
K10112 Cover 10/18/10 3:20 PM Page 1
C M Y CM MY CY CMY K

Whether for computer evaluation of otherworldly
terrain or the latest high definition 3D blockbuster,
digital image processing involves the acquisition,
processing, and analysis of visual information by
computer and requires a skill set that has yet to
be defined in a single text. Until now. Taking an
applications-oriented, engineering approach, Digital
Image Processing and Analysis provides the
tools for developing and advancing computer and
human vision applications and brings image
processing and analysis together into a unified
framework.

NEW TO THIS EDITION:

• Uses color throughout and adds more materials on the processing of color images

• New functions for image segmentation, edge detection, corner detection, morphological filters, fuzzy
features, nonlinear filters, and image reconstruction are discussed, and many are included in the new
CVIPtools development environment

• Reorganizes, updates, expands and adds more materials that make it more useful as an applications-
oriented textbook including supplementary exercises

• Adds a new chapter on algorithm development along with example applications

• Develops two new major tools that allow for batch processing, the analysis of imaging algorithms,
and the overall research and development of imaging applications

Providing information and background in a logical, as-needed fashion, the author offers a conceptual
presentation of the material for a solid understanding of complex topics and discusses the theory and
foundations of digital image processing and the algorithm development needed to advance the field. The
book covers two new software tools, the Computer Vision and Image Processing Algorithm Test and
Analysis Tool (CVIP-ATAT) and the CVIP Feature Extraction and Pattern Classification Tool (CVIP-FEPC).

The book provides the concepts and models required to analyze digital images and develop human and
computer vision applications as well as all the necessary information to use the CVIPtools environment
for algorithm development, making it an ideal teaching and reference
tool for this fast growing field.

Electrical Engineering

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
270 Madison Avenue
New York, NY 10016
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

K10112

DIGITAL IMAGE PROCESSING
AND ANALYSIS
Human and Computer Vision Applications
with CVIPtools
SECOND EDITION

UMBAUGH

SECOND
EDITION

D
IG

IT
A

L
 IM

A
G

E
 P

R
O

C
E

SSIN
G

A
N

D A
N

A
LY

S
IS

H
um

an and C
om

puter Vision
A

pplications w
ith C

VIPtools

www.allitebooks.com

http://www.allitebooks.org

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

DIGITAL IMAGE
PROCESSING
AND ANALYSIS
Human and Computer Vision
Applications with CVIPtools

SECOND EDITION

SCOTT E UMBAUGH

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131004

International Standard Book Number-13: 978-1-4398-0206-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

© 2011 by Taylor & Francis Group, LLC

To my wife Jeanie

Our children Angi, Kayla, Michael, Robin, and David

Our grandchildren Tyler, Connor, and Ava

And to the memory of Patricia Umbaugh and Soumya Tummala

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v© 2011 by Taylor & Francis Group, LLC

Contents

Preface..xv
Acknowledgments... xix
Author.. xxi

Section I	 Introduction to Digital Image Processing and Analysis

	 1.	 Digital Image Processing and Analysis..3
1.1	 Overview...3
1.2	 Image Analysis and Computer Vision..5
1.3	 Image Processing and Human Vision...8
1.4	 Key Points.. 12
Exercises... 13
References.. 13
Further Reading.. 14

	 2.	 Computer Imaging Systems.. 15
2.1	 Imaging Systems Overview... 15
2.2	 Image Formation and Sensing... 20

2.2.1	 Visible Light Imaging... 21
2.2.2	 Imaging outside the Visible Range of the EM Spectrum..........................28
2.2.3	 Acoustic Imaging..30
2.2.4	 Electron Imaging.. 32
2.2.5	 Laser Imaging..33
2.2.6	 Computer-Generated Images..34

2.3	 CVIPtools Software...34
2.3.1	 Main Window.. 37
2.3.2	 Image Viewer... 39
2.3.3	 Analysis Window... 39
2.3.4	 Enhancement Window...42
2.3.5	 Restoration Window...42
2.3.6	 Compression Window..43
2.3.7	 Utilities Window...44
2.3.8	 Help Window..46
2.3.9	 Development Tools...46

2.4	 Image Representation..50
2.4.1	 Binary Images..50
2.4.2	 Gray-Scale Images... 51
2.4.3	 Color Images.. 52
2.4.4	 Multispectral Images.. 61
2.4.5	 Digital Image File Formats.. 62

2.5	 Key Points..65

www.allitebooks.com

http://www.allitebooks.org

vi	 Contents

© 2011 by Taylor & Francis Group, LLC

Exercises...68
Problems..68
Programming Exercises... 70

Supplementary Exercises... 70
Supplementary Problems.. 70
Supplementary Programming Exercises.. 71

References..72
Further Reading.. 73

Section II	 Digital Image Analysis and Computer Vision

	 3.	 Introduction to Digital Image Analysis..77
3.1	 Introduction..77

3.1.1	 Overview..77
3.1.2	 System Model.. 78

3.2	 Preprocessing... 79
3.2.1	 Region of Interest Image Geometry... 79
3.2.2	 Arithmetic and Logic Operations..85
3.2.3	 Spatial Filters... 91
3.2.4	 Image Quantization.. 95

3.3	 Binary Image Analysis.. 104
3.3.1	 Basic Image Thresholding... 105
3.3.2	 Connectivity and Labeling.. 109
3.3.3	 Basic Binary Object Features... 111
3.3.4	 Binary Object Classification.. 115

3.4	 Key Points.. 125
Exercises... 129

Problems.. 129
Programming Exercises... 132

Supplementary Exercises... 134
Supplementary Problems.. 134
Supplementary Programming Exercises.. 135

References.. 137
Further Reading.. 138

	 4.	 Segmentation and Edge/Line Detection... 139
4.1	 Introduction and Overview.. 139
4.2	 Edge/Line Detection... 140

4.2.1	 Gradient Operators... 144
4.2.2	 Compass Masks... 147
4.2.3	 Advanced Edge Detectors... 148
4.2.4	 Edges in Color Images.. 159
4.2.5	 Edge Detector Performance... 164
4.2.6	 Hough Transform... 176

4.2.6.1	 CVIPtools Parameters for the Hough Transform..................... 185
4.2.7	 Corner Detection... 185

www.allitebooks.com

http://www.allitebooks.org

Contents	 vii

© 2011 by Taylor & Francis Group, LLC

4.3	 Segmentation.. 188
4.3.1	 Region Growing and Shrinking... 190
4.3.2	 Clustering Techniques... 195
4.3.3	 Boundary Detection... 203
4.3.4	 Combined Segmentation Approaches... 210
4.3.5	 Morphological Filtering... 211

4.4	 Key Points..236
Exercises... 245

Problems.. 245
Programming Exercises...250

Supplementary Exercises... 251
Supplementary Problems.. 251
Supplementary Programming Exercises..254

References..255
Further Reading..256

	 5.	 Discrete Transforms.. 259
5.1	 Introduction and Overview.. 259
5.2	 Fourier Transform.. 265

5.2.1	 One-Dimensional Discrete Fourier Transform.. 268
5.2.2	 Two-Dimensional Discrete Fourier Transform.. 271
5.2.3	 Fourier Transform Properties... 274

5.2.3.1	 Linearity... 274
5.2.3.2	 Convolution.. 274
5.2.3.3	 Translation.. 275
5.2.3.4	 Modulation... 275
5.2.3.5	 Rotation... 275
5.2.3.6	 Periodicity.. 276
5.2.3.7	 Sampling and Aliasing...277

5.2.4	 Displaying the Discrete Fourier Spectrum... 279
5.3	 Discrete Cosine Transform... 282
5.4	 Discrete Walsh–Hadamard Transform... 287
5.5	 Discrete Haar Transform.. 292
5.6	 Principal Components Transform... 292
5.7	 Filtering... 295

5.7.1	 Lowpass Filters... 296
5.7.2	 Highpass Filters.. 299
5.7.3	 Bandpass and Bandreject Filters... 301

5.8	 Discrete Wavelet Transform...302
5.9	 Key Points.. 315
Exercises... 322

Problems.. 322
Programming Exercises... 329

Supplementary Exercises...330
Supplementary Problems..330
Supplementary Programming Exercises.. 332

References..333
Further Reading..333

www.allitebooks.com

http://www.allitebooks.org

viii	 Contents

© 2011 by Taylor & Francis Group, LLC

	 6.	 Feature Analysis and Pattern Classification..335
6.1	 Introduction and Overview..335
6.2	 Feature Extraction..336

6.2.1	 Shape Features.. 337
6.2.2	 Histogram Features.. 341
6.2.3	 Color Features...347
6.2.4	 Spectral Features...347
6.2.5	 Texture Features..349
6.2.6	 Feature Extraction with CVIPtools..354

6.3	 Feature Analysis... 357
6.3.1	 Feature Vectors and Feature Spaces... 357
6.3.2	 Distance and Similarity Measures... 359
6.3.3	 Data Preprocessing...364

6.4	 Pattern Classification...368
6.4.1	 Algorithm Development: Training and Testing Methods......................368
6.4.2	 Classification Algorithms and Methods.. 370
6.4.3	 Cost/Risk Functions and Success Measures... 373
6.4.4	 Pattern Classification with CVIPtools.. 376

6.5	 Key Points.. 378
Exercises... 387

Problems.. 387
Programming Exercises... 391

Supplementary Exercises... 395
Supplementary Problems.. 395
Supplementary Programming Exercises.. 397

References.. 398
Further Reading.. 399

Section III	 Digital Image Processing and Human Vision

	 7.	 Digital Image Processing and Visual Perception...403
7.1	 Introduction and Overview..403
7.2	 Human Visual Perception...403

7.2.1	 Human Visual System..404
7.2.2	 Spatial Frequency Resolution.. 410
7.2.3	 Brightness Adaptation... 415
7.2.4	 Temporal Resolution... 419
7.2.5	 Perception and Illusion.. 421

7.3	 Image Fidelity Criteria.. 421
7.3.1	 Objective Fidelity Measures..423
7.3.2	 Subjective Fidelity Measures...425

7.4	 Key Points.. 432
Exercises...436

Problems..436
Programming Exercises... 439

Supplementary Exercises... 439
Supplementary Problems ... 439
Supplementary Programming Exercises..440

www.allitebooks.com

http://www.allitebooks.org

Contents	 ix

© 2011 by Taylor & Francis Group, LLC

References.. 441
Further Reading..442

	 8.	 Image Enhancement..443
8.1	 Introduction and Overview..443
8.2	 Gray-Scale Modification..445

8.2.1	 Mapping Equations..445
8.2.2	 Histogram Modification..456
8.2.3	 Adaptive Contrast Enhancement...468
8.2.4	 Color.. 476

8.3	 Image Sharpening ... 489
8.3.1	 Highpass Filtering.. 490
8.3.2	 High Frequency Emphasis.. 490
8.3.3	 Directional Difference Filters.. 493
8.3.4	 Homomorphic Filtering... 494
8.3.5	 Unsharp Masking... 497
8.3.6	 Edge Detector–Based Sharpening Algorithms.. 499

8.4	 Image Smoothing...503
8.4.1	 Frequency Domain Lowpass Filtering..503
8.4.2	 Convolution Mask Lowpass Filtering..503
8.4.3	 Nonlinear Filtering...505

8.5	 Key Points.. 514
Exercises... 521

Problems.. 521
Programming Exercises... 527

Supplementary Exercises... 529
Supplementary Problems.. 529
Supplementary Programming Exercises..530

References.. 531
Further Reading.. 532

	 9.	 Image Restoration and Reconstruction...535
9.1	 Introduction and Overview..535

9.1.1	 System Model..535
9.2	 Noise Models.. 537

9.2.1	 Noise Histograms... 537
9.2.2	 Periodic Noise..542
9.2.3	 Estimation of Noise..543

9.3	 Noise Removal Using Spatial Filters...545
9.3.1	 Order Filters...548
9.3.2	 Mean Filters... 553
9.3.3	 Adaptive Filters... 558

9.4	 Degradation Function... 569
9.4.1	 Spatial Domain: Point Spread Function.. 569
9.4.2	 Frequency Domain: Modulation/Optical

Transfer Function... 573
9.4.3	 Estimation of the Degradation Function... 576

www.allitebooks.com

http://www.allitebooks.org

x	 Contents

© 2011 by Taylor & Francis Group, LLC

9.5	 Frequency Domain Filters.. 577
9.5.1	 Inverse Filter.. 578
9.5.2	 Wiener Filter.. 582
9.5.3	 Constrained Least Squares Filter..583
9.5.4	 Geometric Mean Filters.. 586
9.5.5	 Adaptive Filtering... 587
9.5.6	 Bandpass, Bandreject, and Notch Filters...588
9.5.7	 Practical Considerations.. 591

9.6	 Geometric Transforms... 594
9.6.1	 Spatial Transforms.. 595
9.6.2	 Gray-Level Interpolation.. 597
9.6.3	 Geometric Restoration Procedure.. 599
9.6.4	 Geometric Restoration with CVIPtools... 601

9.7	 Image Reconstruction..603
9.7.1	 Reconstruction Using Backprojections..604
9.7.2	 Radon Transform..608
9.7.3	 Fourier-Slice Theorem and Direct Fourier Reconstruction.................... 610

9.8	 Key Points.. 611
Exercises... 624

Problems.. 624
Programming Exercises... 629

Supplementary Exercises... 631
Supplementary Problems.. 631
Supplementary Programming Exercises..633

References..633
Further Reading..635

	10.	 Image Compression... 637
10.1	 Introduction and Overview.. 637

10.1.1	 Compression System Model.. 641
10.2	 Lossless Compression Methods...645

10.2.1	 Huffman Coding...649
10.2.2	 Run-Length Coding.. 651
10.2.3	 Lempel–Ziv–Welch Coding...655
10.2.4	 Arithmetic Coding..656

10.3	 Lossy Compression Methods... 657
10.3.1	 Gray-Level Run-Length Coding... 659
10.3.2	 Block Truncation Coding...660
10.3.3	 Vector Quantization...666
10.3.4	 Differential Predictive Coding... 670
10.3.5	 Model-Based and Fractal Compression... 678
10.3.6	 Transform Coding.. 681
10.3.7	 Hybrid and Wavelet Methods...688

10.4	 Key Points.. 696
Exercises... 702

Problems.. 702
Programming Exercises... 707

Contents	 xi

© 2011 by Taylor & Francis Group, LLC

Supplementary Exercises... 708
Supplementary Problems.. 708
Supplementary Programming Exercises.. 709

References.. 710
Further Reading.. 711

Section IV	� Programming and Application Development with
CVIPtools

	11.	 CVIPlab... 715
11.1	 Introduction to CVIPlab.. 715
11.2	 Toolkits, Toolboxes, and Application Libraries.. 721
11.3	 Compiling and Linking CVIPlab..722

11.3.1	 How to Build the CVIPlab Project with Microsoft’s
Visual C++• 2008...722

11.3.2	 Mechanics of Adding a Function with Microsoft’s
Visual C++• 2008... 724

11.3.3	 Using CVIPlab in the Programming Exercises with Microsoft’s
Visual C++• 2008... 728

11.3.4	 Using Microsoft’s Visual C++• 2010... 731
11.4	 Image Data and File Structures...734
11.5	 CVIP Projects.. 739

11.5.1	 Digital Image Analysis and Computer Vision Projects......................... 739
11.5.2	 Digital Image Processing and Human Vision Projects......................... 741

	12.	 Application Development.. 743
12.1	 Introduction and Overview.. 743
12.2	 CVIP Algorithm Test and Analysis Tool.. 744

12.2.1	 Overview and Capabilities.. 744
12.2.2	 How to Use CVIP-ATAT... 744

12.2.2.1	 Running CVIP-ATAT.. 744
12.2.2.2	 Creating a New Project... 744
12.2.2.3	 Inserting Images.. 745
12.2.2.4	 Inputting an Algorithm.. 747
12.2.2.5	 Performing an Algorithm Test Run.. 751
12.2.2.6	 Comparing Images.. 751

12.2.3	 Application Development Example with Fundus Images....................754
12.2.3.1	 Introduction and Overview...754
12.2.3.2	 New Algorithm.. 755
12.2.3.3	 Conclusion.. 760

12.3	 CVIP Feature Extraction and Pattern Classification Tool.................................... 761
12.3.1	 Overview and Capabilities.. 761
12.3.2	 How to Use CVIP-FEPC... 761

12.3.2.1	 Running CVIP-FEPC.. 761
12.3.2.2	 Creating a New Project .. 761
12.3.2.3	 Entering Classes in CVIP-FEPC.. 763
12.3.2.4	 Adding Images and Associated Classes................................ 763

xii	 Contents

© 2011 by Taylor & Francis Group, LLC

12.3.2.5	 Applying Feature Extraction and Pattern Classification..... 764
12.3.2.6	 Running the Test... 766
12.3.2.7	 Result File... 766

12.3.3	 Application Development Example with Veterinary
Thermographic Images.. 770
12.3.3.1	 Introduction and Overview... 770
12.3.3.2	 Experiments... 770
12.3.3.3	 Results ..775
12.3.3.4	 Conclusion..775

12.4	 Skin Lesion Classification Using Relative Color Features...................................775
12.4.1	 Introduction and Project Overview...775
12.4.2	 Materials and Methods.. 776

12.4.2.1	 Image Database... 776
12.4.2.2	 Creation of Relative Color Images.. 776
12.4.2.3	 Segmentation and Morphological Filtering..........................777
12.4.2.4	 Feature Extraction ..777
12.4.2.5	 Lesion and Object Feature Spaces ..779
12.4.2.6	 Establishing Statistical Models...779

12.4.3	 Experiments and Data Analysis... 780
12.4.3.1	 Lesion Feature Space... 781
12.4.3.2	 Object Feature Space... 783

12.4.4	 Conclusions.. 785
12.5	 Automatic Segmentation of Blood Vessels in Retinal Images............................. 786

12.5.1	 Introduction and Overview.. 786
12.5.2	 Materials and Methods.. 787
12.5.3	 Results.. 792
12.5.4	 Postprocessing with Hough Transform and Edge Linking.................. 794
12.5.5	 Conclusion... 794

12.6	 Classification of Land Types from Satellite Images Using Quadratic
Discriminant Analysis and Multilayer Perceptrons... 795
12.6.1	 Introduction and Overview.. 795

12.6.2	 Data Reduction and Feature Extraction................................. 797
12.6.3	 Object Classification... 799
12.6.4	 Results..800
12.6.5	 Conclusion... 801
12.6.6	 Acknowledgments..803

12.7	 Watershed-Based Approach to Skin Lesion Border Segmentation.....................803
12.7.1	 Introduction...803
12.7.2	 Materials and Methods ...803
12.7.3	 Experiments, Results, and Conclusions...809

12.8	 Faint Line Defect Detection in Microdisplay (CCD) Elements............................ 811
12.8.1	 Introduction and Project Overview... 811
12.8.2	 Design Methodology.. 811
12.8.3	 Line Detection Algorithm.. 812

12.8.3.1	 Preprocessing... 812
12.8.3.2	 Edge Detection... 814
12.8.3.3	 Analysis of the Hough Space... 816

12.8.4	 Results and Discussion.. 819
12.8.5	 Summary and Conclusion... 820

Contents	 xiii

© 2011 by Taylor & Francis Group, LLC

12.9	 Melanoma and Seborrheic Keratosis Differentiation Using Texture
Features... 820
12.9.1	 Introduction and Overview ... 820
12.9.2	 Materials and Methods.. 821
12.9.3	 Texture Analysis Experiments.. 823
12.9.4	 Results and Discussion..830
12.9.5	 Conclusion...830
12.9.6	 Acknowledgments.. 831

12.10	 Compression of Color Skin Tumor Images with Vector Quantization 831
12.10.1	 Introduction and Project Overview... 831
12.10.2	 Materials and Methods.. 832

12.10.2.1	 Compression Schemes ... 832
12.10.2.2	 Subjective Evaluation of the Images......................................833

12.10.3	 Compression Schemes..834
12.10.3.1	 Preprocessing and Transforms...834
12.10.3.2	 Vector Quantization...836
12.10.3.3	 Postprocessing ..840

12.10.4	 Results and Analysis.. 841
12.10.4.1	 Results and Analyses for the Schemes with

Compression Ratio 4:1.. 841
12.10.4.2	 Results and Analyses for the Schemes with

Compression Ratio 8:1..842
12.10.4.3	 Results and Analyses for the Schemes with

Compression Ratio 14:1..843
12.10.4.4	 Results and Analyses for the Schemes with

Compression Ratio 20:1..845
12.10.4.5	 Comprehensive Analysis of the Four

Compression Ratios..847
12.10.5	 Conclusions and Future Work..849
12.10.6	 Acknowledgments.. 851

References.. 852

	13.	 CVIPtools C® Function Libraries...855
13.1	 Introduction and Overview..855
13.2	 Arithmetic and Logic Library: ArithLogic.lib..855

Arithlogic Library Function Prototypes..855
13.3	 Band Image Library: Band.lib ..856
13.4	 Color Image Library: Color.lib..856

Color Library Function Prototypes.. 857
13.5	 Compression Library: Compression.lib.. 857

Compression Library Function Prototypes..858
13.6	 Conversion Library: Conversion.lib... 861

Conversion Library Function Prototypes... 861
13.7	 Display Library: Display.lib..863
13.8	 Feature Extraction Library: Feature.lib...864

Feature Library Function Prototypes...864
13.9	 Geometry Library: Geometry.lib.. 867

Geometry Library Function Prototypes.. 867

xiv	 Contents

© 2011 by Taylor & Francis Group, LLC

13.10	 Histogram Library: Histogram.lib... 870
Histogram Library Function Prototypes... 870

13.11	 Image Library: Image.lib... 871
13.12	 Data Mapping Library: Mapping.lib... 872
13.13	 Morphological Library: Morphological.lib... 873

Morphological Library Function Prototypes.. 873
13.14	 Noise Library: Noise.lib... 875

Noise Library Function Prototypes.. 875
13.15	 Segmentation Library: Segmentation.lib.. 876

Segmentation Library Function Prototypes.. 876
13.16	 Spatial Filter Library: SpatialFilter.lib .. 878

Spatial Filter Library Function Prototypes... 878
13.17	 Transform Library: Transform.lib..884

Transform Library Function Prototypes..884
13.18	 Transform Filter Library: TransformFilter.lib...885

Transform Filter Library Function Prototypes...885

Section V	 Appendices

Appendix A: CVIPtools CD... 891

Appendix B: Installing and Updating CVIPtools ... 893

Appendix C: CVIPtools Software Organization... 895

Appendix D: CVIPtools C® Functions.. 897
D.1 Toolkit Libraries.. 897
D.2 Toolbox Libraries..902

Appendix E: Common Object Module (COM) Functions: cviptools.dll......................... 911

Appendix F: CVIP Resources... 923

Index.. 927

xv© 2011 by Taylor & Francis Group, LLC

Preface

Digital image processing and analysis is a field that continues to experience rapid growth,
with applications ranging from areas such as space exploration to the entertainment indus-
try. The diversity of applications is one of the driving forces that make it such an exciting
field to be involved in for the twenty-first century. Digital image processing, also referred to
as computer imaging, can be defined as the acquisition and processing of visual informa-
tion by computer. This book presents a unique approach to the practice of digital image
processing, and will be of interest to those who want to learn about and use computer
imaging techniques.

Digital image processing can be divided into two primary application areas, human
vision and computer vision, with image analysis tying these two together. Although the
book focuses on image processing and analysis, the image analysis part provides the
reader with the tools necessary for developing computer vision applications such as those
discussed in Chapter 12. The automatic identification of land types in satellites images,
robotic control of a Mars rover, and the automatic classification of abnormalities in medical
images are examples of computer vision applications. Human vision applications involve
manipulation of image data for viewing by people. Examples include the development of
better compression algorithms, special effects imaging for motion pictures, and the resto-
ration of satellite images distorted by atmospheric disturbance.

Why Write a New Edition of This Book?

The first topic is: Why a new title? The change is primarily due to definitions used in
current practice. The previous title Computer Imaging tends now to refer to PhotoShop®-
type applications and document imaging only. Digital Image Processing and Analysis is more
comprehensive, explanatory, and up-to-date. The subtitle, Human and Computer Vision
Applications with CVIPtools, reinforces the applications-oriented nature of the book and
fact that CVIPtools is integrated more throughout this edition.

As before, this edition of the book takes an engineering approach to digital image pro-
cessing and brings image processing and image analysis into a unified framework that pro-
vides a useful paradigm for both human and computer vision applications. Additionally,
the theoretical foundation is presented as needed in order to fully understand the mate-
rial. Although theoretical-based textbooks are available, they do not really take what I con-
sider an engineering approach. I still feel that there is a need for an application-oriented
book that brings image processing and analysis together in a unified framework, and this
book fills that gap.

For the new edition of the book I wanted to use color throughout and add more materials on
the processing of color images. Happily, the publisher agreed. I also reorganized, updated,
expanded, and added more materials that make it more useful as an applications-oriented
textbook. I added supplementary exercises, a new chapter on applications, and developed
two new major tools that allow for batch processing, the analysis of imaging algorithms,
and the overall research and development of imaging applications.

xvi	 Preface

© 2011 by Taylor & Francis Group, LLC

The creation of the two new software tools, the Computer Vision and Image Processing
Algorithm Test and Analysis Tool (CVIP-ATAT) and the CVIP Feature Extraction and
Pattern Classification Tool (CVIP-FEPC), realizes a much more powerful development
environment. The new Windows® version of CVIPtools, which has been integrated even
more throughout the book, in conjunction with the two new development tools, creates a
valuable environment for learning about imaging as well as providing a set of reusable
tools for applications development.

Who Will Use This Book?

The book is intended for use by the academic community in teaching and research, as well
as working professionals performing research and development in the commercial sectors.
This includes all areas of digital image processing and analysis, both human and computer
vision applications. It will be useful to academics and practicing engineers, consultants, and
programmers, as well as those in the graphics fields, medical imaging professionals, multi-
media specialists, and others. The book can be used for self-study and is of interest to anyone
involved with developing imaging applications, whether they are engineers, geographers,
biologists, oceanographers, or astronomers. At the university it can be used as a textbook in
standard digital image processing and/or computer vision senior-level or graduate courses,
or may be used at any level in an applications-oriented course. One essential component
that is missing from standard theoretical textbooks is a conceptual presentation of the
material, which is fundamental for gaining a solid understanding of these complex topics.
Additionally, this book provides the theory necessary to understand the foundations of digi-
tal image processing, as well as that which is needed for new algorithm development.

The prerequisites for the book are an interest in the field, a basic background in computers,
and a basic math background provided in an undergraduate science or engineering pro-
gram. Knowledge of the C®, C++®, or C#® programming language will be necessary for those
intending to develop algorithms at the programming level. Some background in signal and
system theory is required for those intending to gain a deep understanding of the sections on
transforms and compression. However, the book is written so that those without this back-
ground can learn to use the tools and achieve a conceptual understanding of the material.

Approach

To help motivate the reader I have taken an approach that presents topics as needed. This
approach starts by presenting a global model to help gain an understanding of the over-
all process, followed by a breakdown and explanation of each individual topic. Instead
of presenting techniques or mathematical tools when they fit into a nice, neat theoretical
framework, topics are presented as they become necessary for understanding the practi-
cal imaging model under study. This approach provides the reader with the motivation to
learn about and use the tools and topics, because they see an immediate need for them. For
example, the mathematical process of convolution is introduced when it is needed for an
image zoom algorithm, and morphological operations are introduced when the filtering

Preface	 xvii

© 2011 by Taylor & Francis Group, LLC

operations are needed after image segmentation. This approach also makes the book more
useful as a reference, or for those who may not work through the book sequentially, but
will reference a specific section as the need arises.

Organization of the Book

The book is divided into five major sections. The first section of the book, Introduction
to Digital Image Processing and Analysis, contains all of the basic concepts and defini-
tions necessary to understand digital image processing. The second section, Digital Image
Analysis and Computer Vision, describes image analysis and provides the tools, concepts,
and models required to analyze digital images and develop computer vision applications.
Section III, Digital Image Processing and Human Vision, discusses topics and application
areas for the processing of images for human consumption, so it starts with a chapter on
visual perception. Each chapter includes numerous references and examples for the mate-
rial presented. The material is presented in a conceptual and application-oriented manner,
so that the reader will immediately understand how each topic fits into the overall frame-
work of imaging applications development.

The programming and applications development part of the book, Section IV, Program
ming and Application Development with CVIPtools, provides all the necessary informa-
tion required to use the CVIPtools environment for algorithm development. This section
also includes information to assist with the implementation of the programming exercises
included with each chapter. It also includes a chapter on using the new development tools
and examples of applications that have been developed in the past few years. The last sec-
tion, Appendices, contains reference material for use with CVIPtools, as well as other useful
computer imaging–related information.

Using the Book in Your Courses

The book is intended for use in both digital image processing and computer vision courses.
Both types of courses will use the introductory chapters in the first section. After the intro-
duction, computer vision courses will concentrate on Section II, where the introductory
chapter presents a model of image analysis and concludes with the development of a pat-
tern classification algorithm for geometric objects in images. This model provides a foun-
dation for all the tools that are developed and discussed throughout the second section.
Digital image processing courses will focus on the third section, which contains an intro-
ductory chapter on human visual perception, followed by chapters on image enhance-
ment, restoration, and compression. Most image processing courses will also want to cover
Chapter 5 on image transforms. Both computer vision and image processing courses can
use the programming parts of the book, depending on the instructor’s teaching structure.
I encourage all who use the book to explore the programming exercises as they provide a
valuable learning tool for computer imaging. There are also many tutorial exercises using
CVIPtools included with each chapter, which provide hands-on experience and allow the
user to gain insight into the various algorithms and parameters. Use the following table to
outline your course.

xviii	 Preface

© 2011 by Taylor & Francis Group, LLC

Senior Level/Graduate
Courses

Required
Chapters

Additional/Optional
Chapters/Sections

Reference
Chapters

Image Analysis
Computer Vision
Machine Vision

1, 2, 3, 4, 5.1, 5.2, 5.7, 6, 11 5.3, 5.4, 5.5, 5.6, 5.8, 12 13, Appendices

Digital Image Processing
Digital Picture Processing
Image Processing

1, 2, 3.1, 3.2, 5.1, 5.2, 5.7,
5.8, 7, 8, 9, 10

5.3, 5.4, 5.5, 5.6, 11, 12 13, Appendices

After the CVIPtools environment is installed from the CD, an image database will be in
the default images directory, which contains the images used in the book. The CVIPtools
Website, www.ee.siue.edu/CVIPtools, is a resource that has useful imaging examples,
information and links to other imaging Web sites of interest. Additionally, a Solutions
Manual with Instructor’s CD containing PowerPoint lecture slides is available from the
publisher to those adopting the book in their courses.

CVIPtools Software Development Environment

The software development environment includes an extensive set of standard C® libraries,
a skeleton program for using the C libraries called CVIPlab, a dynamically linked library
(cviptools.dll) based on the common object module (COM) interface, a GUI-based program
for the exploration of computer imaging called CVIPtools, and the two new algorithm
development and batch processing tools CVIP-ATAT and CVIP-FEPC. The CVIPlab pro-
gram and all the standard libraries are ANSI-C compatible. The new version of CVIPtools
has been developed exclusively for the Windows® operating system, but various UNIX
versions are available at the Web site (www.ee.siue.edu/CVIPtools). The CVIPtools soft-
ware, the libraries, the CVIPlab program, CVIP-ATAT, CVIP-FEPC, images used in the
textbook, and associated documentation are included on the CD.

The CVIPtools software has been used in projects funded by the National Institutes of
Health, the U.S. Department of Defense, and numerous corporations in the commercial sec-
tor. CVIPtools has been used in the medical, aerospace, printing, and manufacturing fields
in applications such as the development of a helicopter simulation, automated classification
of lumber, skin tumor evaluation and analysis, embedded image processing for print tech-
nology, the automatic classification of defects in microdisplay chips, and the analysis of
veterinary thermographic images for disease evaluation. Since it is a university-sponsored
project, it is continually being upgraded and expanded, and updates are available via the
Internet (see Appendix B). This software allows the reader to learn about imaging topics in
an interactive and exploratory manner, and to develop their own programming expertise
with the CVIPlab program and the associated laboratory exercises. With the CVIPlab pro-
gram they can link any of the already defined CVIPtools functions, ranging from general
purpose input/output and matrix functions to more advanced transform functions and
complex imaging algorithms; some of these functions are state-of-the-art algorithms since
CVIPtools is continually being improved at the Computer Vision and Image Processing
Laboratory at Southern Illinois University Edwardsville (SIUE).

xix© 2011 by Taylor & Francis Group, LLC

Acknowledgments

I thank Southern Illinois University Edwardsville, specifically the School of Engineering
and the Electrical and Computer Engineering Department, for their support in this
endeavor. I also thank all the students who have taken my imaging courses and provided
valuable feedback regarding the learning and teaching of digital image processing and
analysis.

The initial version of the CVIPtools software was developed primarily by myself and a
few graduate students: Gregory Hance, Arve Kjoelen, Kun Luo, Mark Zuke, and Yansheng
Wei; without their hard work and dedication the foundation that was built upon for this
new version would not be solid. The next major Windows® version of CVIPtools was devel-
oped primarily by myself and Iris Cheng, Xiaohe Chen, Dejun Zhang, and Huashi Ding.
Additional students who contributed were Husain Kagalwalla and Sushma Gouravaram.

The current version of CVIPtools was initially developed by Patrick Solt and Evan Bian.
The work was completed by Patrick Solt as the project manager, with Jhansi Akkineni,
Mouinika Mamidi, Pelin Guvenc, Serkan Kefel, and Hari Krishna Akkineni providing
programming support. Jhansi Akkineni served as project coordinator and helped Patrick
with management duties.

Patrick Solt deserves special credit for helping to coordinate and manage the CVIPtools
for Windows project. He dedicated a major amount of his time to the development of the
CVIPtools software, and helped us greatly in project organization and in solving many
problems. Overall, Patrick’s contributions to this project have been substantial, and his
extra efforts deserve special recognition. Jhansi Akkineni’s efforts also deserve special
recognition. Her dedication to the project and the help she provided to others working on
the project were substantial. Iris Cheng, who was the primary contributor on the original
Windows version of CVIPtools, also deserves special recognition for her continued sup-
port as a consultant on the project.

The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-
ATAT, underwent many changes before its release with this book. The initial development
was provided by Sid Smith and Jeremy Wood. Geer Shaung and Evan Bian provided sub-
stantial new developments for this tool, which helped to make it more practical for its use
with CVIPtools. Further development was required to get it into its current form, which
was completed, tested, and utilized in projects by Pelin Guvenc. The Computer Vision
and Image Processing Feature Extraction and Pattern Classification Tool, CVIP-FEPC, was
created and developed by Patrick Solt, further developed by Jesse Phelps, and partially
funded by the Long Island Veterinary Specialists.

In small but important parts of CVIPtools public domain software was used, and
kudos to those who provided it: Jef Pokanzer’s pbmplus, Sam Leffler’s TIFF library, Paul
Heckbert’s Graphics Gems, the Independent JPEG Group’s software, Yuval Fisher’s fractal
code, and the Texas Agricultural Experiment Station’s code for texture features.

I’d like to thank those who contributed photographs and images: Mark Zuke, Mike
Wilson, Tony Berke, George Dean, Sara Sawyer, Sue Eder, Jeff Zuke, Bill White, the National
Oceanic and Atmospheric Administration, NASA, and MIT. H. Kipsang Choge deserves
credit for helping out with the figures, especially for Chapters 2 and 5, and I thank him
for this work. Thanks also to David, Robin, Michael, Jeanie, Jeff, Mom, Greg, Glicer, Gaby,

www.allitebooks.com

http://www.allitebooks.org

xx	 Acknowledgments

© 2011 by Taylor & Francis Group, LLC

Dad, Pat, Angi, Tyler, Connor, Kayla, Aaron, Ava, Chris, MaryBeth, Logan, Dylan, Ryder,
Chad, Jamie, and Noah for letting me use their smiling faces in some of the figures.

I also thank the publisher, the CRC Press of Taylor & Francis, for having the insight,
foresight, and good taste in publishing the second edition of the book in full color. Nora
Konopka has been very supportive throughout the project and very helpful in putting
things together the way I wanted. Jennifer Ahringer and her staff have been very helpful
in getting and keeping the project rolling, and special thanks go to them. Their encourage-
ment and enthusiasm are much appreciated. Joette Lynch and her staff have done a won-
derful job managing project details as we approach production; while Srikanth Gopaalan
from Datapage and his staff survived my many requests regarding the layout of the book.
Both Joette and Srikanth deserve my thanks for making this book happen.

Finally, I thank my family for all their contributions; without them this book would not
have been possible. I thank my mom who instilled in me a love of learning and a sense of
wonder about the world around me; my dad, who taught me how to think like an engineer
and the importance of self-discipline and hard work. I want to thank my brothers for being
there during those formative years. And I am especially grateful to Jeanie, Michael, Robin,
and David, who lived through the ordeal and endured the many long hours I put into the
new edition of this book.

xxi© 2011 by Taylor & Francis Group, LLC

Author

Dr. Scott E Umbaugh is Professor and Graduate Program Director for the Department of
Electrical and Computer Engineering at Southern Illinois University Edwardsville (SIUE).
He is also the Director of the Computer Vision and Image Processing (CVIP) Laboratory
at SIUE. He has been teaching computer vision and image processing, as well as computer
and electrical engineering design, for over 20 years. His professional interests include digi-
tal image processing education, research, and development of both human and computer
vision applications, and engineering design education.

Prior to his academic career, Dr. Umbaugh worked as a computer design engineer and
project manager in the avionics and telephony industries. He has been a computer imag-
ing consultant since 1986 and has provided consulting services for the aerospace, medi-
cal, and manufacturing industries with projects ranging from automatic identification of
defects in microdisplay chips to analysis of thermographic images for clinical diagnosis
of brain disease. He has performed research and development for projects funded by the
National Institutes of Health, the National Science Foundation, the U.S. Department of
Defense, and many private companies.

Dr. Umbaugh served on the editorial board for the IEEE Engineering in Medicine in Biology
Magazine for eight years and is currently an associate editor for the Pattern Recognition
journal. He served as a reviewer for a variety of IEEE journals and has evaluated research
monographs and textbooks in the imaging field. He has written a previous book on com-
puter vision and image processing, has authored numerous papers, and co-authored sev-
eral book chapters.

Dr. Umbaugh received his BSE with honors from Southern Illinois University Edwardsville
in 1982, his MSEE in 1987, and his PhD in 1990 from the University of Missouri–Rolla, (now
Missouri University and Science and Technology) where he was a Chancellor’s Fellow. He is
a senior member of the Institute of Electrical and Electronic Engineers (IEEE), and a member
of Sigma Xi and the International Society for Optical Engineering (SPIE). Dr. Umbaugh is
also the primary developer of the CVIPtools software package used throughout this book.

© 2011 by Taylor & Francis Group, LLC

Section I

Introduction to Digital Image
Processing and Analysis

3© 2011 by Taylor & Francis Group, LLC

1
Digital Image Processing and Analysis

1.1  Overview

Digital image processing is a field that continues to grow, with new applications being
developed at an ever increasing pace. It is a fascinating and exciting area to be involved
in today with application areas ranging from the entertainment industry to the space pro-
gram. The Internet, with its ease of use via the World Wide Web browsers, combined with
the advances in computer power and network bandwidth has brought the world into our
offices and into our homes. One of the most interesting aspects of this information revolu-
tion is the ability to send and receive complex data that transcends ordinary written text.
Visual information, transmitted in the form of digital images, has become a major method
of communication for the twenty-first century.

Digital image processing, also referred to as computer imaging, can be defined as the acquisi-
tion and processing of visual information by computer. The importance of digital image
processing is derived from the fact that our primary sense is our visual sense. Our vision
system allows us to gather information without the need for physical interaction; it enables
us to analyze all types of information directly from pictures or video. It provides us with
the ability to navigate about our environment, and the human visual system is the most
sophisticated, advanced neural system in the human body. Most of the scientific discover-
ies and advancements have relied on the visual system for their development—from the
discovery of fire to the design of a cell phone.

The information that can be conveyed in images has been known throughout the cen-
turies to be extraordinary—one picture is worth a thousand words. Fortunately, this is
the case, because the computer representation of an image requires the equivalent of
many thousands of words of data, and without a corresponding amount of information
the medium would be prohibitively inefficient. The massive amount of data required for
images is a primary reason for the development of many subareas within the field of com-
puter imaging, such as image segmentation and image compression. Another important
aspect of computer imaging involves the ultimate “receiver” of the visual information—in
some cases the human visual system, in others the computer itself.

This distinction allows us to separate digital image processing into two primary applica-
tion areas: (1) computer vision applications, and (2) human vision applications, with image
analysis being a key component in the development and deployment of both (Figure 1.1-1). In
computer vision applications the processed (output) images are for use by a computer, while
in human vision applications the output images are for human consumption. The human
visual system and the computer as a vision system have varying limitations and strengths,
and the computer imaging specialist needs to be aware of the functionality of these two
very different systems. The human vision system is limited to visible wavelengths of light,

4	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

which cover only a small portion of the electromagnetic spectrum. The computer is capable
of dealing with almost the entire electromagnetic spectrum, ranging from gamma rays to
radio waves, and can process other imaging modalities such as ultrasound and magnetic
resonance imaging.

Historically, the field of digital image processing grew from electrical engineering as an
extension of the signal processing branch, while the computer science discipline was largely
responsible for developments in computer vision applications. At some universities these
two are still separate and distinct, but the commonalities and the perceived needs have
brought the two together. Here we will simply refer to digital image processing, or computer
imaging, as the general field while allowing for separate application areas in computer and
human vision. As shown in Figure 1.1-1, image analysis applies to both applications areas.

Image analysis involves the examination of the image data to facilitate solving an imaging
problem. Image analysis methods comprise the major components of a computer vision
system, where the system is to analyze images and have a computer act on the results.
In one sense a computer vision application is simply a deployed image analysis system. In
the development of a human vision image processing application, many images must be
examined and tested so image analysis is necessary during the development of the system.

This book focuses on digital image processing and analysis, and, following this introduc-
tory part, it is divided into three main sections: (1) Digital Image Analysis and Computer
Vision, (2) Digital Image Processing and Human Vision, and (3) Programming and
Application Development with CVIPtools. Chapters 1 and 2 provide an introduction to the
basic concepts involved in computer imaging, and will provide the necessary background
for those who are new to the field. This includes a discussion of image acquisition, imaging
systems, and image representation. Chapters 3 through 6 comprise the image analysis and
computer vision part of the book, beginning with a system model for the image analysis
process, and then describing each major part of this model in separate chapters. The image
processing and human vision part of the book starts with an introductory chapter, Chapter 7,
which discusses human visual perception. Following the introduction, Chapters 8, 9, and 10
examine different application areas by presenting a system model followed by representative
algorithms within each area. Each of these chapters concludes with a key points section, fol-
lowed by references and suggestions for further reading, and a series of exercises to help the

Digital image processing

Computer
vision
applications

Human
vision
applications

Image
analysis

FIGURE 1.1-1
Digital image processing (computer imaging) can be separated into computer vision and human vision applica-
tions, with image analysis being part of both.

Digital Image Processing and Analysis	 5

© 2011 by Taylor & Francis Group, LLC

learning process. The exercises include definitions, discussions, problems, advanced prob-
lems, and computer exercises using the CVIPtools software and programming exercises.

For the programming exercises the CVIPlab prototype program can be used (Chapter 11),
or the experienced programmer can use the platform of their choice. The programming
environment provided with the CVIPtools software is a comprehensive environment for
computer imaging education and application development. Chapter 12 has examples of
application development, and Chapter 13 has the C® function library descriptions and
function prototypes. Finally, the appendices contain information necessary for using the
CD-ROM, installing CVIPtools, getting updates via the Internet, function quick reference
lists, useful computer imaging resources, and a description of the CVIPtools software
organization.

1.2  Image Analysis and Computer Vision

Image analysis involves investigation of the image data for a specific application. Typically,
we have a set of images and want to look beyond the raw image data, to gain insight into
what is happening with the images and determine how they can be used to extract the
information we need. The image analysis process requires the use of tools such as image
segmentation, image transforms, feature extraction, and pattern classification. Image seg-
mentation is often one of the first steps in finding higher level objects from the raw image
data. Feature extraction is the process of acquiring higher level image information, such as
shape or color information, and may require the use of image transforms to find spatial fre-
quency information. Pattern classification is the act of taking this higher level information
and identifying objects within the image.

Image analysis methods comprise the major components of a computer vision system.
Computer vision may be best understood by considering different types of applications.
Many of these applications involve tasks that are either tedious for people to perform,
require work in a hostile environment, require a high rate of processing, or require access
and use of a large database of information. Computer vision systems are used in many and
various types of environments—from manufacturing plants to hospital surgical suites
to the surface of Mars. For example, in manufacturing systems, computer vision is often
used for quality control. There, the computer vision system will scan manufactured items
for defects and provide control signals to a robotic manipulator to automatically remove
defective parts. To develop an application of this nature an image database consisting of
sample images is first created. Next, image analysis is applied to develop the necessary
algorithms to solve the problem. One interesting example of this type of system involves
the automated inspection of microdisplay chips.

Microdisplay chips are used in digital cameras, projection systems, televisions, heads-
up-displays, and any application that requires a small imaging device. Prior to the design
of this computer vision system these chips were inspected manually—a process that is
slow and prone to error. Once the market demand for these chips accelerated, the manual
inspection process was not practical. In Figure 1.2-1 we see the microdisplay chip inspec-
tion system along with two sample images. The original images were captured at 3:1 mag-
nification, which means each picture element in the microdisplay chip corresponds to a
3 × 3 array in the image. The system automatically finds various types of defects in the
chips; such as the pixel defects and the faint display defects shown here.

6	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 1.2-1
(a) Computer vision system for microdisplay chip inspection, (b) microdisplay chip image1 at 3:1, (c) image1 after
pixel defect detection, (d) image1 after blob analysis to find faint defects, (e) microdisplay chip image2 at 3:1, (f)
image2 after pixel defect detection, and (g) image2 after blob analysis to find faint defects. (Photos courtesy of
Mike Wilson and Iris Cheng, Westar Display Technologies Inc.)

Digital Image Processing and Analysis	 7

© 2011 by Taylor & Francis Group, LLC

Another interesting computer vision application that required image analysis for algo-
rithm development involved the automatic counting and grading of lumber. Before this
system was implemented this task was done manually; which was a boring task, had an
unacceptable error rate, and was inefficient. This application was challenging due to the
variation in the lumber stack; such as, gaps between boards, variation in the wood color,
cracks in the boards, or holes in the boards. Figure 1.2-2 shows the system in operation, and a
sample input image and a processed image. The processed image is used by high level soft-
ware to count and grade the lumber in stack. With the system in place the lumberyard can
minimize errors, increase efficiency, and provide their workers with more rewarding tasks.

(a)
(b)

(c) (d)

FIGURE 1.2-2
(a) Computer vision system for lumber counting and grading, (b) image captured by the system, (c) intermediate
image after processing, (d) example of system output after software analysis. (Photos courtesy of Tony Berke,
River City Software.)

www.allitebooks.com

http://www.allitebooks.org

8	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image analysis is used in the development of many computer vision applications for the
medical community, with the only certainty being that the types of applications will con-
tinue to grow. Current examples of medical systems being developed include: systems to
automatically diagnosis skin tumors, systems to aid neurosurgeons during brain surgery,
and systems to automatically perform clinical tests. Systems that automate the diagnostic
process are being developed primarily to be used as tools by medical professionals where
specialists are unavailable, or to act as consultants to the primary care givers, and may
serve their most useful purpose in the training of medical professionals. Many of these
types of systems are highly experimental, and it may be a long time before we actually
see computers playing doctor like the holographic doctor in the Star Trek series. Computer
vision systems that are being used in the surgical suite have already been used to improve
the surgeon’s ability to “see” what is happening in the body during surgery, and conse-
quently improve the quality of medical care available. Systems are also currently being
used for tissue and cell analysis; for example, to automate applications that require the
identification and counting of certain types of cells.

The field of law enforcement and security is an active area for image analysis research
and development, with applications ranging from automatic identification of fingerprints
to DNA analysis. Security systems to identify people by retinal scans, facial scans, and the
veins in the hand have been developed. Reflected ultraviolet imaging systems are being
used to find latent fingerprints, shoeprints, body fluids, and bite marks that are not vis-
ible to the human visual system. Infrared imaging to count bugs has been used at Disney
World to help keep their greenery green. Currently, systems are in place to automatically
check our highways for speeders, and in the future, computer vision systems may be used
to fully automate our transportation systems to make travel safer. The United States space
program and the Defense department and their need for robots with visual capabilities are
actively involved in image analysis research and development. Applications range from
autonomous vehicles to target tracking and identification. Satellites orbiting the Earth col-
lect massive amounts of image data every day, and these images are automatically scanned
to aid in making maps, predicting the weather, and helping us to understand the changes
taking place on our home planet.

1.3  Image Processing and Human Vision

Human vision applications of digital image processing involve a human being in the visual
loop. In other words, the images are to be examined and acted upon by people. These
types of applications require an understanding of how the human visual system oper-
ates. The major topics within the field of image processing for human vision applications
include image restoration, enhancement, and compression. As was previously mentioned,
image analysis is used in the development of these types of algorithms. In order to restore,
enhance, or compress digital images in a meaningful way, we need to examine the images
and understand how the raw image data relate to human visual perception.

Image restoration is the process of taking an image with some known, or estimated, deg-
radation, and restoring it to its original appearance. Image restoration is often used in the
field of photography or publication where an image was somehow degraded, but needs
to be improved before it can be printed. For this type of application we need to know
something about the degradation process in order to develop a model for the distortion.

Digital Image Processing and Analysis	 9

© 2011 by Taylor & Francis Group, LLC

Once we have a model for the degradation process, we can apply the inverse process to
the image to restore it to its original form. This type of image restoration is often used in
space exploration—for example, to eliminate artifacts generated by mechanical jitter in
a spacecraft (Figure 1.3-1) or to compensate for flaws in the optical system of a telescope.
Restoration techniques can be used in noise removal (shown in Figure 1.3-2), or in fixing
geometric distortion as in Figure 1.3-3.

Image enhancement involves taking an image and improving it visually, typically by tak-
ing advantage of the human visual system’s response. One of the simplest and often dra-
matic enhancement techniques is to simply stretch the contrast of an image (Figure 1.3-4).
Another common enhancement is image sharpening, shown in Figure 1.3-5. Enhancement
methods tend to be problem specific. For example, a method that is used to enhance
satellite images may not be suitable for enhancing medical images. Although enhance-
ment and restoration are similar in aim, to make an image look better, they differ in how
they approach the problem. Restoration methods attempt to model the distortion to the
image and reverse this degradation, whereas enhancement methods use knowledge of the
human visual system’s response to improve an image visually.

Image compression involves reducing the typically massive amount of data needed to
represent an image. This is done by eliminating data that is visually unnecessary, and
by taking advantage of the redundancy that is inherent in most images. Although image
compression is used in computer vision systems, it is included here because much of the
work being done in the field involves compressing images to be examined by people, so
we want to understand exactly what part of the image data is important for human per-
ception. By taking advantage of the physiological and psychological aspects of the human
visual system, still image data can be reduced 10–50 times, and motion image data (video)
can be reduced by factors of 100 or even 200. Figure 1.3-6 shows an image with various
degrees of compression. It should be noted the amount of compression and the quality of
the compressed image is highly image dependent and will vary widely.

The medical community has many important applications for image processing, often
involving various types of diagnostic imaging. The beauty of the diagnostic imaging

(a) (b)

FIGURE 1.3-1
Image restoration (a) image with distortion, (b) restored image.

10	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 1.3-2
Noise removal (a) noisy image, (b) noise removed with image restoration.

(a) (b)

FIGURE 1.3-3
Geometric distortion correction (a) distorted image, (b) restored image (note the process is not perfect).

Digital Image Processing and Analysis	 11

© 2011 by Taylor & Francis Group, LLC

modalities, including PET, CT, and MRI scanning, is that they allow the medical profes-
sional to look into the human body without the need to cut it open (ouch!). Image pro-
cessing is also widely used in many different types of biological research, for example, to
enhance microscopic images to bring out features that are otherwise indiscernible. The
entertainment industry uses image processing for special effects, editing, creating artificial
scenes and beings—computer animation, closely allied with the field of computer graphics.
Image processing is being used to enable people to see how they look with a new haircut,
a new pair of eyeglasses, or even a new nose. Computer aided design, which uses tools
from image processing and computer graphics, allows the user to design a new building
or spacecraft and explore it from the inside out. This type of capability can be used, for
example, by people wanting to explore different modifications to their homes, from a new
room to new carpeting, and will let them see the end result before the work has even begun.
Virtual reality is one application that exemplifies future possibilities, where applications
are without bound, and image processing techniques, combined with new developments in
allied areas, will continue to affect our lives in ways we can scarcely imagine.

(a) (b)

FIGURE 1.3-4
Contrast stretching (a) image with poor contrast, (b) image enhanced by contrast stretching.

(a) (b)

FIGURE 1.3-5
Image sharpening (a) original image, (b) sharpened image.

12	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

1.4  Key Points

Digital image processing (computer imaging): The acquisition and processing of
visual information by computer. It can be divided into two main application areas:
(1) computer vision and (2) human vision, with image analysis being a key com-
ponent of both

Computer vision applications: Imaging applications where the output images are
for computer use

(a) (b)

(c) (d)

FIGURE 1.3-6
Image compression (a) original image, (b) image file compressed to 1/10 its original size, (c) image file com-
pressed to 1/30 its original size, and (d) image file compressed to 1/50 its original size.

Digital Image Processing and Analysis	 13

© 2011 by Taylor & Francis Group, LLC

Human vision applications: Imaging applications where the output images are for
human consumption
Image restoration: The process of taking an image with some known, or esti-

mated, degradation, and restoring it to its original appearance
Image enhancement: Improving an image visually
Image compression: Reducing the amount of data needed to represent an image

Image analysis: The examination of image data to solve a computer imaging
problem
Image segmentation: Used to find higher level objects from raw image data
Feature extraction: Acquiring higher-level information, such as shape or color of

objects
Image transforms: May be used in feature extraction to find spatial frequency

information
Pattern classification: Used for identifying objects in an image

Exercises

	 1.	Define and discuss how digital image processing, computer imaging, image anal-
ysis, computer vision applications, and human vision applications are related.

	 2.	Discuss two computer vision applications.
	 3.	List and describe the tools used in image analysis.
	 4.	What are the major topics in the field of image processing for human vision appli-

cations? Discuss two applications.
	 5.	Suppose we need to develop a new image compression algorithm. Discuss the fac-

tors that must be considered.
	 6.	What is the difference between image enhancement and image restoration?

References

Ballard, D. H., and Brown, C. M., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 1982.
Banks, S., Signal Processing, Image Processing and Pattern Recognition, Cambridge, UK: Prentice Hall

International (UK) Ltd., 1990.
Baxes, G. A., Digital Image Processing: Principles and Applications, New York, NY: Wiley, 1994.
Bracewell, R. N., Two-Dimensional Imaging, Upper Saddle River, NJ: Prentice Hall, 1995.
Burger, W., and Burge, M. J., Digital Image Processing: An Algorithmic Introduction Using Java, New

York, NY: Springer, 2008.
Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.
Davies, E. R., Machine Vision, 3rd ed., San Francisco, CA: Morgan-Kaufmann, 2005.
Forsyth, D. A., and Ponce, J., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2003.
Galbiati, L. J., Machine Vision and Digital Image Processing Fundamentals, Upper Saddle River, NJ:

Prentice Hall, 1990.

14	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Gonzalez, R. C., and Woods, R. E., Digital Image Processing, 3rd ed., Upper Saddle River, NJ: Prentice
Hall, 2008.

Granlund, G., and Knutsson, H., Signal Processing for Computer Vision, Boston, MA: Kluwer Academic
Publishers, 1995.

Haralick, R. M., and Shapiro, L. G., Computer and Robot Vision, Reading, MA: Addison-Wesley, 1992.
Horn, B. K. P., Robot Vision, Cambridge, MA: The MIT Press, 1986.
Jain, A. K., Fundamentals of Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1989.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Myler, H. R., and Weeks, A. R., Computer Imaging Recipes in C, Upper Saddle River, NJ: Prentice Hall,

1993.
Parker, J. R., Algorithms for Image Processing and Computer Vision, New York, NY: Wiley, 1997.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.
Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 2006.
Schalkoff, R. J., Digital Image Processing and Computer Vision, New York, NY: Wiley, 1989.
Seul, M., O’Gorman, L., Sammon, M. J., and O’Gorman, L., Practical Algorithms for Image Analysis with

CD-ROM, Cambridge, UK: Cambridge University Press, 2008.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Florence, KY:

Cengage-Engineering, 2007.
Trussell, H. J, and Vrhel, M. J., Fundamentals of Digital Imaging, Cambridge, UK: Cambridge University

Press, 2008.
West, M. H., Barsley, R. E., Frair, J., and Hall, F., Reflective Ultraviolet Imaging System (RUVIS) and

the Detection of Trace Evidence and Wounds on Human Skin. Journal of Forensic Identification
40, no. 5 (1990): 249–55.

Further Reading

A comprehensive treatment of computer vision can be found in Forsyth and Ponce (2003),
Shapiro and Stockman (2001), Davies (2005), Ballard and Brown (1982), Haralick and Shapiro
(1992), Horn (1986), Granland and Knutsson (1995), and Jain, Kasturi, and Schnuck (1995).
Comprehensive image processing texts include Gonzalez and Woods (2008), Trussell and
Vrhel (2008), Castleman (1996), Jain (1989), Pratt (1991), Bracewell (1995), and Rosenfeld and
Kak (1982).

Other books that bring computer vision and image processing together include Sonka,
Hlavac, and Boyle (2008), Schalkoff (1989), Granland and Knutsson (1995), and Banks (1990).
One book that takes a more practical, lab-oriented approach to computer vision and image
processing is Galbiati (1990). A good conceptual and practical approach to computer imaging
is taken by Baxes (1994), and Myler and Weeks (1993). Additional books for practical algorithm
implementation (including code) are: Burger and Burge (2008), Seul et al. (2008), and Parker
(1997). Russ (2006) provides a good handbook for the computer imaging specialist. Some of
the applications discussed can be found in the trade magazines Advanced Imaging, Biophotonics
International, Design News, Photonics Spectra, and the Journal of Forensic Identification.

15© 2011 by Taylor & Francis Group, LLC

2
Computer Imaging Systems

2.1  Imaging Systems Overview

Computer imaging systems come in many different configurations, depending on the
application. As technology advances these systems get smaller, faster, and more sophisti-
cated. In Chapter 1 we saw some imaging systems used for computer vision applications.
In this chapter we will focus on the primary aspects of a generic imaging system. We will
look at how images are sensed and transformed into computer files, how the Computer
Vision and Image Processing tools (CVIPtools) software can be used for image processing
and analysis, and how these computer files are used to represent image information.

Computer imaging systems are comprised of two primary component types: hard-
ware and software. The hardware components, as seen in Figure 2.1-1 can be divided into
the image acquisition subsystem, the computer itself, and the display devices. The soft-
ware allows us to manipulate the image and perform any desired analysis or processing
on the image data. Additionally, we may also use software to control the image acquisition
and storage process.

The computer system may be a general purpose computer with an imaging device con-
nected. Images may be acquired by the computer via a camera or scanner, or can be input
from any media that can store images such as CDs, DVDs, flash drives, or downloaded
from the Internet. The primary device for capturing live images is the camera, which can
use either a digital or analog format. Digital cameras store image data in a format similar to
that used directly by the computer, while analog cameras output a continuous video signal
that must be modified to create an image suitable for computer processing. Although digital
cameras are the newer format, analog cameras are still used in many applications due to the
large installed base, well-established standards, and inexpensive, easily available parts.

A standard analog video camera requires a frame grabber, or image digitizer, to interface
with the computer. The frame grabber is a special purpose piece of hardware that accepts
a standard analog video signal, and outputs an image in the form that a computer can
understand—a digital image. Analog video standards vary throughout the world; RS-170A,
RS-330, and RS-343A are the monochrome video standards in North America and Japan.
RS-343A is used for high resolution video with 675–1023 lines per frame. CCIR is the mono-
chrome standard used primarily in Europe. The three color standards are NTSC, PAL,
and SECAM. NTSC is used in North America, Japan, and parts of South America, while
Northern Europe uses PAL, and France and Russia use SECAM. NTSC is 525 lines, 30 frames
(60 fields) per second, 2:1 interlaced standard. PAL and SECAM are 625 lines, 25 frames (50
fields) per second, 2:1 interlaced standards.

The process of transforming a standard analog video signal into a digital image is called
digitization. This transformation is necessary because the standard video signal is in

16	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

analog (continuous) form, and the computer requires a digitized or sampled version of
that continuous signal. A typical video signal contains frames of video information, where
each frame corresponds to a full screen of visual information. Each frame may then be
broken down into fields, and each field consists of alternating lines of video information. In
Figure 2.1-2a, we see the typical image on a display device, where the solid lines represent
one field of information and the dotted lines represent the other field. These two fields
make up one frame of visual information. This two-fields-per-frame model is referred to
as interlaced video. Some types of video signals, called noninterlaced video, have only one
field per frame. Noninterlaced video is typically used in computer monitors.

In Figure 2.1-2b we see the electrical signal that corresponds to one line of video informa-
tion. Note the horizontal synch pulse between each line of information, this synchronization
pulse tells the display hardware to start a new line. After one frame has been displayed, a
longer synchronization pulse, called the vertical synch pulse, tells the display hardware to
start a new field or frame.

The analog video signal is converted to a digital image by sampling the continuous
signal at a fixed rate. In Figure 2.1-3, we see one line of a video signal being sampled
(digitized) by instantaneously measuring the voltage of the signal at fixed intervals in
time. The value of the voltage at each instant is converted into a number that is stored,
corresponding to the brightness of the image at that point. Note that the image bright-
ness at a point depends on both the intrinsic properties of the object and the lighting con-
ditions in the scene. Once this process has been completed for an entire frame of video
information, we have “grabbed” a frame, and the computer can store it and process it as
a digital image.

Image
acquisition

Camera
Computer
system

Monitor

Printer

Film

Video
player

Scanner

Image
display

Video
recorder

FIGURE 2.1-1
Computer imaging system hardware.

Computer Imaging Systems	 17

© 2011 by Taylor & Francis Group, LLC

One frame, two fields

One line of information

Horizontal
sync pulse

The video signal

(a)

(b)

FIGURE 2.1-2
The video signal.

One line of information

Time

One pixel

One line

Vo
lta

ge

FIGURE 2.1-3
Digitizing (sampling) an analog video signal.

www.allitebooks.com

http://www.allitebooks.org

18	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

In addition to analog video, digital television (DTV) presents a new paradigm for
transmission of video signals, and supports a wide variety of formats with varying reso-
lution and interlacing defined. The U.S. Government required the change to the digital
broadcast format in 2009, and worldwide the standards are being changed over the next
few years; as examples, Japan and Canada in 2010, United Kingdom in 2012, and China
in 2015. In general terms DTV can be divided into two main categories: standard defini-
tion television (SDTV) and high definition television (HDTV). The SDTV formats are
similar to the previously defined analog NTSC, SECAM, and PAL in terms of resolution
and interlacing.

The current standards for HDTV use several different formats. These include a resolu-
tion of 1280 columns by 720 rows (lines), in progressive scan mode, referred to as 720p, or
1920 × 1080 in interlaced mode, called 1080i. While the SDTV uses a 4:3 aspect ratio, the
newer HDTV standards specifies a 16:9 aspect ratio. The aspect ratio is the width to height
ratio of the display device, shown in Figure 2.1-4. The aspect ratio of 35mm film cameras is
3:2, and standard digital cameras typically use 3:2 or 4:3.

A digital camera can be interfaced with the computer via USB (Universal Serial Bus),
FireWire (IEEE 1394), Camera Link or Gigabit Ethernet (IEEE 802.3). Specifications for these
are shown in Table 2.1. Although digital cameras are becoming more prevalent, analog
cameras still have a large share of the market, especially when cost is a factor.

Once we have the data in digital form, whether from a digitized analog signal, or directly
from a digital camera, the image can now be accessed as a two-dimensional array of data,
where each data point is referred to as a pixel (picture element). For digital images we will
use the following notation:

	 I(r,c) = the brightness of the image at the point (r,c)

where
r = row and c = column

Note that this notation, I(r,c), is used throughout the book, to be consistent with the way
in which matrices are defined in most programming languages. But also note that most
imaging software tools (Photoshop, CVIPtools, Scion Image, etc), some other textbooks,
and resolution standards (e.g., 640 × 480 or 1920 × 1080), list the column first and row coor-
dinate second in the form I(x,y). So, do not be confused, but look carefully at which coordi-
nate is the row and which is the column.

(a) (b)

FIGURE 2.1-4
Aspect ratio. The aspect ratio is the ratio of the image or display width (columns) to the image or display height
(rows or lines). (a) The aspect ratio is 4:3 for standard definition television (SDTV), and (b) 16:9 for high defini-
tion television (HDTV).

Computer Imaging Systems	 19

© 2011 by Taylor & Francis Group, LLC

Digital image processing involves taking the digital image, I(r,c), and applying computer
imaging software to process them. The different levels and various types of processing
can be illustrated by the hierarchical image pyramid, as seen in Figure 2.1-5. In this figure
the image operations are on the left and the corresponding image representation is on the
right. As we traverse this pyramid from the bottom up we get increasingly higher levels of
information representation and smaller numbers of items. At the very lowest level we deal
with the very large number of individual pixels, where we may perform some low-level
preprocessing. The next level up is the neighborhood, which typically consists of a single
pixel and the surrounding pixels, and we may continue to perform some preprocessing
operations at this level. As we continue to go up the pyramid, we get higher and higher

Table 2.1

Camera Interface Specifications

Gigabit Ethernet
(IEEE 802.3-2005)

Firewire S3200
(IEEE 1394) USB 3.0 Camera Link

Type of standard Public Public Public Commercial
Connection type Point-to-point or Local

Area Network (LAN)
Peer-to-peer, shared
bus

Master-slave,
shared bus

Point-to-point

Maximum bandwidth
for images

~1.0 Gigabit/sec (Gbs) ~3.2 Gbs ~5 Gbs ~2.0–7.0 Gbs

Distance ~100 meters, no limit
with switches or fiber

~4.5 meters, ~72
meters with
switches, ~200
meters with fiber

~5 meters, ~30
meters with
switches

~10 meters

PC Interface Network PCI card PCI card PCI frame grabber
Wireless support Yes No No No
Max # of Devices Unlimited 63 127 1

Operations Image representation

Feature extraction

Transforms
segmentation
edge detection

Preprocessing

Low level

High level

Pixel

Neighborhood/
subimage

Spectrum
segments
edges/lines

Features/objects

Raw image data

FIGURE 2.1-5
The hierarchical image pyramid.

20	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

level representations of the image, and consequently, a reduction in the amount of data.
All of the types of operations and image representations in Figure 2.1-5 will be explored
in the following chapters.

2.2  Image Formation and Sensing

Digital images are formed by energy interacting with a device that responds in a way that
can be measured. These measurements are taken at various points across a two-dimensional
grid in the world in order to create the image. These measuring devices are called sensors,
and many different types are in use. Sensors may respond to various parts of the electro-
magnetic (EM) spectrum, acoustical (sound) energy, electron beams, lasers, or any other
signal that can be measured.

The EM spectrum consists of visible light, infrared (IR), ultraviolet (UV), x-rays, micro-
waves, radio waves, or gamma waves (see Figure 2.2-1). Electromagnetic radiation consists

1024 1022 1020 1018 1016 1014 1012 1010 108

108

106

106

104 102

102 1 10–2 10–4 10–6

10–16 10–14 10–12 10–10 10–8 10–6 10–4 10–2 102 104 1061

10–8 10–10

Energy of one photon, electron volts

104

Frequency, cycles/second

Gamma
rays Ultraviolet Near-

infrared Microwaves

X-rays Visible Infrared Radio
waves

Wavelength, meters

Violet Blue Green Yellow Orange Red

400 500 600 700

Wavelength in nanometers

FIGURE 2.2-1
The electromagnetic spectrum.

Computer Imaging Systems	 21

© 2011 by Taylor & Francis Group, LLC

of alternating (sinusoidal) electric and magnetic fields that are perpendicular to each other
as well as to the direction of propagation. These waves all travel at the speed of light in free
space, approximately 3 × 108 meters/second, and are classified by their frequency or wave-
length. Figure 2.2-1 shows the various spectral bands and their associated names, wave-
lengths, frequencies, and energy. The various bands in the EM spectrum are named for
historical reasons related to their discovery or to their application.

In addition to the wave model EM radiation can be modeled as a stream of massless par-
ticles called photons, where a photon corresponds to the minimum amount of energy, the
quantum, which can be measured in the EM signal. The energy of a photon is measured
in electron volts, a very small unit, which is the kinetic (motion) energy that an electron
acquires in being accelerated through an electronic potential of one volt. In Figure 2.2-1 we
see that as frequency decreases, the energy contained in a photon decreases. Radio waves
have the smallest frequencies so we believe that it is safe to be immersed in them (they’re
everywhere!), whereas gamma rays have the highest energy, which makes them very dan-
gerous to biological systems.

Sensors may also respond to acoustical energy, as in ultrasound images. In some
cases images are created to produce range images, which do not correspond to what
we typically think of as images, but are measures of distance to objects, and may be
created by radar (radio detection and ranging), sound energy, or lasers. In this section,
and in this book, we will primarily focus on visible light images; however, we will
briefly discuss other types of images. Once an image is acquired it can be analyzed or
processed using all the tools discussed in this book, regardless of the type of acquisi-
tion process.

We will consider two key components of image formation:

•	 Where will the image point appear?
•	 What value will be assigned to that point?

The first question can be answered by investigating basic properties of lenses and the
physics of light, the science of optics; and the second will require a look into sensor and
electronic technology.

2.2.1  Visible Light Imaging

The basic model for visible light imaging is shown in Figure 2.2-2. Here the light source
emits light that is reflected from the object, and focused by the lens onto the image sen-
sor. The sensor responds to the light energy by converting it into electrical energy that is
then measured. This measurement is proportional to the incident energy, and we describe
it as the brightness of the image at that point. The way an object appears in an image is
highly dependent on the way in which it reflects light, this is called the reflectance function
of the object and is related to what we think of as color and texture. The color determines
those wavelengths of light that are absorbed and those that are reflected, and the texture
determines the angle at which the light is reflected. In Figure 2.2-3 objects of very different
reflectance functions are shown.

In imaging, two terms are necessary to define brightness. What is measured is called
irradiance, while the light reflected from an object is referred to as radiance. Figure 2.2-4
illustrates the difference between these two terms. Irradiance is the amount of light fall-
ing on a surface, such as an image sensor, while radiance is the amount of light emitted

22	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Object in
the worldLens

Image sensor

Reflected
light

Incident
light

Light source

FIGURE 2.2-2
Model for visible light imaging. The light source emits light that is reflected from the object and focused by the
lens onto the image sensor.

(a)

(b)

FIGURE 2.2-3
The reflectance function. Here we see that the way in which an object reflects the incident light, the reflectance
function, has a major effect on how it appears in the resulting image. The reflectance function is an intrinsic
property of the object and relates to both color and texture. (a) Monochrome image showing brightness only,
the color determines how much light is reflected and the surface texture determines the angle at which the light
is reflected, and (b) color image, the color determines those wavelengths that are absorbed and those that are
reflected.

Computer Imaging Systems	 23

© 2011 by Taylor & Francis Group, LLC

from a surface into a solid unit angle. So the units used for these two measures are
different:

	

irrradiance
power
area

radiance
power

area s

→

→
()(oolid angle)

The irradiance is the brightness of an image at a point, and is proportional to the scene
radiance.

A lens is necessary to focus light in a real imaging system. In Figure 2.2-5 we see the rela-
tionship between points in the world and points in the image. The relationship of distance
of the object in the world and the image plane is defined by the lens equation:

	
1 1 1
a b f
+ =

where f is the focal length of the lens and is an intrinsic property of the lens, and a and b
are the two distances in question. In this figure we see three rays of light shown; note that
the one through the center of the lens goes straight through to the image plane, and, if the
system is in focus, the other rays will meet at that point. If the object is moved closer to
the lens, the single point will become a blur circle; the diameter of the circle is given by
the blur equation:

	 c
d
b

b b=
ʹ

ʹ −| |

where c is the circle diameter, d is the diameter of the lens, and a′ and b′ are the distances
shown in Figure 2.2-6. This equation can be derived by the property of similar triangles.

FIGURE 2.2-4
Irradiance and radiance. Irradiance is the measured light falling on the image plane. It is measured in power per
unit area. Radiance is the power reflected or emitted per unit area into a directional cone having a unit of solid
angle. Note that all the reflected light is not captured by the lens.

24	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

A real object typically does not appear in a single plane, so some blurring will occur.
The question is, What are the conditions that will allow an object to be focused sufficiently
well? This will be determined by the spatial resolution of the imaging device. If the blur
circles are equal to, or smaller than the device resolution, the object will be focused suf-
ficiently well. The range of distances over which objects are focused sufficiently well is

b a

Lens

Image plane Plane of the
object in the

world

A point on the
object in

the world

FIGURE 2.2-5
Relationship between points in the world and points in the image. A lens will focus an image of an object only
at a specific distance given by the lens equation.

Lens equation :
1 1 1
a b f
+ =

where f is the focal length of the lens and is an intrinsic property of the lens, and a and b are the two distances
shown.

b

b´

a

a´

Point on object

Image plane
Plane of focus

Object moved
closer to lens

In focus
object

LensC

FIGURE 2.2-6
The blur circle from a poorly focused lens. As the object is moved closer to the lens, it gets blurry. Application of the
lens equation shows the object is actually focused behind the image plane. The blur equation defines the amount
of blur. Specifically, it gives the diameter of a blur circle, corresponding to a point in the original in focus image.

Computer Imaging Systems	 25

© 2011 by Taylor & Francis Group, LLC

called the depth of field. With many imaging devices, a diaphragm can be adjusted to allow
some control over the depth of field (also called depth of focus). If the diaphragm is closed
somewhat, not only does it let less light in, but it changes the effective diameter, Deffective,
of the lens. The f-number (or f-stop) is defined as the ratio of the focal length to the lens
diameter, and as the f-number increases the depth of field increases.

	 f number
f

Deffective

− =

Another important parameter of an imaging device is the field of view (FOV). The FOV
is the amount of the scene that the imaging device actually “sees”; that is, the angle of the
cone of directions from which the device will create the image. Note that the FOV depends
not only on the focal length of the lens, but also on the size of the imaging sensor. In
Figure 2.2-7, we can see that the FOV can be defined as

	 FOV
f

d

= =
⎛
⎝⎜

⎞
⎠⎟

−2 1 2φ φ, tanwhere

with d being the diagonal size of the image sensor and f is the focal length of the lens. From
this figure we can also see that for a fixed size image sensor, in order to get a wider FOV
we need a lens with a shorter focal length. A lens with a very short focal length compared
to image sensor size is called a wide-angle lens. The three basic types of lenses are (1)
wide-angle, short focal length, FOV greater than 45°; (2) normal, medium focal length, FOV
25–45°; and (3) telephoto, long focal length, FOV less than 25°.

Real lenses do not typically consist of a single lens, but are multiple lenses aligned
together. This is primarily due to the fact that a single lens will have various types of dis-
tortions, called aberrations. The effect of these aberrations can be mitigated by aligning
multiple lenses of varying types and sizes to create a compound lens. One of the negative
effects of a compound lens is the vignetting effect. This effect, shown in Figure 2.2-8,
causes the amount of energy that actually makes it through the lens to the image plane to
decrease as we move farther away from the center of the image. This effect can be avoided
by only using the center portion of the lens. It is interesting to note that the human visual
system is not sensitive to these types of slow spatial variations, which is explored more in
Chapter 7.

f
d

φ

LensImage sensor

FIGURE 2.2-7
Field of view (FOV). The FOV for an imaging system depends on both focal length of the lens, f, and the size of
image sensor, d.

26	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

We have briefly considered where the image will appear; now we will consider how
bright the image will be. How will we sense the object and turn it into an image? How
will we measure the energy? As mentioned before, sensors are used to convert the light
energy into electrical energy; this is done by using a material that emits electrons when
bombarded with photons. In Figure 2.2-9 generic imaging sensors are shown. Single imag-
ing sensors are typically arranged in lines or in two-dimensional arrays. The line sensor
is typically used in imaging applications that require a single line scan at a time, such as
in manufacturing applications. With a line scanner speed and resolution can be increased,
while cost is minimized. The array sensor is the primary type used in digital cameras, and
the sensing element is typically a charge-coupled device (CCD) or a complementary metal-
oxide-semiconductor (CMOS) device.

These devices are packaged in arrays of up to 9216 × 9216 elements, and continue to get
larger as technology advances. Currently, the CMOS image sensors are faster, cheaper, and
require less power than the CCDs, but the image quality is not quite as good. This makes
the CMOS sensors attractive for mass market applications where cost is a factor, low power
is desired, and lower-quality images are acceptable; such as in cell phones and toys.

When light energy (photonic energy) impinges upon the sensor, the sensing substance
will output electrons to form electrical energy. We can approximate the number of electrons
liberated in a sensor with the following sensor equation:

	 N A t b q d= () ()∫δ δ λ λ λ

where N is the approximate number of electrons liberated, δA is the area, δt is the time
interval, q(λ) is the quantum efficiency, and b(λ) is the incident photon flux, and the inte-
gration takes place over the wavelengths of interest. The quantum efficiency of the material
is the ratio of the electron flux produced to the incident photon flux; in other words, it is
the amount of incoming light energy that is converted to electrical energy. Older tube
technology devices had a quantum efficiency of about 5%, modern solid state devices may
vary from about 60–95% efficiency.

The equation above tells us that we need to measure the light energy over a finite area
and a finite time interval—these measurements cannot be performed instantaneously.

Image sensor

FIGURE 2.2-8
The vignetting effect. A compound lens causes less light on the edges of the image to get through to the image
sensor. This has the effect of decreasing brightness as we move away from the center of the image.

Computer Imaging Systems	 27

© 2011 by Taylor & Francis Group, LLC

This is because the devices measuring the output signal are not sensitive enough to count
only a few electrons, and, even if they did, the signal would be overwhelmed by random
noise that exists in electronic systems. One bonus of these requirements is that some of the
noise will be averaged out by measuring over time and over a fixed area.

The two primary sources of noise in a typical CCD camera are dark current and pho-
ton noise. Dark current consists of thermally induced electrons generated by temperature
(heat) and not by impinging photons. It is particularly problematic in low light and long
exposure applications, which is the reason for nitrogen-cooling in many scientific applica-
tions requiring extremely precise measurements. Photon noise refers to the random nature
of photonic emission specified by the quantum properties of light energy, and is related
to the square root of the signal. In Chapters 4 and 9 we will further explore methods to
reduce the random noise in images.

Sensing substance

Signal out, typically
voltage waveform

Energy in

(a)

(b)

(c)

FIGURE 2.2-9
Generic imaging sensors (a) single imaging sensor, (b) linear or line sensor, and (c) two-dimensional or array
sensor.

www.allitebooks.com

http://www.allitebooks.org

28	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

2.2.2  Imaging outside the Visible Range of the EM Spectrum

Imaging with gamma-rays is performed by measuring the rays as they are emitted from
the object. In nuclear medicine using positron emission tomography (PET), a patient is
injected with a radioactive isotope and as it decays gamma rays are detected and mea-
sured. X-rays are used in medical diagnostics by using film that responds to x-ray energy.
The x-rays are passed through the patient and recorded on the film. X-rays are also used
in computerized tomography (CT) where a ring of detectors encircles the patient and is
rotated to obtain two-dimensional “slices,” which can be assembled into a three-dimen-
sional image (see Chapter 9 on image reconstruction). Fluorescence microscopy works by
using dyes that emit visible light when UV light is beamed upon it. Examples of x-ray and
UV images are shown in Figure 2.2-10.

Ultraviolet (UV) imaging is used in industrial applications, law enforcement, micros-
copy, and astronomy. Reflected UV imaging is used in forensics to find evidence that is
invisible to the human visual system. For example, fingerprints, body fluids, bite marks,
and even shoe prints on waxed floors have been found. Since these systems use UV
illumination the background elements in the image are suppressed, which is a bonus
for these types of applications. These systems use short UV, below 300 nm wavelengths,
and have the added advantage of not requiring powders or chemicals on nonporous
surfaces.

Infrared (IR) images are often used in satellite imaging (remote sensing), since fea-
tures of interest (e.g., moisture content and mineral mapping) are found in the IR spec-
tral bands (Figure 2.2-11). IR imaging is also used in law enforcement and fire detection,
primarily in the middle and long wave ranges. Infrared images can be divided into
four primary spectral ranges—near IR, 780 nm–1.3 μm, middle wave IR, 3–5 μm, long
wave IR, 7–14 μm, and very long wave IR, 30 μm and above. Recent advances in tech-
nology have dramatically reduced size, power consumption, and cost of these IR units;
thereby making these devices much more widely available, more practical, and more
cost effective.

A recent area for application research is the use of IR imaging for diagnostic purposes
in both animals and humans; this type of imaging is called thermographic imaging. It is
believed that the temperature variation and thermographic patterns in living creatures
can be useful in the diagnosis of various pathologies (diseases). Figure 2.2-11c and d show
thermographic images that are currently being used to determine their efficacy in diag-
nosing the Chiari malformation, a brain disease, in canines.

Multispectral images, which include IR bands, are often used in weather analysis (Figure
2.2-12a). Microwave images are used most often in radar applications, where the primary
requirement is the capability to acquire information even through clouds or other obsta-
cles, regardless of lighting conditions. In the radio band of the EM Spectrum, applications
are primarily in astronomy and medicine. In astronomy, radio waves can be detected and
measured in a manner similar to collecting visible light information, except that the sensor
responds to radio wave energy.

In medicine, magnetic resonance imaging (MRI) works by sending radio waves through
a patient in short pulses in the presence of a powerful magnetic field. The body responds
to these pulses by emitting radio waves, which are measured to create an image of any
part of the patient’s body (Figure 2.2-12b). MRI systems use a special antenna (receiver
coil) to detect these interactions between radio-frequency EM and atomic nuclei in the
patient’s body. The superconducting magnets used in MRI systems can generate fields
with magnitudes from 0.1 to 3.0 Tesla (1000–30,000 Gauss). By comparison, the magnetic

Computer Imaging Systems	 29

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

(c) (d)

(e)

Stomach
Liver

Spinal
vertebra

Right lung

Left kidney

Left lung
Rib

FIGURE 2.2-10
X-ray and UV images. (a) X-ray of a chest with an implanted electronic device to assist the heart (Image courtesy
of George Dean.), (b) dental x-ray, (c) and (d) fluorescence microscopy images of cells, generated by emitting vis-
ible light when illuminated by ultraviolet (UV) light (Cell images courtesy of Sara Sawyer, SIUE.), (e) one “slice”
of a computerized tomography (CT) image of a patient’s abdomen, multiple 2-D image “slices” are taken at vari-
ous angles and are then assembled to create a 3-D image (Image courtesy of George Dean.).

30	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

field of the Earth is 0.00005 Tesla (0.5 Gauss). MRI systems have excellent contrast reso-
lution, which means they are much better at showing subtle differences among the soft
tissues and organs of the body that are not easily viewed on conventional x-ray or CT
films.

2.2.3 A coustic Imaging

Acoustic imaging works by sending out pulses of sonic energy (sound) at various frequen-
cies and then measuring the reflected waves. The time it takes for the reflected signal to
appear contains distance information, and the amount of energy reflected contains infor-
mation about the object’s density and material. The measured information is then used to
create a two- or three-dimensional image. Acoustic imaging is used in biological systems,
for example, bats use it to “see,” and in man-made systems such as the sonar used in
submarines.

The frequency of the acoustic signals depends on the application and the medium in
which the signal is transmitted. Geological applications, for example oil and mineral

(a)

(b)

(c) (d)

FIGURE 2.2-11
Infrared images. (a) Infrared satellite image showing water vapor, (b) infrared satellite imagery in the near
infrared band (Images courtesy of National Oceanic and Atmospheric Administration, NOAA.), (c) and (d) ther-
mographic images being used in research to determine their efficacy in diagnosing brain diseases in canines
(Images courtesy of Long Island Veterinary Specialists.).

Computer Imaging Systems	 31

© 2011 by Taylor & Francis Group, LLC

exploration, typically use low frequency sounds (around hundreds of hertz). Ultrasonic,
or high frequency sound, imaging is often used in manufacturing and in medicine. The
most common use in medicine is to follow the development of the unborn baby inside the
womb. Here, at frequencies ranging from 1 to 5 megahertz, the health (and gender) of the
baby can be determined (see Figure 2.2-13). Because ultrasonic imaging allows us to “see”

(a)

(b)

1630 08SE84 38A–4 004181 19291 UC6

FIGURE 2.2-12
Multispectral and radio wave images. (a) Multispectral Geostationary Operational Environmental Satellite
(GOES) image of North America, showing a large tropical storm off Baja, California, a frontal system over
the Midwest, and tropical storm Diana off the east coast of Florida (Courtesy of NOAA.), (b) magnetic reso-
nance image (MRI) of a patient’s shoulder, MRI images are created using radio waves, this is a single 2-D
“slice,” multiple images are taken at different angles and assembled to create a 3-D image (Image courtesy
of George Dean.).

32	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

inside opaque objects, it is also commonly used in manufacturing applications for defect
detection in materials.

2.2.4  Electron Imaging

Electron microscopes are used in applications that require extremely high magnification.
Standard light microscopes can magnify 1000 times, but electron microscopes can magnify
up to two hundred thousand times. These microscopes function by producing a focused
beam of electrons, which is used to image a specimen similar to the way a light beam is
used in a standard microscope. These microscopes come in two types: transmission elec-
tron microscope (TEM), and a scanning electron microscope (SEM).

A TEM works by transmitting a beam of electrons through the specimen and then pro-
jecting the results onto a screen for viewing. A SEM, as the name implies, scans the elec-
tronic beam across the specimen and detects various signals generated by the electrons
interacting with the specimen and uses these to produce an image. Figure 2.2-14 shows a
SEM and sample images.

(a) (b)

(c) (d)

FIGURE 2.2-13
(a) Standard ultrasound image of a baby showing the head, arm, and body, (b) standard ultrasound image
showing face and eyes, (c) newer 3-D ultrasound image showing baby face and arm, and (d) 3-D ultrasound of
baby yawning (Images Courtesy of Kayla and Aaron Szczeblewski.).

Computer Imaging Systems	 33

© 2011 by Taylor & Francis Group, LLC

2.2.5 L aser Imaging

Lasers (light amplification by stimulated emission of radiation) are specialized light sources
that produce a narrow light beam in the visible, IR, or UV range of the EM spectrum. In
standard light sources, such as light bulbs, the atoms do not cooperate as they emit pho-
tons; they behave in a random or chaotic manner that produces incoherent light. Lasers
are designed so that all the atoms cooperate, which produces a coherent light source that
is highly intense and monochromatic (one color). Thus lasers, first developed in the 1960s,
provide a method of controlling visible light energy in a manner similar to that in which
radio waves and microwaves can be controlled.

(a) (b)

(c) (d)

(e) (f)

FIGURE 2.2-14
(a) Scanning electron microscope (SEM), (b) SEM image of a mosquito, (c) logic gate in a microchip, (d) strawberry,
(e) brittlestar, (f) hollyhock pollen. (Photos courtesy of Sue Eder, Southern Illinois University Edwardsville.)

34	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Lasers are often used to create range images (also called depth maps), which contain
information about the distance of a point in the world to the image sensor. One of the
methods for this involves using structured lighting, which can be generated with a laser
and two rotating mirrors. Special lenses of cylindrical shape can also be used to create a
plane of light so that only one rotating mirror is needed. These techniques will not work
for objects that are highly reflective, unless the sensor happens to be in the direction
of the surface normal (perpendicular), since the light will not be reflected back to the
sensor.

Another approach is to measure time-of-flight; that is, how long does it take a trans-
mitted signal to be return? As in radar imaging, a transmitter and receiver are required,
and an electronic device (for example, a computer) measures the time it takes for a
signal to be sent, reflected, and received. Various types of signals are used, including
pulses, amplitude-modulated phase shift (AM), and frequency-modulated (FM) beat
signals.

2.2.6  Computer-Generated Images

Images are not always generated by sensing real-world objects; for example, computers can
be used to create images for a myriad of applications. These include computer-generated
models for engineering, medicine, and education; computer graphics for movies, art, and
games; and many other applications. In engineering, computer-generated models are used
in design and drafting; while in medicine they are used for surgical planning and training.
Three-dimensional computer-generated simulations are also created for training pilots in
both military and commercial aviation. The quality of computer-generated images has
improved dramatically in the past several years as a result of advancements in technol-
ogy and applied research in computer graphics. Computer graphics images are shown in
Figure 2.2-15a and b.

Images are also created by computers as a result of applying image processing methods
to images of real-world objects. For example, the output of an edge detection operation
(Figure 2.2-15c), a Fourier transform spectrum (Figure 2.2-15d), pseudocolor applied to an
x-ray image (Figure 2.2-15e), or an error image from a compression scheme (Figure 2.2-15f)
can all be thought of as computer-generated images that use the original real-world image
as a model. Any image that has been remapped for display is, in a sense, a computer-
generated image since what you are looking at is not really the data itself but a representa-
tion of the underlying image data.

2.3  CVIPtools Software

The CVIPtools (Computer Vision and Image Processing tools) software was developed at
Southern Illinois University Edwardsville, and contains functions to perform all the oper-
ations that are discussed in this book. These were originally written in ANSI-compatible
C® code and divided into libraries based on function category. For the new version of
CVIPtools, a wrapper based on the Common Object Module (COM) interface was added
to each function, and these COM functions are all contained in a dynamically linked
library (dll) for use under the Windows® operating system. These functions are explored
in more detail in the fourth part of the book. A graphical user interface (GUI) was created

Computer Imaging Systems	 35

© 2011 by Taylor & Francis Group, LLC

for algorithm development and exploratory learning. Additionally, two new development
utility tools have been integrated into the CVIPtools environment. The CVIPtools soft-
ware is on CD-ROM (see Appendix A), and can also be accessed via the Internet (see
Appendix B).

The only requirement for the new CVIPtools software, version 5.x, is a Windows operat-
ing system (2000/XP/Vista/Windows7). Note that version 3.9 of CVIPtools is available for
UNIX operating systems, including Sun Solaris, FreeBSD, and Linux, and version 3.7c is
available for these UNIX flavors and additionally SGI IRIX systems. The libraries, and the
CVIPlab program, which is used for all the programming exercises, are also available for
all platforms.

The philosophy underlying the development of the CVIPtools is to allow the nonpro-
grammer to have access to a wide variety of digital image processing operations (not
just the “standard” ones), and provide a platform for the exploration of these opera-
tions by allowing the user to vary all the parameters and observe the results in almost

(a)

(b)

FIGURE 2.2-15
Computer-generated images. (a) Graphics image of an insect that employs a particle system to simulate a plume
of fire, the right image shows the individual particles are texture-mapped squares, (b) graphics image of a sim-
ple 3-D hand where each section of the hand is a sphere, the right image shows the hand after rotating the joints
to produce a specific gesture, (c) an image of a butterfly processed by edge detection (see Chapter 4), (d) Fourier
transform spectrum image of an ellipse (see Chapter 5), (e) x-ray image of a hand processed by frequency
domain pseudocolor (see Chapter 8), (f) error image from an image compressed with block truncation coding
(see Chapter 10). (Graphics images courtesy of William White, Southern Illinois University Edwardsville; origi-
nal butterfly photo courtesy of Mark Zuke.)

36	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

real-time. This is especially facilitated by the CVIPlab program with the associated
programming exercises and tutorials. Additionally, the function libraries allow those
with programming skills to develop their own imaging applications with a minimum
of coding.

The CVIPtools software will perform computer imaging operations from simple image
editing to complex analysis, enhancement, restoration, or compression algorithms. One

(f)(e)

(c) (d)

FIGURE 2.2-15 (continued)
Computer-generated images. (a) Graphics image of an insect that employs a particle system to simulate a plume
of fire, the right image shows the individual particles are texture-mapped squares, (b) graphics image of a sim-
ple 3-D hand where each section of the hand is a sphere, the right image shows the hand after rotating the joints
to produce a specific gesture, (c) an image of a butterfly processed by edge detection (see Chapter 4), (d) Fourier
transform spectrum image of an ellipse (see Chapter 5), (e) x-ray image of a hand processed by frequency
domain pseudocolor (see Chapter 8), (f) error image from an image compressed with block truncation coding
(see Chapter 10). (Graphics images courtesy of William White, Southern Illinois University Edwardsville; origi-
nal butterfly photo courtesy of Mark Zuke.)

Computer Imaging Systems	 37

© 2011 by Taylor & Francis Group, LLC

of the primary advantages of the software is that it is continually under development in
a university environment, so as algorithms are developed they are made available for
exploration and research. Another advantage is that it is being developed for educational
purposes, not simply end-user results, so the focus is on learning about digital image pro-
cessing. Because it is designed specifically for research and education, and the user has
access to the many different parameters for the different algorithms, it is not constrained
by what the market has deemed “works best.” In some cases, the algorithms may not
work very well (for commercial applications), but have educational and research value.
Some of these same algorithms that “do not work very well” may be useful to researchers
for specific applications, or may become part of a larger processing algorithm that does
work well.

2.3.1  Main Window

When CVIPtools is first invoked the main window appears, as shown in Figure 2.3-1a.
The main window contains the image queue, the image viewing area, the toolbar, the
status bar, and access to all the windows and operations. The image queue is on the left
of the main window and contains the names of all the images loaded, as well as any
images that are created by CVIPtools. The image queue was implemented to facilitate fast
processing—output images are automatically put into the queue and are not written to
disk files unless the user explicitly saves them. Note that there is a checkbox at the top of
the image queue labeled Lock Input. If it is checked it will retain (lock) the current image as
input for each successive operation. This is useful when comparing various operations on
the same image. When applying a sequence of operations to an image it may be desirable
to have each sequential function operate on the output image, which happens when the
Lock Input box is unchecked. Above the Lock Input checkbox are buttons to delete selected
images or all the images in the queue. The user can select images to be deleted using stan-
dard Windows keys—the Ctrl key to select specific images, or the Shift key to select blocks
of images.

Across the top of the window are the standard File and View selections, and the pri-
mary window selections for analysis and processing—Analysis, Enhancement, Restoration,
Compression, Utilities, and Help. Directly under these we see the toolbar that contains icons
for opening, saving, printing, and capturing image files as well as frequently used func-
tions such as histogram display and red, green, and blue (RGB) band extraction. To the
right of these icons the column, row, values are displayed for the current pixel position
and values, and buttons to select the development tools, Computer Vision and Image
Processing Algorithm Test and Analysis Tool (CVIP-ATAT) and Computer Vision and
Image Processing Feature Extraction and Pattern Classification Tool (CVIP-FEPC) (see
Figure 2.3-1b and Chapter 12). The status bar at the bottom contains image specific infor-
mation as determined by the image viewer.

The items on the View menu provide useful options. Here the user can select the
Toolbar, Image Queue, CVIP Function Information, and/or the Status Bar to appear (or not)
on the main window. Removing any or all of these will free up screen space, if desired.
Here the user can also select Long File Names which will append more descriptive names
to the output images. Additionally, the user can grab the border of the image queue or
the CVIP function information with the mouse and move them to minimize their size in
the main CVIPtools window. The CVIP Function Information appears in a text window
at the bottom of the main window, as shown in Figure 2.3-1b. This window displays

www.allitebooks.com

http://www.allitebooks.org

38	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

information that is text output from the lower level functions and is often useful to gain
insight into the inner workings of a specific function. Examples of information displayed
include: convolution mask coefficients, type of data conversion, type of remapping, com-
pression ratios of output images, and the number of clusters found for a segmentation
algorithm.

(b)

(a)
Toolbar

Image
viewing
area

Image
queue
area

Status bar

Lock input

CVIP
function
information

CVIP Development
utility tool buttons Pixel information

FIGURE 2.3-1
CVIPtools main window. (a) The main CVIPtools window when the program is first invoked, (b) main window
with images in the queue, and the View option CVIP Function Information at the bottom.

Computer Imaging Systems	 39

© 2011 by Taylor & Francis Group, LLC

2.3.2  Image Viewer

To load an image into CVIPtools you simply open it using the standard file open icon of
a file folder opening in the upper left of the main window. When this is done the image
is read into memory and its name will appear in the image queue, and the image will be
displayed in the main window. Additionally, image information will appear in the status
bar at the bottom of the main window (see Figure 2.3-1b). This information includes color
format, image (file) format, data format, data type, data range (minimum and maximum),
number of bands, and image width and height. The user can select multiple images to be
loaded into the image queue by using standard Windows keys—the Ctrl key to select spe-
cific images, or the Shift key to select blocks of images.

When an image is loaded it becomes the active image, and the active image can be
changed at anytime by either clicking on the name in the queue, or clicking on the image
itself. When this is done the image is brought to the front and as the mouse is rolled around
the image the row and column coordinates, and the gray or color pixel values, will appear
in the toolbar at the top of the main window. The active image can then be processed by
selecting functions on the other windows.

The image viewer allows the user to perform standard image geometry operations,
such as resizing, rotating, flipping, as well as image enhancement via histogram equal-
ization. It is important to note that these operations affect only the image that is displayed, not
the image in the CVIPtools image queue. They are for viewing convenience only, and any
changes to the image itself (in the queue) can be accomplished by use of the standard
CVIPtools windows. Even if the image is resized within the viewer, the row and column
coordinates displayed will still correspond to the original image. Therefore, the image
can be enlarged to ease the selection of small image features, or the image can be shrunk
to minimize screen use. The keyboard and mouse can be used to perform the opera-
tions listed in Table 2.2. In addition to the keyboard commands, the user can stretch the
image by grabbing the lower right corner of the image with the left mouse button and
dragging it.

The CVIPtools image viewer allows the user to select a specific portion of an image
(a region of interest, or ROI) by drawing a box with a press of the Shift key and drag of
the left mouse button. This information is automatically passed back to the CVIPtools
GUI for use in, for example, the image crop function. A new select box can be created at
anytime on an image and automatically destroys the first select box on that image, or the
middle mouse button can be used to remove the drawn box. Once a select box has been
drawn, it retains its position throughout any image geometry operations. The viewer can
also be used to draw borders on images by pressing the Control key and using the left
mouse button, and the middle mouse button will remove it. Drawn borders are useful
to extract features about specific objects, or to provide more control on an image crop
function. Other functions are listed in Table 2.2. Note that each image can have its own
ROI selected.

2.3.3 A nalysis Window

When Analysis is first selected from the main window, the drop-down menu appears as
shown in Figure 2.3-2a. Upon selection of one of the menu items the Analysis window appears
with the tab corresponding to the menu item selected (Figure 2.3-2b). At any time the user
can select another category of image analysis operations: Geometry, Edge/Line Detection,
Segmentation, Transforms, Features, and Pattern Classification. When the user makes a selection,

40	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

by clicking one of the file tabs with the left mouse button, the CVIPtools functions available
under that selection will appear.

Most of the functions can be selected by the round buttons on the left of the window.
These are called option buttons—only one can be active at a time. Once the operation
has been selected, the necessary input parameters can be typed in the text boxes, or
selected with the mouse using the arrows. Note that the text boxes will initially contain
default values, which allow for immediate use of an operation by simply selecting it via
the option button on the left, and the clicking on the Apply button (assuming an image
has been selected). Any parameters that are not used with a particular function will be
grayed out, or disappear from the screen, whenever that particular function is selected.

TABLE 2.2

CVIPtools Image Viewer Keyboard and Mouse Commands

DRAW,
MARK,
SELECT

Shift key-drag left mouse
button

Select rectangular area of image, used in crop, etc.

Control key-drag left mouse
button

Select irregular shaped area of image, used in Utilities→
Create→ Border Mask and Border Image and crop, etc.

Control key-click left mouse
button

Select Original Image for Analysis→ Features

Control-A Select entire image for copy/paste
Control-C If image has area currently selected, copy area to

clipboard—this is used for copying images into
documents

Else, if image has current mesh (from
Restoration→ Geometric Transforms), copy mesh to
clipboard

Control-V If mesh (from Restoration→ Geometric Transforms) is
available on clipboard, paste mesh to image

Alt key-click left mouse
button

Mark mesh points for Restoration→ Geometric Transforms
for Enter a new mesh file; select Segmented Image for
Analysis→ Features; select Second Image for the
Utility→ Arith/Logic operations

Alt key-click left mouse
button drag

After a mesh is entered in Restoration→ Geometric
Transforms, this will allow the user to move mesh points

Right mouse button on image Mesh display select box (followed by left button to
select) Copy/Paste current mesh

Middle mouse button on
image

Removes drawn boxes and borders

ROTATE t turn 90° clockwise
T Turn 90° counterclockwise

FLIP h,H horizontal flip
v,V vertical flip

OTHERS N Change back to original image, including size
n Change back to original image, without changing size
q,Q Quit: removes image from display but leaves in queue

(clicking on the X in the upper right corner will remove
the image from queue)

e,E Histogram equalization

Right mouse button in image
viewing area (workspace)

Brings up Utilities menu

Computer Imaging Systems	 41

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 2.3-2
CVIPtools analysis window. (a) The drop-down menu for the analysis window, and (b) the analysis window
with the Edge/Line Detection tab selected.

42	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The individual tabs and functions will be discussed in more detail in Chapters 3
through 6.

In addition to the Apply button at the bottom of the window, there are buttons for Help,
Cancel, and Reset. The Help button will bring up the Help window (see Section 2.3.8) Use
of the Cancel button or the in the upper right corner will remove the window from
the screen and automatically reset all the parameters in all the tabs in the window to
their default values. The Reset button will leave the window on the screen, but reset all
the parameters in the current tab to the default values. These buttons, and their func-
tionality, are also standard in the Enhancement, Restoration, Compression, and Utilities
windows.

2.3.4  Enhancement Window

The Enhancement window is shown in Figure 2.3-3. Across the top of the window are
file tabs that allow for selections that pertain to image enhancement: Histogram/Contrast,
Pseudocolor, Sharpening, and Smoothing. The image enhancement functions are used to make
images more appealing to the human visual system, to mitigate noise effects, to improve
image contrast or to bring out image information that is not readily visible. The histogram/
contrast tab contains functions that are primarily used to improve contrast and brightness,
and the pseudocolor tab has functions that will change a monochrome image into a color
image. The sharpening and smoothing tabs have filter functions and algorithms that will
perform these effects on images. The enhancement methods are discussed in more detail
in Chapter 8.

2.3.5  Restoration Window

The Restoration window is shown in Figure 2.3-4. Across the top of the window are
file tabs that allow for selections that pertain to image restoration: Noise, Spatial Filters,
Frequency Filters, and Geometric Transforms. The image restoration functions are used to

FIGURE 2.3-3
CVIPtools enhancement window. The enhancement window with the pseudocolor tab selected.

Computer Imaging Systems	 43

© 2011 by Taylor & Francis Group, LLC

mitigate noise effects, to restore blurry images or to correct images that have been spa-
tially distorted. The noise tab has functions to add noise to images or to create noise only
images, which can be used in restoration algorithm development. The spatial filters tab
contains functions that are used to mitigate noise effects, and the frequency filters tab
has functions to restore noisy, degraded and blurred images. Geometric transforms are
used to restore spatially distorted images. The restoration functions are discussed in
more detail in Chapter 9.

2.3.6  Compression Window

The Compression window is shown in Figure 2.3-5. Across the top of the window are file
tabs that allow for selections that pertain to image compression: Preprocessing, Lossless, and
Lossy. The preprocessing tab contains functions that can be useful prior to compression.
The lossless tab has compression functions that will create images identical to the origi-
nal, while the lossy tab has the compression functions that will attempt to create the best
quality image for a given amount of image data loss.

The image compression functions are used to reduce the file size of images, so experi-
mentation and comparisons can be performed among various compression options. The
compression window has an additional button at the bottom—Save Compressed Data. This
button allows the user to save the image in its compressed format, which is a unique
CVIPtools format (except for Joint Photographic Experts Group (JPEG) and JPEG2000,

FIGURE 2.3-4
CVIPtools restoration window. The restoration window with the frequency filters tab selected.

44	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

which are standard file formats). If you simply save the displayed image, it will be saved
as the decompressed image shown, in any file format that is selected. Compression ratios
for the output images are available with the view option CVIP Function Information. Details
of the compression functions are discussed in Chapter 10.

2.3.7  Utilities Window

The Utilities window works differently than the previously discussed windows. This is
because it contains functions that are commonly used regardless of the type of processing
being performed. It can be accessed with two methods, depending on the user’s prefer-
ences. The first method is to right click the mouse anywhere in the image viewing area.
When this is done a two-level menu will popup, as shown in Figure 2.3-6a. This menu con-
tains various categories of commonly used utilities: Arith/Logic, Compare, Convert, Create,
Enhance, Filter, Size, and Stats. Alternately, the user can select Utilities at the top of the main
window, and the previously mentioned menu items will appear across the top of the main
window as shown in Figure 2.3-6b. Selecting the Utilities button again will toggle the menu
items on/off across the top of the main widow.

After using either method to invoke Utilities the user selects a menu item, and the nec-
essary information appears in the Utilities window for that particular function (see an
example in Figure 2.3-6c). By limiting screen usage in this manner, the Utilities window is
easily accessible when other primary windows are in use. The general philosophy guiding

FIGURE 2.3-5
CVIPtools compression window. The compression window with the lossy tab selected.

Computer Imaging Systems	 45

© 2011 by Taylor & Francis Group, LLC

Press
utilities
and these
appear

(a)

(b)

FIGURE 2.3-6
CVIPtools utilities. The utility functions can be accessed with two methods. (a) The two-level menu for Utilities
will pop-up with a right mouse click in the image viewing area, or (b) click on Utilities at the top of the main
window and the primary menu for Utilities will appear across the top, and will toggle each time the Utilities
button is selected, and (c) an example Utilities window selection.

46	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the design of the Utilities GUI is to maximize utility and usage, while minimizing use of
screen space. In some cases, for example with Utilities→ Enhancement, only the most com-
monly used functions will appear in the Utilities window, and the choices for the various
parameters may be limited. This allows Utilities to be used easily and quickly, and if the
user needs more, the main Enhancement window can be selected.

2.3.8  Help Window

The CVIPtools Help window can be accessed from the top of the main window, or with
the button in the lower left of any of the other windows. In Figure 2.3-7 we see the
Help window that contains information about CVIPtools development, how to use the
CVIPtools functions, and documentation for the libraries, C and the COM functions.
The Help pages for the libraries include a list of all the functions in the library as well
as the location of the files. The documentation for the C functions includes a complete
description and examples of their use in CVIPlab. Documentation for the COM func-
tions contains the function prototypes, parameter definitions, and a description. The
Help window also contains help for using the CVIPtools functions from the GUI and
has links to CVIPtools related Web sites. The Help window has an index of all the docu-
ments it contains and allows for keyword searches to assist the user in finding what
they need.

2.3.9 D evelopment Tools

For the new version of CVIPtools, two development tools have been added. The CVIP-
ATAT was created to perform many permutations of an image processing algorithm, by

(c)

FIGURE 2.3-6 (continued)
CVIPtools utilities. The utility functions can be accessed with two methods. (a) The two-level menu for Utilities
will pop-up with a right mouse click in the image viewing area, or (b) click on Utilities at the top of the main
window and the primary menu for Utilities will appear across the top, and will toggle each time the Utilities
button is selected, and (c) an example Utilities window selection.

Computer Imaging Systems	 47

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 2.3-7
The CVIPtools help window. The help window contains information about using CVIPtools and contains docu-
mentation for the libraries and C functions, and includes CVIPtools related Internet links. It has an index of all
the documents it contains and allows for keyword searches to assist the user in finding what they need. (a) The
help window as it appears when first selected, (b) help window showing an example of a page under How to Use
CVIPtools, (c) help window showing an example of C function documentation, (d) If the user scrolls down a C
function Help page, an example of usage in a CVIPlab program is included.

www.allitebooks.com

http://www.allitebooks.org

48	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(c)

(d)

FIGURE 2.3-7 (continued)
The CVIPtools help window. The help window contains information about using CVIPtools and contains docu-
mentation for the libraries and C functions, and includes CVIPtools related Internet links. It has an index of all
the documents it contains and allows for keyword searches to assist the user in finding what they need. (a) The
help window as it appears when first selected, (b) help window showing an example of a page under How to Use
CVIPtools, (c) help window showing an example of C function documentation, (d) If the user scrolls down a C
function Help page, an example of usage in a CVIPlab program is included.

Computer Imaging Systems	 49

© 2011 by Taylor & Francis Group, LLC

changing processes and parameters automatically and perform the experiments on sets
of multiple images. The CVIP-FEPC was created to explore feature extraction and pattern
classification and allow for batch processing with large image sets. The tools are accessed
via the CVIPtools toolbar as shown in Figure 2.3-1b. The primary windows for these
tools are seen in Figure 2.3-8. More on using these tools for application development is in
Chapter 12.

(a)

FIGURE 2.3-8
CVIPtools development utility main windows. (a) Computer Vision and Image Processing Algorithm Test and
Analysis Tool, CVIP-ATAT, showing the main window after a project is opened, (b) Computer Vision and Image
Processing Feature Extraction and Pattern Classification Tool, CVIP-FEPC, showing the main window with
images loaded.

50	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

2.4  Image Representation

We have seen that an imaging sensor receives an input image as a collection of spatially
distributed light energy; this form is called an optical image. Optical images are the types we
deal with everyday—cameras capture them, monitors display them, and we see them. We
have also seen that these optical images are represented as video information in the form of
analog electrical signals, and how these are sampled to generate the digital image I(r,c).

The digital image, I(r,c), is represented as a two-dimensional array of data, where each
pixel value corresponds to the brightness of the image at the point (r,c). In linear algebra
terms, a two-dimensional array like our image model, I(r,c), is referred to as a matrix, and
one row (or column) is called a vector. This image model is for monochrome (one-color,
referred to as gray-scale) image data, but we have other types of image data that require
extensions or modifications to this model. Typically, these are multiband images (color,
multispectral), and they can be modeled by a different I(r,c) function corresponding to each
separate band of brightness information. The image types we will consider are (1) binary,
(2) gray-scale, (3) color, and (4) multispectral.

2.4.1 B inary Images

Binary images are the simplest type of images, and can take on two values, typically black
and white, or “0” and “1.” A binary image is referred to as a 1-bit per pixel image, because it
takes only 1 binary digit to represent each pixel. These types of images are most frequently
used in computer vision applications where the only information required for the task is

(b)

FIGURE 2.3-8 (continued)
CVIPtools development utility main windows. (a) Computer Vision and Image Processing Algorithm Test and
Analysis Tool, CVIP-ATAT, showing the main window after a project is opened, (b) Computer Vision and Image
Processing Feature Extraction and Pattern Classification Tool, CVIP-FEPC, showing the main window with
images loaded.

Computer Imaging Systems	 51

© 2011 by Taylor & Francis Group, LLC

general shape, or outline information. Examples include positioning a robotic gripper to
grasp an object, checking a manufactured object for deformations, transmission of fac-
simile (FAX) images, or in optical character recognition (OCR).

Binary images are often created from gray-scale images via a threshold operation, where
every pixel above the threshold value is turned white (“1”), and those below it are turned
black (“0”). Although in this process much information is lost, the resulting image file is
much smaller making it easier to store and transmit. In Figure 2.4-1, we see examples of
binary images. Figure 2.4-1a is a page of text, such as might be used in an OCR application;
Figure 2.4-1b is the outline of an object; and in Figure 2.4-1c we have the results of an edge
detection operation (see Section 4.2).

2.4.2  Gray-Scale Images

Gray-scale images are referred to as monochrome, or one color, images. They contain
brightness information only, no color information. The number of bits used for each pixel

(a)

(b)

(c)

FIGURE 2.4-1
Binary images. (a) Binary text, (b) object outline, and (c) edge detection and threshold operation.

52	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

determines the number of different brightness levels available. The typical image contains
8-bit per pixel data, which allows us to have 256 (0–255) different brightness (gray) levels.
This representation provides more than adequate brightness resolution, in terms of the
human visual system’s requirements (see Chapter 7), and provides a “noise margin” by
allowing for approximately twice as many gray levels as required. This noise margin is
useful in real-world applications due to many different types of noise (false information in
the signal) inherent in real systems. Additionally, the 8-bit representation is typical due to
the fact that the byte, which corresponds to 8-bits of data, is the standard small unit in the
world of digital computers. Figure 2.4-2 shows typical gray-scale, or gray-level, images.

In applications requiring higher brightness resolution, such as medical imaging or
astronomy, 12- or 16-bit per pixel representations are used. These extra brightness levels
only become useful when the image is “blown-up”; that is, a small section of the image is
made much larger. In this case we may be able to discern details that would be missing
without this additional brightness resolution. Of course, to be useful, this also requires a
higher level of spatial resolution (number of pixels). If we go beyond these levels of bright-
ness resolution, the light energy is typically divided into different bands, where each band
refers to a specific subsection of the visible image spectrum.

2.4.3  Color Images

Color images can be modeled as three-band monochrome image data, where each band
of data corresponds to a different color. The actual information stored in the digital image
data is the brightness information in each spectral band. When the image is displayed, the
corresponding brightness information is displayed on the screen by picture elements that
emit light energy corresponding to that particular color. Typical color images are repre-
sented as red, green, and blue, or RGB images. Using the 8-bit monochrome standard as a
model, the corresponding color image would have 24-bits per pixel (bpp)—8-bits for each
of the three color bands RGB. In Figure 2.4-3a we see a representation of a typical RGB

(a) (b)

FIGURE 2.4-2
Gray-scale or gray-level images; also referred to as monochrome images. (a) and (b) These images are typically
8-bits per pixel for a total of 256 brightness values (0–255). In some applications requiring higher brightness
resolution, such as medical imaging or astronomy, 12- or 16-bit per pixel representations are used.

Computer Imaging Systems	 53

© 2011 by Taylor & Francis Group, LLC

IR(r,c) The RED band
(a)

IR(r,c) �e GREEN band

IR(r,c) �e BLUE band

FIGURE 2.4-3
Color image representation. (a) A typical color image can be thought of as three separate images: IR(r,c), IG(r,c),
and IB(r,c), one for each of the red, green, and blue color bands. (b) The three color bands combined into a single
color image. (c) A color pixel vector consists of the red, green, and blue pixel values (R,G,B) at one given row/
column pixel coordinate (r,c). (Original image courtesy of Scott R. Smith.)

54	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

color image. Figure 2.4-3b illustrates that, in addition to referring to a row or column as a
vector, we can refer to a single pixel’s RGB values as a color pixel vector (R,G,B).

For many applications, RGB color information is transformed into a mathematical space
that decouples the brightness information from the color information, this transforma-
tion is referred as a color model, a color transform, or mapping into another color space.
Once this is done the image information consists of a one-dimensional brightness, or
luminance, space and a two-dimensional color space. Now the two-dimensional color
space does not contain any brightness information, but typically contains information
regarding the relative amounts of the different colors. An additional benefit of model-
ing the color information in this manner is that creates a more people-oriented way of
describing the colors.

For example, the Hue/Saturation/Lightness (HSL) color transform allows us to describe
colors in terms that we can more readily understand (see Figure 2.4-4). The lightness (also

I(r,c): The 3 bands assembled
together to create a color image

(b)

(c)

FIGURE 2.4-3 (continued)
Color image representation. (a) A typical color image can be thought of as three separate images: IR(r,c), IG(r,c),
and IB(r,c), one for each of the red, green, and blue color bands. (b) The three color bands combined into a single
color image. (c) A color pixel vector consists of the red, green, and blue pixel values (R,G,B) at one given row/
column pixel coordinate (r,c). (Original image courtesy of Scott R. Smith.)

Computer Imaging Systems	 55

© 2011 by Taylor & Francis Group, LLC

referred to as intensity or value) is the brightness of the color, and the hue is what we nor-
mally think of as “color” (e.g., green, blue, or orange). The saturation is a measure of how
much white is in the color; for example, pink is red with more white, so it is less saturated
than a pure red. Most people can relate to this method of describing color, for example
“a deep, bright orange” would have a large intensity (“bright”), a hue of “orange,” and a
high value of saturation (“deep”). We can picture this color in our minds, but if the color is
defined in terms of its RGB components, R = 245, G = 110, and B = 20, most people would
have no idea how this color appears. Since the HSL color space was developed based on
heuristics relating to human perception, various methods are available to transform RGB
pixel values into the HSL color space. Most of these are algorithmic in nature and are geo-
metric approximations to mapping the RGB color cube into some HSL-type color space
(see Figure 2.4-5). Equations for mapping RGB to HSL are given below. These equations
assume that the RGB values are normalized to lie between 0 and 1. The normalization is
often done by dividing the RGB values by their sum, but other normalization methods are
possible; for example, dividing by the maximum of R, G, and B. The max and min values
in the equations below are, respectively, the largest and smallest of the RGB normalized
values.

	 Hue =

=

×
−
−

+ =

0

60 360

60

if max min

g b
max min

if max r� �

� ××
−
−

+ =

×
−
−

+

b r
max min

if max g

r g
max min

120

60 240

�

� � iif max b=

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

White

Black

Red
Hue

Lightness
(shades of gray)

Saturation

Full

Zero

GreenBlue

L

S

H

(a) (b)

FIGURE 2.4-4
HSL color space. (a) Schematic representation of the HSL color space, and (b) color representation of the HSL
color space.

56	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 Lightness = = +()L max min
1
2

	 Saturation =

=

−
+

=
−

0 if max min

max min
max min

max min
22

1 2

2 2 2

L
if L

max min
max min

max min
L

if L

≤

−
− +

=
−
−

/

()
>>

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

1 2/

Note that if the maximum and minimum RGB values are equal that the concepts of hue
and saturation are not meaningful because the “color” is gray—it is essentially a mono-
chrome pixel, so we set hue and saturation equal to 0. In other cases, the value of hue is
usually found modulo 360°, to lie between 0 and 360° (or 0 and 2π radians). However, in
typical image formats these values are remapped to the 8-bit range 0–255.

For Hue/Saturation/Value (HSV) color spaces the equation for hue is the same as in HSL
conversion, saturation is similar, but the value parameter, V, equation is given by the maxi-
mum of the red, green, and blue values.

Another similar color transform is the HSI, hue, saturation and intensity, color space.
Equations for mapping RGB to HSI are given below:

	 H
if B G

if B G
=

≤

− >

⎧
⎨
⎪

⎩⎪

θ

θ360
where

	 θ =
−() + −()[]

−() + −() −()⎡
⎣

⎤
⎦

−cos 1
1
2

2

R G R B

R G R G G B
11 2/

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

B

R

G

RGB color cube HSL color space

L

S
H

FIGURE 2.4-5
RGB to HSL mapping.

Computer Imaging Systems	 57

© 2011 by Taylor & Francis Group, LLC

	 S
R G B

R G B= −
+ +() ()[]1
3

min , ,

	 I
R G B

=
+ +()

3

These equations assume that the R, G, and B values are normalized to lie between 0 and
1, and θ is measured in degrees from the red axis. To convert the HSI values back into
the RGB coordinates requires consideration of three different sectors in the color space;
namely Red–Green (RG), Green–Blue (GB), and the Blue–Red sector. The following equa-
tions apply:

	 RG Sector (0° ≤ H < 120°)

	 R I
S H

H
= +

−
⎡

⎣⎢
⎤

⎦⎥
1

60
cos()

cos()�

	 G = 3I – (R + B) (note: find R and B first)

	 B = I(1 – S)

	 GB Sector (120° ≤ H < 240°)

	 R = I(1 – S)

	 G I
S H

H
= +

−
−

⎡

⎣⎢
⎤

⎦⎥
1

120
180

cos()
cos()

�

�

	 B = 3I – (R + B)

	 BR Sector (240° ≤ H ≤ 360°)

	 R = 3I – (G + B) (note: find G and B first)

	 G = I(1 – S)

	 B I
S H

H
= +

−
−

⎡

⎣⎢
⎤

⎦⎥
1

240
300

cos()
cos()

�

�

A color transform can be based on a geometrical coordinate mapping, such as the spheri-
cal or cylindrical transforms. With the spherical transform the RGB color space will be
mapped to a one-dimensional brightness space and a two-dimensional color space. The
spherical coordinate transform (SCT) has been successfully used in a color segmentation
algorithm described in Chapter 4. The equations relating the SCT to the RGB components
are as follows:

	 L R G B= + +2 2 2

58	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 ∠ = ⎡

⎣⎢
⎤

⎦⎥
−A

B
L

cos 1

	 ∠ =
∠

⎡

⎣⎢
⎤

⎦⎥
−B

R
L A

cos
sin()

1

where L is the length of the RGB vector, angle A is the angle from the blue axis to the RG
plane, and angle B is the angle between the R and G axes. Here, L contains the brightness
information and the two angles contain the color information (see Figure 2.4-6).

The cylindrical coordinate transform (CCT) is different than most color mappings
because it does not completely decouple brightness from color information. With this
transform we can align the z-axis along the R, G, or B axis of choice; this choice will be
application dependent. The cylindrical coordinates are found as follows, assuming the
z-axis aligned along the blue axis:

	 z = B

	 d R G= +2 2

	 θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 G
R

The CCT may be useful in applications where one of the RGB colors is of primary impor-
tance, since it can be mapped directly to the z component, and the ratio of the other two is
significant. Here, the brightness information is now contained in the d and z coordinates,
while the color information is still distributed across all three components, but in a dif-
ferent manner than with the original RGB data. This is illustrated in Figure 2.4-7, where
we can see that θ is related to hue in the RG plane, and d is related to the saturation in the
RG plane.

One problem associated with the color spaces previously described is that they are
not perceptually uniform. This means that two different colors in one part of the color
space will not exhibit the same degree of perceptual difference as two colors in another

Blue(a) (b)

Red

Green

Blue

Green

Red

Angle A

Angle B

L

FIGURE 2.4-6
Spherical coordinate transform (SCT). (a) The SCT separates the red, green, and blue information into a 2-D color
space defined by angles A and B, and a 1-D brightness space defined by L, and (b) a color pixel vector (R,G,B).

Computer Imaging Systems	 59

© 2011 by Taylor & Francis Group, LLC

part of the color space, even though they are the same “distance” apart (see Figure 2.4-8).
Therefore, we cannot define a metric to tell us how close, or far apart, two colors are in
terms of human perception. In computer imaging applications a perceptually uniform
color space could be very useful. For example, if we are trying to identify objects for a com-
puter vision system by color information, we need some method to compare the object’s
color to a database of the colors of the available objects. Or if we are trying to develop a
new image compression algorithm, we need a way to determine if we can map one color to
another without losing significant information.

Blue

Green

Red

(R, G, B)

θ
d

FIGURE 2.4-7
Cylindrical coordinates transform.

H

L

S

HSL color
space

B

∆AB
∆CD

C D

Α

FIGURE 2.4-8
Color perception. Color A may be green and color B may be orange. Colors C and D may be slightly different
shades of green, but ΔCD = ΔAB. In this case, we have two pair of colors with the same “color difference,” but
the perceptual difference is much greater for one pair than the other.

60	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The science of color and how the human visual system perceives color has been stud-
ied extensively by an international body, the Commission Internationale de l’Eclairage (CIE).
The CIE has defined internationally recognized color standards. One of the basic concepts
developed by the CIE involves chromaticity coordinates. For our RGB color space, chroma-
ticity coordinates are defined as follows:

	 r
R

R G B
=

+ +

	 g
G

R G B
=

+ +

	 b
B

R G B
=

+ +

These equations basically normalize the individual color components to the sum of the
three, which we have seen is one way to represent the brightness information. This decou-
ples the brightness information from the coordinates, and the CIE uses chromaticity coor-
dinates as the basis of the color transforms they define. These include the standard CIE
XYZ color space (related to the tristimulus curves discussed in Chapter 7), and the percep-
tually uniform L*u*v*, L*a*b* color spaces. The science of color and human perception is a
fascinating topic and can be explored in greater depth with the references.

Another important international committee for developing standards of interest to
those involved in computer imaging is the International telecommunications Union
Radio (ITU-R, previously CCIR). This committee has specified the standard for digital
video known as ITU-R 601. This standard is based on one luminance signal (Y) and two
color difference signals (Cr and Cb). Given a 24-bit RGB signal, we can find the Y, Cr, and
Cb values as follows:

	

Y R G B

Cb B Y

= + +

= −

0 299 0 587 0 114

0 564

. . .

. () ++ = − − + +

=

128 0 1687 0 3313 0 5 128

0

. . .

.

R G B

Cr 7713 128 0 5 0 4187 0 0813 1() . . .R Y R G B− + = − − + 228

The 128 offset factor is included here to maintain the data range of [0–255] for 8-bit per
color band data. This transform is used in many color image compression algorithms, such
as MPEG and JPEG, implemented in both hardware and software. This transform is also
called YUV encoding and is defined as follows:

	

Y R G B

U B Y

V R

= + +

= −

=

0 299 0 587 0 114

0 493

0 877

. . .

. ()

. (−−Y)

Note that the 128 offset value for U and V can be added to these equations, if desired.
All the previous color transforms are based on an additive color model such as RGB,

where we consider adding red, green, or blue light to a black background. For color

Computer Imaging Systems	 61

© 2011 by Taylor & Francis Group, LLC

printing a subtractive color model is used. Here, we consider subtracting cyan, magenta,
or yellow (CMY) from white, such as printing on white paper illuminated by white light.
The model for white light is that it consists of RGB. The CMY conversion from RGB is
defined as follows (these equations assume that the RGB values are normalized to the
range of 0–1):

	

C R

M G

Y B

= −

= −

= −

1

1

1

Cyan absorbs red light, magenta absorbs green, and yellow absorbs blue. Thus, to print a
normalized RGB triple that appears green, (0,1,0), we would use CMY (1,0,1). For this exam-
ple the cyan will absorb the red light and the yellow absorbs the blue light, leaving only the
green light to be reflected and seen. Also, to print black we print all three (CMY) inks, and
all the components of white light, RGB, will be absorbed. In practice, this produces a poor
looking black, so black ink is added to the printing process leading to a four-color printing
system, called CMYK.

The final color transform we will discuss is called the principal components transform
(PCT). This mathematical transform allows us to apply statistical methods to put as much
of the three-dimensional color information as possible into only one band. This process
decorrelates the RGB data components. The PCT works by examining all the RGB vectors
within an image and finding the linear transform that aligns the coordinate axes so that
most of the information is along one axis, the principal axis. Often, we can get 90% or more
of the information into one band. The PCT is used in image segmentation and compres-
sion schemes (see Chapters 4 and 10), and the mathematical details of the transform are
discussed in more detail in Chapter 5.

2.4.4  Multispectral Images

Multispectral images typically contain information outside the normal human perceptual
range, as discussed in Section 2.2.2. They may include IR, UV, x-ray, or other bands in the
EM spectrum. These are not images in the usual sense, since the information represented
is not directly visible by the human visual system. However, the information is often rep-
resented in visual form by mapping the different spectral bands to RGB components. If
more than three bands of information are in the multispectral image, the dimensionality
is reduced for display by applying a PCT (see Chapter 5).

Sources for these types of images include: satellite systems, underwater sonar systems,
various types of airborne radar, IR imaging systems, and medical diagnostic imaging sys-
tems. The number of bands into which the data are divided is strictly a function of the
sensitivity of the imaging sensors used to capture the images. For example, even the visible
spectrum can be divided into many more than three bands; three are used because this
mimics the human visual system. The older satellites currently in orbit collect image infor-
mation in two to seven spectral bands; typically one to three are in the visible spectrum and
one or more in the IR region, and some have sensors that operate in the microwave range.
The newest satellites have sensors that collect image information in 30 or more bands.
For example, the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging
Spectrometer (AVRIS) collects information in 224 spectral bands covering the wavelength

62	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

region from 0.4 to 2.5 μm. As the amount of data that needs to be transmitted, stored, and
processed increases, the importance of topics such as compression becomes more and more
apparent.

2.4.5 D igital Image File Formats

Why do we need so many different types of image file formats? The short answer is that
there are many different types of images and applications with varying requirements. A
more complete answer (which we will not go into here) also considers market share, pro-
prietary information, and a lack of coordination within the imaging industry. However,
there have been some standard file formats developed, and the ones presented here are
widely available. Many other image types can be readily converted to one of the types
presented here by easily available image conversion software.

A field related to computer imaging is that of computer graphics. Computer graphics is
a specialized field within the computer science realm that refers to the reproduction of
visual data through the use of the computer. This includes the creation of computer images
for display or print, and the process of generating and manipulating any images (real or
artificial) for output to a monitor, printer, camera, or any other device that will provide us
with an image. Computer graphics can be considered a part of computer imaging, insofar
as many of the same tools the graphics artist uses may be used by the computer imaging
specialist.

In computer graphics, types of image data are divided into two primary categories: bit-
map and vector. Bitmap images (also called raster images) can be represented by our image
model, I(r,c), where we have pixel data and the corresponding brightness values stored in
some file format. Vector images refers to methods of representing lines, curves, and shapes
by storing only the key points. These key points are sufficient to define the shapes, and
the process of turning these into an image is called rendering. Once the image has been
rendered, it can be thought of as being in bitmap format, where each pixel has specific
values associated with it.

Most of the types of file formats discussed fall into the category of bitmap images,
although some are compressed, so the I(r,c) values are not directly available until the file
is decompressed. In general, these types of images contain both header information and
the pixel data itself. The image file header is a set of parameters normally found at the start
of the file and must contain information regarding: (1) the number of rows (height), (2) the
number of columns (width), (3) the number of bands, (4) the number of bpp, and (5) the file
type. Additionally, with some of the more complex file formats, the header may contain
information about the type of compression used and any other necessary parameters to
create the image, I(r,c).

The simplest file formats are the BIN and the PPM file formats. The BIN format is simply
the raw image data, I(r,c). This file contains no header information, so the user must know
the necessary parameters—size, number of bands, and bpp—to use the file as an image.
The PPM formats are widely used and a set of conversion utilities are freely available
(pbmplus). They basically contain raw image data with the simplest header possible. The
PPM format includes: PBM (binary), PGM (gray scale), PPM (color), and PNM (handles
any of the previous types). The headers for these image file formats contain a “magic
number” that identifies the file type, the image width and height, the number of bands,
and the maximum brightness value (which determines the required number of for each
band).

Computer Imaging Systems	 63

© 2011 by Taylor & Francis Group, LLC

The Microsoft Windows bitmap (BMP) format is commonly used today in Windows-
based machines. Most imaging and graphics programs in this environment support the
BMP format. This file format is fairly simple, with basic headers followed by the raw image
data. Another commonly used format is JPEG. This file format is capable of high degrees
of image compression, so is typically used on the Internet to reduce bandwidth require-
ments—meaning you don’t need to wait forever for images to appear. JPEG files come in
two main varieties, the original JPEG and the newer JPEG2000. The JPEG2000 file format
provides higher compression ratios, while still maintaining high quality images, but is not
used as often due to its higher decompression time.

Two image file formats commonly used on many different computer platforms, as well
as on the Internet, are the TIFF (Tagged Image File Format) and GIF (Graphics Interchange
Format) file formats. GIF files are limited to a maximum of 8 bpp, and allow for a type of
compression called LZW (Lempel-Ziv-Welch, see Chapter 10). The 8 bpp limitation does
not mean it does not support color images, it simply means that no more than 256 colors
(28) are allowed in an image. This is typically implemented by means of a look-up-table
(LUT), where the 256 colors are stored in a table, and one byte (8 bits) is used as an index
(address) into that table for each pixel (see Figure 2.4-9). The concept of LUT-based images
is also referred to palette-based images. The GIF image header is 13 bytes long, and con-
tains the basic information required.

Red8-Bit index

R0

R1

R2

R254

One byte is stored for each pixel in I(r, c). when displayed
this 8-bit value is used as an index into the LUT, and the
corresponding RGB values are displayed for that pixel.

R255

G254

G255

B254

B255

0

254

1

2

G0

G1

G2

B0

B1

B2

Green Blue

255

FIGURE 2.4-9
Look-up table (LUT)

64	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The TIFF file format is more sophisticated than GIF, and has many more options and
capabilities. TIFF files allow a maximum of 24 bpp, and support five types of compression,
including RLE (run length encoding), LZW, and JPEG (see Chapter 10). The TIFF header
is of variable size and is arranged in a hierarchical manner. The TIFF format is one of the
most comprehensive formats available and is designed to allow the user to customize it for
specific applications.

Two formats that were initially computer-specific, but became commonly used through-
out the industry, are the Sun Raster and the SGI (Silicon Graphics, Inc) file formats. As the
Windows operating system has become more prevalent in the imaging industry, these two
file formats are being used less often. The SGI format handles up to 16 million colors and
supports RLE compression. The Sun Raster format is defined to allow for any number of
bpp and also supports RLE compression.

PNG, portable network graphics, is a file format that supports LUT type images (1, 2,
4, 8-bit) like GIF, as well as full 24-bit color like TIFF. It provides direct support for color
correction, which theoretically allows an image to look the same on different computer
systems—although in practice this is quite difficult to achieve. The PICT format is unique
to the Macintosh computer system, which is widely used in many imaging applications. It
allows for both vector and bitmap images. The newer version of the operating system for
Macintosh, Mac OS X, uses the PDF (Portable Document Format) format. One of the file
formats developed specifically for digital cameras is FlashPix format, FPX. This format
was originally developed by Kodak, but has become used in digital cameras due to the
creation of a consortium consisting of Kodak, Adobe, Canon, Fuji, Hewlett-Packard, IBM,
Intel, Live Picture, and Microsoft.

One file format discussed here, EPS (encapsulated PostScript), is not of the bitmap vari-
ety. It is actually a language that supports more than images, and is commonly used in
desktop publishing. EPS is directly supported by many printers (in the hardware itself),
so is commonly used for data interchange across hardware and software platforms. It is
a commonly used standard that allows output devices, monitors, printers, and computer
software to communicate regarding both graphics and text. The primary advantage of the
EPS format is its wide acceptance. The disadvantage of using EPS is that the files are very
big, since it is a general purpose language designed for much more than just images. In
computer imaging, EPS is used primarily as a means to generate printed images. The EPS
files actually contain text and can be created by any text editor, but are typically generated
by applications software. The language itself is very complex and continually evolving.

The final image file type discussed here is the VIP (Visualization in Image Processing) for-
mat, developed specifically for the CVIPtools software. When performing computer imag-
ing tasks, temporary images are often created that use floating point representations that are
beyond the standard 8-bpp capabilities of most display devices. The process of represent-
ing this type of data as an image is referred to as data visualization, and can be achieved by
remapping the data to the 8-bit range, 0–255. Remapping is the process of taking the original
data and defining an equation to translate the original data to the output data range, typi-
cally 0–255 for 8-bit display. The two most commonly used methods in computer imaging
are linear and logarithmic mapping. In Figure 2.4-10 we see a graphical representation and
example of how this process is performed. In this example the original data ranges from
–200 to 440. An equation is found that will map the lowest value (–200)–0 and the highest
value (440)–255, while all the intermediate values are remapped to values within this range
(0–255). We can see that this process may result in a loss of information.

The VIP file format was required since we needed to support many nonstandard image
formats. This format was defined to allow disk file support for the image data structure

Computer Imaging Systems	 65

© 2011 by Taylor & Francis Group, LLC

used within the CVIPtools software (see Chapter 11). It allows any data type, includ-
ing floating point and complex numbers, any image size, any number of bands, and has
a special history data structure built into it that allows the maintenance of a record of
operations that have been performed on the image. More details on the VIP format are
included in Section IV of the book, Programming and Application Development with
CVIPtools.

2.5  Key Points

IMAGING SYSTEMS

Two primary components: hardware and software
Hardware: image acquisition subsystem, computer, display devices
Software: allows for image manipulation, analysis, and processing

Digital camera interface: USB, FireWire, Camera Link, or Gigabit Ethernet
Frame grabber: special purpose piece of hardware that converts an analog video

signal into a digital image
RS-170A/RS-330/RS-343A: monochrome video standards used in North America
NTSC: color video standard used in North America
CCIR or PAL: color video standards used in northern Europe
SECAM: color video standard used in France and Russia, a CCIR equivalent
Frame: one screen of video information
Field: alternating lines of video information creating one-half of a frame in interlaced

video

–200 440

Original data range

0 255Remapped data range

FIGURE 2.4-10
Remapping for display. Original data ranges outside the bounds of a standard image. It is remapped to the 8-bit
range from 0 to 255.

66	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Interlaced video: two-fields-per-frame video, used in television and video cameras
Noninterlaced video: one field per frame video, used in computer monitors
Horizontal synch pulse: control signal in the video signal that occurs between each

line of video information
Vertical synch pulse: control signal in the video signal that occurs between each

field or frame of video information
Digital television (DTV): two main categories: standard definition television (SDTV)

and high definition television (HDTV)
HDTV standard formats: 720p operates in progressive scan mode is 1280 columns

by 720 rows (lines); 1080i is 1920 × 1080 in interlaced mode
Aspect ratio: width to height ratio of the display device (Figure 2.1-4). SDTV uses a

4:3 aspect ratio, HDTV standards specifies a 16:9 aspect ratio. Aspect ratio of 35
mm film cameras is 3:2, and standard digital cameras typically use 3:2 or 4:3.

I(r,c): a two-dimensional array of data, the digital image function, a matrix where the
brightness of the image at the point (r,c) is given, with r = row and c = column

Image brightness: depends on both lighting conditions and the intrinsic object
properties

Hierarchical image pyramid: describes the various levels for processing of images
(see Figure 2.1-5)

IMAGE FORMATION AND SENSING

Sensor: a device to measure a signal which can be converted into a digital image
Electromagnetic spectrum: electromagnetic signals which, at various wavelengths,

consists of gamma rays, x-rays, ultraviolet light, visible light, infrared, microwaves,
and radio waves, and can be measured by sensors to produce images

Photon: massless particles that correspond to the minimum amount of energy, the
quantum, which can be measured in the EM signal

Range image: created by radar, sonar, or lasers to produce an image that depicts
distance as brightness

Image formation: two key components: (1) where will the image point appear (the
row and column coordinates) and (2) what value will be assigned to that point (the
brightness value)

Optics: the physics of light and the study of lenses, required to determine where an
image point appears

Reflectance function: the way in which an object reflects light
Irradiance: the amount of light energy falling on a surface, measured by a sensor to

create an image
Radiance: the amount of light energy emitted, or reflected, from an object into a solid

unit angle
Lens: necessary to focus light in an imaging system
Lens equation: 1/a + 1/b = 1/f

Blur equation: c d b b b= ʹ − ʹ/ | |
Depth of field: range of distances over which an object is focused sufficiently well

Computer Imaging Systems	 67

© 2011 by Taylor & Francis Group, LLC

Field of view (FOV): angle of the cone of directions from which the device will cre-
ate the image

Lens types: normal, telephoto, and wide-angle
Charge-coupled device (CCD): sensor used in digital cameras for imaging
Complementary metal-oxide-semiconductor (CMOS) device: sensor used for imag-

ing; image quality not as good as CCD, but cheaper and requires less power
Quantum efficiency [q(λ)]: the ratio of the electron flux produced to the incident pho-

ton flux
Sensor equation: N A t b q d= ∫δ δ λ λ λ() ()
Dark current: thermally induced electrons, not from impinging photons, problem in

low light applications, nitrogen-cooling in applications requiring extremely pre-
cise measurements

Photon noise: random nature of photonic emission specified by the quantum prop-
erties of light energy, related to the square root of the signal

Imaging outside of visible EM spectrum: used in medicine, astronomy, microscopy,
satellite imaging, military, law enforcement, and industrial applications

Thermographic imaging: infrared imaging as a diagnostic aid for medical profes-
sionals, an active research area, it is believed thermographic patterns can be used
in the diagnosis of various pathologies (diseases) in both animals and humans

Acoustic imaging: measures reflected sound waves, applications in medicine, mili-
tary, geology, and manufacturing

Electron imaging: using a focused beam of electrons to magnify up to two hundred
thousand times

Laser imaging: used to create range images
CVIPtools: a comprehensive computer imaging software package to allow for the

exploration of image processing and analysis functions, including algorithm
development for applications

IMAGE REPRESENTATION

Optical image: a collection of spatially distributed light energy to be measured by an
image sensor to generate I(r,c)

Binary image: a simple image type that can take on two values, typically black and
white, or “0” and “1”

Gray-scale image: one-color or monochrome image that contains only brightness
information, no color information

Color image: modeled as a three-band monochrome image; the three bands are typi-
cally red, green, and blue, or RGB

Color pixel vector: a single pixel’s values for a color image (R,G,B)
Color transform/color model: a mathematical method or algorithm to map RGB data

into another color space, typically to decouple brightness and color information
HSL (Hue/Saturation/Lightness): a color transform that describes colors in terms

that we can easily relate to the human visual system’s perception, where hue is the
“color,” for example red or yellow, saturation is the amount of white in the color,
and lightness is the brightness

68	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

HSV (Hue/Saturation/Value): similar to HSL, but Value is the maximum of (R,G,B)
HSI (Hue/Saturation/Intensity): similar to HSL, but Intensity is average of (R,G,B)
SCT (spherical coordinate transform): maps the color information into two angles,

and the brightness into the color vector length
CCT (cylindrical coordinate transform): does not completely decouple color and

brightness, unlike most color transforms, definition tends to be application specific
Chromaticity coordinates: normalizes RGB values to the sum of all three
CIE L*u*v*/CIE L*a*b*: perceptually uniform color spaces defined by the Commission

Internationale de l’Eclairage (CIE), the international standards group for color
science

YUV/YcbCr: linear transforms of RGB data used in compression algorithms, Y is the
luminance, and the other two are color difference signals

CMY (Cyan, Magenta, Yellow)/CMYK: color transforms based on a subtractive
model, used for color printing; K is added when a separate ink is used for black

PCT (principal components transform): decorrelates RGB data by finding a linear
transform using statistical methods to align the coordinate axes along the path of
maximal variance in the data

Multispectral image: images of many bands containing information outside of the
visible spectrum

DIGITAL IMAGE FILE FORMATS

Bitmap images: images we can represent by our model, I(r,c), also called raster images
Vector images: artificially generated images by storing only mathematical descrip-

tions of geometric shapes using key points

Rendering: the process of changing a vector image into a bitmap image
Image file header: a set of parameters normally found at the start of the image file

and must contain information regarding: (1) the number of rows (height), (2) the
number of columns (width), (3) the number of bands, (4) the number of bits per
pixel (bpp), and (5) the file type; additional information may be included

Common image file formats: BIN, PPM, PBM, PGM, BMP, JPEG, JPEG2000, TIFF,
GIF, RAS, SGI, PNG, PICT, PDF, FPX, EPS, VIP

LUT: look up table, used for storing RGB values for 8-bit color images

Exercises

Problems

	 1.	What are the two types of components in a computer imaging system?
	 2.	Name four types of video camera interfaces.
	 3.	Describe how a frame grabber works.
	 4.	What is a sensor? How are they used in imaging systems?

