, you might use a ComboBox simply to provide a static list
of common options, with the ability for the user to type in a custom option. The fol-
lowing code listing illustrates static data with the auto-complete feature enabled.

320 | Chapter 13: Form Widgets

<select name="coffee" dojoType="dijit.form.ComboBox" autoComplete="true">
 <option>Verona</option>
 <option>French Roast</option>
 <option>Breakfast Blend</option>
 <option selected>Sumatra</option>

 <script type="dojo/method" event="onChange" args="newValue">
 console.log("value changed to ", newValue);
 </script>
</select>

A Word On Encoding
The Universal Character Set (UCS) is an international standard defined by both the
International Organization for Standardization (ISO) and the International Electro-
technical Commission (IEC) that specifies almost 100,000 symbols and assigns each of
them a unique number called a “code point.”

Unicode is an industry standard that was developed in tandem with UCS and may be
thought of as either an implementation of UCS or the underlying idea behind it,
although the exact relationship between the two is ambiguous and often the subject of
philosophical debate. The key point to take away is that the two standards maintain
synchronization with one another.

Encodings are important because information systems increasingly need to properly
handle arbitrary characters for languages—even ancient languages that aren’t com-
monly spoken anymore—and Unicode provides a means of key industry players stan-
dardizing on a common approach so as to maintain maximal compatibility. Clearly,
there is tremendous value in arbitrary web servers and browsers being able to commu-
nicate, email servers and email clients being able to arbitrarily communicate, and so
on.

While the 7-bit ASCII (American Standard Code for Information Interchange) fits the
bill for the English alphabet quite nicely, it is grossly insufficient elsewhere. The UTF-8
(Unicode Transformation Format) encoding is able to represent any character in the
Unicode standard and maintain complete backward compatibility with ASCII, so it has
become very popular and has been largely adopted for web pages, email, and so on.

An interesting implementation detail about UTF-8 that allows it to maintain backward
compatibility with ASCII is that it uses a variable length encoding in which one to four
8-bit bytes may be used for any given character. Thus, the web server identifying the
specific encoding being used via response headers or the web page itself specifying the
specific encoding via a META tag is especially important for symbols to be rendered
properly. Without knowing the encoding, the browser is unable to properly translate
the stream of bytes it receives into discrete symbols.

You can read more about Unicode at http://www.unicode.org.

http://www.unicode.org

TextBox Variations | 321

Hooking a ComboBox to an ItemFileReadStore is quite simple and involves little more
than pointing the ComboBox to the data source. For example, consider a data source
that contains coffee roasts and their descriptions in the following form:

{identifier : "name",
 items : [
 {name : "Light Cinnamon", description : "Very light brown, dry , tastes like
toasted grain with distinct sour tones, baked, bready"},
 {name : "Cinnamon", description : "Light brown and dry, still toasted grain
with distinct sour acidy tones"},

 ...lots more...
]
}

Assume that you’d like to populate the ComboBox with a name field, and when a
change occurs, use the description in some other meaningful way. You might accom-
plish this task as shown in Example 13-6.

Example 13-6. ComboBox at work

<html>
 <head>
 <title>Pick a coffee roast, any coffee roast</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dojo.data.ItemFileReadStore");
 dojo.require("dijit.form.ComboBox");
 dojo.require("dijit.form.Button");
 dojo.require("dijit.form.Form");
 </script>
 <head>
 <body class="tundra">

 <div dojoType="dojo.data.ItemFileReadStore"
 jsId="coffeeStore" url="./coffee.json"></div>

 <form action="localhost" dojoType="dijit.form.Form">
 <select name="coffee" dojoType="dijit.form.ComboBox"
 store="coffeeStore" searchAttr="name">

322 | Chapter 13: Form Widgets

To recap, all that takes place is that you hook up the ComboBox to the
ItemFileReadStore via the store attribute, and tell the ComboBox which field to display
via the searchAttr attribute. Then, when a change occurs, the ComboBox’s onChange
method detects and uses the new value to look up the description from the store.

Internally, the ComboBox only implements a specialized subset of the
dojo.data.Read/Notification API that is necessary for it to work. Spe-
cifically, it implements the following methods:

• getValue

• isItemLoaded

• fetch

• close

• getLabel

• getIdentity

• fetchItemByIdentity

• fetchSelectedItem

For completeness, the specific attributes shown in Table 13-9 are also available for
ComboBox.

 <script type="dojo/method" event="onChange" args="newValue">
 console.log("value changed to ", newValue);
 var f = function(item) {
 console.log("new description is ",
 coffeeStore.getValue(item, "description")
);
 };
 coffeeStore.fetchItemByIdentity(
 {identity : newValue, onItem : f}
);
 </script>
 </select>
 <button dojoTyype="dijit.form.Button">Submit</button>
 </form>
 </body>
</html>

Table 13-9. ComboBox attributes

Name Type Comment

item Object The currency selected item. null by default.

pageSize Integer Specifies the number of results per page (via the count key in an
ItemFileReadStore’s fetch method). Useful when querying large stores.
Infinity by default.

store Object A reference to the data provider such as an ItemFileReadStore. null by
default.

Example 13-6. ComboBox at work (continued)

FilteringSelect | 323

FilteringSelect
A FilteringSelect is an enhanced version of the ordinary HTML select element in
that provides a drop-down list of mandatory values and submits the hidden values
and the displayed values. While FilteringSelect looks like and shares a lot of fea-
tures with ComboBox, including the ability to filter a drop-down list as text is typed
and the ability to fetch data from a serve via a store, it is built upon an HTML SELECT
element.

Three particularly important distinctions between a FilteringSelect and a ComboBox
are worth noting:

• ComboBox is built on an ordinary select element in which the value that is sub-
mitted to the server on a submit event is the control’s hidden value, not the visi-
ble value in the control. This distinction is an important feature because
FilteringSelect can be degradable and behave as much like an ordinary SELECT
as possible.

• The FilteringSelect inherits from MappedTextBox (a serializable TextBox) instead
of ValidationTextBox because validation is a nonissue because users cannot type
free text into the control.

• FilteringSelect can display HTML as its label, not just text. Thus, you can
include customizable markup such as images in labels.

In addition to common dijit.form operations such as getValue, setValue,
getDisplayedValue, setDisplayedValue, and the various ComboBox options,
FilteringSelect provides two additional attributes and one additional function,
listed in Table 13-10.

query Object A query that can be passed to the store to initially filter the items before doing
any further filtering based on searchAttr and the key that is currently typed
in. {} by default.

autoComplete Boolean Whether to display a list of options for the key that is currently typed in (using
the queryExpr as a search criteria). true by default.

searchDelay Integer How many milliseconds to wait between when a key is pressed and when to
start search for that value. 100 by default.

searchAttr String The search pattern to match against for the values that should be displayed.
name by default.

queryExpr String The dojo.data query expression pattern to use. (The default expression
searches for any value that is a prefix of the current key that is typed in.)
"${0}*" by default.

ignoreCase Boolean Whether queries should be case-sensitive. true by default.

hasDownArrow Boolean Whether to display the down arrow for the drop-down indicator. true by
default.

Table 13-9. ComboBox attributes (continued)

Name Type Comment

324 | Chapter 13: Form Widgets

MultiSelect
MultiSelect is a simple wrapper (with the attributes listed in Table 13-11) around a
native SELECT element (with the attribute multi=true) that inherits from _FormWidget.
The primary reason that it is included in Dijit is because it facilitates interaction with
the dijit.Form wrapper (coming up later in this chapter) and streamlines the task of
otherwise having to style the SELECT element yourself.

Because MultiSelect is just a lightweight wrapper around the HTML equivalent,
there is little to say about that is specific to Dojo. You can define a MultiSelect in
markup, as shown in Example 13-7.

Table 13-10. FilteringSelect additions

Name Comment

labelAttr The text to display in the control. If no value is specified, then
searchAttr is used.

labelType Whether to treat the text label as markup or ordinary text.
Valid values include 'text' or 'html'.

labelFunc (/*Object*/ item,
/*dojo.data.store*/ store)

The event handler that is called when the label changes;
returns the label that should be displayed.

Table 13-11. MultiSelect

Name Comment

size The number of elements to display on a page. 7 by default.

addSelected(/*dijit.form.MultiSelect*/
select)

Moves the selected nodes from another MultiSelect into
this MultiSelect.

getSelected() Returns the selected nodes in the widget.

setValue(/*Array*/values) Sets the value of each node in the widget according to the
sequential values provided in the values Array.

invertSelection(/*Boolean*/fireOnChange) Inverts the selection. If fireOnChange is true, then an
onChange event is fired.

Example 13-7. Typical MultiSelect in markup

<select multiple="true" name="foo" dojoType="dijit.form.MultiSelect"
 style="height:100px; width:100px; border:3px solid black;">

 <option value="TN" selected="true">Tennessee</option>
 <option value="VA">Virginia</option>
 <option value="WV">West Virginia</option>
 <option value="OH">Ohio</option>

</select>

Button Variations | 325

Textarea Variations
A bane of traditional web development has often been the dreaded TEXTAREA element
that takes up a fixed amount of space on the screen, requiring somewhat of a black
art to determine just how much space to allocate to it so as to maximize the amount
of viewable area while minimizing wastage on valuable screen real estate.

Textarea
The Textarea dijit inherits from _FormWidget and gives the best of both worlds in that
it supports the standard HTML attributes for an ordinary textarea, yet its appear-
ance is a fixed width element that grows vertically as needed. The API for the
Textarea dijit simple in that you’ll normally only need to use the standard setValue
and getValue methods. onChange is a valuable extension point that you can use as a
callback when a change occurs:

<textarea dojoType="dijit.form.Textarea" style="width:300px">
 One fish, two fish...
</textarea>

SimpleTextarea
Although Textarea’s ability to expand is convenient in a lot of cases, it doesn’t lend
itself well to situations in which an enclosing container (such as the layout dijits
you’ll learn about in Chapter 14) needs to dictate its overall size. For this reason, the
SimpleTextarea dijit was introduced. For all practical purposes, the SimpleTextarea
behaves just like an ordinary TEXTAREA element except that it can expand and con-
tract in size. You populate it with the same attributes as an ordinary TEXTAREA ele-
ment such as rows and cols and, like Textarea, you can use setValue and getValue to
manipulate the text in it.

Button Variations
Dijit provides drop-in, degradable replacements for standard push buttons and
checkboxes, yet it also gives you a lot of sophisticated options, such as the kinds of
buttons that you normally find in toolbars. Let’s start out with an ordinary Button
and work our way up through more sophisticated options.

Button
Figure 13-4 shows a button, and Table 13-12 gives the rundown on the most basic
kind of button dijit, a Button, which inherits _FormWidget.

326 | Chapter 13: Form Widgets

Unlike TextBox and its descendants, the Button widgets require you
to use the setAttribute('value', /*...*/) function, inherited from
_FormWidget, to set value because Buttons don’t have a widget value
so much as they have a form value that is relayed to the server.

Let’s dust off the code from Example 13-4 and provide some final polish by replac-
ing those ugly buttons, as shown in Example 13-8. Remembering to add an obliga-
tory dojo.require("dojo.form.Button") to the head of the page, the replacement is
straightforward. Note how convenient providing the onClick handler in markup is
for this situation.

The Button’s iconClass is especially snazzy in that it doesn’t just replace the entire
button with an icon. Instead, it embeds the icon into the button alongside an
optional label if one is specified and showLabel is true. For example, if you had a
small 20 × 20px thumbnail image of some spam that you wanted to embed into the
“Sign Up!” button, you could do it by including iconClass="spamIcon" in the button
tag and ensuring that the following class appeared in your page:

.spamIcon {
 background-image:url('spam.gif');
 background-repeat:no-repeat;

Figure 13-4. A typical Button

Table 13-12. Button properties

Name Comment

label Used to provide the label for the button in markup or via programmatic
creation.

showLabel A Boolean value designating whether to display the text label in the
Button. true by default.

iconClass A class specifying an image that can make a button appear like an icon.

onClick(/* DOM Event*/ evt) An extension point that is called in response to a click. This is a very common
method to override.

setLabel(/* String */ label) A method accepting an HTML string that can change a Button’s label.

Example 13-8. Typical Button usage

<button dojoTye="dijit.form.Button" type="submit">Sign Up!
 <script type="dojo/method" event="onClick" args="evt">
 alert("You just messed up...but it's too late now! Mwahahaha");
 </script>
</button>
<button dojoTye="dijit.form.Button" type="reset">Reset</button>

Button Variations | 327

 height:20px;
 width:20px;
}

Of course, you can provide any customized styles you’d like for buttons to make
them look any way that you’d like by applying an inline style or a custom class.

ToggleButton
Because form dijits leverage inheritance so heavily, they often have common ances-
tors that provide common functionality for descendant classes. ToggleButton is one
such class; it inherits from Button and adds in functionality for a button that has an
on/off state, like a RadioButton or a CheckBox. The only notable attribute it adds is
checked, which can be toggled with setAttribute.

Although you would probably use a more conventional control like CheckBox to des-
ignate on/off states, you could choose to use ToggleButton directly, or subclass it and
implement your own custom ToggleButton. The onChange extension point (common
to all form dijits) is one particularly useful feature:

<button dojoType="dijit.form.ToggleButton">
 <script type="dojo/method" event="onChange" args="newValue">
 console.log(newValue);
 </script>
</button>

Most of the buttons that appear in a toolbar such formatting a text with italics, bold,
underline, etc., use the ToggleButton. The Menu and MenuItem dijits are introduced in
Chapter 15.

Several button dijits are not included in their own designated resource
file. In particular, you should dojo.require("dijit.form.Button") for
Button, ToggleButton, DropDownButton, and ComboButton. While it may
seem odd to require one thing when you actually want another, the
rationale is that the (inheritance-driven) implementations for the vari-
ous buttons are so similar that they are included in the same physical file
to minimize overhead in acquiring resources from the server. Addition-
ally, recall that the mapping between classes simulated via dojo.declare
and resource files is not designed to be a one-to-one mapping (although
traditional object-oriented programming philosophy often deems it so).

This technique remains a source of consternation amongst Dojo cir-
cles, as the overhead from a synchronous request to the server would
be a moot point in a production setting that uses the facilities from
Util to optimize layers for each page of an application.

These kinds of nuances result from so many (well-intentioned) com-
peting interests in the Dojo community.

328 | Chapter 13: Form Widgets

CheckBox
CheckBox descends directly from ToggleButton and is a standard drop-in replacement
for an ordinary <input type="checkbox"> element. Using it is as simple as requiring it
into the page and then using the dojoType tag. We might introduce it into
Example 13-4 page by disabling the “Sign Up!” button until after user click the
CheckBox to confirm that they’re aware of our covert intentions to spam them:

<div name="confirmation" dojoType="dijit.form.CheckBox">
 <script type="dojo/method" event="onClick" args="evt">
 if (this.checked)
 dijit.byId("signup").setAttribute(’disabled’, false);
 else
 dijit.byId("signup").setAttribute(’disabled’, true);
 </script>
</div> I understand that you intend to spam me.

<button id="signup" disabled dojoType="dijit.form.Button" type="submit">
 Sign Up!
</button>

Figure 13-5 shows a series of CheckBox dijits.

The reason that DIV tags are being used instead of INPUT tags is because
you cannot embed SCRIPT tags inside of INPUT tags, and if you try, it is
almost a certainty that the browser will strip them out. Thus, if you
want to use SCRIPT markup inside of dijits, you should be especially
cognizant that you can’t use INPUT tags. If degradability is so impor-
tant that this isn’t acceptable for your application, simply write the
methods in pure JavaScript instead of markup.

Thus, to programmatically check the CheckBox, you might use the setValue(true)
method, which would check the box as well as set its checked attribute to true and its
value attribute to true.

If it is really important to ensure every page is as degradable as possible,
you can go the extra mile to explicitly include ordinary HTML attributes
in tags. For example, instead of just specifying <input dojoType="dijit.
form.CheckBox"/>, you could also include the extra type attribute, result-
ing in <input dojoType="dijit.form.CheckBox type="checkbox"/>.

Figure 13-5. A series of CheckBox dijits

Button Variations | 329

Like ordinary HTML checkbox elements, however, there is a difference in the state of
the checkbox versus the value of the checkbox. The state of the checkbox is either that
it is or is not checked, and you can detect the state via the standard checked attribute.
The value attribute, however, may take on non-Boolean values to pass special values to
the server if the box is checked when the form is submitted. For example, a tag like
<input name="pleaseSpamMe" value="yes"/> would append pleaseSpamMe=yes to the
query string if the form was submitted via GET. (The default for value is "on".)

The confusion comes in, however, when you find out that the getValue method and
the value attribute do not always return the same thing. The way it works is that
getValue returns whether the box is checked regardless of what the actual value
attribute happens to be. The rationale for this design is that the most common use
case for a getValue function would be to determine a visible on/off state—not get-
ting the actual value, which may not reflect the on/off state.

Because it is possible to get yourself tangled up in the differences between some of
the different possibilities, consider some of the common cases for a CheckBox dijit:

<input id="foo" dojoType="dijit.form.CheckBox"></input>

Example 13-9 shows a series of calls to manipulate the dijit along with extensive
commenting to show the effects.

These most common use cases for the CheckBox are using getValue and setValue with
Boolean values as parameters, so the chances are reasonably good that you won’t
need to wade through the potentially esoteric effects that can arise when you start
mixing state and values.

Example 13-9. Typical CheckBox usage

/* Check the initial state */
dijit.byId("foo").checked // false
dijit.byId("foo").getValue() // "on"

/* Use setValue with true */
dijit.byId("foo").setValue(true) // check the box and set the value to true
dijit.byId("foo").checked // true
dijit.byId("foo").getValue() // true

/* Use setValue with false */
dijit.byId("foo").setValue(false) //uncheck the box and set the value to false
dijit.byId("foo").checked // false
dijit.byId("foo").getValue() // false

/* Use setValue with a String */
dijit.byId("foo").setValue("bar") //check the box and set the value to "bar"
dijit.byId("foo").checked //true
dijit.byId("foo").getValue() // "bar"

330 | Chapter 13: Form Widgets

Here’s one particularly unintuitive combination that accentuates some
of the issues involved in mixing state and value that you should be
especially aware of:

dijit.byId("foo").setAttribute("value", "foo")
// changes the value attribute but does not check the box

dijit.byId("foo").value // "foo"

dijit.byId("foo").getValue()
//false, because the box is not checked

The unintuitive part is that after setting a value you wouldn’t expect a
call to getValue() to return false because common idioms in JavaScript
involve the ability to test a string value, and if it’s not "", null, or
undefined, then it evaluates as true. However, the thing to remember is
that getValue() consistently returns whether the box is checked or
not—regardless of what is actual value attribute is set to be. In this case,
the box is not checked, so getValue() returns false.

Likewise, the dijit’s onChange event will not fire for a dijit.
byId(“foo”).setAttribute(“value”, “foo”) method call since the
checked state of the box did not visibly change.

RadioButton
A RadioButton is a drop-in replacement for the ordinary HTML equivalent descend-
ing from CheckBox, and like its HTML equivalent, is conceptually a group of check-
boxes in which only one can be selected at any given time. Recall that each button in
a radio group has the same value for name but distinct values for value. Figure 13-6
shows a RadioButton group.

We might even further refine our working example (Example 13-4) by asking users
how many times a day they’d like us to bother them. We could use radio buttons as
shown in Example 13-10 to achieve this purpose quite easily, having first required
dijit.form.CheckBox in the page.

Although you’d think that last sentence was a typo, it’s not. Recalling
that you dojo.require resources, not individual widgets, it turns out
that the dijit.form.CheckBox resource provides dijit.formCheckBox
and dijit.form.RadioButton.

This warning is along the same lines as the previous warning about how
the dijit.form.Button resource provides multiple dijit implementations.

Figure 13-6. A RadioButton group

Button Variations | 331

DropDownButton
A DropDownButton is simply a descendant of Button that when clicked produces a
drop-down menu with options you can select—just like you’re used to seeing in a
toolbar. DropDownButton and dijit.Menu are closely related, in that a Menu is one of the
most common vehicles for supplying a drop-down list; TooltipDialog is another
common option. Figure 13-7 shows the DropDownButton dijit.

More complete coverage is given to Menu (and the individual MenuItems it contains) in
Chapter 15. Example 13-11, however, demonstrates a DropDownButton in action and
should get the point across. Note that the first child of the parent DropDownButton
node is a label that appears on the button.

Example 13-10. Typical RadioButton usage

<input name="spamFrequency" value="1 per day" dojoType="dijit.form.RadioButton">
 1 per day

<input name="spamFrequency" value="2 per day" dojoType="dijit.form.RadioButton">
 2 per day

<input name="spamFrequency" value="3+ per day" dojoType="dijit.form.RadioButton">
 3+ per day

Figure 13-7. A DropDownButton dijit

Example 13-11. Typical DropDownButton usage

<button dojoType="dijit.form.DropDownButton">
 Save...
 <div dojoType="dijit.Menu">
 <div dojoType="dijit.MenuItem" label="Save">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>
 </div>
 <div dojoType="dijit.MenuItem" label="Save as...">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>
 </div>
 <div dojoType="dijit.MenuItem" label="Save to FTP...">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>

332 | Chapter 13: Form Widgets

If you want to use a DropDownButton as part of a form submission, you could do so by
creating a hidden INPUT element and programmatically setting its value via the con-
stituent MenuItem’s onClick method. The most common uses for DropDownButton,
however, normally involve an application-level behavior, such as saving a document.

In general, form fields that are submitted to a server via a form submis-
sion should be visible to the user at the time of submission. In that
regard, DropDownButton may seem a bit misplaced with its inclusion
into dijit.form because it isn’t that kind of form control. The reason it
appears in this section is that it is a descendant of Button, and it would
make even less sense to try to have a Button ancestor living in another
namespace.

ComboButton
A ComboButton inherits from DropDownButton, but with a twist: it provides a reserved
area that produces a drop-down when it is clicked, whereas if you click on the
“other” part of the button that is initially visible, it invokes a default action. For
example, you might have a “Save” button that triggers an ordinary save action when
clicked, while clicking the drop-down portion of the button produces a menu with
options such as “Save”, “Save as...”, “Save to FTP site”, and so on. Figure 13-8
shows a ComboButton before and after clicking on the expander.

Example 13-12 illustrates using a ComboButton.

 </div>
 </div>
</button>

Figure 13-8. Left: a ComboButton before clicking on the expander; right: the ComboButton after
clicking on the expander

Example 13-12. Typical ComboButton usage

<button dojoType="dijit.form.ComboButton">
 Save

 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked the button itself");
 </script>

Example 13-11. Typical DropDownButton usage (continued)

Slider | 333

Notice that the label for the ComboButton is still provided via the first child element,
Save in this case, and the options that are provided via the drop-down
are just the same as with a DropDownButton.

Slider
While a slider may not be a native HTML form control, there can be little dispute
about how useful sliders can be for highly visual interfaces. Whether your goal is to
adjust the transparency for an image, adjust the amount of a particular color in a cus-
tom color combination, or resize some other control on the screen, a slider can help
you do it in a very intuitive manner. Dijit offers both horizontal and vertical sliders.

The Slider dijit is an especially slick piece of engineering. Like some of
the other dijits, it keeps track of the current value via a hidden form
value so that when you submit a form, the value is passed over to the
server just like any other form field.

To get all of the various Slider machinery into your page, simply do a dojo.
require("dijit.form.Slider"). In addition to VerticalSlider and HorizontalSlider,
you also get the supporting classes for rules and labels. Let’s start with something
simple and gradually add some complexity so that you get a better feel for exactly
how customizable this fantastic little widget really is.

HorizontalSlider
Suppose that as a caffeine junkie, you want to create a horizontal slider that denotes
caffeine levels for various beverages. Your first stab at getting a plain vanilla slider

 <div name="foo" dojoType="dijit.Menu">
 <div dojoType="dijit.MenuItem" label="Save">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>
 </div>
 <div dojoType="dijit.MenuItem" label="Save As...">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>
 </div>
 <div dojoType="dijit.MenuItem" label="Save to FTP...">
 <script type="dojo/method" event="onClick" args="evt">
 console.log("you clicked", this.label);
 </script>
 </div>
 </div>
</button>

Example 13-12. Typical ComboButton usage (continued)

334 | Chapter 13: Form Widgets

into the page might be something like the Example 13-13, remembering to first
require dijit.form.Slider into the page.

To summarize, the code created a slider without any kinds of labels whatsoever; the
slider displays values ranging from 2 through 175 with the dimensions provided by
the inline style. The default value is 100, and whenever a change occurs, the onChange
method picks it up and displays it to the console. Note that clicking on the slider
causes its value to move to the click point. So far, so good.

To further refine the slider, let’s remove the buttons that are on each end of it by add-
ing showButtons="false" as an attribute and adding a HorizontalRule and some
HorizontalRuleLabels to the top of the slider. Everything you need was already slurped
into the page, so no additional resources are required; we pull in the dojo.number mod-
ule, however, to facilitate formatting to the console.

Just add some more markup into the body of the existing slider, as shown in
Example 13-14.

Example 13-13. HorizontalSlider (Take 1)

<div dojoType="dijit.form.HorizontalSlider" name="caffeine"
 value="100"
 maximum="175"
 minimum="2"
 style="margin: 5px;width:300px; height: 20px;">

 <script type="dojo/method" event="onChange" args="newValue">
 console.log(newValue);
 </script>
</div>

Example 13-14. HorizontalSlider (Take 2)

<div dojoType="dijit.form.HorizontalSlider" name="caffeine"
 value="100"
 maximum="175"
 minimum="2"
 showButtons="false"
 style="margin: 5px;width:300px; height: 20px;">

 <script type="dojo/method" event="onChange" args="newValue">
 console.log(dojo.number.format(newValue,{places:1,pattern:'#mg'}));
 </script>

 <ol dojoType="dijit.form.HorizontalRuleLabels" container="topDecoration"
 style="height:10px;font-size:75%;color:gray;" count="6">

 <div dojoType="dijit.form.HorizontalRule" container="topDecoration"
 count=6 style="height:5px;">
 </div>
</div>

Slider | 335

Presto! The slider is already looking much sharper with the addition of some ticks to
break up the space and some percentage labels. Note that it is not necessary to have
a one-to-one correspondence between the rules and the rule labels, but in this case, it
works out quite nicely. Additionally, the attribute container used an enumerated
value, topDecoration, defined by the slider to place the rules and labels.

Although the slider contains a percentage rating, it would be nice to bring in some
domain specific data for the bottom of the slider. The basic pattern is the same as
before, except that we’ll use the slider’s bottomContainer instead of its topContainer.
However, instead of relying on the dijit to produce some bland numeric values, we
provide the contents of the list ourselves in Example 13-15, including explicit

tags in multiword beverages to keep the display looking sharp. Figure 13-9 shows the
result.

Example 13-15. HorizontalSlider (Take 3)

<div dojoType="dijit.form.HorizontalSlider" name="caffeine"
 value="100"
 maximum="175"
 minimum="2"
 showButtons="false"
 style="margin: 5px;width:300px; height: 20px;">

 <script type="dojo/method" event="onChange" args="newValue">
 console.log(newValue);
 </script>
 <ol dojoType="dijit.form.HorizontalRuleLabels" container="topDecoration"
 style="height:10px;font-size:75%;color:gray;" count="6">

 <div dojoType="dijit.form.HorizontalRule" container="topDecoration"
 count=6 style="height:5px;">
 </div>

 <div dojoType="dijit.form.HorizontalRule" container="bottomDecoration"
 count=5 style="height:5px;">
 </div>

 <ol dojoType="dijit.form.HorizontalRuleLabels" container="bottomDecoration"
 style="height:10px;font-size:75%;color:gray;">
 green
tea
 coffee
 red
bull

</div>

Figure 13-9. A HorizontalSlider

336 | Chapter 13: Form Widgets

VerticalSlider
VerticalSlider works just like HorizontalSlider except that it renders along the y-axis,
and you’ll use leftDecoration and rightDecoration instead of topDecoration and
bottomDecoration to specify container values for the rules and rule labels, as well as
adjust your style to space elements out horizontally instead of vertically.
Example 13-16 is the same slider, but adjusted for the vertical axis. Figure 13-10
depicts the result.

Figure 13-10. A VerticalSlider

Example 13-16. VerticalSlider

<div dojoType="dijit.form.VerticalSlider" name="caffeine"
 value="100"
 maximum="175"
 minimum="2"
 showButtons="false"
 style="margin: 5px;width:75px; height: 300px;">

 <script type="dojo/method" event="onChange" args="newValue">
 console.log(newValue);
 </script>
 <ol dojoType="dijit.form.VerticalRuleLabels" container="leftDecoration"
 style="height:300px;width:25px;font-size:75%;color:gray;" count="6">

 <div dojoType="dijit.form.VerticalRule" container="leftDecoration"
 count=6 style="height:300px;width:5px;">
 </div>

 <div dojoType="dijit.form.VerticalRule" container="rightDecoration"
 count=5 style="height:300px;width:5px;">
 </div>

 <ol dojoType="dijit.form.VerticalRuleLabels" container="rightDecoration"
 style="height:300px;width:25px;font-size:75%;color:gray;">
 green tea
 coffee
 red bull

</div>

Slider | 337

Tables 13-13, 13-14, and 13-15 illustrate the important facets of the dijit.form.Slider;
namely, the sliders themselves, the rules, and the labels. Remember that all of the ordi-
nary form machinery, such as setValue, et al., is inherited and works as usual.

HorizontalRuleLabel and VerticalRuleLabel inherit from
HorizontalRule and VerticalRule, respectively.

Table 13-13. Horizontal Slider and VerticalSlider

Name Type Comment

showButtons Boolean Whether to show increment/decrement buttons on each end of the
slider. true by default.

minimum Integer The minimum value allowed. 0 by default.

maximum Integer The maximum value allowed. 100 by default.

discreteValues Integer The number of discrete value between the minimum and maximum
(inclusive). Infinity is a continuous scale. Values greater than 1 pro-
duce a discrete effect. Infinity by default.

pageIncrement Integer The amount of adjustment to nudge the slider via the page up and page
down keys. 2 by default.

clickSelect Boolean Whether clicking the progress bar causes the value to change to the
clicked location. true by default.

slideDuration Number The time in milliseconds to take to slide the handle from 0% to 100%.
Useful for programmatically changing slider values. 1000 by default.

increment() Function Increments the slider by one unit.

decrement() Function Decrements the slider by one unit.

Table 13-14. HorizontalRule and VerticalRule

Name Type (default) Comment

ruleStyle String The CSS class to apply to individual hash marks.

count Integer The number of hash marks to generate. 3 by default.

container DOM Node Where to apply the label in relation to the slider: topDecoration or
bottomDecoration for HorizontalSlider. leftDecoration
or rightDecoration for VerticalSlider.