Computer Imaging Systems	 69

© 2011 by Taylor & Francis Group, LLC

	 5.	What is a range image? How are they created?
	 6.	What is a reflectance function? How does it relate to our description of object

characteristics?
	 7.	Describe the difference between radiance and irradiance.
	 8.	What is a photon? What does CCD stand for? What is quantum efficiency?
	 9.	Show that the focal length of a lens can be defined by the distance from the lens at

which an object at infinity is focused.
	 10.	Find the number of electrons liberated in a sensor if:

irradiation = 600λ photons/(second)nm2

quantum efficiency of device = 0.95
area = 20 nm2

time period = 10 milliseconds
the photon flux is bandlimited to visible wavelengths
Is this a solid state device? Explain.

	 11.	A video frame is scanned in 1/30 of a second, using interlaced scanning. If we
have 480 lines of interest, and 640 pixels per line, at what rate must we perform the
analog to digital conversion? (ignore synch pulse time)

	 12.	Which band in the electromagnetic spectrum has the most energy? Which has the
least energy? What significance does this have to human life?

	 13.	Name some applications for UV and IR imaging.
	 14.	How does acoustic imaging work? What is it used for?
	 15.	How does an electron microscope differ from a standard light microscope?
	 16.	What are two methods for lasers to create depth maps?
	 17.	What is an optical image? How are they used to create digital images?
	 18.	What is the difference between a “real” image and a computer-generated

image?
	 19.	Discuss advantages and disadvantages of binary, gray-scale, color, and multispec-

tral images.
	 20.	Why would we transform a standard color image consisting of RGB data into

another color space? Describe the HSL color space.
	 21.	What does it mean when we say a color space is not perceptually uniform? Name

a color space that is perceptually uniform.
	 22.	Find the inverse equations for the SCT and the CCT.
	 23.	Describe the color spaces used in printing. If we had a 24-bit color pixel (R,G,

B) = (100, 50, 200), what amounts of cyan, magenta, and yellow would our printer
print?

	 24.	Describe the difference between a bitmap and a vector image.
	 25.	Name the elements required in an image file header.
	 26.	Name the image file type used by CVIPtools. Why did we not use a standard file

type, such tiff or gif? Why do we sometimes remap image data?
	 27.	Run the CVIPtools software and load a color image. Experiment. Have fun.

70	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Programming Exercises

Introduction to CVIPlab

	 1.	Review the first two sections of Chapter 11, Sections 11.1 and 11.2, to become famil-
iar with the CVIPlab C functions.

	 2.	Review Section 11.3 and compile the CVIPlab.c and threshold_lab.c functions.
	 3.	Run CVIPlab, select menu choice 2, threshold, and experiment with various thresh-

old values.
	 4.	Edit the CVIPlab.c program to include your name in the header. Study the CVIPlab.c

file and understand how this program is organized and how the threshold func-
tion works. In particular, learn how images are read, written, and manipulated.
The functions for the following progamming exercises are to be added to the
CVIPlab program.

	 5.	Run the CVIPtools program. Next open the desired images with the file open icon
near the top left of the main window. Select Utilities, then select the Convert/Binary
Threshold option. Use this to compare results to your CVIPlab threshold program
to verify correctness. You can use the Utilities→ Compare option. At the end of this
exercise you should understand the CVIPlab environment and be able to write
functions by using the threshold function as a prototype.

Supplementary Exercises

Supplementary Problems

	 1.	Draw a picture and write the equations that shows the blur equation is given by

	 c
d
b

b b= −
'
| '|

	 2.	 (a) Show that the f-number of a lens can be increased by placing a variable size
aperture in front of the lens and, (b) that the image brightness will be inversely
proportional to the f-number squared. Hint: Consider how light energy is mea-
sured related to the surface area of the sensor.

	 3.	 (a) Find the approximate number of electrons liberated in a sensor if:
irradiation = λ/(5λ + 8)2 photons/(second)nm2

quantum efficiency of device = 0.8
area = 1000 nm2

time period = 10 seconds
the photon flux is bandlimited to visible wavelengths

	 (b)	Is this a solid state device? Explain.
	 4.	An imaging system has a lens with a diameter of 50 mm and a focal length of

10 mm. The system is setup so that objects at a distance of 3.0 meters are correctly
focused. Quantitatively and qualitatively describe how an object at 2.0 meter

Computer Imaging Systems	 71

© 2011 by Taylor & Francis Group, LLC

appears in the image. Assume that the imaging device is a CCD with round pixel
elements that have a 0.1 mm diameter.

	 5.	Consider the imaging situation in the figure. Find a and b so that a 50 mm focal
length lens will correctly focus the object onto the image plane.

Image Plane Lens Object

| L O
| L O
| L O
| L O
|←------- a -----------→ L ←--- b -----→O
|←-----------------200 mm--------------→ 

	 6.	Given an image with a data range of –333 to 577, at what gray level will the
CVIPtools viewer display the following values: (a) –333, (b) 577, (c) 455?

	 7.	An imaging system has a lens with a diameter of 100 mm and a focal length of
10 mm. The system is setup so that objects at a distance of 4.0 meters are correctly
focused. Quantitatively and qualitatively describe how an object at 3.0 meter
appears in the image. Assume that the imaging device is a CCD with round pixel
elements that have a 0.075 mm diameter.

Supplementary Programming Exercises

Graphical User Interface

	 1.	Put a GUI (Graphical User Interface) on the CVIPlab program.
	 2.	Allow the user to vary parameters of the imaging functions via the GUI and have

the image results displayed in (almost) real-time. For example, use sliders to vary
parameters

Color Space Conversion

	 1.	Write a function to perform color space conversion. Include forward and inverse
transforms for HSL, SCT, and CCT. Add this to your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools using Utilities→
Convert→ Color Space. Are the results the same? Why or why not?

	 3.	Research the CIE color spaces, and implement the L*u*v* and L*a*b* color conversion
functions.

	 4.	Compare your results to those obtained with CVIPtools using Utilities→
Convert→ Color Space. Are the results the same? Why or why not?

Image Viewer

	 1.	Write your own image viewer to use in CVIPlab. Model it on the CVIPtools
viewer.

	 2.	 Integrate the viewer with the image processing functions so that the user can vary
parameters in real-time and the image will be updated accordingly.

72	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

References

Baxes, G. A., Digital Image Processing: Principles and Applications, New York, NY: Wiley, 1994.
Bell, T. E., Remote Sensing, IEEE Spectrum, March 1995, 25–31.
Blundell, B., An Introduction to Computer Graphics and Creative 3-D Environments, New York, NY:

Springer, 2008.
Burdick, H. E., Digital Imaging: Theory and Applications, New York, NY: McGraw-Hill, 1997.
Burger, W., and Burge, M. J., Digital Image Processing: An Algorithmic Introduction Using Java, New

York, NY: Springer, 2008.
Davies, E. R., Machine Vision, 3rd ed., San Francisco, CA: Morgan-Kaufmann, 2005.
Durrett, H. J., ed., Color and the Computer, San Diego, CA: Academic Press, 1987.
Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F., Computer Graphics: Principles and Practice in

C, Reading, MA: Addison-Wesley, 1995.
Forsyth, D. A., and Ponce, J., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2003.
Giorgianni, E. J., and Madden, T. E., Digital Color Management: Encoding Solutions, Reading, MA:

Addison-Wesley, 1998.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, 3rd ed., Upper Saddle River, NJ: Pearson/

Prentice Hall, 2008.
Hill, F. S., Computer Graphics, New York, NY: Macmillan, 1990.
Horn, B. K. P., Robot Vision, Cambridge, MA: The MIT Press, 1986.
Jack, K., Video Demystified: A Handbook for the Digital Engineer, 3rd ed., San Diego, CA: HighText

Interactive, 1996.
Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ: Prentice Hall, 1989.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Kummer, S., The Eye of the Law, OE Magazine, October 2003, 22–25.
Lee, H., Introduction to Color Imaging Science, Cambridge, UK: Cambridge University Press, 2009.
Murray, J. D., and VanRyper, W., Encyclopedia of Graphics File Formats, Sebastopol, CA: O’Reilly and

Associates, 1994.
Myler, H. R., and Weeks, A. R., Computer Imaging Recipes in C, Englewood Cliffs, NJ: Prentice Hall, 1993.
Orzessek, M., and Sommer, P., ATM and MPEG-2: Integrating Digital Video into Broadband Networks,

Upper Saddle River, NJ: Prentice Hall PTR, 1998.
Parker, J. R., Algorithms for Image Processing and Computer Vision, New York, NY: Wiley, 1997.
Poynton, C., Digital Video and HDTV Algorithms and Interfaces, Morgan Kahfmann, 2003.
Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 1992.
Sanchez, J., and Canton, M. P., Space Image Processing, Boca Raton, FL: CRC Press, 1999.
Seul, M., O’Gorman, L., Sammon, M. J., and O’Gorman, L., Practical Algorithms for Image Analysis with

CD-ROM, Cambridge, UK: Cambridge University Press, 2008.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, Englewood Cliffs, NJ:

Prentice Hall, 1995.
Taubman, D., and Marcellin, M., JPEG2000: Image Compression Fundamentals, Standards and Practice,

Boston, MA: Kluwer Academic Publishers, 2002.
Tekalp, A. M., Digital Video Processing, Englewood Cliffs, NJ: Prentice Hall, 1995.
Trussell, H. J, and Vrhel, M. J., Fundamentals of Digital Imaging, Cambridge, UK: Cambridge University

Press, 2008.
Watt, A., and Policarpo, F., The Computer Image, New York, NY: Addison-Wesley, 1998.
West, M. H., Barsley, R. E., Frair, J., and Hall, F., Reflective Ultraviolet Imaging System (RUVIS) and

the Detection of Trace Evidence and Wounds on Human Skin. Journal of Forensic Identification
40, no. 5 (1990): 249–55.

Wyszecki, G., and Stiles, W. S., Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd
Edition, New York, NY: Wiley, 2000

Computer Imaging Systems	 73

© 2011 by Taylor & Francis Group, LLC

Further Reading

More information can be found on imaging in the various EM spectral bands and on
image acquisition devices in Gonzalez and Woods (2008), Shapiro and Stockman (2001),
and Sanchez and Canton (1999). Gonzalez and Woods (2008) and Jain (1989) have more
details regarding computed tomography. Laser-based range images are discussed in more
detail in Forsyth and Ponce (2003), Russ (1992), and Gonzalez/Woods (2008) contains infor-
mation regarding electron imaging. For further study of satellite imaging, see Sanchez and
Canton (1999), Bell (1995), and for more information on UV and IR imaging in law enforce-
ment see Kummer (2003) and West et al. (1990). More on lenses and optics can be found in
Forsyth and Ponce (2003), Horn (1986), and Jain, Kasturi, and Schnuck (1995). More infor-
mation on input and output devices for imaging can be found in Trussell and Vrhel (2008),
Davies (2005), and Burdick (1997).

For further study of digital video processing, see Orzessek and Sommer (1998), Tekalp
(1995), and Sid-Ahmed (1995). Tekalp (1995) has much information on motion estimation
methods not available in other texts. For details on video standards and hardware see Jack
(1996), and Poynton (2003). For further study regarding color see Lee (2009), Trussell and
Vrhel (2008), Wyszecki and Stiles (2000), Giorgianni and Madden (1998), and Durrett (1987).
For more information on JPEG2000, see Taubman and Marcellin (2002). For further study
on computer-generated images see Blundell (2008), Watt and Policarpo (1998), Foley et al.
(1995), and Hill (1990).

For other sources of software see Burger and Burge (2008), Seul et al. (2008), Parker (1997),
Myler and Weeks (1993), Baxes (1994), and Sid-Ahmed (1995). Also, the CVIPtools homep-
age (www.ee.siue.edu/CVIPtools) has useful Internet links. Additionally, the Computer
Vision Homepage, sponsored by Carnegie Mellon University (www.cs.cmu.edu/~cil/
vision.html) is a great resource for imaging software available on the Internet. Two excel-
lent sources for information on image and graphics file formats, which include code, are
Burdick (1997) and Murray and VanRyper (1994).

© 2011 by Taylor & Francis Group, LLC

Section II

Digital Image Analysis
and Computer Vision

77© 2011 by Taylor & Francis Group, LLC

3
Introduction to Digital Image Analysis

3.1  Introduction

Digital image analysis is a key factor in solving any computer imaging problem. Acquisition
of a sample image database and examination of these images for the application is the
first step in development of an imaging solution. Image analysis involves manipulating the
image data to determine exactly the information required to develop the computer imag-
ing system. The solution to the problem may require use of existing hardware, software,
or may require development of new algorithms and system designs. The image analysis
process helps to define the requirements for the system being developed. This analysis is
typically part of a larger process, is iterative in nature, and allows us to answer applica-
tion-specific questions such as, How much spatial and brightness resolution is needed?
Will existing methods solve the problem? Is color information needed? Do we need to
transform the image data into the frequency domain? Do we need to segment the image to
find object information? What are the important features in the images? Is the hardware
fast enough for the application?

3.1.1 O verview

Image analysis is primarily a data reduction process. As we have seen, images contain
enormous amounts of data, typically on the order of hundreds of kilobytes, megabytes
or even gigabytes. Often much of this information is not necessary to solve a specific
imaging problem, so a primary part of the image analysis task is to determine exactly
what information is necessary. With many applications the determining factor in the fea-
sibility of system development are the results of the preliminary image analysis. Image
analysis is used in the development of both computer vision and human vision imaging
applications.

For computer vision, the end product is typically the extraction of high level information
for computer analysis or manipulation. This high level information may include shape
parameters to control a robotic manipulator, terrain analysis to enable a vehicle to navi-
gate on mars, or color and texture features to help in the diagnosis of a skin tumor. Image
analysis is central to the computer vision process and is often uniquely associated with
computer vision; however, image analysis is an important tool for human vision applica-
tions as well.

In human vision applications, image analysis methods may be used to help determine
the type of processing required and the specific parameters needed for that processing. For
example, developing an enhancement algorithm (Chapter 8), determining the degradation

78	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

function for an image restoration procedure (Chapter 9), and determining exactly what
information is visually important for an image compression method (Chapter 10) are all
image analysis tasks. In this chapter we present the system model for the image analysis
process, preprocessing methods, and a simple example of image analysis using binary
images.

3.1.2  System Model

The image analysis process, illustrated in Figure 3.1-1, can be broken down into three pri-
mary stages: (1) Preprocessing, (2) Data Reduction, and (3) Feature Analysis. Preprocessing
is used to remove noise, and eliminate irrelevant, visually unnecessary information. Noise
is unwanted information that can result from the image acquisition process. Other pre-
processing steps might include gray level or spatial quantization (reducing the number of
bits per pixel or the image size), or finding regions of interest for further processing. The
second stage, data reduction, involves either reducing the data in the spatial domain and/
or transforming it into another domain called the frequency domain (Figure 3.1-2) and
then extracting features for the analysis process. In the third stage, feature analysis, the
features extracted by the data reduction process are examined and evaluated for their use
in the application.

A more detailed diagram of this process is shown in Figure 3.1-3. After preprocessing
we can perform segmentation on the image in the spatial domain (Chapter 4) or convert it
into the frequency domain via a mathematical transform (Chapter 5). Note the dotted line
between segmentation and the transform block; this is for extracting spectral features on
segmented parts of the image. After either of these processes we may choose to filter the
image. This filtering process further reduces the data and allows us to extract the features
that may be required for analysis. After the analysis, we have a feedback loop that pro-
vides for an application-specific review of the analysis results. This approach often leads to
an iterative process that is not complete until satisfactory results are achieved. The applica-
tion feedback loop is a key aspect of the entire process.

Input
image

Pre-
processing

Data
reduction

Feature
analysis

Figure 3.1-1
Image analysis.

Input
image

Pre-
processing

Frequency
(spectral)
domain

Feature
analysis

Spatial
domain

Figure 3.1-2
Image analysis domains.

Introduction to Digital Image Analysis	 79

© 2011 by Taylor & Francis Group, LLC

3.2  Preprocessing

The preprocessing algorithms, techniques, and operators are used to perform initial pro-
cessing that makes the primary data reduction and analysis task easier. They include oper-
ations related to extracting regions of interest, performing basic mathematical operations
on images, simple enhancement of specific image features (for more on enhancement see
Chapter 8), color space transforms (see Chapter 2 and 4) and data reduction in both resolu-
tion and brightness. Preprocessing is a stage where the requirements are typically obvious
and simple, such as the removal of artifacts from images, or the elimination of image infor-
mation that is not required for the application. For example, in one application we needed
to eliminate borders from the images that resulted from taking the pictures by looking out
a window; in another we had to mask out rulers that were present in skin tumor slides.
Another example of a preprocessing step involves a robotic gripper that needs to pick
and place an object; for this, a gray-level image is reduced to a binary (two-valued) image,
which contains all the information necessary to discern the object’s outline. For applica-
tions involving color, a color space transform may be desired. Two of these examples can
be seen in Figure 3.2-1.

3.2.1  Region of Interest Image Geometry

Often, for image analysis, we want to investigate more closely a specific area within the
image, called a Region-of-Interest (ROI). To do this we need operations that modify the
spatial coordinates of the image, and these are categorized as image geometry operations.
The image geometry operations discussed here include crop, zoom, enlarge, shrink, trans-
late, and rotate.

The image crop process is the selection of a portion of the image, a subimage, and cutting
it away from the rest of the image—that’s how the border was removed in Figure 3.2-1b.
Once we have cropped a subimage from the original image we can zoom in on it by enlarg-
ing it. Image enlargement is useful in a variety of applications since it can help visual
analysis of detailed objects. For example, some imaging applications require that two
input images be in tight geometrical alignment prior to their combination; this process is

Input
image

Pre-
processing

Transform

Segmentation

Spectral
information

Spatial
information

Application

Feature
extraction

Feature
analysis

F
i
l
t
e
r
i
n
g

Figure 3.1-3
Image analysis.

80	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

called image registration. Improper alignment of images can produce distortion at object
boundaries. Enlargement of the images eases the task of manual alignment. Additionally,
enlargement may allow visible recognition of image degradation, helping in the selection
of a restoration model (see Chapter 9).

This zoom process can be done in numerous ways, but typically a zero-order hold or a
first-order hold is used. A zero-order hold is performed by repeating previous pixel values,
thus creating a blocky effect. To extend the image size with a first-order hold we do linear
interpolation between adjacent pixels. A comparison of the images resulting from these
two methods is shown in Figure 3.2-2.

Although the implementation of the zero-order hold is straightforward, the first-order
hold is more complicated. The easiest way to do this is to find the average value between
two pixels and use that as the pixel value between those two; we can do this for the rows
first, as follows:

	

ORIGINAL IMAGE ARRAY IMAGE WITH ROWS EXPANDEDD

8 4 8
4 8 4
8 2 8

8 6 4 6 8
4 6 8 6 4
8 5 2 5 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

(a) (b)

(c) (d)

Figure 3.2-1
Preprocessing examples. (a) An image needing border removal, (b) the image after the border is removed,
(c) an image where only shape information is necessary in order to control a robotic gripper, (d) the image after
unnecessary information removal which leaves only the object shape.

Introduction to Digital Image Analysis	 81

© 2011 by Taylor & Francis Group, LLC

The first two pixels in the first row are averaged (8 + 4)/2 = 6, and this number is inserted
in between those two pixels. This is done for every pixel pair in each row. Next, take that
result and expand the columns in the same way, as follows:

	

IMAGE WITH ROWS AND COLUMNS EXPANDED

8 6 4 6 8
6 6 6 6 6
4 6 8 6 4
6 5.5 5 5.5 6
8 5 2 5 8

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

(a) (b)

(c)

Figure 3.2-2
Zooming methods. (a) Original image. The ape’s face will be zoomed by a factor of five, (b) image enlarged by
zero-order hold, notice the blocky effect, (c) image enlarged by first-order hold. Note the smoother effect.

82	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

This method will allow us to enlarge an N × N sized image to a size of (2N-1) × (2N-1), and
can be repeated as desired.

Another method that achieves a similar result requires a mathematical process called
convolution. With this method of image enlargement a two-step process is required:
(1) extend the image by adding rows and columns of zeros between the existing rows and
columns and (2) perform the convolution. The image is extended as follows:

	

ORIGINAL IMAGE ARRAY IMAGE EXTENDED WITH ZEROOS

3 5 7
2 7 6
3 4 9

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

00 0 0 0 0 0
0 3 0 5 0 7 0
0 00 0 0 0 0 0
0 2 0 7 0 6 0
0 00 0 0 0 0 0
0 3 0 4 0 9 0
0 00 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Next, we use what is called a convolution mask, which is slid across the extended image
and a simple arithmetic operation is performed at each pixel location.

	
CONVOLUTIONMASK FOR FIRST-ORDER HOLD

1
4

1
2

1
4

11
2 1 1

2
1
4

1
2

1
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

¼ ½ ¼

½ 1 ½

¼ ½ ¼

The convolution process requires us to overlay the mask on the image, multiply the coincident
values, and sum all these results. This is equivalent to finding the vector inner product of the
mask with the underlying subimage. For example, if we put the mask over the upper left
corner of the image, we obtain (from right to left, and top to bottom):

	 ¼(0) + ½(0) + ¼(0) + ½(0) + 1(3) + ½(0) + ¼(0) + ½(0) + ¼(0) = 3

Note that the existing image values do not change. The next step is to slide the mask over
by one pixel and repeat the process, as follows:

	 ¼(0) + ½(0) + ¼(0) + ½(3) + 1(0) + ½(5) + ¼(0) + ½(0) + ¼(0) = 4

Note this is the average of the two existing neighbors. This process continues until we
get to the end of the row, each time placing the result of the operation in the location cor-
responding to center of the mask. Once the end of the row is reached, the mask is moved
down one row and the process is repeated row by row until this procedure has been per-
formed on the entire image; the process of sliding, multiplying, and summing is called

Introduction to Digital Image Analysis	 83

© 2011 by Taylor & Francis Group, LLC

convolution (see Figure 3.2-3). Note that the output image must be put in a separate image
array, called a buffer, so that the existing values are not overwritten during the convolu-
tion process. If we call the convolution mask M(r,c), and the image I(r,c), the convolution
equation is given by

	
x= y=

I r - x,c - y M x,y
−∞

+∞

−∞

+∞

∑∑ () ()

Mask

Image Buffer

Mask
center

Result of
summation

(a)

Mask

Image Buffer

Mask
center

Result of
summation

(b)

Mask
Image Buffer

Mask
center

Result of
summation

(c)

Overlay the convolution mask in upper left corner of the image.
Multiply coincident terms, sum, put result into the image buffer
at the location that corresponds to the mask’s current center,
which is (r, c) = (1, 1).

Move the mask one pixel to the right, multiply coincident terms,
sum, and place the new result into the buffer at the location that
corresponds to the new center location of the convolution mask,
now at (r, c) = (1, 2). Continue to the end of the row.

Move the mask down one row and repeat the process until the mask is
convolved with the entire image. Note that we ‘lose’ the outer row(s)
and column(s).

Figure 3.2-3
The convolution process.

84	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

For theoretical reasons beyond the scope of this discussion this equation assumes that
the image and mask are extended with zeros infinitely in all directions, and that the origin
of the mask is at its center. Also, for theoretical reasons, the previous description of convo-
lution assumes that the convolution mask is symmetric; meaning if it is flipped about its
center it will remain the same. If it is not symmetric, it must be flipped before the proce-
dure given can be followed. For computer imaging applications these convolution masks
are typically symmetric.

At this point a good question would be, Why use this convolution method when it
requires so many more calculations than the basic averaging-of-neighbors method? The
answer is that many imaging systems can perform convolution in hardware, which is gen-
erally very fast, typically much faster than applying a faster algorithm in software. Not
only can first-order hold be performed via convolution, but zero-order hold can also be
achieved by extending the image with zeros and using the following convolution mask:

	

ZERO-ORDER HOLD CONVOLUTIONMASK

1 1
1 11

⎡

⎣
⎢

⎤

⎦
⎥

Note that for this mask we will need to put the result in the pixel location corresponding
to the lower right corner, since there is no center pixel.

The above methods will only allow us to enlarge an image by a factor of (2N-1), but what
if we want to enlarge an image by something other than a factor of (2N-1)? To do this we
need to apply a more general method; we take two adjacent values and linearly interpolate
more than one value between them. This linear interpolation technique is equivalent to find-
ing the line that connects the two values in the brightness space and sampling it faster to
get more samples, thus artificially increasing the resolution. This is done by defining an
enlargement number K, then following this process: (1) subtract the two adjacent values,
(2) divide the result by K, (3) add that result to the smaller value, and keep adding the
result from (2) in a running total until all (K-1) intermediate pixel locations are filled.

Example 3.2.1

We want to enlarge an image to three times its original size, and we have two adjacent pixel
values 125 and 140.

	 1.	 Find the difference between the two values, 140 – 125 = 15.
	 2.	 Enlargement desired is K = 3, so we get 15/3 = 5.
	 3.	 Next determine how many intermediate pixel values we need K-1 = 3 – 1 = 2. The two

pixel values between the 125 and 140 are

	 125 + 5 = 130 and 125 + 2 × 5 = 135

We do this for every pair of adjacent pixels, first along the rows and then along the col-
umns. This will allow us to enlarge the image to a size of K(N-1) + 1, where K is an integer
and N × N is the image size. Typically, N is large and K is small, so this is approximately
equal to KN.

Image enlargement methods that use brightness values in both the row and column
direction are also available. This technique is called bilinear interpolation and is explored in

Introduction to Digital Image Analysis	 85

© 2011 by Taylor & Francis Group, LLC

Chapter 9, as applied to geometric restoration. More sophisticated methods that fit curves
and surfaces to the existing points, and then sample these surfaces to obtain more points,
can be explored in the references.

The process opposite to enlarging an image is shrinking it. This is not typically done to
examine an ROI more closely, but to reduce the amount of data that needs to be processed.
Shrinking is explored more in Section 3.2.4 Image Quantization.

Two other operations of interest for the ROI image geometry are translation and rotation.
These processes may be performed for many application-specific reasons, for example,
to align an image with a known template in a pattern matching process, or to make cer-
tain image details easier to see. The translation process can be done with the following
equations:

	
ʹ = +

ʹ

r r r

c = c + c

0

0

where r′ and c′are the new coordinates, r and c are the original coordinates and r0 and c0
are the distances to move or translate the image.

The rotation process requires the use of these equations:

	
ˆ cos sin

ˆ sin cos

r = r + c

c = r + c

() ()

() (

θ θ

θ− θθ)

where r̂ and ĉ are the new coordinates, r and c are the original coordinates, and θ is the
angle to rotate the image. θ is defined in a clockwise direction from the horizontal axis at
the image origin in the upper left corner.

The rotation and translation process can be combined into one set of equations:

	
ˆ cos sin

ˆ

ʹ

ʹ −

r = r + r + c + c

c = r +

()() ()()

(

0 0θ θ

rr + c + c0 0)() ()()sin cosθ θ

where ˆ�r and ˆ�c are the new coordinates and r, c, r0, c0, and θ are defined as above.
There are some practical difficulties with the direct application of these equations. When

translating, what is done with the “left-over” space? If we move everything one row down,
what do we put in the top row? There are two basic options: fill the top row with a constant
value, typically black (0) or white (255), or wrap-around by shifting the bottom row to the
top, shown in Figure 3.2-4. Rotation also creates some practical difficulties. As Figure 3.2-5a
illustrates, the image may be rotated off the “screen” (image plane). Although this can be
fixed by a translation back to the center (Figure 3.2-5b and c), we have leftover space in the
corners. We can fill this space with a constant or extract the central, rectangular portion of
the image and enlarge it to the original image size.

3.2.2 A rithmetic and Logic Operations

Arithmetic and logic operations are often applied as preprocessing steps in image analysis
in order to combine images in various ways. Addition, subtraction, division, and multipli-
cation comprise the arithmetic operations, while AND, OR, and NOT make up the logic

86	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

1

(a) (b)

2

3

1

???

2

34

Before: A 4-row image
translating down by one

row, r0 = 1

After: If we wraparound,
row 4 goes into ???. otherwise

the top row is filled with a
constant, typically zero.

Figure 3.2-4
Translation.

Center of
rotated
image

x

θ

Image is rotated
off the screen

Χ

Fix by translating
toward center

Translation complete Crop and enlarge if
desired

(a) (b)

(c) (d)

Figure 3.2-5
Rotation.

Introduction to Digital Image Analysis	 87

© 2011 by Taylor & Francis Group, LLC

operations. These operations are performed on two images, except the NOT logic opera-
tion, which requires only one image and are done on a pixel-by-pixel basis.

To apply the arithmetic operations to two images, we simply operate on corresponding
pixel values. For example, to add images I1 and I2 to create I3:

Example 3.2.2

	 I r c I r,c I r,c1 2 3(,) () ()+ =

	 I I =1 =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤3 4 7
3 4 5
2 4 6

6 6 6
4 2 6
3 5 5

2

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

I3

3 6 4 6 7 6
3 4 4 2 5 6
2 3 4 5 6 5

+ + +

+ + +

+ + +

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

9 10 13
7 6 11
5 9 11

Addition is used to combine the information in two images. Applications include devel-
opment of image restoration algorithms for modeling additive noise, as one step of image
sharpening algorithms, and for special effects, such as image morphing, in motion pic-
tures (Figure 3.2-6). Note that true image morphing may also require the use of geometric
transforms (see Chapter 9), to align the two images. Image morphing is also usually a
time-based operation, so that a proportionally increasing amount of the second image is
usually added to the first image over time.

(a) (b) (c)

(d) (e) (f)

Figure 3.2-6
Image addition examples. This example shows one step in the image morphing process where an increasing per-
centage of the one image is slowly added to another image, and a geometric transformation is usually required
to align the images. (a) First original, (b) second original, (c) addition of 50% of (a) and 100% of (b). The next
example shows adding noise to an image which is often useful for developing image restoration models.
(d) original image, (e) Gaussian noise, variance = 400, mean = 0, (f) addition of images (d) and (e).

88	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Subtraction of two images is often used to detect motion. Consider the case where noth-
ing has changed in a scene; the image resulting from subtraction of two sequential images
is filled with zeros—a black image. If something has moved in the scene, subtraction pro-
duces a nonzero result at the location of movement, enabling detection of both the motion
and the direction. If the time between image acquisition is known, the moving object’s
speed can also be calculated. Figure 3.2-7 illustrates the use of subtraction for motion detec-
tion. Here we can learn two things: (1) we must threshold the result and (2) the process is
imperfect and will require some further processing.

Another term for image subtraction is background subtraction, since we are really simply
removing the parts that are unchanged, the background. Although the process is the same
as in motion detection, it is thought of differently. In comparing complex images, it may be
difficult to see small changes. By subtracting out common background image information,
the differences are more easily detectable. Medical imaging often uses this type of opera-
tion to allow the doctor to more readily see changes that are helpful in the diagnosis. The
technique is also used in law enforcement and military applications; for example, to find
an individual in a crowd or to detect changes in a military installation. The complexity of
the image analysis is greatly reduced when working with an image enhanced through this
process.

Multiplication and division are used to adjust the brightness of an image. This is done
on a pixel-by-pixel basis and the options are to multiply or divide an image by a constant
value, or by another image. Multiplication of the pixel values by a value greater than one

(b)

(c) (d)

(e)

(a)

(f)

Figure 3.2-7
Image subtraction. (a) Original scene, (b) same scene later, (c) subtraction of scene a, from scene b, (d) the sub-
tracted image with a threshold of 50, (e) the subtracted image with a threshold of 100, (f) the subtracted image
with a threshold of 150. Theoretically, only image elements that have moved should show up in the resultant
image. Due to imperfect alignment between the two images, other artifacts appear. Additionally, if an object
that has moved is similar in brightness to the background it will cause problems—in this example the bright-
ness of the car is similar to the grass.

Introduction to Digital Image Analysis	 89

© 2011 by Taylor & Francis Group, LLC

will brighten the image (or division by a value less than one), and division by a factor greater
than one will darken the image (or multiplication by a value less than one). Brightness
adjustment by a constant is often used as a preprocessing step in image enhancement and
is shown in Figure 3.2-8.

Applying multiplication or division to two images can be done to model a multiplica-
tive noise process (see Chapter 9), or to combine two images in unique ways for special
effects. In Figure 3.2-9 we see the results of multiplying two images together. The first set
of images superimposes an x-ray of a hand onto another image, and the second set shows
how multiplication can be used to add texture to a computer-generated image. In both
cases the output image has been remapped to byte data range (0–255) for display purposes.
Note that multiplication and division of images can also be used for image filtering in the
spectral domain (see Chapter 5).

The logic operations AND, OR, and NOT form a complete set, meaning that any other
logic operation (XOR, NOR, NAND) can be created by a combination of these basic opera-
tions. They operate in a bitwise fashion on pixel data.

(a) (b)

(c)

Figure 3.2-8
Image division. (a) Original image, (b) image divided by a value less than 1 to brighten, (c) image divided a value
greater than 1 to darken.

90	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 3.2.3

We are performing a logic AND on two images. Two corresponding pixel values are 11110 in
one image and 8810 in the second image. The corresponding bit strings are

	

111 01101111 88 01011000

01101111

AND 010

10 2 2

2

= =

111000

01001000

2

2

(a) (b)

(c) (d)

(e) (f)

Figure 3.2-9
Image multiplication. (a) Original image, (b) x-ray image of a hand, (c) images (a) and (b) multiplied together
which superimposes the hand onto the original, (d) the output image (c) after image enhancement, (e) a com-
puter-generated image of a hand, (f) Gaussian noise image, (g) the result of multiplying image (d) and image
(e), this operation adds texture to a computer-generated image, (h) image enhanced version of the hand image
with texture added by multiplication.

Introduction to Digital Image Analysis	 91

© 2011 by Taylor & Francis Group, LLC

The logic operations AND and OR are used to combine the information in two images.
This may be done for special effects, but a more useful application for image analysis is
to perform a masking operation. AND and OR can be used as a simple method to extract
a ROI from an image. For example, a white mask ANDed with an image will allow only
the portion of the image coincident with the mask to appear in the output image, with the
background turned black; and a black mask ORed with an image will allow only the part
of the image corresponding to the black mask to appear in the output image, but will turn
the rest of the image white. This process is called image masking and Figure 3.2-10 illustrates
the results of these operations. The NOT operation creates a negative of the original image,
by inverting each bit within each pixel value, and is shown in Figure 3.2-11.

3.2.3  Spatial Filters

Spatial filtering is typically applied for noise mitigation or to perform some type of image
enhancement. These operators are called spatial filters since they operate on the raw image
data in the (r,c) space, the spatial domain. This is in contrast to the frequency or spectral
domain filters discussed in Chapter 5. They operate on the image data by considering small
neighborhoods in an image, such as 3 × 3, 5 × 5, and so on, and returning a result based on
a linear or nonlinear operation; moving sequentially across and down the entire image.

The three types of filters discussed here include: (1) mean filters, (2) median filters, and
(3) enhancement filters (for more on these filters, see Chapter 8). The first two are used
primarily to deal with noise in images, although they may also be used for special applica-
tions. For instance, a mean filter adds a “softer” look to an image, as in Figure 3.2-12. The
enhancement filters highlight edges and details within the image.

Many spatial filters are implemented with convolution masks. Since a convolution mask
operation provides a result that is a weighted sum of the values of a pixel and its neighbors,
it is called a linear filter. One interesting aspect of convolution masks is that the overall effect
can be predicted based on their general pattern. For example, if the coefficients of the mask
sum to one, the average brightness of the image will be retained. If the coefficients sum to
zero, the average brightness will be lost and will return a dark image. Furthermore, if the

(g) (h)

Figure 3.2-9 (Continued)
Image multiplication. (a) Original image, (b) x-ray image of a hand, (c) images (a) and (b) multiplied together
which superimposes the hand onto the original, (d) the output image (c) after image enhancement, (e) a
computer-generated image of a hand, (f) Gaussian noise image, (g) the result of multiplying image (d) and
image (e), this operation adds texture to a computer-generated image, (h) image enhanced version of the hand
image with texture added by multiplication.

92	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

coefficients are alternating positive and negative, the mask is a filter that will sharpen an
image; if the coefficients are all positive, it is a filter that will blur the image.

The mean filters are essentially averaging filters. They operate on local groups of pixels
called neighborhoods, and replace the center pixel with an average of the pixels in this
neighborhood. This replacement is done with a convolution mask such as the following
3 × 3 mask:

	
1
9

1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(a) (b)

(c) (d)

(e)

Figure 3.2-10
Image masking. (a) Original image of two cats, (b) image mask for AND operation to extract one cat only, (c)
Resulting image from (a) AND (b), resulting in one cat on black background, (d) image mask for OR operation,
created by performing a NOT on mask (b), (e) Resulting image from (a) OR (d), resulting in one cat on white
background.

Introduction to Digital Image Analysis	 93

© 2011 by Taylor & Francis Group, LLC

(a) (b)

Figure 3.2-11
Complement image—NOT operation (a) Original, (b) NOT operator applied to the image.

(a) (b)

Figure 3.2-12
Mean filter. (a) Original image, (b) mean filtered image, 3 × 3 kernel. Note the softer appearance.

94	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The result is normalized by multiplying by 1/9, so overall mask coefficients sum to one.
It is more computationally efficient to perform the integer operations and only multi-
ply by the 1/9 after the image has been processed. Often, with convolution masks, the
normalization factor is implied and may not appear in the mask itself. Since the mask
coefficients sum to one the average image brightness will be retained, and, since the coef-
ficients are all positive, it will tend to blur the image. Other more complex mean filters
are available that are designed to deal with specific types of noise. These are discussed
in Chapter 9.

The median filter is a nonlinear filter. A nonlinear filter has a result that cannot be found
by a weighted sum of the neighborhood pixels, such as is done with a convolution mask.
However, the median filter does operate on a local neighborhood. After the size of the local
neighborhood is defined, the center pixel is replaced with the median, or middle, value
present among its neighbors, rather than by their average.

Example 3.2.4

Given the following 3 × 3 neighborhood:

	
5 5 6
3 4 5
3 4 7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

We first sort the values in order of size: (3,3,4,4,5,5,5,6,7), then we select the middle value, in
this case it is 5. This 5 is then placed in the center location.

A median filter can use a neighborhood of any size, but 3 × 3, 5 × 5, and 7 × 7 are typi-
cal. Note that the output image must be written to a separate image (a buffer), so that the
results are not corrupted as this process is performed. Figure 3.2-13 illustrates the use of a
median filter for noise removal.

The enhancement filters are linear filters, implemented with convolution masks having
alternating positive and negative coefficients, so they will enhance image details. Many
enhancement filters can be defined, here we include Laplacian-type and difference filters.
Three 3 × 3 convolution masks for the Laplacian-type filters are

	

Filter 1 Filter 2 Filter3

0 1 0
1 5 1
0 1 0

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

− − −

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

1 1 1
1 9 1
1 1 1

2 1 2
1 5 1
2 1 22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The Laplacian-type filters are called rotationally invariant, or isotropic, which means
they tend to enhance details in all directions equally. The difference filters, also called
emboss filters, will enhance details in the direction specific to the mask selected. There are
four primary difference filter convolution masks, corresponding to edges in the vertical,
horizontal, and two diagonal directions:

Introduction to Digital Image Analysis	 95

© 2011 by Taylor & Francis Group, LLC

	

VERTICAL HORIZONTAL DIAGONAL1 DIAGONAL2

0 1 0
0 1 0
0 −−

−

−1 0

0 0 0
1 1 1
0 0 0

1 0 0
0 1 0
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 11

0 0 1
0 1 0
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥−

Note that these are all simply rotated versions of the first mask. By completing the rotation
we have four more difference filter masks:

	
0 1 0
0 1 0
0 1 0

0 0 0
1 1 1

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 0 0 0

1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

−
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0 1
0 1 0
1 0 0

−

The results of applying the Laplacian-type and difference filters are shown in Figure 3.2-14.
A more detailed discussion of these and related filters is given in Chapters 4 (edge detec-
tion) and 8 (sharpening).

3.2.4  Image Quantization

Image quantization is the process of reducing the image data by removing some of the detail
information by mapping groups of data points to a single point. This can be done to either
the pixel values themselves, I(r,c), or to the spatial coordinates, (r,c). Operation on the pixel
values is referred to as gray-level reduction, while operating on the spatial coordinates is
called spatial reduction.

The simplest method of gray-level reduction is thresholding. We select a threshold gray
level and set everything above that value equal to “1” (255 for 8-bit data), and everything at
or below the threshold equal to “0.” This effectively turns a gray-level image into a binary

(a) (b)

Figure 3.2-13
Median filter. (a) Original image with added salt-and-pepper noise, (b) median filtered image using a 3×3 mask.
(Original butterfly photo courtesy of Mark Zuke.)

96	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(d)(c)

(e) (f)

Figure 3.2-14
Enhancement filters. (a) Original image, (b) image after laplacian filter (in CVIPtools be sure to check “Keep
DC”), (c) contrast enhanced version of laplacian filtered image, compare with (a) and note the improvement in
fine detail information, (d) result of a difference (emboss) filter applied to image (a), (e) difference filtered image
added to the original, (f) contrast enhanced version of image (e).

Introduction to Digital Image Analysis	 97

© 2011 by Taylor & Francis Group, LLC

(two-level) image and is often used as a preprocessing step in the extraction of object fea-
tures such as shape, area, or perimeter.

A more versatile method of gray-level reduction is the process of taking the data and
reducing the number of bits per pixel, which allows for a variable number of gray levels.
This can be done very efficiently by masking the lower bits via an AND operation. With
this method, the number of bits that are masked determine the number of gray levels
available.

Example 3.2.5

We want to reduce 8-bit information containing 256 possible gray-level values down to 32
possible values. This can be done by ANDing each 8-bit value with the bit-string 111110002.
This is equivalent to dividing by eight (23), corresponding to the lower three bits that we are
masking, and then shifting the result left three times. Now, gray-level values in the range of
0–7 are mapped to 0, gray levels in the range of 8–15 are mapped to 8, and so on.

We can see that by masking the lower three bits, by setting those bits to 0 in the mask, we
reduce 256 gray levels to 32 gray levels: 256 ÷ 8 = 32. The general case requires us to mask
k bits, where 2k is divided into the original gray-level range to get the quantized range
desired. Using this method we can reduce the number of gray levels to any power of 2.

The AND-based method maps the quantized gray-level values to the low end of each
range; alternately, if we want to map the quantized gray-level values to the high end of
each range we use an OR operation. The number of “1” bits in the OR mask determine how
many quantized gray levels are available.

Example 3.2.6

To reduce 256 gray levels down to 32 we use a mask of 000001112. Now, values in the range of
0–7 are mapped to 7, those ranging from 8 to 15 are mapped to 15, and so on.

Example 3.2.7

To reduce 256 gray levels down to 16 we use a mask of 000011112. Now, values in the range of
0–15 are mapped to 15, those ranging from 16 to 31 are mapped to 31, and so on.

To determine the number of “1” bits in our OR mask we apply a method similar to the
AND mask method. We set the lower k bits equal to “1,” where 2k is divided into the origi-
nal gray-level range to get the quantized range desired. Note that the OR mask can also be
found by negating (NOT) the AND mask previously described.

Another potentially useful variation is to map the quantized values to the midpoint of
the range. This is done by an AND after the OR operation, or an OR after the AND opera-
tion, to either shift the values up or down.

Example 3.2.8

If we performed the quantization down to 16 levels by an OR with a mask of 000011112, which
maps the values to the high end of the range, we could shift the values down to the middle of
the range by ANDing with a mask of 111111002.

98	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Using these AND/OR techniques for gray-level quantization the number of gray levels can
be reduced to any power of 2, such as 2, 4, 8, 16, 32, 64, or 128, as illustrated in Figure 3.2-15.
As the number of gray levels decreases we see an increase in a phenomenon called false
contouring. Contours appear in the images as false edges, or lines, as a result of the gray-
level quantization. We can see in the figure that these contour lines do not become very
visible until we get down to about 4 bits per pixel, and then become very prominent as we
use fewer bits.

The false contouring effect can be visually improved upon by using an improved gray
scale (IGS) quantization method. The IGS method takes advantage of the human visual
system’s sensitivity to edges by adding a small random number to each pixel before quan-
tization, which results in a more visually pleasing appearance (see Figure 3.2-16). If we look
at Figure 3.2-16c closely we can see that IGS eliminates the appearance of false contours by

(a) (b)

(c) (d)

Figure 3.2-15
False contouring. (a) Original 8-bit image, 256 gray levels, (b) quantized to 7 bits, 128 gray levels, (c) quantized
to 6 bits, 64 gray levels, (d) quantized to 5 bits, 32 gray levels, (e) quantized to 4 bits, 16 gray levels, (f) quantized
to 3 bits, 8 gray levels, (g) quantized to 2 bits, 4 gray levels, (h) quantized to 1 bit, 2 gray levels.

Introduction to Digital Image Analysis	 99

© 2011 by Taylor & Francis Group, LLC

breaking the sharp edges into smaller random pieces, so the human visual system does a
better job of blending the false contours together.

The way IGS works is similar to dithering, or halftoning, which is typically used in print-
ing or in any application where we desire to reduce the number of gray levels or colors. For
example, newspapers are printed in only two levels but we still get the illusion of varying
shades of gray in newspaper photographs. Many dithering algorithms have been created
and are based on the idea of diffusing the quantization error across edges, where changes
occur in the image. In Figure 3.2-17 we see the results of applying three algorithms that
are representative of the types in use. With these techniques various gray levels are rep-
resented by different geometric patterns or various size dots, so the effective spatial reso-
lution is reduced. Looking closely at the examples in Figure 3.2-17 we can see that the
closer the black pixels are spaced together, the darker the area appears. As a result of this

(g) (h)

(e) (f)

Figure 3.2-15 (Continued)
False contouring. (a) Original 8-bit image, 256 gray levels, (b) quantized to 7 bits, 128 gray levels, (c) quantized
to 6 bits, 64 gray levels, (d) quantized to 5 bits, 32 gray levels, (e) quantized to 4 bits, 16 gray levels, (f) quantized
to 3 bits, 8 gray levels, (g) quantized to 2 bits, 4 gray levels, (h) quantized to 1 bit, 2 gray levels.

100	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

it requires multiple pixels to represent different gray levels and this is what causes the
reduction in effective spatial resolution.

Gray-level quantization using the previously discussed AND/OR method is very efficient
for quantization, but it is not flexible since the size of the quantization bins is uniform, which
is uniform bin width quantization (see Figure 3.2-18a). There are other methods of gray-level
quantization that allow for variable bin sizes called variable bin width quantization (Figure 3.2-
18b). These methods are more complicated than, and not as fast as, those used with uniform
bins. One such use is in simulating the response of the human visual system by using loga-
rithmically spaced bins. The use of variable bin size is application-dependent, and requires
application-specific information. For example, in Figure 3.2-19 we can see the result of an
application where four gray levels provided optimal results. Here we are applying vary-
ing bin sizes and mapping them to specific gray levels. In Figure 3.2-19, the gray levels in
the range 0–101 were mapped to 79, 102–188 mapped to 157, 189–234 mapped to 197, and
235–255 mapped to 255. These numbers were determined as the result of application specific

(b) (a)

(c)

Figure 3.2-16
IGS quantization. (a) Original image, (b) uniform quantization to 8 gray levels (3 bits), (c) IGS quantization to
8 gray levels (3 bits). (Original butterfly photo courtesy of Mark Zuke.)

Introduction to Digital Image Analysis	 101

© 2011 by Taylor & Francis Group, LLC

(e) (f)

(a) (b)

(c) (d)

Figure 3.2-17
Halftoning and dithering. (a) Original image, 8-bits per pixel, (b) Floyd-Steinberg error diffusion, 1-bit per pixel, (c)
Bayer’s ordered dither, 1-bit per pixel, (d) 45-degree clustered-dot dither, 1-bit per pixel, (e) color version of original,
24-bit per pixel, (f) Floyd-Steinberg error diffusion, 3-bit per pixel, 1-bit per color band, (g) Bayer’s ordered dither,
3-bit per pixel, 1-bit per color band, (h) 45-degree clustered-dot dither, 3-bit per pixel, 1-bit per color band.

102	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

feedback, an important aspect of image analysis as shown in Figure 3.1-3. For this applica-
tion, the second brightest gray level (197), was used to identify fillings in dental x-rays.

Quantization of the spatial coordinates, spatial quantization, results in reducing the actual
size of the image. This is accomplished by taking groups of pixels that are spatially adjacent
and mapping them to one pixel. This can be done in one of three ways: (1) averaging,
(2) median, or (3) decimation. For the first method, averaging, we take all the pixels in each
group and find the average gray level by summing the values and dividing by the number
of pixels in the group. With the second method, median, we sort all the pixel values from
lowest to highest and then select the middle value. The third approach, decimation, also
known as subsampling, entails simply eliminating some of the data. For example, to reduce
the image by a factor of two, we simply take every other row and column and delete them.

To perform spatial quantization we specify the desired size, in pixels, of the resulting image.
For example, to reduce a 512 × 512 image to 1/4 its size, we specify that we want the output
image to be 256 × 256 pixels. We now take every 2 × 2 pixel block in the original image and
apply one of the three methods listed above to create a reduced image. It should be noted that
this method of spatial reduction allows for simple forms of geometric distortion, specifically,
stretching or shrinking along the horizontal or vertical axis. Geometric distortion is explored
more fully in Chapter 9. If we take a 512 × 512 image and reduce it to a size of 64 × 128, we will

(g) (h)

Figure 3.2-17 (Continued)
Halftoning and dithering. (a) Original image, 8-bits per pixel, (b) Floyd-Steinberg error diffusion, 1-bit per pixel, (c)
Bayers ordered dither, 1-bit per pixel, (d) 45-degree clustered-dot dither, 1-bit per pixel, (e) color version of original,
24-bit per pixel, (f) Floyd-Steinberg error diffusion, 3-bit per pixel, 1-bit per color band, (g) Bayerís ordered dither,
3-bit per pixel, 1-bit per color band, (h) 45-degree clustered-dot dither, 3-bit per pixel, 1-bit per color band.

bin width

Uniform quantization bins: all bins are the same width.
Values that fall within the same bin can be mapped to
the low end (1), high end (2), or the middle (3).

Variable quantization bins are of different widths.

1 3 2

(a) (b)

Figure 3.2-18
Quantization bins.

Introduction to Digital Image Analysis	 103

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Figure 3.2-19
Variable bin-width quantization. (a) Original image, (b) after variable bin-width quantization.

104	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

have shrunk the image as well as squeezed it horizontally. This result is shown in Figure 3.2-20,
where we can see that the averaging method blurs the image, and the median and decimation
methods produce some visible artifacts. With the median method the space in the “s” and the
“r” is filled in, and with decimation the ”o” is split and the “s” is filled in.

To improve the image quality when applying the decimation technique, we may want to
preprocess the image with an averaging, or mean, spatial filter—this type of filtering is called
anti-aliasing filtering. In Figure 3.2-21, we can compare reduction done with or without an
anti-aliasing filter. Here, the decimation technique was applied to a text image with a factor
of four reduction; note that without the anti-aliasing filter the letter “S” becomes enclosed.
The cost of retaining this information is that the output image is slightly blurred.

3.3  Binary Image Analysis

To complete this introductory chapter on image analysis we will look at basic binary object
features and examine how they can be applied to our image analysis process shown in

(a)

(b) (c) (d)

Figure 3.2-20
Spatial reduction. (a) Original 512×512 image, (b) spatial reduction to 64×128 via averaging, (c) spatial reduction
to 64×128 via median method, note the space in the “s” and “r” is filled in, (d) spatial reduction to 64×128 via
decimation method, note the “o” is split and “s” is filled in.

Introduction to Digital Image Analysis	 105

© 2011 by Taylor & Francis Group, LLC

Figure 3.1-3. Since most cameras will give us color or gray-level images, we will first con-
sider how to create binary images from gray-level images; followed by extraction of simple
binary features; and finally look at some simple methods to classify binary objects. This
will clarify the image analysis process and lay the groundwork for Chapter 4, 5, and 6.

3.3.1 B asic Image Thresholding

In order to create a binary image from a gray-level image we must perform a threshold
operation. This is done by specifying a threshold value and will set all values above the
specified gray level to “1” and everything below or equal to the specified value to “0.”
Although the actual values for the “0” and “1” can be anything, typically 255 is used for
“1” and 0 is used for the “0” value. The “1” value will appear white and the “0” value will
appear black.

In many applications the threshold value will be determined experimentally and is
highly dependent on lighting conditions and object to background contrast. It will be
much easier to find an acceptable threshold value with proper lighting and good contrast
between the object and the background. Figure 3.3-1a and b shows an example of good
lighting and high object to background contrast, while in Figure 3.3-1c and d illustrates a

(a)

(b) (c)

Figure 3.2-21
Decimation and anti-aliasing filter. (a) Original 512×512 image, (b) result of spatial reduction to 128×128 via
decimation, (c) result of spatial reduction to 128×128 via decimation, but the image was first preprocessed by a
5×5 averaging filter, an anti-aliasing filter. Note that the “s” is still clear and the “o” is not so jagged.

106	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

poor example. Imagine trying to identify the object based on the poor example compared
to the good example.

To select the proper threshold value, the histogram is examined. The histogram of an
image is a plot of gray level versus the number of pixels in the image at each gray level (see
Section 8.2 for more details). Figure 3.3-2 shows the two bowl images and their correspond-
ing histograms. The peaks and valleys in the histogram are examined and a threshold is
experimentally selected that will best separate the object from the background. Notice the
peak in Figure 3.3-2b on the far right; this corresponds to the maximum gray-level value
and has the highest number of pixels at that value. This peak and the two small peaks to
its left represent the bowl. Although many nice valleys can be seen in the histogram for the
poor example (Figure 3.3-2d), none will separate the object from the background success-
fully, which serves to illustrate the vital importance of proper lighting.

With many applications the threshold must be found automatically, it may not be prac-
tical to have a human being in the process. The basic method of automatically finding a

(a) (b)

(c) (d)

Figure 3.3-1
Effects of lighting and object to background contrast on thresholding. (a) An image of a bowl with high object
to background contrast and good lighting, (b) result of thresholding image (a), (c) an image of a bowl with poor
object to background contrast and poor lighting, (d) result of thresholding image (c).

Introduction to Digital Image Analysis	 107

© 2011 by Taylor & Francis Group, LLC

threshold is an iterative process, easily implemented via computer program, and allows
the user to specify a parameter to control the process. This method is referred to as the
isodata (iterative self-organizing data analysis technique algorithm) method, and is basi-
cally the k-means clustering algorithm used in pattern recognition to separate two clusters.
It proceeds as follows:

	 1.	Select an initial value for the threshold, T; typically the average gray-level value for
the image.

	 2.	Apply the selected threshold value, T. This will separate the image into two groups
of gray levels, those greater than the threshold and those less than or equal to the
threshold.

	 3.	Find the average (mean) values for each of these two groups of pixels.

	 MeanforGroup1
1

1= =
>

>
∑m

pixels T
I r c

I r c T
#

(,)
(,)

	 MeanforGroup2
1

2= =
≤

≤
∑m

pixels T
I r c

I r c T
#

(,)
(,)

(a) (b) (c)

(d) (e) (f)

Threshold

Threshold

Threshold

Figure 3.3-2
Histograms. (a) An image of a bowl with high object to background contrast and good lighting, (b) the his-
togram of image (a), showing the threshold that separates object and background, (c) the result after the
threshold, (d) an image of a bowl with poor object to background contrast and poor lighting, (e) the histogram
of image (d), showing what appears to be a good threshold, but it does not successfully separate object and
background, (f) the result after the threshold.

108	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	Calculate a new threshold by finding the average of the two mean values:

	 Tnew = (m1 + m2)/2

	 5.	 If the change in threshold value from one iteration to the next is smaller than a
previously specified limit, we are done.

	 T T Limit Doneold new− < →? !

If the change is still greater than the specified limit, go to Step 2 and use Tnew.
This method will work best for an image with good object to background contrast, with

well-separated peaks in the histogram. A good choice for the initial threshold value will
help the algorithm to converge faster. Although the image’s average gray level is typically
used, the weighted average of the two gray levels corresponding to the largest two histo-
gram peaks may also be a good choice for the initial threshold. By weighting this average
by the number of pixels at each value, convergence may occur faster. Selection of the value
used as a limit in Step 5 will also help determine how long the algorithm will take by
limiting the number of iterations; but will also affect the resulting image (see Figure 3.3-3).

(a)

(c)

(b)

Figure 3.3-3
The limit parameter with the automatic thresholding algorithm. (a) An image of a bowl with high object to back-
ground contrast and good lighting, (b) result of using the automatic thresholding algorithm with a limit = 10,
(c) result of using the automatic thresholding algorithm with a limit = 4. Although using a higher value for the
limit will require fewer iterations and is faster, the results may be undesireable.

Introduction to Digital Image Analysis	 109

© 2011 by Taylor & Francis Group, LLC

Automatically finding methods to separate objects in an image will be examined more
thoroughly in Chapter 4.

3.3.2  Connectivity and Labeling

The images considered in the previous section contained only one object. What will hap-
pen if the image contains more than one object? In order to handle images with more than
one object we need to consider exactly how pixels are connected to make an object, and
then we need a method to label the objects separately. Since we are dealing with digital
images, the process of spatial digitization (sampling) can cause problems regarding con-
nectivity of objects. These problems can be resolved with careful connectivity definitions
and heuristics applicable to the specific domain. Connectivity refers to the way in which
we define an object; once we performed a threshold operation on an image, which pixels
should be connected to form an object? Do we simply let all pixels with value of “1” be the
object? What if we have two overlapping objects?

First, we must define which of the surrounding pixels are considered to be neighboring
pixels. A pixel has eight possible neighbors: two horizontal neighbors, two vertical neigh-
bors, and four diagonal neighbors. We can define connectivity in three different ways:
(1) four-connectivity, (2) eight-connectivity, and (3) six-connectivity. Figure 3.3-4 illustrates
these three definitions. With four-connectivity the only neighbors considered connected
are the horizontal and vertical neighbors; with eight-connectivity all of the eight possible
neighboring pixels are considered connected, and with six-connectivity the horizontal,
vertical, and two of the diagonal neighbors are connected. The definition that is chosen
depends on the application, but the key to avoiding problems is to be consistent.

If we select four or eight-connectivity the connectivity dilemma arises. Consider the fol-
lowing binary image segment:

	
0 1 0
1 0 1
0 1 0

Assuming four-connectivity there are four separate objects and five separate background
objects. The dilemma is that if the objects are separated, shouldn’t the background be
connected? Alternately, if we assume eight-connectivity we have one connected object, a
closed curve, but the background is also connected. This creates another dilemma because
a closed curve should separate the background into distinct objects. How do we resolve
this issue? These are our choices:

	 1.	Use eight-connectivity for background and four-connectivity for the objects
	 2.	Use four-connectivity for background and eight-connectivity for the objects
	 3.	Use six-connectivity

The first two choices are acceptable for binary images, but get quite complicated when
extended to gray level and color images, and we want a standard definition we can use
throughout this book. The third choice is a good compromise in most situations, as long as
we are aware of the bias created by selection of one diagonal direction. That is, connection
by a single diagonal pixel will only be defined in one of two possible directions. For most

110	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

real images, this is not a problem. We will use the definition of six-connectivity as shown
in Figure 3.3-4c, with the northwest (NW) and southeast (SE) diagonal neighbors.

After the definition of connectivity is chosen, a labeling algorithm is needed to differen-
tiate between multiple objects within an image. The labeling process requires us to scan
the image and label connected objects with the same symbol. With the definition of six-
connectivity selected, we can apply the algorithm given in Figure 3.3-5 to label the objects
in the image. (Note that this flowchart will label objects in images with more than two
gray levels if we assume that any areas not of interest have been masked out by setting the
pixels equal to zero.) The UPDATE block in the flowchart refers to a function that will keep
track of objects that have been given multiple labels. This can occur with a sequential scan-
ning of the image if the connecting pixels are not encountered until after different parts of
the object have already been labeled (see Figure 3.3-6).

By labeling the objects, an image filled with object numbers is created. With this labeled
image we can extract features specific to each object. These features are used to locate and

4-connectivity 8-connectivity

6-connectivity NW/SE 6-connectivity NE/SW

(a) (b)

(c) (d)

Figure 3.3-4
Connectivity. (a) 4-connectivity, (b) 8-connectivity, (c) 6-connectivity NW/SE, (d) 6-connectivity, NE/SW.

Introduction to Digital Image Analysis	 111

© 2011 by Taylor & Francis Group, LLC

classify the binary objects. The binary object features defined here include area, center of
area, axis of least second moment, projections, and Euler number. The first three tell us
something about where the object is, and the latter two tell us something about the shape
of the object. More features are provided in Chapter 6.

3.3.3 B asic Binary Object Features

In order to provide general equations for area, center of area, and axis of least second
moment, we define a function, Ii(r,c):

	 I r,c
if I r,c = i object number

ot
i

th

()
1 ()

0
=

hherwise

⎧
⎨
⎪

⎩⎪

Now we can define the area of the ith object as

	 i

r=

N

c=

N

iA = I r c
0

1

0

1− −

∑∑ (,)

(Start)
next

A = 0?

A = D?

A = B? A = C?
N

Y

A = C?

A_Label =
B_Label

A_Label =
D_Label

A_Label =
C_Label

B_Label =
C_Label ? Update

A_Label =
count

Count =
count + 1

N

YA

(a) (b)

B

CD

Y

Y

Y

Y

N

N

N

N

Figure 3.3-5
Labeling algorithm flowchart. (a) Definition of pixel neighbors, (b) the flowchart based on 6-connectivity with
NW/SE diagonal neighbors connected.

112	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The area, Ai, is measured in pixels, and indicates the relative size of the object. We can then
define the center of area (centroid in the general case), which finds the midpoint along each
row and column axis corresponding to the “middle” based on the spatial distribution of
pixels within the object. It can be defined by the pair r ci i,() :

	 r
A

rI r,c c
A

cI r,ci
i

i

c=

N

r=

N

i
i

i= =
−−

∑∑1 ()
1

()
0

1

0

1

cc=

N

r=

N

0

1

0

1 −−

∑∑

These correspond to the row coordinate of the center of area for the ith object, ri , and the
column coordinate of the center of area for the ith object, ci . This feature will help to locate
an object in the two-dimensional image plane. The next feature we will consider, the axis
of least second moment, provides information about the object’s orientation. This axis corre-
sponds to the line about which it takes the least amount of energy to spin an object of like
shape, or the axis of least inertia. If we move our origin to the center of area, (r,c), the axis
of least second moment is defined as follows:

	 tan(2) 2

()
0

1

0

1

0

1

0

θi
r=

N

c=

N

i

r=

N

c=

rcI r,c

=

− −

−

∑∑

∑
NN

i

r=

N

c=

N

ir I r,c c I r,c
− − −

∑ ∑∑−
1

0

1

0

1

() ()2 2

Scan from
left to right,
top to bottom

1 1

1 1

1 1

1 1

12 2

2 2

2 2 2 2 X

1

1 1

The labeling algorithm requires an UPDATE function to
keep track of objects with more than one label. Multiple
labeling can occur during sequential scanning, as shown
above on the “J” shaped object. We label two different
objects until we reach the pixel marked “X” , where we
discover that objects 1 and 2 are connected.

Figure 3.3-6
Multiple labels.

Introduction to Digital Image Analysis	 113

© 2011 by Taylor & Francis Group, LLC

This is shown in Figure 3.3-7. The origin is moved to the center of area for the object, and
the angle is measured from the r-axis counterclockwise.

The projections of a binary object, which also provide shape information, are found by
summing all the pixels along rows or columns. If we sum the rows we have the horizontal
projection, if we sum the columns we have the vertical projection. We can define the horizon-
tal projection, hi(r), as follows:

	 i

c=

N

ih r = I r,c() ()
0

1−

∑

And the vertical projection, vi(c):

	 i

r=

N

iv c = I r,c() ()
0

1−

∑

An example of the horizontal and vertical projection for a binary image is shown in
Figure 3.3-8. Projections are useful in applications like character recognition, where the
objects of interest can be normalized with regard to size.

With the projection equations we can define the equations for the center of area as
follows:

	 r =
A

rI r,c
A

rhi
i r=

N

c=

N

i
i

i

r

N
1

()
0

1

0

1− −

=

−

∑∑ =
1

0

11

∑ ()r

Axis of least
second moment

c

r

θ

(r, c)– –

Figure 3.3-7
Axis of least second moment. The angle is defined through the centroid and counter-clockwise to the vertical
axis.

114	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 i
i r=

N

c=

N

i
i

i

c

N

c =
A

rI r,c
A

cv
1

()
0

1

0

1− −

∑∑ =
=

−
1

0

11

∑ ()c

Given these equations we can more easily understand their meaning. Referring to
Figure 3.3-8 and the above equations, we can see that a larger projection value along a
given row or column will weigh that particular row or column value more heavily in the
equation. This will tend to move the center of area coordinate toward that particular row
or column; note that all values are normalized by the object area.

The Euler number of an image is defined as the number of objects minus the number of
holes. For a single object, it relates to the number of closed curves the object contains. It is
often useful in tasks such as optical character recognition (OCR), as shown by the example
in Figure 3.3-9. Shown in (a) we have eight objects (don’t forget the dots on the i’s) and one
hole; Figure 3.3-9b has three objects and two holes. Note that we can find the Euler number
for the entire image, or for a single object within the image. For example, the letter “i” has
an Euler number of 2, and the letter “o” has an Euler number of 0.

Using the connectivity definition we defined when we labeled the image, we can find
the Euler number by finding convexities and concavities. The Euler number will be equal
to the number of convexities minus the number of concavities, which are found by scan-
ning the image for the following patterns (note: to apply this method the outer rows and
columns of the image must be zeros):

	

CONVEXITIES CONCAVITIES

0 0
0 1

0 1
1

⎡

⎣
⎢

⎤

⎦
⎥ 11

⎡

⎣
⎢

⎤

⎦
⎥

Each time one of these patterns is found the count is increased for the corresponding
pattern.

c

r

r (c) 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0

1

h (r)

2

5

6

2

0

1
To find the projections, we sum the number of 1s
in the rows and columns.

2 2 4 4 3 0 0

Figure 3.3-8
Projections.

Introduction to Digital Image Analysis	 115

© 2011 by Taylor & Francis Group, LLC

	
Euler Count convexities Countnumber of= −() (oof

of

concavities

Number objects Numbe

)

() (= − rr holesof)

The number of convexities and concavities can also be useful features for binary objects.

3.3.4 B inary Object Classification

To complete our introduction to image analysis we will apply the process (see Figure 3.1-3)
to the development of an algorithm for classifying geometric shapes. We will use Computer
Vision and Image Processing tools (CVIPtools) to create the objects and analyze the images.
In this process we will explore the Utilities functions, which include the preprocessing
utilities and other utilities, and the Features tab of the Analysis window. The binary fea-
tures discussed previously will be used for the classification. For this experiment we will
develop an algorithm to classify the following shapes: (1) circles, (2) ellipses, (3) rectangles,
and (4) ellipses with holes.

To create our objects we first invoke CVIPtools, and select the Utilities functions
(Figure 3.3-10, remember this can also be done with a right click on the image viewing
area). Next, we select Create and then click on Circle (Figure 3.3-11), and select an image size
of 512 × 512 by a mouse click on the arrow next to the Image width and Image height boxes.
Note that these text boxes allow for selection via the mouse and the arrow, or allow the
user to type in any value. With a mouse click on the Apply button in the lower right corner
of the window the circle image is created, as shown in Figure 3.3-12. We want to have two
of each type of object, so we create another circle but select a different location and size.

Next, we OR these two images together by using Arith/Logic→ OR (this is not required,
we could use separate images, but it will streamline the processing and help to illustrate
some important CVIPtools concepts). This is done by selecting one circle as the current
image by clicking on the image, or by clicking on the image name in the image queue—
the names of the images in the image queue are listed on the left side of the main window.
The second image is selected via the mouse and the arrow on the right of the Second image

Vision

This image has eight objects and one
hole, so its euler number is 8 – 1 = 7.
the letter ‘V’ has euler number of 1,
“i” = 2, “s” = 1, “o” = 0, and “n” = 1.

This image has three objects and two
holes, so the euler number is 3 – 2 = 1.

(b)(a)

Figure 3.3-9
Euler Number.

116	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Press
Utilities
and these
appear

Figure 3.3-10
CVIPtools main window and utilities functions.

Figure 3.3-11
Selection for creating a circle with the utilities.

Introduction to Digital Image Analysis	 117

© 2011 by Taylor & Francis Group, LLC

Figure 3.3-12
CVIPtools after creating the circle image.

Figure 3.3-13
OR’ing two circles together to create a composite image with both objects.

118	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

box, or can be selected with the Alt-key and a mouse click on the image itself. The result is
shown in Figure 3.3-13. Now, we create four ellipses and two rectangles of various sizes
and locations, and OR each new object with the current composite image that contains
the previous objects. Note that it is easy to select a location for a new object by moving the
mouse pointer on the current composite image and observing the row and column coordi-
nates on the top of the main window.

The next task is to create the ellipses with holes. This is done by creating a small circle in
and then performing an XOR operation with the circle and the ellipse. Note that the circles
need to be in a location within, and smaller than, the ellipses to create these objects. To do
this select Arith/Logic→ XOR on the Utilities window (Figure 3.3-14). Perform the XOR to
create an ellipse with a hole as shown in Figure 3.3-15, followed by repeating the process
to make the second example. Next create the composite image by OR’ing the ellipses with
holes with the previous composite image containing all the other objects (Figure 3.3-16).

In order to better simulate a real application we will blur and add noise to the image
containing the objects. To blur the image select Filter→ Specify a Blur. Use the default param-
eters and click Apply. To add noise, select Create→ Add Noise. Select Salt and Pepper noise,
and click Apply. The result is shown in Figure 3.3-17. We now have an image with two
circles, two ellipses, two rectangles, and two ellipses with holes and we have blurred and
added noise to better simulate a real application.

Now that our example image database has been created, we are ready to analyze the
images and develop our classification algorithm. Referring to Figure 3.1-3, we will try the
following steps:

	 1.	Preprocessing: noise removal with a median filter
	 2.	Segmentation: thresholding

Figure 3.3-14
Selection for XOR of two images.

Introduction to Digital Image Analysis	 119

© 2011 by Taylor & Francis Group, LLC

Figure 3.3-15
XOR of circle and ellipse to create a new object—ellipse with hole.

Figure 3.3-16
Composite image created by OR’ing individual object images together.

120	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	Filtering: none required (we hope!)
	 4.	Feature Extraction: area, center of area, axis of least second moment, projections,

and Euler number.
	 5.	Feature Analysis: we will do this manually by examining the feature file
	 6.	Application feedback: are we successful in developing an algorithm that will iden-

tify the objects? If not, go back to step 1 and modify the algorithm based on our
results.

For Step 1, select Filter→ Median. Apply this to our composite image. This is shown in
Figure 3.3-18. Here we see that the noise has been successfully removed. For Step 2 we
want to find a proper threshold so that the blurring is mitigated and the objects are clearly
defined. This is done with Convert→ Binary Threshold. After some experimentation we
determine a threshold of 155 gives us the desired results, shown in Figure 3.3-19. Now we
are ready to extract the features.

From the main CVIPtools window, select the Analysis window, and select the Features
tab. For the original image we want to use the image after noise removal, and for the
segmented image we will use the image after thresholding. Next, we type in a feature file
name, a class (circle, ellipse, rectangle, or ellipse_hole), and any coordinates within the
object of interest. The coordinates can also be selected with a mouse click on the object in
the original image. Next, we select the features of interest by clicking on the checkboxes
for area, centroid, orientation (axis of least second moment), Euler number and projections
(see Figure 3.3-20). Note that for the projections feature we need to specify the normal-
izing height and width. The default normalizing size is 10 × 10 and will shrink the object
into a 10 × 10 box and then extract the projections. This is done so that the number of

Figure 3.3-17
Adding salt and pepper noise to the blurred composite image.

Introduction to Digital Image Analysis	 121

© 2011 by Taylor & Francis Group, LLC

Figure 3.3-18
Blurry, noisy composite image after median filtering.

Figure 3.3-19
Image after thresholding, note the output shapes still have some minor distortion.

122	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

projections does not get too large, and so that that the values will relate to object shape
and not object size.

Now, we are ready to extract the features by clicking on the Apply button on the lower
right of the Analysis window. We do this for each object in our image by selecting the
object coordinates and typing in the desired class name. When we have extracted the
features for all the objects we can look at the feature file with the View Feature File button.
The feature file, shown in Figure 3.3-21, contains the sample number (S. No.), the image
file name, the row and column coordinates of a point in the object, followed by the feature
values for that object. In the lower right corner of the feature file displayed in CVIPtools
is a green button labeled Save as Excel, which allows the user to save the file in an Excel
spreadsheet. The Excel spreadsheet provides a format that is easy to use, modify, and
analyze. The task now is to examine this data and look for features that will differentiate
the classes.

First, we deduce that area and centroid may be useful for some applications, but will not
help us in classification. The next observation is that the orientation will not be necessary
in the classification of these objects; although it, along with the area and centroid, would
be useful to control a robot in finding and placing the objects. In Table 3.1 the data from the
feature file for the Euler number and projection data are shown.

Next, we observe the Euler number feature will identify the class ellipse_hole, since it
is 0 for this class and 1 for all others. Upon close examination of the projections, we can
see that they can be used to differentiate the circles, ellipses, and rectangle. In general,

Figure 3.3-20
Feature tab with features selected.

Introduction to Digital Image Analysis	 123

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Figure 3.3-21
CVIPtools feature file. (a) The feature file displayed in CVIPtools, the green button in the lower right corner can
be used to save it as an Excel spreadsheet (b), The feature file after it has been saved as an Excel spreadsheet.
Note: In CVIPtools the feature values for Projections are each put in a separate column, they are displayed this
way here for simplicity.

124	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the ellipses have some zeros and increasing and decreasing projections, the circles have
increasing and decreasing projections, and the rectangles have constant projections, pos-
sibly with some zeros. Thus, we have our algorithm:

	 If Euler number = 0

		 Then Object = ellipse_hole

	 Else (Euler number = 1)

		 If projections are increasing and decreasing

			 If projections has zeros

				 Then Object = ellipse

			 Else (projections has no zeros)

				 Then Object = circle

		 Else (projections not increasing and decreasing)

			 Then Object = rectangle

What we have done is develop a classification algorithm by the use of a training set. A
training set is a set of sample images used to develop an algorithm. To complete Step 6 in
the image analysis process, application feedback, we need to generate some test images.
This test set of images is then used to see how well the algorithm actually works on a
different set of images. The idea is that these results will simulate the real application
in practice, and will not be biased by the training process—it is easy to get 100% success
on the training set! Success on the test set increases our confidence that the algorithm
will work in practice. Test sets can be created with CVIPtools and it is left as an exercise
for the reader to validate the algorithm. Pattern classification will be explored further in
Chapter 6.

Table 3.1

Feature File Data

Object Type Euler Number Projections

ellipse 1 5 10 8 0 0 0 0 0 0 0 1 2 2 3 3 3 3 3 2 1

ellipse 1 2 3 4 4 5 6 5 4 4 3 3 9 10 10 7 1 0 0 0 0

circle 1 3 6 8 9 10 10 10 9 7 5 3 6 8 9 10 10 10 9 7 5

circle 1 3 7 9 9 10 10 10 9 9 7 3 7 9 9 10 10 10 9 9 7

ellipse_hole 0 3 9 9 8 9 0 0 0 0 0 1 4 4 4 5 3 5 4 4 4

ellipse_hole 0 0 7 6 6 9 3 0 0 0 0 0 3 4 4 3 3 3 4 4 3

rectangle 1 10 10 10 10 10 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5

rectangle 1 0 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9

Introduction to Digital Image Analysis	 125

© 2011 by Taylor & Francis Group, LLC

3.4  Key Points

IMAGE ANALYSIS PROCESS MODEL

Image analysis: manipulating the image data to determine exactly the information
necessary to help solve a computer imaging problem, primarily a data reduction
process

Image analysis process model (see Figure 3.1-3): consists of three primary stages:
(1) preprocessing, (2) data reduction, (3) feature analysis

Preprocessing: used to remove noise and artifacts, visually irrelevant information,
preliminary data reduction

Noise: unwanted information from the data acquisition process
Data reduction: reducing data in the spatial domain or transforming into the spec-

tral domain, followed by filtering and feature extraction
Feature analysis: examining the extracted features to see how well they will solve

the application problem
Application feedback loop: key aspect of the image analysis process that incorpo-

rates application-based information in the development process

PREPROCESSING

Region of interest geometry: to inspect more closely a specific area of an image
Crop: process of selecting a portion of an image, a subimage, and cutting it away

from the image
Zoom: enlarging a section of an image, zero-order hold or first-order may be used
Zero-order hold: repeating pixels
First-order hold: linear interpolation between adjacent pixels
Convolution: overlay the mask, multiply coincident values, sum results, move to next

pixel, across entire image (see Figure 3.2-3), equation:

	
x= y=

I r x,c y M x,y
− −

− −
∞

∞

∞

∞

() ()∑ ∑

Vector inner product: multiplying coincident terms of two vectors and summing
results

Translation: moving the image data along the row and/or column axes, equations:

	
�

�

r = r + r

c = c + c

0

0

126	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Rotation: clockwise rotation through a fixed angle θ, given by these equations:

	
ˆ cos sin

ˆ sin cos

r r c

c r c

= +

= − +

() ()

() ()

θ θ

θ θ

Arithmetic and logic operations: performed on a pixel-by-pixel basis; arithmetic
operations: add, subtract, multiply, divide; logic operations: AND, OR, NOT

Addition: used to combine information in two images, applications include creating
models for restoration algorithm development, image sharpening algorithms, and
special effects such as image morphing

Subtraction: used for motion detection and background subtraction, applications
include object tracking, medical imaging

Multiplication: used to brighten or darken an image, or to combine two images
Division: used to darken or brighten an image
AND: a logical operation performed on a pixel-by-pixel basis, using two images, by

a logical AND of the corresponding bits in each corresponding pixel, defined for
BYTE-type images; used to combine two images or for image masking

Image masking: extracting a portion of an image with an AND or OR operation
using a binary image mask; masking out image artifacts by setting to zero

OR: a logical operation performed on a pixel-by-pixel basis, using two images, by
a logical OR of the corresponding bits in each corresponding pixel, defined for
BYTE-type images; used to combine two images or for image masking

NOT: creates a negative on an image by performing a logical NOT on each bit
Spatial filters: operate on the image data by considering small neighborhoods in an

image, such as 3 × 3, 5 × 5, and so on, and returning a result based on a linear or
nonlinear operation; moving sequentially across and down the entire image

Linear filters: can be implemented with a convolution mask, since the output is a
linear combination of the (neighborhood) inputs

Mask coefficients: all positive will blur an image, alternating positive and negative
will sharpen an image; if they sum to one will tend to retain original image bright-
ness, if they sum to zero will tend to lose original image brightness

Mean filters: averaging filters, will blur an image, all mask coefficients are positive
Median filter: sorts the pixel values in a small neighborhood and replaces the center

pixel with the middle value in the sorted list, is a nonlinear filter
Nonlinear filter: cannot be implemented with a convolution mask since the result

cannot be represented as a weighted sum of the neighborhood pixel values
Enhancement filters: linear filters, the convolution masks have alternating positive

and negative coefficients; will enhance image details via image sharpening, able
to enhance details in a specific direction by careful mask selection

Laplacian filters: enhancement filters with convolution masks of alternating positive
and negative coefficients, will bring out image details equally in all directions

Difference (emboss) filters: enhancement filters with convolution masks of alternat-
ing positive and negative coefficients, will bring out image details in a specific
direction based on the mask used

pj
w

st
k|

40
20

64
|1

43
56

01
14

1

Introduction to Digital Image Analysis	 127

© 2011 by Taylor & Francis Group, LLC

Image quantization: the process of reducing image data by removing some of the
detail information by mapping groups of data points to a single point, performed
in the spatial or gray-level domain

Gray-level reduction: reducing the number of gray levels, typically from 256 levels
for 8-bit per pixel data to fewer than 8 bits, can be performed with AND or OR
masks (see examples)

Thresholding: the simplest method of gray-level reduction performed by setting a
threshold value and setting all pixels above it to “1” (typically 255), and those
below it to “0,” output is a binary image

False contouring: artificial lines that appear in images with reduced number of gray
levels (Figure 3.2-15)

IGS: improved gray scale, a method to visually improve the results of gray-level
reduction by adding a random number to each pixel value before the quantization
(Figure 3.2-16)

Halftoning/dithering: methods for reducing the number of gray levels by creating
dot patterns or dither patterns to represent various gray levels, reduces effective
spatial resolution also (Figure 3.2-17)

Uniform bin width quantization: the size of the bins for quantization is equal
(Figure 3.2-18)

Variable bin width quantization: the size of the bins for quantization is not equal
but may be assigned on an application specific basis (Figure 3.2-18)

Spatial quantization: reducing image size by taking groups of spatially adjacent pix-
els and mapping them to one pixel, can be done by: (1) averaging, (2) median, or (3)
decimation (Figure 3.2-20)

Averaging: performing size reduction by averaging groups of pixels and replacing
the group by the average

Median: sorting the pixel gray values in small neighborhood and replacing the
neighborhood with the middle value

Decimation: also known as subsampling, reduces image size by eliminating rows
and columns

Anti-aliasing filtering: a technique to improve image quality by averaging before
decimation (Figure 3.2-21)

BINARY IMAGE ANALYSIS

Threshold via histogram: examining the histogram to find clusters by looking
at peaks and valleys and thresholding the image gray values at one of the val-
leys in the histogram, effects of lighting and background contrast are important
(Figure 3.3-1)

Automatic Thresholding Algorithm: also called the isodata method or k-means clus-
tering algorithm. (1) Select an initial value for the threshold, T, typically the average
gray-level value; (2) apply the selected threshold value, T, separating image into
two groups; (3) find the average (mean) values for each of these two groups of pix-
els; (4) calculate a new threshold by finding the average of the two mean values;
and (5) if the change in threshold value from one iteration to the next is smaller
than a previously specified limit, we are done. If the change is still greater than the
specified limit, go to Step 2 with the new threshold value.

pj
w

st
k|

40
20

64
|1

43
56

01
19

5

128	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Histogram: a plot of gray values versus numbers of pixels at each gray value
(Figure 3.3-2)

Connectivity: defining how pixels are connected by selecting which of the eight
neighboring pixels, assuming a square gird, are connected to the center pixel
(Figure 3.3-4)

Four-connectivity: the connected neighbors are the two horizontal neighbors, to the
left and right, and the two vertical neighbors, above and below

Eight-connectivity: horizontal, vertical, and all diagonal neighbors are considered
connected

Six-connectivity: horizontal, vertical, and two diagonal neighbors are considered
connected, this type of connectivity is used in this book

Connectivity dilemma: the dilemma that arises when we use four or eight connec-
tivity for both objects and background where closed curves do not separate the
background (eight-connectivity), or we do not have a closed curve and the back-
ground is separated (four-connectivity)

Labeling: the process of assigning labels to connected objects in an image
Labeling algorithm flowchart: see Figure 3.3-5
UPDATE: a method needed in a sequential labeling algorithm to deal with the situa-

tion when two pixels are found connected, but connected neighbors have different
labels

Binary object features: features that can be extracted from labeled objects in binary
images, which can be used to classify the objects

Area: the size in pixels of a binary object, indicating the relative size of the object,
found by summing all the pixels in the object:

	 i

r=

N

c=

N

iA = I r c
0

1

0

1− −

∑∑ (,)

Center of area (centroid): the midpoint along each row and column axis correspond-
ing to the “middle” based on the spatial distribution of pixels within the object,
used to locate the object spatially, defined by

	
i

i r=

N

c=

N

i i
i r=

r =
A

rI r,c c =
A

1
();

1

0

1

0

1− −

∑∑
00

1

0

1

()
N

c=

N

icI r,c
− −

∑∑

Axis of least second moment: defines the object’s orientation, given by

	
tan(2) 2

()

(

0

1

0

1

2

i

i

c=

N

r=

N

i

=
rcI r,c

r I r,c

θ

−−

∑∑

)) ()
0

1

0

2

0

1

0

c I r,c
c=

N

r=

N

i

c=

N

r=

N

−

− −

∑∑ ∑∑
− −1 1

Introduction to Digital Image Analysis	 129

© 2011 by Taylor & Francis Group, LLC

Projections: found by summing pixels along each row or column, provides informa-
tion about an object’s shape, and provides simpler equations for center of area

Horizontal projection: sum of pixels along the rows
Vertical projection: sum of pixels along the columns
Euler number: defined as the number of objects minus the number of holes, or the

number of convexities minus the number of concavities
Binary object classification: the process of identifying binary objects through appli-

cation of the image analysis process given in Figure 3.1-3, consisting of the fol-
lowing steps: (1) preprocessing, (2) thresholding, (3) filtering (optional), (4) feature
extraction, (5) feature analysis, and (6) application feedback.

Exercises

Problems

	 1.	What is image analysis? How is it used in computer vision? How is it used in
image processing? Give examples of each.

	 2.	What are the three primary stages of image analysis? The second stage can be
done in two different domains, what are they?

	 3.	Draw a detailed figure of the image analysis process. Explain each block. Why do
we need feedback?

	 4.	List and describe the image geometry operations used in preprocessing for
image analysis. Run CVIPtools and experiment with the functions under
Analysis→ Geometry, and Utilities→ Size.

	 5.	Use zero-order to increase the size of following image by a factor of 2.

	
6 7 8
2 6 4
6 3 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 6.	Use first-order hold to increase the image by a factor of about 3. Apply the method
that will increase the image size to K(N-1) + 1. What is the resulting image size? Is
this “about a factor of 3”? Why or why not?

	
2 5 9
5 6 4
9 3 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 7.	We want to translate image1 by 45 columns to the right and 18 rows up, what are
the new coordinates for the point (r,c) = (120, 22)? We want to rotate image2 in
the clockwise direction 50°, what are the new coordinates for the point (r,c) = (42,

130	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

100)? We want to rotate and translate image3 the same as we did for image1 and
image2, what are the new coordinates for the point (r,c) = (100, 66)? Use CVIPtools
to verify your answers, note that the origin given by the equations is different than
the output equation in the CVIPtools image.

	 8.	Subtract the following two images. What is an example of an application for image
subtraction? How do we display negative numbers?

	
2 5 9
5 6 4
9 3 8

1 2 7
3 4 2
9 3 9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 In CVIPtools subtract a dark image from a brighter image. Observe the data range
shown in the lower right of the main window. What does CVIPtools do with the
negative numbers for display?

	 9.	Perform a logical OR with the following two images. What can this operation be
used for?

	
2 5 9
5 6 4
9 3 8

1 2 7
3 4 2
9 3 9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 Use CVIPtools to OR images together. During this process consider potential
applications.

	 10.	How is image masking performed? What are its uses? Use Utilities→ Create→ Border
Mask in CVIPtools to create mask images and then use AND to mask the original
image.

	 11.	What does a NOT operation do to the appearance of an image? Perform the NOT
operation in CVIPtools on a color image, are the results what you expected?
Multiply an image by 1.8 without byte clipping. What is the output image data
type? Now perform a NOT on the image multiplied by 1.8. What is the data type
of this output image? Explain.

	 12.	What does a convolution filter do that has all positive coefficients? What does a
convolution filter do that has alternating positive and negative coefficients? How
about one where the coefficients sum to zero? What happens if a filter mask coef-
ficients sum to one? Use CVIPtools Utilities→ Filter→ Specify a filter to verify your
answers.

	 13.	Are convolution filters linear? Name a nonlinear filter. Given the following 3 × 3
neighborhood in an image, what is the result of applying a 3 × 3 median filter to
the center pixel?

	
1 2 7
3 4 2
9 3 9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Introduction to Digital Image Analysis	 131

© 2011 by Taylor & Francis Group, LLC

	 Use CVIPtools Utilities→ Create→ Add Noise to add salt and pepper noise to an
image. Now, perform a median filter on the noisy image using Utilities→ Filter→
Median. How does it affect the appearance of the image as you increase mask size
of the filter?

	 14.	What are the coefficients for a typical 3 × 3 mean convolution filter? What are the
coefficients for a typical 3 × 3 enhancement filter? Use CVIPtools to verify your
results.

	 15.	Why does Figure 3.2-7c look mostly gray? (hint: remap) Since the gray level of the
car is similar to that of the grass, we lost the lower half of the car in its second loca-
tion in the results. What could we do to avoid this? Open the image in CVIPtools
and experiment with various threshold values.

	 16.	What are example applications for image multiplication and division? Demonstrate
your examples with CVIPtools.

	 17.	What is the bit string we would use for an AND mask to reduce 8-bit image
information to 64 gray levels? Does this map the data to the low or high end
of the range? Use CVIPtools Utilities→ Convert→ Gray-level Quantization to reduce
the number of gray levels of an 8-bit image to 32 gray levels. Look at the histo-
gram of the output image by selecting the bar graph icon just to the left of the
RGB icons. Does CVIPtools map the output data to the low or high end of the
range?

	 18.	What is false contouring? How can we visually improve this effect? Explain. Use
CVIPtools to reduce the number of gray levels on an 8-bit image to 8 gray levels,
select standard method. Now, select the IGS method and compare the results.

	 19.	What is halftoning and dithering? Why is it used? Use CVIPtools Utilities→ Convert→
Halftone and compare the various methods. Which one do you think works the
best? Do you think this is true for all images?

	 20.	Describe variable bin width quantization. Why is it used?
	 21.	Describe the three methods used for spatial reduction. Which method do you

think is the fastest? The slowest? When using the decimation technique how can
we improve the results? Use CVIPtools Utilities→ Size → Spatial Quant to compare
the three methods.

	 22.	What is a histogram? How can it be useful?
	 23.	 In CVIPtools you can threshold an image with Utilities→ Convert→ Binary Threshold.

Using CVIPtools try to find a good threshold to separate the object from back-
ground in Figure 3.3-1c. Are you successful? Why or why not? Look at the his-
togram of various images with CVIPtools (the histogram icon looks like a bar
graph).

	 24.	Draw a binary image to illustrate the dilemma that arises when using four or
eight-connectivity. Explain three ways to avoid this dilemma. Label all objects and
background objects. Remember a connected line should separate the objects on
either side of the line.

	 25.	What is the UPDATE block for in the flowchart in Figure 3.3-5?
	 26.	Given an application where we need to control a robotic gripper to pick and place

items on an assembly line, what are the most useful binary features?

132	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 27.	Find the horizontal and vertical projections for the following binary image:

	
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 28.	The Euler number for an object is equal to the number of objects minus the num-
ber of holes, and equal to the number of convexities minus the number of concavi-
ties. Is the number of objects necessarily equal to the number of convexities? Is the
number of holes necessarily equal to the number of concavities? Explain.

Programming Exercises

Image Geometry

	 1.	Write a function to implement an image crop. Incorporate this function call into
the case statement at the beginning of the CVIPlab program (refer to Chapter 11,
as required), so that it can be accessed via the menu (do this for all the functions
written).

	 2.	Write a function to implement an image zoom, have the user specify the starting
(r,c) coordinates, the height and width and the zoom factor. Use zero-order hold.

	 3.	 Incorporate the CVIPtools zoom (in the Geometry library) into your CVIPlab pro-
gram. Experiment with enlarging an image by different factors. The minimum
and maximum factors allowed are 1 and 10, respectively. You have the option of
choosing the whole of the image, or any particular quadrant, or you can specify
the starting row and column, and the width and height for the enlargement of the
particular region of the image.

	 4.	Write a function to rotate an image. Experiment with various degrees of rotation.
Incorporate the CVIPtools rotate (Geometry library) function into your CVIPlab
program. Does this differ from how your rotate function works?

Arithmetic/Logic Operations

	 1.	Write functions that perform the following logical operations on two images:
AND, OR, NOT.

	 2.	Write a function to subtract two images, put this function in a separate file from
the logic functions. Initially, use BYTE data types that will result in clipping at
zero for negative results. Next, modify the function to use FLOAT data types (use
cast_Image in the Image library) and then remap when the process in completed
(use remap_Image in the Mapping library). Note that these two methods will result
in different output images.

	 3.	Extend the logic operations to work with data types other than BYTE.
	 4.	Extend the logic operations to include NAND, NOR, and more complex Boolean

expressions.
	 5.	Extend the subtraction function to perform addition, multiplication, and division.
	 6.	Experiment with different methods of handling overflow and underflow with the

arithmetic operations.

Introduction to Digital Image Analysis	 133

© 2011 by Taylor & Francis Group, LLC

Spatial Filters

	 1.	Write a program to implement spatial convolution masks. Let the user select from
one of the following masks:

	 Mean filter masks:

	
1
9

1 1 1
1 1 1
1 1 1

1
10

1 1 1
1 2 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11
16

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 Enhancement filter masks:

	
− −

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

⎡

⎣

⎢
1 1
1
1 1

1
2

−

−

−

−

−

1
9 1

1

1 1
5 2

1 2 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0
1 5 1
0 1 0

2
− −

−

	 2.	Modify the program to allow the user to input the coefficients for a 3 × 3 mask.
	 3.	Experiment with using the masks. Try images with and without added noise.
	 4.	Modify the program to handle larger masks.
	 5.	Write a median filtering function. Compare the median filter to the mean filter

masks for image smoothing.
	 6.	 Incorporate the CVIPtools function median_filter (SpatialFilter library) into your

CVIPlab program. Is it faster or slower than your median filtering function?

Image Quantization

	 1.	Write a function to reduce the number of gray levels in an image by uniform quan-
tization. Allow the user to specify: (1) how many gray levels in the output image
and (2) to map the gray levels to the beginning, middle, or end of the range.

	 2.	Write a function to reduce the number of gray levels in an image by nonuniform
quantization. Allow the user to specify the input ranges and the output value for
up to four output gray levels

	 3.	Write a function to perform spatial quantization by decimation.

Binary Object Features

	 1.	Write a C® function to find the area, and coordinates of center of area of a binary
image. Assume the image only contains one object. Remember that the value that
represents “1” for the binary images are actually 255, and “0” is 0.

	 2.	Test this function using images you create with CVIPtools. Use Utilities to create
test images with the Create option (Utilties→ Create). To create images with multiple
objects, use the AND and OR logic functions available from Utilities→ Arith/Logic.

	 3.	Modify the label function so that it will find the area and center of area for each
object. Note that you can modify the variables for area and center of area to be

134	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

arrays and use the label as the index into the array (be sure to initialize the array
elements to 0). The information for each object should be printed to the screen,
along with the object number.

	 4.	Write a C function to find the number of upstream facing convexities (X), upstream
facing concavities (V), and the Euler number for a binary image. Use the method
discussed in Section 3.3.3, assuming six-connectivity.

	 The function should display the following:
	 The number of upstream facing convexities = <X> 
	 The number of upstream facing convexities = <V> 
	 The Euler number for the image = <X-V> 

	 5.	Test this function using images you create with CVIPtools. Use Utilities to create
test images with the Create option (Utilities→ Create). To create images with mul-
tiple objects, use the AND and OR logic functions available from Utilities→ Arith/
Logic.

	 6.	Modify the Euler function to find the Euler number for each object in a binary
image containing multiple objects.

	 7.	Modify your Euler function to handle other connectivity types (four, eight, and
four/eight).

	 8.	Modify your functions to handle gray-level images.
	 9.	Modify your functions to handle color images.

Supplementary Exercises

Supplementary Problems

	 1.	a.  Find the area and the center of area for the following binary image:

	

0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 0
0 0 0 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 0 1 0 0 0 0

⎡

⎣

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	 b.	 find the axis of least second moment, (c) find the Euler number based on six-
connectivity NW/SE, and (d) find the Euler number based on six-connectivity
NE/SW.

	 2.	Use CVIPtools to create a test set of images for the algorithm developed in Section
3.3.4. Vary the size of objects, the amount of noise added, and the degree of blurring.
Extract the features of interest using CVIPtools. Examine the feature file. Does the
classification algorithm developed in this section work successfully? How is the
success rate affected as the amount of blur and added noise is increased? Develop
a more robust algorithm that will work with high levels of blurring and noise.

Introduction to Digital Image Analysis	 135

© 2011 by Taylor & Francis Group, LLC

	 3.	Research and discuss methods for automatic image thresholding. Automatic
thresholding refers to algorithmic methods to determine the threshold from the
image data itself. Typically, the histogram is used to make this determination.

	 4.	Collect a set of images of various objects that you want to identify. Using CVIPtools
apply the image analysis process. Experiment with preprocessing, segmentation,
and filtering methods. Extract the features of interest using CVIPtools. Examine
the feature file. Develop a classification algorithm. Experiment with blurring and
adding noise to the images. Develop a more robust algorithm that will work with
high levels of blurring and noise.

	 5.	Apply the basic automatically thresholding algorithm to the following 2-bit
per pixel image using a limit of 0.01 and initial value of: (a) image mean and (2)
weighted average from two histogram peaks. Show your results from each step.

	

1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 33 3 1 1 1 1
1 1 1 1 1 1 1 0
2 2 2 2 2 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥

Supplementary Programming Exercises

Connectivity and Labeling

	 1.	Write a function to implement the labeling algorithm described. You may assume
that row and column 0 do not contain objects, so start the scan with row 1 and col-
umn 1. Follow the flowchart for the labeling algorithm. Define a two-dimensional
array for the labels using a fixed size, for example for a 256 × 256 image:

		 int  label[256][256]; /*declaration*/

	 NOTE: Be sure to initialize the array elements (for example, via “for” loops),
if needed. When the memory is allocated for the array it may contain garbage
depending on the compiler and the operating system.

	 2.	Test this function using images you create with CVIPtools. Use the Utilities to create
test images with the Create option (Utilties→ Create). To create images with multiple
objects, use the AND and OR logic functions available from Utilities→ Arith/Logic.

	 3.	Once you are certain that your function implements the algorithm correctly, mod-
ify the label function using a matrix structure for the label array. This will allow
the use of any size image, without the need to change the size of the array. This is
done as follows:
Matrix *label _ ptr; /* declaration of pointer to Matrix data

structure */

int  **label; /* declaration of pointer to matrix data */

136	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

label _ ptr = new _ Matrix(no _ of _ rows, no _ of _ cols, CVIP _
INTEGER, REAL); /*allocating the memory for the matrix
structure*/

label = (int **) getData _ Matrix(label _ ptr);  /* getting the
matrix data into the label array*/

label[r][c]  /*accessing the array elements */

delete _ Matrix(label _ ptr);  /*freeing the memory space used
by the matrix*/

	 4.	Modify the function so that it will handle objects on the edges of the image.
	 5.	Modify the Update function (see flowchart, Figures 3.3-5 and 3.3-6) so that it

does not require multiple image scans, for example keep a linked list or table
of equivalent labels and rescan the image only once (after all the labeling
is done).

	 6.	Modify the function to work with gray-level images.
	 7.	Modify the function to work with color images.
	 8.	Modify the function to handle any number of objects.
	 9.	Modify the function so that it will output the labeled image (that is, the label array

written to disk as an image, with appropriate gray levels to make all the objects
visible).

Programming Exercise: Image Quantization II

	 1.	Write a function to perform IGS quantization, see the Noise library in Chapter 13
for the noise functions.

	 2.	Compare your results to those obtained with CVIPtools. Are the results the same?
Why or why not?

	 3.	Write a function to quantize images of any image data type. Let the user specify
the number of quantization bins.

	 4.	Write a function to allow for variable bin-width quantization. Let the user specify
the bin ranges and the mapping value(s).

	 5.	Write a function to perform spatial quantization. Allow the user to specify the
method: decimation, median, and averaging. Incorporate an anti-aliasing filter
option for the decimation method.

Programming Exercise: Image Geometry II

	 1.	Write a function to implement an image zoom, have the user specify the starting
(r,c) coordinates, the height and width and the zoom factor. Let the user specify
zero-order or first-order hold.

	 2.	Write a function to rotate an image. Experiment with various degrees of rotation.
Enhance your rotate function to select the center portion of rotated image and
enlarge it to the original image size.

	 3.	 Incorporate the CVIPtools rotate (Geometry library) function into your CVIPlab
program. Does this differ from how your rotate function works?

Introduction to Digital Image Analysis	 137

© 2011 by Taylor & Francis Group, LLC

	 4.	 Incorporate the CVIPtools zoom, crop, and bilinear_interp (Geometry lib) into your
CVIPlab program. Crop and bilinear_interp will provide similar functionality to the
zoom function. Compare the results of using bilinear_interp to zoom. The zoom func-
tion performs a zero-order hold, while bilinear_interp performs a bilinear interpo-
lation, providing a smoother appearance in the resulting image.

	 5.	Put the CVIPtools spatial_quant into your CVIPlab program. Compare using the
three different reduction methods available: average, median, and decimation.

Programming Exercise: Automatic Thresholding

	 1.	Research and implement a method for automatic image thresholding, where it
finds the “best” threshold value.

	 2.	Find a method that allows the user to specify the number of threshold values and
implement in your CVIPlab.

Programming Exercise: Image Morphing

	 1.	Write a function to implement image morphing. Allow the user to specify the per-
centage of the second image to be added to the first after each iteration.

	 2.	Modify the function to allow the user to specify the corresponding (r,c) pairs
in image1 and image2, and warp the image(s) accordingly as they are morphed
together. Hint: linear interpolation is required.

References

Davies, E. R., Machine Vision, San Diego, CA: Academic Press, 1997.
Durrett, H. J., ed., Color and the Computer, Boston, MA: Academic Press, 1987.
Galbiati, L. J., Machine Vision and Digital Image Processing Fundamentals, Englewood Cliffs, NJ: Prentice

Hall, 1990.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Pearson/Prentice

Hall, 2008.
Haralick, R. M., and Shapiro, L. G., Computer and Robot Vision, Reading, MA: Addison-Wesley, 1992.
Hill, F. S., Computer Graphics, New York, NY: Macmillan Publishing Company, 1990.
Horn, B. K. P., Robot Vision, Cambridge, MA: The MIT Press, 1986.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Myler, H. R., and Weeks, A. R., Computer Imaging Recipes in C, Englewood Cliffs, NJ: Prentice Hall, 1993.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 1999.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, New York, NY: McGraw

Hill, 1995.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Watt, A., and Policarpo, F., The Computer Image, New York, NY: Addison-Wesley, 1998.

138	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Further Reading

For more information on image preprocessing, see Sonka, Hlavac, and Boyle (2008). The
method of zooming via convolution masks is described in Sid-Ahmed (1995). For spatial
filtering, Gonzalez and Woods (2008), Sonka, Hlavac, and Boyle (2008), Jain, Kasturi, and
Schnuck (1995), Galbiati (1990), Pratt (1991), and Myler and Weeks (1993) contain addi-
tional information. More on connectivity can be found in Gonzalez and Woods (2008),
Jain, Kasturi, and Schnuck (1995), Horn (1986), and Haralick and Shapiro (1992). For more
background on the Euler number see Horn (1986). More information on halftoning and
dithering can be found in Watt and Policarpo (1998), Hill (1990), and Durrett (1987). The
definitions for connectivity are described in Horn (1986), and further information can be
found in Haralick and Shapiro (1992). More labeling algorithms can be found in Shapiro
and Stockman (2001), Sonka, Hlavac, and Boyle (2008), Jain, Kastuiri, and Schnuck (1995).
More on thresholding techniques can be found in Shapiro and Stockman (2001) and Davies
(1997). Details on improved gray-scale (IGS) quantization can be found in Gonzalez and
Woods (2008). Additional information on the processing of binary images can be found in
Shapiro and Stockman (2001), Jain, Kasturi, and Schunck (1995), Davies (1997), and Russ
(1999).

139© 2011 by Taylor & Francis Group, LLC

4
Segmentation and Edge/Line Detection

4.1  Introduction and Overview

The image analysis process requires us to take vast amounts of low level pixel data and
extract useful information. In this chapter we will explore methods to divide the image into
meaningful regions that represent higher level information. We will discuss edge detec-
tion, line detection, and finally image segmentation. We will see that edge and line detec-
tion are important steps in one category of image segmentation methods.

The goal of image segmentation is to find regions that represent objects or meaningful
parts of objects. Division of the image into regions corresponding to objects of interest
is necessary before any processing can be done at a level higher than that of the pixel.
Identification of real objects, pseudo-objects, shadows, or actually finding anything of
interest within the image, requires some form of segmentation.

Image segmentation methods will look for objects that either have some measure of
homogeneity within themselves, or have some measure of contrast with the objects on
their border. Most image segmentation algorithms are modifications, extensions, or com-
binations of these two basic concepts. The homogeneity and contrast measures can include
features such as gray-level, color, and texture. Once we have performed some preliminary
segmentation we may incorporate higher-level object properties, such as shape or color
features, into the segmentation process.

We can divide image segmentation techniques into three main categories (see Figure 4.1-1):
(1) region growing and shrinking, (2) clustering methods, and (3) boundary detection. The
region growing and shrinking methods use the row and column, (r,c), based image domain;
while the clustering techniques can be applied to any domain, such as any N-dimensional
color or feature space, whose components may even include the spatial domain’s (r,c) coor-
dinates. From this perspective, the region growing and shrinking category can be consid-
ered a subset of the clustering methods, but is limited to the spatial domain. We separate
them here since the spatial domain is of primary significance in images. The boundary
detection methods are extensions of the edge detection techniques.

Edge detection techniques are discussed in Section 4.2, as well as metrics to measure
edge detector performance. Section 4.2 includes a discussion of the Hough transform for
line finding, and concludes with a section on corner detection. Section 4.3 will explore var-
ious representative examples of the many image segmentation algorithms and this chap-
ter concludes with a discussion of morphological filtering in Section 4.3.5. Morphological
filtering is essentially filtering of objects in the spatial domain, and binary, monochrome,
and color images will be considered.

140	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

4.2  Edge/Line Detection

The edge and line detection operators presented here represent the various types of opera-
tors in use today. Many are implemented with convolution masks, and most are based on
discrete approximations to differential operators. Differential operations measure the rate
of change in a function, in this case, the image brightness function. A large change in
image brightness over a short spatial distance indicates the presence of an edge. Some
edge detection operators return orientation information (information about the direction
of the edge), while others only return information about the existence of an edge at each

Clustering looks for data that can be grouped
in domains other than the spatial domain.

Region growing/shrinking is performed by finding
homogeneous regions and changing them until
they no longer meet the homogeneity criteria.

Boundary detection is often achieved using a
differentiation operator to find lines or edges,
followed by postprocessing to connect the
points into borders.

Shrinking

Growing

(a) (b)

(c)

FIGURE 4.1-1
Image segmentation categories.

Segmentation and Edge/Line Detection	 141

© 2011 by Taylor & Francis Group, LLC

point. Also included in this section is a special transform, the Hough transform, which is
specifically defined to find lines.

Edge detection methods are used as a first step in the line detection process. Edge detec-
tion is also used to find complex object boundaries by marking potential edge points cor-
responding to places in an image where rapid changes in brightness occur. After these
edge points have been marked, they can be merged to form lines and object outlines. Often
people are confused about the difference between an edge and a line. This is illustrated in
Figure 4.2-1 where we see that an edge occurs at a point and is perpendicular to the line.
The edge is where the sudden change occurs, and a line or curve is a continuous collection
of edge points along a certain direction.

With many of the edge detection operators, noise in the image can create problems. That
is why it is best to preprocess the image to eliminate, or at least minimize, noise effects. To
deal with noise effects we must make tradeoffs between the sensitivity and the accuracy
of an edge detector. For example, if the parameters are adjusted so that the edge detector
is very sensitive, it will tend to find many potential edge points that are attributable to
noise. If we make it less sensitive, it may miss valid edges. The parameters that we can
vary include the size of the edge detection mask and the value of the gray-level threshold.
A larger mask or a higher gray-level threshold will tend to reduce noise effects, but may
result in a loss of valid edge points. The tradeoff between sensitivity and accuracy is illus-
trated in Figure 4.2-2.

Edge detection operators are based on the idea that edge information in an image is
found by considering the relationship a pixel has with its neighbors. If a pixel’s gray-level

Edge

Edge

L
i
n
e

Figure 4.2-1
Edges and lines are perpendicular. The line shown here is vertical and the edge direction is horizontal. In this
case the transition from black to white occurs along a row, this is the edge direction, but the line is vertical along
a column.

142	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

value is similar to those around it, there is probably not an edge at that point. However,
if a pixel has neighbors with widely varying gray levels, it may represent an edge point.
In other words, an edge is defined by a discontinuity in gray-level values. Ideally, an edge
separates two distinct objects. In practice, apparent edges are caused by changes in color,
texture, or by the specific lighting conditions present during the image acquisition process.
This means that what we refer to as image objects may actually be only parts of the objects
in the real world, see Figure 4.2-3.

Figure 4.2-4 illustrates the differences between an ideal edge and a real edge. Figure 4.2-4a
shows a representation of one row in an image of an ideal edge. The vertical axis repre-
sents brightness, and the horizontal axis shows the spatial coordinate. The abrupt change in
brightness characterizes an ideal edge. In the corresponding image, the edge appears very
distinct. In Figure 4.2-4b we see the representation of a real edge, which changes gradually.
This gradual change is a minor form of blurring caused by the imaging device, the lenses,
and/or the lighting, and is typical for real-world (as opposed to computer-generated) images.
In the figure, where the edge has been exaggerated for illustration purposes, note that from
a visual perspective this image contains the same information as does the ideal image: black
on one side, white on the other, with a line down the center.

(a) (b)

(c) (d)

Figure 4.2-2
Noise in images requires tradeoffs between sensitivity and accuracyfor edge detectors. (a) Noisy image,
(b) edge detector too sensitive, many edge points found that are attributable to noise, (c) edge detector not
sensitive enough, loss of valid edge points, (d) reasonable result obtained by compromise between sensitivity
and accuracy.

Segmentation and Edge/Line Detection	 143

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c)

(d)

Figure 4.2-3
Image objects may be parts of real objects. (a) Butterfly image (original photo courtesy of Mark Zuke), (b) Butterfly
after edge detection, note that image objects are separated by color and brightness changes, (c) image of objects
in kitchen corner, (d) image after edge detection, note that some image objects are created by reflections in the
image due to lighting conditions and object properties.

144	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

4.2.1  Gradient Operators

Gradient operators are based on the idea of using the first or second derivative of the gray-
level function as an edge detector. Remember from calculus that the derivative measures
the rate of change of a line, or the slope of the line. If we model the gray-level transition
of an edge by a ramp function (which is a good approximation to a real edge), we can see
what the first and second derivatives look like in Figure 4.2-5. When the gray level is con-
stant the first derivative is zero, and when it is linear it is equal to the slope of the line. With
the following operators we will see that this is approximated with a difference operator,
similar to the methods used to derive the definition of the derivative. The second deriva-
tive is positive at the change on the dark side of the edge, negative at the change on the
light side, and zero elsewhere.

In Figure 4.2-5c we can see that the magnitude of the first derivative will mark edge
points, with steeper gray-level changes corresponding to stronger edges and larger mag-
nitudes from the derivative operators. In Figure 4.2-5d we can see that applying a second
derivative operator to an edge returns two impulses, one on either side of the edge. An
advantage of this is that if a line is drawn between the two impulses the position where
this line crosses the zero axis is the center of the edge, which theoretically allows us to
measure edge location to subpixel accuracy. Subpixel accuracy refers to the fact that the
zero-crossing may be at a fractional pixel distance, for example halfway between two pix-
els, so we could say the edge is at, for instance, c = 75.5.

Spatial coordinates

Real edgeIdeal edge

Spatial coordinates

Br
ig

ht
ne

ss

Br
ig

ht
ne

ss

(a) (b)

Figure 4.2-4
Ideal versus real edge.

Segmentation and Edge/Line Detection	 145

© 2011 by Taylor & Francis Group, LLC

The Roberts operator is a simple approximation to the first derivative. It marks edge
points only; it does not return any information about the edge orientation. It is the simplest
of the edge detection operators and will work best with binary images (gray-level images
can be made binary by a threshold operation). There are two forms of the Roberts operator.
The first consists of the square root of the sum of the differences of the diagonal neighbors
squared, as follows:

	 2 2
[() (1 1)] [(1) (1)]I r,c I r ,c + I r,c - I r ,c− − − − −

(a)

(b)

(c)

(d)

First derivative

Second derivative Zero crossing
Magnitude of pulse
corresponds to edge
strength

Height (magnitude)
corresponds to edge
strenth Slope
of the line

Gray level
across one row

Figure 4.2-5
Edge model. (a) A portion of an image with an edge, which has been enlarged to show detail, (b) ramp edge
model, (c) first derivative, (d) second derivative with a line drawn between the two pulses that crosses the zero
axis at the edge center.

146	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The second form of the Roberts operator is the sum of the magnitude of the differences of
the diagonal neighbors, as follows:

	 I r,c I r ,c I r,c I r ,c() (1 1) (1) (1)− − − + − − −

The second form of the equation is often used in practice due to its computational efficiency—it
is typically faster for a computer to find an absolute value than to find square roots.

The Sobel operator approximates the gradient by using a row and a column mask, which
will approximate the first derivative in each direction. The Sobel edge detection masks
find edges in both the horizontal and vertical directions, and then combine this informa-
tion into two metrics—magnitude and direction. The masks are as follows:

	

VERTICAL EDGE HORIZONTAL EDGE

1 2 1
0 0 0
1 2 1

− − −⎡

⎣

⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1
2 0 2
1 0 1

These masks are each convolved with the image. At each pixel location we now have two
numbers: s1, corresponding to the result from the vertical edge mask, and s2, from the hori-
zontal edge mask. We use these numbers to compute two metrics, the edge magnitude and
the edge direction, defined as follows:

	 EDGE MAGNITUDE s s1
2

2
2+

	 EDGE DIRECTION Tan 1 1

2

− ⎡

⎣⎢
⎤

⎦⎥
s
s

As seen in Figure 4.2-1, the edge direction is perpendicular to the line (or curve), because the
direction specified is the direction of the gradient, along which the gray levels are changing.

The Prewitt is similar to the Sobel, but with different mask coefficients. The masks are
defined as

	

VERTICAL EDGE HORIZONTAL EDGE

1 1 1
0 0 0
1 1 1

− − −⎡

⎣

⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1
1 0 1
1 0 1

These masks are each convolved with the image. At each pixel location we find two num-
bers: p1, corresponding to the result from the vertical edge mask and p2, from the horizon-
tal edge mask. We use these results to determine two metrics, the edge magnitude and the
edge direction, which are defined as follows:

	 EDGE MAGNITUDE p + p1
2

2
2

	 EDGE DIRECTION Tan 1 1

2

− ⎡

⎣
⎢

⎤

⎦
⎥

p
p

Segmentation and Edge/Line Detection	 147

© 2011 by Taylor & Francis Group, LLC

As with the Sobel edge detector, the direction lies 90° from the apparent direction of the
line or curve. The Prewitt is easier to calculate than the Sobel, since the only coefficients
are 1s, which makes it easier to implement in hardware. However, the Sobel is defined to
place emphasis on the pixels closer to the mask center, which may be desirable for some
applications.

The Laplacian operators described here are similar to the ones used for preprocessing
as described in Section 3.2.3 Spatial Filters. The three Laplacian masks presented below
represent various practical approximations of the Laplacian, which is the two-dimensional
version of the second derivative (note that these are masks used in practice and true
Laplacians will have all the coefficients negated). Unlike the Sobel and Prewitt edge detec-
tion masks, the Laplacian masks are rotationally symmetric, or isotropic, which means
edges at all orientations contribute to the result. They are applied by selecting one mask
and convolving it with the image. The sign of the result (positive or negative) tells us what
side of the edge is brighter.

	

LAPLACIANMASKS

Type 1 Type 2 Type 3

0 1 0
1

−

− 4 1
0 1 0

2 1 2
1 4 1
2 1 2

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

⎡

⎣

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − −

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1
1 8 1
1 1 1

These masks differ from the Laplacian-type previously described in that the center coef-
ficients have been decreased by one. With these masks, we are trying to find edges, and are
not interested in the image itself—if we increase the center coefficient by one it is equiva-
lent to adding the original image to the edge detected image.

An easy way to picture the difference is to consider the effect each mask has when
applied to an area of constant value. The above convolution masks return a value of zero.
If we increase the center coefficients by one, each mask returns the original gray level.
Therefore, if we are only interested in edge information, the sum of the coefficients should
be zero. If we want to retain most of the information that is in the original image, the coef-
ficients should sum to a number greater than zero. The larger this sum, the less the pro-
cessed image is changed from the original image. Consider an extreme example in which
the center coefficient is very large compared with the other coefficients in the mask. The
resulting pixel value will depend most heavily upon the current value, with only minimal
contribution from the surrounding pixel values.

4.2.2  Compass Masks

The Kirsch and Robinson edge detection masks are called compass masks since they are
defined by taking a single mask and rotating it to the eight major compass orientations:
North, Northwest, West, Southwest, South, Southeast, East, and Northeast. The Kirsch
compass masks are defined as follows:

	 k k0 1

− −

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

− − −

3 3 5
3 0 5
3 3 5

3 5 5
3 0 5
3 3 3

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

k k2 3

5 5 5
3 0 3
3 3 3

55 5 3
5 0 3
3 3 3

−

−

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

148	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 k k4 5

5 3 3
5 0
5 3 3

3 3 3
5 0 3
5 5 3

− −

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − −

−

−

⎡

⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

k k6 7

3 3 3
3 0 3
5 5 5

3 −− −

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 3
3 0 5
3 5 5

The edge magnitude is defined as the maximum value found by the convolution of each
of the masks with the image. The edge direction is defined by the mask that produces the
maximum magnitude; for instance, k0 corresponds to a horizontal edge, whereas k5 cor-
responds to a diagonal edge in the Northeast/Southwest direction (remember edges are
perpendicular to the lines). We also see that the last four masks are actually the same as
the first four, but flipped about a central axis.

The Robinson compass masks are used in a manner similar to the Kirsch masks, but
are easier to implement, as they rely only on coefficients of 0, 1, and 2, and are symmetrical
about their directional axis—the axis with the zeros that corresponds to the line direction.
We only need to compute the results on four of the masks; the results from the other four
can be obtained by negating the results from the first four. The masks are as follows:

	 r r0 1

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− −

⎡

⎣

1 0 1
2 0 2
1 0 1

0 1 2
1 0 1
2 1 0

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ − − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r r2 3

1 2 1
0 0 0
1 2 1

2 1 0
1 00 1
0 1 2

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 r r4 5

1 0 1
2 0 2
1 0 1

0 1 2
1 0 1
2 1 0

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

−

⎡

⎣

⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

r r6 7

1 2 1
0 0 0
1 2 1

2 1 0
−−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1
0 1 2

The edge magnitude is defined as the maximum value found by the convolution of each
of the masks with the image. The edge direction is defined by the mask that produces the
maximum magnitude. It is interesting to note that masks r0 and r6 are the same as the Sobel
masks. We can see that any of the edge detection masks can be extended by rotating them
in a manner like these compass masks, which will allow us to extract explicit information
about edges in any direction.

4.2.3 A dvanced Edge Detectors

The edge detectors considered here include the Marr–Hildreth algorithm, the Canny algo-
rithm, the Boie–Cox algorithm, the Shen–Castan algorithm, and the Frei–Chen masks.
They are considered to be advanced because they are algorithmic in nature, which basi-
cally means they require multiple steps. Except for the Frei–Chen masks, these algorithms
begin with the idea that, in general, most edge detectors are too sensitive to noise and by
blurring the image prior to edge detection we can mitigate these noise effects. The noise
considered here includes irrelevant image detail, as well as a combination of blurring from
camera optics and signal corruption from camera electronics.

The simplest of these is the Marr–Hildreth algorithm, based on a model of the human
visual system’s response first developed by neuroscientist David Marr (see Figure 7.2.5).
The algorithm requires three steps:

	 1.	Convolve the image with a Gaussian smoothing filter.
	 2.	Convolve the image with a Laplacian mask.
	 3.	Find the zero-crossings of the image from Step 2.

Segmentation and Edge/Line Detection	 149

© 2011 by Taylor & Francis Group, LLC

By preprocessing with a smoothing filter we can mitigate noise effects (see Section 4.2.5),
and then use the Laplacian to enhance the edges. By adjusting the spread, or variance, of the
Gaussian we can adjust the filter for different amounts of noise and various amounts of
blurring. The combination of the Gaussian followed by a Laplacian is called a Laplacian
of a Gaussian (LoG), or the Mexican hat operator since the function resembles a sombrero (see
Figure 4.2-6). Since the process requires the successive convolution of two masks, they can be
combined into one LoG mask. Commonly used 5 × 5 and 17 × 17 masks that approximate the
combination of the Gaussian and Laplacian into one convolution mask are as follows:

	

5 5 Laplacian of a Gaussian mask:×

0 0 1 0 0
0

−

−11 2 1 0
1 2 16 2 1
0 1 2 1 0
0 0 1 0 0

− −

− − − −

− − −

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥
⎥

17 17 Laplacian of a Gaussian mask:×

0 00 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1

− − − − −

− − − − − − − − −11 0 0 0 0
0 0 1 1 1 2 3 3 3 3 3 2 1 1 1 0 0
0 0 1 1

− − − − − − − − − − − − −

− − −22 3 3 3 3 3 3 3 2 1 1 0 0
1 1 1 2 3 3 3 2 3

− − − − − − − − − −

− − − − − − − − − −22 3 3 3 2 1 1 0
1 1 2 3 3 3 0 2 4 2 0 3 3 3 2 1 0

− − − − − −

− − − − − − − − − − −

−− − − − − − − − − −

− − − − −

1 1 3 3 3 0 4 10 12 10 4 0 3 3 3 1 1
1 1 3 3 3 2 100 18 21 18 10 2 2 3 3 1 1
1 1 3 3 3 4 12 21 24 21 12 4

− − − − −

− − − − − −− − − − −

− − − − − − − − −

3 3 3 1 1
0 1 3 3 3 2 10 18 21 18 10 2 2 3 3 1 1
0 −− − − − − − − − −

− − − − −

1 3 3 3 0 4 10 12 10 4 0 3 3 3 1 1
0 1 2 3 3 3 0 2 4 22 0 3 3 3 3 1 0
0 1 1 2 3 3 3 2 3 2 3 3 3 2 2

− − − − −

− − − − − − − − − − − − − − −−

− − − − − − − − − − − − −

− − − −

1 0
0 0 1 1 2 3 3 3 3 3 3 3 2 1 1 0 0
0 0 1 1 1 22 3 3 3 3 3 2 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1

− − − − − − − − −

− − − − − − − − −11 0 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

−

− − − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The equation for the LoG filter is

	 LoG =
+ −⎡

⎣⎢
⎤

⎦⎥
−

+⎛

⎝⎜
⎞

⎠⎟r c
e

r c2 2 2

4
22
2 2

2σ
σ

σ

where (r,c) are the row and column coordinates and σ is the Gaussian variance. From the
equation we can see that zero-crossings occur at (r2 + c2) = 2σ2; or √2σ from the mean, as
shown in Figure 4.2-6a.

pj
w

st
k|

40
20

64
|1

43
56

01
20

9

150	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

–5 –4 –3 –2 –1 0 1 2 3 4 5

Zero-crossing
Zero-crossing

2√2σ

Zero-crossing

σ = 1

σ = 1.5

–5 –4 –3 –2 –1 0 1 2 3 4 5

σ = 0.5

n = 9
for σ = 1

(c)

(b)

Figure 4.2-6
Laplacian of a Gaussian. (a) One-dimensional plot of the LoG function, (b) the LoG as an image with white repre-
senting positive numbers, black negative numbers, and gray representing zero, (c) three LoG plots with σ = 0.5,
1.0 and 1.5. Note for σ  = 0.5, the mask size, n, should be about 5 × 5; for σ  = 1, 9 × 9, and so on. This is done so the
mask covers the entire function as it goes negative and then goes back up to zero. Note this is 4σ to the left, 4σ
to the right and the center term corresponding to the term at the 0 point on the graph.

Segmentation and Edge/Line Detection	 151

© 2011 by Taylor & Francis Group, LLC

To determine the size of the mask to use we consider that 99.7% of the area under a
Gaussian curve is within ±3σ of the mean. Keeping in mind that the sampling grid is fixed
by the pixel spacing, the variance and the mask size must be related (see Figure 4.2-6c). So
we want to select a value of n for the n × n convolution mask that is an odd integer greater
than or equal to 6σ, or we will get only a portion of the curve with our sampled filter mask.
In Computer Vision and Image Processing tools (CVIPtools) we use the following equation
to determine n, based on the variance, σ:

	 n TRUNCATE= + +[* (. .)]2 3 35 0 33 1σ

This equation assures us we have the complete spread of the LoG filter, and actually pro-
vides us with an n that corresponds to about ±4σ.

The third step for the Marr–Hildreth algorithm is to find the zero-crossings after the LoG
is performed. This can be accomplished by considering a pixel and its surrounding pix-
els, thus a 3 × 3 subimage, and looking for sign changes between two of the opposing
neighbors. That is, we check the left/right, up/down, and the two diagonal neighboring
pairs. Figure 4.2-7 illustrates the results from the standard Marr–Hildreth algorithm. The
disadvantages of the Marr–Hildreth algorithm, or any second derivative/zero-crossing
method, is that it tends to smooth shapes too much that has the effect of eliminating cor-
ners and creating closed loops in the resulting lines/curves. The Marr–Hildreth results are
often referred to as a “plate of spaghetti,” as seen in the figure.

(a) (b)

(c) (d)

Figure 4.2-7
Results from using different variances with the Marr–Hildreth Algorithm. As the variance is increased, which
is the equivalent of using a larger mask size for the filters, the resulting edge lines are farther apart. (a) Original
image, (b) results with variance = 2.5, (c) results with variance = 3.5, (d) results with variance = 5.

152	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

In practice, we may want to set a threshold to use before a pixel is classified as an
edge. The threshold is tested against the absolute value of the difference between the
two pixels that have the sign changes. If this value exceeds the threshold it is classified
as an edge pixel.

Example 4.2.1

Applying a threshold to step 3 of the Marr–Hildreth algorithm.
Suppose, after the LoG, we have a 3 × 3 subimage as follows:

	
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 11 17
18 2 15
21 33 28

The only pair that has a sign change is the NW/SE diagonal. So, the center pixel may be con-
sidered an edge pixel. If we apply a threshold, we calculate the absolute value of the difference
of this pair:

	 | −10 − 28| = 38

Now, if this value exceeds the threshold we have set, then the center pixel is determined to be
an edge pixel.

The Marr–Hildreth as implemented in CVIPtools has a parameter to allow the user to
select single variance or dual variance. If dual variance is selected, the user specifies a sigma
(variance) value and a delta value. CVIPtools then computes the Marr–Hildreth results
using two variances, the specified sigma plus the delta value and the specified sigma
minus the delta value. These results are then combined into a single image with a logical
AND function. For color images the user can also select to combine the bands, which per-
forms a logical AND of the red, green, and blue (RGB) band results.

The Canny algorithm, developed by John Canny in 1986, is an optimal edge detection
method based on a specific mathematical model for edges. The edge model is a step edge
corrupted by Gaussian noise. The algorithm consists of four primary steps:

	 1.	Apply a Gaussian filter mask to smooth the image to mitigate noise effects. This can
be performed at different scales, by varying the size of the filter mask that corre-
sponds to the variance of the Gaussian function. A larger mask will blur the image
more and will find fewer, but more prominent, edges.

	 2.	Find the magnitude and direction of the gradient using equations similar to the Sobel
or Prewitt edge detectors, for example:

	

VERTICAL HORIZONTAL

/ /1 2
1 1
1 1

1 2
1 1
1 1

− −⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣⎣
⎢

⎤

⎦
⎥

		 These masks are each convolved with the image. At each pixel location we find two num-
bers: c1, corresponding to the result from the vertical edge mask and c2, from the

Segmentation and Edge/Line Detection	 153

© 2011 by Taylor & Francis Group, LLC

horizontal edge mask. We use these results to determine two metrics, the edge
magnitude and the edge direction, which are defined as follows:

	 EDGE MAGNITUDE c + c1
2

2
2

	 EDGE DIRECTION Tan 1 1

2

− ⎡

⎣⎢
⎤

⎦⎥
c
c

	 3.	Apply nonmaxima suppression that results in thinned edges. This is done by con-
sidering small neighborhoods in the magnitude image, for example 3 × 3, and
comparing the center value to its neighbors in the direction of the gradient. If the
center value is not larger than the neighboring pixels along the gradient direction,
then set it to zero. Otherwise, it is a local maximum, so we keep it. In Figure 4.2-8
we see an example of a 3 × 3 neighborhood showing the magnitude at each loca-
tion, and use an arrow to show the gradient direction. The center pixel has a value
of 100 and the gradient direction is horizontal (corresponding to a vertical line),
so it is compared to the pixels to the right and left; which are 40 and 91. Since it
is greater than both, it is retained as an edge pixel; if it was less than either one it
would be removed as an edge point. Note that this will have the effect of making
thick edges thinner, by selecting the “best” point along a gradient direction.

	 4.	Apply two thresholds to obtain the final result. This technique, known as hysteresis
thresholding helps to avoid false edges caused by too low a threshold value or miss-
ing edges caused by too high a value. It is a two step thresholding method, which
first marks edge pixels above a high threshold; and then applies a low threshold
to pixels connected to the pixels found with the high threshold. This can be per-
formed multiple times, as either a recursive or iterative process.

In CVIPtools the high threshold is computed from the image by finding the value that
is greater than 90% of the pixels after applying nonmaxima suppression to the magnitude
images. The high threshold is multiplied with the high threshold factor to obtain the final
high threshold for hysteresis. The low threshold is computed from the image by averag-
ing the high threshold and minimum value in the image after applying the nonmaxima
suppression to the magnitude images. The low threshold is then multiplied with the low
threshold factor to obtain the final low threshold for hysteresis. CVIPtools also allows the
variance of the Gaussian filter as an input parameter. Figures 4.2-9 and 4.2-10 show results
from varying these parameters.

929588

9110040

2011250

Figure 4.2-8
Nonmaxima suppression. A 3 × 3 subimage of the magnitude image, which consists of the magnitude results
in an image grid. The arrows show the gradient directions. This particular subimage has a vertical line (a
horizontal edge). To apply nonmaxima suppression we compare the center pixel magnitude along the gradi-
ent direction. Here the 100 is compared with the 40 and the 91. Since it is a local maximum, it is retained as an
edge pixel.

154	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The Boie–Cox algorithm, developed in 1986 and 1987, is a generalization of the Canny
algorithm. It consists of similar steps, but uses matched filters and Wiener filters (see
Chapter 9) to allow for a more generalized edge model. The Shen–Castan algorithm,
developed in 1992, uses an optimal filter function they derived called an infinite symmet-
ric exponential filter. Shen and Castan claim that their filter does better than the Canny at
finding the precise location of the edge pixels. Like the Canny, it uses a smoothing filter
followed by a similar multistep algorithm to find edge pixels. The search includes steps
similar to the Canny, but with modifications and extensions (for more details see the refer-
ences). Figure 4.2-11 shows results from these algorithms.

The Frei–Chen masks are unique in that they form a complete set of basis vectors. This
means we can represent any 3 × 3 subimage as a weighted sum of the nine Frei–Chen

(a) (b)

(c) (d)

Figure 4.2-9
Results from changing high threshold with Canny Algorithm. As the high threshold is increased, small details
are removed. In the results the Gaussian variance = 0.5 and the low threshold = 1. (a) Original image, (b) results
high threshold factor = 1, (c) high threshold factor = 2, (d) high threshold factor = 3.

Segmentation and Edge/Line Detection	 155

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-10
Results from changing Gaussian variance with Canny Algorithm. As the Gaussian variance is increased, the
Canny should find fewer, but more prominent edges. In these results the low and high threshold factors  = 1.
(a) Original image, (b) Canny results with Gaussian variance = 1, (c), Gaussian variance = 3, (d) Gaussian vari-
ance = 5. Note that if the variance is too large, the image is blurred too much and instead of finding “fewer,
more prominent edges” we find fuzzy and then multiple edges. To avoid this we need to also increase the high
threshold. In the next two images the low threshold is 1, but the high threshold has been increased to 2. Now we
do see fewer, more prominent edges. (e) Gaussian variance = 2, (f) Gaussian variance = 3. Results with noise in
the image. Note that as the variance is increased the false edges from the salt and pepper noise are eliminated.
(g) Original image with salt-and-pepper noise added, 2% each, (h) Canny with variance = 0.5, (i) Canny with
variance = 1.0, (j) Canny with variance = 1.5.

156	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

masks (Figure 4.2-12). These weights are found by projecting a 3 × 3 subimage onto each
of these masks. This projection process is similar to the convolution process in that both
overlay the mask on the image, multiply coincident terms, and sum the results (also called
a vector inner product). This is best illustrated by example.

Example 4.2.2

Suppose we have the following subimage, Is:

	
sI =

1 0 1
1 0 1
1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To project this subimage onto the Frei–Chen masks, start by finding the projection onto f1.
Overlay the subimage on the mask and consider the first row. The 1 in the upper left corner of

(h)(g)

(i) (j)

Figure 4.2-10 (Continued)
Results from changing Gaussian variance with Canny Algorithm. As the Gaussian variance is increased, the
Canny should find fewer, but more prominent edges. In these results the low and high threshold factors  = 1.
(a) Original image, (b) Cannyresults with Gaussian variance = 1, (c), Gaussian variance = 3, (d) Gaussian vari-
ance = 5. Note that if the variance is too large, the image is blurred too much and instead of finding “fewer,
more prominent edges” we find fuzzy and then multiple edges. To avoid this we need to also increase the high
threshold. In the next two images the low threshold is 1, but the high threshold has been increased to 2. Now we
do see fewer, more prominent edges. (e) Gaussian variance = 2, (f) Gaussian variance = 3. Results with noise in
the image. Note that as the variance is increased the false edges from the salt and pepper noise are eliminated.
(g) Original image with salt-and-pepper noise added, 2% each, (h) Canny with variance = 0.5, (i) Canny with
variance = 1.0, (j) Canny with variance = 1.5.

Segmentation and Edge/Line Detection	 157

© 2011 by Taylor & Francis Group, LLC

the subimage coincides with the 1 in the upper left corner of the mask, the 0 is over the 2 ,
and the 1 on the upper right corner of the subimage coincides with the 1 in the mask. Note that
all these must be summed and then multiplied by the 1 2 2 factor to normalize the masks.
The projection of Is onto f1 is equal to:

	
1

2 2
1(1)+0(2)+1(1)+1(0)+0(0)+1(0)+1(1)+0(2− −))+1(1) = 0−[]

If we follow this process and project the subimage, Is, onto each of the Frei–Chen masks, we
get the following:

	 f f f f f f f f1 2 3 4 5 6 7 80, 0, 0, 0, 1, 0, 0, 1→ → → → →− → → → − ,, 29f →

We can now see what is meant by a complete set of basis vectors allowing us to represent a
subimage by a weighted sum. The basis vectors in this case are the Frei–Chen masks, and

(a) (b)

(c) (d)

Figure 4.2-11
Comparision of Canny, Shen–Casten, and Boie–Cox Algorithms. These results used the default parameters in
CVIPtools. (a) original image, (b) Canny, (c) Shen–Casten, (d) Boie–Cox.

158	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the weights are the projection values. Take the weights and multiply them by each mask,
then sum the corresponding values. For this example the only nonzero terms correspond
to masks f5, f8, and f9, and we find the following:

	 (1)
1
2

0 1 0
1 0 1
0 1 0

(1)
1
6

−
⎛
⎝⎜

⎞
⎠⎟
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ −

⎛
⎝⎜
⎞⎞
⎠⎟

− −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

⎛
⎝⎜
⎞
⎠⎟

2 1 2
1 4 1
2 1 2

(2)
1
3

1 1 1
1 11 1
1 1 1

1 0 1
1 0 1
1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= SI

We have seen how the Frei–Chen masks can be used to represent a subimage as a weighted
sum, but how are they used for edge detection? The Frei–Chen masks can be grouped into
a set of four masks for an edge subspace, four masks for a line subspace, and one mask for
an average subspace. These subspaces can be further broken down into gradient, ripple, line,
and Laplacian subspaces (see Figure 4.2-12). To use them for edge detection, select a par-
ticular subspace of interest and find the relative projection of the image onto the particular
subspace. This is given by the following equation:

	 cos()Θ =
M
S

where

	 M = I , f
k e

s k

∈{ }
∑ 2()

2√–

2√–

2
1

f1

11

0 0 0

2√–

2—√ – –1–1

1 0

0

–1

1 0 –1

2√– 2—√ –
2√–2

1

f2

0

0

0

–1

–1

1

1

2√–

2—√ –

2√–2
1

f3

10

10 0

02√– –1

–1

f4

2
1

0 0

0

00

–1–1

1

1

2
1

f5

–1

–1

0 1

0 0 0

1 0

2
1

f6

–2

–2

1 1

–21 1

14
6
1

f7

–2 –21

–2 –21

1 4 1
6
1

f8

111

111

111

3
1

f9

Figure 4.2-12
Frei–chen masks. The first four masks, f1–f4 comprise the edge subspace. The next four masks, f5–f8 comprise the
line subspace. The final mask, f9, is the average subspace. More specifically, f1 and f2 are the gradient masks, f3 and
f4 the ripple masks, f5 and f6 the line masks, and f7 and f8 the Laplacian masks.

Segmentation and Edge/Line Detection	 159

© 2011 by Taylor & Francis Group, LLC

	 S = I , f
k=1

9

s k• 2()

The set {e} consists of the masks of interest. The (Is,fk) notation refers to the process of over-
laying the mask on the subimage, multiplying coincident terms, and summing the results
(a vector inner product). The lengths of the vectors from the origin in the nine-dimensional
Frei–Chen space are represented by √M and the √S, with S corresponding to the entire
nine-dimensional subimage vector and M the subspace of interest. An illustration of this is
shown in Figure 4.2-13. The advantage of this method is that we can select particular edge
or line masks of interest, and consider the projection of those masks only. To use for edge
detection we typically set a threshold on the angle to determine if a point will be considered
a “hit” for the edge and/or line subspace of interest. Any pixel that with a corresponding
angle value below the threshold is similar enough to the subspace of interest to be consid-
ered a “hit,” and is marked accordingly.

In CVIPtools the user can select one of four different “projection” choices: (1) the edge
subspace, (2) the line subspace, (3) the maximum of the edge and line subspace projec-
tion, and (4) the minimum angle from the edge and line subspace projections. In all cases
CVIPtools will return an image of data type SHORT with the actual projection values. With
the first two options the user selects a threshold for the angle and only the pixel locations
where the angle is smaller than the threshold will have the projection value, other pixels
are set to zero. In the images shown in Figure 4.2-14 all the results have been postprocessed
with a binary threshold operation, using the average value in the Frei–Chen output image
as the threshold. Figure 4.2-15 shows the effect of changing the binary threshold value.

4.2.4  Edges in Color Images

We saw in Chapter 2 that color images are described as three bands of monochrome image
data, and typical images use RGB bands. We also saw that various color transforms exist

√S

√M
Subspace of interest, e

O
th

er
 su

bs
pa

ce

θ

COSθ = M
S

Figure 4.2-13
Frei–Chen projection. A 2-D representation of the Frei–Chen projection concept. The actual Frei–Chen space is
nine-dimensional, where each dimension is given by one of the masks, fk. S is the vector that represents the
subimage, and M is projection of the subimage vector onto the subspace of interest. The smaller the angle, the
larger M is, and the more the subimage is similar to the subspace of interest.

160	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

to map these RGB images into different color spaces. Given these choices, more than one
possible definition of what constitutes a color edge exists. The simplest method is to extract
the luminance, or brightness information and use the previously defined methods. Or the
RGB data can be mapped into another color space and edges are found in one of those
bands. For example, for a particular application we may not be interested in changes in
brightness, but in changes in what we classically think of as “color”; so the RGB data can
be mapped into the Hue/Saturation/Value (HSV) color space and edges are sought in the

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-14
Frei–Chen results using CVIPtools. (a) Original image, (b) results from the maximum of edge and line selec-
tion, (c) edge subspace angle threshold = 60, (d) edge subspace, angle threshold = 80, (e) line subspace, angle
threshold = 60, (f) line subspace, angle threshold = 80. Note: for display purposes the images shown have been
postprocesssed with a binary threshold operation using the average value of the output image.

Segmentation and Edge/Line Detection	 161

© 2011 by Taylor & Francis Group, LLC

hue or saturation bands. Figure 4.2-16 illustrates this by showing that the areas of reflection
are found in the saturation band, but not in the value (brightness) band.

Alternately, all three bands are used. We can require an edge to be present in all three
bands at the same location. With this scheme we can use any of the color spaces, depending
on the application, and we may want to define a quantum for “location error,” and not
require the edge to be at exactly the same pixel location in all three bands. Also, with this
scheme, we can use any of the previously defined edge detection methods on each of the

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-15
Changing the binary threshold with the Frei–Chen and maximum of edge or line subspace. (a) Original image,
(b) output from the maximum value of the edge or line subspace (linearly remapped to BYTE), (c) threshold =
average value, (d) threshold = 1.5 times the average value, (e) threshold = 2 times the averagevalue, (f) threshold =
3 times the average value.