Table 13-15. HorizontalRuleLabel and VerticalRuleLabel

Name Type (default) Comment

labelStyle String The CSS class to apply to text labels.

labels Array Array of text labels to render, evenly spaced from left-to-right or top-to-
bottom. [] by default.

numericMargin Integer The number of numeric labels that should be omitted from display on each
end of the slider. (Useful for omitting obvious start and end values such as
0, the default, and 100.)

338 | Chapter 13: Form Widgets

Form
Although form dijits can be wrapped in an HTML form tag, the dijit.form.Form dijit
provides some additional conveniences that are quite useful. This section rounds off
the chapter by reviewing ordinary HTML forms and then reviews the specific fea-
tures provided by dijit.form.Form. A common source of confusion to many Dijit
newcomers is that they expect Dijit to do something directly that already works just
fine via ordinary HTML. Recall that a significant part of Dojo’s design philosophy is
to not reinvent aspects of web technologies that already work; rather, Dojo supple-
ments and augments as needed where web technology is lacking or not standardized.

HTML Form Tag Synopsis
dijit.form.Form respects the standard form attributes as defined in the HTML 4.01
specification. All attribute values are assumed to be wrapped in quotes as string values,
although DOM events such as onclick entail explicitly denoting that a script action is
expected, like onclick="javascript:someScriptAction()" or onclick="javascript:
return someValidationAction()". For mouse events, a “left-click” action is assumed.

Form
The Form dijit itself supplements the standard HTML form attribute by providing
several methods that may be called to manipulate it directly, and one extension point
that is called internally in response to a user action. Table 13-16 lists the key aspects
of Form.

minimum Integer When the labels array is not specified, this value provides the leftmost
label to include as a label. 0 by default.

maximum Integer When the labels array is not specified, this value provides the right-most
label to include. 1 by default.

constraints Object The pattern to use (from dojo.number) to use for generated numeric
labels when the labels array is not specified. {pattern:"#%"} by
default.

getLabels Function Returns the labels array.

Table 13-16. Form methods and extension points

Name Category Comment

getValues() Method Returns a JSON structure providing named key/value pairs for the form.

isValid() Method Returns true if each enabled value in the form returns true for its
isValid method.

Table 13-15. HorizontalRuleLabel and VerticalRuleLabel (continued)

Name Type (default) Comment

Summary | 339

Wrapping up the entire form into a dijit.form.Form is just like replacing any other
element with the corresponding dijit, as shown in Example 13-17.

Summary
This chapter has covered some serious ground. After working through it, you should:

• Understand how ordinary HTML forms work

• Understand how to use drop-in form dijit replacements for standard form
elements

• Be familiar with the general taxonomy of form dijits, understanding the broad
strokes of the inheritance relationships

• Be able to create form dijits both programmatically and in markup

• Understand the difference between methods, attributes, and extension points

• Understand what is meant by a degradable form and be able to weigh the vari-
ous factors involved in producing a degradable design

It’s time to move on to layout widgets.

setValues
(/*Object*/
values)

Method Provides a concise way of setting all values in the form at one time via a JSON
structure where each key in the structure is a named form field.

submit() Method Used to programmatically submit the form.

reset() Method Systematically calls reset() on each contained dijit in the form to reset its
value.

onSubmit() Extension point Called internally when the submit() method is executed. This extension
point is intended to provide a way of canceling the form submission if it
returns false. By default, it returns the value from isValid().

validate() Method Returns true if the form is valid, which is the same as isValid, but also
highlights any form dijits that are valid and calls focus() on the first
invalid dijit that is contained in the form.

Example 13-17. Typical Form usage

<form id="registration_form" dojoType="dijit.form.Form">

 <!-- form elements go here -->

 <!-- override extension points as usual...-->

 <script type="dojo/method" event="onSubmit" args="evt">
 //return false if form should not be submitted. By default
 //onSubmit returns isValid() for the dijit.form.Form
 </script>
</form>

Table 13-16. Form methods and extension points (continued)

Name Category Comment

340 | Chapter 14: Layout Widgets

Chapter 14CHAPTER 14

Layout Widgets 14

Unfortunately, many web apps consume nontrivial amounts of time implementing
and rediscovering CSS shenanigans to achieve layouts that have been realized many
times already and that should be a lot easier than they often turn out to be. This
chapter introduces the layout dijits, a number of useful containers for creating com-
mon layouts in markup. Layout containers allow you to automate incredibly com-
mon tasks such as producing a tabbed layout as well as producing arbitrary tiled
layouts without resorting to custom CSS for floating content, calculating relative off-
sets, etc. Unlike the previous chapter on form widgets, this chapter is shorter, much
simpler, and more predictable. There are only a handful of layout widgets; all of
them have only a few configuration options and very few caveats.

Layout Dijit Commonalities
All layout dijits exist within the dijit.layout namespace and share a small set of
baseline features that you should be aware of. In addition to inheriting from _Widget,
_Container, and _Contained, they share a few extra commonalities. This section
quickly reviews the commonalities, listed in Table 14-1, which are all pretty easy to
get your head around.

Table 14-1. Layout dijit common methods

Name Comment

isLayoutContainer Returns whether the widget is a layout container.

layout() Overridden by widgets to size and position their contents (child widgets). This is
called after startup, when the widget’s content box is guaranteed to be set, and
anytime the widget’s size has been changed via resize.

resize(/*Object*/ size) Used to explicitly set the size of a layout widget; accepts an object specifying the
upper left along with a width and a height of the form {w : Integer,
h: Integer, l : Integer, t : Integer}. (Anytime you override resize,

you will almost always call layout in the overridden method because layout is the
canonical location for handling size and positioning for the contained child widgets.)

Layout Dijit Commonalities | 341

An especially important takeaway from Table 14-1 is the relationship between layout
and resize. To be clear, resize is used to change the size of widget, and it is almost
always the case that resize calls layout to adjust the size of its children in response
to resizing. Normally speaking, child nodes do not lay themselves out. The parent
node lays them out inside of layout. As a general pattern, the startup lifecycle
method kicks off resize, which in turn calls layout.

The layout dijits leverage features of _Container and _Contained especially heavily, so
they are worth a review as well, provided in Table 14-2.

Programmatic Creation
As we’ll see in upcoming examples, the pattern for programmatically creating layout
dijits follows the same dijit creation pattern that involves providing a first argument
with a collection of properties and a second parameter that provides a source node
reference for the layout dijit. Once the layout dijit is created, the source node refer-
ence becomes the dijit’s domNode. This all takes place via _Widget’s create method,
which was introduced as part of the dijit lifecycle in Chapter 12. Unlike many dijits
you’ve learned about so far, however, you’ll almost always need to explicitly call a
layout dijit’s startup method if you programmatically create layout dijits because
they generally contain child widgets, and startup signals that the container is fin-
ished adding children—at which point the layout can proceed. After all, it wouldn’t
be prudent at all for a widget to lay itself out only to have other sibling widgets
repeatedly drop in and restart the layout process. Thus, the parent’s startup method
generally involves calling the startup method on each child widget, which is the
green light to start rendering.

Table 14-2. Layout dijit container machinery

Name Comment

removeChild(/*Object*/ dijit) Removes the child widget from the container. (Silently fails if
the widget is not a child or if the container does not have any
children.)

addChild(/*Object*/ dijit, /*Integer?*/
insertIndex)

Adds a child widget to the container, optionally using the
insertIndex to place it.

getParent() Commonly used by a child inside of a layout container to
retrieve its parent. Returns a dijit instance.

getChildren() Commonly used by a layout container to enumerate each of
its children dijits. Returns an Array of dijit instances.

getPreviousSibling() Used by descendants of StackContainer to reference the
previous sibling, i.e., the one “to the left.” Returns a dijit
instance.

getNextSibling() Used by descendants of StackContainer to reference the
next sibling, i.e., the one “to the right.” Returns a dijit
instance.

342 | Chapter 14: Layout Widgets

If you are implementing a parent container, startup is your last chance
to manipulate children before they are displayed.

Keyboard Support
Like with other all other dijits, keyboard support is quite full featured. You’ll find
that in almost all circumstances, the “obvious” keys work. For example, to navigate
through an AccordionPane, you can use the up and down arrows as well as the Page
Down and Page Up keys. In addition to providing accessibility as part of Dijit’s a11y
goals, this extensive keyboard support also enhances the general user experience.

ContentPane
A ContentPane is the most basic layout tile and it inherits directly from _Widget; con-
ceptually, it is like a super-duper variation of an iframe except that it fits right into
the page with all sorts of bells and whistles, not the least of which are the ability to
render arbitrary snippets of HTML (not just full documents), reload content via XHR
on demand, render widgets, and respect the page’s theme. More often than not, a
ContentPane is contained within another widget such as a TabContainer, although a
ContentPane has several interesting uses cases on its own.

In its most generic usage, a layout pane does nothing special at all, as shown in
Example 14-1.

Example 14-1. Creating a ContentPane in markup

<html>
 <head><title>Fun with ContentPane!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dijit.layout.ContentPane");
 </script>

 </head>
 <body class="tundra">

ContentPane | 343

When browsing the source code or reading about Dojo online, you
may notice that there is also a LinkPane dijit. Over the course of time,
ContentPane evolved to absorb much of what LinkPane used to do, and
it is likely that LinkPane will become deprecated because it offers a triv-
ial amount of built-in functionality beyond that of ContentPane.

However, you can trivially fetch arbitrary content from a server and render it into the
page by merely providing a reference to the server side URL. Suppose that a server-
side URL called foo returns a snippet of text; you could use the ContentPane to dis-
play it like so:

<div id="foo" preload="false" dojoType="dijit.layout.ContentPane" href="foo">

In this particular case, the foo URL might have returned just a simple string value,
although it could have returned a widget that would have been automatically
parsed and rendered into the page. Just note that the widget must already have been
dojo.require’d into the page. For example, let’s suppose the foo URL returned
<div dojoType="dijit.form.Textarea"></div>, then by default, the dijit would be
parsed and rendered into the page.

Table 14-3 presents a summary of everything that a ContentPane supports.

 <div dojoType="dijit.layout.ContentPane">
 Nothing special going on here.
 </div>
 </body>
</html>

Table 14-3. ContentPane API

Name Type Comment

href String Used to designate the external data the pane should load.

extractContent Boolean If true, the visible content between the BODY tags of the docu-
ment the ContentPane retrieves is extracted from it and
placed into the pane. false by default.

parseOnLoad Boolean If true, any dijits returned in the data are automatically parsed
and rendered. true by default.

preventCache Boolean Acts just like thepreventCacheparameter for adojo.xhrGet.
Iftrue, an additional parameter is passed that changes with each
request to prevent caching from occurring. false by default.

preload Boolean Used to force the pane to load content, even if it is not initially vis-
ible. (If the node is styled with display:none then content
may not load unless preload is set to true.) false by default.

Example 14-1. Creating a ContentPane in markup (continued)

344 | Chapter 14: Layout Widgets

Given an existing node called foo, you could programmatically create a ContentPane
like so:

var contentPane = new dijit.layout.ContentPane({ /* properties*/, "foo");
contentPane.startup(); //good practice to get in the habit of always calling startup

Because ContentPane is not a descendant of _Container, there are no built-in meth-
ods for adding children to a ContentPane. However, you can use a ContentPane’s
domNode reference to append another node inside of it using plain old JavaScript,
which works just fine. For example, using the existing content pane from the previ-
ous example:

contentPane.domNode.appendChild(someOtherDijit.domNode);

refereshOnShow Boolean Used to indicate whether the pane should reload every time the
pane goes from a hidden state to a visible state. false by
default.

loadingMessage String Defined in dijit.nls.loading. Provides a default message
to the user while a load is in process. "Loading..." by default.

errorMessage String Defined in dijit.nls.loading. Provides a default message
to the user when a load fails. "Sorry, an error occurred"
by default.

isLoaded Boolean Used to provide an explicit status for whether content is loaded.
Useful for inquiries involving content that is often refreshed.

refresh() Function Used to force the content to refresh by downloading it again.

setHref(/*String*/ href) Function Used to change the location of the external content for the dijit. If
preload is false, the content is not downloaded until the
widget becomes visible again.

setContent(/*String | DOMNode
| NodeList */data)

Function Used to explicitly set local content for the pane.

cancel() Function Cancels the in-progress download of content.

onLoad(/*Event*/evt) Function Extension point that is called after the load (and optional parsing
of widgets) takes place.

onUnload(/*Event*/evt) Function Extension point that is called before existing content is cleared by
a refresh, setHref, or setContent.

onDownloadStart Function Extension point that is called just before the download begins. By
default, returns the string that is displayed as the loading mes-
sage.

onContentError(/*Error*/ e) Function Extension point that is called when DOM errors occur. The string
that is returned is what is displayed to the user.

onDownloadError(/*Error*/ e) Function Extension point that is called if an error occurs during the down-
load. By default, returns the string that is displayed as the error
message.

onDownloadEnd() Function Extension point that is called when the download completes.

Table 14-3. ContentPane API (continued)

Name Type Comment

ContentPane | 345

You may be wondering why ContentPane does not directly support the
interface provided by _Container. The unofficial answer is that a
ContentPane, in general, does not need to perform a specific action
when a child is placed into it for a specific reason. The reasons for
adding children to a ContentPane are wide and varied. If you really
wanted to, however, you could mixin or extend _Container into
ContentPane.

Hacking ContentPane
One of the great things about a purely interpreted, highly dynamic language like
JavaScript is that you can extend functionality as you need it on the fly. The discussion
about fetching a dijit such as Textarea via a ContentPane cited that Textarea must first
be required into the page. The natural tendency would be to dojo.require("dijit.
form.Textarea") somewhere in the head of the page, and that probably covers most of
the common cases. But what if you wanted to be able to have the server return to you
any dijit to render in the ContentPane?

No problem—if the client is requesting a specific dijit, through the URL’s query string
perhaps, you could simply dojo.require it yourself, on the fly, before the request to
update the ContentPane. If the server were returning you a dijit that you don’t have
knowledge of beforehand, then matters are a bit tricker, but not so tricky that you can’t
overcome. Simply set the ContentPane’s parseOnLoad value to be false so that no auto-
matic parsing occurs (resulting in an error since the corresponding dojo.require hasn’t
executed yet), and use the onLoad extension point to find the node, require it into the
page, and parse it yourself.

Here’s an example in markup:

<div dojoType="dijit.layout.ContentPane"
 href="bar" parseOnLoad="false">
 <script type="dojo/method" event="onLoad">
 dojo.query("[dojoType]", this.domNode)
 .forEach(function(x) {
 var _resource = dojo.attr(x, "dojoType");
 dojo.require(_resource);
 //don’t parse till the module is loaded
 var _interval = setInterval(function() {
 if (eval(_resource)) { //does the object exist?
 clearInterval(_interval);
 dojo.parser.parse(x.parentNode);
 }
 }, 100);
 });
 </script>
</div>

346 | Chapter 14: Layout Widgets

BorderContainer

BorderContainer is a new layout dijit introduced in version 1.1 that
resulted in LayoutContainer and SplitContainer getting deprecated
because BorderContainer is essentially a union of the two. Although
you may see examples on the web using LayoutContainer and
SplitContainer, it is not a good idea to start building an application
with deprecated features. For this reason, these two deprecated wid-
gets are not covered in this book.

A BorderContainer provides an easy way to define a layout that normally involves sev-
eral layout tiles that occur on the top/bottom/left/right/center, top/bottom/center, or
left/right/center of the page. These tiles may have resizable handles, so the
BorderContainer is an especially notable value-added widget in that it simplifies what
could have otherwise been a grueling workload into a really simple widgetized solu-
tion. As you might have guessed, it is called a “border” container because up to four
tiles surround its border with the center filling in to whatever is leftover.

Table 14-4 shows the API.

When using a BorderContainer, the additional attributes shown in Table 14-5, which
BorderContainer depends on, are available via ContentPane.

You might find it interesting to know that the means of making
these additional attributes available via ContentPane is that the
BorderContainer resource file extends _Widget’s prototype to contain
these values behind the scenes. This is a clever solution to the problem as
it uses JavaScript’s dynamism to provide these extras on demand, instead
of requiring an a priori solution, which would really junk up and create
unnecessary couplings on ContentPane’s implementation.

Table 14-4. BorderContainer API

Name Type Comment

design String Valid values include "headline" (the default) or "sidebar" and deter-
mine whether the top and bottom tiles extend the width and height or the
top and bottom of the container.

liveSplitters Boolean Whether to continuously resize while the mouse drags or to resize on the
onmouseup event.

persist Boolean Whether to save splitter positions as a cookie.

BorderContainer | 347

A layout that involves a top and bottom that extends the width of the container is
called a headline layout, and a layout that involves a left and right that extends the
width of the container is called a sidebar layout. Either layout can optionally contain
additional tiles that increase the number of layout areas from three to five. In any
case, the remaining space that is leftover is the center area that gets filled in with the
center tile.

Let’s kick things off with a simple headline layout in markup, shown in
Example 14-2. The top will be a blue pane, the bottom a red panel, and the middle
will remain white. The top pane has minimum height of 10 pixels and a maximum
height of 100 pixels (its default height).

Table 14-5. Attributes available to children of BorderContainer

Name Type Comment

minSize Integer If provided, the minimum size in pixels of the ContentPane is restricted to this value.
By default, this value is 0.

maxSize Integer If provided, the maximum size in pixels of the ContentPane is restricted to this value.
By default, this value is Infinity.

splitter Boolean If provided, a splitter appears on the edge of the ContentPane so that resizing can
occur. By default, this value is false, which means that the content is not resizable.

region String The BorderContainer layout tiles are ContentPane widgets, each of which should
have a region attribute to specify how to lay out the widget. Valid values include"top",
"bottom", "left", "right", and "center". By default, this value is an empty
String. Values of "leading" and "trailing" are also possible and differ from
"left" and "right" in that they are relative to the bidirectional layout orientation.

Example 14-2. Creating a BorderContainer in markup

<html>
 <head><title>Fun with BorderContainer!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dijit.layout.ContentPane");
 dojo.require("dijit.layout.BorderContainer");

348 | Chapter 14: Layout Widgets

Adding tiles to fill in the left and right sides takes only two additional ContentPane
dijits, as shown in Figure 14-1. Consider the following revision to the BODY tag:

<body class="tundra">

 <div dojoType="dijit.layout.BorderContainer"
 design="headline" style="height:500px;width:500px;border:solid 3px;">

 <div dojoType="dijit.layout.ContentPane" region="top"
 style="background-color:blue;height:100px;" splitter="true"
 minSize=10 maxSize=100>top</div>

 <div dojoType="dijit.layout.ContentPane" region="center">center</div>

 <div dojoType="dijit.layout.ContentPane" region="bottom"
 style="background-color:red;height:100px;" splitter="true">bottom</div>

 <div dojoType="dijit.layout.ContentPane" region="left"
 style="background-color:yellow;width:100px;" splitter="true">left</div>

 <div dojoType="dijit.layout.ContentPane" region="right"
 style="background-color:green;width:100px;" splitter="true">right</div>

 </div>
</body>

Like all other dijits, programmatically creating a BorderContainer entails the same
basic constructor function that takes a collection of properties and a source node.
Adding in the child ContentPanes involves systematically creating them one by one as
well. Although more tedious than markup, it’s the same basic pattern. Example 14-3
shows how you’d create Example 14-2 programmatically.

 dojo.require("dojo.parser");
 </script>
 </head>
 <body class="tundra">

 <div dojoType="dijit.layout.BorderContainer" design="headline"
 style="height:500px;width:500px;border:solid 3px;">

 <div dojoType="dijit.layout.ContentPane" region="top"
 style="background-color:blue;height:100px;" splitter="true"
 minSize=10 maxSize=100>top</div>

 <div dojoType="dijit.layout.ContentPane" region="center">center</div>

 <div dojoType="dijit.layout.ContentPane" region="bottom"
 style="background-color:red;height:100px;" splitter="true">bottom</div>

 </div>
 </body>
</html>

Example 14-2. Creating a BorderContainer in markup (continued)

BorderContainer | 349

Figure 14-1. Left: the BorderContainer before adding in additional panels on the left and right;
right: the BorderContainer after adding in left and right panels

Example 14-3. Programmatically creating a BorderContainer

<html>
 <head><title>Fun with BorderContainer!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 djConfig="parseOnLoad:true",
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js">
 </script>

 <script type="text/javascript">
 dojo.require("dijit.layout.BorderContainer");
 dojo.require("dijit.layout.ContentPane");
 dojo.require("dojo.parser");
 dojo.addOnLoad(function() {
 //the BorderContainer
 var bc = new dijit.layout.BorderContainer(
 {
 design: "headline",
 style: "height:500px;width:500px;border:solid 3px"
 },
 "bc"
);

 var topContentPane = new dijit.layout.ContentPane(

350 | Chapter 14: Layout Widgets

The previous example called startup() to do initial layout and then
used the addChild method to add children. The following approach
would also have worked:

bc.domNode.appendChild(topContentPane.domNode);
bc.domNode.appendChild(centerContentPane.domNode);
bc.domNode.appendChild(bottomContentPane.domNode);
bc.startup();

 {
 region: "top",
 style: "background-color:blue;height:100px;",
 splitter: true,
 minSize : 10,
 maxSize : 100
 },
 document.createElement("div")
);

 var centerContentPane = new dijit.layout.ContentPane(
 {
 region: "center"
 },
 document.createElement("div")
);

 var bottomContentPane = new dijit.layout.ContentPane(
 {
 region: "bottom",
 style: "background-color:red;height:100px;",
 splitter: true
 },
 document.createElement("div")
);

 bc.startup(); // do initial layout (even though there are no children)

 //now add the children.
 bc.addChild(topContentPane);
 bc.addChild(centerContentPane);
 bc.addChild(bottomContentPane);

 });
 </script>
 <head>
 <body class="tundra">
 <div id="bc"></div>
 </body>
</html>

Example 14-3. Programmatically creating a BorderContainer (continued)

StackContainer | 351

BorderContainer dijits are quite flexible and can be nested arbitrarily if the situation
calls for it. They’re also a great way to set up a headline style or sidebar style layout
with virtually no effort, although you should generally consider plain old CSS for
production situations in which widgets don’t add any value.

StackContainer
A StackContainer is a layout dijit that displays a sequence of tiles one at a time. A
StackContainer is conceptually just like a slideshow in which you can page back-
ward and forward through a “stack” of tiles. Like LayoutContainer, you provide any
number of child widgets to the StackContainer, and it takes care of the display. In its
most basic usage, you simply page through the available tiles, as shown in
Example 14-4.

The usual container and generic layout methods apply to StackContainer; addition-
ally, you should also note the features in Table 14-6.

Example 14-4. Creating a StackContainer in markup

<div id="stack" dojoType="dijit.layout.StackContainer"
 style="width:100px; height:100px; margin:5px; border:solid 1px;">

 <div dojoType="dijit.layout.ContentPane">
 One fish...
 </div>
 <div dojoType="dijit.layout.ContentPane">
 Two fish...
 </div>
 <div dojoType="dijit.layout.ContentPane">
 Red fish...
 </div>
 <div dojoType="dijit.layout.ContentPane">
 Blue fish...
 </div>

</div>

<button dojoType="dijit.form.Button"><
 <script type="dojo/method" event="onClick" args="evt">
 dijit.byId("stack").back();
 </script>
</button>

<button dojoType="dijit.form.Button">>
 <script type="dojo/method" event="onClick" args="evt">
 dijit.byId("stack").forward();
 </script>
</button>

352 | Chapter 14: Layout Widgets

The StackContainer also supports several additional features:

• A closeChild(/*Object*/ child) method

• An onClose() extension point

• Children may exhibit the closeable, title, and selected
attributes

• Topics that are published when children are added, removed, or
selected, <id>-addChild, <id>-removeChild, and <id>-selectChild,
respectively

Because these features are most commonly associated with the
TabContainer (which inherits from StackContainer), however, their for-
mal introduction will be delayed until the next section.

If you’ve followed along with the previous example of programmatically creating lay-
out dijits, Example 14-5 should seem awfully familiar.

Table 14-6. StackContainer API

Name (default) Type Comment

doLayout Boolean Used to change the size of the currently displayed child to match the
container’s size. true by default.

selectedChildWidget Object References the currently selected child widget. null by default.

selectChild(/*Object*/
page)

Function Used to select a specific child widget.

forward() Function Used to page forward to the next child widget.

back() Function Used to page backward to the previous child widget.

Example 14-5. Programmatically creating a StackContainer

var container = new dijit.layout.StackContainer({}, "foo");

var leftChild = new dijit.layout.ContentPane({});
leftChild.domNode.innerHTML="page 1";

var rightChild = new dijit.layout.ContentPane({});
rightChild.domNode.innerHTML="page 2";

container.addChild(leftChild);
container.addChild(rightChild);

container.startup();

/* Skip from page 1 to page 2 with... */
dijit.byId("foo").forward();

TabContainer | 353

Procrastination (a.k.a. Lazy Loading) May Yield Better
Performance
The previous example uses explicit buttons for paging, but it is not uncommon to
use a StackContainer as an application container to control the flow of an applica-
tion with multiple pages. For example, your application might initially display a page
with a search bar; once a button is pressed to trigger a search, you might page forward
to display a search results screen. Assuming that you’ve defined every page of the appli-
cation as a child of a StackContainer, this approach has the advantage of never explic-
itly reloading a page—a little bit of snazzy flare for a Web 2.0 style interface.

Although loading the entire application at one time when the page loads may be the
best option for some circumstances, you could also elect to lazy-load content by con-
figuring a child ContentPane to lazy load via its href attribute. Recall that this behav-
ior is controlled by a ContentPane’s preload attribute, which when false (the default)
does not fetch content until it becomes visible. You can watch the Firebug console to
confirm this behavior. For example, if the URL referenced below, which is entitled
blueFish contained the text “Blue fish...” from Example 14-4, then the following
adjustment would lazy load the fourth page of the StackContainer:

<div dojoType="dijit.layout.ContentPane" href="blueFish"></div>

Lazy loading is ideal for situations in which there may be application features that
are essential, but not often used. A preferences pane is a prime candidate for lazy
loading that often involves gobs of controls that may not appear on any other page of
the application.

TabContainer
As it turns out, a TabContainer is really just a fancier version of a StackContainer—
the primary difference is that a TabContainer comes with a snazzy set of tabs that can
be used to control which page is displayed at any given time. In fact, the
TabContainer inherits from StackContainer and provides only a few additional fea-
tures that pertain to the list of tabs itself. Example 14-6 illustrates basic usage of the
TabContainer.

Example 14-6. Creating a TabContainer in markup

<div dojoType="dijit.layout.TabContainer"
 style="width:225px; height:100px; margin:5px; border:solid 1px;">

 <div dojoType="dijit.layout.ContentPane" title="one">
 One fish...
 </div>

354 | Chapter 14: Layout Widgets

Take special note that the tab controls take care of themselves; you simply provide a
title attribute to each child of the TabContainer, and the rest is handled with inter-
nal automation that you don’t have get be directly involved with (and that’s the best
kind). Additionally, notice that you may provide a closeable tab via the closable
attribute, and an optional onClose extension point may perform a custom action
when a close does occur. Be careful, though, because if true is not returned from
onClose, the tab will not close.

Table 14-7 lists the features that pertain to TabContainer.

 <div dojoType="dijit.layout.ContentPane" title="two">
 Two fish...
 </div>

 <div dojoType="dijit.layout.ContentPane" title="red"
 closable=
 "true">Red fish...
 <script type="dojo/method" event="onClose" args="evt">
 console.log("Closing", this.title);
 return true; //must return true for close to occur!
 </script>
 </div>

 <div dojoType="dijit.layout.ContentPane" title="blue">
 Blue fish...
 </div>

</div>

Table 14-7. TabContainer API

Name Type Comment

title String Mixed into _Widget from StackContainer. Used in a child
to provide the title for its tab button.

closeable Boolean Mixed into _Widget from StackContainer. Used in a child
to specify whether a tab should be closeable. When closeable, a
small icon appears on the tab that provides a means of closing
the tab. false by default.

onClose() Function An extension point mixed into _Widget from
StackContainer that provides a uniform way for children to
provide an extension point that may be used to augment behav-
ior when closed. Returns true by default.

tabPosition String Specifies where the list of tab buttons should appear. Possible
values include "top" (the default), "button", "left-h",
and "right-h".

<id>-addChild
<id>-removeChild
<id>-selectChild

dojo.publish topics This functionality is inherited from StackContainer. The
named topics are published when children are added, removed,
or selected. <id> refers to the id value of the
TabContainer.

Example 14-6. Creating a TabContainer in markup (continued)

AccordionContainer | 355

The buttons you see on a tab container are honest to goodness
dijit.form.Button buttons; do with them as you will.

Just like with StackContainer, you may lazy load content in a TabContainer via a
ContentPane, as long as preload is set to be false.

And now, Example 14-7 shows how to use programmatic creation.

AccordionContainer
Like a TabContainer, AccordionContainer inherits from StackContainer and is a means
of displaying one child at a time from a collection of widgets. The visual difference is
that the container looks like a vertical accordion, and animates when each child is
selected.

One important difference in how you use AccordionContainer, however, is that you
must use a special child container called AccordionPane that provides an explicit
wrapper for its child widgets. The actual reasoning for why this is the case is not very
interesting and has to do with how the underlying implementation for
AccordionContainer. In general, just treat an AccordionPane like a ContentPane and be
on your merry way.

As of version 1.1, AccordionPane does not support nested layout wid-
gets such as SplitContainer; virtually all other types of content, how-
ever, should work just fine.

Example 14-7. Programmatically creating a TabContainer

var container = new dijit.layout.TabContainer({
 tabPosition: "left-h",
 style : "width:200px;height:200px;"
}, "foo");

var leftChild = new dijit.layout.ContentPane({title : "tab1"});
leftChild.domNode.innerHTML="tab 1";

var rightChild = new dijit.layout.ContentPane({title : "tab2", closable: true});
rightChild.domNode.innerHTML="tab 2";

container.addChild(leftChild);
container.addChild(rightChild);

container.startup();

356 | Chapter 14: Layout Widgets

Example 14-8 shows a simple AccordionContainer in action.

With respect to API, AccordionContainer itself provides only one additional attribute
beyond what StackContainer offers, shown in Table 14-8.

Although we could leave programmatic creation as an exercise for the interested
reader, there is a slight difference to creation pattern because AccordionPane is a dijit
on its own, as shown in Example 14-9.