162	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(e) (f)

Areas of
reflection
are found in
the saturation
band, but not
in the
value band(c) (d)

Figure 4.2-16
Color edge detection in HSV space. (a) Original image, (b) original image mapped into HSV color space and
displayed as an RGB image, (c) the saturation band, (d) Canny edge detection applied to the saturation band, (e)
the value band, (f) Canny edge detection applied to the value band. Note that the areas of reflection, marked with
the yellow arrows on image (d), are found in the saturation band, but not in the value band, image (f).

pj
w

st
k|

40
20

64
|1

43
56

01
02

7

Segmentation and Edge/Line Detection	 163

© 2011 by Taylor & Francis Group, LLC

three bands individually. We can then combine the results from all three bands into a
three-band image (as is done in CVIPtools, see Figure 4.2-17), or simply retain the maxi-
mum value at each pixel location from all three bands and output a monochrome image.
With application specific reasons a linear combination of all three results can be used to
create a monochrome image.

Another method that uses all three bands simultaneously is to consider the color pixel
vectors and search through the image marking edge points only if two neighboring
color pixel vectors differ by some minimum distance measure. Here we can use any vec-
tor distance measure, such as Euclidean distance (see Chapter 6 for definitions of other
distance measures).

(a)

(b)

(c)

Figure 4.2-17
Color edge detection in RGB Space. (a) Original image in RGB space, (b) Canny edge detector, all three bands
displayed, (c) Boie–Cox edge detector, all three bands displayed. The edges that appear white are in all three
RGB bands. Note that some edges only appear in one or two color bands.

164	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

One specific method for finding edges in multispectral images, developed by Cervenka
and Charvat in 1987, uses pixel values in all the image bands. This can be applied to three-
band color images, as well as multispectral satellite images. It uses equations similar to
the Roberts gradient, but is applied to all the image bands with a simple set of equations.
The result of this edge detector at pixel (r,c) is the smaller of the two values from these two
equations:

	

I r c I r c I r c I r cb b

b

(,) (,) (,) (,)−[] + + − + +[]
=

1 1 1 1
11

2
1 1 1 1

n

b bI r c I r c I r c I r c

∑

−[] + + − + +(,) (,) (,) (,)[[]
==
∑∑ 2

11 b

n

b

n

	

I r c I r c I r c I r cb b

b

(,) (,) (,) (,)+ − +[] + − +[]
=

1 1 1 1
11

2
1 1 1 1

n

b bI r c I r c I r c I r c

∑

+ − +[] + − +(,) (,) (,) (,)[[]
==
∑∑ 2

11 b

n

b

n

where

	
I r c(,) is the arithmetic average of all the pixels in all bands at pixel location (,r cc

I r c r cb

),

(,) (,)is the value at location iin the th band, with a total of bands.b n

This edge detector has been used successfully on multispectral satellite images. An exam-
ple is shown in Figure 4.2-18. Here we see the Cervenka and Charvat (1987) method applied
and the results histogram equalized to show detail, and two different thresholds applied
to the resultant image.

4.2.5  Edge Detector Performance

In evaluating the performance of many processes, we can consider both objective and sub-
jective evaluations. The objective metric allows us to compare different techniques with
fixed analytical methods, whereas the subjective methods may have unpredictable results.
However, for many image processing applications, the subjective measures tend to be the
most useful. We will examine the types of errors encountered with edge detection, look at
an objective measure based on these criteria, and review results of the various edge detec-
tors for our own subjective evaluation.

To develop a performance metric for edge detection operators, we need to define what
constitutes success. For example, the Canny algorithm was developed considering three
important edge detection success criteria:

Detection: the edge detector should find all real edges and not find any false edges.
Localization: the edges should be found in the correct place.
Single Response: there should not be multiple edges found for a single edge.

These correlate nicely with Pratt’s Figure of Merit (FOM) defined in 1978. Pratt first con-
sidered the types of errors that can occur with edge detection methods. The types of errors

Segmentation and Edge/Line Detection	 165

© 2011 by Taylor & Francis Group, LLC

(a)

(d)

(c)

(b)

Figure 4.2-18
Cervenka and Charvat multispectral image detector. (a) Original image, (b) result from the Cerchar in CVIPtools
after histogram equalization to show detail, (c) result from thresholding the Cerchar image at 10, (d) threshold-
ing the Cerchar results at 50.

166	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

are (1) missing valid edge points, (2) classifying noise pulses as valid edge points, and (3)
smearing of edges (see Figure 4.2-19). If these errors do not occur, we can say that we have
achieved success.

The Pratt FOM, is defined as follows:

	 FOM
I dN ii

IF

=
+

=
∑1 1

1 2
1

α

IN = the maximum of II and IF

II = the number of ideal edge points in the image
IF = the number of edge points found by the edge detector
α = a scaling constant that can be adjusted to adjust the penalty for offset edges and
di = the distance of a found edge point to an ideal edge point.

(a) (b)

(c) (d)

Figure 4.2-19
Errors in edge detection. (a) Original image, (b) missed edge points, examples marked with arrows, (c) noise
misclassified as edge points, examples marked with arrows, (d) smeared edge.

Segmentation and Edge/Line Detection	 167

© 2011 by Taylor & Francis Group, LLC

For this metric, FOM will be 1 for a perfect edge. Normalizing to the maximum of the
ideal and found edge points guarantees a penalty for smeared edges or missing edge points.
In general, this metric assigns a better rating to smeared edges than to offset or missing
edges. This is done because techniques exist to thin smeared edges, but it is difficult to
determine when an edge is found in the wrong location or is completely missed. The dis-
tance, d, can be defined in more than one way and typically depends on the connectivity
definition used. The possible definitions for d are as follows:

Let the (r,c) values for two pixels be (r1, c1) and (r2, c2).

	 1.	City block distance, based on four connectivity:

	 d r r c c= − + −1 2 1 2

With this distance measure we can only move horizontally and vertically.
	 2.	Chessboard distance, based on eight-connectivity:

	 d r r c c= − −()max ,1 2 1 2

With this distance measure we can move diagonally, as well as horizontally or
vertically.

	 3.	Euclidean distance, based on actual physical distance:

	 d r r c c= − + −[]() ()
/

1 2
2

1 2
2 1 2

Example 4.2.3

Given the following image array, find the Figure of Merit for the following found edge points,
designated by 1s, in (a), (b), and (c). Let α = 0.5, and use the city block distance measure. We
assume that the actual edge is in the locations where the line appears; that is, at the 100s.

	 Image Array

0 0 0 0 0
0 0 0 0 0
0 100 100 100 0
0 0 0 0 0
0 0 0 0 0

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	 (a)

0 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥(b)

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

(c)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 1
0 0 0 0 0

⎥⎥
⎥
⎥
⎥
⎥

	 (a)
1 1

11

FOM
I + dN i=

I

i

F

=
+

+
+∑ α 2 2

1
3

1
1 0 5 0

1
1 0

=
. () .. () . ()5 0

1
1 0 5 0

1
2 2
+

+
⎡

⎣⎢
⎤

⎦⎥
=

168	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)
1 1

1
1

FOM =
I + dN i=

I

i

F

∑

=
+

+
+

α 2

2

1
6

1
1 0 5 0

1
1. () 00 5 0

1
1 0 5 0

1
1 0 5 1

1
1 0 5 1

1
2 2 2 2. () . () . () . ()
+

+
+

+
+

+
+
11 0 5 1

0 8333
2+

⎡

⎣⎢
⎤

⎦⎥
≈

. ()
.

	 (c)
1 1

1
1

FOM
I dN i=

I

i

F

=
+

=
+

+
+∑ α 2 2

1
4

1
1 0 5 1

1
1 0 5. () . (() . () . ()

.
1

1
1 0 5 1

1
1 0 5 2

0 5833
2 2 2
+

+
+

+
⎡

⎣⎢
⎤

⎦⎥
≈

With result (a), we find a perfect edge. In result (b), we see that a smeared edge provides us
with about 83%, and an offset edge in (c) gives us about 58%. Note that the α parameter can be
adjusted to determine the penalty for offset edges.

Applying the Pratt FOM to selected edge detectors from each category—gradient opera-
tors, compass masks, and the advanced edge detectors—results are shown in Figure 4.2-20
and Figure 4.2-21. Figure 4.2-20 shows example test images, and the Pratt FOM results are
plotted as the noise variance increases. The original test image has a gray level of 127 on
the left and 102 on the right side, and then Gaussian noise was added. Figure 4.2-21 shows
resulting images with noise variances of 50 and 100 added to the test image. As expected,
the advanced algorithms will have the best result as shown here with the Canny.

As previously mentioned, the objective metrics are often of limited use in practical applica-
tions, so we will take a subjective look at the results of the edge detectors. The human visual
system is still superior, by far, to any computer vision system that has yet been devised, and
is often used as the final judge in application development. Figure 4.2-22 shows the magni-
tude images resulting from the basic edge detection operators. The magnitude images have
been postprocessed with a threshold operation, using the average value for the threshold.
Here we see similar results from all the operators, but the Laplacian. This results from the
Laplacian being based on the second derivative, while the others are based on the first
derivative. In Figure 4.2-23 we show the magnitude and direction images from the basic
gradient and compass mask edge detection operators. Here we stretch the histogram of the
magnitude images and remap the direction images from 0 to 255 (BYTE datatype).

If we add noise to the image, the edge detection results are not as good. The edge detector
will tend to find more false edges as a result of the noise. As mentioned before, we can pre-
process the image with mean, or averaging, spatial filters to mitigate the effects from noise
(this is explored more in Chapter 9), or we can expand the edge detection operators them-
selves to mitigate noise effects. One way to do this is to extend the size of the edge detection
masks. An example of this method is to extend the Prewitt edge mask as follows:

	

EXTENDED PREWITT EDGE DETECTIONMASK

1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1

− − −

− − −

1 0 1 1 1
1 1 1 0 1 1 1
1

− − −

− − −

11 1 0 1 1 1
1 1 1 0 1 1 1
1

− − −

− − −

1 1 0 1 1 1− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

Segmentation and Edge/Line Detection	 169

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

1

0.9

0.8

0.7

0.6

0.5

Pr
at

t’s
 fi

gu
re

 o
f m

er
it

0.4

0.3

0.2

0.1
1 5 10

Variance of added Gaussian noise
25 50 100

Canny

Kirsch

SobelRoberts

(e)

Figure 4.2-20
Pratt figure of merit. (a) The original test image, 256 × 256 pixels, brightness level of 127 on the left and 102 on
the right, (b) test image with added Gaussian noise with a variance of 25, (c) test image with added Gaussian
noise with a variance of 100, (d) a 16 × 16 subimage cropped from image (c), enlarged to show that the edge is
not as easy to find at the pixel level, (e) this graph shows that as the noise variance increases the Canny has the
best performance. We also see that the Roberts has the worst performance at high noise levels. The Roberts does
poorly due to being based on a 2 × 2 mask, as opposed to the Sobel and Kirsch which are based on 3 × 3 masks.
As we have seen with noisy images, a larger mask will perform better because it tends spread the noise out—it
is effectively a lowpass filter. The disadvantage of this is that fine details will be missed. This is the tradeoff
that occurs with all edge detection—sensitivity versus accuracy. The test image was a step edge with Gaussian
noise, so it is expected that the Canny performs the best because its development was based on this model.

170	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(e) (f)

(c) (d)

Figure 4.2-21
Pratt figure of merit images. (a) Test image with added Gaussian noise with a variance of 50, (b) a 16 × 16 subim-
age cropped from image (a), enlarged to show that the edge is not as easy to find at the pixel level, (c) Roberts
result, FOM = 0.498, (d) Sobel result, FOM = 0.853, (e) Kirsch result, FOM = 0.851, (f) Canny result, FOM = 0.963,
(g) test image with added Gaussian noise with a variance of 100, (h) a 16 × 16 subimage cropped from image (g),
enlarged to show that the edge is not as easy to find at the pixel level, (i) Roberts, FOM = 0.194, (j) Sobel,
FOM = 0.470, (k) Kirsch, FOM = 0.640, (l) Canny, FOM = 0.956.

Segmentation and Edge/Line Detection	 171

© 2011 by Taylor & Francis Group, LLC

(g) (h)

(k) (l)

(i) (j)

Figure 4.2-21 (continued)
Pratt figure of merit images. (a) Test image with added Gaussian noise with a variance of 50, (b) a 16 × 16 subim-
age cropped from image (a), enlarged to show that the edge is not as easy to find at the pixel level, (c) Roberts
result, FOM = 0.498, (d) Sobel result, FOM = 0.853, (e) Kirsch result, FOM = 0.851, (f) Canny result, FOM = 0.963,
(g) test image with added Gaussian noise with a variance of 100, (h) a 16 × 16 subimage cropped from image (g),
enlarged to show that the edge is not as easy to find at the pixel level, (i) Roberts, FOM = 0.194, (j) Sobel,
FOM = 0.470, (k) Kirsch, FOM = 0.640, (l) Canny, FOM = 0.956.

172	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

(c)

(d)

Figure 4.2-22
Edge detection examples. After the edge detector operator was performed a threshold corresponding to the
average value was used on the magnitude image. (a) Original image, (b) Roberts operator, (c) Sobel operator,
(d) Prewitt operator, (e) Laplacian operator, (f) Kirsch operator, (g) Robinson operator. Note that the resultant
images all look similar, except for the Laplacian. The Laplacian is based on the approximation of the second
derivative, unlike the others that are based on the first derivative.

Segmentation and Edge/Line Detection	 173

© 2011 by Taylor & Francis Group, LLC

We then can rotate this by 90° and have both row and column masks that can be
used like the Prewitt operators to return the edge magnitude and gradient. These types
of operators are called boxcar operators and can be extended to any size, although
7 × 7, 9 × 9, and 11 × 11 are typical. The Sobel operator can be extended in a similar
manner:

(e)

(f)

(g)

Figure 4.2-22 (continued)
Edge detection examples. After the edge detector operator was performed a threshold corresponding to the
average value was used on the magnitude image. (a) Original image, (b) Roberts operator, (c) Sobel operator,
(d) Prewitt operator, (e) Laplacian operator, (f) Kirsch operator, (g) Robinson operator. Note that the resultant
images all look similar, except for the Laplacian. The Laplacian is based on the approximation of the second
derivative, unlike the others that are based on the first derivative.

174	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)

(d) (e)

(c)

(a)

Figure 4.2-23
Edge detection examples with direction images. After the edge detector operator is applied, the magnitude
image is remapped to BYTE and its histogram is stretched. The direction images are remapped to BYTE range,
0-255. Note the original range on the direction images is –π to + π. (a) Original image, (b) Sobel magnitude
image, (c) Sobel direction image, (d) Prewitt magnitude, (e) Prewitt direction, (f) Kirsch magnitude, (g) Kirsch
direction, (h) Robinson magnitude, (i) Robinson direction. Note the magnitude images all look similar, but the
Sobel/Prewitt direction images differ from the Kirsch/Robinson due to the method in which they are defined.

Segmentation and Edge/Line Detection	 175

© 2011 by Taylor & Francis Group, LLC

	

EXTENDED SOBEL EDGE DETECTIONMASK

1 1− − −11 2 1 1 1
1 1 1 2 1 1

− − − −

− − − − − − − 11
1 1 1 2 1 1 1
0 0 0 0 0
− − − − − − −

00 0
1 1 1 2 1 1 1
1 1 1 2 1 1 1
11 1 1 2 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(f) (g)

(h) (i)

Figure 4.2-23 (continued)
Edge detection examples with direction images. After the edge detector operator is applied, the magnitude
image is remapped to BYTE and its histogram is stretched. The direction images are remapped to BYTE range,
0-255. Note the original range on the direction images is –π to + π. (a) Original image, (b) Sobel magnitude
image, (c) Sobel direction image, (d) Prewitt magnitude, (e) Prewitt direction, (f) Kirsch magnitude, (g) Kirsch
direction, (h) Robinson magnitude, (i) Robinson direction. Note the magnitude images all look similar, but the
Sobel/Prewitt direction images differ from the Kirsch/Robinson due to the method in which they are defined.

pj
w

st
k|

40
20

64
|1

43
56

01
01

8

176	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

If we approximate a linear distribution we obtain the truncated pyramid operator, as follows:

	

1 1 1 0 1 1 1
1 2 2 0 2 2

− − −

− − − 11
1 2 3 0 3 2 1
1 2 3 0 3 2

− − −

− − 1
1 2 3 0 3 2 1
1 2 2 0 2

−

− − −

− − 22 1
1 1 1 0 1 1 1

−

− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

This operator provides weights that decrease as we get away from the center pixel,
which will smooth the result in a more natural manner. These operators are used in the
same manner as the Prewitt and Sobel—we define a row and column mask, and then find
a magnitude and direction at each point. A comparison of applying the extended opera-
tors and the standard operators to a noisy image is shown in Figure 4.2-24. Comparing
Figure 4.2-24c and d and Figure 4.2-24e and f we see that with noisy images the extended
operators exhibit better performance than the smaller masks. However, they require more
computations and will smear the edges, which can be alleviated by postprocessing to thin
the smeared edges and remove any leftover noise.

The advanced edge detectors can also be used effectively in noisy images. Results from
applying the Marr–Hildreth, Canny, Boie–Cox, Shen–Castan, and Frei–Chen algorithms
to an image with salt-and-pepper noise are shown in Figure 4.2-25. Here we see that most
of these algorithms perform well in the presence of salt-and-pepper noise. However, the
Frei–Chen does not do as well as the others and the Marr–Hildreth is plagued by its usual
“spaghetti-effect.” In Figure 4.2-26 we apply the same edge algorithms to an image with
Gaussian noise. Here we see that the Shen–Casten retains numerous spurious edges and
again the Marr–Hildreth has the spaghetti-effect. However, with Gaussian noise, the
Frei–Chen, Canny, and Boie–Cox appear to perform well.

4.2.6  Hough Transform

The Hough transform is designed specifically to find lines. A line is a collection of edge
points that are adjacent and have the same direction. The Hough transform is an algorithm
that will take a collection of n edge points, as found by an edge detector, and efficiently
find all the lines on which these edge points lie. Although a brute force search method can
be used that will find all the lines associated with each pair of points, then check every
point with every possible line, it involves finding n(n – 1)/2 (on the order of n2) lines, and
comparing every point to all the lines, which is (n)(n(n – 1))/2 or about n3 comparisons.
This heavy computational burden is certainly not practical for real time applications, and
provides much more information than is necessary for most applications. The advantage
of the Hough transform is that it provides parameters to reduce the search time for finding
lines based on a set of edge points, and that these parameters can be adjusted based on
application requirements.

In order to understand the Hough transform we will first consider the normal (perpen-
dicular) representation of a line:

	 ρ θ θ= +r ccos sin() ()

Segmentation and Edge/Line Detection	 177

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-24
Edge detection examples with noise—larger masks mitigate noise effects. (a) Original image, (b) Image with
added Gaussian noise, (c) Robert’s edge detection, 2 × 2, (d) Sobel with a 3 × 3 mask, (e) Sobel with a 7 × 7 mask,
(f) a 7 × 7 truncated pyramid. The images have undergone a threshold with the average value. In (c), with the
2 × 2 Roberts, the noise conceals almost all the edges. In (d), with a 3 × 3 Sobel mask, the edges are visible, but
the resultant image is very noisy. With the 7 × 7 mask, shown in (e) and (f), the edges are much more prominent
and the noise much less noticeable.

178	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

If we have a line in our row and column, (r,c) based image space, we can define that line by
ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle
between the r-axis and the ρ-line (see Figure 4.2-27). Now, for each pair of values of ρ and θ
we have defined a particular line. The range on θ is 180º and ρ ranges from 0 to 2 N, where
N is the image size. Next, we can take this ρθ parameter-space and quantize it, to reduce our

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-25
Advanced edge detectors with salt-and-pepper noise. (a) Original image with salt-and-pepper noise added with
a probability of 3% each, (b) Marr–Hildreth, dual variance, sigma = 4.0, delta = 0.8, (c) Canny results, parame-
ters: % Low Threshold = 1, % High Threshold = 1.5, Variance = 2, (d) Boie–Cox results, low threshold factor = 0.3,
high threshold factor = 1.0, variance = 2.0, (e) Shen–Castan results, parameters: % Low Threshold = 1, % High
Threshold = 2, Smooth factor = 0.9, Window size = 7, Thin Factor = 1, (f) Frei–Chen results, parameters: Gaussian
2 prefilter, max(edge,line), post-threshold = 190. These results show that the Marr–Hildreth has the “spaghetti-
effect” as expected, and that the Frei–Chen does not work too well with salt and pepper noise. The Canny,
Boie–Cox and Shen–Casten work the best with salt and pepper noise.

Segmentation and Edge/Line Detection	 179

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

(c)

(d)

Figure 4.2-26
Advanced edge detectors with Gaussian noise. (a) Original image with Gaussian noise added with zero mean
and a variance of 400, (b) Marr–Hildreth, dual variance, sigma = 4.0, delta = 0.8, (c) Canny results, parameters:
% Low Threshold = 1, % High Threshold = 1.5, Variance = 1.5, (d) Boie–Cox results, low threshold factor = 0.3,
high threshold factor = 1.0, variance = 2.0, (e) Shen–Castan results, parameters: % Low Threshold = 1, % High
Threshold = 2, Smooth factor = 0.8, Window size = 7, Thin Factor = 1, (f) Frei–Chen results, parameters: Gaussian 2
prefilter, max(edge,line), postthreshold = 80. These results show that the Marr–Hildreth has the “spaghetti-effect”
as expected, and that the Shen–Casten retains spurious edges with Gaussian noise. The Canny, Boie–Cox, and
Frei–Chen work the best with Gaussian noise.

180	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

search time. We quantize the ρθ parameter-space, as shown in Figure 4.2-28, by dividing the
space into a specific number of blocks. Each block corresponds to a line, or group of possible
lines, with ρ and θ varying across the increment as defined by the size of the block. The size
of these blocks corresponds to the coarseness of the quantization; bigger blocks provide less
line resolution.

The algorithm used for the Hough transform (see Figure 4.2-29 for a flowchart of the
process) will help understand what this means. The algorithm consists of three primary
steps:

	 1.	Define the desired increments on ρ and θ, Δp and Δθ quantize the space accordingly.
	 2.	For every point of interest (typically points found by edge detectors that exceed

some threshold value), plug the values for r and c into the line equation:

	 ρ θ θ= +r ccos sin() ()

Then, for each value of θ in the quantized space, solve for ρ.
	 3.	For each ρθ pair from Step 2, record the r and c pair in the corresponding block in

the quantized space. This constitutes a hit for that particular block.

(e)

(f)

Figure 4.2-26 (continued)
Advanced edge detectors with Gaussian noise. (a) Original image with Gaussian noise added with zero mean
and a variance of 400, (b) Marr–Hildreth, dual variance, sigma = 4.0, delta = 0.8, (c) Canny results, parameters:
% Low Threshold = 1, % High Threshold = 1.5, Variance = 1.5, (d) Boie–Cox results, low threshold factor = 0.3,
high threshold factor = 1.0, variance = 2.0, (e) Shen–Castan results, parameters: % Low Threshold = 1, % High
Threshold = 2, Smooth factor = 0.8, Window size = 7, Thin Factor = 1, (f) Frei–Chen results, parameters: Gaussian2
prefilter, max(edge,line), postthreshold = 80. These results show that the Marr–Hildreth has the “spaghetti-effect”
as expected, and that the Shen–Casten retains spurious edges with Gaussian noise. The Canny, Boie–Cox, and
Frei–Chen work the best with Gaussian noise.

Segmentation and Edge/Line Detection	 181

© 2011 by Taylor & Francis Group, LLC

r

c

θ

The line of interest

ρ

Figure 4.2-27
The Hough transform can be defined by using the normal (perpendicular) representation of a line and the
parameters ρ and θ.

0º
0

180º
θ

∆θ

∆ρ

ρ

√2N

Figure 4.2-28
The quantized Hough space. Theta, θ, varies from 0 to 180 degrees, and rho, ρ, varies from 0 to √2N for a square
N × N image. Each block in this quantized space represents a group of lines whose parameters can vary over
one increment of θ and ρ, defined by Δρ and Δθ.

182	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

When this process is completed, the number of hits in each block corresponds to the
number of pixels on the line as defined by the values of on ρ and θ in that block. The
advantage of large quantization blocks is that the search time is reduced, but the price paid
is less line resolution in the image space. Examining Figure 4.2-30, we can see that this
means the line of interest in the image space can vary more. One block in the Hough space
corresponds to all the solid lines in this figure—this is what we mean by reduced line
resolution.

Next, select a threshold and examine the quantization blocks that contain more points
than the threshold. Here, we look for continuity by searching for gaps in the line by look-
ing at the distance between points on the line (remember the points on a line correspond
to points recorded in the block). When this process is completed, the lines are marked in
the output image. Note that the Hough transform will allow us to look for lines of specific
orientation, if desired.

A more advanced post-processing algorithm is implemented in CVIPtools with the
Hough transform. Images resulting from this algorithm searching for lines at 45° are
shown in Figure 4.2-31, and any of these intermediate images is available as output in

START

r = c = 0

Is
I (r, c)

marked?
No Next I (r, c)

Yes

θ = 0º

Solve
ρ = r cosθ + c sinθ

Store (r, c)
in (ρ, θ) block

 θnext = θ + ∆θ

θ = 180º + ∆θ?No Yes

Figure 4.2-29
Hough transform flowchart. The flowchart is followed until all I(r, c) have been examined.

Segmentation and Edge/Line Detection	 183

© 2011 by Taylor & Francis Group, LLC

CVIPtools with the Output Image select box for the Hough transform. The algorithm works
as follows:

	 1.	Perform the Hough transform on the input image containing marked edge points,
which we will call image1. The result, image2, is an image in Hough space quantized
by the parameter delta length (ρ) and delta angle (fixed at one degree in CVIPtools).

	 2.	Threshold image2 by using the parameter line pixels, which is the minimum num-
ber of pixels in a line (or in one quantization box in Hough space), and do the
inverse Hough transform. This result, image3, is a mask image with lines found
in the input image at the specified angle(s), illustrated in Figure 4.2-31c. Note that
these lines span the entire image.

	 3.	Perform a logical operation, image1 AND image3. The result is image4, see
Figure 4.2-31d.

	 4.	Apply an edge linking process to image4 to connect line segments; specifically we
implemented a snake eating algorithm. This works as follows:

	 a.	 A line segment is considered to be a snake. It can eat another snake within con-
nect distance along line angles, and becomes longer (see Figure 4.2-31e). This will
connect disjoint line segments.

	 b.	 If a snake is too small, less than segment length, it will be extinct. This will
remove small segments. The output from the snake eating algorithm is the
final result, illustrated in Figure 4.2-31f.

c

∆ρ

∆ρ

r

c

∆θ

r

c

∆θ

r

Range of lines included
by choice of ∆ρ

Range of lines included
by choice of block size

Range of lines included
by choice of ∆θ

(a) (b)

(c)

Figure 4.2-30
Effects of quantization block size for Hough transform.

184	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-31
Hough transform post-processing algorithm details. The Hough parameters used are as follows: Line Angles:
45º, Line Pixels (min): 25, Connect distance (max): 5, Delta Length: 1, Segment Length (min): 15. (a) Original image,
(b) Image after applying the Kirsch edge operator and a threshold operation, (c) The mask image created from
the Hough result for lines at 45º, (d) Result of logical AND of the images in (b) and (c), (e) Image (d) after snake
eating, see that the camera’s handle has been connected, (f) The final result after snake extinction, small dashed
lines are removed. Note that we have four lines, starting from the upper left: one line corresponding to the lower
part of the arm above the elbow, note that the upper part of the arm is missing as it is not quite at 45º; one line
for the camera handle; the next line corresponds to the part of his other arm from elbow to wrist, and the last
line (the lower one) that is not a true line in the image but is created by a combination of the edge detail in that
area and using a connect distance of 5.

Segmentation and Edge/Line Detection	 185

© 2011 by Taylor & Francis Group, LLC

4.2.6.1  CVIPtools Parameters for the Hough Transform

Line Angles: The range of angles for which the Hough transform will search.
Line Pixels (min): The minimum number of pixels a line must possess to be retained,

also referred to as the threshold value in the Hough image.
Connect distance (max): Controls how far apart two line segments can be and still be

connected.
Delta Length: Quantizes the Hough space ρ parameter. Controls how “thick” a line

can be; note that a “thick” line might consist of multiple separate lines if they are
in close proximity.

Segment Length (min): The minimum number of pixels in a line segment for it to be
retained.

Segment length controls how many pixels a solid line must have while line pixels con-
trols how many pixels a dashed line must have.

The result of applying the Hough transform to an aircraft image is shown in Figure 4.2-32.
The Sobel edge detection operator was used on the original image to provide input to the
Hough transform. The Sobel edge detection results were thresholded at a gray level of
about 200. The Hough transform parameter delta length (rho) was set at 1, line pixels (the
number-of-points threshold) was set at a minimum of 20 pixels per line, and segment length
set to 10. The figure illustrates the effects of changing the range of line angles and the
connect distance between line segments. Although the Hough transform is an efficient line
finding algorithm, when a post-processing algorithm is applied as defined above we have a
boundary detection segmentation method, and these are discussed more in Section 4.3.3.

4.2.7  Corner Detection

We have seen that edges are found by considering the rate of change, or gradient, in image
brightness (gray level) in a specific direction. Lines and curves are then a collection of these
edge points along a specific path. Corners are simply points where there is a high rate of
change in more than one direction. Corner detection is useful for many applications. For
example, object tracking is facilitated by the ability to delineate an object by its corners and
following the movement of the corners through space. In addition to tracking the object
in space the orientation can be followed more easily with corner detection. Corners are
also useful features for matching multiple images, for example, to use as match points for
creation of three-dimensional models from stereo images.

Corners are used by the human visual system to provide cues about object boundaries,
and are also important in computer vision applications because they are robust features.
We refer to corners as robust features because they can be found accurately in the presence
of noise or even if image acquisition conditions, such as lighting or camera angles, vary.
Note that even though the corner features themselves are robust, the corner detector may
not be.

The Moravec detector is the simplest corner detector, but not necessarily robust. It finds
points of maximum contrast, which correspond to potential corners and sharp edges. This
operator is as follows:

	 MD I r c I r c I i
i r

r

j c

c

[(,)] | (,) (,= −
= −

+

= −

+

∑ ∑
1
8

1

1

1

1

jj)|

186	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

In words, it finds the average of the sum of the absolute values of the differences between
a pixel and its neighbors. Or, put more simply, finds the average difference between a pixel
and its neighbors in all directions. After this operator is applied the result can undergo
a threshold operation to select only pixels above a certain value. Results of varying the
threshold are shown in Figure 4.2-33. Here we see that as the threshold is increased we
get fewer of the edge pixels and more of the corners only. We can also observe on a digital,
rectangular sampling grid that curves have “corners.” Note that this operator is not isotro-
pic, which means it does not treat edges in all directions equally. In other words, a corner
not in the direction of the neighbors will not be detected.

A more robust corner detector is the Harris corner detection algorithm, developed by
Harris and Stephens in 1988. The Harris method consists of four steps: (1) Blur the image
with a 2-D Gaussian convolution mask, (2) Find the approximate brightness gradient in

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-32
Hough transform. (a) Original image, (b) Sobel edge operator followed by a thresholding, (c) Hough output
with the range of line angles = 0–45º, delta length (ρ) = 1, minimum number of pixels per line = 20, maximum
connect distance = 2, minimum segment size = 10, (d) Hough output with same parameters as (c) except range
of angles from 0 to 90 degrees, (e) Hough output with same parameters as (d) except connect distance = 5,
(f) Hough output with same parameters as (e) except connect distance = 10.

Segmentation and Edge/Line Detection	 187

© 2011 by Taylor & Francis Group, LLC

two perpendicular directions, for example, use the two Prewitt or Sobel masks, (3) Blur the
two brightness results with a 2-D Gaussian, (4) Find the corner response function, CRF(r,c),
and (5) Threshold the CRF and apply nonmaxima suppression, similar to what was done
with the Canny.

Now, we need to define the CRF(r,c). To do this we must select a gradient function for
Step 2, so, for simplicity we will use the Prewitt edge detector that results in p1 for the verti-
cal edges (horizontal lines) and p2 for the horizontal edges (vertical lines). Remember that
p1 and p2 are both functions of the row and column coordinates, (r,c); this is implied in the
below equation. Now we can define:

	 CRF r c G p G p G p p G p(,) [() () [()]] [()= − − ∝ +1
2

2
2

1 2
2

1 GG p()]2
2

where G(°) represents the result after convolution with a Gaussian.

(a) (b)

(c) (d)

Figure 4.2-33
Moravec corner detector. (a) Original image, (b) resultant image from Moravec corner detector with a threshold
of 50, (c) threshold of 100, (d) threshold of 150. Note that the threshold of 150 gets the corners only, whereas lower
threshold values get more edge pixels.

188	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The larger the magnitude of CRF(r,c), the more likely a corner is at that point. The param-
eter α determines the sensitivity of the corner detector—a larger α makes it less sensitive
and will result in fewer corners being found. The maximum value for α is 0.25, but typi-
cally values vary from 0.04 to 0.15, with 0.06 being the default value.

After the CRF(r,c) is found it must undergo a threshold process and application of
nonmaxima suppression. The threshold is based on image content, and the nonmaxima
suppression works by finding the largest value of the CRF within a given spatial area.
Figure 4.2-34 shows application of the Harris corner detector, with example intermediate
images for each step in the process.

The Frei–Chen masks can also be used as a corner detector. Results are shown in
Figure 4.2-35. Here we have simple binary shapes and show the projection onto the edge
subspace with a threshold angle of 50°, and the projection onto the line subspace with
threshold angles of 50° and 40°. Note that the projection onto the edge subspace finds the
corners at a 45° angle to the corner and the projection onto the line subspace finds the
corners on the corner itself. The edge subspace projection does not find the horizontal and
vertical lines at the top and sides of the curves, but the projection onto the lines subspace
does. Also, in (d) the line subspace with a lower angle threshold finds the “corners” of the
holes only. These results are a function of the Frei–Chen masks (see Figure 4.2-12).

4.3  Segmentation

Image segmentation is one of the most important processes for many applications. In
image analysis and computer vision, segmenting the image correctly into real objects of
interest is critical for object classification that will determine the success or failure of the
algorithm. For example, in a robotic control application that needs to remove “bad” parts
from an assembly line, incorrect classification will result in bad parts being shipped to
the customer, or good parts being removed. In either case, the cost to the manufacturer is
increased. In a medical diagnostic application, a poor classification process can be even
more costly, in terms of both dollars and human life.

In many applications the illumination system is critical to acquiring an image that
has a reasonable chance for a successful segmentation. The lighting system in indus-
trial inspection applications can be controlled and designed to make the segmentation
process easier. Special purpose lighting is often used in these types of applications
where the designer can control the environment. Other applications may not allow for
environmental control, such as military or police applications, but the imaging system
designer can specify the types of sensor to be used. Infrared imaging sensors are a
natural choice for image acquisition in military applications where many of the objects
of interest, such as troops or fighter jets, radiate heat. These examples all serve to illus-
trate the importance of the application feedback loop in the image analysis process (see
Figure 3.1.3).

As discussed at the beginning of this chapter, the goal of image segmentation is to find
regions that represent objects or meaningful parts of objects. Image segmentation methods
will look for objects that either have some measure of homogeneity within themselves, or
have some measure of contrast with the objects on their border. The homogeneity and con-
trast measures can include features such as gray level, color, and texture. In Figure 4.1-1 we
saw the three categories of image segmentation methods: (1) Region growing/shrinking,

Segmentation and Edge/Line Detection	 189

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.2-34
Harris corner detector. (a) Original image after application of 5 × 5 Gaussian mask, (b) strength of the horizontal
lines, from the vertical gradient, by application of Prewitt, p1, squared followed by a Gaussian, G(p1

2) (c) strength
of the vertical lines, from the horizontal gradient, by application of Prewitt, p2, squared followed by a Gaussian,
G(p2

2) (d) Gaussian of the product of the horizontal and vertical gradient, G(p1,p2) (e) result from the corner
response function, CRF(r,c), (f) the final detected corners after thresholding and nonmaxima suppression of the
CRF(r,c), shown overlaid on the original shapes.

190	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(2) Clustering, and (3) Boundary detection. In this section we will examine algorithms that
are representative of each of these categories.

4.3.1  Region Growing and Shrinking

Region growing and shrinking methods segment the image into regions by operating
principally in the row and column, (r,c), based image space. Some of the techniques used
are local, in which small areas of the image are processed at a time; others are global, with
the entire image considered during processing. Methods that can combine local and global

(a) (b)

(c) (d)

Figure 4.2-35
Frei–Chen masks for corner detector. (a) Original image, (b) Projection onto edge subspace with a threshold
angle of 50°, (c) Projection onto line subspace with a threshold angle of 50°, (d) Projection onto line subspace with
a threshold angle of 40°. Note that the projection onto the edge subspace finds the corners at a 45° angle to the
corner and the projection onto the line subspace finds the corners on the corner itself. The edge subspace pro-
jection does not find the horizontal and vertical lines at the top and sides of the curves, but the projection onto
the lines subspace does. Also, in (d) the line subspace with a lower angle threshold finds the “corners” of the
holes only.

Segmentation and Edge/Line Detection	 191

© 2011 by Taylor & Francis Group, LLC

techniques, such as split and merge, are referred to as state space techniques and use
graph structures to represent the regions and their boundaries. The data structure most
commonly used for this is the quadtree. A tree is a data structure that has nodes that point
to (connect) the elements. The top element is called the parent, and the connected elements
are called children. In a quadtree each node can have four children; this is illustrated in
Figure 4.3-1. This data structure facilitates the splitting and merging of regions.

Various split and merge algorithms have been described, but they all are most effective
when heuristics applicable to the domain under consideration can be applied. This gives
a starting point for the initial split. In general, the split and merge technique proceeds as
follows:

	 1.	Define a homogeneity test. This involves defining a homogeneity measure, which
may incorporate brightness, color, texture, or other application-specific information,
and determining a criterion the region must meet to pass the homogeneity test.

	 2.	Split the image into equal sized regions.
	 3.	Calculate the homogeneity measure for each region.

R1 R2

R4

R31 R32

R33 R34

(a)

R

R1 R2 R3 R4

R32R31 R34R33

(b)

Figure 4.3-1
Quadtree data structure. (a) A partitioned image where Ri represents different regions, (b) The corresponding
quadtree data structure.

192	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	 If the homogeneity test is passed for a region, then a merge is attempted with its
neighbor(s). If the criterion is not met, the region is split.

	 5.	Continue this process until all regions pass the homogeneity test.

There are many variations of this algorithm. For example, we can start out at the global
level, where we consider the entire image as our initial region, and then follow an algorithm
similar to the above, but without any region merging. Algorithms based on splitting only
are called multiresolution algorithms. Alternately, we can start at the smallest level and
only merge, with no region splitting. This merge-only approach is one example of region
growing methods. Often the results from all of these approaches will be quite similar, with
the differences apparent only in computation time. Parameter choice, such as the mini-
mum block size allowed for splitting, will heavily influence the computational burden as
well as the spatial resolution available in the results.

The user-defined homogeneity test is largely application-dependent, but the general idea
is to find features that will be similar within an object and different from the surrounding
objects. In the simplest case the gray level may be used as the feature of interest. Here, the
gray-level variance can be used as our homogeneity measure and we can define a homo-
geneity test that requires the gray-level variance within a region to be less than a specified
threshold. We can define gray-level variance as
	

Gray-level variance
1
1

[(
()

=
−

∈
∑N

I r
r,c REGION

,,c I)]
2−

where

	

I
N

I r,c
r,c REGION

=
∈
∑

1
()

()

Note that the sum is taken over the region of interest and N is the number of pixels in the
region. The variance is basically a measure of how widely the gray levels within a region
vary. Higher order statistics can be used for features such as texture, and are explored in
Chapter 6.

A similar approach involves searching the image for a homogeneous region and enlarg-
ing it until it no longer meets the homogeneity criteria. At this point, a new region is
found that exhibits homogeneity and is grown. This process continues until the entire
image is divided into regions. With this technique the initial regions are called seed regions,
and their selection can heavily influence the resulting segmented image. The choice of a
homogeneity metric for the seed regions will be application specific; for some applications
texture may be of paramount importance and for others it may be color.

In CVIPtools a general split and merge algorithm is implemented with the following
homogeneity criteria available:

	 1.	Pure uniformity: A region is considered homogeneous if the gray levels are
constant.

	 2.	Local mean versus global mean: A region is considered homogeneous if the local
mean is greater than the global mean.

	 3.	Local standard deviation versus global mean: A region is considered homogeneous if
the local standard deviation, which is the square root of the variance, is less than
10% of the global mean.

Segmentation and Edge/Line Detection	 193

© 2011 by Taylor & Francis Group, LLC

	 4.	Variance: A region is considered homogeneous if a minimum percentage of the
pixels, specified by the CVIPtools parameter Percentage, are within two standard
deviations of the local mean, unless the standard deviation exceeds a maximum
Threshold value.

	 5.	Weighted gray-level distance: A region is considered homogeneous if the weighted
gray-level value, which is based on the mode and the gray-level distance from the
mode weighted by the distribution, is less than a specified Threshold value.

	 6.	Texture: A region is considered homogeneous if the four quadrants of the region
have similar texture, based on five of the textural features defined in Chapter 6;
specifically energy, inertia, correlation, inverse difference, and entropy. The parameters
specified are pixel distance and similarity.

Figure 4.3-2 shows results of applying the split and merge algorithm to an image with the
various homogeneity criteria. The original image is 256 × 256 pixels and the Entry level
parameter determines the size of the initial regions. For example, if the entry level is 1,
the image is divided once (see Figure 4.3-1), so the initial region size is 128 × 128 for a
256 × 256 image. If the entry level is 2, the initial region is 64 × 64 for a 256 × 256 image,
and so on. In this figure the entry level was set to 6, which provides an initial region size
of 256 2 256 26 6× , or 4 × 4 pixels. Note that this particular image is probably not a good
candidate for texture based segmentation.

Another segmentation method we include in the region growing and shrinking category
is the watershed segmentation algorithm. This method is often classified as a morpholog-
ical technique because it is implemented with morphological methods (see Section 4.3.5).
We include it here since it operates in the row and column based image space. The water-
shed algorithm is a morphological technique based on the idea of modeling a gray-level
image as a topographic surface, with higher gray levels corresponding to higher eleva-
tions. The image is then flooded with a rainfall simulation, and pools of water are created
corresponding to segments within the image. When rising water reaches a point where
two pools will merge, a dam is built to prevent the merging. These dams are the watershed
lines, which mark the boundaries used to segment the image into its various regions (see
Section 12.7 for more details).

Many different variations of the watershed algorithm can be implemented. The water-
shed segmentation algorithm as implemented in CVIPtools was initially designed to
separate a single object from the background in color images. It provides the user with
two parameters—merge and threshold. The merge parameter has a checkbox, to merge
or not to merge. If merge is selected, the threshold parameter determines the amount of
merging that will occur. The threshold parameter works by creating a histogram using
the average gray value within each watershed segment. Next, it finds the maximum
value in the histogram and merges this group with adjacent lower and higher gray
levels until the threshold is reached. The threshold represents the percent of total area
in the image.

In Figure 4.3-3 we show a skin lesion image where the goal is to separate the lesion
(tumor) from normal skin. The results of the watershed segmentation are shown along with
various values for the threshold. In Figure 4.3-3c we can tell that the maximum histogram
value corresponds to the bright area to the left and right of the lesion. As the threshold is
increased in the following three images, we can see this area expand as it is merged with
neighboring gray-level values. Figure 4.3-4 shows the watershed segmentation algorithm
applied to a natural scene; and also shows borders that have been extracted after the merge

pj
w

st
k|

40
20

64
|1

43
56

01
04

8

194	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.3-2
Segmentation with split and merge algorithm, various homogeneity criteria. The original image is 512 × 512 pixels,
and the Entry level parameter was set to 6. (a) Original image, (b) Local mean versus global mean, (c) Local standard
deviation versus global mean, (d) Variance with Threshold = 25, Percentage = 0.7 (70%), (e) Weighted gray-level dis-
tance with Threshold = 25, (f) Texture homogeneity with Similarity = 50, and Pixel distance = 2.

Segmentation and Edge/Line Detection	 195

© 2011 by Taylor & Francis Group, LLC

process. In CVIPtools the borders are extracted with a simple threshold at 254 of the output
merged image.

4.3.2  Clustering Techniques

Clustering techniques are image segmentation methods by which individual elements are
placed into groups; these groups are based on some measure of similarity within the group.

(a) (b)

(c) (d)

(e) (f)

Figure 4.3-3
Watershed segmentation. (a) Original image of a skin lesion, (b) result of watershed segmentation without
merging, (c) borders shown after merging with a threshold of 0.4, (d) merge with a threshold of 0.5, (e) merge
with a threshold of 0.6, (f) merge with a threshold of 0.7.

196	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.3-4
Watershed segmentation. (a) Original image, (b) result of watershed segmentation without merging, (c) image
with borders after merging with a threshold of 0.3, (d) borders only with threshold of 0.3, (e) image with borders
after merging with a threshold of 0.6, (f) borders only with threshold of 0.6, (g) image with borders after merg-
ing with a threshold of 0.8, (h) borders only with threshold of 0.8.

Segmentation and Edge/Line Detection	 197

© 2011 by Taylor & Francis Group, LLC

The major difference between these techniques and the region growing techniques is that
domains other than the row and column, (r,c), based image space (the spatial domain) may
be considered as the primary domain for clustering. Some of these other domains include
color spaces, histogram spaces, or complex feature spaces. [Note that the terms domain and
space are used interchangeably here, these terms both refer to some abstract N-dimensional
mathematical space, not to be confused with the spatial domain, which refers to the row
and column, (r,c), image space.]

What is done is to look for clusters in the domain, or mathematical space, of interest.
The simplest method is to divide the space of interest into regions by selecting the center
or median along each dimension and splitting it there; this can be done iteratively until
the space is divided into the specific number of regions needed. This method is used
in the spherical coordinate transform (SCT)/Center and principal coordinate transform
(PCT)/Median segmentation algorithms. This method will be most effective if the algo-
rithm is designed in conjunction with the application and the mathematical space being
used. Otherwise, the center or median split alone may not find good clusters.

The next level of complexity uses an adaptive and intelligent method to decide where
to divide the space. These methods include histogram thresholding and other, more com-
plex feature-space-based statistical methods. A simple histogram thresholding method for
binary segmentation was discussed in Chapter 3; and another method, the Otsu method,
is presented in the next section. For the more complex methods, representative algorithms
will be discussed conceptually here, and a detailed look will be taken at two application-
specific algorithms.

Recursive region splitting is a clustering method that has become a standard technique.
This method uses a thresholding of histograms technique to segment the image. A set of
histograms is calculated for a specific set of features, and then each of these histograms is
searched for distinct peaks (see Figure 4.3-5). The best peak is selected and the image is

(g) (h)

Figure 4.3-4 (continued)
Watershed segmentation. (a) Original image, (b) result of watershed segmentation without merging, (c) image
with borders after merging with a threshold of 0.3, (d) borders only with threshold of 0.3, (e) image with borders
after merging with a threshold of 0.6, (f) borders only with threshold of 0.6, (g) image with borders after merg-
ing with a threshold of 0.8, (h) borders only with threshold of 0.8.

198	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

split into regions based on this thresholding of the histogram. One of the first algorithms
based on these concepts proceeds as follows:

	 1.	Consider the entire image as one region and compute histograms for each compo-
nent of interest (for example red, green, and blue for a color image).

	 2.	Apply a peak finding test to each histogram. Select the best peak and put thresholds
on either side of the peak. Segment the image into two regions based on this peak.

	 3.	Smooth the binary thresholded image so only a single connected subregion is left.
	 4.	Repeat steps 1–3 for each region until no new subregions can be created; that is, no

histograms have significant peaks.

Many of the parameters of this algorithm are application-specific. For example, what peak
finding test do we use and what is a “significant” peak? An example of histogram-threshold-
ing-based image segmentation is shown in Figure 4.3-6. In addition to the two basic binary
thresholding algorithms in CVIPtools, the Otsu and automatic single threshold method, we
have two gray-level or color histogram thresholding based segmentation methods, called
histogram thresholding and fuzzy c-means. These are explored in the exercises at the end
of this chapter and details of these particular algorithms can be found in the references.

The SCT/Center color segmentation algorithm was initially developed for the identifica-
tion of variegated coloring in skin tumor images. Variegated coloring is a feature believed
to be highly predictive in the diagnosis of melanoma, the deadliest form of skin cancer.
The SCT was chosen for this segmentation method, as it decouples the color information
from the brightness information. The brightness levels may vary with changing lighting
conditions, so by using the two-dimensional color subspace defined by two angles (Figure
4.3-7a) we have a more robust algorithm.

If we slice a plane through the RGB color space, we can model a color triangle (Figure
4.3-7b). The vertices of the color triangle were chosen to bear some correlation to the human
visual system. The placement of blue at the top of the triangle, and the way in which
the spherical transform was defined, relates to the physiological fact that the cones in the
human visual system that see blue are more discriminatory than the red or green sensitive
cones (see Chapter 7 for more information on the human visual system).

N
um

be
r o

f p
ix

el
s Region 2

Feature value
Two thresholds are selected, one on each side of the best peak. �e image
is then split into two regions. Region 1 corresponds to those pixels with
feature values between the selected thresholds, known as those in the peak.
Region 2 consists of those pixels with feature values outside the threshold.

Region 1

Region 2

Figure 4.3-5
Histogram Peak Finding.

Segmentation and Edge/Line Detection	 199

© 2011 by Taylor & Francis Group, LLC

We can segment the image by taking the color triangle and dividing it into blocks based
on limits on the two angles. Figure 4.3-7c shows the shape of the resulting blocks. We can
see that for a region defined by a range of minima and maxima on the two angles, the side
of the region that is closest to the blue vertex is shorter than the side that is closest to the
line that joins the red and green vertices.

Also, the distortion caused by the transform facilitates the perception-based aspect of
the image segmentation; the closer to the perimeter of the triangle, the larger the region
that is defined by a fixed angle range. This is analogous to the observation that as the white
point is approached in the color space, a greater number of hues will be observable in a
fixed area by the human visual system than on the perimeter of the color triangle. This
observation is application-specific, since it only applies to colors from white (in the center

Figure 4.3-6
Histogram thresholding segmentation.

200	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

of the triangle) to the green and red vertices. Skin tumor colors typically range from white
out to the red vertex. The SCT/Center segmentation algorithm is outlined as follows:

	 1.	Convert the (R,G,B) triple into spherical coordinates—(L, angle A, angle B).
	 2.	Find the minima and maxima of angle A and angle B.
	 3.	Divide the subspace, defined by the maxima and minima, into equal-sized blocks.
	 4.	Calculate the RGB means for the pixel values in each block.
	 5.	Replace the original pixel values with the corresponding RGB means.

For the identification of variegated coloring in the skin tumor application it was deter-
mined that segmenting the image into four colors was optimal. An example of this seg-
mentation method is shown in Figure 4.3-8.

BLUE

BLUE

BLUE

GREEN GREEN

GREEN

RED

RED

The color triangle showing regions defined by 10 degree increments on Angle A and Angle B.

RED

Angle A

Angle A Angle A

Angle B

Angle B

 The color triangleThe spherical coordinate transform separates
the red, green and blue information into a
2-D color space defined by angles A and B,
and a 1-D brightness space defined by L.

(a) (b)

(c)

0º º90

º90

º80

º70

º60

º50

º40

º30
º20

º10

L

Figure 4.3-7
SCT/Center and color triangles.

Segmentation and Edge/Line Detection	 201

© 2011 by Taylor & Francis Group, LLC

The PCT/Median color segmentation algorithm was developed because, for certain
features other than variegated coloring, the results provided by the previously described
algorithm were not totally satisfactory. This algorithm is based around the PCT. The
median split part of the algorithm is based on an algorithm developed for color com-
pression to map 24‑bits per pixel color images into images requiring an average of 2‑bits
per pixel.

The PCT (defined in Chapter 5) is based on statistical properties of the image, and can
be applied to any K-dimensional mathematical space. In this case, the PCT is applied
to the three-dimensional color space. It was believed that the PCT used in conjunction
with the median split algorithm would provide a satisfactory color image segmentation,
since the PCT aligns the main axis along the maximum variance path in the data set (see
Figure 4.3-9). In pattern recognition theory a feature with large variance is said to have
large discriminatory power. Once we have transformed the color data so that most of the

(a) (b)

(c) (d)

Figure 4.3-8
SCT/Center segmentation algorithm applied to a skin lesion image. (a) Original image, (b) SCT/Center segmen-
tation result with two colors, (c) segmentation into four colors, (d) segmentation into six colors.

202	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

information (variance) lies along a principal axis, we proceed to divide the image into dif-
ferent colors by using a median split on the transformed data. The PCT/Median segmenta-
tion algorithm proceeds as follows:

	 1.	Find the PCT for the RGB image. Transform the RGB data using the PCT.
	 2.	Perform the median split algorithm: find the axis that has the maximal range (ini-

tially it will be the PCT axis). Divide the data along this axis so that there are equal
numbers of points on either side of the split—the median point. Continue splitting
at the median along the maximum range segment until the desired number of
colors is reached.

	 3.	Calculate averages for all the pixels falling within a single parallelepiped (box).
	 4.	Map each pixel to the closest average color values, based on a Euclidean distance

measure.

For the skin tumor application it was determined that the optimum number of colors
was dependent upon the feature of interest. Results of this segmentation algorithm are
shown in Figure 4.3-10. Here we observe that if the image is segmented with more colors,
then more of the details in the image are retained (as expected), while a smaller number
of colors will segment the image on a coarser scale, leaving only relatively large features.

x’

y’

Small
range

Original data exhibits a
large range.

�e new axes are rotated. Transformed data now has a small
range. Most of the variance, or
information, is along the x’ axis, in one
dimension rather than two, as in (a)

PCT aligns the main axis (x’)
along the maximum variance path.

(a)

y’

y

x’

x

(b)

(c)

x’

y’

(d)

y

Large
range

x

Figure 4.3-9
Principal components transform.

Segmentation and Edge/Line Detection	 203

© 2011 by Taylor & Francis Group, LLC

Selection of the number of colors for segmentation has a significant impact on the difficulty
of the feature identification task—if the proper number of colors is selected for a specific
feature it can make the feature identification process relatively easy.

4.3.3 B oundary Detection

Boundary detection, as a method of image segmentation, is performed by finding
the boundaries between objects, thus indirectly defining the objects. This method is usu-
ally begun by marking points that may be a part of an edge. These points are then merged
into line segments, and the line segments are then merged into object boundaries. The
edge detectors previously described are used to mark points of rapid change, thus indicat-
ing the possibility of an edge. These edge points represent local discontinuities in specific
features, such as brightness, color, or texture.

(a) (b)

(c) (d)

Figure 4.3-10
PCT/Median segmentation algorithm. (a) Original image, (b) PCT/Median segmented image with 3 colors,
(c) PCT/Median segmented image with 6 colors, (d) PCT/Median segmented image with 8 colors.

pj
w

st
k|

40
20

64
|1

43
56

01
06

5

204	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

After the edge detection operation has been performed, the next step is to threshold the
results. One method to do this is to consider the histogram of the edge detection results,
looking for the best valley manually (Figure 4.3-11), or by application of the automatic
thresholding algorithm described in Chapter 3. With a bimodal histogram, a histogram
with two major peaks, another analytical algorithm is available to find a good threshold
value. A bimodal histogram is typical for computer applications where we have one object
against a background of high contrast. The following method provides a theoretically
good solution based on the assumption that each peak has a Gaussian shape and the peaks
are fairly well separated. This method is called minimizing within group variance, or the Otsu
method, and works as follows:

Let P(g) be the histogram probability for gray level g, which is simply the count of the
number of pixels at gray level g normalized by the total number of pixels in the image, and
is given by

	

P g
I r c
g

I r c g

()
(,)

(,)

=
=
∑1

(#Rows)(#Columns)

wheere (#Rows)(#Columns) is the total number oof pixels

Let σ2
w(t) be the within group variance, which is a weighted sum of the variance of the two

groups, as a function of the threshold t, defined as follows:

	
σ σ σw t P t t P t t2

1 1
2

2 2
2() () () () ()= +

where

	

P t P g

P t P g

g

t

g t

Maxgray

1

1

2

1

() ()

() ()

=

=

=

= +

∑

∑

N
um

be
r o

f p
ix

el
s

Pixel value after edge detection

	reshold

Figure 4.3-11
Edge detection thresholding via histogram. The histogram can be examined manually to select a good thresh-
old. This method is easiest with a bimodal (two peaks) histogram. Alternately, the threshold can be found auto-
matically with the algorithm described in Chapter 3 or the Otsu algorithm described here.

Segmentation and Edge/Line Detection	 205

© 2011 by Taylor & Francis Group, LLC

	

μ

μ

1

2

/

/

() () ()

() () (

t g P g P t

t g P g P t

g

t

= ×

= ×

=
∑ 1

1

2))

() [()] () ()

g t

Maxgray

g

t g u t P g P t

= +
∑

= −

1

1
2

1
2

1σ /
==

= +

∑

= −

1

2
2

2
2

2

1

t

g t

Maxgr

t g u t P g P t/σ () [()] () ()
aay

∑

where Maxgray is the maximum gray-level value.
Now we simply find the value of the threshold t that will minimize the within group

variance, σ2
w(t). This can be done by calculating the values for σ2

w(t) for each possible gray-
level value and selecting the one that provides the smallest σ2

w(t). We can usually stream-
line this search by limiting the possible threshold values to those between the modes, the
two peaks, in the histogram. Additional algorithms based on the Otsu method to find
multiple thresholds and to perform the calculations more efficiently can be explored in the
references.

Often, the histogram of an image that has been operated on by an edge detector is uni-
modal (one peak), so it may be difficult to find a good valley. A method that provides
reasonable results for unimodal histograms is to use the average value for the threshold, as
in Figure 4.3-12. With very noisy images and a unimodal histogram, a good rule of thumb
is to use 10–25% of the maximum value as a threshold. An example of this is shown in
Figure 4.3-13.

After we have determined a threshold for the edge detection, we need to merge the exist-
ing edge segments into boundaries. This is done by edge linking. The simplest approach
to edge linking involves looking at each point that has passed the threshold test, and con-
necting it to all other such points that are within a maximum distance. This method tends
to connect many points and is not useful for images where too many points have been
marked; it is most applicable to simple images.

Instead of thresholding and then edge linking, we can perform edge linking on the edge
detected image before we threshold it. If this approach is used, we look at small neighbor-
hoods (3 × 3 or 5 × 5) and link similar points. Similar points are defined as having close
values for both magnitude and direction. The entire image undergoes this process, while
keeping a list of the linked points. When the process is complete, the boundaries are deter-
mined by the linked points.

The Hough transform combined with the snake eating edge linking algorithm described in the
previous section is one method to use for segmentation via boundary detection. However,
if we are searching for specific geometric shapes we can extend the Hough transform to
search for any geometric shape that can be described by mathematical equations, such as
circles, ellipses, or parabolas. The line finding Hough transform we discussed previously
was defined by quantizing the parameter space that defined the lines, specifically the
mathematical space defined by the parameters ρ and θ. To extend this concept we simply
define a parameter vector and apply the Hough algorithm to this new parameter space. The

206	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

extended Hough transform can be applied to any geometric shape that can be described by
an equation of the following form:
	 f r c p(, ;) = 0

where (∙) is any function of the row and column coordinates, (r,c), and a parameter vector
p . In the case of the line finding Hough transform, the function is

(a) (b)

(c)

(d)

Figure 4.3-12
Average value thresholding. (a) Original image, (b) image after Sobel edge detector, (c) unimodal histogram of
image after Sobel, (d) Sobel image after thresholding with average value.

Segmentation and Edge/Line Detection	 207

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 4.3-13
Thresholding noisy images. (a) Original image with Gaussian noise added (zero mean, variance = 800), (b) Sobel
edge detector results (remapped), (c) threshold on Sobel at 10% of maximum value, (d) threshold on Sobel at 20%
of maximum, (e) threshold on Sobel at 25% of maximum.

208	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 ρ θ θ= r + ccos sin() ()

and the parameter vector is

	 p =
⎡

⎣
⎢
⎤

⎦
⎥
ρ

θ

In the case of a circle, with the equation of a circle as follows, where a and b are the center
coordinates of the circle and d is the diameter:

	 () ()r a c b
d

− + − =
⎛
⎝⎜

⎞
⎠⎟

2 2

2

2

The parameter vector is

	 p

a

b

d

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To apply the Hough transform to find circles we follow the same procedure as for line
finding, but with an increased dimensionality to the search space—it is now a three-
dimensional parameter space.

To search for general geometric shapes that are not readily described by parametric
equations, such as the circle in the previous example, a generalized Hough transform can
be used. The generalized Hough works by creating a description of the shape defined by a
reference point and a table of lines, called an R-table. The reference point is chosen inside
the sample shape, and a random line is found from the reference point to a point on the
border. This intersection information is recorded in the table. The shape is then described
by a multitude of line intersection information in the R-table. The generalized Hough algo-
rithm is then used to search for shapes described by this table; details of this algorithm can
be found in the references.

Another approach to image segmentation via boundary detection is the use of active
contours or snakes. For these types of methods an initial boundary must be estimated
or given, and then the active contour or snake is deformed by consideration of applica-
tion features of interest. Typically, this is done mathematically by minimizing an energy
function and is controlled by the features of interest and the application. As the border is
deformed there are vectors, or forces, pushing it in, and vectors, or forces, pushing it out in
an attempt to reach equilibrium.

In CVIPtools we implemented a gradient vector flow snake (GVF snake) for an applica-
tion to find skin lesion borders. The algorithm is initialized by a rough approximation
to the border; obtained, in this case, by preprocessing the original image and then draw-
ing an approximate border. This initial border, referred to as a snake, is then iteratively
processed to converge on the actual border. For this application the features of interest
selected to control the process include the image edge strengths and internal properties
such as smoothness (texture).

Segmentation and Edge/Line Detection	 209

© 2011 by Taylor & Francis Group, LLC

In Figure 4.3-14 we show the algorithm applied to an idealized image, where an arbi-
trary shape has been created. In CVIPtools the user draws an initial border by holding the
Cntrl-key on the keyboard and using the left mouse button. Here we see the resulting bor-
der shown in white. Next, a morphological dilation is performed to make the border more
readily visible. This algorithm does an excellent job of finding the border, but the image
that is input must be properly preprocessed.

For a skin lesion image, typical preprocessing includes a rough image segmentation fol-
lowed by morphological filtering. In Figure 4.3-15 we see the results from application of
the GVF snake to a skin lesion image. The original image is preprocessed by these steps:
(1) Otsu thresholding segmentation, (2) a logical NOT operation, (3) a color to gray-level
conversion using a luminance transform, (4) a binary threshold operation, (5) morphologi-
cal dilation with a circular element of diameter of 5, and (6) multiplying by 0.5 so the white

(a) (b)

(c) (d)

Figure 4.3-14
Gradient vector flow snake. The gradient vector flowsnake (GVF snake) is used to find borders on single objects.
(a) Original image, (b) image with an initial border drawn in CVIPtools with a Ctrl-key left mouse button, (c) bor-
der found by GVF snake, the border is white (d) border after morphological dilation to make it more visible.

210	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

border will be visible. Figure 4.3-15 shows that real images, properly preprocessed, can
benefit from using the GVF snake for border delineation.

4.3.4  Combined Segmentation Approaches

Image segmentation methods may actually be a combination of region growing meth-
ods, clustering methods, and boundary detection. As previously mentioned, we could
consider the region growing methods to be a subset of the clustering methods, by
allowing the space of interest to include the row and column parameters. Quite often,
in boundary detection, heuristics applicable to the specific domain must be employed
in order to find the true object boundaries. What is considered noise in one application
may be the feature of interest in another application. Finding boundaries of differ-
ent features, such as texture, brightness, or color, and applying artificial intelligence
techniques at a higher level to correlate the feature boundaries found to the specific
domain may give the best results. Optimal image segmentation is likely to be achieved

(a) (b)

(c) (d)

Figure 4.3-15
Gradient vector flow snake applied to a skin lesion image. The gradient vector flow snake (GVF snake) needs
preprocessing for use with real images. (a) Original image, (b) image after an Otsu thresholding segmentation,
(c) Otsu image after a logical NOT, color to gray conversion, a binary threshold operation, morphological filter-
ing, and a multiplication by 0.5 so the white border will be visible, (d) image after GVF snake and morphological
dilation to thicken the border.

Segmentation and Edge/Line Detection	 211

© 2011 by Taylor & Francis Group, LLC

by focusing on the application, and on how the different methods can be used, sin-
gly or in combination, to achieve the desired results. See the references for further
information.

4.3.5  Morphological Filtering

Morphology relates to the structure or form of objects. Morphological filtering simplifies
a segmented image to facilitate the search for objects of interest. This is done by smooth-
ing out object outlines, filling small holes, eliminating small projections, and with other
similar techniques. While this section will focus on applications to binary images, the
extension of the concepts to gray-level images will also be discussed. For color images,
each band can be processed separately. We will look at the different types of operations
available and at some examples of their use.

The two principal morphological operations are dilation and erosion. Dilation allows
objects to expand, thus potentially filling in small holes and connecting disjoint objects.
Erosion shrinks objects by etching away (eroding) their boundaries. These operations
can be customized for an application by the proper selection of the structuring element,
which determines exactly how the objects will be dilated or eroded. Basically, the struc-
turing element is used to probe the image to find how it will fit, or not fit, into the image
object(s).

The dilation process is performed by laying the structuring element on the image and
sliding it across the image in a manner similar to convolution. The difference is in the
operation performed. It is best described in a sequence of steps:

	 1.	 If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

	 2.	 If the origin of the structuring element coincides with a “1” in the image, perform
the OR logic operation on all pixels within the structuring element.

An example is shown in Figure 4.3-16. Note that with a dilation operation, all the “1”
pixels in the original image will be retained, any boundaries will be expanded, and small
holes will be filled.

0

1

Original image Structuring
element; x = origin

Image after dilation;
original in dashes

(a)

(b)

(c)

X

Figure 4.3-16
Dilation.

212	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 4.3.1

Given the following image and structuring element, perform a dilation operation. We assume
the origin of the structuring element is in the center and ignore cases where the structuring
element extends beyond the image. Note that since the holes are all smaller than the structur-
ing element, they are all filled.

	

STRUCTURING E ENTLEM

0 1 0
1 1 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

IMAGE

1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1 1 11 1 1 1
1 1 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

RESULT

1 1 1 1 1 1 1
1 1 1 1 1 1 11
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 11 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The erosion process is similar to dilation, but we turn pixels to “0,” not “1.” As before,
slide the structuring element across the image, and:

	 1.	 If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

	 2.	 If the origin of the structuring element coincides with a “1” in the image, and any
of the “1” pixels in the structuring element extend beyond the object (“1” pixels) in
the image, then change the “1” pixel in the image, whose location corresponds to
the origin of the structuring element, to a “0.”

In Figure 4.3-17, the only remaining pixels are those that coincide to the origin of the struc-
turing element where the entire structuring element was contained in the existing object.
Since the structuring element is three pixels wide, the two-pixel-wide right “leg” of the
image object was eroded away, but the three-pixel-wide left “leg” retained some of its
center pixels.

Segmentation and Edge/Line Detection	 213

© 2011 by Taylor & Francis Group, LLC

Example 4.3.2

Given the following image and structuring element, perform an erosion operation. We assume
the origin of the structuring element is in the center and ignore cases where the structuring
element extends beyond the image. Note the only 1s left inside the image mark places where
the shape of the structuring element exists in the image.

	

STRUCTURING ELEMENT

1 0 0
1 1 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

IMAGE

1 1 1 1 1 1 1
1 0 0 1 0 0 1
11 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

RESULT

1 1 1 1 1 1 1
1 0 0 0 0 0 11
1 1 0 0 1 0 1
1 0 0 0 0 0 1
1 11 0 0 1 0 1
1 1 1 0 0 1 1
1 1 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

X

0

1

Original image Structuring
element; x = origin

Image after erosion;
original in dashes

(a)

(b)

(c)

Figure 4.3-17
Erosion.

214	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

These two basic operations, dilation and erosion, can be combined into more complex
sequences. The most useful of these for morphological filtering are called opening and
closing. Opening consists of an erosion followed by a dilation, and can be used to eliminate
all pixels in regions that are too small to contain the structuring element. In this case the
structuring element is often called a probe, as it is probing the image looking for small
objects to filter out of the image. In Figure 4.3-18 we can see that opening expands holes
(“opens” them up) and may erode edges, in a way that depends on the structuring element
shape. The output image tends to take a shape similar to the structuring element itself.

Closing consists of a dilation followed by erosion, and can be used to fill in holes and
small gaps as shown in Figure 4.3-19. Here we see that the two small holes have been
closed and the gap has been partially filled; if a different structuring element is used the
results will be similar but different (see some of the following figures). Comparing Figures
4.3-18 and 4.3-19, we see that the order of operation is important. Closing and opening will
have different results even though both consist of an erosion and a dilation.

1

Original image Structuring
element; x = origin

Image after opening =
erosion followed by dilation

(a)
0

(c)

X
(b)

Figure 4.3-18
Opening.

1

Original image Structuring element;
x = origin

Image after closing = dilation
followed by erosion;
original in dashes

(a)
0

(c)

X

(b)

Figure 4.3-19
Closing.

Segmentation and Edge/Line Detection	 215

© 2011 by Taylor & Francis Group, LLC

The following two figures show results of dilation from varying the shape and size of the
structuring element. The original image is a microscopic image of a cell that has undergone
a threshold operation to create a binary image. Figure 4.3-20 illustrates dilation using differ-
ent shape structuring elements. Here we see that the small objects, as well as edges on larger
objects, will take on the shape of the structuring element itself. In Figure 4.3-21 we see that
effect of using the same shape structuring element, but increasing the size of the structuring
element—as it gets larger the size of the holes that get filled increases. Here we also see that
small objects are merged together by dilation, and that the degree of the merging depends
on the size of the structuring element. Also note that in Figure 4.3-21b, even though a circu-
lar structuring element was used, the small objects appear to be rectangular—why is this?
(Hint: consider the shape of a binary circle on a 4 × 4 rectangular grid).

Figure 4.3-22 illustrates erosion using different shape structuring elements. Here we see
that the holes, as well as edges on larger objects, will take on the shape of the structuring
element itself. Figures 4.3-23 and 4.3-24 show the results of opening and closing using
various shape structuring elements. Here we can see how the shape of the structuring
elements affects the results of these operations. In Figure 4.3-25 we see a comparison of
opening and closing with different size circular structuring elements.

The morphological hit-or-miss transform is a fundamental method for detection of simple
shapes. It is a basic pattern recognition tool that, like the previous morphological methods,
uses a structuring element to determine the patterns or shapes it detects. In addition to
the 1s (object) and 0s (background), the structuring element may contain “don’t cares,”

(a) (b)

(c) (d)

Figure 4.3-20
Binary dilation with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) dilation with a circular
structuring element, (c) dilation with a square structuring element, (d) dilation with a cross shape structuring
element.

216	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

specified with an x. The hit-or-miss transform works by overlaying the structuring ele-
ment on the image, and requires an exact match for a “hit” to occur—a hit is marked with
a 1. The following example shows a hit-or-miss transform that finds the upper right corner
points of binary objects.

Example 4.3.3: Finding upper-right corner points with the hit-or-miss transform

	

The structuring element:
x

x x

0 0
1 1 0

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥

	
The image:

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0
0 1 1 1 0 0 1 0
0 1 1 1 0 0 1 0
00 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(a) (b)

(c) (d)

Figure 4.3-21
Dilation with different size structuring elements. (a) Original image, (b) Dilation with a circular structuring
element of size 3, (c) Dilation with a circular structuring element of size 7, (d) Dilation with a circular structur-
ing element of size 11.

Segmentation and Edge/Line Detection	 217

© 2011 by Taylor & Francis Group, LLC

	

Hit-or-miss result:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Note that there is only one upper right corner to this object.

To find all the corners with a hit-or-miss transform we need to consider the four types
of corners: upper-right, upper-left, lower-right, and lower-left, and their corresponding
structuring elements. To detect all the corners, we combine the results from the hit-or-miss
transform with each structuring element by using a logical OR operation. The following
example illustrates this.

(a) (b)

(c) (d)

Figure 4.3-22
Binary erosion with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) erosion with a circular
structuring element, (c) erosion with a square structuring element, (d) erosion with a cross shape structuring
element.

218	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 4.3.4: Finding all corner points with the hit-or-miss transform

	 The structuring elements:
x

x x

0 0
1 1 0

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, ,
0 0
0 1 1

1

1
1 1 0

0 0

x

x x

x x

x
,,

x x

x

1
0 1 1
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	
The image:

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0
0 1 1 1 0 0 1 0
0 1 1 1 0 0 1 0
00 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(a) (b)

(c) (d)

Figure 4.3-23
Binary opening with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) opening with a circular
structuring element, (c) opening with a square structuring element, (d) opening with a cross shape structuring
element.

Segmentation and Edge/Line Detection	 219

© 2011 by Taylor & Francis Group, LLC

The result from ORing the hit-or-miss output from each structuring element

	

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 00 0 0 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

Note that all corner points have been detected.

One important operation, which is a controlled erosion process, is called skeletonization.
It is often used in optical character recognition and in many other applications. A skeleton
is what is left of an object when it has been eroded to the point of being only one pixel
wide. To find the skeleton of a binary image we first define the thinning operation, with a
given structuring element, SE:

	 Thin[I(r,c),SE] = I(r,c) – hit-or-miss[I(r,c),SE]

(a) (b)

(c) (d)

Figure 4.3-24
Binary closing with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) closing with a circular struc-
turing element, (c) closing with a square structuring element, (d) closing with a cross shape structuring element.

220	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

In other words, the thinning operation is defined by subtracting the result from the hit-
or-miss operation from the original image at each point. Note that this subtraction is the
logical subtraction defined by

	 A–B = (A) AND (NOT B), where the AND and NOT are logical operators

The typical thinning operation uses the line detection structuring elements shown in the
next example. The process of skeletonization gives the result from applying each of the line
structuring elements to thin the image, and then performing a logical AND of the thinned

(a) (b)

(e) (f)

(c) (d)

Opening
circular
size = 5

Opening
circular
size = 13

Closing
circular
size = 5

Closing
circular
size = 13

Original
image

Image after
threshold

Figure 4.3-25
Opening and closing with different size structuring elements. (a) Original microscopic cell image (courtesy of
Sara Sawyer, SIUE), (b) image after undergoing color to gray conversion and a threshold operation, (c) opening-
with a circular structuring element of size 5, (d) closing with a circular structuring element of size 5, (e) opening
with a circular structuring element of size 13, (f) closing with a circular structuring element of size 13.

Segmentation and Edge/Line Detection	 221

© 2011 by Taylor & Francis Group, LLC

results. Note that the AND should be performed after each iteration. This process is con-
tinued until the lines are one pixel wide and no changes in connectivity have occurred;
that is, no change in the Euler number.

Example 4.3.5: Thinning

The structuring element for a top horizontal line:

	 SE x x1

0 0 0
1

1 1 1
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	
image I r c= =(,)

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 11 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	
hit or miss I r c SE- - [(,),]1

0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0

=

00 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 00 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

then, Thin[I(r,c),SE1] = I(r,c) – hit-or-miss[I(r,c),SE1]:

	

0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 11 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

Next, we apply the thinning operation with each of the other structuring elements, then
perform a logical AND of all four results for each iteration. This process continues until
the skeleton is obtained as shown in the next example.

222	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 4.3.6: Skeletonization

The other three structuring elements:SE
x

x
SE x x2 3

1 0
1 1 0
1 0

1 1 1
1

0 0 0
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤
,

⎦⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, SE
x

x
x

4

0 1
1 1

0 1

After thinning with each of the four structuring elements and the logical AND of the results,
we obtain:

	

0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 1 0 00 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

After one more iteration for the skeletonization process we obtain

	

0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 00 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

At this point we cannot thin anymore, so the skeletonization process is complete. Results
from skeletonization with simple shapes are shown in Figure 4.3-26. Here we see rect-
angles, squares, ellipses, and ellipses with holes. The figure shows the resulting skeletons
after various number of iterations. For these objects the skeletonization process is complete
after about 60 iterations. With more irregularly shaped objects, the process is more com-
plex. Using the four simple masks previously defined may not complete the process. We
can add four more structuring elements (diagonal masks) as follows:

	 SE

x

x

SE

x

x
5 6

0 0
1 1 0
1 1

1 1
1 1 0

0 0
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

,

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=, ,SE

x

x

SE

x

x
7 8

1 1
0 1 1
0 0

0 0
1 1 0
1 1

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

In Figure 4.3-27 we compare using the original four structuring elements, the horizontal
and vertical (called the 4-masks), with adding the four diagonal masks to create the 8-masks.
Here we see that it requires all eight masks to get the desired results. Even if we continued
processing with the 4-masks, no further changes will occur. Why not?

Segmentation and Edge/Line Detection	 223

© 2011 by Taylor & Francis Group, LLC

Using the previously described method, which ANDs the images from all the masks
after thinning, can result in loss of connectivity, as shown in Figure 4.3-28b and 4.3.28c.
One method to avoid this problem is to use the output image after thinning with one
mask as input to the thinning with the next mask. This is done sequentially for all
masks, and no AND operation is performed. Thus, we have two methods available in
CVIPtools—the AND method and the sequential method. Figure 4.3-28d and e shows
results from the sequential method. Here we see that the sequential method maintains
connectivity, but that extra lines appear that may be desired or extraneous, depending
on the application.

The skeletonization process works best with elongated shapes such as is found in appli-
cations as hand-written character recognition or in blood vessel recognition. With complex

(a) (b)

(c) (d)

Figure 4.3-26
Skeletonization with simple shapes. (a) Original image, (b) resultant image after 20 iterations, (c) resultant image
after 40 iterations, (d) resultant image after 60 iterations.

224	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

shapes the skeletonization process often leaves many extra small lines, called spurs (seen in
Figure 4.3-28e), which must be dealt with through a pruning process. One method of prun-
ing to remove undesired, small line segments is to use the Hough transform in CVIPtools,
where the minimum segment size is one of the parameters. Examples of this are shown in
Figure 4.3-28f and g.

The standard pruning operation is a form of thinning with a single pixel as the struc-
turing element. The structuring element is rotated throughout the eight possible compass
directions to prune lines in all directions. Typically pruning is only performed for a small
number of iterations to remove small spurs, or all lines except for closed loops will be
removed.

(a)

(b) (c)

Figure 4.3-27
Skeletonization with irregular shapes using four or eight masks. (a) Original image, (b) resultant image after
20 iterations with the four original masks—horizontal and vertical only (4-masks), (c) resultant image after
20 iterationswith the four original horizontal masks and the four diagonal masks (8-masks), (d) resultant image
after 40 iterations with the 4-masks, (e) resultant image after 40 iterations with the 8-masks, (f) resultant image
after 60 iterations with the 4-masks, (g) resultant image after 60 iterations with the 8-masks. Continued skeleton-
ization with the 4-masks alone will not change the output image.

Segmentation and Edge/Line Detection	 225

© 2011 by Taylor & Francis Group, LLC

Example 4.3.7: Pruning

The structuring elements for pruning:

	
SE

x x
SE

x x
1 2

0 0 0
0 1 0
0

0 0 0
0 1 0

0
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤
,

⎦⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=, ,SE x
x

SE
x
x3 4

0 0 0
1 0
0 0

0 0
1 0

0 0 0

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=SE
x x

SE
x x

5 6

0
0 1 0
0 0 0

0
0, 11 0
0 0 0

0 0
0 1
0 0 0

7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, ,SE
x
x SE77

0 0 0
0 1
0 0

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
x

(f) (g)

(d) (e)

Figure 4.3-27 (continued)
Skeletonization with irregular shapes using four or eight masks. (a) Original image, (b) resultant image after
20 iterations with the four original masks—horizontal and vertical only (4-masks), (c) resultant image after
20 iterationswith the four original horizontal masks and the four diagonal masks (8-masks), (d) resultant image
after 40 iterations with the 4-masks, (e) resultant image after 40 iterations with the 8-masks, (f) resultant image
after 60 iterations with the 4-masks, (g) resultant image after 60 iterations with the 8-masks. Continued skeleton-
ization with the 4-masks alone will not change the output image.

226	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Results from previous skeletonization:

	

0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 00 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

(a)

(b) (c)

Figure 4.3-28
Skeletonization using four or eight masks with AND or sequential method. The number of iterations is until no
further changes occur. (a) Original image, (b) results with 4-masks and AND method, (c) results with 8-masks
and AND method, (d) results with 4-masks and sequential method, (e) results with 8-masks and sequential
method. With the AND method connectivity may be lost. With the sequential method connectivity is main-
tained, but more lines may occur. These extra lines, or spurs, may be desired or extraneous, depending on the
application. (f) Using the Hough transform to remove spurs for (e) with minimum number of segment pixels = 12,
(g) using the Hough transform to remove spurs from (e) with minimum number of segment pixels = 20.

Segmentation and Edge/Line Detection	 227

© 2011 by Taylor & Francis Group, LLC

Application of one iteration of pruning to the result from the previous example.

	

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥

(d) (e)

(f) (g)

Figure 4.3-28 (continued)
Skeletonization using four or eight masks with AND or sequential method. The number of iterations is until no
further changes occur. (a) Original image, (b) results with 4-masks and AND method, (c) results with 8-masks
and AND method, (d) results with 4-masks and sequential method, (e) results with 8-masks and sequential
method. With the AND method connectivity may be lost. With the sequential method connectivity is main-
tained, but more lines may occur. These extra lines, or spurs, may be desired or extraneous, depending on the
application. (f) Using the Hough transform to remove spurs for (e) with minimum number of segment pixels = 12,
(g) using the Hough transform to remove spurs from (e) with minimum number of segment pixels = 20.

228	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Another approach to binary morphological filtering is based on an iterative approach.
The usefulness of this approach lies in its flexibility. It is based on a definition of six-
connectivity, in which each pixel is considered connected to its horizontal and vertical
neighbors, but to only two diagonal neighbors (the two on the same diagonal). This
connectivity definition is equivalent to assuming that the pixels are laid out on a hex-
agonal grid, which can be simulated on a rectangular grid by assuming that each row
is shifted by one-half a pixel (see Figure 4.3-29). With this definition a pixel can be
surrounded by 14 possible combinations of 1s and 0s, as seen in Figure 4.3-30; we call
these different combinations surrounds. For this approach to morphological filtering,
we define:

	 1.	The set of surrounds S, where a = 1.
	 2.	A logic function, L(a,b), where b is the current pixel value, and the function speci-

fies the output of the morphological operation.
	 3.	The number of iterations, n.

The function L(a,b), and the values of a and b are all functions of the row and column, (r,c),
but for concise notation this is implied. Set S can contain any or all of the 14 surrounds
defined in Figure 4.3-30. L(a,b) can be any logic function, but it turns out that the most
useful are the AND and OR functions. The AND function tends to etch away at object
boundaries (erosion) and the OR function tends to grow objects (dilation). The following
examples illustrate iterative morphological filtering. In these examples we will not change
the outer rows and columns, since the image is undefined beyond the borders and the 3 × 3
surrounds will not fit within the image in these cases.

Example 4.3.8

Let L(a,b) = ab (logical AND operation).

Rectangular image grid with
every other row shifted by
one-half pixel

Hexagonal grid

(a)

(b)

Figure 4.3-29
Hexagonal grid.

Segmentation and Edge/Line Detection	 229

© 2011 by Taylor & Francis Group, LLC

	 IMAGE

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 1 1 1 1 11 1 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

S = {5} = 
1 1
1 1

0 0

x
x

x

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

; assume the origin is in the center.

Notes: this means the set S contains surround number 5 from Figure 4.3-30 and the x’s are not
neighbors, since we are using six-connectivity.

The window S (a 3 × 3 window) is scanned across the image. If a match is found, then
a = 1 and the output is computed by performing the specified L(a,b) function, in this case by

0

0

0
0

0
0

1

0

0
0

0
0

1
1

0

0

0
0

1
1

1

0
0

0

1
0

1

1
0 0

1

1

1
1

1
1

1

0

1
1

1
1

1

0

1
1

0
1

1

0

1

0

0

1

1

0

1
0

0
1

1

0

1
1

0
1

1

0

0
1

0
0

1

0

0

0

0

1

1

0

1

1

0

1

1 2 3 4

5 6 7 8

9 10

13 14

11 12

Figure 4.3-30
Surrounds for iterative morphological filtering.

230	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

ANDing a with b (b is the center pixel of the subimage under the window). This gives the
value of our new image, which will equal ab = (1)b = b. If the window S does not match the
underlying subimage, then a = 0 (false) and L(a,b) = ab = (0)b = 0. In either case, the resulting
value is written to the new image at the location corresponding to the center of the window.
The window S is scanned across the entire image in this manner and the resultant image
is as follows:

	

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 00 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Here we see that the AND operation erodes the object. Also note that the set S can contain
more than one surround; if it does, then a = 1 when the underlying neighborhood matches any
of the surrounds in the set S. Another parameter that can be considered is the rotation of the
surrounds in S. For example, rotating surround S = {5} counterclockwise we have the follow-
ing five possibilities:

	
1 1
1

0

1 1
1

0

1x
x

x

x
x

x

x
1

0
0

1

0⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , 11 1
1

x
x

x
x

x

x
x0

1 1

0 0
1

1 1

0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , 11
1 1

0 1
0 1x

x
x

x

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,
1 1

With iterative morphological filtering, normally it is implied that the surrounds in S can be
rotated when looking for a match. Additionally, since this is an iterative approach, n is used to
define the number of iterations. Following are more examples of this technique:

Example 4.3.9

	 S = { }, L(a,b) = 0, n = 1

The set of surrounds (neighbors) is a null set. This implies a = 0; since a surround is not speci-
fied. The Boolean function L(a,b) = 0. For this combination, all the cells of the image are set to
zero; that is, we have a black image as output.

Example 4.3.10

	 S = { }, L(a,b) = (!b), n = 1

In this case a = 0, but this is irrelevant since L(a,b) = !b, which implies that the center pixel is
negated (complimented).

	 If b = 1, L(a,b)(!1) = 0

	 Elseif b = 0, L(a,b) = (!0) = 1

Segmentation and Edge/Line Detection	 231

© 2011 by Taylor & Francis Group, LLC

Example 4.3.11

	 S = {7}, L(a,b) = ab, n = 1

Consider the following image with the surround S as follows:

	

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 00 0 0 0 0
0 1 1 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 Let {7}
1 1
1 1

1 1
S

x
x

x
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

In this case, a = 1 for the surround shown above. If the surround does not match then
L(a,b) = 0(b) = 0. If there is a match then L(a,b) = 1(b) = b. The resultant image is as follows:

	

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Since the logic function is a logical AND operation, if the edge pixels are not “1s,” the edges
are removed. This operation retains a cluster of “1s” with the edge pixels removed. So, the
appendages (thin lines) are removed from the original image—this is an erosion operation.

Example 4.3.12

	 S = {1,7}, L(a,b) = (!a)b, n = 1

Consider the following image with the surrounds {S} as follows:

	

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 0
0 1 1 11 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

232	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 Let that is
0 0
0 0

0 0
S S

x
x

x
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
{ , };1 7 ⎨⎨

⎪

⎩
⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫

⎬
⎪

⎭
⎪

,
1 1
1 1

1 1

x
x

x

	 If b = 1, L(a,b) = (!a)1 = !a

	 Elseif b = 0, L(a,b) = (!a)0 = 0

The new image after the above operation is

	

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 0 0 0 0 1 0
0 1 0 1 1 1 1 0
0 1 0 1 0 0 0 0
0 1 1 11 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

We can see that this operation removes interior pixels and keeps the edges only. Hence, this
is an edge detection operation.

Example 4.3.13

Let S = {2,3,4,5,6,7} and L = a + b. ( + = OR).

	 IMAGE

0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 11 1 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 S
x

x
x

x
x

x
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

0 1
0 0

0 0

1 1
0 0

0 0
, ⎥⎥

⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥, ,

1 1
1 0

0 0

1 1
1 0

1 0

x
x

x

x
x

x ⎥⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , ,
1 1
1 1

1 0

1 1
1 1

1 1

x
x

x

x
x

x

⎫⎫

⎬
⎪

⎭
⎪

Because L(a,b) is an OR operation, all pixels that are 1 in the original will remain 1. That is

	 L = a + b = a + 1 = 1

Segmentation and Edge/Line Detection	 233

© 2011 by Taylor & Francis Group, LLC

The only pixels that will change are those that are 0 in the original image and have a surround
that is S (this means that a = 1). That is

	 L = a + b = a + 0 = a

If we examine the set S we see that this set contains all pixels that are surrounded by a con-
nected set of 1s. This operation will expand the object, and illustrates that the OR operation
results in a dilation. The resultant image is

	

0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 00 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

We can see from these examples that this iterative morphological approach is quite ver-
satile. The process can be iterated, or repeated, to any degree desired. We can use this
technique to define methods for dilation, erosion, opening, closing, marking corners, find-
ing edges, and other binary morphological operations. For this technique the selection of
the set S is comparable to defining the structuring element in the previously described
approaches, and the operation L(a,b) defines the type of filtering that occurs. In general,
if L(a,b) is an OR operation it will tend to grow, or dilate, objects. When L(a,b) is an AND
operation, it will tend to shrink, or erode, objects.

As illustrated in Figure 4.3-31, we can use the iterative modification approach to find the
skeleton of a binary image by using the following parameters: L(a,b) = (a!)b, and S = (3,4). In
this figure we show results as the number of iterations is increased, and can be compared
to results from using the previously defined skeletonization method. In Figure 4.3-32 we
use the same operation, but change the set S and see that it now works as an edge detector.
In this case these are the parameters: L(a,b) = (a!)b, and S = (1,7).

The morphological operations described (dilation, erosion, opening, and closing) can be
extended to gray-level images in different ways. The easiest method is to simply threshold
the gray-level image to create a binary image, and then apply the existing operators. For
many applications this is not desired, as too much information is lost during the thresh-
olding process. Another method that allows us to retain more information is to treat the
image as a sequence of binary images by operating on each gray level as if it were the “1”
value and assuming everything else to be “0.” The resulting images can then be combined
by laying them on top of each other and “promoting” each pixel to the highest gray-level
value coincident with that location.

An example of results from gray-level morphological filtering is shown in Figure 4.3-33.
For this application an opening operation followed by a closing operation was performed.
A circular structuring element was used, as the object of interest was the skin tumor bor-
der. The opening procedure served to smooth the contours of the object, break narrow
isthmuses, and eliminate thin protrusions and small objects. Next, the closing was per-
formed to fill in gaps and eliminate small holes. To fully understand gray-level morphol-
ogy, we must remember that with two adjacent gray levels, the brightest one is considered

234	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 4.3-31
Skeletonization. For the iterative approach. L(a,b) = (!a)b, and S = (3,4). (a) Original image, (b) after 10 itera-
tions, (c) after 20 iterations, (d) iterating until no more changes occur, (e) results from previous skeletonization
technique with 4-masks, AND method (f) results from previous skeletonization technique with 8-masks, AND
method.

Segmentation and Edge/Line Detection	 235

© 2011 by Taylor & Francis Group, LLC

(a) (b)

Figure 4.3-32
Edge detection via iterative modification morphological filtering. In this example: L(a,b) = (!a)b, and S = (1,7).
(a) Original image, (b) resultant image after one iteration.

(a) (b)

(c)

Figure 4.3-33
Gray-level morphological filtering. (a) Original segmented skin tumor image, contains 1,708 objects, (b) Image
(a) after morphological opening using a 5 × 5 circular structuring element, contains 443 objects (c) Image (b)
after morphological closing using a 5 × 5 circular element, contains 136 objects.

236	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

to be the object (the equivalent of “1” in a binary image) and the darker is the back-
ground (the “0” equivalent in binary morphology). In this figure we see the tremendous
data reduction achieved, thus simplifying the process of identifying the tumor features
of interest.

4.4  Key Points

Overview: Image Analysis and Segmentation

•	 Image analysis requires data reduction and segmentation is the primary method
in the spatial domain to accomplish it.

•	 The goal of segmentation is to find regions that represent objects or meaningful
parts of objects.

•	 Image segmentation methods look for regions that have some measure of homo-
geneity within themselves, or some measure of contrast with objects on their
border.

•	 Three categories for image segmentation methods: (1) region growing and
shrinking, (2) clustering methods, and (3) boundary detection.

Edge/Line Detection

•	 Edge detection operators are often implemented with convolution masks.
•	 Edge detection operators are often discrete approximations to differential

operators.
•	 Edge detection operators may return magnitude and direction information, some

return magnitude only.
•	 The Hough transform is used for line finding, but can be extended to find arbi-

trary shapes.
•	 Edge direction and lines are perpendicular to each other, because the edge direc-

tion is the direction of change in gray level.
•	 There is tradeoff between sensitivity and accuracy in edge detection (see

Figure 4.2-2).
•	 Potential edge points are found by examining the relationship a pixel has with its

neighbors; an edge implies a change in gray level.
•	 Edges may exist anywhere and be defined by color, texture, shadow, and so on,

and may not necessarily separate real-world objects.
•	 A real edge in an image tends to change slowly, compared to the ideal edge model

that is abrupt (see Figure 4.2-4).

Gradient Operators

•	 Gradient operators are based on the idea of using the first or second derivative of
the gray level.

Segmentation and Edge/Line Detection	 237

© 2011 by Taylor & Francis Group, LLC

•	 The first derivative will mark edge points, with steeper gray-level changes provid-
ing stronger edge points (larger magnitudes).

•	 The second derivative returns two impulses, one on either side of the edge.

Roberts operator: a simple approximation to the first derivative, two forms of the
equations:

	 2 2[() (1 1)] [(1) (1)]I r,c I r ,c I r,c I r ,c− − − + − − −

	 I r,c I r ,c I r,c I r ,c() (1 1) (1) (1)− − − + − − −

Sobel operator: approximates the gradient with a row and column mask, and returns
both magnitude and direction:

	
1 2 1
0 0 0
1 2 1

1 0 1
2 0 2
1 0 1

− − −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

	 EDGE MAGNITUDE s s1
2

2
2+

	 EDGE DIRECTION Tan 1

2

− ⎡

⎣
⎢

⎤

⎦
⎥

1 s
s

Prewitt operator: approximates the gradient with a row and column mask, and returns
both magnitude and direction, it is easier to calculate or implement in hardware than the
Sobel, as it uses only 1s in the masks:

	
− − −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

1 1 1
0 0 0
1 1 1

1 0 1
1 0 1
1 0 1

⎥⎥
⎥
⎥

	 EDGE MAGNITUDE p + p1
2

2
2

	 EDGE DIRECTION Tan 1

2

−
⎡

⎣
⎢

⎤

⎦
⎥1

p

p

Laplacian operators: these are two-dimensional discrete approximations to the second
derivative, it is implemented by applying one of the following convolution masks:

	
0 1 0
1 4 1
0 1 0

1 1 1
1 8 1
1 1 1

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − −

− −

− − −

⎡

⎣

⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1 2
1 4 1
2 1 2

Compass Masks

•	 The compass mask edge detectors are created by taking a single mask and rotating
it to the eight major compass orientations.

238	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The edge magnitude is found by convolving each mask with the image and select-
ing the largest value at each pixel location.

•	 The edge direction at each point is defined by the direction of the edge mask that
provides the maximum magnitude.

Kirsch compass masks:

	 k k0 1

− −

−

− −

−

−

− − −

3 3 5
3 0 5
3 3 5

3 5 5
3 0 5
3 3 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

k k2 3

5 5 5
3 0 3
3 3 3
− −

− − −

55 5 3
5 0 3
3 3 3

−

−

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 k k4 5

5 3 3
5 0 3
5 3 3

3 3 3
5 0 3
5 5 3

− −

−

− −

− − −

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

k k6 7

− − −

− −

−3 3 3
3 0 3
5 5 5

33 3 3
3 0 5
3 5 5

− −

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Robinson compass masks:

	 r r0 1

−

−

−

−

− −

1 0 1
2 0 2
1 0 1

0 1 2
1 0 1
2 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r r2 3

1 2 1
0 0 0
1 2 1

2 1 0
1 0

− − −

−−

− −

1
0 1 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 r r4 5

1 0 1
2 0 2
1 0 1

0 1 2
1 0 1
2 1 0

−

−

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r r6 7

− − − − −

−

1 2 1
0 0 0
1 2 1

2 1 0
1 0 1
0 1 22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Advanced Edge Detectors

Marr–Hildreth Algorithm: consists of three steps: (1) convolve the image with a
Gaussian smoothing filter, (2) convolve the image with a Laplacian mask, and
(3) find the zero-crossings of the image from Step 2. The first two steps can be
combined into one convolution filter, such as

	

0 0 1 0 0
0 1 2 1 0
1 2 16 2 1
0 1 2 1 0
0 0 1 0 0

−

− − −

− − − −

− − −

−

⎡

⎣

⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The simplest method to find zero-crossings is to examine 3 × 3 subimages and look
for changing signs (positive/negative) in at least two opposing neighbors.

Canny algorithm: an optimal edge detector based on a specific mathematical model,
it is a four step process: (1) apply a Gaussian filter mask to smooth the image
to mitigate noise effects, (2) find the magnitude and direction of the gradient,

Segmentation and Edge/Line Detection	 239

© 2011 by Taylor & Francis Group, LLC

(3) apply nonmaxima suppression that results in thinned edges, and (4) apply two
thresholds known as hysteresis thresholding.

Hysteresis thresholding: mark pixels above a high threshold, and then apply a low
threshold to connected pixels.

Boie–Cox algorithm: a generalization of the Canny algorithm using matched filters
and Wiener filters.

Shen–Castan algorithm: developed as an optimal solution to a specific mathemati-
cal model, similar to Canny, but with modifications and extensions.

Frei–Chen masks: they form a complete set of basis vectors, which means any 3 × 3
subimage can be represented as a weighted sum of the basis vectors. The weights
are found by projecting the subimage onto each basis vector; that is, perform a vec-
tor inner product. Can be used to find edges or lines of specific orientation.

Vector inner product: found by multiplying coincident terms of two vectors and
summing the results.

Edges in Color Images

Edge detection in color images can be performed on the original RGB data, or on the data
after mapping into another color space. The edges are found using different methods:

	 1.	Extract the luminance or brightness information and apply a monochrome
edge detection method. The brightness information can be found by averag-
ing the RGB components: L R G B= + +[]() 3 , or by the luminance equation:
Y = R+ G+ B0.299 0.587 0.114 , or by the vector length: L= R +G +B2 2 2 .

	 2.	Apply a monochrome edge detection method to each of the RGB bands separately
and then combine the results into a composite image.

	 3.	Apply a monochrome edge detection method to each of the RGB bands separately
and then retain the maximum value at each location.

	 4.	Apply a monochrome edge detection method to each of the RGB bands separately
and then use a linear combination of the three results at each location.

	 5.	Apply a monochrome edge detection method to each of the RGB bands separately
and then select specific criteria at each pixel location to find an edge point.

	 6.	Equations for multispectral edges, developed by Cervenka and Charvat:

	

I r c I r c I r c I r cb b

b

(,) (,) (,) (,)−[] + + − + +[]
=

1 1 1 1
1

nn

b bI r c I r c I r c I r c

∑

−[] + + − + +[(,) (,) (,) (,)
2

1 1 1 1]]
==
∑∑ 2

11 b

n

b

n

	

I r c I r c I r c I r cb b

b

(,) (,) (,) (,)+ − +[] + − +[]
=

1 1 1 1
1

nn

b bI r c I r c I r c I r c

∑

+ − +[] + − +[(,) (,) (,) (,)1 1 1 1
2]]

==
∑∑ 2

11 b

n

b

n

240	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

where

	
I r c(,) is the arithmetic average of all the pixels in all bands at pixel location (,r cc

I r c r cb

),

(,) (,)is the value at location iin the th band, with a total of bands.b n

Edge Detector Performance

•	 Objective and subjective evaluations can be useful.
•	 Success criteria must be defined, such as was used to develop the Canny algo-

rithm: (1) Detection—the edge detector should find all real edges and not find
any false edges. (2) Localization—the edges should be found in the correct place.
(3) Single Response—there should not be multiple edges found for a single edge.

•	 Extended edge detection masks can be defined to improve performance in the
presence of noise (see Figure 4.2-24).

Pratt Figure of Merit (FOM): an objective measure developed by Pratt in 1978, which
ranges from 0 (0%) for a missing edge to 1 (100%) for a perfectly found edge. It is
defined as follows:

	 FOM =
I + dN i=

IF
1 1

1
1

2∑ α

IN	 =	 the maximum of II and IF;
II	 =	 the number of ideal edge points in the image;
IF	 =	 the number of edge points found by the edge detector;
α 	=	 a scaling constant that can be adjusted to adjust the penalty for offset edges; and
d	 =	 the distance of a found edge point to an ideal edge point.

The distance measure can be defined in one of three ways:

	 1.	City block distance, based on four connectivity:

	 d r r c c= − + −1 2 1 2

With this distance measure we can only move horizontally and vertically.
	 2.	Chessboard distance, based on eight-connectivity:

	 d r r c c= − −()max ,1 2 1 2

With this distance measure we can move diagonally, as well as horizontally or
vertically.

	 3.	Euclidean distance, based on actual physical distance:

	 d r r c c= − + −[]() ()
/

1 2
2

1 2
2 1 2

Segmentation and Edge/Line Detection	 241

© 2011 by Taylor & Francis Group, LLC

Hough Transform

Designed as an efficient method to find lines from marked edge points, consisting of three
primary steps based on using the normal representation of a line, ρ θ θ= +r ccos sin() () :

	 1.	Define the desired increments on ρ and θ, ρ θΔ Δand , and quantize the space
accordingly.

	 2.	For every point of interest (typically points found by edge detectors that exceed
some threshold value), plug the values for r and c into the line equation:

	 ρ θ θ= +r ccos sin() ()

Then, for each value of θ in the quantized space, solve for ρ.
	 3.	For each ρθ pair from Step 2, record the r and c pair in the corresponding block in

the quantized space. This constitutes a hit for that particular block.

After performing the Hough transform, post-processing must be done to extract the line
information.

Segmentation

•	 The goal of segmentation is to find regions that represent objects or meaningful
parts of objects.

•	 Image segmentation methods look for regions that have some measure of homoge-
neity within themselves, or some measure of contrast with objects on their border.

•	 Three categories for image segmentation methods: (1) region growing and shrink-
ing, (2) clustering methods, and (3) boundary detection.

Region Growing and Shrinking

•	 Operate principally on the row and column, (r,c), based image space.
•	 Methods can be local, operating on small neighborhoods, global, operating on the

entire image, or a combination of both.

Split and Merge: a segmentation method that divides regions that do not pass a
homogeneity test, and combines regions that pass the homogeneity test. This tech-
nique proceeds as follows:

	 1.	Define a homogeneity test. This involves defining a homogeneity measure, which
may incorporate brightness, color, texture, or other application-specific information,
and determining a criterion the region must meet to pass the homogeneity test.

	 2.	Split the image into equal sized regions.
	 3.	Calculate the homogeneity measure for each region.
	 4.	 If the homogeneity test is passed for a region, then a merge is attempted with its

neighbor(s). If the criterion is not met, the region is split.
	 5.	Continue this process until all regions pass the homogeneity test.

242	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Quadtree: a data structure used in split and merge in which each node can have
four children.

Homogeneity criteria: a measure of similarity within a region in an image. In
CVIPtools these are available: (1) pure uniformity, (2) local mean versus global
mean, (3) local standard deviation versus global, (4) variance, (5) weighted
gray-level distance, and (6) texture.

Watershed algorithm: a morphological technique based on the ideas of model-
ing a gray-level image as a topographic surface, with higher gray levels cor-
responding to higher elevations. The image is then flooded with a rainfall
simulation, and pools of water are created corresponding to segments within
the image.

Clustering Techniques

•	 Segments the image by placing similar elements into groups, or clusters, based on
some similarity measure.

•	 Differs from region growing and shrinking methods in that the mathematical
space includes dimensions beyond the row and column image space.

•	 The mathematical space used for clustering may include, as examples, color spaces,
histogram spaces, or complex feature spaces.

Recursive region splitting: uses a thresholding of histograms to segment the image.
An example of this type of algorithm:

	 1.	Consider the entire image as one region and compute histograms for each compo-
nent of interest (for example red, green, and blue for a color image).

	 2.	Apply a peak finding test to each histogram. Select the best peak and put thresholds
on either side of the peak. Segment the image into two regions based on this peak.

	 3.	Smooth the binary thresholded image so only a single connected subregion
is left.

	 4.	Repeat steps 1–3 for each region until no new subregions can be created; that is, no
histograms have significant peaks.

SCT/Center algorithm: a color segmentation algorithm initially developed for use
in skin tumor identification, defined based on the human visual system response.
The algorithm proceeds as follows:

	 1.	Convert the (R,G,B) triple into spherical coordinates – (L, angle A, angle B).
	 2.	Find the minima and maxima of angle A and angle B.
	 3.	Divide the subspace, defined by the maxima and minima, into equal-sized blocks.
	 4.	Calculate the RGB means for the pixel values in each block.
	 5.	Replace the original pixel values with the corresponding RGB means.

PCT/Median algorithm: a color segmentation method initially developed for use
in skin tumor identification, based on the principal components transform (PCT).

pj
w

st
k|

40
20

64
|1

43
56

01
13

0

Segmentation and Edge/Line Detection	 243

© 2011 by Taylor & Francis Group, LLC

The PCT provides a linear transform that will align the primary axis along the
path of maximum variance. The algorithm proceeds as follows:

	 1.	Find the PCT for the RGB image. Transform the RGB data using the PCT.
	 2.	Perform the median split algorithm: find the axis that has the maximal range (ini-

tially it will be the PCT axis). Divide the data along this axis so that there are equal
numbers of points on either side of the split—the median point. Continue splitting
at the median along the maximum range segment until the desired number of
colors is reached.

	 3.	Calculate averages for all the pixels falling within a single parallelepiped (box).
	 4.	Map each pixel to the closest average color values, based on a Euclidean distance

measure.

Boundary Detection

•	 Boundary detection for image segmentation is performed by finding boundaries
between objects, thus indirectly defining the objects.

•	 The general steps are (1) mark potential edge points by finding discontinuities in
features such as brightness, color, or texture, (2) threshold the results, and (3) merge
edge segments into boundaries via edge linking.

Thresholding: a technique where pixels are marked above a specified value. Various
algorithms are available, including: (1) by manually examining the histogram and
looking for the best valley, (2) use the isodata method from Chapter 3, (3) minimizing
within group variance, Otsu method—an analytical algorithm that works well for
bimodal histograms based on the assumption that each peak is Gaussian shaped
and the peaks are well separated, (4) use the average value, and (5) use 10–25% of
the maximum value for noisy images.

Edge linking: methods to link the edge points into segments and boundaries,
including: (1) consider points that have passed the threshold test and connect
them to other marked points within some maximum distance, (2) consider small
neighborhoods and link points with similar magnitude and direction, then link
points together to form boundaries, and (3) the snake eating algorithm described
in Section 4.2.6.

Extended Hough transform: is used to find shapes and mark boundaries that can
be defined by analytical equations, such as circles or ellipses. The search space is
a parameter space, where the parameters are found in the equation describing the
shape of interest.

Generalized Hough transform: is used to find any arbitrary shape. It works by cre-
ating a description of the shape defined by a reference point and a table of lines,
the R-table.

Gradient Vector Flow Snake (GVF snake): initialized by a rough approximation
to the border, referred to as a snake; features of interest control the process
by defining forces that will push and/or pull the border until equilibrium is
reached.

244	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Combined Segmentation Approaches

•	 Image segmentation methods may actually be a combination of region growing
methods, clustering methods, and boundary detection.

•	 Optimal image segmentation is likely to be achieved by focusing on the
application.

•	 Finding boundaries of different features, such as texture, brightness, or color, and
applying artificial intelligence techniques at a higher level to correlate the feature
boundaries found to the specific domain may give the best results.

Morphological Filtering

•	 Morphology relates to structure or form of objects.
•	 Morphological filtering simplifies segmented images by smoothing out object out-

lines, filling small holes, eliminating small projections, or skeletonizing a binary
object down to lines that are a single pixel wide.

•	 Primary operations are dilation and erosion.
•	 These operations use a structuring element that determines exactly how the object

will be dilated or eroded.
•	 Opening and closing are useful combinations of dilation and erosion.

Dilation: the process of expanding image objects by changing pixels with value of
“0” to “1.” It can be done in two steps:

	 1.	 If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

	 2.	 If the origin of the structuring element coincides with a “1” in the image, perform
the OR logic operation on all pixels within the structuring element.

Erosion: the process of shrinking binary objects by changing pixels with a value of
“1” to “0.” It can be done in two steps:

	 1.	 If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

	 2.	 If the origin of the structuring element coincides with a “1” in the image, and any
of the “1” pixels in the structuring element extend beyond the object (“1” pixels) in
the image, then change the “1” pixel in the image, whose location corresponds to
the origin of the structuring element, to a “0.”

Opening: an erosion followed by a dilation. This will eliminate all pixels in regions
too small to contain the structuring element. It will expand holes, erode edges, and
eliminate small objects. It may split objects that are connected by narrow strips,
and eliminate peninsulas.

Closing: a dilation followed by an erosion. It can be used to fill holes and small
gaps. It will also connect separate objects if the gap is smaller than the structuring
element.

Segmentation and Edge/Line Detection	 245

© 2011 by Taylor & Francis Group, LLC

Hit-or-miss transform: The morphological hit-or-miss transform is a fundamental
method for detection of simple shapes and works by overlaying the structuring
element on the image, and requires an exact match for a “hit” to occur—a hit is
marked with a 1. See Examples 4.3.3 and 4.3.4.

Thinning: etching away at an object boundary with a structuring element, SE, by
this equation (see Example 4.3.5):

	 Thin[I(r,c),SE] = I(r,c) – hit-or-miss[I(r,c),SE].

Skeleton: What is left of a binary object after it has been eroded to the point of being
only one pixel wide.

Skeletonization: a controlled erosion process to create a skeleton of a binary object
(see Example 4.3.6).

Spur: small, extraneous lines left after the skeletonization process.
Pruning: Iteratively removing spurs from a skeleton (see Example 4.3.7).
Iterative morphological filtering: as defined here, it is based on a definition of six-

connectivity, so a pixel can be surrounded by 14 possible combinations (allowing for
rotation). This approach can be used to dilate, erode, open, close, skeletonize, mark
corners, find edges, and perform other binary morphological operations. To do this,
we define: (1) the set of surrounds S, where a = 1, (2) a logic function, L(a,b), where b
is the current pixel value, and the function specifies the output of the morphological
operation, (3) the number of iterations, n (see Examples 4.3.8 through 4.3.13).

Gray-level morphological filtering: the previously defined binary operations can be
extended to gray-level images in various ways: (1) threshold the image to create
a binary image and apply binary operators and (2) treat the image as sequence
of binary images by operating on each gray level as if it were the “1” value and
assuming everything else to be “0.” The resulting images can then be combined by
laying them on top of each other and “promoting” each pixel to the highest gray-
level value coincident with that location.

Exercises

Problems

	 1.	 (a) What is the goal of image segmentation? (b) What type of objects do segmenta-
tion methods look for? (c) List the three categories of segmentation methods.

	 2.	What does a differential operator measure, and how does this relate to edge
detectors?

	 3.	 In dealing with noise in edge detection there is a tradeoff between sensitivity and
accuracy. Explain what this means.

	 4.	Compare and contrast an ideal edge and a real edge in an image. Draw a picture
of both.

	 5.	 (a) Explain the idea on which gradient edge detection operators are based. (b) How
do the results differ if we use a second order compared to a first order derivative

246	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

operator? (c) Explain what is meant by subpixel accuracy and how it relates to
gradient-based edge detectors.

	 6.	Find the results of applying the Robert’s edge detector to the following image. Use
the absolute value form of the operator. For the result, don’t worry about top row
and left column.

	
5 7 4 3
4 0 0 0
6 1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 7.	Find the results, magnitude, and direction, of applying the Prewitt edge detector
to the following image. For the result, don’t worry about the outer rows and col-
umns row and left column.

	

0 8 0 0
0 8 0 0
0 8 0 0
0 8 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 8.	Two of the three Laplacian masks given are based on eight-connectivity, the other
one is based on four-connectivity—which one? Devise a Laplacian type edge
detection mask based on six-connectivity.

	 9.	Find the results of applying the Robinson compass masks to the following image.
For the result, don’t worry about the outer rows and columns row and left column.
Keep track of the maximum magnitude and which mask corresponds to it.

	

0 0 0 0
0 0 0 0
5 5 5 5
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 10.	Use CVIPtools to explore the basic edge detection operators. (a) Run CVIPtools,
and load test images of your choice. As one of the test images, create a binary
image of a circle with Utilities→ Create→ Circle. (b) Select Utilities→ Create→ Add noise.
Add noise to your test images. Use both Gaussian and salt-and-pepper noise. (c)
Select Analysis→ Edge/Line Detection. Compare thresholding the output at differ-
ent levels with the Kirsch, Pyramid, and Robinson edge detection operators. In
CVIPtools: Select the desired edge detector, select none for prefiltering, select the
desired threshold with post-threshold option. Alternately, select none for post-
threshold and use the Threshold button at the bottom of the window—this allows
for the testing of different threshold levels without the need to rerun the edge
detection operation. (d) For the images containing noise, compare the resultant
images with and without applying a low-pass filter as a preprocessing step (use
the prefilter option in CVIPtools).

Segmentation and Edge/Line Detection	 247

© 2011 by Taylor & Francis Group, LLC

	 11.	Use CVIPtools to explore the basic edge detection operators. (a) Run CVIPtools, and
load test images of your choice. As one of the test images, create a binary image
of a circle with Utilities→ Create→ Circle. (b) Select Utilities→ Create→ Add noise. Add
noise to your test images. Use both Gaussian and salt-and-pepper noise. (c) Select
Analysis→ Edge/Line Detection. (d) Compare using different size kernels with the
Sobel and Prewitt operators. In CVIPtools: select the desired edge detection opera-
tor, select the kernel size. (e) For the images containing noise, compare the resultant
images with and without applying a low-pass filter as a preprocessing step (use the
prefilter option in CVIPtools). Also, compare the results with different size kernels
(masks). Does the 3 × 3 or 7 × 7 provide better results in the presence of noise?

	 12.	Use CVIPtools to explore the basic edge detection operators. (a) Run CVIPtools,
and load test images of your choice. As one of the test images, create a binary
image of a circle with Utilities→ Create→ Circle. (b) Select Utilities→ Create→ Add noise.
Add noise to your test images. Use both Gaussian and salt-and-pepper noise. (c)
Select Analysis→ Edge/Line Detection. (d) Compare keeping the DC bias versus not
keeping it, using the Roberts and Laplacian. (e) For the images containing noise,
compare the resultant images with and without applying a low-pass filter as a
preprocessing step (use the prefilter option in CVIPtools).

	 13.	The Canny algorithm for edge detection was developed based on a specific edge
model, what is it? What are the three criteria used to develop the algorithm? How
do the four algorithmic steps relate to these three criteria?

	 14.	Use CVIPtools to explore the Laplacian and Frei–Chen edge detection operators.
Use real images, and create some simple geometric images with Utilities→ Create.
Additionally, add noise to the images. (a) In Analysis→ Edge/Line Detection, select the
Frei–Chen, compare the line subspace versus the edge subspace, with the projection
option in CVIPtools. Experiment with various threshold angles, as well as post-
threshold values. Examine the histogram to select good threshold values. Compare
the threshold values that work the best to the images with and without noise, are they
the same? Why or why not? (b) Using the Laplacian in Analysis→ Edge/Line Detection,
select prefiltering with a Gaussian—this will perform a LoG filter. Examine the
histogram to select good threshold values. (c) Use Utilities→ Filter→ Specify a Filter to
input the values for the 5 × 5 LoG filter given in the text. Do this by selecting the
5 × 5, and then entering the values in the box (note: the < tab > key, or the mouse,
can be used to move around the box), then select OK. Compare these results to the
results from (b). Are they similar? Why or why not?

	 15.	Use CVIPtools to explore the Canny, Boie–Cox, and Shen–Casten algorithms.
Use Utilities→ Create to create a circle with a radius of 32 and a blur radius of 128.
(a) Select the Canny algorithm. Use the Low Threshold Factor = 1, High Threshold
Factor = 0.5 and compare results with a variance of 0.5, 1.5, and 3. Next, use Low
Threshold Factor = 1, High Threshold Factor = 1 and compare results with a vari-
ance of 0.5, 1.5, and 3. Now apply the Canny to a complex image of your choice.
Experiment with the parameters until you achieve a good result. (b) Select the
Boie–Cox algorithm and apply it to your blurred circle image. Experiment with
the various parameters. Next, apply it to the complex image you used with the
Canny. Which settings work best for your images? (c) Select the Shen–Castan algo-
rithm and apply it to your blurred circle image. Use the Low Threshold Factor = 1,
High Threshold Factor = 1, Smoothing Factor = 0.9, Window Size = 5 and compare
results with a Thin Factor of 1, 3, and 6. Next, apply it to the complex image you

248	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

used with the Canny. Which settings work best for your images? (d) Repeat (a)–(c),
but add noise to the images.

	 16.	Select a color image of your choice. Use Utilities→ Convert→ Color Space to explore
edge detection using the various color spaces, and Utilities→ Create→ Extract Band
to operate on individual bands and Utilities→ Create→ Assemble Bands to combine
resulting bands into composite images. Devise an algorithm that works best for
your particular image.

	 17.	 In the following image find the distance between the points labeled a and b in the
following image:

	

5 7 8 12
3 6 7 6 6
6 10 10 11
7 7 0 0 0
0 7 9 1 0

b

a

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥

	 (a)	 Use city block distance, (b) use chessboard distance, and (c) use Euclidean
distance.

	 18.	Given the following image, apply a Robert’s edge detector, absolute value format, to
the image (do not worry about the top row and leftmost column). Next, threshold
the image with the following values and find Pratt’s Figure of Merit for the found
edge points. Let α = 0.5, and use the chessboard distance measure. Threshold val-
ues: (a) 5, (b) 12, and (c) 22.

	

0 0 0 0 0
0 0 0 0 0
0 10 10 10 0
0 0 0 0 0
0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

	 19.	List all the steps in the process of using the Hough transform for line finding.
	 20.	Use CVIPtools to explore the Hough transform and the post-processing edge

linking algorithm on an artificial image. (a) Use Utilities→ Create to create a circle
and perform an edge detector of your choice. (b) Threshold the resultant image.
(c) Perform the Hough transform on the thresholded image, input 5 for both line
pixels and segment length, then select line angles 0, (d) 90, (e) 0–20, (f) 0–45, (g) 0–90,
(h) 0–150, and (i) 0–180. Do the results make sense? How are the results affected
by increasing the connect distance? How are the results affected by increasing the
segment length?

	 21.	Use CVIPtools to explore the Hough transform and the post-processing edge link-
ing algorithm on a real image. (a) select an image of your choice and perform an
edge detection. (b) Threshold the resultant image. (c) Perform the Hough trans-
form on the thresholded image, input 5 for both line pixels and segment length, then
select line angles 0, (d) 90, (e) 0–20, (f) 0–45, (g) 0–90, (h) 0–150, and (i) 0–180. Do
the results make sense? How are the results affected by increasing the connect

Segmentation and Edge/Line Detection	 249

© 2011 by Taylor & Francis Group, LLC

distance? Find a connect distance that gives you the desired results. How are the
results affected by increasing the segment length? Find a segment length that gives
you the desired results.

	 22.	What is a quadtree and for which segmentation algorithms is it used? Why is it
useful for these algorithms?

	 23.	Compare and contrast region growing and shrinking segmentation methods from
clustering methods.

	 24.	Regarding split and merge segmentation algorithms, what is a homogeneity test?
Describe three different homogeneity criteria.

	 25.	Briefly describe the watershed algorithm. To which category of segmentation
methods does it belong? Explain why or why not it belongs in this category.

	 26.	Use CVIPtools to explore histogram thresholding segmentation methods; including
the Histogram Thresholding and Fuzzy C-Means algorithms. Select an image of your
choice. (a) Examine the histogram. (b) Perform histogram thresholding segmentation.
(c) Compare the histogram of the image from histogram thresholding segmentation
to the histogram of the original image. If you had manually selected the peaks, are
these the ones you would have selected? Looking at the segmented image, do you
think the segmentation was effective? (d) Do parts (a)–(c) using the fuzzy c-means
algorithm. Note that with this algorithm we can control the degree of segmentation
with the Gaussian kernel variance. What happens as we increase this parameter?

	 27.	Use CVIPtools to explore the various segmentation methods and their associated
parameters. Select an image that allows you to judge when the segmentation has
been successful.

	 28.	 (a) In image analysis, what do we call the type of spatial filtering typically per-
formed after segmentation? (b) What are the two principal operations called?
Briefly describe each.

	 29.	Given the following image and structuring element, perform an opening opera-
tion. Assume the origin of the structuring element is in the center. Ignore cases
where the structuring element extends beyond the image.

	

STRUCTURING ELEMENT

1 0 0
1 1 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

IMAGE

1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1 1 11 1 1 1
1 1 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

250	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 30.	Given the following, what will be the resultant pixel values after operating on the
following image? Assume all rotations of the surrounds are included in S.

	

IMAGE

1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1 1 11 1 1 1
1 1 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 a.	 S = {2,3,4,5,6}, L(a,b) = ab , n = 1. Find the resultant pixel values at (r,c) = (3,2);
(r,c) = (3,3); (r,c) = (4,5); and (r,c) = (3,6).

	 b.	 S = {7}, L(a,b) = a + b, n = 1. Find the resultant pixel values at (r,c) = (4,6); (r,c) = (2,2);
(r,c) = (4,2); and (r,c) = (4,4).

Programming Exercises

Edge Detection—Roberts and Sobel

	 1.	Write a function to implement the Roberts edge detector. Let the user select either
the square root, or absolute value form. The C® functions for absolute value and
square root are abs() and sqrt(). Note that you will need to deal with potential
overflow problems, as the results may be greater than 255. This may be dealt with
by using a floating point image structure as an intermediate image, and then
remapping the image when completed. This is done as follows:

Image *outputimage; 	 /*declaration of image structure pointer*/
float	 **image_data;	/* declaration of image data pointer*/
.....
outputimage = new_Image(PGM, GRAY_SCALE, no_of_bands, no_of_rows,
no_of_cols, CVIP_FLOAT, REAL); → /*creating a new image
structure*/
image_data = getData_Image(outputimage, bands); → /*getting the
data into an array that can be accessed as: image_data[r][c] */
.....
outputimage = remap_Image(outputimage, CVIP_BYTE, 0, 255);
/*remapping a float image to byte size, this is done before
writing the image to disk with the write_Image function*/

	 Test the function on gray-level images. Compare the results from the two methods
by using the Utilities→ Compare selection in CVIPtools.

	 2.	Write a function to implement the Sobel edge detector. The function should output
an image that contains the Sobel magnitude, and is remapped as with the Roberts.
Test the function on gray-level images of your choice.

	 3.	Modify the functions to handle multiband (color) images.
	 4.	Use the Analysis→ Edge/Line detection→ Edge link selection in CVIPtools to connect

the lines in the output images. Note that this requires a binary image, so be sure

pj
w

st
k|

40
20

64
|1

43
56

01
14

3

Segmentation and Edge/Line Detection	 251

© 2011 by Taylor & Francis Group, LLC

to apply a threshold operation to the images first. Thresholding can be performed
directly in this window by typing the threshold value in the entry box and click-
ing on the Threshold current image button at the bottom of the window.

SCT/Center Segmentation

	 1.	Write a C function to implement an SCT/Center segmentation algorithm. Let the
user enter the number of colors along the angle A and angle B axes.

	 2.	Compare your results to those obtained in CVIPtools.

Histogram Thresholding Segmentation

	 1.	Use the CVIPtools libraries to put the fuzzyc_segment and hist_thresh_segment func-
tions into your CVIPlab.

	 2.	Compare your results to those obtained in CVIPtools.

Morphological Filters

	 1.	Write C functions to implement dilation, erosion, opening, and closing. Let the
user enter the nine 0s and 1s for a 3 × 3 structuring element.

	 2.	Compare your results to those obtained in CVIPtools.

Iterative Morphological Filters

	 1.	Use the CVIPtools libraries to put the morpho function into your CVIPlab. This
function implements the iterative morphological operations as described in this
chapter.

	 2.	Compare your results to those obtained in CVIPtools.

Supplementary Exercises

Supplementary Problems

	 1.	 (a) Apply the Prewitt to the following image, keep both magnitude and direction.
Do not calculate Prewitt for outer rows and columns. (b) Which points are con-
nected if the magnitude can vary by 0.5 and the angle must be an exact match
(assume 8-connectivity)?

	

1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 11 0 0 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

252	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 2.	a. Apply nonmaxima suppression to the pixels in the center column:

	
← → →

← → →

← → →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

70 116 220
20 90 51
88 95 127

	 b.	 Apply hysteresis thresholding to the following image with a high threshold of
200 and a low threshold of 150. Assume 4-connectivity:

	

22 34 32 44 45 45 43 43
27 11 12 11 12 11 12 18
22 221 223 226 2222 199 10 9
2 3 3 178 4 4 5 4
7 7 7 216 7 7 7 7
18 23 23 166 23 66 665 65
188 76 75 198 199 187 184 123
222 177 188 222 222 144 14 13

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 c.	 If you were doing optical character recognition with the 26 letter English
alphabet, which letter would you guess for the result from (b)?

	 3.	 (a) Project the following subimage onto the Frei–Chen masks. (b) Find the projec-
tion angles onto the line subspace, the edge subspace, and the average subspace.
(c) Use the Frei–Chen weights to get the subimage back. Did you get it back exactly
the same? Why or why not?

	
1 1 1
0 0 0
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 4.	Given the following image, apply the Otsu method to find the best threshold:

	

23 34 34 45 45 45 45 45
23 12 77 12 12 77 12 12
23 222 222 222 2222 199 77 77
3 3 3 199 3 3 3 3
77 77 77 222 77 77 77 77
23 23 233 199 23 65 65 65
199 77 77 199 199 199 199 199
222 222 2222 222 222 12 12 12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

pj
w

st
k|

40
20

64
|1

43
56

01
15

2

Segmentation and Edge/Line Detection	 253

© 2011 by Taylor & Francis Group, LLC

	 5.	For the following descriptions of iterative modification schemes, define the set of
surrounds, S, and the logic function, L(a,b), will perform the function:

	 (a) Resets all pixels to zero, (b) Performs a logical NOT, (c) removes edges and
keeps interiors, (d) removes interiors, keeps edges, (e) only keeps isolated pixels
that are one, (f) removes isolated pixels that are one and leaves the rest of the
image alone, (g) marks endpoints of lines, and (h) removes all but corners.

	 6.	 (a) Explain how the extended Hough transform could be used to find ellipses
that are aligned along the row or column axis. (b) How many dimensions is the
search space? What are they? (c) How can this be extended to find ellipses of any
orientation?

	 7.	 (a) If the Laplacian masks as defined in this chapter are applied to an image, such
as in CVIPtools, the sign (positive or negative) on the results seem to be the oppo-
site of what is shown in Figure 4.3-5. Why is that? (b) Is the Type 1 Laplacian mask
actually isotropic in all directions?

	 8.	Explain how the Hough transform can be used to find gaps between line segments
on a given line. Allow for different connectivity and distance definitions.

	 9.	Apply the hit-or-miss transform with the structuring element, SE, to the following
image:

	

SE x x

x

I r c

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 0 0
1

1 1

0 0 0 0 0 0 0 0
0 1 0 0 0 0

(,)

11 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 10.	Apply the skeletonization process to the following image:

	

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 11 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥

254	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Supplementary Programming Exercises

Canny Edge Detection

	 1.	Write a function to implement the Canny edge detection algorithm. Use a fixed
3 × 3 Gaussian approximation mask for step one, and the gradient edge detector
given in the chapter for Step 2.

	 2.	Modify your function to allow for any size Gaussian up to a 9 × 9 in step one, and
a 3 × 3 Prewitt or Robinson for Step 2.

	 3.	Compare your results to CVIPtools. Are they the same? Why or why not?

Boie–Cox Edge Detection

	 1.	Use the references to research the Boie–Cox algorithm.
	 2.	Write a function to implement the algorithm.
	 3.	Compare your results to CVIPtools. Are they the same? Why or why not?

Shen–Casten Edge Detection

	 1.	Use the references to research the Shen–Casten algorithm.
	 2.	Write a function to implement the algorithm.
	 3.	Compare your results to CVIPtools. Are they the same? Why or why not?

Hough Transform

	 1.	Write a function to implement a Hough transform. Let the user enter the line
angles of interest and the minimum number of pixels per line.

	 2.	Compare your results to those obtained in CVIPtools.
	 3.	Extend your Hough transform function to find circles.
	 4.	Extend your Hough transform function to find ellipses.

Harris Corner Detection

	 1.	Write a function to implement the Harris corner detection algorithm. Write a sepa-
rate function for each step and output the intermediate images.

	 2.	Compare your results to CVIPtools. Are they the same? Why or why not?

Automatic Thresholding with Otsu Method

	 1.	Write a function to implement the Otsu method for automatic thresholding.
Have the function output the image after the thresholding and the threshold
value.

	 2.	Write a function to display the histogram of an image with a slider at the bottom
so the user can vary the threshold and see the resultant image.

Segmentation and Edge/Line Detection	 255

© 2011 by Taylor & Francis Group, LLC

Skeletonization

	 1.	Write a function to implement the skeletonization algorithm described in
Section 4.3. Let the user select 4-masks or 8-masks.

	 2.	Compare your results to CVIPtools. Are they the same? Why or why not?
	 3.	Modify your function to automatically iterate until: (a) no further changes occur,

or until (b) the number of connected components does not change. Allow the user
to specify the type of connectivity.

References

Baxes, G. A., Digital Image Processing: Principles and Applications, New York, NY: Wiley, 1994.
Boie, R. A., and Cox, I., Two Dimensional Optimum Edge Recognition Using Matched and Wiener

Filters for Machine Vision, Proceedings of the IEEE First International Conference on Computer
Vision, 450–56. New York, NY: 1987.

Burger, W., and Burge, M. J., Digital Image Processing: An Algorithmic Introduction Using Java, New
York, NY: Springer, 2008.

Canny, J., A Computational Approach for Edge Detection, IEEE Transactions on Pattern Analysis and
Machine Intelligence 8, no. 6 (1986): 679–98.

Carlotto, M., Histogram Analysis Using a Scale-State Approach, IEEE Transactions on Pattern Analysis
and Machine Intelligence 9, no. 1 (1987): 121–29.

Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.
Cervenka, V., and Charvat, K., Survey of Image Processing Research Applicable to the Thematic Mapping

Based on Aerocosmic Data (in Czech). Technical Report A 12-346-811, Geodetic and Cartographic
Institute, Prague, Czechoslovakia, 1987.

Dougherty, G., Digital Image Processing for Medical Applications, Cambridge, UK: Cambridge University
Press, 2009.

Dougherty, E., and Lotufo, R., Hands-on Morphological Image Processing, Bellingham, WA: SPIE Press,
2003.

Forsyth, D. A., Ponce, J., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2003.
Frei, W., and Chen, C. C., Fast Boundary Detection: A Generalization and a New Algorithm, IEEE

Transactions on Computers C-26, no. 10 (1977): 988–98.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Pearson Prentice

Hall, 2008.
Haralick, R. M., and Shapiro, L. G., Computer and Robot Vision, Reading, MA: Addison-Wesley, 1992.
Harris, C. G, and Stephens, M., A Combined Corner and Edge Detector, in Proceedings of the 4th

ALVEY Vision Conference, ed. C. J. Taylor, 147–51. England: University of Manchester, 1988.
Horn, B. K. P., Robot Vision, Cambridge, MA: The MIT Press, 1986.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Liao, P. S., Chen, T. S., and Chung, P. C., A Fast Algorithm for Multilevel Thresholding, Journal of

Information Science and Engineering 17 (2001): 713–27.
Lim, Y., and Lee, S., On Color Segmentation Algorithm Based on the Thresholding and Fuzzy c-Means

Techniques, Pattern Recognition 23, no. 9 (1990): 935–52.
Marr, D., Vision, New York, NY: Freeman and Company, 1982.
Marr, D., and Hildreth, E., Theory of Edge Detection, Proceedings of the Royal Society, B 207 (1980):

187–217.

256	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Parker, J. R., Algorithms for Image Processing and Computer Vision, New York, NY: Wiley, 1997.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Schalkoff, R. J., Digital Image Processing and Computer Vision, New York, NY: Wiley, 1989.
Seul, M., O’Gorman, L., and Sammon, M. J., Practical Algorithms for Image Analysis, Cambridge, UK:

Cambridge University Press, 2000.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Shen, J., and Castan, S., An Optimal Linear Operator for Step Edge Detection, Computer Vision,

Graphics, and Image Processing: Graphical Models and Understanding 54, no. 2 (1992): 112–33.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Umbaugh, S. E, Computer Vision in Medicine: Color Metrics and Image Segmentation Methods for Skin

Cancer Diagnosis, PhD dissertation, UMI Dissertation Service, 1990.
Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Automatic Color Segmentation of Images with

Application to Detection of Variegated Coloring in Skin Tumors, IEEE Engineering in Medicine
and Biology 8, no. 4 (December 1989).

Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., An Automatic Color Segmentation Algorithm with
Application to Identification of Skin Tumor Borders, Computerized Medical Imaging and Graphics
16, no. 3 (1992).

Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Automatic Color Segmentation Algorithms with
Application to Skin Tumors Feature Identification, IEEE Engineering in Medicine and Biology 12,
no. 3 (September 1993).

Weiss, M., Data Structures and Algorithm Analysis in C, Reading, MA: Addison-Wesley, 1997.

Further Reading

More information regarding edge detection can be found in Gonzalez and Woods (2008),
Forsyth and Ponce (2003), Shapiro and Stockman (2001), Sonka, Hlavac, and Boyle (2008),
and Pratt (1991). Details on the Marr–Hildreth algorithm can be found in Marr and Hildreth
(1980) and for more information on the LoG and its relationship to biological vision systems
see Marr (1982) and Shapiro and Stockman (2001). More details on implementation of the
LoG and the Marr–Hildreth algorithm can be found in Parker (1997) and Haralick and
Shapiro (1992). For more detail on the Canny algorithm see Canny (1986), Jain, Kasturi, and
Schnuck (1995), and Sonka, Hlavac, and Boyle (2008), on the Shen–Castan algorithms see
Shen–Castan (1992) and Parker (1997), and for more on the Boie–Cox algorithm see Boie and
Cox (1987) and Seul, O’Gorman, and Sammon (2000). Shapiro and Stockman (2001) have a
different, and potentially useful, approach based on energy for using the Frei–Chen masks,
also see Frei and Chen (1977). The multispectral edge detection equations were found in
Sonka, Hlavac, and Boyle (2008) in the original paper from Cervenka and Charvat (1987).
The Hough transform as described here can be found in Gonzalez and Woods (2008). More
details on the generalized Hough transform and corner detection can be found in Sonka,
Hlavac, and Boyle (2008). For algorithm details and code to implement the Harris corner
detection algorithm see Harris and Stephens (1988) and Burger and Burge (2008). More on
the Moravec and Harris corner detector can be found in Sonka, Hlavac, and Boyle (2008).

The PCT/Median and SCT/Center image segmentation methods presented are described
in Umbaugh (1990) and applied in Umbaugh, Moss, and Stoecker (1989, 1992, 1993). More
on thresholding algorithms and the watershed algorithm can be found in Gonzalez and
Woods (2008), Baxes (1994), Dougherty and Lotufo (2003), and Sonka, Hlavac, and Boyle

Segmentation and Edge/Line Detection	 257

© 2011 by Taylor & Francis Group, LLC

(2008). For other Otsu-based algorithms, including multiple thresholds and fast algo-
rithms, see Liao, Chen, and Chung (2001). The histogram thresholding segmentation
algorithms in CVIPtools are based on the Carlotto (1987) and Lim and Lee (1990) papers.
Additional information about image segmentation methods can be found in Gonzalez and
Woods (2008), Shapiro and Stockman (2001), Sonka, Hlavac, and Boyle (2008), Haralick and
Shapiro (1992), Schalkoff (1989), Castleman (1996), and Jain, Kasturi, and Schnuck (1995).
Detailed information on tree data structures can be found in Weiss (1997) and Shapiro
and Stockman (2001). Specific details of the GVF snake algorithm can be found in Sonka,
Hlavac, and Boyle (2008).

More information on image morphology is found in Dougherty (2009), Gonzalez and
Woods (2008), Shapiro and Stockman (2001), Sonka, Hlavac, and Boyle (2008), and Jain,
Kasturi, and Schnuck (1995). The definitions for connectivity are described in Horn (1986),
and further information can be found in Haralick and Shapiro (1992). For a practical
approach with numerous examples of morphological processing see Dougherty and
Lotufo (2003). The iterative method to morphological filtering is described in Horn (1986).

259© 2011 by Taylor & Francis Group, LLC

5
Discrete Transforms

5.1  Introduction and Overview

A transform is simply another term for a mathematical mapping process. Most of the trans-
forms discussed in this chapter are used in image analysis and processing to provide infor-
mation regarding the rate at which the gray levels change within an image—the spatial
frequency or sequency. However, the principal components transform (PCT) is included
and its primary purpose is to decorrelate the data between image bands. Additionally,
the wavelet and the Haar transforms are different in that they retain both spatial and fre-
quency information.

In general, a transform maps image data into a different mathematical space via a
transformation equation. In Chapter 2, we discussed transforming image data into alter-
nate color spaces. However, those color transforms mapped data from one color space to
another color space with a one-to-one correspondence between a pixel in the input and the
output. Basically, most of these transforms map the image data from the spatial domain to
the frequency domain (also called the spectral domain), where all the pixels in the input
(spatial domain) contribute to each value in the output (frequency domain). This is illus-
trated in Figure 5.1-1.

These transforms are used as tools in many areas of engineering and science, including
digital image processing. Originally defined in their continuous forms, they are commonly
used today in their discrete (sampled) forms. The large number of arithmetic operations
required for the discrete transforms, combined with the massive amounts of data in an
image, require a great deal of computer power. The ever-increasing computer power,
memory capacity, and disk storage available today make the use of these transforms much
more feasible than in the past.

The discrete form of these transforms is created by sampling the continuous form of the
functions on which these transforms are based; that is, the basis functions. The functions
used for these transforms are typically sinusoidal or rectangular, and the sampling pro-
cess, for the one-dimensional (1-D) case, provides us with basis vectors. When we extend
these into two-dimensions, as we do for images, they are basis matrices or basis images (see
Figure 5.1-2). The process of transforming the image data into another domain, or math-
ematical space, amounts to projecting the image onto the basis images. The mathematical
term for this projection process is an inner product, and is identical to what was done with
Frei–Chen edge and line masks in Chapter 4. The Frei–Chen projections are performed
to uncover edge and line information in the image, and use 3 × 3 image blocks. The fre-
quency transforms considered here use the entire image, or blocks that are typically at
least 8 × 8, and are used to discover spatial frequency information.

260	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Transform
Equation

Input image Output image

Input image

All pixels in the input image contribute to each value in the
output image for frequency transforms.

All
pixels

Transform
equation

Output image

Color transforms use a single-pixel to single-pixel mapping.

(a)

(b)

Figure 5.1-1
Discrete transforms.

Space
A basis function : a 1–D sinusoid A basis vector : a sampled 1–D sinusoid

A basis image : a sampled sinusoid shown in 2–D as an image.
�e pixel brightness in each row corresponds to 1–D sinusoids,
which are repeated along each column

(a) (b)

Space

(c)

Br
ig

ht
ne

ss

Br
ig

ht
ne

ss

Figure 5.1-2
Basis vectors and images.

Discrete Transforms	 261

© 2011 by Taylor & Francis Group, LLC

The ways in which the image brightness levels change in space define the spatial fre-
quency. For example, rapidly changing brightness corresponds to high spatial frequency,
whereas slowly changing brightness levels relate to low frequency information. The lowest
spatial frequency, called the zero frequency term, corresponds to an image with a constant
value. These concepts are illustrated in Figure 5.1-3, using square waves and sinusoids as
basis vectors.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1-3
Spatial frequency. (a) frequency = 0, gray level = 51, (b) frequency = 0, gray level = 204, (c) frequency = 1, horizontal
sine wave, (d) frequency = 1, horizontal square wave, (e) frequency = 20, horizontal sine wave, (f) frequency = 20,
horizontal square wave.

262	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The general form of the transformation equation, assuming an M × N image, is given
by

	 T u,v k I r,c B r,c;u,v
r=

M

c=

N

() () ()
0

1

0

1

=
− −

∑∑

Here, u and v are the frequency domain variables, k is a constant that is transform depen-
dent, T(u,v) are the transform coefficients, and B(r,c;u,v) correspond to the basis images.
The notation B(r,c;u,v) defines a set of basis images, corresponding to each different
value for u and v, and the size of each is r by c (Figure 5.1-4). The transform coefficients,
T(u,v), are the projections of I(r,c) onto each B(u,v). This is illustrated in Figure 5.1-5.

c 0 c 0
v 0 1

u

0

0

0

1 1

c 0 1 c 0 1

r

0

r

0

r

1 1

0

r
1 1

Figure 5.1-4
A set of basis images B(r,c;u,v). Size of generic basis images for a 2 × 2 transform.

I(r,c)
projected
onto B(0,0)

B(u,v)

I (r, c)

vu

0
a

e f

g h

b

c

1

d

1 T (u, v)
vu

0

1

1
N

0 1
0

Figure 5.1-5
Transform coefficients. To find the transform coefficients, T(u,v), we project the image, I(r,c), onto the basis
images, B(u,v). For example, T(0,0) is the projection of I(r,c) onto B(0,0), which equals (ea + fb + gc + hd).

Discrete Transforms	 263

© 2011 by Taylor & Francis Group, LLC

These coefficients tell us how similar the image is to the basis image; the more alike
they are, the bigger the coefficient. This transformation process amounts to decompos-
ing the image into a weighted sum of the basis images, where the coefficients T(u,v) are
the weights.