Example 14-8. Creating an AccordionContainer in markup

<div id="foo" dojoType="dijit.layout.AccordionContainer"
 style="width:150px; height:150px; margin:5px">
 <div dojoType="dijit.layout.AccordionPane" title="one">
 <p>One fish...</p>
 </div>
 <div dojoType="dijit.layout.AccordionPane" title="two">
 <p>Two fish...</p>
 </div>
 <div dojoType="dijit.layout.AccordionPane" title="red">
 <p>Red fish...</p>
 </div>
 <div id="blue" dojoType="dijit.layout.AccordionPane" title="blue">
 <div dojoType="dijit.layout.ContentPane" href="blueFish"></div>
 </div>
</div>

Table 14-8. AccordionContainer API

Name (default) Type Comment

duration (250) Integer An attribute of AccordionPane that provides the duration in milliseconds that it
should take to slide the pane to select another one.

Example 14-9. Programmatically creating an AccordionContainer

var container = new dijit.layout.AccordionContainer({}, "foo");

var child1 = dojo.doc.createElement("div");
child1.innerHTML="pane 1";

var content1 = dojo.doc.createElement("p");
content1.innerHTML = "content 1";

var ap1 = new dijit.layout.AccordionPane({title: "pane1", selected : true}, content1);
container.addChild(ap1);

var child2 = dojo.doc.createElement("div");
child2.innerHTML="pane 2";

var content2 = dojo.doc.createElement("p");
content2.innerHTML = "content 2";

Rendering and Visibility Considerations | 357

Rendering and Visibility Considerations
You may have noticed while working through the examples in this chapter that you
usually see the layout occur as the page loads; for example, you might see ordinary
text HTML representing some of the layout content, and then all of a sudden it mag-
ically transforms into this great-looking layout. While not totally unacceptable, you
will probably not want to see the rendering take place in many situations.

A common technique for working around the situation is to initially set the body of
the page to be hidden, and then when the page finishes loading, make it visible all at
one time. Accomplishing this technique is quite simple, and you merely have to pro-
vide a style (or class) indicating that the body of the page should be hidden, like so:
<body style="visibility:hidden;"> should do the trick. Just remember to add the
corresponding call to make it visible at the desired time. Assuming you’ve made the
entire body hidden, adding a dojo.style(dojo.body(), "visibility", "visible") to
a dojo.addOnLoad displays the page’s content. Any callback could be used in place of
page load if for some reason you wanted to delay showing the page until some arbi-
trary event occurred (like an asynchronous callback that provides data for a custom
widget, perhaps).

Recall that the difference between the CSS styles of visibility and dis-
play has to do with taking up space on the screen. In general, nodes
styled with visibility:hidden are hidden from display but still take up
space; nodes styled with display:none would not be visible and would
take up no space—resulting in a noticeable shift of content when the
display is changed to display:block.

One caveat that should be noted, however, is that layout containers do not always
respond well when they are initially created within a hidden container. If you find
that your layout containers are not visible when they should be, you may need to
manually call their resize() method to force them to render properly. Historically,
this issue has especially been the case when displaying a layout container within a
dijit.Dialog.

Layout dijits do not always render properly if they are created in con-
text that does not immediately make them visible. Almost all of the
time, you can simply call the layout container’s resize() method to
render it.

var ap2 = new dijit.layout.AccordionPane({title: "pane2"}, content2);
container.addChild(ap2);

container.startup();

Example 14-9. Programmatically creating an AccordionContainer (continued)

358 | Chapter 14: Layout Widgets

Summary
After reading this chapter, you should be able to:

• Appreciate the common design challenges (tabbed layouts, for example) that lay-
out dijits alleviate

• Understand the basic features provided by the various layout dijits

• Create arbitrary layouts with the layout dijits both in markup and
programmatically

• Use BorderContainer to create flexible, tiled layouts that can arbitrarily resize

• Use ContentPane to lazy load content either as a standalone or as part of another
dijit

• Use StackContainer and TabContainer to display multiple pages of data in an
application

• Understand some of the considerations with respect to initially displaying lay-
out dijts as being hidden

• Understand the existing limitations of AccordionPane with respect to embedding
layout dijits

• Understand the role that the base classes _Container and _Contained play with
the layout dijits

Application widgets are coming up next.

Tooltip | 359

Chapter 15 CHAPTER 15

Application Widgets15

This chapter systematically works through all of the general-purpose application
widgets provided in Dijit. In many ways, these are some of the most exciting dijits
provided by the toolkit because they’re not as familiar as form elements and, unlike
the enabling layout dijits, they provide tremendous interactive functionality.
ProgressBar, Toolbar, Editor, and Tree are just a few of the exciting dijits that are
coming up. Chances are, you’ll witness some of some highest quality DHTML hack-
ing you’ve ever seen in this chapter—especially as we near the end of it.

Although not explicitly called out in all cases, the widgets in this chap-
ter are fully accessible, as are all other widgets in Dijit.

Tooltip
Tooltips are a great means of providing user assistance for the context of a particular
control on the page, and although the ordinary HTML title attribute is a good start
for applications circa 1990, the current era of web applications calls for a richer vari-
ation of a tooltip. The Tooltip dijit does just that, providing the ability to display
arbitrary HTML markup instead of a plain old snippet of text. Although you got a
preview of Tooltip with ValidationTextBox and its descendants in a previous chap-
ter, you’ll be pleased to know that you can now use Tooltip as a standalone.

Consider Example 15-1, which captures some of the key features of a Tooltip, pro-
ducing the results shown in Figure 15-1.

Example 15-1. Typical Tooltip usage

One fish, two fish.

<div dojoType="dijit.Tooltip" connectId="one,two">
 A limbless cold-blooded vertebrate...
</div>

360 | Chapter 15: Application Widgets

Note that the syntax for passing in multiple values for connectId is
inconsistent with normal JavaScript Array syntax: you provide multi-
ple connectIds without brackets and without embedded quotes:
connectId="id1,id2". It is likely that this syntax will normalize in a
future release so that this isn’t an exception to the rule.

As you can see from the example, you simply provide arbitrary HTML markup for
Tooltip to render. Tooltip should be used for read-only content; TooltipDialog,
coming up in the next section, is particularly suited for content such as input fields
and buttons that requires interaction. Table 15-1 gives a complete listing of Tooltip’s
features.

Dialog Widgets
Dijit offers two related widgets that provide dialog functionality: Dialog, which is
similar to the kind of interaction you normally have with something like an ordinary
alert box (only a whole lot more aesthetically pleasing and flexible), and
TooltipDialog, which is much like an ordinary tooltip except that it can render other
widgets and provide for more interaction that an ordinary Tooltip.

Dialog
The Dialog dijit is conceptually like a pop up that sets up a translucent underlay
below it. While it is visible, you cannot respond to anything below it, making it ideal
for situations in which you need to temporarily prevent access to controls on a page
or force the user to acknowledge or respond to an alert.

Figure 15-1. The tooltip that appears when you mouseover either of the tags containing “fish”

Table 15-1. Tooltip API

Name Type Comment

connectId ("") String A comma-separated list of values that provides the node id values for
which the Tooltip should be displayed.

label ("") String The text to display in the Tooltip. Although the label could include
arbitrary HTML markup, it’s generally better form to include HTML
markup inside of the enclosing tag.

showDelay (400) Integer How many milliseconds to wait before displaying the Tooltip to a
user.

Dialog Widgets | 361

But in addition to the obvious uses, you might also use a Dialog for almost any situa-
tion in which the alternative would be to pop up a new window. From an implemen-
tation standpoint, using a Dialog is often easier than interacting with a separate
window because everything that is contained in the Dialog is part of the current
page’s DOM.* You can query it and otherwise manipulate it like anything else on the
page—even if it’s currently not visible.

A Dialog may contain any DOM content you’d like to place in it, whether it is a sim-
ple HTML snippet, a complex layout dijit, or a custom widget of your own.
Example 15-2 illustrates the most basic usage of a Dialog; in this case, it is automati-
cally displayed on page load.

As noted in the previous chapter, you may need to manually call a lay-
out dijit’s resize method to force it to redraw itself if you initially cre-
ate it to be hidden—which it would be if you created it and then
embedded it inside of a Dialog.

* In fact, some browsers will not even allow you to manipulate one window’s DOM from another window—
even if both windows are from the same origin.

Example 15-2. Typical Dialog usage

<html>
 <head>
 <title>Fun With Dialog!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.Dialog");
 dojo.addOnLoad(function() {
 dijit.byId("dialog").show();
 });
 </script>
 </head>
 <body class="tundra">
 <div id="dialog" dojoType="dijit.Dialog">
 So foul and fair a day I have not seen...
 </div>
 </body>
</html>

362 | Chapter 15: Application Widgets

Programmatically creating a Dialog is easily accomplished with Dialog’s setContent
method, which can accept a DOM node. Consider this example, which forces the
user to click on a Button that is placed into a Dialog—even though you’ve expressly
told them not to do it:

dojo.addOnLoad(function() {
 var d = new dijit.Dialog();

 //hide the ordinary close button from the user...
 dojo.style(d.closeButtonNode, "visibility", "hidden");

 var b = new dijit.form.Button({label: "Do not press this button"});
 var handle = dojo.connect(b, "onClick", function() {
 d.hide();
 dojo.disconnect(handle);
 });
 d.setContent(b.domNode);
 d.show();
});

Dialog’s template contains a number of useful attach points, including
the closeButtonNode attach point, which was used in the previous code
example to hide the icon that normally closes a Dialog.

Like the other dijits, you’ll often get by with just a few common methods and
attributes, but Table 15-2 presents the rest of the story for when you need it.

Dialog inherits from ContentPane, so all of ContentPane’s attributes,
methods, and extension points are also available if you need them. See
Example 14-3 for that API.

TooltipDialog
TooltipDialog inherits from Dialog, but provides functionality that may sort of
remind you of a menu out of a DropDownButton—except that you can interact with it.
In fact, the current manifestation TooltipDialog must be housed in a DropDownButton
or a ComboButton, although you could theoretically adjust the button’s style to make

Table 15-2. Dialog API that builds upon ContentPane’s API

Name Type Comment

open Boolean The state of the Dialog. true if it is open, false (the default) otherwise.

duration Integer The duration in milliseconds it takes to fade in and fade out the Dialog. 400 by
default.

duration() Function Hides the Dialog.

layout() Function Positions the Dialog and its underlay.

show() Function Display the Dialog.

Dialog Widgets | 363

it appear quite different. You may recall the concept of a TooltipDialog from inter-
acting with a spreadsheet application.

To get TooltipDialog, you must do a dojo.require("dijit.Dialog")
because TooltipDialog is embedded into Dialog’s resource file.

Aside from the inability to programmatically create and display a TooltipDialog as a
standalone, the rest of its functional API of a TooltipDialog is quite similar to Dialog
with the caveat that it does not support a show() method. Additionally, it offers a stan-
dard title attribute that you can fill in if you’d like to stay accessibility compliant.

A good use case for a TooltipDialog might be to provide an interactive means of tag-
ging an image. For example, you might use a DropDownButton to provide an image via
its iconClass attribute and then interactively supply the TooltipDialog when the user
clicks on the image. The following snippet provides the basic outline for how you
might get started with a custom image tagger, producing the results shown in
Figure 15-2.

<!-- somewhere out there...
<style type="text/css">
.customImage {
 background-image : url('/static/path/to/apple.jpeg');
 backgrond-repeat : no-repeat;
 width : 120px;
 height : 120px;
 }
</style>
-->

<button dojoType="dijit.form.DropDownButton" iconClass="customImage"
 showLabel="false">
 This label is hidden...

 <div dojoType="dijit.TooltipDialog">
 Tag this image...

Figure 15-2. A custom image tagger built with DropDownButton and TooltipDialog

364 | Chapter 15: Application Widgets

 <div dojoType="dijit.form.TextBox"></div>
 </div>
</button>

ProgressBar
The ProgressBar dijit behaves just like any other progress bar you’ve seen in an appli-
cation, and it comes in both determinate and indeterminate variations. One of the
greatest things about it is that there’s just not that much to say. In fact, Example 15-3
should do a good job of speaking for itself.

Of course, there will certainly be times when you’ll want to fetch a real update from
the server and display actual progress instead of an indeterminate indicator. Let’s
assume that you have a server-side routine that is returning some kind of progress
indication. The following mockup simulates:

import cherrypy

config = {
 #serve up this static file...
 '/foo.html' :
 {
 'tools.staticfile.on' : True,
 'tools.staticfile.filename' : '/absolute/path/to/foo.html'
 }
}

class Content:
 def _ _init_ _(self):
 self.progress = 0

 @cherrypy.expose
 def getProgress(self):
 self.progress += 10
 return str(self.progress)

cherrypy.quickstart(Content(), '/', config=config)

The file foo.html that contains the ProgressBar might look like this:

<html>
 <head>
 <title>Fun with ProgressBar!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />

Example 15-3. Typical indeterminate ProgressBar usage

<div dojoType="dijit.ProgressBar" indeterminate="true" style="width:300px"></div>

ProgressBar | 365

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true">
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.ProgressBar");

 dojo.addOnLoad(function() {
 var progressInterval = setInterval(function() {
 dojo.xhrGet({
 url : "http://localhost:8080/getProgress",
 load : function(response, ioArgs) {
 console.log("load", response);
 if (response <= 100) {
 dijit.byId("pb").update({progress : response});
 }
 else {
 clearInterval(progressInterval);
 }
 }
 });
 }, 1000);
 });
 </script>
 </head>
 <body style="padding:100px" class="tundra">
 <div>Loading...</div>
 <div id="pb" dojoType="dijit.ProgressBar" style="width:300px"></div>
 </div>
 </body>
</html>

To summarize, every second the addOnLoad routine checks the /getProgress URL for an
update and feeds it into ProgressBar via its update function. The use of JavaScript’s
setInterval function will be quite typical with a ProgressBar.

Don’t confuse setInterval with setTimeout. The former executes a
function according to a set interval, while the latter executes a func-
tion after a specified amount of time.

The full range of ProgressBar options are shown in Table 15-3.

366 | Chapter 15: Application Widgets

Finally, recall that if you need to display a ProgressBar as part of a blocking event,
you can always stuff it inside of a Dialog to make the user wait while something hap-
pens in the background. Something along the lines of the following example would
do the trick:

var pb = new dijit.ProgressBar;
var d = new dijit.Dialog;
d.setContent(pb.domNode);
d.show();

ColorPalette
ColorPalette is another simple standalone widget that is helpful for providing a more
visual and interactive way of allowing a user to select a color—perfect for situations
in which you allow the user to customize the theme of an application, for example.
By default, the palette comes in two canned sizes, 3 × 4 or 7 × 10, with pre-selected
popular web colors.

You may already be wondering why you can’t configure your own set
of colors for the palette. As it turns out, the palettes that appear are
images, not panes of HTML markup, and they were designed this way
for a11y reasons, even though it does not seem ideal. Thus, if you
want to extend ColorPalette to display a custom selection, it is cer-
tainly doable—you’d just have to read the source and get your hands
dirty by hacking on some of the private attributes.

Using a ColorPalette in markup is quite simple; the following listing illustrates:

Table 15-3. ProgressBar API

Name Type Comment

indeterminate Boolean Whether to display an indeterminate indication (an animated
image) or to actually render progress as provided via the
update method.

maximum Float The maximum possible value. Although values of 0 through 100
(the default) are common, any range could be used.

places Number The number of decimal places to display for a determinate
ProgressBar. 0 by default.

progress String The initial value for the ProgressBar. You may provide a
percent sign, such as “50%”, to indicate a relative amount ver-
sus an absolute amount.

update(/*Object*/ progress) Function Used to update the progress information. You may pass in
progress, maximum, and determinate to configure the
ProgressBar during any update.

onChange() Function Extension point that is called after each call to update.

Toolbar | 367

<div dojoType="dijit.ColorPalette">
 <script type="dojo/method" event="onChange" args="selectedColor">
 /* hide the palette, perhaps? */
 console.log(selectedColor);
 </script>
</div>

Like ProgressBar, ColorPalette is a nice and simple standalone. Table 15-4 shows
the full story.

Programmatic creation is straightforward enough:

var cp = new dijit.ColorPalette({/*attributes go here */});
/* Now stick it somewhere on the page...*/
dojo.body().appendChild(cp.domNode);

Toolbar
The Toolbar is another familiar control that abbreviates the common task of providing
a collection of common commands to the user. In short, the Toolbar does nothing
more than house a collection of Button dijits, which when styled appropriately, can be
very aesthetically pleasing. The various prepackaged themes that come with Dijit con-
tain classes for many of the common operations such as cut/paste, bold/italic, etc.,
which you can provide through Button’s iconClass attribute.

The following listing illustrates placing a Toolbar on the page and then systemati-
cally wires up each of its buttons to a custom event handler.

This particular example attempts to automate the methodology for
hooking up buttons and custom handlers. Note that the peculiarity of
connecting to x.parentNode inside of the forEach block instead of just
connecting to x is related to the way that Button is implemented. As it
turns out, the icon overlay is what contains an icon node that actually
receives the click; you could have debugged this by inspecting with
Firebug.

Table 15-4. ColorPalette API

Name (default) Type Comment

defaultTimeout Integer The duration before a key that is held down becomes
typematic. 500 by default.

timeoutChangeRate Number The amount of time that is used to change the type-
matic rate. A value of 1.0 means that typematic
events are fired at regular intervals, while values less
than 1.0 mean that the typematic rate accelerates
accordingly. The default value is 0.9.

palette String The size of the palette, which must be either 7 × 10
(the default) or 3 × 4.

onChange(/*String*/ hexColor) Function Extension point triggered when a color is selected.

368 | Chapter 15: Application Widgets

<html>
 <head>
 <title>Fun with Toolbar!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true,isDebug:true,>
 </script>

 <script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.Toolbar");
 dojo.require("dijit.form.Button");

 dojo.addOnLoad(function() {
 var bold = function() {console.log("bold");}
 var italic= function() {console.log("italic");}
 var underline = function() {console.log("underline");}
 var superscript = function() {console.log("superscript");}
 var subscript = function() {console.log("subscript");}

 dojo.query(".dijitEditorIcon").forEach(function(x) {
 if (dojo.hasClass(x, "dijitEditorIconBold"))
 dojo.connect(x.parentNode, "onclick", bold);
 else if (dojo.hasClass(x, "dijitEditorIconItalic"))
 dojo.connect(x.parentNode, "onclick", italic);
 else if (dojo.hasClass(x, "dijitEditorIconUnderline"))
 dojo.connect(x.parentNode, "onclick", underline);
 else if (dojo.hasClass(x, "dijitEditorIconSubscript"))
 dojo.connect(x.parentNode, "onclick", superscript);
 else if (dojo.hasClass(x, "dijitEditorIconSuperscript"))
 dojo.connect(x.parentNode, "onclick", subscript);
 });
 });
 </script>
 </head>
 <body style="padding:100px" class="tundra">
 <div dojoType="dijit.Toolbar" style="width:175px">
 <button dojoType="dijit.form.Button"
 iconClass="dijitEditorIcon dijitEditorIconBold" ></button>
 <button dojoType="dijit.form.Button"
 iconClass="dijitEditorIcon dijitEditorIconItalic" ></button>
 <button dojoType="dijit.form.Button"
 iconClass="dijitEditorIcon dijitEditorIconUnderline" ></button>

Menu | 369

 <button dojoType="dijit.form.Button"
 iconClass="dijitEditorIcon dijitEditorIconSubscript"></button>
 <button dojoType="dijit.form.Button"
 iconClass="dijitEditorIcon dijitEditorIconSuperscript"></button>
 </div>
 </body>
</html>

As a point of interest, Dijit themes currently define the following self-descriptive
Editor-related icons (defined in the theme’s stylesheet) that may be contained in
Toolbar. (Editor is discussed at length in an upcoming section.)

Toolbar has a simple API, shown in Table 15-5, which is representative of a descen-
dant of _Container.

Menu
Menu models the kind of contextual menu that appears when you right-click on an
application icon in a desktop environment. A Menu contains MenuItem widgets, which
are bona fide menu items that may be selected, or PopupMenuItem widgets, which can
provide another layer of menu items (similar to the Windows Start menu). The child
of a PopupMenuItem is just another Menu. Although it would not be wise from a usabil-
ity standpoint, you could theoretically embed an arbitrary number of PopupMenuItem
and MenuItem dijits.

To start out, let’s take a look at a simple Menu that contains only MenuItem children, as
shown in Example 15-4.

By issuing a dojo.require("dijit.Menu") you also get MenuItem and
PopupMenuItem.

Table 15-5. Toolbar API

Name Type Comment

addChild(/*Object*/ child,
/*Integer?*/ insertIndex)

Function Used to insert a dijit into the Toolbar.

getChildren() Function Returns an array of the contained dijits in the
Toolbar.

removeChild(/*Object*/ child) Function Used to remove a child from the Toolbar
(removes its domNode, but does not destroy the
dijit; you must call destroyRecursive()
manually).

370 | Chapter 15: Application Widgets

Image Slicing to Minimize Latency
Instead of defining a ton of small images, resulting in a series of synchronous requests
back and forth to the server that all incur HTTP overhead, Dijit themes use an
approach in which all images are defined side-by-side on a single image. CSS styling is
used to slice out the part of the image that should be displayed for any given icon like
so:

.tundra .dijitEditorIcon
/* All built-in Editor icons have this class */
{
 background-image: url('images/editor.gif');
 background-repeat: no-repeat;
 width: 18px;
 height: 18px;
 text-align: center;
}

/* Individual icons are sliced out like so... */
.tundra .dijitEditorIconUnderline { background-position: -648px; }

The following list summarizes other Editor icons that are available:

• dijitEditorIconSep

• dijitEditorIconBackColor

• dijitEditorIconBold

• dijitEditorIconCancel

• dijitEditorIconCopy

• dijitEditorIconCreateLink

• dijitEditorIconCut

• dijitEditorIconDelete

• dijitEditorIconForeColor

• dijitEditorIconHiliteColor

• dijitEditorIconIndent

• dijitEditorIconInsertHorizontalRule

• dijitEditorIconInsertImage

• dijitEditorIconInsertOrderedList

• dijitEditorIconInsertTable

• dijitEditorIconInsertUnorderedList

• dijitEditorIconItalic

• dijitEditorIconJustifyCenter

• dijitEditorIconJustifyFull

—continued—

Menu | 371

• dijitEditorIconJustifyLeft

• dijitEditorIconJustifyRight

• dijitEditorIconLeftToRight

• dijitEditorIconListBulletIndent

• dijitEditorIconListBulletOutdent

• dijitEditorIconListNumIndent

• dijitEditorIconListNumOutdent

• dijitEditorIconOutdent

• dijitEditorIconPaste

• dijitEditorIconRedo

• dijitEditorIconRemoveFormat

• dijitEditorIconRightToLeft

• dijitEditorIconSave

• dijitEditorIconSpace

• dijitEditorIconStrikethrough

• dijitEditorIconSubscript

• dijitEditorIconSuperscript

• dijitEditorIconUnderline

• dijitEditorIconUndo

• dijitEditorIconWikiword

• dijitEditorIconToggleDir

Example 15-4. Typical Menu usage

<body class="tundra">
 <!-- right click in here to get the contextual menu -->
 <div id="context" style="background:#eee; height:300px; width:300px;"></div>

 <div dojoType="dijit.Menu" targetNodeIds="context" style="display:none">
 <div dojoType="dijit.MenuItem">foo
 <script type="dojo/method" event="onClick" args="evt">
 console.log("foo");
 </script>
 </div>
 <div dojoType="dijit.MenuItem">bar
 <script type="dojo/method" event="onClick" args="evt">
 console.log("bar");
 </script>
 </div>
 <div dojoType="dijit.MenuItem">baz
 <script type="dojo/method" event="onClick" args="evt">
 console.log("baz");
 </script>
 </div>

372 | Chapter 15: Application Widgets

Like Tooltip, the list of values passed in for Menu is a comma-separated
string that does not include enclosing brackets that would be required
of an ordinary JavaScript Array. A future release may very well stan-
dardize this anomaly.

As you can see, there’s not much to it, and defining in markup makes matters even
simpler. The one emphasized line of code that sets the display to be none is impor-
tant because it may be the case that your Menu will initially be visible without this
cue.

Now, suppose you wanted to make baz be a PopupMenuItem and you wanted the Menu
to be contextual for the entire window. You could do it thusly:

<div dojoType="dijit.Menu" style="display:none"contextualMenuForWindow="true">
 <div dojoType="dijit.MenuItem">foo
 <script type="dojo/method" event="onClick" args="evt">
 console.log("foo");
 </script>
 </div>
 <div dojoType="dijit.MenuItem">bar
 <script type="dojo/method" event="onClick" args="evt">
 console.log("bar");
 </script>
 </div>
 <div dojoType="dijit.PopupMenuItem">
 baz
 <div dojoType="dijit.Menu">
 <!-- define onClick handlers as needed for each item -->
 <div dojoType="dijit.MenuItem">yabba</div>
 <div dojoType="dijit.MenuItem">dabba</div>
 <div dojoType="dijit.MenuItem">doo</div>
 </div>
 </div>
</div>

Hopefully, the only remotely tricky part about installing the PopupMenuItem was that
there needed to be an explicit node set, its first child to be specific, which provides
the title.

To round off this section on Menu, Table 15-6 provides a listing of the remaining API.
Note that as a _Container descendant, Menu has token methods for adding, remov-
ing, and getting children, just like Toolbar and the others offer. The API for MenuItem
and PopupMenuItem are shown in Table 15-7.

 </div>
</body>

Example 15-4. Typical Menu usage (continued)

Menu | 373

Table 15-6. Menu API

Name (default) Type Description

contextMenuForWindow Boolean

(false)

 If true, right-clicking anywhere on
the window opens the menu. If
false, the targetNodeIds
parameter should be provided that
supplies one or more nodes that can
trigger the menu.

popupDelay Integer

(500)

The number of milliseconds to wait
before popping up the Menu after the
click event occurs. (An interrupting
click that occurs before this duration
ends results in the time period reset-
ting and starting over.)

targetNodeIds Array

([])

A list of the node id values that sup-
port this Menu.

parentMenu Object

(null)

A pointer to the parent Menu, if any.

addChild(/*Object*/ child,
/*Integer?*/ insertIndex)

Function Used to insert a dijit into the
Toolbar.

getChildren() Function Returns an array of the contained
dijits in the Toolbar.

removeChild(/*Object*/ child) Function Used to remove a child from the
Toolbar (removes its domNode,
but does not destroy the dijit; you
must call destroyRecursive()
manually).

bindDomNode(/*String|DOMNode*/node) Function Attaches aMenu to a particular node.
(Useful for context menus, for example.)

unBindDomNode(/*String|DOMNode*/node) Function Detaches a Menu from a particular
node.

onClick(/*Object*/item, /*Event*/evt) Function Extension point designed to handle
clicks.

onItemHover(/*MenuItem*/item) Function Called when the cursor hovers over a
MenuItem.

onItemUnhover(/*MenuItem*/item) Function Called when the cursor ends a hover
over a MenuItem.

onCancel() Function Extension point for handling when
the user cancels the current Menu.

onExecute() Function Extension point for handling when
the user executes the current Menu.

374 | Chapter 15: Application Widgets

TitlePane
A TitlePane is a widget that always displays a title, but whose body may be
expanded or collapsed as needed; the actual resize is done with an animated wipe-in
or wipe-out. As a descendant of ContentPane, TitlePane also has access to all of the
inherited methods for loading content remotely, although they are not explicitly cov-
ered again in this section. (Refer to the previous chapter for complete coverage of
ContentPane.) Example 15-5 shows the elementary usage.

TitlePane supports the feature set shown in Table 15-8.

Table 15-7. MenuItem and PopupMenuItem API

Name (default) Type Description

label String The text that should appear in the
MenuItem.

iconClass String The class to apply to make the
MenuItem appear as an icon (use
background-image in CSS).

disabled Boolean Specifying whether the
MenuItem is disabled. false by
default.

setDisabled(/*Boolean*/ value) Function Programatically control whether
the MenuItem is disabled.

onClick(/*DomEvent*/ evt) Function Used for attaching click handlers
on the MenuItem.

Example 15-5. Typical TitlePane usage

<div dojoType="dijit.TitlePane" title="Grocery list:" style="width:300px">

 Eggs
 Milk
 Bananas
 Coffee

</div>

Table 15-8. TitlePane API

Name Type Comment

title String The title of the pane.

open Boolean Whether the pane is opened or closed. true by default.

duration Integer The number of milliseconds the animated wipe should
last. 250 by default.

setContent(/*DomNode|String*/) Function Used to programmatically set the contents of the pane.

InlineEditBox | 375

Although you could use TitlePane as a static artifact on your page, you might soon
find interesting uses for it as a more interactive kind of control. Consider, for exam-
ple, how easy it would be to use it to mimic the kind of sticky note that you see in so
many applications. Getting a simple widget working is as easy as inserting some-
thing like a Textarea into TitlePane, and retitling it whenever it closes, as shown in
Example 15-6.

A little additional styling and some drag-and-drop action takes you just about the
whole way towards having a small sticky-notes application.

InlineEditBox
The InlineEditBox is often described as a wrapper widget in that it provides a
marked-up static display for what is really an editable control—then, when you’re
ready to edit it, you do so inline by simply selecting it. For example, instead of hav-
ing a fixed size, editable TextBox always visible on the screen, you could wrap it in an
InlineEdit box and it would appear as ordinary markup on the screen (like a label),
but when you select it, it transforms back into a TextBox for editing. When editing
completes as signaled by an event, such as the Enter key being pressed, it switches
back to markup.

setTitle(/* String */ title) Function Sets the title.

toggle() Function If the pane is opened, this closes it. If closed, then opens
it.

Example 15-6. Simulating a sticky note with a TitlePane

dojo.addOnLoad(function() {
 var ed = new dijit.form.Textarea({id : "titlePaneContent"});
 dijit.byId("tp").setContent(ed.domNode);
});

//And now for the ContentPane, which you might declare in markup:

<div id="tp" dojoType="dijit.TitlePane" style="width:300px">
 <script type="dojo/connect" event="toggle">
 if (!this.open) {
 var t = dijit.byId("titlePaneContent").getValue();
 if (t.length > 15)
 t = t.slice(0,12)+"...";
 this.setTitle(t);
 }
 </script>
</div>

Table 15-8. TitlePane API (continued)

Name Type Comment

376 | Chapter 15: Application Widgets

In its simplest usage, you might simply wrap a TextBox in an InlineEditable as part
of a form letter application, like the following example. Note that what would have
normally appeared as a TextBox and cluttered up the display is presented just like
ordinary markup, while clicking on it transforms it into an editable control:

Dear <span dojoType="dijit.InlineEditBox" autoSave="false"
 editor="dijit.form.TextBox">Valued Customer:

<div>We have received your request to be removed from our spam list. Not to worry,
we'll remove you when we’re good and ready. In the meanwhile, please do not hesitate
to contact us with further complaints.</div>

<div>Sincerely,</div>
<span dojoType="dijit.InlineEditBox" autosave="false"
 editor="dijit.form.TextBox">Customer Service

To recap, the autosave attribute being set to false results in the control presenting
Save and Cancel buttons (the text would normally have been saved as it was typed
with no controls displayed at all). That’s the basic concept. Now, let’s expand on
these concepts by trying out a different Editor.