Example 5.1.1

Let (,)I r c =
⎡

⎣
⎢

⎤

⎦
⎥

5 3
1 2

And let (, , ,)B u v r c =

+ +

+ +
⎡

⎣
⎢

⎤

⎦
⎥
+ −

+ −
⎡

⎣

1 1
1 1

1 1
1 1⎢⎢

⎤

⎦
⎥

+ +

− −
⎡

⎣
⎢

⎤

⎦
⎥
+ −

− +
⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1 1
1 1

1 1
1 1

Then (,)T u v

T

T
=

= + + + =(,) () () () ()

(

0 0 5 1 3 1 1 1 2 1 11

0,,) () () () ()

(,) () (

1 5 1 3 1 1 1 2 1 1

1 0 5 1 3 1

= + − + + − =

= +T)) () ()

(,) () () () (

+ − + − =

= + − + − +

1 1 2 1 5

1 1 5 1 3 1 1 1 2 1T)) =

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=
⎡

⎣
⎢

⎤

⎦
⎥

3

11 1
5 3

To obtain the image from the transform coefficients we apply the inverse transform
equation:

	 I r,c T T u,v k T u,v
u

M

v

N

() [()] ()1

0

1

0

1

= = ʹ−

=

− −

∑∑
=

B r,c;u,v−1()

Here the T–1[T(u, v)] represents the inverse transform, and the B–1[(r, c, u, v)] represents the
inverse basis images, and the k′ is a constant that is transform dependent. In many cases,
the inverse basis images are the same as the forward ones, and in cases where they are not,
they are very similar.

Example 5.1.2

From the previous example, we have (,)T u v =
111 1
5 3

⎡

⎣
⎢

⎤

⎦
⎥

And let (, , ,)1B u v r c– =

+ +

+ +
⎡

⎣
⎢

⎤

⎦
⎥
+ −

+ −

1 1
1 1

1 1
1 1

⎡⎡

⎣
⎢

⎤

⎦
⎥

+ +

− −
⎡

⎣
⎢

⎤

⎦
⎥
+ −

− +
⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1 1
1 1

1 1
1 1

264	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Then (,)I r c

I

I
=

= + + + =(,) () () () ()0 0 11 1 1 1 5 1 3 1 20

((,) () () () ()

(,) (

0 1 11 1 1 1 5 1 3 1 12

1 0 11 1

= + − + + − =

=I)) () () ()

(,) () () (

+ + − + − =

= + − + −

1 1 5 1 3 1 4

1 1 11 1 1 1 5I 11 3 1 8

20 12
4 8

) ()

?

+ =

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=
⎡

⎣
⎢

⎤

⎦
⎥

Is this correct? No, since (,)I r c =
⎡

⎣
⎢

⎤

⎦

5 3
1 2⎥⎥

Comparing our results we see that we must multiply our answer by 1/4. What does this tell
us?—It tells us that the transform pair, B(u,v;r,c) and B–1(u,v;r,c) are not properly defined, we
need to be able to recover our original image to have a proper transform pair. We can solve
this by letting k′ = 1/4, or by letting k = k′ = 1/2. Note that 1/2 will normalize the magnitude
of the basis images to 1. Remember that the magnitude of a vector can be found by the square
root of the sum of the squares of the vector components; in this case:

Magnitude of the basis images =  1 1 1 1 4 22 2 2 2+ ± + ± + ± = =() () () . Therefore, to normalize
the magnitude to 1, we need to divide by 2, or multiply by 1/2.

Two important attributes for basis images are that they be orthogonal and orthonormal.
If basis images are orthogonal, it means the vector inner product of each one with every
other one is equal to zero. Basis images that are orthonormal are orthogonal and have mag-
nitudes equal to one. In the above example we saw why we want the basis images to have
a magnitude of one, but what does orthogonality really mean and why is it important for
basis images? Orthogonality means that the projection of one basis image onto another
has a zero result—the two have nothing in common, they are uncorrelated. In Figure 5.1-6
we see an illustration of the vector inner product in a two-dimensional (2-D) mathematical
(x,y) space. Given two vectors, f1(x1,y1) and f2(x2,y2), we can find the vector inner product by
the following equation:

	 inner product or projection = = +f f x x y1 2 1 2cosθ 11 2y

In the figure we see that the projection consists of what is common between the two vec-
tors, and that if they are perpendicular, then the inner product is zero and they have
nothing in common. This is important for basis images because we are decomposing a

(a)

θ

f1(x1,y1)

f2(x2,y2)
Projection

(b)

θ

f1(x1,y1)

f2(x2 ,y2)Projection = 0

Figure 5.1-6
Vector inner product/projection. (a) Given two vectors, f1(x1,y1) and f2(x2,y2), we can find the vector inner product
by the following equation: |f1||f2|cos θ = x1x2 + y1y2, here we see the projection of f1 onto f2, with θ less than 90 ,̊
(b) If the two vectors are perpendicular, then the inner product is zero because the cos(90°) = 0, and the two
vectors have nothing in common.

Discrete Transforms	 265

© 2011 by Taylor & Francis Group, LLC

complex function into a weighted sum of these basis images, and if the basis images are
not orthogonal then these weights, T(u,v), will contain redundant information. This will
become clearer as we look at the specific transforms.

5.2  Fourier Transform

The Fourier transform is the best known, and the most widely used, of the transforms
considered here. It was developed by Jean Baptiste Joseph Fourier (1768–1830) to explain
the distribution of temperature and heat conduction. Since that time the Fourier transform
has found numerous uses, including vibration analysis in mechanical engineering, circuit
analysis in electrical engineering, and here in digital image processing. The Fourier trans-
form decomposes a complex signal into a weighted sum of a zero frequency term (the DC
term that is related to the average value), and sinusoidal terms, the basis functions, where
each sinusoid is a harmonic of the fundamental. The fundamental is the basic or lowest fre-
quency, and the harmonics are frequency multiples of the fundamental (the fundamental
is also called the first harmonic). We can recreate the original signal by adding the funda-
mental and all the harmonics, with each term weighted by its corresponding transform
coefficient. This is shown in Figure 5.2-1.

Fourier transform theory begins with the 1-D continuous transform, defined as follows:

	 F v I c e dcj vc() ()= −

−∞

∞

∫ 2π

The basis functions, e–j2πvc, are complex exponentials and will be defined in the next sec-
tion, but for now suffice it to say that they are sinusoidal in nature. Also note that continu-
ous Fourier transform theory assumes that the functions start at –∞ and go to + ∞, so they
are continuous and everywhere. This aspect of the underlying theory is important for the
periodic property of the Fourier transform discussed later.

Example 5.2.1

Given the simple rectangle function shown in Figure 5.2-2a, we can find the Fourier transform
by applying the equation defined above:

	

F v I c e dc

Ae dc

A
j

j vc

j vc
C

() ()=

=

= −
−

−

−∞

∞

−

∫

∫

2

2

0

2

π

π

πvv
e

A
j v

e

A
j v

e

j vc C j vC

j vC

− −[] =
−

−[]

= −

2
0

2

2
1

2

π π

π

π

π
ee ej vC j vC− −[]π π

266	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 5.2-1
Decomposing a square wave with a Fourier transform. (a) The square wave, (b) the fundamental, or first
harmonic, (c) the second harmonic, (d) the third harmonic, (e) approximation to the sum of the fundamental
and the first three harmonic harmonics, (f) approximation to sum of the first 20 harmonics, (g) CVIPtools screen
capture of a square and successively adding more harmonics. Across the top are the reconstructed squares
with approximately 8, 16, and then 32 harmonics. Across the bottom are the corresponding Fourier transform
magnitude images.

Discrete Transforms	 267

© 2011 by Taylor & Francis Group, LLC

then we use the trigonometric identity, sin θ = (ejθ−e−jθ)/2j

	 = −A
v

vC e j vC

π
π πsin()

This result is complex function, and here we are interested in the magnitude (defined in the
next section), which is

	 F v
A
v

vC e j vC() sin()= −

π
π π

Now we multiply through by C/C, and the magnitude of e−jπvC = 1,
we can get it in the form of a sinc function:

	 = =AC
vC

vC
AC C

sin()
()

()
π

π
νsinc

Figure 5.2-2b shows this result.

Figure 5.2-2c shows the 2-D rectangle function, with the brightness of the image represent-
ing the magnitude of the function. In Figure 5.2-2d we see the magnitude of the Fourier
spectrum in image form. It is customary to display the magnitude only of a Fourier spec-
trum, as the Fourier transform contains complex terms, which have real and imaginary

A

C
c

f(c)(a) (b)

(c) (d)

| F(v) |
AC

1/C0 2/C 3/C–1/C–2/C–3/C v
……

Figure 5.2-2
Fourier transform example. (a) The one-dimensional rectangle function, (b) the magnitude of Fourier transform
of the 1-D rectangle function: |F(v)| = AC|sin(πvC/πvC)| = AC|sinc(vC)| (c) Two-dimensional rectangle func-
tion as an image, (d) the magnitude of the Fourier transform, called the Fourier spectrum, of the 2-D rectangle.

pj
w

st
k|

40
20

64
|1

43
56

01
17

3

268	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

parts. The magnitude is however a real quantity and is also referred to as the Fourier
spectrum or frequency spectrum.

The reasons for introducing this example here are as follows: (1) to illustrate the continu-
ous and infinite nature of the basis functions in the underlying theory, and (2) to illustrate
that when we have a function that ends abruptly in one domain, such as the function
F(c), it leads to a continuous series of decaying ripples in the other domain as shown in
Figure 5.2-2b and 5.2-2d, and (3) to show that the width of the rectangle in one domain is
inversely proportional to the spacing of the ripples in the other domain. As you will see,
this will be useful in understanding the nature of phenomena that occurs in images at
object boundaries, especially when we apply filters; but first we will explore the details of
the discrete Fourier transform (DFT).

5.2.1 O ne-Dimensional Discrete Fourier Transform

The equation for the 1-D DFT is

	 F v =
N

I c e
c=

N

j2 vc N(
1

)
0

1

) (
−

−∑ π

The inverse DFT is given by

	 F F v I c F v e
v=

N

j2 vc N−

−

= =∑1[)] () ()(
0

1

π

where the F–1[] notation represents the inverse transform. These equations correspond to
one row of an image; note that as we move across a row, the column coordinate is the one
that changes. The base of the natural logarithmic function, e, is about 2.71828; j, the imagi-
nary coordinate for a complex number, equals −1. The basis functions are sinusoidal in
nature, as can be seen by Euler’s identity:

	 e jjθ θ θ= +cos sin() ()

Putting this equation into the DFT equation by substituting θ = –2πvc/N, and remembering
that cos(θ) = cos(–θ) and sin(–θ) = –sin(θ), the 1-D DFT equation can be written as

	 F v
1
N

I c vc N) j vc N
c=

N

() ()[(()
0

1

= −
−

∑ cos / sin /2 2π π]] = +Re Im() ()v j v

In this case, F(v) is also complex, with the real part corresponding to the cosine terms, and
the imaginary part corresponding to the sine terms. If we represent a complex spectral
component by F(v) = Re(v) + jIm(v), where Re(v) is the real part and Im(v) is the imaginary
part, then we can define the magnitude and phase of a complex spectral component as

	 MAGNITUDE |F v | v + v= =([()] [()]2 2) Re Im

and

	 PHASE v
v
v

= =
⎡

⎣⎢
⎤

⎦⎥
−φ(Tan)

()
()

1 Im
Re

Discrete Transforms	 269

© 2011 by Taylor & Francis Group, LLC

The magnitude of a sinusoid is simply its peak value, and the phase determines where
the origin is, or where the sinusoid starts (see Figure 5.2-3). Keep in mind that the basis
functions are simply sinusoids at varying frequencies, the complex exponential notation,
ejx, is simply a mathematical notational tool to make it easier to write and manipulate the
equations. In Figure 5.2-4 we see that a complex number can be expressed in rectangular
form, described by the real and imaginary part; or in exponential form, by the magnitude
and phase. A memory aid for evaluating ejθ is given in Figure 5.2-5.

Example 5.2.2

Given I(c) = [3,2,2,1], corresponding to the brightness values of one row of a digital image. Find
F(v) in both rectangular form, and in exponential form.

	 F v
N

I c e
c=

N

j vc N(
1

)
0

1

2) (=
−

−∑ π

	F I c e I c ej vc

cc

() () () [/0
1
4

1
4

1
4

2 4 0

0

3

0

3

= = =−

==
∑∑ π II I I I() () () ()] []0 1 2 3 1

1
4
3 2 2 1 2+ + + = + + + =

	

F I c e e e ej c j j() () () / /1
1
4

1
4

3 2 22 1 4 0 2= = + + +− − −π π π 11
1
4
3 2 2 1 1

1
4

3 2

0

3

e j jj

c

−

=

[] = + − + − +

=

∑ π / [() () ()]

[11− j]

K

0

–K

K

0

–K

K

0

–K

Ksin(2πvc + Φ)
Φ = 0°

Ksin(2πvc + Φ)
= Kcos(2πνc)
when Φ = 90°

Ksin(2πνc + Φ)
Φ = 45°

1/v
1/v

1/v

c

c c

(a)

(b)

Figure 5.2-3
Magnitude and phase of sinusoidal waves.

270	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 F I c e e e ej c j j() () () /2
1
4

1
4

3 2 2 12 2 4 0 2= = + + +− − −π π π ee j

c

−

=

[] = + − + + − =∑ 3

0

3
1
4
3 2 2 1

1
2

π [() ()]

	 F I c e e e ej c j j() () () / /3
1
4

1
4

3 2 22 3 4 0 3 2 3= = + +− − −π π ππ π+[] = + + − + − =−

=
∑ 1

1
4
3 2 2 1 1

1
4

9 2

0

3

e j jj

c

/ [() ()] [11+ j]

Therefore we have

	 F v j j() , [], , []= − +
⎡

⎣⎢
⎤

⎦⎥
2

1
4
1

1
2

1
4
1

Real axis

Imaginary axis, j

+1–1

–j

+j

+θ

–θ

Figure 5.2-5
A memory aid for evaluating ejθ The angle is measured from the real axis counterclockwise, so θ = 0 ⇒ ejθ = +1,
θ = π/2 ⇒ ejθ = + j, θ = π ⇒ ejθ = −1, θ = 3π/2 ⇒ ejθ = −j, θ = 2π/2 ⇒ ejθ = +1, θ = 5π/2 ⇒ ejθ = +j, and so on…

(a) (b)

Real axis

Imaginary axis, j

Exponential form of a
complex number =Mejθ

θ

=

Re
Im

Re2 + Im2M

θ =Tan−1

Re

Im
M

Real axis

Imaginary axis, j

Rectangular form of a
complex number = Re+jIm

Re

Im

Figure 5.2-4
Complex numbers. (a) A complex number shown as a vector and expressed in rectangular form, in terms of the
real, Re, and imaginary components, Im, (b) a complex number expressed in exponential form in terms of magni-
tude, M, and angle, θ. Note that θ is measured from the real axis counterclockwise.

Discrete Transforms	 271

© 2011 by Taylor & Francis Group, LLC

Next, put these into exponential form:

	F j M() ; tan0 2 2 0 2 0 2
0
2

02 2 1= = + ⇒ = + = =
⎡

⎣⎢
⎤

⎦⎥
=−θ

	 F j j M() []1
1
4
1

1
4

1
4

1
4

1
4

2 2

= − = − ⇒ =
⎛
⎝⎜

⎞
⎠⎟
+ −
⎛
⎝⎜

⎞
⎠⎟

≅ 00 35

1
4
1
4

41. ; tan /θ π=
−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −−

	F j M() . ; tan2
1
2

1
2

0
1
2

0 0 5
0
1

2

2 1= = + ⇒ =
⎛
⎝⎜

⎞
⎠⎟
+ = = −θ

22

0⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

	F j j M() []3
1
4
1

1
4

1
4

1
4

1
4

0
2 2

= + = + ⇒ =
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

≅ .. ; tan /35

1
4
1
4

41θ π=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=−

Therefore, we have

F v e ej j() , . , . , ./ /= []−2 0 35 0 5 0 354 4π π

5.2.2  Two-Dimensional Discrete Fourier Transform

Extending the DFT to the 2-D case for images, we can decompose an image into a weighted
sum of 2-D sinusoidal terms. The physical interpretation of a 2-D sinusoid is shown in
Figure 5.2-6. Here we see that a sinusoid that is not directly on the u or the v axis can
be broken down into separate frequency terms by finding the period along each axis.
Assuming a square N × N image, the equation for the 2-D DFT is

	 F u, v
N

I r, c e j ur vc N

c=

N

r=

N

()
1

() 2

0

1

0

1

= − +

−−

∑∑ π()

As before, we can also write the Fourier transform equation as

	 F u,v =
N

I r,c
N

ur + vc
c=

N

r=

N

()
1

()
2

()
0

1

0

1 −−

∑∑ ⎛cos
π

⎝⎝⎜
⎞
⎠⎟
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
j

N
ur + vcsin

2
()

π

Now, F(u,v) is also complex, with the real part corresponding to the cosine terms, and the
imaginary part corresponding to the sine terms. If we represent a complex spectral compo-
nent by F(u,v) = Re(u,v) + jIm(u,v), where Re(u,v) is the real part and Im(u,v) is the imaginary
part, then we can define the magnitude and phase of a complex spectral component as

	 MAGNITUDE |F u,v | u,v + u,v= =([()] [()]2 2) Re Im

pj
w

st
k|

40
20

64
|1

43
56

01
17

6

272	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

and

	 PHASE u,v
u,v
u,v

= =
⎡

⎣⎢
⎤

⎦⎥
−φ()

()
()

1
Tan

Im
Re

Figure 5.2-7 shows images recovered with the phase or magnitude only. With phase only
we lose the relative magnitudes, which results in a loss of contrast (see Figure 5.2-7b), but
we retain the relative placement of objects; in other words, the phase data contain infor-
mation about where objects are in an image. With the magnitude only image we retain the
contrast, but lose all the important detail that is essential to image understanding.

Once we perform the transform, if we want to get our original image back, we need to
apply the inverse transform. The inverse 2-D DFT is given by

	 − += =1 2

0

[()])
1

()F F u,v I r,c
N

F u,v e j ur vc N

v=

N

(()π

−−−

∑∑
1

0

1

u=

N

The F–1[] notation represents the inverse transform. This equation illustrates that the func-
tion, I(r,c), is represented by a weighted sum of the basis functions, and that the transform
coefficients, F(u,v), are the weights. With the inverse Fourier transform, the sign on the
basis functions’ exponent is changed from –1 to +1. However, this only corresponds to the
phase and not the frequency and magnitude of the basis functions (see Figure 5.2-7 and the
magnitude and phase equations above).

One important property of the Fourier transform is called separability; which means that the
2-D basis image can be decomposed into two product terms where each term depends only on

1/v = Period

1/u

c

r

λ

Figure 5.2-6
Physical interpretation of a two-dimensional sinusoid. The wavelength of the sinusoid is λ = 1/ u v2 2+ where
(u,v) are the frequencies along (r,c), the periods are 1/u and 1/v.

Discrete Transforms	 273

© 2011 by Taylor & Francis Group, LLC

the rows or columns. Also, if the basis images are separable, then the result can be found by suc-
cessive applications of two, one-dimensional transforms. This is illustrated by first separating
the basis image term (also called the transform kernel) into a product, as follows:

	 e e ej ur vc N j ur N j vc N− + − −=2 2 2π π π()

Next, we write the Fourier transform equation in the following form:

	 F u, v
N

e I r, c ej ur N j vc N

c=

N

r=

()
1

()2 2

0

1

0

= − −

−

∑()π π

NN −

∑
1

(a) (b)

(c) (d)

Figure 5.2-7
Fourier transform phase and magnitude image information. (a) Original image, (b) Phase only image,
(c) Contrast enhanced version of image (b) to show detail, (d) magnitude only image after histogram equaliza-
tion. The phase only image is created by taking a Fourier transform, setting all the magnitudes equal to 1, and
performing an inverse Fourier transform. The magnitude only image is created by taking a Fourier transform,
setting the phase to a fixed value, such as 0, then performing an inverse Fourier transform.

pj
w

st
k|

40
20

64
|1

43
56

01
18

5

274	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The advantage of the separability property is that F(u,v) or I(r,c) can be obtained in two
steps by successive applications of the 1-D Fourier transform or its inverse. Expressing the
equation as

	 F u,v =
N

F r,v e j ur N

r=

N

()
1

()
0

1

−

−

∑ 2π

where

	 F r, v N
N

I r, c e j vc N

c=

N

() ()
1

()
0

1

=
⎛
⎝⎜

⎞
⎠⎟

−

−

∑ 2π

For each value of r, the expression inside the brackets is a 1-D transform with frequency
values v = 0,1,2,3, ... N – 1. Hence the 2-D function F(r,v) is obtained by taking a trans-
form along each row of I(r,c) and multiplying the result by N. The desired result, F(u,v) is
obtained by taking a transform along each column of F(r,v).

Often, the DFT is implemented as a Fast Fourier Transform (FFT). There are fast algo-
rithms for most of the transforms described here, and many are based on the input data
having a number of elements that are a power of 2, which is common for images. In general,
these algorithms take advantage of the many redundant calculations involved and operate
to eliminate this redundancy. The transforms in Computer Vision and Image Processing
tools (CVIPtools) are implemented with fast algorithms based on powers of 2, which means
that any image that is not a power of 2 will be zero-padded. Details of these algorithms can
be found in the references.

5.2.3  Fourier Transform Properties

A Fourier transform pair refers to an equation in one domain, either spatial or spectral,
and its corresponding equation in the other domain. This implies that if we know what is
done in one domain, we know what will occur in the other domain.

5.2.3.1  Linearity

The Fourier transform is a linear operator and is shown by the following equations:

	
F aI r c bI r c aF u v bF u v

aI r

1 2 1 2

1

(,) (,) (,) (,)

(

+[] = +

,,) (,) (,) (,)c bI r c F aF u v bF u v+ = +[]−
2

1
1 2

where a and b are constants.

5.2.3.2  Convolution

Convolution in one domain is the equivalent of multiplication in the other domain, this
is what allows us to perform filtering in the spatial domain with convolution masks
(see Section 5.7). Using * to denote the convolution operation, and F[] for the forward

Discrete Transforms	 275

© 2011 by Taylor & Francis Group, LLC

Fourier transform and F–1[] for the inverse Fourier transform, these equations define this
property:

	

F I r c I r c F u v F u v

I r c I

[(,) * (,)] (,) (,)

(,) *

1 2 1 2

1 2

=

((,) [(,) (,)]

[(,) (,)]

r c F F u v F u v

F I r c I r c

= −1
1 2

1 2 ==

= −

F u v F u v

I r c I r c F F u v

1 2

1 2
1

1

(,) * (,)

(,) (,) [(,) ** (,)]F u v2

Note that it may be computationally less intensive to apply filters in the spatial domain of
the image rather than the frequency domain of the image, especially if parallel hardware
is available.

5.2.3.3  Translation

The translation property of the Fourier transform is given by the following equations:

	
F I r r c c F u v e

I r r

j ur vc N[(,)] (,)

(

()/− − =

−

− +
0 0

2 0 0π

00 0
1 2 0 0,) (,) ()/c c F F u v e j ur vc N− = []− − +π

These equations tell us that if the image is moved, the resulting Fourier spectrum under-
goes a phase shift, but the magnitude of the spectrum remains the same. This is shown in
Figure 5.2-8.

5.2.3.4  Modulation

The modulation property, also called the frequency translation property, is given by

	
F I r c e F u u v v

I r c

j u r v c N(,) (,)

(,)

()/2
0 0

0 0π +[] = − −

ee F F u u v vj u r v c N2 1
0 0

0 0π()/ (,)+ −= − −[]

These equations tell us that if the image is multiplied by a complex exponential (remember
this is really a form of a sinusoid), its corresponding spectrum is shifted. This property is
illustrated in Figure 5.2-9.

5.2.3.5  Rotation

The rotation property can be easily illustrated by using polar coordinates:

	
r x , c x

u w , v w

= =

= =

cos sin

cos sin

() ()

() ()

θ θ

φ φ

The Fourier transform pair I(r,c) and F(u v) become I(x,θ) and F(w,ϕ), respectively, and we
can write a Fourier transform pair to illustrate the rotation property as follows:

	
I x, + F w,

F I x,

() F ()

()

1θ θ φ θ

θ θ

0 0

0

= +[]
+

−

[F w,])= +(φ θ0

276	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

This property tells us that if an image is rotated by an angle θ0, then F(u,v) is rotated by the
same angle, and vice verse. This is shown in Figure 5.2-10.

5.2.3.6  Periodicity

The DFT is periodic with period N, for an N × N image. This means,

	 F u v F u N v F u v N F u N v N(,) (,) (,) (,)= + = + = + + …

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2-8
Translation property results in a phase shift of the spectrum. (a) Original image, (b) the magnitude of the
Fourier spectrum from (a) represented as an image, (c) the phase of the Fourier spectrum from (a) represented
by an image, (d) original image shifted by 128 rows and 128 columns, (e) the magnitude of the Fourier spectrum
from (d) represented as an image, (f) the phase of the Fourier spectrum from (d) represented by an image, (g)
the original image shifted by 64 columns and 64 rows, (h) the magnitude of the Fourier spectrum from (g)
represented as an image, (i) the phase of the Fourier spectrum from (g) represented by an image. These images
illustrate that when an image is translated, the phase changes, even though magnitude remains the same.

Discrete Transforms	 277

© 2011 by Taylor & Francis Group, LLC

This is shown in Figure 5.2-11a. This figure shows nine periods, but the theoretical impli-
cation is that it continues in all directions to infinity. This property defines the implied
symmetry in the Fourier spectrum that results from certain theoretical considerations,
which have not been rigorously developed here. We will, however, examine the practical
implications of these theoretical aspects.

5.2.3.7  Sampling and Aliasing

We can see in Figure 5.2-11d that the range of frequencies in the DFT for a square image
is from –N/2 to N/2. This follows from sampling theory in digital signal processing that
states that we must sample a continuous signal with a sampling rate that is at least twice
the highest frequency contained in the signal. This sampling rate is called the Nyquist rate.

(a) (b)

(c) (d)

Figure 5.2-9
Modulation property results in frequency shift. (a) Original image, (b) magnitude of Fourier spectrum of (a)
represented as an image, (c) original image multiplied by a vertical cosine wave at a relative frequency of 16
(16 cycles per image), (d) magnitude of Fourier spectrum of (c) represented as an image. Note that the spectrum
has been shifted by 16 above and below the origin (in these spectral images the origin is in the center of the
image).

278	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

If the Nyquist rate is violated, aliasing occurs. Aliasing occurs when the continuous signal
is sampled at a rate less than twice the highest frequency in the signal and appears as false
information in the high frequencies.

Figure 5.2-12 illustrates the concept of aliasing. For simplicity we will look at two periods
and only consider the frequencies in the horizontal direction. By applying the periodicity
of the Fourier transform, which says it is periodic with period of N × N for an N × N image,
if there is information in the signal at frequencies greater than N/2, overlap will occur.
This overlap causes the aliasing, which manifests itself as false information in the high
frequencies. In Figure 5.2-12a we show the spectrum of two periods where the Nyquist cri-
teria has been met. Figure 5.2-12b shows what happens if the original signal actually con-
tains frequencies greater than N/2 in the horizontal direction—adjacent periods overlap

(a) (b)

(c) (d)

Figure 5.2-10
Rotation property results in corresponding rotations with image and spectrum. (a) Original image, (b) Fourier
spectrum image of original image, (c) original image rotated by 90 ,̊ (d) Fourier spectrum image of rotated
image.

Discrete Transforms	 279

© 2011 by Taylor & Francis Group, LLC

and aliasing occurs. Note that one method to avoid aliasing is to bandlimit the original
signal with a lowpass filter so that it does not contain any frequencies above the Nyquist
frequency.

5.2.4 D isplaying the Discrete Fourier Spectrum

The Fourier spectrum consists of complex floating point numbers, which are stored in
CVIPtools as a single band image with a data format of complex. What we usually see in a
spectral image is actually the magnitude data that has been remapped in a way that makes
visualization easier. For displaying the magnitude of the Fourier spectrum, we usually shift

N

A B A B A B

C D C D C D

A B A B A B

A B A B A B

C D C D C D

C D C

Periodic spectrum, with quadrants
labeled A, B, C, D

Spectrum shifted to center frequency
increases in all directions as we move
away from the origin.

D C D

Implied symmetry with origin in upper-
left corner. Each N × N block represents all
the transform coefficients, and is repeated
infinitely in all directions

Increasing frequency in direction of
arrows

–N/2 N/2

D C

B A

(a) (b)

(c) (d)

N N/2

N/2

Figure 5.2-11
Periodicity and implied symmetry for the Fourier transform.

280	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the origin to the center. Applying the periodicity property and the modulation property
with u0 = v0 = N/2, we obtain,

	

I r c e

I r c e

I r

j Nr Nc N

j r c

(,)

(,)

(,

(/ /)/

()

2 2 2π

π

+

+=

= cc r c)()()− +1

In other words, we can shift the spectrum of N/2 by multiplying the original image by
(–1)(r + c), which will shift the origin to the center of the image (shown in Figure 5.2-11). This is
how it is done in CVIPtools for various reasons: (1) it is easier to understand the spectral infor-
mation with the origin in the center and frequency increasing from the center out toward the
edges, (2) it makes it easier to visualize the filters (Section 5.7), and (3) it looks better.

The actual dynamic range of the Fourier spectrum is much greater than the 256 gray lev-
els (8-bits) available with most image display devices. Thus, when we remap it to 256 levels,
we can only see the largest values, which are typically the low frequency terms around
the origin and/or terms along the u and v axis. Figure 5.2-13a shows a Fourier magnitude
image that has been directly remapped to 0–255 where all we see is the zero frequency
term. We can apply contrast enhancement techniques to show more information, as in
Figure 5.2-13b through d, but we are still missing much of the visual information due to
the limited dynamic range and the human visual system’s response.

To take advantage of the human visual system’s response to brightness we can greatly
enhance the visual information available by displaying the following log transform of the
spectrum:

	 Log log)() [1 (]u, v k |F u, v |= +

N

−N/2
N/2

N

>N

Overlap area,
aliasing occurs

N

(a)

(b)

Figure 5.2-12
Spectral aliasing. (a) Two periods of the Fourier spectrum of an NxN image,sampled by the Nyquist rate, no fre-
quencies in the signal are greater than N/2, (b) Two periods of the Fourier spectrum of an NxN image, sampled
by a rate less than the Nyquist rate. Here the period implied is still NxN, from –N/2 to N/2, but there are actual
frequencies in the original image greater than N/2. In this case the periods overlap causing false frequency
information in the high frequencies. Since one period overlaps the next period we get contributions from both
which creates the false information.

Discrete Transforms	 281

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c)

(e) (f)

(d)

Figure 5.2-13
Direct mapping of Fourier magnitude data. (a) Original image, (b) the Fourier magnitude directly remapped to
0.255 without any enhancement, (c–f) contrast enhanced versions of (b). Note that in (f), where we can see the
most, the image is visually reduced to being either black or white, most of the dynamic range is lost.

282	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The log function compresses the data, and the scaling factor k remaps the data to the
0–255 range. In Figure 5.2-14 we show the comparison of displaying the magnitude of
the spectrum by direct remapping and contrast enhancement versus the log remap
method. Here we see that the log remap method shows much more information visu-
ally. This effect is most prominent with the spectra from natural images (corresponding
to a–c and g–i), as compared with artificial images (corresponding to d–f and j–l). Can
you guess the shapes of the artificial images that created the spectra in j–l and d–f?
Remember the first example we saw with the continuous Fourier transform, where we
learned that a function that ends abruptly in one domain results in rippling in the other
domain that corresponds to the edges but the spacing is inversely proportional? In
Figure 5.2-15 are images of simple geometric shapes and their corresponding spectral
images. Examine them carefully and apply what you have learned thus far to under-
stand them.

In addition to the magnitude information, the phase information is available in the
Fourier spectrum. Typically, this information is not displayed as an image, but we have
found it useful to illustrate phase changes, as was shown in Figure 5.2-8. The phase infor-
mation has a range of 0–360°, or 0–2π radians. It is floating point data, so it has a larger
dynamic range than the 256 levels typically available for display.

5.3  Discrete Cosine Transform

The cosine transform, like the Fourier transform, uses sinusoidal basis functions. The dif-
ference is that the cosine transform basis functions are not complex; they use only cosine
functions, and not sine functions. The 2-D discrete cosine transform (DCT) equation for an
N × N image is given by

	 C u,v u v I r,c
r u
N

() () () ()
(2 1)

2
=

+⎡

⎣⎢
⎤

⎦⎥
α α

π
cos cos

((2 1)
2

0

1

0

1
c v
N

c=

N

r=

N
+⎡

⎣⎢
⎤

⎦⎥

−−

∑∑ π

where

	 α α() ()

1
0

1,2 1

u , v
N

for u,v

N
for u,v ,...,N

=

=

= −

⎧

2
⎨⎨
⎪⎪

⎩
⎪
⎪

Since this transform uses only the cosine function it can be calculated using only
real arithmetic, instead of complex arithmetic as the DFT requires. The cosine trans-
form can be derived from the Fourier transform by assuming that the function (the
image) is mirrored about the origin, thus making it an even function, which means it
is symmetric about the origin. This has the effect of canceling the odd terms, which
correspond to the sine terms (imaginary terms) in the Fourier transform. This also
affects the implied symmetry of the transform, where we now have a function that
is implied to be 2N × 2N. In Figure 5.3-1 we see the meaning of mirroring, or folding,
a function about the origin creating a 2N × 2N function from an original N × N one.

Discrete Transforms	 283

© 2011 by Taylor & Francis Group, LLC

Direct remap Contrast enhanced Log remap
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2-14
Displaying DFT spectrum with various remap methods. (a) Fourier magnitude spectrum of cam.pgm, direct
remap to byte, (b) contrast enhanced version of (a), (c) log remapped version of cam.pgm DFT spectrum,
(d) Fourier magnitude spectrum of an ellipse, direct remap to byte, (e) contrast enhanced version of (d), (f) log
remapped version of an ellipse DFT spectrum, (g) Fourier magnitude spectrum of house.pgm, direct remap
to byte, (h) contrast enhanced version of (g), (i) log remapped version of house.pgm DFT spectrum, (j) Fourier
magnitude spectrum of a rectangle, direct remap to byte, (k) contrast enhanced version of (j), (l) log remapped
version of a rectangle DFT spectrum.

284	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Now, we are only interested in an N × N portion of this spectrum, which corresponds
to our image, since the other quadrants are redundant. Understand that we do not
want to shift the origin to the center for the cosine transform, or we lose information
(see Figure 5.3-2).

The cosine transform is often used in image compression, in particular in the first ver-
sion of the Joint Photographers Expert Group (JPEG) image compression method, which
has been established as an international standard (the newer JPEG2000 method uses the
wavelet transform). In digital image processing we often represent the basis matrices as
images, called basis images, where we use various gray values to represent the different
values in the basis matrix. The 2-D basis images for the cosine transform are shown in

(a) (b)

(c) (d)

(e) (f)

Figure 5.2-15
Images of simple geometric shapes and their Fourier spectral images. (a) An image of square, (b) the log
remapped spectrum of the square, (c) a small rectangle, (d) the log remapped spectrum of the small rectangle,
(e) an image of a circle, (f) the log remapped spectrum of the circle image, (g) a small circle, (h) the log remapped
spectrum of the small circle, (i) a small ellipse, (j) the log remapped spectrum of the small ellipse, (k) an image
of a vertical sine wave, (l) the magnitude of the spectrum of the sine wave.

Discrete Transforms	 285

© 2011 by Taylor & Francis Group, LLC

Figure 5.3-3 for a 4 × 4 image, where the actual values have been remapped for illustration
purposes by the legend at the bottom of the figure. Remember that the transform actually
projects the image onto each of these basis images (see Figure 5.1-5), so the transform coef-
ficients, C(u,v), tell us the amount of that particular basis image that the original image,
I(r,c), contains.

The inverse cosine transform is given by

	 C C u v I r c u v C u,v
r u− = =
+1[(,)] (,) () () ()

(2 1)
α α cos

ππ π
2

(2 1)
2

0

1

0

1

N
c v
N

v=

N

u=

N
⎡

⎣⎢
⎤

⎦⎥
+⎡

⎣⎢
⎤

⎦⎥

−−

∑∑ cos

(g) (h)

(l)(k)

(j)(i)

Figure 5.2-15  (Continued)
Images of simple geometric shapes and their Fourier spectral images. (a) An image of square, (b) the log
remapped spectrum of the square, (c) a small rectangle, (d) the log remapped spectrum of the small rectangle,
(e) an image of a circle, (f) the log remapped spectrum of the circle image, (g) a small circle, (h) the log remapped
spectrum of the small circle, (i) a small ellipse, (j) the log remapped spectrum of the small ellipse, (k) an image
of a vertical sine wave, (l) the magnitude of the spectrum of the sine wave.

286	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Low frequencies

High frequencies

2N
(a) (b)

2N

Cosine spectrum with arrows in
direction of increasing frequency

Extracting the central N × N portion,
we lose the high frequency information

N

NN

Figure 5.3-2
Cosine spectrum should not be shifted to center.

2N

2N

(a) (b)

Spectrum folded about
origin, represented by
the ‘ ’ . the 2N × 2N block
is repeated infinitely in all
directions.

Arrows indicate direction
of increasing frequency
for cosine spectrum.

Figure 5.3-1
Cosine symmetry.

Discrete Transforms	 287

© 2011 by Taylor & Francis Group, LLC

5.4  Discrete Walsh–Hadamard Transform

The Walsh–Hadamard transform (WHT) differs from the Fourier and cosine transforms in
that the basis functions are not sinusoids. The basis functions are based on square or rect-
angular waves with peaks of ±1 (see Figure 5.4-1). Here the term rectangular wave refers to
any function of this form, where the width of the pulse may vary. One primary advantage
of a transform with these types of basis functions is that the computations are very simple.
When we project the image onto the basis functions, all we need to do is to multiply each
pixel by ±1, as in seen in he WHT equation:

	 WH u, v
N

I r, c b r p u b c p vi i i i()
1

() (1)= − +() () () ()[[]
−−

−∑∑∑ i
n

c=

N

r=

N

= 0
1

0

1

0

1

where N = 2n, the exponent on the (–1) is performed in modulo 2 arithmetic, and bi(r) is
found by considering r as a binary number, and finding the ith bit.

0v
u

0

1

2

3

B(r,c) –0.43 –0.33 –0.25 –0.18 –0.14 –0.07 0.07 0.14 0.18 0.25 0.33
30 54 75 86 106 149 170 181 202 225 255

0.43
0Gray level

1 2 3

Figure 5.3-3
Discrete cosine transform basis images.

288	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 5.4.1

n = 3 (3 bits, so N = 8), and r = 4
r in binary is 100, so b2(r) = 1, b1(r) = 0, and b0(r) = 0

Example 5.4.2

n = 4, (4 bits, so N = 16), and r = 2
r in binary is 0010, so b3(r) = 0, b2(r) = 0, b1(r) = 1, and b0(r) = 0

pi(u) is found as follows:

	

p u b u

p u b u b u

p u b

n

n n

n

0 1

1 1 2

2

() ()

() () ()

()

=

= +

=

−

− −

−22 3

1 1 0

() ()

() () ()

u b u

p u b u b u

n

n

+

= +

−

−

�

The sums are performed in modulo 2 arithmetic, and the values for bi(c) and pi(v) are found
in a similar manner. Strictly speaking we cannot call the WHT a frequency transform,
as the basis functions do not exhibit the frequency concept in the manner of sinusoi-
dal functions. However, we define an analogous term for use with these types of func-
tions. If we consider the number of zero crossings (or sign changes) we have a measure
that is comparable to frequency, and we call this sequency. In Figure 5.4-2 we see the 1-D
Walsh–Hadamard basis functions for N = 4, and the corresponding sequency. We can see
that the basis functions are in the order of increasing sequency, much like the sinusoidal
functions are in order of increasing frequency. In Figure 5.4-3, we have the basis images
for the WHT for a 4 × 4 image; we use white for the + 1 and black for the –1.

+1

0

–1

+1

0

–1

Spatial coordinates

(a) (b)

A square wave Representation of a rectangular
wave. The width of each pulse
may vary.

Spatial coordinates

Br
ig

ht
ne

ss

Br
ig

ht
ne

ss
Figure 5.4-1
Form of the Walsh–Hadamard basis functions.

Discrete Transforms	 289

© 2011 by Taylor & Francis Group, LLC

It may be difficult to see how the 2-D basis images are generated from the 1-D basis
vectors. For the terms that are along the u or v axis, we simply repeat the 1-D function
along all the rows or columns. For the basis images that are not along the u or v axis we
perform a vector outer product on the corresponding 1-D vectors. We have seen that a vec-
tor inner product is what we call a projection, and is performed by overlaying, multiplying
coincident terms, and summing the results—this gives us a scalar, or a single number, for
a result. The vector outer product gives us a matrix, which is obtained as follows:

Example 5.4.3

For (u,v) = (3,2), see Figure 5.4-4. If we look along one row of the v = 2 (u = 0) basis image in Figure 5.4-3
we find the following numbers: + 1 –1 –1 + 1. Then if we look along one column in the u direction for
u = 3 (v = 0), we see + 1 –1 + 1 –1. These are the corresponding 1-D basis vectors. We then put the row
vector across the top and the column vector down the left side and fill in the matrix by multiplying
the column by the corresponding row element, as in Figure 5.4-4. The resulting matrix is the vector
outer product. Compare this to the corresponding basis image in Figure 5.4-3.

This process can be used to generate the 2-D basis images for any function that has a
separable basis. Remember that separable means that the basis function can be expressed
as a product of terms that depend only on one of the variable pairs, r,u or c,v, and that this
separability also allows us to perform the 2-D transformation by two 1-D transforms. This
is accomplished by first doing a 1-D transform on the rows, and then performing the 1-D
transform on the resulting columns as was shown in the DFT section.

Sequency

0

1

2

3

+1

0

–1

+1

0

–1

+1

0

–1

+1

0

–1

Figure 5.4-2
1-D Walsh–Hadamard basis functions.

290	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

It is interesting to note that with the WHT there is another visual method to find the
off axis basis images, by assuming that the black in Figure 5.4-3 corresponds to 0 and
the white corresponds to 1. The basis images not along the u or v axis can be obtained by
taking the corresponding basis images on these axes, overlaying them, and performing
an XOR followed by a NOT. For example, to find the Walsh–Hadamard basis image cor-
responding to (u,v) = (3,2), we take the basis image along the u axis for u = 3, and the basis
image along the v axis for v = 2, overlay them, XOR the images, and then perform a NOT.
This is illustrated in Figure 5.4-5.

The inverse WHT equation is

	 − = = −1[()] ()
1

()(1)WH WH u, v I r, c
N

WH u, v b r pi i() (uu b c p v

v=

N

u=

N

i ii
n

) () ()+[]
−−

−∑∑∑ = 0
1

0

1

0

1

In CVIPtools there is a separate Walsh transform and a separate Hadamard transform.
Even though (if N is power of 2) they both have the same basis functions, as initially
defined, the basis functions were in different orders. The Hadamard ordering was not
sequency based, so this ordering is not really that useful for image processing. It was
originally defined for the ease of generating the basis vectors. The standard here is to use
the sequency ordered basis functions and call it the WHT. In the CVIPtools the transform
called the Walsh is sequency ordered, and the one called the Hadamard is in standard
“Hadamard ordering”—not sequency based.

0vu

0

r
c

1

1

2

3

2 3

Figure 5.4-3
Walsh–Hadamard basis images.

Discrete Transforms	 291

© 2011 by Taylor & Francis Group, LLC

+1

+1+1

+1

–1

–1

+1

+1–1

–1 –1

+1 +1–1 –1

–1 –1+1 +1

–1 –1+1 +1

–1

2-D basis image for (u,v) = (3,2)

1-D basis vector for v = 2

1-
D

 b
as

is
ve

ct
or

 fo
r u

 =
 3

Figure 5.4-4
Vector outer product.

Basis u = 3 (v = 0)

(a) (b)

(c) (d)

Basis v = 2 (u = 0)

XOR of image a,b NOT of image (c). This is Walsh–
Hadamard basis image for
(u,v) = (3,2)

Figure 5.4-5
Finding an off-axis Walsh–Hadamard basis image.

292	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

5.5  Discrete Haar Transform

The Haar transform has rectangular waves as basis functions, similar to the WHT. The pri-
mary differences are that the basis vectors contain not just + 1 and –1, but also contain zeros.
The Haar transform is derived from the Haar matrices; in these matrices each row represents
a 1-D basis vector. The following shows the basis vectors for a Haar transform of 2 basis vec-
tors (N = 2), 4 basis vectors (N = 4), and 8 basis vectors (N = 8).

	 Haar2
1
2

1 1
1 1

⇒
+ +

+ −

⎧
⎨
⎩

⎫
⎬
⎭

	 Haar4 1
4

1 1 1 1
1 1 1 1
2 2 0 0
0 0 2 2

⇒

+ + + +

+ + − −

−

−

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪
⎪

⎭
⎪
⎪

	 Haar8
1
8

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2

⇒

+ + + + + + + +

+ + + + − − − −

− 22 2 0 0 0 0
0 0 0 0 2 2 2 2
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0

−

− −

+ −

+ −

+22 2 0 0
0 0 0 0 0 0 2 2

−

+ −

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

The Haar basis vectors can be extended to higher orders by following the same patterns
shown in the above. Note that as the order increases the number of zeros in the basis vec-
tors increase. This has the unique effect of allowing a multiresolution decomposition of an
image (explored more in Section 5.8), and is best illustrated by example. In Figure 5.5-1 we
see the log remapped Haar spectrum. Here we see that the Haar provides edge informa-
tion at increasing levels of resolution.

5.6  Principal Components Transform

The principal components transform (PCT) is also referred to as the Hotelling, Karhunen-
Loeve, or eigenvector transform. This is because it was first derived by Karhunen and
Loeve for continuous signals, and later developed for discrete signals by Hotelling.
Mathematically it involves finding eigenvectors of covariance matrices, hence eigenvector
transform, and it results in decomposing the image into its principal components, hence
PCT. It differs from the transforms that we have considered thus far, as it is not related
to extracting frequency or sequency information from images, but is a mathematical

Discrete Transforms	 293

© 2011 by Taylor & Francis Group, LLC

transform that decorrelates multiband image data. It can, however, be used to find optimal
basis images for a specific image, but this use of it is not very practical due to the extensive
processing required.

Applying the PCT to multiband images, color images or multispectral images, provides
a linear transform matrix that will decorrelate the input data. In most color images there
is a high level of correlation between the red, green, and blue bands. This can be seen in
Figure 5.6-1 where we show the brightness values in the red, green, and blue bands of a
color image with each band presented as a monochrome image, and the three bands after
the PCT. Here we see that the red, green, and blue bands are highly correlated—they look
similar; whereas with the PCT bands most of the visual information is in band 1, some
information is in band 2, and practically no visual information in band 3. This is what it
means when we say that the PCT decorrelates the data and puts most of the information
into the principal component band.

The three step procedure for finding the PCT for a color, RGB, image is as follows:

	 1.	Find the covariance matrix in RGB space, given by

	 COV

C C C

C C C

C C C
RGB

RR GR BR

RG GG BG

RB GB BB

[] =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

		 where

	

C
P

R m

P

RR i R

i

P

= −()

=

=
∑1 2

1

the number of pixels inn the image

the red value for the th piR ii = xxel

Red mean (average)m
P

RR i

i

P

= =
=
∑1

1

(a) (b)

Figure 5.5-1
Haar transform. (a) Original image, (b) Haar transform image.

294	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

		 Similar equations are used for CGG and CBB (the autocovariance terms). The elements
of the covariance matrix that involve more than one of the RGB variables, CGR, CBR,
CRG, CBG, CRB, and CGB, are called cross-covariance terms and are found as follows:

	 C
P

X Y m mXY i i

i

P

x y=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

=
∑1

1

		 with the means defined as above.

Red band histogram

Blue band histogram

Green band histogram

P1 band histogram

P2 band histogram

P3 band histogram

P2 band

Green band Blue band

P1 band

Red band

P3 band

(a) (b) (c)

(d)

(g) (h)

(e) (f)

Figure 5.6-1
Principal components transform – PCT. (a) Red band of a color image, (b) green band, (c) blue band, (d) prin-
cipal component band 1, (e) principal component band 2, (f) principal component band 3. Note that the red,
green, and blue bands are highly correlated—they look similar; whereas with the PCT bands most of the visual
information is in band 1, some in band 2 and none in band 3. This is what it means when we say that the PCT
decorrelates the data and puts most of the information into the principal component band. (g) Histogram of the
original RGB image, (h) histogram of the PCT image. Note that in the RGB image histogram the data are fairly
equally spread out, each band has a similar variance. With the PCT histogram, we can see the decreasing vari-
ance as shown by the decreasing spread in the data.

Discrete Transforms	 295

© 2011 by Taylor & Francis Group, LLC

	 2.	Find the eigenvalues of the covariance matrix, e1, e2, and e3, and their correspond-
ing eigenvectors:

	

e E E E

e E E E

e E E

1 11 12 13

2 21 22 23

3 31 32

⇒[]
⇒ []
⇒

, ,

, ,

, ,EE33[]

		 Order them such that e1 is the largest eigenvalue, and e3 is the smallest.
	 3.	Perform the linear transform on the RGB data by using the eigenvectors as

follows:

	
P

P

P

E E E

E E E

E E E

1

2

3

11 12 13

21 22 23

31 32 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

33

11 12 1⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+ +R

G

B

E R E G Ei

i

i

i i 33

21 22 23

31 32 33

B

E R E G E B

E R E G E B

i

i i i

i i i

+ +

+ +

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥

Now the PCT data are P1, P2, and P3 where the P1 data are the principal component and
contains the most variance (as illustrated in Figure 4.3.9). In pattern recognition theory
the measure of variance is considered to be a measure of information, so we can say that
the principal component data contains the most information, as shown in Figure 5.6-1.
The PCT is easily extended to data of any dimensionality (the above example is three-
dimensional, RGB), so it can be applied to multispectral images in a similar manner. For
a multispectral image this means we can use the PCT to reduce the dimensionality of the
image and still retain maximal information.

This allows the PCT to be used in image compression (see Chapter 10), since this trans-
form is optimal in the least-square-error sense. For image compression we simply retain
the components with the most information, and discard those with the least information
that correspond to the smaller eigenvalues. The mean square error in the reconstructed
image can be found as the sum of the eigenvalues associated with the eigenvectors that are
discarded. For example, in one application involving a database of medical images, it was
experimentally determined that the dimension with the largest variance after the PCT was
performed contained approximately 91% of the variance. This would allow at least a 3:1
compression and still retain 91% of the information.

5.7  Filtering

After the image has been transformed into the frequency or sequency domain, we may
want to modify the resulting spectrum. Filtering modifies the frequency or sequency
spectrum by selectively retaining, removing or scaling the various components of the
spectrum. High frequency information can be removed with a lowpass filter, which
will have the effect of blurring an image, or low frequency information can be removed
with a highpass filter, which will tend to sharpen the image. We may want to extract
the frequency information in specific parts of the spectrum by bandpass filtering.
Alternately, band-reject filtering can be employed to eliminate specific parts of the

296	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

spectrum, for example, to remove unwanted noise. All of these types of filters will be
explored here.

Before we explore the filters we need to be aware of the implied symmetry for each of
the transforms of interest. We will assume that the Fourier spectrum has been shifted
to the center and exhibits the symmetry shown in Figure 5.2-11. Both the cosine and the
Walsh–Hadamard are assumed to have the symmetry shown in Figure 5.3-1. The Haar
transform is unique, but also has the origin in the upper left corner (see Figure 5.5-1) as
the cosine and Walsh–Hadamard. The PCT as defined does not lend itself to the type of
filtering under discussion here.

5.7.1 L owpass Filters

Lowpass filters tend to blur images. They pass low frequencies, and attenuate or eliminate
the high frequency information. They are used for image compression, or for mitigating
noise effects. Visually they blur the image, although this blur is sometimes considered an
enhancement as it imparts a softer effect to the image (see Figure 5.7-1). Lowpass filtering
is performed by multiplying the spectrum by a filter, and then applying the inverse trans-
form to obtain the filtered image. The ideal filter function is shown in Figure 5.7-2; note the
two types of symmetry in the filter to match the type of symmetry in the spectrum. The
frequency at which we start to eliminate information is called the cutoff frequency, f0. The
frequencies in the spectrum that are not filtered out are in the passband, while the spectral
components that do get filtered out are in the stopband. We can represent the filtering pro-
cess by the following equation:

	 filI r,c T T u,v H u,v() [() ()]1= −

where Ifil(r,c) is our filtered image, H(u,v) is the filter function, T(u,v) is the transform, and
T–1[] represents the inverse transform. The multiplication, T(u,v)H(u,v), is performed with a
point-by-point method. That is, T(0,0) is multiplied by H(0,0), T(0,1) is multiplied by H(0,1),
and so on. The resulting products are placed into an array at the same (r,c) location.

Example 5.7.1

Let H(u,v) and T(u,v) be the following 2 × 2 images.

	 H u,v T u,v()
2 3
4 1

()
4 6
5 8

=
−⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

Then (,) (,) is equal to:
8 18

20 8
T u v H u v

−

−
⎡

⎣
⎢

⎤

⎦⎦
⎥

Note that for ideal filters in Figure 5.7-2 the H(u,v) matrix will contain only 1s and 0s, but,
as in the above example, the matrix can contain any numbers.

The ideal filter is called ideal because the transition from the passband to the stopband in
the filter is perfect, it goes from 0 to 1 instantly. Although this type of filter is not realizable
in physical systems, such as with electronic filters, it is a reality for digital image process-
ing applications, where we need only multiply numbers in software. However, the ideal
filter leaves undesirable artifacts in images. This artifact appears in the lowpass filtered

Discrete Transforms	 297

© 2011 by Taylor & Francis Group, LLC

image in Figure 5.7-1c as ripples, or waves, wherever there is a boundary in the image. This
problem can be avoided by using a “nonideal” filter that does not have perfect transition,
as is shown in Figure 5.7-3. The image created in Figure 5.7-1b was generated using a non-
ideal filter of a type called a Butterworth filter.

With the Butterworth filter we can specify the order of the filter, which determines how
steep the slope is in the transition of the filter function. A higher order to the filter creates
a steeper slope, and the closer we get to an ideal filter. The filter function of a Butterworth
lowpass filter of order n is given by the following equation:

	 H u v
u v
f

n
(,) =

+
+⎡

⎣
⎢

⎤

⎦
⎥

1

1
2 2

0

2

(a) (b)

(c)

Original image

Ideal lowpass-filtered image shows the ripple artifacts
at boundaries. Frequency cutoff = 32.

Filtered image, using a non-ideal lowpass filter.
Note the blurring that softens the image.

Figure 5.7-1
Lowpass filtering.

298	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Note that u v2 2+ is the distance from the origin, so the gain falls off as we get farther
away from the zero frequency term, which is what we expect for a lowpass filter, to
cut the high frequencies. Also note that for the Fourier spectrum shifted to the center,
but still indexing our matrix with (0,0) in the upper left corner (as we may do in a com-
puter program), we need to replace u with (u – N/2) and v with (v – N/2) in the above
equation.

In Figure 5.7-4 we compare the results of different orders of Butterworth filters. We see
that as we get closer to an ideal filter, the blurring effect becomes more prominent due to the
elimination of even partial high frequency information. Another effect that is most notice-
able in the 8th-order filter, is the appearance of waves, or ripples, wherever boundaries
occur in the image. This artifact is called ringing and increases as the Butterworth filter’s
order increases.

In Figure 5.7-5 we see the result of using a third order Butterworth filter, but decreasing
the cutoff frequency. As the cutoff frequency is lowered the image becomes more and more
blurry because we are keeping less and less of the high frequency information.

Black = 0
White = 1

Passband
(a)

(b)

(c)

Stopband

1

0
f0

Frequency
1-D lowpass ideal filter. 2-D lowpass ideal filter shown as an image

for Fourier transform.

2-D lowpass ideal filter for Walsh–Hadamard
and cosine transforms.

Gain

Figure 5.7-2
Ideal lowpass filters.

Discrete Transforms	 299

© 2011 by Taylor & Francis Group, LLC

5.7.2  Highpass Filters

Highpass filters will keep high frequency information, which corresponds to areas of
rapid change in brightness, such as edges or fine textures. The highpass filter functions
are shown in Figure 5.7-6, where we see both ideal and Butterworth filter functions. A
highpass filter can be used for edge enhancement, since it passes only high frequency
information, corresponding to places where gray levels are changing rapidly (edges in
images are characterized by rapidly changing gray levels). The Butterworth filter of order
n for the highpass filter is

	 H u v
f

u v

n
(,) =

+
+

⎡

⎣
⎢

⎤

⎦
⎥

1

1 0
2 2

2

(a)

(b) (c)

Transition

Frequency

1

0

Gain

f0

Figure 5.7-3
Nonideal lowpass filters. (a) 1-D nonideal filter, (b) 2-D lowpass nonideal filter shown as an image for Fourier
symmetry, in the image shown black = 0, white = 1, and the gray values in between represent the transition
band, (c) 2-D lowpass nonideal filter shown as an image for cosine and Walsh–Hadamard symmetry, in the
image shown black = 0, white = 1, and the gray values in between represent the transition band.

300	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Note that this filter gain is very small for frequencies much smaller than f0, and approaches
a gain of one as the frequencies get much larger than f0. Also note that for the Fourier spec-
trum shifted to the center, but still indexing our matrix with (0,0) in the upper left corner
(as we may do in a computer program), we need to replace u with (u – N/2) and v with
(v – N/2) in the above equation.

The function for a special type of highpass filter, called a high frequency emphasis fil-
ter, is shown in Figure 5.7-7. This filter function boosts the high frequencies and retains
some of the low frequency information and by adding an offset value to the function, so
we do not lose the overall image information. The results from applying these types of
filters are shown in Figure 5.7-8. The original is shown in Figure 5.7-8a. Figure 5.7-8b and
c shows the results from a Butterworth and an ideal filter function. Here we can see the
edges enhanced, and the ripples that occur from using an ideal filter (Figure 5.7-8c), but
note a loss in the overall contrast of the image. In Figure 5.7-8d and e, we see the contrast

(a) (b)

(c) (d)

Figure 5.7-4
Lowpass butterworth filters. (a) Fourier spectrum, filter order = 1, (b) resultant image with order = 1, (c) Fourier
spectrum, filter order = 3, (d) resultant image with order = 3, (e) Fourier spectrum, filter order = 5, (f) resultant
image with order= 5, (g) Fourier spectrum, filter order = 8, (h) resultant image with order = 8.

Discrete Transforms	 301

© 2011 by Taylor & Francis Group, LLC

added back to the image by using the high frequency emphasis filter function. This is
because we kept more of the low frequency information from the original image.

5.7.3 B andpass and Bandreject Filters

The bandpass and bandreject filters are specified by two cutoff frequencies, a low cutoff
and a high cutoff, shown in Figure 5.7-9. These filters can be modified into nonideal filters
by making the transitions gradual at the cutoff frequencies, as was shown for the lowpass
filter in Figure 5.7-3 and the highpass in Figure 5.7-6. A special form of these filters is called
a notch filter, because it only notches out, or passes, specific frequencies (see Figure 5.7-9g
and h). These filters are useful for retaining bandpass, or removing bandreject, specific
frequencies of interest that are typically application dependent—one common application

(e) (f)

(g) (h)

Figure 5.7-4 (Continued)
Lowpass butterworth filters. (a) Fourier spectrum, filter order = 1, (b) resultant image with order = 1, (c) Fourier
spectrum, filter order = 3, (d) resultant image with order = 3, (e) Fourier spectrum, filter order = 5, (f) resultant
image with order= 5, (g) Fourier spectrum, filter order = 8, (h) resultant image with order = 8.

302	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

is for noise removal. These three types of filters are typically used in image restoration,
enhancement, and compression, and examples can be seen in Chapters 8, 9, and 10.

5.8  Discrete Wavelet Transform

The wavelet transform is really a family of transforms that satisfy specific conditions.
From our perspective we can describe the wavelet transform as a transform that has basis
functions that are shifted and expanded versions of themselves. Because of this, the

(a) (b)

(c) (d)

Figure 5.7-5
Butterworth lowpass filtering, filter order = 3, various cutoff frequencies. (a) Fourier spectrum, cutoff fre-
quency = 64, (b) resultant image with cutoff frequency = 64, (c) Fourier spectrum, cutoff frequency = 32,
(d) resultant image with cutoff frequency = 32, (e) Fourier spectrum, cutoff frequency = 16, (f) resultant
image with cutoff frequency = 16 (g) Fourier spectrum, cutoff frequency = 8, (h) resultant image with cutoff
frequency = 8.

Discrete Transforms	 303

© 2011 by Taylor & Francis Group, LLC

wavelet transform contains not just frequency information, but spatial information as
well. Additionally, for application to digital images, we will need to use the discrete wave-
let transform.

One of the most common models for a wavelet transform uses the Fourier transform and
highpass and lowpass filters. To satisfy the conditions for a wavelet transform, the filters
must be perfect reconstruction filters, which means that any distortion introduced by the
forward transform will be canceled in the inverse transform (an example of these types of
filters are quadrature mirror filters). For the specific examples explored here we will perform
the filtering in the spatial domain, with convolution filters.

The discrete wavelet transform breaks an image down into four subsampled, or deci-
mated, images. They are subsampled by keeping every other pixel. The results consist of

(e) (f)

(g) (h)

Figure 5.7-5 (Continued)
Butterworth lowpass filtering, filter order = 3, various cutoff frequencies. (a) Fourier spectrum, cutoff fre-
quency = 64, (b) resultant image with cutoff frequency = 64, (c) Fourier spectrum, cutoff frequency = 32,
(d) resultant image with cutoff frequency = 32, (e) Fourier spectrum, cutoff frequency = 16, (f) resultant
image with cutoff frequency = 16 (g) Fourier spectrum, cutoff frequency = 8, (h) resultant image with cutoff
frequency = 8.

304	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

Frequency

Gain

1

0

(b)

Frequency

Gain

1

0

(c) (d)

(e) (f)

Figure 5.7-6
Highpass filter functions. (a) 1-D ideal highpass filter, (b) 1-D non-ideal highpassfilter, (c) 2-D ideal highpass fil-
ter for Fourier symmetry, shownas an image, (d) 2-D nonideal highpass filter for Fourier symmetry, shown as an
image, (e) 2-D ideal highpass filter for cosine and Walsh–Hadamard symmetry, (f) 2-D nonideal highpass filter
for cosine and Walsh–Hadamard symmetry. Note: for the filters shown as images, white =1, black = 0, and gray
values in between represent values between 0 and 1, corresponding to the transition band in nonideal filters.

pj
w

st
k|

40
20

64
|1

43
56

01
22

9

Discrete Transforms	 305

© 2011 by Taylor & Francis Group, LLC

Frequency

Offset

Gain

(a) (b)

Frequency

Offset

Gain

(c) (d)

(e) (f)

Figure 5.7-7
High frequency emphasis filter functions. (a) 1-D ideal high frequency emphasis filter, (b) 1-D nonideal high-
frequency emphasis filter, (c) 2-D ideal high frequency emphasis filter for Fourier symmetry, shown as an image,
(d) 2-D nonideal high frequency emphasis filter for Fourier symmetry, (e) 2-D ideal high frequency emphasis
filter for cosine and Walsh–Hadamard symmetry, (f) 2-D nonideal high frequency emphasis filter for cosine and
Walsh–Hadamard symmetry.

pj
w

st
k|

40
20

64
|1

43
56

01
24

1

306	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 5.7-8
Highpass filtering. (a) Original image, (b) Butterworth filter; order = 2; cutoff = 32, (c) ideal filter; cutoff = 32,
(d) high frequency emphasis filter; offset = 0.5, order = 2, cutoff = 32, (e) high frequency emphasis filter; offset =
1.5, order = 2, cutoff = 32. Note that the high frequency emphasis filter retains more of the original image.

Discrete Transforms	 307

© 2011 by Taylor & Francis Group, LLC

Frequency
 1-D ideal bandpass filter

2-D ideal bandpass
filter shown as an
image (Fourier).

2-D ideal bandpass
filter for Walsh–Hadamard

and cosine functions.

2-D ideal bandreject
filter for Walsh–Hadamard

and cosine functions.

2-D ideal bandreject
filter shown as an
image (Fourier).

1-D ideal bandreject filter
Frequency

0

1

0

1

High
cutoff

High
cutoff

Low
cutoff

Low
cutoff

(a) (b)

(c) (d)

(e) (f)

Gain Gain

2-D ideal notch filter
for rejecting specific

frequencies.

2-D ideal notch filter
for passing specific

frequencies.

(g) (h)

Figure 5.7-9
Bandpass, bandreject, and notch filters.

308	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

one image that has been highpass filtered in both the horizontal and vertical directions,
one that has been highpass filtered in the vertical and lowpassed in the horizontal, one
that has been highpassed in the horizontal and lowpassed in the vertical, and one that has
been lowpass filtered in both directions.

This transform is typically implemented in the spatial domain by using 1-D convolu-
tion filters. In the section on edge detection we looked at 2-D convolution masks that mark
places in the image where the gray levels are changing rapidly. These rapid changes cor-
respond to high frequency information, so edge detectors are basically highpass filters. To
do this we apply the convolution theorem that is an important Fourier transform property.
As we have seen, the convolution theorem states that convolution in the spatial domain is the
equivalent of multiplication in the frequency domain. We have seen that multiplication in
the frequency domain is used to perform filtering; the convolution theorem tells us that we
can also perform filtering in the spatial domain via convolution, such as we have already
seen with spatial convolution masks. Therefore, if we can define convolution masks that
satisfy the wavelet transform conditions, we can implement the wavelet transform in the
spatial domain. We have also seen that if the transform basis functions are separable, we
can perform the 2-D transform by using two 1-D transforms. An additional benefit of con-
volution versus frequency domain filtering is that, if the convolution mask is short, it is
much faster.

In order to perform the wavelet transform with convolution filters, a special type of
convolution called circular convolution must be used. Circular convolution is performed
by taking the underlying image array and extending it in a periodic manner to match
the symmetry implied by the DFT (see Figure 5.8-1a and 5.8-1b). The convolution process

X

X X X

X X X

X X X

X

 Extended, periodic image (X = origin)

With circular convolution, the outer
rows and columns include products of
both the previous and next periods

Previous
period

Period of
interest

Next
period

(a)

(c)

X X X

One period

 Extended, periodic 1-D convolution filter (X = origin)

Center of
filter

(b)

Figure 5.8-1
Circular convolution.

Discrete Transforms	 309

© 2011 by Taylor & Francis Group, LLC

starts with the origin of the image and the convolution mask aligned, so that the first value
contains contributions from the “previous” copy of the periodic image (see Figure 5.8-1c).
In Figure 5.8-1c we see that the last value(s) contain contributions from the “next” copy of
the extended, periodic image. Performing circular convolution allows us to retain the outer
rows and columns, unlike the previously used method where the outer rows and columns
where ignored. This is important since we may want to perform the wavelet transform on
small blocks, and eliminating the outer row(s) and column(s) is not practical.

Many different convolution filters are available for use with the wavelet transform. Here
we will consider two examples based on the Daubechies and the Haar functions. These are
separable, so they can be used to implement a wavelet transform by first convolving them
with the rows and then the columns. The Haar basis vectors are simple:

	
LOWPASS :

HIGHPASS :

1
2
[1 1]

1
2
[1 1]−

An example of Daubechies basis vectors are

	
LOWPASS :

HIGHPAS

1
4 2

[1 3 , 3 3 , 3 3 , 1 3]+ + − −

SS :
1

4 2
[1 3 , 3 3, 3 3 , 1 3]− − + − −

To use the basis vectors to implement the wavelet transform they must be zero-padded to
be the same size as the image (or subimage). Also note that the origin of the basis vectors is
in the center, corresponding to the value to the right of the middle of the vector.

Example 5.8.1

We want to use the Haar basis vectors to perform a wavelet transform on an image by dividing
it into 4 × 4 blocks. The basis vectors need to be zero-padded so that they have a length of 4, as
follows:

	

LOWPASS :

HIGHPASS :

1
2

[1 1 0 0]

1
2

[1 − 11 0 0]

↑

origin

These are aligned with the image so that the origins coincide, and the result from the first
vector inner product is placed into the location corresponding to the origin. Note that when
the vector is zero-padded on the right, the origin is no longer to the right of the center of the
resulting vector. The origin is determined by selecting the coefficient corresponding to the
right of center before zero-padding.

310	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 5.8.2

To use the Daubechies basis vectors to do a wavelet transform on an image by dividing it into
8 × 8 blocks, we need to zero-pad them to a length of 8, as follows:

	

LOWPASS :
1

4 2
[1 3 , 3 3 , 3 3 , 1 3 , 0,+ + − − 0, 0, 0]

1
4 2

[1 3 , 3 3, 3HIGHPASS : − − + 33 , 1 3 , 0, 0, 0, 0]− −

origin

↑

Note that the origin is the value to the right of the center of the original vector before
zero-padding. Since these are assumed periodic for circular convolution, we could zero-pad
equally on both ends, then the origin is to the right of the center of the zero-padded vector, as
follows:

	

LOWPASS :
1

4 2
[0, 0, 1 3 , 3 3 , 3 3 ,+ + − 11 3 , 0, 0]

1
4 2

[0, 0, 1 3 ,

−

−HIGHPASS : 3 3, 3 3 , 1 3 , 0, 0]− − −+

↑

origin

After the basis vectors have been zero-padded (if necessary), the wavelet transform is per-
formed by doing the following:

	 1.	Convolve the lowpass filter with the rows (remember that this is done by slid-
ing, multiplying coincident terms, and summing the results) and save the
results. (Note: For the basis vectors as given, they do not need to be reversed for
convolution.)

	 2.	Convolve the lowpass filter with the columns (of the results from Step 1), and sub-
sample this result by taking every other value; this gives us the lowpass–lowpass
version of the image.

	 3.	Convolve the result from Step 1, the lowpass filtered rows, with the highpass filter
on the columns. Subsample by taking every other value to produce the lowpass–
highpass image.

	 4.	Convolve the original image with the highpass filter on the rows, and save the
result.

	 5.	Convolve the result from Step 4 with the lowpass filter on the columns; subsample
to yield the highpass–lowpass version of the image.

	 6.	To obtain the highpass–highpass version, convolve the columns of the result from
Step 4 with the highpass filter.

Discrete Transforms	 311

© 2011 by Taylor & Francis Group, LLC

In practice the convolution sum of every other pixel is not performed, since the resulting
values are not used. This is typically done by shifting the basis vector by 2, instead of by 1
at each convolution step. Note that with circular convolution the basis vector will overlap
the extended periodic copies of the image when both the first and last convolution sums
are calculated.

The convention for displaying the wavelet transform results, as an image, is shown in
Figure 5.8-2. In Figure 5.8-3, we see the results of applying the wavelet transform to an
image. In Figure 5.8-3b we can see the lowpass–lowpass image in the upper left corner, the
lowpass–highpass images on the diagonals, and the highpass–highpass in the lower right
corner. We can continue to run the same wavelet transform on the lowpass–lowpass ver-
sion of the image to get seven subimages, as in Figure 5.8-3c, or perform it another time to
get ten subimages, as in Figure 5.8-3d. This process is called multiresolution decomposition,
and can continue to achieve 13, 16, or as many subimages as are practical. The decomposition
level refers to how many times we have performed the wavelet transform, where each suc-
cessive decomposition level means that the wavelet is performed on the lowpass-lowpass
version of the image as shown in Figure 5.8-3.

We can see in the resulting images that the transform contains spatial information, as
the image itself is still visible in the transform domain. This is similar to what we saw with
the Haar transform (Figure 5.5-1), but the Fourier, Walsh–Hadamard, and cosine spectrum
does not necessarily have any visible correlation to the image itself when performed on the
entire image (Figure 5.8-4). However, if we perform these transforms using small blocks,
the resulting spectrum will resemble the image primarily due to the zero frequency term’s
magnitude (Figure 5.8-5).

The inverse wavelet transform is performed by enlarging the wavelet transform data
to its original size. Insert zeros between each value, convolve the corresponding (lowpass
and highpass) inverse filters to each of the four subimages, and sum the results to obtain
the original image. For the Haar filter, the inverse wavelet filters are identical to the for-
ward filters; for the Daubechies example given, the inverse wavelet filters are

	
invLOWPASS :

1
4 2

[3 3 , 3 3 , 1 3 , 1 3]− + + −

iinvHIGHPASS :
1

4 2
[1 3 , 1 3 , 3 3 , 3 3]− − − + − +

Low/
Low

High/
Low

Low/
High

High/
High

Figure 5.8-2
Wavelet transform display. Location of frequency bands in a four-band wavelet transformed image. Designation
is row/column.

312	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The use of the wavelet transform is increasingly popular for image compression, a very
active research area today. The computer revolution, along with the increasing ubiquity of
the Internet, multimedia applications, and high definition television, all contribute to the
high level of interest in image compression. The multiresolution decomposition property
of the wavelet transform, which separates low-resolution information from more detailed

Original image

Wavelet transform using
Daubechies basis vectors,
3 level decomposition,
10 bands

(a)

Wavelet transform using
Daubechies basis vectors,
2 level decomposition,
7 bands

(c)

Wavelet transform using
Daubechies basis vectors,
1 level decomposition,
4 bands

(b)

(d)

Figure 5.8-3
Wavelet transform.

Discrete Transforms	 313

© 2011 by Taylor & Francis Group, LLC

information, makes it useful in applications where it is desirable to have coarse infor-
mation available fast such as perusing an image database or progressively transmitting
images on the Internet. The wavelet transform is one of the relatively new transforms
being explored for image compression applications; as mentioned before it is used in the
JPEG compression standard JPEG2000.

(a) (b)

(c) (d)

Figure 5.8-4
Fourier, Walsh–Hadamard, cosine spectra contain no obvious spatial information, (a) Original image, (b) Fourier
spectrum, (c) Walsh–Hadamard spectrum, (d) cosine spectrum.

314	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 5.8-5
Fourier, Walsh–Hadamard, cosine spectra performed on small blocks resembles image. (a) Original
image, (b) Fourier spectrum 8 × 8 blocks, (c) Fourier spectrum 4 × 4 blocks, (d) Walsh–Hadamard spectrum 8 × 8
blocks, (e) Walsh–Hadamard spectrum 4 × 4 blocks, (f) cosine spectrum, 8 × 8 blocks, (g) cosine spectrum 4 × 4
blocks. Note: all spectra are log remapped.

Discrete Transforms	 315

© 2011 by Taylor & Francis Group, LLC

5.9  Key Points

OVERVIEW: DISCRETE TRANSFORMS

•	 Most of the discrete transforms provide information regarding spatial frequency
content of an image.

•	 The principal component transform decorrelates multiband image data.
•	 The wavelet and the Haar transforms retain both spatial and frequency information.
•	 Most of the discrete transforms map image data into a frequency or sequency

mathematical space where all the pixels contribute to each value in the transform
domain.

•	 Spatial frequency and sequency relate to how brightness levels change relative to
spatial coordinates.

•	 Frequency is the term for sinusoidal transforms, sequency for rectangular wave
transforms.

•	 Rapidly changing brightness values correspond to high frequency (or sequency)
terms, slowly changing brightness values correspond to low frequency (or
sequency) terms.

•	 A constant brightness value is called the zero frequency (sequency) term, or the
DC term.

•	 Most of the discrete transforms decompose an image into a weighted sum of basis
images.

•	 Basis images are two-dimensional (2-D) versions of basis vectors.

•	 Basis vectors are sampled versions of basis functions.

(f) (g)

Figure 5.8-5 (Continued)
Fourier, Walsh–Hadamard, cosine spectra performed on small blocks resembles image. (a) Original image,
(b) Fourier spectrum 8 × 8 blocks, (c) Fourier spectrum 4 × 4 blocks, (d) Walsh–Hadamard spectrum 8 × 8 blocks,
(e) Walsh–Hadamard spectrum 4 × 4 blocks, (f) cosine spectrum, 8 × 8 blocks, (g) cosine spectrum 4 × 4 blocks.
Note: all spectra are log remapped.

316	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The weights for the basis images are found by projecting the basis image onto the
image being transformed.

•	 Mathematically, the projection process is performed by calculating the vector
inner product of the basis image and the image being transformed.

•	 Basis images should be orthogonal and orthonormal.

•	 Orthogonal basis images have vector inner products equal to zero—they have
nothing in common, they are uncorrelated.

•	 Orthonormal basis images are orthogonal and have magnitudes of one.

FOURIER TRANSFORM

•	 The Fourier transform decomposes an image into complex sinusoidal terms.
•	 These terms include a zero frequency term, also called the DC term, related to the

average value.
•	 The higher order terms include the fundamental or lowest frequency term, and

harmonics that are multiples of the fundamental.

One-Dimensional DFT

•	 The one-dimensional (1-D) DFT corresponds to one row (or column) of an image.
•	 Basis vectors are complex sinusoids, defined by Euler’s Identity:

	 e jjθ θ θ= +cos sin() ()

•	 Forward:

	

F v = N I c e

N
I c

c
N j vc N

c=

N

(/)

1
()[

2

0

1

) (

c

1 0
1∑

=

=
− −

−

∑

π

oos sin () ()(2 /) (/)]π πvc N j vc N v j v− = +2 Re Im

•	 Inverse: F F v I c F v ec
N j vc N−
=
−= = ∑1
0
1[)] () ()(2π

•	 The F(v) terms can be broken down into a magnitude and phase component:

◦◦ MAGNITUDE |F v | v) + v= =([(] [()]2 2) ,Re Im also called the Fourier spectrum or
frequency spectrum.

◦◦ PHASE v
v
v

= =
⎡

⎣⎢
⎤

⎦⎥
−φ() Tan

()
()

1 Im
Re

Two-Dimensional DFT

•	 Basis images are complex sinusoids:

	 e
N

ur + vc j
N

uj ur vc N− + =
⎛
⎝⎜

⎞
⎠⎟
−2 2

()
2

(π π π() cos sin rr + vc)⎛
⎝⎜

⎞
⎠⎟

Discrete Transforms	 317

© 2011 by Taylor & Francis Group, LLC

•	 Forward:

	

F u,v
N

I r,c e
r=

N

c=

N

j ur vc N()
1

()
0

1

0

1

2=

=

− −

− +∑∑ π()

11
()

2
()

0

1

0

1

N
I r,c

N
ur + vc

r=

N

c=

N− −

∑∑ ⎛
⎝⎜

⎞
⎠⎟
−cos

π
jj

N
ur + vcsin

2
()

π⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥

•	 Inverse: − += =1 2

0

[()] ()
1

()F F u,v I r,c
N

F u,v e j ur vc N

v=

N

π()

−−−

∑∑
1

0

1

u=

N

•	 F(u,v) = Re(u,v) + jIm(u,v), Re(u,v) is the real part and Im(u,v) is the imaginary part,
then we can define the magnitude and phase of a complex spectral component as:

◦◦ MAGNITUDE |F u,v | u,v + u,v= =([()] [()]2 2) ,Re Im also called the Fourier spec-
trum or frequency spectrum.

◦◦ PHASE u,v u,v u,v= = []−φ() Tan () ()1 Im Re

•	 The 2-D DFT is separable, which means the basis image can be broken down into
product terms where each term depends only on the rows or columns:

	 e e ej ur vc N j ur N j vc N− + − −=2 2 2π π π()

•	 Separability also implies that the 2-D DFT can be found by successive application
of two 1-D DFTs.

Fourier Transform Properties

•	 Linearity:	 F aI r c bI r c aF u v bF u v

aI r

1 2 1 2

1

(,) (,) (,) (,)

(

+[] = +

,,) (,) (,) (,)c bI r c F aF u v bF u v+ = +[]−
2

1
1 2

 where a and b are constants.

•	 Convolution: F I r c I r c F u v F u v

I r c I

[(,) * (,)] (,) (,)

(,) *

1 2 1 2

1 2

=

((,) [(,) (,)]

[(,) (,)]

r c F F u v F u v

F I r c I r c

= −1
1 2

1 2 ==

= −

F u v F u v

I r c I r c F F u v

1 2

1 2
1

1

(,) * (,)

(,) (,) [(,) ** (,)]F u v2

•	 Translation:	 F I r r c c F u v e

I r r

j ur vc N[(,)] (,)

(

()/− − =

−

− +
0 0

2 0 0π

00 0
1 2 0 0,) (,) ()/c c F F u v e j ur vc N− = []− − +π

•	 Modulation:	 F I r c e F u u v v

I r c

j u r v c N
o(,) (,)

(,)

()/2
0

0 0π +[] = − −

ee F F u u v vj u r v c N
o

2 1
0

0 0π()/ (,)+ −= − −[]

318	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 Rotation: Let r x , c x

u w , v w

= =

= =

cos sin

cos sin

() ()

() ()

θ θ

φ φ

◦
	
I x, F F w,

F I x, F

() ()

()

0
1

0

0

θ θ φ θ

θ θ

+ = +[]
+ =

−

[] ((0w, φ θ+)

•	 Periodicity: F u v F u N v F u v N F u N v N(,) (,) (,) (,)= + = + = + + …

•	 Sampling and Aliasing: To avoid aliasing false frequencies, we must sample a con-
tinuous signal with a sampling rate that is at least twice the highest frequency
contained in the signal, called the Nyquist rate (see Figure 5.2-12).

Displaying the Fourier Spectrum

•	 The Fourier spectrum consists of complex floating point numbers, stored in CVIPtools
as a two band image—one for the real part and one for the imaginary part.

•	 In CVIPtools we shift the origin to the center of the image by applying the proper-
ties of periodicity and modulation with u0 = v0 = N/2:

	 I r c e I r c e I rj Nr Nc N j r c(,) (,) (,(/ /)/ ()2 2 2π π+ += = cc r c)()()− +1

•	 To take advantage of the human visual system’s response to brightness we can
greatly enhance the visual information available by performing a log remap by
displaying the following log transform of the spectrum:

	 Log log)() [1 (]u,v k |F u,v |= +

•	 The phase can be displayed primarily to illustrate phase changes.

COSINE TRANSFORM

•	 The cosine transform uses cosine functions as basis functions and can be derived
by using a Fourier transform and extending the original N × N image to an image
that is 2N × 2N by folding it about the origin.

•	 Extending the image to 2N × 2N has the effect of creating an even function, one
that is symmetric about the origin, so the imaginary terms in the DFT cancel out.

•	 The cosine transform requires only real arithmetic.
•	 The basis images are separable.
•	 The DCT has been used historically in image compression, such as JPEG.

•	 Forward: C u,v u v I r,c
r

r=

N

c=

N

() () () ()
(2

0

1

0

1

=
− −

∑∑α α cos
++⎡

⎣⎢
⎤

⎦⎥
+⎡

⎣⎢
⎤

⎦⎥
1)

2
(2 1)

2
u

N
c v
N

π π
cos

Discrete Transforms	 319

© 2011 by Taylor & Francis Group, LLC

	 where α α() ()

1
0

2/ 1,2

u , v N
for u,v

N for u,v ,...,

=
=

= NN −

⎧

⎨
⎪

⎩
⎪ 1

•	 Inverse: C–1[C(u,v)] = I(r,c) =  u v C u,v
r u

u=

N

v=

N

0

1

0

1

() () ()
(2 1)

2

− −

∑∑
+

α α
π

cos
NN

c + v
N

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥
cos

(2 1)
2

π

WALSH–HADAMARD TRANSFORM

•	 The Walsh–Hadamard transform (WHT) uses rectangular functions for basis
functions.

•	 Instead of frequency terms, we have sequency terms.
•	 Sequency is the number of zero crossings.
•	 A 2-D basis image is found from two 1-D basis vectors by performing a vector

outer product of the two.
•	 The WHT is separable.

•	 Forward: WH u,v
N

I r,c
r=

N

c=

N
b r pi i()

1
()(1)

0

1

0

1

= −
− −

∑∑ () (uu b c p vi ii
n

) () ()+[]−∑ =0
1

•	 Inverse: −

− −

= = ∑∑1

0

1

0

1

[()] ()
1

(WH WH u,v I r,c
N

WH u,v
u=

N

v=

N

))(1) 0
1

− ∑ +[]−
b r p u b c p vi i i ii

n
() () () ()

=

HAAR TRANSFORM

•	 The Haar transform has rectangular waves as basis functions.
•	 The Haar transform is derived from the Haar matrices.
•	 The Haar transform retains both spatial and sequency information.
•	 In the Haar matrices each row is a 1-D basis vector, for example:

•	 Haar8
1
8

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2

⇒

+ + + + + + + +

+ + + + − − − −

− 22 2 0 0 0 0
0 0 0 0 2 2 2 2
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0

−

− −

+ −

+ −

+22 2 0 0
0 0 0 0 0 0 2 2

−

+ −

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

•	 The Haar transform allows for multiresolution decomposition of an input image
(see Figure 5.5-1).

U
FM

|4
84

94
2|

14
35

60
95

57

320	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

PRINCIPAL COMPONENTS TRANSFORM

•	 The principal components transform (PCT) differs from the previous transforms,
as it is not related to extracting frequency or sequency information from images,
but is a mathematical transform that decorrelates multiband image data.

•	 The PCT provides a linear transform matrix that will decorrelate the bands in the
input image.

•	 The linear transform matrix is found by a three step procedure; for example in a
three band color, RGB, image: (1) Find the covariance matrix in RGB space, (2) Find
the eigenvalues of the covariance matrix, and their corresponding eigenvectors,
and (3) use the eigenvectors as a linear transform on the RGB data.

•	 The PCT data will have the most variance in the principal band.
•	 In pattern recognition theory variance is a measure of information, in this sense

most information is in the principal band.
•	 Another use of the PCT is to find optimal basis images for a specific image, but

this use is not very practical due to the extensive processing required.

FILTERING

•	 Filtering modifies the frequency or sequency spectrum by selectively retaining,
removing, or scaling the various components of the spectrum.

•	 The shape of the filter depends on the implied symmetry in the transform used.
•	 Ideal filters have abrupt transitions in the filter function.
•	 Ideal filters cause artifacts that appear as ripples or waves at edges in the image.
•	 Nonideal filters have gradual changes in the filter function.
•	 A commonly used nonideal filter is called a Butterworth filter.
•	 For a Butterworth filter the order determines the slope of the transition, a higher

order is a steeper slope.

Lowpass Filters

•	 A lowpass filter keeps low frequencies and attenuates high frequencies.
•	 Lowpass filters will blur the image by removing fast brightness changes that cor-

respond to image detail.
•	 Butterworth lowpass filter function of order n, and cutoff frequency f0:

	 H u v
u v
f

n
(,) =

+
+⎡

⎣
⎢

⎤

⎦
⎥

1

1
2 2

0

2

Highpass Filters

•	 A highpass filter keeps the high frequencies and attenuates low frequencies.
•	 Highpass filters will tend to sharpen the image by retaining areas of rapid change

in brightness that correspond to edges.
•	 Butterworth highpass filter function of order n, and cutoff frequency f0:

Discrete Transforms	 321

© 2011 by Taylor & Francis Group, LLC

•	 H u v
f

u v

n
(,) =

+
+

⎡

⎣
⎢

⎤

⎦
⎥

1

1 0
2 2

2

•	 A high frequency emphasis filter is a highpass filter that retains some of the low
frequency information and boosts the gain of the high frequencies by including an
offset value in the filter function (Figure 5.7-7).

Bandpass and Bandreject Filters

•	 Bandpass filtering will retain specific parts of the spectrum.
•	 Bandreject filters will remove specific parts of the spectrum.
•	 Bandpass and bandreject filters require high and low frequency cutoff values.
•	 Bandreject filters are often used for noise removal.
•	 A special type of bandreject filter is a notch filter that only removes specific

frequencies.

WAVELET TRANSFORM

•	 The discrete wavelet transform (DWT) is a family of transforms that satisfy spe-
cific conditions.

•	 The wavelet transform has basis functions that are shifted and expanded versions
of themselves.

•	 The wavelet transform contains not just frequency information, but also spatial
information.

•	 The wavelet transform breaks an image down into four subsampled, or decimated,
images by keeping every other pixel.

•	 The wavelet results consist of one subsampled image that has been highpass fil-
tered in both the horizontal and vertical directions, one that has been highpass
filtered in the vertical and lowpassed in the horizontal, one that has been high-
passed in the horizontal and lowpassed in the vertical, and one that has been low-
pass filtered in both directions.

•	 One of the most common models for a wavelet transform uses the Fourier trans-
form and highpass and lowpass filters.

•	 This model uses the convolution property of the Fourier transform to perform the
wavelet transform in the spatial domain.

•	 This model uses the separable property to perform a 2-D wavelet with two 1-D filters.
•	 Circular convolution must be used that requires zero-padding.
•	 The filters discussed include the Haar and Daubechies:

	 Haar:

	
LOWPASS :

HIGHPASS :

1
2

1 1[]

1
2
[1 1]

(invers
−

ee same as forward)

322	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 Daubechies:

	
LOWPASS :

HIGHPAS

1
4 2

[1 3 , 3 3 , 3 3 , 1 3]+ + − −

SS :
1

4 2
[1 3 , 3 3, 3 3 , 1 3]− − + − −

	
inv

inv

LOWPASS :
1

4 2
[3 3 , 3 3 , 1 3 , 1 3]− + + −

HHIGHPASS :
1

4 2
[1 3 , 1 3 , 3 3 , 3 3]− − − + − +

•	 The algorithm described for the wavelet transform can be performed in six steps:
	 1.	 Convolve the lowpass filter with the rows (remember that this is done by slid-

ing, multiplying coincident terms, and summing the results) and save the
results. (Note: For the basis vectors as given, they do not need to be reversed
for convolution.)

	 2.	 Convolve the lowpass filter with the columns (of the results from Step 1), and
subsample this result by taking every other value; this gives us the lowpass–
lowpass version of the image.

	 3.	 Convolve the result from Step 1, the lowpass filtered rows, with the highpass
filter on the columns. Subsample by taking every other value to produce the
lowpass-highpass image.

	 4.	 Convolve the original image with the highpass filter on the rows, and save the
result.

	 5.	 Convolve the result from Step 4 with the lowpass filter on the columns; sub-
sample to yield the highpass–lowpass version of the image.

	 6.	 To obtain the highpass–highpass version, convolve the columns of the result
from step 4 with the highpass filter.

•	 The wavelet transform is used in image compression, for example in JPEG2000.

Exercises

Problems

	 1.	When transforming an image into the frequency domain, how does this differ
from a color transform?

	 2.	Define basis function, basis vector, basis image, and vector inner product. Explain
how these relate to discrete image transforms.

	 3.	 (a) What is spatial frequency? (b) What frequency is an area of constant brightness
in an image? (c) Are edges in an image primarily high or low frequency?

	 4.	 (a) Find the projection, T(u,v), of the image, I(r,c), onto the basis images:

Discrete Transforms	 323

© 2011 by Taylor & Francis Group, LLC

	 Let (,)I r c =
⎡

⎣
⎢

⎤

⎦
⎥

7 3
2 8

	 And let (, , ,)B u v r c =

+ +

+ +

⎡

⎣
⎢

⎤

⎦
⎥
+ −

+ −

⎡

⎣

1 1
1 1

1 1
1 1⎢⎢

⎤

⎦
⎥

+ +

− −

⎡

⎣
⎢

⎤

⎦
⎥
+ −

− +

⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1 1
1 1

1 1
1 1

	 (b)	Using the following inverse basis images, project T(u,v) from above onto them
to recover the image.

	 B u v r c–1(, , ,) =

+ +

+ +

⎡

⎣
⎢

⎤

⎦
⎥
+ −

+ −

⎡

⎣
⎢

⎤

⎦
⎥

+

1 1
1 1

1 1
1 1

1 ++

− −

⎡

⎣
⎢

⎤

⎦
⎥
+ −

− +

⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1
1 1

1 1
1 1

		 Did you get the original image back? Why or why not? Are these basis images
orthogonal? Are they orthonormal?

	 5.	 (a) Find the DFT of the following row of an image: [2 2 2 2]. (b) Do the inverse DFT
on the result. Did you get your image row back? Why or why not? (c) Find the DFT
of the following row of an image: [2 4 4 2]. (d) Do the inverse DFT on the result. Did
you get your image row back? Why or why not?

	 6.	For the 4 × 4 image shown below, do the following:

	

2 2 2 2
2 4 4 2
2 4 4 2
2 2 2 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 (a)	Perform the 2‑D DFT. Show the results after transforming each row, and after
each column. Leave answers in R + jI form.

	 (b)	Perform the inverse DFT on result of (a). Did you get the same data back? Why
or why not?

	 (c)	Multiply each element in the original image by (–1)(r + c) and repeat (a). Calculate
F(u,v). Is it shifted to the center? Where is the “center” on a 4 × 4 grid?

	 7.	Use CVIPtools to explore the Fourier spectra of simple objects.
	 (a)	Create an image of a vertical line with Utilities→ Create. Perform the FFT on this

image (use Analysis→ Transforms). In which direction do you see the frequency
components?

324	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 (b)	Create an image of a horizontal line, and perform the FFT. Now what direction
do you see the frequency components?

	 (c)	Create a 256 × 256 image of a rectangle, using the default values. Perform an
FFT on this image. In which direction are the frequency components? Use
File→ Show spectrum to look at just the magnitude image. Next, select the magni-
tude image with the mouse, and press “e” on the keyboard (this performs a con-
trast enhancement). Does this help to see the primary frequency components?

	 (d)	Create an image of a vertical cosine wave of frequency 64, perform the FFT.
Now do the same with a horizontal cosine. Do the resulting spectra look cor-
rect? Explain.

	 (e)	Create circles, ellipses, and checkerboard images. Perform the FFT and view
the spectra and phase images. Are the results what you expected? Explain.

	 8.	Use CVIPtools to illustrate the linearity property of the Fourier transform.
	 (a)	Create a horizontal line and a rectangle image using Utilities→ Create. Add these

two images together with Utilities→ Arith/Logic. Perform the FFT on the resul-
tant image.

	 (b)	Perform the FFT on original line and original rectangle image. Add the two
resulting spectra. Does the result look like the spectrum from (a)? Why or why
not? (Hint: log remap.)

	 (c)	Perform the inverse FFT on the spectra from (a) and (b). Did you get the image
back?

	 9.	Use CVIPtools to compare filters in the frequency and spatial domain, which illus-
trates the convolution property. Use a square image whose size is a power of 2; for
example 256 × 256. Note that an image can be resized with Utilities→ Size. Use the
default blocksize, which is equal to the image size.

	 (a)	Apply a lowpass spatial filter mask using the mean filter under Utilities→
Filters, to an image. Apply lowpass filtering in the frequency domain with
Analysis→ Transforms. This is done by first performing the Fourier transform
(FFT), followed by the filter on the output Fourier spectrum. Note that the filter
automatically performs the inverse transform. Compare the resultant images.
Experiment with the mask size of the spatial filter, and the cutoff frequency
and type, of the frequency domain lowpass filter. Adjust these parameters until
the resultant images look similar. Perform a Fourier transform on the resultant
images and compare the spectra.

	 (b)	Apply a highpass spatial filter mask, using Utilities→ Filters→ Specify a filter, to an
image. This is done by holding the mouse button on the drop-down arrow to
select a filter type, then select the mask size, followed by a click on the OK button.
Apply highpass filtering in the frequency domain. Follow a process similar to
what was done in (a) above, and then compare the resultant images and spectra.

	 10.	Use CVIPtools to create frequency domain filters.
	 (a)	Open an image of your choice and resize it to 256 × 256 with Utilities→ Resize.

Perform the FFT on the 256 × 256 image.
	 (b)	Use Utilities→ Create to create a circle. Use the default parameter values to create

circles—if they have been modified, click the RESET button on the Utilities win-
dow, this will reset all the parameters to the default values—if in doubt, killing
the window with a click on the X in the upper right corner will do a hard reset

Discrete Transforms	 325

© 2011 by Taylor & Francis Group, LLC

on the window. Create a circle in the center of the image with a radius of 32.
Next, check the Blur radius checkbox, set blur radius value to 64, click Apply.

	 (c)	Use Utilities→ Arith/Logic to multiply the FFT spectrum with the circle images.
Select the FFT spectrum as the current image (click on the image itself or the
name in the image queue), and select the circle as the second image. Perform
the multiplication with the spectrum and both circles. Note that these multi-
plied images are both filtered spectra—use the “e” option on the keyboard to
enhance these images.

	 (d)	Perform the inverse FFT transform on the two multiplied images. Look at the
output images and compare. How do they differ? What type of filters are these?
Why do the two output images differ?

	 (e)	Repeat steps (c) and (d) but first perform a logical NOT on the two circle images,
using Utilities→ Arith/Logic.

	 11.	Use CVIPtools to illustrate the translation property of the Fourier transform.
	 (a)	Translate an image in the spatial domain, using Analysis→ Geometry→ Translate

an image with the default Wrap-around option. Now perform an FFT on the
original image and the translated image. Compare the spectra of these images.
Are they the same? In addition to the log remapped magnitude (the default
spectral display), use the File→ Show spectrum in the main window to compare
the phase images. Are the phase images the same?

	 (b)	Change the translation values, the amount you move the image right and down,
and repeat part (a).

	 12.	Use CVIPtools to illustrate the modulation property of the Fourier transform.
	 (a)	Use Utilities→ Create to create an image of a circle and an image of a horizontal

cosine wave of frequency 32. Multiply these two images together.
	 (b)	Find the FFT spectra of the circle and of the two images multiplied together.

Examine the modulation property of the Fourier transform. Do these images
look correct? Why or why not?

	 (c)	Use File→ Show spectrum to look at the magnitude images of the spectra. Do
these images look correct? Why or why not?

	 13.	Use CVIPtools to illustrate the rotation property of the Fourier transform.
	 (a)	Create a 256 × 256 image of a rectangle, using the default values. Perform an

FFT on this image.
	 (b)	Rotate the rectangle image, using Analysis→ Geometry, by 45°. Next, crop a 256 × 256

image from the center of this rotated image with Utilities→ Size [e.g., use (r,c) = (64,64)
for the upper left corner and a size of 256 × 256], and perform the FFT.

	 (c)	Compare the resulting spectra. Did the rotation cause any artifacts that may be
affecting the spectrum? Look at the phase image by using File→ Show Spectrum
for both the original and rotated rectangle spectra, what do you see? Does this
seem reasonable?

	 14.	 (a) Is the cosine an even or an odd function? (b) Do you think that the Fourier or
the cosine transform is faster to compute? Explain.

	 15.	For an N × N image, we assume a Fourier symmetry that repeats the N × N pat-
tern. For an N × N image, what size is the pattern that repeats for the cosine
transform?

U
FM

|4
84

94
2|

14
35

60
96

59

326	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 16.	 (a) What is the general form of the Walsh–Hadamard basis functions? (b) Do you
think that the Walsh–Hadamard or the cosine transform is faster to compute?
Explain.

	 17.	Let the rows of the following matrix be basis vectors:

	

+ + + +

+ − − +

+ − + −

+ + − −

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1⎭⎭

⎪
⎪

	 (a)	What is the sequency of each row? Going from top to bottom are they in
sequency order?

	 (b)	Are they orthogonal? Why or why not?
	 (c)	Are the orthonormal? Why or why not? If not, how can we make them

orthonormal?
	 (d)	To which transform do these basis vectors belong?
	 (e)	Find the vector outer product of the first and last row.
	 18.	Of the transforms described in this chapter, which ones are separable? Explain

what this means.
	 19.	Name the two transforms discussed that provide a multiresolution decomposition

of the input image. Explain what this means.
	 20.	Sketch the (a) Fourier, (b) cosine, and (c) Walsh–Hadamard transform spectral

image of the following image:

	

255 255 255 255
255 255 255 255
255 255 255 255
255 255 2555 255

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 21.	 (a) Sketch the Fourier spectrum for a horizontal sine wave of frequency 32 on
a 256 × 256 image, (b) the spectrum for a vertical sine wave of frequency 32 on
a 256 × 256 image, and (c) apply the convolution theorem to find the image that
results from the convolution of the horizontal and vertical sine wave.

	 22.	 (a) Where does the PCT get its name? Explain. (b) What are the three steps to per-
forming the PCT?

	 23.	Use CVIPtools to explore the PCT transform with color images.
	 (a)	Open a color image of your choice. Use Utilities→ Convert→ Color space to apply

the PCT to the image. Next, do the inverse PCT on the output image, by
unchecking the Forward checkbox. Is the PCT an invertible transform? In other
words, did you get your image back OK?

	 (b)	Use Utilities→ Create→ Extract band to get all three bands from the original
image as well as the PCT image. Place the RGB bands above and the three PCT
bands below and compare. Are the RGB bands correlated; that is, do they look

Discrete Transforms	 327

© 2011 by Taylor & Francis Group, LLC

similar? Are the PCT bands correlated; that is, do they look similar? Examine
the data range on each image, which band has the largest data range? (Note:
the data range is seen at the bottom of the main window next to the data type.)
Why do you think this band has the largest data range?

	 24.	 (a) What is the difference between an ideal filter and a nonideal filter? (b) Are there
any advantages to one over the other? What are they?

	 25.	 (a) What is the order of a Butterworth filter? (b) How does increasing the order of
the filter affect the image?

	 26.	Name an application of a bandreject, or a notch, filter. Explain.
	 27.	 (a) What is the difference between a highpass filter and a high frequency emphasis

filter? (b) How does this difference affect the resultant image?
	 28.	Use CVIPtools to explore a bandreject filter.
	 (a)	Create a 256 × 256 image of a horizontal sinusoidal wave using Utilities→ Create

in CVIPtools. Select Analysis→ Transforms and perform the FFT on the image
with a blocksize of 256 (the entire image). View the magnitude of the FFT out-
put using File→ Show spectrum→ Magnitude on the main window. Notice the fre-
quency component corresponding to the horizontal frequency of the sinusoid.
What is the approximate location of this frequency component? Notice also the
location of the DC component (center). As is the case in most images, the DC
component is the largest component in the transformed image.

	 (b)	Now filter the transformed image with a bandreject filter. Check the Keep DC
checkbox, so the average value is retained. Choose an ideal bandreject filter.
Choose cutoff frequencies to remove the horizontal sinusoidal frequency.
Perform the inverse FFT on the image. Compare the resulting image with the
original image. Did you succeed in removing most of the sinusoid? (Perfect
results are not attainable for this experiment, because of quantization noise.)

	 29.	Use CVIPtools to see how the DC terms affects filtering. Use the Analysis→ 
Transforms window.

	 (a)	Load a 256 × 256 image of your choice and perform an FFT using a block size
of 64. Filter the spectrum with an ideal lowpass filter with a cutoff of 16, and
keep the DC by checking the Keep DC checkbox. Next, use the same filter, but
without keeping the DC term. Compare the data range of the two resulting
images. How does the DC term affect the data range? Compare how the images
look—do they look different? Why or why not?

	 (b)	Perform a DCT using a block size of 64. Filter the spectrum with an ideal low-
pass filter with a cutoff of 32, and keep the DC by checking the Keep DC check-
box. Next, use the same filter, but without keeping the DC term. Compare the
data range of the two resulting images. How does the DC term affect the data
range? Compare how the images look—do they look different? Why or why
not? Compare the DCT and FFT results, what do you see? Explain the results.

	 (c)	Perform a WHT using a block size of 64. Filter the spectrum with an ideal lowpass
filter with a cutoff of 32, and keep the DC by checking the Keep DC checkbox. Next,
use the same filter, but without keeping the DC term. Compare the data range of
the two resulting images. How does the DC term affect the data range? Compare
how the images look—do they look different? Why or why not? Compare these
results with the DCT and FFT results, what do you see? Explain the results.

328	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 30.	Use CVIPtools to illustrate the effects of low‑pass filtering on a real image and
compare the effects of ideal filters to those of Butterworth filters.

	 (a)	Load a 256 × 256 complex grayscale image and perform the FFT with the
Analysis→ Transforms window, using a blocksize of 16. Filter the transformed
image using an ideal lowpass filter with a cutoff of 4 and keep the DC value.
Notice the absence of highfrequency information and the ringing effect, which
appears as waves emanating from edges in the image, caused by the sharp
frequency cutoff.

	 (b)	Now apply a Butterworth lowpass filter of order 1 to the Fourier-transformed
image. Use the same cutoff as in part 2(a). Keep the DC during filtering.
Compare the result with that of part (a). Is the ringing effect as noticeable now?
Why/why not?

	 (c)	Repeat part (b) using a 6th order Butterworth filter instead of a 1st order filter.
Compare the result to the result from parts (a) and (b). Because the frequency
response of a 6th‑order Butterworth filter is close to that of an ideal filter, the
image should be similar to that of part (a). (d) Repeat (a), (b), and (c) using a
blocksize of 256 × 256 and cutoff of 64.

	 31.	Use CVIPtools to see the relationship between transform-domain filtering in the
DCT, FFT, and WHT domain. Use the Analysis→ Transforms window. Note that the
origin for the FFT, corresponding to the zero-frequency term (DC component), is
shifted to the center, while for all other transforms the origin is in the upper left
corner. Since all the transforms implemented are fast transforms based on powers of
2, the blocksize must be a power of 2. If the selected blocksize will not evenly cover
the image, then the image is zero-padded as required. For DC components located
in the upper-left-hand corner, CVIPtools lets you specify cutoff frequencies ranging
from 1 to blocksize. For the FFT, with the DC term in the center, the range is from 1 to
blocksize/2.

	 (a)	Load any image of your choice. If the size is not 256 × 256, use Utilities→ Size to
resize it to 256 × 256.

	 (b)	Choose the ideal lowpass filter type, any blocksize, and a cutoff frequency (CF)
divisible by 2. Apply this filter to the image in the Walsh domain. Repeat this
procedure using the DCT and the FFT, but use a cutoff frequency equal to CF/2
for the FFT.

	 (c)	Compare the images resulting from filtering with different transforms.
	 (d)	Which transform resulted in the best quality of the filtered image? Which trans-

form resulted in the poorest quality filtered image? Compare your answers with
what you know about the properties of the DCT, FFT, and Walsh Transform. Do
your answers agree with what you would expect?

	 32.	Use CVIPtools to compare highpass and high frequency emphasis filters.
	 (a)	Perform a DCT on a 256 × 256 image using 256 as the block size.
	 (b)	Apply a Butterworth highpass filter with a cutoff of 64.
	 (c)	Apply a high frequency emphasis filter with a cutoff of 64, use the same order

used in (b), and compare results to (b). What do you see? Is this what you
expected? Explain.

	 (d)	Add the original image to the result from (b), and compare the added image to
the one from (c). Are they similar? Why or why not?

Discrete Transforms	 329

© 2011 by Taylor & Francis Group, LLC

	 33.	Use CVIPtools to see how the DC term affects highpass filters, review data remap-
ping. Perform a DCT on a 256 × 256 image, and apply a highpass filter with a cutoff
of 64. Do it with and without keeping the DC term. Do the two filtered images look
similar? Explain. Compare the data range on the two images by clicking on each
image (the image information appears at the bottom of the main window).

	 34.	a) Does the wavelet transform have a unique set of basis functions? (b) Name two
functions commonly used for wavelet filters. (c) Of these two, with which one is
the wavelet transform faster to calculate? (d) Does the wavelet transform provide
spatial or frequency information?

	 35.	 (a) Describe the process to implement a wavelet transform using 1-D filters. (b)
What is the criterion that the filters must meet for a wavelet transform, and why?
(c) How is circular convolution performed? (d) What does the term decomposition
level mean as related to the wavelet transform?

	 36.	Use CVIPtools to explore the wavelet transform.
	 (a)	Open an image of your choice and resize it to 256 × 256. Perform the wavelet

transform using Analysis→ Transforms. Use decomposition levels of 1, 2, 3, and 4.
Compare the wavelet images. What exactly is the decomposition level?

	 (b)	Perform the wavelet transform twice with a decomposition level of 9 on your
256 × 256 image, once with the Haar basis and once with the Daubechies. Note
that the Haar uses filters with two coefficients, and the Daubechies uses four.
Perform an ideal lowpass filter with a cutoff of 32 on the wavelet images and
compare the filtered images. Are they different? How? Why?

	 (c)	Repeat (b), but use a first order Butterworth filter.

Programming Exercises

Filtering

	 1.	Write a function to create frequency domain ideal filter masks that will work with
the Fourier transform in CVIPtools. Let the user specify the size, the filter type:
highpass, lowpass, or bandreject, and the cutoff frequencies. Be sure the output
images are floating point.

	 2.	Test these filter mask images using CVIPtools. Use the FFT, and multiply to test
the filters.

	 3.	Repeat (1) and (2) for DCT symmetry, and test with the DCT.
	 4.	Repeat 1–3, but create Butterworth filter masks. Let the user specify the filter order.

Fourier Transform

	 1.	Use the CVIPtools libraries functions to put the fft_transform and ifft_transform
functions into your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Discrete Cosine Transform

	 1.	Use the CVIPtools libraries functions to put the dct_transform and idct_transform
functions into your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

330	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Walsh–Hadamard Transform

	 1.	Use the CVIPtools libraries functions to put the walhad_transform function into
your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Haar Transform

	 1.	Use the CVIPtools libraries functions to put the haar_transform function into your
CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Wavelet Transform

	 1.	Use the CVIPtools libraries functions to put the wavhaar_transform and wavdaub4_
transform functions into your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

CVIPtools Library Filter Functions

	 1.	Use the CVIPtools functions in the TransformFilter library to perform filtering in
your CVIPlab program.

	 2.	Compare your results to those obtained with CVIPtools, and with the filter func-
tions you wrote.

Supplementary Exercises

Supplementary Problems

	 1.	The Fourier transform of the “triangle” function below is a squared sinc func-
tion. Show that we can verify this by using the Fourier transform of a rectangle
function.

	 “Triangle”  

	 2.	Describe or sketch the image that results from the convolution of the following
two images:

		 Image #1: a horizontal sine wave of frequency 8; Image #2: a vertical sine wave of
frequency 16.

Discrete Transforms	 331

© 2011 by Taylor & Francis Group, LLC

		 	

	 3.	The following two images resulted from using the same transform-domain filter;
but one used the Fourier and one used the Walsh transform. (a) What image used
what transform? (b) Was the filter a highpass or lowpass? (c) Was it an ideal or
nonideal filter?

			 Image #1	 Image #2

		 		

	 4.	Derive the 1-D discrete cosine transform using a 1-D discrete Fourier transform of
length 2N.

	 5.	The eigenvalues of a multispectral six-band image are [3.2, 0.976, 122, 0.45, 1.15,
110]. What will the RMS error be if we apply a PCT for a 3:1 data compression?

	 6.	Use CVIPtools Utilities→ Create→ Assemble Bands and the images in Figure 5.6-1
to create the original RGB image. (a) Next use Utilities→ Stats→ Image Statistics to
find the statistics of the original image for each band. (b) Perform the PCT with
Utilities→ Convert→ Color Space with a PCT transform, and find the image statistics.
(c) Compare the results from (a) and (b) and discuss the results. Do they make
sense? Why or why not? (Note: Did you find the image statistics on the original
data or on data remapped to byte?)

	 7.	You are given a TV camera that is suspected of having an interlace problem where
one of the fields is slightly brighter than the other. Assume you have a frame grab-
ber to digitize single frames that does not introduce any noise or other problems
into the resulting digital image. Devise a method using frequency or sequency

332	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

transforms to determine: (a) If this is actually the problem. (b) If so, how much
brighter is the one field compared to the other?

	 8.	A bicycle manufacturer requires precision parts for its gear assembly that it receives
from an outside vendor. Occasionally, in transit the parts get bent or damaged, or
manufacturing defects occur. Before the gear assembly is put together they want
to be certain the parts are without defects—some defects may not be easily visible
and they have an automated production line. Devise a computer imaging algo-
rithm using the Fourier transform to test these parts.

Supplementary Programming Exercises

Fourier Transform

	 1.	Write a function to implement the Fourier transform and its inverse. Allow the
user to specify the block size.

	 2.	Use the references to research the fast Fourier transform (FFT). Modify the func-
tion to implement an FFT.

	 3.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Cosine Transform

	 1.	Write a function to implement the cosine transform and its inverse. Allow the user
to specify the block size.

	 2.	Use the references to research the fast discrete cosine transform (FDCT). Modify
the function to implement an FDCT.

	 3.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Walsh–Hadamard Transform

	 1.	Write a function to implement the WHT and its inverse. Allow the user to specify
the block size.

	 2.	Use the references to research the fast discrete Walsh–Hadamard transform
(FDWHT). Modify the function to implement a FDWHT.

	 3.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Haar Transform

	 1.	Use the references to research the Haar transform and its inverse. Write a function
to implement the Haar transform.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

Principal Components Transform

	 1.	Write a function to implement a PCT, and its inverse, on a multiband image. Note
that the CVIPtools library, libmatrix, can be used. These functions are of particular
interest: covariance_Matrix, eigenSystem_Matrix

Discrete Transforms	 333

© 2011 by Taylor & Francis Group, LLC

	 2.	Compare your results to those obtained with CVIPtools (see Utilities→ Convert→
Color Space). Are they the same? Why or why not? If they are different, what can be
done to make them the same?

Wavelet Transform

	 1.	Using the two filter types discussed, write a function to implement a wavelet
transform and its inverse. Let the user specify the number of decompositions.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not? If they are different, what can be done to make them the same?

References

Banks, S., Signal Processing, Image Processing and Pattern Recognition, Upper Saddle River, NJ: Prentice
Hall, 1990.

Bracewell, R. N., Two-Dimensional Imaging, Upper Saddle River, NJ: Prentice Hall, 1995.
Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall,

2008.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Reading, MA: Addison Wesley, 1992.
Jain, A. K., Fundamentals of Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1989.
Kjoelen, A., Wavelet Based Compression of Skin Tumor Images, Master’s Thesis in Electrical Engineering,

Southern Illinois University at Edwardsville, 1995.
Lim, J. S., Two-Dimensional Signal and Image Processing, Upper Saddle River, NJ: PTR Prentice Hall,

1990.
Masters, T., Signal and Image Processing with Neural Networks, New York, NY: Wiley, 1994.
Oppenheim, A. V, and Schafer, R. W., Discrete Time Signal Processing, 3rd ed., Upper Saddle River, NJ:

Prentice Hall, 2009.
Petrou, M., and Bosdogianni, P., Image Processing: The Fundamentals, New York, NY: Wiley, 1999.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C, New York,

NY: Cambridge University Press, 1992.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Taubman, D. S., and Marcellin, M. W., JPEG2000: Image Compression Fundamentals, Standards and

Practice, Norwell, MA: Kluwer Academic Publishers, 2002.

Further Reading

For discrete transforms, many excellent texts are available, including Gonzalez and Woods
(2008), Sonka, Hlavac, and Boyle (2008), Castleman (1996), Bracewell (1995), Pratt (1991), Jain
(1989), and Rosenfeld and Kak (1982). For details regarding the fast implementation of the
transforms see Gonzalez and Woods (2008), Petrou and Bosdogianni (1999), and Press et
al. (1992). See Gonzalez and Woods (1992) and Pratt (1991) for details on the separate Walsh

334	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

and Hadamard transforms. More details on the Haar transform can be found in Gonzalez
and Woods (2008), Castleman (1996), Pratt (1991), and Jain (1989). Additional detail on the
PCT can be found in Gonzalez and Woods (2008), and (applied to feature analysis) Sonka,
Hlavac, and Boyle (2008). For a more in depth treatment of sampling and aliasing see
Oppenheim and Schafer (2009).

For more information on filters see Gonzalez and Woods (2008), Pratt (1991), Lim (1990),
and Banks (1990). For an excellent and detailed discussion on the need for zero-padding
with convolution filters see Gonzalez and Woods (2008). For mathematical details on
implementing filters in the spatial domain from the frequency domain specifications see
Petrou and Bosdogianni (1999) and Gonzalez and Woods (1992). The wavelet transform
as implemented in CVIPtools is described in Kjoelen (1995). More information on wavelet
transforms is found in Gonzalez and Woods (2008), Masters (1994), and Castleman (1996).
Implementation details for the wavelet as applied in JPEG2000 are found in Taubman and
Marcellin (2002).

335© 2011 by Taylor & Francis Group, LLC

6
Feature Analysis and Pattern Classification

6.1  Introduction and Overview

Feature analysis and pattern classification are often the final steps in the image analysis
process. Feature analysis involves examining the features extracted from the images and
determining if and how they can be used to solve the imaging problem under consider-
ation. In some cases the extracted features may not solve the problem and the information
gained by analyzing the features can be used to determine further analysis methods that
may prove helpful, including additional features that may be needed. Pattern classifica-
tion, often called pattern recognition, involves the classification of objects into catego-
ries. For many imaging applications this classification needs to be done automatically,
via computer. The patterns to be classified consist of the extracted feature information,
which are associated with image objects and the classes or categories will be application
dependent.

As discussed in Chapter 3, the goal in image analysis is to extract information useful
for solving application-based problems. This is done by intelligently reducing the amount
of image data with the tools we have explored, including image segmentation (Chapter 4)
and transforms (Chapter 5). Once we have performed these operations, we have modified
the image from the lowest level of pixel data into higher-level representations. Now, we
can consider extraction of features that can be useful for solving computer imaging prob-
lems. Image segmentation allows us to look at object features, and the image transforms
provide us with features based on spatial frequency information—spectral features. The
object features of interest include the geometric properties of binary objects, histogram
features, spectral features, texture features, and color features. Once we have extracted the
features of interest, we can analyze the image.

Exactly what we do with the features will be application-dependent. If we are working
on a computer vision problem, the end goal may be the generation of a classification rule
in order to identify objects. If we are working to develop a new image compression algo-
rithm, we may want to determine what image data is important; the insignificant informa-
tion can be compressed or eliminated completely. For image restoration we may want to
determine the type of noise that exists in the image, or how the image has been degraded.
Image analysis may help us to solve an image enhancement problem by allowing us to
determine exactly what it is that makes images visually pleasing.

As was shown in Figure 3.1-3, feature extraction is part of the data reduction process and
is followed by feature analysis. One of the important aspects of feature analysis is to deter-
mine exactly what features are important, so the analysis is not complete until we incor-
porate application-specific feedback into the system (see Figure 6.1-1). In this chapter we
will discuss feature extraction and analysis, as well as provide an introduction to pattern

336	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

classification. Although pattern classification is used primarily in computer vision applica-
tions, it can be helpful in solving any type of image processing problem.

6.2  Feature Extraction

Feature extraction is a process that begins with feature selection. The selected features will
be the major factor that determines the complexity and success of the analysis and pattern
classification process. Initially, the features are selected based on the application require-
ments and the developer’s experience. After the features have been analyzed, with attention
to the application, the developer may gain insight into the application’s needs that will lead
to another iteration of feature selection—extraction and analysis. The overall process shown
in Figure 6.1-1 will continue until an acceptable success rate is achieved for the application.

When selecting features for use in a computer imaging application, we want to consider
the following desirable attributes. A good feature is

•	 Robust—It will have similar results under various conditions, such as lighting,
cameras, lenses, and so on.

•	 Discriminating—It is useful for differentiation of classes (object types) of interest.
•	 Reliable—It provides consistent measurements for similar classes (objects).
•	 Independent—It is not correlated to other features.

For example, if we are developing a system to work under any lighting conditions, we
do not want to use features that are lighting-dependent—they will not provide consistent
results in the application domain and are not robust. If a feature has similar values for
different objects, it is not a discriminating feature; we cannot use it to separate the differ-
ent classes. A feature that has different values for similar objects is not reliable. Features
that are correlated have redundant information that may confuse the classifier and waste
processing time.

A specific type of robustness, especially applicable to object features, is called RST-
invariance, where the RST means rotation, size, and translation. A very robust feature
will be RST-invariant, meaning that if the image object is rotated, shrunk or enlarged, or
translated (shifted left/right or up/down), the value for the feature will not change. As we
explore the binary object features, consider the invariance of each feature to these simple
geometric operations.

Input
image

Feature
extraction

Feature
analysis

Pattern
classification

Application

Figure 6.1-1
Feature extraction, feature analysis, and pattern classification. To be effective the application-specific feedback
loop is of paramount importance.

Feature Analysis and Pattern Classification	 337

© 2011 by Taylor & Francis Group, LLC

6.2.1  Shape Features

Shape features depend on a silhouette of the image object under consideration, so all that
is needed is a binary image. We can think of this binary image as a mask of the image
object, as shown in Figure 6.2-1. The basic binary object features are in Section 3.3.3; includ-
ing area, center of area, axis of least second moment, projections, and Euler number. Here
we will add perimeter, thinness ratio, irregularity, aspect ratio, moments, and a moment
related set of RST-invariant features.

The perimeter of the object can help provide us with information about the shape of
the object. The perimeter can be found in the original binary image by counting the
number of “1” pixels that have “0” pixels as neighbors. Perimeter can also be found by
application of an edge detector to the object, followed by counting the “1” pixels. Note
that counting the “1” pixels is the same as finding the area, but in this case we are find-
ing the “area” of the border. Since the digital images are typically mapped onto a square
grid, curved outlines tend to be jagged, so these methods only give an estimate to the
actual perimeter for objects with curved edges. An improved estimate to the perimeter
can be found by multiplying the results from either of the above methods by π/4. If bet-
ter accuracy is required, more complex methods that use chain codes for finding perim-
eter can be used (see references). An illustration of perimeter is shown in Figure 6.2-2.

Image object

(a) (b)

(c) (d)

Figure 6.2-1
Shape features need a simple binary image. (a) The original image, (b) the image divided into image objects via
segmentation, (c) the segmented image with an outline drawn in red on one of the drumhead image objects, (d)
the binary mask image for the marked image object that is used for extraction of features related to object shape,
in this case the elliptical shape can help identify it as a drumhead.

338	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

In Chapter 3 we found the area of a binary object by counting the number of “1” pixels in
the object. Given the area, A, and perimeter, P, we can calculate the thinness ratio T:

	 T
A
P

=
⎛
⎝⎜

⎞
⎠⎟

4π
2

This measure has a theoretical maximum value of 1, which corresponds to a circle, so this
also is used as a measure of roundness. In practice, due to the square grid typically used
for digital images that only approximate curves, and dependent upon the method used for
calculating perimeter, the maximum may actually be closer to 1.3. However, it is still useful
as a relative measure. The closer to the maximum value, the more like a circle the object is.
As the perimeter becomes larger relative to the area, this ratio decreases, and the object is
getting thinner. This metric is also used to determine the regularity of an object: regular
objects have higher thinness ratios than similar but irregular objects. The inverse of this
metric, 1/T, is sometimes called the irregularity or compactness ratio. The area to perimeter
ratio, A/P, has properties similar to the thinness ratio, but is easier to calculate.

A related feature is the aspect ratio (also called elongation or eccentricity), defined by the
ratio of the bounding box of an object. This can be found by scanning the image and find-
ing the minimum and maximum values on the row and columns where the object lies.
This ratio is then defined by

	
c c
r r
max min

max min

− +
− +

1
1

Note that this definition is not rotationally invariant, so to be useful as a comparative mea-
sure the objects should be rotated to some standard orientation; such as orientating the
axis of least second moment in the horizontal direction.

Moments can be used to generate a set of RST-invariant features. Given a binary image,
where I(r,c) can only be “0” or “1,” the moment of order (p + q) is

	 m r c I r cpq
p q

cr

= ∑∑ (,)

Image with binary object. We can find
the perimeter by counting the ‘1’ pixels
that have a ‘0’ neighbor.

Image after Roberts edge detection.
We find the perimeter by counting
the ‘1’ pixels.

0

1

(a) (b)

Figure 6.2-2
Perimeter.

Feature Analysis and Pattern Classification	 339

© 2011 by Taylor & Francis Group, LLC

In order to be translationally invariant we use the central moments defined by

where	

μ pq
p q

cr

r r c c I r c

r
m
m

c
m

= − −

= =

∑∑ () () (,)

10

00

0and 11

00m

Note that these central moments are simply the standard moments shifted to the center
of area of the object—compare the equations for r and c to the center of area as defined
in Chapter 3. To create the RST-invariant moment-based features we need the normalized
central moments:

where	

η
μ

μ

γ

γpq
pq

p q
p q

=

=
+

+ + =

00

2
1 2 3 4, for () , , ...

Given these normalized central moments a set of RST-invariant features, ϕ1–ϕ7, can be
derived using the second and third moments. These invariant moment features are shown
in Table 6.1.

An example image with binary objects showing the results of extracting these features is
shown in Figure 6.2-3. Here we see two squares of different sizes (scales), two rotated rect-
angles, and two objects that are scaled and rotated. All the objects are translated since they
are all in different locations. We see that these features for the same objects are identical. In

TABLE 6.1

Invariant Moment Features

φ η η

φ η η η

φ η η

1 20 02

2 20 02
2

11
2

3 30 12
2

4

3

= +

= −() +

= −() ++ −()

= +() + +()

=

3 21 03
2

4 30 12
2

21 03
2

5 30

η η

φ η η η η

φ η −−() +() +() − +()⎡
⎣

⎤
⎦3 312 30 12 30 12

2
21 03

2
η η η η η η η

+ −() +() +() −3 321 03 21 03 30 12
2

21η η η η η η η ++()⎡
⎣

⎤
⎦

= −() +() − +(

η

φ η η η η η η

03
2

6 20 02 30 12
2

21 03))⎡
⎣

⎤
⎦ + +() +()

= −()

2
11 30 12 21 03

7 21 03

4

3

η η η η η

φ η η ηη η η η η η30 12 30 12
2

21 03
2

3+() +() − +()⎡
⎣

⎤
⎦

−− −() +() +() − +()η η η η η η η η30 12 21 03 30 12
2

21 03
2

3 3⎡⎡⎣
⎤
⎦

340	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 6.2-4 we have added noise to the image, performed a simple threshold at 128 to get
the segmented image, and extracted the RST-invariant features. Here we see that we can
still classify the objects with the first one or two features.

Fourier Descriptors (FDs) represent a group of methods often used in shape analysis
that require representing the shape as a one or two-dimensional signal, and then taking
the Fourier transform of the signal. For imaging applications the simplest method is to
use the binary image of the object, and use the spectral features defined in Section 6.2.4.
Other FD methods include representing the outline of the object in various mathematical
forms and finding the one or two dimensional Fourier transform of the signal; details of
these methods can be explored with the references.

Φ1 Φ2 Φ3 Φv Φv Φ6 Φ7

Object 1:
rectangle

0.208 0.016 0 0 0 0 0

Object 2:
rectangle

0.208 0.016 0 0 0 0 0

Object 3:
square

0.166 0 0 0 0 0 0

Object 4:
square

0.166 0 0 0 0 0 0

0.193 6.40E-3 1.15E-3 1.28E-4 4.92E-8 1.02E-5 0

Object 6:
2Rectangle

0.193 6.40E-3 1.15E-3 1.28E-4 4.92E-8 1.02E-5 0

Object 1

Object 4

Object 5

Object 6

Object 2

Object 3

Object 5:
2Rectangle

(a)

(b)

Figure 6.2-3
RST-invariant features. (a) The image with the six objects, (b) the extracted feature data. Note: if you try this in
CVIPtools some of the features will get very small numbers, such as 1.2E-22 or 2.8E-48, in the data shown any
numbers smaller than 1.0E-10 have been truncated to 0.

Feature Analysis and Pattern Classification	 341

© 2011 by Taylor & Francis Group, LLC

6.2.2  Histogram Features

The histogram of an image is a plot of the gray-level values versus the number of pixels
at that value. The shape of the histogram provides us with information about the nature
of the image, or subimage if we are considering an object within the image. For exam-
ple, a very narrow histogram implies a low contrast image, a histogram skewed toward
the high end implies a bright image, and a histogram with two major peaks, called
bimodal, implies an object that is in contrast with the background. Examples of the dif-
ferent types of histograms are shown in Figure 6.2-5.

The histogram features that we will consider are statistical-based features, where the his-
togram is used as a model of the probability distribution of the gray levels. These statistical

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

Object 1:
rectangle

0.212
(0.208)

0.016
(0.016)

8.79E-7
(0)

8.75E-8
(0)

0
(0)

–1.19E-9
(0)

0
(0)

Object 2:
rectangle

0.213
(0.208)

0.017
(0.016)

9.01E-7
(0)

2.07E-7
(0)

0
(0)

2.83E-9
(0)

0
(0)

Object 3:
square

0.172
(0.166)

2.17E-6
(0)

4.84E-6
(0)

8.69E-7
(0)

0
(0)

0
(0)

0
(0)

Object 4:
square

0.172
(0.166)

3.19E-6
(0)

8.29E-8
(0)

1.17E-7
(0)

0
(0)

0
(0)

0
(0)

Object 5:
2Rectangle

0.199
(0.193)

6.88E-3
(6.40E -3)

1.25E-3
(1.15E-3)

1.39E-4
(1.28E-4)

5.81E-8
(4.92E-8)

1.15E-5
(1.02E-5)

–1.60E-9
(0)

Object 6:
2Rectangle

0.198
(0.193)

6.60E-3
(6.40E-3)

1.22E-3
(1.15E-3)

1.34E-4
(1.28E-4)

5.42E-8
(4.92E-8)

1.08E-5
(1.02E-5)

–3.95E-9
(0)

Object 4

Object 5

Object 6

Object 2

Object 3

Object 1

(a)

(b)

Figure 6.2-4
RST-invariant features with noise. (a) The image with the six objects and noise added, (b) the extracted feature
data, with the data from the images without noise in parenthesis. Note: if you try this in CVIPtools some of the
features will get very small numbers, such as 1.2E-22 or 2.8E-48, in the data shown any numbers smaller than
1.0E-10 have been truncated to 0.

342	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

features provide us with information about the characteristics of the gray-level distribu-
tion for the image or subimage. We define the first-order histogram probability, P(g), as

	 P g
N g
M

()
()

=

M is the number of pixels in the image or subimage (if the entire image is under consid-
eration then M = N2 for an N × N image), and N(g) is the number of pixels at gray level g.

(a) (b)

Object in contrast with background Histogram of (a) shows bimodal shape

Histogram of (e) appears spread out

Histogram of (c) appears clustered

(c) (d)

(e) (f)

Low contrast image

High contrast image

Figure 6.2-5
Histograms.

Feature Analysis and Pattern Classification	 343

© 2011 by Taylor & Francis Group, LLC

As with any probability distribution all the values for P(g) are less than or equal to 1, and
the sum of all the P(g) values is equal to 1. The features based on the first order histogram
probability are the mean, standard deviation, skew, energy, and entropy.

The mean is the average value, so it tells us something about the general brightness of
the image. A bright image will have a high mean, and a dark image will have a low mean.
We will use L as the total number of gray levels available, so the gray levels range from 0
to L – 1. For example, for typical 8-bit image data, L is 256 and ranges from 0 to 255. We can
define the mean as follows:

	 g gP g
I r c
M

crg=

L

= = ∑∑∑
−

()
0

1
(,)

If we use the second form of the equation we sum over the rows and columns correspond-
ing to the pixels in the image or subimage under consideration.

The standard deviation, which is also known as the square root of the variance, tells us
something about the contrast. It describes the spread in the data, so a high contrast image

(g) (h)

(j)(i)

Bright image Histogram of (g)
appears shifted to the right

Dark image Histogram of (i)
appears shifted to
the left

Figure 6.2-5 (continued)
Histograms.

344	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

will have a high variance, and a low contrast image will have a low variance. It is defined
as follows:

	 g

g

L

g g P gσ = −
=

−

∑() ()2

0

1

The skew measures the asymmetry about the mean in the gray-level distribution. It is
defined as

	 SKEW g g P g
g g=

L

= −()
−

∑1

0

1

σ3

3
()

The skew will be positive if the tail of the histogram spreads to the right (positive), and
negative if the tail of the histogram spreads to the left (negative). Another method to mea-
sure the skew uses the mean, mode, and standard deviation, where the mode is defined as
the peak, or highest, value:

	 SKEW
g mode

g

ʹ =
−

σ

This method of measuring skew is more computationally efficient, especially considering
that, typically, the mean and standard deviation have already been calculated.

The energy measure tells us something about how the gray levels are distributed:

	 ENERGY P g
g=

L

=
−

∑
0

1
2[()]

The energy measure has a maximum value of 1 for an image with a constant value, and
gets increasingly smaller as the pixel values are distributed across more gray-level values
[remember all the P(g) values are less than or equal to 1]. The larger this value is, the easier
it is to compress the image data. If the energy is high it tells us that the number of gray
levels in the image is few; that is, the distribution is concentrated in only a small number
of different gray levels.

The entropy is a measure that tells us how many bits we need to code the image data, and
is given by

	 ENTROPY P g P g
g=

L

= −
−

∑ ()log [()]2

0

1

As the pixel values in the image are distributed among more gray levels, the entropy
increases. A complex image has higher entropy than a simple image. This measure tends
to vary inversely with the energy.

Feature Analysis and Pattern Classification	 345

© 2011 by Taylor & Francis Group, LLC

Figure 6.2-6 shows images and the corresponding histogram features. In Figure 6.2-
6a–6.2-6d we see what occurs when an image is segmented. In the segmented image, the
mean, standard deviation, and skew remain about the same, but the energy goes up and
the entropy goes down. The energy goes up as the image is simplified and the individ-
ual probabilities increase, which also causes the entropy to decrease. In Figure 6.2-6e–-
6.2-6h we see what occurs when an image is enhanced with a histogram stretch. In the
enhanced image the energy and entropy remain about the same, but the mean, standard

(a) (b)

(c) (d)

Mean Standard Dev Skew Energy Entropy
174 73 –0.33 0.014 7.11

Mean Standard Dev Skew Energy Entropy
173 78 –0.31 0.309 1.91

Figure 6.2-6
Histogram features. (a) Original bright image, (b) histogram of image (a), (c) image (a) after segmentation,
(d) histogram of image (c), (e) original dark image, (f) histogram of image (e), (g) image (e) after histogram stretch,
(h) histogram of image (g). Comparing images (a) and (c), we observe that as the image is simplified the energy
goes up and the entropy goes down; also note that these images have negatively skewed histograms. Comparing
images (e) and (g), we observe that as we stretch the histogram, the energy and entropy do not change much, but
the standard deviation increases; also note these images have positively skewed histograms.

346	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

deviation, and skew are changed. The mean increases due to an increase in average
brightness, the standard deviation increases from the spread in the histogram increas-
ing that also causes the skew to decrease. Note that, in general, the histogram energy is
the opposite of what might be expected—a simpler image has more histogram energy
than a complex image.

Second-order histogram features, which contain information about the relationship
between pixels, are used to obtain texture information, so these are in Section 6.2.5: Texture
Features.

(e) (f)

(g) (h)

Mean Standard Dev Skew Energy Entropy
37 35 5.3 0.050 4.94

Mean Standard Dev Skew Energy Entropy
75 56 1.7 0.051 4.76

Figure 6.2-6 (continued)
Histogram features. (a) Original bright image, (b) histogram of image (a), (c) image (a) after segmentation,
(d) histogram o image (c), (e) original dark image, (f) histogram of image (e), (g) image (e) after histogram stretch,
(h) histogram of image (g). Comparing images (a) and (c), we observe that as the image is simplified the energy
goes up and the entropy goes down; also note that these images have negatively skewed histograms. Comparing
images (e) and (g), we observe that as we stretch the histogram, the energy and entropy do not change much, but
the standard deviation increases; also note these images have positively skewed histograms.

Feature Analysis and Pattern Classification	 347

© 2011 by Taylor & Francis Group, LLC

6.2.3  Color Features

Color is useful in many applications. Typical color images consisting of three color planes,
red, green, and blue, can be treated as three separate gray-scale images. This approach
allows us to use any of the gray-level features, but with three times as many, one for each
of the three color bands. By using this approach we may be able to determine that informa-
tion useful for the application is contained in one, two, or all three of the color bands.

Often, when interested in color features, we want to incorporate information into the
feature vector pertaining to the relationship between the color bands. These relationships
are found by considering normalized color, or color differences. This is done by using the
color transforms defined in Chapter 2, and then applying to this new representation the
features previously defined. For example, the chromaticity transform provides a normal-
ized color representation, which will decouple the image brightness from the color itself.
Many color transforms, including HSI, HSL, HSV, Spherical, Cylindrical, Lu*v*, and La*b*,
will provide us with two color components and a brightness component. The YIQ and
YCrCb provide us with color difference components that signify the relative color. After
performing a color transform, depending on the application, we may be interested in a
specific aspect of the color information, such as hue or saturation. If this is the case, we can
extract features from the band of interest.

The color features chosen will be primarily application-specific, but caution must be taken
in selecting color features. Typically, some form of relative color is best, because most absolute
color measures are not very robust. In many applications the environment is not carefully
controlled, so a system developed under specific color conditions using absolute color may
not function properly in a different environment. Remember all the factors that contribute
to the color—the lighting, the sensors, any optical filtering, and any print or photographic
process in the system model. If any of these factors change then any absolute color measures,
such as red, green, or blue, will change. An application specific relative color measure can be
defined, or a known color standard can be used for comparison. When using a known color
standard, the system can be calibrated if the conditions change.

An example of the problem caused by using absolute color arose during development
of a system to automatically diagnosis skin tumors. An algorithm was found that seemed
to always correctly identify melanoma (a deadly form of skin cancer). At one point in the
research, the algorithm ceased to work. What had happened? A big mistake had been
made in developing the algorithm—it had relied on some absolute color measures. The
initial set of melanoma images had been digitized from Ektachrome slides, and the non-
melanoma tumor images had been digitized from Kodachrome slides. Due to the types of
film involved, all the melanomas had a blue tint (Ektachrome), while all the other tumor
images had a red tint (Kodachrome). Thus, with the first set of tumor images, the use of
average color alone provided an easy way to differentiate between the melanoma and non-
melanoma tumors. As more tumor images became available, both melanoma and nonmel-
anoma tumors were digitized from Kodachrome (red tint), so the identification algorithm
ceased to work. A senior member of the research team had a similar experience while
developing a tank recognition algorithm based on Ektachrome images of Soviet tanks,
and Kodachrome images of U.S. tanks. Avoid absolute color measures for features, except
under very carefully controlled conditions.

6.2.4  Spectral Features

With regard to spectral features, or frequency/sequency-domain based features, the
primary metric is power. How much spectral power do we find in various parts of the

348	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

spectrum? Texture is often measured by looking for peaks in the power spectrum, espe-
cially if the texture is periodic or directional. The power spectrum is defined by the mag-
nitude of the spectral components squared:

	 POWER |T u,v= ()|
2

Although it is typical to use the Fourier transform for these features, we have used the
generic T(u,v) as any of the transforms can be used. The standard approach for spectral
features is to find power in various spectral regions, and these regions can be defined
as rings, sectors, or boxes. In Figure 6.2-7 we see examples of these types of spectral
regions, for both types of symmetry that we have considered. We then measure the
power in a region of interest by summing the power over the range of frequencies of
interest:

	 SPECTRAL REGION POWER |T u,v
v REGIONu R

=
∈∈
∑ ()|

2

EEGION
∑

The box is the easiest to define, by setting limits on u and v.

u
v

u X X X

X

v
u
v

u
v

u

r1 r2

v

Fourier transform symmetry
X = origin

Cosine and Walsh–Hadamard transform symmetry
X = origin

u

r θ2 θ1

v

X

Box is defined by
limits on u and v

Ring is defined by
limits on the radii

from origin X.

Sector is defined
by radius ‘r’ and
angles θ1 and θ2

Box symmetry Ring symmetry Sector symmetry

(a) (b) (c)

(d) (e) (f)

r1 r2

X

Figure 6.2-7
Spectral regions.

Feature Analysis and Pattern Classification	 349

© 2011 by Taylor & Francis Group, LLC

Example 6.2.1

We may be interested in all spatial frequencies at a specific horizontal frequency, v = 20. So we
define a spectral region as

	 Region of interest 2 2

19 21

=
− < <

< <

⎧

⎨
⎪

⎩
⎪

N
u

N

v

Then we calculate the power in this region by summing over this range of u and v. Note that
u should vary from 0 to N – 1 for non-Fourier symmetry.

The ring is defined by two radii, r1 and r2. These are measured from the origin, and the
summation limits on u and v, for Fourier symmetry, are

	 u r u r

v r u v r u

⇒ − ≤ <

⇒ ± − ≤ < ± −

2 2

1
2 2

2
2 2

(Note: For non-Fourier symmetry u will range from 0 to r2, and v ranges over the positive
square roots only.) The sector is defined by a radius, r, and two angles, θ1 and θ2. The limits
on the summation are defined by

	 θ θ1
1

2<
⎛
⎝⎜

⎞
⎠⎟
<−tan

v
u

	 u v r2 2 2+ ≤

The sector measurement will find spatial frequency power of a specific orientation what-
ever the frequency (limited only by the radius), while the ring measure will find spa-
tial frequency power at specific frequencies regardless of orientation. In terms of image
objects, the sector measure will tend to be size invariant, and the ring measure will tend
to be rotation invariant.

Due to the redundancy in the Fourier spectral symmetry we often measure the sector
power over one-half the spectrum, and the ring power over the other half of the spectrum
(see Figure 6.2-8). In practice we may want to normalize these numbers, as they get very
large, by dividing by the DC (average) value—this is done in Computer Vision and Image
Processing tools (CVIPtools) spectral feature extraction. (Note: In CVIPtools if the DC
value in the magnitude image of a Fourier transform is examined, it needs to be divided by
N × N to get the true average value, due to the implementation of the Fourier transform.)

6.2.5  Texture Features

Texture is related to properties such as smoothness, coarseness, roughness, and regular
patterns. Spectral features can be used as texture features; for example, the ring power can
be used to find texture. High power in small radii (ring 1) corresponds to low frequency
and thus coarse textures—those with large element sizes; as the ring number increases the
frequencies are higher and correspond to finer textures. As the frequency gets very high,
for example in the outer ring, the textures will appear very fine and may actually appear

350	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

smooth. This is really a function of the human visual system’s perception—we see texture
as rapidly changing variation in the brightness due to the object scattering the light. At
some point the variation in brightness becomes too fast for us to perceive (see Chapter 7),
so the texture appears smooth.

Texture is also a function of image size relative to the object, as well as magnification of
the original image. Remember that the frequency as we have defined it is relative to the
image size. Figure 6.2-9 shows a corduroy material at different magnifications, along with
the corresponding spectra. Here we see that a higher magnification corresponds to larger
element size and lower frequency energy, and as we “zoom out” the element size decreases
and the energy spreads out to higher frequencies.

If the magnification is unknown or variable, but we have a known orientation, the spec-
tral sector measures may be useful for providing us with textural information. The power
in a sector includes all frequencies, which corresponds to all sizes of elements or magnifi-
cations, but has a fixed orientation. In practice, the spectral features can be calculated for 10
or 20 (or more) rings and sectors and the magnitudes plotted to look for signature shapes
that will correspond to specific textures.

Another approach to measuring texture is to use the second-order histogram of the gray
levels based on a joint probability distribution model. The second-order histogram provides
statistics based on pairs of pixels and their corresponding gray levels. The second-order
histogram methods are also referred to as gray-level co-occurrence matrix or gray-level depen-
dency matrix methods. These features are based on two parameters: distance and angle.
The distance is the pixel distance between the pairs of pixels that are used for the second-
order statistics, and the angle refers to the angle between the pixel pairs. Typically, four
angles are used corresponding to vertical, horizontal, and two diagonal directions. The
pixel distance chosen depends on the resolution of the image and the coarseness of the tex-
ture of interest, although it is typical to use small values, such as 1–6. To make the features
rotationally invariant they can be calculated for all angles and then averaged (in CVIPtools
the average and the range of these features are returned for the four angles).

F (u,v)

With Fourier spectrum symmetry, which
contains redundant information, we often
measure ring power over half the spectrum,
and sector power over the other half.

Figure 6.2-8
Fourier spectrum power.

Feature Analysis and Pattern Classification	 351

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 6.2-9
Texture at varying magnification and their spectra. (a) Image 1 at a high magnification corresponding to lower
frequency, (b) the Fourier magnitude spectrum of image 1, (c) Image 2 at a medium magnification correspond-
ing to medium frequency, (d) the Fourier magnitude spectrum of image 2, (e) Image 3 at a low magnification
corresponding to higher frequency, (f) the Fourier magnitude spectrum of image 3 (Note: the Fourier spectra
were remapped to BYTE, and then histogram equalized).

U
FM

|4
84

94
2|

14
35

60
95

06

352	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Numerous features have been derived via these methods, but these five have been found
to be the most useful: energy, inertia, correlation, inverse difference, and entropy. The
energy measures homogeneity, or smoothness, by calculating the distribution among the
gray levels. The inertia is a measure of contrast, while the correlation measures similarity
between pixels at the specified distance. The inverse difference provides a measure for
the local homogeneity of the texture, and the entropy measures the information content.
Note that entropy and energy tend to be inversely related—a smooth area will have higher
energy, but smaller entropy. Its smoothness means that most of the pixels are similar so
there is not much information content (entropy).

Calculation of these texture features is done as follows. Let cij be the elements in the co-
occurrence matrix normalized by dividing by the number of pixel pairs in the matrix, and
assume a given distance and angle (direction). The equations are given by

	 Energy cij
ji

= ∑∑ 2

	 Inertia i j cij
ji

= −()∑∑ 2

	

Correlation i j c
x y

x y ij

ji

= − −∑∑1
σ σ

μ μ()()

where: μμ

μ

σ μ

x ij

ji

y ij

ij

x x

i c

j c

i

=

=

= −

∑∑

∑∑and:

and: 2 ()22

2 2

c

j c

ij

ji

y y ij

ij

∑∑

∑∑= −and: σ μ() ;

	 Inverse Difference
c

i j
for i jij

ji

 ; :=
−

≠∑∑

	 Entropy c cij ij

ji

= − ∑∑ log2

An example of the gray-level co-occurrence matrices is shown in Figure 6.2-10. Note in
the calculation of these matrices that each pixel pair, with coordinates [(r1,c1), (r2,c2)], actu-
ally represents two pixel pairs where the second one is represented by [(r2,c2), (r1,c1)]. In
other words, for example, when counting horizontal pixel pairs first look left to right (0°),
and then right to left (180°) across the image. Also remember, before calculating the texture
features, to normalize by dividing by the number of pixel pairs in the matrix. The figure
illustrates the complexity involved with a small image and a small number of gray levels,

Feature Analysis and Pattern Classification	 353

© 2011 by Taylor & Francis Group, LLC

so in practice the number of gray levels may be quantized to reduce the number of calcula-
tions involved, and to reduce effects caused by noise in the images.

Laws texture energy masks are another method for measuring texture. They work by find-
ing the average gray Level, Edges, Spots, Ripples, and Waves in the image. They are based
on the following five vectors:

	

L

E

S

5

5

5

1 4 6 4 1

1 2 0 2 1

1

= ()

= − −()

= −

, , , ,

, , , ,

, 0 2 0 1

1 4 6 4 1

1 2 0

5

5

, , ,

, , , ,

, ,

−()

= − −()

= −

R

W ,, ,−()2 1

Gray level 0 1 2 3

Gray level

#(3,3)#(3,2)#(3,1)#(3,0)

#(2,3)#(2,2)#(2,1)#(2,0)

#(1,3)#(1,2)#(1,1)#(1,0)

#(0,3)#(0,2)#(0,1)#(0,0)

3

2

1

0

3333

0321

3322

0011

8201

2210

0121

1012

4114

1230

1300

4000

2222

2210

2100

2000

4202

2021

0200

2100

0°180°

90°

135°

315°

45°

225°
270°

(c) (d) (e) (f)

(g)

(b)(a)

Figure 6.2-10
Example of gray-level co-occurrence matrices. Given a 4 × 4 image with 4 possible gray levels, 2-bits per pixel,
and using a distance d = 1, we have: (a) general form of the matrix, where each entry is the number (#) of occur-
rences of the pair listed, (b) an example 4 × 4 image, (c) the matrix corresponding to the horizontal direction
(0°and 180°), (d) the matrix corresponding to the vertical direction (90°and 270°), (e) the matrix corresponding
to the left diagonal direction (135° and 315°), (f) the matrix corresponding to the right diagonal direction (45°
and 225°), (g) angle definitions. Remember it is important to normalize the values in the co-occurrence matrix by
dividing by the number of pixel pairs in the matrix before calculating the texture features.

354	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

These are used to generate the Laws 5 × 5 filter masks by finding the vector outer product
of each pair of vectors. For example, using L5 and S5:

	

− −

− −

− −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

1 0 2 0 1
4 0 8 0 4
6 0 12 0 6
4 0 8 0 4
1 0 2 0 1⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The first step to applying these masks is to preprocess the image to remove artifacts caused
by uneven lighting (actually this technique is useful as a preprocessing step for all texture
measures). The easiest method for this is to subtract the local average from every pixel,
using, for example, a 15 × 15 pixel size window. To do this move the window across the
image, such as is done with convolution, find the average gray-level value in the window
and then subtract this average from the current pixel in the center of the window. Be sure
to put the output into another image buffer (structure), so the current image is not over-
written. This will create an image with average local gray levels close to zero.

The next step is to convolve the masks with the image to produce the texture filtered
images, Fk(r,c) for the kth filter mask. These texture filtered images are used to produce a
texture energy map, Ek for the kth filter:

	 E r c F i jk k

i r

r

j c

c

(,) (,)=
= −

+

= −

+

∑∑
7

7

7

7

For these energy maps, the range on the summations depend on the window size, here we
specified a window size of 15 × 15. These energy maps are then used to generate a texture
feature vector for each pixel, which can be used for texture classification.

6.2.6  Feature Extraction with CVIPtools

CVIPtools allows the user to extract features from objects within the image. This is done
by using the original image and a segmented or mask image to define the location of
the object. Figure 6.2-11 shows the CVIPtools main window and the Analysis → Features
window. To extract features we need to enter the original image, the segmented image,
a feature file name, select the desired features, and select the image object coordinates
by clicking on any image with the mouse. Note that a name for the object class can be
entered, this is optional, but necessary for pattern classification. The original image can
be selected via the dropdown or with the keyboard Ctrl-key and a left mouse click, and
the segmented can be selected via the dropdown or with the keyboard Alt-key and a left
mouse click.

The CVIPtools software can be used for feature extraction in three primary ways:
(1) extract features for the entire image, (2) extract features for an image object using a
segmented image, or (3) extract features for an image object using a mask image. To extract
features from the entire image, create an all white image with Utilities → Create → Rectangle
that is the same size as the original image, and use that as the segmented image (Note: if
the binary object features or the RST-invariant features are used with this method, features

Feature Analysis and Pattern Classification	 355

© 2011 by Taylor & Francis Group, LLC

will be extracted for the object; that is, the rectangle object of the all white image). To use
a segmented image, select the Segmentation tab on the Analysis window, perform the seg-
mentation method along with any postsegmentation morphological filtering to get the
desired objects, and use the output image as the segmented image in the Features window.
If segmentation does not provide the desired results, use Utilities → Create → Border Mask to
create an image with an outline of the desired object (see Figure 6.2-12).

After the segmented or mask image is created, the selected features are extracted with
the Apply button. CVIPtools does this by labeling the segmented image, selecting the object
corresponding to the row and column coordinates, and then using the labeled image as a
mask on the original image to extract the features for the selected object (see Table 6.2 for
details). The features will be written to a feature file, or can be saved as an Excel spread-
sheet, as described in Chapter 3 (see Figure 3.3-21). The original feature files can be found

4

1

23

5

Figure 6.2-11
Using CVIPtools analysis → Features Window for feature extraction. (1) Select an original image from which
you want to extract features. It can be selected via the dropdown arrow as shown, or by using the keyboard/
mouse with a <Ctrl>/left mouse click. (2) Select a segmented image; this can be a rectangle that has been created,
an image that has been segmented, or a border mask that has been created. It can be selected via the dropdown
arrow as shown, or by using the keyboard/mouse with a <Alt>/left mouseclick. (3) Enter a name for the feature
file using the Save As button. (4) Select the desired features; all features of a specific type can be selected with the
Select All button, or individual features can be selected with the checkboxes. (5) Enter any coordinates within
the object by clicking on the object in the Original or the Segmented image. (6) A Class for the object is optional,
but is very useful as it will appear in the feature file and is necessary for pattern classification.

356	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Figure 6.2-12
Creating a border mask image to extract features. (a) Selecting Utilities → Create → Border Mask function, (b) after
using the mouse to draw a border, by holding the Control key on the keyboard and using the left mouse button
(hold and drag), and then clicking on Apply. The border will be shown with a crawling dotted line, and auto-
matically complete the closed curve if you release the mouse button before the ends are connected. The border
mask image can now be used as the Segmented Image in the Features window to extract features relating to the
outlined object.

Feature Analysis and Pattern Classification	 357

© 2011 by Taylor & Francis Group, LLC

in the CVIPtools main directory in the bin/features directory. During processing the feature
file can be viewed with the View Feature File button, and the labeled image can be viewed
with the View Labeled Image button.

6.3  Feature Analysis

After the features have been extracted, feature analysis is important to aid in the feature
selection process. Initially, the features are selected based on the understanding of the
problem, and the developer’s experience. Now that the features have been extracted,
they can be carefully examined to see what ones are the most useful and put back
through the application feedback loop (see Figure 6.1-1) in the development process. To
understand the feature analysis process, we need to define the mathematical tools to use;
including feature vectors, feature spaces, distance, and similarity measure to compare
feature vectors, and various methods needed to preprocess the data for development of
pattern classification algorithms. After these are understood, the feature analysis pro-
cess begins with selection of the tools and methods that will be used for our specific
imaging problem.

6.3.1  Feature Vectors and Feature Spaces

A feature vector is one method to represent an image, or part of an image (an object), by
finding measurements on a set of features. The feature vector is an n-dimensional vector
that contains these measurements, where n is the number of features. The measurements

Table 6.2

Feature Extraction with CVIPtools

Feature Category How the Features are Extracted

Binary object The labeled image is used by selecting the object corresponding to the row
and column coordinates and treating the object as a binary image with the
object = “1” and the background = “0.”

RST-invariant moment-based The labeled image is used by selecting the object corresponding to the row
and column coordinates and treating the object as a binary image with the
object = “1” and the background = “0.”

Histogram The labeled image is used by selecting the object corresponding to the row
and column coordinates, and then this binary object is used as a mask on
the original image to extract features. This is done by only including in the
calculations pixels that are part of the object.

Texture The labeled image is used by selecting the object corresponding to the row
and column coordinates, and then this binary object is used as a mask on
the original image to extract features. This is done by only including in the
calculations pixels that are part of the object.

Spectral The labeled image is used by selecting the object corresponding to the row
and column coordinates, and then this binary object is used as a mask on
the original image to extract features. This is done by creating a black
image (all zeros) with dimensions a power of 2, imbedding the object from
the original image within the black image, and then calculating the
Fourier transform on this image.

U
FM

|4
84

94
2|

14
35

60
94

99

358	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

may be symbolic, numerical, or both. An example of a symbolic feature is color such as
“blue” or “red”; an example of a numerical feature is the area of an object. If we take a
symbolic feature and assign a number to it, it becomes a numerical feature. Care must be
taken in assigning numbers to symbolic features, so that the numbers are assigned in a
meaningful way. For example, with color we normally think of the hue by its name such as
“orange” or “magenta.” In this case, we could perform an HSL transform on the RGB data,
and use the H (hue) value as a numerical color feature. But with the HSL transform the hue
value ranges from 0° to 360°, and 0° is “next to” 360°, so it would be invalid to compare two
colors by simply subtracting the two hue values.

One method to deal with symbolic features is through the application of fuzzy features
and fuzzy measures. A fuzzy feature measure takes on a value between 0 and 1. Unlike the
numeric features where we have a value that has been measured in the real world, fuzzy
feature values represent how likely it is that a specific feature is present or “true” for a
given feature vector. The closer the value is to 1, the more likely that the feature is a part
of the feature vector in question (it is “true” for that feature vector). As the fuzzy value
approaches 1/2 we have no information as to if the feature is “true,” or contained in, this
feature vector. If it is less than 1/2, most likely it does not belong to the feature vector. If it
is greater than 1/2 it is more likely to belong to the feature vector. A value of 0 means the
feature is absent or false.

The feature vector can be used to classify an object, or provide us with condensed
higher-level image information. Associated with the feature vector is a mathematical
abstraction called a feature space, which is also n-dimensional and is created to allow
visualization of feature vectors, and relationships between them. With two and three-
dimensional feature vectors it is modeled as a geometric construct with perpendicular
axes and created by plotting each feature measurement along one axis (see Figure 6.3-1).
For n-dimensional feature vectors it is an abstract mathematical construction called a
hyperspace. As we shall see the creation of the feature space allows us to define distance
and similarity measures that are used to compare feature vectors and aid in the classifica-
tion of unknown samples.

f2

f1

xxx xx
x x x x

x x xxxx oooo o o
o ooo

x x o o o
x x oo o

x x x o
x o o o

o o oo o

Figure 6.3-1
A two-dimensional feature space. This shows a two-dimensional feature space defined by feature vectors,

F =
⎡

⎣
⎢

⎤

⎦
⎥

f

f
1

2

, and two classes represented by x and o. Each x and o represents one sample in the feature space

defined

by its values for f1 and f2. One of the goals of feature analysis and pattern classification is to find clusters

in the feature space which correspond to different classes.

Feature Analysis and Pattern Classification	 359

© 2011 by Taylor & Francis Group, LLC

Example 6.3.1

We are working on a computer vision problem for robotic control. We need to control a robotic
gripper that picks parts from an assembly line and puts them into boxes. In order to do this,
we need to determine: (1) Where the object is in the two-dimensional plane in which the
objects lie; and (2) What type of object it is; one type goes into Box A, another type goes into
Box B. First, we define the feature vector that will solve this problem. We determine that
knowing the area, and center of area of the object, defined by an (r,c) pair, we will locate it
in space. We determine that if we also know the perimeter we can identify the object. So our
feature vector contains four feature measures, and the feature space is four-dimensional. We
can define the feature vector as [area, r, c, perimeter].

6.3.2 D istance and Similarity Measures

The feature vector is meant to represent the object and will be used to classify it. To per-
form the classification we need methods to compare two feature vectors. The primary
methods are to either measure the difference between the two, or to measure the similarity.
Two vectors that are closely related will have a small difference and a large similarity.

The difference can be measured by a distance measure in the n-dimensional feature
space; the bigger the distance between two vectors, the greater the difference. Euclidean
distance is the most common metric for measuring the distance between two vectors, and
is given by the square root of the sum of the squares of the differences between vector
components. Given two vectors A and B, where

	 A B=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

a

a

a

and

b

b

bn n

1

2

1

2

� �

⎥⎥
⎥
⎥
⎥

then the Euclidean distance is given by

	 d A B a b a b + a b + aE i i

i

n

(,) ()= − = − −
=
∑ 2

1

1 2() () (1
2

2
2

33
2 2) ()− −b + + a bn n3 …

Another distance measure, called the city block or absolute value metric, is defined as follows
(using A and B as above):

	 d A B a bCB

i=

n

i i(,) = −∑
1

This metric is computationally faster than the Euclidean distance, but gives similar
results. A distance metric that considers only largest difference is the maximum value met-
ric defined by

	 d A B |a b |,|a b |,...,|a b |MAX n n(,) max= − − −{ }1 1 2 2

360	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

We can see that this will measure the vector component with the maximum distance,
which is useful for some applications. A generalized distance metric is the Minkowski dis-
tance defined as

	 d A B a b rM i i
r

i

n r

(,)

/

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑
1

1

where is possitive integer

The Minkowski distance is referred to as generalized because, for instance, if r = 2 it is the
same as Euclidean distance and when r = 1 it is the city block metric.

The second type of metric used for comparing two feature vectors is the similarity mea-
sure. Two vectors that are close in the feature space will have a large similarity measure.
The most common form of the similarity measure is one that we have already seen, the
vector inner product. Using our definitions for the two vectors A and B, we can define the
vector inner product by the following equation:

	 s A B a b = a b + a b + ...+ a bIP i i n n

i

n

(,) =
=
∑ ()1 1 2 2

1

Another commonly used similarity measure is the Tanimoto metric, defined as

	 s A B
a b

a b a

T

i i

i

n

i i

i

n

i

n

i=

n

i i

(,) =

+ −

=

==

∑

∑∑ ∑
1

2 2

11 1

bb

This metric takes on values between 0 and 1, which can be thought of as a “percent of
similarity” since the value is 1 (100%) for identical vectors and gets smaller as the vectors
get farther apart.

The correlation coefficient is also frequently used as a similarity metric. Note that this met-
ric assumes that the features have been normalized with standard normal density (SND)
(see the next section). Also called Pearson’s correlation coefficient or the correlation factor, it is
defined as follows:

	 Correlation coefficient S
a a b b

cc

i i
i = =

−() −()
=1

nn

i i
i

n

i

n
a a b b

∑
∑∑ −() −()

==

2 2

11

where a n ai
n

i= ∑ =1 1/ , and b n bi
n

i= ∑ =1 1/ ; the average or mean values of the vectors. Note
that this metric takes on a value between –1 and +1. Two identical vectors will have a value
of +1, and two vectors with identical magnitudes for each feature, but opposite signs will
have a correlation coefficient of –1:

Feature Analysis and Pattern Classification	 361

© 2011 by Taylor & Francis Group, LLC

Example 6.3.2

We have two feature vectors:

	 A B=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2
3

1
2
3

 and

To find the correlation coefficient: a b= + + = = =
1
3
1 2 3

6
3

2()

	 and Scc =
− − + − − + − −

−

()() ()() ()()
[(

1 2 1 2 2 2 2 2 3 2 3 2
1 22 2 2 3 2 1 2 2 2 3 2

2
2 2 2 2 2 2) () ()][() () ()]+ − + − − + − + −

=
22

1=

Alternately, by negating the above vector B, we have

	 A B=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2
3

1
2
3

 and

To find the correlation coefficient: a = + + = =
1
3
1 2 3

6
3

2() . In this case we have a different

mean for B: b = − + − + − =
−

= −
1
3

1 2 3
6
3

2() ,

	 and Scc =
− − + + − − + + − − +()() ()() ()()

[
1 2 1 2 2 2 2 2 3 2 3 2

(() () ()][() () (1 2 2 2 3 2 1 2 2 2 32 2 2 2 2− + − + − − + + − + + − + 22
2
2

1
2)]
=
−

= −

If two feature vectors have a correlation coefficient of 1 we say they are maximally posi-
tively correlated; this means as one varies the other one varies in the same manner. In
other words, they are very much alike or very similar. If two feature vectors have a cor-
relation coefficient of –1 we say they are maximally negatively correlated, which means as
one changes the other one changes in the opposite direction. Therefore these two feature
vectors, with a negative correlation, are not very similar and tend to be opposite, as in the
following additional example.

Example 6.3.3

	 A B=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2
3

3
2
1

 and

To find the correlation coefficient: a b= + + = = =
1
3
1 2 3

6
3

2()

	 and Scc =
− − + − − + − −

−

()() ()() ()()
[(

1 2 3 2 2 2 2 2 3 2 1 2
1 22 2 2 3 2 3 2 2 2 1 22 2 2 2 2 2) () ()][() () ()]+ − + − − + − + −

=
−22
2

1= −

362	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Note that this example illustrates that for negative correlation, we do not need a sign
change in the feature values, but simply have a case where as one goes up the other goes
down. Note that here, for these values, feature one is minimum for vector A and maximum
for vector B, and so on. When two vectors are uncorrelated they will have a correlation
coefficient of 0—these are two vectors that have nothing in common, they are orthogonal.
As the value of this similarity metric goes from 0 to +1, feature vectors are getting more
similar. As the correlation coefficient goes from 0 down to –1, they are becoming more
dissimilar.

Fuzzy features must be treated with fuzzy methods. Remember fuzzy features take on
values between 0 and 1, and the feature is present or “true” as we get closer to 1. The fea-
ture is absent or false as we get closer to 0. We can define the similarity between two fuzzy
feature vectors as follows:

	 s s a bf i i

i

n

() (,)A B, =
=
∑

1
where

	 s a b a b a bi i i i i i(,) max [min(,), min(,)]= − −1 1

The range of values for fuzzy self-similarity is from 0.5n to n, where n is the number of
features. The following example illustrates the varying similarity a fuzzy feature vector
can have to itself, the self-similarity.

Example 6.3.4

Given the following four fuzzy feature vectors:

	 A B C=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1
1
1

1
0
1

0 5
0 5
0 3

.
.
.

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
.
.

D
0 5
0 5
0 5

Find the similarity these have with themselves, the self-similarity:

	 s s a bf i i

i

n

(,) (,) {max [min(,), A A = = − −
=
∑

1

3 1 1 1 1 mmin(,)]} {max(,)}1 1 3 0 1 3= =

	 s s a bf i i

i

n

() (,) {max [min(,), B B, = = − −
=
∑

1

2 1 1 1 1 mmin(,)]}

max[(,), ()]

1 1

0 1 1 0 0 0 3+ − − =min min

	 s s a bf i i

i

n

(,) (,) {max [min(. , C C = = − −
=
∑

1

2 1 0 5 1 0..), min(. , .)]}

max [(. , .)

5 0 5 0 5

1 0 3 1 0 3+ − −min ,, (. .)] .min 0 30 3 1 7=

	 s s a bf i i

i

n

(,) (,) {max [min(. , D D = = − −
=
∑

1

3 1 0 5 1 0..), min (. , .)]} .5 0 5 0 5 1 5=

Feature Analysis and Pattern Classification	 363

© 2011 by Taylor & Francis Group, LLC

This example shows that as long as the values are all 1 or 0, we will have a maximum
self-similarity. That is, for each feature we know if it is present (true), or not. When all the
values are 0.5, we get minimal self-similarity. Because we know nothing about this feature
vector or any of its feature components! Each feature might be present (true), or absent
(false). For a fuzzy feature to have a value of 0.5 simply means we know nothing about it.

However, we are interested in comparison of two different fuzzy feature vectors. The
following example show how fuzzy features and their similarity differ from normal, non-
fuzzy feature vectors.

Example 6.3.5

Given the following four fuzzy feature vectors:

	 A B C=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1
1
1

0 75
0 75
0 75

.
.
.

00 5
0 5
0 5

0 25
0 25
0 25

.

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥D ⎥⎥
⎥

We note that using standard vector distance metrics, such as Euclidean distance, vectors A
and B, and C and D are equally far apart. However, comparing the same pairs using fuzzy
similarity we find

	
s s a bf i i

i

n

(,) (,) {max[min(. , .A B = = − −
=
∑

1

3 1 0 75 1 0 775 1 0 75

3 0 25 0 75 2 25

),min(, .)]}

{max(. , .)} .= =

	
s s a bf i i

i

n

(,) (,) {max[min(. , .C D = = − −
=
∑

1

3 1 0 5 1 0 255 0 5 0 25

3 0 5 0 25 1 5

),min(. , .)]}

{max(. , .)} .= =

This example shows that as the vectors get closer to the “center,” where the values approach
0.5, the similarity decreases because the actual values are less certain. In other words the
fuzzy similarity depends not only on the distance between the two vectors, but also how
close they are to the center of the feature space. Remember, in fuzzy feature space, as we
approach 1 the feature is certain to exist or is true, and as 0 is approached we know the
feature is absent or false. The range on the similarity value is between 0 and the number
of features n.

Example 6.3.6

Given the following four fuzzy feature vectors, and finding the similarity between A and B,
and between C and D:

	 A B C=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1
1
1

0 75
0 75
0 75

.
.
.

00
0
0

0 25
0 25
0 25

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
.
.

D

U
FM

|4
84

94
2|

14
35

60
95

09

364	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	
s s a bf i i

i

n

(,) (,) {max[min(, .)A B = = − −
=
∑

1

3 1 1 1 0 75 ,,min(, .)]}

{max(, .)} .

1 0 75

3 0 0 75 2 25= =

	
s s a bf i i

i

n

(,) (,) {max[min(, .)C D = = − −
=
∑

1

3 1 0 1 0 25 ,,min(, .)]}

{max(. ,)} .

0 0 25

3 0 75 0 2 25= =

Note that these pairs of feature vectors are “equally” similar, but one pair is at the high end
and one is at the low end. If we find the similarity between the pairs A and D, and between
B and C:

	
s s a bf i i

i

n

(,) (,) {max[min(, .)A D = = − −
=
∑

1

3 1 1 1 0 25 ,,min(, .)]}

{max(, .)} .

1 0 25

3 0 0 25 0 75= =

	
s s a bf i i

i

n

(,) (,) {max[min(. ,)B C = = − −
=
∑

1

3 1 0 75 1 0 ,,min(. ,)]}

{max(, .)} .

0 75 0

3 0 0 25 0 75= =

Note that these pairs are quite dissimilar, so have a low similarity value. Now comparing A
and C:

	
s s a bf i i

i

n

() (,) {max[min(,),miA C, = = − −
=
∑

1

3 1 1 1 0 nn(,)]}

{max(,)}

1 0

3 0 0 0= =

We obtain the minimum lower bound of 0 and observe that these two feature vectors have
maximum dissimilarity.

6.3.3 D ata Preprocessing

Now that we have seen methods to compare two vectors, we need to analyze the set of fea-
ture vectors and prepare them for use in developing the classification algorithm. The data
preprocessing consists of primarily three steps: (1) noise removal, (2) data normalization
and/or decorrelation, and (3) insertion of missing data. Many of the classification algo-
rithm development methods are based on mathematical theory that assumes specific dis-
tributions in the feature data and require data normalization. Typically the assumption is
zero mean, Gaussian distributed data. For some methods it is desirable to have the features
be uncorrelated. In either case the first step is noise removal, also called outlier removal.

An outlier is a data point that is alone very far from the average value. The assumption in
removing it is that it is “bad,” or noisy data. Possibly a mistake was made during its mea-
surement, or it does not really represent the underlying structure. In the development of a
classification algorithm a major part of what we are trying to do is to find a model for the
underlying structure. The sample feature vectors are used to develop this model, so any
“bad” samples will hinder the process. Before any samples are discarded, care must be taken
that they do not represent a subgroup for which we simply do not have enough samples.

Feature Analysis and Pattern Classification	 365

© 2011 by Taylor & Francis Group, LLC

The distance and similarity measures defined before may be biased due to the varying
range on different components of the vector. For example, one component may only range
from 1 to 5 and another may range from 1 to 5000, so a difference of 5 for the first compo-
nent will be maximum, but a difference of 5 for the second feature may be insignificant. It
may help to range-normalize the vector components by dividing by the range on each vector
component, where the range is simply the maximum value for that component minus the
minimum. This is done as follows, given a set of three feature vectors, {F1, F2, F3}, with three
features in each vector:

Example 6.3.7

Given the three feature vectors:

	 F F F1 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

3
50
1

6
100
2

1

2 3, , 110
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

We find range on each component by subtracting the minimum value for that feature from the
maximum value. The first component, or feature, has values of 3, 6, and 1, so the range is

	 MAX – MIN = 6 – 1 = 5

Second component range:

	 MAX – MIN = 100 – 10 = 90

Third component range:

	 MAX – MIN = 2 – 1 = 1

New range-normalized vectors:

	 ʹ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ʹF1

3 5
50 90
1 1

0 6
0 56
1

.
. , FF2 =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ʹ

6 5
100 90
2 1

1 2
1 1
2

.

. , FF3 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 5
10 90
1 1

0 2
0 1
1

.

.

It can be seen that the larger feature vector components (in this case the second component)
will not greatly skew any distance metrics used with these new normalized values. Also note
that relationships between components within a vector are lost.

Another option is to perform unit vector normalization that will modify the feature vector
components so that the range of each is between 0 and 1. To do this we normalize the
vector components by dividing by the Euclidean distance of a vector consisting of all the
values for one feature (component).

Example 6.3.8

Given the three feature vectors:

	 F F F1 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

3
5
1

6
10
2

1
1
1

2 3, ,
⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

366	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

We find the Euclidean distance (from the origin) for each component:
First component Euclidean distance from the origin:

	 () () ()3 0 6 0 1 0 9 36 1 462 2 2− + − + − = + + =

Second component:

	 5 10 1 25 100 1 1262 2 2+ + = + + =

Third component:

	 1 2 1 1 4 1 62 2 2+ + = + + =

Next we normalize by dividing by the corresponding distances:

	 ʹ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≅F1

3
46
5
126
1
6

0 44
0 45
0 4

.

.

. 11

6
46
10
126
2
6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ʹ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2, F

⎥⎥
⎥

≅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ʹ =

⎡

⎣

⎢
0 88
0 89
0 82

1
46
1
126
1
6

.

.

.
, F3

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 14
0 09
0 41

.

.

.

We see here that relationships across components are retained. For example, the first compo-
nent of F1 is still twice the value of the first component of F2—in the original vectors we have 3
and 6, and after normalization 0.44 and 0.88. However, as with all normalization methods the
relationship between feature values within a feature vector are lost. For example, F1 originally
had values of 3, 5, and 1; after normalization all the values are almost the same.

A commonly used statistical-based method to normalize these measures is to take
each vector component and subtract the mean and divide by the standard deviation. This
method can be applied to any of the measures, both distance and similarity, but requires
knowledge of the probability distribution of the feature measurements. In practice the
probability distributions are often estimated by using the existing data. This is done as
follows, given a set of k feature vectors, Fj = {F1, F2, …, Fk}, with n features in each vector:

	

F , , ,j

j

j

nj

f

f

f

j k=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1

2 1 2
�

…for

meaans for

standar

⇒ = =
=
∑m

k
f i ni ij

j

k
1

1 2
1

, , ,…

dd deviation ⇒ = −() = () −
=
∑σ i ij i

j

k

ijk
f m

k
f

1 12

1

2
mm i ni

j

k

2

1

1 2
=
∑ =for , , ,…

Now, for each feature component, we subtract the mean and divide by the standard
deviation:

	 f
f m

i jijSND
ij i

i

=
−

σ
for all ,

Feature Analysis and Pattern Classification	 367

© 2011 by Taylor & Francis Group, LLC

This will give us new feature vectors where the distribution has been normalized so that
the means are 0 and the standard deviations are 1; the resulting distribution on each vector
component is called the standard normal density (SND).

Other linear techniques can be used to limit the feature values to specific ranges, such
as between 0 and 1, by scaling or shifting. Note that in the above equation, we have simply
shifted the data by the mean and scaled it by the standard deviation. To map the data to
a specified range, SMIN to SMAX, but still retain the relationship between the values, we use
min–max normalization:

f
f f

f f
S SijMINMAX

ij MIN

MAX MIN
MAX MIN=

−

−

⎛

⎝⎜
⎞

⎠⎟
−()) + S

S S

MIN

MIN MAX

where
and are minimum and maaximum value for the specified range

and
fMIIN MAXfand are minimum and maximum valuee on the original feature data.

Nonlinear methods may be desired if the data distribution is skewed; that is, not evenly dis-
tributed about the mean. One common method, called softmax scaling, requires two steps:

	

STEP y
f m

r

STEP f
e

ij i

i

ijSMC y

1

2
1

1

⇒ =
−

⇒ =
+ −

σ

for alll i j,

This is essentially a method that compresses the data into the range of 0–1. The first step
is similar to mapping the data to the SND, but with a user defined factor, r. The process is
approximately linear for small values of y with respect to fij, and then compresses the data
exponentially as it gets farther away from the mean. The factor r determines the range of val-
ues for the feature, fij, that will fall into the linear range. In addition to moving the mean and
normalizing the spread of the data, this transform will change the shape of the distribution.

If the data normalization techniques are applied take care that the method selected will
serve the application; since they will move the mean, and change the spread and/or shape
of the resulting data distribution. In some cases this may not be desired. If useful informa-
tion is contained in the mean, spread, or shape of the data distribution, be careful not to
lose that information since the choice of the wrong normalization method will effectively
filter it out. Additionally, remember that relationships between features within a vector
will be lost. For some applications this may be important. Also, be aware that the results
will only be useful if the set of sample vectors represent the entire population, including
all the classes. In practice this means that the sample set is large, the more the better. How
many? It depends on the application. In general, as many as are practical for the applica-
tion and as many as the development schedule allows.

Performing a principal components transform (PCT) in the n-dimensional feature space
provides new features that are linear transforms of the original features, and are uncor-
related. This is desirable for some classification algorithm development methods, such
as neural networks. Use of the PCT, also referred to as principal components analysis
(PCA), is also useful for data visualization in feature space. With an n-dimensional fea-
ture space it is very difficult to represent the space visually, although investigation into

368	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

data visualization techniques to address this problem is currently an active research area.
However, a useful tool for feature analysis is to perform the PCT and view the first two or
three components graphically.

The final step in data preprocessing is to insert missing data. This means that we
analyze the distribution of the sample feature vectors and, based on a desired data dis-
tribution, create feature vectors that we think belong and include them in our feature
vector set. Once again, care must be taken in this process so that we do not bias the
results with our artificially generated sample feature vectors. To fully apply the methods
discussed here requires a complete understanding of the problem, including how the
features relate to the desired output and the underlying structure of each feature’s dis-
tribution. Typically this information is unknown, so a trial and error approach is used
during development.

6.4  Pattern Classification

Pattern classification, as related to image analysis, involves taking the features extracted
from the image and using them to automatically classify image objects. This is done by
developing classification algorithms that use the feature information. The distance or sim-
ilarity measures are used for comparing different objects and their feature vectors. In this
section we will define pertinent terms, conceptually discuss the most widely used current
methods, and look in detail at some of the basic algorithms.

The primary uses of pattern classification in image analysis are for computer vision and
image compression applications development. It can be considered a part of feature analysis,
or as a postprocessing step to feature extraction and analysis. Pattern classification is typi-
cally the final step in the development of a computer vision algorithm, since in these types
of applications the goal is to identify objects (or parts of objects) in order for the computer
to perform some vision-related task. These tasks range from computer diagnosis of medical
images to object classification for robotic control. In the case of image compression, we want
to remove redundant information from the image, and compress important information as
much as possible. One way to compress information is to find a higher-level representation
of it, which is exactly what feature analysis and pattern classification is all about—finding a
single class that will represent many pixel values.

6.4.1 A lgorithm Development: Training and Testing Methods

To develop a classification algorithm, we need to divide our data into a training set and a
test set. The training set is used for algorithm development, and the test set is used to test
the algorithm for success. If this is not done, and we test the algorithm with the same set
with which it was developed, the success we measure may be an invalid indicator of suc-
cess on any other set of images. In addition, to work properly, both the training and test
sets should completely represent all types of images that will be seen in the application
domain. If this is not the case, the success we measure with the test set may not be a good
predictor of success with the application. The use of two distinct sets of images provides
us with results that are unbiased, and allows us to have confidence that the success mea-
sured during development is a good predictor of the success we can expect to achieve in
the actual application.

Feature Analysis and Pattern Classification	 369

© 2011 by Taylor & Francis Group, LLC

The selection of the two sets should be done before development starts, to avoid biasing
the test results. The size of the sets depends on many factors, but in practice we typically
split the available images into two equal-sized groups. Theoretically, we want to maxi-
mize the size of the training set to develop the best algorithm, but the larger the test set is,
the more confidence we have that the results are indicative of application success. If time
allows, it is often instructive to use increasingly larger training sets (randomly selected),
and analyze the results. What we expect to achieve is an increasing success rate as the
training set size increases. If this does not happen we need to verify that our training set(s)
actually represents the domain of interest. It may be that there are not enough samples in
the training set, or it may be that the set of features being used is incomplete. Figure 6.4-1
shows the results from an experiment to classify skin tumors that illustrates this.

Training set with 13 features

0

20

40

60

80

100
(a) (b)

(c)

0 20 40 60 80 100
Training set as percent of entire set

Pe
rc

en
t t

es
t s

et
 co

rr
ec

tly
 id

en
tif

ie
d

No
Total
Yes

Training set with 15 features

0

20

40

60

80

100

0 20 40 60 80 100
Training set as percent of entire set

Pe
rc

en
t t

es
t s

et
 co

rr
ec

tly
 id

en
tif

ie
d

No
Total
Yes

Training set with 18 features

0

20

40

60

80

100

0 20 40 60 80 100
Training set as percent of entire set

Pe
rc

en
t t

es
t s

et
 co

rr
ec

tly
 id

en
tif

ie
d

No
Total
Yes

Figure 6.4-1
Example of increasing the training set size. These are results from an experiment to classify skin tumor images.
(a) Results with 13 features, with the success rate jumping around we are not confident in the feature set being
complete, (b) results with 15 features, better results but still not increasing consistently, (c) results with 18
features, the consistently increasing success rate as we increase the training set size gives us confidence in the
completeness of the feature set being used.

370	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 6.4-1a shows the results from using 13 features. The training set size was
increased (horizontal axis), with the success plotted on the vertical axis. Here we see
that, at least for the YES class, the success rate was not necessarily increasing, which led
us to believe that the features in the training set were incomplete. In Figure 6.4-1b and c
are the results of increasing the number of features in the feature vectors. We see that,
with 18 features (Figure 6.4-1c), we achieved an essentially increasing success rate as we
increased the test set size, which is a good indicator that we have a complete set of vectors
in our training data.

An alternative to manually separating the samples into training and test sets is the leave-
one-out-method, recently incorporated into CVIPtools. With the technique, all but one of
the samples is used for training, and then it is tested on the one that was left out. This is
done as many times as there are samples, and the number misclassified represents the
error rate. It is also valid to devise a leave-K-out-method, where K is a developer defined
constant. K is defined based on the size of the sample set available, the available resources
for testing and development, and the time allowed. In general, the smaller the value for K,
the greater the confidence we have in the results. To use this approach we leave K vectors
out and train (develop) the classification algorithm, and then test on the K vectors left out.
We do this for all sets of K, or as many as is practical, and average the results to predict
application success.

Once the data have been divided into the training and test sets, work can begin on the
development of the classification algorithm. There are many methods available for this; we
will consider some basic representative methods. The general approach is to use the infor-
mation in the training set to classify the “unknown” examples in the test set. It is assumed
that all the samples available have a known classification—in pattern classification know-
ing the class is also referred to as supervised training (unsupervised training looks for clusters
in the feature space without necessarily knowing the classes).

6.4.2  Classification Algorithms and Methods

The simplest algorithm for identifying a sample from the test set is called the Nearest
Neighbor method. The object of interest is compared to every sample in the training
set, using a distance measure, a similarity measure, or a combination of measures. The
“unknown” object is then identified as belonging to the same class as the closest sample in
the training set. This is indicated by the smallest number if using a distance measure, or
the largest number if using a similarity measure. This process is computationally intensive
and not very robust.

We can make the Nearest Neighbor method more robust by selecting not just the closest
sample in the training set, but by consideration of a group of close feature vectors. This
is called the K-Nearest Neighbor method, where, for example, K = 5. Then we assign the
unknown feature vector to the class that occurs most often in the set of K-Neighbors. This
is still very computationally intensive, since we have to compare each unknown sample
to every sample in the training set, and we want the training set as large as possible to
maximize success.

We can reduce this computational burden by using a method called Nearest Centroid.
Here, we find the centroids for each class from the samples in the training set, and
then we compare the unknown samples to the representative centroids only. The
centroids are calculated by finding the average value for each vector component in the
training set.

Feature Analysis and Pattern Classification	 371

© 2011 by Taylor & Francis Group, LLC

Example 6.4.1: Nearest Centroid Classification

Suppose we have a training set of four feature vectors, and we have two classes.

	 Class andA : A A1 2

3
4
7

1
7
6

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

	 Class andB : B B1 2

4
2
9

2
3
3

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

The representative vector, centroid, for class A is

	
()/
()/
()/

.

.

3 1 2
4 7 2
7 6 2

2
5 5
6 5

+

+

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥

The representative vector, centroid, for class B is

	
()/
()/
()/

.
4 2 2
2 3 2
9 3 2

3
2 5
6

+

+

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

To identify an unknown sample, we need only compare it to these two representative
vectors, not the entire training set. The comparison is done using any of the previously
defined distance or similarity measures. With a distance measure, the distance between
the unknown sample vector and each class centroid is calculated and it is classified as the
one it is closest to—the one with the smallest distance. With a similarity measure, the simi-
larity between the unknown sample vector and each class centroid is calculated and it is
classified as the one it is closest to—the one with the largest similarity.

The technique of comparing unknown vectors to classified vectors, and finding the clos-
est one, is also called template matching. In addition to applying this technique to feature
vectors, template matching can be applied to the raw image data. A template is devised,
possibly via a training set, which is then compared to subimages by using a distance or
similarity measure. Typically, a threshold is set on this measure to determine when we
have found a match; that is, a successful classification. This may be useful for applications
where the size and orientation of the objects is known, and the objects shapes are regular.
For example, for the recognition of computer-generated text.

Bayesian theory provides a statistical approach to the development of a classification
algorithm. To apply Bayesian analysis we need a complete statistical model of the fea-
tures, and usually normalize the features so that their distribution is SND (see Section 6.3).
The Bayesian approach provides a classifier that has an optimal classification rate. This
means that the boundaries that separate the classes provide a minimum average error for
the samples in the training set. These boundaries are called discriminant functions, and an
example is shown in Figure 6.4-2. Here we have two classes in two-dimensional feature
space and show a linear discriminant function to separate the two classes. This type of plot

372	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

is called a scatterplot, and is a useful visualization technique to find clusters correspond-
ing to classes with the sample feature vectors. With the scatterplot we can find the desired
line to separate the two classes. As previously mentioned, the PCT can be used to reduce
n-dimensional data into two or three uncorrelated components that contain much of the
original information, and these can then be used for visualization.

In practice, the feature space is typically larger than two-dimensional, and since the
three-dimensional form of a linear function is a plane, the n-dimensional form of a linear
function is called a hyperplane. In general, discriminant functions can also be quadratic
(curved), or take on arbitrary shapes. Generally, the forms are limited to those that can be
defined analytically via equations, such as circles, ellipses, parabolas, or hyperbolas. In
n-dimensional vector spaces these decision boundaries are called hyperquadrics; specifi-
cally hyperspheres, hyperellipsoids, hyperparaboloids, and hyperhyperboloids.

Neural networks represent another category of techniques used for pattern classification.
Neural networks are meant to model the nervous system in biological organisms, and are
thus referred to as artificial neural networks (ANN). There is an increasing interest in the use
of neural networks to solve a variety of problems in many areas of engineering and medi-
cine. These ANN classifiers are adaptive and work well for many real-world problems. The
use of neural networks often reduces the error rates when compared to more conventional
statistical approaches and represent a powerful and flexible method for mapping a fixed
number of inputs, in this case the features, into a set of discrete classes.

Mathematical models have been developed for these ANN, based on a simple process-
ing element called a neuron. These neurons function by outputting a weighted sum of
the inputs, and these weights are generated during the learning or training phase. The
element’s output function is called the activation function, and the basic types are (1) the
identify function, the input equals the output, (2) a threshold function where every input
greater than the threshold value outputs a 1, and less than the threshold outputs 0, and
(3) a sigmoid function, an S-shaped curve, which is nonlinear and is used most often. The

f2

x x
x x x

x x
x x x x

o
xxxxx x

o o x o

o xo o o o o o

o o o
o oo

o o oooo

Decision boundary for a
linear discriminant

f1

Figure 6.4-2
A linear discriminant separating two classes. This shows a two-dimensional feature space defined by feature

vectors, F =
⎡

⎣
⎢

⎤

⎦
⎥

f

f
1

2

, and two classes represented by x and o. Note that this linear discriminant misclassifies two

x’s and one o.

Feature Analysis and Pattern Classification	 373

© 2011 by Taylor & Francis Group, LLC

sigmoid function most closely models the biological neurons. Single layer networks are
limited in their capabilities and nonlinear functions are required to take advantage of the
power available in multilayer networks.

The neural network consists of the input layer, the output layer, and possibly hidden
layers, see Figure 6.4-3. The main distinguishing characteristics of the neural network are
(1) the architecture, which includes the number of inputs, outputs, and hidden layers, and
how they are all connected, (2) the activation function, which is typically used for all pro-
cessing elements in a layer, but this is not required, and (3) the learning algorithm. Many
learning algorithms have been developed, but they all work by inputting the training vec-
tors, calculating an error measure, and then adjusting the weights to improve the error.
The training continues for a specific number of iterations, specified by the user, or until a
specified error criterion is reached. To achieve optimal results with neural networks it is
important that the feature vectors are preprocessed with a PCT to decorrelate the input
data. Neural networks have been used successfully in many applications; for example,
in the recognition of hand written characters, for speech recognition, and in vehicle and
process control.

Numerous other methods for pattern classification are available, including artificial
intelligence approaches, structural approaches, fuzzy logic approaches, and genetic algo-
rithms. More information on these methods, and those briefly discussed here, can be
found in the references.

6.4.3  Cost/Risk Functions and Success Measures

After the samples in the test set have been classified we need a method to measure the
success of the classification algorithm. The simplest method is to consider average success
rate and/or average failure rate of each class, or an aggregate average across all classes.
In many cases we may not want to rely on correct classification as the sole criteria in
evaluating success of a classification system, because some types of misclassification may
be more costly, or have a higher risk, than others. For example, if we are developing a
medical system to diagnose cancer, the cost of mistakenly identifying a cancerous tumor

Hidden layer Output layerInput layer

Feature vector
F

f1

f2

fn

Class 1

Class 2

wi wiwi

Figure 6.4-3
Neural network. Here we show a neural network architecture with an input layer, where the feature values are
input, one hidden layer, and the output layer. In this case the output layer corresponds to two classes. The circles
are the processing elements, neurons, and the arrows represent the connections. Associated with each connec-
tion is a weight (wi, shown only across the top for clarity) by which the signal is multiplied. These weights are
adjusted during the training (learning) phase.

374	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

as harmless is much higher than the cost of identifying a harmless tumor as cancerous.
In the first case, the patient dies, while in the second case the patient is subjected to some
temporary stress, but survives. Or consider a system to identify land mines—if you are
walking through a potential mine field is it better to misclassify a harmless object or a
land mine?

The development of a suitable cost function, also referred to as risk, is an important
concept for the analysis and comparison of pattern classification schemes. The cost
function and how it is incorporated into the success measure is highly application-
dependent. One way to quantify cost is to weight the overall success by the relative cost
associated with each type of successful classification. Note that these weights should
add to 1 or 100%.

Example 6.4.2

Suppose we have three classes. We determine that successful classification of class A is 80%
important, class B 15%, and class C 5%. Results from our experiment are as follows:

% Correctly Classified

Class A 82%
Class B 55%
Class C 22%

Now we can define our overall success as
Overall success = 0.8(.82) + 0.15(.55) + 0.05(.22) = 0.7495 or about 75% success.

Care must be taken when using and defining cost metrics. For example, if we weight suc-
cessful classification of one class at 100%, all we need to do to have a perfect classification
algorithm is to classify all objects as members of that one class. In this extreme case, the
samples misclassified are not even considered.

One example of metrics that incorporate the misclassified samples into their measure
are sensitivity and specificity, success measures often used in medical image analysis. As
part of the medical diagnostic procedure two classes can be considered—healthy and dis-
eased, or normal and abnormal. These metrics can be used for any classification process
with a binary output; that is, two classes. If we consider two classes of people, healthy
and sick, and consider finding evidence of disease as the affirmative, we have these
definitions:

•	 True Positive (TP): sick person classified as sick.
•	 False Positive (FP): healthy person classified as sick.
•	 True Negative (TN): healthy person classified as healthy.
•	 False Negative (FN): sick person classified as healthy.

Now we define specificity and sensitivity as follows:

	 Sensitivity =
number of True Positives

number

 oof True Positives number of False Negativ + ees

Feature Analysis and Pattern Classification	 375

© 2011 by Taylor & Francis Group, LLC

	 Specificity =
number of True Negatives

number

 oof True Negatives number of False Positiv + ees

Sensitivity tells us how accurate our prediction of the disease is, and specificity tells us
how accurate our prediction of the absence of the disease is. Note that this idea can be
applied to any classification with two values, or can be applied to the correctness of any
single class. The sensitivity tells us the success rate for a particular class—of all those in
the class the percentage correctly found by the classification algorithm to be in the class.
The specificity provides a measure for those not in the class—of those not in the class it is
the percentage found to not be in the class.

Example 6.4.3

Suppose we have three classes, A, B, and C, with 10 samples of each class. The following table
lists the results from a particular classification algorithm. The table is in the same format as
CVIPtools output files from pattern classification—the actual class is on the left and the clas-
sifier results are across the top (Note: the default location for these files are in the ~CVIPtools/
bin/feature directory):

CLASSIFICATION
MATRIX

Classifier Results
Percent
CorrectA B C

Actual Class A 8 2 0 80%
B 1 7 2 70%
C 0 1 9 90%

Sensitivity of Class A = + ≈8 8 2 80/ %; note sensitivity is the percent correct, also called the
success rate.

Specificity of Class A = + + + + + + + ≈7 2 1 9 7 2 1 9 1 95/ % ; note true negatives exclude the
row and column corresponding to that particular class.

Here we see that sensitivity measures the percent of those in Class A that are correctly
classified. Specificity provides a metric for those not in Class A and measures how many of
those are “correctly” classified as not being Class A (Note that they still may be incorrectly
classified and this will be reflected in the metrics for that class).

SensitivityofClass B =
+ +

≈
7

7 2 1
70%

SpecificityofClass B =
+

+ + +
≈

8 9
8 9 1 2

85%

SensitivityofClass C =
+

≈
9

9 1
90%

SpecificityofClass C =
+ + +

+ + + +
≈

8 2 1 7
8 2 1 7 2

90%

In addition to these metrics we may be interested in the positive predictive value also called
precision, which is the ratio of the true values for a class to all the samples found to be in
that class by the classifier:

	 Positive predictive value or Precision
True

 =

Positives

True Positives False Positives+

376	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 6.4.5

Using the above example with three classes, A, B, and C, and classifier results obtained in the
following table, we can find the positive predictive value or precision.

CLASSIFICATION
MATRIX

Classifier Results
Percent
CorrectA B C

Actual Class A 8 2 0 80%
B 1 7 2 70%
C 0 1 9 90%

	 Precision for Class A

=

True Positives
True Possitives False Positives+

=
+

≅

%
8

8 1
89

	 Precision for Class B

=

True Positives
True Possitives False Positives+

=
+ +

=

%
7

2 7 1
70

	 Precision for Class C

=

True Positives
True Possitives False Positives+

=
+

≅

%
9

9 2
82

Note that in the classification matrix these values are found along the columns.

One metric that is used in statistics as a single performance measure that combines the
precision and the sensitivity (also called recall) is the F-measure, which is the harmonic
mean of precision and sensitivity:

	 F-measure 2= ×
×precision sensitivity

precision ++
⎡

⎣
⎢

⎤

⎦
⎥sensitivity

The F-measure varies between zero and one, where one corresponds to perfect results—all
the images/objects in the class are classified correctly and all the samples outside of the
class are found to be not in the class.

6.4.4  Pattern Classification with CVIPtools

CVIPtools allows the user to perform pattern classification after the feature files have
been created. This is done by using training and test set feature files or performing a
leave-one-out analysis on a single feature file. In either case, CVIPtools uses a super-
vised training method, so the examples in the feature file must have the class defined.
Figure 6.4-4 shows the CVIPtools main window and the Analysis → Pattern-Classification
window. To perform pattern classification we need to select the desired data normal-
ization method, the distance or similarity measure, the classification algorithm, and
the algorithm testing method, along with any associated parameters. Next we enter
the feature file name(s). With the Leave-One-Out testing method, only one feature file
is required. If Training/Test Set is selected, the user must enter separate feature files for
training and testing. Finally, enter a name for the output file, and select the Apply button
to run the test.

Feature Analysis and Pattern Classification	 377

© 2011 by Taylor & Francis Group, LLC

The output file as displayed in CVIPtools is shown in Figure 6.4-5. At the top of the out-
put file we see the success rate for all the classes. The success rate for each class is shown
on the right, with the class for each example as given in the test set on the left side, and the
classification results across the top. This information allows us to see how misclassified
examples are misclassified. In this case, we missed two of the tex1 class examples and mis-
classified them as tex4 (in this example, the classes are different textures). This informa-
tion, combined with application specific information, may help us to further develop the
classification algorithm to improve the results.

The output file also contains all the details relating to the experiment. Following the suc-
cess rate table are all the pattern classification parameters and file names, followed by the
feature file information. First the names of each column in the feature file are listed (the
feature file header) followed by the feature values for each example in the test set. Note that
with the Leave-One-Out testing method, all the examples are used in the test set, but one at a
time. When using the Training/Test Set method, the examples from the test set will be listed.

After a pattern classification test has been performed, the user may want to run more
tests by varying the parameters. The initial test results can be used to guide the process.
Perhaps a different data normalization method, or distance measure will perform better.
In some cases, features may be removed or added to the feature files. It is also imperative

1

2

3

4

5

Figure 6.4-4
Using the CVIPtools analysis → pattern classification Window. (1) Select the desired data normalization
method, (2) the distance or similarity measure to use, (3) the classification algorithm, and (4) the algorithm test-
ing method. (5) Next enter the feature file name(s). With the Leave-One-Out testing method, only one feature
file is required. If Training/Test Set is selected, the user must enter separate feature files for training and testing.
Finally, enter a name for the output file, and select the Apply button to run the test.

378	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

to consider the application feedback loop, as shown in the image analysis process, when
developing algorithms. Optimal results may be obtained by experimentation, with the
developer’s skills, knowledge, and experience guiding the process.

6.5 Key Points

Overview: Feature Analysis And Pattern Classification

•	 Feature analysis involves examining the extracted features and determining if
and how they can be used to solve the imaging problem.

•	 Pattern classification uses image object features to identify or categorize the image
object.

Feature Extraction

•	 Feature extraction starts with feature selection.
•	 Feature selection is important for successful pattern classification.

1

2

4

3

Figure 6.4-5
Output from CVIP tools analysis → pattern classification. This shows the file as displayed in CVIPtools. The
actual file is a text file, but has all the same information. (1) The first block shows the success rate for each class,
with the class for each example as given in the test set on the left side, and the classification results across the
top. This allows us to see how any misclassified examples were misclassified, (2) Next, we see the list of the
parameters and files used for the pattern classification test, (3) the feature file header, which lists the features
used in the test, and (4) details for each example in the test set.

Feature Analysis and Pattern Classification	 379

© 2011 by Taylor & Francis Group, LLC

•	 A good feature is
•	 robust—It will have similar results under various conditions, such as lighting,

cameras, lenses, and so on.
•	 discriminating—It is useful for differentiation of classes (object types) of

interest.
•	 reliable—It provides consistent measurements for similar classes (objects).
•	 independent—It is not correlated to other features.

•	 RST-invariant features do not change under rotation, scale (size), or translation
(movement) of the image object.

Shape Features

•	 Shape features depend on a silhouette of the image object, so require only a binary
image.

•	 Shape features include area, center of area, axis of least second moment, projec-
tions, and Euler number from Section 3.3.3, and perimeter, thinness ratio, irregu-
larity, aspect ratio, moments, set of seven based RST-invariant features, and Fourier
descriptors.

Perimeter: find by: (1) count the number of “1” pixels next to “0” in the binary shape
image, or (2) perform an edge detector and count “1” pixels, or (3) use chain code
methods for better accuracy. These approximations can be improved by multiply-
ing the result by π/4 for arbitrary curved shapes.

Thinness ratio: has a maximum value of 1, corresponding to a circle, and decreases
as object gets thinner or perimeter gets more convoluted:

	 T
A
P

=
⎛
⎝⎜

⎞
⎠⎟

4π
2

Irregularity or compactness ratio: 1/T, reciprocal of the thinness ratio.
Aspect ratio: also called elongation or eccentricity ratio of bounding box:

	
c c
r r
max − +1

− +1
min

max min

To be useful as a comparative measure the objects should be rotated to some stan-
dard orientation; such as orientating the axis of least second moment in the hori-
zontal direction.

Moments: for binary images, they are used to generate moment based RST-invariant
features given in Table 6.1, defined by the moment order (p + q):

	 m r c I r cpq
p q

cr

= ∑∑ (,)

In order to be translationally invariant we use the central moments defined by

380	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	
μ pq

p q

cr

r r c c I r c= − −∑∑ () () (,)

where

	
r

m
m

c
m
m

= =10

00

01

00

and

Fourier descriptors: use binary image of the object and find spectral features defined
in Section 6.2.4.

Histogram Features

•	 The histogram is a plot of gray-level values versus the number of pixels at that
value.

•	 The histogram tells us something about the brightness and contrast.
•	 A narrow histogram has low contrast, a histogram with a wide spread has high

contrast.
•	 A bimodal histogram has two peaks, usually object and background.
•	 A histogram skewed toward the high end is bright, skewed toward the low end

is dark.
•	 First-order histogram probability:

	 P g
N g
M

()
()

=

M is the number of pixels in the image or subimage and N(g) is the number of
pixels at gray level g.

Mean: average value, which tells us something about the general brightness of
the image:

	 g gP g
I r c
M

g=

L

cr

= =
−

∑ ∑∑()
0

1
(,)

Standard deviation (SD): tells us about the contrast, high SD = high contrast, low
SD = low contrast:

	 g

g=

L

= g g P gσ
0

1

()
−

∑ −()2

Skew: measures asymmetry about the mean:

	 SKEW g g P g
g g

L

= −
=

−

∑1
σ3

3

0

1

() ()

U
FM

|4
84

94
2|

14
35

60
95

42

Feature Analysis and Pattern Classification	 381

© 2011 by Taylor & Francis Group, LLC

Energy: relates to gray-level distribution, with a maximum value of 1 for an image
of constant value and decreases as the gray levels are more widely distributed:

	 ENERGY = P g
g=

L

0

1
2[()]

−

∑

Entropy: varies inversely with energy, as defined measures how many bits are
needed to code the data:

	 ENTROPY P g P g
g=

L

= −
−

∑
0

1

2() [()]log

Color Features

•	 Color images consist of three bands, one each for red, green, and blue or RGB.
•	 All of the features can be calculated separately in each color band.
•	 Alternately, we desire information about the relationship between color bands.
•	 To include between band information preprocess with a color transform (defined

in Chapter 2).
•	 Most color transforms will decouple color and brightness information.
•	 Avoid absolute color measures as they are not robust.
•	 A relative color measure can be used that is typically application specific, or a

known color standard can be used for comparison.
•	 When using a known color standard the system can be calibrated if conditions

change.

Spectral Features

•	 Primary metric is power.
•	 POWER |T u,v= ()|

2.
•	 Measure power in specific regions in the spectrum.
•	 The regions are box, ring, or sector (wedge) shaped.
•	 SPECTRAL REGION POWER |Tu REGION u REGION= ∈ ∈Σ Σ (uu,v)|

2.

•	 Due to the redundancy in the Fourier spectral symmetry we often measure the
sector power over one-half the spectrum, and the ring power over the other half
of the spectrum (see Figure 6.2-8).

Texture Features

•	 Spectral features can be used as texture features.
•	 Texture is a function of image size relative to the object, as well as magnification.
•	 In practice, the spectral features can be calculated for 10 or 20 (or more) rings and

sectors and the magnitudes plotted to look for signature shapes that will corre-
spond to specific textures.

382	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 Second-order histogram methods, also called gray-level co-occurrence matrix
methods, measure texture by considering relationship pixel pairs and require the
parameters distance and angle between pixel pairs.

•	 Let cij be the elements in the co-occurrence matrix normalized by the number of
pixel pairs in the matrix, and assume a given distance and angle (direction), the
equations are as follows:

	 Energy cij
ji

= ∑∑ 2

	 Inertia i j cij
ji

= −∑∑ ()2

	

Correlation i j c
x y

x y ij

ji

= − −∑∑1
σ σ

μ μ()()

	 where

	

μ

μ

σ μ

σ

x ij

ji

y ij

ij

x x ij

ji

y

i c

j c

i c y

=

=

= −

∑∑

∑∑

∑∑2 2()

22 2= − ∑∑() ;j cy ij

ij

μ

	 Entropy c cij ij

ji

= − ∑∑ log2

•	 Laws energy masks can be used for measuring texture and are generated as the
vector outer product of pairs of the following vectors, which correspond to gray
level, edges, spots, ripples, and waves:

	

L

E

S

5

5

5

1 4 6 4 1

1 2 0 2 1

1 0 2 0

= ()

= − −()

= − −

, , , ,

, , , ,

, , , , 11

1 4 6 4 1

1 2 0 2 1

5

5

()

= − −()

= − −()

R

W

, , , ,

, , , ,

Laws filters are used by first removing the local average and then convolving the
masks with the image to produce the texture filtered images, Fk(r,c) for the kth

filter mask. These texture filtered images are used to produce a texture energy
map, Ek for the kth filter, using a 15 × 15 window:

Feature Analysis and Pattern Classification	 383

© 2011 by Taylor & Francis Group, LLC

	 E r c F i jk k

i r

r

j c

c

(,) (,)=
= −

+

= −

+

∑∑
7

7

7

7

The texture energy maps are used to generate a texture feature vector for each pixel.

Feature Extraction with CVIPtools

•	 Extraction of features with CVIPtools requires the original image and a segmented
or mask image.

•	 A segmented image can be created with Analysis → Segmentation followed by any
desired morphological filtering.

•	 A mask image can be created with Utilities → Create → Border Mask.

•	 Methods used for feature extraction by category are in Table 6.2.

Feature Analysis

•	 Feature analysis is important to aid in feature selection.
•	 After feature extraction the feature analysis process includes consideration of the

application.
•	 The feature analysis process begins by selection of tools and methods that will be

used for the imaging problem.

Feature Vectors and Feature Spaces

Feature vector: an n-dimensional vector containing measurements for an image
object, where n is the number of features. Feature vectors are symbolic,
numeric, or both.

Feature space: a mathematical abstraction created to allow visualization of feature
vectors, and relationships between them. With two and three-dimensional fea-
ture vectors it is modeled as a geometric construct with perpendicular axes and
created by plotting each feature measurement along one axis. For n-dimen-
sional feature vectors it is a mathematical construction called a hyperspace.

Distance and Similarity Measures

Distance measures: used to compare two vectors in feature space by finding the
distance or error between the two, the smaller the metric the more alike the
two are.

Euclidean distance: geometric distance in feature space:

	
i=

n

i ia b = a b + a b + a b +
1

2 2 2 2() () () ()∑ − − − −1 1 2 2 3 3+ a bn n()2−

City block or absolute value metric: results similar to Euclidean, but faster to
calculate:

	 i i

i

n

a b−
=
∑

1

U
FM

|4
84

94
2|

14
35

60
96

10

384	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Maximum value metric: only counts largest vector component distance:

	 max{ , , , }1 1 2 2|a b | |a b | |a b |n n− − −…

Minkowski distance: generalized distance metric:

	 a b ri i
r

i

n r

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑
1

1/

where is positive innteger

Similarity measure: used to compare two vectors in feature space by finding the
similarity between the two, the larger the metric the more alike the two are.

Vector inner product:

	 i i n n

i

n

a b a b a b a b= + + +
=
∑ ()1 1 2 2 …

1

Tanimoto metric: takes on values between 0 and 1; 1 for identical vectors.

	

a b

a b a b

i i

i

n

i

i

n

i

i

n

i i

i

n
=1

=1 =1 =1

∑

∑ ∑ ∑+ −2 2

Correlation coefficient: takes on a value between –1 and +1; 1 for identical vectors,
also called Pearson’s correlation coefficient or the correlation factor:

	 ρ =
− −

− −

=

==

∑
∑∑

()()

() ()

a a b b

a a b b

i i
i

n

i i
i

n

i

n
1

2 2

11

where a n ai
n

i= ∑ =1 1/ and b n bi
n

i= ∑ =1 1/ ; the average or mean values of the
vectors.

Data Preprocessing

Data preprocessing: to prepare the feature vectors for use in pattern classification
algorithm development; consists of 3 steps: (1) noise (outlier) removal, (2) data
normalization and/or decorrelation, and (3) insertion of missing data.

Noise (outlier) removal: removal of feature vectors that are so far from the aver-
age as to be considered noise.

Data normalization and/or decorrelation: performed to avoid biasing the dis-
tance or similarity measures, and to prepare the data for pattern classification
methods.

Range-normalize: divide each vector component by the data range for that
component.

Feature Analysis and Pattern Classification	 385

© 2011 by Taylor & Francis Group, LLC

Unit vector normalization: divide each feature value by the magnitude of a vec-
tor consisting of all the feature values for that feature from each feature vector,
where the magnitude is the vector length or the Euclidean distance from the
origin.

Standard normal density normalization: creating a distribution with 0 mean and
standard deviation of 1:

Given a set of k feature vectors, Fj = {F1, F2, …, Fk}, with n features in each vector:

	

Fj

j

j

nj

f

f

f

j k=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1

2 1 2
�

…for

me

, , ,

aans for

standar

⇒ = =
=
∑m

k
f i ni ij

j

k
1

1 2
1

, , ,…

dd deviation ⇒ = −() = () −
=
∑σ i ij i

j

k

ijk
f m

k
f

1 12

1

2
mm i ni

j

k

2

1

1 2
=
∑ =for , , ,…

Now, for each feature component, we subtract the mean and divide by the stan-
dard deviation:

	 f
f m

i jijSND
ij i

i

=
−

σ
for all ,

Min–max normalization: to map the data to a specified range:
	

f
f f

f f
S SijMINMAX

ij MIN

MAX MIN
MAX MIN=

−

−

⎛

⎝⎜
⎞

⎠⎟
−()) + SMIN

where

SMIN and SMAX are minimum and maximum value for the specified range

and

fMIN and fMAX are minimum and maximum value on the original feature data

Softmax scaling: a nonlinear normalization method for use with skewed data
distributions:

	

STEP y
f m

r

STEP f
e

ij i

i

ijSMC y

1

2
1

1

⇒ =
−

⇒ =
+ −

σ

for alll i j,

Principal components transform: performed in the n-dimensional feature space
to decorrelate the data; useful preprocessing for neural networks.

386	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Insertion of missing data: analyze the distribution of the sample feature vectors
and, based on a desired data distribution, create feature vectors that we think
belong and include them in our feature vector set.

Pattern Classification

•	 Pattern classification involves taking the features extracted from the image and
using them to automatically classify image objects.

•	 Used primarily in computer vision and image compression applications.

Algorithm Development: Training and Testing Methods

•	 Available feature vector samples are divided into a training set and a test set.

•	 Each set should represent all types of images in the application domain.
•	 The training set is used for algorithm development.
•	 The test set is used to test the algorithm that was developed with the training set.
•	 The use of two distinct sets allows us to have confidence that the success mea-

sured during development is a good predictor of the success we can expect to
achieve in the actual application.

•	 Testing methods: (1) gradually increase training set size and plot (Figure 6.4-1), (2)
leave-one-out method, and (3) leave-K-out-method.

Classification Algorithm and Methods

Nearest neighbor: compare an unknown sample to each vector in the training set
using a distance or similarity (or both) metric, and classify it the same as the
one it is closest to.

K-nearest neighbor: comparing the unknown feature vector to entire training set
and finding the K nearest, where K is an integer such as 5, and classifying it as
the class that appears most often in the set of K samples.

Nearest centroid: finding the centroid for each class and comparing the unknown
to the representative centroids, and classifying it the same as the class of the
closest centroid.

Template matching: general term for comparing vectors, can be used to compare
raw image data to sample image objects.

Bayesian analysis: provides a statistical approach to the development of a
classification algorithm that requires a complete statistical model of the
features. Preprocess by normalizing the features with standard normal density.
The analysis finds boundaries in feature space to separate the classes called
discriminant functions, and provides a theoretically optimal classification rate.

Neural networks: modeled after the nervous system in biological systems, based
on the processing element the neuron (see Figure 6.4-3). The main distinguish-
ing characteristics are (1) the architecture, which includes the number of inputs,
outputs, and hidden layers, and how they are all connected, (2) the activation
function, typically identity, threshold, or sigmoid, and (3) the learning algorithm.
Learning algorithms work by inputting the training vectors, calculating an

U
FM

|4
84

94
2|

14
35

60
95

77

Feature Analysis and Pattern Classification	 387

© 2011 by Taylor & Francis Group, LLC

error measure and then adjusting the weights to improve the error. To achieve
optimal results with neural networks use a PCT for preprocessing.

Cost Function and Success Measures

•	 A cost function, or risk, can be used if different misclassifications have different
levels of importance.

•	 Cost functions can be incorporated by defining multiplying weights for each class
success rate into overall success measures, the sum of the weights is 1.

•	 Specificity =
number of True Negatives

number

 oof True Negatives number of False Positiv + ees

•	 Sensitivity =
number of True Positives

number

 oof True Positives number of False Negativ + ees

•	 Positive predictive value or Precision =
True

Positives

True Positives False Positives+

•	 F-measure 2= ×
×

+

precision sensitivity
precision ssensitivity
⎡

⎣
⎢

⎤

⎦
⎥

Exercises

Problems

	 1.	 (a) In Figure 6.1-1 there is a dotted line between Feature Analysis and Application.
Explain. (b) In the same figure, there is a feedback loop from Pattern Classification
and Application. Explain.

	 2.	Why might image segmentation be performed before feature extraction and
analysis?

	 3.	 (a) Name the first step in feature extraction. Why is this important? (b) Why is it
important for a feature to be robust?

	 4.	 (a) Describe a method to find the perimeter of a binary object. (b) How can this
estimate be improved for objects with curved edges?

	 5.	 (a) What is the thinness ratio of a circle? (b) What is the thinness ratio of a rectan-
gle that is 20 pixels wide by 80 pixels high? (c) What values do you get in CVIPtools
for (a) and (b)? Are these the same as your calculated values? Why or why not?

	 6.	 (a) What is the aspect ratio of a circle with a radius of 25? (b) Why rotate an object
before finding the aspect ratio?

	 7.	 (a) For the moment based-features defined, why do we need the normalized central
moments, instead of the regular moments? (b) Of what use are the RST-invariant
moment-based features?

	 8.	Use CVIPtools to explore the RST-invariant features. (a) Create binary objects
using Utilities → Create and Utilities → Arith/Logic to OR objects together. (b) Use
Analysis → Features to extract the RST-invariant features from the objects. (c) Add
noise to your objects with Utilities → Noise and extract the features from the noisy

388	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

objects. Compare the results for the objects with and without noise, can you still
classify the objects? Why or why not?

	 9.	 (a) What can we say about an image with a narrow histogram? (b) What can we say
about a histogram skewed toward the left? (c) What is a histogram with two major
peaks called? What do the peaks typically correspond to?

	 10.	 (a) What does the standard deviation of the histogram tell us about the image? (b)
What is maximum value for histogram energy? What image type does this cor-
respond to? (c) What does histogram entropy tell us? (d) What is the relationship
between histogram energy and entropy?

	 11.	 (a) Given the following binary checkerboard image, where the image is 256 × 256
pixels and the squares are 32 × 32, calculate the histogram features, mean, standard
deviation, skew, energy, and entropy. Verify your results with CVIPtools using
Utilities → Stats → Image Statistics. Are they the same? Why or why not?

	 (b)	 Given the following binary circle image, where the image is 256 × 256 pixels
and the radius of the circle is 32, calculate the histogram features, mean, stan-
dard deviation, skew, energy, and entropy by using the equation of the area of
a circle (πr2). Verify your results with CVIPtools using Utilities → Stats → Image
Statistics. Are they the same? Why or why not?

	 12.	 (a) Describe the easiest method to obtain color features. (b) Why might this method
not be what we want? How can we get this information?

	 13.	 (a) What is the primary metric for spectral features? (b) Regarding spectral fea-
tures explain the statement: “The sector measure will tend to be size invariant,
and the ring measure will tend to be rotation invariant.” Sketch images to illus-
trate this. (c) Are the sector or ring spectral features translationally invariant? That
is, if an object moves in the image, will the values change?

	 14.	 (a) As we zoom in on a textured object, how does this affect the spectral fea-
tures? (b) As we zoom out on a textured object, how does this affect the spectral
features?

	 15.	Using a pixel distance, d = 1, find the gray-level co-occurrence matrices for the
horizontal, vertical, right diagonal, and left diagonal directions, for the follow-
ing image:

Feature Analysis and Pattern Classification	 389

© 2011 by Taylor & Francis Group, LLC

	

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 16.	 (a) Find the 5 × 5 Laws texture energy mask for spots and edges. (b) Find the 5 × 5
Laws texture energy mask for gray level and ripples. (c) Find the 5 × 5 Laws tex-
ture energy mask for ripples and waves. (d) What, if any, preprocessing is neces-
sary to use the Laws energy masks?

	 17.	Use CVIPtools to explore feature extraction. (a) Select an image(s) of your choice
with objects of interest. (b) Use Utilities → Create → Border Mask to create mask
images for your objects of interest. (c) Use Analysis → Features to extract features
that you think will be of interest for these objects. Examine the feature file. Are the
results what you expected? Why or why not?

	 18.	 (a) Define a feature vector that is useful to classify engineers and nonengineers. (b)
Define a classification rule for these two classes based on your feature vectors.

	 19.	Given the following two features vectors, find the following distance and similar-
ity metrics:

	 F F1 2

5
8
2

6
10
1

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 (a)	 Euclidean distance, (b) city block distance, (c) maximum value, (d) Minkowski
distance, with r = 2, (e) vector inner product, and (f) Tanimoto metric.

	 20.	Calculate the same metrics as in problem no. 19, but first normalize the vectors to
their length, which is the Euclidean distance from the origin.

	 21.	Calculate the same metrics as in problem no. 19, but first range normalize the vec-
tors, using the following ranges:

	 f range f range f range1 2 310 20 5→ = → = → =, ,

	 22.	 In the following scatter plot we have a two-dimensional feature space with all our
sample vectors shown for two classes. Discuss any reasons to remove or add any
feature vectors to our data set before we begin developing the pattern classifica-
tion algorithm.

f2

f1

xxx xx
x x

o
x x x o o o

o o o x
x x o o o

x x oo o
x x x o x

x o oo
o o o

390	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 23.	 (a) When developing a classification algorithm, why do we divide our data into
training and test sets? (b) Describe two methods for dividing the data into these
two sets. Discuss important factors to consider when selecting the training and
test sets.

	 24.	Describe the leave-one-out and the leave-K-out method of developing and testing
pattern classification algorithms.

	 25.	Describe an example, other than the ones in the book, which shows why a cost
function is important when developing a pattern classification algorithm.

	 26.	Given the following feature vectors, with two classes:

	 Class 1
5
8
6

7
6
1

6

1 2 3: F F F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 77
2

2
1
8
7

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎡

⎣

⎢
⎢
⎢

⎤

 :Class F

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

F F2 3

3
6
8

2
7
6
⎬⎬
⎪

⎭
⎪

	 (a)	 Using the Nearest Neighbor classification method, and the absolute value
distance metric, classify the following unknown sample vector as Class 1 or
Class 2:

	 F =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
6
9

	 (b)	 Use K Nearest Neighbor, with K = 3.
	 27.	Given the following feature vectors, with two classes:

	 Class 1 : F F F1 2 3

5
8
6

7
6
1

6
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 77
2

1
8
7

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎡

⎣

⎢
⎢
⎢

⎤

 :Class 2 F

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

F F2 3

3
6
8

2
7
6
⎬⎬
⎪

⎭
⎪

Using the Nearest Centroid classification method, and the absolute value distance
metric, classify the following unknown sample vector as Class 1 or Class 2:

	 F =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3
6
10

	 28.	Given the following feature vectors, with two classes:

	 Class 1
5
8
6

7
6
1

6

1 2 3: F F F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 77
2

2
1
8
7

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎡

⎣

⎢
⎢
⎢

⎤

 :Class F

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

F F2 3

3
6
8

2
7
6
⎬⎬
⎪

⎭
⎪

Using the Nearest Centroid classification method, and the vector inner product
similarity measure, classify the following unknown sample vectors as Class
1 or Class 2:

Feature Analysis and Pattern Classification	 391

© 2011 by Taylor & Francis Group, LLC

	 () () ()a b cF F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
6
9

8
6
4

 F =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3
6
10

	 29.	 (a) What type of preprocessing normalization should we do to apply Bayesian
analysis? (b) What do we call the n-dimensional form of the linear discriminant
function? (c) Given the following scatter plot, draw a linear discriminant function
to separate the two classes

f2

f1

xxx xx
x x
xx xx xx x

x x x o o o
xxxxxxx o o

x x x o o o
x x x ooo oo o

x x x o
x o oo

o o o

	 30.	 (a) What are the main distinguishing characteristics of a neural network? (b) What
type of preprocessing should be done to apply a neural network? (c) Describe
three types of activation functions. What one is used most often? (d) In general,
how does a learning algorithm work?

Programming Exercises

Perimeter

	 1.	Write a function to find the perimeter of a solid (no holes) binary object. The input
parameters to the function are the binary image with the object and a row and
column coordinate within the object. The function will label the image and then
estimate perimeter by counting the number of “1” pixels next to “0” pixels.

	 2.	Test this function using images you create with CVIPtools. Use Utilities → Create to
create test images. To create images with multiple objects, use the AND and OR
logic functions available from Utilities → Arith/Logic.

	 3.	Modify the function to estimate perimeter by performing a Roberts edge detec-
tion followed by counting the number of “1” pixels for the object of interest. Test
the function with the images you created.

	 4.	Modify the function to find the perimeter of all objects in the image, if passed
(–1,–1) as row and column coordinates. Output the object number along with its
perimeter to the user.

392	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Thinness Ratio

	 1.	Write a function to find the thinness ratio of a solid (no holes) binary object. The
input parameters to the function are the binary image with the object and a row
and column coordinate within the object.

	 2.	Test this function using images you create with CVIPtools. Use Utilities → Create to
create test images. To create images with multiple objects, use the AND and OR
logic functions available from Utilities → Arith/Logic.

	 3.	Modify the function to find the thinness ratio of all objects in the image, if passed
(–1,–1) as row and column coordinates. Output the object number along with its
perimeter to the user.

Aspect Ratio

	 1.	Write a function to find the aspect ratio of a binary object. The input parameters
to the function are the binary image with the object and a row and column coor-
dinate within the object.

	 2.	Test this function using images you create with CVIPtools. Use Utilities → Create to
create test images. To create images with multiple objects, use the AND and OR
logic functions available from Utilities → Arith/Logic.

	 3.	Modify the function to find the aspect ratio after rotating the object so that the axis
of least second moment is horizontal. Use the CVIPtools library function orienta-
tion to find the axis of least second moment.

Moment-Based RST-Invariant Features

	 1.	 Incorporate the CVIPtools library function rst_invariant into your CVIPlab. Note
that the function returns a pointer to an array of the seven features, the data type
in double.

	 2.	Verify that the function is working properly by comparison to results you obtain
with CVIPtools.

Histogram Features

	 1.	Write a function to find the histogram features, mean, standard deviation, skew,
energy, and entropy for a gray-level image.

	 2.	Extend the function to work with color images.
	 3.	Modify the function to find these features for individual image objects by passing

the input image, a segmented image, and row and column coordinates within the
object. Note that a labeled image must be generated from the segmented image
and used in conjunction with the original image.

Color Features

	 1.	 Incorporate the CVIPtools library function colorxform into your CVIPlab.
	 2.	Experiment by performing the HSL and CIE Lu*v* transform and then extracting

histogram features on the resulting three bands.

Feature Analysis and Pattern Classification	 393

© 2011 by Taylor & Francis Group, LLC

	 3.	Verify that the function is working properly by comparison to results you obtain
with CVIPtools using Utilities → Convert → Color Space and Analysis → Features.

Spectral Features

	 1.	 Incorporate the CVIPtools library function spectral_features into your CVIPlab.
Note that this function returns a pointer to a POWER data structure, defined as
follows:

typedef struct
{
int	 no_of_sectors;
int	 no_of_bands;
int 	 imagebands;
double	 *dc;
double	 *sector;
double	 *band;
}

Power

	 2.	Verify that the function is working properly by comparison to results you obtain
with CVIPtools.

Texture Features

	 1.	Incorporate the CVIPtools library function texture2 into your CVIPlab. Note
that this function returns a pointer to a TEXTURE2 data structure, defined as
follows:

typedef struct {
/* [0] → 0 degree, [1] → 45 degree, [2] → 90 degree, [3] → 135
degree,
[4] → average, [5] → range (max - min) */
	 float energy[6];	 /* (1) Energy */
	 float inertia[6];	 /* (2) Inertia */
	 float IDM[6];		 /* (3) Inverse Diffenence Moment */

	 float entropy[6];	 /* (4) Entropy */
	 float correlation[6];	 /* (5) Correlation */
	 } TEXTURE2;

		 This data structure returns an array of six float numbers for the five texture
features listed. The first four correspond to the four directions, the fifth is the
average of the first four, and the sixth one is the range on the feature (maxi-
mum–minimum). For more details on the features themselves, see the online
documentation.

	 2.	Verify that the function is working properly by comparison to results you obtain
with CVIPtools. Note that CVIPtools provides the average and range of five of the
texture features.

394	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Distance and Similarity Measures

	 1.	Write a function to calculate the Minkowski distance between two vectors. The
input parameters include: the r value, the two vectors as arrays (vectors).

	 2.	Write a function to find the similarity measure, vector inner product, of two
vectors.

	 3.	Write a function to normalize the vector parameters to standard normal density
by passing the function, the mean, and standard deviation for each vector compo-
nent, along with a vector. (4) Incorporate the normalization function as an input
parameter option in the distance and similarity functions.

Template Matching

	 1.	Write a C® function to perform template matching. The function should take two
input images: the image of interest, I(r,c), and the template image, T(r,c). The func-
tion will move the template across the image of interest, searching for pattern
matches by calculating the error at each point. The distance measure to be used
for this exercise is the Euclidean distance measure defined by

	 D r c I r , c T r, c
r c

(,) = −∑∑[() ()]
2ʹ ʹ

		 If we overlay the template on the image, then r c, are the row and column coor-
dinates of I(r,c) corresponding to the center of the template where a match occurs.
The r′, c′ designation is used to illustrate that as we slide the template across the
image, the limits on the row and column coordinates of I(r,c) will vary depending
on (1) where we are in the image and (2) the size of the template. You need only
consider parts of the image that fully contain the template image. Your function
should handle any size image and template, but you may assume that the template
is smaller than the image. A match will occur when the error measure is less than
a specified threshold. In your function, the threshold should be specified by user
input. Where a match occurs, the program should display the error and the (r,c)
coordinates.

	 2.	Test this function with images you create using CVIPtools. For example, create a
small image for the template with a single object, and then create a larger image
with multiple objects for the test image.

	 3.	Expand the function by allowing for the rotation of the template. Consider the
error to be the minimum error from all rotations.

	 4.	Modify the function for efficiency by comparing the template only to image objects,
not every subimage.

	 5.	Make your function more useful by adding size invariance to the template match-
ing. This is done by growing, or shrinking, the object to the size of the template
before calculating the error.

	 6.	Experiment with using different error and similarity measures described in
Section 6.3.2.

Feature Analysis and Pattern Classification	 395

© 2011 by Taylor & Francis Group, LLC

Supplementary Exercises

Supplementary Problems

	 1.	Given the following feature vectors for a training set, with two classes:

	 Class 1
5
8
4

7
6
1

6

1 2 3: F F F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 77
2

2
1
8
7

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎡

⎣

⎢
⎢
⎢

⎤

 :Class F

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

F F2 3

3
6
8

2
7
6
⎬⎬
⎪

⎭
⎪

	 (a)	 Perform standard normal density normalization (SND) on the feature vectors.
	 (b)	 Using the Nearest Centroid classification method, and the vector inner product

similarity measure, classify the following unknown sample vectors as Class 1
or Class 2:

	 () ((i ii) iF F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
6
9

8
6
4

iii) F =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3
6
10

	 2.	Using a pixel distance, d = 1, (a) find the gray-level co-occurrence matrices for the
horizontal, vertical, right diagonal, and left diagonal directions, for the following
image, (b) find the texture features energy, inertia, correlation, inverse difference,
and entropy.

	

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 3.	Given the following feature vectors for a training set, with two classes:

	 Class 1
5
8
4

7
6
1

6

1 2 3: F F F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 77
2

2
1
8
7

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎡

⎣

⎢
⎢
⎢

⎤

 :Class F

⎦⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

F F2 3

3
6
8

2
7
6
⎬⎬
⎪

⎭
⎪

	 (a)	 Perform min–max normalization on the feature vectors, using 0 for the mini-
mum and 1 for the maximum.

	 (b)	 Using the Nearest Neighbor classification method, and the Minkowski dis-
tance measure, with r = 3, classify the following unknown sample vectors as
Class 1 or Class 2:

	 () i (ii) (iF F=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
6
8

8
3
1

iii) F =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3
6
8

396	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	Using a pixel distance, d = 1, (a) find the gray-level co-occurrence matrices for the
horizontal, vertical, right diagonal, and left diagonal directions, for the following
8 × 8 image, and (b) find the texture features energy, inertia, correlation, inverse
difference, and entropy.

	

1 1 5 6 7 7 2 3
2 3 5 7 1 5 7 0
4 5 7 1 2 2 0 2
7 5 1 2 5 3 5 6
7 1 1 5 6 7 7 2
3 5 7 00 2 0 2 3
5 6 7 1 1 5 6 7
2 3 5 7 1 4 5 7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥

	 5.	Using a pixel distance, d = 2, (a) find the gray-level co-occurrence matrices for the
horizontal, vertical, right diagonal, and left diagonal directions, for the 8 × 8 image
from the previous exercise and (b) find the texture features energy, inertia, correla-
tion, inverse difference, and entropy.

	 6.	 (a) Using CVIPtools create images of circles, ellipses, rectangles, squares, and each
of the object types with holes—this gives eight object classes. Create 10 objects for
each class of various sizes and orientations. Divide the image set into five of each
class for training and five for testing. Use CVIPtools to achieve 100% correct clas-
sification. What parameters were used to achieve these results? (b) Repeat (a), but
blur the image with a 7 × 7 mean filter. Note that preprocessing steps may improve
results. (c) Repeat (a), but add zero mean Gaussian noise with a variance of 400.
Note that preprocessing steps may improve results. (d) Repeat (a), but blur the
image with a 7 × 7 mean filter and add zero mean Gaussian noise with a variance
of 400. Note that preprocessing steps may improve results.

	 7.	Consider a system to identify land mines where we are classifying found objects.
(a) What are the classes? (b) What are the relevant cost functions? In other words,
what are the risks? (c) How can we incorporate the cost functions into our anal-
ysis of classification algorithms? How can we apply specificity and sensitivity
metrics?

	 8.	Given the following results from an experiment testing a classification algorithm
with four classes, A, B, C, and D, and results shown in the classification matrix, find
for each class, the (a) sensitivity, (b) specificity, (c) precision, and (d) the F-measure.
Do you think these are good results? Why?

CLASSIFICATION
MATRIX

Classifier Results

A B C D

Actual Class A 8 1 0 1
B 1 7 2 0
C 0 0 9 1
D 0 2 2 6

Feature Analysis and Pattern Classification	 397

© 2011 by Taylor & Francis Group, LLC

	 9.	Find the correlation coefficient for the following feature vectors:

	 (a) (b) A B A=
⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦

2
4

4
2

2
4

and ⎥⎥ =
−

−

⎡

⎣
⎢

⎤

⎦
⎥ and B

2
4

	 (c)	 Compare your answers for (a) and (b). Explain.
	 (d)	 Graph the two vectors for (a) and (b). After thinking about the results and

examining these graphs, do you think the correlation coefficient is an effective
similarity measure? Why or why not?

	 10.	Find the fuzzy similarity between the following feature vectors: (a) A and B, (b) A
and C, (c) A and D, (d) B and C, (e) B and D, and (f) C and D. Explain the results.

	 A B C=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1
1
0

0 75
0 75
0

0 2

.

.
. 55
0 5
0 5

0 25
0 25
0 25

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

D

Supplementary Programming Exercises

Similarity Measures

	 1.	Write a function to calculate the correlation coefficient between two feature vectors.
Perform an experiment comparing the correlation coefficient and the Euclidean
distance metrics. Do they always give related results? Why or why not?

	 2.	Write a function to find the fuzzy similarity measure of two feature vectors. What
happens when you use feature values with nonfuzzy values?

	 3.	Write a preprocessing function for the fuzzy similarity function to remap the val-
ues to the range of 0–1. Now run this on the same feature vectors with nonfuzzy
values. Do the results make sense? Why or why not?

Color Features

	 1.	 Incorporate the CVIPtools functions colorxform and hist_feature into your
CVIPlab.

	 2.	Design a pattern classification experiment using color images and histogram
features.

	 3.	Perform experiments using the different color spaces. For your application, which
color space gives the best results? Why do you think this is the case?

Pattern Classification I

	 1.	Write a function that will read a CVIPtools feature file and classify any unknown
vectors, those without classes listed, by comparison to all other feature vectors
in the file by using K-Nearest Neighbors method and the absolute value distance
metric, where K is an input parameter.

	 2.	Write a function that will read a CVIPtools feature file and calculate the centroid
vector for each class contained in the feature file, and write an output file with the
class names and the corresponding centroid vectors.

398	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	Write a function that will read a CVIPtools feature file and a “centroid file” from
the previous function, and classify the feature vectors using Nearest Centroid
method.

Pattern Classification II

	 1.	Modify the functions from the Pattern Classification I exercises to allow the user
to specify the type of distance or similarity metric desired. Include Minkowski
distance, vector inner product, and Tanimoto metric.

	 2.	Modify the functions from the Pattern Classification I exercises to allow the user
to specify the type of normalization desired, including range normalization, stan-
dard normal density, or min–max normalization.

References

Ballard, D. H., and Brown, C. M., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 1982.
Banks, S., Signal Processing, Image Processing and Pattern Recognition, Upper Saddle River, NJ: Prentice

Hall, 1990.
Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.
Costa, L., and Cesar, R. M., Shape Analysis and Classification: Theory and Practice, Boca Raton, FL: CRC

Press, 2001.
Dougherty, G., Digital Image Processing for Medical Applications, Cambridge, UK: Cambridge University

Press, 2009.
Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, New York, NY: Wiley, 2001.
Forsyth, D. A., and Ponce, J., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2003.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall,

2008.
Gose, E., Johnsonbaugh, R., and Jost, S., Pattern Recognition and Image Analysis, Upper Saddle River,

NJ: Prentice Hall PTR, 1996.
Granlund, G., and Knutsson, H., Signal Processing for Computer Vision, Boston, MA: Kluwer Academic

Publishers, 1995.
Haralick, R. M., and Shapiro, L. G., Computer and Robot Vision, Reading, MA: Addison-Wesley, 1992.
Harvey, R. L., Neural Network Principles, Upper Saddle River, NJ: Prentice Hall, 1996.
Horn, B. K. P., Robot Vision, Cambridge, MA: The MIT Press, 1986.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Kennedy, J. B., and Neville, A. M., Basic Statistical Methods for Engineers and Scientists, New York, NY:

Harper and Row, 1986.
Kennedy, R. L., Lee, Y., Van Roy, B., Reed, C. D., and Lippman, R. P., Solving Data Mining Problems

Through Pattern Recognition, Upper Saddle River, NJ: Prentice Hall, 1997.
Kulkarni, A., Computer Vision and Fuzzy-Neural Systems, Upper Saddle River, NJ: Prentice Hall, 2001.
Levine, M. D., Vision in Man and Machine, New York, NY: McGraw Hill, 1985.
Masters, T., Signal and Image Processing with Neural Networks, New York, NY: Wiley, 1994.
Nadler, M., and Smith, E. P., Pattern Recognition Engineering, New York, NY: Wiley, 1993.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Rangayyan, R. M., Biomedical Image Analysis, Boca Raton, FL: CRC Press, 2005.
Ripley, B. D., Pattern Recognition and Neural Networks, Cambridge, UK: Cambridge University Press,

1996.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.

Feature Analysis and Pattern Classification	 399

© 2011 by Taylor & Francis Group, LLC

Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 2006.
Schalkoff, R. J., Digital Image Processing and Computer Vision, New York, NY: Wiley, 1989.
Schalkoff, R. J., Pattern Recognition: Statistical, Structural and Neural Approaches, New York, NY: Wiley,

1992.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Theodoridis, S., and Koutroumbas, K., Pattern Recognition, 4th ed., New York, NY: Academic Press,

2009.
Tou, J. T., and Gonzalez, R. C., Pattern Recognition Principles, Reading, MA: Addison-Wesley, 1974.
Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Applying Artificial Intelligence to the Identification

of Variegated Coloring in Skin Tumors, IEEE Engineering in Medicine and Biology, December
1991, 57–62.

Further Reading

More on feature extraction and selection can be found in Theodoridis and Koutroumbas
(2009), Forsyth and Ponce (2003), Duda, Hart, and Stork (2001), and Ripley (1996). Information
regarding chain codes can be found in Gonzalez and Woods (2008), Costa and Cesar (2001),
Nadler and Smith (1993), Jain, Kasturi, and Schnuck (1995), and Ballard and Brown (1982).
For an excellent book on shape analysis and classification see Costa and Cesar (2001).
More information on shape features can be found in Forsyth and Ponce (2003), Shapiro
and Stockman (2001), Castleman (1996), Schalkoff (1989), Horn (1986), and Levine (1985).
More details on color features can be found in Forsyth and Ponce (2003) and Shapiro and
Stockman (2001). Details regarding Fourier descriptors can be found in Gonzalez and
Woods (2008), Sonka, Hlavac, and Boyle (2008), and Nadler and Smith (1993). More infor-
mation for texture-based features can be found in Gonzalez and Woods (2008), Sonka,
Hlavac, and Boyle (2008), Rangayyan (2005), Shapiro and Stockman (2001), Castleman (1996),
Granlund and Knutsson (1995), Haralick and Shapiro (1992), Pratt (1991), and Rosenfeld and
Kak (1982). Details on the co-occurrence matrix for texture can be found in Gonzalez and
Woods (2008), Sonka, Hlavac, and Boyle (2008), Shapiro and Stockman (2001), Haralick and
Shapiro (1992), and Nadler and Smith (1993). An example of using spectral feature plots for
texture identification is found in Nadler and Smith (1993). The information regarding the
Laws energy mask is found in Sonka, Hlavac, and Boyle (2008) and Shapiro and Stockman
(2001). More on the RST-invariant moment features can be found in Gonzalez and Woods
(2008), Costa and Cesar (2001), Nadler and Smith (1993), and Schalkoff (1992).

A more complete mathematical analysis of distance and similarity measures can be
found in Theodoridis and Koutroumbas (2009) and Duda, Hart, and Stork (2001). For more
on pattern classification/recognition see Theodoridis and Koutroumbas (2009), Shapiro
and Stockman (2001), Sonka, Hlavac, and Boyle (2008), Duda, Hart, and Stork (2001), Gose,
Johnsonbaugh, and Jost (1996), Nadler and Smith (1993), Schalkoff (1992), Banks (1990), and
Tou and Gonzalez (1974). For more on fuzzy set theory and fuzzy feature classification
see Theodoridis and Koutroumbas (2009) and Gonzalez and Woods (2008). For a prac-
tical book on statistics see Kennedy and Neville (1986). For details on the experiments
used as an example for increasing training set size, see Umbaugh, Moss, and Stoecker
(1991). More information on template matching is found in Duda, Hart, and Stork (2001),
Gose, Johnsonbaugh, and Jost (1996), and Schalkoff (1992). Neural networks are discussed

400	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

in more depth in Sonka, Hlavac, and Boyle (2008), Forsyth and Ponce (2003), Kulkarni
(2001), and Gose, Johnsonbaugh, and Jost (1996). More detail on the biological models for
neural nets are in Harvey (1996). One book that walks through the various parameters and
models for developing pattern classification systems, and includes software, is Kennedy
et al. (1997). Books that relate classical pattern recognition methods and neural nets include
Kulkarni (2001), Ripley (1996), and Schalkoff (1992). For a practical approach to the use of
neural networks in image processing see Masters (1994). For an excellent handbook on
image processing, quite useful for feature extraction, see Russ (2006). Two excellent texts
for feature recognition and classification with medical applications is Dougherty (2009)
and Rangayyan (2005).

For information on fuzzy logic methods for pattern recognition see Gonzalez and Woods
(2008), Kulkarni (2001), Sonka, Hlavac, and Boyle (2008), and Nadler and Smith (1993). For
information on genetic algorithms see Sonka, Hlavac, and Boyle (2008), Theodoridis and
Koutroumbas (2009), and Duda, Hart, and Stork (2001).

© 2011 by Taylor & Francis Group, LLC

Section III

Digital Image Processing
and Human Vision

403© 2011 by Taylor & Francis Group, LLC

7
Digital Image Processing and Visual Perception

7.1  Introduction and Overview

In Section I of the book, Introduction to Digital Image Processing and Analysis, we dis-
cussed the distinction between image processing for human vision applications and
for computer vision applications, and then took an overall view of imaging systems. In
Section II, Digital Image Analysis and Computer Vision, we related how image analysis
is used for both types of applications, and that a computer vision system is essentially a
deployed image analysis system. In our exploration of image analysis, we discovered that
the output is some form of higher level image representation that can be used for analysis
or in some applications, pattern classification. Here in Section III, Digital Image Processing
and Human Vision, we will explore those application areas that involve processing images
for human consumption. In other words, we want to process the images and produce bet-
ter images. Better in what sense?—enhanced, restored, or compressed.

In this part of the book we will look in detail at each of these three areas, image enhance-
ment, image restoration, and image compression with a chapter devoted to each area. We
will see that image enhancement and image restoration both involve techniques to create a
better image. Image compression involves the development of techniques to make smaller
files while still retaining high quality images. Metrics necessary to measure image qual-
ity are explored in this chapter, as well as human visual perception. We must first learn
how the human visual system (HVS) perceives images to determine exactly what it is that
makes one image better than another.

7.2  Human Visual Perception

Human visual perception is something most of us take for granted. We do not think
about how the makeup of the physiological systems affects what we see and how we see
it. Although human visual perception encompasses both physiological and psychological
components, we are going to focus primarily on the physiological aspects, which are more
easily quantifiable, using the current models available for understanding the systems.

The first question is, Why study visual perception? We need to understand how we per-
ceive visual information in order to design compression algorithms that compact the data
as much as possible, but still retain all the necessary visual information. This is desired
for both transmission and storage economy. Images are often transmitted over the air-
waves, and are transmitted more frequently via the Internet, and people do not want to

404	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

wait minutes or hours for the images. Additionally, the storage requirements can become
overwhelming without compression. For example, an 8-bit monochrome image, with a
resolution of 512 pixels wide by 512 pixels high, requires 1/4 of a megabyte of data. If we
make this a color image, it requires 3/4 of a megabyte of data (1/4 for each of three color
planes—red, green, and blue (RGB)). Nowadays, a 2k × 2k uncompressed photo from a
digital camera will require 12 megabytes of storage. With many applications requiring the
capability to efficiently manage thousands of images, the need to reduce data is apparent.

For the development of image enhancement and restoration algorithms, we also have
the need to understand how the HVS works. For enhancement methods, we need to know
the types of operations that are likely to improve an image visually, and this can only be
achieved by understanding how the information is perceived. For restoration methods, we
must determine aspects of the restoration process that are likely to achieve optimal results
based on our perception of the restored image.

7.2.1  Human Visual System

Vision is our most powerful sense. It allows us to gather information about our environ-
ment, and provides us with the opportunity to learn through observation. Vision enables
us to interact with our environment safely, by allowing control of our physical movements
without direct physical contact (ouch!). It is also our most complicated sense, and although
current knowledge of biological vision systems is incomplete we do have a basic under-
standing of the different parts of the system, and how they interact.

The HVS has two primary components: the eye and the brain, which are connected
by the optic nerve (see Figure 7.2-1). The structure that we know the most about is the
image receiving sensor: the human eye. The brain can be thought of as being an infor-
mation processing unit, analogous to the computer in our computer imaging system.
These two are connected by the optic nerve, which is really a bundle of nerves that
contains the pathways for the visual information to travel from the receiving sensor, the
eye, to the processor, the brain. The way the HVS works is as follows: (1) light energy
is focused by the lens of the eye onto the sensors on the retina at the back of the eye;

Iris

Eye
�e input sensor

Optic nerve
�e transmission path

Brain
�e information-processing

unit (computer)

Pupil

Figure 7.2-1
The human visual system.

Digital Image Processing and Visual Perception	 405

© 2011 by Taylor & Francis Group, LLC

(2) these sensors respond to this light energy by an electrochemical reaction that sends
an electrical signal down the optic nerve to the brain; and (3) the brain uses these nerve
signals to create neurological patterns that we perceive as images.

The visible light energy corresponds to an electromagnetic wave that falls into the
wavelength range from about 380 nanometers (nm) for ultraviolet to about 780 nm for
infrared, although above 700 the response is minimal. In young adults, wavelengths as
high as 1000 nm or down to 300 nm may be seen, but the standard range for human vision
is typically given as 400–700 nm. How this fits in with other parts of the electromagnetic
spectrum was shown in Figure 2.2-1. In imaging systems the spectrum is often divided
into various spectral bands, where each band is defined by a range on the wavelengths (or
frequency). For example, it is typical to divide the visible spectrum into roughly three
bands corresponding to “blue” (400 to 500 nm), “green” (500–600 nm), and “red” (600–700
nm). In Figure 7.2-2 we see the visible wavelengths of light and their corresponding col-
ors, and how these relate to the standard separation into RGB color bands.

The eye has two primary types of light energy receptors, or photoreceptors, which
respond to the incoming light energy and convert it into electrical energy, or neural sig-
nals, via a complex electrochemical process. These two types of sensors are called rods
and cones. The sensors are distributed across the retina, the inner backside of the eye
where the light energy falls after being focused by the lens (Figure 7.2-3). The amount of
light that passes through the lens is controlled by varying the diameter of the pupil, the
black area in the center of the iris, the central colored part of the eye (see Figure 7.2-1). The
cones are primarily used for photopic (daylight) vision, are sensitive to color, are concen-
trated in the central region of the eye, and have a high resolution capability. The rods are
used in scotopic (night) vision, see only brightness (not color), are distributed across the
retina, and have medium to low level resolution. There are many more rods in the human
eye than cones; with an order of magnitude difference, on the order of 6–7 million cones
to 100 million rods.

In Figure 7.2-3 we can see that there is one place on the retina where no light sensors
exist; this is necessary to make a place for the optic nerve, and is referred to as the blind
spot. One of the amazing aspects of the human brain is that we do not perceive this as a
blind spot, the brain fills in the missing visual information. The brain can do this as it has

Wavelength λ, in nanometers

400 500 600 700

Frequency, 5101 ×

250 200 175 150

“blue” band “green” band “red” band InfraredUltraviolet

λ

Figure 7.2-2
Visible light spectrum. For many imaging applications the visible spectrum is divided into three bands: red,
green and blue (RGB). Red is the longest wavelength and the lowest frequency, and blue (or violet) is the short-
est wavelength and highest frequency. Beyond the red end of the visible spectrum is infrared, and below the
violet in ultraviolet.

406	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

different visual information from each eye. By examining Figure 7.2-3b, we can see why an
object must be in our central field of vision, which is only a few degrees wide, in order to
effectively perceive it in fine detail. This is where the high-resolution-capability cones are
concentrated. They have a higher resolution than the rods because they have individual
nerves tied to each sensor (cone), whereas the rods have multiple sensors (rods) connected
to each nerve. The distribution of the rods across the retina shows us that they are much
more numerous than cones, and that they are used for our peripheral vision—there are
very few cones away from the central visual axis. The response of the rods to various
wavelengths of light is shown in Figure 7.2-4a.

There are three types of cones, each responding to different wavelengths of light energy.
The response to these can be seen in Figure 7.2-4b, the tristimulus curves. These are called
the tristimulus (three stimuli) curves because all the colors that we perceive are the com-
bined result of the response to these three sensors. These curves plot the wavelength versus
the relative intensity (gain) of the sensor’s response, or in engineering terms, the transfer

Retina

Blind spot
Optic nerve

Basic eye structure

Central visual axis

60° 60°

45° 45°

30° 30°
15° 15°

Lens

(a)
Re

la
tiv

e n
um

be
r o

f r
od

s o
r c

on
es

Rods

Cones

Concentration of rods and cones across retina

 Degrees from central visual axis

Blind spot

60° 60°45° 45°30° 30°15° 15°0°

(b)

Figure 7.2-3
The human eye.

Digital Image Processing and Visual Perception	 407

© 2011 by Taylor & Francis Group, LLC

function of the sensor. Although there are many more of the “red” and “green” cones than
the “blue” cones, we are still able to see blue quite nicely. Apparently, the part of the brain
that perceives color can compensate for this and is just one of the many phenomena in the
human brain that we do not yet fully understand.

The cones in the eye respond in such a way as to generate three brightness values for
each of the RGB bands. This is why we model color images in this manner—it is a model
for human visual perception. We can approximate these RGB values as follows:

	

R K R b d

G K G b d

B K

=

=

=

∫

∫

() ()

() ()

λ λ λ

λ λ λ

400

700

400

700

BB b d() ()λ λ λ
400

700

∫

	

(a)

Re
la

tiv
e r

es
po

ns
e o

f r
od

s

400 600
Wavelength (nm)

Blue Green Red

Gain peaks at
about 500 nm

500 700

Re
la

tiv
e r

es
po

ns
e o

f c
on

es

λ

B(λ)
G(λ)

R(λ)

Gain peaks at
about 445 nm

Gain peaks at
about 535 nm

Gainpeaks at
about 575 nm

400 600500 700 nm

(b)

Figure 7.2-4
Relative response of rods and cones. (a) Rods react in low light levels, scotopic vision, but respond to only
a single spectral band, so cannot distinguish colors, (b) cones react only to high light intensities, photopic
vision, and, since there are three different types which respond to different spectral bands, they enable us
to see color.

408	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

where b(λ) is the incident photon flux (as in Chapter 2)
and R(λ), G(λ), and B(λ) are the tristimulus curves
and K is a constant that is dependent on the sensor’s area, the length of the time the signal
is measured and the units used.

Example 7.2.1

Assume that the tristimulus curves are approximated by bandpass filters with a flat response
with a gain of one, using the RGB bands as shown in Figure 7.2-2. Find the RGB values for the
following incident photon flux: (a) b(λ) = 5, (b) b(λ) = 10λ (for these calculations, don’t worry about
units as they depend on the time and area as was shown in the sensor equation in Section 2.2.1, and
for color perception the important aspect is the relative amount of R, G, and B).

	 (a)	 R K R b d K d K= = = =∫ () () ()()λ λ λ λ λ
400

700

600

700
1 5 5 5000

1 5

600

700

400

700

500

K

G K G b d K d

∫

∫= =() () ()()λ λ λ λ
6600

500

600

400

700

5 500∫

∫

=

= =

= K K

B K B b d K

λ

λ λ λ() () (11 5 5 500
400

500

400

500
)()d K Kλ λ∫ = =

	 (b)	 R K R b d K d K= = =∫ ∫() () ()()λ λ λ λ λ
400

700

600

700

1 10 10
λλ

λ λ λ

2

600

700

5

400

700

2
6 5 10

1

= ×

= =∫

.

() () (

K

G K G b d K))() .

(

10 10
2

5 5 10
500

600 2

500

600

5λ λ
λ

d K K

B K B

∫ = ×

=

=

λλ λ λ λ λ
λ

) () ()()b d K d K=∫ ∫400

700

400

500 2

4

1 10 10
2

=
000

500

54 5 10= ×. K

Two colors that have similar R, G, and B values will appear similar, and two colors with
identical RGB values will look identical. However, it is possible for colors to have different
spectral distributions, b(λ), and still appear the same. Metameric is the term for two colors
with different spectral distributions that have the same RGB values. Two colors that are
metamers will look identical to the HVS. This is possible since the RGB values are calcu-
lated by multiplying the spectral distribution of the incoming light energy by the sensor
response, in this case the tristimulus curves, and then integrating the result—remember
that the integral operator is simply the area under the curve.

Example 7.2.2

As before, assume that the tristimulus curves are approximated by bandpass filters with a flat
response with a gain of one, using the RGB bands as shown in Figure 7.2-2. In the previous
example, part (a) we had a spectral distribution of b(λ) = 5, and calculated the three RGB val-
ues to be 500. Given the following spectral distribution, find the RGB values:

	 b()λ

λ

λ
=

≤ ≤

≤ ≤

10
10
10

for 425 475
for 525 575
foor 625 675

0 elsewhere
≤ ≤

⎧

⎨
⎪
⎪

λ

⎩⎩
⎪
⎪

Digital Image Processing and Visual Perception	 409

© 2011 by Taylor & Francis Group, LLC

400

b(λ)

10

500 600 700
λ

	

R K R b d K d K= = =∫ ∫() () ()()λ λ λ λ λ
400

700

625

675

1 10 10
6625

675

400

700

500

1 10

=

= =∫

K

G K G b d K d() () ()()λ λ λ λ
5525

575

525

575

400

700

10 500∫ =

=

= K K

B K B b d

λ

λ λ λ() ()∫∫ ∫= = =K d K K()()1 10 10 500
425

475

425

475
λ λ

Note that this is the same color as when the spectral distribution is a constant value of 5 across
the entire spectrum! Therefore, these two colors are metamers and appear the same.

Since the HVS sees in a manner that is dependent on the sensors, most cameras and
display devices are designed with sensors that mimic the HVS response. With this type
of design, metamers, which look the same to us, will also appear the same to the camera.
However, we can design a camera that will distinguish between metamers, something
that our visual system cannot do, by proper specification of the response function of the
sensors. This is one example that illustrates that a computer vision system can be designed
that has capabilities beyond the HVS—we can even design a machine vision system to
“see” x-rays or gamma rays. We can also design a system to allow us to see in the infrared
band—this is what night vision goggles do. The strength of the HVS system lies not with
the sensors, but with the intricate complexity that we call the human brain. Even though
some aspects of manufactured vision systems, for example, cameras, may exceed the capa-
bilities of our visual system, it will be some time before we have developed a machine
vision system to rival the HVS.

Another point of comparison between electronic imaging equipment and the HVS is
resolution. In the human eye the maximum resolution available is in the area of highest
concentration of the color sensors (see Figure 7.2-3). The area of highest concentration of
cones, called the fovea and located at the 0° point on the retina, is a circular area with a
diameter of about 1.5 mm. The density of cones in this area is about 150,000 per square
mm, so we can estimate the fovea has about 300,000 elements. By comparison, a three
mega-pixel CCD imaging chip has about 3.3 million elements in an array of 5.3 × 4 mm,
so this electronic sensor has a resolution capability similar to the human eye—155,660
elements per square mm.

The eye is the input sensor for image information, but the optic nerve and the brain
processes the signals. The neural system model is shown in Figure 7.2-5a, where a loga-
rithmic response models the known response of the eye, which is then multiplied by
weighting factors and summed. With this model the weighting factors apply only to
small neighborhoods, so they act like a convolution mask. The weighting factors can con-
trol effects such as lateral inhibition, which uses positive and negative factors for adjacent
sensor weights (see Figure 7.2-5b) thus creating a high-pass filter effect that emphasizes

410	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

edges. This phenomenon is essential for our visual perception since edges often contain
valuable information; such as where one object ends and another begins.

7.2.2  Spatial Frequency Resolution

One of the most important aspects of the HVS is spatial frequency resolution. How much
fine detail can we see? How many pixels do we need on a video screen or in a camera’s
sensor? In order to understand the concept of spatial frequency resolution we first need
to define exactly what we mean by resolution. Resolution has to do with the ability to
separate two adjacent pixels, if we can see two adjacent pixels as being separate, then we
can resolve the two. If the two appear as one and cannot be seen as separate, then we
cannot resolve the two. The concept of resolution is closely tied to the concept of spatial
frequency, as discussed in Chapter 5 and illustrated in Figure 7.2-6.

In Figure 7.2-6a we use a square wave to illustrate the concept of spatial frequency resolu-
tion, where spatial frequency refers to how rapidly the brightness signal is changing in space,
and the signal has two values for the brightness: 0 and Maximum. If we use this signal for
one line (row) of an image, and then repeat the line down the entire image, we get an image
of vertical stripes, as in Figure 7.2-6b. If we increase this frequency, the stripes get closer
and closer together (Figure 7.2-6c), until they start to blend together as in Figure 7.2-6e and f.

(a)

(b)

Location

Center sensor
weight

Negative
weights

Sensors–Rods
and cones

Log Weight

Log Weight

Log Weight

Log Weight

Σ

Output–Neural
signal

Logarithmic
response of
the sensors

Weighting
functions

Figure 7.2-5
A model for the neural processing system. (a) System model, (b) lateral inhibition weights.

Digital Image Processing and Visual Perception	 411

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(d)(c)

Brightness

Space
Zero

Maximum

(e) (f)

Figure 7.2-6

Resolution and spatial frequency. The following images are originally 256 × 256 pixels. (a) One-dimensional
square wave, the brightness values correspond to one row of the following images, (b) low frequency, 2 cycles
per image, (c) higher frequency, 8 cycles per image, (d) 32 cycles per image, (e) at 64 cycles we being to see the
difficulty in resolving the lines, (f) much higher frequencies are difficult to resolve, 128 cycles.

412	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(Remember we are discussing the resolution of the visual system, not the display device.
Here we are assuming that the display device has enough resolution to separate the lines;
the resolution of the display device must also be considered in many applications.)

By looking at Figure 7.2-6e and f and moving it away from our eyes, we can see that the
spatial frequency concept must include the distance from the viewer to the object as part
of the definition. With a typical television image, we cannot resolve the individual pixels
unless we get very close, so the distance from the object is important when defining resolu-
tion and spatial frequency. We can eliminate the necessity to include distance by defining
spatial frequency in terms of cycles-per-degree, which provides us with a relative measure.
A cycle is one complete change in the signal; for example, in the square wave it corre-
sponds to one high point and one low point, thus we need at least two pixels for a cycle.
When we use cycles-per-degree, the “per degree” refers to the field of view—the width of
your thumb held at arms length is about 1°, and television sets are typically designed for
fields of view of about 5–15°.

The cycles-per-degree concept is illustrated in Figure 7.2-7a, where as we get farther away
from the eye, the same spatial frequency (in cycles per degree) must have larger cycles. In
other words, as in Figure 7.2-7b, in order for a larger object to appear the same size, it must
be farther away. This definition decouples the distance of the observer from consideration,
and provides a metric for measuring the spatial resolution of the HVS.

The physical mechanisms that affect the spatial frequency response of the visual system
are both optical and neural. We are limited in spatial resolution by the physical size of the

With a fixed field of view of a given number of cycles, the farther
from the eye, the larger each cycle must be.

Field of view,
degrees

Eye

(b)

(a)

A larger, more distant object can appear to be the same size as
a smaller, closer object.

Eye

Figure 7.2-7
Cycles per degree.

Digital Image Processing and Visual Perception	 413

© 2011 by Taylor & Francis Group, LLC

image sensors, the rods and cones; we cannot resolve things smaller than the individual
sensor. The primary optical limitations are caused by the lens itself; it is of finite size,
which limits the amount of light it can gather, and typically contains imperfections that
cause distortion in our visual perception. Although gross imperfections can be corrected
with lenses (glasses or contacts), subtle flaws cannot be corrected. Additionally, factors
such as the lens being slightly yellow (which progresses with age) limit the eye’s response
to various wavelengths of light.

The spatial resolution of the visual system has been empirically determined, and is
plotted in Figure 7.2-8. The vertical axis, “relative sensitivity,” is measured by adjusting
the contrast required to see specific frequencies. Here we see that both low and high
frequencies require more contrast (the eye is less sensitive) than the middle frequen-
cies. Note that the spatial resolution is affected by the average (background) bright-
ness of the display; the two plots correspond to different average brightness levels. In
general, we have the ability to perceive higher spatial frequencies at brighter levels,
but overall the cutoff frequency is about 50 cycles per degree, peaking at around 4 cycles
per degree.

Example 7.2.3

The conventional (older) format for a television display is a 4:3 aspect ratio, where 4 is
the horizontal width compared to 3 for the vertical height. The standard is to assume the
viewer sits six times the picture height from the screen. Use 53 μseconds (53 × 10–6 seconds)
as the time it takes to scan one line (ignore blanking intervals), and a cutoff frequency of 50
cycles per degree. (a) What is the maximum frequency a video amplifier needs to pass to
use the full resolution of the eye? (b) How many pixels per line are needed? (c) How many
lines are needed in the display?

Re
la

tiv
e s

en
sit

iv
ity

 o
f h

um
an

 v
isu

al
 sy

st
em

 (l
og

 sc
al

e)
In bright

light

In dim
light

Spatial frequency (cycles/degree)
10 50 1001 50.50.1

Figure 7.2-8
Spatial resolution.

414	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 (a)	 First, find the angle the viewer will see in the horizontal direction:

4

6 × 3 =18

θ

	 tan−

×
⎛
⎝⎜

⎞
⎠⎟
= → ≈1 4 2

6 3 2
12 7

/
.

θ
θ °

		 Now, at 50 cycles per degree, the total number of cycles per line:

	 12 7 50. ° cycles/degree 635 cycles× =

		 To find maximum frequency, which in units of cycles per second:

	
635

1
cycles

53 10 seconds
11,981,132 2 MHz

6×
= ≈

−
bandwidth

	 (b)	 Since we require at least two pixels per cycle:

	 635 cycles 2 pixels/cycle 1270 pixels per l× = iine

	 (c)	 To find the number of lines we need to find the angle in the vertical direction:

	 tan−

×
⎛
⎝⎜

⎞
⎠⎟
= → ≈1 3 2

6 3 2
9 5

/
.

θ
θ °

		 Now, at 50 cycles per degree, the total number of cycles in the vertical direction:

	 9 5 50. ° cycles/degree 475 cycles× =

		 Since we require at least two pixels per cycle:

	 475 cycles 2 pixels/cycle 950 lines× =

Next, we will apply the same parameters to the newer high definition (HD) display for-
mat. Although the new digital signal is different than the old analog signal, the HVS has
not changed. Therefore, the refresh rate, or how frequently the screen is updated, still has
the same requirements. That being the case we will use the same parameters as before,
except we will use the HD aspect ratio. We will see if the high definition television (HDTV)
specification is adequate.

Example 7.2.4

The newer HD format for a television display is a 16:9 aspect ratio, where 16 is the horizontal
width compared to 9 for the vertical height. The standard is to assume the viewer sits six times
the picture height from the screen. Again, we will assume a cutoff frequency of 50 cycles

U
FM

|4
84

94
2|

14
35

60
95

92

Digital Image Processing and Visual Perception	 415

© 2011 by Taylor & Francis Group, LLC

per degree. (a) How many pixels per line are needed? (b) How many lines are needed in the
display?

	 (a)	 First, find the angle the viewer will see in the horizontal direction:

16

6 × 9 =54

θ

	 tan−

×
⎛
⎝⎜

⎞
⎠⎟
= → ≈1 16 2

6 9 2
16 85

/
.

θ
θ °

		 Now, at 50 cycles per degree, the total number of cycles per line:

	 16 85 50. ° cycles/degree 843 cycles× ≈

		 Since we require at least two pixels per cycle:

	 843 cycles 2 pixels/cycle 1686 pixels per l× = iine

	 (b)	 To find the number of lines we need to find the angle in the vertical direction:

	 tan−

×
⎛
⎝⎜

⎞
⎠⎟
= → ≈1 9 2

6 9 2
9 53

/
.

θ
θ °

		 Now, at 50 cycles per degree, the total number of cycles in the vertical direction:

	 9 53 50. ° cycles/degree 476 cycles× =

		 Since we require at least two pixels per cycle:

	 475 cycles 2 pixels/cycle 952 lines× =

We have just determined that, for an aspect ratio of 16:9, the minimum number of lines
is 952 and the minimum number of pixels per line to be 1686. We have found these num-
bers based on human visual perception based parameters. The HDTV specification has an
aspect ratio of 16:9 and specifies 1080 lines per frame and 1920 pixels per line. Thus, we
have found that the HDTV specifications are acceptable—the committee will undoubtedly
be happy to hear of our approval.

7.2.3 B rightness Adaptation

The vision system responds to a wide range of brightness levels. The response actually
varies based on the average brightness observed, and is limited by the dark threshold and
the glare limit. Light intensities below the dark threshold or above the glare limit are either
too dark to see, or blinding. We cannot see across the entire range at any one time, but our

416	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

system will adapt to existing light conditions by varying the diameter of the pupil. The
pupil acts as a diaphragm on the lens and controls the amount of light that can enter, and
can range from about 2 to 8 mm in diameter.

As we have seen, due to the function of the eye’s sensors, subjective brightness is a
logarithmic function of the light intensity incident on the eye. Figure 7.2-9 is a plot of
the range and variation of the system. The vertical axis shows the entire range of sub-
jective brightness over which the system responds, and the horizontal corresponds to
the measured brightness. The horizontal axis is actually the log of the light intensity, so
this results in an approximately linear response. A typical response curve for a specific
lighting condition can be seen in the smaller curve plotted; any brightness levels below
this curve will be seen as black. This small curve can be extended to higher levels (above
the main curve), but if the lighting conditions change, the entire small curve will simply
move upward.

In images we observe many brightness levels, and the vision system can adapt to a
wide range, as we have seen. However, it has been experimentally determined that we
can only detect about 20 changes in brightness in a small area within a complex image.
But, for an entire image, due to the brightness adaptation that our vision system exhib-
its, it has been determined that about 100 different gray levels are necessary to create a
realistic image. For 100 gray levels in a digital image, we need at least 7 bits per pixel

Glare limit

Subjective
brightness

Dark
threshold

Measured brightness
(log of light intensity)

Average response curve
over the entire range

of vision

If this extends too far,
then the average
brightness and the
entire curve moves up

Dark

Average
brightness

Curve for
specific
conditions

Figure 7.2-9
Brightness adaptation in the human visual system.

Digital Image Processing and Visual Perception	 417

© 2011 by Taylor & Francis Group, LLC

(27 = 128). If fewer gray levels are used, we observe false contours (bogus lines) result-
ing from gradually changing light intensity not being accurately represented, as in
Figure 7.2-10.

If we only need about 100 gray levels to represent brightness changes in images, why
do we typically use 8-bits per pixel? The answer to that is twofold: (1) current digital com-
puters are binary and (2) noise is inherent in any physical system. As for the first point,
anyone who has done any programming knows that dealing with bytes, 8-bit quantities

(a)

(c) (d)

(b)

Figure 7.2-10
False contouring. (a) original image at 8 bits/pixel for 256 possible gray levels, (b) false contours can be seen
by using only 3 bits/pixel for 8 possible gray levels, some sample false contour lines are marked by arrows, (c)
original color image, 8-bits per color band, 24-bits/pixel, (d) false contours can be seen by using only 3 bits per
band for 9 bits/pixel, some sample false contour lines are marked by arrows.

418	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

with 256 possible values, is much easier than dealing with 7-bit quantities. Computers
are designed and built around 8, 16, 32, and 64-bit words, so the corresponding software
development tools are also designed to deal with these data types. Anyone wishing to
deal with 7-bit quantities is in for a bit-twiddling nightmare! As for the second point, noise
being inherent in any physical system, it is quite useful to have an extra bit for the noise.
Figure 7.2-11 shows the individual bit planes for an 8-bit per color band image, and here we
see that the last bit appears to be mostly noise.

(a)

(b) (c)
Bit 7 Bit 6

Original
image

Figure 7.2-11
Individual bit-planes in a color image. For these images the individual bit-planes for each of the RGB bands were
extracted and the histogram was stretched to make it visible. (a) Original image at 8 bits/pixel per band for 256 possible
brightness levels per band, (b) image corresponding to bit 7, the most significant bit, (c) image for bit 6, (d) bit 5, (e) bit 4,
(f) bit 3, (g) bit 2, (h) bit 1, (i) bit 0, the least significant bit. Notice that the lowest bit planes appear to be mostly noise.

Digital Image Processing and Visual Perception	 419

© 2011 by Taylor & Francis Group, LLC

7.2.4  Temporal Resolution

The temporal resolution of the HVS deals with how we respond to visual information as a
function of time. This is most useful when considering video and motion in images, where
time can simply be thought of as an added dimension. In other words, temporal resolu-
tion deals with frame rates, or how slow can we update an image on a video screen or in a
motion picture (movie) and still see individual frames? Although we deal primarily with

(d) (e)

(f) (g)

(h) (i)

Bit 5 Bit 4

Bit 3 Bit 2

Bit 0Bit 1

Figure 7.2-11 (Continued)
Individual bit-planes in a color image. For these images the individual bit-planes for each of the RGB bands were
extracted and the histogram was stretched to make it visible. (a) Original image at 8 bits/pixel per band for 256 possible
brightness levels per band, (b) image corresponding to bit 7, the most significant bit, (c) image for bit 6, (d) bit 5, (e) bit 4,
(f) bit 3, (g) bit 2, (h) bit 1, (i) bit 0, the least significant bit. Notice that the lowest bit planes appear to be mostly noise.

420	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

two-dimensional (row and column) stationary images in this book, a basic understanding
of the temporal response of the HVS is necessary to have a complete overview of human
vision.

In Figure 7.2-12 we see a plot of temporal contrast sensitivity on the vertical axis, versus
frequency (time-based frequency, not spatial frequency) on the horizontal. This is a plot
of what is known as flicker sensitivity. Flicker sensitivity refers to our ability to observe a
flicker (flashing) in a video signal displayed on a monitor. The variables here are brightness
and frequency. Two plots are shown to illustrate the variation in response due to image
brightness. Here, as with the spatial frequency response, the brighter the display, the more
sensitive we are to changes. It should be noted that the changes are relative; that is, a per-
centage change based on the average brightness.

The primary point here is that the HVS has a temporal cutoff frequency of about 50 Hz
(cycles per second), so we will not observe flicker if the image is refreshed at that rate or
faster. Current video standards meet this criterion, and any new ones developed will need
to meet or exceed it. The older NTSC television standard used in the United States (stan-
dard definition—SD) has a field rate of 60 fields per second, and the European standard,
PAL, has a field rate of 50 fields per second. Note these television standards use interlaced
video, to conserve bandwidth for transmission, while most computer monitors use nonin-
terlaced video and operate at about 72–75 frames per second. A field rate of 60 per second
provides a frame rate of 30 per second. According to our temporal cutoff frequency of 50
this should cause visible flicker. Why then does our television image not visibly flicker?—
due to a phenomenon of the display elements called persistence. Persistence means the

In bright
light

In dim
light

Te
m

po
ra

l c
on

tr
as

t s
en

sit
iv

ity

5 50 100101
Frequency (time, Hz)

Figure 7.2-12
Temporal resolution.

Digital Image Processing and Visual Perception	 421

© 2011 by Taylor & Francis Group, LLC

display elements will continue to emit light energy while the next alternating field is being
displayed. So, even though a field is only one-half of the frame (every other line), the effec-
tive frame rate is approximately equal to the field rate.

The newer HD standards include many different frame rates varying from 24 frames per
second (fps) to 60 fps. Some of the newer (2010) consumer market televisions refresh the
images at a rate of 120 or even 240 Hz. The increasing frame rate is primarily to improve
motion blur in fast moving objects such as in sports or in action movies. Additionally, since
the video signal is a digital signal, different manufacturers devise their own proprietary image
processing algorithms to enhance the images in a variety of ways.

7.2.5  Perception and Illusion

To fully understand our ability for visual perception, the current biological system model
is limited. Our ability to see and to perceive visually involves more than simply apply-
ing the current physical model of the vision system to the arrangement of elements in the
image. Some phenomena have been observed that are caused by the physical limitations
of the visual system, such as spatial frequency resolution and brightness adaptation, while
others are less well understood. Perception involves the brain as a processing unit, and
how it functions is not fully known.

We saw that the neural system exhibits an effect called lateral inhibition (see Figure 7.2- 5)
that emphasizes edges in our visual field. One important visual phenomenon that can be
at least partially attributed to lateral inhibition is called the Mach Band effect. This effect cre-
ates an optical illusion, as can be seen in Figure 7.2-13. Here we observe that when there is a
sudden change in intensity, our vision system response overshoots the edge, thus creating
a scalloped effect. This phenomenon has the effect of accentuating edges, and helps us to
distinguish, and separate, objects within an image. This ability, combined with our bright-
ness adaptation response, allows us to see outlines even in dimly lit areas.

Another phenomenon that shows that the perceived brightness of the HVS is more than
just a function of image brightness values is called simultaneous contrast. This means that
the perceived brightness depends not only on the brightness levels, but also on the bright-
ness levels of adjacent areas. Figure 7.2-14 illustrates this, where the center circle is the
same gray level in all the images, but each has a different background gray level. In this
figure we can see that the background affects our perception of brightness.

Other visual phenomena, commonly called optical illusions, are created when the brain
completes missing spatial information or misinterprets objects’ attributes. Similar to
the simultaneous contrast phenomenon, the illusions occur as a result of the particular
arrangement of the objects in the image. Figure 7.2-15 shows some of these illusions. These
illusions emphasize the concept that visual perception depends not simply on individual
objects, but also on the background and on how the objects are arranged. In other words,
like most things in life, context has meaning and perception is relative, not absolute.

7.3  Image Fidelity Criteria

To determine exactly what information is important, and to be able to measure image
quality, we need to define image fidelity criteria. The information required is application
specific, so the imaging specialist needs to be knowledgeable of the various types and
approaches to measuring image quality.

422	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Fidelity criteria can be divided into two classes: (1) objective fidelity criteria and (2) sub-
jective fidelity criteria. The objective fidelity criteria are borrowed from digital signal process-
ing and information theory, and provide us with equations that can be used to measure
the amount of error in a processed image by comparison to a known image. We will refer
to the processed image as a reconstructed image; typically, one that can be created from

(a)

(b)

(c)

Br
ig

ht
ne

ss

Position in space

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

Position in space

Figure 7.2-13
Mach band effect. (a) Image with uniformly distributed gray levels, (b) actual brightness values, (c) perceived
brightness values due to the Mach band effect which causes overshoot at the edges, creating a scalloped effect.
(Note: the amount of overshoot is exaggerated for clarity).

Digital Image Processing and Visual Perception	 423

© 2011 by Taylor & Francis Group, LLC

a compressed data file or by using a restoration method. Thus, these measures are only
applicable if an original or standard image is available for comparison. Subjective fidel-
ity criteria require the definition of a qualitative scale to assess image quality. This scale
can then be used by human test subjects to determine image fidelity. In order to provide
unbiased results, evaluation with subjective measures requires careful selection of the test
subjects and carefully designed evaluation experiments.

7.3.1 O bjective Fidelity Measures

The objective criteria, although widely used, are not necessarily correlated with our per-
ception of image quality. For instance, an image with a low error as determined by an
objective measure may actually look much worse than an image with a high error metric.

(a) (b)

(c) (d)

Figure 7.2-14
Simultaneous contrast. This phenomenon makes the center circle appear to have different gray-level values, but
they are all the same. The images are all 8-bit, and the circle has a gray level of 127. (a) Background = 0, (b) back-
ground = 64, (c) background = 150, (d) background = 180.

424	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Due to this fact, care must be taken when evaluating image processing algorithms solely
by the use of objective error metrics.

Commonly used objective measures are the root-mean-square error, eRMS, the root-
mean-square signal-to-noise ratio, SNRRMS, and the peak signal-to-noise ratio, SNRPEAK. To
understand these measures we first define the error between an original or standard pixel
value, and the reconstructed pixel value as

	 error() () (),r,c I r,c I r,c= −ˆ

where
I(r,c) = the original or standard image

Î r,c() the reconstructed image.=

Next, we can define the total error in an N × N reconstructed image as

	 Total error [() ()]
0

1

0

1

= −
− −

∑∑
r=

N

c=

N

I rc I r,cˆ

(a) (b)

(c) (d)

(e) (f)

Figure 7.2-15
Optical illusions. (a) Even though the vertical lines are parallel, they appear tilted, (b) the top line appears longer
than the bottom one, (c) the two diagonal line segments appear not to be collinear, (d) is this four black crosses,
or connected white rectangles?, (e) the outer two lines in the upper group appear to be farther apart than the
two lines in the lower group, (f) the two center circles are the same size, but the one surrounded by larger circles
appears smaller.

Digital Image Processing and Visual Perception	 425

© 2011 by Taylor & Francis Group, LLC

Typically, we do not want the positive and negative errors to cancel each other out, so we square
the individual pixel error. The root-mean-square error is found by taking the square root (“root”)
of the error squared (“square”) divided by the total number of pixels in the image (“mean”):

	 e
N

I r,c I r,cRMS

r=

N

c=

N

= −

− −

∑∑
1

[() ()]2
0

1

0

1
2ˆ

If we consider the reconstructed image, Î r,c() , to be the “signal,” and the error to be
“noise,” we can define the root-mean-square signal-to-noise ratio as

	 SNR
I r,c

I r,c

RMS
c=

N

r=

N

=

−

−−

∑∑ 2

0

1

0

1

2

[()]

[()

ˆ

ˆ II r,c
c=

N

r=

N

()]
0

1

0

1 −−

∑∑

Another related metric, the peak signal-to-noise ratio, is defined as

	 PEAK

r=

N

c=

NSNR
L

N
I

=
−

− −

∑∑
10

(1)

1
[

10

2

2
0

1

0

1log
ˆ(() ()]

2r,c I r,c−

where L = the number of gray levels (e.g., for 8-bits L = 256).
These objective measures are often used in the research because they are easy to gen-

erate and seemingly unbiased, but remember that these metrics are not necessarily cor-
related to our perception of an image. Figures 7.3-1 and 7.3-2 illustrate this by comparing
images of noise and images that have undergone edge detection. Here we see that, even
though the edge detected images show a greater visual correlation to the original images,
the error metrics show that the images of noise are “better” images. However, the objective
measures can be useful as relative measures in comparing differing versions of the same
image. Figures 7.3-3 and 7.3-4 illustrate this by showing a series of four images that get
progressively worse and have an objective fidelity measure that responds accordingly.

7.3.2  Subjective Fidelity Measures

The subjective measures are better than the objective measures for image evaluation, if the
goal is to achieve high quality images as determined by our visual perception. To gener-
ate a subjective score for an image, or set of images, requires designing and performing
experiments in which a group of people evaluate the images. The methodology used for
subjective testing includes creating a database of images to be tested, gathering a group of
people that are representative of the desired population, and then having all the test sub-
jects evaluate the images according to a predefined scoring criterion. The results are then
analyzed statistically, typically using the averages and standard deviations as metrics.

Subjective fidelity measures can be classified into three categories. The first type is
referred to as impairment tests, where the test subjects score the images in terms of how

426	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

bad they are. The second type is quality tests, where the test subjects rate the images
in terms of how good they are. The third types are called comparison tests, where the
images are evaluated on a side-by-side basis. The comparison tests are considered to
provide the most useful results, as they provide a relative measure, which is the easi-
est metric for most people to determine. Impairment and quality tests require an abso-
lute measure, which is more difficult to determine in an unbiased fashion. In Table 7.1,
are examples of internationally accepted scoring scales for these three types of subjective
fidelity measures.

In the design of experiments that measure subjective fidelity, care must be taken so that
the experiments are reliable, robust, and repeatable. The specific conditions must be carefully

(b)

(c) (d)

Original image SNR = 11.17

SNR = 5.15 SNR = 8.81

(a)

Figure 7.3-1
Objective fidelity measures, such as peak signal-to-noise ratio, are not always correlated with visual percep-
tion. The peak signal-to-noise ratio (SNRPEAK) of an image with itself is theoretically infinite, so a high SNRPEAK

implies a good image and a lower SNRPEAK implies an inferior image. (a) Original image, (b) image of Gaussian
noise, the SNRPEAK of this image with the original is 11.17, (c) original image after edge detection and threshold-
ing, SNRPEAK = 5.15, (d) original image after edge detection and contrast enhancement, SNRPEAK = 8.81. With this
measure, image (b) is better than (c) or (d) to represent the original!

Digital Image Processing and Visual Perception	 427

© 2011 by Taylor & Francis Group, LLC

defined and controlled. The following exemplify the items that need to be specified: (1) The
scoring scale to be used; it is best to have scoring sheets designed so the test subjects can
easily rate the images with a minimum of distraction. (2) The display to be used, including
the brightness, contrast, settings, and so on. (3) The resolution setting for the display. (4)
The lighting conditions in the room. (5) The distance the test subjects are from the display
screen. (6) The amount of time the images are to be displayed. (7) The number of test subjects
participating in the experiment. (8) The type of people performing the experiment; that is,
are they “average people off the street,” or experts in a specific field? (9) The metrics used for
the results, for example, averages and standard deviations of all the scores. The details for the
experiment will depend on the application and additional parameters may be required that
are specific to the application. After the experiment is complete, statistics, such as average
and standard deviation, can be calculated and used for comparison and analysis.

(a) Original image

(b)
RMS error 78, 79, 77

Figure 7.3-2
Objective fidelity measures, such as root-mean-square error, are not always correlated with visual perception.
The root-mean-square error (eRMS) of an image with itself is zero, so a low eRMS implies a good image and a higher
eRMS implies an inferior image. (a) Original image, (b) Image of Gaussian noise, the eRMS of this image with the
original are 78, 79 and 77 for the RGB bands respectively, (c) original image after edge detection (Canny), eRMS =
122, 114, 114, (d) original image after edge detection (Robinson) and contrast enhancement, eRMS = 98, 88, 97.
According to this metric images (c) and (d) have a higher error when compared to the original than the image
of noise only (b)!

428	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(c)
RMS error 122, 114, 114

(d)
RMS error 98, 88, 97

Figure 7.3-2 (Continued)
Objective fidelity measures, such as root-mean-square error, are not always correlated with visual perception.
The root-mean-square error (eRMS) of an image with itself is zero, so a low eRMS implies a good image and a higher
eRMS implies an inferior image. (a) Original image, (b) Image of Gaussian noise, the eRMS of this image with the
original are 78, 79 and 77 for the RGB bands respectively, (c) original image after edge detection (Canny), eRMS
= 122, 114, 114, (d) original image after edge detection (Robinson) and contrast enhancement, eRMS = 98, 88, 97.
According to this metric images (c) and (d) have a higher error when compared to the original than the image
of noise only (b)!

TABLE 7.1

Subjective Fidelity Scoring Scales

Impairment Quality Comparison

5 Imperceptible A Excellent +2 much better
4 Perceptible, not annoying B Good +1 better
3 Somewhat annoying C Fair   0 the same
2 Severely annoying D Poor −1 worse
1 Unusable E Bad −2 much worse

Digital Image Processing and Visual Perception	 429

© 2011 by Taylor & Francis Group, LLC

Original image. We can see as the image
gets visually worse, the peak SNR decreases,
as expected.

Original image quantized to 16 gray levels
using IGS. �e peak SNR of it and original
image is 35. 01.

Original image with Gaussian noise added
with a variance of 800 and mean 0. Peak
SNR of it and original image is 22. 73.

Original image with Gaussian noise added
with a variance of 200 and mean 0. Peak
SNR of it and original image is 28. 14.

(a) (b)

(c) (d)

Figure 7.3-3
Objective fidelity measures, such as peak signal-to-noise ratio, can be useful for comparing the same, or similar,
images with various types or amounts of noise. Comparing (b) to the original we can see that reduction in the
number of gray levels reduces the image quality with a corresponding reduction in SNR (the SNR of an image
with itself is infinity). Comparing images (c) and (d) shows that as the added noise variance is increased we also
see a reduction in image quality along with the corresponding decrease in SNR.

430	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Original image

RMS error = 6, 6, 6

Figure 7.3-4
Objective fidelity measures, such as such as root-mean-square error, can be useful. The root-mean-square error
(eRMS) of an image with itself is zero, so a low eRMS implies a good image and a higher eRMS implies an inferior
image. (a) original image, the rms error is 0, (b) image quantized to 16 gray levels with IGS, the eRMS of this image
with the original are 6, 6 and 6 for the RGB bands respectively, (c) original image with Gaussian noise added
with a variance of 200, eRMS = 27, 23, 21, (d) original image with Gaussian noise added with a variance of 800,
eRMS (a) = 40, 34, 32. Here we see that as the image gets visually worse, the error metric responds accordingly.
(Original image courtesy of Scott Smith, SIUE)

Digital Image Processing and Visual Perception	 431

© 2011 by Taylor & Francis Group, LLC

(c)

(d)

RMS error = 27, 23, 21

RMS error = 40, 34, 32

Figure 7.3-4 (Continued)
Objective fidelity measures, such as such as root-mean-square error, can be useful. The root-mean-square error
(eRMS) of an image with itself is zero, so a low eRMS implies a good image and a higher eRMS implies an inferior
image. (a) original image, the rms error is 0, (b) image quantized to 16 gray levels with IGS, the eRMS of this image
with the original are 6, 6 and 6 for the RGB bands respectively, (c) original image with Gaussian noise added
with a variance of 200, eRMS = 27, 23, 21, (d) original image with Gaussian noise added with a variance of 800,
eRMS (a) = 40, 34, 32. Here we see that as the image gets visually worse, the error metric responds accordingly.
(Original image courtesy of Scott Smith, SIUE)

432	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

7.4  Key Points

OVERVIEW FOR DIGITAL IMAGE PROCESSING

•	 The output of image processing for human vision applications is an image that has
been enhanced, restored, or compressed.