Here’s a quick example of an InlineEditBox wrapping up a Textarea. Note that the
renderAsHtml allows us to provide markup and have it automatically rendered on the
spot:

Dear <span dojoType="dijit.InlineEditBox" autoSave="false"
 editor="dijit.form.TextBox">Valued Customer:

<div dojoType="dijit.InlineEditBox" autoSave="false" editor="dijit.form.Textarea"
 renderAsHtml="true">
 Insert

 Form

 Letter

 Here

</div>

<div>Sincerely,</div>

<span dojoType="dijit.InlineEditBox"
 autoSave="false" editor="dijit.form.TextBox">Customer Service

Like the previous dijits in this chapter, the basic usage is quite simple, but Table 15-9
shows a few extra configuration items to be aware of and keep on hand.

Table 15-9. InlineEditBox API

Name Type Comment

editing Boolean The edit state of the InlineEditBox. true when it is in
editing mode.

autoSave Boolean Whether changing the value automatically should save it
without requiring any kind of explicit action. true by
default.

Tree | 377

Tree
The Tree dijit is an amazing piece of engineering. Using completely native DHTML,
it looks and acts just like you’d expect a hierarchical tree to look and act, it supports
drag-and-drop operations, and it’s flexible enough to bind to an arbitrary data
source. Like any other complex piece of machinery, there are a few fundamentals to
pick up before you get rolling with it, but they’re all fairly intuitive once you’ve con-
nected the dots that first time. This is one of the longer sections in the chapter
because the Tree is quite powerful and offers an extensive set of features. Although
we won’t elaborate on a11y, you should also be cognizant that the Tree is quite
accessible with the keyboard via arrow keys, the Enter key, and so on.

buttonSave String The text string to display on the Save button. Empty by
default.

buttonCancel String The text string to display on the Cancel button. Empty by
default.

renderAsHtml Boolean If true, renders the InlineEditBox’s editor contents as
HTML. false by default.

editor String The class name for the dijit that should act as the editor.
dijit.form.TextBox by default.

editorParams Object Any parameters that should be passed in when constructing
the editor for the InlineEditBox.

width String The width of the editor. 100% by default.

value String The display value of the widget when in read-only mode.

noValueIndicator String The placeholder that should be displayed when there is no
text value (so that the user has a place to click on and trigger
an edit). A wingdings placeholder is there by default.

setDisabled(/*Boolean*/
disabled)

Function Used to disable and enable the widget.

setValue(/*String*/val) Function Sets the value of the widget.

save Function Saves the contents of the editor and reverts to display mode.

cancel Function Discards any changes made in the editor and reverts to dis-
play mode.

onChange Function An extension point that can be used to be notified of changes
to the value.

enableSave Function A user-replaceable function that can be used to enable and
disable the Save button. (For example, you might disable the
button because of invalid conditions in the editor.)

Table 15-9. InlineEditBox API (continued)

Name Type Comment

378 | Chapter 15: Application Widgets

A good understanding of the dojo.data API is especially helpful for
working with the Tree dijit. See Chapter 9 for more details.

Before reading through any code, it’s helpful to be aware of at least a few things:

Trees and forests
A tree is a hierarchical data structure that contains a single root element. A for-
est, on the other hand, is a hierarchical structure just like a tree except that it
does not have a single root node; instead, it has multiple root nodes. As we’ll
see, distinguishing between a tree and a forest is a common issue because many
data views are conveniently expressed as a tree with a single root node even
though the data that backs the view is a forest with an implied root node.

Nodes
A tree is a hierarchical organization of nodes and the linkages between them.
The specific type of node that is used by dijit.Tree is dijit._TreeNode; the lead-
ing underscore in this case signals that you’d never be using a _TreeNode outside
of a Tree. There are, however, several properties of _TreeNode that are useful to
manipulate directly, as we’ll see in upcoming examples.

Data agnosticism
The Tree dijit is completely agnostic to the data source that backs it. Prior to ver-
sion 1.1, it read directly from an implementation of the dojo.data API, which is
quite flexible and provides a uniform layer for data access, but as of the 1.1
release, the enhancement of an additional intermediating layer between the
dojo.data model and the Tree was added. These intermediating layers are
dijit.tree.TreeStoreModel and dijit.tree.ForestStoreModel, respectively.
Much of the motivation for the change was to make the Tree much more robust
and amenable to drag-and-drop operations.

When you execute dojo.require("dijit.Tree") the ForestStoreModel
and TreeStoreModel come along with the Tree itself.

 Simple Tree
To ease in to what the Tree can do for you, assume that you have a really simple data
source that serves up dojo.data.ItemFileReadStore JSON along the lines of the
following:

{
 identifier : 'name',

 label : 'name',

 items : [

Tree | 379

 {
 name : 'Programming Languages',
 children: [
 {name : 'JavaScript'},
 {name : 'Python'},
 {name : 'C++'},
 {name : 'Erlang'},
 {name : 'Prolog'}
]
 }
]
}

So far, so good. Instead of parsing the data yourself on the client, you get to use
dojo.data to abstract the data for you. Hooking up an actual ItemFileReadStore is as
easy as pointing it to the URL that serves the data and then querying into it. The fol-
lowing tag, when instantiated by the parser, would do the trick if the file were served
up from the working directory as programmingLanguages.json, and it would have a
global identifier of dataStore that would be accessible:

<div dojoType="dojo.data.ItemFileReadStore"
 jsId="dataStore" url="./programmingLanguages.json"></div>

Before the data gets fed into the Tree, however, it will be mediated through a
TreeStoreModel. (We’ll work through the implications of using a ForestStoreModel in
a moment.) The complete API listing for an intermediating TreeStoreModel will be
presented momentarily, but for now, all that’s pertinent is that we have to point the
TreeStoreModel at the ItemFileReadStore and provide a query. The following
TreeStoreModel would query the dojo.data store with global identifier dataStore for
all name values:

<div dojoType="dijit.tree.TreeStoreModel" jsId="model" store="dataStore"
 query="{name:'*'}"></div>

Finally, the only thing left to do is point the Tree dijit at the TreeStoreModel like so:

<div dojoType="dijit.Tree" model="model"></div>

That’s it. Example 15-7 puts it all together, and Figure 15-3 shows the result.

Example 15-7. Simple Tree with a root

<html>
 <head>
 <title>Tree Fun!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"

380 | Chapter 15: Application Widgets

Simple Forest
Many applications do not expressly represent a single root node, so let’s adjust the
previous example to work as a forest instead of a tree so that you can see the differ-
ence. First, a forest would have had a data source that didn’t have a single root. Con-
sider the following example, which lists programming languages as a forest because
it does not include an explicit “programming languages” root:

{
 identifier : 'name',

 label : 'name',

 items : [
 {
 name : 'Object-Oriented',
 type : 'category',
 children: [
 {name : 'JavaScript', type : 'language'},
 {name : 'Java', type : 'language'},
 {name : 'Ruby', type : 'language'}
]

 djConfig="parseOnLoad:true,isDebug:true">
 </script>

 <script type="text/javascript">
 dojo.require("dijit.Tree");
 dojo.require("dojo.data.ItemFileReadStore");
 dojo.require("dojo.parser");
 </script>
 </head>
 <body class="tundra">
 <div dojoType="dojo.data.ItemFileReadStore" jsId="dataStore"
 url="./programmingLanguages.json"></div>
 <div dojoType="dijit.tree.TreeStoreModel" jsId="model" store="dataStore"
 query="{name:'*'}"></div>
 <div dojoType="dijit.Tree" model="model"></div>
 </body>
</html>

Figure 15-3. The Tree that renders from the data store; clicking on the expando node closes it

Example 15-7. Simple Tree with a root (continued)

Tree | 381

 },
 {
 name : 'Imperative',
 type : 'category',
 children: [
 {name : 'C', type : 'language'},
 {name : 'FORTRAN', type : 'language'},
 {name : 'BASIC', type : 'language'}
]
 },
 {
 name : 'Functional',
 type : 'category',
 children: [
 {name : 'Lisp', type : 'language'},
 {name : 'Erlang', type : 'language'},
 {name : 'Scheme', type : 'language'}
]
 }

]
}

With the updated JSON data, you see that there isn’t a single root node, so the data
is delivered such that it lends itself to a forest view. The only notable updates from
Example 15-7 are that an additional parameter, showRoot, must be added to the Tree
to expressly hide the root of it, the query needs to be updated to identify the top-level
nodes for the tree, and the TreeStoreModel is changed to a ForestStoreModel.
Example 15-8 shows the updated code with the updates emphasized.

Just because your data lends itself to being displayed as a forest, however, doesn’t
mean you can’t update it to be rendered as a tree. As shown in Example 15-9, you
can fabricate a root-level dojo.data item that backs a fabricated node via the rootId
and rootLabel attributes on the ForestStoreModel.

Example 15-8. Updates to show a forest instead of a tree

<body class="tundra">
 <div dojoType="dojo.data.ItemFileReadStore" jsId="dataStore"
 url="./programmingLanguages.json"></div>
 <div dojoType="dijit.tree.ForestStoreModel" jsId="model" store="dataStore"
 query="{type:'category'}"></div>
 <div dojoType="dijit.Tree" model="model" showRoot=false></div>
</body>

Example 15-9. Updates to fabricate a root-level node so that a forest appears like a tree

<body class="tundra">
 <div dojoType="dojo.data.ItemFileReadStore" jsId="dataStore"
 url="./programmingLanguages.json"></div>
 <div dojoType="dijit.tree.ForestStoreModel" jsId="model" store="dataStore"

query="{type:'category'}" rootId="root" rootLabel="Programming Languages"></div>

382 | Chapter 15: Application Widgets

For all practical purposes, the fabricated root node may now be treated uniformly
with a dojo.data API such as getLabel or getValue. It may not seem like much, but
having this façade behind the fabricated node is very convenient because you are
freed from handling it as a special case. Figure 15-4 shows a simple forest.

Responding to Click Events
Although displaying information in a tree is quite nice, wouldn’t it be even better to
respond to events such as mouse clicks? Let’s implement the onClick extension point
to demonstrate the feasibility of responding to clicks on different items. Both the
actual _TreeNode that was clicked as well as the dojo.data item are passed into
onClick and are available for processing. To implement click handling, you might
update the example as shown in Example 15-10.

Note that although an intervening model provides a layer of abstraction between the
Tree and the dojo.data store, you still use the store directly to access the item; there’s

 <div dojoType="dijit.Tree" model="model" ></div>
</body>

Figure 15-4. Left: the Tree (with a fabricated root node) that renders from the same data store;
right: the Tree (without a root node) that displays as a forest

Example 15-10. Responding to clicks on a Tree

<body class="tundra">
 <div dojoType="dojo.data.ItemFileReadStore" jsId="dataStore"
 url="./programmingLanguages.json"></div>
 <div dojoType="dijit.tree.ForestStoreModel" jsId="model" store="dataStore"

query="{type:'category'}" rootId="root" rootLabel="Programming Languages"></div>
 <div dojoType="dijit.Tree" model="model" >
 <script type="dojo/method" event="onClick" args="item,treeNode">
 //use the item or the node at will...
 console.log("onClick:",dataStore.getLabel(item); //display the label
 </script>
 </div>
</body>

Example 15-9. Updates to fabricate a root-level node so that a forest appears like a tree (continued)

Tree | 383

no need to have the intervening model that facilitates display provide unnecessary
cruft between the dojo.data item and the usual means of accessing it.

Tree-Related APIs
If you’ve followed along with the examples and have a solid understanding of the
dojo.data APIs, then you know a lot more about the Tree than you might think at
this point. Still, Table 15-10’s more formal API listing makes for a good reference
and is helpful to skim over before we enter the next section, which covers drag-and-
drop for the Tree. As you’ll see, the Tree itself really just has a few simple attributes.
Most of the heavy lifting is tucked away into the dijit.tree.model APIs or behind
the scenes entirely.

As of version 1.1, it is technically still possible to wire up a Tree
directly to a dojo.data store; however, because it is quite likely that
this pattern may be removed in version 2.0 and complicates the pat-
tern for using a Tree, it is not presented in this chapter or included in
the following API listing.

Table 15-10. Tree API

Name Type Comment

model dijit.tree.model Interface for uniformly accessing data.

query Object The data store query that returns the
top-level item(s) for the tree. If the
query returns exactly one item, use the
TreeStoreModel as the intermedi-
ating layer; otherwise, use the
ForestStoreModel.

showRoot Boolean Whether to display the root of the
Tree; typically used to hide the root
for a ForestStoreModel.

childrenAttr Array A collection of Strings that enumer-
ate the attributes that hold children of
a Tree. Default value is
["children"].

openOnClick Boolean If set to true, clicking on a node’s
label opens it (versus calling
onClick, which handles opening it as
well as other actions). false by
default.

persist Boolean Uses cookies to save state of nodes
being expanded or collapsed. true by
default.

onClick(/*dojo.data.Item*/item,
/*TreeNode*/node)

Function An extension point for handling a click
(as well as an Enter key press) on an item.
Both theitem and thenode are passed
in and are available for processing.

384 | Chapter 15: Application Widgets

Next up is the dijit.Tree.model API, shown in Table 15-11. Anything that presents
this interface is just a valid model as the TreeStoreModel used in the previous exam-
ple. As would be the case with any other API, this means you can essentially create
whatever abstraction you need to populate a Tree as long as it meets the spec—
regardless of the underlying data source—whether it be a dojo.data API, some other
open API, or a completely proprietary API.

On top of the TreeStoreModel, the ForestStoreModel (documented in Table 15-12)
provides two additional functions that respond to events related to the fabricated
root-level node; namely, adding and removing items from the top level. These func-
tions are needed to adjust the query criteria so that the top level of the tree remains
valid when changes occur. As a data agnostic view, the Tree itself has no responsibil-
ity for updating or manipulating items; the burden is on the application programmer
to ensure that the query criteria remains satisfied. Hence, the reason these additional
functions exist is to enable that to happen.

Table 15-11. dijit.Tree.TreeStoreModel API

Name Comment

getRoot(/*Function*/onItem,
/*Function*/onError)

Used for traversing the Tree. Calls the onItem function
with the root item for the tree, which may or may not be fab-
ricated. Runs the onError function if an error occurs.

mayHaveChildren(/*dojo.data.Item*/item) Used for traversing the Tree. Returns information about
whether an item may have children, which is useful because
it is not efficient to always check if an element actually has
children before the expando is clicked.

getChildren(/*dojo.data.Item*/parentItem,
/*Function*/onComplete)

Used for traversing the Tree. Calls the onComplete func-
tion with all of the child items for the parentItem.

getIdentity(/*dojo.data.Item*/item) Used for inspecting items. Returns the identity for an item.

getLabel(/*dojo.data.Item*/item) Used for inspecting items. Returns the label for an item.

newItem(/*Object?*/args,
/*dojo.data.Item?*/parent)

Part of the Write interface. Creates a new dojo.data
item in accordance with dojo.data.api.Write.

pasteItem(/*dojo.data.Item*/childItem,
/*dojo.data.Item*/oldParentItem,
/*dojo.data.Item*/newParentItem,
/*Boolean*/copy)

Part of the Write interface. Moves or copies an item from
one parent item to another, which is used in drag-and-drop
operations. If oldParentItem is provided and copy is
false, the child item is removed fromoldParentItem; if
newParentItem is provided, the childItem is attached
to it.

onChange(/*dojo.data.Item*/item) Callback used to update a label or icon. Changes to an item’s
children or parent(s) triggeronChildrenChange, so those
changes should probably be ignored here in onChange.

onChildrenChange(/*dojo.data.Item*/ parent,
/*Array*/ newChildren)

Callback used for responding to newly added, updated, or
deleted items.

destroyRecursive() Destroys the object and releases connections to the store so
that garbage collection can occur.

Tree | 385

To update Example 15-9, adjusting an item to meet the top-level query criteria might
be as simple as adjusting its type to be “category” instead of “language”. For exam-
ple, you might move “Java” to the top level, update its type to “category” and then
provide an operation for adding specific Java implementations (having a type of “lan-
guage”) as children. As you’ll see in the next section, the most common use case for
needing to meet these stipulations probably involves drag-and-drop.

Drag-and-Drop with the Tree
The enhancements discussed in the previous section regarding the dijit.tree.model
API were in no small part implemented to make drag-and-drop operations with the
Tree a lot simpler and more consistent. In general, though, drag-and-drop is not a
one-size-fits-all type of operation, so expect to get your hands dirty if you want a cus-
tomized implementation of any sophisticated widget that responds to drag-and-drop.
It’s especially important to spend sufficient time answering these common questions:

• What happens when a drag is initiated?

• What happens when a drop is attempted?

• What happens when a drop is cancelled?

The current architecture for implementing drag-and-drop with the tree entails imple-
menting much of the API as defined in the dojo.dnd module (introduced in
Chapter 7) and passing it into the Tree via its dndController attribute. Because start-
ing all of that work from scratch is a hard job, the version 1.1 release includes a
dijit._tree module that contains an implementation providing a lot of the boiler-
plate that you can use as you see fit; you might use subclass and override parts of it,
you might mix stuff into it, or you might just use it as set of guidelines that provide
some inspiration for your own from-scratch implementation. So long as the ultimate
artifact from the effort is a class that resembles a dojo.dnd.Source and interacts
appropriately to update the dijit.tree.model implementation that backs the Tree,
you should be in good shape. In particular, the Source you implement should give
special consideration to and implement at least the following key methods that the
Tree’s dndController expects, listed in Table 15-13.

Table 15-12. dijit.tree.ForestStoreModel API additions

Name Comment

onAddToRoot(/*dojo.data.Item*/item) Called when an item is added to the top level of the tree;
override to modify the item so that it matches the query for
top-level tree items.

onLeaveRoot(/*dojo.data.Item*/item) Called when an item is removed from the top level of the
tree; override to modify the item so that it no longer matches
the query for top-level tree items.

386 | Chapter 15: Application Widgets

A subtle point about the dndController functions is that if they are ref-
erenced in markup, they must be defined as global variables when the
parser parses the Tree in the page; thus, they cannot be declared in the
dojo.addOnLoad block because it runs after the parser finishes. You can,
however, decide not to reference the dndController function at all in
markup and defer wiring them up until the dojo.addOnLoad block. This
is the approach that the upcoming example takes.

An incredibly important realization to make is that drag-and-drop involves DOM
nodes—not _TreeNodes; however, you’ll usually need a _TreeNode because it’s the
underlying data it provides that you’re interested in, and the DOM node does not
provide that information. Whenever this need occurs, such will be the case for any of
the methods in Table 15-13. Use the dijit.getEnclosingWidget function, which con-
verts the DOM node into a _TreeNode for you.

Drag-and-droppable Tree example

Because these methods are so incredibly common, they may be passed into the Tree on
construction, which is especially nice because it allows you to maximize the use of the
boilerplate in dijit._tree. Speaking of which, it’s about time for another example.

Let’s update the existing working example from Example 15-9 to be drag-and-
droppable. We’ll build upon the dijit._tree boilerplate to minimize the effort
required. Also, note that we’ll have to switch our store from an ItemFileReadStore to an
ItemFileWriteStore as the very nature of drag-and-drop is not a read-only operation.

Table 15-13. Tree dndController interface

Name Comment

onDndDrop(/*Object*/source,
/*Array*/nodes, /*Boolean*/copy)

A topic event processor for /dnd/drop that is called to fin-
ish the drop operation, which entails updating the data store
items according to source and destination of the operation so
that three can update itself.

onDndCancel() A topic event processor for /dnd/cancel that handles a
cancellation of a drop.

checkAcceptance(/*Object*/source,
/*Array*/nodes)

Used to check if the target can accept nodes from the source.
This is often used to disallow dropping based on some prop-
erties of the nodes.

checkItemAcceptance(/*DOMNode*/target,
/*Object*/source)

Used to check if the target can accept nodes from the source.
This is often used to disallow dropping based on some prop-
erties of the target.

itemCreator(/*Array*/nodes) When completing a drop onto a destination that is backed by
different a data source than the one where the drag started,
a new item must be created for each element in nodes for the
data source receiving the drop. This method provides the
means of creating those items if the source and destination
are backed by different data sources.

Tree | 387

Although it might look like the Tree updates itself when you interact
with it in such as way that it changes display via a drag-and-drop oper-
ation, it’s important to remember that the Tree is only a view. Any
updates that occur are the result of updating the data source and the
data source triggering a view update.

To maintain a certain level of sanity with the example, we’ll need to prevent the user
from dropping items on top of other items, as items are inherently different from cat-
egories of items based upon the category of the item from our dojo.data store.
Example 15-11 shows the goods, and Figure 15-5 illustrates.

Example 15-11. Simple drag-and-droppable Tree

<html>
 <head>
 <title>Drag and Droppable Tree Fun!</title>

 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dojo/resources/dojo.css" />
 <link rel="stylesheet" type="text/css"
 href="http://o.aolcdn.com/dojo/1.1/dijit/themes/tundra/tundra.css" />

 <script
 type="text/javascript"
 src="http://o.aolcdn.com/dojo/1.1/dojo/dojo.xd.js"
 djConfig="parseOnLoad:true,isDebug:true">
 </script>

 <script type="text/javascript">
 dojo.require("dijit.Tree");
 dojo.require("dojo.data.ItemFileWriteStore");
 dojo.require("dijit._tree.dndSource");
 dojo.require("dojo.parser");

 dojo.addOnLoad(function() {
 //wire up the checkItemAcceptance handler...
 dijit.byId("tree").checkItemAcceptance = function(target, source) {
 //convert the target (DOM node) to a tree node and
 //then get the item out of it
 var item = dijit.getEnclosingWidget(target).item;

 //do not allow dropping onto the top (fabricated) level and
 //do not allow dropping onto items, only categories
 return (item.id != "root" && item.type == "category");
 }

 });
 </script>
 </head>
 <body class="tundra">

388 | Chapter 15: Application Widgets

When you find that you need a drag-and-droppable Tree implementation, it’s well
worth the time to carefully study the boilerplate code provided in dijit._tree. Each
situation with drag-and-drop is usually specialized, so finding an out-of-the-box
solution that requires virtually no custom implementation is somewhat unlikely.

Editor

At the time of this writing, the Editor and its plug-in architecture were
undergoing some significant enhancements. Thus, you may find that
this section is slightly more general with respect to technical details
than many other sections of the book.

An increasing number applications are utilizing rich text editing capability; in fact,
it’s probably fair to say that if you have a slick RIA interface and then hand it to the
user with an ordinary textarea element (even a Textarea dijit), it’ll probably stick out
like a sore thumb. Fortunately, the Editor dijit contains all of the common rich text
editing functionality, with absolutely minimal overhead on your part.

 <div dojoType="dojo.data.ItemFileWriteStore" jsId="dataStore"
 url="./programmingLanguages.json"></div>
 <div dojoType="dijit.tree.ForestStoreModel" jsId="model" store="dataStore"

query="{type:'category'}" rootId="root" rootLabel="Programming Languages"></div>
 <div id="tree" dojoType="dijit.Tree" model="model"
 dndController="dijit._tree.dndSource"></div>
 </body>
</html>

Figure 15-5. Moving a programming language item to a different category

Example 15-11. Simple drag-and-droppable Tree (continued)

Editor | 389

You may find this reference interesting as you read the rest of this sec-
tion: http://developer.mozilla.org/en/docs/Rich-Text_Editing_in_Mozilla.

Dojo builds upon native browser controls that enable content to be editable. As a lit-
tle history lesson, Internet Explorer 4.0 introduced the concept of design mode, in
which it became possible to edit text in a manner consistent with simple rich text
editors, and Mozilla 1.3 followed suit to implement what’s essentially the same API
that eventually became formalized as the Midas Specification (http://www.mozilla.
org/editor/midas-spec.html). Other browsers have generally followed in the same
direction—with their own minor nuances. In any event, most of the heavy lifting
occurs by first explicitly making a document editable and then using the JavaScript
execCommand function to do the actual markup. Following the Midas Specification,
something along the lines of the following would do the trick:

// Make a node editable...perhaps a div with a set height and width
document.getElementById("foo").contentDocument.designMode="on";

/* Select some text... */

// Set the selection to italic. No additional arguments are needed.
editableDocument.execCommand("Italic", false, null);

As you might imagine, you can use an arsenal of commands for manipulating con-
tent via execCommand, standardize the differences amongst browser implementation,
assemble a handy toolbar, provide some nice styling, and wrap it up as a portable
widget. In fact, that’s exactly what Dijit’s Editor does for you. Although Editor pro-
vides a slew of features that seem overwhelming at a first glance, the basic usage is
quite simple. Example 15-12 illustrates an out of the box Editor from markup along
with some light styling and a couple of buttons that interact with it.

Without any styling at all, the Editor has no border, spans the width
of its container, and comes at a default height of 300px. The light styl-
ing here simply provides a background and adjusts the Editor’s height
to slightly smaller than its container so that the content won’t run out
of the visible background and into the buttons.

Example 15-12. Typical Editor usage

<div style="margin:5px;background:#eee; height: 400px; width:525px">
 <div id="editor" height="375px" dojoType="dijit.Editor">
 When shall we three meet again?

 In thunder, lightning, or in rain?
 </div>
</div>
<button dojoType="dijit.form.Button">Save
 <script type="dojo/method" event="onClick" args="evt">
 /* Save the value any old way you'd like */

http://developer.mozilla.org/en/docs/Rich-Text_Editing_in_Mozilla.
http://www.mozilla.org/editor/midas-spec.html
http://www.mozilla.org/editor/midas-spec.html

390 | Chapter 15: Application Widgets

It’s well worth a moment of your time to interact with the Editor and see for your-
self that getting all of that functionality with such minimal effort really isn’t too good
to be true. Note that the Editor renders plain HTML, so saving and restoring con-
tent should not involve any unnecessary translation. Then, when you’re ready to take
a look at some of the many things that the Editor can do for you, skim over the fea-
ture list in Table 15-14.

The Editor API is by far the most complex in Dijit, and at the time of
this writing, refactoring efforts to tame it were being seriously enter-
tained. Thus, the following table contains a small subset of the most
useful parts of the API. See the source file documentation for the com-
plete listing if you really want to hack on the Editor.

 console.log(dijit.byId("editor").getValue());
 </script>
</button>
<button dojoType="dijit.form.Button">Clear
 <script type="dojo/method" event="onClick" args="evt">
 dijit.byId("editor").replaceValue("");
 </script>
</button>

Table 15-14. Small subset of the Editor API

Name Type Comment

focusOnLoad Boolean Whether to focus into the Editor when the page loads.

height String The initial height of the Editor. 300px by default.

inheritWidth Boolean If true, inherits the parent node’s width; otherwise, spans
the entire width. false by default.

minHeight String The minimum allowable height for the Editor. 1em by
default.

name String If provided, the content is saved and restored when the user
leaves the page and returns.

plugins Array The plugins that should be be loaded as a baseline for the
editor. By default, common values like bold, italic,
underline, and so on are included.

extraPlugins Array Additional plugins that should be loaded on top of the base-
line defined by plugins.

getValue () Function Returns the value from the Editor.

setValue(/*String*/val) Function Sets the value of the Editor.

undo() Function Undoes the previous action.

onDisplayChanged(/*Event*/evt) Function Connects to this event to perform a custom action each time
the display changes.

Example 15-12. Typical Editor usage (continued)

Editor | 391

Editor Architecture
The Editor’s lifecycle supports three basic phases, shown in Figure 15-6. The follow-
ing list summarizes these phases and the work involved in each:

Deserializing content
The loading phase entails loading a text stream supplied by a DOM node, con-
verting it into a DOM tree, and placing it into the display for user interaction.
Sequences of JavaScript functions may be applied to both the text stream as well
as the DOM tree in order, as needed, in order to filter and convert content.
Common examples of filters might entail such tasks as converting linebreaks
from a plain text document into
 tags so that the content displays as proper
HTML in the editor.

Interacting with content
The interaction phase is just like any other rich text editing experience. Com-
mon operations such as markup may occur, and an undo stack is stored based
on either a time interval or on the basis of every time the display changes.

Serializing content
When editing ends by way of the Editor’s close method, the contents are serial-
ized from a DOM tree back into a text stream, which then gets written back into
the node of origin. From there, an event handler might send it back to a server to
persist it. Like the deserializing phase, sequences of JavaScript functions may
optionally be applied to manipulate the content.

close() Function Closes the Editor and serialize back out the content to it
node of origin.

contentPreFilters Array Functions that may be optionally applied to text content as it
is deserialized before it is transformed into a DOM tree.

contentDomPreFilters Array Functions that may optionally be applied to the DOM tree as
it is deserialized before it is loaded for editing.

contentDomPostFilters Array Functions that may optionally be applied to the DOM tree
before it is serialized.

contentDomFilters Array Functions that may be optionally applied to the text content
before it is serialized.

execCommand Function Executes a command in the rich text area. Behaves like the
standard JavaScript execCommand but accounts for devia-
tions amongst various browser implementations.

Table 15-14. Small subset of the Editor API (continued)

Name Type Comment

392 | Chapter 15: Application Widgets

Editor Plug-Ins
Although the Editor provides an onslaught of highly useful features of its own,
sooner or later you’ll be wishing that it were possible to tightly integrate some piece
of custom functionality. Its plug-in architecture is your ticket to making that hap-
pen. A plug-in is just a way of encapsulating some additional functionality that,
while useful, maybe shouldn’t be a stock component; it could be anything from han-
dling some special key combinations to providing a custom menu item with some
canned commands that automate part of a workflow.

Snapping a plug-in into Editor is quite simple, and you may not have realized it, but
everything in the toolbar you thought was built right in is technically a plug-in with
one of the following self-descriptive values.

Figure 15-6. The basic phases that the Editor’s architecture supports

‹‹DOM Nodes››

‹‹DOM Nodes››

‹‹DOM Nodes››

‹‹text››

‹‹text››

Apply
contentPreFilters

‹‹text››

Apply
contentDomPreFilters

rich text
editing

Apply
contentDomPostFilters

Apply
contentPostFilters

Editor | 393

You can configure plug-ins by providing either the plugins or extraPlugins attribute
and give it a list of valid plug-ins that you have first dojo.required into the page. By
default, plugins contains all of the items in the toolbar that you see by default, and if
you override it and provide something like plugins="['bold','italic']", then all
you’d see in the toolbar is the list of plugins you provided. However, the
extraPlugins attribute adds extra plugins on top of what is already configured in
plugins if you want to throw in a few extras.

Several packages of prefabricated plug-ins are available with the toolkit and are com-
monly used as values to extraPlugins; they are located in the dijit/_editor/plugins
directory and include the following:

AlwaysShowToolbar
Shifts the contents of the toolbar, as needed, so that multiple rows of controls
are displayed, and it always remains visible. (If you resize the window to be less
than the width of the toolbar, the default action is to display a horizontal scroll-
bar and only display the portion of the toolbar that would normally be visible.)
You must pass in dijit._editor.plugins.AlwaysShowToolbar to plugins or
extraPlugins to enable this plug-in.

EnterKeyHandling
Provides a means of uniformly handling what happens when the Enter key is
pressed amongst all browsers. For example, you can specify whether to insert a
series of paragraph tags to surround the new text, a break tag, a set of DIVS tags,
or not to disable the handling of the Enter key entirely. You must pass in dijit.
_editor.plugins.EnterKeyHandling to plugins or extraPlugins to enable this
plug-in.

undo justifyLeft

redo justifyRight

cut delete

copy selectAll

paste removeFormat

insertOrderedList bold

insertUnorderedList italic

indent underline

outdent strikethrough

justifyCenter subscript

justifyFull superscript

394 | Chapter 15: Application Widgets

The Editor’s plug-in architecture needs some work, and discussions
are ongoing about how to improve it. Progress is already being made,
and you can track it for yourself at http://trac.dojotoolkit.org/ticket/
5707. In other words, if you want to create custom plug-ins, you’ll
likely have to hack on the Editor.js source code a bit until the plug-in
architecture is smoothed out a bit more.

Also, don’t forget that you have to manually dojo.require in the plug-
in that you are using. The plug-in architecture does not perform any
sort of autodetection at this time.

Currently, the default means of handling the Enter key is determined
by the EnterKeyHandling attribute blockNodeForEnter, which has a
default value of 'P'. Currently, there isn’t really a better way of chang-
ing it than by extending this plug-in’s prototype and overriding it like
so:

dojo.addOnLoad(function() {
 dojo.extend(dijit._editor.plugins.EnterKeyHandling, {
 blockNodeForEnter : "div" // or "br" or "empty"
 });
});

FontChoice
Provides a button with a dialog for picking a font name, font size, and format
block. Arguments to plugins or extraPlugins may be fontName, fontSize, or
formatBlock.

LinkDialog
Provides a button with a dialog for entering a hyperlink source and displayed
value. Arguments to plugins or extraPlugins may be createLink.

TextColor
Provides options for specifying the foreground color or background color for a
range of text. Arguments to plugins or extraPlugins may be foreColor or
hiliteColor.

ToggleDir
Provides a means of involving the HTML dir attribute on the Editor (regardless
of how the rest of the page is laid out) so that the Editor’s contents could be left-
to-right or right-to-left. Arguments to plugins or extraPlugins may be toggleDir.

To make matters a little less muddy, consider the differences in the snippets of
markup shown in Table 15-15 when creating an editor.

Table 15-15. Different approaches to creating an editor

Code Effect

<div dojoType="dijit.Editor"> Creates an Editor with the default toolbar.

<div dojoType="dijit.Editor"
plugins="['bold', 'italic']">

Creates an Editorwith a toolbar that has only the bold and
italic buttons.

http://trac.dojotoolkit.org/ticket/5707
http://trac.dojotoolkit.org/ticket/5707

Summary | 395

Summary
After reading this chapter, you should be able to:

• Understand where the general-purpose application dijits fit into the overall Dijit
architecture and appreciate the special role that they play in designing a rich user
experience

• Create application dijits in markup as well as JavaScript

• Understand the primary differences between when you should use Tooltip ver-
sus TooltipDialog

• Use the Editor to provide a control for entering and editing rich text

• Use Toolbar and Menu to provide a means of command and control for the user of
your application

• Embed TooltipDialog into a DropDownButton

• Use a ProgressBar to display both determinate and indeterminate indications of
progress to a user

• Use Dialog to provide a modal alert to the user or otherwise embed arbitrary
content into the Dialog for the user to interact with

• Use InlineEditables to empower the user with the ability to edit what otherwise
appears to be plain markup on the fly

• Use the Tree dijit to display hierarchical information via an interactive display

In the next chapter, we’ll cover build tools, testing, and production considerations.

<div dojoType="dijit.Editor"
extraPlugins="['hiliteColor']">

Creates an Editor with a default toolbar that has an addi-
tional button for highlighting text—assuming you’ve issued
a dojo.require("dijit._editor.plugins.
TextColor") statement.

<div dojoType="dijit.Editor"
plugins="['bold', 'italic']"
extraPlugins="['fontName']">

Creates an Editor with a toolbar consisting of a bold and
italic button along with a control for selecting a custom font
(assuming you’ve issued a dojo.require("dijit._
editor.plugins.FontChoice") statement). Note
that this has the exact same effect as including all three plug-
ins inside the plugin attribute.

Table 15-15. Different approaches to creating an editor (continued)

Code Effect

396 | Chapter 16: Build Tools, Testing, and Production Considerations

Chapter 16CHAPTER 16

Build Tools, Testing, and Production
Considerations 16

After all your hard work developing with Dojo, there comes a point when your appli-
cation is ready for prime time. Util provides terrific build tools and a testing frame-
work that can get you ready for production before you know it. The build tools
provided by Util are the same ones that are used to produce each official Dojo
release, and the Dojo Objective Harness (DOH) is a unit-testing framework that
facilitates achieving some automated quality assurance before your app ever gets out
the door.

Building
For any production setting, minimizing the overall footprint of your JavaScript files
and the number of synchronous requests to the server is absolutely essential. The dif-
ference in downloading scores of individual resource files via synchronous requests
incurred by dojo.require versus one or two calls back to the server makes all the dif-
ference in the world in terms of a snappy page load.

Dojo’s build tools makes accomplishing what may initially seem like such an ardu-
ous task quite easy. In a nutshell, the build tools automate the following tasks:

• Consolidates multiple modules into a single JavaScript file called a layer

• Interns template strings into JavaScript files, including layers, so that a standalone
template is no longer needed

• Applies ShrinkSafe, a JavaScript compressor based on Rhino, to minify the size
of the layers by removing whitespace, linebreaks, comments, and shortening
variable names

• Copies all of the “built” files into a standalone directory that can be copied and
deployed to a web server

Building | 397

One reason you may not have been aware of the build tools is that they aren’t
included in the util directory of an official release. To get them, you have to down-
load a source release (a source release will have the -src suffix on the file base part of
the filename) or just grab the source from the Subversion trunk. Chapter 1 provides
an overview of getting the Dojo from Subversion, but basically, all that is necessary is
to point your client at the Dojo repository and wait for it to download everything,
whether it is the trunk or a specific tag.

In either case, you’ll find that the util directory now holds some additional directories;
one of these directories is buildscripts, which contains the goods we’re looking for.

http://svnbook.red-bean.com/ contains the unofficial Subversion book,
which is available in a variety of formats. Taking a moment to book-
mark this valuable resource now will save you time later.

To run the build tools, you’ll have to have Java 1.4.2 or later installed, available from
http://java.sun.com (because ShrinkSafe is based on Rhino, which is written in Java).
But don’t worry about having to be a Java programmer to use ShrinkSafe; ShrinkSafe
comes packaged as a single jar file (an executable Java archive), so you can treat it like
any other executable.

Running a Build
The primary entry point for kicking off a build is via the buildscripts/build.sh (or
build.bat for Windows users), and is really just a call through to the custom Rhino
jar that does all of the work based on a custom profile that is provided (more on that
in just a moment). As an ordinary executable, however, build tools such as Make or
ant can easily include the jar file as an ordinary part of the production build process.

A Word on Rhino
Rhino is a JavaScript engine written entirely in Java and is named after the rhinoceros
on the cover of David Flanagan’s well-known JavaScript: The Definitive Guide book
(O’Reilly). Rhino originally started as a closed source project by Netscape in the late
1990s, but became an open source project when it was turned over to the Mozilla foun-
dation. Rhino works by converting JavaScript scripts into Java classes and was devel-
oped with the intent of being embedded in applications

SpiderMonkey is another JavaScript engine, written in C, also developed by Netscape
but later turned over Mozilla for maintenance. Like Rhino, SpiderMonkey is an
embeddable technology. SpiderMonkey is used in a variety of popular applications
including Firefox and Yahoo! Widgets (previously Konfabulator).

http://svnbook.red-bean.com/
http://java.sun.com

398 | Chapter 16: Build Tools, Testing, and Production Considerations

This ability is especially convenient when server-side components are based on lan-
guages that must be compiled.

Executing the corresponding build script or executing the jar without any command-
line options provides an impressive list of options. Table 16-1 is adapted directly
from the standard option list that is displayed.

Table 16-1. Build script parameters

Option Description

xdScopeArgs If the loader=xdomain build option is used, then the value of this option will be used as the
arguments to the function that defines the modules in the .xd.js files. This allows for more than
one version of the same module to be in a page. See documentation on djConfig.scopeMap
for more information.

cssOptimize Specifies how to optimize CSS files. If comments is specified, then code comments and line
returns are stripped. If comments.keepLines is specified, then code comments are stripped,
but line returns are preserved. In either case, @import statements are inlined.

releaseName The name of the release. A directory inside releaseDir will be created with this name. By default,
this value is dojo.

localeList The set of locales to use when flattening i18n bundles. By default this value is cs,de-de,
en-gb,en-us,es-es,fr-fr,hu,it-it,ja-jp,ko-kr,pl,pt-br,ru,
zh-tw,zh-cn.

releaseDir The top-level release directory where builds end up. The releaseName directories will be placed
inside this directory. By default, this value is ../../release/.

copyTests Turn on or off copying of test files. This value is true by default.

symbol Inserts function symbols as global references so that anonymous functions will show up in all
debuggers (especially in IE, which does not attempt to infer function names from the context of
their definition). Valid values are long and short. If short is used, then a symboltables.txt
file will be generated in each module prefix’s release directory that maps the short symbol
names to more descriptive names.

action The build action(s) to run. Can be a comma-separated list, like action=clean,release.
The possible build actions are: clean and release. This value is help by default.

internStrings Turn on or off for widget template file interning. This value is true by default.

scopeMap Change the default dojo, dijit, and dojox scope names to something else. Useful if you want to
use Dojo as part of a JS library, but want to make a self-contained library with no external dojo/
dijit/dojox references. Format is a string that contains no spaces, and is similar to the
djConfig.scopeMap value (note that the backslashes below are required to avoid shell
escaping):

scopeMap: [[\"dojo\",\"mydojo\"],[\"dijit\",\"mydijit\"],
 [\"dojox\",\"mydojox\"]]

optimize Specifies how to optimize module files. If comments is specified, code comments are stripped.
If shrinksafe is specified, the Dojo compressor is used on the files, and line returns is
removed. If shrinksafe.keepLines is specified, the Dojo compressor is used on the files,
and line returns are preserved. If packer is specified, Dean Edwards’s Packer is used (see http://
dean.edwards.name/packer/).

loader The type of dojo loader to use. default (the default value) or xdomain are acceptable values.

log Sets the logging verbosity. See util/buildtools/jslib/logger.js for possible integer values. The
default value is 0.

http://dean.edwards.name/packer/
http://dean.edwards.name/packer/

Building | 399

While all of those options may seem like a lot to manage, the routine builds are really
quite simple and involve only a handful of options. But first, we need a profile.

profileFile A file path to the profile file. Use this if your profile is outside of the profiles directory. Do not
specify the profile build option if you use profileFile.

xdDojoPath If the loader=xdomain build option is used, then the value of this option will be used to call
dojo.registerModulePath() for dojo, dijit., and dojox. The xdDojoPath should be the
directory that contains the dojo, dijit, and dojox directories, and it should not end in a slash. For
instance: http://www.example.com/path/to/dojo.

version The build will be stamped with this version string. The default value is 0.0.0.dev.

profile The name of the profile to use for the build. It must be the first part of the profile file name in the
profiles/ directory. For instance, to use base.profile.js, specify profile=base (the default).

layerOptimize Specifies how to optimize the layer files. If comments is specified, code comments are stripped.
If shrinksafe is specified, the Dojo compressor is used on the files, and line returns are
removed. If shrinksafe.keepLines is specified, the Dojo compressor is used on the layer
files, and line returns are preserved. If packer is specified, the Dean Edwards’s Packer is used.
shrinksafe is the default.

xdDojoScopeName If the loader=xdomain build option is employed, the value of this option is used instead of
dojo (the default) for the dojo._xdResourceLoaded() calls that are done in the .xd.js
files. This allows for dojo to be under a different scope name, but still allows XDomain loading
with that scope name.

cssImportIgnore You can use cssOptimize=comments to force the @import inlining process to ignore a set
of files. The value of this option should be a comma-separated list of CSS filenames to ignore.
The filenames should match the string values that are used for the @import calls.

buildLayers A comma-separated list of layer names to build. Using this option means that only those layers
will be built. This helps if you are doing quick development and test cycles with layers. If you
have problems with this option, try removing it and doing a full build with
action=clean,release. This build option assumes you have done at least one full build
first.

symbol Inserts function symbols as global references so that anonymous functions will show up in all
debuggers (especially IE, which does not attempt to infer function names from the context of
their definition). Valid values are long and short. If short is used, then a symboltables.txt
file will be generated in each module prefix’s release directory, mapping the short symbol names
to more descriptive names.

scopeDjConfig Burns a djConfig object into the built dojo.js file, which is useful if you are making your own
scoped build and you want a djConfig object local to your version that will not be affected by
any globally declared djConfig object in the page. This value must be a string that will look
like a JavaScript object literal once it is placed in the built source. Can also be useful for situations
where you want to use Dojo as part of a JavaScript library that is self-contained and has no exter-
nal dojo, dijit, or dojox. Example:

scopeDjConfig={isDebug:true,scopeMap:[[\"dojo\",\"mydojo\"],
 [\"dijit\",\"mydijit\"], [\"dojox\",\"mydojox\"]]}

Note that the backslashes are required to avoid shell escaping if you type this on the command
line.

Table 16-1. Build script parameters (continued)

Option Description

400 | Chapter 16: Build Tools, Testing, and Production Considerations

Build Profiles
A profile is the configuration for your build as provided via the profile or
profileFile option. The most basic function of a profile is to specify the exact Dojo
resources that should consolidated into a standalone JavaScript file, also known as a
layer; a typical rule of thumb is that each page of your application should have its
own layer. The beauty of a layer is that it is an ordinary JavaScript file, and can be
included directly into the head of a page, loading everything you’ve crammed into it
via a single synchronous request to the server—well, sort of. By convention, Base is
so heavily used that it generally stays in its own individual dojo.js file, so you nor-
mally have two synchronous calls, one for Base, and one for your own layer.

Setting up a build profile

Assuming your application has three distinct pages, you might have three layer files
and one copy of Base.

If you really want to bundle up your own modules inside of the dojo.js
file that normally only contains Base, you can name your layer dojo.js.
However, it’s often a good idea to keep Base separated because it
would be used in every page of you application and is cacheable by
your web browser.

Physically speaking, a profile is simply a file containing a JSON object.
Example 16-1 shows a profile that consolidates several of the form dijits that are
explicitly dojo.required into a page. All internal dependencies are tracked down
automatically. Just like with dojo.require, you state what you need to use directly,
and dependency tracking is automated behind the scenes for you.

Example 16-1. A simple build profile

dependencies ={
 layers: [
 {
 name: "form.js",
 dependencies: [
 "dijit.form.Button",
 "dijit.form.Form",
 "dijit.form.ValidationTextBox"
]
 }
],
 prefixes: [
 ["dijit", "../dijit"]
]
};

Building | 401

Assuming the previous profile is located at util/buildscripts/profiles/form.profile.js and
you’re working in a Bash shell, the following command from within the util/buildscripts
directory would kick off a build. Note that the profile option expects profiles to be of
the form <profile name>.profile.js and only expects the <profile name> as an option:

bash build.sh profile=form action=release

If you don’t want to save the file in util/buildscripts/profiles/form.profile.js,
you can use the profileFile option instead of the profile option.

After executing the command, you should see a bunch of output indicating that the
build is taking place and that of strings are being interned from template files into
JavaScript files. The artifact of the build is a release directory containing dojo, dijit,
and util. Inside of the dojo directory, you’ll find the usual suspects, but there are four
especially important artifacts to note:

• The compressed and uncompressed version of Base, dojo.js and dojo.js.uncom-
pressed.js

• The compressed and uncompressed version of your form layer in form.js and
form.js.uncompressed.js (go ahead and take a peek inside to see for yourself)

But what if you need resources that are not included in your custom layer file? No
problem—if resources aren’t included in a profile, they are fetched from the server
whenever the dojo.require statement that specifies them is encountered. Assuming
you take the entire release directory and drop it somewhere out on your server, the
dojo.require statements requesting nonlayered resources will behave normally,
though you will incur a small roundtrip cost for the request to the server.

Requests for Base functions and resources in your layer do not incur server-side
requests when they are encountered in a dojo.require statement because they’re
already available locally. Resources not in your layer, however, incur the routine
overhead of synchronous HTTP requests (Figure 16-1).

While you may generally want to include every possible resource that is needed in a
build, there may be some situations where you want to lazy load. The tradeoff is
always between a “small enough” initial payload size over the wire versus the cost of
synchronous loading via dojo.require later.

402 | Chapter 16: Build Tools, Testing, and Production Considerations

If you accidentally misspell or otherwise provide a dependency that does
not exist, ShrinkSafe may still complete your build even though it could
not find all of the dependencies. For example, if you accidentally specify
dijit.Button (instead of dijit.form.Button), you’ll most likely still get a
successful build, and you may not ever notice that dijit.form.Button
wasn’t bundled because a call to dojo.require("dijit.form.Button")
would fetch it from the server and your application would behave as
normal.

It’s always a good idea to double-check your build by taking a look at
the Net tab in Firebug to ensure that everything you expect to be bun-
dled up is indeed bundled up.

Setting up a (more clever) build profile

A slightly more clever way to set up the build profile just discussed is to create a cus-
tom module that does nothing more than require in all of the resources that were
previously placed in the layer via the profile file. Then, in the profile file, simply
include the custom module as your sole dependency for the layer.

First, Example 16-2 shows how your custom module would look. Let’s assume the
module is dtdg.page1 and is located at called dtdg/page1.js.

Figure 16-1. Conceptual server request illustrating various JavaScript files loading

Example 16-2. A custom module for a more clever build profile

dojo.provide("dtdg.page1");

dojo.require("dijit.form.Form");

<<Using Base functions never
requires additional server
requests. In this case, neither
do ValidationTextBox, Form, and
Button because they are in your
custom layer.>>

Web server

Web browser

GET foo.html GET dojo.js GET form.js GET Textarea.js

foo.html dojo.js form.js Textarea.js

<<But using stuff outside
of Base and your custom
layer incur normal
serverside requests like
usual.>>

Time

Building | 403

Now, your profile need only point to the custom module, as the other dependencies
are specified inside of it and will be tracked down automatically. Example 16-3 dem-
onstrates an updated profile, which assumes your custom module directory is a sib-
ling directory of util.

Finally, your page might contain the following SCRIPT tag to pull in the module along
with Base:

<script type="text/javascript"
djConfig="baseUrl: './',modulePaths: {custom:'path/to/custom/page1.js'},
 require: ['custom.page1']"
src="scripts/dojo.js"></script>

Standard build profile

Notice that the util/buildscripts/profiles directory contains a number of example build
profiles as well as the standard.profile.js file that contains the layers for a standard
build of Dojo. The standard profile builds Base as well as a baseline Dijit layer that
contains common machinery that is used in virtually any circumstance involving
dijits, as well as a couple of other useful layers. Note that any profile in the standard.
profile.js file should be available over AOL’s CDN. For example, to retrieve the base-
line Dijit profile, you could simply execute the following statement:

dojo.require("dijit.dijit");

Remember, however, that the first SCRIPT tag should always be the one for Base
(dojo.xd.js), so you’d include any additional SCRIPT tags for layers after the one for
Base.

dojo.require("dijit.form.Button");
dojo.require("dijit.form.ValidationTextBox");

Example 16-3. Updated build profile

dependencies ={
 layers: [
 {
 name: "form.js",
 dependencies: [
 "custom.page1"
]
 }
],
 prefixes: [
 ["custom", "../custom"]
]
};

Example 16-2. A custom module for a more clever build profile (continued)

404 | Chapter 16: Build Tools, Testing, and Production Considerations

ShrinkSafe optimization and other common options

In virtually any production setting, you’ll want to apply ShrinkSafe to minify all of your
code. While the previous build example build did optimize the build in the sense that it
minified dojo.js and form.js as well as interned template strings, ShrinkSafe can minify
every file in the release.

Recall that the size “over the wire” is what really matters when you’re talking about
performance from a payload perspective. While files may be a set size as they exist on
the server, most servers are able to apply gzip compression to them if the web
browser is capable of handling it. While ShrinkSafe minifies JavaScript files by
removing artifacts like whitespace, comments, and so on, the further compression is
possible because the repetitive use of public symbols such as dojo, dijit, and your
own custom tokens allows for actual compression to occur.

Minification is the reduction of a file’s size by removing artifacts such
as commas, whitespace, linebreaks, etc. Compression is an algorith-
mic manipulation that reduces a file’s size by using by finding multi-
ple instances of the same tokens and encoding an equivalent file by
using shorter placeholders for the repetitive tokens. To learn more, see
http://en.wikipedia.org/wiki/Gzip for an overview of gzip compression.

An especially notable feature of ShrinkSafe is that it never mangles a public API; this
is a direct contrast to some JavaScript tools that attempt to encrypt JavaScript by
applying regular expressions or convoluted logic to “protect” the script. In general,
attempting to protect your JavaScript is mostly pointless. As an interpreted language
that runs in the browser, the user of your application will almost certainly have
access to your source code, and it’s not terribly difficult to use a debugger to unroll
the protected script into something that’s fairly intelligible.

ShrinkSafe itself is not a Dojo-specific tool; you can apply it to any
JavaScript file to gain the benefits of compression using the online
demonstration at http://shrinksafe.dojotoolkit.org/. OS X users can
download a version at http://dojotoolkit.org/downloads, and users of
other platforms can grab the standalone custom Rhino jar from http://
svn.dojotoolkit.org/dojo/trunk/buildscripts/lib/custom_rhino.jar.

In other words, ShrinkSafe shrinks your files without changing public symbol names.
In fact, if you look at the form.js file that is an artifact of the previous build exam-
ples, you can see for yourself that ShrinkSafe strips comments, collapses and/or elim-
inates frivolous whitespace, including newline characters, and replaces nonpublic
symbols with shorter names. Note that replacing all symbols with shorter, meaning-
less names qualifies as a lame attempt at encryption—not particularly useful for
debugging purposes either.

http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Gzip
http://shrinksafe.dojotoolkit.org/
http://dojotoolkit.org/downloads
http://svn.dojotoolkit.org/dojo/trunk/buildscripts/lib/custom_rhino.jar
http://svn.dojotoolkit.org/dojo/trunk/buildscripts/lib/custom_rhino.jar

Building | 405

Let’s update our existing profile:

• Minify all files in the release with the optimize="shrinksafe" option

• Designate a custom notice that should appear at the top of every minified
JavaScript file in an additional (mythical) foo module provided by CUSTOM_
FILE_NOTICE.txt

• Designate a custom notice that should appear at the top of the final form.js pro-
vided by the same CUSTOM_LAYER_NOTICE.txt

• Provide a custom name for the release directory via the releaseName="form"
option

• Provide a custom version number for the build via the version="0.1.0." option

Here’s the modified form.profile.js file from Example 16-1. Note that the informa-
tion in the custom notices must be wrapped in JavaScript comments; the path for the
custom notices should be relative to the util/buildscripts directory or an absolute
path:

dependencies ={
 layers: [
 {
 copyrightFile : "CUSTOM_LAYER_NOTICE.txt",
 name: "form.js",
 dependencies: [
 "dijit.form.Button",
 "dijit.form.Form",
 "dijit.form.ValidationTextBox"
]
 }
],
 prefixes: [
 ["dijit", "../dijit"],
 ["foo", "../foo", "CUSTOM_FILE_NOTICE.txt"]

]
};

The augmented command to kick off this build is straightforward enough, and cre-
ates the artifacts in the release/form directory that exist alongside the dojo source
directories:

bash build.sh profile=form action=release optimize=shrinksafe releaseName=form
version=0.1.0

To actually use your custom release, simply include the paths to the compressed
dojo.js and form.js files in script tags in the head of your page, like so. The dojo.js
layer must be included first, because form.js depends on it:

<html>
 <head><title>Fun With Forms!</title>
 <!-- include stylesheets, etc. -->

406 | Chapter 16: Build Tools, Testing, and Production Considerations

 <script type="text/javascript" path="relative/path/to/form/dojo.js"></script>
 <script type="text/javascript" path="relative/path/to/form/form.js"></script>
 </head>
 <!-- rest of your page -->

And that’s it. It takes only two synchronous requests to load the JavaScript (which
now have interned templates) into the page; other resources included in your build
via the prefixes list are at your disposal via the standard dojo.require statements.

If you are completely sure you’ll never need any additional JavaScript resources
beyond dojo.js and your layer files, it is possible to pluck out just the individual
resources you need from the release directory structure. However, you’ll have to go
through a little extra work to track down dependencies with built-in CSS themes
such as tundra because some of the stylesheets may use relative paths and relative
URLs in import statements.

Inspecting the Net tab of Firebug is very useful in tracking down the
dependencies you need to pluck out of the release directory, but be
advised that Firebug may not display 404 (Not Found) errors for
import statements that are used in stylesheets.

Custom Builds for Rhino
While the official platform for Dojo builds is the browser, you may also use the build
system to produce a custom build of Dojo that can be used within Rhino itself. This
may be useful if you use JavaScript to call through to Java classes, or if you use a tool
like Helma (http://dev.helma.org) that employs JavaScript for server-side scripting.

In your build profile, you need only to include hostenvType= "rhino"; that’s it. If you’d
like to run the DOH unit tests from within the release directory for a Rhino build, you
must also include an additional shrinksafe prefix. Here’s an example profile for a cus-
tom Rhino build:

hostenvType = "rhino";

dependencies = {
 layers : [];
 prefixes : [
 ["dojox", "../dojox"],
 ["shrinksafe", "../util/shrinksafe"]
]
};

http://dev.helma.org

Dojo Objective Harness (DOH) | 407

Dojo Objective Harness (DOH)
Automated testing practices for web applications are becoming increasingly com-
mon because of the sheer amount of coding and complexity involved in many of
today’s rich Internet applications. DOH uses Dojo internally but is not a Dojo-
specific tool; like ShrinkSafe, you could use it to create unit tests for any JavaScript
scripts, although no DOM manipulation or browser-specific functions will be available.

DOH provides three simple assertion constructs that go a long way toward automat-
ing your tests. Each of these assertions is provided via the global object, doh, exposed
by the framework:

• doh.assertEqual(expected, actual)

• doh.assertTrue(condition)

• doh.assertFalse(condition)

Before diving into some of the more complex things that you can do with DOH, take
a look at trivial test harness that you can run from the command line via Rhino to get
a better idea of exactly the kinds of things you could be doing with DOH. The har-
ness below demonstrates the ability for DOH to run standalone tests via regular
Function objects as well as via test fixtures. Test fixtures are little more than a way of
surrounding a test with initialization and clean up.

Rhino Test Harness Without Dojo
Without further ado, here’s that test harness. Note that the harness doesn’t involve
any Dojo specifics; it merely uses the doh object. In particular, the doh.register func-
tion is used in this example, where the first parameter specifies a module name (a
JavaScript file located as a sibling of the util directory), and the second parameter
provides a list of test functions and fixtures:

doh.register("testMe", [

 //test fixture that passes
 {
 name : "fooTest",
 setUp : function() {},
 runTest : function(t) { t.assertTrue(1); },
 tearDown : function() {}
 },

 //test fixture that fails
 {
 name : "barTest",
 setUp : function() { this.bar="bar"},
 runTest : function(t) { t.assertEqual(this.bar, "b"+"a"+"rr"); },
 tearDown : function() {delete this.bar;}
 },

408 | Chapter 16: Build Tools, Testing, and Production Considerations

 //standalone function that passes
 function baz() {doh.assertFalse(0)}

]);

Assuming this test harness were saved in a testMe.js file and placed alongside the util
directory, you could run it by executing the following command from within util/
doh. (Note that although the custom Rhino jar included with the build tools is used,
any recent Rhino jar should work just fine):

java -jar ../shrinksafe/custom_rhino.jar runner.js dojoUrl="../../dojo/dojo.js"
testModule=testMe

The command simply tells the Rhino jar to run the testMe module via the runner.js
JavaScript file (the substance of DOH) using the copy of Base specified. Although no
Dojo was involved in the test harness itself, DOH does use Base internally, so you do
have to provide a path to it.

Now that you’ve seen DOH in action, you’re ready for Table 16-2, which summa-
rizes the additional functions exposed by the doh object.

Table 16-2. doh module functions

Function Comment

registerTest(/*String*/group,
/* Function || Object */ test)

Adds the test or fixture object to the specified test group.

registerTests(/*String*/group,
/*Array*/ tests)

Automates registering a group of tests provided in the tests
Array.

registerTestNs(/*String*/group,
/*Object*/ns)

Adds the functions included in the ns object to the collection
that should be test group. Functions beginning with an
underscore are not included since the underscore normally
denotes the notion of private.

register(/* ...*/) Applies the proper register function by inspecting the argu-
ments and determining which one to use.

assertEqual(expected, actual) Used to assert that two values should be equal.

assertTrue(/*Boolean*/condition) Used to assert that a value should evaluate to true.

assertFalse(/*Boolean*/ condition) Used to assert that a value should evaluate to false.

is(expected, actual) Shorthand for assertEqual.

t(/*Boolean*/condition) Shorthand for assertTrue.

f(/*Boolean*/condition) Shorthand for assertFalse.

registerGroup(/*String*/ group,
/*Array||Function||Object*/tests,
/*Function*/ setUp, /*Function*/tearDown)

Adds an entire group of tests provided in tests to the group at
one time. Uses a custom setUp and tearDown function, if
provided.

run() Used to programmatically run tests.

runGroup(/*String*/groupName) Used to programmatically run a group of tests.

pause Can be used to programmatically pause tests that are run-
ning; they may be resumed with run().

togglePaused May be applied sequentially to pause and run the tests.