•	 The output image is meant to be viewed by people, as opposed to computer vision
applications where the output is some form of higher level representation for a
computer or analysis.

•	 Image enhancement and restoration both involve techniques to make a better image.
•	 Image compression involves development of techniques to make smaller files

while still retaining high quality images.
•	 Metrics to measure image quality must be defined to compare improvement

methods.
•	 The HVS must be understood to help determine what makes a better image.

HUMAN VISUAL PERCEPTION
The Human Visual System

•	 Vision is our most powerful sense.
•	 Vision enables us to gather information and learn through observation.
•	 Vision allows us to interact with our environment without physical contact.
•	 The HVS has two primary components: the eye and the brain.
•	 The eye and brain are connected by the optic nerve.
•	 The eye is the receiving sensor and the brain is the processor.
•	 The HVS works as follows: (1) light energy is focused by the lens of the eye onto

the sensors on the retina at the back of the eye, (2) these sensors respond to this
light energy by an electrochemical reaction that sends an electrical signal down
the optic nerve to the brain, and (3) the brain uses these nerve signals to create
neurological patterns that we perceive as images.

•	 Visible light falls in the range of about 380–780 nanometer (nm, 10–9 meters), but it is
standard to use 400–700 nm since the response outside of this range is minimal.

•	 It is typical to divide this range into three spectral bands corresponding to red
(600–700 nm), green (500–600 nm), and blue (400–500 nm).

The eye: the receiving sensor with two types of light energy receptors, photorecep-
tors, which use an electrochemical process to covert light energy into electrical
energy or neural signals.

Iris: the central colored part of the eye.
Pupil: the black area in the center of the iris.
Lens: focuses the light entering the pupil onto the retina.
Retina: area on the back of the eye where the rods and cones are located.
Rods: sensors in the eye that are used for scotopic (night) vision; see only brightness

(not color); on the order of 100 million; low resolution due to multiple rods con-
nected to each nerve.

Digital Image Processing and Visual Perception	 433

© 2011 by Taylor & Francis Group, LLC

Cones: sensor in the eye used for photopic (daylight) vision; they see color; on the
order of 10 million (about 6–7 million); high resolution due to a separate nerve for
each cone; three types for red, green, and blue.

Fovea: area of highest concentration of cones, about 300,000 in a circular area with a
1.5 mm diameter, about 150,000 per square mm.

Blind spot: place on the retina where the optic nerve connects.
Tristimulus curves: response curves of the cones, wavelength of light versus relative

gain, allow calculation of relative RGB values as follows:

	

R K R b d

G K G b d

B K

=

=

=

∫

∫

() ()

() ()

λ λ λ

λ λ λ

400

700

400

700

BB b d() ()λ λ λ
400

700

∫
	 where b(λ) is the incident photon flux (as in Chapter 2) and R(λ), G(λ), and B(λ) are

the tristimulus curves and K is a constant that is dependent on the sensor’s area,
the length of the time the signal is measured and the units used.

	 Cameras can be designed to mimic the HVS response by using sensors that have
response curves like the tristimulus curves.

Metamer(s): two colors with different spectral distributions that appear the same, so
the RGB values are identical.

Neural system model: (Figure 7.2-5) logarithmic response of the rods and cones fol-
lowed by a multiplicative weighting factor and then summed.

Lateral inhibition: emphasizes edges to the HVS by performing a highpass filter
using negative weights on adjacent sensor values, causes the Mach Band effect.

Spatial Frequency Resolution

•	 Our spatial frequency resolution determines the amount of detail we can see.
•	 It can be used to determine pixel size and quantity specifications for image sen-

sors and displays.
•	 It has been experimentally measured by displaying various spatial frequencies

and varying the contrast until the viewer can see the separation.
•	 It has been experimentally determined that we have the most sensitivity to middle

frequencies (see Figure 7.2-8).
Resolution: has to do with the ability to separate adjacent pixels, if we can see two

adjacent pixels as being separate then we can resolve the two.
Spatial frequency: how fast a brightness signal changes in space, in general depen-

dent on distance from the viewer.
Cycles per degree: a metric that allows us to decouple viewer distance from the con-

cept of spatial frequency by measuring it in terms of degrees in field of view.
Cutoff frequency: 50 cycles per degree.

434	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Brightness Adaptation

•	 The HVS responds to a wide range of brightness levels.
•	 The HVS adapts to existing lighting conditions, which allows us to see over a

small part of the overall range at any one time (see Figure 7.2-9).
•	 The adaptation is due to the pupil, which acts as a diaphragm on the lens by con-

trolling the amount of light that can enter, effectively an automatic gain control
mechanism.

•	 Subjective brightness is a logarithmic function of the incident light energy.
•	 About 100 brightness levels are needed in images.
Dark threshold: below this brightness level all appears black to the HVS.
Glare limit: above this brightness value is blinding, all we see is white.

Temporal Resolution

•	 The temporal resolution of the HVS deals with how we respond to visual informa-
tion as a function of time.

•	 Applicable to video and motion in images, where time can simply be thought of as
an added dimension.

•	 Temporal resolution deals with frame rates, or how slow can we update an image
on a video screen or in a motion picture (movie) and still see individual frames.

Flicker sensitivity: our ability to observe a flicker (flashing) in a video signal dis-
played on a monitor.

Temporal cutoff frequency: the minimum field/frame rate needed to avoid visible
flicker, about 50 Hz (cycles per second).

Perception and Illusion

•	 To fully understand our ability to perceive visually, the current biological system
model is limited.

•	 Some phenomena are caused by physical system limits, such as spatial frequency
resolution and brightness adaptation.

•	 Perception involves the brain, which is not fully understood.
•	 Perception is relative, not absolute, and depends on context.
Mach Band effect: an effect caused by the lateral inhibition process inherent in the

visual neural system that emphasizes edges in images (Figure 7.2-13).
Simultaneous contrast: a phenomenon of the HVS that causes perceived brightness

to be dependent on adjacent brightness (Figure 7.2-14).
Optical illusion: created when the brain completes missing spatial information or

misinterprets objects’ attributes (Figure 7.2-15).

IMAGE FIDELITY CRITERIA

•	 Image fidelity criteria are necessary to determine exactly what information is
important and to measure image quality.

•	 They can be divided into two classes, objective fidelity criteria and subjective
criteria.

Digital Image Processing and Visual Perception	 435

© 2011 by Taylor & Francis Group, LLC

Objective fidelity criteria: equations that can be used to measure the amount
of error in a processed, or reconstructed, image by comparison to a known
image.

Reconstructed image: one that can be created from a compressed data file or by
using a restoration method.

Subjective fidelity criteria: require the definition of a qualitative scale to assess
image quality that is used by human test subjects to determine image fidelity.

Objective Fidelity Measures

•	 Objective fidelity measures are not necessarily correlated to human visual percep-
tion (see Figure 7.3-1 and 7.2-2).

•	 They can be useful as a relative measure in comparing differing versions of the
same image (see Figure 7.3-3 and 7.2-4).

	 Note: the following error equations apply to square, N × N images. For a nonsquare image,
simply replace one N with the size of the other dimension, M.

	 Total error:

	
Total error [() ()]

0

1

0

1

= −
−−

∑∑ Î rc I r,c
c=

N

r=

N

where

	

I r,c
I r,
() the original or standard image,
(

=
ˆ cc) the reconstructed image.=

	 Root-mean-square error:

	 e
N

I r,c I r,cRMS

c=

N

r=

N

= −
−−

∑∑1
[() ()]2

2

0

1

0

1

ˆ

Root-mean-square signal-to-noise ratio:

	 SNR
I r,c

I r c I r
RMS

c=

N

r=

N

=

−

−−

∑∑ 2

0

1

0

1

[()]ˆ

[ˆ(,) (,,)]c
c=

N

r=

N

2

0

1

0

1 −−

∑∑

Peak signal-to-noise ratio:

	 PEAK 10SNR
L

N
I r,c I r,c

=
−

−

10
(1)

1
[() ()]

2

2
2

log
ˆ

cc=

N

r=

N

0

1

0

1 −−

∑∑

where L = the number of gray levels.

436	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Subjective Fidelity Measures

•	 The subjective measures more accurately reflect our visual perception than objec-
tive measures.

•	 To generate a subjective score for an image requires designing and performing
experiments in which a group of people evaluate the images according to a pre-
defined scoring criterion.

•	 Experimental design requires careful definition and controls so that the experi-
ments are reliable, robust, and repeatable.

•	 The results are then analyzed statistically, typically using the averages and stan-
dard deviations as metrics.

•	 Three categories: (1) impairment tests, (2) quality tests, and (3) comparison tests.
Impairment tests: test subjects rate images in terms of how bad they are.
Quality tests: test subjects rate images in terms of how good they are.
Comparison tests: test subjects evaluate images on a side-by-side basis.
•	 Comparison tests provide the most useful results due to relative measures provid-

ing the most consistent results from human test subjects

Exercises

Problems

	 1.	 (a) What is the distinction between image processing and computer vision/image
analysis? (b) What are the three main areas of image processing?

	 2.	Explain why we need to understand human visual perception for image process-
ing applications.

	 3.	 (a) What are the two primary components of the human visual system? (b) How
are these two components connected?

	 4.	What are the three sequential processes describing the way the human visual sys-
tem works?

	 5.	 (a) What is the range of visible light wavelengths? (b) What are the types of imag-
ing sensors in the eye?

	 6.	 (a) How do we see color? (b) What are the tristimulus curves? (c) What part of the
eye has the most spatial resolution? Why?

	 7.	Assume that the tristimulus curves are approximated by bandpass filters with a flat
response with a gain of one, using the RGB bands as shown in Figure 7.2-2. Find the
RGB values for the following incident photon flux: (a) b(λ) = 10 and (b) b(λ) = 5λ.

	 8.	Using the same assumptions as in problem 7, and given the following spectral
distribution, find the RGB values:

	 b()λ

λ

λ
=

≤ ≤

≤ ≤

15
5
10

for 400 475
for 510 580
for 650 700

0 elsewhere
≤ ≤

⎧

⎨
⎪
⎪

⎩

λ⎪⎪
⎪

Digital Image Processing and Visual Perception	 437

© 2011 by Taylor & Francis Group, LLC

	 9.	 (a) How is it possible for two colors to have different spectral distributions, but
appear the same? (b) What is this called?

	 10.	What is lateral inhibition and why is it important for human vision?
	 11.	 (a) How is spatial frequency measured to decouple viewer distance from the equa-

tion? (b) In these terms, what is the standard spatial cutoff frequency for the HVS?
(c) How does average brightness affect spatial resolution? Why?

	 12.	 (a) Sketch an image that shows a horizontal square wave of frequency 2. (b) Sketch
an image that shows a vertical square wave of frequency 3. (c) Given an image of a
square wave at 84 cycles per degree, describe how it appears.

	 13.	An inventor wants to build a weather radar instrument for private aircraft.
Rather than using a traditional radial sweep display, the system electronically
warps spatial information so that it can be displayed in the form of a 6″ × 6″ ras-
ter pattern (square grid). What maximum spatial resolution would you suggest
(a power of 2, for digital display reasons) if the pilot’s eyes are about 28″ from the
screen?

	 14.	 (a) If a video display is being designed operating at a 50 Hz frame rate, and
1024 × 1024 pixels, what maximum frequency will the video amplifier have to pass
in order to utilize the full resolving capability of the human eye? (Assume a mini-
mum of two pixels per cycle, and ignore blanking intervals.) (b) How close can the
viewer sit without seeing discrete dots? Find this distance, D, as a function of x,
where x is the width of the (square) pixel; that is, D = f(x).

	 15.	Use CVIPtools to explore the spatial frequency resolution of your vision system.
Use Utilities→ Create. (a) Create 256 × 256 images of vertical square waves of frequen-
cies 16, 32, 64, and 128. Hold out your thumb at arm’s length (this is about 1°) and
back away from the computer screen until the thumb covers one of the 256 × 256
images completely. Which of the images can you see all the lines and in which
images do they blend together? (b) Repeat part (a), but create horizontal square
waves. Are the results the same?

	 16.	Use CVIPtools to explore the spatial frequency resolution of your vision system.
Use Utilities→ Create. (a) Create 256 × 256 images of vertical sine waves of frequen-
cies 25, 50, 64, and 100. Back away from the screen until one of the 256 × 256 images
is in about 1° of your field of view. Which of the images can you see the sine waves
clearly and in which images do they blend together? (b) Repeat part (a), but with
horizontal sine waves. Are the results the same?

	 17.	Use CVIPtools to explore the spatial frequency resolution of your vision sys-
tem. Use Utilities→ Create. Create 256 × 256 images of checkerboard patterns
with squares of size 16 × 16, 8 × 8, 4 × 4, and 2 × 2. Back away from the screen
until one of the 256 × 256 images is in about 1° of your field of view. Which of
the images can you see the squares clearly and in which images do they blend
together?

	 18.	 (a) Why is subjective brightness a logarithmic function of light intensity on the
eye? (b) How does the eye adapt to various lighting conditions? (c) Can we see over
our entire brightness range at any one time? Why or why not?

	 19.	 (a) About how many brightness levels are required to create a realistic image
for the HVS? (b) How many bits do we need? (c) What happens if we do not use
enough bits for the brightness values?

438	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 20.	Use CVIPtools to explore the number of brightness levels required for the HVS. (a)
Open a monochrome 8-bit per pixel image. (b) Use Utilities→ Convert→ Gray-Level
Quantization, using the Standard option, to create images with 128, 64, 32, 16, 8, 4,
and 2 gray levels. (c) Put these images side by side. How many gray levels do you
need to avoid image artifacts? (d) Perform (a)–(c) with a variety of monochrome
images.

	 21.	Use CVIPtools to explore the number of brightness levels required for the HVS.
(a) Open a color 24-bit per pixel image. (b) Use Utilities→ Convert→ Gray-Level
Quantization, using the Standard option, to create images with 128, 64, 32, 16, 8, 4,
and 2 gray levels per color band. (c) Put these images side by side. How many gray
levels per band do you need to avoid image artifacts? (d) Perform (a)–(c) with a
variety of color images.

	 22.	(a) What is flicker sensitivity? (b) What is the temporal cutoff frequency for
the HVS? (c) How does the average brightness affect the temporal cutoff
frequency?

	 23.	 (a) Name the phenomenon in the neural system that helps to create the Mach Band
effect. (b) Explain how this mechanism works.

	 24.	 (a) What is simultaneous contrast? (b) What are optical illusions? (c) Sketch one of
the optical illusions and create a theory to explain the phenomenon.

	 25.	Given the following 4-bit per pixel, 4 × 4 images, calculate: (a) root-mean-square-
error, (b) root-mean-square signal-to-noise ratio, and (c) peak signal-to-noise
ratio.

	 Original image

10 10 8 7
7 7 8 7
6 6 5 7
12 12 13 14

⎡

⎣

⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥

Reconstructed image

12 12 7 7
8 8 8 8
6 6 6 6
12 112 12 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 26.	 (a) Name the three types of subjective fidelity measures. (b) Which type do you
think is the best? Why?

	 27.	A photo developing studio has a new image enhancement technique, but they
are uncertain about how to set one of the parameters to achieve results that will
please the customers the most. In preliminary testing they have determined that
the parameter should be set to 1.5 or 2.2. Design an experiment to measure image
quality using a subjective fidelity measure to help them. Be sure to specify all the
details.

	 28.	A cable television company is trying to improve their customer service. To do that
they need to determine when the average customer will call for service if the video
signal (image) is slowly degrading due to water in the line. Design an experiment
to measure image quality using a subjective fidelity measure to help them. Be sure
to specify all the details.

Digital Image Processing and Visual Perception	 439

© 2011 by Taylor & Francis Group, LLC

Programming Exercises

Spatial Resolution

	 1.	Write a function to create images of square waves. Let the user specify the image
size, the orientation, and frequency of the waves.

	 2.	Write a function to create images of sine waves. Let the user specify the image size,
the orientation, and frequency of the waves.

	 3.	Write a function to create images of checkerboards. Let the user specify the image
size, and the height and width of the rectangles.

	 4.	Use these functions to experimentally determine the horizontal and vertical spa-
tial frequency cutoff of the HVS.

Brightness Adaptation

	 1.	Write a function that takes an 8-bit per pixel monochrome image and allows
the user to specify the number of bits per pixel in the output image: 1, 2, 3, 4, 5,
6, or 7.

	 2.	Write a function that takes a 24-bit per pixel color (three band) image and allows
the user to specify the number of bits per pixel per band in the output image: 1, 2,
3, 4, 5, 6, or 7.

	 3.	Select a variety of images and use these functions to experimentally determine the
number of bits needed by the HVS to avoid false contours.

Optical Illusions

	 1.	Write a function to create images of the optical illusions shown in Figure 7.2-15. If
desired, use the CVIPtools library functions in the Geometry library, such as create_line
or create_circle, along with any needed logic or arithmetic functions in the ArithLogic
library.

	 2.	Show the images to your friends and family. Do they all see the illusions in the
same way?

Supplementary Exercises

Supplementary Problems

	 1.	Assume that the tristimulus curves are approximated by bandpass filters with a
flat response with a gain of one, using the RGB bands as shown in Figure 7.2-2.
Find the RGB values as a function of K, for the following incident photon flux
equation, b(λ) = 10λ2 + e0.02λ.

440	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 2.	Using the same assumptions for the tristimulus curves as in Supplementary
Problem 1, find the RGB values as a function of K, for the following incident pho-
ton flux equation, b(λ) = 5λ3.

	 3.	Using the same assumptions for the tristimulus curves as in Supplementary
Problem 1, find the RGB values as a function of K, for the following incident pho-
ton flux equation, b(λ) = λe0.02λ.

	 4.	Given the following 4-bit per pixel, 4 × 4 images, calculate: (a) root-mean-square-
error, (b) root-mean-square signal-to-noise ratio, and (c) peak signal-to-noise
ratio.

	 Original image

11 11 8 7
8 7 8 7
5 6 5 7
11 12 13 14

⎡

⎣

⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥

Reconstructed image

12 12 7 7
8 8 8 8
6 6 6 6
12 112 12 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 5.	 (a) If a video display is being designed operating at a 60 Hz frame rate, and 512 × 512
pixels, what maximum frequency will the video amplifier have to pass in order to
utilize the full resolving capability of the human eye? (Assume a minimum of two
pixels per cycle, and ignore blanking intervals.) (b) How close can the viewer sit
without seeing discrete dots? Find this distance, D, as a function of x, where x is
the width of the (square) pixel; that is, D = f(x).

	 6.	An inventor wants to build a weather radar instrument for private aircraft. Rather
than using a traditional radial sweep display, the system electronically warps
spatial information so that it can be displayed in the form of an 8″ × 8″ raster
pattern (square grid). What maximum spatial resolution would you suggest (a
power of 2, for digital display reasons) if the pilot’s eyes are about 24″ from the
screen?

Supplementary Programming Exercises

Neural Processing System Model

	 1.	Write a function to model the neural processing system shown in Figure 7.2-5.
Allow the user to input 12 values and have it output the neural signal value. Use
relative weights similar to those shown in Figure 7.2-5b.

	 2.	 Input values corresponding to: (a) a constant, (b) a point, and (c) an edge. Do the
results make sense? Explain.

Objective Fidelity Measures

	 1.	Write a function to automatically threshold an image (Chapters 3 and 4).
	 2.	Gather a database of images that contain one object in contrast with the

background.
	 3.	Use CVIPtools Utilities→ Border Mask to manually create ideal images that separate

object from background.

Digital Image Processing and Visual Perception	 441

© 2011 by Taylor & Francis Group, LLC

	 4.	Use your function to separate the object from background for the images.
	 5.	Write functions to measure RMS error, Peak SNR, and RMS SNR, and use them to

compare your results and the ideal images you created.
	 6.	Analyze the results.

Subjective Fidelity Measures

	 1.	Write a function to perform at least two different edge detectors (Chapter 4).
	 2.	Gather a database of images that contain clearly outlined objects.
	 3.	Test the edge detectors on the images.
	 4.	Design experiments using subjective fidelity measures as outlined in Section 7.3 to

have people evaluate the images. Perform an analysis of the results.

References

Acharya, T., and Ray, A. K., Image Processing: Principles and Applications, Hoboken, NJ: Wiley & Sons,
2005.

Arbib, M. A., and Hanson, A. R., ed., Vision, Brain and Cooperative Computation, Cambridge, MA: MIT
Press, 1990.

Bharath, A., and Petrou, M., eds., Next Generation Artificial Vision Systems: Reverse Engineering the
Human Visual System, Norwood, MA: Artech House, Inc., 2008.

Deutsch, S., and Deutsch, A., Understanding the Nervous System—An Engineering Perspective, New
York, NY: IEEE Press, 1993.

Durrett, H. J., ed., Color and the Computer, San Diego, CA: Academic Press, 1987.
Farah, M. J., Visual Agnosia, Cambridge, MA: MIT Press, 2004.
Giorgianni, E. J., and Madden, T. E., Digital Color Management, Reading, MA: Addison-Wesley,

1998.
Golding, L. S., Quality Assessment of Digital Television Signals, SMPTE Journal 87 (March 1978):

153–57.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall,

2008.
Jack, K., Video Demystified, Eagle Rock, VA: LLH Publications, 2001.
Levine, M. D., Vision in Man and Machine, New York, NY: McGraw Hill, 1985.
Mallot, H. A., Computational Vision, Cambridge, MA: MIT Press, 2001.
Marr, D., Vision, New York, NY: Freeman and Company, 1982.
Nixon, M. S., and Aguado, A. S., Feature Extraction and Image Processing, Woburn, MA: Newnes/

Butterworth-Heinemann, 2001.
Poynton, C., Digital Video and HDTV, San Francisco, CA: Morgan Kaufman, 2003.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, Englewood Cliffs, NJ:

Prentice Hall, 1995.
Trussell, H. J., and Vrhel, M. J., Fundamentals of Digital Imaging, Cambridge, UK: Cambridge University

Press, 2008.
Watson, A. B., ed., Digital Images and Human Vision, Cambridge, MA: MIT Press, 1993.
Wyszecki, G., and Stiles, W. S., Color Science: Concepts and Methods, Quantitative Data and Formulae,

New York: Wiley-Interscience, 2000.

442	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Further Reading

Books that integrate computer imaging topics with human vision include Nixon and Aguado
(2001), Deutsch and Deutsch (1993), Arbib and Hanson (1990), Levine (1985), and Marr (1982).
For a reference on engineering models for the human visual system see Bharath and Petrou
(2008). For more on color in computing systems as related to human vision, see Trussell
and Vrhel (2008), Acharya and Ray (2005), Giorgianni and Madden (1998), and Durrett
(1987). An interesting book that describes our visual perception by exploring visual disor-
ders is Farah (2004). A comprehensive treatment of color science can be found in Wyszecki
and Stiles (2000). For more details on mathematical models for vision see Mallot (2001),
Levine (1985), and Marr (1982). For more relating the human visual system to hardware
see Trussell and Vrhel (2008). Sid-Ahmed (1995) contains more details relating the human
visual system to television signal processing. To delve deeper into video images, Jack (2001)
is a useful reference, and Poynton (2003) contains more information for high definition tele-
vision (HDTV). More details and examples of optical illusions and other perception based
phenomena are found in Levine (1985) and Marr (1982). Image fidelity information can be
found in Gonzalez and Woods (2008), Watson (1993), and Golding (1978).

443© 2011 by Taylor & Francis Group, LLC

8
Image Enhancement

8.1  Introduction and Overview

Image enhancement techniques are employed to emphasize, sharpen, and/or smooth
image features for display and analysis. Image enhancement is the process of applying
these techniques to facilitate the development of a solution to a computer imaging
problem. Consequently, the enhancement methods are application-specific and are
often developed empirically. Figure 8.1-1 illustrates the importance of the application
by the feedback loop from the output image back to the start of the enhancement pro-
cess, and models the experimental nature of the development. In this figure we define
the enhanced image as E(r,c). The range of applications includes using enhancement
techniques as preprocessing steps to ease the next processing step or as postprocessing
steps to improve the visual perception of a processed image, or image enhancement
may be an end in itself. Enhancement methods operate in the spatial domain, manipu-
lating the pixel data, or in the frequency domain, by modifying the spectral compo-
nents (Figure 8.1-2). Some enhancement algorithms use both the spatial and frequency
domains.

The type of techniques include point operations, where each pixel is modified according
to a particular equation that is not dependent on other pixel values, mask operations,
where each pixel is modified according to the values in a small neighborhood (subimage),
or global operations, where all the pixel values in the image are taken into consideration.
Spatial domain processing methods include all three types, but frequency domain opera-
tions, by nature of the frequency (and sequency) transforms, are global operations. Of
course, frequency domain operations can become “mask operations,” based only on a local
neighborhood, by performing the transform on small image blocks instead of the entire
image.

Enhancement is used as a preprocessing step in some computer vision applications to
ease the vision task, for example, to enhance the edges of an object to facilitate guidance
of a robotic gripper. Enhancement is also used as a preprocessing step in applications
where human viewing of an image is required before further processing. For example,
in one application, high-speed film images had to be correlated with a computer simu-
lated model of an aircraft. This process was labor intensive because the high speed film
generated many images per second and difficult due to the fact that the images were
all dark. This task was made considerably easier by enhancing the images before cor-
relating them to the model, enabling the technician to process many more images in
one session.

444	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image enhancement is used for postprocessing to generate a visually desirable image.
For instance, we may perform image restoration to eliminate image distortion and find
that the output image has lost most of its contrast. Here, we can apply some basic image
enhancement methods to restore the image contrast. Alternately, after a compressed
image has been restored to its “original” state (decompressed), some postprocessing
enhancement may significantly improve the look of the image. For example, a block-based
transform compression algorithm may generate an image with undesirable “blocky” arti-
facts, and postprocessing it with a smoothing filter (lowpass or mean) will improve the
appearance.

Overall, image enhancement methods are used to make images look better. What works
for one application, may not be suitable for another application, so the development of
enhancement methods require problem domain knowledge, as well as image enhancement

Enhancement

Application-
specific

feedback

Input image
I (r,c)

Output image
E (r,c)

Figure 8.1-1
The image enhancement process.

Frequency/
sequency
domain

Spatial
domain

Input image
I (r,c)

Output image
E (r,c)

Application-
specific

feedback

Figure 8.1-2
Image enhancement.

Image Enhancement	 445

© 2011 by Taylor & Francis Group, LLC

expertise. Assessment of the success of an image enhancement algorithm is often “in the
eye of the beholder,” so image enhancement is as much an art as it is a science.

8.2  Gray-Scale Modification

Gray-scale modification, also called gray-level scaling or gray-level transformation, is
the process of taking the original gray-level values and changing them to improve the
image. Typically, this relates to improving image contrast and brightness. Image contrast
is a measure of the distribution and range of the gray levels—the difference between
the brightest and darkest pixel values and how the intermediate values are arranged.
Image brightness usually refers to the overall average, or mean, pixel value in the image.
Depending on the application we may need to increase or decrease contrast, brightness,
or both.

8.2.1  Mapping Equations

One method to modify the gray levels in an image is by the use of a mapping equation. The
mapping equation changes the pixel’s (gray level) values based on a mathematical function
that uses brightness values as input. The outputs of the equation are the enhanced pixel
values. The mapping equation is typically, but not necessarily, linear; nonlinear equations
can be modeled by piecewise linear models. The use of mapping equations to modify the
gray-scale belongs in the category of point operations, and typical applications include
contrast enhancement and feature enhancement. The notation used for the mapping equa-
tion is as follows:

	
Mapping Equation→ =E r c M I r c(,) [(,)]

where M[] is the mapping equation.
The primary operations applied to the gray scale of an image are to compress or stretch

it. We typically compress gray-level ranges that are of little interest to us, and stretch the
gray-level ranges where we desire more information. This is illustrated in Figure 8.2-1a,
where the original image data are shown on the horizontal axis and the modified values
are shown on the vertical axis. The linear equations corresponding to the lines shown on
the graph represent the mapping equations. If the slope of the line is between zero and one,
this is called gray-level compression, while if the slope is greater than one it is called gray-
level stretching. In Figure 8.2-1a, the range of gray-level values from 28 to 75 are stretched,
while the other gray values are left alone. The original and modified images are shown in
Figure 8.2-1b and c, where we can see that stretching this range exposed previously hidden
visual information. To find the mapping equation for this example:

Example 8.2.1

For the ranges 0–28 and 75–255 the input equals the output. For the range 28–75, we want to
stretch the range from 28 to 255. To do this we need a linear equation. If we use the standard

446	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

form y = mx + b, where m is the slope, and b is the y-intercept, we can find the equation as
follows [note that in this case y corresponds to the mapping equation M[], and x is the input
image gray-level (brightness) values I(r,c)]:

	 1.	 We know two points on the line, (28,28) and (75,255), so

	 m
y y
x x

=
−

−
=

−
−

= ≈1 2

1 2

255 28
75 28

227
47

4 83.

	 2.	 y = 4.83x + b
		 Putting in a point to solve for the y-intercept, b:

Gray level stretching

E
[I

(r
,c)

] m
od

ifi
ed

 va
lu

es

Stretch
slope>1

28 25575
I (r,c) - Original gray levels

0
0

128

255(a)

Image after modificationOriginal image

(b) (c)

Figure 8.2-1
Gray-scale modification.

Image Enhancement	 447

© 2011 by Taylor & Francis Group, LLC

	 255 4 83 75

107 25

= +

= −

. ()

.

b

b

	 3.	 So the equation of the line for the range between 28 and 75 is

	 M I r c I r c[(,)] . [(,)] .= −4 83 107 25

	 4.	 Therefore

	 M I r c
I r c r c

I r c[(,)]
(,) ,

,=

< <for 0 I() 28
4.83[())] 107.25 for 28 () 75

for 75 I
−() ≤ ≤

<

I r c
I r c

,
(,) (() 255r c, <

⎧

⎨
⎪

⎩
⎪

In some cases we may want to stretch a specific range of gray levels, while clipping
the values at the low and high ends. Figure 8.2-2a illustrates a linear function to stretch
the gray levels between 80 and 180, while clipping any values below 80 and any values
above 180. The original and modified images are shown in Figure 8.2-2b and c, where we
see the resulting enhanced image.

A digital negative can be created with a mapping equation as follows:

	
M I r c MAX I r c[(,)] (,)= −

where MAX is the maximum gray value.
This is the equivalent of performing a logical NOT on the input image. This process of

complementing an image can be useful as an enhancement technique. Because the eye
responds logarithmically to brightness changes, details characterized by small brightness
changes in the bright regions may not be visible. Complementing the image converts these
small deviations in the bright regions to the dark regions, where they may be easier to
detect. Partial complementing of an image also produces potentially useful results. An
example would be to leave the lower half of the gray-scale untouched while complement-
ing the upper half. Dark regions in the original image are unaffected while bright regions
are complemented.

Figure 8.2-3a shows the mapping equation for creating an image complement, also called
the inverse mapping equation, and Figure 8.2-3b and through e show examples of original
images and their negatives. In some cases details will become more visible in the negative
image; for example, the highlights in the faces in Figure 8.2-3b and c are more obvious in
the negative. Also, in Figure 8.2-3d and e, the reflections in the dog’s eyes are more appar-
ent in the negative image (where they appear as dark spots), as well as details in the fur on
the upper part of the dog’s head.

Another type of mapping equation, used for feature extraction, is called intensity level
slicing. Here we are selecting specific gray-level values of interest, and mapping them to
a specified (typically high/bright) value. For example, we may have an application where
it has been empirically determined that the objects of interest are in the gray-level range
of 150–200. Using the mapping equations illustrated in Figure 8.2-4, we can generate the
resultant images shown. The first operation shows a one-to-one mapping that outputs
the input image unchanged. The next two illustrate intensity level slicing where a specific

448	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

gray value range is “sliced” out to be highlighted. With this type of operation we can either
leave the “background” gray-level values unchanged (Figure 8.2-4c and 8.2-4d), or map
them to black (Figure 8.2-4e and f). Note that they do not need to be turned black; any gray-
level value may be specified.

Computer Vision and Image Processing tools (CVIPtools) can be used to perform gray-
scale modification by using the Enhancement→ Histogram/Contrast window, and selecting
Linear Modification (see Figure 8.2-5). Currently, it allows for the modification of one con-
tiguous range of gray values by specifying the Start and End value for the input range to
be modified, and the Initial value and the slope of the mapping equation. The Initial value is

(c)(b)

I(r,c) – Original gray level values

E
[I(

r,c
)]

m
od

ifi
ed

 g
ra

y l
ev

el
 va

lu
es

25580 180

255(a)

Figure 8.2-2
Gray-level stretching with clipping at both ends. (a) The mapping equation, (b) the original image, (c) the modi-
fied image with the stretched gray levels.

Image Enhancement	 449

© 2011 by Taylor & Francis Group, LLC

(a)

E[
I(r

,c)
] m

od
ifi

ed
 g

ra
y l

ev
el

 va
lu

es

0 128 255

255

I(r,c) – Original gray level values

128

Slope = –1

(b)

(c)

Figure 8.2-3
Digital negative. (a) Mapping equation, (b) original image, (c) negative of image (b), modified by the inverse
mapping equation which is the equivalent of a logical NOT, (d) original image, (e) negative of image (d), modi-
fied by the inverse mapping equation which is the equivalent of a logical NOT.

450	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the value that the Start value gets mapped to by the mapping equation. CVIPtools also has
selections to keep out of range data or set out of range data to 0.

Example 8.2.2

To use CVIPtools to implement the modification equation for the digital negative shown in
Figure 8.2-3a:

	 1.	 Start = 0.
	 2.	 End = 255.
	 3.	 Initial value = 255.
	 4.	 Slope = –1.
	 5.	 Since there is no out of range data, this selection is irrelevant, so click APPLY.

Example 8.2.3

To use CVIPtools to implement intensity level slicing by using the modification equation shown
in Figure 8.2-4bc:

	 1.	 Start = 150.
	 2.	 End = 200.
	 3.	 Initial value = 255.
	 4.	 Slope = 0.
	 5.	 Select keep out of range data and click APPLY.

Example 8.2.4

To use CVIPtools to implement intensity level slicing by using the modification equation shown
in Figure 8.2-4e:

	 1.	 Start = 150.
	 2.	 End = 200.

(d) (e)

Figure 8.2-3 (Continued)
Digital negative. (a) Mapping equation, (b) original image, (c) negative of image (b), modified by the inverse
mapping equation which is the equivalent of a logical NOT, (d) original image, (e) negative of image (d), modi-
fied by the inverse mapping equation which is the equivalent of a logical NOT.

Image Enhancement	 451

© 2011 by Taylor & Francis Group, LLC

(a)

�is operation returns the
original gray levels.

�is operation intensifies the desired
gray level range while not changing
the other values.

Original image
0

0 0 200150

0
255

255

255

255

(c)

(e)

Image sliced to emphasize gray
values from 150 to 200; background
unchanged.

(b)

(d)

�is operation intensifies the
desired gray level range while
changing the other values to black

Image sliced to emphasize gray values
from 150 to 200; background changed
to black.

(f)

0

0 200150

255

255

Figure 8.2-4
Intensity level slicing.

452	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	 Initial value = 255.
	 4.	 Slope = 0.
	 5.	 Select set of out range data to 0 and click APPLY.

To realize a piecewise linear modification equation on various gray-level ranges in the
same image, simply perform each linear piece on the original image and select set out of
range data to 0 each time. Next, use a logical OR on all the output images to create the final
image. An example of this for a two piece linear equation is shown in Figure 8.2-6, where
the first piece of the equation stretches the gray levels from 0 to 80, and the second piece
compresses the gray levels from 80 to 255. The step-by-step process for this is shown here.

Example 8.2.5

STEP 1: For the first piece:

	 1.	 Start = 0.
	 2.	 End = 80.
	 3.	 Initial value = 0.
	 4.	 We can use the two endpoints on the line to find the slope (0,0) and (80,180), so

	 slope
y y
x x

=
−

−
=

−
−

=1 2

1 2

180 0
80 0

2 25.

	 5.	 Select set out of range data to 0.

STEP 2: For the second piece:

	 1.	 Start = 80.
	 2.	 End = 255.

Figure 8.2-5
Gray-scale modification with CVIPtools. Use the Enhancement window and select the Histogram/Contrast tab.
Next, select Linear Modification and set the parameters as desired.

U
FM

|4
84

94
2|

14
35

60
96

56

Image Enhancement	 453

© 2011 by Taylor & Francis Group, LLC

	 3.	 Initial value = 180.
	 4.	 We can use the two endpoints on the line to find the slope (80,180) and (255,255), so

	 slope
y y
x x

=
−

−
=

−
−

= ≈1 2

1 2

255 180
255 80

75
175

0 4286.

	 5.	 Select set out of range data to 0 and click APPLY.

(b)

E[
I(r

,c)
] m

od
ifi

ed
 g

ra
y l

ev
el

 va
lu

es

80 180 255

255

I(r,c) – Original gray level values

180

First piece

Second piece

(a)

Figure 8.2-6
Performing a piece-wise linear modification with CVIPtools. (a) The mapping equation, (b) screen shot of
CVIPtools with the parameters set for the first piece, along with the input and output images, (c) screen shot
of CVIPtools with parameters set for second piece, along with the input and output images, (d) screen shot of
CVIPtools with parameters set for the logical OR of the results from the first two linear modifications to create
the final (processed)image. In the final (processed) image we can readily see more details in the camera, glove
and pants due to the stretching in the 0–80 gray-level range.

454	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Original image

Processed image

(c)

(d)

Figure 8.2-6 (Continued)
Performing a piece-wise linear modification with CVIPtools. (a) The mapping equation, (b) screen shot of
CVIPtools with the parameters set for the first piece, along with the input and output images, (c) screen shot
of CVIPtools with parameters set for second piece, along with the input and output images, (d) screen shot of
CVIPtools with parameters set for the logical OR of the results from the first two linear modifications to create
the final (processed)image. In the final (processed) image we can readily see more details in the camera, glove
and pants due to the stretching in the 0–80 gray-level range.

Image Enhancement	 455

© 2011 by Taylor & Francis Group, LLC

STEP 3:

	 1.	 Select the output images from STEP 1 and STEP 2 and perform a logical OR.

Figure 8.2-7 shows the images in more detail from the piecewise linear modification exam-
ple. Here we see the improved detail in dark areas, such as the camera, coat, glove, and
pants, due to the gray-level stretching in 0–80 range.

One of the commonly used nonlinear transforms is the logarithmic function that we used
to display spectral images (see Section 5.2.4). This function is useful when the dynamic
range of the input data is very large, and is also referred to as range compression. Another
useful nonlinear transform is the power-law transform, where the mapping equations are of
the following form:

(a) (b)

(c) (d)

Figure 8.2-7
Images from piece-wise linear modification. (a) Original image, (b) output image after first piece modification,
(c) output image after second piece modification, (d) final output image after (b) and (c) are OR’d together, notice
the improved detail in dark areas, such as the camera, coat, glove and pants, due to the gray-level stretching of
the low values.

456	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 E r c M I r c K I r c(,) [(,)] [(,)]= = 1
γ

where K1 and γ are positive constants.
Imaging equipment, such as cameras, displays, and printers typically react according

to a power-law equation. This means that their response is not linear; for values of γ > 1,
images will appear darker, and for values < 1 images will appear lighter (this is due to
remapping and where the resulting values fall on the power curve). If the response func-
tion of the device is given by the above power-law transform equation, then it can be com-
pensated for by application of a gamma-correction equation of the following form:

	 E r c M I r c K I r c(,) [(,)] [(,)]= = 2
1 γ

where K2 and γ are positive constants.
Gamma correction is important for proper display of images, whether on a computer

monitor or on a printed page.

8.2.2  Histogram Modification

An alternate perspective to gray-scale modification that performs essentially the same
function is referred to as histogram modification. This approach will also lead to the use
of a mapping equation, but instead of simply considering the gray levels, the histogram
shape and range is the focus. Observation and manipulation of the histogram provides a
more intuitive tool than consideration of mapping equations when improving or modify-
ing image contrast.

As previously discussed, the gray-level histogram of an image is the distribution of the
gray levels in an image. In general, a histogram with a small spread has low contrast,
and a histogram with a wide spread has high contrast, while an image with its histogram
clustered at the low end of the range is dark, and a histogram with the values clustered
at the high end of the range corresponds to a bright image (as was shown in Figure 6.2-5).
Examination of the histogram is one of the most useful tools for image enhancement, as it
contains information about the gray-level distribution in the image and makes it easy to
see the modifications that may improve an image.

The histogram can be modified by a mapping function, which will stretch, shrink (com-
press), or slide the histogram. Histogram stretching and histogram shrinking are forms of
gray-scale modification, sometimes referred to as histogram scaling. In Figure 8.2-8 we see a
graphical representation of histogram stretch, shrink, and slide.

The mapping function for a histogram stretch can be found by the following equation:

	 Stretch I r,c
I r,c I r,c

I r,c I
()

() ()
()

[] =
−

−
MIN

MAX (()r,c MIN

MAX MIN MIN
⎡

⎣
⎢

⎤

⎦
⎥ −[] +

where
I(r,c)MAX is the largest gray-level value in the image I(r,c).
I(r,c)MIN is the smallest gray-level value in I(r,c).

MAX and MIN correspond to the maximum and minimum gray-level values possible
(for an 8-bit image these are 0 and 255).

Image Enhancement	 457

© 2011 by Taylor & Francis Group, LLC

This equation will take an image and stretch the histogram across the entire gray-
level range, which has the effect of increasing the contrast of a low contrast image (see
Figure 8.2- 9). If a stretch is desired over a smaller range, different MAX and MIN values
can be specified. If most of the pixel values in an image fall within a small range, but a
few outliers force the histogram to span the entire range, a pure histogram stretch will not
improve the image. In this case it is useful to allow a small percentage of the pixel values to
be clipped (truncated) at the low and high end of the range (for an 8-bit image this means
truncating at 0 and 255). Figure 8.2-10 shows an example of this where we see a definite
improvement with the stretched and clipped histogram compared to the pure histogram
stretch.

Histogram stretch

Histogram shrink

Histogram slide

(a)

(b)

(c)

Figure 8.2-8
Histogram modification

458	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The opposite of a histogram stretch is a histogram shrink, which will decrease image
contrast by compressing the gray levels. The mapping function for a histogram shrink can
be found by the following equation:

	 Shrink I r,c Shrink Shrink
I r,c

()
(

[] = −MAX MIN

MAXX MIN
MIN MIN) ()

() ()
−

⎡

⎣
⎢

⎤

⎦
⎥ −[] +

I r,c
I r,c I r,c Shhrink

where
I(r,c)MAX is the largest gray-level value in the image I(r,c).
I(r,c)MIN is the smallest gray-level value in I(r,c).

ShrinkMAX and ShrinkMIN correspond to the maximum and minimum desired in the com-
pressed histogram.

Figure 8.2-11 illustrates a histogram shrink procedure. In Figure 8.2-11a and b we see an
original image and its histogram, and Figure 8.2-11c and d show the result of the histogram
shrink. In general, this process produces an image of reduced contrast, and may not seem
to be useful as an image enhancement tool. However, we will see (Section 8.3) an image

(a)

(b)

(c)

(d)

Figure 8.2-9
Histogram stretching. (a) Low-contrast image, (b) histogram of image (a), notice the tight cluster, (c) image
(a) after histogram stretch, (d) histogram of image after stretch.

U
FM

|4
84

94
2|

14
35

60
97

49

Image Enhancement	 459

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.2-10
Histogram stretching with clipping. (a) Original image, (b) histogram of original image, (c) image after histo-
gram stretching with out clipping, (d) histogram of image (c), (e) image after histogram stretching with clipping
1% of the values at the high and low ends (f) histogram of image (e).

460	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

sharpening algorithm (unsharp masking) that uses the histogram shrink process as part
of an enhancement technique.

The histogram slide technique can be used to make an image either darker or lighter,
but retain the relationship between gray-level values. This can be accomplished by simply
adding or subtracting a fixed number from all of the gray-level values, as follows:

	 Slide I r,c I r,c OFFSET(()) ()= +

where the OFFSET value is the amount to slide the histogram. In this equation we assume
that any values slid past the minimum and maximum values will be clipped to the respec-
tive minimum or maximum. A positive OFFSET value will increase the overall brightness,
while a negative OFFSET will create a darker image. Figure 8.2-12a shows an image that
has been brightened by a histogram slide with a positive OFFSET value, and Figure 8.2-12c
shows an image darkened by a negative OFFSET value.

(a)

(b)

(c)

(d)

Figure 8.2-11
Histogram shrinking. (a) Original image, (b) histogram of image (a), (c) image after shrinking the histogram to
the range [75,175], (d) histogram of image (c).

Image Enhancement	 461

© 2011 by Taylor & Francis Group, LLC

Figure 8.2-13 shows the CVIPtools Enhancement window with the Histogram/Contrast
tab selected. In this figure the histogram stretch operation is selected, which displays the
parameters for the operation in the right side of the window. Note that histogram slide or
shrink can also be selected with the radiobuttons on the left, which will popup the appro-
priate parameters in the Parameters box on the right. After the operation is selected, and the
parameters are set as desired, clicking on the APPLY button will perform the operation.

Histogram equalization is an effective technique for improving the appearance of a poor
image. Its function is similar to that of a histogram stretch but often provides more visu-
ally pleasing results across a wider range of images. Histogram equalization is a technique
where the histogram of the resultant image is as flat as possible (with histogram stretching
the overall shape of the histogram remains the same). The theoretical basis for histogram
equalization involves probability theory, where we treat the histogram as the probability

(a)

(b)

(d)

(c)

Figure 8.2-12
Histogram slide. The original image for these operations is the image from 8.2-11c that had undergone a histo-
gram shrink process. (a) The resultant image from sliding the histogram down up 50, (b) the histogram of image
(a), (c) the resultant image from sliding the histogram down by 50, (d) the histogram of image (c).

462	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

distribution of the gray levels. This is reasonable, since the histogram is the distribution of
the gray levels for a particular image.

The histogram equalization process for digital images consists of four steps: (1) find the
running sum of the histogram values, (2) normalize the values from step (1) by dividing by
the total number of pixels, (3) multiply the values from Step 2 by the maximum gray-level
value and round, and (4) map the gray-level values to the results from Step 3 using a one-
to-one correspondence. An example will help to clarify this process.

Example 8.2.6

We have an image with 3-bits per pixel, so the possible range of values is 0–7. We have an
image with the following histogram:

Gray-Level Value Number of Pixels (Histogram Values)

0 10
1 8
2 9
3 2
4 14
5 1
6 5
7 2

STEP 1: Create a running sum of the histogram values. This means the first value is 10, the sec-
ond is 10 + 8 = 18, next 10 + 8 + 9 = 27, and so on. Here we get 10, 18, 27, 29, 43, 44, 49, and 51.

(b) Stretch
parameters

(a)

Figure 8.2-13
CVIPtools histogram slide, stretch and shrink. (a) Histogram slide, histogram stretch, and histogram shrink,
(b) parameters for histogram stretch, note that a percentage for clipping can be selected at the low and high ends.

Image Enhancement	 463

© 2011 by Taylor & Francis Group, LLC

STEP 2: Normalize by dividing by the total number of pixels. The total number of pixels
is 10 + 8 + 9 + 2 + 14 + 1 + 5 + 0 = 51 (note this is the last number from step 1), so we get
10/51, 18/51, 27/51, 29/51, 43/51, 44/51, 49/51, and 51/51.

STEP 3: Multiply these values by the maximum gray-level values, in this case 7, and then
round the result to the closest integer. After this is done we obtain 1, 2, 4, 4, 6, 6, 7, and 7.

STEP 4: Map the original values to the results from step 3 by a one-to-one correspondence.
This is done as follows:

Original Gray-Level Value Histogram Equalized Values

0 1
1 2
2 4
3 4
4 6
5 6
6 7
7 7

All pixels in the original image with gray level 0 are set to 1, values of 1 are set to 2, 2 set to 4,
3 set to 4, and so on. After the histogram equalization values are calculated it can be imple-
mented efficiently with a look-up-table (LUT), as discussed in Chapter 2 (see Figure 2.4-9). In
Figure 8.2-14 we see the original histogram and the resulting histogram equalized histogram.
Although the result is not flat, it is closer to being flat than the original histogram.

Histogram equalization of a digital image will not typically provide a histogram that is per-
fectly flat, but it will make it as flat as possible. For the equalized histogram to be completely
flat, the pixels at a given gray level might need to be redistributed across more than one gray
level. This could be done, but would greatly complicate the process, as some redistribution
criteria would need to be defined. In most cases the visual gains achieved by doing this
would be negligible, and could in some cases be negative. In practice, it is not done.

Figure 8.2-15 shows the result of histogram equalizing images of various average
brightness and contrast. In Figure 8.2-15a and b histogram equalization was applied

N
um

be
r o

f p
ix

el
s

Gray-level value
Original histogram

14
13
12
11
10
9
8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

(a)

After histogram equalization

N
um

be
r o

f p
ix

el
s

Gray-level value
76543210

14
13
12
11
10
9
8
7
6
5
4
3
2
1

15(b)

Figure 8.2-14
Histogram equalization, before and after histograms from Example 8.2.6.

464	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

Figure 8.2-15
Histogram equalization examples. Images on the left, (a), (c), (e), (g) are input images of varying average bright-
ness and contrast. Images on the right (b), (d), (f), (h) are the resultant images after histogram equalization. The
histograms of the images are directly below them. As can be seen, histogram equalization provides similar
results regardless of the input image.

Image Enhancement	 465

© 2011 by Taylor & Francis Group, LLC

(e) (f)

(g) (h)

Figure 8.2-15 (Continued)
Histogram equalization examples. Images on the left, (a), (c), (e), (g) are input images of varying average bright-
ness and contrast. Images on the right (b), (d), (f), (h) are the resultant images after histogram equalization. The
histograms of the images are directly below them. As can be seen, histogram equalization provides similar
results regardless of the input image.

466	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

to a bright image, and in Figure 8.2-15c and d to a dark image. In Figure 8.2-15e and f
histogram equalization was applied to an image of medium average brightness, and
Figure 8.2-15g and h shows an image of very low contrast. The results of this process
are often very dramatic, as illustrated in this figure. This figure also shows that histo-
gram equalization provides similar results regardless of the characteristics of the input
image.

Histogram equalization may not always provide the desired effect, since its goal is
fixed—to distribute the gray-level values as evenly as possible. To allow for interactive
histogram manipulation, the ability to specify the histogram is necessary. Histogram
specification is the process of defining a histogram and modifying the histogram of the
original image to match the histogram as specified. The key concept in the histogram
specification process is to picture the original image being histogram equalized, and the
specified histogram being histogram equalized. Now, we have a common point since
the histogram equalization process results in a flat histogram, or in the case of digi-
tal images, a histogram that is as close to flat as possible. The process is illustrated in
Figure 8.2-16.

This process can be implemented following these steps: (1) specify the desired histo-
gram, (2) find the mapping table to histogram equalize the image, Mapping Table 1, (3) find
the mapping table to histogram equalize the values of the specified histogram, Mapping
Table 2, (4) use Mapping Table 1 and Mapping Table 2 to find the mapping table to map the
original values to the histogram equalized values and then to the specified histogram val-
ues, and (5) use the table from Step 4 to map the original values to the specified histogram
values. Note: do not round histogram equalized values to nearest integer until final mapping table
to avoid ambiguities.

This process is best illustrated by example:

(a)

(b)

Original
histogram

Histogram
equalized

histogram
Specified

histogram

Mapping
table 1

Mapping
table 2

Original
histogram “O”

Histogram
equalized

histogram “H”

Histogram
equalized

histogram “HS”

Specified
histogram

“OS”

Mapping
table 1

Mapping
table 2

Figure 8.2-16
Histogram specification. This figure is a conceptual look at histogram specification. (a) Herewe depict the
histogram equalized versions of the original image histogram and the specified histogram. Now we have
a common histogram for both, the histogram equalized version should both be approximately flat. (b) Now
we can use the histogram equalization mapping tables to get from the original histogram to the specified
histogram.

Image Enhancement	 467

© 2011 by Taylor & Francis Group, LLC

Example 8.2.7

STEP 1: Specify the desired histogram:

Gray-
Level
Value

Number of
Pixels in desired

Histogram

0 1
1 5
2 10
3 15
4 20
5 0
6 0
7 0

STEP 2: For this we will use the image and mapping table from the previous example, where
the histogram equalization mapping table is given by

Original
Gray-Level
Value—O

Histogram Equalized
Values—H (not yet

rounded)

0 1.37
1 2.47
2 3.71
3 3.98
4 5.90
5 6.04
6 6.73
7 7

STEP 3: Find the histogram equalization mapping table for the specified histogram:

Gray-Level
Value—OS

Histogram
Equalized

Values—HS

0 (1/51)*7 = 0.14
1 (6/51)*7 = 0.82
2 (16/51)*7 = 2.20
3 (31/51)*7 = 4.25
4 (51/51)*7 = 7
5 (51/51)*7 = 7
6 (51/51)*7 = 7
7 (51/51)*7 = 7

STEP 4: Use Mapping Table 1 and Mapping Table 2 to find the final mapping table by mapping
the values first to the histogram equalized values and then to the specified histogram values.
Notice in Mapping Table 2, we switched the columns to match Figure 8.2-16a.

468	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Mapping Table 1 Mapping Table 2

MO H HS OS

0 1.37 0.14 0 1
1 2.47 0.82 1 2
2 3.71 2.20 2 3
3 3.98 4.25 3 3
4 5.90 7 4 4
5 6.04 7 5 4
6 6.73 7 6 4
7 7 7 7 4

The M column for this table is obtained by mapping the value in H to the closest value in HS,
which brings the two histogram equalized mappings together, and then using the correspond-
ing row in OS for the entry in M. For example, start with the first original gray-level value, 0,
which maps to a 1.37 in H. Now, to map with Table 2, we find the closest value in HS, which is
0.82. This 0.82 from HS maps to a 1 in OS, so we write a 1 for that entry in M. Another example,
the original gray value 2 maps to the third entry in H, which is a 3.71. Using Table 2, we find
the closest value in HS, which is 4.25. This 4.25 from HS maps back to a 3 in OS, so we write a
3 for that entry in M. If we consider the gray value 4, it maps to 5.90 in H, we see the 5.90 must
map to 7 (the closest value), but the 7 appears on rows 4, 5, 6, and 7. Which one do we select?
It depends on what we want, picking the largest value will provide maximum contrast, but
picking the smallest (closest) value will produce a more gradually changing image. Typically,
the smallest is chosen, since we can always perform a histogram stretch or equalization on the
output image, if we desire to maximize contrast.

STEP 5: Use the table from STEP 4 to perform the histogram specification mapping. For this
all we need are columns O (or OS) and M:

O M

0 1
1 2
2 3
3 3
4 4
5 4
6 4
7 4

Now, all the 0s get mapped to 1s, the 1s–2s, the 3s–3s and so on.

In practice, the desired histogram is often specified by a continuous (possibly nonlinear)
function, for example a sine or a log function. To obtain the numbers for the specified histo-
gram the function is sampled, the values are normalized to 1, and then multiplied by the total
number of pixels in the image. Figure 8.2-17 shows the result of specifying an exponential
and a log function for the histogram functions. Remember that this is not a gray-level map-
ping function as was discussed before, but is the desired shape of the output histogram.

8.2.3 A daptive Contrast Enhancement

Adaptive contrast enhancement (ACE) refers to modification of the gray-level values within
an image based on some criterion that adjusts its parameters as local image characteristics

Image Enhancement	 469

© 2011 by Taylor & Francis Group, LLC

change. Since the operation depends on other pixels in local areas, neighborhoods, it is pri-
marily a mask type operation. Additionally, some adaptive contrast operators use global
image statistics, hence are also global operations.

The simplest ACE method is to perform a histogram modification technique, but instead
of doing it globally (on the entire image), applying it to the image on a block by block basis.
In this case, the block size corresponds to the local neighborhood and the enhancement is
adaptive because the output depends only on the local histogram. Thus, this technique is
also called local enhancement.

In Figure 8.2-18 are the results of applying histogram equalization to various block
sizes within an image, and these are contrasted with global histogram equalization. In
Figure 8.2-18c and d we can see that this technique brings out minute details, is very sen-
sitive to noise in the image, and the resulting image, although full of detail, is not very
visually pleasing. As an enhancement method it is useful to multiply the image after local
histogram equalization by a number less than one and then adding it back to the original,
as shown in Figure 8.2-18e and f.

The adaptive contrast enhancement (ACE) filter is used with an image that appears to have
uneven contrast, where we want to adjust the contrast differently in different regions of the
image. It works by using both local and global image statistics to determine the amount of
contrast adjustment required. This filter is adaptive in the sense that its behavior changes
based on local image statistics, unlike the standard histogram modification techniques
that use only global parameters and result in fixed gray-level transformations. The image

(a)

(b)Figure 8.2-17
Histogram specification examples. (a) Original image and histogram, (b) specified histogram, exp(0.015*x), (c) the
output image and its histogram, (d) specified histogram, log(0.5*x + 2), (e) the output image and its histogram.

470	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)

(c)

(d)

(e)

Figure 8.2-17  (CONTINUED)
Histogram specification examples. (a) Original image and histogram, (b) specified histogram, exp(0.015*x), (c) the
output image and its histogram, (d) specified histogram, log(0.5*x + 2), (e) the output image and its histogram.

Image Enhancement	 471

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 8.2-18
Local histogram equalization. (a) Original image, (b) image after global histogram equalization, (c) image after
local histogram equalization with a block size of 8 x 8, (d) Image after local histogram equalization with a block
size of 16 x 16, (e) the image from (d) multiplied by 0.5 and added back to the original, (f) the image from (d)
multiplied by 0.25 and added back to the original.

472	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

is processed using the sliding window concept (similar to the convolution process, see
Figure 8.2-19), and the local image statistics are found by considering only the current win-
dow (subimage), and the global parameters are found by considering the entire image. It
is defined as follows:

	
ACE E r c k

m
r c

I r c mI r c

l
l⇒ =

⎡

⎣
⎢

⎤

⎦
⎥ −(,)

(,)
(,) ((,)

1 σ
rr c k m r cl,) (,)[]+ 2

where
mI(r,c) = the mean (average) for the entire image I(r,c)
σl = local standard deviation in the current n × n window

Input image
I (r , c)N

N
Filter value

Output image
(a)

The input image is overlaid with an N × N window, and the filter value of
the pixels covered by the window is placed in the output image at location x.

xFilter value

Output image

The window is moved one pixel to the right, and the filter value of the
pixels now covered by the window is placed in the output image at location x.

Input image
 I (r , c)(b)

x

Figure 8.2-19
Filtering with a sliding window.

U
FM

|4
84

94
2|

14
35

60
97

04

Image Enhancement	 473

© 2011 by Taylor & Francis Group, LLC

		 = I r c m

n

() l, −()
−

∑
2

2 1

ml = local mean in current window
k1 = local gain factor constant, between 0 and 1
k2 = local mean constant, between 0 and 1.

From the equation we can see that this filter subtracts the local mean from the original
data, and weights the result by the local gain factor, k1[mI(r,c)/σl(r,c)]. This has the effect

XFilter value

Output image(c)
Input image
 I (r,c)

When the end of a row is reached, the window is moved back to the left edge of
the image and down one row.

XFilter value

Input image
 I (r,c) Output image(d)

The entire image has been processed. Note the unprocessed outer rows and
columns.

Figure 8.2-19 (Continued)
Filtering with a sliding window.

474	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

of intensifying local variations, and can be controlled by the constant, k1. Areas of low
contrast (low values of σl(r,c)) are boosted. In practice it may be helpful to set a mini-
mum and maximum value for the local gain, this option is available in CVIPtools. After
the local gain factor is multiplied by the difference between the current pixel and the
local mean, the mean is then added back to the result, weighted by k2, to restore the
local average brightness. We can also see from this equation that negative values may
result, so the output image will be remapped to put values within the standard gray-
level range.

Figure 8.2-20 illustrates results from this filter with a local window size of 11, a local
gain factor of 0.9, and a local mean factor of 0.1. The direct output from the ACE fil-
ter typically needs some form of postprocessing to improve the contrast—compare
Figure 8.2- 20b and d. Comparing Figure 8.2-20c and d we see that we retain more detail
in both the bright and dark areas of the image, but note that most of the detail in the dark,
background areas appears to be attributable to noise, suggesting that some noise removal
could improve the results. These images illustrate the experimental nature of developing

(b)

(c) (d)

(a)

Figure 8.2-20
Adaptive contrast filter (ACE). (a) Original x-ray image, (b) image after ACE filter (ignore outer rows and col-
umns that are not processed), (c) original image after a histogram stretch, note that the bright areas near the
wrist are washed out, (d) ACE filter results followed by a histogram stretch, since the filter adapts to local image
statistics contrast is enhanced in both bright and dark areas.

Image Enhancement	 475

© 2011 by Taylor & Francis Group, LLC

image enhancement algorithms and the fact that the algorithms tend to be application
dependent.

A simplified variation of the ACE filter, we will call the ACE2 filter, is given by the fol-
lowing equation:

	 ACE E r c k I r c m r c k m r cl l2 1 2⇒ = −[]+(,) (,) (,) (,)

where
ml = local mean in current window
k1 = local gain factor constant, between 0 and 1
k2 = local mean constant, between 0 and 1.

This filter is less computationally intensive than the original ACE filter and provides simi-
lar results. Figure 8.2-21 shows the result of applying this filter. In this figure a local gain
factor of 0.9 was used, a window size of 11, and a local mean factor of 0.1. Comparing
Figure 8.2-21c and d we can see that since the filter adapts to local image statistics contrast
is improved in both bright and dark areas of the image.

(a) (b)

(c) (d)

Figure 8.2-21
Adaptive contrast filter 2 (ACE2). (a) Original x-ray image, (b) image after ACE2 filter, (c) original image after a his-
togram stretch, note that the bright areas near the wrist are washed out, (d) ACE2 filter results followed by a his-
togram stretch, since the filter adapts to local image statistics contrast is enhanced in both bright and dark areas.

476	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Other variations of the ACE filter include logarithmic and exponential ACE filters. The
log-ACE filter equation is

	 Log-ACE E r c k I r c m r cl⇒ = () − ()⎡⎣(,) ln (,) ln (,)1
� � ⎤⎤⎦ + k m r cl2 � (,)

where
I
~

(r,c) = �normalized complement of image = 1–I(r,c)/MAX, MAX is maximum gray value
(e.g., 256)

m~l = normalized complement of local mean = 1–ml(r,c)/MAX
ml = local mean in current window
k1 = local gain factor constant, between 0 and 1
k2 = local mean constant, between 0 and 1.

Figure 8.2-22 compares various window sizes and postprocessing methods with the Log-
ACE filter. The exponential ACE filter equation is as follows:

	 Exp-ACE E r c MAX
I r c
MAX

m r c
k

l⇒ = ×
⎡

⎣⎢
⎤

⎦⎥
+(,)

(,) (,1))
(,)I r c

k
⎡

⎣⎢
⎤

⎦⎥

2

where
ml = local mean in current window
MAX = maximum gray value (e.g., 256)
k1 = local gain factor exponent
k2 = local mean factor exponent.

Figure 8.2-23 shows results of applying the Exp-ACE filter.

8.2.4  Color

One of the reasons that color is important for image enhancement is that the human
visual system can perceive thousands of colors in a small spatial area, but only about 100
gray levels. Additionally, color contrast can be more dramatic than gray-level contrast,
and various colors have different degrees of psychological impact on the observer. Taking
advantage of these aspects of our visual perception to enhance gray-level images we apply
a technique called pseudocolor. Pseudocolor involves mapping the gray-level values of a
monochrome image to red, green, and blue values, creating a color image. The pseudocolor
techniques can be applied in both the spatial and frequency domains. Pseudocolor is often
applied to images where the relative values are important, but the specific representation
is not; for example, satellite, microscopic, or x-ray images.

In the spatial domain a gray level to color transform is defined, which has three different
mapping equations for each of the red, green, and blue color bands. The equations selected
are application-specific, and are functions of the gray levels in the image, I(r,c). So we have
three equations, as follows:

	

R

G

B

I r,c R I r,c

I r,c G I r,c

I r,c B

() [()]

() [()]

()

=

=

= [[()]I r,c

Image Enhancement	 477

© 2011 by Taylor & Francis Group, LLC

where R[], G[], and B[] are the mapping equations to map the gray levels to the red, green,
and blue components. These equations can be linear or nonlinear. A simple example, called
intensity slicing, splits the range of gray levels into separate colors. For this, the gray levels
that fall within a specified range are mapped to fixed RGB values (colors). Figure 8.2-24
illustrates the intensity slicing method for pseudocolor. Figure 8.2-24a shows the gray-scale
range evenly divided into four different colors. The colors in the first range, 0–MAX/4, are
mapped to Color1, the second range, MAX/4–MAX/2, are mapped to Color2, and so on. If

(a) (b)

(c) (d)

(f)(e)

Figure 8.2-22
Logarithmic adaptive contrast filter (Log-ACE), varying the window size and the postprocessing method. The
same original hand x-ray used in Figure 8.2-20a was the original for these results. The images on the left were
postprocessed with a histogram stretch, and those on the right with a histogram equalization process, (a&b)
windowsize 7, (c&d) window size 15, (e&f) window size 21.

478	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

we define Colori as (Ri, Gi, Bi), we obtain the mapping equations given in Figure 8.2-24b. In
this case the equations are constants over specified ranges; however, they can be any type
of equations.

Figure 8.2-25 shows two images and various results of spatial domain pseudocolor map-
ping. The original images are of a mosquito from a scanning electron microscope and
a satellite image of the Earth. As can be seen in these images, the specific colors chosen
are application dependent, and the methods used experimental or analytical. To use an
analytical approach the methodology is to examine the gray-level distribution in terms of
objects of interest in the image and assign colors as desired. Figure 8.2-25 shows results
from using the CVIPtools Enhancement→ Pseudocolor→ Gray-level mapping and Intensity slic-
ing functions. Gray-level mapping allows the user to select the mapping equation from a
set of standard mappings; while with Intensity slicing selection of up to four gray-level
ranges and four colors are allowed.

For maximum flexibility, the user can use Enhancement→ Pseudocolor→ Gray-level map-
ping II in CVIPtools, which provides the user with a graphical interface to enter mapping
equations. When the Custom Remap Curve button is selected, shown in Figure 8.2-26, the
user can create a new map file. First, select the Red, Green, or Blue band, and then enter
points on each line with a left mouse button click (points can also be added manually in

(a) (b)

(c) (d)

Figure 8.2-23
Exponential adaptive contrast filter (Exp-ACE), varying the local mean factor. The same original hand x-ray
image used in Figure 8.2-20a was the original for these results. A window size of 11 × 11 and a local gain expo-
nent of 0.9 were used. (a) local mean factor = 0.1, (b) local mean factor = 0.25, (c) local mean factor = 0.5, (d) local
mean factor = 0.75. As the local mean factor is increased more of the original image is retained. Also note that
no postprocessing was applied with the Exp-ACE filter.

Image Enhancement	 479

© 2011 by Taylor & Francis Group, LLC

the Add Points box). Note that the points can be grabbed and dragged with the left mouse
button. After entering the mapping curves for each band, an interpolation method can
be selected, and the mapping then applied to the image. If desired, the user can save
the mapping file with the Save button. After mapping files have been saved, they can be
loaded with the Open a map file button, which will display the mapping equations. Once
a map file has been loaded, the mapping equations can be modified with the mouse,
applied to image, and then saved when satisfactory results have been created.

In addition to operation in the spatial domain, we can perform pseudocolor in the fre-
quency domain. This is typically accomplished by performing a Fourier transform on the
image, and then applying a lowpass, bandpass, and highpass filter to the transformed
data. These three filtered outputs are then inverse transformed and the individual outputs
are used as the RGB components of the color image. A block diagram of the process is
illustrated in Figure 8.2-27a. Typical postprocessing includes histogram equalization, but
is application-dependent. Although these filters may be of any type, they are often chosen
to cover the entire frequency domain by dividing it into three separate bands, correspond-
ing to lowpass, bandpass, and highpass filters (Figure 8.2-27b). Figure 8.2-28 shows image
examples of frequency domain pseudocolor mapping.

The pseudocolor techniques provide us with methods to change a gray-scale image into
a color image. Additionally, we may wish to apply some of the enhancement techniques,
such as histogram modification, directly to color images. One method for doing this is to
treat color images as three band gray-scale images. Thus, we can apply any and all of the
gray-scale modification techniques, including histogram modification, to color images by

Color 1 Color 2 Color 3 Color 4

MAX MAX 3MAX MAX
4 42

Gray level

Gray level Gray level Gray level

Intensity slicing

Mapping equations

(a)

(b)

R3

R2

R1

R4

G4

G3

G2

G1

B2

B3

B4

B1

R G B

Figure 8.2-24
Pseudocolor in the spatial domain.

480	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

applying the method to each color band separately. The problem with this approach is
that the colors will change, which is typically not the desired effect. We need to retain
the relative color (the ratios between red, green, and blue for each pixel), in order to avoid
color shifts.

The relative color can be retained by applying the gray-scale modification technique
to one of the color bands (red, green, or blue), and then using the ratios from the origi-
nal image to find the other values (see Figure 8.2-29). Typically the most important color

(a)

(b) (c)

(d) (e)

Figure 8.2-25
Image examples of pseudocolor in the spatial domain. (a) Original scanning electron image of a mosquito
(photo courtesy of Sue Eder, SIUE), (b&c) gray-level mapping pseudcolor, (d&e) intensity slicing pseudocolor,
(f) original satellite image of the Earth, (g&h) gray-level mapping pseudocolor, (i&j) intensity slicing pseudo-
color. Note that the gray-level mapping provides a more natural look, due to the gradual color change.

Image Enhancement	 481

© 2011 by Taylor & Francis Group, LLC

(f)

(g) (h)

(i) (j)

Figure 8.2-25 (Continued)
Image examples of pseudocolor in the spatial domain. (a) Original scanning electron image of a mosquito
(photo courtesy of Sue Eder, SIUE), (b&c) gray-level mapping pseudcolor, (d&e) intensity slicing pseudocolor,
(f) original satellite image of the Earth, (g&h) gray-level mapping pseudocolor, (i&j) intensity slicing pseudo-
color. Note that the gray-level mapping provides a more natural look, due to the gradual color change.

482	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Select band

Enter points here

(a)

(b)

Figure 8.2-26
Gray-level mapping II in CVIPtools. (a) CVIPtools screen shot after selection of Enhancement→Pseudocolor→Gray-
Level mapping II and then clicking on Custom Remap Curve, (b) to create a new map file, select the Red, Green or
Blue band, then enter points on each line with a left mouse button click (points can also be added manually in
the Add Points box); the user can grab the points to move them with the left mouse button. After the mapping
points have been entered, an interpolation method can be selected, and the mapping then applied to the image.
If desired, the user can save the mapping file with the Save button. (c) After mapping files have been saved, they
can be loaded with the Open a map file button, which will display the mapping equations. Once a map file has
been loaded, the mapping equations can be modified with the mouse, applied to image and then saved when
the user has acceptable results.

Image Enhancement	 483

© 2011 by Taylor & Francis Group, LLC

band is selected, and this choice is very much application-specific. This technique will not
always provide us with the desired result, either. Often, we really want to apply the gray-
scale modification method to the image brightness only, even with color images. This is
done by using the HSL transform, applying the gray-scale modification technique to the
brightness band only (L), and then performing the inverse HSL transform. This effect will
be similar to application to gray-scale images.

Another method for color contrast enhancement is to perform the HSL transform and
process the hue and saturation bands, such as is illustrated in Figure 8.2-30. This algorithm
performs histogram equalization on the saturation band, which tends to improve and
intensify color richness or depth, followed by a histogram stretch on the luminance band
to improve the contrast. After these processed HSL bands are recombined and the inverse
HSL transform is performed we obtain the color contrast enhanced image. Figure 8.2-31
shows this algorithm applied to two images and compares it to histogram equalization on
the luminance band. Here we see that this algorithm creates brighter and typically better
images.

(c)

Figure 8.2-26 (Continued)
Gray-level mapping II in CVIPtools. (a) CVIPtools screen shot after selection of Enhancement→Pseudocolor→Gray-
Level mapping II and then clicking on Custom Remap Curve, (b) to create a new map file, select the Red, Green or
Blue band, then enter points on each line with a left mouse button click (points can also be added manually in
the Add Points box); the user can grab the points to move them with the left mouse button. After the mapping
points have been entered, an interpolation method can be selected, and the mapping then applied to the image.
If desired, the user can save the mapping file with the Save button. (c) After mapping files have been saved, they
can be loaded with the Open a map file button, which will display the mapping equations. Once a map file has
been loaded, the mapping equations can be modified with the mouse, applied to image and then saved when
the user has acceptable results.

484	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Bandpass Highpass

I (r,c)
Fourier

transform
(FT)

Lowpass
filter

Inverse
FT

Inverse
FT

Inverse
FT

Bandpass
filter

Post-
process

Post-
process

Post-
process

Highpass
filter

R, G, or B

G, B, or R

B, R, or G

Block diagram of process

Lowpass

Fourier filters (x = origin)

XX

(a)

X

(b)

Figure 8.2-27
Pseudocolor in the frequency domain.

Image Enhancement	 485

© 2011 by Taylor & Francis Group, LLC

(c) (d)

(a) (b)

Figure 8.2-28
Frequency domain pseudocolor. (a) Original 256 × 256 image, so in the Fourier domain the highest frequency is
128, (b) result with cutoff frequencies of 10 and 100, with the lowpass result mapped to red, bandpass to green
and highpass to blue, (c) result with cutoff frequencies of 10 and 100, with the lowpass mapped to blue, bandpass
to green and highpass to red, (d) result with cutoff frequencies of 5 and 50, with the lowpass mapped to red,
bandpass to blue and highpass to green.

486	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

Figure 8.2-29
Histogram equalization of color images. (a) Original poor contrast image, (b) histogram equalization based on
the red color band, (c) histogram equalization based on the green color band, (d) histogram equalization based
on the blue color band. Note that in this case the red band gives the best results. This will depend on the image
and the desired result.

Image Enhancement	 487

© 2011 by Taylor & Francis Group, LLC

Input image

Conversion of RGB color
space to HSL color space

Hue band Saturation band Lightness band

Histogram
equalization

Histogram
stretch

Conversion of HSL color
space to RGB color space

Color contrast enhanced
output image

Combine processed HSL
bands

Figure 8.2-30
Flowchart for the color contrast enhancement algorithm. First, perform the HSL transform. Next, extract the
saturation band and perform histogram equalization. Then extract the luminance band and perform a histo-
gram stretch. Finally, combine the processed HSL bands and perform the inverse HSL transform.

488	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

Figure 8.2-31
Resultant images for color contrast enhancement algorithm. (a) Original image, Bridge, (b) Bridge image after his-
togram equalization on the Lightness band, (c) bridge image after color contrast enhancement algorithm applied
from flowchart in Figure 8.2-30. Note that this algorithm enhances the red, blue and yellows without false colors.
(d) Original image, Tiffany, (e) Tiffany image after histogram equalization on the Lightness band, (f) Tiffany image
after color contrast enhancement algorithm appliedfrom flowchart in Figure 8.2-30. Note that with the HSL and its
inverse artifacts may appear due to singularities in the transform equations, typically appearing as clipping in one
of the color bands, such as in (b) and minimally in (c) Comparing (e) and (f) we see that the color contrast enhance-
ment algorithm does a better job of maintaining and intensifying the color, such as the yellow hair.

Image Enhancement	 489

© 2011 by Taylor & Francis Group, LLC

8.3  Image Sharpening

Image sharpening deals with enhancing detail information in an image. The detail infor-
mation is typically contained in the high spatial frequency components of the image, so
most of the techniques contain some form of highpass filtering. The detail information
includes edges, and, in general, corresponds to image features that are small spatially. This

(d)

(e) (f)

Figure 8.2-31 (Continued)
Resultant images for color contrast enhancement algorithm. (a) Original image, Bridge, (b) Bridge image after his-
togram equalization on the Lightness band, (c) bridge image after color contrast enhancement algorithm applied
from flowchart in Figure 8.2-30. Note that this algorithm enhances the red, blue and yellows without false colors.
(d) Original image, Tiffany, (e) Tiffany image after histogram equalization on the Lightness band, (f) Tiffany image
after color contrast enhancement algorithm appliedfrom flowchart in Figure 8.2-30. Note that with the HSL and
its inverse artifacts may appear due to singularities in the transform equations, typically appearing as clipping
in one of the color bands, such as in (b) and minimally in (c) Comparing (e) and (f) we see that the color contrast
enhancement algorithm does a better job of maintaining and intensifying the color, such as the yellow hair.

490	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

information is visually important, because it delineates object and feature boundaries, and
is important for textures in objects.

In the following sections, representative algorithms and techniques for image sharp-
ening are discussed. Mask operations in the spatial domain and their equivalent global
operations in the frequency domain are considered. Many image sharpening algorithms
consist of three general steps: (1) extract high frequency information, (2) combine the high
frequency image with the original image to emphasize image detail, and (3) maximizing
image contrast via histogram manipulation.

8.3.1  Highpass Filtering

Filters that emphasize high frequency information have been introduced in Chapter 4
(spatial domain) and Chapter 5 (frequency domain). Here we will consider techniques
specifically for image sharpening. Highpass filtering for image enhancement typically
requires some form of postprocessing, such as histogram equalization, to create an accept-
able image. Additionally, highpass filtering alone is seldom used for enhancement, but is
often part of a more complex enhancement algorithm such as those discussed in later sec-
tions. Highpass filtering, in the form of edge detection, is often used in computer vision
applications to delineate object outlines.

Edge detectors are spatial domain convolution mask approximations to the equivalent
frequency domain (highpass) filter. One method to find an approximate spatial convolution
mask that minimizes mean square error is to use the Moore–Penrose generalized inverse
matrix. This technique is beyond the scope of the discussion here, but more information
can be found in the references. Phase contrast filtering, also discussed in the references, is
similar to highpass filtering, but is based on the assumption that most visual information
is in the phase. In Figure 8.3-1 we can see that the detail/edge information is contained in
the phase of the Fourier transform, not in the magnitude. This is reasonable as the phase of
a sinusoidal wave locates it in space or time—it tells us where the objects are located.

8.3.2  High Frequency Emphasis

As we have seen in Chapter 5, high frequency emphasis can be used to enhance details in
an image (Figure 5.7-8). The highpass filter alone will accentuate edges in the image, but
loses a large portion of the visual information by filtering out the low spatial frequency
components. This problem is solved with the high frequency emphasis filter that boosts
the high frequencies and retains some of the low frequency information (see Figures 5.7-7
and 5.7-8) by adding an offset to the filter function. When this is done, care must be taken
to avoid overflow in the resulting image. The results from overflow will appear as noise,
typically white and black points (depending on how the data conversion is handled). This
problem can be avoided by careful use of proper data types, correct data conversion when
necessary, and appropriate remapping of the data before display.

A similar result can be obtained in the spatial domain by using a high boost spatial filter.
The high boost spatial filter mask is of the following form:

	
− − −

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1
1 1
1 1 1

x

Image Enhancement	 491

© 2011 by Taylor & Francis Group, LLC

This mask is convolved with the image, and the value of x determines the amount of
low frequency information retained in the resulting image. A value of 8 will result
in a highpass filter (the output image will contain only the edges), while larger val-
ues will retain more of the original image. If values of less than 8 are used for x,
the resulting image will appear as a negative of the original. Figure 8.3-2 shows the
results from using various values of x for high boost spatial filtering. The resultant
images are also shown with a histogram stretch as a postprocessing step for further
enhancement.

As was done with the edge detection spatial masks, the high boost mask can be extended
with –1s and a corresponding increase in the value of x. Larger masks will emphasize the

(a) (b)

(c) (d)

Figure 8.3-1
Detail information is in the phase. (a) Original image, (b) results of performing a fourier transform, normalizing
the magnitudes to 1, and then performing the inverse transform –this provides results based on phase only, (c)
histogram equalized version of (b), (d) histogram stretched version of (b), with 1% clipping. Here we can see that
the detail/edge information is contained in the phase of the Fourier transform. This is reasonable as the phase
of a sinusoidal wave locates it in space or time.

492	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 8.3-2
High boost spatial filtering. (a) Original image, (b) results of performing a highboost spatial filter with a 3 × 3
mask and x = 6, (c) histogram stretched version of (b), each color band is a negative of the original, (d) results of
performing a highboost spatial filter with a 3 × 3 mask and x = 8, (e) histogram stretched version of (d), note the
image contains edge information only, (f) results of performing a highboost spatial filter with a 3 × 3 mask and
x = 12, (g) histogram stretched version of (f). The increase in sharpness of (g) compared to the original is most
noticeable in the outlines of the leaves and details in the brick and stone.

Image Enhancement	 493

© 2011 by Taylor & Francis Group, LLC

edges more (make them wider), and help to mitigate the effects of any noise in the original
image. For example a 5 × 5 version of this mask is

	

− − − − −

− − − − −

− − − −

− − − − −

− −

1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1

x

−− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥1 1 1

If we create an N × N mask, the value for x for a highpass filter is N × N – 1, in this case 24
(5 × 5 – 1). Note that other forms for the highboost spatial sharpening mask can be gener-
ated such as the following:

	
1 2 1
2 2
1 2 1

0 1 0
1 1
0

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− −

−

x x

11 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8.3.3 D irectional Difference Filters

Directional difference filters are similar to the spatial domain high boost filter, but emphasize
the edges in a specific direction. These filters are also called emboss filters, due to the effect
they create on the output image. The filter masks are of the following form:

	
0 1 0
0 0 0
0 1 0

1 0 0
0 0 0
0 0 1

0+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

00 0
1 0 1
0 0 0

0 0 1
0 0 0
1 0 0

+ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(f) (g)

Figure 8.3-2 (Continued)
High boost spatial filtering. (a) Original image, (b) results of performing a highboost spatial filter with a 3 × 3
mask and x = 6, (c) histogram stretched version of (b), each color band is a negative of the original, (d) results of
performing a highboost spatial filter with a 3 × 3 mask and x = 8, (e) histogram stretched version of (d), note the
image contains edge information only, (f) results of performing a highboost spatial filter with a 3 × 3 mask and
x = 12, (g) histogram stretched version of (f). The increase in sharpness of (g) compared to the original is most
noticeable in the outlines of the leaves and details in the brick and stone.

494	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

A different directional mask can be created by rotating the outer + 1 and –1. Larger masks
can be generated by extending the + 1 and –1s as follows:

	

0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

+

+

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥

+

+

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎥⎥
⎥
⎥
⎥
⎥

+ + − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

0 0 0 0 0
0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The filters can be used for image sharpening as shown in Figure 8.3-3b.They can also be
used to enhance lines in a specific direction, which can be useful for computer vision
applications. For example, in Figure 8.3-3c we see the mouth on the statue and the horizon-
tal lines on the plaque enhanced, while in Figure 8.3-3d the mouth is gone and the verti-
cal lines are prominent. Increasing the mask size will create wider edges in the resultant
image; compare Figure 8.3-3c and d with Figure 8.3-3e and f. In CVIPtools these filters are
found under Utilities→ Filter.

8.3.4  Homomorphic Filtering

The digital images we process are created from optical images. Optical images consist
of two primary components, the lighting component and the reflectance component.
The lighting component results from the lighting conditions present when the image is
captured, and can change as the lighting conditions change. The reflectance component
results from the way the objects in the image reflect light and are determined by the intrin-
sic properties of the object itself, which (normally) do not change. In many applications it
is useful to enhance the reflectance component, while reducing the contribution from the
lighting component. This allows for sharpening and contrast improvement in dark
and lighter areas of the original image. It also has the added bonus of making the applica-
tion lighting independent, thus making it more robust.

Homomorphic filtering is a frequency domain filtering process that compresses the bright-
ness (from the lighting conditions), while enhancing the contrast (from the reflectance).

The image model for homomorphic filters is as follows:

	 I r c L r c R r c(,) (,) (,)=

where L(r,c) represents the contribution of the lighting conditions and R(r,c) represents the
contribution of the reflectance properties of the objects.

The homomorphic filtering process assumes that L(r,c) consists of primarily slow spatial
changes (low spatial frequencies), and is responsible for the overall range of the bright-
ness in the image. The assumptions for R(r,c) are that it consists primarily of high spatial
frequency information, which is especially true at object boundaries and in textured areas,
and it is responsible for the local contrast (the spread of the brightness range within a small
spatial area). These simplifying assumptions are valid for many types of real images.

The homomorphic filtering process consists of five steps: (1) a natural log transform
(base e), (2) the Fourier transform, (3) filtering, (4) the inverse Fourier transform, and
(5) the inverse log function—the exponential. This process is illustrated in a block diagram

Image Enhancement	 495

© 2011 by Taylor & Francis Group, LLC

(a) (b)

–3

(c) (d)

Figure 8.3-3
Directional difference filters. (a) Original image, (b) image sharpened by adding the difference filter result to the
original image, followed by a histogram stretch, (c) 3 × 3 filter result with the +1 and −1 in the vertical direction
which emphasizes horizontal lines, (d) 3 × 3 filter result with the +1 and −1 in the horizontal direction which
emphasizes vertical lines, (e) 7 × 7 filter result with the +1 and −1 in the vertical direction which emphasizes
horizontal lines, (f) 7 × 7 filter result with the +1 and −1 in the horizontal direction which emphasizes vertical
lines.Note: all the directional difference filter images have been histogram stretched to improve contrast. Notice
that a larger filter mask provides thicker lines.

496	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

in Figure 8.3-4. The first step allows us to decouple the L(r,c) and R(r,c) components, since
the logarithm function changes a product into a sum. Step 2 puts the image into the fre-
quency domain, so that we can perform the filtering in Step 3. Next, Steps 4 and 5 do the
inverse transforms from Steps 1 and 2, to get our image data back into the spatial domain.
The only factor left to be considered is the filter function, H(u,v).

The typical filter for the homomorphic filtering process is shown in Figure 8.3-5. Here
we see that we can specify three parameters: the high frequency gain, the low frequency
gain, and the cutoff frequency. Typically the high frequency gain is > 1, and the low fre-
quency gain is < 1. This provides us with the desired effect of boosting the R(r,c) compo-
nents, while reducing the L(r,c) components. The selection of the cutoff frequency is highly
application-specific, and needs to be chosen so that no important information is lost. In
practice the values for all three parameters are often determined empirically.

Figure 8.3-6 shows results from application of homomorphic filtering to an image of
varying contrast. In this case, the homomorphic filter returns an image of low contrast,
so the contrast is enhanced by a histogram stretch procedure. We see that the homomor-
phic filter provides an image with enhanced edges and greater visual detail, especially
in the dark areas in the original image. To create the sharpened image (in Figure 8.3-6c)
we add the homomorphic filtered image, with its enhanced edges, to the original image.
In Figure 8.3-6d we show the difference between the original image and the sharpened
image by subtracting Figure 8.3-6a and c. Here we see that the differences occur at the
edges, and the prominent increase in image detail in the dark areas of the original.

(e) (f)

Figure 8.3-3 (Continued)
Directional difference filters. (a) Original image, (b) image sharpened by adding the difference filter result to the
original image, followed by a histogram stretch, (c) 3 × 3 filter result with the +1 and −1 in the vertical direction
which emphasizes horizontal lines, (d) 3 × 3 filter result with the +1 and −1 in the horizontal direction which
emphasizes vertical lines, (e) 7 × 7 filter result with the +1 and −1 in the vertical direction which emphasizes
horizontal lines, (f) 7 × 7 filter result with the +1 and −1 in the horizontal direction which emphasizes vertical
lines.Note: all the directional difference filter images have been histogram stretched to improve contrast. Notice
that a larger filter mask provides thicker lines.

Image Enhancement	 497

© 2011 by Taylor & Francis Group, LLC

8.3.5  Unsharp Masking

The unsharp masking algorithm has been used for many years by photographers to enhance
images. It sharpens the image by subtracting a blurred (lowpass) version of the original
image. This was accomplished during film development by superimposing a blurred neg-
ative onto the corresponding positive film to produce a sharper result. The process is simi-
lar to adding a detail enhanced (highpass) version of the image to the original. To improve

I (r, c) E (r, c)
Natural log Fourier

transform
Filter,

frequency

Inverse
Fourier

transform

Inverse
natural

log

(1) (2) (3) (4) (5)

Figure 8.3-4
The homomorphic filtering process.

H (u,v)

High
frequency

gain

Low
frequency

gain

cutoff frequency
Frequency

Cross-section of homomorphic filter, H (u,v)

2–D filter diagram (x = origin)

(a)

(b)

cutoff
frequency

Figure 8.3-5
Homomorphic filtering.

498	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

image contrast we have included histogram modification as part of our unsharp masking
enhancement algorithm.

A flowchart for this process is shown in Figure 8.3-7. Here we see that the original image
is lowpass filtered, followed by a histogram shrink to the lowpass filtered image. The resul-
tant image from these two operations is then subtracted from the original image, and the
result of this operation undergoes a histogram stretch to restore the image contrast. This
process works because subtracting a slowly changing edge (the lowpass filtered image)
from faster changing edges (in the original), has the visual effect of causing overshoot and
undershoot at the edges, which has the effect of emphasizing the edges. By scaling the
lowpassed image with a histogram shrink we can control the amount of edge emphasis
desired. In Figure 8.3-8, we see results of application of the unsharp masking algorithm

(a) (b)

(c) (d)

Figure 8.3-6
Homomorphic filtering. (a) Original 512 × 512 image, (b) result of homomorphic filter followed by a histogram
stretch. Upper gain = 1.3, lower gain = 0.5, cutoff frequency = 64. Note enhanced edges overall, and especially
more visible detail in the dark areas. (c) Homomorphic filtered image added to the original, (d) Difference
between (a) and (c), histogram stretched.

Image Enhancement	 499

© 2011 by Taylor & Francis Group, LLC

with different ranges for the histogram shrink process. Here we see that as the range for
the histogram shrink is increased, the resulting image has a greater edge emphasis with
an overall loss in image contrast. With a color image, if the limits are too high for the his-
togram stretch, a color shift may occur (Figure 8.3-8f) due to the negative values and the
consequent remapping.

8.3.6  Edge Detector–Based Sharpening Algorithms

The following two algorithms are implemented in CVIPtools as Sharpening Algorithm I
and II. They are both based on using edge detectors to enhance the edges, followed by con-
trast enhancement via histogram modification. Sharpening Algorithm I works as follows:
(1) performs a Laplacian edge detection on the original image, (2) performs a Sobel edge
detection on the original image, (3) multiplies the resulting images from the Laplacian
and the Sobel, (4) adds the product from Step 3 to the original image, and (5) histogram
stretches the result from Step 4.

In CVIPtools various options are available for this algorithm. With the Intermediate
Image Remapping option you can remap the product (from Step 3) to BYTE range (0–255)
before you add it to the original image. This has the effect of improving image contrast,
but with reduced sharpening effect. Two different Laplacian masks can be selected, but

Input image Lowpass
filter

Histogram
shrink

Histogram
stretch

Resultant
image

Subtract images

Figure 8.3-7
Unsharp masking enhancement.

500	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 8.3-8
Unsharp masking, note that with a color image the process is performed on each band separately. (a) Original
image, (b) unsharp masking with lower limit = 0, upper = 100, with 2% low and high clipping, (c) unsharp mask-
ing with lower limit = 0, upper = 150, with 2% low and high clipping, (d) unsharp masking with lower limit = 0,
upper = 200, with 2% low and high clipping, (e) unsharp masking with lower limit = 0, upper = 225, with 2% low
and high clipping, (f) unsharp masking with lower limit = 0, upper = 255, with 2% low and high clipping. Note
that if the limits get too high for the histogram stretch, a color shift may result, as shown in (f).

Image Enhancement	 501

© 2011 by Taylor & Francis Group, LLC

Mask II tends to give more raggedy edges. Choosing a larger mask size for the Sobel
will tend to brighten the major edges, but will also tend to smear them out slightly.
The final two selections, “Low (High) clip percent,” determine how much of the histo-
gram is clipped during the final histogram stretch. Figure 8.3-9 shows results from this
algorithm.

(a) (b)

(c) (d)

Figure 8.3-9
Sharpening algorithm I. (a) Original image, (b) parameters: laplacian Mask I, 3 × 3 Sobel, 0.5% clipping on both
low and high end for the histogram stretch, intermediate image is remapped, and result is added to original
image, (c) parameters: same as (b) except intermediate image is not remapped, and 3% is used for clipping on
the histogram stretch, (d) parameters: same as (c), but with a 7 × 7 Sobel.

502	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Sharpening Algorithm II is simpler, faster, and provides similar results, but with less
flexibility. It works as follows: (1) performs a histogram shrink to the range [10,100], (2)
performs a Roberts edge detection, (3) optionally adds the result to the original image, (4)
remaps to BYTE data type, and (5) performs a histogram equalization. To add the result to
the original image the user selects the appropriate box. Figure 8.3-10 shows results from
this algorithm.

(a) (b)

(c)

Figure 8.3-10
Sharpening algorithm II. (a) Original image, (b) results of Sharpening Algorithm II, (c) The difference between
the two images. Note that the changes are all at the edges and in image details, as expected.

U
FM

|4
84

94
2|

14
35

60
97

43

Image Enhancement	 503

© 2011 by Taylor & Francis Group, LLC

8.4  Image Smoothing

Image smoothing is used for two primary purposes: to give an image a softer or special
effect, or to mitigate noise effects. Chapter 9 discusses smoothing filters in more depth for
handling noise in images; for image enhancement we will focus on basic smoothing meth-
ods for creating a softer effect. Image smoothing is accomplished in the spatial domain by
considering a pixel and its neighbors and eliminating any extreme values with median fil-
ters or by averaging with neighboring pixels with mean filters. In some cases we may want
an edge-preserving filter, such as the Kuwahara filter, which will smooth the image without
blurring the edges. The Kuwahara and median filters are examples of nonlinear filters.

In the frequency domain, image smoothing is accomplished by some form of lowpass
filtering. Since the high spatial frequencies contain the detail, including edge information,
the elimination of this information via lowpass filtering will provide a smoother image.
Any fast or sharp transitions in the image brightness will be filtered out, thus providing
the desired effect.

8.4.1  Frequency Domain Lowpass Filtering

In the frequency domain, lowpass filtering can be done as discussed in Chapter 5.
An ideal filter can cause undesirable artifacts, while the Butterworth filter does not.
Lowpass filtering creates an image with a smooth appearance since it suppresses any
rapidly changing brightness values in the original image. The lowpass filters do this by
attenuating high spatial frequency information, which corresponds to the rapid changes
(edges). The amount of information suppressed is determined by the cutoff frequency
of the filter.

8.4.2  Convolution Mask Lowpass Filtering

As was seen in Chapter 5, the convolution theorem allows us to use filter masks in the spa-
tial domain to perform filtering. Given a frequency domain filter specification, an equiva-
lent convolution mask can be approximated with the Moore–Penrose generalized inverse
(see references). For lowpass filtering these masks are typically some form of average
(mean) filters. The coefficients for these filter masks are all positive, unlike the highpass
filters where the center is surrounded by negative coefficients. Here are some common
spatial convolution masks for lowpass filtering, where the first two filters are standard
arithmetic mean filters, and the last two masks are approximations to Gaussian filters:

	
1 1 1
1 1 1
1 1 1

1 1 1
1 2 1
1 1 1

2 1 2
1 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11
2 1 2

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

As is seen, the coefficients in the mask may be biased; that is, they may not all be 1s. This
is typically for application specific reasons. For example, we may want to weight the cen-
ter pixel, or the diagonal pixels, more heavily than the other pixels. Note also that these
types of masks are often multiplied by 1/N, where N is the sum of the mask coefficients.
As examples, the first mask is multiplied by 1/9, the second by 1/10, and so on. This is the

504	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

equivalent of linearly remapping the image data (typically to BYTE) after the convolution
operation.

The use of mean filters to eliminate noise in images is discussed in Chapter 9, where we will
see that the various types of mean filters are most effective with different types of noise. For
image smoothing, the results from most of the spatial mean filters are visually similar—the
image is smoothed out providing a softer visual effect (see Figure 8.4-1). We can use a larger
mask size for a greater smoothing effect. In Figure 8.4-2 we see the results of using an arith-
metic filter and various mask sizes. We can see that as the mask size increases, the amount
of smoothing increases, and at some point the smoothing becomes a noticeable blurring. By

(a)

(c)

(b)

(d)

(e) (f)

Figure 8.4-1
Mean filters (3 × 3). These filters create a soft effect in images. (a) Original image, (b) arithmetic filter, (c) mid-
point filter, (d) Gaussian filter, (e) contra-harmonic, order = +1, (f) Yp mean, order = +1.

Image Enhancement	 505

© 2011 by Taylor & Francis Group, LLC

comparing the same size arithmetic mean and Gaussian filters, we see that the Gaussian cre-
ates a more natural effect and less noticeable blurring as the mask size increases.

8.4.3 N onlinear Filtering

Nonlinear filters can be used for image smoothing. A nonlinear filter cannot be imple-
mented with a convolution mask. Median filters (Chapters 3 and 9) can be used to create
a similar smoothing effect, but with large mask sizes it creates an almost painted (and
blurred) look. In Figure 8.4-3 we see the results from applying a median filter with vari-
ous mask sizes. We can see that details smaller than the mask size are eliminated, and as
the mask gets larger the image begins to take on an artificial look. With a large mask the
median filter will take a long time to process, so in practice a fast algorithm or a pseudo-
median filter may be used.

(a)

(b) (c)
Arithmetic mean, 5 × 5 Gaussian, 5 × 5

Figure 8.4-2
Image smoothing with arithmetic mean and Gaussian filters by varying the mask size. (a) Original image,
(b) arithmetic mean, 5 × 5, (c) Gaussian, 5 × 5, (d) arithmetic mean, 7 × 7, (d) Gaussian, 7 × 7, (e) arithmetic mean,
9 × 9, (f) Gaussian, 9 × 9. Note that with the same size mask the Gaussian creates a more natural blur that is less
noticeable than the arithmetic mean filter.

506	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Fast algorithms for median filtering operate by efficiently maintaining the sorting of
the data as we move across the image. An alternative to using a fast algorithm is the
pseudomedian filter, which approximates the operation of a median filter, but is simpler and
more computationally efficient. The pseudomedian is defined is as follows:

	 PMED S MAXIMIN S MINIMAX SL L L() (1/2) () (1/2) ()= +

where SL denotes a sequence of elements s1,s2,…,SL

	

where for
()

() [(1

M
L+1
2

MAXIMIN S s ,..L

=

=MAX MIN .., s s ,..., s s ,.M M+ LM+)],[()],...,[(2 1 1MIN MIN ..., s

MINIMAX S s ,..., s

L

L M

)]

() [()],1

{ }

=MIN MAX [[()],...,[()]2 1 1MAX MAXs ,..., s s ,..., sM+ LM+ L{{ }

For example, the pseudomedian of length five is defined as

	
PMED a b c d e a b c c d(, , , ,) (/) [(, ,), (,= 1 2 MAX MIN MIN ,,)]

(/) [(, ,), (, ,), (,

e

a b c b c d c+ 1 2 MIN MAX MAX MAX dd e,)]

(d) (e)

(f) (g)
Arithmetic mean, 9 × 9

Arithmetic mean, 7 × 7

Gaussian, 9 × 9

Gaussian, 7 × 7

Figure 8.4-2 (Continued)
Image smoothing with arithmetic mean and Gaussian filters by varying the mask size. (a) Original image,
(b) arithmetic mean, 5 × 5, (c) Gaussian, 5 × 5, (d) arithmetic mean, 7 × 7, (d) Gaussian, 7 × 7, (e) arithmetic
mean, 9 × 9, (f) Gaussian, 9 × 9. Note that with the same size mask the Gaussian creates a more natural blur
that is less noticeable than the arithmetic mean filter.

Image Enhancement	 507

© 2011 by Taylor & Francis Group, LLC

The MIN followed by MAX contributions of the first part of the equation always result
in the actual median or a value smaller, while the MAX followed by the MIN contribu-
tions result in the actual median or a value larger. The average of the two contributions
tends to cancel out the biases, thus creating a valid approximation to the median filter-
ing process.

The Kuwahara filter is a nonlinear filter that can be used to smooth images, but attempts
to retain edge information, so is referred to as an edge-preserving smoothing filter. As we

(a) (b)

(c) (d)

Figure 8.4-3
Image smoothing with a median filter. (a) Original image, (b) 3 × 3 median filter, (c) 5 × 5 median filter, (d) 7 × 7
median filter, (e) 9 × 9 median filter, (f) 11 × 11 median filter. Note that as the filter size increases above a 5 × 5 the
resulting image acquires a painted effect.

508	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

have seen edges are important for our interpretation and analysis of images. The Kuwahara
filter is also called an adaptive filter because it adapts to the underlying image characteris-
tics. Adaptive filters are further explored in Chapter 9.

The Kuwahara can be implemented with various window shapes, but is implemented in
CVIPtools with a square window. The size of the window is given by

	 H = W = 4L + 1

where H = height, W = width, and L is an integer.
The Kuwahara divides the window into four regions that are of size:

	
H W+

×
+1

2
1

2

The Kuwahara filter with a 5 × 5 window size can be described as follows:

	 1.	Consider each 3 × 3 region of the 5 × 5 filter window shown in Figure 8.4-4.
	 2.	 In each of the four 3 × 3 regions find the average brightness, mi, and the standard

deviation, σi .
	 3.	The output of the filter is the average value of the region that has the smallest stan-

dard deviation.

(f)(e)

Figure 8.4-3 (Continued)
Image smoothing with a median filter. (a) Original image, (b) 3 × 3 median filter, (c) 5 × 5 median filter, (d) 7 × 7
median filter, (e) 9 × 9 median filter, (f) 11 × 11 median filter. Note that as the filter size increases above a 5 × 5 the
resulting image acquires a painted effect.

Image Enhancement	 509

© 2011 by Taylor & Francis Group, LLC

The means and standard deviations are defined as follows:

	 m
H W

I r ci

I r c ith

=
+

×
+

∈

∑1
1

2
1

2

(,)
(,) Region

	 σ i i

I r c i
H W

I r c m
th

=
+

×
+⎛

⎝
⎞
⎠ −

−[]
∈

1
1

2
1

2
1

2
(,)

(,) Reggion
∑

Figure 8.4-5 shows example application of the Kuwahara filter for various window sizes.
Here we can see that as the window size increases the smoothing increases, but the
boundaries of the various color blobs are still clearly retained. The removal of detail while
retaining object boundaries is useful for many computer vision applications and in the
development of image compression algorithms. This can be a useful preprocessing filter
for image segmentation.

Region 1

Region 3

Region 4

Region 2

Figure 8.4-4
Kuwahara filter. The Kuhawara filter is an edge preserving, smoothing filter. Four square regions in each win-
dow are defined for the Kuwahara filter. This figure shows the filter with L = 1, so H = W= 4(1) + 1 = 5; so this
is a 5 × 5 filter window. The center pixel, shown in red, is replaced with the average, or mean, of the 3 × 3
region with the lowest standard deviation.The filter window is then moved one pixel and the new value for
the new center pixel is found. This process continues across and down the image until the entire image has
been processed.

510	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Another edge-preserving smoothing filter is the anisotropic diffusion (AD) filter, explored
in more detail in Chapter 9. The filter is anisotropic, which means it will respond differ-
ently in different directions, based on underlying image characteristics. This will enable
it to stop the diffusion process at the edges, while still smoothing in areas of homogene-
ity. It operates by a diffusion process that iteratively smoothes the image. At each itera-
tion of the filter more smoothing is performed and more image detail is lost. For this
filter a diffusion coefficient controls the rate at which the smoothing takes place and is
usually a function of the image gradient so that details in the image are retained.

(a) (b)

(c) (d)

(e) (f)

Figure 8.4-5
Kuwahara filter. The Kuhawara filter is an edge preserving, smoothing filter. (a) Original image, (b) 3 × 3 Kuhawara
filter results, (c) 5 × 5, (d) 7 × 7, (e) 9 × 9, (f) 11 × 11. As the filter size increases more smoothing occurs, but note
that the boundaries of the various color blobs are still sharp. At large window sizes the results take on a painted
effect. This can be a useful preprocessing filter for image segmentation.

Image Enhancement	 511

© 2011 by Taylor & Francis Group, LLC

In Figure 8.4-6 we see application of the filter for image smoothing and see how the
number of iterations affects the output image. As the number of iterations increases
more smoothing occurs, but note that the major boundaries are still easily discern-
ible. In CVIPtools we added a parameter to the AD filter called the edge threshold that
determines where the diffusion process will occur. If the strength of an edge exceeds
the threshold, no diffusion will occur. This provides a control parameter and makes
it more useful as a preprocessing filter for image segmentation for computer vision
applications. Figure 8.4-7 shows the effect of increasing the edge threshold value. Here
we see that as the edge threshold gets larger the details in the flower get blurrier, but
the outlines of the color blobs on the butterfly remain. This is because the boundaries
on the flower are softer or smoother in the original image so they have a lower edge
threshold.

The final figure for this section, Figure 8.4-8, compares the different types of smooth-
ing filters. In this particular image the finest detail is in the grass at the bottom of the
image and we can see that all the filters blur the grass. The mean filter has the blurri-
est result, while the others retain details of varying degrees. The edge preserving fil-
ters (Figure 8.4-8e and f) retain the sharpest edges for the flowers. The median and the
Kuwahara filtered images (Figure 8.4-8d and e) have an artificial look, while the AD filter
provides a more natural looking image.

(a) (b)

(c) (d)

Figure 8.4-6
Anisotropic diffusion (AD) filter. The anisotropic diffusion filter is an edge preserving, smoothing filter. (a)
Original image, (b) AD filter results with 50 iterations, (c) 100 iterations, (d) 300 iterations. As the number of
iterations increases more smoothing occurs, but note that the boundaries of the various color blobs are still
sharp. At large window sizes the results take on a painted effect. This can be a useful preprocessing filter for
image segmentation.

512	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)

(c) (d)

(a)

Figure 8.4-7
The anisotropic diffusion (AD) filter and varying the edge threshold. The anisotropic diffusion filter is an edge
preserving, smoothing filter. Here we fixed the number of iterations at 50. (a) Original image, (b)AD filter results
an edge threshold of 5, (c) edge threshold of 10, (d) edge threshold of 20. Look closely at the pink flower and
observe that as the edge threshold gets larger the details in the flower get blurrier, but the outlines of the color
blobs on the butterfly remain. This is because the boundaries on the flower are softer or smoother, that is the
edges are weaker, in the original image so they have a lower edge threshold.

Image Enhancement	 513

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 8.4-8
Comparison of smoothing filters. (a) Original image, (b) 7 × 7 arithmetic average (mean) filter, (c) 7 × 7 Gaussian
filter, (d) 7 × 7 median filter, (e) 7 × 7 Kuwahara filter, (f) AD filter, 50 iterations, edge threshold 5. Note that the
mean filter is the blurriest, while the others retain details of varying degrees. Observe that the finest detail is in
the grass at the bottom of the image. The edge preserving filters (e&f) retain the sharpest edges for the flowers.

514	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

8.5  Key Points

Overview: Image Enhancement

•	 Image enhancement techniques are employed to emphasize, sharpen and/or
smooth image features for display and analysis.

•	 Image enhancement is the process of applying these techniques to facilitate the
development of a solution to a computer imaging problem.

•	 Enhancement methods are application-specific and often developed empirically.
•	 We define the enhanced image as E(r,c), and application feedback is an important

part of the process (see Figure 8.1-1).
•	 Enhancement methods operate in both the spatial and frequency/sequency

domains (see Figure 8.1-2).
•	 Three types of operation: (1) point operations—each pixel is modified by an equa-

tion that is not dependent on other pixel values, (2) mask operations—each pixel is
modified based on its values as well as its neighbors, and (3) global operations—all
pixel values in the image are needed.

•	 Enhancement techniques are used in both preprocessing, to ease the further imag-
ing tasks, and in postprocessing to create a more visually desirable image.

•	 Enhancement methods are also used as an end in itself to improve images for
viewing.

Gray-Scale Modification

•	 Gray-scale modification is also called gray-level scaling or gray-level
transformation.

•	 Gray-scale modification is the process of taking the original gray-level values and
changing them to improve the image.

•	 Typically gray-scale modification is performed to improve image contrast and/or
brightness.

•	 Image contrast is a measure of the distribution and range of the gray levels, while
image brightness usually refers to the overall average, or mean, pixel value in
the image.

Mapping Equations

•	 Mapping equations provide a general technique for modifying the gray-level val-
ues in an image.

•	 The mapping equation changes the pixel’s (gray level) values based on a mathemati-
cal function that uses brightness values as input and outputs the enhanced pixel
values.

•	 The mapping equation is typically, but not necessarily, linear.
•	 Nonlinear equations can be mapped by piecewise linear equations.
•	 The use of mapping equations to modify the gray-scale belong in the category of

point operations.

Image Enhancement	 515

© 2011 by Taylor & Francis Group, LLC

•	 Notation:
	

Mapping Equation → =E r c M I r c(,) [(,)]

		 where M[] is the mapping equation.
•	 A linear mapping equation will perform gray-level stretching if the slope is > 1, and

gray-level compression if the slope is < 1.
•	 A digital negative can be created with

	 M I r c MAX I r c[(,)] (,)= −

		 where MAX is the maximum gray value.
•	 Intensity level slicing is a particular kind of gray-level mapping where specific

ranges on the input image are mapped to easily seen values in the output image,
such as white = 255.

•	 In CVIPtools gray-scale modification is done with Enhancement→ Histogram/
Contrast→ Linear Modification; Enhancement→ Pseudocolor→ Gray-level mapping can
also be used in conjunction with Utilities→ Create→ Extract Band.

•	 If the dynamic range on the input data is very large, log transforms may be used,
such as with Fourier spectral data (see Section 5.2.4).

•	 Imaging equipment, such as cameras, displays, and printers typically react accord-
ing to a power-law equation of the following form:

	 E r c M I r c K I r c(,) [(,)] [(,)]= = 1
γ

		 where K1 and γ are positive constants.
•	 A device with a response of the power-law transform, can be compensated for by

application of a gamma-correction equation of the following form:

	 E r c M I r c K I r c(,) [(,)] [(,)]= = 2
1 γ

		 where K2 and γ are positive constants.
•	 Gamma correction is important for proper display of images, whether on a com-

puter monitor or on a printed page.

Histogram Modification

•	 Histogram modification performs a function similar to gray-level mapping, but
works by consideration of the histogram shape and spread.

•	 Observation and manipulation of the histogram provides a more intuitive tool
than consideration of mapping equations when improving or modifying image
contrast.

•	 The basic operations are stretch, to increase contrast, shrink, to reduce contrast,
and slide, to change average brightness.

516	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 Histogram shrinking and stretching are also called histogram scaling.

•	 Histogram shrink:

	 Shrink I r,c Shrink Shrink
I r,c

()
(

[] = −MAX MIN

MAXX MIN
MIN MIN) ()

() ()
−

⎡

⎣
⎢

⎤

⎦
⎥ −[] +

I r,c
I r,c I r,c Shhrink

•	 Histogram stretch: Stretch I r,c
I r,c I r,c

I r,c I
()

() ()
()

[] =
−

−
MIN

MAX (()r,c MIN

MAX MIN MIN
⎡

⎣
⎢

⎤

⎦
⎥ −[] +

•	 Histogram slide:Slide I r,c I r,c OFFSET() ()[] = +

•	 Histogram equalization is a technique where the histogram of the resultant image is
as flat as possible (see example and Figures 8.2-14 and 8.2-15).

•	 The histogram equalization process for digital images consists of four basic steps:
(1) find the running sum of the histogram values, (2) normalize the values from
step (1) by dividing by the total number of pixels, (3) multiply the values from Step
2 by the maximum gray-level value and round, and (4) map the gray-level values
to the results from Step 3 using a one-to-one correspondence.

•	 Histogram specification is the process of modifying the histogram of an image to
match a specified histogram.

•	 The histogram specification process is implemented by the following steps (see
example and Figures 8.2-16 and 8.2-17): (1) specify the desired histogram, (2) find
the mapping table to histogram equalize the image, Mapping Table 1, (3) find
the mapping table to histogram equalize the values of the specified histogram,
Mapping Table 2, (4) use Mapping Tables 1 and 2 to find the mapping table to map
the original values to the histogram equalized values and then to the specified
histogram values, and (5) use the table from Step 4 to map the original values to
the specified histogram values. Note: do not round histogram equalized values to near-
est integer until final mapping table to avoid ambiguities.

Adaptive Contrast Enhancement

•	 Adaptive contrast enhancement (ACE) is modification of the gray-level values based
on some criterion that adjusts its parameters as local image characteristics change.

•	 It is primarily a mask type operation, but some adaptive contrast operators use
global image statistics, hence are also global operations.

•	 The simplest method is to perform histogram equalization on a block-by-block
basis, also called local enhancement (see Figure 8.2-18).

•	 The ACE filters use local image statistics to improve images with uneven contrast:

	
ACE E r c k

m

r c
I r c mI r c

l
l⇒ =

⎡

⎣
⎢

⎤

⎦
⎥ −(,)

(,)
(,) ((,)

1 σ
rr c k m r cl,) (,)[] + 2

	 where
		 mI(r,c) = the mean (average) for the entire image I(r,c)
		 σl = local standard deviation in the current window (see Figure 8.2-20).

Image Enhancement	 517

© 2011 by Taylor & Francis Group, LLC

		 ml = local mean in current window
		 k1 = local gain factor constant, between 0 and 1
		 k2 = local mean constant, between 0 and 1.

The ACE2 filter is less computationally intensive than the original ACE filter and pro-
vides similar results (see Figure 8.2-21):

	 ACE E r c k I r c m r c k m r cl l2 1 2⇒ = −[] +(,) (,) (,) (,)

Other variations include the log and exp ACE filters (see Figures 8.2-22 and 8.2-23):

	 Log-ACE E r c k I r c m r cl⇒ = () − ()⎡⎣(,) ln (,) ln (,)1
� � ⎤⎤⎦ + k m r cl2 � (,)

where
I
~

(r,c) = �normalized complement of image = 1–I(r,c)/MAX, MAX is maximum gray value
(e.g., 255)

m~l = normalized complement of local mean = 1–ml(r,c)/MAX
ml = local mean in current window
k1 = local gain factor constant, between 0 and 1
k2 = local mean constant, between 0 and 1.

	 Exp-ACE E r c MAX
I r c
MAX

m r c
k

l⇒ = ×
⎡

⎣⎢
⎤

⎦⎥
+(,)

(,) (,1))
(,)I r c

k
⎡

⎣⎢
⎤

⎦⎥

2

where
ml = local mean in current window
MAX = maximum gray value (e.g., 255)
k1 = local gain factor exponent
k2 = local mean factor exponent.

Color

•	 The human visual system can perceive thousands of colors in a small spatial area,
but only about 100 gray levels.

•	 Color contrast can be more dramatic than gray-level contrast, and various colors
have different degrees of psychological impact on the observer.

•	 Pseudocolor involves mapping the gray-level values of a monochrome image to red,
green, and blue values, creating a color image.

•	 Pseudocolor techniques can be applied in both the spatial and frequency
domains.

•	 Spatial domain mapping equations:

	

R

G

B

I r,c R I r,c

I r,c G I r,c

I r,c B

() [()]

() [()]

()

=

=

= [[()]I r,c

518	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 Intensity slicing is a simple method of spatial domain pseudocolor, where each
gray-level range is mapped to a specific color (see Figures 8.2-24 and 8.2-25).

•	 Pseudocolor in the frequency domain is performed by (1) Fourier transform,
(2) lowpass, bandpass, and highpass filter, (3) inverse Fourier transform the
three filter results, and (4) use the three resulting images for the red, green, and
blue color bands (see Figures 8.2-27 and 8.2-28).

•	 Histogram modification can be performed on color images, but doing it on each
color band separately may give an undesirable output—the colors will shift.

•	 To perform histogram modification on color images: (1) retain the RGB ratios and
perform the modification on one band only, then use the ratios to get the other two
bands’ values, or (2) perform a color transform, such as HSL, do the modification on
the lightness (brightness band), then do the inverse color transform, or (3) perform
a color transform, such as HSL, do histogram equalization on the saturation band to
improve and intensify color richness or depth, followed by a histogram stretch on
the luminance band to improve the contrast (see Figures 8.2-29, 8.2-30, and 8.2-31).

Image Sharpening

•	 Image sharpening deals with enhancing detail information in an image, typically
edges and textures.

•	 Detail information is typically in the high spatial frequency information, so these
methods include some form of highpass filtering.

Highpass Filtering

•	 Highpass filters are often an important part of multistep sharpening algorithms.
•	 Spatial domain highpass filters in the form of convolution masks can be approxi-

mated by the Moore–Penrose generalized inverse matrix (see references).
•	 Phase contrast filtering is a technique with results similar to highpass filtering

and is based on the idea that most detail information is in the phase of the Fourier
transform (see references and Figure 8.3-1).

High Frequency Emphasis

•	 A high frequency emphasis (HFE) filter is essentially a highpass filter with an
offset in the filter function to boost high frequencies and retain some of the low
frequency information.

•	 A spatial domain high boost filter (Figure 8.3-2) provides results similar to the
frequency domain HFE filter, and is of the following form:

	
− − −

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− − − − −

− − −1 1 1
1 1
1 1 1

1 1 1 1 1
1 1 1

x
−− −

− − − −

− − − − −

− − − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1

x

⎦⎦

⎥
⎥
⎥
⎥
⎥
⎥

Image Enhancement	 519

© 2011 by Taylor & Francis Group, LLC

		 For a high boost N × N mask, x should be N2 or greater, or an image negative will
result.

Directional Difference Filters

•	 Directional difference filters, also called emboss filters, are similar to the spatial domain
high boost filter, but emphasize the edges in a specific direction (Figure 8.3-3).

•	 The filter masks are of the following form:

	
0 1 0
0 0 0
0 1 0

1 0 0
0 0 0
0 0 1

0+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

00 0
1 0 1
0 0 0

0 0 1
0 0 0
1 0 0

+ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Homomorphic Filtering

•	 Homomorphic filtering is a frequency domain filtering process that compresses the
brightness, while enhancing the contrast (Figure 8.3-6).

•	 It is based on modeling the image as a product of the lighting and reflectance
properties of the objects.

•	 It assumes that the lighting components in the image are primarily low spatial
frequency.

•	 The homomorphic filtering process (Figure 8.3-4): (1) a natural log transform
(base e), (2) the Fourier transform, (3) filtering, (4) the inverse Fourier transform,
and (5) the inverse log function—the exponential.

•	 The filter used in Step 3 of the process is essentially a high frequency emphasis
filter that allows for the specification of both the high and low frequency gain
(Figure 8.3-5).

Unsharp Masking

•	 The unsharp masking algorithm (Figure 8.3-7): (1) lowpass filter original, (2) shrink
histogram of lowpassed image, (3) subtract result from original, and (4) stretch
histogram.

•	 The unsharp masking algorithm (results shown in Figure 8.3-8) sharpens the
image by subtracting a blurred (lowpass) version of the original image.

Edge-Detector-Based Sharpening Algorithms

•	 Sharpening Algorithm I: (1) performs a Laplacian edge detection on the original
image, (2) performs a Sobel edge detection on the original image, (3) multiplies
the resulting images from the Laplacian and the Sobel, (4) adds the product from
step (3) to the original image, and (5) histogram stretches the result from step (4)
(Figure 8.3-9).

•	 Sharpening Algorithm II: (1) performs a histogram shrink to the range [10,100], (2)
performs a Roberts edge detection, (3) optionally adds the result to the original
image, (4) remaps to BYTE data type, and (5) performs a histogram equalization
(Figure 8.3-10).

520	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image Smoothing

•	 Image smoothing for enhancement is to give the image a softer look.
•	 Image smoothing is also used for noise mitigation (see Chapter 9).

Frequency Domain Lowpass Filtering

•	 Frequency domain lowpass filters smooth images by attenuating high frequency
components that correspond to rapidly changing brightness values.

•	 Ideal filters cause undesirable artifacts, but a Butterworth filter does not (see
Chapter 5).

Convolution Mask Lowpass Filtering

•	 The masks are spatial domain approximations to frequency domain filters (see
Moore–Penrose matrix reference).

•	 The masks are typically some form of an averaging filter, such as arithmetic or
Gaussian approximations, such as

	
1 1 1
1 1 1
1 1 1

1 1 1
1 2 1
1 1 1

2 1 2
1 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11
2 1 2

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

•	 Lowpass (mean) filters tend to blur an image, which creates a smooth or softer
effect (Figure 8.4-1).

•	 Increasing the mask size increases the blur amount (Figure 8.4-2).
•	 Other mean filters are explored in more detail in Chapter 9.

Nonlinear Filtering

•	 Median filters (Chapters 3 and 9) create a smoothing effect, and large mask sizes
create a painted effect (Figure 8.4-3). The median filter is computationally inten-
sive, especially for large mask sizes, so a pseudomedian filter approximation can be
used:

PMED S MAXIMIN S MINIMAX SL L L() (1/2) () (1/2) ()

w

= +

hhere denotes a sequence of elements 1S s ,L 22

where for
(1)

2

()

s ,..., s

M
L

MAXIMIN S

L

L

=
+

=MAX [[()],[()],...,[1 2 1MIN MIN Ms ,..., s s ,..., sM M+ IIN

MIN MAX

()]

() [(

1

1

LM+ L

L

s ,..., s

MINIMAX S s ,

{ }

=, s s ,..., s sM M+ LM+)],[()],...,[(2 1 1MAX MAX ,,..., sL)]{ }

.

Image Enhancement	 521

© 2011 by Taylor & Francis Group, LLC

•	 The Kuwahara filter is a nonlinear filter to smooth images, but retains edge infor-
mation, an edge-preserving smoothing filter. An adaptive filter, adapts to the under-
lying image characteristics. Variable window size given by

◦◦ H = W = 4L + 1; where H = height, W = width, and L is an integer.
◦◦ The Kuwahara divides the window into four regions that are of size

[(H + 1)/2] × [(W + 1)/2].
◦◦ The Kuwahara filter with a 5 × 5 window size can be described as follows:

	 1.	 Consider each 3 × 3 region of the 5 × 5 filter window shown in Figure 8.4- 4.
	 2.	 In each of the four 3 × 3 regions find the average brightness, mi,and the

standard deviation, σi .
	 3.	 The output of the filter is the average value of the region that has the small-

est standard deviation.
◦◦ The means and standard deviations are defined as follows:

m
H W

I r ci
I r c i Regionth

=
+

×
+ ∈∑1

1
2

1
2

(,)
(,)

σ i i
I r c i ReH W

I r c m
th

=
+

×
+⎛

⎝
⎞
⎠ −

−[]
∈

1
1

2
1

2
1

2
(,)

(,) ggion∑

•	 The anisotropic diffusion filter is an edge-preserving smoothing filter:
◦◦ The filter is anisotropic, responds differently in different directions, based on

underlying image characteristics.
◦◦ It is adaptive as its response is based on underlying image characteristics.
◦◦ It operates by a diffusion process that iteratively smoothes the image.

Exercises

Problems

	 1.	 (a) Image enhancement can be performed in two domains, what are they? (b) Why
is application specific feedback important in image enhancement?

	 2.	Name and define the three types of techniques used in enhancement.

	 3.	 (a) To what type of technique does gray-scale modification belong? (b) What is a
mapping equation? (c) For a linear mapping equation, how does the slope of the
line affect the results? (d) Explain how gray-scale modification works.

	 4.	For an 8-bit image, sketch a mapping equation that will provide more image detail
in the range 50–100, while leaving the other values unchanged.

	 5.	For an 8-bit image, find the mapping equation to stretch the original image range
[0–50] to [0–150], while leaving the other values unchanged.

	 6.	For an 8-bit image, sketch the mapping equation that will stretch the range [100–
200] over the entire range, with clipping at both the low and high ends.

522	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 7.	For an 8-bit image, sketch the mapping equation that will create a digital
negative.

	 8.	 (a) Using intensity level slicing on an 8-bit image, sketch the mapping equation that
will turn values between 35 and 50 white, while leaving other values unchanged.
(b) Sketch the mapping equation that will turn values between 50 and 75 white,
while making other values black.

	 9.	 (a) Sketch a mapping equation that will stretch the range [0,50] to [0,150] and com-
press the range [50,255] to [150,255]. (b) Use CVIPtools to implement the mapping
equation.

	 10.	 (a) Why is gamma correction used? (b) Explain the equations for gamma
correction.

	 11.	 (a) Why is range compression used? (b) What is an example of an application for a
logarithmic mapping equation?

	 12.	 (a) Given a low contrast 8-bit image with a gray-level range from 50 to 125, what
is the equation to stretch a histogram over the entire 8-bit range? (b) What is the
equation to shrink the histogram to the range [25,50]. (c) What is the equation to
slide the histogram up by 100?

	 13.	 In what case do we need to clip when performing a histogram stretch? Explain.
	 14.	Given an image with 3-bits per pixel, with the following histogram:

Gray Level
Number of

Pixels

0 0
1 5
2 10
3 15
4 8
5 5
6 0
7 0

		 Find the histogram mapping table and the resulting histogram after histogram
equalization.

	 15.	Given an image with 3-bits per pixel, with the following histogram:

Gray Level Number of Pixels

0 0
1 1
2 5
3 3
4 2
5 12
6 2
7 0

		 Find the histogram mapping table and the resulting histogram after histogram
equalization.

Image Enhancement	 523

© 2011 by Taylor & Francis Group, LLC

	 16.	Given the following tables of an image histogram and a specified histogram, find
the mapping tables and the resulting histogram after histogram specification pro-
cess is performed.

Image Histogram

Gray Value Number of Pixels

0 5
1 5
2 0
3 0
4 5
5 11
6 3
7 6

Specified Histogram

Gray Value Number of Pixels

0 0
1 0
2 5
3 10
4 10
5 5
6 5
7 0

	 17.	Normally histogram equalization is a global process, explain how it can be used
for local enhancement.

	 18.	Use CVIPtools to explore the standard histogram operations on a gray-level image.
Select a monochrome image of your choice and do the following: (a) Display the
histogram by selecting File→ Show Histogram, or by clicking the histogram icon
that looks like a tiny bar graph. (b) Perform a histogram equalization and display
the histogram. (c) Perform a histogram slide up by 50 and down by 50 and dis-
play the histograms, verify the results are correct. (d) Perform a histogram stretch
without clipping (set to 0), and with 0.025 (2.5%) clipping on both ends, display the
histograms—are they correct? (e) Perform a histogram shrink to the range [1,100],
display the histogram and verify it is correct.

	 19.	Use CVIPtools to explore the standard histogram operations on a color image.
Select a color image of your choice and do the following: (a) Display the histogram
by selecting File→ Show Histogram, or by clicking the histogram icon that looks like
a tiny bar graph. (b) Use Enhancement→ Histogram/Contrast→ Histogram Equalization
to perform a histogram equalization four times, each time selecting a different
band to use (Value, Red, Green, and Blue), and display the histograms. What band
does the parameter selection Value use? Explain. (c) Perform a histogram slide up
by 50 and down by 50 and display the histograms, verify the results are correct.
(d) Perform a histogram stretch without clipping (set to 0), and with 0.025 (2.5%)
clipping on both ends, display the histograms—are they correct? (e) Perform a his-
togram shrink to the range [1,100], display the histogram and verify it is correct.

524	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 20.	Use CVIPtools to explore histogram specification. Select a monochrome of your
choice and do the following: (a) Display the histogram by selecting File→ Show
Histogram, or by clicking the histogram icon that looks like a tiny bar graph.
(b) Use the default sin(0.025*x) for the Formula, and look at the histograms—does the
output look like the specified histogram, why or why not? (c) Change the Formula
to sin(0.25*x), and look at the histograms—does the output look like the specified
histogram, why or why not? (d) Change the Formula to sin(0.005*x), and look at the
histograms—does the output look like the specified histogram, why or why not?
(e) Change the Formula to ramp(2.0x + 5), and look at the histograms—does the
output look like the specified histogram, why or why not? Does it look like any of
the other specified histograms? f) Experiment with the other formulas, especially
the log and exp. After your experimentation can you draw any general conclu-
sions regarding histogram specification? (g) Select a color image of your choice
and repeat (a)–(f). Repeat the color image experiment using different Formulas for
each band.

	 21.	Given the following 5 × 5 subimage (using 5 × 5 as the window size) from an image
with 3 bits per pixel and average gray value of 6, find the resulting value for the
center pixel by letting k1 = 0.8 and k2 = 0.2 and applying the following filters:
(a) ACE, (2) ACE2, (3) log-ACE, and (4) exp-ACE.

	

5 5 5 5 5
3 3 1 1 1
3 3 1 1 1
3 3 1 1 1
5 5 5 5 5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	 22.	Use CVIPtools to explore the ACE filters. Open the image in Figure 8.2-20a and use
the ACE filters to create the images in Figures 8.2-20 through 8.2-23.

	 23.	 (a) Why use pseudocolor? (b) List the two domains in which pseudocolor is per-
formed and describe a method in each.

	 24.	Given the following 4-bit per pixel image, create a pseudocolor image by applying
intensity slicing. Divide the gray-level range into four equal regions and map the
low range to bright red, the next bright green, the next bright blue, and the next
to bright yellow (red + green). Express the image as a 5 × 5 matrix with a triple at
each pixel locations for the RGB values.

	

6 7 7 7 5
3 3 1 1 1
2 2 11 12 12
13 13 0 0 0
8 9 9 10 15

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥
⎥
⎥

	 25.	Use CVIPtools to explore pseudocolor. Select a monochrome image of your choice
and: (a) Select Gray-level mapping and perform the operation with the default values.

pj
w

st
k|

40
20

64
|1

43
57

19
17

0

Image Enhancement	 525

© 2011 by Taylor & Francis Group, LLC

(b) Change the shape of the mapping equations so they are all the same—how
does the image appear? Change to a different shape, but make them all the same,
how does the image appear now? (c) Select Intensity Slicing and apply it with the
default parameter values. How do the colors compare to the results from (a)?
(d) Change the input ranges so that the entire 0–255 range is not covered and apply
the operation both with and without Set Out of Range Data to 0 selected. Are the
results what you expected? Can you think of an application where this parameter
is useful? (e) Experiment with changing the output colors. What colors do you add
to create yellow? Purple? Cyan? After your experimentation can you draw any
general conclusions?

	 26.	Use CVIPtools to explore pseudocolor in the frequency domain. (a) Select
Frequency domain mapping and apply with the default values—what colors are
most prominent? (b) Change the colors from RGB order to BRG order. How does
this affect the colors you see in the output image? (c) Experiment with chang-
ing the cutoff frequencies. After your experimentation can you draw any general
conclusions?

	 27.	Use CVIPtools to explore pseudocolor with Enhancement→ Pseudocolor→ Gray-level
mapping II. This function provides a graphical interface and more options than the
one explored in exercise no. 25. Select a monochrome image of your choice and:
(a) Select Gray-level mapping II and click on the Custom Remap Curve button, which
will display a new window for you to enter your mapping curves. Select the red
band and use the left mouse button to input new points. The data points can also
be dragged with the left mouse button. Points can also be entered manually by
inputting the (X,Y) values and clicking the Add button. Next, create curves for the
green and blue bands, then select All, which will show you the mapping curves.
Select the interpolation method desired and use the Save button to save your map-
ping file. Note that the default directory for the mapping files is in $CVIPtools\
bin\remap. Next press APPLY on the enhancement window to perform the pseudo-
color operation. (b) View the histogram for your pseudocolor image, can you see
any correlation between it and the mapping equations? (c) Experiment with creat-
ing different mapping equations and viewing the output images and their histo-
grams. In general, can you see any correlation between the histograms and the
mapping equations? (d) Apply the mapping files you have created to other images
with the Load Mapping File option. Compare the results from using the same map-
ping file to different images. Are they similar? Why or why not?

	 28.	Many image sharpening algorithms consist of three basic steps, what are they?
Provide an example operation for each step.

	 29.	Use CVIPtools to explore the high boost spatial filter. Open the image in Figure
8.3-2a and create the images in Figure 8.3-2b through g.

	 30.	Use CVIPtools to develop your own image sharpening algorithm. Select an image
that you want to sharpen (if you cannot find one, then use a good image and
slightly blur it with Utilities→ Filter→ Specify a Blur). Be sure to examine the histo-
grams of your output images during development. (a) Use Analysis→ Transforms
to extract a phase only image. Develop your own sharpening algorithm by using
this image and the original image. (b) Use Analysis→ Edge/Line Detection to gener-
ate edge only images. Develop your own sharpening algorithm by using these
images and the original image. (c) Use Utilities→ Filter→ Difference Filter to generate

526	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

images. Develop your own sharpening algorithm by using these images and the
original image. (d) After your algorithm development can you draw any general
conclusions?

	 31.	 (a) What is the image model used for homomorphic filtering? (b) List the steps in
the homomorphic filtering process. (c) Explain how the filter shown in Figure 8.3-5
relates to the model defined in (a).

	 32.	Use CVIPtools to explore homomorphic filtering. Open the image in Figure 8.3-6a
and create the images in Figure 8.3-6b and c. Experiment with varying the param-
eters. Can you obtain better results than shown in the figure?

	 33.	 (a) Explain the historical reasons underlying the development of the unsharp
masking algorithm. (b) Describe and explain the steps in the algorithm.

	 34.	Use CVIPtools to explore unsharp masking. Open the image in Figure 8.3-8a
and create the images in Figure 8.3-8b, c, and d. Experiment with varying the
parameters. After your experimentation can you draw any general conclu
sions?

	 35.	Use CVIPtools to explore Sharpening Algorithms I and II. Open the image in
Figure 8.3-9a. (a) Create the images in Figure 8.3-9b, c, and d. (b) Create the
image in Figure 8.3-10b. (c) Use these two algorithms and experiment with
varying the parameters. (d) Based on what you have learned develop your
own sharpening algorithm. How do your results compare to the results from
Sharpening Algorithms I and II and/or the algorithms you developed in exer-
cise no. 30?

	 36.	 (a) List two reasons for image smoothing. (b) In general, how is image smoothing
accomplished?

	 37.	 (a) Describe convolution masks used for image smoothing. In general, what can be
said about the mask coefficients? (b) What is the primary difference in the results
from an arithmetic mean compared to a Gaussian spatial filter? (c) With arithmetic
mean filters the results can be normalized by dividing by the sum of the mask
coefficients. What is another method to accomplish this? (d) What happens as the
filter mask size is increased?

	 38.	 (a) How would you describe an image that has been smoothed by a median filter
with a relatively large mask? (b) Since median filtering is computationally inten-
sive, what is an alternative that is more efficient, but gives similar results?

	 39.	Explain why the results are different if we use an FFT and a DCT for lowpass fre-
quency domain smoothing, even though we use the same cutoff frequency for the
filter.

	 40.	Use CVIPtools to explore image smoothing. (a) Use the FFT smoothing and the
mean filter. Experiment with varying the parameters until the output images look
similar. Go to Analysis→ Transforms and perform an FFT on the similar looking
output images. Do the spectra look similar? Why or why not? (b) Perform the oper-
ations in (a), but use the Yp-mean and the midpoint filter. (c) Perform the operations
in (a), but use the Gaussian and the contra-harmonic filter. (d) After your experi-
mentation can you draw any general conclusions?

Image Enhancement	 527

© 2011 by Taylor & Francis Group, LLC

Programming Exercises

Digital Negative

	 1.	Write a function that implements the inverse mapping equation to create a digital
negative of an image.

	 2.	Write a function to create a partial complement of an image. Have the user input
the gray-level value that is the lower limit at which the complement is performed.
The value will be between 0 and 255, with 255 having no effect, and 0 complement-
ing the entire image.

Piecewise Gray-Level Mapping

	 1.	Write a function to implement piecewise gray-level mapping. Have the user input
up to three linear mapping equations. The user will specify: (a) the input data
range, (b) the initial value for the output data, and (c) the slope of the linear map-
ping equation(s). Any out-of-range values (any values not in the ranges specified
by the user) will be unchanged.

	 2.	Modify the function to allow the user to specify the method for handling out-of-
range data. Let the user select: (a) leave the data unchanged, or (b) set the data to a
user specified value.

Histogram Modification

	 1.	Write a function to implement a histogram stretch/shrink. Clip if the numbers go
out of BYTE range.

	 2.	Write a function to perform a histogram slide on an image. Have your program
find the maximum and minimum gray-level values in the image and calculate
the largest value of a left or right slide that is possible before gray-level saturation
(clipping) occurs. Warn the user of this, but let them clip if desired.

	 3.	Enhance your histogram stretch to allow for a specified percentage of pixels to be
clipped at either the low end (set to zero) or high end (set to 255), or both.

	 4.	Modify the histogram stretch to allow for out-of-range results, followed by a
remap (see the Mapping library). A data type other than BYTE will be needed (see
the Image library).

ACE Filters

	 1.	Write a function to implement the ACE2 filter. Let the user specify the window
size and the values for k1 and k2. Compare the results from this function to those
obtained with CVIPtools.

	 2.	Write a function to implement the ACE filter. Let the user specify the window
size and the values for k1 and k2. Compare the results from this function to those
obtained with CVIPtools.

	 3.	Write a function to implement the exp-ACE filter. Let the user specify the window
size and the values for k1 and k2. Compare the results from this function to those
obtained with CVIPtools.

528	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	 Incorporate the CVIPtools function log_ace_filter (in the SpatialFilter library) into
your CVIPlab program. Verify that the function is working properly by comparing
the results to those you obtain with CVIPtools.

Pseudocolor

	 1.	Write a function to perform intensity slicing pseudocolor. Let the user select val-
ues for four different input data ranges, as well as the RGB values for the four
output colors. Do not modify any out of range values (values not included in the
four specified ranges).

	 2.	Modify the function so the user can select: (a) to not modify out-of-range data or
(b) to set the out-of-range data to a user specified value.

	 3.	 Incorporate the CVIPtools function pseudocol_freq (in the Color library) into your
CVIPlab program. This function will perform frequency domain pseudocolor by
using the Fourier transform and lowpass, bandpass, and highpass filters.

Basic Enhancement Convolution Masks

	 1.	Write a program to implement spatial convolution masks. Let the user select from
one of the following masks:

		 Lowpass filter masks (smoothing):

	
1
9

1 1 1
1 1 1
1 1 1

1
10

1 1 1
1 2 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11
16

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

		 Highboost filter masks (sharpening):

	
− − −

− −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− −

−

⎡

⎣

⎢
1 1 1
1 9 1
1 1 1

1 1 1
2 5 2
1 2 1

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0
1 5 1
0 1 0

	 2.	Modify the function to allow the user to input the coefficients for a 3 × 3 mask.
	 3.	Experiment with using the smoothing and sharpening masks. Try images with

and without added noise.
	 4.	Compare the results of using your spatial masks to frequency domain filtering

using CVIPtools. Examine and compare the spectra of the resulting images.
	 5.	Modify the function to handle larger masks. Expand the above masks as described

in this chapter and in Chapter 4.

Unsharp Masking

	 1.	Write a function to perform unsharp masking enhancement. Use the flow chart
given in Figure 8.3-7. Use any functions that you have already written—lowpass fil-
tering (via spatial convolution masks), subtraction, histogram shrink, and stretch.
Use a 3 × 3 arithmetic mean spatial mask for the lowpass filter, and a shrink range
of 0–100.

	 2.	Modify the function to allow the user to select at least three different lowpass filter
masks, and to select the histogram shrink range.

Image Enhancement	 529

© 2011 by Taylor & Francis Group, LLC

	 3.	Modify the function so it will automatically select the shrink range based on the
histogram of the image after lowpass filtering. Allow the user to specify the per-
centage for the shrink.

Sharpening Algorithms

	 1.	Take the algorithms that you developed in exercise no. 30 and/or exercise no. 35
and implement them in your CVIPlab program.

	 2	 Compare the results from your program to those you obtained by using CVIPtools.
If there are any differences in the results, can you explain them? Pay careful atten-
tion to data types and remapping as you do the comparison.

Median Filtering

	 1.	Write a median filtering function; allow the user to enter the window (mask) size.
Compare the median filter results to lowpass filter results for image smoothing.
Use the Utilities→ Compare options.

	 2.	 Incorporate the CVIPtools function median_filter, in the SpatialFilter library,
into your CVIPlab program. Is it faster or slower than your median filtering
function?

	 3.	Use CVIPtools to compare the spectra of the median filtered images to images that
have been lowpass filtered in both the spatial and frequency domain.

Supplementary Exercises

Supplementary Problems

	 1.	Find the pseudomedian value for the center pixel, using a 3 × 3 window, for the
following 3 × 3 subimages:

	 (a) (b)
18 22 32
21 24 122
2 88 17

144 142 140⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1138 75 92
100 112 12

12 5 7
32 22 21
12 17

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
(c)

888

100 104 104
107 133 92
155 112 88

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

(d)⎢⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 2.	Apply the Kuwahara filter to the following with L = 1. For each subimage find the
resulting value of the center pixel.

		 (a)

5 5 5 5 5
3 3 1 1 1
3 3 1 1 1
3 3 1 1 1
5 5 5 5 5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

(b)

10 8 15 15 15
13 32 21 12 21
23 23 21 21 18
53 53 51 51 199
52 52 52 52 52

4 4 4 4 4
3 3 3 1 1
3 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

(c) 33 1 1
3 3 3 1 1
3 2 2 2 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

530	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	Given the following tables of an image histogram and a specified histogram, find
the mapping tables and the resulting histogram after histogram specification pro-
cess is performed. Note: do not round histogram equalized values until final mapping
table to avoid ambiguities.

Image Histogram

Gray Value Number of Pixels

0 10
1 5
2 5
3 11
4 5
5 0
6 3
7 6

Specified Histogram

Gray Value Number of Pixels

0 5
1 5
2 5
3 10
4 10
5 5
6 5
7 0

	 4.	Use CVIPtools to explore local histogram equalization. Load a monochrome and a
color image of your choice. (a) Using the monochrome image what do you observe
as you increase the block size? (b) What do you observe when you add the local
equalized image output to the original? (c) Apply the local histogram equalization
to the color image. Use a block size of 16 and vary the band parameter—value,
red, green, and blue. Which one works the best? (d) Repeat (c) on a different color
image. Are the results the same? Why or why not?

	 5.	Explore CVIPtools using the Utilities→ Enhance selections. If you were selecting
commonly used enhancement methods for Utilities are these the most useful?
Why or why not? Explain.