Dojo Objective Harness (DOH) | 409

Additionally, note that the runner.js file accepts any of the options shown in
Table 16-3.

Rhino Test Harness with Dojo
Although it is possible to use DOH without Dojo, chances are that you will want to
use Dojo with Rhino. Core contains some great examples that you can run by exe-
cuting runner.js without any additional arguments. The default values will point to
the tests located in dojo/tests and use the version of Base located at dojo/dojo.js.

If you peek inside any of Core’s test files, you’ll see the usage is straightforward
enough. Each file begins with a dojo.provide that specifies the name of the test mod-
ule, requires the resources that are being tested, and then uses a series of register
functions to create fixtures for the tests.

Assume you have a custom foo.bar module located at /tmp/foo/bar.js and that you
have a testBar.js test harness located at /tmp/testBar.js. The contents of each JavaScript
file follows.

First, there’s testBar.js:

/* dojo.provide the test module just like any other module */
dojo.provide("testBar");

/* You may need to register your module paths when using
 custom modules outside of the dojo root directory */
dojo.registerModulePath("foo.bar", "/tmp/foo/bar");

/* dojo.require anything you might need */
dojo.require("foo.bar");

/* register the module */
doh.register("testBar", [

 function() { doh.t(alwaysReturnsTrue()); },
 function() { doh.f(alwaysReturnsFalse()); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 {
 name : "BazFixture",
 setUp : function() {this.baz = new Baz;},
 runTest : function() {doh.is(this.baz.talk(), "hello");},

Table 16-3. Options for runner.js

Function Comment

dojoUrl The path to dojo.js.

testUrl The path to a test file.

testModule A comma-separated list of test modules that should be executed, such as foo.bar, foo.baz.

410 | Chapter 16: Build Tools, Testing, and Production Considerations

 tearDown : function() {delete this.baz;}
 }
]);

And now, for your foo.bar module residing in foo/bar.js:

/* A collection of not-so-useful functions */
dojo.provide("foo.bar");

function alwaysReturnsTrue() {
 return true;
}

function alwaysReturnsFalse() {
 return false;
}

function alwaysReturnsOdd() {
 return Math.floor(Math.random()*10)*2-1;
}

// Look, there's even a "class"
dojo.declare("Baz", null, {
 talk : function() {
 return "hello";
 }
});

The following command from within util/buildscripts kicks off the tests:

java -jar ../shrinksafe/custom_rhino.jar runner.js dojoUrl=../../dojo/dojo.js
testUrl=/tmp/testBar.js

Especially note that the test harness explicitly registered the module
path for foo.bar before requiring it. For resources outside of the dojo
root directory, this extra step is necessary for locating your custom
module.

If all goes as planned, you’d see a test summary message indicating that all tests passed
or failed. Registering a group of tests sharing some common setup and tear down crite-
ria entails the very same approach, except you would use the doh.registerGroup func-
tion instead of the doh.register function (or a more specific variation thereof).

If you want more finely grained control over the execution of your tests so you can
pause and restart them programmatically, you apply the following updates to testBar.js:

/* load up dojo.js and runner.js */
load("/usr/local/dojo/dojo.js");
load("/usr/local/dojo/util/doh/runner.js");

/* dojo.provide the test module just like any other module */
dojo.provide("testBar");

Browser-Based Test Harness | 411

/* You may need to register your module paths when using
 custom modules outside of the dojo root directory */
dojo.registerModulePath("foo.bar", "/tmp/foo/bar");

/* dojo.require anything you might need */
dojo.require("foo.bar");

/* register the module */
doh.register("testBar", [

 function() { doh.t(alwaysReturnsTrue()); },
 function() { doh.f(alwaysReturnsFalse()); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 function() { doh.is(alwaysReturnsOdd()%2, 1); },
 {
 name : "BazFixture",
 setUp : function() {this.baz = new Baz;},
 runTest : function() {doh.is(this.baz.talk(), "hello");},
 tearDown : function() {delete this.baz;}
 }
]);

doh.run();

/* pause and restart at will... */

Although we didn’t make use of the fact that testBar is a module that dojo.provides
itself, you can very easily aggregate collections of tests together via dojo.require, just
like you would for any module that provides itself.

Although you could run asynchronous tests using Rhino as well, the next section
introduces asynchronous tests because they are particularly useful for browser-based
tests involving network input/output and events such as animations.

Browser-Based Test Harness
Although running tests from Rhino is tremendously useful, DOH also provides a
harness that allows you to automate running tests from within a browser window.
Basically, you just define a test as an ordinary HTML page and then load the test
page into the DOH test runner using query string parameters in the test runner’s
URL; internally, JavaScript in the test runner examines the query string, pulls out
configuration values such as testUrl and uses them to inject your test page into a
frame.

Of course, you can still run your browser-based test without the DOH test runner,
but you won’t get a nice visual display with optional Homer Simpson sound effects if
you’re willing to read the test results as console output.

412 | Chapter 16: Build Tools, Testing, and Production Considerations

Browser Test Example
The following is an example test defined as an ordinary HTML page. Notice that the
example uses a local installation of Dojo because as of version 1.1, DOH is not deliv-
ered via AOL’s CDN:

<html>
 <head><title>Fun with DOH!</title>

 <script
 type="text/javascript"
 src="local/path/to/dojo/dojo.js">
 </script>

 <script type="text/javascript">
 dojo.require("doh.runner");

 dojo.addOnLoad(function() {
 doh.register("fooTest", [
 function foo() {
 var bar = [];
 bar.push(1);
 bar.push(2);
 bar.push(3);

 doh.is(bar.indexOf(1), 0); //not portable!
 }
]);

 doh.run();
 });
 </script>

 </head>
 <body></body>
</html>

Asynchronous Browser Test Example
Almost any web application test suite worth its salt is going to involve a significant
number of tests that depend upon asynchronous conditions such as waiting for an
animation to happen, a server side callback to occur, and so on. Example 16-4 intro-
duces how you can create asynchronous test with DOH. The key concept is that a
doh.Deferred (pretty much an ordinary dojo.Deferred with some tweaks) except that
it is internal to DOH and, as such, doesn’t have external dependencies. Chapter 4
included an extensive discussion of Deferreds if you need a quick refresher.

Before the relevant code sample, here’s the basic pattern at play for asynchronous
testing with DOH:

Performance Considerations | 413

• Create a doh.Deferred that will be used to verify the results from asynchronous
function (that returns back a dojo.Deferred)

• Call whatever asynchronous function returns back the dojo.Deferred and save a
reference to it

• Add callbacks and errbacks to the dojo.Deferred that will simply pass the asyn-
chronous function’s results through to the doh.Deferred’s own callbacks and
errbacks

Depending on your specific test constraints, you might provide explicit timeout val-
ues to ensure that the asynchronous operations involved timeout according to your
specific testing criteria. At any rate, the key takeaway is that asynchronous testing
doesn’t need to be terribly complicated; the Deferred abstraction simplifies most of
that complexity, so you’re left to focus on the task at hand.

Performance Considerations

This section touches on some of the low-hanging fruit that you can
strive to achieve in your frontend engineering. For a fabulous refer-
ence on ways to improve performance, be sure to check out High Per-
formance Web Sites: Essential Knowledge for Front-End Engineers by
Steve Souders (O’Reilly). It’s a quick read and really does live up to the
“essential” part of the title. Much of the content is available at http://
developer.yahoo.com/performance/rules.html.

Example 16-4. Skeleton for an asynchronous test

doh.register("foo", [

 function() {
 var dohDfd = new doh.Deferred();
 var expectedResult = "baz";

 var dojoDfd = asynchronousBarFunction();
 dojoDfd.addBoth(function(response, io) {

 //reference the dohDfd as needed...
 if (response == expectedResult) {
 dohDfd.callback(true);
 }
 else {
 dohDfd.errback(new Error(/* ... */));
 }
 });

 //...and return back the dohDfd
 return dohDfd;
 }
]);

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

414 | Chapter 16: Build Tools, Testing, and Production Considerations

While writing good JavaScript goes a long way toward having a snappy web applica-
tion, there are a few considerations to be particularly cognizant of when it comes
time for production. The topic of optimizing a web application’s performance could
be the subject of an entire book on its own, but the following list captures some of
the most obvious low-hanging fruit that you can go after:

Dojo’s build tools
The build tools accomplish a number of essential tasks for you and the effort
required on your behalf is trivial. The build process minifies your source, reduc-
ing the overall size of the payload, and significantly reduces the HTTP latency by
consolidating multiple JavaScript files into layers and interning template strings
where applicable.

Lazy loading
While much has been said in this chapter on the virtues of using the build tools
to create a minimal number of layer files for your application, there will cer-
tainly be times when it just makes more sense to do some lazy loading. For
example, if you determine that users very infrequently make use of a particular
feature that adds a nontrivial amount of script to your layer, you may just opt to
dojo.require it on the fly instead of packaging it up.

Another consideration with respect to lazy loading is to intelligently use the lay-
out widgets to load content on the fly. For example, you may choose to only ini-
tially load the visible tab of a TabContainer, and either load the other content
when it is requested, or wait long enough that you are certain the rest of the page
has been loaded before fetching the other tabs. The ContentPane dijit is a com-
mon vehicle for lazy-loading content.

Web server configuration
Explore options to have web browsers aggressively cache JavaScript files and
other static content by configuring your server to issue a far future Expires
header; configure your server to take full advantage of common configuration
options such as gzip compression.

Maximize static content
Because static content can be served so quickly, the more of it you can serve, the
less time your web server will spend per request. Maximize the use of static
HTML files that are nearly identical by filling in the user-specific portions via
cookies or XHR requests where possible. For example, if the only difference on a
login page is a few hundred bytes of text containing some user-specific informa-
tion, serve the page statically, and use script to asynchronously fetch the small
bits that need to get filled in instead of dynamically generating the entire page.

Profiling
If a page seems particularly slow or performance is choppy once it has loaded,
use the built-in Firebug profiler to get a better idea of where time is being spent
in your JavaScript logic and consider optimizing the execution of the culprit
functions.

Summary | 415

Benefits of XDomain builds

Although it may not be initially obvious, if you opt to create and use an XDomain
build for your application, you potentially gain a number of benefits:

• You’ll be able to host Dojo on a dedicated machine and share it amongst vari-
ous applications—whether or not they are on the same domain in your network.

• The dojo.require statements that happen when the page loads are satisfied asyn-
chronously instead of synchronously (the case for a default build), which can
improve page load times since the requests are nonblocking.

• Some browsers, such as IE, limit you to two open connections per subdomain by
default, so using an XDomain build essentially doubles the number of potential
connections for your application—two for Dojo and two for everything else in
the local domain.

• If you serve multiple applications that all use the XDomain build, the overall
HTTP latency your clients endure is likely decreased, as the overall amount of
content that their browsers can cache locally is increased.

Don’t optimize prematurely

As a final word of caution, don’t prematurely optimize your application; when you
do optimize it, never do so blindly based on guessing games. Always use demonstra-
ble information such as profiling information or server logs to your advantage. Par-
ticularly with respect to optimization, our instincts can often be deceived. And
remember: Firebug is your friend.

Summary
After reading this chapter, you should:

• Be able to use Dojo’s build tools to create consolidated, compressed layers for
your web application

• Be familiar with some of the most common options for creating a custom build

• Be aware that dojo.js generally remains in its own separate JavaScript file; it is
not rolled up into a custom layer

• Be able to use DOH to write unit tests for JavaScript functions

• Be more familiar with Rhino and understand the role it plays in the build tools
and with DOH

• Be aware that while ShrinkSafe and DOH are important parts of the toolkit, they
aren’t Dojo-specific, and you may be able to use them in other venues

• Be aware of some of the low-hanging fruit you can go after when it comes time
to maximize performance for your web application

To Allow or Not to Allow? | 417

Appendix A APPENDIX A

A Firebug Primer1

If you’re a web developer, the Firebug extension (http://www.getfirebug.com) for
Mozilla’s Firefox browser (http://www.getfirefox.com) is one tool that you’d be
remiss to leave unnoticed, and this is especially the case when you’re working with a
high-powered JavaScript toolkit, because Firebug is absolutely essential for stream-
lining your debugging efforts. This appendix systematically glosses many of Fire-
bug’s key features in hopes of familiarizing you with possibly the best way to debug a
web application (or deconstruct a page just for the fun of it).

This appendix is more of a primer for motivating Firebug novices than
a comprehensive tutorial.

Installation
Like any other Firefox extension, installing Firebug is a piece of cake. Head out to
http://www.getfirebug.com and click on the installation button. Take note that a yel-
low warning bar may appear at the top of your screen and prevent the installation
from taking place, so you may need to click on the “Edit Options...” button to
authorize the installation. Once Firefox restarts, you should have a Firebug item in
your Tools menu and a Firebug icon in the bottom-right corner of your browser win-
dow, as shown in Figure A-1.

To Allow or Not to Allow?
Before delving into all of Firebug’s cool features involving DOM manipulation and
JavaScript dissection, let’s take a moment to review some helpful ways that you can
customize Firebug to automatically switch on and off for particular web sites. This
feature is often overlooked, yet very convenient to use because you can customize
Firebug for development purposes. For example, you may choose to leave Firebug
disabled by default because it noticeably bogs down JavaScript-heavy web apps like
Gmail. However, you can still specify that Firebug should always turn itself on for a

http://www.getfirebug.com
http://www.getfirefox.com
http://www.getfirebug.com

418 | Appendix A: A Firebug Primer

custom list of URLs corresponding to web apps you’re developing so that you don’t
have to manually switch it on and off as you multitask between various browser tabs.
As you find a need to use Firebug with more sites, simply add them to the to the list
of allowed sites.

Right-clicking on the Firebug icon in the bottom right corner of your browser brings
up a contextual menu with options for configuring your Firebug settings for allowed
sites. In particular, you have the following options, shown in Figure A-2:

Disable Firebug
Turns off Firebug until you either uncheck it or navigate to a site that you’ve
already specified should use Firebug through the “Allowed Sites...” menu item.

Disable Firebug for...
Prevents Firebug from being enabled for the current site and adds it to the list of
blocked sites—handy if you want to enable Firebug by default but want to dis-
able it for a custom list of sites.

Allowed Sites.. .
Brings up the “Firebug Allowed Sites” window, which allows you to specify a
custom list of allowed and blocked sites.

Open Firebug in New Window opens Firebug in a separate standalone window—
handy if you feel cramped in the default panel that opens in the bottom of the
browser window.

Figure A-1. Left: once Firebug is installed, an item appears in the Tools menu and presents you
with a few standard options; right: in addition to the Tools menu item, an icon appears in the
bottom-right corner of the browser window

Now for the Fun Stuff | 419

Now for the Fun Stuff
Now that you’ve equipped Firebug for use with particular sites, let’s take a look at
some of the coolness that has been spinning up so much Firebug buzz. The front
page of the O’Reilly Network at http://www.oreillynet.com is as good a starting place
as any.

Figure A-2. Various configuration facets of Firebug

http://www.oreillynet.com

420 | Appendix A: A Firebug Primer

Once you’ve navigated to http://www.oreillynet.com, enable Firebug, and notice that
the previously grayed-out icon in the bottom-right portion of the browser window
switches to a green circle with a check mark in it, as shown in Figure A-3. Shortly
thereafter, you may notice some activity related to a GET request in the pane below
the row of tabs while the “Console” tab is selected. Hovering over the hyperlink
reveals a tooltip specifying the location of the script on the server.

We’ll systematically work through each of the tabs you see in the Firebug interface—
Console, HTML, CSS, Script, DOM, and Net. As you’ll see, there’s a phenomenal
amount of functionality packed into what seems like a “mere” extension. Thank-
fully, Firebug’s interface is highly usable and organized fairly intuitively once you’ve
spent some time with it.

Inspect
Notice the colorful Firebug icon in the upper-left corner of the Firebug pane. In addi-
tion to being a nice decoration, it also doubles as a button that reveals a menu fairly
similar to the one in the Tools menu. The remaining items in the row—Inspect,
Clear, and Profile—are also buttons. Let’s start with the Inspect button.

The Inspect button allows you to instantly locate any element in the DOM tree by
hovering over it in the browser window, which is really helpful when you’re trying to
troubleshoot a particular part of a complex layout or search for a needle in a hay-
stack. Click on the Inspect button, shown in Figure A-4, so that it becomes
depressed. The main menu provides all of the representative main menu items and is
always located in the upper-left corner. The Inspect button, always beside it regardless
of the selected tab, is incredibly handy and one of the most common features you’ll
probably find yourself using. Watch as Firebug switches to the HTML tab and displays
the corresponding HTML and CSS as you hover over various elements on the page.

Figure A-3. Firebug delivers valuable insight into your debugging (and dismantling) activities

http://www.oreillynet.com,

Inspect | 421

The corresponding HTML pertinent to the currently hovered-on item is highlighted in
the HTML tab so that you can easily inspect the entire element and its context.

Clicking the hovered element in the page causes the corresponding content in the
HTML tab to become highlighted and the scrolling ceases so that you can take con-
trol of your mouse again without losing your place. Once you’ve located the particu-
lar DOM element you’re looking for, you can do just about anything from within the
HTML tab: dynamically edit the node’s content, add an attribute, remove an
attribute, reveal the corresponding CSS that styles a particular node, etc.

Take a few moments to get better acquainted with the inspection feature by explor-
ing other aspects of the O’Reilly Network’s main page. A particularly interesting
activity includes modifying elements in the DOM tree and seeing the effects immedi-
ately take place in the browser. For example, Figure A-5 shows one of the graphics
on the front page resized to be a little too wide. Again, just click on the HTML to
modify the attributes of the various tags to see the changes take effect. You might

Figure A-4. The Inspect button at work

422 | Appendix A: A Firebug Primer

also try adding a valid attribute to an element by selecting the DOM element and
then clicking on the Edit button that appears whenever inspection is occurring.

Console
By now, you must have noticed that there’s a nice little command prompt in Firebug
that appears whenever the Console tab is selected. In a nutshell, this little command
prompt, shown in Figure A-6, will execute whatever JavaScript you throw at it. Use it
to test out JavaScript concepts, or reach in and grab references to nodes for instant
quick manipulation. In particular, you can grab references to any content in the page
through JavaScript’s document.getElementById function. So what if an element
doesn’t have an id value—give it one yourself and be on your merry way. From
there, you might choose to use the console’s built-in console.dir (just like in Python)
to reveal methods available to it. Now would be a good time to divert to Firebug’s
documentation (http://getfirebug.com/docs.html), where you’ll find details about
console, incredibly useful built-in functions like dir, and more.

Another contextual button that’s visible while the Console tab is selected is Profile,
and it does exactly what you’d think: profiles the execution of JavaScript in the page,
as shown in Figure A-7. You simply click on it once to start profiling and click on it
again to stop profiling and display a summary of the statistics collected. Can it get
any easier than that? The snapshot below is from http://jobs.oreilly.com, and displays
some JavaScript stats related to clicking on the navigation bar that appears on the left
side of that page.

Figure A-5. You can use Firebug to hack on the HTML in the page and see live results

http://getfirebug.com/docs.html
http://jobs.oreilly.com

Console | 423

Figure A-6. Left: the console is your scripting interface into any web page; right: clicking the subtle
button that looks like a ^ on the far right of the console prompt reveals a multiline JavaScript editor

Figure A-7. Firebug comes with an incredible profiler that gives you all sorts of handy stats about
the performance of JavaScript in web pages

424 | Appendix A: A Firebug Primer

It’s especially noteworthy that Dojo binds tightly with Firebug. When it loads in
Firefox, the console is available for dropping output that’s great for debugging or sta-
tus messages via the console.log function, and on other browsers, Firebug Lite (a
minimalist console) still logs output and allows you to interact with the DOM.

Because console.log is by far the most commonly used function for debugging, it’s
helpful to know that you should separate items you’d like to log instead of other
approaches such as concatenating them together. The reason is that Firebug allows
you to inspect items by clicking on them, and if you implicitly convert them to a
String you lose this benefit. For example, you might log a status message about a
variable called foo as console.log("the value of foo is", foo) in order to be able to
introspect foo. If you were to instead use console.log("the value of foo is "+foo),
you’d be stuck with a String. It may not matter for primitives, but if foo were a com-
plex Object, you want the benefit of introspection.

HTML and CSS
You should be fairly comfortable investigating the HTML and CSS tabs because you
encountered the same content during your earlier escapade with the Inspect button.
Still, a somewhat subtle feature worth pointing out is that you can right-click on
items in either of these tabs to reveal a contextual menu with several useful options
in it. Among these options are the ability to scroll the page to the element of interest,
log events related to the element, directly modify the element, and so on.

A superset of the same content that appears under the CSS tab also appears in the
HTML tab if you select the underlying Style tab, included in a pane on the right.
Note that you can directly change the style of elements through the CSS tab, as
shown in Figure A-8, or through the HTML tab. You can also click on a style ele-
ment to disable it in the page depending what is most helpful for your particular situ-
ation. And wait, there’s more: the Layout tab that’s adjacent to the Style tab displays
the active properties for the currently selected element’s padding, borders, margins,
and offset. As might be expected, you can preview changes to these properties by
changing the values directly in the diagram.

Script and DOM
Firebug’s Script tab reveals a powerful JavaScript debugger that allows you to set
breakpoints in particular scripts and watch the values of variables in the code as it
executes. Unlike some debuggers you may have previously encountered, the Firebug
JavaScript debugger is intuitive and easy to learn. To set a breakpoint, just load the
script of interest by using the contextual menu just above the Script tab and click on
the line number where you want the breakpoint. A small red circle should appear,
confirming the breakpoint. You can click on the red circle to remove the breakpoint,

HTML and CSS | 425

Figure A-8. Top: disabling elements; middle: Firebug’s Layout ruler; bottom: manipulate the layout
of a DOM element’s margin, or anything else for that matter (this example shows the upper margin
being changed to 100px)

426 | Appendix A: A Firebug Primer

or click on additional lines of code to add additional breakpoints. Likewise, you can
type in the name of a variable or a derived expression into the accompanying Watch
tab to keep an eye on how values are changing from breakpoint to breakpoint. Is
debugging JavaScript getting easier, anyone?

The DOM tab, shown in Figure A-9, is fairly self-explanatory and essentially pro-
vides the same information you can already view in the HTML tab, but in a tree view
it might be easier to inspect and manipulate, depending on the situation.

Figure A-9. Top: using Firebug’s JavaScript debugger to set breakpoints; middle: watch expressions,
even ones that you derive yourself; bottom: the DOM tab allows you to inspect and manipulate the
DOM through a traditional tree view

Go Forth and Dismantle | 427

Net
By now, you’ve seen most of Firebug’s cool and useful features; however, the Net
tab, shown in Figure A-10, is a “saved the best for last” type of thing. Basically, the
Net tab gives you all of the info you’d ever typically need for performance analysis as
it relates to pieces of the page loading, and conveniently, media types are logically cate-
gorized into groups such as CSS, JavaScript, images, and so on. As a special treat,
there’s even a category for viewing network statistics related to XHR (a.k.a. AJAX)
requests. Overall, the Net tab provides valuable insight into potential performance bot-
tlenecks and load times associated with content. For projects with a lot of dynamism,
it’s almost like having a crude network profiler at your fingertips.

Go Forth and Dismantle
We’ve taken a look at the highlights of Firebug, but the best way to get comfortable
with it is to spend some time dismantling the design of a few web pages. Head out to
any site with a semi-complex layout and take a few minutes to learn more about how
the designers put it together. In addition to having some fun doing detective work,
you’ll learn a lot along the way. Then—the next time you need to quickly debug
some of your own work—you can just whip out your Firebug skills and remedy the
situation without even breaking a sweat. (And again, the point of this appendix isn’t
to provide an exhaustive tutorial for Firebug—it is to give you a jumpstart and
increase your awareness of just how much time Firebug can save you if you learn to
use it well.)

Figure A-10. Firebug’s Net tab itemizes the media associated with a page by category and provides
the associated load time

428 | Appendix B: A Brief Survey of DojoX

Appendix BAPPENDIX B

A Brief Survey of DojoX 2

DojoX is the toolkit’s canonical location for experimental and specialized exten-
sions. Unlike the rest of this book, which covers Base, Core, Dijit, and Util in depth,
this short appendix on DojoX provides survey-style coverage of what could really be
another entire book on its own—a book that might even be about twice as long as this
one. The hope is that once you’ve made the trek across the rest of the toolkit, picking up
something from DojoX and running with it should be fairly straightforward.

The author’s semi-regular “Dojo Goodness” column available at http://
pipes.yahoo.com/ptwobrussell/dojo_goodness includes topics on DojoX
subprojects, so consider adding it to your RSS reader so that you can
stay current.

DojoX is managed on a per-subproject basis, and the condition of any given project
can vary widely. While some subprojects such as cometd and charting are quite sta-
ble, others are very much in their infancy, and DojoX acts as a proving ground for
them. One commonality for all DojoX subprojects, however, is that they should all
have a README file that contains the basic status and version information for the
subproject as well as contact information for the authors. DojoX subprojects may
have dependencies on Base, Core, or Dijit; however, they may also be completely
standalone projects. Unlike Dijit, DojoX makes no official guarantees about accessi-
bility or internationalization, and the overall style of implementation varies more so
than what you would find in slightly more unified project like Dijit.

One thing you must have noticed about the rest of the toolkit by now is that it pro-
vides serious breadth and depth; well, DojoX is not different. In fact, a crude analy-
sis of the number of functions (including anonymous inline functions) and
statements across Core, Base, and Dijit works out to be roughly as shown in
Table B-1, as calculated via:

grep -rc 'function' * | grep -v \.svn | cut -d : -f 2 | awk '{for (i=1; i<=NF; i++)
s=s+$i}; END{print s}'

http://pipes.yahoo.com/ptwobrussell/dojo_goodness
http://pipes.yahoo.com/ptwobrussell/dojo_goodness

A Brief Survey of DojoX | 429

And:

grep -rc '\;' * | grep -v \.svn | cut -d : -f 2 | awk '{for (i=1; i<=NF; i++)
s=s+$i}; END{print s}'

At the very least, you can see that there is a tremendous amount of source code in
DojoX. In any event, the additional breadth and depth that DojoX provides is
astounding, and in may ways, there are lot more interesting things going on in DojoX
than Dijit because DojoX is really is about the bleeding edge and specialized inter-
ests. Just because this book cannot cover DojoX doesn’t mean that you won’t find a
lot of useful features that are likely to save you a lot of time.

The synopsis in Table B-2 is a helpful guide for determining exactly what’s in DojoX
as of version 1.1. Since DojoX is so fluid, however, your best bet for the most up-to-
date coverage of DojoX is to download a nightly build from http://archive.dojotoolkit.
org/nightly/ and inspect the README file directly.

Table B-1. Rough estimate for the number of functions and statements (in thousands) in the toolkit
as of version 1.1

Base Core Dijit DojoX

Functions Statements Functions Statements Functions Statements Functions Statements

0.7 2.2 1.9 9.5 1.6 15.1 7.1 54

Table B-2. DojoX projects

Subproject Description

analytics An analytics and client monitoring system that can be used to log various events back to the server such as
mouse clicks, idle activity, console.* messages, etc.

av An audio/video project supporting Flash and QuickTime movies.

charting An advanced charting engine based on dojox.gfx and dojox.gfx3d.

collections A number of functions that provide support for data structures such as stacks, sets, queues, additional
functionality for hashes, arrays, and so on.

color Additional support for colorspaces such as CMYK and HSL as well as HSV.

cometd An implementation of the Bayeaux protocol, which is a low-latency data transfer technique from servers
to clients.

data Support for custom data stores such as a FlickrRestStore, XmlStore, CsvStore, etc. that implement the
dojo.data API as well as additional utility functions for dojo.data.

date A placeholder for date operations such as formatters that are common to other programming languages or
server technologies such as PHP.

embed A means of easily embedding external objects that would normally require the use of OBJECT or EMBED
tags.

dtl A project that aims to fully implement the Django Template Language.

encoding A set of routines for common encoding algorithms such as cryptography, digests, and compression.

flash A project that aims to make it easy to extend Flash’s capabilities into a DHTML environment.

http://archive.dojotoolkit.org/nightly/
http://archive.dojotoolkit.org/nightly/

430 | Appendix B: A Brief Survey of DojoX

form A collection of useful form widgets including functionality such as a password validator, multiselects that
use check boxes instead of Ctrl-clicks, etc.

fx A set of animation effects that extend and enhance the effects provided in Base and Core.

gfx A portable 2D graphics library that leverages technologies like VML, SVG, etc., to provide advanced graph-
ics that may be static or animated.

gfx3d A portable 3D graphics library. Builds upon features offered in gfx.

grid A powerful data grid capable of rendering arbitrary amounts of data from a data store.

highlight A syntax highlighting engine that provides client-side syntax highlighting of <CODE> blocks for various
programming languages.

image Provides support for common image operations such as playing slideshows, magnification, picking
thumbnails, light box, and so on.

io Support for XHR multipart functions and an XHR IFRAME proxy for accomplishing cross-domain
XmlHttpRequests.

jsonPath Similar to Xpath, but for querying JavaScript objects; very handy for querying complex JSON structures.

lang Language utilities for additional operations on arrays, hashes, and extensions from functional program-
ming (lambda).

layout Additional layout widgets.

math A set of advanced math functions such as abstract curve definitions, point calculations, and so on.

off A wrapper around Google Gears that offers offline functionality for a web application.

presentation A mechanism for various display-oriented tasks, such as presentations.

rpc Extras on top of dojo.rpc for performing remote procedure calls.

sketch A cross-browser drawing editor based on the dojox.gfx module.

storage A JavaScript abstraction that provides limited support for persistent storage of data via a native browser
extension, such as Flash or Google Gears.

string Miscellaneous string utility functions.

timing Support for advanced timing constructs.

uuid An implementation of the Universally Unique Identifier, as described in RFC4122.

validate A set of functions for common validation tasks such as email addressees, social security numbers, and so
on.

widget A set of widgets, similar to those found in Dijit, including an advanced color picker, a fish eye list, a toaster,
a wizard, a magnifier, advanced scroll panes, and more.

wire An API for providing simplified MVC patterns in clients by suppling a generic data binding and service invo-
cation library.

xml Utilities for XML processing.

Table B-2. DojoX projects (continued)

Subproject Description

431

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
" (quotation marks), 263
symbolic operator, 116
$= symbolic operator, 116
* symbolic operator, 116
*= symbolic operator, 116
, (comma)

CSS expressions, 118
as symbolic operator, 116
trailing commas, 233

> operator, 118
^= symbolic operator, 116
{ } (curly braces), 263
~= symbolic operator, 116

A
a11y (see accessibility)
Academic Free License (AFL), xvii
accessibility

Dijit support, 248–251, 300
Tree dijit, 377

Accessible Rich Internet Applications
(ARIA), 5, 246, 250

AccordionContainer dijit, 268, 355–356
AFL (Academic Free License), xvii
AJAX (Asynchronous JavaScript and XML)

form support, 298
hitch function and, 87–89
OpenAjax Alliance, 41, 112
overview, 80–82
parameter property values, 82–85

WAI-ARIA support, 250
XHR examples, 85–87
(see also server communication)

animation
arbitrary CSS properties, 169–173
chaining and combining, 181–184
computing colors, 186–194
controlling programmatically, 174–178
dojo.fx support, 165
drag-and-drop support, 185–186
NodeList support, 129
simple fades, 165–169
sliding nodes, 176
toggling nodes, 184, 185
wipe effects, 179–181

_Animation class
animateProperty method, 129
chaining/combining animations, 181–184
controlling animations, 174–178
functionality, 165, 177, 178
gotoPercent method, 174
pause method, 174
play method, 168, 174
simple fades, 165–169
status method, 174
stop method, 174

anonymous functions, xxvii, 14, 75
ant build tool, 397
AOL, 7, 9, 319, 403
application dijits

ColorPalette dijit, 269, 366–367
Dialog dijit, 269, 357, 360–362
Editor dijit, 269, 388–395
InlineEditBox dijit, 269, 375–377

432 | Index

application dijits (continued)
Menu dijit, 268, 369–374
MenuItem dijit, 332, 369–374
overview, 6, 268
PopupMenuItem dijit, 369–374
ProgressBar dijit, 249, 269, 364–366
TitlePane dijit, 269, 374–375
Toolbar dijit, 268, 367–369
Tooltip dijit, 269, 359–360
TooltipDialog dijit, 269, 360
Tree dijit, 270, 377–388

ARIA (Accessible Rich Internet
Applications), 5, 246, 250

array keyword, 39, 125
Array object

application widgets, 372
inheritance, 234
Mozilla support, 35
NodeList class, 115

array processing
associative arrays, 14
finding element locations, 35, 36
iterating over elements, 37
JavaScript support, 35
string-as-function arguments, 39, 125,

130–131
testing element conditions, 36
transforming elements, 38

ASCII character set, 320
associative arrays, 14
asynchronous communication, Deferred data

structure, 89–91
Asynchronous JavaScript and XML (see

AJAX)
attribute values, 197, 212–214
attributes

defined, 197
Dijit support, 251, 252
manipulating, 57

avatars, 158, 159

B
Back button, 64–66
backward-compatibility mode, 60, 62
Base library

AJAX support, 82
animation support, 165, 176
array processing, 35–39
build profiles, 400, 403
cloning objects, 51
Color class, 186, 189, 190

Deferred data structure, 98
Dijit support, 245
DojoX dependencies, 428
DOM utilities, 55–61
estimated functions, 429
event listeners, 70–75
event/keyboard normalization, 67–70
exploring, 21–28
JavaScript object utilities, 48–51
looking up DOM nodes, 32
managing source code, 40–47
manipulating object context, 52–55
normalizing events, 68
overview, 4
publish/subscribe communication, 76–79
string utilities, 34, 35
type checking, 33, 34

beforeBegin event, 174, 181
behavior module (see dojo.behavior module)
Berkeley Software Distribution (BSD), xvii
blur event, 307, 319
body tag (HTML), 348
bookmarklets, 22
bootstrapping

Base library, 4
djConfig switch, 18–21, 264
dojo.addOnLoad function, 17–18
overview, 15–16

border-box approach, 59
BorderContainer dijit

design attribute, 346
liveSplitters attribute, 346
maxSize attribute, 347
minSize attribute, 347
overview, 268, 346–351
persist attribute, 346
region attribute, 347
splitter attribute, 347

browsers (see web browsers)
BSD (Berkeley Software Distribution), xvii
build profiles

creating custom modules, 402
defined, 400
setting up, 400–401
ShrinkSafe optimization, 404–406
standard.profile.js file, 403

build scripts
action option, 398
buildLayers option, 399
copyTests option, 398
cssImportIgnore option, 399

Index | 433

cssOptimize option, 398
internStrings option, 398
layerOptimize option, 399
loader option, 398
localeList option, 398
log option, 398
optimize option, 398
profile option, 399, 400
profileFile option, 399, 400, 401
releaseDir option, 398
releaseName option, 398
scopeDjConfig option, 399
scopeMap option, 398
symbol option, 398, 399
version option, 399
xdDojoPath option, 399
xdDojoScopeName option, 399
xdScopeArgs option, 398

build tools
downloading, 397
performance considerations, 414
running builds, 397–399
(see also Util build tools)

buildscripts directory, 397
bundles, 138
Button dijit

iconClass attribute, 326, 367
instantiating, 255
label property, 326
onClick method, 265, 326
overview, 266, 325–327
setAttribute function, 326
setLabel method, 326
showLabel property, 326
Toolbar dijit and, 367

C
callbacks

animations and, 165
chaining, 89
DeferredList support, 98
hitch function and, 87–89
JSONP support, 101, 102
return values, 84, 94

CDN (Content Delivery Network)
build profiles and, 403
meta tag, 319
XDomain support, 7, 9

chaining
animations, 181–184
callbacks, 89

NodeList results, 123, 124
prototype chain, 55, 237–239

character set encodings, 320
CheckBox dijit

checked attribute, 328, 329
getValue method, 329, 330
onChange event, 330
overview, 328–330
setValue method, 328, 329
type attribute, 329
value attribute, 329

CherryPy
Deferred examples, 92–98
downloading, 11
file uploads, 105, 106
form support, 299
non-HTML response types, 107

CLA (Contributor License Agreement), xvii
classes

basic creation pattern, 229, 230
defined, 14, 15
JavaScript restrictions, 14
parsing widgets, 260
simulating, 14, 227–228
(see also specific classes)

closures
additional information, xxv
anonymous functions, 75
defined, xxiv
leveraging with dojo.connect, 74–75
leveraging with forEach statement, 37
z-indexing example, 151

clustering resources, 41–43
code points, 320
cohesion, 247
Color class

additional color values, 190–194
creating/blending colors, 187–188
functionality, 186
named color values, 189, 190
setColor method, 188
toCss method, 188
toHex method, 188
toRgb method, 188
toRgba method, 188
toString method, 188

ColorPalette dijit
defaultTimeout attribute, 367
onChange function, 367
overview, 269, 366–367
palette attribute, 367
timeoutChangeRate attribute, 367

434 | Index

colors
additional values, 190–194
creating/blending, 187–188
named values, 189, 190

ComboBox dijit
autoComplete attribute, 323
close method, 322
fetch method, 322
fetchItemByIdentity method, 322
fetchSelecteditem method, 322
FilteringSelect dijit and, 323
getIdentity method, 322
getLabel method, 322
getValue method, 322
hasDownArrow attribute, 323
ignoreCase attribute, 323
isItemLoaded method, 322
item attribute, 322
onChange method, 322
overview, 266, 319–323, 332–333
pageSize attribute, 322
query attribute, 323
queryExpr attribute, 323
searchAttr attribute, 323
searchDelay attribute, 323
store attribute, 322

ComboButton dijit, 327, 362
comma (,)

browsers and, 233
CSS expressions, 118
as symbolic operator, 116

comments, removing, 396, 404
compression

defined, 404
gzip, 404, 414
ShrinkSafe support, 6, 7, 404–406

connections
Dijit support, 75
managing, 128
one-time, 74
within loops, 74, 75

constants, keyboard events, 69–70
constructor functions

defined, 14, 223
Dijit support, 248
new operator, 228

constructors, 14
_Contained class, 293, 340
_Container class

ContentPane dijit and, 344
layout dijits and, 340

Menu dijit and, 372
parent-child relationships, 293

content
deserializing, 391
interacting with, 391
serializing, 391
static, 414

Content Delivery Network (see CDN)
content-box approach, 59
ContentPane dijit

BorderContainer dijit and, 346–351
cancel function, 344
Dialog dijit and, 362
errorMessage attribute, 344
example, 348
extractContent attribute, 343
hacking, 345
href attribute, 343
isLoaded attribute, 344
lazy loading, 414
loadingMessage attribute, 344
onContentError function, 344
onDownloadEnd function, 344
onDownloadError function, 344
onDownloadStart function, 344
onLoad function, 344, 345
onUnload function, 344
overview, 268, 342–351
parseOnLoad attribute, 343, 345
preload attribute, 343
preventCache attribute, 343
refresh function, 344
refreshOnShow attribute, 344
setContent function, 344
setHref function, 344
TitlePane dijit and, 374

context
defined, xxv, xxvii
key-value pairs, 14
manipulating for objects, 52–55

Contributor License Agreement (CLA), xvii
cookies, 62–63
Coordinated Universal Time (UTC), 312
Core library

additional color values, 190–194
back module, 64–66
behavior module, 131–134
DeferredList data structure, 98
Dijit support, 245
dojo.fx module, 165, 176
dojo.rpc module, 110

Index | 435

estimated functions, 429
i18n module, 136
IFRAME transports, 103–109
internationalization support, 136,

140–143
JSONP support, 101–103
OpenAjax module, 112
overview, 5
parsers, 145, 257
string module, 34, 35
testing support, 409

coupling, 247
cross-site scripting, 92, 99–101
CSS

animating arbitrary properties, 169–173
box model, 58–61
Color module, 190
color values, 190–194
comma separator, 118
commonly used selectors, 116
dijit considerations, 273, 274
HelloWorld dijit, 284
image slicing, 370
@import statement, 253
RGB support, 187
RGBA support, 188
tutorial, 145
visibility considerations, 357

curly braces { }, 263
CurrencyTextBox dijit, 318–319
currying technique, 53

D
data API (see dojo.data module)
data types, serializing/deserializing, 219–221
Date objects (JavaScript), 314
DateTextBox dijit

datePattern attribute, 313
formatLength attribute, 313
getDisplayedValue method, 314, 315
Gregorian calendar, 311
locale attribute, 313
overview, 310–317
selector attribute, 313
serialize extension point, 315, 317
setDisplayedValue method, 314, 315
strict attribute, 313
toString method, 315

debugging, Firebug support, 10, 424
Declaration tool, 293–295

Deferred data structure
addBoth function, 91
addCallback function, 91
addCallbacks function, 91
addErrback function, 91
asynchronous requests, 89–91
callback function, 91
cancel function, 91, 97
CherryPy examples, 92–98
errback function, 91
functionality, 131
key features, 90
silentlyCancelled property, 92

DeferredList data structure, 98
delegation, 55, 226–227
descendant combinator, 118
deserializing

content, 391
data types, 219–221

design mode, 389
DHTML

animation, 129
Dijit support, 247, 248, 273
Tree dijit support, 377

Dialog dijit
duration attribute, 362
duration function, 362
layout function, 362
open attribute, 362
overview, 269, 360–362
setContent method, 362
show function, 362
visibility considerations, 357

Dijit library
accessibility, 248–251, 300
API support, 270–271
box model support, 61
curly braces requirement, 263
DojoX support, 3, 428
encapsulation support, 246–248
estimated functions, 429
internationalizing, 136
overview, 5, 245–246
parser support, 145
prepackaged themes, 253–254, 284, 300

dijit.form module
Button dijit, 255, 265, 266, 325–327, 367
CheckBox dijit, 328–330
ComboBox dijit, 266, 319–323, 332–333,

362
ComboButton dijit, 327

436 | Index

dijit.form module (continued)
CurrencyTextBox dijit, 318–319
DateTextBox dijit, 310–317
DropDownButton dijit, 327, 331, 332,

362
FilteringSelect dijit, 267, 323
Form dijit, 266, 338–339
_FormWidget class, 301–303, 324
functionality, 6, 300
HorizontalRule, 334
HorizontalRuleLabel, 334, 337, 338
HorizontalSlider dijit, 333–335
inheritance, 300
MappedTextBox dijit, 310, 315, 323
MultiSelect dijit, 267, 324
NumberSpinner dijit, 261–267, 318
NumberTextBox dijit, 317, 318
RadioButton dijit, 330
RangeBoundTextBox dijit, 310, 315
SimpleTextarea dijit, 267, 325
Slider dijit, 267, 333–338
Textarea dijit, 267, 325, 376
TextBox dijit, 267, 304–307, 317, 376
TimeTextBox dijit, 310–317
ToggleButton dijit, 327
ValidationTextBox dijit, 307–310, 317,

319
VerticalRuleLabel, 337, 338
VerticalSlider dijit, 336–338

dijit.layout module
AccordionContainer dijit, 268, 355–356
addChild method, 293, 341
BorderContainer dijit, 268, 346–351
ContentPane dijit, 268, 342–351, 362,

374, 414
domNode property, 341
functionality, 6, 267
getChildren method, 293, 341
getNextSibling method, 293, 341
getParent method, 293, 341
getPreviousSibling method, 293, 341
inheritance, 340
isLayoutContainer method, 340
keyboard support, 342
layout method, 340
LayoutContainer dijit, 346
lazy loading, 353, 414
programmatic creation, 341
removeChild method, 293, 341
rendering considerations, 357
resize method, 340, 341, 357, 361
SplitContainer dijit, 346

StackContainer dijit, 268, 351–352
TabContainer dijit, 268, 342, 353–355
visibility considerations, 357

dijits (Dojo widgets)
application dijits, 6, 268–270
byId function, 255, 271, 330
byNode function, 270
class attribute, 252
common attributes, 251, 252
connecting in markup, 75
constraints attribute, 263
_Contained class, 293, 340
_Container class, 293, 340, 344, 372
CSS considerations, 273, 274
Declaration tool, 293–295
defined, 15, 255, 272
dir attribute, 252
DOM nodes versus, 255–256
domNode attribute, 255, 257, 260
exploring, 28–31
function objects, 262
functionality, 273–274
getEnclosingWidget function, 270
getViewport function, 271
HelloWorld dijit, 282–292
HTML considerations, 265, 273, 274
id attribute, 252, 262
jsId attribute, 260, 265
lang attribute, 252
lifecycle methods, 275–281
methods versus DOM events, 255–256
onClick event, 255, 256
parsing, 145, 257–259
publish/subscribe communication, 76
registry function, 270
style attribute, 252
_Templated class, 277, 280–281
title attribute, 252
(see also application dijits; _Widget class)

dirty items, 213
div tag (HTML), 328
djConfig configuration switch

afterOnLoad key, 19
baseUrl key, 19, 44
cacheBust key, 19
curly braces, 263
debugAtAllCosts key, 19
dojoBlankHtmlUrl key, 19
dojoIframeHistoryUrl key, 19
enableMozDomContentLoaded key, 19
extraLocale key, 20
injecting Dojo, 22

Index | 437

isDebug key, 20
libraryScriptUri key, 20
locale key, 20
modulePaths key, 20, 47
parseOnLoad key, 20, 162, 259
parsers and, 259
platform configuration, 17
quotation marks, 263
require key, 20
testing translations, 139
usePlainJson key, 20
useXDomain key, 20
xdWaitSeconds key, 20

DnD (see Drag-and-Drop)
DOCTYPE tag (HTML), 252
document object (JavaScript)

getElementById function, 24, 32, 422
getElementsByClass function, 115
getElementsByClassName function, 114
getElementsByTagName function, 115,

117
Document Type Definition (DTD), 252
DOH (Dojo Objective Harness)

browser-based test harness, 411
functionality, xxi, 6, 407
Rhino test harness, 407–411

doh module
assertEqual function, 407, 408
assertFalse function, 407, 408
assertTrue function, 407, 408
pause function, 408
register function, 407, 408, 410
registerGroup function, 408, 410
registerTest function, 408
registerTestNs function, 408
registerTests function, 408
run function, 408
runGroup function, 408
setUp function, 408
tearDown function, 408
togglePaused function, 408

Dojo
architectural overview, 3–7
bootstrapping, 4, 15–21
browser security settings, 11
debugging with Firebug, 10
downloading, 7–10
exploring with Firebug, 21–31
functionality, xv–xix
injecting, 22

lightweight server responses, 11, 12
terminology, 12–15
(see also Dijit library; DojoX)

dojo.addClass function, 57
dojo.addOnLoad function

animating properties, 169
application widgets, 365
chaining/combining animations, 182
drop events, 162
functionality, 17–18
getLocalization function and, 140
layout dijits, 357
parameters, 16
parsers and, 145, 258
simple fades, 168
toggling nodes, 184
wiping effect, 180
z-indexing, 151

dojo.addOnUnload function, 18
dojo.anim function, 173
dojo.animateProperty function

additional color values, 190
beforeBegin method, 174
example, 169–173
functionality, 177
onAnimate method, 175, 177
onBegin method, 174
onEnd method, 175
onPause method, 175
onPlay method, 175
onStop method, 175
parameters, 169, 177

dojo.attr function, 57
dojo.back module

addToHistory function, 64
overview, 64–66
setInitialState function, 64

dojo.behavior module
add method, 131, 132, 134
apply method, 131, 134

dojo.body function, 52
dojo.byId function

dijit.byId comparison, 255
functionality, 24, 25, 32, 255

dojo.clone function, 51
dojo.Color class (see Color class)
dojo.colors function, 190
dojo.connect function

drag events, 149, 150
drop events, 160, 161
event listeners, 70–73
functionality, 26–28

438 | Index

dojo.connect function (continued)
leveraging closures, 74–75
mouse events, 67, 128

dojo.connectPublisher function, 78, 79
dojo.contentBox function, 60, 61
dojo.cookie function, 63
dojo.cookie.isSupported function, 63
dojo.coords function, 61, 127
dojo.currency module

CurrencyTextBox dijit and, 318
format function, 143
formatting options, 142
parse function, 143

dojo.data module
ComboBox dijit and, 319
data API overview, 196–198
deserializing data types, 219–221
Identity API, 198, 201–202
ItemFileReadStore support, 204–212, 321
ItemFileWriteStore support, 204,

212–219
Notification API, 198, 203
Read API, 198–201
serializing data types, 219–221
Tree dijit and, 378, 383
Write API, 198, 202–203

dojo.date module
add function, 141
compare function, 141
datePattern attribute, 311
difference function, 141
formatLength attribute, 311
getDaysInMonth function, 141
getTimezoneName function, 141
Gregorian calendar, 311
isLeapYear function, 141
overview, 140
timePattern attribute, 311

dojo.declare function
basic class creation pattern, 229, 230
constructor function, 229–233, 276, 277
creating function objects, 15
Dijit support, 247, 272
HelloWorld example, 291–292
inheritance support, 55
mixin function, 48
postscript function, 229, 230, 276
preamble function, 229, 230, 276, 277
simulating classes, 14, 227–228

dojo.Deferred (see Deferred data structure)
dojo.DeferredList API, 98

dojo.delegate function, 55
dojo.disconnect function, 70, 71
dojo.dnd module

constrained moveables, 152–155
destroy function, 156
drag-and-drop support, 385
Selector class, 163, 164
simple moveables, 145–151
Source class, 155–157, 158, 162–163
Target class, 155, 158

dojo.doc object, 52–55
dojo.every function, 36, 39
dojo.extend function, 49–51, 224
dojo.fadeIn function, 165–169, 177, 183
dojo.fadeOut function, 165–169, 183
dojo.filter function, 38
dojo.fixEvent function, 68
dojo.forEach function, 37–39
dojo.formToJson function, 98, 99
dojo.formToObject function, 98, 99
dojo.formToQuery function, 98, 99
dojo.fx module

animation support, 165, 176
chain function, 181–184
combine function, 181–184
easing methods, 168
slideTo function, 176, 183
Toggler class, 184, 185
wipeOut function, 179–181

dojo.global object, 52–55
dojo.hasAttr function, 57
dojo.hasClass function, 57
dojo.hitch function, 54, 87–89
dojo.i18n module, 136, 139–140
dojo.indexOf function, 35–36
dojo.io.iframe.create function, 108
dojo.io.iframe.send function, 104
dojo.isAlien function, 33
dojo.isArray function, 33
dojo.isArrayLike function, 33
dojo.isDescendant function, 56
dojo.isFF property, 62
dojo.isFunction function, 33
dojo.isIE property, 62
dojo.isKhtml property, 62
dojo.isMozilla property, 62
dojo.isObject function, 33
dojo.isOpera property, 62
dojo.isQuirks property, 62
dojo.isSafari property, 62
dojo.isString function, 33

Index | 439

dojo.js file
Base support, 4
build profile considerations, 400
loading Dojo, 9

dojo.keys object, 69–70
dojo.lastIndexOf function, 35–36
dojo.locale object, 137
dojo.map function, 38
dojo.marginBox function, 60, 61, 154
dojo.mixin function

extend function and, 49–51
functionality, 48
inheritance example, 225, 226, 237–239

dojo.NodeList (see NodeList class)
dojo.number module

format function, 142
formatting options, 141
NumberTextBox dijit and, 317
parse function, 142
round function, 142

dojo.partial function, 53
dojo.place function, 58, 126–127
dojo.provide function

Core test files, 409, 411
managing source code, 40–44

dojo.publish function, 76–79, 354
dojo.query function

common operations, 116
drag events, 150
functionality, 27
node manipulation, 115–121
parser support, 260

dojo.rawXhrPost function, 84
dojo.rawXhrPut function, 84
dojo.registerModulePath function, 44
dojo.removeAttr function, 57
dojo.removeClass function, 57
dojo.require function

additional color values, 190
animation support, 129, 176
application widgets, 363, 369
Dijit support, 270–271
dojo.fx module and, 183
form widgets and, 327
functionality, 16–18
managing source code, 40–44
parser support, 259
slider dijits, 333

dojo.requireLocalization function, 139
dojo.rpc module

JsonpService constructor, 110, 112
JsonService constructor, 110, 111
RpcService constructor, 110

dojo.setObject function, 41
dojo.setSelectable function, 56
dojo.some function, 36, 39
dojo.stopEvent function, 73
dojo.string module

Dijit support, 280
overview, 34, 35
pad function, 34
substitute function, 34
trim function, 35

dojo.style function, 56, 57, 125, 126, 357
dojo.subscribe function

drag events, 149, 150
drop events, 159, 160
publish/subscribe communication, 76–79

dojo.toggleClass function, 57
dojo.toJson function, 216
dojo.trim function, 34
dojo.xd.js file

CDN example, 10, 403
djConfig switch, 19
XDomain loading, 18, 23, 136

dojo.xhr function, 84, 87
dojo.xhrDelete function, 84
dojo.xhrGet function

adjusting timing values, 94
cross-site scripting, 92
example, 87
functionality, 84

dojo.xhrPost function, 84
dojo.xhrPut function, 84
dojoType tag

Dijit support, 5, 247, 248, 251
form validation, 252
parser support, 145, 157, 260

DojoX
Dijit support, 3
estimated functions, 429
overview, 6, 428–429
supported projects, 53, 110, 195,

429–430
DOM events

behavior Object possibilities, 132
commonly used properties, 68, 69
dijit methods versus, 255–256
event listeners, 70–73
event points, 280
event propagation, 73
form support, 338
mouse events, 67, 68, 128
responding to, 203
shortcuts, 128

440 | Index

DOM nodes
application widgets, 362
behavior module, 131–134
common mistakes, 84
deserializing content, 391
dijits versus, 248, 255–256
dojo.query function, 115–121
looking up, 32
mouse events, 67
moveable, 145–148
NodeList class, 121–130
onclick event, 255, 256
placing, 58
styling, 56, 57
toggling, 184, 185

DOM utilities
ancestry support, 56
appendChild method, 55, 58
CSS box model, 58–61
insertBefore method, 58
manipulating attributes, 57
placing nodes, 58
removeChild method, 55
styling nodes, 56, 57
text selectability, 56

dotted object notation, 41
Drag-and-Drop (DnD)

animation support, 185–186
constrained moveables, 152–155
custom avatars, 158, 159
drag events, 149–151
dragging overview, 144
drop events, 159–163
dropping overview, 155–158
scripting droppables, 163, 164
simple moveables, 145–148
targets, 158
Tree dijit and, 378, 385–388
z-indexes, 151

DropDownButton dijit
dojo.require function and, 327
iconClass attribute, 363
overview, 331, 332
TooltipDialog dijit and, 362

DTD (Document Type Definition), 252
duck typing, 33, 225
dynamic binding, 55

E
Editor dijit

close function, 391
contentDomFilters function, 391
contentDomPostFilters function, 391
contentDomPreFilters function, 391
contentPreFilters function, 391
execCommand function, 391
extraPlugins attribute, 390, 393–395
focusOnLoad attribute, 390
getValue function, 390
height attribute, 390
inheritWidth attribute, 390
lifecycle phases, 391
minHeight attribute, 390
name attribute, 390
onDisplayChanged function, 390
overview, 269, 388–391
plug-in architecture, 390, 392–395
plug-ins attribute, 390
setValue function, 390
undo function, 390

elements
finding locations, 35, 36
iterating over, 37
orphaned, 127
testing conditions, 36
transforming, 38, 39

encapsulation, 246–248
encodings, character set, 320
errbacks

DeferredList support, 98
defined, 90
return values, 94

event listeners
connecting in markup, 75
event propagation, 73
functionality, 70–73
leveraging closures, 74–75

Event object
altKey property, 69
bubbles property, 68
cancelable property, 68
clientX property, 69
clientY property, 69
ctrlKey property, 68
currentTarget property, 68
metaKey property, 68
screenX property, 69

Index | 441

screenY property, 69
shiftKey property, 68
target property, 68
type property, 68

events (see DOM events; keyboard events;
mouse events)

expiration dates, cookie, 63
extension points, 251

F
fade effect, 165–169
Fibonacci sequence, 42, 44
FilteringSelect dijit

getDisplayedValue method, 323
getValue method, 323
labelAttr attribute, 324
labelFunc function, 324
labelType attribute, 324
overview, 267, 323
setDisplayedValue method, 323
setValue method, 323

Firebug extension (Firefox)
Console tab, 422
console.log function, 11, 424
CSS tab, 424
customizing, 417–419
debugging support, 10, 424
DOM tab, 424
downloading, 11
exploring Dojo, 21–31
HTML tab, 420, 421, 424
Inspect button, 420–422
installation, 417
Layout tab, 424
model boxes and, 60
Net tab, 406, 427
performance considerations, 414
Profile button, 422
Script tab, 424
Style tab, 424

Firebug Lite, 11, 424
Firefox browser

accessibility issues, 249
browser detection, 62
Clear Cache Button add-on, xxiv
downloading, 11
getElementsByClassName function, 114
JavaScript language utilities, 51
RGBA support, 188

SpiderMonkey support, 397
trailing commas and, 233
Web Developer Toolbar, xxiv
(see also Firebug extension)

first-class objects, 14
Flickr data source, 102
forEach function, 37
forests, 378, 380–382
ForestStoreModel class

onAddToRoot function, 385
onLeaveRoot function, 385
overview, 378, 381, 384–385
rootId attribute, 381
rootLabel attribute, 381

Form dijit
getValues method, 338
isValid method, 338
onSubmit extension point, 339
overview, 266, 338–339
reset method, 339
setValues method, 339
submit method, 339
validate method, 339

form tag (HTML)
action attribute, 299
disabled attribute, 301
form controls, 299
form dijits, 338
method attribute, 299
name attribute, 299
onsubmit attribute, 299
overview, 300
tabindex attribute, 249, 300, 301

forms
AJAX support, 298
CherryPy support, 299
defined, 297
HTML support, 98–99, 252, 297, 298,

338
overview, 297–300
validating, 252, 299
XHR object support, 298
(see also dijit.form module)

_FormWidget class
alt attribute, 302
Button dijit and, 326
disabled attribute, 302
focus method, 303
forWaiValuenow extension point, 303
intermediateChanges attribute, 303

442 | Index

_FormWidget class (continued)
isFocusable method, 303
MultiSelect dijit and, 324
name attribute, 301
onChange extension point, 303
readOnly attribute, 303
setAttribute method, 303
tabIndex attribute, 302
Textarea dijit and, 325
type attribute, 302
value attribute, 301

function objects, 14–15, 262
functions

anonymous, xxvii, 14, 75
constructor, 14, 223, 228, 248
defined, 14
monotonic, 172

G
Gecko rendering engine, 62
golden ratio, 42
greater than operator, 118
Greenwich Mean Time, 312
Gregorian calendar, 311, 312
grid widget, 6
gzip compression, 404, 414

H
hacking

ContentPane dijit, 345
NodeList class, 124

headline layouts, 347
HelloWorld dijit

associating events, 291–292
Declaration tool, 293
first take, 282–286
interning template, 287–288
modifying template, 286–287
passing in parameters, 288–290

Helma, 406
hierarchical JSON, 205–208
HorizontalSlider dijit

clickSelect attribute, 337
container attribute, 337
count attribute, 337
decrement function, 337
discreteValues attribute, 337
increment function, 337
maximum attribute, 337
minimum attribute, 337
overview, 333–335

pageIncrement attribute, 337
ruleStyle attribute, 337
showButtons attribute, 337
slideDuration attribute, 337

HSL color model, 190
HSLA color model, 190
HTML

accessibility considerations, 249
dijit considerations, 265, 273, 274
DOCTYPE validation, 252
Editor dijit support, 390
file uploads, 106
form support, 98–99, 252, 297, 298, 338
HelloWorld dijit, 282–284
static content, 414
transporting text-based content, 107
UTF-8 character set, 319
(see also specific elements and tags)

HTTP DELETE method, 82, 86
HTTP GET method, 82, 86, 103
HTTP POST method, 82, 86, 103
HTTP PUT method, 82, 86

I
i18n (see internationalization)
Identity API

fetchItemByIdentity function, 202,
208–209

getFeatures function, 202
getIdentity function, 202
getIdentityAttributes function, 202
ItemFileReadStore support, 204–212
ItemFileWriteStore support, 204,

212–219
overview, 198, 201

IEC (International Electrotechnical
Commission), 320

IFRAME transports, 103–109
image slicing, 370
IMG tag (HTML), 249
implicit type-mapping, 219
importing modules/resources, 40
index keyword, 39, 125
inheritance

defined, 55
examples, 230–241
form dijits, 300
JavaScript support, 223–227
layout dijits, 340
Object type, 14
prototype-based gotchas, 233–235