Supplementary Programming Exercises

Gamma Correction

	 1.	Write a function to perform gamma correction. Let the user specify: (a) gamma, γ
and (b) the constant, K2.

	 2.	Experiment by using the function on various images and displaying them on dif-
ferent monitors, and printing them on different printers. Also, when experiment-
ing with the monitors, change the lighting conditions in the room and observe
how this affects the results.

Image Enhancement	 531

© 2011 by Taylor & Francis Group, LLC

Histogram Equalization

	 1.	 Incorporate the CVIPtools function histeq, in the Histogram library, into your
CVIPlab program.

	 2.	Write your own function to perform histogram equalization. Compare this to
using the CVIPtools function, histeq.

	 3.	 Incorporate the CVIPtools function local_histeq into your CVIPlab. Compare the
results of using this to the histeq function.

Local Histogram Equalization

	 1.	Write a function to perform local histogram equalization and incorporate it into
your CVIPlab program. Allow the user to specify the value for the block size for all
images and the band for color images.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not?

	 3.	Devise a method to avoid filling the image border with zeros. Consider symmetry
used with the various transforms.

Kuwahara Filter

	 1.	Write a function to implement a Kuwahara filter and incorporate it into your
CVIPlab program. Allow the user to specify the value for the L parameter.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not?

	 3.	Add various types and amounts of noise to images, using Utilities→ Create→ Add
Noise, and compare the results of your Kuwahara filter to using the median filter
in CVIPtools.

Image Enhancement

	 1.	Develop your own GUI-based image enhancement tool. You can use CVIPtools as
a model, or develop your own based on what you have learned.

	 2.	Acquire images that have poor contrast, are blurry, or in general need of improve-
ment. This can be done with your own camera, via the Internet, or with CVIPtools.

	 3.	Use your enhancement tool to explore improving the images you have acquired.
Compare and contrast using your tool and CVIPtools.

References

Acharya, T., and Ray, A. K., Image Processing Principles and Applications, New York, NY: Wiley, 2005.
Banks, S., Signal Processing, Image Processing and Pattern Recognition, Upper Saddle River, NJ: Prentice

Hall, 1990.
Baxes, G. A., Digital Image Processing: Principles and Applications, New York, NY: Wiley, 1994.

532	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Bracewell, R. N., Two-Dimensional Imaging, Upper Saddle River, NJ: Prentice Hall, 1995.
Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.
Deng, G., Cahill, L. W., and Tobin, G. R., The Study of Logarithmic Image Processing Model and Its

Application to Image Enhancement, IEEE Transaction on Image Processing 4 (1995): 506–11.
Dougherty, G., Digital Image Processing for Medical Applications, Cambridge, UK: Cambridge University

Press, 2009.
Galbiati, L. J., Machine Vision and Digital Image Processing Fundamentals, Upper Saddle River, NJ:

Prentice Hall, 1990.
Giorgianni, E. J., and Madden, T. E., Digital Color Management: Encoding Solutions, Reading, MA:

Addison-Wesley, 1998.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Reading, MA: Addison-Wesley, 1992.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Pearson Prentice

Hall, 2008.
Jahne, B., Practical Handbook on Image Processing for Scientific Applications, Boca Raton, FL: CRC Press,

1997.
Jain, A. K., Fundamentals of Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1989.
Jain, R., Kasturi, R., and Schnuck, B. G., Machine Vision, New York, NY: McGraw Hill, 1995.
Lee, J. S., Digital Image Enhancement and Noise Filtering by Use of Local Statistics, IEEE Transactions

on Pattern Analysis and Machine Intelligence 2 (1980): 165–68.
Lim, J. S., Two-Dimensional Signal and Image Processing, Upper Saddle River, NJ: Prentice Hall, 1990.
Myler, H. R., and Weeks, A. R., Computer Imaging Recipes in C, Upper Saddle River, NJ: Prentice Hall,

1993.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Rangayyan, R. M., Biomedical Image Analysis, New York, NY: CRC Press, 2005.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.
Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 2006.
Schalkoff, R. J., Digital Image Processing and Computer Vision, New York, NY: Wiley, 1989.
Shapiro, L., and Stockman, G., Computer Vision, Upper Saddle River, NJ: Prentice Hall, 2001.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, Upper Saddle River, NJ:

Prentice Hall, 1995.
Watt, A., and Policarpo, F., The Computer Image, New York, NY: Addison-Wesley, 1998.

Further Reading

References that contain major chapters on image enhancement include: Dougherty (2009),
Gonzalez and Woods (2008), Russ (2006), Shapiro and Stockman (2001), Jahne (1997), Pratt
(1991), Baxes (1994), Lim (1990), and Jain (1989). Gray-scale modification is discussed in
Gonzalez and Woods (2008), Rosenfeld and Kak (1982), and Jain (1989). More on gamma
correction can be found in Gonzalez and Woods (1992, 2008), Watt and Policarpo (1998),
and Giorgianni and Madden (1998). A more complete theoretical treatment of histogram
modification is given in Gonzalez and Woods (2008), Castelman (1996), Pratt (1991), Banks
(1990), Jain (1989), and Rosenfeld and Kak (1982). A useful adaptive histogram modifica-
tion technique is discussed in Pratt (1991). For details on the ACE2 filter see Lee (1980),
and for more information on the log and exponential ACE filters see Deng, Cahill, and
Tobin (1995). A conceptual perspective to gray-level transforms and histogram modifica-
tion is provided in Baxes (1994), while Jain, Kasturi, and Schnuck (1995), Myler and Weeks
(1993), and Sid-Ahmed (1995) provide a practical treatment. Adaptive filters are discussed
in Gonzalez and Woods (2008). Pseudocolor is discussed in Gonzalez and Woods (2008),

Image Enhancement	 533

© 2011 by Taylor & Francis Group, LLC

Pratt (1991), and Jain (1989). Lim (1990), Schalkoff (1989), and Gonzalez and Woods (2008)
provide different perspectives to unsharp masking. Phase contrast filtering is discussed
in Sid-Ahmed (1995). Details on use of the Moore–Penrose matrix for generating convolu-
tion masks based on frequency domain filter models can be found in Gonzalez and Woods
(1992). For image enhancement methods applied to biomedical images see Dougherty
(2009), Acharya and Ray (2005), and Rangayyan (2005). Two excellent handbooks that con-
tain practical information for application-based image enhancement are Russ (2006) and
Jahne (1997). Various image sharpening and smoothing methods are discussed in all the
references.

U
FM

|4
84

94
2|

14
35

60
97

88

535© 2011 by Taylor & Francis Group, LLC

9
Image Restoration and Reconstruction

9.1  Introduction and Overview

Image restoration methods are used to improve the appearance of an image by application
of a restoration process that uses a mathematical model for image degradation. The mod-
eling of the degradation process differentiates restoration from enhancement where no
such model is required. Examples of the types of degradation considered include blurring
caused by motion or atmospheric disturbance, geometric distortion caused by imperfect
lenses, superimposed interference patterns caused by mechanical systems, and noise from
electronic sources. It is assumed that the degradation model is known, or can be estimated.
The primary idea is to model the degradation process and then apply the inverse process
to restore the original image.

In general image restoration is more of an art than a science; the restoration process
relies on the experience of the individual to successfully model the degradation process.
In this chapter we will consider the types of degradation that can be modeled, and discuss
the various techniques available for image restoration. The types of degradation models
include both spatial and frequency domain considerations. In many cases the information
is incomplete and the model requires interpolation or a best guess fit to the data avail-
able; this is especially true with image reconstruction and geometric restoration. With this
perspective, we can define image restoration as the process of finding an approximation to
the degradation process and finding the appropriate inverse process to estimate the origi-
nal image. The final section in this chapter deals with image reconstruction, which is a
method to create an image from a sequence of projections.

9.1.1  System Model

In practice the degradation process model is often not known and must be experimen-
tally determined or estimated. Any available information regarding the images and the
systems used to acquire and process them is helpful. This information, combined with
the developer’s experience, can be applied to find a solution for the specific application. A
general block diagram for the image restoration process is provided in Figure 9.1-1. Here
we see that sample degraded images and knowledge of the image acquisition process
are inputs to the development of a degradation model. After this model has been devel-
oped the next step is the formulation of the inverse process. This inverse degradation
process is then applied to the degraded image, d(r,c), which results in the output image,
ˆ(,)I r c . This output image, ˆ(,)I r c , is the restored image that represents an estimate of the

original image, I(r,c). Once the estimated image has been created, any knowledge gained

536	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

by observation and analysis of this image is used as additional input for the further
development of the degradation model. This process continues until satisfactory results
are achieved.

The degradation process model consists of two parts, the degradation function and the
noise function. The general model in the spatial domain is as follows:

	 d r,c h(r,c * I r,c n r,c()) () ()= +

where
the * denotes the convolution process
dd r,c =
h r,c =
() degraded image
() degradationn function
() original image
()
I r,c =
n r,c = aadditive noise function.

Because convolution in the spatial domain is equivalent to multiplication in the frequency
domain, the frequency domain model is

	 D u,v H u,v I u,v N u,v() () () ()= +

where
() Fourier transform of the degraD u,v = dded image
(Fourier transform of the dH u,v) = eegradation function
() Fourier transforI u,v = mm of the original image
() Fourier tranN u,v = ssform of the additive noise function.

Input image
d(r,c)

Ouput image
Î(r,c)

Apply inverse
degradation

process

Develop
inverse

degradation
process

Develop
degradation

process

Example
degraded

images

Knowledege of
image creation

process

Figure 9.1-1
Image restoration process.

Image Restoration and Reconstruction	 537

© 2011 by Taylor & Francis Group, LLC

Based on our definition of the image restoration process, and the preceding model, we
can see that what needs to be done is to find the degradation function, h(r,c), or its fre-
quency domain representation H(u,v), and the noise model, n(r,c) or N(u,v). Note that other
models can be defined; specifically a multiplicative noise model where the noise function
is not added to the image but is multiplied by the image. To handle this case, we typically
take the logarithm of the degraded image, thus decoupling the noise and image functions
into an additive process (see Chapter 8 on homomorphic filtering).

9.2  Noise Models

What is noise? Noise is any undesired information that contaminates an image. Noise
appears in images from a variety of sources. The digital image acquisition process, which
converts an optical image into a continuous electrical signal that is then sampled, is the
primary process by which noise appears in digital images. At every step in the process
there are fluctuations caused by natural phenomena that add a random value to the exact
brightness value for a given pixel. The noise inherent in the electronics is also affected by
environmental conditions such as temperature, and may vary during the acquisition of an
image database. Other types of noise, such as periodic noise, may be introduced during
the acquisition process as a result of the physical systems involved.

9.2.1 N oise Histograms

The noise models in this section consider the noise a random variable with a probability
density function (PDF) that describes its shape and distribution. The actual distribution
of noise in a specific image is the histogram of the noise. In other words, the histogram
is a specific example of the theoretical model or PDF of the noise. To make the histogram
look more exactly like the theoretical model, many example images of the noise could be
created and then averaged.

In typical images the noise can be modeled with either a Gaussian (“normal”), uni-
form or salt-and-pepper (“impulse”) distribution. The shape of the distribution of these
noise types as a function of gray level can be modeled as a histogram and can be seen in
Figure 9.2-1. In Figure 9.2-1a we see the bell-shaped curve of the Gaussian noise distribu-
tion, which can be analytically described by

	
Gaussian 2

() /2
HISTOGRAM

1

2

2 2
= − −e g m

πσ
σ

where
gray level
mean (average)
st

g =
m=
=σ aandard deviation (variance).2σ =

About 70% of all the values fall within the range from one standard deviation (σ)
below the mean (m) to one above, and about 95% fall within two standard deviations.

538	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Theoretically, this equation defines values from –∞ to + ∞ but since the actual gray levels
are only defined over a finite range, the number of pixels at the lower and upper values
will be higher than this equation predicts. This is due to the fact that all the noise values
below the minimum will be clipped to the minimum, and those above the maximum will
be clipped at the maximum value. This is a factor that must be considered with all theoreti-
cal noise models, when applied to a fixed, discrete range such as with digital images (e.g.,
0–255). In Figure 9.2-1b is the uniform distribution

	

UniformHISTOGRAM

1
for

0

= b a
a g b

−
≤ ≤

eelsewhere

⎧

⎨
⎪

⎩
⎪

Pr
ob

ab
ili

ty

(a)

σ σ

σ σ

Gray levelm

~95%
Gaussian noise

Pr
ob

ab
ili

ty

(b)

Gray level

Uniform noise

a b

1

1
b-a

Pr
ob

ab
ili

ty

(c)

Gray level
Salt-and-pepper noise

a b

A

B

~70%

Figure 9.2-1
Gaussian, uniform and salt-and-pepper noise distribution.

Image Restoration and Reconstruction	 539

© 2011 by Taylor & Francis Group, LLC

	

mean
2

variance ()
12

2

=
a + b

=
b a−

With the uniform distribution, the gray-level values of the noise are evenly distributed
across a specific range, which may be the entire range (0–255 for 8-bits), or a smaller por-
tion of the entire range. In Figure 9.2-1c the salt-and-pepper distribution is shown.

	 Salt-and-PepperHISTOGRAM
for

=
A g = a

B g = b

(pepper)

for (salt)

⎧
⎨
⎪

⎩⎪

In the salt-and-pepper noise model there are only two possible values, a and b, and the
probability of each is typically less than 0.2—with numbers greater than this the noise will
swamp out the image. For an 8-bit image, the typical value for pepper noise is 0, and 255
for salt noise.

The Gaussian model is most often used for natural noise processes, such as those
occurring from electronic noise in the image acquisition system. The random elec-
tron fluctuations within resistive materials in sensor amplifiers or photodetectors
results in thermal noise, which is the most common cause. This electronic noise is most
problematic with poor lighting conditions or very high temperatures. The Gaussian
model is also valid for film grain noise, if photographic film is part of the imaging
process.

The salt-and-pepper type noise (also called impulse noise, shot noise, or spike noise) is
typically caused by malfunctioning pixel elements in the camera sensors, faulty memory
locations, or timing errors in the digitization process. Uniform noise is useful because it
can be used to generate any other type of noise distribution, and is often used to degrade
images for the evaluation of image restoration algorithms as it provides the most unbi-
ased or neutral noise model. In Figure 9.2-2, we see examples of these three types of
noise added to images, along with their histograms. Visually, the Gaussian and uniform
noisy images appear similar, but the image with added salt-and-pepper noise is very
distinctive.

Radar range and velocity images typically contain noise that can be modeled by the
Rayleigh distribution, defined by

	
RayleighHISTOGRAM

2
= −g

e g

α
α2/

where

mean
4

variance
(4)
4

=

=

πα

α π−
.

540	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Negative exponential noise occurs in laser-based images. If this type of image is lowpass
filtered, the noise can be modeled as gamma noise. The equation for negative exponential
noise (assuming g and α are both positive):

	
Negative ExponentialHISTOGRAM =

−e g α

α

where
mean
variance

=
=
α

α2.

(a)

(b)

Figure 9.2-2
Gaussian, uniform and salt-and-pepper noise. (a) Original image without noise, and its histogram, (b) image
with added Gaussian noise with mean = 0 and variance = 600, and its histogram, (c) image with added uniform
noise with mean = 0 and variance = 600, and its histogram, (d) image with added salt-and-pepper noise with the
probability of each 0.08, and its histogram.

pj
w

st
k|

40
20

64
|1

43
57

19
06

3

Image Restoration and Reconstruction	 541

© 2011 by Taylor & Francis Group, LLC

The equation for gamma noise:

	
GammaHISTOGRAM (1)!

=
−

−
−g

a
e g a

α

αα

1

where
mean
variance

= a
= a
α

α2 .

The histograms (distributions) for these can be seen in Figure 9.2-3. The Rayleigh distri-
bution peaks at α / 2 , and negative exponential noise is actually gamma noise with the

(c)

(d)

Figure 9.2-2 (Continued)
Gaussian, uniform and salt-and-pepper noise. (a) Original image without noise, and its histogram, (b) image
with added Gaussian noise with mean = 0 and variance = 600, and its histogram, (c) image with added uniform
noise with mean = 0 and variance = 600, and its histogram, (d) image with added salt-and-pepper noise with the
probability of each 0.08, and its histogram.

542	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

peak moved to the origin (α = 1). Many of the types of noise that occur in natural phe-
nomena can be modeled as some form of exponential noise such as those described here.
Figure 9.2-4 shows images with these types of noise added, along with their histograms.

In addition to the noise distribution, another important consideration is the spatial fre-
quency content of the noise. Typically the noise is treated as white noise, which assumes a
constant spectral content. This means that, unlike regular images, there are equal amounts
of low, medium, and high frequency content in the noise image. As we have seen, in most
real images the spatial frequency energy is concentrated in the low frequencies. Therefore,
in an image with added noise, much of the high frequency content is due to noise. This
information will be useful in the development of models for noise removal. Figure 9.2-5
shows real images and their Fourier spectra, and noise images and their Fourier spectra.
Here we can see that the noise images appear to have a much more evenly distributed
spectrum than the real images.

9.2.2  Periodic Noise

Periodic noise in images is typically caused by electrical and/or mechanical systems. This
type of noise can be identified in the frequency domain as impulses corresponding to
sinusoidal interference (see Figure 9.2-6). During image acquisition mechanical jitter or
vibration can result in this type of noise appearing in the image. The vibration can be

Rayleigh distribution

Gray level
Gamma distribution

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Gray level

(a)

Negative exponential distribution

Pr
ob

ab
ili

ty

Gray level

(b)

Figure 9.2-3
Raleigh, negative exponential and gamma noise distributions.

Image Restoration and Reconstruction	 543

© 2011 by Taylor & Francis Group, LLC

caused by motors or engines, wind or seas, depending on the location of the image sens-
ing device. Electrical interference in the system may also result in additive sinusoidal noise
corrupting the image during acquisition. If this type of noise can be isolated, it can be
removed with bandreject and notch filters as is shown in Section 9.5.6.

9.2.3  Estimation of Noise

There are various approaches to determining the type of noise that has corrupted an
image. Ideally, we want to find an image (or subimage) that contains only noise, and then
we can use its histogram for the noise model. For example, if we have access to the system
that generated the images, noise images can be acquired by aiming the imaging device

(a)

(b)

Figure 9.2-4
Rayleigh, negative exponential and gamma noise. (a) Original image without noise, and its histogram, (b) image
with added Rayleigh noise with variance = 600, and its histogram, (c) image with added negative exponential
noise with variance = 600, and its histogram, (d) image with added gamma noise with variance = 600 and α = 6,
and its histogram.

544	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(e.g., camera) at a blank wall—the resulting image will contain only an average (D.C.) value
as a result of the lighting conditions and any fluctuations will be from noise.

If we cannot find “noise-only” images, a portion of the image is selected that has a known
histogram, and that knowledge is used to determine the noise characteristics. This may
be a subimage of constant value (Figure 9.2-7) or a well-defined line—any portion of the
image where we know what to expect in the histogram. We can then subtract the known
values from the histogram, and what is left is our noise model. We can then compare this
noise model to the models described here and select the best match. In order to develop
a valid model with any of these approaches, many such images (or subimages) need to be
evaluated. For more information on the theoretical approach to noise modeling see refer-
ences on digital signal processing, statistical or stochastic processes, and communications
theory. In practice, the best model is often determined empirically.

(c)

(d)

Figure 9.2-4 (continued)
Rayleigh, negative exponential and gamma noise. (a) Original image without noise, and its histogram, (b) image
with added Rayleigh noise with variance = 600, and its histogram, (c) image with added negative exponential
noise with variance = 600, and its histogram, (d) image with added gamma noise with variance = 600 and α = 6,
and its histogram

Image Restoration and Reconstruction	 545

© 2011 by Taylor & Francis Group, LLC

9.3  Noise Removal Using Spatial Filters

Spatial filters can be effectively used to remove various types of noise in digital images.
These spatial filters typically operate on small neighborhoods, 3 × 3–11 × 11, and some can
be implemented as convolution masks. For this section, we will use the degradation model
defined in Section 9.1.1, with the assumption that h(r,c) causes no degradation, so the only
corruption to the image is caused by additive noise, as follows:

	 d r,c I r,c n r,c() () ()= +

where
() degraded image
() origina
d r,c
I r,c

=
= ll image

() additive noise function.n r,c =

The two primary categories of spatial filters for noise removal are order filters and mean
filters. The order filters are implemented by arranging the neighborhood pixels in order
from smallest to largest gray-level value, and using this ordering to select the “correct”

Real images Real image spectra Noise spectraNoise images

Figure 9.2-5
Fourier spectra of real images and fourier spectra of noise images. On the left are three real images and their
Fourier spectra. On the right are three noise only images and their fourier spectra. Note that in real images the
energy is concentrated in the low frequency areas, but in the noise images it is fairly evenly distributed.

pj
w

st
k|

40
20

64
|1

43
57

19
06

8

546	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

value, while the mean filters determine, in one sense or another, an average value. The mean
filters work best with Gaussian or uniform noise, and the order filters work best with salt-
and-pepper, negative exponential, or Rayleigh noise.

The mean filters have the disadvantage of blurring the image edges, or details; they are
essentially lowpass filters. As we have seen, much of the high frequency energy in noisy
images is from the noise itself, so it is reasonable that a lowpass filter can be used to miti-
gate noise effects. We have also seen that order filters such as the median can be used to
smooth images, thereby attenuating high frequency energy. However, the order filters are
nonlinear, so their results are sometimes unpredictable.

IMAGES FOURIER SPECTRA

Original image

Noise added

Original image spectra

Noise added image spectra

Figure 9.2-6
Image corrupted by periodic noise. On the top are the original image and its spectrum; under it are the image
with additive sinusoidal noise, and its spectrum. Note the four impulses corresponding to the noise appearing
as white dots—two on the vertical axis and two on the horizontal axis.

Image Restoration and Reconstruction	 547

© 2011 by Taylor & Francis Group, LLC

In general, there is a tradeoff between preservation of image detail and noise elimina-
tion. To help understand this concept consider an extreme case where the entire image is
replaced with the average value of the image. In one sense, we have eliminated any noise
present in the image, but we have also lost all the information in the image. Practical mean
and order filters also lose information in their quest for noise elimination, and the trick
is to minimize this information loss while maximizing noise removal. Ideally, a filter that
adapts to the underlying pixel values is desired. A filter that changes its behavior based on

Gaussian

Uniform

Negative
exponential

Images Cropped
area

Fourier spectra

Figure 9.2-7
Estimating the noise with crop and histogram. On the left are three images with different noise types added.
The upper left corner is cropped from the image and is shown in the middle. The histogram for the cropped
subimage is shown on the right. Although the noise images look similar, the histograms are quite distinctive—
Gaussian, negative exponential and uniform.

548	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the gray-level characteristics (statistics) of a neighborhood is called an adaptive filter, and
these filters are effective for use in many practical applications.

9.3.1 O rder Filters

Order filters are based on a specific type of image statistics called order statistics. Typically,
these filters operate on small subimages, windows, and replace the center pixel value (simi-
lar to the convolution process). Order statistics is a technique that arranges all the pixels in
sequential order, based on gray-level value. The placement of the value within this ordered
set is referred as the rank. Given an N × N window, W, the pixel values can be ordered from
smallest to largest, as follows:

	
1 NI I I Iʺ ʺ ʺ ʺ2 3 2...

where
{ } are the Intensity (g1 2 3 2I , I , I ,..., IN rray level) values of the subset of pixels iin the image
that are in the window,

,
N N W× (that is ()).r,c W∈

Example 9.3.1

Given the following 3 × 3 subimage:

	
110 110 114
100 104 104
95 88 85

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The result from applying order statistics to arrange them is

	 {85, 88, 95, 100, 104, 104, 110, 110, 114}.

One of the most useful of the order filters is the median filter. The median filter selects
the middle pixel value from the ordered set. In the above example the median filter selects
the value 104, since there are four values above it and four values below it. The median
filtering operation is performed on an image by application of the sliding window concept
(see Figure 8.2-19), similar to what is done with convolution. Note that with this technique
the outer [(N + 1)/2] –1 rows and columns are not replaced. In practice this is usually not a
problem due to the fact that the images are much larger than the masks, and these “wasted”
rows and columns are often filled with zeros (or cropped off the image). For example, with
a 3 × 3 mask, we lose one outer row and column, a 5 × 5 loses two rows and columns—this
is not usually significant for a typical 640 × 480 or larger image. Results from using the
median filter for salt-and-pepper (impulse) noise are shown in Figure 9.3-1. Note that for
color, RGB three-band images, each color band is separately processed.

The maximum and minimum filters are two order filters that can be used for elimina-
tion of salt or pepper (impulse) noise. The maximum filter selects the largest value within
an ordered window of pixel values, so is effective at removing pepper-type (low values)
noise. The minimum filter selects the smallest value and works when the noise is primarily
of the salt-type (high values). In Figure 9.3-2a and b, the application of a minimum filter to
an image contaminated with salt-type noise is shown, and in Figure 9.3-2c and d a maxi-
mum filter is applied to an image corrupted with pepper-type noise is shown. Here we see

pj
w

st
k|

40
20

64
|1

43
57

19
07

0

Image Restoration and Reconstruction	 549

© 2011 by Taylor & Francis Group, LLC

that these filters are effective for removing these types of noise, while still retaining essen-
tial image information. As the size of the window gets bigger, the more information loss
occurs; with windows larger than about 5 × 5 the image acquires an artificial, “painted,”
effect (Figure 9.3-3), similar to the median filter.

In a manner similar to the median, minimum, and maximum filter, order filters can be
defined to select a specific pixel rank within the ordered set. For example, we may find

(a)

(b) (c)

Figure 9.3-1
Median filter. (a) Image with added salt-and-pepper noise, the probability for salt = probability for pepper = 0.08,
(b) after median filtering with a 3 × 3 window, all the noise is not removed, (c) after median filtering with a 5 × 5
window, all the noise is removed, but the image is blurry acquiring the “painted” effect.

550	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

for certain types of pepper noise selecting the second highest value works better than
selecting the maximum value. This type of ordered selection is very sensitive to the type
of images and their use—it is application specific. Another example might be selecting the
third value from the lowest, and using a larger window, for specific types of salt noise.
It should be noted that, in general, a minimum or low rank filter will tend to darken an
image and a maximum or high rank filter will tend to brighten an image—this effect is
especially noticeable in areas of fine detail and high contrast.

The final two order filters are the midpoint and alpha-trimmed mean filters. They are
actually both order and mean filters since they rely on ordering the pixel values, but are

(a) (b)

(c) (d)

Figure 9.3-2
Minimum and maximum filters. (a) Image with added “salt” noise, probability of salt = 0.04, (b) result of mini-
mum filtering image (a); mask size = 3 × 3, (c) Image with “pepper” noise, probability of pepper = 0.04, (d) result
of maximum filtering image (c), mask size = 3 × 3.

Image Restoration and Reconstruction	 551

© 2011 by Taylor & Francis Group, LLC

then calculated by an averaging process. The midpoint filter is the average of the maximum
and minimum within the window, as follows:

	

Ordered set

Midpoint

1 2 3

1

2I I I ... I

= I

N→ ≤ ≤ ≤ ≤

+ IN2

2

The midpoint filter is most useful for Gaussian and uniform noise, as illustrated in
Figure 9.3-4.

(a) (b)

(c) (d)

Figure 9.3-3
Various window sizes for minimum and maximum filters. (a) result of minimum filtering image 9.3.2a; mask
size = 5 × 5, (b) result of minimum filtering image 9.3.2a; mask size = 7 × 7, (c) (a) result of maximum filtering
image 9.3.2c; mask size = 5 × 5, (d) result of maximum filtering image 9.3.2c; mask size = 7 × 7. Note the undesir-
able artifacts that occur with larger mask sizes.

552	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The alpha-trimmed mean is the average of the pixel values within the window, but
with some of the endpoint ranked values excluded. It is defined as follows:

	
Ordered set

Alpha-trimmed me

1 2 2I I ... IN→ ≤ ≤ ≤

aan
1
22

1

2

=
N T

I
i=T+

N T

i
−

−

∑
where T is the number of pixel values excluded at each end of the ordered set, and can
range from 0 to (N2 – 1)/2.

(a) (b)

(c) (d)

Figure 9.3-4
Midpoint filter. (a) Image with Gaussian noise, variance = 300, mean = 0, (b) result of midpoint filter, mask
size = 3, (c) Image with uniform noise, variance = 300, mean = 0, (d) result of midpoint filter, mask size = 3.

Image Restoration and Reconstruction	 553

© 2011 by Taylor & Francis Group, LLC

The alpha-trimmed mean filter ranges from a mean to median filter, depending on the
value selected for the T parameter. For example, if T = 0, the equation reduces to finding the
average gray-level value in the window, which is an arithmetic mean filter. If T = (N2 –1)/2,
the equation becomes a median filter. This filter is useful for images containing multiple
types of noise, for example Gaussian and salt-and-pepper noise. In Figure 9.3-5 are the results
of applying this filter to an image with both Gaussian and salt-and-pepper noise.

9.3.2  Mean Filters

The mean filters function by finding some form of an average within the N × N window,
using the sliding window concept to process the entire image. The most basic of these
filters is the arithmetic mean filter, which finds the arithmetic average of the pixel values in
the window, as follows:
	 Arithmetic mean

1
()

2
()

=
∈
∑N

d r,c
r,c W

where N2 = the number of pixels in the N × N window, W.
The arithmetic mean filter smoothes out local variations within an image, so it is essen-

tially a lowpass filter. It can be implemented with a convolution mask where all the mask

(a) (b)

(c) (d)

Figure 9.3-5
Alpha-trimmed mean filter. This filter can vary between a mean filter and a median filter, so can be useful
with multiple types of noise. (a) Image with added noise: Gaussian noise, variance = 200, mean = 0, and salt-
and-pepper noise with probability of each = 0.03, (b) result of alpha-trimmed mean filter, mask size = 3, T = 1,
(c) result of alpha-trimmed mean filter, mask size = 3, T = 2, (d) result of alpha-trimmed mean filter, mask
size = 3, T = 4. As the T parameter increases the filter becomes more like a median filter, so is more effective at
removing salt-and-pepper noise.

554	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

coefficients are 1/N2. This filter will tend to blur an image, while mitigating the noise
effects. Figure 9.3-6 show the results of an arithmetic mean applied to an image with
Gaussian noise. It can be seen that the larger the mask size, the more pronounced the blur-
ring effect. This type of filter works best with Gaussian, gamma, and uniform noise.

In Figure 9.3-7, the Fourier spectra for images before and after adding noise and using a
mean filter are shown. Here we see that the mean filter removes some of the high frequency

(a) Original image (b) Image with added Gaussian noise,
variance = 800, mean = 0

(c) Result of arithmetic mean filter on image
with Gaussian noise, mask size = 3

(d) Result of arithmetic mean filter on image
with Gaussian noise, mask size = 5

Figure 9.3-6
Arithmetic Mean Filter. As the mask size increases more noise mitigation occurs, but at the price of increased
blurring. (a) Original image (b) Image with added Gaussian noise, variance = 800, mean = 0, (c) Result of arith-
metic mean filter on image image with Gaussian noise, mask size = 3, (d) Result of arithmetic mean filter on with
Gaussian noise, mask size = 5.

Image Restoration and Reconstruction	 555

© 2011 by Taylor & Francis Group, LLC

Image with
noise added

Image after
mean filter

Original image

Figure 9.3-7
Fourier spectra from using mean filter to reduce Gaussian noise effects. Comparing the spectrum of the original
image and the spectrum of the image with added noise, we can see the increase in high frequency energy—the
brightness is more uniform throughout the spectrum after adding noise. After mean filtering, the increased
noise energy in the high frequencies has been reduced and the energy along the vertical axis has been restored.
Artifacts as a result of the finite size of the convolution mask are also visible.

556	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

energy caused by the added noise. We also can see artifacts caused by the finite size of the
convolution mask, combined with the fact that at the edge of the mask the coefficients drop
off abruptly from 1/N2 to zero. These artifacts can be reduced by using coefficients with
a Gaussian distribution (as described in Chapter 8), and results are shown in Figure 9.3-8.
Here we also see that the blur is reduced with a Gaussian filter, compared to an arithmetic
mean filter.

Image with
noise added

Image after
Gaussian filter

Original image

Figure 9.3-8
Fourier spectra from using Gaussian filter to reduce Gaussian noise effects. Comparing this figure to Figure 9.3-7,
we can see that using a convolution mask with coefficients that change gradually will reduce the artifacts that
result from the finite size of the convolution mask.

Image Restoration and Reconstruction	 557

© 2011 by Taylor & Francis Group, LLC

The images in these two figures illustrate that the theoretical mitigation of noise effects,
in this case by reducing the high frequency energy with an arithmetic mean filter, does
not necessarily create what we would consider a “good” image. The undesirable blurring
effect, which reduces image details, is not as pronounced with some of the other mean
filters. The following mean filters, and the adaptive filters, are designed to minimize this
loss of detail information.

The contra-harmonic mean filter works well for images containing salt OR pepper type
noise, depending on the filter order, R:

	
Contra-harmonic mean

()
()

1

(

= ∈
∑ d r,c
r,c W

R+

r,,c W

Rd r,c
)

()
∈
∑

where W is the N × N window under consideration.
For negative values of R, it eliminates salt-type noise, while for positive values of R, it

eliminates pepper-type noise. This is shown in Figure 9.3-9.
The geometric mean filter works best with Gaussian noise, and retains detail information

better than an arithmetic mean filter. It is defined as the product of the pixel values within
the window, raised to the 1/N2 power:

	
Geometric mean [()]

(

= d r,c

r,c

N∏ 1 2

))∈W

In Figure 9.3-10 are the results of applying this filter to images with Gaussian (Figure 9.3-10a
and b) and pepper noise (c and d). As shown in Figure 9.3-10d, this filter is ineffective in
the presence of pepper noise—with zero (or very low) values present in the window, the
equation returns a zero (or very small) number.

The harmonic mean filter also fails with pepper noise, but works well for salt noise. It is
defined as follows:

	 Harmonic mean
1
()

2

()

= N

d r,c
r,c W∈
∑

This filter also works with Gaussian noise, retaining detail information better than the
arithmetic mean filter. In Figure 9.3-11 are the results from applying the harmonic mean
filter to an image with Gaussian noise (Figure 9.3-11a and b), and to an image corrupted
with salt noise (9.3.11c and d).

The Yp mean filter is defined as follows:

	
p

P

r,c W

P

Y =
d r,c

N
mean

()

1

()
2

∈
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

This filter removes salt noise for negative values of P, and pepper noise for positive values
of P. Figure 9.3-12 illustrates the use of the Yp mean filter.

558	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

9.3.3 A daptive Filters

The previously described filters are not adaptive because their basic behavior does not
change as the image is processed, even though their output depends on the underly-
ing pixel values. Some, such as the alpha-trimmed mean, can vary between a mean and
median filter, but this change in filter behavior is fixed for a given value of the T param-
eter—the behavior does not change during processing. However, an adaptive filter alters
its basic behavior depending on the underlying pixel values (such as the Kuwahara filter
in Chapter 8), which allows it to retain image detail while still removing noise. The typi-
cal criteria for determining filter behavior involve some measure of local brightness and

(a)

(c) (d)

(b)

Figure 9.3-9
Contra-harmonic mean filter. (a) Image with salt noise, probability = 0.04, (b) result of contra-harmonic mean
filter, mask size = 3, order = −3, (c) Image with pepper noise, probability = 0.04, (d) result of contra-harmonic
mean filter, mask size = 3, order = + 3.

Image Restoration and Reconstruction	 559

© 2011 by Taylor & Francis Group, LLC

contrast. In this section we will explore two types of adaptive filters; one type uses stan
dard statistical measures and the other uses order statistics for measuring local variation.

The minimum mean-squared error (MMSE) filter is a good example of an adaptive filter,
which exhibits varying behavior based on local image statistics. By using the first and
second order statistics, the mean and the variance, we get a measure of local variation.
The mean measures the average local brightness, and the variance measures local con-
trast. These two metrics, combined with some knowledge of the noise variance, are used
to determine filter behavior. The MMSE filter works best with Gaussian or uniform noise
and is defined as follows:

	 MMSE () () ()
2

2
= − −[]d r,c d r,c m r,cn

l
l

σ
σ

(c) (d)

(a) (b)

Figure 9.3-10
Geometric mean filter. (a) Image with Gaussian noise, variance = 300, mean = 0, (b) Result of geometric mean
filter, mask size = 3, on image with Gaussian noise, (c) Image with pepper noise, probability = 0.04, (d) Result
of geometric mean filter, mask size = 3, on image with pepper noise. Note this filter is counterproductive with
pepper noise.

560	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

where
noise variance
the current

2σn =

W N N→ × window centered at ()

local vari2

d r c

=l

,

σ aance

()

local

()

d r c m

N

m =

l

I r c W

l

=

−()

−
∈
∑ ,
,

2

2 1

mean =
∈
∑1

2N
d r c

I r c W

(,)
(,)

(a)

(c)

(b)

(d)

Image with Gaussian noise,
variance = 300, mean = 0

Result of harmonic mean filter,
mask size = 3, on image with Gaussian noise

Result of harmonic mean filter,
mask size = 3, on image with salt noise

Image with salt noise, probability = .04

Figure 9.3-11
Harmonic mean filter.

Image Restoration and Reconstruction	 561

© 2011 by Taylor & Francis Group, LLC

With no noise in the image, the noise variance equals zero, and this equation will return
the original unfiltered image. In background regions of the image, areas of fairly constant
value in the original uncorrupted image, the noise variance will equal the local variance,
and the equation reduces to the mean filter. In areas of the image where the local variance
is much greater than the noise variance, the filter returns a value close to the unfiltered
image data. This is desired since high local variance implies high detail (edges), and an
adaptive filter tries to preserve the original image detail.

In general, the MMSE filter returns a value that consists of the unfiltered image data,
d(r,c), with some of the original value subtracted out and some of the local mean added.

Image with salt noise,
probability = .04

Result of Yp mean filter,
mask size = 3, order = –3
on image with salt noise

Result of Yp mean filter,
mask size = 3, order = +3
on image with pepper noise

Image with pepper noise,
probability = .04

(c) (d)

(a) (b)

Figure 9.3-12
Yp mean filter.

562	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The amount of the original and local mean used to modify the original are weighted by the
noise-to-local-variance ratio, σ σn l

2 2/ . As this ratio increases, implying primarily noise in the
window, the filter returns primarily the local average. As this ratio goes down, implying
high local detail, the filter returns more of the original unfiltered image. By operating in
this manner, the MMSE filter adapts itself to the local image statistics, preserving image
details while removing noise. Figure 9.3-13 illustrates the use of the MMSE filter on an
image with added Gaussian noise. Here we specify the window (kernel) size and the noise
variance to be used.

One method to improve the results with the MMSE filter is to allow for a variable
window size based on the noise-to-local-variance ratio. In areas of constant background

Image with Gaussian noise,
variance = 300, mean = 0

Result of MMSE filter,
kernel size = 3
noise variance = 300

Result of MMSE filter,
kernel size = 9
noise variance = 300

Original image

(a) (b)

(c) (d)

Figure 9.3-13
MMSE filter.

Image Restoration and Reconstruction	 563

© 2011 by Taylor & Francis Group, LLC

we want a larger window so the noise variance and the local variance are about equal
and the ratio is as close to one as possible. In this case we want to return the mean value
to eliminate more of the noise variation, assuming zero-mean noise. In areas of image
detail, such as edges, we want to use a smaller window to retain more detail at the edge
only. This can be done by starting with a maximum window size and setting a minimum
threshold on the noise-to-local-variance ratio. If the threshold is not met we decrease
the window size until the threshold is met or until the minimum 3 × 3 window size is
reached.

The flowchart for this algorithm is shown in Figure 9.3-14. In this example the algorithm
starts with a maximum window size of 9 × 9. With each new pixel location the local mean
and variance are computed. If the noise-to-local-variance ratio is above a threshold, the
algorithm will use that local mean and variance and compute the new pixel value via the
standard MMSE in equation. If the filter gain is below the threshold, the algorithm will
decrease the window size to 7 × 7 and compute the local mean and variance for the 7 × 7
window. The process is repeated by decreasing the window size each time until the mini-
mum noise-to-local-variance ratio threshold is met. If it reaches a 3 × 3 window without

3×3 MMSE 5×5 MMSE 7×7 MMSE 9×9 MMSE

Compute 3×3
mean variance

Yes

Yes

Yes

No

No

Noσ2
N/σ2

9×9<
threshold

Compute 7×7
mean, variance

σ2
N/σ2

7×7<
threshold

σ2N/σ2
5×5<

threshold

Compute 9×9
mean, variance

Compute 5×5
mean, variance

Figure 9.3-14
Improved MMSE filter flowchart. Here we compute the noise-to-local-variance ratio for the largest window size
first, in this case a 9 × 9. If it meets the threshold criterion, then we compute the 9 × 9 MMSE. If not, we reduce
the window size and continue the process until the criterion is met, or we are reduced to a 3 × 3. (Flowchart and
algorithm courtesy of Ray Walter and Justin Trumpet).

564	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

meeting the threshold criterion then the algorithm computes the standard MMSE using
the 3 × 3 window. The results are shown in Figure 9.3-15, where we see that the output
image shows less blurring of the numbers “01568” and more noise removal at the edges,
when compared to the standard MMSE filter.

Another useful adaptive filter is the adaptive median filter. The primary strength of
the adaptive median filter is the removal of salt-and-pepper noise, but it also attempts
to smooth other types of noise and to avoid the distortion of small image structures
seen with the standard median filter (see Figures 8.4-3 and 9.3-1). This filter is algorith-
mic in nature and has a variable window size that increases until a certain criterion
is met. To describe the algorithm for the adaptive median filter we need to define the
following:

	

d r c

W N

(,) =

→ ×

the degraded image

the current NN d r c

Wmax

window centered at ()

maximum w

,

= iindow size

minimum gray level in thegmin = wwindow,

maximum gray level in

W

g W

g

max

med

=

== median gray level inW

(a)

(c)

(b)

Figure 9.3-15
Improved MMSE filter. (a) Image with zero mean Gaussian noise added, variance of 100, (b) resultant image
after application of standard MMSE filter with a window size of 9 × 9, (c) resultant image after application of
improved MMSE filter with an initial window size of 9 × 9, and a minimum gain threshold of 0.6. Observe
that the improved filter results shows less blurring of the numbers “01568”, as well as removing more noise at
the edges.

Image Restoration and Reconstruction	 565

© 2011 by Taylor & Francis Group, LLC

The adaptive median filter algorithm is defined using two levels, as follows:

Level 1:

If

Then go to Level

g g gmin med max< <()

2

Else increase window size, 2

If w

N N= +

iindow size

Then go to Level 1

Else o

() ≤Wmax

uutput ()

Level 2:

If

=

< <()

d r c

g d r c gmin max

,

(,)

TThen output ()

Else output

=

=

d r c

gmed

,

We start by considering only the immediate neighbors of the current pixel, a window
size of 3 × 3. The purpose of Level 1 is to determine if the standard median filter output
is impulse noise for this initial window. If it equals the MAX or MIN it might be impulse
noise, so we increase the window size and try again. If it is not, we go to Level 2 and test
to see if the current pixel is impulse noise. If it is, we output the median value, if not we
output the current value. This will tend to preserve edges. An example, using salt noise
(255), will help to illustrate.

Example 9.3.2

Given the following two subimages, with salt noise:

	 Image Image1
10 9 11
11 255 10
12 13 9

2
25

: :
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

55 9 255
11 255 10
255 13 255

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Sorting the values for Image 1: [255  13  12  11  11  10  10  9  9],

Level 1: (gmin < gmed = 11 < gmax) is TRUE, so go to Level 2
Level 2: (gmin < d(r, c) = 255 < gmax) is FALSE, so output = 11.

In this case we eliminated the salt noise successfully.
Sorting the values for Image 2: [255  255  255  255  255  13  11  10  9],

Level 1: (gmin < gmed = 255 < gmax) is FALSE, so increase window size. Note that in this case,
the standard median would not remove this noise pixel.

566	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Increase the window size to a 5 × 5 and we find

	

11 12 11 10 10
9 255 9 255 10

255 11 255 10 11
12 255 13 255 133
13 13 12 11 12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Now the median value is between the MAX and MIN, so we fall through to Level 2 and output
the median value, thus eliminating the salt noise even in a sea of noise.

Another aspect of the adaptive median filter is that it will preserve image details better
than the standard median filter. This is shown in the following example.

Example 9.3.3

Given the following subimage:

	
177 255 180
180 189 170
192 196 180

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Sorting the values for Image 1: [255  196  192  189  180  180  180  177  170],

Level 1: (gmin < gmed = 180 < gmax) is TRUE, so go to Level 2
Level 2: (gmin < d(r, c) = 189 < gmax) is TRUE, so output = 189.

In this case we have retained image detail, whereas the standard median would have output
the median, 180, thus losing detail information.

Figure 9.3-16 compares a standard median filter with the adaptive median filter. Here we
see that the adaptive median retains image detail much better than the standard filter,
while removing most of the noise. Look carefully at the leaves on the trees, and the win-
dow frames and balcony railing that disappear with the standard median filter. Of course
there is a cost—increased computational complexity and processing time.

The anisotropic diffusion (AD) filter introduced in Chapter 8 can also be used for noise
mitigation. It is an iterative filter that removes more noise, and image detail, with each
iteration. Anisotropic diffusion is an adaptive nonlinear filtering method, which promotes
diffusion (smoothing) in the homogenous regions while avoiding edge removal in hetero-
geneous regions. The AD filter uses the image variance to differentiate between homoge-
neous and heterogeneous regions. In processing the image the primary variable it depends
on is the diffusion coefficient. The limit of this coefficient is defined to approach zero as
the gradient approaches infinity. Thus, the diffusion decreases as the gradient strength
increases, so as an edge is approached there is less smoothing and the process will theo-
retically stop at the edge itself.

The standard AD filter in Computer Vision and Image Processing tools (CVIPtools)
allows the user to specify the number of iterations, which will determine the amount of
noise mitigation, and the smoothing per iteration, which will determine how fast this occurs.
We can also specify a value for the edge strength, edge threshold, which allows more control
over the process (see Figure 8.4-7). With the standard AD filter the gradient directions used
are only along the row and column axes. In Figure 9.3-17 we see the result of applying the

Image Restoration and Reconstruction	 567

© 2011 by Taylor & Francis Group, LLC

Original
image

Image with
noise

3×3 standard
median

5×5 standard
median

5×5 adaptive
median

3×3 adaptive
median

Figure 9.3-16
Adaptive median filter compared to standard median filter. The adaptive median filter removes noise while
preserving image detail much better than the standard median filter. This is especially evident in the leaves in
the trees with the 5 × 5, shown in the red circles.

568	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 9.3-17
Standard anisotropic diffusion (AD) filter with Gaussian noise. (a) Original image, (b) image with Gaussian
noise with a variance of 800 added, (c) AD filter result with 10 iterations, (d) 20 iterations, (e) 50 iterations, (f) 100
iterations. Other CVIPtools parameters: Edge threshold = 5, Smoothing per Iteration = 1.

Image Restoration and Reconstruction	 569

© 2011 by Taylor & Francis Group, LLC

filter to an image with Gaussian noise and the results from varying the number of itera-
tions. Here we see that as the number of iterations increases the noise mitigation appears
to improve. In Figure 9.3-18 we see results from application of the AD filter to various noise
types with the number of iterations fixed at 100. One advantage of the AD filter is that it
is not dependent on modeling the noise, and, consequently works reasonably well with a
mixture of different types of noise—see Figure 9.3-18i and j.

In CVIPtools we have implemented a second AD filter, the parametric AD filter. It was
designed to allow the user more control over the process. It differs from the standard AD
filter by using a gradient in four directions, which includes the two diagonal directions
along with the row and column directions, and it adaptively computes the image variance
for each iteration. The image variance is used to define a homogeneous region, where the
region size is specified in CVIPtools as the blocksize. The image is divided into subimages
based on the block size and the variance is calculated for all subimages. The three blocks
with the lowest variance, which correspond to low contrast or high homogeneity, are used
to determine the variance of a homogeneous region for that specific image. Figure 9.3-19
shows the effect of different block sizes on an image with four types of noise added. Here
we see that most of the differences created by using different block sizes to calculate the
variance of a homogeneous region occur at object boundaries, as expected. With the use of
a larger block size the variance is greater, and thus the assumed homogeneity is smaller,
which results in less diffusion of weaker edges. This can be useful in applications where
we want to retain some of the weaker edges.

9.4  Degradation Function

Any measurement of a quantity that varies in time, such as brightness, has some inherent
degradation in the form of blurring since it requires a finite amount of time to measure.
During that time the signal will fluctuate and the imaging device will typically include all
the values during the measured time interval in the final result. The physics of the device
may integrate the signal, add the values or average them over the measurement interval.
Additional blurring may occur due to imperfect lenses, motion of the object or imaging
device, and spatial quantization.

These types of degradations can be either spatially invariant or spatially variant. A spa-
tially invariant degradation affects all pixels in the image the same, the pixel’s location
does not affect the distortion. Examples include poor lens focus and motion of the camera.
Spatially variant degradations are dependent on spatial location and are more difficult to
model. Examples include imperfections in a lens or movement of individual objects in the
scene. Although more difficult to model than degradations that do not change with location,
they can often be modeled as being spatially invariant over small regions. Additionally,
image degradation functions can be considered to be linear or nonlinear; and we will only
consider linear degradation functions.

9.4.1  Spatial Domain: Point Spread Function

The model presented includes a degradation function, h(r,c), and additive noise n(r,c). Noise
models have been discussed and here we will focus on h(r,c), the degradation function. If
we assume no additive noise, we have the following model:

570	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Negative exponential noise

Rayleigh noise

Uniform noise

Figure 9.3-18
Standard anisotropic diffusion (AD) filter with various noise types. The original image is shown in Figure 9.3- 17a.
(a) Image with negative exponential noise with a variance of 800 added, (b) AD filter result on (a), (c) Rayleigh
noise, variance = 800 added, (d) AD result on (c), (e) uniform noise, variance = 800 added, (f) AD result on (e),
(g) salt-and-pepper noise, 0.03 salt and 0.03 pepper, added, (h) AD result on (g), (i) Combined Gaussian noise,
variance = 800, and 3% salt-and-pepper added, (j) AD result on (i). Other CVIP tools parameters: Number of
Iterations = 100, Edge threshold = 5, smoothing per Iteration = 1.

Image Restoration and Reconstruction	 571

© 2011 by Taylor & Francis Group, LLC

	 d r,c h r,c * I r,c() () ()=

where
the * denotes the convolution process
d(() degraded imager,c =
h r,c =
I r,c =
() degradation function
(origi) nnal image

(g) (h)

(i) (j)

Salt & Pepper noise

Gaussian and
Salt & Pepper noise

Figure 9.3-18 (continued)
Standard anisotropic diffusion (AD) filter with various noise types. The original image is shown in Figure 9.3- 17a.
(a) Image with negative exponential noise with a variance of 800 added, (b) AD filter result on (a), (c) Rayleigh
noise, variance = 800 added, (d) AD result on (c), (e) uniform noise, variance = 800 added, (f) AD result on (e),
(g) salt-and-pepper noise, 0.03 salt and 0.03 pepper, added, (h) AD result on (g), (i) Combined Gaussian noise,
variance = 800, and 3% salt-and-pepper added, (j) AD result on (i). Other CVIP tools parameters: Number of
Iterations = 100, Edge threshold = 5, smoothing per Iteration = 1.

572	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 9.3-19
Parametric anisotropic diffusion (AD) filter. (a) Original image, (b) image with four types of noise added, (c)
parametric AD filter result with 500 iterations, block size of 8, (d) parametric AD filter result with 500 iterations,
block size of 128, two areas of varying visible detail from the different blocksizes are circled in red, (e) sub-
traction result of (c)and (d), (f) XOR of (c) and (d). Other CVIPtools parameters: Edge threshold = 5,Smoothing per
Iteration = 1. Note that most differences occur at the edges, as expected. Here we see that for small faint objects,
a larger block size does a better job of retaining this information.

Image Restoration and Reconstruction	 573

© 2011 by Taylor & Francis Group, LLC

For those familiar with linear system theory, h(r,c) is the two-dimensional (2-D) equivalent
of the impulse response. Remember that the impulse response is the output of a linear
system when the input is a single, narrow (ideally zero width) pulse, and that it completely
characterizes the system. With a linear system, if we know the impulse response we know
the response of the system to any complex signal—it is simply the signal convolved with
the impulse response.

The response of an imaging system, h(r,c), is called the point spread function (PSF). As the
name implies the PSF is the blur function, or spread function, for a single point of light
and describes what happens when it passes through a system. Theoretically, the PSF of a
linear, spatially invariant (shift invariant) system can be empirically determined by imaging
a single point of light, which is the 2-D equivalent of an impulse signal. Also, PSFs can
be derived or developed for various types of image degradation such as motion blur or
atmospheric turbulence.

A simple model for the PSF of motion blur can be developed as follows. Consider that
an object is moving while a camera shutter is open. During that time the object will
appear across several of the imaging elements or pixels. Figure 9.4-1 shows two models for
motion blur along the column axis. Figure 9.4-1a shows an image meant to model a point,
which has been enlarged for ease of viewing (it is actually a circle of radius 4 created with
CVIPtools—note the distortion due to spatial quantization). In Figure 9.4-1b and c we see
the result from uniform blur, and the model for the PSF. Since it takes a finite amount of
time for the camera’s shutter to close, the PSF model in 9.4.1e more accurately models a
mechanical system where the gain slowly decreases over time.

In CVIPtools the PSF blur models can be simulated with Utilities → Filter → Specify a Blur.
The types of blur can be linear in one direction—horizontal, vertical, or diagonal; or it can
be 2-D. Two-dimensional masks can have circular or rectangle symmetry; both have the
same blur in all directions. The PSF mask is used to model h(r,c), typical models are shown
in Figure 9.4-2. The non-zero terms, designated by x’s in the figure, can have a uniform,
Gaussian, or centered-weighted distribution.

In Figure 9.4-3, are shown representative values for the various types of blur filter masks.
Once a blur filter mask has been selected, the mask must be padded with zeros up to the
size of the image, before the Fourier transform of h(r,c) is determined. Once the blur mask
has been zero-padded, this extended h(r,c) needs to be shifted, with wraparound, so that
the center of the original blur mask is at the (0,0) point in the image, that is the upper left
corner. In other words, the coefficients will appear in the corners, based on Fourier sym-
metry. If this is not done phase shifts will occur in the output image.

After the PSF is determined, a model is developed to reverse the process. The application
of the inverse model is called deconvolution, because we are trying to undo the convolution
process that degraded (blurred) the image. If we do not know the exact degradation func-
tion, which is typically true in practice, then the process is referred to as blind deconvolution
and the PSF must be estimated. This inverse process is often performed in the frequency
domain.

9.4.2  Frequency Domain: Modulation/Optical Transfer Function

The Fourier transform of the degradation function, H(u,v), is also referred to as the modu-
lation transfer function (MTF), or the optical transfer function (OTF). The MTF typically
refers to the transfer function of the system, while the OTF may refer to the transfer func-
tion of a lens or, in general, the optics in the system. Like the PSF, the MTF is used to com-
pletely characterize a linear, spatially invariant system.

574	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Using our previously defined model and assuming no additive noise, the frequency
domain model for the degradation process is as follows:

	 D u,v H u,v I u,v() () ()=

where
() Fourier transform of the degradD u,v = eed image
() Fourier transform of the deH u,v = ggradation function
() Fourier transformI u,v = of the original image.

(a)

(b) (c)

(d) (e)

h (r, c)

Column axis=c

h (r, c)

Column axis=c

Figure 9.4-1
Modeling the point spread function (PSF) for motion blur. (a) A digital image of a point, enlarged for ease of
viewing, also note distortion due to spatial quantization, (b) image after uniform motion blur along the column
axis, (c) PSF model for uniform motion blur, (d) image after Gaussian motion blur along the column axis, (e) PSF
model for Gaussian motion blur, which models a mechanical shutter closing or the speed decreasing. In practice
this is often approximated by a linear function.

Image Restoration and Reconstruction	 575

© 2011 by Taylor & Francis Group, LLC

Examples of specific mathematical models that have been developed include motion blur,
poor lens focus, atmospheric turbulence, and charge-coupled device (CCD) interactions.
Motion blur occurs if the object or camera moves during image acquisition. Atmospheric
turbulence degradation occurs during imaging of astronomical objects. Blurring also
occurs from the spatial quantization inherent in a CCD array, and the interaction between
adjacent CCD elements. Given knowledge of the image acquisition process, the appropri-
ate model can be applied.

For an image that is acquired with a camera with a mechanical shutter, H(u,v) due to
motion blur along the column axis is as follows:

	
H u v

STv
Sv

(,)
sin()

=
π
π

where
S = the constant speed in the direction of the column axis
T = the time interval the shutter is open.

Note that this is a sinc function, [(sin x)/x], which is the Fourier transform of a rectangle
function, such as the PSF of the motion blur in Figure 9.4-1b and c.

x x x x x

x

x

x

x

x

x

x

x

x

x

x x x

x x x x x

x x x x

xx

x

x x x

x x x

Horizontal PSF mask;
x=non-zero term

Diagonal PSF mask;
x=non-zero term

Circular PSF mask;
x=non-zero term

Vertical PSF mask;
x=non-zero term

(a) (b)

(c) (d)

Figure 9.4-2
Blur (PSF) masks. (a) Horizontal PSF mask; x = non-zero term, (b) vertical PSF mask; x = non-zero term, (c) diag-
onal PSF mask; x = non-zero term, (d) circular PSF mask; x = non-zero term.

576	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

9.4.3  Estimation of the Degradation Function

The degradation function can be estimated primarily by combinations of these three meth-
ods: (1) image analysis, (2) experimentation, and (3) mathematical modeling. The degraded
image can be analyzed by examination of a known point or line in an image. If the width
of the point or line is known, we can estimate the PSF by measuring the width of the
known feature in the blurred image. This will give us some idea of how wide the PSF blur
mask should be. If the imaging system is available these points or lines can be found by
the use of test charts. Some images may contain valid point sources; such as the stars in
astronomical images. Lines can be found by analyzing the images; for example, edges of
buildings or object borders. We can also analyze the gray-level distribution of the blur and
attempt to model it mathematically to determine the proper PSF mask coefficients.

As we have seen, the degradation function or PSF can be found experimentally, if the system
is available and the conditions under which the image was acquired have not changed—all we need
to do is to send a point of light through the system and see what comes out. The output is the
PSF, in this case h(r,c). However, it is not always practical to implement a point source of light,
and a more reliable method is to use sinusoidal inputs at many different spatial frequencies

0 0 0 0 0 0

00

0 0

00

0 0 0 0

00

0 0

00

0 00

00000

0 0 0 0 0

00000

0 0 0 0

0000

0 0 0 0

0000

0 0 0 0 0 0

0 0

1 1 1

1

1

1

1

41 1

1

2

4 4

4

4

4

8

2 2

2 2

2

1 1 1 1

1

1

11

1 1 1

1

1

Horizontal PSF mask with
uniform blur

Vertical PSF mask with
center-weighting

Diagonal PSF mask with an
approximation to a Gaussian
distribution

Circular PSF mask with an
approximation to a Gaussian
distribution

(c)

(a) (b)

(d)

Figure 9.4-3
Typical blur mask coefficients. (a) Horizontal PSF mask with uniform blur, (b) vertical PSF mask with center
weighting, (c) diagonal PSF maskwith an approximation to a Gaussian distribution, (d) circular PSF mask with
an approximation to a Gaussian distribution.

Image Restoration and Reconstruction	 577

© 2011 by Taylor & Francis Group, LLC

to determine the MTF, H(u,v). For many applications the system that created the images may
not be available, or the conditions under which the image was acquired are unknown.

Mathematical models are often used to gain insight into image degradation. One exam-
ple is the motion blur model previously discussed. Another example is the atmospheric
turbulence degradation model used in astronomy and remote sensing:

	 H u v e k u v(,) = − +()2 2 5 6

where k is an experimentally determined constant.
The constant is related to the severity of the turbulence (larger k, more turbulence), usu-

ally related to the amount of temperature variation in the atmosphere. The temperature
variation causes image distortion such as is seen in the desert or around a heat source. The
exponent 5/6 can be replaced with an exponent of 1 to create a simpler model. The simple
model is a Gaussian lowpass filter that blurs the image as we have seen.

For further study, details of mathematical models for other degradation functions can
be found in the references. Mathematical models, image analysis, and lots of experimen-
tation, combined with the experience and intuition of the expert are often necessary to
estimate the degradation function successfully.

9.5  Frequency Domain Filters

Frequency domain filtering operates by using the Fourier transform representation of
images. This representation consists of information about the spatial frequency content
of the image, also referred to as the spectrum of the image. In Figure 9.5-1 is the general
model for frequency domain filtering. The Fourier transform is performed on three spatial
domain functions: (1) the degraded image, d(r,c), (2) the degradation function, h(r,c), and (3)

Degraded
image
d (r,c)

Degradation
function

h (r,c)

Noise
model
n (r,c)

Fourier
transform

D (u,v)

H (u,v)

N (u,v)

Frequency
domain

filter
R (u,v)

Inverse
Fourier

transform
Restored

image

Figure 9.5-1
Frequency domain filtering.

578	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the noise model, n(r,c). Next, the frequency domain filter is applied to the Fourier trans-
form outputs, N(u,v), D(u,v), and H(u,v). The output of the filter operation undergoes an
inverse Fourier transform to give the restored image.

The frequency domain filters incorporate information regarding the noise and the PSF
into their model, and are based on the mathematical model provided in Section 9.1.1:

	 D u,v H u,v I u,v N u,v() () () ()= +

where
D u,v() Fourier transform of the degraded im= aage
() Fourier transform of the degradaH u,v = ttion function
() Fourier transform ofI u,v = tthe original image
() Fourier transformN u,v = of the additive noise function.

In order to obtain the restored image, the general form is as follows:

	 ˆ ˆI r,c F I u,v F R u,v D u,vtype() [()] () ()1 1= =− − ⎡⎡⎣ ⎤⎦

where
ˆ ,I r c =() the restored image, an approximatiion to ()

[] = the inverse Fourier t1
I r,c

F
− rransform

() the Restoration (freqtypeR u,v = uuency domain) filter,

the subscript definees the type of filter.

The filters discussed here include the inverse filter, the classical Wiener filter, the para-
metric Wiener filter, the power spectrum equalization filter, the constrained least squares
(CLS) filter, the geometric mean filter, bandpass, bandreject, and notch filters. A general
mathematical model using the geometric mean filter is provided, and from this model
many of the other filters can be generated.

Many of these filters are based on the assumption that the noise and image signals are
stationary. This means that the spatial frequency energy content does not vary across the
image, which is usually not valid for most real images, but is usually acceptable for noise
images (as shown in Figure 9.2-5). For an image to be a stationary signal, if we measure the
power spectrum over a small area it should be approximately equal to the power spectrum
of the entire image. Most images are highly nonstationary; for example, some areas in the
image may appear fairly constant and thus have mostly low frequency energy; whereas
object boundaries and textured objects will have a lot of energy in high frequencies.
Adaptive filtering techniques are discussed for managing this problem.

9.5.1  Inverse Filter

The inverse filter uses the foregoing model, with the added assumption of no noise
(N(u,v) = 0). If this is the case, the Fourier transform of the degraded image is

	 D u,v = H u,v I u,v +() () () 0

So, the Fourier transform of the original image can be found as follows:

	 I u,v =
D u,v
H u,v

=D u,v
H u,v

()
()
()

()
1
()

Image Restoration and Reconstruction	 579

© 2011 by Taylor & Francis Group, LLC

Using the previously defined notation for the restoration filters:

	 Inverse filter = =R u v
H u vinv(,)
(,)
1

To find the original image we take the inverse Fourier transform of I(u,v):

	 I r,c F I u,v F
D u,v
H u,v

() [()]
()
()

1 1 1= =
⎡

⎣⎢
⎤

⎦⎥
=− − −
FF D u,v

1
H u,v

()
()

⎡

⎣⎢
⎤

⎦⎥

where F–1[] represents the inverse Fourier transform.
The equation implies that the original, undegraded image can be obtained by multiply-

ing the Fourier transform of the degraded image, D(u,v), by 1/H(u, v), and then inverse
Fourier transforming the result. Thus, the restoration filter applied is 1/H(u, v), the inverse
filter. Note that this inversion is a point-by-point inversion, not a matrix inversion.

Example 9.5.1

	 H u,v =()
50 50 25
20 20 20
20 35 22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

H u,v
=

1
()

1
50

1
50

1
25

1
20

1
20

1
20

1
20

1
35

11
22

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

To find 1/H(u, v), we take each term separately and divide it into 1.

Unfortunately, in practice, there are complications that arise when this technique is
applied. If there are any points in H(u,v) that are zero, we face a mathematical dilemma—
division by zero. If the assumption of no noise is correct, then the degraded image trans-
form, D(u,v), will also have corresponding zeros and we are left with an indeterminate
ratio, 0/0. If the assumption is incorrect, and the image has been corrupted by additive
noise, then the zeros will not coincide, and the image restored by the inverse filter will be
obscured by the contribution of the noise terms. This can be seen by considering the fol-
lowing equation:

	 D u,v = H u,v I u,v + N u,v() () () ()

Then, when we apply the inverse filter, we obtain

	 Î u,v =
D u,v
H u,v

=
H u,v I u,v

H u,v
()

()
()

() ()
())

()
()

()
()
()

+
N u,v
H u,v

= I u,v +
N u,v
H u,v

As the values in H(u,v) become very small, the second term becomes very large, and it
overshadows the I(u,v) term, which is the original image we are trying to recover.

580	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

One method to deal with this problem is to limit the restoration to a specific radius about
the origin in the spectrum, called the restoration cutoff frequency. For spectral compo-
nents beyond this radius, we can set the filter gain to 0, so ˆ (,)I u,v = D u v() 0× = 0 . This is the
equivalent of an ideal lowpass filter, which may result in blurring and ringing. In practice,
the selection of the cutoff frequency must be experimentally determined, and is highly
application specific. In Figure 9.5-2, we see the result of application of the inverse filter to
an image blurred by an 11 × 11 Gaussian convolution mask. Here we see that selection of a
cutoff frequency that is too low may provide poor results, and with a cutoff frequency too
high the resulting image is overwhelmed by noise effects.

Original image Image blurred with an 11×11
Gaussian convolution mask

Inverse filter, with cutoff frequency = 60,
histogram stretched

Inverse filter, with cutoff frequency = 40,
histogram stretched with 3% low and high
clipping to show detail

(a) (b)

(c) (d)

Figure 9.5-2
Inverse filter.

Image Restoration and Reconstruction	 581

© 2011 by Taylor & Francis Group, LLC

With some types of degradation, the function H(u,v) falls off quickly as we move away
from the origin in the spectrum. In this case we may want to set the filter gain to 1 for fre-
quencies beyond the restoration cutoff. Another possibility is to model a Butterworth filter,
or something between the extremes of setting the gain to 0 or 1. In practice a similar result
can be achieved by limiting the gain of the filter to some maximum value.

A related method is to use the pseudoinverse filter, which handles zeros in H(u,v) as
follows:

	 R u v H u v
H

H
PI (,) (,)=

≠

=

⎧

⎨
⎪

⎩⎪

1
0

0

for

0 for

Inverse filter, with cutoff frequency = 80,
histogram stretched

Inverse filter, with cutoff frequency = 100,
histogram stretched

Inverse filter, with cutoff frequency = 120,
histogram stretched

(e) (f)

(g)

Figure 9.5-2 (Continued)
Inverse filter.

582	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

This will provide a mathematically stable filter that will not blow up, approach infinity,
as H(u,v) approaches zero. In practice the filter gain is set to zero whenever the magnitude
of H(u,v) goes below a specified threshold.

9.5.2  Wiener Filter

The Wiener filter, also called a minimum mean-square estimator (developed by Norbert
Wiener in 1942), alleviates some of the difficulties inherent in inverse filtering by attempt-
ing to model the error in the restored image through the use of statistical methods. Once
the error is modeled, the average error is mathematically minimized, thus the term mini-
mum mean square estimator. The resulting equation is the Wiener filter

	
W

n

I

R u,v =
H u,v

H u,v + S u,v

S u,v

()
()

()
()
()

2

*
⎡

⎣
⎢⎢

⎤

⎦
⎥

where
H* (u,v) = complex conjugate of H(u,v)
Sn(u,v) = |N(u,v)|2 = power spectrum of the noise

	

IS u,v = I u,v =() () power spectrum of the o
2

rriginal image

()
()

powerS u,v

S u,v
n

I

⎡

⎣
⎢

⎤

⎦
⎥ = sspectrum ratio

This equation assumes a square image of size N × N. The complex conjugate can be found
by negating the imaginary part of a complex number. Note that the power spectrum ratio
is the related to the signal-to-noise ratio inverted. Other practical considerations are dis-
cussed in Section 9.5.7. Examining this equation will provide us with some understanding
of how it works.

If we assume that the noise term, Sn(u,v), is zero, this equation reduces to an inverse
filter, since |H(u,v)|2 = H*(u,v) H(u,v). As the noise term increases, the denominator of the
Wiener filter increases, thus decreasing the value of RW(u,v). Thus, as the contribution of
the noise increases, the filter gain decreases. This seems reasonable—in portions of the
spectrum uncontaminated by noise we have an inverse filter, whereas in portions of the
spectrum heavily corrupted by noise, the filter attenuates the signal (see Figure 9.5-3), with
the amount of attenuation being determined by the ratio of the noise spectrum to the
uncorrupted image spectrum.

The Wiener filter is applied by multiplying it by the Fourier transform of the degraded
image and the restored image is obtained by taking the inverse Fourier transform of the
result, as follows:

	 ˆ ˆI r,c = F I u,v = F R u,v D u,vW() () () (1 1− −⎡⎣ ⎤⎦))[]

Figure 9.5-4 compares the inverse filter and the Wiener filter. The filters are applied to
images that have been blurred and then had various amounts of Gaussian noise added.
With small amounts of noise, the inverse filter works adequately, but when the noise level
is increased, the Wiener filter results are obviously superior.

pj
w

st
k|

40
20

64
|1

43
57

19
12

5

Image Restoration and Reconstruction	 583

© 2011 by Taylor & Francis Group, LLC

In practical applications the original, uncorrupted image is not typically available, so the
power spectrum ratio is replaced by a parameter, K, whose optimal value must be experi-
mentally determined.

	 WR u,v =
H u,v

H u,v + K
()

()

()
2

*

This form of the Wiener filter equation we call the Practical Wiener. Examining this equa-
tion and using our knowledge that the noise power spectrum is typically flat, white noise,
it may seem that the parameter, K, should also be a function of frequency that makes the
gain of Rw(u,v) decrease at high frequencies.

9.5.3  Constrained Least Squares Filter

The constrained least squares (CLS) filter provides an alternate to the practical Wiener
filter by replacing the power spectrum ratio with a function that varies with frequency.
This filter was initially developed to eliminate some of the artifacts caused by Wiener
filters. This is done by including a smoothing criterion in the filter derivation, so that the
result will not have undesirable oscillations (these appear as “waves” in the image), as
sometimes occurs with other frequency domain filters. The CLS filter is given by

	
CLSR u,v

H u,v

H u,v + P u,v
()

()

() ()
2 2

=
*

γ

where
γ = adjustment factor
P(u,v) = the Fourier transform of smoothness criterion function.

Note that this filter is the same as the Wiener filter, but with the noise-to-signal power
spectrum ratio replaced by the smoothing criterion function. Also, it is the same as the

Spatial
frequency

N/2−N/2 0

Wiener filter
response

Inverse filter
response

Figure 9.5-3
Wiener filter response compared to inverse filter response. This plot shows that the Wiener filter gain falls off at
high frequencies where the noise tends to dominate the image. It also shows a standard inverse filter response
which will amplify noise at high frequencies as seen in the images of Figure 9.5-2 (f&g). An N × N image is
assumed.

584	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

practical Wiener with the K parameter replaced by the smoothing criterion function. The
adjustment factor’s value is experimentally determined, and is application dependent. A
standard function to use for p(r,c), the inverse Fourier transform of P(u,v), is the Laplacian
filter mask, as follows:

	 p r,c =()
0 1 0
1 4 1
0 1 0

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Image blurred with an 11×11
Gaussian convolution mask

Inverse filter, with cutoff frequency = 80,
histogram stretched with 3% low and
high clipping to show detail

Wiener filter, with cutoff frequency = 80,
histogram stretched

Image with Gaussian noise,
variance = 5, mean = 0

(a) (b)

(c) (d)

Figure 9.5-4
Comparison of Wiener filter and inverse filter.

Image Restoration and Reconstruction	 585

© 2011 by Taylor & Francis Group, LLC

This corresponds to a highpass filter, but since it appears in the denominator of the filter
function, it acts as a lowpass filter. Remember that before P(u,v) is calculated, the p(r,c) func-
tion must be extended with zeros (zero-padded) to the same size as the image. Figure 9.5-5
shows results of applying this filter.

The CLS filter is applied by multiplying it by the Fourier transform of the degraded
image, and the restored image is obtained by taking the inverse Fourier transform of the
result, as follows:

	 ˆ ˆI r,c = F I u,v = F R u,v D uCLS() () () (1 1− −⎡⎣ ⎤⎦ ,,v)[]

Inverse with Gaussian noise,
variance = 200, mean = 0

Inverse filter, with cutoff frequency = 80,
histogram stretched

Wiener filter, with cutoff frequency = 80,
histogram stretched

(e) (f)

(g)

Figure 9.5-4 (continued)
Comparison of Wiener filter and inverse filter.

586	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

9.5.4  Geometric Mean Filters

The geometric mean filter equation provides us with a general form for many of the fre-
quency domain restoration filters. It is defined as follows:

	 GMR u,v =
H u,v

|H u,v |

H
()

()

()

(
2

1

α

α

* *⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

uu,v

|H u,v | + S u,v

S u,v
n

I

)

()
()
()

2
γ
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The terms are as previously defined, with γ and α being positive real constants. If α = 1/2
and γ = 1, this filter is called a power spectrum equalization filter. If α = 1/2, then this filter
is an average between the inverse filter and the Wiener filter, hence the term geometric

Blurred image with added Gaussian
noise, mean = 0 variance = 5

Blurred image with added Gaussian
noise, mean = 0 variance = 200

Result of CLS filter on image (a)

Result of CLS filter on image (c)

(a) (b)

(c) (d)

Figure 9.5-5
Constrained least squares filter.

Image Restoration and Reconstruction	 587

© 2011 by Taylor & Francis Group, LLC

mean, although it is standard to refer to the general form of the equation as geometric mean
filter(s).

The geometric mean filter is applied by multiplying it by the Fourier transform of the
degraded image, and the restored image is obtained by taking the inverse Fourier trans-
form of the result, as follows:

	 ˆ ˆI r,c = F I u,v = F R u,v D u,GM() () () (1 1− −⎡⎣ ⎤⎦ vv)[]

If α = 0, this filter is called a parametric Wiener filter. The equation reduces to the Wiener
filter equation, but with γ included as an adjustment parameter:

	 PW
n

I

R u,v =
H u,v

H u,v + S u,v

S u,v

()
()

()
()
()

2

*

γ
⎡⎡

⎣
⎢

⎤

⎦
⎥

When γ = 1, this filter becomes a standard Wiener filter, and when γ = 0, this filter becomes
the inverse filter. As γ is adjusted, the results vary between these two filters, with larger
values providing more of the Wiener filtering effect.

The parametric Wiener filter is applied by multiplying it by the Fourier transform of the
degraded image, and the restored image is obtained by taking the inverse Fourier trans-
form of the result, as follows:

	 ˆ ˆI r,c = F I u,v = F R u,v D u,PW() () () (1 1− −⎡⎣ ⎤⎦ vv)[]

In general, the frequency domain filters discussed to this point work well for small
amounts of blurring and moderate amounts of additive noise. The inverse filter is inad-
equate with too much noise, and the Wiener filter has the tendency to cause undesirable
artifacts in the resultant image. The CLS filter helps to minimize the Wiener-type artifact,
and the parametric Wiener and the geometric mean provide additional parameters, which
can be adjusted for application-specific needs.

9.5.5 A daptive Filtering

The frequency domain filters discussed thus far, which are generalized in the geometric
mean filter model, are spatially invariant filters. They do not change their characteris-
tics based on spatial location, so are applied to the entire image in the same manner.
Additionally, they are all derived based on the assumption that the signals are station-
ary. As previously mentioned, an image that satisfies the stationary criteria has similar
spectral distributions across all subimages, obviously an invalid assumption due to vary-
ing objects and textures in the image. Fine textures have more high frequency energy
than coarse textures, and regions with edges have more high frequency energy content
than smooth, constant regions. In general, images are highly nonstationary. The degrada-
tions that occur may also vary from one image region to the next, they may be spatially
variant.

Given these violations to the assumptions under which the frequency restoration filter
models were developed, it is not surprising that the results are suboptimal. The concept
underlying adaptive filtering is that the filter will adapt to the local image characteristics,
as was discussed with the adaptive spatial filters. In the spatial domain the adaptive filters

pj
w

st
k|

40
20

64
|1

43
57

19
13

5

588	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

changed at each pixel based on local image characteristics, a form of pixel-by-pixel process-
ing. This is impractical in the frequency domain due to its computational complexity.

Block-by-block or subimage-by-subimage processing is more practical in the frequency domain.
With this approach the image is divided into blocks, typically between 8 × 8 and 32 × 32 pix-
els, and then the results are combined. This is equivalent to processing each block with its
own spatially invariant filter, such as those given by the geometric mean filter model. In this
case, the parameters are tuned to the characteristics of each block. The underlying idea is
that better results will be obtained by adapting to local image characteristics than by using a
fixed filter for the entire image. Of course implementing an adaptive filter has an associated
cost of increased computational complexity when compared to the use of a fixed filter.

One problem with this approach is caused by the filter characteristics changing at block
boundaries. This may cause artificial brightness changes at block boundaries, which cre-
ates the blocking effect or blocking artifact. This effect appears in images as false lines between
image blocks. In some image restoration applications this may not be as severe a problem
as it is in image compression applications, and more about it is discussed in Chapter 10.
Postprocessing the object boundaries with lowpass filters can help to mitigate these effects.
Another method is to overlap the subimages by using a window function, which allows
neighboring subimages to slowly merge instead of abruptly change at the boundaries.

To apply adaptive filtering in the frequency domain on the block-by-block basis, the
task is the same as application to an entire image. However, in this case, each subimage
(block) is treated as an image and an optimal processing filter must be determined for each
block by using the previously described methods. Computational intelligence based meth-
ods, using techniques such as neural networks and genetic algorithms, can be applied to
develop a system that will learn to adjust its operation to adapt to the image. More informa-
tion on adaptive filtering in the frequency domain can be explored with the references.

9.5.6 B andpass, Bandreject, and Notch Filters

The shape of the bandpass, bandreject, and notch filters is shown in Figure 5.7-9. These
filters are useful in analyzing and restoring images that require the removal of periodic
noise patterns such as discussed in Section 9.2.2 (see Figure 9.2-6). The bandreject and
notch filters will eliminate or attenuate the noise, while the bandpass is useful for analyz-
ing the noise pattern itself.

The notch filter is a special form of a bandreject filter; instead of eliminating an entire
ring of frequencies in the spectrum, it only “notches” out selected frequencies. This type
of filter is most useful for an image that has been corrupted with a sinusoidal interference
pattern. This type of image degradation was often seen in poor analog broadcast televi-
sion images, and is also a common artifact in images that have been obtained where the
imaging device resides on some type of vibrating mechanical system—for example, a ship
or a satellite.

For this type of image degradation, the spectrum will reveal the problem. Figure 9.5-6b
and d shows the type of spectrum that result from the sinusoidal interference. Bright spots
in the spectrum corresponding to the interference can be seen. In Figure 9.5-6e and f, the
restored image and the spectrum are shown. The portions of the spectrum that were caus-
ing the interference have been removed, effectively eliminating the interference pattern
and noticeably improving the appearance of the image.

The bandreject filter is useful when the interfering periodic noise is at a fixed frequency,
but of varying orientation. For example, in Figure 9.5-7 we have an image that has both
horizontal and vertical sinsuiodal interference at a spatial frequency of 32 added to the

Image Restoration and Reconstruction	 589

© 2011 by Taylor & Francis Group, LLC

original 256 × 256 image. In this figure we see the corrupted image and its spectrum, and
the resulting image and its spectrum after performing an ideal bandreject filter with cutoff
of frequencies of 31 and 33. If we instead apply a bandpass filter we can extract the noise
interference pattern itself (Figure 9.5-8), thus providing a useful tool to analyze noise pat-
terns. (Remember that in CVIPtools the transform must be performed first, followed by
the filter operation. Additionally, as part of the filter operation, the inverse transform is
automatically performed.)

With natural images the interference patterns are not as simple and clean as those we
obtain by creating sinusoidal images and adding them using CVIPtools. Real world images
typically have more complex interference patterns, and analysis of the spectrum coupled
with experimentation is required to achieve satisfactory results. Figure 9.5-9 shows a much

(a) (b)

(c) (d)

Figure 9.5-6
Notch filter. (a) Original image, (b) spectrum of original image, (c) image corrupted with sinusoidal noise, (d)
spectrum of corrupted image; arrows point to contribution from interference, (e) image restored by notch filter-
ing, (f) spectrum of filtered image; arrows point to masked sinusoidal contribution, (g) resultant image further
enhanced by histogram techniques.

590	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

more complex interference pattern along with the results of the first step in attempting to
restore the image. Further processing to obtain a better image is left as an exercise for the
reader (Problem 27). The basic technique involves successive application of bandreject and
notch filters to remove prominent spikes in the spectrum. A more sophisticated method
involves extracting the interference patterns and then subtracting a variable, weighted
amount of the noise pattern from the original, degraded image. In this case, the weight
can be based on local image statistics; details of the procedure can be explored in the
references.

(e) (f)

(g)

Figure 9.5-6 (continued)
Notch filter. (a) Original image, (b) spectrum of original image, (c) image corrupted with sinusoidal noise, (d)
spectrum of corrupted image; arrows point to contribution from interference, (e) image restored by notch filter-
ing, (f) spectrum of filtered image; arrows point to masked sinusoidal contribution, (g) resultant image further
enhanced by histogram techniques.

Image Restoration and Reconstruction	 591

© 2011 by Taylor & Francis Group, LLC

9.5.7  Practical Considerations

Using the Fourier transform as defined in Chapter 5, care must be taken when implement-
ing the frequency domain filters. It is common practice to define the 2-D Fourier transform
with a constant, 1/N, in both the forward and inverse directions (as in Chapter 5), when it
actually has a 1/N2 term in the forward direction only. This is done for symmetry, and it

Image with added
sinusoidal
interference

Restored
image

Figure 9.5-7
Bandreject filter for removal of periodic noise. This image has horizontal and vertical sinusoidal waves added to
the original image. The original image is 256 × 256 pixels, and the noise frequency is 32. Here we see the image with
added noise and its spectrum, with arrows pointing to the sadded sinusoidal frequency in the spectrum. Below
these the restored image and its spectrum after application of the band reject filter are shown. The cutoff frequencies
for the band reject filter were 32 and 34, and the restored image underwent a histogram stretch for enhancement.

592	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

has no adverse effect on the Fourier transform pair, since this is a linear process. However,
it may affect the outcome of the frequency domain filters.

To avoid problems, the simplest method is to multiply each Fourier transformed image
by 1/N, perform the filter calculations, multiply by the degraded image, and then multiply
the result by N before passing it to the inverse Fourier transform. Note that for the power
spectral density ratios, the division by N is not required since any constant multipliers will

Image with added
sinusoidal
interference

Extracted noise
image

Figure 9.5-8
Bandpass filter for extraction of periodic noise patterns. This image has horizontal and vertical sinusoidal waves
added to the original image. The original image is 256 × 256 pixels, and the noise frequency is 32. Here we see
the image with added noise and its spectrum, and the extracted noise image and its spectrum after application
of the bandpass filter.

Image Restoration and Reconstruction	 593

© 2011 by Taylor & Francis Group, LLC

cancel when the ratio is taken. There are many different ways to deal with this problem,
but it must be considered and dealt with appropriately or the results can be incorrect.

Care must be taken so that the degradation image, h(r,c), and the noise image, n(r,c),
model the degradation process correctly. For example, most images are of type BYTE and
thus have a range of 0–255. Typically the degradation image magnitude should be normal-
ized, and the noise image should be mapped to the range of the added noise. Although
we have discussed dealing with zeros in H(u,v), it is also helpful to limit the gain of the

Image with
complex sinusoidal
interference

Result image
after extraction of
some noise spikes

Figure 9.5-9
A more realistic complex noise pattern caused by periodic interference. Here we see the image with a more com-
plex pattern of periodic noise, which is more like that found in natural images. We can see in its spectrum multiple
periodic spikes and lines. The result after extraction of some of the primary noise by a bandreject filter is shown.

594	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

restoration filter so that very small values in denominator will not overwhelm the result-
ing image. When the image has been restored, simple postprocessing image enhancement
methods, such as histogram equalization or a histogram stretch, can dramatically improve
the visual results (compare Figures 9.5-6e and g).

Other methods of image restoration are explored in the references, including advanced
preprocessing and postprocessing techniques to improve the results of the filters given
here. Although many of these other methods are more complex, the improvements
achieved are often minimal, or only applicable to a limited domain. Often image restora-
tion requires a combination of techniques and, as with many computer imaging tasks,
require application-domain specific information.

9.6  Geometric Transforms

The previous sections in this chapter have all been about modifying the brightness values
to restore a degraded image. It was assumed that the pixel location was correct. This sec-
tion has to do with images that have been spatially, or geometrically, distorted. Here we
will only consider 2-D distortion, which is adequate for most digital images. To restore
images that have undergone geometric distortion requires the application of geometric
transforms.

Geometric transforms are used to modify the location of pixel values within an image,
typically to correct images that have been spatially warped or distorted. These methods are
often referred to as rubber-sheet transforms, because the image is modeled as a sheet of rubber
and stretched and shrunk, or otherwise manipulated, as required to correct for any spatial
distortion. This type of distortion can be caused by defective optics in an image acquisi-
tion system, distortion in image display devices, or 2-D imaging of 3-D surfaces. The meth-
ods are used in map making, image registration, image morphing, and other applications
requiring spatial modification. It should be noted that the geometric transforms can also be
used in image warping where the goal is to take a “good” image and distort it spatially.

The simplest geometric transforms—translate, rotate, zoom, and shrink—have already
been discussed in Chapter 3. These transforms are limited to moving the pixels within
an image in a fixed, regular manner, and do not really distort the image, but merely
move pixel values. The more sophisticated geometric transforms, such as those dis-
cussed here, require two steps: (1) spatial transform and (2) gray-level interpolation. The
model used for the geometric transforms is seen in Figure 9.6-1. The spatial transform
provides the location of the output pixel, and the gray-level interpolation is necessary
since pixel row and column coordinates provided by the spatial transform are not nec-
essarily integers. The image is processed one pixel at a time, until the entire image has
been transformed.

Input image Spatial
transform

Gray level
interpolation

Output image

Figure 9.6-1
Geometric transforms.

Image Restoration and Reconstruction	 595

© 2011 by Taylor & Francis Group, LLC

9.6.1  Spatial Transforms

Spatial transforms are used to map the input image location to a location in the output
image; it defines how the pixel values in the output image are to be arranged. This process
can be modeled as in Figure 9.6-2, where the original, undistorted image, is I(r,c), and the
distorted (or degraded) image is d r,c()ˆ ˆ . The distorted image coordinates can be defined by
the two equations:

	
ˆ ˆr = R r,c(), defines the row coordinate foor the distorted image

(), definˆ ˆc =C r,c ees the column coordinate for the distorted image

The primary idea presented here is to find a mathematical model for the geometric distor-
tion process, specifically the two equations ˆ (,) ˆ (,)R r c C r cand and then apply the inverse
process to find the restored image.

The type of distortion considered may vary across the image, so different equations for
different portions of the image are often required. To determine the necessary equations,
we need to identify a set of points in the original image that match points in the dis-
torted image. These sets of points are called tiepoints, and are used to define the equations
ˆ (,) ˆ (,)R r c C r cand . The form of these equations is typically bilinear, although higher-order

polynomials can be used. The higher-order polynomials are much more computationally
intensive, and there is no guarantee of better results—in some cases, the results may
be worse (although it is wise to remember that we are dealing with subjective analysis
regarding better or worse, and that image restoration is more of an art than a science).

The method to restore a geometrically distorted image consists of three steps: (1) define quad-
rilaterals (four-sided polygons) with known, or best-guessed tiepoints for the entire image,
(2) find the equations ˆ (,) ˆ (,)R r c C r cand for each set of tiepoints, and (3) remap all the pixels
within each quadrilateral subimage using the equations corresponding to those tiepoints.

Figure 9.6-3 illustrates Step 1. The two images are divided into subimages, defined by the
tiepoints (Figure 9.6-3a). Figure 9.6-3b shows the center subimage from both the distorted and
the original images, and the corresponding tiepoints. The four corners are the tiepoints for
this subimage, and provide us with four pixels whose location is known in both images.

In Step 2, using a bilinear model for the mapping equations, these four points are used
to generate the equations:

	
ˆ ˆ

ˆ

R r,c = k r + k c + k r c + k = r

C

()

(

1 2 3 4

rr,c = k r + k c + k r c + k = c) 5 6 7 8 ˆ

The ki values are constants to be determined by solving the eight simultaneous equations.
Since we have defined four tiepoints, we have eight equations where r, c, r, cˆ ˆ are known—
two for each point, one mapping the row coordinate, and one mapping the column

I(r,c)
Geometric
distortion
r = R (r, c)
c = C (r, c)
ˆ
ˆ ˆ

ˆ)ˆ,̂(crd

Figure 9.6-2
Spatial transforms.

596	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

coordinate. Now we can solve the eight equations for the eight unknowns, and we have the
necessary equations for the coordinate mapping in Step 3.

Step 3 involves application of the mapping equations, ˆ (,) ˆ (,)R r c C r cand , to all the (r,c)
pairs in the corresponding quadrilateral in I(r,c). For example:

Example 9.6.1

Assume we have found the following mapping equations:

	
ˆ ˆ

ˆ

R r,c r c r c r

C r,c r c

() 5 3 3 2

() 1 1 2

= + + + =

= + + r c c+ =0 ˆ

To find I(2,3), substitute (r,c) = (2,3) into the above equations and we find

	
ˆ

ˆ

R r,c

C r,c

() 5 (2) 3 (3) 3 (2) (3) 2 39

() 1

= + + + =

= (2) 1 (3) 2 (2) (3) 0 17+ + + =

Now, we let I(2,3) = d(39,17).

I (r, c)
Images divided into quadrilateral subimages

Center subimage showing corresponding points, also
known as tie-points

d (r, c)

(a)

(b)

Figure 9.6-3
Restoring geometric distortion.

Image Restoration and Reconstruction	 597

© 2011 by Taylor & Francis Group, LLC

Assuming all the pixel value mappings worked out as well as the example, we could
recover our original image, I(r,c), exactly. However, in practice the ki values are not likely to
cooperate and be integers. The following example illustrates this.

Example 9.6.2

Assume we have found the following mapping equations:

	
ˆ ˆ

ˆ

R r,c r c r c r

C r,c

() 4.5 3 3.5 2.4

() 1.6

= + + + =

= r c r c c+ + + =1 2.4 0 ˆ

To find I(2,3), substitute (r,c) = (2,3) into the above equations and we find

	
ˆ

ˆ

R r,c() 4.5 (2) 3 (3) 3.5 (2) (3) 2.4 41.4= + + + =

CC r,c() 1.6 (2) 1 (3) 2.4 (2) (3) 0 20.6= + + + =

Now, we want to set I(2,3) = d(41.4,20.6).

The difficulty in the above example arises when we try to determine the value of d(41.4,20.6).
Since the digital images are defined only at the integer values for (r,c), gray interpolation
must be performed. In this case, we define ˆ(,)I r c as an estimate to the original image I(r,c)
to represent the restored image.

9.6.2  Gray-Level Interpolation

The simplest method of gray-level interpolation is the nearest neighbor method, where the
pixel is assigned the value of the closest pixel in the distorted image. In the above example
the value of ˆ(,)I 2 3 is set to the value of d(41,21), the row and column values determined by
rounding (0.5 and above is rounded up to the next highest integer) the ˆ ˆr cand result. This
method is similar to the zero-order hold described in Section 3.2.1 for image enlargement.
This method does not necessarily provide optimal results, but has the advantage of being
easy to implement and computationally fast. With the nearest neighbor approach, object
edges will tend to appear jagged or blocky.

Alternately, we can use a more advanced method to interpolate the value. In general
these methods will be more computationally intensive, but will provide more visually
pleasing results. Figure 9.6-4 illustrates how this is done. The four surrounding pixel val-
ues in the distorted image are used to estimate the desired value, and this estimated value
is used in the restored image. This can be done in a variety of ways. The easiest method is
to find a neighborhood average. This can be done one-dimensionally, using the adjacent rows
or columns, or it can be done two-dimensionally using all four neighbors. The selection is
application-specific, but in general the 2-D average of the four neighbors will provide a bet-
ter output image. The results are typically rounded to the nearest integer for most images.
The neighborhood average method will provide smoother object edges, but the result will
be slightly blurry.

598	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

To achieve better results, a technique similar to the method used to find the spatial
coordinates can be applied. This technique uses bilinear interpolation and is done with the
following equation:

	 g r,c k r k c k rc k() 1 2 3 4ˆ ˆ ˆ ˆ ˆˆ= + + +

where () the gray level interpolatingg r,cˆ ˆ = equation

Note that these constants, ki , are different than the constants used in the spatial map-
ping equations. The four unknown constants are found by using the four surrounding
points shown in Figure 9.6-4. The values for row and column, ()ˆ ˆr, c , and the gray-level
values at each point are used.

Example 9.6.3

Suppose the four surrounding points are as follows:

	 d r, c d d d() (1,2) 50, (1,3) 55, (2,2) 44ˆ ˆ → = = = ,, (2,3) 48d =

Then we define the following four equations, and solve for the constants, ki :

	

50 (1) (2) (1)(2)

55 (1) (3)

= + + +

= + +

k k k k

k k k

1 2 3 4

1 2 3((1)(3)

44 (2) (2) (2)(2)

48 (2

+

= + + +

=

k

k k k k

k

4

1 2 3 4

1)) (3) (2)(3)+ + +k k k2 3 4

X X

X X

X = tiepoints

X

d (r, c)

= d (r, c) point we want to map to I (r, c)  

= points used in determining gray
 level interpolation equations

  I (r, c)



X

X

X

Figure 9.6-4
Gray-level interpolation. If the values found by the mapping equations yield noninteger values for (r̂,ĉ), then the
corresponding gray-level value must be approximated by the surrounding pixel values.

Image Restoration and Reconstruction	 599

© 2011 by Taylor & Francis Group, LLC

Solving these equations simultaneously gives us

	
k k k k

g r,c r

1 = − = = − =

∴ = − +

4, 6, 1, 44

() 4 6

2 3 4

ˆ ˆ ˆ c r cˆ ˆ ˆ− + 44

After the equation, g r, c()ˆ ˆ , is found, the interpolated value can be determined. To do this we
insert the noninteger values for row and column into the gray-level interpolating equation,
and the resulting g r, c()ˆ ˆ value is the interpolated gray-level value.

Example 9.6.4

The preceding example assumes that the row and column coordinates are between rows 1
and 2, and column 2 and 3; for example ˆ ˆr = c =1.3 and 2.6 . Applying these values to the pre-
ceding gray-level interpolating equation, we obtain

	 g(1.3,2.6) 4(1.3) 6(2.6) (1.3)(2.6) 44 51.= + − + =− 002 51≈

The gray-level value of 51 (or 51.02 can be used if the image is of FLOAT data type) is then inserted
into the restored image at the row and column location used to generate ˆ ˆr c= =1.3 and 2.6
from the mapping equations.

Figure 9.6-5 illustrates geometric restoration and compares the three gray-level interpola-
tion methods discussed.

For applications requiring even higher quality results, such as medical imaging or com-
puter-aided design (CAD) graphics, more mathematically complex methods can be used.
For example, cubic convolution interpolation will fit a smooth surface over a larger group of
pixels to provide a reasonably optimal gray-level value at any point on the surface. The
added computational complexity is not necessary for many computer imaging applica-
tions, where the results from bilinear interpolation are usually adequate. Details on this
and other more complex methods can be found in the references.

9.6.3  Geometric Restoration Procedure

Now that all the required tools have been discussed, using tiepoints for spatial transfor-
mation and three methods for gray-level interpolation, we present the complete procedure
in more detail for restoring an image that has undergone geometric distortion. The proce-
dure is as follows:

	 1.	Find tiepoints throughout the image mapping the distorted image, d r c(ˆ, ˆ) to the
restored image, ˆ(,)I r c . ˆ(,)I r c is the estimate to the original, undistorted image I(r,c).

	 2.	For each quadrilateral find the equations for ˆ (,) ˆ (,)R r c C r cand .
	 3.	For each value of (r,c) in ˆ(,)I r c , apply the equation pair, ˆ (,) ˆ (,)R r c C r cand , corre-

sponding to the mapped quadrilateral to find (ˆ, ˆ)r c .
	 4.	Perform the selected method of gray-level interpolation using the values for (ˆ, ˆ)r c

found in Step 3 to find the gray value for ˆ(,)I r c .
	 5.	Continue Steps 3 and 4 until all values for ˆ(,)I r c are found and we have our

restored image.

600	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 9.6-5
Geometric restoration example. (a) Original image, (b) a mesh defined by 25 tiepoints, (c) the original image
after distortion or geometric warping by the mesh, (d) restoration by nearest neighbor method shows the blocky
effect that occurs at the edges, (e) restoration with neighborhood averaging interpolation provides smoother-
edges, but also blurs the edges, (f) restoration by bilinear interpolation provides optimal results, but is the most
complex method.

Image Restoration and Reconstruction	 601

© 2011 by Taylor & Francis Group, LLC

Many variations of this method are possible. For example, the shape of the tiepoint polygons
need not be quadrilaterals. They could be triangles, or they could vary throughout the image
depending on the needs of the application. Other gray-level interpolation methods are possi-
ble, and the three presented here are representative and commonly used. Gray-level interpo-
lation is simply a mathematical estimation problem and numerous techniques may be used.

In cases where images of the same scene are taken from multiple views and we want to
match them, the geometric transformation process to map the images to a common coordi-
nate system is called image registration. Image registration methods employ the techniques
discussed here and in some cases may require more complex three-dimensional trans-
formations. These transformations, along with the myriad of other methods available for
geometric restoration, can be explored further in the references.

9.6.4  Geometric Restoration with CVIPtools

To perform geometric restoration or distortion in CVIPtools select the Restoration → Geometric
Transforms window. To create mesh files, which are used to warp and restore images, select
the Enter a new mesh file option. The mesh file contains the coordinates of the tiepoints in
the image. The user can select the number of tiepoints, which determines how many points
will be in the distortion grid or mesh, and then enter the points on an image by holding
the Alt key on the keyboard and left-clicking the mouse at the point of interest. CVIPtools
will automatically connect the points and display them as an overlay on the image (see
Figure 9.6-6). The mesh overlay can be displayed or removed with the right mouse button
followed by a left-click. After a mesh has been created it can be saved as a mesh file with
the Save Mesh button. After a mesh file has been saved it can be loaded and used to warp
or restore an image with the Use an existing mesh file option.

Example of
mesh point
selection
order

Figure 9.6-6
CVIPtools geometric restoration window. This figure shows CVIPtools after creation of a 5 × 5 mesh on a test
image. The mesh is created on the current image by selecting the Enter a new mesh file option, selecting the mesh
size, here 5 × 5, and then holding the Alt key on the keyboard and clicking the left mouse button at the desired
points. The order of the point selection is left to right and top to bottom, as the 3 × 3 example on the Restoration
window shows. As the points are selected, the column and row coordinates appear in the window. If a mistake
is made during the mesh point selection process, you can start over by clicking the Redo button.

602	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Image Restoration and Reconstruction	 603

© 2011 by Taylor & Francis Group, LLC

After the mesh file has been created or loaded, the user selects the direction for the
mapping. The choices are from a regular to an irregular gird, Regular → Irregular, or from
an irregular to a regular gird, Irregular → Regular. In a regular grid, the quadrilaterals are
all square, whereas in an irregular gird the quadrilaterals are warped. This is best shown
by example, see Figure 9.6-7. In Figure 9.6-7c imagine a regular grid, like the background
checkerboard, being overlaid on the original image and then being warped to the mesh
overlay shown in Figure 9.6-7b. In Figure 9.6-7e imagine the distorted mesh being overlaid
on the original image, and then it being stretched to a regular grid.

After the mapping direction is selected the user can select one of the three gray-level
interpolation methods: (1) nearest neighbor, (2) bilinear interpolation, or (3) neighborhood
average. To restore an image that has been warped or distorted, simply select the distorted
image and reverse the direction, as is shown in Figure 9.6-7d and f. Note that artifacts
occur at the grid boundaries, and we see in Figure 9.6-7f that pixels beyond the boundaries
of the mesh (compare Figure 9.6-7b and f at the edges), cannot be recovered.

CVIPtools can also be used to restore a color image that has been geometrically distorted
or warped, as shown in Figure 9.6-8. The underlying assumption is that each of the color
bands has undergone the same distortion. Here we show the distortion grid (the mesh over-
lay) on the distorted image, and imagine it being used to stretch the original image from a
regular grid. Once again, we see that boundary artifacts may occur if an edge exists at or
near a quadrilateral boundary; but note that the artifacts exist in the distorted image itself.

A new addition to the CVIPtools geometric restoration functionality is the ability to
move the points on an existing mesh. Figure 9.6-9 illustrates how this is done. First we load
the mesh file as shown in Figure 9.6-9b. Next, press the ALT-key on the keyboard and use
the left mouse button to grab a point. When this is done, the cursor turns to a cross (or plus
sign, +) and the point can be dragged to a new point. Figure 9.6-9c shows an example after
the points have been moved. The remaining images in the figure show the image after
being warped and being restored.

9.7  Image Reconstruction

In this chapter the primary emphasis is on the restoration of an image that has been
degraded or distorted, typically during the image acquisition process. In this section we
focus on image reconstruction, which is a method to create an image from a sequence of
projections. Each projection represents the image as seen from a specific angle. By combin-
ing projections from many angles we can reconstruct an approximation to the complete
image. We consider the reconstructed image to be an approximation because during the
acquisition process various artifacts arise depending on the imaging model used.

The imaging modalities that require the reconstruction techniques are used extensively
in medical image processing and analysis, as well as in manufacturing and scientific

Figure 9.6-7 (Opposite)
Regular and irregular image mappings in CVIPtools. (a) Original image, (b) image with the distortion mesh
overlay, (c) original image distorted by Regular → Irregular mapping. Note that the image matches the mesh
overlay. Imagine starting with a regular grid and distorting it to match the mesh. (d) image (c) restored by
Irregular → Regular mapping, (e) original image distorted by Irregular → Regular mapping. Imagine placing
the mesh on the original image, and then pulling the mesh into a regular grid. (f) Image (e) restored by
Regular → Irregular mapping.

604	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

applications where we want to look inside of an object without cutting it open. A tomogram
is an image of a plane or a slice within a three-dimensional object, such as the human
body. Computed tomography (CT) is the process of using the tomograms to recreate a 3-D
model of the underlying structures. CT is used in x-ray CT, magnetic resonance imag-
ing (MRI), single photon emission computed tomography (SPECT), and positron emission
tomography (PET). These imaging modalities create 2-D images of slices or sections by
recording projections at many angles around the object. These 2-D slices can then be put
together to create three-dimensional models of the underlying structures. The two most
frequently used algorithms to reconstruct images from projections are backprojection for
x-ray CT, PET, and SPECT and direct Fourier reconstruction for MRI.

9.7.1  Reconstruction Using Backprojections

The basic idea behind image reconstruction from projections is illustrated in Figure 9.7-1.
Here we see the input beam, such as x-rays, scanning an object and measurements being

(a) (b)

(c) (d)

Figure 9.6-8
Geometric restoration with a color image. (a) Original image, (b) image distorted by Regular → Irregular mapping
(c) distorted image showing the distortion mesh overlay, (d) restored image. Boundary artifacts may occur if an
edge exists at or near a quadrilateral boundary; but note that they exist in the distorted image itself.

Image Restoration and Reconstruction	 605

© 2011 by Taylor & Francis Group, LLC

(a)

+

(b)

(c) (d)

(e) (f)

Figure 9.6-9
CVIPtools geometric restoration—moving points on the mesh grid. (a) Original image, (b) image with an exist-
ing mesh overlay. Points on the mesh grid are moved by using the ALT-Key and the keyboard in conjunction
with the left mouse button. When the ALT-key is pressed, and the mouse is moved over a point, the cursor turns
to a “ + ”, and the point can be grabbed and dragged. (c) The mesh overlay after points have been moved, (d)
Image warped with the new mesh using Regular → Irregular, (e) image restored using Irregular → Regular with the
mesh overlay, (f) resultant image without the mesh overlay.

606	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

made on the opposite side. In the case of medical imaging, the black background repre-
sents internal soft body tissue and the circle a tumor. Assuming the amount of energy
absorbed by the tumor is higher than the surrounding tissue a one-dimensional (1-D) sig-
nal will be detected as shown in Figure 9.7-1a. A strip of x-ray absorption detectors will
measure the amount of energy absorbed throughout scene. The 1-D absorption signature
is then back propagated across the image, by replicating the detected signal across all the
columns as shown in Figure 9.7-1c, creating the backprojection. Figure 9.7-1d shows the sum
of the vertical and horizontal backprojections.

In Figure 9.7-2 we see the 2-D image, or slice, being created by a series of one-dimensional
backprojections. As we add the diagonal backprojections to the horizontal and vertical we
begin to see the object forming. Here we also see the star artifact (Figure 9.7-2e), which is

(a)

(b) (c)

Input beam Detector strip

Detection of absorption
(Projection)

Figure 9.7-1
Backprojection. (a) The input beam of rays scanning the object, the absorption information creates the projec-
tion, (b) the backprojection is the result of the projection being back propagated by duplicating it along all image
columns, (c) the result of summing the back projections of the vertical and horizontal scan.

Image Restoration and Reconstruction	 607

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 9.7-2
Creation of image by backprojections. (a) Original object, (b) the image created from the addition of the hori-
zontal and vertical backprojections, (c) one of the diagonal backprojections, (d) the diagonal projection added to
the vertical and horizontal backprojections, (e) adding the other diagonal backprojection creates this image, and
shows the star artifact, a form of blurring, (f) the final image reconstructed from 32 equally spaced backprojec-
tions, note that it is still blurry.

608	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

really a form of blurring and illustrates that creation of the image via this method is only
an approximation to the “real” image. As the number of backprojections is increased the
approximation is improved. The final image shows the result of adding 32 equally spaced
backprojections. Notice that some blurring still appears in the image. The blurring artifact
can be compensated for by filtering the projection before the backprojection is created.

To compensate for the blurring we typically use a sharpening filter that will attenuate
low frequencies while boosting high frequencies. Commonly used filters for this purpose
include a ramp, Shepp–Logan, cosine and the Hamming filter. These 1-D filter profiles are
shown in Figure 9.7-3. The ramp is a filter with gain proportional to frequency, so it boosts
the high frequencies while cutting the low frequencies. However, the ramp also increases
any high frequency noise inherent in the image. To reduce the high frequency noise a fil-
ter such as the Shepp–Logan, cosine or the Hamming filter is used. The Shepp–Logan fil-
ter’s high frequency gain is relatively flat, while the cosine and Hamming attenuates high
frequencies. In general, a softer material requires a more gradually changing filter model,
where we are willing to sacrifice some loss of spatial resolution (which results in blurring)
to improve noise mitigation. However, with harder, rigid materials, such as bone or metal,
a filter closer to the ramp will enhance the edges at the cost of more noise in the resultant
image.

9.7.2  Radon Transform

The Radon transform defines an image in terms of its projections. As we acquire projec-
tions around the object by varying the angle we get the 2-D Radon transform. The inverse
2-D Radon transform recreates the image, and is the equivalent of superimposing, or

Frequency

Gain

0

Ramp

Shepp–logan

Cosine

Hamming

Figure 9.7-3
Common filters for filtering projections. Backprojection creates a blurring artifact that can be compensated for
by filtering the projections before they are back propagated. Here are the one-dimensional filter profiles of com-
monly used filters shown from zero to maximum frequency. In general, a ramp-like filter is desired for harder,
more rigid objects, so that the edges are sharper even though the resultant image will have more noise.

Image Restoration and Reconstruction	 609

© 2011 by Taylor & Francis Group, LLC

summing, the backprojections as was done in the previous section. Using the normal rep-
resentation of a line (as we did in Chapter 4 with the Hough transform), Figure 9.7-4 shows
the projection as a function of (ρ,θ), which is the Radon transform, and is also defined by
a line integral:

	 projection I r c I r c dl
L

(,) [(,)] (,)ρ θ = = ∫Radon

Note that in the discrete case the projection is simply the sum across the image as shown
in Chapter 3 (see Figure 3.3-8). For the 2-D Radon transform the angle is varied around the
entire object being imaged.

Example 9.7.1

Find the Radon transform for the following 4 × 4 image with θ = 90°, then find the
backprojection.

Note: θ = 90° is the same as the horizontal projection

Original image

1 1 1 1
1 3 3 1
1 3 3 1
1 1 1 1

:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Random transform at 90

4
8
8
4

θ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ο :

Column, c

Projection (ρ, θ) = Radon[I(r, c)] = ∫L
I(r, c)dl

Row, r

θ

I (r,c)

ρ

Line, L

Figure 9.7-4
The Radon transform and projections. In this image blue is denser than yellow, and the projection is shown by
the red line. The 2-D radon transform is created by varying θ over all angles.

610	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Backprojection from the Radon transform at θθ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ο90

4 4 4 4
8 8 8 8
8 8 8 8
4 4 4 4

:

Example 9.7.2

Find the Radon transform for the following 4 × 4 image with θ = 45°, then find the
backprojection.

Note: θ = 45° is the same as the diagonal projection

Original image

1 1 1 1
1 3 3 1
1 3 3 1
1 1 1 1

 :

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Radon transform at

1
2
5
8
5
2
1

θ = 45

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

ο :

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Backprojection from the Radon transform at θθ = 45 :

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ο

8 5 2 1
5 8 5 2
2 5 8 5
1 2 5 8

Note that we only need to calculate projections from 0° to just less than 180°, as the projec-
tions at 0° and 180° are the same. In general, projections 180° apart are the same as they
are on the same line—like the projections at 90° and 270° and so on. We have seen how
the Radon transform provides a tool that helps link image reconstruction with backprojec-
tions. Next we consider how the Radon transform (projections) and the Fourier transform
are used for direct reconstruction of images using the Fourier-slice theorem.

9.7.3  Fourier-Slice Theorem and Direct Fourier Reconstruction

The Fourier-slice theorem, also called the Central-slice theorem and the Projection-slice theorem,
establishes a link between the 1-D Fourier transform of a projection and the 2-D Fourier
transform of the scene being imaged. The Fourier-slice theorem states that the 1-D Fourier
transform of a projection is equivalent to a slice through the 2-D Fourier transform of the
image at the same angle as the projection. This is illustrated in Figure 9.7-5. Here we see the
image on the left and its Fourier spectrum on the right. A projection at an angle θ is shown as

Image Restoration and Reconstruction	 611

© 2011 by Taylor & Francis Group, LLC

a red line. In the figure, the 1-D Fourier transform of the projection is shown as a slice (line)
through the 2-D spectrum of the image. This is the essence of the Fourier-slice theorem.

With this we can relate the Radon transform to the Fourier spectrum—remember the
projection is the Radon transform and the Fourier-slice theorem connects the projection
and the Fourier spectrum. This is useful for cases where the measured data is Fourier data,
such as in MRI imaging. In these cases we use direct Fourier reconstruction to reconstruct
the image. The direct Fourier reconstruction method takes the 1-D Fourier transform of
each projection, or of the Radon transform, and creates the 2-D Fourier spectrum by com-
bining the 1-D spectra at the angles corresponding to the projection angles. Now we can
take the inverse 2-D Fourier transform to recreate the image directly.

9.8  Key Points

Introduction and Overview

•	 Image restoration is the process of finding an approximation to the degradation
process and finding the appropriate inverse process to estimate the original image
(Figure 9.1-1).

•	 Restoration differs from enhancement because it uses a mathematical model for
image degradation.

•	 Examples of the types of degradation include blurring caused by motion or
atmospheric disturbance, geometric distortion caused by imperfect lenses,

F (u,v)

θ

2-D Fourier transform

1-D Fourier transform

IMAGE SPECTRUM

Column, c

θ

Line, L

Row, r

I (r,c)

Figure 9.7-5
The Fourier-slice theorem. Here we show the image on the left and the Fourier spectrum on the right. The pro-
jection at the angle θ is shown as a red line. The Fourier-slice theorem states that the 1-D Fourier transform of a
projection is the slice (line) through the 2-D Fourier transform of the image at the angle θ. By this we mean the 1-D
Fourier transform of the projection are the Fourier coefficients along the slice through the 2-D image spectrum.

612	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

superimposed interference patterns caused by mechanical systems, and noise
from electronic sources.

•	 The types of degradation models include both spatial and frequency domain
considerations.

•	 In general image restoration is more of an art than a science.
•	 Image reconstruction is a method to create an image from a sequence of projections.

System Model

•	 Spatial domain:

	 d r,c h r,c * I r,c n r,c() () () ()= +

		

where
the * denotes the convolution process
d(() degraded image
() degradation
r,c

h r,c
=
= function

() original image
() a
I r,c
n r,c

=
= ddditive noise function.

•	 Due to the convolution and linearity properties of the Fourier transform, the fre-
quency domain model is

	 D u,v H u,v I u,v N u,v() () () ()= +

		

where
() Fourier transform of the degrD u,v = aaded image
() Fourier transform of theH u,v = degradation function
() Fourier transI u,v = fform of the original image
() FourierN u,v = ttransform of the additive noise function.

•	 Alternately, a multiplicative noise model can be defined, where we take the loga-
rithm of the degraded image to decouple noise and image.

Noise Models

•	 Noise is any undesired information that contaminates an image.
•	 Noise appears from the digital image acquisition process, where fluctuations

caused by natural phenomena add a random value to the exact brightness value
for a given pixel.

•	 Noise in electronics is affected by environmental conditions such as temperature,
which varies over time.

•	 Other types of noise, such as periodic noise, may be introduced during the acqui-
sition process as a result of the physical systems involved.

Noise Histograms

•	 We consider noise to be a random variable with a probability density function
(PDF) to describe its shape and distribution.

Image Restoration and Reconstruction	 613

© 2011 by Taylor & Francis Group, LLC

•	 The histogram of a noise image approximates the PDF.
•	 Typical image noise models are uniform, Gaussian, and salt-and-pepper (impulse).
•	 Gaussian model is valid for random electron fluctuations and film grain noise.
•	 Electronic noise is problematic with poor lighting or high temperatures

	
Gaussian

() /2
HISTOGRAM

1
2

2 2
= −

e g m

πσ
σ

2
−

		

where
gray level
mean (average)
stand

g
m
=
=
=σ aard deviation (variance).2σ =

•	 Uniform PDF can be used to generate any other noise model.
•	 Uniform noise is used to evaluate image restoration algorithms, as it is the most

unbiased.

	 UniformHISTOGRAM

1
for

0

= b a
a g b

−
≤ ≤

eelsewhere.

⎧

⎨
⎪

⎩
⎪

•	 Salt-and-pepper noise, also called shot, spike, or impulse noise is typically caused
by faulty electronics

	 Salt & PepperHISTOGRAM
for (

=
A g = a ppepper)

for (salt)B g = b

⎧
⎨
⎪

⎩⎪

•	 Radar range and velocity image noise is modeled by Rayleigh noise

	 RayleighHISTOGRAM
2 2

=
g
e g /

α
α−

•	 Negative exponential noise occurs in laser-based images

	 Negative ExponentialHISTOGRAM = e
g− α

α

•	 In lowpass filtered laser-based images the noise can be modeled as gamma noise

	 Gamma

1

HISTOGRAM (1)!
=

g
a

e
g a

α

αα

−
−

−

Periodic Noise

•	 Periodic noise in images is typically caused by electrical and/or mechanical systems,
such as engine vibration or electrical system interference during image acquisition.

614	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 It appears in the frequency domain as impulses corresponding to sinusoidal inter-
ference (see Figure 9.2-6).

•	 It can be removed with bandreject and notch filters (Section 9.5.6).

Estimation of Noise

•	 Find an image (or subimage) that contains only noise, and use its histogram for
the noise model.

•	 Noise only images can be acquired by aiming the imaging device (e.g., camera) at
a blank wall.

•	 If we cannot find “noise-only” images, select a portion of the image with a known
histogram, subtract the known values from the histogram, only noise is left.

•	 To develop a valid model many such subimages need to be evaluated and aver-
aged in some manner.

Noise Removal Using Spatial Filters

•	 Spatial filters typically operate on small neighborhoods, 3 × 3–11 × 11.
•	 The degradation model used for this section assumes that h(r,c) causes no

degradation:

	 d r,c = I r,c + n r,c() () ()

•	 The two primary categories of spatial filters for noise removal are order filters and
mean filters.

•	 Order filters work by ordering the pixels based on brightness values and using the
ordered list to select the “correct” value.

•	 Order filters work best with salt-and-pepper, negative exponential, or Rayleigh
noise.

•	 The order filters are nonlinear, so their results are sometimes unpredictable.
•	 Mean filters measure some form of average value.
•	 Mean filters work best with Gaussian or uniform noise.
•	 Mean filters have the disadvantage of blurring the image details, they are lowpass

filters.
•	 A tradeoff exists between preservation of image detail and noise elimination.
•	 Adaptive filters change their behavior based on local gray-level characteristics

(statistics), so are more effective at preserving detail while removing noise.

Order Filters

•	 Order filters use a technique called order statistics that arranges all the pixels in
sequential order, based on gray-level value (pixel brightness).

•	 The placement of the value within this ordered set is referred as the rank.

•	 These filters operate on small subimages, windows, and replace the center pixel.
•	 The median filter selects the middle value from the ordered set.

Image Restoration and Reconstruction	 615

© 2011 by Taylor & Francis Group, LLC

•	 Median filters work well with salt-and-pepper noise.
•	 The maximum filter selects the largest value, works with pepper noise.
•	 The minimum filter selects the smallest value, works with salt noise.
•	 The midpoint filter selects the average of the minimum and maximum value, use-

ful for Gaussian and uniform noise.
•	 The alpha-trimmed mean is the average of the ordered set, with some endpoint val-

ues excluded.
•	 The alpha-trimmed mean varies from a mean to a median filter, so is useful for

images containing multiple noise types:

	
ordered set

Alpha-trimmed me

1 2 2I I ... I N→ ≤ ≤ ≤

aan
1
22

1

2

=
N T

I
i=T+

N T

i
−

−

∑

	 where T is the number of pixel values excluded at each end of the ordered set, and
can range from 0 to (N2 – 1)/2.

Mean Filters

•	 M ean filters function by finding some form of an average with an N × N
window.

•	 The arithmetic mean filter will blur an image and is useful for Gaussian, gamma,
and uniform noise:

	
arithmetic mean

1
()

2
()

=
N

d r,c
r,c W∈
∑

		 where N2 = the number of pixels in the N × N window, W.
•	 The contra-harmonic mean filter, works well for images containing salt (for negative

R) or pepper (for positive R) noise:

	 contra-harmonic mean

()
()

1

(

=

d r,c
r,c W

R+

∈
∑

rr,c W

Rd r,c
)

()
∈
∑

•	 The geometric mean filter works best with Gaussian noise, and retains detail infor-
mation better than an arithmetic mean filter:

	
geometric mean [()]

(

= d r,c

r,c

N∏ 1 2

))∈W

616	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The harmonic mean filter works well for salt and Gaussian noise

	 harmonic mean
1
()

2

()

= N

d r,c
r,c W∈
∑

•	 The Yp mean filter, removes salt noise for negative values of P, and pepper noise for
positive values of P:

	 p

P

r,c W

P

Y m =
d r,c

N
ean

()

1

()
2

∈
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Adaptive Filters

•	 Adaptive filters alter their behavior based on local statistical measures, which allows
them to retain image detail while still removing noise.

•	 These local measures can be based on order statistics or standard statistics.
•	 These local measures typically involve image brightness and contrast.
•	 The minimum-mean-squared error (MMSE) filter works best for Gaussian or uniform

noise.

	
MMSE () () ()= − −[]d r,c d r,c m r,cn

l
l

σ
σ

2

2

		

where
noise variance
local varianc

σ
σ
n

l

2

2

=
= ee (in the window under consideration)
lml = oocal mean (average in the window under conssideration).

•	 The noise to local variance ratio, σ σn l
2 2/ , controls the amounts of the degraded

image retained and mean added.
•	 As this ratio increases the filter returns primarily the local average.
•	 As this ratio goes down, implying high local detail, the filter returns more of

the original unfiltered image.
•	 The adaptive median filter is algorithmic in nature and retains detail much better

than the standard median
•	 The adaptive median filter algorithm:

		 d r c
W N N
(,) =
→ ×

the degraded image
the current window centered at ()
maximum win

d r c
Wmax

,
= ddow size
minimum gray level in the wingmin = ddow,
maximum gray level in
me

W
g W
g
max

med

=
= ddian gray level inW

Image Restoration and Reconstruction	 617

© 2011 by Taylor & Francis Group, LLC

		

Level 1:
If
Then go to Level

g g gmin med max< <()
2

Else increase window size, 2
If w

N N= +
iindow size

Then go to Level 1
Else o

() ≤Wmax

uutput ().
Level 2:

If

=

< <(

d r c

g d r c gmin max

,

(,)))
=
=

Then output ()
Else output

d r c
gmed

,

•	 The anisotropic diffusion filter is an iterative filter that removes more noise with each
iteration.
•	 It adapts to the underlying image characteristics.
•	 Diffusion coefficient controls the smoothing rate and is a function of the image

gradient so that details in the image are retained.
•	 Diffusion (smoothing) decreases as gradient strength increases.

The Degradation Function

•	 Degradation occurs in the form of blurring due to the signal fluctuating during the
measured time interval, imperfect lenses, motion of the object or imaging device,
and spatial quantization.

•	 The degradation is either spatially invariant or spatially variant.
•	 Spatially invariant degradation affects all pixels in the image the same.
•	 Examples of spatially invariant degradation includes poor lens focus and camera

motion.
•	 Spatially variant degradations are dependent on spatial location and are more dif-

ficult to model.
•	 Examples of spatially variant degradations include imperfections in a lens or

object motion.
•	 Spatially variant degradations can often be modeled as being spatially invariant

over small regions.
•	 Image degradation functions can be considered to be linear or nonlinear.

Point Spread Function

•	 Assuming no additive noise:

	 d r,c h r,c * I r,c() () ()=

		 where the * denotes the convolution process.
•	 h(r,c) is called the point spread function (PSF), or the blur function.

618	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The PSF of a linear, spatially invariant (shift invariant) system can be empirically
determined by imaging a single point of light.

•	 The PSF completely characterizes a linear, spatially invariant system.
•	 The PSF for motion blur is a rectangular or Gaussian function (see Figure 9.4-1).
•	 PSF blur models can be simulated in CVIPtools with Utilities → Filter → Specify a

Blur.

Modulation/Optical Transfer Function

•	 Assuming no additive noise:

	 D u,v = H u,v I u,v() () ()

•	 The Fourier transform of the degradation function, H(u,v), is also referred to as the
modulation transfer function (MTF), or the optical transfer function (OTF).

•	 The MTF typically refers to the transfer function of the system.
•	 The OTF refers to the transfer function of the optics in the system.
•	 The MTF completely characterizes a linear, spatially invariant system.
•	 Motion blur along the column axis from a camera with a mechanical shutter:

	
H u v

STv
Sv

(,)
sin()

=
π
π

		 where
			 S = the constant speed in the direction of the column axis
			 T = the time interval the shutter is open.

Estimation of the Degradation Function

•	 The degradation function can be estimated primarily by combinations of: (1) image
analysis, (2) experimentation, and (3) mathematical modeling.

•	 Image analysis: examine a known point or line in an image, and estimate the PSF
by measuring the width and distribution of the known feature in the blurred
image.

•	 Experimentation: (1) The PSF can be found by imaging a point of light, if the system
is available and the conditions under which the image was acquired have not changed and
(2) a more reliable method is to use sinusoidal inputs at many different spatial
frequencies to find the MTF, H(u,v).

•	 Mathematical modeling examples: (1) the motion blur model:

	 H(u, v) = sin(πSTv)/πSv

(2) atmospheric turbulence degradation model used in astronomy and remote sensing:

	 H u v e k u v(,) = − +()2 2 5 6

		 where k is an experimentally determined constant.

Image Restoration and Reconstruction	 619

© 2011 by Taylor & Francis Group, LLC

•	 Mathematical models, image analysis, and lots of experimentation, combined
with the experience and intuition of the expert are often necessary to estimate the
degradation function successfully.

Frequency Domain Filters

•	 The frequency domain filters are based on the mathematical model provided in
Section 9.1.1:

	 D u,v = H u,v I u,v + N u,v() () () ()

•	 Application of the restoration filter is as follows:

	 ˆ ˆI r,c F I u,v F R u,v D u,vtype() [()] () ()1 1= = ⎡⎣
− − ⎤⎤⎦

		 where

			

ˆ ,I r c =() the restored image, an approximatioon to ()
[] = the inverse Fourier tra1

I r,c

F
− nnsform

() = the Restoration (frequentypeR u,v ccy domain) filter,
the subscript defines tthe type of filter.

•	 These filters assume the image and noise functions are stationary, which means
spatial frequency content is fairly constant across the entire image.

•	 The noise function can be assumed stationary (Figure 9.2-5).
•	 The stationary assumption is invalid for most real images, and adaptive filtering

can help manage this problem.

Inverse Filter

•	 The inverse filter model assumes no noise:

	 D u v H u v I u v(,) (,) (,)= + 0

•	 Inverse Filter = Rinv(u, v) = 1/H(u, v).
•	 In practice the assumption of no noise is usually invalid and the noise term will

obscure the image at high frequencies.
•	 The faulty noise assumption can be handled by (1) limit the filter radius, (2) limit

the filter gain, and (3) use the pseudoinverse filter.

	 pseudoinverse filter
for

= =R u v H u v
H

PI (,) (,)
1

≠≠

=

⎧

⎨
⎪

⎩⎪

0

00 for H

•	 In practice the gain of the pseudoinverse is set to 0 when the magnitude of H(u,v)
goes below a user specified threshold.

620	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Wiener Filter

•	 The Wiener is a minimum mean-square estimator which theoretically minimizes
average error.

•	 Wiener filter equation for an N × N image:

	
W

n

I

R u,v =
H u,v

H u,v + S u,v

S u,v

()
()

()
()
()

2

*
⎡

⎣
⎢⎢

⎤

⎦
⎥

		 where

			

H u,v = H u,v

S u,vn

* () complex conjugate of ()

()= N u,v =

SI

2
() power spectrum of the noise

(() () power spectrum of the or
2

u,v = I u,v = iiginal image.

•	 The Wiener filter response is reduced at high frequencies compared to an inverse
filter (see Figure 9.5-3) due to the power spectrum ratio, [Sn(u, v)/SI(u, v)].

•	 The Practical Wiener filter replaces the power spectrum ratio with an experimentally
determined constant, because in real applications SI(u,v) cannot be determined:

	 WR u,v =
H u,v

H u,v + K
()

()

()
2

*

Constrained Least Squares Filter

•	 Instead of a constant for the power spectrum ratio, as in the Practical Wiener,
the constrained least squares (CLS) filter has a function that varies with frequency.

•	 The CLS filter includes a smoothing criterion function in its development to elimi-
nate artifacts from filters such as Wiener filters:

	
CLSR u,v =

H u,v

H u,v + P u,v
()

()

() ()
2 2

*

γ

		 where
		 γ = adjustment factor
		 P(u,v) = the Fourier transform of smoothness criterion function.
•	 Referring to Figure 9.5-3 we want P(u,v) to make RCLS(u,v) act as a lowpass filter, so

it is actually a highpass in the denominator.

Geometric Mean Filters

•	 The geometric mean filter equation provides a general form for the frequency
domain restoration filters:

	
GMR u,v =

H u,v

|H u,v |

H
()

()

()
2

1

α

α

*⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

** ()

()
()
()

2

u,v

|H u,v | + S u,v

S u,v
n

I

γ
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Image Restoration and Reconstruction	 621

© 2011 by Taylor & Francis Group, LLC

		 With α and γ being positive real constants.
•	 For α = 1/2 and γ = 1, this filter is called a power spectrum equalization filter.

•	 For α = 0, this filter is called a parametric Wiener(PW) filter:

	 PW
n

I

R u,v =
H u,v

H u,v + S u,v

S u,v

()
()

()
()
()

2

*

γ
⎡⎡

⎣
⎢

⎤

⎦
⎥

•	 For γ = 1, the PW is a standard Wiener filter.
•	 For γ = 0, the PW is the inverse filter.
•	 With the PW, as γ is adjusted, the results vary between the inverse and Wiener

filters, with larger values providing more of the Wiener filtering effect.

Adaptive Filtering

•	 The development of the preceding filters assumes stationary signals, images are
highly nonstationary.

•	 Block-by-block processing can be performed where the filter parameters are
adjusted based on the block (subimage) characteristics, creating an adaptive filter-
ing process.

•	 Use of an adaptive filter will provide better results than a fixed filter, at the cost of
increased computationally complexity.

•	 Blocking artifacts may occur at block boundaries, which can be handled by post-
processing lowpass filters, or overlapping blocks using window functions.

•	 Computational intelligence methods, such as neural networks and genetic algo-
rithms, can be applied to develop adaptive filters.

Bandpass, Bandreject, and Notch Filters

•	 These filters are used to analyze and restore images containing periodic noise.
•	 A notch filter is a special form of a bandreject filter that only filters out specific

frequencies.
•	 The procedure for elimination of periodic noise involves examining the spectrum

for spikes and artifacts, then removing them.

Geometric Transforms

•	 Geometric transforms are by their very nature spatially variant.
•	 They are known as rubber sheet transforms where the image is deformed or

warped as if on a sheet of rubber.
•	 They are used to restore a spatially distorted image, or to warp an image.
•	 They require two steps: (1) spatial transform and (2) gray-level interpolation.
•	 The spatial transform provides location of the output pixel.
•	 Gray-level interpolation is needed due to the noninteger coordinates supplied by

the spatial transform.

pj
w

st
k|

40
20

64
|1

43
57

19
18

9

622	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Spatial Transforms

•	 Spatial transforms are used to map the input image location to a location in the
output image.

•	 The spatial transform requires two equations to map the distorted image, d r c(ˆ, ˆ) ,
to the undistorted image I(r,c):

	
ˆ ˆr = R r,c(), defines the row coordinate foor the distorted image

(), definˆ ˆc =C r,c ees the column coordinate for the distorted image

•	 To find these equations requires known matching points, called tiepoints, in both
the original image and the distorted image.

•	 The method to restore a geometrically distorted image consists of three steps: (1)
define quadrilaterals with known tiepoints for the entire image, (2) find the equa-
tions ˆ (,) ˆ (,)R r c C r cand for each set of tiepoints, and (3) remap all the pixels within
each quadrilateral subimage using the equations corresponding to those tiepoints.

•	 A bilinear model for the mapping equations can be used for Step 2:

	
ˆ ˆ

ˆ

R r,c = k r + k c + k r c + k = r

C

()

(

1 2 3 4

rr,c = k r + k c + k r c + k = c) 5 6 7 8 ˆ

•	 The ki values are constants to be determined by solving the eight simultaneous
equations where r, c, r, cˆ ˆ are known.

•	 Noninteger results for r, cˆ ˆ requires gray-level interpolation.

Gray-Level Interpolation

•	 Three methods (1) nearest neighbor, (2) neighborhood average, and (3) bilinear
interpolation.

•	 Nearest neighbor finds the closest value; it is fast, easy, but provides ragged edges.
•	 Neighborhood average is of medium complexity, reasonably fast, provides smooth

but blurred edges.
•	 Bilinear interpolation is the most complex, slowest, but has the best results (see

Figure 9.6-5).
•	 Bilinear interpolation is accomplished by solving this equation using the four sur-

rounding points, and plugging in the noninteger values for r, cˆ ˆ

	 g r,c = k r + k c + k rc + k() 1 2 3 4ˆ ˆ ˆ ˆ ˆˆ

Geometric Restoration Procedure

	 1.	Find tiepoints throughout the image mapping the distorted image, d r c(ˆ, ˆ) to the
restored image, ˆ(,)I r c . ˆ(,)I r c is the estimate to the original, undistorted image I(r,c).

	 2.	For each quadrilateral find the equations for ˆ (,) ˆ (,)R r c C r cand .

Image Restoration and Reconstruction	 623

© 2011 by Taylor & Francis Group, LLC

	 3.	For each value of (r,c) in ˆ(,)I r c , apply the equation pair, ˆ (,) ˆ (,)R r c C r cand , corre-
sponding to the mapped quadrilateral to find (ˆ, ˆ)r c .

	 4.	Perform the selected method of gray-level interpolation using the values for (ˆ, ˆ)r c
found in Step 3 to find the gray value for ˆ(,)I r c .

	 5.	Continue Steps 3 and 4 until all values for ˆ(,)I r c are found and we have our
restored image.

Image Reconstruction

•	 Image reconstruction consists of creating an image from projections.
•	 In the discrete case a projection consists of summing all the brightness values in an

image along lines perpendicular to some angle, θ.
•	 Projections are taken at all angles around an object to create a 2-D image

tomogram.
•	 A tomogram is the image of a plane or slice within a 3-D object.
•	 It is used in x-ray Computed Tomography (CT), SPECT, MRI, and PET.
•	 The 2-D slices are put together to create a 3-D image model.
•	 The two primary methods are backprojection for x-ray CT, PET, and SPECT and

direct Fourier reconstruction for MRI.

Reconstruction Using Backprojections

•	 A backprojection is created by back propagating the projection across a 2-D image.
•	 Backprojected images are superimposed or summed to create a 2-D image slice.
•	 The start artifact is a form of blurring and appears because the image created by

summing projections is only an approximation because the number of projections
is finite.

•	 The blurring in the reconstructed image can be ameliorated by filtering the projec-
tions before backpropagation.

•	 Commonly used filters for this purpose include a ramp, Shepp–Logan, cosine, and
the Hamming filter.

•	 The ramp filter is better for hard, rigid objects and the others are better for soft
objects.

•	 The steeper the filter the more noise is retained.

Radon Transform

•	 The Radon transform defines an image in terms of its projections

	 projection I r c I r c dl
L

(,) [(,)] (,)ρ θ = = ∫Radon

•	 The 2-D Radon transform consist of acquiring projections around the object by
varying the angle.

•	 The inverse 2-D Radon transform recreates the image and is the equivalent of
superimposing the backprojections.

624	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Fourier-Slice Theorem and Direct Fourier Reconstruction

•	 The Fourier-slice theorem states that the 1-D Fourier transform of a projection is
equivalent to a slice through the 2-D Fourier transform of the image at the same
angle as the projection.

•	 The direct Fourier reconstruction method:
•	 Takes the 1-D Fourier transform of each projection and creates the 2-D Fourier

spectrum by combining the 1-D spectra at the angles corresponding to the
projection angles.

•	 Take the inverse 2-D Fourier transform to recreate the image directly.
•	 Useful for cases where the measured data is Fourier data, such as in MRI

imaging.

Exercises

Problems

	 1.	 (a) How do image restoration and image enhancement differ? (b) How are restora-
tion and image enhancement alike?

	 2.	List four examples of causes of image degradation.
	 3.	 (a) Sketch a block diagram of the image restoration process. (b) Briefly discuss each

block.

	 4.	 (a) What is the equation in the spatial domain for the degradation process model?
(b) In the frequency domain? (c) Is this the only possible model? Discuss.

	 5.	 (a) Define noise in images. (b) List sources of noise in images. Discuss. (c) List
names of the mathematical models for the primary types of noise in images and
describe a cause for each. (d) What type of noise occurs in radar images? (e) What
type of noise occurs in laser images? (f) What is periodic noise?

	 6.	Given noisy images, how can we estimate the noise model?

	 7.	Use CVIPtools to explore noise histograms. Select Restoration → Noise and an
image of your choice and do the following: (a) add zero-mean Gaussian noise
with a variance of 25 to the image and view the histogram of the image with
and without noise, place the histogram next to the image on the screen, (b) add
zero-mean Gaussian noise with a variance of 800 to the image and view the
histogram, compare all three histograms, what do you observe? (c) find an area
in your image that is fairly constant in the original and crop it out of the two
images with added noise, display the histograms. Can you tell the noise type?
(d) Select the Use black image option to create a noise only image and compare
its histogram to the histograms of the cropped sections (of image plus noise). (e)
Repeat (a)–(d) with negative exponential noise. (f) Repeat (a)–(d) with uniform
noise.

	 8.	 (a) What are three types of spatial filters for noise removal? (b) List an advantage
and disadvantage of each type. (c) What type works best and why?

Image Restoration and Reconstruction	 625

© 2011 by Taylor & Francis Group, LLC

	 9.	Apply the following filters to the 3 × 3 (window size is 3 × 3) subimages below, and
find the output for each. (a) median, (b) maximum, (c) minimum, (d) midpoint, (e)
alpha-trimmed mean with T = 2.

		 Subimage
255
122
120

1
118 112
121 111
119 112

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥Subimage
100
0

100
2

100 98
99 96
99 93

⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Subimage3
10 11 10
12 12 11
9 10 9

	 10.	Use CVIPtools to explore the order filters, Restoration → Spatial Filter, for noise
removal. Experiment by adding Gaussian and salt-and-pepper noise to images.
Refer to Section 9.3.1 and verify the claims made regarding the types of noise each
filter will handle.

	 11.	Apply the following filters to the 3 × 3 (window size is 3 × 3) subimages below,
and find the output for each. (a) arithmetic mean, (b) contra-harmonic mean with
R = −2, (c) contra-harmonic mean with R = + 2, (d) geometric mean, (e) harmonic
mean, (f) Yp mean with P = −1, (g) Yp mean with P = + 2.

		 Subimage
255
122
120

1
118 112
121 111
119 112

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥Subimage
100
0

100
2

100 98
99 96
99 93

⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Subimage3
10 11 10
12 12 11
9 10 9

	 12.	Use CVIPtools to explore the mean filters, Restoration → Spatial Filter, for noise
removal. Experiment by adding Gaussian, gamma, uniform, and salt or pepper
noise to images. Refer to Section 9.3.2 and verify the claims made regarding the
types of noise each filter will deal with. Note that “dealing with” the noise does
not always create a “good” image. Use Analysis → Transforms to compare the spec-
tra of the images before adding the noise, with the added noise, and after filtering.
Even if the images do not look “good,” can you see some mitigation of the noise
effects in the spectra?

	 13.	Apply the spatial domain MMSE filter to the center pixel of the following subim-
ages (window size of 3 × 3), using a noise variance of 100.

		 Subimage
255
122
120

1
118 112
121 111
119 112

⎡

⎣

⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥Subimage
100
0

100
2

100 98
99 96
99 93

⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Subimage3
10 11 10
12 12 11
9 10 9

	 14.	 (a) What are the advantages of the adaptive median algorithm compared to the
standard median filter? (b) What are the disadvantages?

	 15.	 (a) List and explain two examples of spatially-invariant degradations. (b) List and
explain two examples of spatially variant degradations.

	 16.	 (a) What does PSF stand for and what does it mean? (b) For a PSF to com-
pletely characterize an imaging system, what are the constraints on the system?

626	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(c) Describe two models for motion blur. (d) What are deconvolution and blind
deconvolution?

	 17.	 (a) What do OTF and MTF stand for and what do they mean? (b) What does it
mean for an image to be stationary? (c) Are images typically stationary? Explain.

	 18.	 (a) At high frequencies noise may obscure the image signal when using an inverse
filter. Explain why. (b) What can be done to help solve this problem?

	 19.	 (a) What is the power spectrum ratio and how is it related to the signal-to-noise
ratio? (b) Sketch the filter response of the Wiener and the inverse filter and explain
why the Wiener works better in the presence of noise. (c) Why use a constant in
place of the power spectrum ratio in the Wiener filter?

	 20.	Use CVIPtools to explore the inverse and the Wiener filter. Use Restoration → Frequency
Filters and Utilities → Create → Add Noise and Utilities → Filter → Specify a Blur. Select
a square image that is an even power of 2, for example, 256 × 256 or 512 × 512. (a)
Blur the image to simulate motion blur along the column axis, using the follow-
ing parameters: 7 × 7 mask, horizontal line for blur shape, blur method constant,
and weight = 1.0. Compare results of using the Wiener and the inverse filters on
the blurry image. For the degradation function, select Specify a function and set the
parameters the same as with the blur. For the Wiener use Utilities → Create → Black
Image to create a black image to be used as the noise image (since we did not add
noise). Experiment with setting the cutoff frequency and the gain limit to obtain good
results. (b) Use the blurry image and add zero-mean Gaussian noise with a variance
of 100. Also, with Utilities → Create → Noise select Use a black image to create the noise
image. Compare results of using the Wiener and the inverse filters. For the degra-
dation function, select Specify a function and set the parameters the same as with
the blur. For the Wiener use the noise image you created. Experiment with setting
the cutoff frequency and the gain limit to obtain good results. Compare your results
to part (a). (c) Repeat (b) but add noise with a variance of 800. How do the results
compare?

	 21.	 (a) Explain why the CLS filter may give better results than the Wiener filter. (b) Use
CVIPtools and apply the CLS filter to the images you created in Exercise #19. (c)
Compare the results of the CLS and Wiener filter. Did it perform as you expected?
Why or why not?

	 22.	Repeat Exercise #19, but for the blur use a Gaussian circle to simulate a poorly
focused lens.

	 23.	 (a) Write the equation for the geometric mean filter. What are the values for α and
γ to create (b) power spectrum equalization filter? (c) parametric Wiener filter? (c)
standard Wiener filter? (d) inverse filter?