Index | 443

simulating classes, 227–228
_Widget class and, 272

InlineEditBox dijit
autoSave attribute, 376
buttonCancel attribute, 377
buttonSave attribute, 377
cancel function, 377
editing attribute, 376
editor attribute, 377
editorParams attribute, 377
enableSave function, 377
noValueIndicator attribute, 377
onChange function, 377
overview, 269, 375–377
renderAsHtml attribute, 376, 377
save function, 377
setDisabled function, 377
setValue function, 377
value attribute, 377
width attribute, 377

input tag (HTML)
button support, 328
script tag and, 328
textbox support, 304, 310, 319

International Electrotechnical Commission
(IEC), 320

International Organization for
Standardization (ISO), 320

internationalization
Core support, 140–143
Dijit library, 136
modules, 136–140

Internet Explorer browser
accessibility issues, 249
Back button support, 64
browser detection, 62
connection limitations, 415
design mode, 389
document.getElementById function, 24
JavaScript language utilities and, 51
testing Dojo, 10

ISO (International Organization for
Standardization), 320

ISO 4217 standard, 318
ISO 8601 standard, 315
item keyword, 39, 125
ItemFileReadStore

ComboBox dijit and, 321
drag-and-drop restrictions, 386
functionality, 204–212
Tree dijit and, 378

_type attribute, 219
_value attribute, 219

ItemFileWriteStore
drag-and-drop support, 386
functionality, 204, 212–219
_saveCustom extension, 216, 217
serialize function, 220

items (dojo.data)
accessing, 198–201
adding, 215
creating, 202–203, 214–216
defined, 197
deleting, 202–203, 214–216
dirty, 213
fetching by arbitrary criteria, 209
fetching by identity, 201–202, 208
modifying, 212–214
processing, 198–201
querying, 210–212
responding to events, 203
retrieving, 198–201
updating, 202–203

J
jar files, 397
Java language, 222–223
JavaScript

anonymous functions, xxvii, 14
array processing, 35–39
asynchronous requests, 89–91
clone function, 51
closures, xxiv
context, xxv, xxvii, 14
Date objects, 314
defining in markup, 264
delegation support, 55
DHTML support, 273
execCommand function, 389
extend function, 49–51
fundamental concepts, xxiv–xxviii
HelloWorld dijit, 285–286
inheritance support, 223–227
Java and, 222–223
JSONP support, 102, 103
managing cookies, 63
managing source code, 40–47
mixin function, 48
prototype property, 14
publish/subscribe communication, 76
setInterval function, 365
setTimeout function, 89, 365

444 | Index

JavaScript (continued)
ShrinkSafe support, 404
string utilities, 34, 35
type checking, 33, 34
variable number of parameters, 229

JavaScript hijacking, 86
JSON (JavaScript Object Notation)

build profiles and, 400
hierarchical, 205–208
ItemFileReadStore support, 205
JavaScript hijacking, 86
overview, 81–82
RPC support, 110–112
Tree dijit and, 378

JSON with references, 205–206
JSONP (JSON with Padding)

cross-site scripting, 92, 99–101
managing callback functions, 101, 102
overview, 100

JsonpService constructor, 110, 112
JsonService constructor, 110, 111

K
keyboard events

constants supported, 69, 70
NodeList support, 128
standardizing, 67–70

key-value pairs
animations, 129, 130
behavior Object possibilities, 132
describing context, 14
djConfig support, 18–21
form fields, 299
item coordinates, 127

Konfabulator, 397

L
latency

condensing multiple files, 41
Dijit and, 253
image slicing and, 370
reducing, 6
XDomain and, 415

layers, 400–403
layout widgets (see dijit.layout module)
LayoutContainer dijit, 346
lazy loading, 353, 401, 414
Leonardo of Pisa, 42
linebreaks, removing, 396, 404

M
Make build tool, 397
map function, 38
MappedTextBox dijit

FilteringSelect dijit and, 323
overview, 310
toString method, 315

Menu dijit
addChild function, 373
bindDomNode function, 373
contextForWindow attribute, 373
getChildren function, 373
onCancel function, 373
onClick function, 373
onExecute function, 373
onItemHover function, 373
onItemUnhover function, 373
overview, 268, 369–374
parentMenu attribute, 373
popupDelay attribute, 373
removeChild function, 373
targetNodeIds attribute, 373
unBindDomNode function, 373

MenuItem dijit
disabled attribute, 374
iconClass attribute, 374
label attribute, 374
onClick method, 332, 374
overview, 369–374
setDisabled function, 374

meta tag (HTML), 319
methods

defined, 14
extending object prototypes, 49
extension points and, 251
inherited, 235, 236
NodeList class, 121–122

Midas Specification, 389
minification, 404
MochiKit web site, 89
modules

custom example, 42–44
defined, 13, 40
Fibonacci example, 44
importing, 40
internationalizing, 136–140
magic genie example, 45–47
managing source code, 40–41

Index | 445

monotonic functions, 172
mouse events

DOM events, 67, 68
form considerations, 338
NodeList support, 128
standardizing, 67–69
Tree dijit response, 382

Moveable constructor
constrained moveables, 152–155
simple moveables, 145–151

Mover objects, 147
Mozilla browser

Array object, 35
browser detection, 62
Midas Specification, 389
Rhino JavaScript engine, 6, 397, 407–411
SpiderMonkey JavaScript engine, 397

MultiSelect dijit
addSelected method, 324
getSelected method, 324
invertSelection method, 324
overview, 267, 324
setValue method, 324
size attribute, 324

N
namespaces

clustering resources, 41, 43
defined, 13
establishing, 18
organizing, 41

new operator
constructor functions, 14, 228
functionality, 48

nihilo theme (Dijit), 253
nls directory, 136, 137, 138
NodeList class

addClass method, 122, 126
addContent method, 122, 126
adopt method, 122
anim function, 129
animateProperties function, 129
animation support, 129
chaining results, 123, 124
concat method, 121, 123
connect method, 122, 128
constructing, 123
coords method, 122, 126
creating extensions, 130–131

DOM event shortcuts, 128
every method, 121, 122
fadeIn function, 129
fadeout function, 129
filter method, 121, 122, 125
forEach method, 121, 122, 128
hacking, 124
indexOf method, 121, 122
instantiate method, 122
lastIndexOf method, 121, 122
map method, 121, 122
node manipulation, 121–122
orphan method, 122, 127
place method, 122
removeClass method, 122, 126
slice method, 122
slideTo function, 129
some method, 121, 122
splice method, 121
string-as-function style arguments, 125
style method, 122, 125, 126
wipeIn function, 129
wipeout function, 129

nodes (see DOM nodes)
Notification API

ComboBox dijit and, 322
getFeatures function, 204
ItemFileWriteStore support, 204, 212,

217–219
onDelete function, 204
onNew function, 204
onSet function, 204
overview, 198, 203

NumberSpinner dijit
creating from markup, 261
creating programmatically, 262
defaultTimeout attribute, 318
defining methods in markup, 264–266
examples, 263, 264
largeDelta attribute, 318
max constraint, 318
min constraint, 318
overview, 267, 318
smallDelta attribute, 318
timeoutChangeRate attribute, 318

NumberTextBox dijit
inheritance, 318
max constraint, 317
min constraint, 317

446 | Index

NumberTextBox dijit (continued)
overview, 317
pattern constraint, 317
places constraint, 317
type constraint, 317

O
Object type

inheritance, 14, 234
prototype property, 237

objects
cloning, 51
defined, 14
first-class, 14
manipulating context, 52–55

onAnimate event, 175
onBegin event, 174
onblur event, 128
onChange event, 330
onclick event

dijit support, 255
dojo.connect function, 67
form considerations, 338
NodeList support, 128

onDndCancel event, 161
onDndDrop event, 161
onDndSourceOver event, 160
onDndStart event, 160
onEnd event, 175, 181
onFirstMove event, 151
onfocus event, 128
onkeydown event, 68, 128
onkeypress event, 68, 128
onkeyup event, 68, 128
onmousedown event, 67, 128, 163
onmouseenter event, 68, 128
onmouseleave event, 68, 128
onmousemove event, 67, 128, 163
onmouseout event, 67, 128, 292
onmouseover event, 67, 128, 292
onmouseup event, 67, 128, 163
onMove event, 151
onMoved event, 151
onMoveStart event, 151
onMoveStop event, 151
onMoving event, 151
onPause event, 175
onPlay event, 175
onStop event, 175
onsubmit event, 300

opacity, 189
OpenAjax Alliance, 41, 112
OpenAjax Hub, 76, 112

P
packaging systems, 13
parameters

build script, 398–399
HelloWorld example, 288–290
partially applying, 53

parseOnLoad:true directive, 145
parsers

dojoType tag and, 145, 157
overview, 145, 257–260

performance considerations, 404, 414–415
plug-ins (Editor)

AlwaysShowToolbar, 393
architectural overview, 392–395
defined, 392
EnterKeyHandling, 393, 394
FontChoice, 394
LinkDialog, 394
TextColor, 394
ToggleDir, 394

PopupMenuItem dijit
disabled attribute, 374
iconClass attribute, 374
label attribute, 374
onClick function, 374
overview, 369–374
setDisabled function, 374

portlets, 76
ProgressBar dijit

depicted, 249
indeterminate attribute, 366
maximum attribute, 366
onChange function, 366
overview, 269, 364–366
places attribute, 366
progress attribute, 366
update function, 366

properties
adding to objects, 48
animating CSS, 169–173
defined, 14
DOM events support, 68, 69
extending object prototypes, 49
simplified syntax, 173

prototype chain, 55, 237–239
pseudorandom number generators, 42

Index | 447

publish/subscribe communication, 76–79,
352

Python language, 11, 233

Q
querying child items, 210, 211
quirks mode, 60, 62
quotation marks ("), 263

R
race conditions, 17
RadioButton dijit, 330
RangeBoundTextBox dijit, 310, 315
Read API

close function, 201
ComboBox dijit and, 322
containsValue function, 199
fetch function, 200, 201
getAttributes function, 199
getFeatures function, 201
getLabel function, 201
getLabelAttributes function, 201
getValue function, 199, 210, 216
getValues function, 199, 216
hasAttribute function, 199
isItem function, 199
isItemLoaded function, 199
ItemFileReadStore support, 204–212
ItemFileWriteStore support, 204,

212–219
loadItem function, 199
overview, 198

readings.js files, 138, 140
README files

CherryPy support, 11
DojoX requirements, 6, 428

Rehabilitation Act (1973), 248
Remote Procedure Call (RPC), 110–112
Representational State Transfer (REST), 82
resources

clustering, 41–43
defined, 13, 40
importing, 40

REST (Representational State Transfer), 82
RFC 3066, 136
RGB color model, 187–188
RGBA color model, 187–188
Rhino JavaScript engine (Mozilla)

background, 397
ShrinkSafe and, 6
testing support, 407–411

rollbacks, 213
Roman calendar, 312
RPC (Remote Procedure Call), 110–112
RpcService constructor, 110
Ruby, Sam, 82
runner.js file, 409

S
screen readers, 250, 300
script tag (HTML)

build profiles, 403
cross-site scripting, 99–101
defining methods in, 264
dijit considerations, 265
djConfig support, 18
dojo.connect function, 75
input tag and, 328
JSONP support, 100, 101
parsing widgets, 260
XDomain build, 9

scripting
cross-site, 92, 99–101
droppables, 163, 164
server-side, 11, 62
(see also build scripts)

Section 508, 248
security

browser settings, 11
cross-site scripting, 92
JavaScript hijacking, 86

SELECT element (HTML), 319
select element (HTML), 323
Selector API

deleteSelectedNodes method, 163
destroy method, 163
getSelectedNodes method, 163
insertNodes method, 163
onMouseDown method, 163
onMouseMove method, 163
onMouseUp method, 163
onOutEvent method, 164
onOverEvent method, 164
selectAll method, 163
selectNone method, 163

Selectors API, 114
serializing

content, 391
data types, 219–221

server communication
asynchronous requests, 89–91
Core IO support, 101–109

448 | Index

server communication (continued)
cross-site scripting, 99–101
Deferred examples, 92–98
form and HTTP utilities, 98–99
JSON remote procedure calls, 110–112

server-side scripts, 11, 62
Shape class, 224, 234
ShrinkSafe

build considerations, 401
compression support, 6, 7
functionality, xxi
optimizing builds, 404–406
Rhino engine and, 397

sidebar layouts, 347
Simple Method Description (SMD), 110
SimpleTextarea dijit, 267, 325
slide effects, 176
Slider dijit, 267, 333–338
SMD (Simple Method Description), 110
soria theme (Dijit), 253
Source class

custom avatars, 158
dropping objects, 155–157, 162–163

source code, managing with modules, 40–47
special effects

chaining/combining animations, 181–184
computing colors, 186–194
drag-and-drop example, 185–186
sliding, 176
toggling nodes, 184, 185
wiping, 179–181

SpiderMonkey JavaScript engine, 397
SplitContainer dijit, 346
StackContainer dijit

back function, 352
closeable attribute, 352
closeChild method, 352
doLayout attribute, 352
forward function, 352
onClose extension point, 352
overview, 268, 351–352
publishing support, 352
selectChild function, 352
selected attribute, 352
selectedChildWidget object, 352
title attribute, 352

standard.profile.js file, 403
state tracking, 119–121
static content, 414
string-as-function type arguments, 39, 125,

130–131

Subversion repository, 7–9, 397
symbolic links, 8

T
TabContainer dijit

closeable attribute, 354
ContentPane dijit and, 342
onClose function, 354
overview, 268, 353–355
tabPosition attribute, 354
title attribute, 354

Target class, 155, 158
_Templated class

buildRendering method, 281
containerNode property, 281
dojoAttachPoint attribute, 280
functionality, 277, 280–281
templatePath property, 281, 285
templateString property, 281, 285, 288
widgetsInTemplate property, 281

test fixtures, 407
testing

browser considerations, 10, 411
Core library support, 409
DOH support, 6, 407–410
elements for conditions, 36
Rhino test harness, 407–411
theme testers, 253
translations, 139
Util support, 396

Textarea dijit
getValue method, 325
inheritance, 325
InlineEditBox dijit and, 376
onChange extension point, 325
overview, 267
setValue method, 325

textarea element (HTML), 107, 325
TextBox dijit

format extension point, 305
getValue method, 305
inheritance, 317
InlineEditBox dijit and, 376
lowercase attribute, 304
overview, 267, 304–307
parse extension point, 305
propercase attribute, 304
setValue method, 305
trim attribute, 304
uppercase attribute, 304

this keyword, 264

Index | 449

TimeTextBox dijit
clickableIncrement attribute, 313
formatLength attribute, 314
getDisplayedValue method, 314, 315
Gregorian calendar, 311
locale attribute, 314
overview, 310–317
selector attribute, 314
serialize extension point, 315, 317
setDisplayedValue method, 314, 315
strict attribute, 314
timePattern attribute, 314
toString method, 315
visibleIncrement attribute, 313
visibleRange attribute, 313

TitlePane dijit
duration attribute, 374
open attribute, 374
overview, 269, 374–375
setContent function, 374
setTitle function, 375
title attribute, 374
toggle function, 375

ToggleButton dijit
checked attribute, 327
onChange extension point, 327
overview, 327
setAttribute method, 327

Toggler class, 184, 185
toggling nodes, 184, 185
Toolbar dijit

addChild function, 369
getChildren function, 369
overview, 268, 367–369
removeChild function, 369

toolkits, 13
Tooltip dijit

connectId attribute, 360
label attribute, 360
overview, 269, 359–360
showDelay attribute, 360

TooltipDialog dijit, 269, 360
tracking state, 119–121
translations, testing, 139
transparency, 189
Tree dijit

accessibility, 377
checkAcceptance method, 386
checkItemAcceptance method, 386
childrenAttr attribute, 383

dndController attribute, 385, 386
drag-and-drop support, 378, 385–388
ForestStoreModel class, 378, 381,

384–385
itemCreator method, 386
model attribute, 383
onClick extension point, 382, 383
onDndCancel method, 386
onDndDrop method, 386
openOnClick attribute, 383
overview, 206, 270, 377, 383–385
persist attribute, 383
query attribute, 383
responding to click events, 382–383
showRoot attribute, 383
simple forest example, 380–382
simple tree example, 378–380
_TreeNode class and, 378
TreeStoreModel class, 378, 379, 384

_TreeNode class, 378
TreeStoreModel class

destroy function, 384
getChildren function, 384
getIdentity function, 384
getLabel function, 384
getRoot function, 384
mayHaveChildren attribute, 384
newItem function, 384
newParentItem attribute, 384
oldParentItem attribute, 384
onChange function, 384
onChildrenChange function, 384
onComplete function, 384
onItem function, 384
overview, 378, 379, 384
pasteItem function, 384

tundra theme (Dijit), 253, 300
Twisted web site, 89
type checking

duck typing, 33, 225
JavaScript support, 33

typeof operator, 34

U
UCS (Universal Character Set), 320
Unicode standard, 320
Universal Character Set (UCS), 320
UTC (Coordinated Universal Time), 312
UTF-8 character set, 319, 320

450 | Index

Util build tools
functionality, 6, 7, 41, 396
HelloWorld example, 287
performance and, 140

V
validation

DOCTYPE, 252
forms, 252, 299

ValidationTextBox dijit
ComboBox and, 319
constraints attribute, 308
displayMessage attribute, 308
inheritance, 317
invalidMessage attribute, 308
isValid attribute, 308
overview, 307–310
promptMessage attribute, 308
regExp attribute, 308
regExpGen attribute, 308
required attribute, 308
tooltipPosition attribute, 308
validator attribute, 308

variables
shortening names, 396
type checking, 33

VerticalSlider dijit
clickSelect attribute, 337
container attribute, 337
count attribute, 337
decrement function, 337
discreteValues attribute, 337
increment function, 337
maximum attribute, 337
minimum attribute, 337
overview, 336–338
pageIncrement attribute, 337
ruleStyle attribute, 337
showButtons attribute, 337
slideDuration attribute, 337

W
W3C

event normalization, 67–69, 128
querying DOM, 114
WAI-ARIA, 250

WAI-ARIA, 250

web browsers
accessibility considerations, 249
Back button handling, 64–66
box model and, 60
color support, 188
cookies, 62–63
editing support, 389
event model, 67
gzip compression, 404
security settings for running locally, 11
test harness, 411
text selectability, 56
trailing commas and, 233
type checking, 33
(see also specific browsers)

web portals, 76
WebKit web site, 114
whitespace

minification, 396, 404
trimming, 34, 35

_Widget class
buildRendering method, 277, 281, 285
create method, 341
destroyRecursive method, 278
domNode property, 279, 301
functionality, 15
id property, 279
inheritance and, 272
lang property, 279
layout dijits and, 340
lifecycle methods, 275–282
postCreate method, 278
postMixInProperties method, 277, 286
startup method, 278
uninitialize method, 278

widgets
defined, 15
parsing, 145, 257–259
publish/subscribe communication, 76
(see also dijits)

window object, 52–55
wipe effects, 179–181
Write API

deleteItem function, 203
getFeatures function, 202
hasAttribute function, 213
isDirty function, 203, 213
ItemFileWriteStore support, 204,

212–219

Index | 451

newItem function, 203
overview, 198, 202
revert function, 203
save function, 203
setValue function, 203, 212
setValues function, 203
unsetAttribute function, 203

X
XDomain

benefits, 415
CDN build support, 9
configuring at build time, 18
custom module example, 42–44

XMLHttpRequest (XHR) object
asynchronous requests, 89–91
Deferred support, 93–97

examples, 85–87
form support, 297
functionality, 80
general purpose calls, 87
hitch function and, 87–89
platform configuration, 18
REST support, 83, 84
same origin policy, 92, 99
static content and, 414

Y
Yahoo!, 397

Z
z-indexes, 151
Zulu time, 312

About the Author
Matthew Russell is a tenacious technologist with entrepreneurial zeal. He has
completed more than 40 publications on technology, including work that has
appeared or is upcoming in scientific conferences, Linux Journal, Apple Developer
Connection, and Make: Magazine.

Matthew developed his passion for writing during undergraduate studies at the Air
Force Academy, where he earned the prestigious Dean W. Gonzalez Award as the
top cadet in the computer science major.

Matthew’s most recent efforts include architecting and leading a team to build a clas-
sified end-to-end web application for the intelligence community, and serving the
Defense Intelligence Agency, where he researches and assesses the next generation of
technologies to build government intelligence systems.

He currently works for Digital Reasoning Systems as the director of advanced tech-
nology, where he pushes the limits of user interfaces in the web browser and
researches bleeding-edge topics in unstructured text processing.

You can subscribe to Matthew’s semi-regular “Dojo Goodness” column at
http://pipes.yahoo.com/ptwobrussell/dojo_goodness to stay up to date with his latest
online writing about Dojo.

Colophon
The animal on the cover of Dojo: The Definitive Guide is a lion-tailed monkey
(Macaca silenus). This rare monkey lives primarily in the rain forests of southern
India, where it spends its days avoiding humans, foraging, and exploring.

Easily recognizable for its silvery-white mane, the monkey (also known as the lion-
tailed macaque or wanderloo) is also distinguished by the tuft of hair on its tail. Like
other macaques, it lives in groups of 10 to 20 monkeys in a hierarchical order
involving a few males and many females. The male is a territorial creature and will
defend his home by screaming at monkeys or other invaders not native to his habitat.

According to the International Union for Conservation of Nature, the lion-tailed
monkey is one of the most threatened primates in the world, due largely to the
destruction of its habitat by humans. Many zoos now participate in breeding
programs to help sustain the survival of the monkey.

The cover image is from Lydekker’s Royal History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

http://pipes.yahoo.com/ptwobrussell/dojo_goodness

	Dojo: The Definitive Guide
	Table of Contents
	Foreword
	Preface
	Why Dojo?
	What’s in This Book
	What’s Not in This Book
	Open Source Software Is Fluid
	About You
	Development Tools
	Essential Working Knowledge
	Closures
	Context
	Anonymous functions

	Conventions Used in This Book
	Style Conventions

	Using Code Examples
	Safari® Books Online
	We’d Like to Hear from You
	Acknowledgments

	Part I
	Toolkit Overview
	Overview of Dojo’s Architecture
	Base
	Core
	Dijit
	DojoX
	Util

	Prepping for Development
	Getting Dojo
	Downloading an official release
	Downloading from Subversion
	AOL’s CDN

	Debugging with Firebug
	Browser Security Settings for Running Dojo Locally
	Lightweight Server Responses

	Terminology
	Bootstrapping
	dojo.addOnLoad
	Configuration with djConfig

	Exploring Dojo with Firebug
	Exploring Base
	dojo.byId
	dojo.connect

	Exploring Dijit

	Summary

	Language and Browser Utilities
	Looking Up DOM Nodes
	Type Checking
	Duck Typing

	String Utilities
	Array Processing
	Finding Locations of Elements
	Testing Elements for a Condition
	Iterating Over Elements
	Transforming Elements
	String-As-Function Style Arguments

	Managing Source Code with Modules
	Motivation for Managing the Mayhem
	Custom Module Example Over XDomain
	Fibonacci Example with Local Toolkit Installation
	Building a Magic Genie Example Module

	JavaScript Object Utilities
	Mixins
	Extending Object Prototypes
	Cloning Objects

	Manipulating Object Context
	Partially Applying Parameters
	Hitching an Object to a Specific Context
	Delegation and Inheritance

	DOM Utilities
	Ancestry
	Selectability
	Styling Nodes
	Manipulating Attributes
	Placing Nodes
	The Box Model

	Browser Utilities
	Cookies
	Back Button Handling

	Summary

	Event Listeners and Pub/Sub Communication
	Event and Keyboard Normalization
	Mouse and Keyboard Event Normalization
	Standardized Key Codes

	Event Listeners
	Event Propagation
	Leveraging Closures with dojo.connect
	One-time connections
	Setting up connections within a loop

	Connecting in Markup

	Publish/Subscribe Communication
	Summary

	AJAX and Server Communication
	Quick Overview of AJAX
	JSON

	AJAX Made Easy
	XHR Examples
	General Purpose XMLHttpRequest Calls
	Hitching Up Callbacks

	Deferreds
	Deferred Examples Via CherryPy
	Using Deferreds returned from XHR functions
	Injecting Deferreds into XHR functions
	Custom canceller
	DeferredList

	Form and HTTP Utilities
	Cross-Site Scripting with JSONP
	JSONP Primer

	Core IO
	Using JSONP with Dojo
	Connecting to a Flickr data source
	Getting back JavaScript from a JSONP call

	IFRAME Transports
	File downloads with IFRAMEs
	Form submissions with IFRAMEs
	Non-HTML response types
	Manually creating a hidden IFRAME

	JSON Remote Procedure Calls
	JSON RPC Example

	OpenAjax Hub
	Summary

	Node Manipulation
	Query: One Size Fits All
	Warm Up
	State Tracking Example
	The long, brittle way
	The short, robust way

	NodeList
	Array-Like Methods
	Chaining NodeList results
	String-as-Function style Arguments
	Enhanced filtering

	Style
	Placement
	DOM Event Shortcuts
	Animation

	Creating NodeList Extensions
	Behavior
	Summary

	Internationalization (i18n)
	Introduction
	Internationalizing a Module
	Layout on Disk
	Defining String Tables
	Putting It All Together
	Use build tools for snappy performance

	Dates, Numbers, and Currency
	Dates
	Numbers
	Currency

	Summary

	Drag-and-Drop
	Dragging
	Simple Moveables
	Drag Events
	Z-Indexing
	Constrained Moveables

	Dropping
	Pure Targets
	Custom Avatars
	Drop Events
	Scripting Droppables

	Summary

	Animation and Special Effects
	Animation
	Simple Fades
	Animating Arbitrary CSS Properties
	Programatically Controlling Animations

	Core fx
	Sliding
	Wiping
	Chaining and Combining
	Toggling

	Animation + Drag-and-Drop = Fun!
	Colors
	Creating and Blending Colors
	Named Color Values Available Via Base
	Additional Color Values Available Via Core

	Summary

	Data Abstraction
	Shifting the Data Paradigm
	Data API Overview
	The APIs
	The Read API
	The Identity API
	The Write API
	The Notification API

	Core Implementations of Data APIs
	ItemFileReadStore
	Hierarchical JSON and JSON with references
	ItemFileReadStore walkthrough
	Querying child items
	ItemFileWriteStore

	Serializing and Deserializing Custom Data Types
	Implicit type-mapping
	Custom type maps

	Summary

	Simulated Classes and Inheritance
	JavaScript Is Not Java
	One Problem, Many Solutions
	Typical JavaScript Inheritance
	Mixin Pattern
	Delegation Pattern

	Simulating Classes with Dojo
	The Basic Class Creation Pattern
	A Single Inheritance Example
	A common gotcha with prototype-based inheritance
	Calling an inherited method

	Multiply Inheriting with Mixins
	Multiple Inheritance Oddities

	Summary

	Part II
	Dijit Overview
	Motivation for Dijit
	Low Coupling, High Cohesion

	Accessibility (a11y)
	Common a11y Issues
	WAI-ARIA

	Dijit for Designers
	Themes
	Nodes Versus Dijits, DOM Events Versus Dijit Methods

	The Parser
	Parsing a Widget When the Page Loads
	Manually Parsing a Widget
	Demystifying the Parser

	Hands-on Dijit with NumberSpinner
	Creating from Markup
	Programmatic Creation
	Lots of Niceties
	Defining Methods in Markup

	Overview of Stock Dijits
	Form Dijits
	Layout Dijits
	Application Dijits

	Dijit API Drive-By
	Summary

	Dijit Anatomy and Lifecycle
	Dijit Anatomy
	Web Development Review
	Dijits to the Rescue

	Dijit Lifecycle Methods
	The _Widget Lifecycle
	Lifecycle methods
	Essential properties

	Mixing in _Templated
	Lifecycle methods
	Essential properties

	Your First Dijit: HelloWorld
	HelloWorld Dijit (Take 1: Bare Bones)
	HTML page
	CSS
	Template
	JavaScript

	HelloWorld Dijit (Take 2: Modifying The Template)
	HelloWorld Dijit (Take 3: Interning the Template)
	HelloWord Dijit (Take 4: Passing in Parameters)
	HelloWorld Dijit (Take 5: Associating Events with Dijits)

	Parent-Child Relationships with _Container and _Contained
	Rapidly Prototyping Widgets in Markup
	Summary

	Form Widgets
	Drive-By Form Review
	Form Dijits
	TextBox Variations
	TextBox
	ValidationTextBox
	MappedTextBox and RangeBoundTextBox
	TimeTextBox and DateTextBox
	Commonalities between DateTextBox and TimeTextBox
	Serializing data to the server
	Don’t forget about inherited properties
	NumberTextBox
	NumberSpinner
	CurrencyTextBox
	ComboBox

	FilteringSelect
	MultiSelect
	Textarea Variations
	Textarea
	SimpleTextarea

	Button Variations
	Button
	ToggleButton
	CheckBox
	RadioButton
	DropDownButton
	ComboButton

	Slider
	HorizontalSlider
	VerticalSlider

	Form
	HTML Form Tag Synopsis
	Form

	Summary

	Layout Widgets
	Layout Dijit Commonalities
	Programmatic Creation
	Keyboard Support

	ContentPane
	BorderContainer
	StackContainer
	Procrastination (a.k.a. Lazy Loading) May Yield Better Performance

	TabContainer
	AccordionContainer
	Rendering and Visibility Considerations
	Summary

	Application Widgets
	Tooltip
	Dialog Widgets
	Dialog
	TooltipDialog

	ProgressBar
	ColorPalette
	Toolbar
	Menu
	TitlePane
	InlineEditBox
	Tree
	Simple Tree
	Simple Forest
	Responding to Click Events
	Tree-Related APIs
	Drag-and-Drop with the Tree
	Drag-and-droppable Tree example

	Editor
	Editor Architecture
	Editor Plug-Ins

	Summary

	Build Tools, Testing, and Production Considerations
	Building
	Running a Build
	Build Profiles
	Setting up a build profile
	Setting up a (more clever) build profile
	Standard build profile
	ShrinkSafe optimization and other common options

	Dojo Objective Harness (DOH)
	Rhino Test Harness Without Dojo
	Rhino Test Harness with Dojo

	Browser-Based Test Harness
	Browser Test Example
	Asynchronous Browser Test Example

	Performance Considerations
	Benefits of XDomain builds
	Don’t optimize prematurely

	Summary

	A Firebug Primer
	Installation
	To Allow or Not to Allow?
	Now for the Fun Stuff
	Inspect
	Console
	HTML and CSS
	Script and DOM

	Net
	Go Forth and Dismantle

	A Brief Survey of DojoX
	Index