	 24.	Repeat Exercise #19 with the practical Wiener and the parametric Wiener filters.
Can you get results as good, or better, than with the standard Wiener? Why or
why not?

	 25.	Repeat Exercise #19 with the geometric mean and the power spectrum equaliza-
tion filters. With the geometric mean try various values for α and γ. Can you get
results as good, or better, than with the standard Wiener filter? Why or why not?

	 26.	 (a) What type of processing is normally done for adaptive filtering in the frequency
domain? (b) What is the blocking effect and what causes it? (c) What are two meth-
ods for dealing with the blocking effect?

Image Restoration and Reconstruction	 627

© 2011 by Taylor & Francis Group, LLC

	 27.	Use CVIPtools to explore bandpass, bandreject, and notch filters. (a) Use Figure 9.5-9
and try to do a better restoration than in the figure. (b) Select an image of your
choice and experiment with adding sine wave and cosine wave images at various
frequencies to the image. Use Utilities → Create and Utilities → Arith/Logic. Next, use
notch and bandreject filters to try to remove the periodic noise. Use the bandpass
filter to extract noise only images and examine the spectrum of these images to
gain insight into the process.

	 28.	 (a) What are the two steps in geometric transforms? (b) Explain why the second
step is necessary. (c) What are the advantages and disadvantages of the three types
of gray-level interpolation?

	 29.	Given the following 16 × 16 distorted image, ˆ (,) ˆ ,R r c C r cand () , and the mapping
equations, ˆ (,) ˆ ,R r c C r cand (), restore the 3 × 3 subimage where the row and column
coordinates are between 0 and 2. That is, find the subimage represented by the
x’s.

	 subimage ˆ(,)I r c x x x

x x x

x x x

0 1 2

0
1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪

	
ˆ ˆ

ˆ

R r,c = r + c r c + = r

C r,c

()

()

2 1 2 1+

= 1r 1c + 2 r c + 0 = c+ ˆ

	 d r c()ˆ, ˆ =

5 4 6 7 8 5 5 5 6 6 6 6 6 6 6 7
9 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6
6 6 66 5 4 3 2 3 4 5 4 3 2 6 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2
2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 7 7 7 7 7 7 7 7 7 7 8 8 8
8 7 6 8 5 7 44 5 6 3 4 5 4 6 7 8
9 8 7 8 7 8 7 8 7 8 7 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 4 4 4 4 4
44 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 6 5 4 3 2 3 44 5 6 5 6 5
8 9 0 8 7 6 0 0 0 0 0 0 0 0 0 0
0 0 0 7 7 7 7 7 6 6 6 6 6 6 6 6
6 6 6 6 66 6 6 6 6 5 5 4 4 4 4 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 30.	Given the following 16 × 16 distorted image, d r c(ˆ, ˆ) , and the mapping equa-
tions, ˆ (,) ˆ ,R r c C r cand (), restore the 3 × 3 subimage where the row and column

628	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

coordinates are between 0 and 2. That is, find the subimage represented by the x’s.
Use (a) nearest neighbor, (b) neighborhood average using the four edge neighbors
(horizontal and vertical)

	 subimage ˆ(,)I r c x x x

x x x

x x x

0 1 2

0
1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪

	
ˆ . . ˆ

ˆ

R r,c = r + c r c + = r

C

()

(

1 3 1 2 1 2+

rr,c = r 1c + r c + = c) 0 75 1 8 2 1. . . ˆ−

	 d r c()ˆ, ˆ =

5 4 6 7 8 5 5 5 6 6 6 6 6 6 6 7
9 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6
6 6 66 5 4 3 2 3 4 5 4 3 2 6 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2
2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 7 7 7 7 7 7 7 7 7 7 8 8 8
8 7 6 8 5 7 44 5 6 3 4 5 4 6 7 8
9 8 7 8 7 8 7 8 7 8 7 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 4 4 4 4 4
44 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 6 5 4 3 2 3 44 5 6 5 6 5
8 9 0 8 7 6 0 0 0 0 0 0 0 0 0 0
0 0 0 7 7 7 7 7 6 6 6 6 6 6 6 6
6 6 6 6 66 6 6 6 6 5 5 4 4 4 4 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 31.	Given that we have found the mapping equations for a quadrilateral and deter-
mined the following corresponding pixel coordinates:

(r,c) Coordinates for
the Restored Image

Corresponding (r̂,ĉ) Coordinates
Found by the Mapping Equations

(4,3) (1.2,2.1)
(4,4) (1.3,2.6)
(5,3) (1.8,2.2)
(5,4) (1.9,2.8)

Image Restoration and Reconstruction	 629

© 2011 by Taylor & Francis Group, LLC

		 (a) Use the following degraded image and find the bilinear interpolation equation
needed to find the x’s in the following restored image, (b) apply the equation and
find the values for the x’s.

ˆ(,)I r c =

22 22 24 23 34 35 35 36
23 22 23 24 55 55 56 57
23 444 45 48 49 55 56 57
22 46 49 48 51 51 52 52
23 49 48 48 49 4x x 99
49 49 49 49 48 49
50 50 47 48 49 50 50 50
50 50 51 50 51 5

x x

11 51 50

50⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=d r c(ˆ, ˆ)

550 51 52 55 55 55 55
52 51 50 55 56 56 56 55
48 46 44 48 48 47 448 44
42 42 40 40 40 41 42 43
48 49 51 50 55 56 56 56
49 46 46 444 48 47 55 55
50 50 50 45 47 46 54 54
50 50 50 50 51 52 53 54

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 32.	Use CVIPtools, Restoration → Geometric Transforms, to explore geometric trans-
forms and restoration. Select an image to distort and restore. (a) Create a 5 × 5
warping mesh by selecting the Create Mesh button, inputting 5 for the Number
of rows and 5 for the Number of columns. Next, input Regular → Irregular for the
Direction and bilinear interpolation for the Gray value interpolation method. Now
select the points for the mesh with the mouse by holding the Alt key on the
keyboard and clicking the left mouse button. (b) Click Apply to distort the
image. (c) Restore the image by selection Irregular → Regular for the direction. Do
this three times, each time selecting a different Gray-level interpolation method.
Compare the results with each of the methods, which one is best? What type of
artifacts do you observe? On your computer is the relative speed of each method
noticeable?

	 33.	Use CVIPtools, Restoration → Geometric Transforms, to explore geometric trans-
forms and restoration. Select an image to distort and restore. (a) Create a 7 × 7
warping mesh by selecting the Create Mesh button, inputting 7 for the Number
of rows and 7 for the Number of columns. Next, input Irregular → Regular for the
Direction and bilinear interpolation for the Gray value interpolation method. Now
select the points for the mesh with the mouse by holding the control key on
the keyboard and clicking the left mouse button. (b) Click Apply to distort the
image. (c) Restore the image by selection Regular → Irregular for the direction. Do
this three times, each time selecting a different Gray-level interpolation method.
Compare the results with each of the methods, which one is best? What type of
artifacts do you observe? On your computer is the relative speed of each method
noticeable?

Programming Exercises

Noise

	 1.	Write a function to create an image with Gaussian noise. Let the user specify the
mean and the variance.

630	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 2.	Modify the function to allow the user to create a noise only image or to add the noise
to an image. For a noise only image let the user specify the image size. Also, let the
user specify if the image is to be remapped to BYTE or left as FLOAT data type.

	 3.	 Incorporate the six CVIPtools noise functions into your CVIPlab program (see the
Noise library). Allow the user to create a noise only image or to add the noise to
an image. For a noise only image let the user specify the image size. Also, let the
user specify if the image is to be remapped to BYTE or left as FLOAT data type. To
create a noise only image you will need to create an image filled with zeros to be
passed to the CVIPtools functions.

Order Filters

	 1.	Write functions to perform median, maximum, and minimum filters. Let the user
specify the mask size.

	 2.	Write a function to implement the adaptive median filter algorithm. Let the user input
the maximum window size. Compare the results to the standard median filter.

	 3.	 Incorporate the CVIPtools functions alpha_filter (alpha-trimmed mean filter) and
midpoint_filter from the SpatialFilter library into your CVIPlab program.

Mean Filters

	 1.	Write functions to perform arithmetic and geometric mean filters. Let the user
specify the mask size.

	 2.	 Incorporate the CVIPtools functions contra_filter (contra-harmonic mean filter),
harmonic_filter (harmonic mean filter), and from the SpatialFilter library into your
CVIPlab program.

MMSE Filter

	 1.	Write a function to implement the adaptive MMSE spatial filter. Let the user input
the noise variance and the window size.

	 2.	 Incorporate the CVIPtools function mmse_filter from libspatialfilter into your
CVIPlab program. Compare the results from the CVIPtools function to the one
you wrote. Are they the same? Why or why not?

Frequency Domain Filters

	 1.	Write a function to implement the Inverse filter in the frequency domain. Inputs to
the function are (1) the degraded image, (2) an image with the PSF, and (3) a maxi-
mum cutoff frequency. Use the CVIPtools functions fft_transform and ifft_transform
from the Transform library to perform the Fourier transform. Note: PSF images can
be created by creating a circle with a zero radius and blurring it, and translating it
to the corners.

	 2.	Modify your function implement a pseudoinverse filter, where the user can spec-
ify the minimum threshold for setting the filter gain to zero.

	 3.	 Incorporate the CVIPtools function wiener (Wiener filter) from the TransformFilter
library into your CVIPlab program. Compare results of its use in your CVIPlab to
using it in CVIPtools. Are the results the same? Why or why not?

Image Restoration and Reconstruction	 631

© 2011 by Taylor & Francis Group, LLC

Geometric Transforms

	 1.	Write a program to perform geometric distortion and restoration using the method
outlined in this chapter. Limit it to a single mesh and use nearest neighbor gray-
level interpolation. Have the user input the parameters from the keyboard: (a) the
image file name, (b) the (r,c) coordinates for the four mesh points, and (c) to warp
(regular to irregular) or restore (irregular to regular) the image.

	 2.	Modify your program to perform neighborhood average gray-level interpolation.
Let the user select all four neighbors or vertical or horizontal neighbors only for
the averaging process.

	 3.	 Incorporate the CVIPtools function mesh_warping from the Geometry library into your
CVIPlab program. This is the function used in CVIPtools Restoration → Geometric
Transforms. Other associated functions include: display_mesh, keyboard_to_mesh,
mesh_to_file, bilinear_interp, and solve_c.

Supplementary Exercises

Supplementary Problems

	 1.	Apply the adaptive median filter to the center pixel (199) in the following subim-
age, using a maximum window size of 9 × 9.

	

132 122 112 99 99 255 0 111 111
177 122 122 177 134 99 124 2255 255
111 113 113 0 175 186 125 122 199
0 16 27 125 176 1189 111 113 199

255 211 155 144 143 125 111 255
255

199
2227 0 146 132 187 119 111 112

111 115 0 146 132 187 119 1111 112
111 113 255 255 0 176 113 167 255
111 111 143 116 1113 112 133 166 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 2.	Apply the adaptive median filter to the center pixel (199) in the following subim-
age, using a maximum window size of 9 × 9.

	

132 122 112 99 99 255 0 111 111
177 122 122 177 134 99 124 2255 255
111 113 113 0 175 186 125 122 199
0 16 27 125 176 1189 111 113 199

255 211 155 144 143 125 111 255
255

199
2227 0 146 132 255 119 111 112

111 115 125 0 188 125 111 1113 255
111 113 255 255 0 176 113 167 255
111 111 143 116 1113 112 133 166 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

632	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	Apply the adaptive median filter to the center pixel (255) in the following subim-
age, using a maximum window size of 9 × 9.

	

132 122 112 99 99 255 0 111 111
177 122 122 177 134 99 124 2255 255
111 113 113 0 175 186 125 122 199
0 16 27 255 176 2255 111 113 199

255 211 155 144 143 125 111 255
255

255

2227 0 255 255 187 119 111 112
111 115 125 0 188 125 111 1113 255
111 113 255 255 0 176 113 167 255
111 111 143 116 1113 112 133 166 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 4.	Find the Radon transform, using θ as shown in Figure 9.7-4, of the following image
at θ = (a) 0°, (b) 45°, and (c) 90°. Assume the image is zero padded elsewhere.

	

7 8 8 9
8 9 11 11
9 9 12 12
10 11 14 15

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 5.	Find the backprojections 4 × 4 image for Exercise 4 above.
	 6.	Apply the improved MMSE algorithm to the center pixel, 12. Use a maximum

window size of 7 × 7, and a noise variance of 5. For each of the following threshold
values find the window size with which to calculate the MMSE and the output
value. Threshold values: (a) 0.5, (b) 0.6, (c) 0.7.

	

5 5 5 5 5 5 5
6 6 7 7 7 7 7
9 8 9 8 9 9 9
7 7 7 12 8 8 8
6 6 6 4 4 4 4
3 3 33 3 3 2 2
2 2 2 2 2 2 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 7.	 (a) Find the Radon transform, using θ as shown in Figure 9.7-4, of the following
image at θ = 0°, 45°, and 90°. Assume the image is zero padded elsewhere.

	

5 5 5 5
5 1 1 5
5 1 1 5
5 5 5 5

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 (b) Use these projections to reconstruct the original image. Note that this is a
rough, scaled approximation to the original image. What do you observe about
the resulting image?

Image Restoration and Reconstruction	 633

© 2011 by Taylor & Francis Group, LLC

Supplementary Programming Exercises

Improved MMSE Filter

	 1.	Write a function to implement the improved MMSE filter algorithm and incor-
porate it into your CVIPlab program. Allow the user to specify the value for the
maximum widow size, noise variance, and the threshold.

	 2.	Compare your results to those obtained with CVIPtools. Are they the same? Why
or why not?

	 3.	Develop your own improved MSEE filter algorithm and compare results to the
book’s algorithm using image fidelity criteria from Chapter 7.

Radon Transform

	 1.	Write a function to implement a discrete Radon transform and incorporate it into
your CVIPlab program. Allow the user to specify the value for the increment on
the angle θ.

	 2.	 Include the inverse Radon transform to reconstruct the image using
backprojections.

	 3.	Compare a reconstructed image to the original. Is it the same? Why or why not?
Try it with other values for the angle increment and with other images.

	 4.	Explain the difficulties encountered with different increments on the angle θ and
a discrete image. How did you handle these problems? Is your solution optimal?
Why or why not?

Adaptive Median Filter

	 1.	Write a function to implement the adaptive median filter algorithm. Let the user
input the mask size.

	 2.	 Incorporate the CVIPtools function adapt_median_filter from the SpatialFilter library
into your CVIPlab program. Compare the results from the CVIPtools function to
the one you wrote. Are they the same? Why or why not?

	 3.	Develop your own adaptive median filter algorithm and compare results to the
book’s algorithm using image fidelity criteria from Chapter 7.

References

Andrews, H. C., and Hunt, B. R., Digital Image Restoration, Upper Saddle River, NJ: Prentice Hall,
1977.

Banks, S., Signal Processing, Image Processing and Pattern Recognition, Upper Saddle River, NJ: Prentice
Hall, 1990.

Bates, R. H., and McDonnell, M. J., Image Restoration and Reconstruction, Oxford, UK: Oxford University
Press, 1989.

Bracewell, R. N., Two-Dimensional Imaging, Upper Saddle River, NJ: Prentice Hall, 1995.
Castleman, K. R., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1996.

634	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Dougherty, G., Digital Image Processing for Medical Applications, Cambridge, UK: Cambridge University
Press, 2009.

Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Prentice Hall,
2008.

Gray, R. M., and Davisson, L. D., Random Processes: A Mathematical Approach for Engineers, Upper
Saddle River, NJ: Prentice Hall, 1986.

Hwang, H., and Haddad, R. A., Adaptive Median Filters: New Algorithms and Results, IEEE
Transaction on Image Processing, April 1995, 499–501.

Haykin, S., Adaptive Filter Theory, Upper Saddle River, NJ: Prentice Hall, 1991.
Hill, F. S., Computer Graphics, New York, NY: Macmillan, 1990.
Jahne, B., Practical Handbook on Image Processing for Scientific Applications, Boca Raton, FL: CRC Press,

1997.
Jain, A. K., Fundamentals of Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1989.
Jansson, P. A., ed., Deconvolution of Images and Spectra, 2nd ed., New York, NY: Academic Press, 1997.
Kennedy, J. B., and Neville, A. M., Basic Statistical Methods for Engineers and Scientists, New York, NY:

Harper and Row, 1986.
Lim, J. S., Two-Dimensional Signal and Image Processing, Upper Saddle River, NJ: Prentice Hall, 1990.
Lu, W. S., and Antoniou, A., Two-Dimensional Filters, New York, NY: Marcel Dekker, 1992.
Myler, H. R., and Weeks, A. R., Computer Imaging Recipes in C, Upper Saddle River, NJ: Prentice Hall,

1993a.
Myler, H. R., and Weeks, A. R., The Pocket Handbook of Image Processing Algorithms in C, Upper Saddle

River, NJ: Prentice Hall, 1993b.
Oppenheim, A. V., and Schafer, R. W., Discrete-Time Signal Processing, Upper Saddle River, NJ: Prentice

Hall, 1989.
Peebles, P. Z., Probability, Random Variables, and Random Signal Principles, New York, NY: McGraw-

Hill, 1987.
Perona, P., and Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transaction

on Pattern Analysis and Machine Intelligence 12, no. 7 (1990): 629–39.
Perry, S. W., Wong, H., and Guan, L., Adaptive Image Processing: A Computational Intelligence Perspective,

Boca Raton, FL: CRC Press, 2002.
Petrou, M., and Bosdogianni, P., Image Processing: The Fundamentals, West Sussex, England: John

Wiley & Sons Ltd, 1999.
Pitas, I., and Venetsanopoulos, A. N., Nonlinear Digital Filters, Kluwer Academic, 1990.
Pratt, W. K., Digital Image Processing, New York, NY: Wiley, 1991.
Prince, J. L., and Links, J. M., Medical Imaging Signals and Systems, Upper Saddle River, NJ: Prentice

Hall, 2006.
Rangayyan, R. M., Biomedical Image Analysis, Boca Raton, FL: CRC Press, 2005.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.
Russ, J. C., The Image Processing Handbook, Boca Raton, FL: CRC Press, 1999.
Sezan, I., and Tekalp, A. M., Image Restoration, Upper Saddle River, NJ: Prentice Hall, 1996.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, New York, NY: McGraw-

Hill, 1995.
Sloane, N. J. A., and Wyner, A. D., ed., Claude Elwood Shannon, Collected Papers, New York, NY: IEEE

Press, 1993.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, Toronto, Canada:

Thomson, 2008.
Stanley, W. D., Dougherty G. R., and Dougherty, R., Digital Signal Processing, Reston, VA: Reston

Publishing, Prentice Hall, 1984.
Tang, J., Sun, Q., Liu, J., and Cao, Y., An adaptive anisotropic diffusion filter for noise reduction in

MR images, Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,
Harbin, China, August 5–8, 2007.

Tekalp, A. M, Digital Video Processing, Upper Saddle River, NJ: Prentice Hall, 1995.
Tretter, S. A., Introduction to Discrete-Time Signal Processing, New York, NY: Wiley, 1976.

Image Restoration and Reconstruction	 635

© 2011 by Taylor & Francis Group, LLC

Trussel, H. J., and Vrhel, M. J., Fundamentals of Digital Imaging, Cambridge, UK: Cambridge University
Press, 2008.

Van Trees, H. L., Detection Estimation, and Modulation Theory, New York, NY: Wiley, 1968.
Watt, A., and Policarpo, F., The Computer Image, New York, NY: Addison-Wesley, 1998.
Webster, J. G., ed., Bioinstrumentation, New York, NY: Wiley, 2004.

Further Reading

The first complete text on image restoration is Andrews and Hunt (1977), and this book
provides a solid foundation for the work that has been done since. For more background
and theory on image restoration see Bates and McDonnell (1989) and Sezan and Tekalp
(1996). More information can also be found in the chapters on this topic in Gonzalez and
Woods (2008), Sonka, Hlavac, and Boyle (2008), Trussel and Vrhel (2008), Castleman (1996),
Sid-Ahmed (1995), Bracewell (1995), Pratt (1991), Lim (1990), Banks (1990), Jain (1989), and
Rosenfeld and Kak (1982).

For the section on noise, the references Gonzalez and Woods (2008), Castleman (1996),
Myler and Weeks (1993a, 1993b), Pratt (1991), Kennedy and Neville (1986), Peebles (1987),
and Andrews and Hunt (1977) were consulted. More information regarding spatial filters
can be found in Rangayyan (2005), Petrou and Bosdogianni (1999), Tekalp (1995), Myler
and Weeks (1993a, 1993b), Lu and Antoniou (1992), Pitas and Venetsanopoulos (1990), and
Haykin (1991). Details on the adaptive median algorithm are found in Gonzalez and Woods
(2008) and Hwang and Haddad (1995). For more information on the anisotropic diffusion
filter see Tang et al. (2007) and Perona and Malik (1990).

A detailed model for photodetector and film grain noise is found in Pratt (1991). For
general information on linear systems theory and digital signal processing theory see
Oppenheim and Schafer (1989), Stanley and Dougherty (1984), and Tretter (1976). For more
information on noise and estimation theory see VanTrees (1968). For more information on
statistical or stochastic processes see Gray and Davidsson (1986) and Peebles (1987).

Consulted references for frequency domain filters include Gonzalez and Woods (2008),
Sonka, Hlavac, and Boyle (2008), Trussel and Vrhel (2008), Rangayyan (2005), Jansson
(1997), Castleman (1996), Bracewell (1995), Sid-Ahmed (1995), Pratt (1991), Lim (1990), Jain
(1989), Bates and McDonnell (1989), and Rosenfeld and Kak (1982). Gonzalez and Woods
(2008) and Pratt (1991) have more information on estimation of degradation functions.
Castleman (1996) provides practical approaches to estimating the degradation func-
tion for image blurring, and Sid-Ahmed (1995) has an algorithm and code to estimate
image blur. Sonka, Hlavac, and Boyle (2008), Jahne (1997), Pratt (1991), and Jain (1989)
provide more details on mathematical models for degradation functions. Andrews and
Hunt (1977) provide more information on various PSFs, including spatially variant types,
which are not discussed here. Russ (1999) provides practical information and examples
of removal of image blurring. Bates and McDonnell (1989) provide advanced methods of
preprocessing to improve the results of these filters. Much of the seminal work in com-
munications theory, for example work on the Wiener filter, can be found in Sloane and
Wyner (1993).

An excellent text that provides in depth coverage of adaptive restoration, via neural net-
works, fuzzy set theory and genetic algorithms, is Perry, Wong, and Guan (2002). For a
discussion of adaptive algorithms based on specific conditions see Lim (1990). A procedure

pj
w

st
k|

40
20

64
|1

43
57

19
33

3

636	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

for determining the variable weights in restoring an image with a complex periodic inter-
ference pattern (Section 9.5.6) can be found in Gonzalez and Woods (2008).

The geometric transforms sources include Gonzalez and Woods (2008), Castleman
(1996), and Pratt (1991). For more in depth information on geometric transforms see Sonka,
Hlavac, and Boyle (2008) and Jahne (1997). For more information on sophisticated inter-
polation techniques see Watt and Policarpo (1998) and Hill (1990). For more mathematical
details on image reconstruction see Dougherty (2009), Gonzalez and Woods (2008), Prince
and Links (2006), and Webster (2004). For biomedical application examples of image recon-
struction from projections see Rangayyan (2005).

637© 2011 by Taylor & Francis Group, LLC

10
Image Compression

10.1  Introduction and Overview

The field of image compression continues to grow at a rapid pace. As we look to the future,
the need to store and transmit images will only continue to increase faster than the avail-
able capability to process all the data. Even with the rapid growth in computer power and
the increase in Internet bandwidth, the ability to process and transmit the desired amount
of image data continues to be problematic. Additionally, advances in video technology and
the corresponding growth in the multimedia market, including high-definition television,
are creating a demand for new, better, and faster image compression algorithms.

Applications that require image compression are many and varied. Use of images and
graphics in business documents is rapidly increasing—from product catalogs to stock
reports, and these documents are often stored in databases and transmitted over the
Internet. Many organizations are making their entire libraries available on the Internet;
from the U.S. Library of Congress to professional organizations such as the IEEE and ACM.
Satellite images are collected and transmitted daily, for weather, political, environmental,
and sociological uses, and can include 100 or more spectral bands imaged at very high
resolution. Use of medical imaging modalities continues to grow and the effective man-
agement of image databases is essential to the practice of medicine. Additionally, these
images often need to be transmitted for the increasing number of telemedicine applica-
tions. Hospitals are archiving enormous amounts of medical image data daily, businesses
and governments are using teleconferencing at an ever increasing pace, and broadcast
television standards have evolved to require higher resolution images. These applications,
along with many others, are helping to push image compression to the forefront of the
image processing field.

Compression algorithm development starts with applications to two-dimensional (2-D)
still images. Because video and television signals consist of consecutive frames of 2-D
image data, the development of compression methods for 2-D still data is of paramount
importance. After the 2-D methods are developed, they are often extended to video (motion
imaging). Here, we will focus on image compression of single frames of image data.

What is image compression? Image compression involves reducing the size of image data
files, while retaining necessary information. Image segmentation methods, which are pri-
marily a data reduction process, were explored in Chapter 4 and can be used for compres-
sion. However, segmentation methods tend to reduce too much of the data and are only
useful in a limited number of applications. One of the key aspects of a good compres-
sion scheme involves the second part of the definition: retaining necessary information. What
information is necessary?—as usual, it is application specific.

pj
w

st
k|

40
20

64
|1

43
57

19
21

3

638	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The reduced file created by the compression process is called the compressed file and is
used to reconstruct the image, resulting in the decompressed image. The original image,
before any compression is performed, is called the uncompressed image file. The ratio of the
original, uncompressed image file and the compressed file is referred to as the compression
ratio. The compression ratio is denoted by

	Compression Ratio
Uncompressed file size
Com

=
ppressed file size

Often writt= U

C

SIZE
SIZE

; een as SIZE : SIZEU C→

Example 10.1.1

The original image is 256 × 256 pixels, single-band (grayscale), 8-bits per pixel. This file is
65,536 bytes (64k). After compression the image file is 6554 bytes. The compression ratio is
SIZEU/SIZEC = 65,536/6554 = 9.999 ≈ 10. This can also be written as 10:1.

This is called a “10 to 1 compression,” a “10 times compression,” or can be stated as “com-
pressing the image to 1/10 its original size.” Another way to state the compression is to use
the terminology of bits per pixel (bpp). For an N × N image:

	 Bits per pixel
Number of bits
Number of pixe

=
lls

(8)(Number of bytes)
=

×N N

Example 10.1.2

Using the preceding example, with a compression ratio of 65,536/6554 bytes, we want to
express this as bits per pixel. This is done by first finding the number of pixels in the image:
256 × 256 = 65,536 pixels. We then find the number of bits in the compressed image file:
(6,554 bytes)(8 bits/byte) = 52,432 bits. Now we can find the bits per pixel by taking the ratio:
52,432/65,536 = 0.8 bits/pixel.

The reduction in file size is necessary to meet the bandwidth requirements for many trans-
mission systems, and for the storage requirements in computer databases. The amount of
data required for digital images is enormous. For example, a single 512 × 512, 8-bit image
requires 2,097,152 bits for storage. If we wanted to transmit this image over the Internet
with a standard dialup connection, it would take minutes for transmission—too long for
most people to wait.

Example 10.1.3

To transmit an RGB (color) 512 × 512, 24-bit (8-bit per pixel per color) image via modem at 56
kbaud (kilo-bits per second), it would take about

	
(512 512 pixels)(24 bits/pixel)

(56 1024 bit
×

× ss/second)
109 sec nds 1.8 minutes≈ ≈o

This number is based on the actual transmission rate being the maximum, which is typically
not the case due to Internet traffic, overhead bits, and transmission errors. Additionally,

Image Compression	 639

© 2011 by Taylor & Francis Group, LLC

considering that a web page might contain more than one of these images, the time it takes
is simply too long. For high quality images the required resolution can be much higher
than the previous example. For example, a 35 mm photograph has an effective resolution
of about 3000–4000 pixels in each dimension.

Example 10.1.4

To transmit a digitized color 35mm slide scanned at 4000x3000 pixels, and 24-bits, at 56 kbaud
would take about

	
(4000 3000 pixels)(24 bits/pixel)

(56 1024 bits
×

× //sec)
sec , too long to wait!≈ ≈5022 84 min

Of course fast Internet connections are becoming more and more prevalent via cable
modems from the cable company and DSL (digital subscriber lines) connections from the
phone company. With DSL current speeds range from 128 kbaud to 3.0 mega-bits-per-
second (Mbps), and cable modems provide data rates from about 3 to 10 Mbps. Applying
the maximum DSL and cable modem rates to the preceding example:

Example 10.1.5

To transmit a digitized color 35 mm slide scanned at 4000 × 3000 pixels, and 24-bits, at 3 Mbps
would take about

	
()()

(
4000 3000 24

3 1024
×

× ×

pixels bits/pixel
bits//second

seconds minutes
)

.≈ ≈91 1 5

To transmit a digitized color 35 mm slide scanned at 4000 × 3000 pixels, and 24-bits, at
10 Mbps would take about

	
()()

(
4000 3000 24

10 1024
×

× ×

pixels bits/pixel
bitss/second

seconds
)

≈ 27

This is a great improvement over the 84 minutes, but is still longer than we care to wait,
especially if the web page contains multiple images. Consider the transmission of video
images, where we need multiple frames per second. If we consider just 1 second of video
data that has been digitized at 640 × 480 pixels per frame, and requiring 15 frames per
second for interlaced video:

Example 10.4.6

To transmit 1 second of interlaced video that has been digitized at 640 × 480 pixels:

	
()()

(
640 480 15 24

10 102
× ×

×

frames/sec bits/pixel
44 1024

11
×

≈
bits/sec

seconds
)

Waiting 11 seconds for 1 second’s worth of video is not exactly real time! Raw high defini-
tion video requires about seven times the data, so it takes seven times as long to transmit,

640	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

or more than a minute. Even attempting to transmit uncompressed video over the highest
speed Internet connection is impractical. The preceding examples only begin to approach
the capability needed for image storage and transmission in the 21st century. For example,
a Landsat satellite transmits images that are typically 250 megabytes—6100 × 6100 pixels
in seven spectral bands. The Japanese Advanced Earth Observing Satellite (ADEOS) trans-
mits image data at the rate of 120 Mbps. Even with high speed connections, applications
such as high definition television, real-time teleconferencing, and transmission of multi-
band high resolution satellite images, leads us to the conclusion that image compression is
not only desirable but a necessity.

As previously mentioned, the key to a successful compression scheme comes with the
second part of the definition of image compression—retaining necessary information. To
understand this we must differentiate between data and information. For digital images,
data refers to the pixel gray-level values that correspond to the brightness of a pixel at a
point in space. Information is an interpretation of the data in a meaningful way. Data are
used to convey information, much like the way the alphabet is used to convey information
via words. Information is an elusive concept; it can be application specific. For example,
in a binary image that contains text only, the necessary information may only involve the
text being readable, whereas for a medical image the necessary information may be every
minute detail in the original image.

There are two primary types of image compression methods—those that preserve the
data, and those that allow some loss of data. The first type are called lossless methods, since
no data are lost and the original image can be recreated exactly from the compressed data.
For complex images these methods are limited to compressing the image file to about one-
half to one-third its original size (2:1–3:1), often the achievable compression is much less.
For simple images such as text-only images, lossless methods may achieve much higher
compression. The second type of compression methods are called lossy, since they allow a
loss in the actual image data, so the original uncompressed image cannot be created exactly
from the compressed file. For complex monochrome images these techniques can achieve
compression ratios of about 10–50, and still retain high-quality visual information. For
multiband (including color) images, simple images, or for lower quality results, compres-
sion ratios as high as 200 or more can be attained.

Compression algorithms are developed by taking advantage of the redundancy that is
inherent in image data. Four primary types of redundancy can be found in images: (1)
coding, (2) interpixel, (3) interband, and (4) psychovisual redundancy. Coding redundancy
occurs when the data used to represent the image is not utilized in an optimal manner.
For example, if we have an 8-bit per pixel image that allows 256 gray-level values, but
the actual image contains only 16 gray-level values, this is a suboptimal coding—only
4-bits per pixel are actually needed. Interpixel redundancy occurs because adjacent pixels
tend to be highly correlated. This is a result of the fact that in most images the bright-
ness levels do not change rapidly, but change gradually, so adjacent pixel values tend
to be relatively close to each other in value (for video, or motion images, this concept
can be extended to include inter-frame redundancy, redundancy between frames of image
data). Interband redundancy occurs in color (and multiband) images due to the correla-
tion between bands within an image—if we extract the red, green, and blue bands we
can see that they look similar. The third type, psychovisual redundancy, refers to the fact
that some information is more important to the human visual system than other types
of information. For example, we can only perceive spatial frequencies below about 50
cycles per degree (see Section 7.2), so any higher spatial frequency information is of little
visual interest to us.

Image Compression	 641

© 2011 by Taylor & Francis Group, LLC

The key in image compression algorithm development is to determine the minimal
data required to retain the necessary information. The compression is achieved by taking
advantage of the redundancy that exists in images. If the redundancies are removed prior
to compression, for example with a decorrelation process, a more effective compression
can be achieved. To help determine what information can be removed and what informa-
tion is important, the image fidelity criteria as defined in Chapter 7 are used. These mea-
sures provide metrics for determining image quality. In the case of image compression,
the “reconstructed image” discussed in Chapter 7 refers to the decompressed image. It
should be noted that the information required is application specific, and that, with loss-
less schemes, there is no need for a fidelity criteria.

Most of the compressed images shown in this chapter were generated with Computer
Vision and Image Processing tools (CVIPtools), which consists of code that has been devel-
oped for educational and research purposes. The compressed images shown are not neces-
sarily representative of the best commercial applications that use the techniques described,
because the commercial compression algorithms are often combinations of the techniques
described herein. Additionally, commercial applications have been developed much more
extensively, and may provide better compression ratios and better resulting images than
those shown here. In this chapter we chose to show results from each individual technique
to illustrate how they work and what we can expect from them. The final two sections
briefly outline some of the more sophisticated commercial algorithms, such as the rela-
tively new JPEG2000, which combine many of the separate techniques described.

10.1.1  Compression System Model

The compression system model consists of two parts: the compressor, and the decom-
pressor. The compressor consists of a preprocessing stage and encoding stage, whereas the
decompressor consists of a decoding stage followed by a postprocessing stage (Figure 10.1-1).
Before encoding, preprocessing is performed to prepare the image for the encoding pro-
cess, and consists of any number of operations that are application specific. After the com-
pressed file has been decoded, postprocessing can be performed to eliminate some of the
potentially undesirable artifacts brought about by the compression process. Often, many
practical compression algorithms are a combination of a number of different individual
compression techniques.

The compressor can be further broken down into stages as illustrated in Figure 10.1-2.
The first stage in preprocessing is data reduction. Here, the image data can be reduced by
gray level and/or spatial quantization, or can undergo any desired image improvement

(a)

(b)

Compressed
file

Input image
I(r,c)

Preprocessing Encoding

Compressed
file Decompression Postprocessing Decompressed

image Î(r,c)

Figure 10.1-1
Compression system model. (a) Compression, (b) decompression.

642	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(e.g., noise removal) process. The second step in preprocessing is the mapping process,
which maps the original image data into another mathematical space where it is easier to
compress the data. Next, as part of the encoding process, is the quantization stage, which
takes the potentially continuous data from the mapping stage and puts it in discrete form.
The final stage of encoding involves coding the resulting data, which maps the discrete
data from the quantizer onto a code in an optimal manner. A compression algorithm may
consist of all the stages, or it may consist of only one or two of the stages.

The decompressor can be further broken down into the stages shown in Figure 10.1-3.
Here the decompression process is divided into two stages. The first, the decoding stage,
takes the compressed file and reverses the original coding by mapping the codes to the
original, quantized values. Next, these values are processed by a stage that performs
an inverse mapping to reverse the original mapping process. Finally, the image may be

I(r,c)
Input image

I(r,c) Data reduction

Quantization

Mapping

Coding
Compressed

file

Data reduction Mapping

Preprocessing

Encoding

Figure 10.1-2
The compressor.

Decoding Inverse mapping

Postprocessing

Decompression

Compressed file

Decompressed
image Î(r,c)

Figure 10.1-3
The decompressor.

Image Compression	 643

© 2011 by Taylor & Francis Group, LLC

postprocessed to enhance the look of the final image. In some cases this may be done to
reverse any preprocessing, for example, enlarging an image that was shrunk in the data
reduction process. In other cases the postprocessing may simply enhance the image to
ameliorate any artifacts from the compression process itself.

The development of a compression algorithm is highly application specific. During the
preprocessing stage of compression, processes such as enhancement, noise removal, or
quantization are applied. The goal of preprocessing is to prepare the image for the encod-
ing process by eliminating any irrelevant information, where irrelevant is defined by the
application. For example, many images that are for viewing purposes only can be pre-
processed by eliminating the lower bit planes, without losing any useful information. In
Figure 10.1-4 are shown the 8 bit-planes corresponding to an 8-bit image. Each bit plane is
shown as an image by using white if the corresponding bit is a 1, and black if the bit is a
0. Here we see that the lower bit planes contain little information, and can be eliminated
without loss of any significant information.

The mapping process is important because image data tend to be highly correlated. What
this means is that there is a lot of redundant information in the data itself. Specifically, if
the value of one pixel is known, it is highly likely that the adjacent pixel value is similar.
By finding a mapping equation that decorrelates the data this type of data redundancy
can be removed. One method to do this is to find the difference between adjacent pixels
and encode these values, this is called differential coding. Secondly, the principal compo-
nents transform can be used, which provides a theoretically optimal decorrelation (see
Figure 5.6-1) between bands. Color transforms are also used to decorrelate data between
image bands. Additionally, the spectral domain is used for image compression, so this first
stage may include mapping into the frequency or sequency domain where the energy in
the image is compacted into primarily the lower frequency/sequency components. These
methods are all reversible; that is, information preserving, although all mapping meth-
ods are not reversible. The concept of reversibility is important to a compression method.
Why?

Depending on the mapping equation used, quantization may be necessary to convert the
data into digital form (BYTE data type). This is because many of these mapping methods
will result in floating point data that requires multiple bytes for representation—not very
efficient if our goal is data reduction. There are two ways to do the quantization: uniform
quantization or nonuniform quantization. In uniform quantization all the quanta, or subdi-
visions into which the range is divided, are of equal width. In nonuniform quantization, these
quantization bins are not all of equal width (as shown in Figure 3.2-18). Often, nonuniform
quantization bins are designed to take advantage of the response of the human visual sys-
tem. For example, very high brightness levels appear the same, white, so wider quantiza-
tion bins may be used over this range. In the spectral domain, the higher frequencies may
also be quantized with wider bins because we are more sensitive to lower and midrange
spatial frequencies and most images have little energy at high frequencies. The concept of
nonuniform quantization bin sizes is also described as a variable bit rate, since the wider
quantization bins imply fewer bits to encode, while the smaller bins need more bits. It is
important to note that the quantization process is not reversible, so some information may
be lost during quantization. Additionally, since it is not a reversible process, the inverse
process does not exist, so it does not appear in the decompression model (Figure 10.1-3).

The coding stage of any image compression algorithm is very important. The coder pro-
vides a one-to-one mapping, each input is mapped to a unique output by the coder, so it
is a reversible process. The code can be an equal length code, where all the code words are
the same size, or an unequal length code with variable length code words. In most cases, an

644	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Bit 7, MSB Bit 6

Bit 5 Bit 4

Figure 10.1-4
Bit plane images. (a) Original image, (b) bit plane 7, the most significant bit (MSB), (c) bit plane 6, (d) bit plane 5,
(e) bit plane 4, (f) bit plane 3, (g) bit plane 2, (h) bit plane 1, (i) bit plane 0, the least significant bit (LSB). Note that
the least significant bit(s) are primarily noise.

Image Compression	 645

© 2011 by Taylor & Francis Group, LLC

unequal length code is the most efficient for data compression, but requires more overhead
in the coding and decoding stages. Many of the lossless methods described here are pri-
marily efficient coding techniques.

10.2  Lossless Compression Methods

Lossless compression methods are necessary in some imaging applications. For example,
with medical images, the law requires that any archived medical images are stored without
any data loss. In general, any images that are to be used in a court of law will be suspect
if a lossy compression technique has been applied. Many of the lossless techniques were
developed for nonimage data, and, consequently are not optimal for image compression.
In general, the lossless techniques alone provide marginal compression of complex image

(f) (g)

(h) (i)
Bit 0, LSBBit 1

Bit 2Bit 3

Figure 10.1-4 (Continued)
Bit plane images. (a) Original image, (b) bit plane 7, the most significant bit (MSB), (c) bit plane 6, (d) bit plane 5,
(e) bit plane 4, (f) bit plane 3, (g) bit plane 2, (h) bit plane 1, (i) bit plane 0, the least significant bit (LSB). Note that
the least significant bit(s) are primarily noise.

pj
w

st
k|

40
20

64
|1

43
57

19
29

3

646	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

data, often in the range of only a 10% reduction in file size. However, lossless compression
techniques may be used for both preprocessing and postprocessing in image compression
algorithms to obtain the extra 10% compression. Additionally, for simple images the loss-
less techniques can provide substantial compression.

The underlying theory for lossless compression (also called data compaction) comes from
the area of communications and information theory, with a mathematical basis in prob-
ability theory. One of the most important concepts used here is the idea of information
content and randomness in data. Using information theory, an event that is less likely to
occur is said to contain more information than an event that is likely to occur. For example,
consider the following statements:

	 1.	The Earth will continue to revolve around the sun
	 2.	An Earthquake will occur tomorrow
	 3.	A matter transporter will be invented in the next 10 years

Which statement, in the sense stated above, has the most information? Statement no.
1 contains relatively little information, because this is an event that we all know will
occur—it has a probability approaching 100% (we hope!). Statement no. 2 contains more
information, because the event “Earthquake will occur” has a probability less than 100%.
Statement no. 3 contains the most information, because it is a highly unlikely event. This
perspective on information is the information theoretic definition and should not be con-
fused with our working definition that requires information in images to be useful, not
simply novel. This brief background is provided to help explain some of the following
concepts.

An important concept here is the idea of measuring the average information in an
image, referred to as the entropy. The entropy for an N × N image can be calculated by this
equation:

	 Entropy p pi i

i=

L

= −
−

∑ log ()2

0

1

(in bits/pixel)

where
pi = the probability of the ith gray level = nk /N

2

nk = the total number of pixels with gray value k
L = the total number of gray levels (e.g., 256 for 8-bits).

This measure provides us with a theoretical minimum for the average number of bits
per pixel that could be used to code the image. This number is theoretically optimal, and
can be used as a metric for judging the success of a coding scheme.

Example 10.2.1

Let L = 8, meaning there are 3 bits/pixel in the original image. Now, let’s say the number of
pixels at each gray-level value is equal (they have the same probability); that is

	 p p p0 = = = =1 7

1
8

…

pj
w

st
k|

40
20

64
|1

43
57

19
29

1

Image Compression	 647

© 2011 by Taylor & Francis Group, LLC

Now, we can calculate the entropy as follows:

	 Entropy p p =i i
i=

= − = −
⎛
⎝⎜

⎞
⎠⎟2 2

0

7

()
1
8

1
8

3log log∑∑∑
i=0

7

This tells us that the theoretical minimum for lossless coding for this image is 3 bits per pixel.
In other words, there is no code that will provide better results than the one currently used
(called the natural code, since 0002 = 0, 0012 = 1, 0102 = 2, ..., 1112 = 7). This example illustrates
that the image with the most random distribution of gray levels, a uniform distribution, has
the highest entropy.

Example 10.2.2

Let L = 8, thus we have a natural code with 3 bits per pixel in the original image. Now let’s say
that the entire image has a gray level of 2, so

	 p p p p p p p p2 1 3 4 5 6 7= = = = = = = =1, and 00

and the entropy is

	 Entropy p p
i=

i i
= − = − + + + =∑

0

7

2 2() (1) (1) 0 0log log … 00

This tells us the theoretical minimum for coding this image is 0 bits per pixel. Why is this?
Because the gray-level value is known to be 2. To code the entire image we need only one
value, this is called the certain event, it has a probability of 1.

The two preceding examples illustrate the range of the entropy:

	 0 ()2ʺ ʺEntropy Llog

The examples also illustrate the information theory perspective regarding information and
randomness. The more randomness that exists in an image, the more evenly distributed
the gray levels, and more bits per pixel are required to represent the data (see Figure 10.2-1).
This also correlates to information: more randomness implies each individual value is less
likely, which means more information is contained in each pixel value, so we need more
bits to code each pixel value. This also provides us with one of the key concepts in coding
theory: we want to assign a fewer number of bits to code more likely events. Intuitively,
this makes sense. Given an image to code, a minimum overall file size will be achieved if
a smaller number of bits is used to code the most frequent gray levels.

The entropy measure also provides us with a metric to evaluate coder performance. We
can measure the average number of bits per pixel (Length) in a coder by the following:

	 ave i i

i=

L

L l p=
−

∑
0

1

where
li = length in bits of the code for ith gray level
pi = histogram-probability of ith gray level.

648	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 10.2-1
Entropy. Entropy as measured in bits per pixel (bpp) for the following images. (a) Original image, entropy = 7.032
bpp, (b) image after local histogram equalization, block size 4, entropy = 4.348 bpp, (c) image after binary thresh-
old, entropy =0.976 bpp, (d) circle with a radius of 32, entropy = 0.283 bpp, (e) circle with a radius of 64, entropy =
0.716 bpp, (f) circle with a radius of 32, and a linear blur radius of 64, entropy = 2.030 bpp.

Image Compression	 649

© 2011 by Taylor & Francis Group, LLC

This can then be compared to the entropy, which provides the theoretical minimum. The
closer Lave is to the entropy, the better the coder.

10.2.1  Huffman Coding

The Huffman code, developed by D. Huffman in 1952, is a minimum length code. This
means that given the statistical distribution of the gray levels (the histogram), the Huffman
algorithm will generate a code that is as close as possible to the minimum bound, the
entropy. This method results in an unequal (or variable) length code, where the size of the
code words can vary. For complex images, Huffman coding alone will typically reduce the
file by 10–50% (1.1:1–1.5:1), but this ratio can be improved to 2:1 or 3:1 by preprocessing for
irrelevant information removal.

The Huffman algorithm can be described in five steps:

	 1.	Find the gray-level probabilities for the image by finding the histogram.
	 2.	Order the input probabilities (histogram magnitudes) from smallest to largest.
	 3.	Combine the smallest two by addition.
	 4.	GOTO Step 2, until only two probabilities are left.
	 5.	By working backward along the tree, generate code by alternating assignment of 0

and 1.

This procedure is best illustrated by example.

Example 10.2.3

We have an image with 2-bits per pixel, giving four possible gray levels. The image is 10 rows
by 10 columns. In Step 1 we find the histogram for the image. This is shown in Figure 10.2-2a,
where we see that gray level 0 has 20 pixels, gray level 1 has 30 pixels, gray level 2 has 10
pixels, and gray level 3 has 40 pixels with the value. These are converted into probabilities
by normalizing to the total number of pixels in the image. Next, in Step 2, the probabilities
are ordered as in Figure 10.2-2b. For Step 3, we combine the smallest two by addition. Step 4
repeats Steps 2 and 3, where we reorder (if necessary) and add the two smallest probabilities
as in Figure 10.2-2d. This step is repeated until only two values remain. Since we have only
two left in our example, we can continue to Step 5 where the actual code assignment is made.
The code assignment is shown in Figure 10.2-3. We start on the right-hand side of this tree
and assign 0s and 1s, working our way back to the original probabilities. Figure 10.2-3a shows
the first assignment of 0 and 1. A 0 is assigned to the 0.6 branch, and a 1 to the 0.4 branch. In
Figure 10.2-3b, the assigned 0 and 1 are brought back along the tree, and wherever a branch
occurs the code is put on both branches. Now (Figure 10.2-3c), we assign the 0 and 1 to the
branches labeled 0.3, appending to the existing code. Finally (Figure 10.2-3d), the codes are
brought back one more level, and where the branch splits another assignment of 0 and 1 occurs
(at the 0.1 and 0.2 branch). Now we have the Huffman code for this image in Table 10.1.

Note that two of the gray levels now have 3 bits assigned to represent them, but one
gray level only has 1 bit assigned to represent it. The gray-level represented by 1 bit, g3, is
the most likely to occur (40% of the time) and thus has the least information in the informa-
tion theoretic sense. Remember that we learned from information theory that symbols with
less information require fewer bits to represent them. The original image had an average
of 2 bits/pixel, let us examine the entropy in bits per pixel, and average bit length for the
Huffman coded image file.

650	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example: 10.2.4

	

Entropy p pi i
i=

= −

= −

∑ 2
0

3

2

()

[(0.2) (0.2

log

log)) (0.3) (0.3) (0.1) (0.1) (0.4) (2 2 2+ + +log log log 00.4)

1.846 bits/pixel

(Note: () can2

]

log

≈

x bbe found by taking () and multiplyin10log x gg by 3.322)

3(0.2)

0

1

L l pave i i
i=

L

=

= +

−

∑
22(0.3) 3(0.1) 1(0.4)

1.9 bits/pixel (Ave

+ +

= rrage length with Huffman code)

N
um

be
r o

f p
ix

el

Step 1: Histogram

3
Gray level

21

40
30
20
10

0

g1 = =0.330
100

g0 = =0.220
100

g2 = =0.110
100

g3 = =0.440
100

g1

g0

g2

g3

0.2 0.2

0.4 0.4 0.4

0.1 0.1

 0.3 0.3 0.3

 0.3

Step 2 : Order Step 3 : Add

(b) (c)

Step 4 : Reorder and add until only two values remain

0.2

0.4 0.4 0.4

0.1

 0.3 0.3 0.6

 0.6

 0.3

(d) 0.4

0.4 0.3

 0.30.2

0.4

0.1

 0.3

(a)

Figure 10.2-2
Huffman coding example.

Image Compression	 651

© 2011 by Taylor & Francis Group, LLC

In the example, we observe a 2.0:1.9 compression, which is about a 1.05 compression ratio,
providing about 5% compression. From the example we can see that the Huffman code is
highly dependent on the histogram, so any preprocessing to simplify the histogram will
help improve the compression ratio.

10.2.2  Run-Length Coding

Run-length coding (RLC) is an image compression method that works by counting the num-
ber of adjacent pixels with the same gray-level value. This count, called the run-length, is

0.2

0.4

0.1

Assign 0 and 1 to the right–most probabilities

(a)

 0.3

0.4

0.4

1

1 0

0

0

0.6

 0.3

 0.3

0.4

0.6

0.2

0.4

0.1

Bring 0 and 1 back along the tree

(b)

 0.3

0.4

 0.3

 0.3

1

1

0

00

01

0.4

0.6

0.2

0.4

0.1

 0.3

0.4

 0.3

 0.3

 (c)

Append 0 and 1 to previously-added branches

11

1

0

011

Repeat the process until the original branch is labeled

010

00 00

01

0.4

0.6

0.2

0.4

0.1

(d)

 0.3

0.4

 0.3

 0.3

1

0

Figure 10.2-3
Huffman coding example, Step 5.

652	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

then encoded and stored. Here we will explore several methods of run-length encoding:
basic methods used primarily for binary (two-valued) images and extended versions for
gray-scale images. We will also briefly discuss RLC standards.

Basic RLC is used primarily for binary images, but can work with complex images that
have been preprocessed by thresholding to reduce the number of gray levels to two. There
are various ways to implement basic RLC, and the first step is to define the required param-
eters. We can either use horizontal RLC, counting along the rows, or vertical RLC, count-
ing along the columns. In basic horizontal RLC, the number of bits used for the encoding
depends on the number of pixels in a row. If the row has 2n pixels, then the required num-
ber of bits is n, so that a run that is the length of the entire row can be encoded.

Example 10.2.5

A 256 × 256 image requires 8-bits, since 28 = 256.

Example 10.2.6

A 512 × 512 image requires 9-bits, since 29 = 512.

The next step is to define a convention for the first RLC number in a row—does it represent
a run of 0s or 1s? Defining the convention for the first RLC number to represent 0s, we can
look at the following example.

Example 10.2.7

The image is an 8 × 8 binary image, which requires 3 bits for each run-length coded word. In
the actual image file are stored 1s and 0s, although upon display the 1s become 255 (white) and
the 0s are 0 (black). To apply RLC to this image, using horizontal RLC:

	

0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 0 0 1 0
0 0 1 00 0 1 1 0
1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥

The RLC numbers are
First row: 8
Second row: 0, 4, 4

TABLE 10.1

Huffman Code for Example 10.2.3

Original Gray Level (Natural Code) Probability Huffman code

g0: 002 0.2 0102

g1: 012 0.3 002

g2: 102 0.1 0112

g3: 112 0.4 12

Image Compression	 653

© 2011 by Taylor & Francis Group, LLC

Third row: 1, 2, 5
Fourth row: 1, 5, 2
Fifth row: 1, 3, 2, 1, 1
Sixth row: 2, 1, 2, 2, 1
Seventh row: 0, 4, 1, 1, 2
Eighth row: 8

Note that in the second and seventh rows, the first RLC number is 0, since we are using the
convention that the first number corresponds to the number of zeros in a run.

This basic method can be extended to gray-level images by using a technique called
bit-plane RLC. Bitplane-RLC works by applying basic RLC to each bit-plane independently.
In Figure 10.2-4 the concept of bit-planes is illustrated. For each binary digit in the gray-
level value, an image plane is created, and this image plane (a string of 0s and 1s) is then
encoded using RLC. Typical compression ratios of 0.5–1.2 are achieved with complex 8-bit
monochrome images; so, without further processing, this is not a good compression tech-
nique for complex images. Bitplane-RLC is most useful for simple images, such as graphics
files, where much higher compression ratios are achieved. The compression results using
this method can be improved by preprocessing to reduce the number of gray levels, but
then the compression is not lossless.

With lossless bitplane RLC we can improve the compression results by taking our origi-
nal pixel data (in natural code) and mapping it to a Gray code (named after Frank Gray),
where adjacent numbers differ in only one bit. Because adjacent pixel values are highly
correlated, adjacent pixel values tend to be relatively close in gray-level value, and this can
be problematic for RLC.

1

1

1 1 1 1

1

1

0 0 0

00

0 0 0

000 0

.

. .
.
.

.

.

.

.

.

..

b0b1b3 b2
(a)

4 bits/pixel designation

1

1

0

0 0
Bit–planes

1 1

0

Row

b3 b0b1b2

b3

b0

b1

b2

(b)

C
o
l
u
m
n

Figure 10.2-4
Bit plane run-length coding.

654	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 10.2.8

In Figure 10.2-5 is shown the 4-bit Gray code and the natural binary code. The Gray code,
by definition, only has one bit changing in adjacent codes. However, in, for example, the 7–8
transition with the natural code, all 4 bits change:

	

Natural Code Gray Code

0 1 1 1 0 11 0 0

1 0 0 0

↓↓↓↓ ↓↓↓↓

11 1 0 0

4–bit natural code 4–bit Gray codeDecimal

15
Gray code versus natural code

(a)

00010001
00000000

0010
00100011
0011

0100

0100

0101
01010110

0110

0111

0111

1000

1000

1001

1001

1010

1010
1011

1011
1100

1100

1101

1101

1110

1110

1111

1111

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

(b)

�e natural code transition of 7–8
changes all 4 bits

0 0

0

01

1 1 1

8:

7:

Figure 10.2-5
Gray code.

Image Compression	 655

© 2011 by Taylor & Francis Group, LLC

When a situation such as the above example occurs, each bitplane experiences a transition,
which adds a code for the run in each bitplane. However, with the Gray code, only one
bitplane experiences the transition, so it only adds one extra code word. By preprocessing
with a Gray code we can achieve about a 10–15% increase in compression with bitplane-
RLC for typical images.

Another way to extend basic RLC to gray-level images is to include the gray level of a
particular run as part of the code. Here, instead of a single value for a run, two parameters
are used to characterize the run. The pair (G,L) correspond to the gray-level value, G, and
the run length, L. This technique is only effective with images containing a small number
of gray levels.

Example 10.2.9

Given the following 8 × 8, 4-bit image:

	

10 10 10 10 10 10 10 10
10 10 10 10 10 12 12 12
10 10 10 10 10 122 12 12
0 0 0 10 10 10 0 0
5 5 5 0 0 0 0 0
5 5 5 10 10 9 9 10
5 5 5 4 4 4 0 00
0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The corresponding gray levels pairs are as follows:
First row: 10,8
Second row: 10,5 12,3
Third row: 10,5 12,3
Fourth row: 0,3 10,3 0,2
Fifth row: 5,3 0,5
Sixth row: 5,3 10,2 9,2 10,1
Seventh row: 5,3 4,3 0,2
Eighth row: 0,8
These numbers are then stored in the RLC compressed file as
10,8,10,5,12,3,10,5,12,3,0,3,10,3,0,2,5,3,0,5,5,3,10,2,9,2,10,1,5,3,4,3,0,2,0,8

The decompression process requires the number of pixels in a row, and the type of encod-
ing used.

Standards for RLC have been defined by the International Telecommunications Union-
Radio (ITU-R, previously CCIR). These standards, initially defined for use with FAX trans-
missions, have become popular for binary image compression. They use horizontal RLC,
but postprocess the resulting RLC with a Huffman encoding scheme. Newer versions of
this standard also utilize a 2-D technique where the current line is encoded based on
a previous line. This additional processing helps to reduce the file size. These encoding
methods provide compression ratios of about 15–20 for typical documents.

10.2.3 L empel–Ziv–Welch Coding

The Lempel–Ziv–Welch (LZW) coding algorithm works by encoding strings of data. For
images, these strings of data correspond to sequences of pixel values. It works by creating

pj
w

st
k|

40
20

64
|1

43
57

19
24

2

656	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

a string table that contains the strings and their corresponding codes. The string table
is updated as the file is read, with new codes being inserted whenever a new string is
encountered. If a string is encountered that is already in the table, the corresponding code
for that string is put into the compressed file.

LZW coding uses code words with more bits than the original data. For example, with
8-bit image data, an LZW coding method could employ 10-bit words. The correspond-
ing string table would then have 210 = 1024 entries. This table consists of the original 256
entries, corresponding to the original 8-bit data, and allows 768 other entries for string
codes. The string codes are assigned during the compression process, but the actual string
table is not stored with the compressed data. During decompression the information in the
string table is extracted from the compressed data itself.

For the GIF (and TIFF) image file format the LZW algorithm is specified, but there has been
some controversy over this, since the algorithm is patented (by Unisys Corporation under
patent no. 4,558,302). Since these image formats are widely used, other methods similar in
nature to the LZW algorithm have been developed to be used with these, or similar, image
file formats. Similar versions of this algorithm include the adaptive Lempel–Ziv, used in the
UNIX compress function, and the Lempel–Ziv 77 algorithm used in the UNIX gzip function.

10.2.4 A rithmetic Coding

In arithmetic coding there is not a direct correspondence between the code and the indi-
vidual pixel values. Arithmetic coding transforms input data into a single floating point
number between 0 and 1. As each input symbol (in this case, pixel value) is read the pre-
cision required for this number becomes greater. Because images are very large and the
precision of digital computers finite, an entire image must be divided into small subimages
to be encoded.

Arithmetic coding uses the probability distribution of the data (histogram), so it can
theoretically achieve the maximum compression specified by the entropy. It works by suc-
cessively subdividing the interval between 0 and 1, based on the placement of the current
pixel value in the probability distribution. This is best illustrated by example.

Example 10.2.10

Given a 16 × 16, 2-bit image with the histogram shown in Figure 10.2-6a, we can define an
arithmetic coding probability table shown in Figure 10.2-6b. The probability values are the
ratio of the specific gray-level value to the total number of pixels in the image (in this case
16 × 16 = 256). The initial subinterval specifies how the 0–1 interval is divided based on the
distribution, where the width of the subinterval is equal to the probability, and the subinter-
val starts where the previous one stops. In Figure 10.2-6c, the actual arithmetic coding pro-
cess is illustrated, with an example pixel value sequence of 0,0,3,1. Starting on the left, the
initial 0–1 interval is subdivided, based on the probability distribution. Next, the first pixel
value “0” is coded by extracting the subinterval corresponding to the “0” and subdividing it
again, based on the same relative distribution. This process is repeated for each pixel value
in the sequence until a final interval is determined, in this case from 58/1024–62/1024, or
0.056640625–0.060546875. Any value within this subinterval, such as 0.057 or 0.060, can be
used to represent this sequence of gray-level values.

In practice, this technique may be used as part of an image compression scheme, but is
impractical to use alone. It is one of the options available in the Joint Photographic Experts
Group (JPEG) and JPEG2000 standards.

Image Compression	 657

© 2011 by Taylor & Francis Group, LLC

10.3  Lossy Compression Methods

In order to achieve high compression ratios with complex images, lossy compression
methods are required. Lossy compression provides tradeoffs between image quality and
degree of compression, which allows the compression algorithm to be customized to the
application. With some of the more advanced methods, images can be compressed 10–50
times with minimal degradation (see Figure 10.3-1). Newer techniques, such as JPEG2000,
can achieve reasonably good image quality with compression ratios as high as 100–200.
Image enhancement and restoration techniques can be combined with lossy compression
schemes to improve the appearance of the decompressed image.

(a)

Pixel value

N
um

be
r o

f p
ix

el
s

Histogram

128
96
64

32

3210

(b)

Probability table

Initial sub–intervalProbabilityPixel value

1

0 64/256 = 1/4

2

3 32/256 = 1/8

32/256 = 1/8

128/256 = 1/2

7/8 – 1

3/4 –7/8

1/4 – 3/4

0 – 1/4

7/8
3/4

1/4

0
0

0

1

0

1

2
3

7/32
3/16

1/16

1/4

0

0

1

1

2
3

0

7/128

3/64

1/64

32/512

31/512

29/512

28/512

62/1024

58/1024

1/16

0

1

2
3

3
Coding process for ‘‘0, 0, 3, 1’’

0

1

2
3

Encode:

(c)

Figure 10.2-6
Arithmetic coding.

658	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The lossy compression methods discussed are representative of the available tools for
compression algorithm development and provide a wide variety of compression ratios and
image quality. Many of the methods have adjustable parameters to allow the user to select
the desired compression ratio and image fidelity. In general, a higher compression ratio
results in a poorer image, but the results are highly image dependent. A technique that
works well for one application may not be suitable for another.

Lossy compression is performed in both the spatial and transform domains. We will
explore methods that utilize each of these domains, and some that use both. In the spatial
domain we will discuss gray-level run-length coding (GLRLC), block truncation coding
(BTC), vector quantization (VQ), differential predictive coding (DPC), and fractal-based
methods. In the transform domain we will discuss filtering, zonal coding, threshold cod-
ing, and the JPEG and JPEG2000 algorithms. We will also look at techniques for combining

(a) (b)

(c) (d)

Figure 10.3-1
Lossy image compression. (a) Original image, (b) JPEG compression 16:1 ratio, (c) JPEG compression 32:1 ratio,
(d) JPEG2000 compression 101:1 ratio.

Image Compression	 659

© 2011 by Taylor & Francis Group, LLC

these methods into hybrid compression algorithms that use both the spatial and transform
domains.

10.3.1  Gray-Level Run-Length Coding

In Section 10.2 on lossless compression we discussed methods of extending basic RLC to
gray-level images, by using bit-plane coding. The RLC technique can also be used for lossy
image compression, by reducing the number of gray levels, and then applying standard
RLC techniques. As with the lossless techniques, preprocessing by Gray code mapping
will improve the compression ratio. Figure 10.3-2 shows results with this method and also
lists the compression ratio with and without Gray code preprocessing

A more sophisticated RLC algorithm for encoding gray-level images is called the dynamic
window-based RLC. This algorithm relaxes the criterion of the runs being the same value
and allows for the runs to fall within a gray-level range, called the dynamic window range.
This range is dynamic because it starts out larger than the actual gray-level window range,
and maximum and minimum values are narrowed down to the actual range as each pixel
value is encountered. This process continues until a pixel is found out of the actual range.
The image is encoded with two values, one for the run length and one to approximate the
gray-level value of the run. This approximation can simply be the average of all the gray-
level values in the run, or a more complex method may be used to calculate the representa-
tive value.

Example 10.3.1

Given the following pixel values in sequence:

	 65 67 66 64 63 68 70

and a window range of 5.
The first value is called the reference value (in this case = 65). A dynamic window range is

then defined that has

	 MINIMUM = reference − (window length −1)

and

	 MAXIMUM = reference + (window length −1)

In this case the dynamic window is [65 − (5 − 1)] to [65 + (5 − 1]) = 61 to 69.
The next value encountered, 67, is used to adjust this range. The range based on this value

alone is from 63 to 71. The new dynamic range is based on the intersection of the range from
this new value with the previous range, so the new range is 63–69. This process continues
until the value of 68 is encountered. At this point the range has been narrowed down to 63–67,
so the 68 is out of range. This run is then encoded as

RUN LENGTH = 5
GRAY LEVEL = (65 + 67 + 66 + 64 + 63)/5 = 65

In Figure 10.3-3 are results of the dynamic window-based RLC, where the average was
used as the representative value. This particular algorithm also uses some preprocessing

660	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

to allow for the run-length mapping to be coded so that a run can be any length and is not
constrained by the length of a row (see reference for details).

10.3.2 B lock Truncation Coding

Block truncation coding (BTC) works by dividing the image into small subimages and then
reducing the number of gray levels within each block. This reduction is performed by a
quantizer that adapts to the local image statistics. The levels for the quantizer are chosen
to minimize a specified error criterion, and then all the pixel values within each block

(c) (d)

(a) (b)

Figure 10.3-2
Lossy bitplane run-length coding. Note that no compression occurs until reduction to 5 bits/pixel/band, and
visible artifacts appear at 3 bits/pixel/band. (a) Original image, 8 bits/pixel/band, 256 gray levels per band,
(b) image after reduction to 7 bits/pixel/band, 128 gray levels per band, compression ratio 0.51, with Gray code
preprocessing 0.64, (c) image after reduction to 6 bits/pixel/band, 64 gray levels per band, compression ratio
0.69, with Gray code preprocessing 0.89, (d) image after reduction to 5 bits/pixel/band, 32 gray levels per band,
compression ratio 0.99, with Gray code preprocessing 1.35, (e) image after reduction to 4 bits/pixel/band, 16 gray
levels per band, compression ratio 1.58, with Gray code preprocessing 2.17, (f) image after reduction to 3 bits/
pixel/band, 8 gray levels per band, compression ratio 2.86, with Gray code preprocessing 3.47, (g) image after
reduction to 2 bits/pixel/band, 4 gray levels per band, compression ratio 6.89, with Gray code preprocessing
8.09, (h) image after reduction to 1 bit/pixel/band, 2 gray levels per band, compression ratio 21.67, with Gray
code preprocessing 21.67.

Image Compression	 661

© 2011 by Taylor & Francis Group, LLC

are mapped to the quantized levels. The necessary information to decompress the image
is then encoded and stored. Many different BTC algorithms have been defined by using
various types of quantization and error criteria, as well as various preprocessing and post-
processing methods. The more sophisticated algorithms provide better results, but with a
corresponding increase in computational complexity.

The basic form of BTC divides the image into n × n blocks and codes each block using a
two-level quantizer. The two levels are selected so that the mean and variance of the gray
levels within the block are preserved. Each pixel value within the block is then compared

(g) (h)

(e) (f)

Figure 10.3-2 (Continued)
Lossy bitplane run-length coding. Note that no compression occurs until reduction to 5 bits/pixel/band, and
visible artifacts appear at 3 bits/pixel/band. (a) Original image, 8 bits/pixel/band, 256 gray levels per band,
(b) image after reduction to 7 bits/pixel/band, 128 gray levels per band, compression ratio 0.51, with Gray code
preprocessing 0.64, (c) image after reduction to 6 bits/pixel/band, 64 gray levels per band, compression ratio
0.69, with Gray code preprocessing 0.89, (d) image after reduction to 5 bits/pixel/band, 32 gray levels per band,
compression ratio 0.99, with Gray code preprocessing 1.35, (e) image after reduction to 4 bits/pixel/band, 16 gray
levels per band, compression ratio 1.58, with Gray code preprocessing 2.17, (f) image after reduction to 3 bits/
pixel/band, 8 gray levels per band, compression ratio 2.86, with Gray code preprocessing 3.47, (g) image after
reduction to 2 bits/pixel/band, 4 gray levels per band, compression ratio 6.89, with Gray code preprocessing
8.09, (h) image after reduction to 1 bit/pixel/band, 2 gray levels per band, compression ratio 21.67, with Gray
code preprocessing 21.67.

662	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

with a threshold, typically the block mean, and then is assigned to one of the two levels. If
it is above the mean it is assigned the high level code, if it is below the mean, it is assigned
the low level code. If we call the high value H and the low value L, we can find these values
via the following equations:

	

H m
n q
q

L m
q

n q

b b

b b

= +
−

= −
−

σ

σ

2

2

(b) (c)

(a)

Figure 10.3-3
Dynamic window range RLC. (a) Original image, (b) window length = 10, compression 2.2:1, (c) error image
of (b), generated by subtracting the decompressed from the original and remapping to byte, actual range on
the error image is –18 to +12, (d) window length = 20, compression 3.6:1, (e) error image of (d), actual range on
the error image is –21 to +25, (f) window length = 40, compression 6.4:1, (g) error image of (f), actual range on the
error image is –41 to +38. Note that the error images have been remapped to byte for display purposes–without
remapping they will appear primarily black. This effective stretching of each RGB band separately creates false
colors, for example in the sky, where the error is actually not very noticeable.

Image Compression	 663

© 2011 by Taylor & Francis Group, LLC

where the block size is

the current block

n n

b

m

×

=

bb

I r c b

b

n
I r c= =

=

∈
∑the block mean

the

1
2

(,)
(,)

σ block variance = −
∈
∑1

2
2 2

n
I r c m

q

b

I r c b

[(,)]
(,)

== ≥the number of values in the block mb

(d) (e)

(f) (g)

Figure 10.3-3 (Continued)
Dynamic window range RLC. (a) Original image, (b) window length = 10, compression 2.2:1, (c) error image
of (b), generated by subtracting the decompressed from the original and remapping to byte, actual range on
the error image is –18 to +12, (d) window length = 20, compression 3.6:1, (e) error image of (d), actual range on
the error image is –21 to +25, (f) window length = 40, compression 6.4:1, (g) error image of (f), actual range on the
error image is –41 to +38. Note that the error images have been remapped to byte for display purposes–without
remapping they will appear primarily black. This effective stretching of each RGB band separately creates false
colors, for example in the sky, where the error is actually not very noticeable.

664	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Letting n = 4, we can do the following analysis: After the H and L values are found, the
4 × 4 block is encoded with four bytes: two bytes to store the two levels, H and L, and two
bytes to store a bit string of 1s and 0s corresponding to the high and low codes for that
particular block. This is illustrated in Figure 10.3-4, where we see the bit string for the
4 × 4 block is packed into two bytes. Since the original 4 × 4 subimage has 16 bytes, and the
resulting code has 4 bytes (two for the high and low values, and two for the bit string), this
provides a 16:4 or 4:1 compression.

The following example illustrates finding the values for a specific block using basic BTC.

Example 10.3.2

Given the following 4 × 4 subimage, apply basic BTC and find the resulting values.

	

12 16 15 17
13 16 17 17
4 4 35 35
42 42 12 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(a)

Divide image into 4×4 blocks

000 0

0

0

(b) Low
value

High
value

Find high and low values for blocks

111

1 1 1 1

1 Row 4

Low gray value

High gray value

1 byte = 8 bits

Row 3

Encode 4×4 block with 4 bytes

Row 2Row 1

(d)

11

(c)

Assign a ‘‘0’’ to each pixel less than
the mean, ‘‘1’’ to each pixel greater
then the mean

Figure 10.3-4
Basic block truncation coding.

Image Compression	 665

© 2011 by Taylor & Francis Group, LLC

m =
1
n

I(r, c) =
1
16

12 + 16 + 15+ 17 + 13+ 16b 2
I(r,c)Îb
∑ ++ 17 + 17 + 4+ 4+ 35+ 35+ 42 + 42 + 12 + 12

= 19.3125

s =
1

b

[]

nn
[I(r, c)] - m

=
1
16

12 + 16 + 15 + 17

2
2

b
2

I(r,c)Îb

2 2 2

∑

22 2 2 2 2 2 2 2 2 2 2+ 13 + 16 + 17 + 17 + 4 + 4 + 35 + 35 + 42 + 42 + 1222 2 2
+ 12 - 19.3125

≈ 11.85

[] ()

There are 4 pixel values greater than the mean, so q = 4.

	
H m

n q
q

L m
q

n

b b

b b

= +
−

= +
−

≈

= −

σ

σ

2

19 3125 11 85
16 4
4

40. .

22
19 3125 11 85

4
16 4

13
−

= −
−

≈
q

. .

Now, find the bit string by using 0 for values less than the mean and 1 for values greater than
the mean:

	

12 16 15 17
13 16 17 17
4 4 35 35
42 42 12 12

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⇒

00 0 0 0
0 0 0 0
0 0 1 1
1 1 0 0

0000000000111

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⇒ 11002()

The high value, H, and the low value, L, will be stored along with the bit string. The subimage,
when decompressed will be

	

13 13 13 13
13 13 13 13
13 13 40 40
40 40 13 13

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

Application of this algorithm is shown in Figure 10.3-5. Although the results of this
algorithm are image dependent, it tends to produce blocky effects at edges as shown in
Figure 10.3-5b and c. These artifacts can be smoothed by applying enhancement tech-
niques such as median and average (lowpass) filters (Figure 10.3-5d and e).

 More advanced BTC algorithms can be explored in the references, and Figure 10.3-6 illus-
trates a multilevel BTC algorithm that uses a 4-level quantizer. This algorithm allows for
varying the block size, and a larger block size provides higher compression, but with a cor-
responding decrease in image quality. We can see that the block artifacts are ameliorated by
using more quantization levels if we compare these results to those of the basic 2-level BTC

666	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

shown in Figure 10.3-5. The cost is that the algorithm has a lower compression ratio and is
more complex and therefore requires more memory and processing time.

10.3.3  Vector Quantization

Vector quantization (VQ) is the process of mapping a vector that can have many values to a
vector that has a smaller (quantized) number of values. For image compression, the vector
corresponds to a small subimage, or block.

(a)

(b) (c)

(d) (e)

Figure 10.3-5
Basic block truncation coding (BTC). (a) Original image, (b) BTC image, compression ratio = 4, (c) error image of
(b), (d) Image (b) postprocessed with a 3×3 median filter, (e) Image (b) post-processed with a 3×3 averaging filter.
The post-processing filters will smooth the blocky artifacts from the BTC algorithm –look carefully at the edges
of the top of the building against the sky.

Image Compression	 667

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d)

(f) (g)

(e)

Figure 10.3-6
Multilevel block truncation coding (BTC). (a) Original image, (b) BTC image, blocksize = 8×8, compression ratio
= 3.1, (c) error image of (b), (d) BTC image, blocksize = 16×16, compression ratio = 3.7, (e) error image of (d), (f) BTC
image, blocksize = 32×32, compression ratio = 3.9, (g) error image of (f).

668	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Example 10.3.3

Given the following 4 × 4 subimage:

	

65 70 71 75
71 70 71 81
81 80 81 82
90 90 91 92

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

This can be rearranged into a 1-D vector by putting the rows adjacent as follows:
[row1 row2 row3 row4] = [65 70 71 75 71 70 71 81 81 80 81 82 90 90 91 92]

The previous types of quantization have to do with taking a single value and reducing the
number of bits used to represent that value—this is called scalar quantization, and is most
easily achieved by rounding or truncation. Information theory (Shannon’s rate distortion
theory) tells us that better compression can always be achieved by VQ than with scalar
quantization. VQ treats the entire subimage (vector) as a single entity and quantizes it
by reducing the total number of bits required to represent the subimage. This is done by
utilizing a codebook, which stores a fixed set of vectors, and then coding the subimage by
using the index (address) into the codebook.

Example 10.3.4

Given an 8-bit, 256 × 256 image, we devise a VQ scheme that will encode each 4 × 4 block with
one of the vectors in a codebook of 256 entries. We determine that we want to encode a spe-
cific subimage with vector number 122 in the codebook. For this subimage we then store the
number 122 as the index into the codebook. Then when the image is decompressed, the vector
at the 122 address in the codebook, is used for that particular subimage. This is illustrated in
Figure 10.3-7. This will require 1 byte (8-bits) to be stored for each 4 × 4 block, providing a data
reduction of 16 bytes for a 4 × 4 block to 1 byte, or 16:1.

In the example we achieved a 16:1 compression, but note that this assumes that the code-
book is not stored with the compressed file. However, the codebook will need to be stored
unless a generic codebook is devised that could be used for a particular type of image;
then we need only store the name of that particular codebook file. In the general case, bet-
ter results will be obtained with a codebook that is designed for a particular image.

Example 10.3.5

If we include the codebook in the compressed file from the previous example, the compres-
sion ratio will not be quite as good. For every 4 × 4 block we will have 1 byte. This gives us

	 256 pixels
4 pixels/block

256 pixels
4 p

⎛
⎝⎜

⎞
⎠⎟ iixels/block

4096 blocks
⎛
⎝⎜

⎞
⎠⎟
=

At 1 byte for each 4 × 4 block, this give us 4096 bytes for the codebook addresses. Now we also
include the size of the codebook, 256 × 16:

	 4096 (256)(16) 8192 bytes for the coded fil+ = ee

Image Compression	 669

© 2011 by Taylor & Francis Group, LLC

The original 8-bit, 256 × 256 image contained:

	 (256)(256) 65,536 bytes=

Thus, we obtain a compression of

	
65,536
8192

8 8:1 compression= →

In this case, including the codebook cut the compression in half, from 16:1 to 8:1.

4

4

256

256

(a)

Original 256×256 image divided into 4×4 blocks

(c)

Codebook with 256 16–bytes entries

(b)

255

..

.

..

.

254

122

1
0

a b c d e f g h i j k l m n o p

Address/offset

16 bytes

ponm
lkji
hgfe
dcba

A subimage decompressed with vector #122

Figure 10.3-7
Quantizing with a codebook.

670	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Now, how do we decide what vectors will be stored in the codebook? This is typically
done by a training algorithm that finds a set of vectors that best represent the blocks in
the image. This set of vectors is determined by optimizing an error criterion, where the
error is defined as the sum of the vector distances between the original subimages and the
resulting decompressed subimages. The standard method is to use the Linde–Buzo–Gray
(LBG) algorithm; one implementation of the LBG algorithm for codebook generation is as
follows:

Step 1: Given an arbitrary codebook, encode each input vector according to the near-
est-neighbor criterion. Use a distance metric to compare all the input vectors to
the encoded vectors, and then sum these errors (distances) to provide a distortion
measure. If the distortion is small enough (less than a predefined threshold), quit.
If not, go to Step 2.

Step 2: For each codebook entry, compute the Euclidean centroid of all the input vec-
tors encoded into that specific codebook vector.

Step 3: Use the computed centroids as the new codebook, and go to Step 1.

The LBG algorithm, also called the K-means or the clustering algorithm, along with
other iterative codebook design algorithms do not, in general, yield globally optimum
codes. These algorithms will converge to a local minimum in the error (distortion) space.
Theoretically, to improve the codebook, the algorithm is repeated with different initial
random codebooks and the one codebook that minimizes distortion is chosen. However,
the LBG algorithm will typically yield “good” codes if the initial codebook is carefully
chosen. One simple method to find a good initial codebook is to subdivide the vector space
and find the centroid for the sample vectors within each division. These centroids are then
used as the initial codebook. Alternately, a subset of the training vectors, preferably spread
across the vector space, can be randomly selected and used to initialize the codebook.

The primary advantage of VQ is simple and fast decompression, but with the high cost
of complex compression. The compression process consists of generating the codebook,
which can be computationally expensive, especially if careful attention is given to creat-
ing an optimal codebook. The decompression process requires the use of the codebook to
recreate the image, which is easily implemented with a look-up table (LUT). This type of
compression is useful for applications where the images are compressed once and decom-
pressed many times, such as images on an Internet site. Real-time applications, such as
video conferencing, need a compression scheme that is fast for both compression and
decompression.

Vector quantization can be applied in both the spatial and spectral domains. In
Figure 10.3-8 we see VQ applied in the spatial domain using 4 × 4 subimages, and varying
the codebook size. As the codebook size is increased the image quality improves and the
compression ratio decreases. Figure 10.3-9 shows results from using VQ in the transform
domain, which is explored more in Sections 10.3.6 and 10.3.7. Here we see that the wavelet
transform provides a better image than the cosine transform at high compression ratios.

10.3.4 D ifferential Predictive Coding

Differential predictive coding (DPC) works by predicting the next pixel value based on the
previous values, and encoding the difference between the predicted value and the actual

Image Compression	 671

© 2011 by Taylor & Francis Group, LLC

value (for analog signals, this is also called Differential Pulse Code Modulation or DPCM).
This technique takes advantage of the fact that adjacent pixels are highly correlated (gray-
scale values are similar), except at object boundaries. This correlation makes it easy to
predict the next pixel value based on previous pixel values, and we need only encode the
difference between the estimate and the actual value. Typically the difference, or error,
will be small and this will help minimize the number of bits required for the compressed
file. This error is then quantized, to further reduce the data and to optimize visual results,
and can then be coded.

A block diagram of this process is shown in Figure 10.3-10, where we can see the predic-
tor must be in the feedback loop so that it matches the decompression system. The system

(a) (b)

(c) (d)

Figure 10.3-8
Vector quantization in the spatial domain. (a) Original image, (b) VQ with 4×4 vectors, and a codebook of 128
entries, compression ratio = 17.43, (c) VQ with 4×4 vectors, and a codebook of 256 entries, compression ratio =
14.75, (d) VQ with 4×4 vectors, and a codebook of 512 entries, compression ratio = 12.37. Note the improvement
in image detail as the codebook size is increased—the cost is a lower compression ratio.

672	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

must be initialized by retaining the first value(s) without any compression, in order to cal-
culate the first prediction. From the block diagram, we have the following:

	

�I

I

=

=

the predicted next pixel value

the recˆ oonstructed pixel value

errore I I

e I

= − =

= −

�

�ˆ ˆ II = quantized error

(a) (b)

(c) (d)

Figure 10.3-9
Vector quantization in the transform domain. The original image is the image in Figure 10.3-8a. (a) VQ with the
discrete cosine transform, compression ratio = 15, (b) VQ with the wavelet transform, compression ratio = 15,
(c) VQ with the discrete cosine transform, compression ratio = 40, (d) VQ with the wavelet transform, compres-
sion ratio = 40. Note that the wavelet results are superior to the cosine transform and is most noticeable at high
compression ratios.

Image Compression	 673

© 2011 by Taylor & Francis Group, LLC

The prediction equation is typically a function of the previous pixel(s), and can also include
global or application-specific information.

The theoretically optimum predictor that uses only the previous value is based on mini-
mizing mean squared error between the original and the decompressed image, and is
given by

�I r,c 1 I r,c I r,c

I r,c

() () (1) ()
where

()

+ = + −

=

ρ ρˆ

the average value for the image

the norρ = mmalized correlation between pixel values.

For most images ρ is between 0.85 and 0.95. Once the next pixel value has been predicted,
the error is calculated:

	 e r,c 1 I r,c 1 I r,c 1() () ()+ = + − +�

This error signal is then quantized, such that

	 ˆ ˆe r,c I r,c I r,c(1) (1) (1)+ = + − +�

This quantized error can then be encoded using a lossless encoder, such as a Huffman coder. It
should be noted that it is important that the predictor uses the same values during both com-
pression and decompression; specifically the reconstructed values and not the original values
(see Figure 10.3-10). In Figure 10.3-11 we see the results from using the original image values

Predictor

e
+

–
EncoderQuantizerInput image

I (r,c)
Compressed

image

Compression

Σ

+
+

Σ
ÎI~

^e
(a)

(b)

Predictor

DecoderCompressed
image

Decompression

Decompressed
image
Î (r,c)+

Σ
Î

I~

ê
+

Figure 10.3-10
Differential predictive coding (DPC).

674	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

in the prediction, compared to using the reconstructed (decompressed) pixel values in the
predictor. With these examples the quantization used was simply truncation (“clipping”).

The prediction equation can be one-dimensional (1-D) or 2-D; that is, it can be based on
previous values in the current row only, or on previous rows also (see Figure 10.3-12). The
following prediction equations are typical examples of those used in practice, with the first
being 1-D and the next two being 2-D:

	

�

�

I r,c I r,c

I r,c I r

(1) 0.97 ()

(1) 0.49 (

+ =

+ =

ˆ

ˆ ,,c I r ,c

I r,c I r,c

) 0.49 (1 1)

(1) 0.74 ()

+ − +

+ =

ˆ

ˆ� ++ − + − −0.74 (1 1) 0.49 (1)ˆ ˆI r ,c I r ,c

(a)

(b) (c)

Figure 10.3-11
Differential predictive coding (DPC). (a) Original image, (b) DPC using original values in the predictor, clip-
ping to the maximum, 5 bits/pixel/band, normalized correlation 0.90. (c) error image of (b), (d) DPC using
reconstructed values in the predictor, clipping to the maximum, 5 bits/pixel/band, normalized correlation 0.90,
(e) error image of (d). By using the reconstructed values we get a much better image, and the errors occur only
near the edges and are not propagated far past the edges.

Image Compression	 675

© 2011 by Taylor & Francis Group, LLC

Using more of the previous values in the predictor increases the complexity of the compu-
tations for both compression and decompression, and it has been determined that using
more than three of the previous values provides no significant improvement in the result-
ing image.

The results of DPC can be improved by using an optimal quantizer, such as the Lloyd-
Max quantizer, instead of simply truncating the resulting error. The Lloyd-Max quantizer

(d) (e)

Figure 10.3-11 (Continued)
Differential predictive coding (DPC). (a) Original image, (b) DPC using original values in the predictor, clip-
ping to the maximum, 5 bits/pixel/band, normalized correlation 0.90. (c) error image of (b), (d) DPC using
reconstructed values in the predictor, clipping to the maximum, 5 bits/pixel/band, normalized correlation 0.90,
(e) error image of (d). By using the reconstructed values we get a much better image, and the errors occur only
near the edges and are not propagated far past the edges.

(a)

One-dimensional predictor, based on current
row only x = current pixel

X

Two-dimensional predictor is based on current
and previous row or rows

(b)

X

Figure 10.3-12
DPC predictor dimensions.

676	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

assumes a specific distribution for the prediction error. Assuming a 2-bit code for the error,
and a Laplacian distribution for the error, the Lloyd-Max quantizer is defined as follows
(see Figure 10.3-13):

ERROR RANGE QUANTIZED VALUE

e0 1.102≤ < σ

e

e

→ +

≤ < ∞→ +

− ≤ <

0.395

1.102 1.81

1.102 0

σ

σ σ

σ →→ −

− ≤ < ∞→ −

=

0.395

1.102 1.81

where the s

σ

σ σ

σ

e -

ttandard deviation of the error distributionn.
Tables for the coefficients for n-bit codes can be found in the references. For most images,

the standard deviation, σ, for the error signal is between 3 and 15. After the data is quan-
tized it can be further compressed with a lossless coder such as Huffman or arithmetic
coding. In Figure 10.3-14 is a comparison of using the Lloyd-Max quantizer and the trunca-
tion quantizer as a quantization method. This figure shows the superiority of the Lloyd-
Max quantization method over truncating the values. Here we see that much more useful
visible information is retained with the Lloyd-Max quantization method.

Figure 10.3-15 shows the error images and decompressed images using different bit rates
for DPC compression with Lloyd-Max quantization and a 1-D predictor. Here we can see
that as the number of bits used increases the image quality improves and the error image
contains less information. The cost here is a decreasing compression ratio—for DPC the
compression ratio is entirely dependent on the number of bits used. As examples, given
a color image with 8 bit/pixel/band or 24 bits/pixel, a 1 bit/pixel/band DPC provides a
compression ratio of about 8:1, 2 bits/pixel/band provides a compression ratio of about 4:1,
and 4 bits/pixel/band provides a compression ratio of about 2:1.

Quantized values:

Error ranges:

2–bit Lloyd-Max quantizer with laplacian error distribution

An example for σ = 3.63. ­e ±1.43 is typically rounded to ±1, and ±6.57 is rounded to ± 7.

(a)

1.102 σ –1.102 σ

–0.395 σ 0.395 σ

0

–1.81 σ 1.81 σ

+1.43–1.43–6.57 +6.57

0 +4–4

Quantized values:

Error ranges:

(b)

Figure 10.3-13
Lloyd-Max Quantizer

Image Compression	 677

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 10.3-14
Differential predictive coding (DPC) quantization comparison. (a) Original image, (b) lloyd-Max quantizer,
using 2 bits/pixel/band, normalized correlation = 0.85, with standard deviation = 10, (c) truncation quantizer,
using 2 bits/pixel/band, normalized correlation = 0.85, with standard deviation = 10, (d) lloyd-Max quantizer,
using 4 bits/pixel/band, normalized correlation = 0.7, with standard deviation = 10, (e) truncation quantizer,
using 4 bits/pixel/band, normalized correlation = 0.7, with standard deviation = 10. The Lloyd-Max quantiza-
tion provides a much better image than the truncation quantization.

678	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

10.3.5  Model-Based and Fractal Compression

Model-based or intelligent compression works by finding models for objects within the image
and using model parameters for the compressed file. The techniques used are similar to
computer vision methods where the goal is to find descriptions of the objects in the image.
The objects are often defined by lines or shapes (boundaries), so a Hough transform may
be used, while the object interiors can be defined by statistical texture modeling. Methods
have also been developed that use texture modeling in the wavelet domain. The model-
based methods can achieve very high compression ratios, but the decompressed images
often have an artificial look to them. Fractal methods are an example of model-based com-
pression techniques.

(a)

(b) (c)

Figure 10.3-15
Differential predictive coding (DPC) with Lloyd-Max quantization. (a) Original image, (b) 1 bit/pixel/band, nor-
malized correlation= 0.95, with standard deviation = 10, (c) error image for (b), (d) 2 bits/pixel/band, normalized
correlation= 0.85, with standard deviation = 10, (e) error image for (d), (f) 3 bits/pixel/band, normalized correlation=
0.75, with standard deviation = 10, (g) error image for (f), (h) 4 bits/pixel/band, normalized correlation=0.7, with
standard deviation = 10, (i) error image for (h), (j) 5 bits/pixel/band, normalized correlation= 0.6, with standard
deviation = 10, (k) error image for (j), (l) 6 bits/pixel/band, normalized correlation= 0.5, with standard deviation =
10, (m) error image for (l). As the number of bits increases the decompressed image improves in appearance and the
error image has less information. Of course the cost for using more bits is a lower compression ratio.

Image Compression	 679

© 2011 by Taylor & Francis Group, LLC

(f) (g)

(h) (i)

(d) (e)

Figure 10.3-15 (Continued)
Differential predictive coding (DPC) with Lloyd-Max quantization. (a) Original image, (b) 1 bit/pixel/band, nor-
malized correlation= 0.95, with standard deviation = 10, (c) error image for (b), (d) 2 bits/pixel/band, normalized
correlation= 0.85, with standard deviation = 10, (e) error image for (d), (f) 3 bits/pixel/band, normalized correlation=
0.75, with standard deviation = 10, (g) error image for (f), (h) 4 bits/pixel/band, normalized correlation=0.7, with
standard deviation = 10, (i) error image for (h), (j) 5 bits/pixel/band, normalized correlation= 0.6, with standard
deviation = 10, (k) error image for (j), (l) 6 bits/pixel/band, normalized correlation= 0.5, with standard deviation =
10, (m) error image for (l). As the number of bits increases the decompressed image improves in appearance and the
error image has less information. Of course the cost for using more bits is a lower compression ratio.

680	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Fractal image compression is based on the idea that if an image is divided into subim-
ages, many of the subimages will be self-similar. This means that some parts of the image
look like other parts of the image. More specifically, self-similar means that one subimage
can be represented as a skewed, stretched, rotated, scaled, and/or translated version of
another subimage. Treating the image as a geometric plane, these mathematical operations
(skew, stretch, scale, rotate, translate) are called affine transformations and can be repre-
sented by the following general equations:

ʹ = + +

ʹ = + +

r k r k c k

c k r k c k

1 2 3

4 5 6

where and are the new coordinates, an� �r c dd are constants.ki

(l) (m)

(j) (k)

Figure 10.3-15 (Continued)
Differential predictive coding (DPC) with Lloyd-Max quantization. (a) Original image, (b) 1 bit/pixel/band, nor-
malized correlation= 0.95, with standard deviation = 10, (c) error image for (b), (d) 2 bits/pixel/band, normalized
correlation= 0.85, with standard deviation = 10, (e) error image for (d), (f) 3 bits/pixel/band, normalized correlation=
0.75, with standard deviation = 10, (g) error image for (f), (h) 4 bits/pixel/band, normalized correlation=0.7, with
standard deviation = 10, (i) error image for (h), (j) 5 bits/pixel/band, normalized correlation= 0.6, with standard
deviation = 10, (k) error image for (j), (l) 6 bits/pixel/band, normalized correlation= 0.5, with standard deviation =
10, (m) error image for (l). As the number of bits increases the decompressed image improves in appearance and the
error image has less information. Of course the cost for using more bits is a lower compression ratio.

Image Compression	 681

© 2011 by Taylor & Francis Group, LLC

Fractal compression is somewhat like VQ, except that the subimages, or blocks, can vary
in size and shape. The idea is to find a good set of basis images, or fractals, which can
undergo affine transformations, and then be assembled into a good representation of the
image. After this has been done we only need to store the fractals (basis images), and the
necessary affine transformation coefficients in the compressed file.

Fractal compression can provide high quality images and very high compression rates,
but often at a very high cost. The quality of the resulting decompressed image is directly
related to the amount of time taken in generating the fractal compressed image. If the
compression is done offline, one time, and the images are to be used many times, it may be
worth the cost. For example, thousands of images have been compressed and stored with
fractals in the popular Microsoft Encarta encyclopedia. Another advantage of fractals is
that they can be magnified as much as is desired, so one fractal compressed image file can
be used for any resolution or size of image.

To apply fractal compression, the image is first divided into nonoverlapping regions that
completely cover the image, called domains. Then, regions of various size and shape are
chosen for the basis images, called the range regions. The range regions are typically larger
than the domain regions, can be overlapping and do not cover the entire image. The goal
is to find the set of affine transformations to best match the range regions to the domain
regions. The methods used to find the best range regions for the image, as well as the best
transformations, are many and varied, and can be explored in the references.

Figure 10.3-16 illustrates images that have been compressed with fractal techniques.
Shown are examples of the butterfly image at various compression ratios. The error images
are shown with the compressed images, where we can see that most of the distortion
occurs at object edges and areas of high image detail, as with most compression methods
(note that the background gray in the error images represents zero—no error).

10.3.6  Transform Coding

Transform coding, is a form of block coding done in the transform domain. The image is
divided into blocks, or subimages, and the transform is calculated for each block. Any of
the previously defined transforms can be used, frequency (e.g., Fourier) or sequency (e.g.,
Walsh/Hadamard), but during development of the original JPEG algorithm it was deter-
mined that the discrete cosine transform (DCT) is optimal for most images. The newer
JPEG2000 algorithms use the wavelet transform, which has been found to provide even
better compression, and wavelet compression is explored in the next section.

After the transform has been calculated, the transform coefficients are quantized and
coded. The primary reason this method is effective is because the frequency/sequency
transform of images is very efficient at putting most of the information into relatively few
coefficients, so many of the high frequency coefficients can be quantized to 0 (eliminated
completely). This type of transform is really just a special type of mapping that uses spatial
frequency concepts as a basis for the mapping. Remember that for image compression the
main reason for mapping the original data into another mathematical space is to pack the
information (or energy) into as few coefficients as possible. We have seen that with these
transforms most of the energy in images is contained in the lower frequency terms.

The simplest form of transform coding is achieved by filtering—we can simply eliminate
some of the high frequency coefficients. This alone will not provide much compression, since
the transform data is typically a floating point and thus 4 or 8 bytes per pixel (compared to the
original pixel data at 1 byte per pixel), so quantization and coding is applied to the reduced
data. One aspect of quantization includes a process called bit allocation, which determines the

682	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)

(d)

(c)

(e)

(a)

Figure 10.3-16
Fractal compression. (a) Original image, (b) image compressed with fractal encoding, compression ratio = 22, (c)
error image for (b), (d) compression ratio = 50, (e) error image for (d), (f) compression ratio = 100, (g) error image
for (f), (h) compression ratio = 133, (i) error image for (h). Note: In CVIPtools the domain pool type for the first
two (b&d) was 0 and for the higher compression ratio (f&h) it was 1.

Image Compression	 683

© 2011 by Taylor & Francis Group, LLC

number of bits to be used to code each coefficient based on its importance. Typically, more
bits are used for lower frequency components where the energy is concentrated for most
images, resulting in a variable bit rate or nonuniform quantization. Using more bits provides
more resolution—one bit, has only two possible values, 8-bits have 256 possible values.

Example 10.3.6

We have decided to use transform coding with a DCT on an image by dividing it into 4 × 4
blocks. The selected bit allocation can be represented by the following mask:

	

8 6 4 1
6 4 1 0
4 1 0 0
1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(f) (g)

(h) (i)

Figure 10.3-16 (Continued)
Fractal compression. (a) Original image, (b) image compressed with fractal encoding, compression ratio = 22, (c)
error image for (b), (d) compression ratio = 50, (e) error image for (d), (f) compression ratio = 100, (g) error image
for (f), (h) compression ratio = 133, (i) error image for (h). Note: In CVIPtools the domain pool type for the first
two (b&d) was 0 and for the higher compression ratio (f&h) it was 1.

684	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

where the numbers in the mask are the number of bits used to represent the corresponding
transform coefficients. The upper left corner corresponds to the zero-frequency coefficient,
DC or average value, and the frequency increases to the right and down. This allows the
lower frequencies less quantization (more resolution), since they have more bits to represent
them. Because the number of bits varies with different coefficients, we have a variable bit rate.
Additionally, more bits means finer quantization and fewer bits means coarser quantization
resulting in nonuniform quantization.

Next a quantization scheme, such as Lloyd-Max quantization is applied. Since the zero-
frequency coefficient for real images contains a large portion of the energy in the image and
is always positive, it is typically treated differently than the higher frequency coefficients.
Often this term is not quantized at all, or the differential between blocks is encoded. After
they have been quantized, the coefficients can be coded using, for example, a Huffman or
arithmetic coding method.

In addition to simple filtering, two particular types of transform coding have been widely
explored: zonal and threshold coding. These two vary in the method they use for selecting the
transform coefficients to retain (using ideal filters for transform coding selects the coefficients
based on their location in the transform domain). Zonal coding involves selecting specific coeffi-
cients based on maximal variance, while threshold coding selects the coefficients above a specific
value. In zonal coding, a zonal mask is determined for the entire image by finding the variance
for each frequency component. This variance is calculated by using each subimage within the
image as a separate sample and then finding the variance within this group of subimages (see
Figure 10.3-17). The zonal mask is a bitmap of 1s and 0s, where the 1s correspond to the coeffi-
cients to retain, and the 0s to the ones to eliminate. Because the zonal mask applies to the entire
image, only one mask is required. In threshold coding a different threshold mask is required
for each block, which increases file size as well as algorithmic complexity.

In practice, the zonal mask is often predetermined because the low frequency terms
tend to contain the most information, and hence exhibit the most variance. In this case we
select a fixed mask of a given shape and desired compression ratio, which streamlines the
compression process. This saves the overhead involved in calculating the variance of each
group of subimages for compression and also eases the decompression process. Typical
masks may be square, triangular, or circular and the cutoff frequency is determined by the
compression ratio. Figure 10.3-18 shows results of zonal compression with the cosine and
Walsh transforms. In Figure 10.3-18d we see the blocking artifact at the block boundaries
(the original image is 384 × 256, and the block size is 64 × 64). Comparing the DCT and the
Walsh results we observe that the DCT provides more visually pleasing results, although
obvious blurring occurs at the higher compression ratio.

One of the most commonly used image compression standards is primarily a form of trans-
form coding. The JPEG met initially in 1987 under the auspices of the International Standards
Organization (ISO) to devise an optimal still image compression standard. The result was a
family of image compression methods for still images. The original JPEG standard uses the
DCT and 8 × 8 pixel blocks as the basis for compression. Before computing the DCT, the pixel
values are level shifted so that they are centered at zero.

Example 10.3.7

A typical 8-bit image has a range of gray levels of 0–255. Level shifting this range to be cen-
tered at zero involves subtracting 128 from each pixel value, so the resulting range is from
–128 to +127.

Image Compression	 685

© 2011 by Taylor & Francis Group, LLC

After level shifting, the DCT is computed. Next, the DCT coefficients are quantized by
dividing by the values in a quantization table and then truncated. For color signals JPEG
transforms the RGB components into the YCrCb color space, and subsamples the two color
difference signals (Cr and Cb), since we perceive more detail in the luminance (brightness)
than in the color information. Once the coefficients are quantized, they are coded using a
Huffman code. The zero-frequency coefficient (DC term) is differentially encoded relative
to the previous block.

The quantization tables used by JPEG are shown in Figure 10.3-19. These 8 × 8 matri-
ces correspond to the DCT coefficients with the zero-frequency term in the upper left,
and increasing in frequency to the right and down. The DCT coefficients are quan-
tized by dividing by the numbers in the quantization tables, and then truncating. After
this process many of the high frequency coefficients are zero, which greatly helps the

Treating each transform block from
T (u,v) as a separate sample, calculate
the variance for each frequency
component. Retain only the
components with variance above a
specified threshold.

(a)

I (r,c)

Divide the image into blocks

(b)

T (u,v)

g . . .f

edcb

Apply the transform to each block

a

Generate zonal masks;
1 = retain
0 = eliminate
A typical mask is shown.

(d)
0

0

0

0

00

00

0

0

00

00

0

1

1

1 1

1

1

1 1

1

1
(c)

T (u,v) blocks

a

...
c

b

Figure 10.3-17
Zonal coding.

686	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(b)

(a)

(c)

(d) (e)

Figure 10.3-18
Zonal compression with DCT and Walsh transforms. A block size of 32×32 was used, a circular zonal mask, and
DC coefficients were not quantized. (a) Original image, a view of St. Louis, Missouri, from the Gateway Arch,
(b) results from using the DCT with a compression ratio = 6.7, (c) error image comparing the original and (b), his-
togram stretched to show detail, (d) results from using the DCT with a compression ratio = 13.5, (e) error image
comparing the original and (d), histogram stretched to show detail, (f) results from using the Walsh transform
(WHT) with a compression ratio = 6.7, (g) error image comparing the original and (f), histogram stretched to
show detail, (h) results from using the WHT with a compression ratio = 13.5, (i) error image comparing the
original and (h), histogram stretched to show detail.

Image Compression	 687

© 2011 by Taylor & Francis Group, LLC

compression process. As can be seen by comparing the two tables, the human visual
is much more sensitive to changes in the luminance component (Y in the color space
transform) than in the color (chrominance, Cr and Cb) components. These quantization
tables were experimentally determined by JPEG to take advantage of the human visual
system’s response to spatial frequency that peaks around 4 or 5 cycles per degree (see
Figure 7.2-8).

In Figure 10.3-20 are results from the original JPEG compression algorithm applied to
a monochrome image. We can begin to see the block artifacts from the JPEG 8 × 8 DCT
block in Figure 10.3-20d, with a compression ratio of 20:1. JPEG can achieve much higher
compression ratios with color images, as shown in Figure 10.3-21. Here the block artifacts
are not visible until we reach compression ratios more than 50:1, as seen in Figure 10.3-21c
and d, and become most noticeable above 100:1 as shown in 10.3-21e and f. The newer

(f) (g)

(h) (i)

Figure 10.3-18 (Continued)
Zonal compression with DCT and Walsh transforms. A block size of 32×32 was used, a circular zonal mask, and
DC coefficients were not quantized. (a) Original image, a view of St. Louis, Missouri, from the Gateway Arch,
(b) results from using the DCT with a compression ratio = 6.7, (c) error image comparing the original and (b), his-
togram stretched to show detail, (d) results from using the DCT with a compression ratio = 13.5, (e) error image
comparing the original and (d), histogram stretched to show detail, (f) results from using the Walsh transform
(WHT) with a compression ratio = 6.7, (g) error image comparing the original and (f), histogram stretched to
show detail, (h) results from using the WHT with a compression ratio = 13.5, (i) error image comparing the
original and (h), histogram stretched to show detail.

688	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

JPEG2000 compression algorithm is based on the wavelet transform, which we have seen
retains both spatial and frequency information, so it is included in the next section on
hybrid transforms.

10.3.7  Hybrid and Wavelet Methods

Hybrid compression methods use both the spatial domain and the transform domain. For
example, the original image (spatial domain) can be differentially mapped, and then this
differential image can be transform coded. Alternately, a 1-D transform can be performed
on the rows, and this transformed data can undergo DPC along the columns. These meth-
ods have been used for the compression of analog video signals. For digital images these
techniques can be applied to blocks (subimages), as well as rows or columns. VQ is often
combined with these methods to achieve higher compression ratios.

The wavelet transform, which localizes information in both the spatial and frequency
domain, is used in newer hybrid compression methods. For example, the JPEG2000 stan-
dard is based on the wavelet transform. The wavelet transform provides superior perfor-
mance to the DCT-based techniques, and also is useful in progressive transmission for
Internet and database use. Progressive transmission allows low quality images to appear
quickly and then gradually improve over time as more detail information is transmitted
or retrieved. With this approach the user need not wait for an entire high quality image
before they decide to view it or move on.

(a) (b)

Figure 10.3-19
Original JPEG DCT coefficient quantization tables. (a) luminance (brightness) quantization table corresponding
to the Y component of the color transform, (b) chrominance (color) quantization table corresponding to the Cr
and Cb components of the color transform. The zero-frequency (DC) term is in the upper left corner, at (1,1), and
the frequencies increase to the right and down. As the quantization coefficient increases, the quantization gets
coarser. For many high frequency terms the quantization coefficient is large enough that, after dividing and
truncating, they are zero. These tables can be displayed and edited in CVIPtools. After editing, select the Save
button, to use the new table. The Default button will reset to the original JPEG values.

Image Compression	 689

© 2011 by Taylor & Francis Group, LLC

The wavelet transform combined with VQ has led to the development of experimental
compression algorithms, which can be explored in CVIPtools. The general algorithm is as
follows:

	 1.	Perform the wavelet transform on the image by using convolution masks (described
in Section 5.8).

	 2.	Number the different wavelet bands from 0 to N − 1, where N is the total number
of wavelet bands, and 0 is the lowest frequency (in both horizontal and vertical
directions) band (see examples in Figure 10.3-22).

	 3.	Scalar quantize the 0 band linearly to 8 bits.

Original image

JPEG compression = 10:1 Error image for (b), multiplied by 8 to show detail

(a)

(b) (c)

Figure 10.3-20
The original DCT-based JPEG algorithm.

690	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	Vector quantize the middle bands using a small block size (e.g., 2 × 2). Decrease the
codebook size as the band number increases.

	 5.	Eliminate the highest frequency bands.

The example algorithms shown here utilize 10‑band wavelet decomposition
(Figure 10.3- 22b), with the Daubecies 4 element basis vectors, in combination with the VQ
technique. They are called Wavelet/Vector Quantization followed by a number (WVQ#);
specifically WVQ2, WVQ3, and WVQ4. In addition, one algorithm (WVQ4) employs the
PCT for preprocessing, before subsampling the second and third PCT bands by a factor of
2:1 in the horizontal and vertical direction. Table 10.2 contains the details of the parameters
for each of these algorithms.

JPEG compression = 30:1 Error image for (f), multiplied by 8 to show detail

(f) (g)

JPEG compression = 20:1 Error image for (d), multiplied by 8 to show detail

(d) (e)

Figure 10.3-20 (Continued)
The original DCT-based JPEG algorithm.

Image Compression	 691

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 10.3-21
The original DCT-based JPEG algorithm applied to a color image. (a) The original image, (b) compression ratio =
34, (c) compression ratio = 58, (d) compression ratio = 80, (e) compression ratio = 131, (f) compression ratio = 201.

692	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

This table lists the wavelet band numbers versus the three WVQ algorithms. For each
WVQ algorithm, we have a blocksize, which corresponds to the vector size, and the num-
ber of bits, which, for VQ, corresponds to the codebook size. The lowest wavelet band is
coded linearly using 8-bit scalar quantization. VQ is used for bands 1–8, where the number
of bits per vector defines the size of the codebook. For example, if we use 8 bits per vector
for the codebook, this corresponds to a codebook of 256 (28) entries. The highest band is
completely eliminated (0 bits are used to code them) in WVQ2 and WVQ4, while the high-
est three bands are eliminated in WVQ3. For WVQ2 and WVQ3, each of the red, green, and
blue color planes are individually encoded using the parameters in the table. For WVQ4,
however, the PCT is used to preprocess the image and the parameters in the table are used
only for the PCT color band; the other two color bands, which contain much less informa-
tion, are first subsampled and then encoded with a small number of bits. Figure 10.3-23
shows results of these algorithms. In CVIPtools these algorithms can be explored with
Compression → Lossy → XVQ and selection of the desired transforms.

6

5

2

1

0

4

3

Numbering for 7 bands

(a)

6

9

8

7

Numbering for 10 bands

5
2

1

0

4

3

(b)

Figure 10.3-22
Wavelet/vector quantization compression.

TABLE 10.2

Wavelet/Vector Quantization Compression Parameters

Band Number WVQ2 WVQ3 WVQ4 (PCT)

Blocksize No. of Bits Blocksize No. of Bits Blocksize No. of Bits

0 (scalar) 8 (scalar) 8 (scalar) 8
1, 2 2 × 2 8 2 × 2 8 2 × 2 8
3 2 × 2 6 2 × 2 6 2 × 2 6
4, 5 2 × 2 5 2 × 2 5 2 × 2 5
6 2 × 2 5 2 × 4 4 2 × 4 5
7, 8 2 × 4 4 X 0 2 × 4 5
9 X 0 X 0 X 0

Image Compression	 693

© 2011 by Taylor & Francis Group, LLC

 The JPEG2000 standard is also based on the wavelet transform. It provides high quality
images at very high compression ratios. Many software companies currently support it, and
plugins are available for most imaging software. The committee that developed the stan-
dard had these goals for JPEG2000: (1) to provide better compression than the DCT-based
JPEG algorithm, (2) to allow for progressive transmission of high quality images, (3) to be
able to compress binary and continuous tone images by allowing 1–16 bits for image com-
ponents, (4) to allow random access to subimages, (5) to be robust to transmission errors,
and (6) to allow for sequentially image encoding.

The JPEG2000 compression method begins by level shifting the data to center it at zero,
followed by an optional transform to decorrelate the data, such as a color transform for color
images. The 1-D wavelet transform is applied to the rows and columns, and the coefficients
are quantized based on the image size and number of wavelet bands utilized. These quan-
tized coefficients are then arithmetically coded (see Figure 10.2-6) on a bitplane basis (see

(a)

(b) (c)

Figure 10.3-23
Wavelet/vector quantization compression. (a) The original image, (b) WVQ2 compression ratio = 15, (c) error image of
(b), (d) WVQ3 compression ratio = 40, (e) error image of (d), (f) WVQ4 compression ratio = 43, (g) error image of (f).

694	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 10.2-4). The JPEG2000 standard has many different options, and uses many of the
techniques explored in the chapter. Its flexibility adds to its complexity and a correspond-
ing increase in the required computational burden. Figures 10.3-24 and 10.3-25 compare
the results from JPEG2000 to the standard JPEG. Here we can see that at high compression
ratios the JPEG2000 works much better than the standard JPEG. In practice the JPEG2000
algorithm is not as widely used, probably due to its high computational needs, and the fact
that most people think standard JPEG is “good enough.”

(f) (g)

(d) (e)

Figure 10.3-23 (continued)
Wavelet/vector quantization compression. (a) The original image, (b) WVQ2 compression ratio = 15, (c) error image of
(b), (d) WVQ3 compression ratio = 40, (e) error image of (d), (f) WVQ4 compression ratio = 43, (g) error image of (f).

pj
w

st
k|

40
20

64
|1

43
57

19
31

2

Image Compression	 695

© 2011 by Taylor & Francis Group, LLC

Original image

JPEG2000, 130:1 compression Standard JPEG, 130:1 compression

JPEG2000, 200:1 compression Standard JPEG, 200:1 compression

(a)

(b) (c)

(d) (e)

Figure 10.3-24
JPEG2000 compared to standard JPEG. (a) The original image, (b) JPEG2000, compression ratio about1 30,
(c) standard JPEG, compression ratio about 130, (d) JPEG2000, compression ratio about 200, (e) standard JPEG,
compression ratio about 200. The JPEG2000 images are much smoother; they show no visible quantization arti-
facts as can be seen with the standard JPEG. These artifacts are most visible in the sky.

696	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

10.4  Key Points

Overview: Image Compression

•	 Image compression involves reducing the size of image data files, while retaining
necessary information.

•	 The field is continuing to grow due to demands from many different applications
such as the Internet, businesses, high-definition television, satellite imaging, and
medical imaging.

•	 The original image before compression is the uncompressed image, the file created
by the compression process is the compressed file, and the image recreated from the
compressed file is the decompressed image.

•	 The compression ratio is the size of the uncompressed file to the size of the com-
pressed file, and can also be measured in bits per pixel (bpp).

•	 Data refers to the pixel gray-level values and information is an interpretation of the
data in a meaningful way.

•	 Lossless compression methods allow for the exact recreation of the original image
data, and can compress complex images to a maximum 1/2–1/3 the original size—
2:1–3:1 compression ratios.

•	 Lossy compression methods lose data, but can compress complex images 10:1–50:1
and retain high quality, and 100–200 times for lower quality, but acceptable images.

•	 Compression algorithms work by removing image redundancy.

JPEG2000 JPEG
(a) (b)

Figure 10.3-25
Zoom of the JPEG2000 compared to standard JPEG at high compression. These 128×128 subimages were cropped
from images with a compression ratio of about 200 and enlarged to 256×256 using zero order hold. (a) JPEG2000
image, (b) standard JPEG image. Note that the JPEG2000 image is much smoother, even with the zero-order hold
enlargement. Also, the visible artifacts in the sky are quite prominent with the standard JPEG, and the blocky
effect substantially degrades the visible image quality.

Image Compression	 697

© 2011 by Taylor & Francis Group, LLC

•	 Four types of redundancy in images: (1) coding, use of inefficient codes, (2) inter-
pixel, adjacent pixels highly correlated, (3) interband redundancy, color images
have high correlation between bands within an image; the red, green, and blue
bands look similar, and (4) psychovisual; human visual system has limitations.

•	 Fidelity criteria (Chapter 7) are used to measure and compare compression
algorithms.

Compression System Model

•	 The compression system model consists of two parts, the compressor and
decompressor.

•	 Compressor: (1) data reduction, (2) mapping, (3) quantization, and (4) coding.
•	 Data reduction: removal of application-specific irrelevant information by gray

level and/or spatial quantization, noise removal, enhancement.
•	 Mapping: to compact and decorrelate the data, using differential coding, fre-

quency/sequency transforms, color transforms, and/or principal components
transform.

•	 Quantization: required because the mapping process often results in floating
point data, can be uniform, equal subdivisions, or nonuniform, unequal sub-
divisions also called a variable bit rate; quantization is not reversible.

•	 Coding: it is a reversible one-to-one mapping, can be an equal length code or
unequal (variable) length code that are usually more efficient but more complex.

•	 Decompressor: (1) decoding, reverse the coding process, (2) inverse mapping,
reverses the mapping process, and (3) postprocessing, to enhance the decom-
pressed image.

Lossless Compression Methods

•	 No data loss, necessary for some applications such as medical or legal images.
•	 Often may only get a 10% reduction in file size, maximum of 2:1 or 3:1 for complex

images.
•	 Lossy compression is also called data compaction.

•	 Information theory defines information based on the probability of an event,
knowledge of an unlikely event has more information than knowledge of a likely
event.

•	 Entropy measures information from an information theoretic perspective, and
provides the minimum lower bound for a coder:

	 Entropy p pi i

i=

L

= −
−

∑ 2
0

1

(in bits/pixel)log ()

where
		 pi = the probability of the ith gray level = nk/N2
		 nk = the total number of pixels with gray value k
		 L = the total number of gray levels (e.g., 256 for 8-bits).

698	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The average length of a code should be close to the entropy for a good code:

	 ave

i=

L

i iL l p=
−

∑
0

1

	 where
		 li = length in bits of the code for ith gray level
		 pi = histogram-probability of ith gray level.

Huffman Coding

•	 The Huffman code is a variable (unequal) length code.
•	 It will generate a code close to the entropy that is the minimum lower bound.
•	 To generate a Huffman code requires 5 steps: (1) Find the gray-level probabilities

for the image by finding the histogram. (2) Order the input probabilities (histogram
magnitudes) from smallest to largest. (3) Combine the smallest two by addition. (4)
GOTO Step 2, until only two probabilities are left. (5) By working backward along
the tree, generate code by alternating assignment of 0 and 1.

Run-Length Coding

•	 Run-length coding (RLC) works by counting adjacent pixels with the same value
called the run-length.

•	 RLC works best for binary, two-valued images.
•	 Gray or color images can use RLC by storing the run length and the gray value(s).
•	 Alternately, extension to gray or color images is bitplane RLC, which applies RLC

to each bitplane separately.
•	 Preprocessing with a Gray code can improve compression by bitplane RLC by

typically 10–15%.
•	 Standards developed for RLC by ITU-R provide compression ratios of 15–20 for

typical documents.

Lempel–Ziv–Welch Coding

•	 Lempel–Ziv–Welch (LZW) methods work by encoding strings of data.
•	 During compression it creates a string table containing strings and the corre-

sponding codes.
•	 The string table is not stored but extracted from the compressed data itself.
•	 It uses code words with more bits than the original data, extra bits used as index

for string entries in the string table.
•	 This algorithm and its variations are used in many image files formats such as GIF

and TIFF.

Arithmetic Coding

•	 Arithmetic coding transforms input data into a single floating point number between
0 and 1.

•	 An entire image must be divided into small subimages to be encoded.

Image Compression	 699

© 2011 by Taylor & Francis Group, LLC

•	 The precision required for this number becomes greater as the subimage size
increases.

•	 Arithmetic coding uses the histogram as a probability model, so can theoretically
achieve the maximum compression specified by the entropy.

•	 Arithmetic coding is part of the JPEG and JPEG2000 standard.

Lossy Compression Methods

•	 Lossy compression methods lose image data, so cannot recreate the original image
exactly.

•	 Lossy compression is necessary to achieve high compression ratios with complex
images.

•	 Images can be compressed 10–50 times with minimal visible information loss.
•	 Newer methods, such as JPEG2000, can achieve reasonably good image quality

with compression ratios as high as 100–200.

Gray-Level Run Length Coding

•	 One method is to reduce the number of bits per pixel and then apply standard
RLC with bit-plane coding.

•	 Compression ratio can be improved by preprocessing with Gray code.
•	 A more sophisticated method is dynamic window-based RLC.
•	 Dynamic window-based RLC works by allowing a range of gray levels to be replaced

by a representative value, the gray-level range adapts to the data.

Block Truncation Coding

•	 Block truncation coding (BTC) works by dividing the image into blocks and reduc-
ing the number of gray levels in a block.

•	 The gray levels are reduced by a quantizer that adapts to local statistics.
•	 Basic BTC divides the image into 4 × 4 blocks, and outputs high (H) and low (L)

values for the block, and a bit-string to encode what pixels are H and L:

	

H m
n q
q

L m
q

n q

b b

b b

= +
−

= −
−

σ

σ

2

2

•	 Many other BTC algorithms have been developed, including 4-level and multi-
level quantizers.

Vector Quantization

•	 Vector quantization (VQ) maps a vector that can have many values to a vector that
has a smaller (quantized) number of values.

•	 VQ can be applied in both the spectral or spatial domains.
•	 With images the vector is a subimage or a block within the image.

700	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 Information theory tells us that better compression can be achieved with VQ than
with scalar quantization (rounding or truncating individual values).

•	 Vector quantization is achieved by use of a codebook that contains a fixed set of vec-
tors, and storing the index (address) into the codebook.

•	 The standard algorithm to generate the codebook is the Linde–Buzo–Gray (LBG)
algorithm, also called the K-means or the clustering algorithm:
Step 1: Given an arbitrary codebook, encode each input vector according to the

nearest-neighbor criterion. Use a distance metric to compare all the input vec-
tors to the encoded vectors, and then sum these errors (distances) to provide
a distortion measure. If the distortion is small enough (less than a predefined
threshold), quit. If not, go to Step 2.

Step 2: For each codebook entry, compute the Euclidean centroid of all the input
vectors encoded into that specific codebook vector.

Step 3: Use the computed centroids as the new codebook, and go to Step 1.
•	 Generating a good code with the LBG algorithm requires careful choice of the

initial codebook.
•	 Initial codebook can be chosen by (1) randomly selecting vectors in the training

set, preferably spread across the vector space or (2) subdividing the vector space
and finding the centroid of the training vectors in each division.

•	 Vector quantization has simple decompression, but complex compression.

Differential Predictive Coding

•	 Differential predictive coding (DPC) predicts the next pixel value based on previous values,
and encodes the difference between predicted and actual value (the error signal).

•	 The compression results from the error signal being small, because prediction is
easy as adjacent pixels are highly correlated.

•	 The algorithm is lossy due to quantization (see block diagram in Figure 10.3-10).
•	 The theoretically optimal predictor is

	

�I r,c I r,c I r,c

I r,c

(1) () (1) ()
where

()

+ = + −ρ ρˆ

==

=

the average value for the image

the normρ aalized correlation between pixel values.

•	 The normalized correlation, ρ, is between 0.85 and 0.95 for most images.
•	 DPC results can be improved by use of a Lloyd-Max quantizer.
•	 After quantization a lossless coder, such as Huffman or arithmetic, can be applied.

Model-Based and Fractal Compression

•	 Model-based or intelligent compression works by modeling objects in the image and
storing object descriptions.

•	 Fractal methods are an example of model-based techniques.
•	 Fractal compression is based on the idea that various regions in the image are self-

similar, which means that one subimage can be represented as a skewed, stretched,
rotated, scaled, and/or translated version of another subimage.

Image Compression	 701

© 2011 by Taylor & Francis Group, LLC

•	 The mathematical operations, skew, stretch, scale, rotate, and translate, are called
affine transformations and can be represented by the following general equations:

	

ʹ = + +

ʹ = + +

ʹ ʹ

r k r k c k

c k r k c k

r c

1 2 3

4 5 6

where and arre the new coordinates, and are constanki tts.
•	 Fractal image compression divides an image into subimages, and selects some to

serve as models called range regions to map to the domain regions that represent
the entire image.

•	 These range regions are the fractals, which are like basis images that can undergo
affine transformations and be assembled into a good representation of the
image.

•	 The compressed file stores the fractals and the necessary affine transformation
coefficients.

•	 Model-based methods can provide high compression ratios, but have complex and
costly compression methods.

Transform Coding

•	 Transform coding works by dividing the image into blocks, performing the trans-
form, and then quantizing and coding the coefficients.

•	 Filtering is the simplest form of transform coding.
•	 To maximize compression, bit allocation is applied to quantize the coefficients,

frequencies of more importance are allocated more bits thus are more finely
quantized.

•	 Zonal coding sets a threshold on the variance for each component and generates a
zonal mask to determine what coefficients to retain.
•	 In practice a fixed mask may be used with zonal coding since low frequency

terms are typically the ones with high variance.
•	 These fixed masks are typically square, circular, or triangular with the cutoff

frequency determined by the desired compression ratio.
•	 Threshold coding sets a threshold on the magnitude of the coefficients in each block,

but requires the added overhead of a bit mask for each block.
•	 The original JPEG standard is based on transform coding using the DCT with

8 × 8 blocks.
•	 Original JPEG algorithm: (1) level shift data to center at zero, (2) transform RGB

data into YCrCb color space, for color images, (3) compute DCT for 8 × 8 blocks, (4)
quantize coefficients using tables, (5) encode with Huffman, and (6) differentially
encode the DC coefficients between blocks.

Hybrid and Wavelet Methods

•	 Hybrid methods use both the spatial and spectral domains.
•	 Algorithms exist that combine differential coding and spectral transforms for

analog video compression.

702	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

•	 The wavelet transform, which localizes information in both the spectral and spa-
tial domains, combined with VQ can provide good results.

•	 General wavelet/vector quantization (WVQ) algorithm: (1) Perform the wavelet
transform on the image by using convolution masks. (2) Number the different
wavelet bands from 0 to N − 1, where N is the total number of wavelet bands, and 0
is the lowest frequency (in both horizontal and vertical directions) band. (3) Scalar
quantize the 0 band linearly to 8 bits. (4) Vector quantize the middle bands using
a small block size (e.g., 2 × 2). Decrease the codebook size as the band number
increases. (5) Eliminate the highest frequency bands.

•	 The JPEG2000 standard is based on the wavelet transform:
•	 Committee goals for JPEG2000: (1) to provide better compression than the

DCT-based JPEG algorithm, (2) to allow for progressive transmission of high
quality images, (3) to be able to compress binary and continuous tone images
by allowing 1–16 bits for image components, (4) to allow random access to sub-
images, (5) to be robust to transmission errors, and (6) to allow for sequentially
image encoding.

•	 The JPEG2000 compression method: (1) Level shift the data to center it at zero.
(2) An optional transform to decorrelate the data, such as a color transform for
color images. (3) The one-dimensional wavelet transform is applied to the rows
and columns. (4) The coefficients are quantized based on the image size and
number of wavelet bands utilized. (5) The coefficients are then arithmetically
coded on a bitplane basis.

Exercises

Problems

	 1.	 (a) Define image compression. (b) List three reasons why image compression is
important.

	 2.	 (a) What is the term for an image before compression? (b) After compression? (c)
After reconstruction? (d) If a color (three-band RGB) image that is 512 × 512 pixels
with 8-bits per pixel per band is compressed with a compression ratio of 16, what
size is the compressed data? (e) If the same image is compressed at 0.5 bits per
pixel per band, what size is the compressed data?

	 3.	 (a) About how long would it take to transmit a 640 × 480 uncompressed color
image that has 8-bits per color band, using a 56kb modem? (b) Using a 3Mbs cable
connection? (c) How long to receive a satellite image that is 6000 × 6000, 7 spectral
bands with 16 bits per band, with a 3 Mbs cable modem?

	 4.	 (a) Discuss the difference between data and information (not the information theo-
retic definition) in images. (b) Describe an example to illustrate. (c) Name and define
the two types of compression methods and typical compression ratios for them.

	 5.	 (a) Name and define the four types of redundancy in images. (b) Give examples of
each. (c) How is redundancy in images related to image compression? (c) How do
we measure the quality of a decompressed image?

Image Compression	 703

© 2011 by Taylor & Francis Group, LLC

	 6.	 (a) Sketch a block diagram of the compression system model. (b) Briefly discuss
each block.

	 7.	 (a) Describe three methods to decorrelate image data. (b) What does it mean for a
process to be reversible? (c) Are the methods you discussed in (a) reversible?

	 8.	 (a) Describe two ways to perform quantization. (b) Is quantization reversible? (c)
Describe two general types of codes. (d) Is the coding process reversible?

	 9.	 (a) Why would we use lossless compression, and what is another term for it? (b)
What is the information theoretic definition of information and how is it different
from our standard definition of information in images?

	 10.	(a)  Given a 3-bit per pixel image with the following histogram, find the
entropy:

Gray Value 0 1 2 3 4 5 6 7
Number of pixels 324 100 212 194 4 66 50 74

		 (b)  What are the minimum and maximum possible values of entropy for an image
of this type? (c) Is it possible to devise a code for the image that will provide an
average number of bits per pixel that is less than the entropy?

	 11.	Use CVIPtools to explore entropy of simple images. For all the images use the
default size of 256 × 256. (a) Create two checkerboard images with different size
cells with Utilities→ Create→ Checkerboard. Use Utilities→ Stats→ Image Statistics to
find the entropy of each (Note: you may need to double click Apply on the sta-
tistics window to be sure you have the current image information). Explain your
results. (b) Create an ellipse that is 128 × 64 and another that is 32 × 64 and find the
entropy of each. Explain your results. (c) Create a circle with a radius of 32. Create
a second circle with a radius of 32 but check the Blur radius box, and set it to 64.
Find the entropy of each and explain the results. (d) Repeat parts (a)–(c), but invert
each image using the NOT operator. Are the results what you expected? Explain.
(e) Create a rectangle image that is half white and half black. For example, start at
(0,0) with a width of 128 and height of 256. Next, create an image that is 25% white
and 75% black, and then invert it with the NOT operator. Find the entropy of all
three images. Explain your results.

	 12.	 (a) Find the Huffman code for a 2-bit per pixel image with the following
histogram:

Gray Level 0 1 2 3
Number of Pixels 400 200 300 100

		 (b) Find the entropy for the image, and the average number of bits per pixel with
the code you obtained in (a). Do you think this is a good code? Why?

	 13.	 (a) Find the run length code of the following 1 bpp image using horizontal RLC,
first run zeros. (b) Find the run length code of the following 1 bpp image using
vertical RLC, first run zeros:

704	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	

0 1 1 0 0 1 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0
0 1 1 1 0 0 1 0
1 1 11 0 0 0 1 0
1 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥

	 14.	 (a) Using conventions defined in this chapter and horizontal RLC, find the RLC for
each bit plane for the following 2 bpp image (numbers are base 10):

	

3 3 1 1
2 1 1 0
2 1 0 0
1 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 (b)	 Apply bitplane RLC to the following 3 bpp image:

	

6 6 7 7
6 6 6 6
4 3 4 3
1 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

		 (c) Explain why a Gray code may improve the compression with bitplane RLC. In
the image from part (b), which row will benefit the most from using a gray code?
Why?

	 15.	 (a) If we use LZW coding with 8 bpp image data, and used 12 bits for the code
words, how many entries can be in the string table? (b) How many string codes
can we have?

	 16.	Given the following histogram, find an arithmetic code for this row of a 2 bpp
image: [3  3  2  1].

Gray Level 0 1 2 3
Number of Pixels 20 40 10 30

	 17.	Use CVIPtools to explore lossy RLC with the Compression→ Lossy window. Select
the View→  CVIP Function Information option on the main window. (a) Select an
image of your choice and apply Bitplane Run-Length Coding. To start, check all the
bits so they are all retained and record the compression ratio. Next, starting at bit
0, uncheck one bit at a time and record the compression ratio each time while lin-
ing up the output images. How many bits are used when the compression ratio

Image Compression	 705

© 2011 by Taylor & Francis Group, LLC

first becomes greater than 1? How many bits are used when compression arti-
facts become visibly noticeable? (b) Preprocess your original image with a Gray
code conversion, and perform the same experiment as in (a). Did the compression
results improve? How much was the average increase or decrease for the compres-
sion ratio? (c) Apply Dynamic windows-based RLC to your test image, using win-
dow sizes of 2, 5, 10, 20, and 50. Record the compression ratio each time. Compare
images with the same compression ratio from (a) and (b) to those you created here.
With what method do you get the best results? (d) Preprocess your original image
with a Gray code conversion, and perform the same experiment as in (c). Did the
compression results improve? How much was the average increase or decrease for
the compression ratio? Explain your results.

	 18.	Given the following 4 × 4 subimage, apply basic BTC and find the resulting
values:

	

22 21 15 17
20 21 17 17
5 5 40 40
42 41 19 20

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	 19.	Use CVIPtools to explore block truncation coding (BTC) with the Compression→
Lossy window. Select the View→ Debug Information option on the main window. (a)
Select an image of your choice and apply BTC and vary the block size using, 4, 8, 16,
and 32. Record the compression ratio each time. (b) Next, select Utilities→ Compare
and compare the original image to each of the four compressed images using
RMS error and SNR and record the results. Now compare the compression ratio,
RMS errors and the SNRs. Do you see any relationship as the block size increases?
Explain.

	 20.	 (a)  Describe vector quantization (VQ) and scalar quantization. (b) In general,
which technique do you think will give better image compression results? Why?
(c) What is a codebook and how is it used in image compression? (d) Describe an
algorithm for codebook generation. (e) Describe a method to initialize the code-
book and explain why this is important. (f) With VQ is it faster to compress or
decompress images? Explain.

	 21.	Use CVIPtools to explore vector quantization in the spatial domain. Select the
View→  CVIP Function Information option on the main window. (a) Select a 256 × 256
image of your choice and apply Vector Quantization (VQ) using Vector Height = 2, Vector
Width = 2, Error Threshold = 20, select Generate codebook; save codebook with coding result,
and vary the codebook size with 512, 256, 128, and 64. Record the compression ratios
and align the images from largest codebook to smallest. (b) Repeat (a) with 4 × 4
blocks. (c) Repeat (a) with 8 × 8 blocks. (d) Compare the images with the same size
codebook across the three different block sizes. Which block size provides better look-
ing images? Does a lower compression ratio always imply a better image? Explain.

	 22.	Use CVIPtools to explore vector quantization in the transform domain. Select the
View→ CVIP Function Information option on the main window. (a) Select a mono-
chrome (gray) 256 × 256 image of your choice and apply XVQ (Xform VQ). Set Data
type = BYTE, Remap type = Linear, Select DCT and create images with VQ1, VQ2,
VQ3, and VQ4. Record the compression ratios and compare the images visually

706	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

and by finding the SNR of the compressed and original image(s). What images
look better, and what have the better SNR? (b) Repeat (a) with a color image and
compare DCT and PCT_DCT results. (c) Repeat (a) with a color image and compare
WAVELET and PCT_WAVELET results.

	 23.	 (a) Why is it easy to generate a good prediction equation for use in differential
predictive coding (DPC)? (b) What exactly is the error signal in DPC and why is it
quantized? (c) What is the maximum number of previous values useful for predic-
tion? Why?

	 24.	Use CVIPtools to explore DPC. Select the View→ Debug Information option on the
main window. (a) Select an image of your choice and apply DPC using the default
parameters. Vary the number of bits and observe the compression ratio and image
quality. Are these two correlated? (b) Use the default parameters by clicking on the
Reset button, but vary the Predictor parameter. Which one provides better results?
Why? (c) Next, vary the type of Quantizer and observe the compression ratio and
image quality. Are these two correlated?

	 25.	 (a) Explain how model-based compression works. (b) What does self-similar mean
and how is it related to model-based compression? (c) What is the name and form
of the equation(s) for transforming a self-similar subimage into another subimage?
(d) Discuss the advantages and disadvantages of fractal image compression. (e)
How do the terms domain and range apply to fractal image compression?

	 26.	 (a) What are the differences between zonal and threshold coding? (b) What is meant
by bit allocation? (c) In practice the implementation of zonal coding may differ from
its formal definition. How and why?

	 27.	Use CVIPtools to explore zonal coding with Compression→ Lossy→ Zonal. Select the
View→ CVIP Function Information option on the main window. (a) Select a 256 × 256
image of your choice and apply Zonal compression with the following param-
eters: Blocksize = 32, Transform = DCT, Compression ratio = 5, Mask shape = triangle,
DC quantize unchecked. Next, change the transform to FFT and apply. What dif-
ference do you observe between the DCT and FFT results? Explain. (b) Apply
Zonal compression with the following parameters: Blocksize = 64, Transform = DCT,
Compression ratio = 10, Mask shape = circle, DC quantize unchecked. Next, change
the transform to Walsh and apply. What difference do you observe between the
DCT and Walsh results? Explain. (c) Use Utilities→ Compare to find the RMS error
and the SNR between the DCT zonal compressed and the original image and the
Walsh zonal compressed image and the original. Which image is better according
to these metrics? Do you agree with the results?

	 28.	Use CVIPtools to explore JPEG compression with Compression→ Lossy→JPEG.
Select the View→ CVIP Function Information option on the main window. (a) Select
a 256 × 256 monochrome image of your choice and apply JPEG with the default
parameters, but vary the Quality parameter. Set Quality to 5, 10, 20, 50, 70, and 90
and record the compression ratio for each. What is the quality factor and com-
pression ratio when you first cannot see artifacts that make the image look bad?
(b) Select a 256 × 256 color image of your choice and apply JPEG with the default
parameters, but vary the Quality parameter. Set Quality to 5, 10, 20, 50, 70, and 90
and record the compression ratio for each. What is the quality factor and compres-
sion ratio when you first cannot see artifacts that make the image look bad? (c) Are
the answers to (b) and (c) the same? Explain.

Image Compression	 707

© 2011 by Taylor & Francis Group, LLC

Programming Exercises

Signal-to-Noise Ratio and Root-Mean-Square Error Metrics

	 1.	Write a function to compare two images using the peak SNR and RMS error met-
rics (see Chapter 7). Compare your results to those obtained with CVIPtools. Are
they the same? Why or why not?

	 2.	Write a function to find the RMS SNR. How do the results compare to the peak
SNR metric?

Huffman Coding

	 1.	Write a function to implement Huffman coding with a single band (monochrome)
image. Compare your compression ratios to those in CVIPtools. Are your results
the same, better or worse? Can you explain why?

	 2.	Extend your function to work with color images. Compare your compression ratios
to those in CVIPtools. Are your results the same, better or worse? Can you explain
why?

	 3.	 Incorporate the CVIPtools library C® functions huf_compress and huf_decompress
from the compression library into your CVIPlab. Test it and compare it to your
Huffman function.

Run-Length Coding

	 1.	Write a function to implement run-length coding of binary images.
	 2.	Extend the function to perform bitplane RLC on gray images.
	 3.	Modify the function so the user can select what bit planes to retain.
	 4.	 Incorporate the CVIPtools C functions glr_compress and glr_decompress into your

CVIPlab program. Test it and compare results to those obtained with CVIPtools.

Block Truncation Coding

	 1.	Write a function to implement basic BTC using a block size of 4 × 4.
	 2.	Extend your function to allow the user to specify the block size.
	 3.	Compare your results to those obtained with CVIPtools.

Differential Predictive Coding

	 1.	Incorporate the CVIPtools C functions dpc_compress and dpc_decompress into your
CVIPlab program. Test it and compare results to those obtained with CVIPtools.

Zonal Coding

	 1.	Incorporate the CVIPtools C function zon_compress and zon_decompress into your
CVIPlab program. Note: these functions include the DC term in the remapping, so

708	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

it is quantized along with the higher frequency terms. Test it and compare results
to those obtained with CVIPtools.

	 2.	 Incorporate the CVIPtools C function zon2_compress and zon2_decompress into
your CVIPlab program. Note: these functions do not quantize the DC terms. Test
it and compare results to those obtained with CVIPtools.

Supplementary Exercises

Supplementary Problems

	 1.	 (a) Given a 3-bit per pixel image with the following histogram, find the entropy:

Gray Value 0 1 2 3 4 5 6 7
Number of pixels 212 4 324 194 100 74 50 66

		 (b) What are the minimum and maximum possible values of entropy for an image
of this type? (c) Is it possible to devise a code for the image that will provide an
average number of bits per pixel that is less than the entropy?

	 2.	 (a) Find the Huffman code for a 2-bit per pixel image with the following
histogram:

Gray Level 0 1 2 3
Number of Pixels 350 300 200 150

		 (b) Find the entropy for the image, and the average number of bits per pixel with
the code you obtained in (a). Do you think this is a good code? Why?

	 3.	 (a) Using conventions defined in this chapter and horizontal RLC, find the RLC for
each bit plane for the following 2 bpp image (numbers are base 10):

	

2 0 0 0
3 1 0 0
2 2 2 2
1 1 2 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

		 (b) Apply bitplane RLC to the following 3 bpp image:

	

7 7 7 7
4 4 4 4
5 3 5 3
2 2 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Image Compression	 709

© 2011 by Taylor & Francis Group, LLC

		 (c) Explain why a Gray code may improve the compression with bitplane RLC. In
the image from part (b), which row will benefit the most from using a gray code?
Why?

	 4.	Given the following histogram, find an arithmetic code for this row of a 2 bpp
image: [2  3  3  0].

Gray Level 0 1 2 3
Number of Pixels 40 20 30 10

	 5.	Given the following 4 × 4 subimage, apply basic BTC and find the resulting
values.

	

21 22 17 15
5 5 40 40
20 21 17 17
41 42 20 19

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Supplementary Programming Exercises

Differential Predictive Coding II

	 1.	Write your own functions to perform DPC. They should be similar to the CVIPtools
C functions dpc_compress and dpc_decompress.

	 2.	Test it and compare results to those obtained with CVIPtools.

Zonal Coding II

	 1.	Write your own functions to perform zonal coding. They should be similar to
the CVIPtools C function zon_compress and zon_decompress. Note: these functions
include the DC term in the remapping, so it is quantized along with the higher
frequency terms.

	 2.	Test it and compare results to those obtained with CVIPtools.
	 3.	Write your own functions to perform zonal coding. They should be similar to the

CVIPtools C function zon2_compress and zon2_decompress. Note: these functions
do not quantize the DC terms.

	 4.	Test it and compare results to those obtained with CVIPtools.

Wavelet Compression

	 1.	Develop your own algorithm for compression using the wavelet transform. Write
your own functions to perform the wavelet based compression algorithm. You
can use the following CVIPtools function to perform the wavelet transform:
wavdaub4_transform and wavhaar_transform.

	 2.	Write your own functions to perform the wavelet based decompression.

710	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 3.	How much compression does your algorithm achieve? Is this what you expected?
Why or why not? How does your algorithm compare to other methods in CVIPtools?
Compare visually with the compression ratio and with the error metrics.

Vector Quantization

	 1.	Incorporate the CVIPtools C functions xvq and vector_quant into your CVIPlab
program. Note: The CVIPtools viewer will automatically decompress the images
upon display, be sure to save as a vip image.

	 2.	Test it and compare results to those obtained with CVIPtools.

References

Acharya, T., and Ray, A. K., Image Processing: Principles and Applications, Hoboken, NJ: John Wiley &
Sons, 2005.

Bhaskaran, V., and Konstantinides, K., Image and Video Compression Standards: Algorithms and
Architectures, Boston, MA: Kluwer Academic Publishers, 1995.

Castleman, K. R., Digital Image Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.
Clarke, R. J., Digital Compression of Still Images and Video, San Diego, CA: Academic Press, 1995.
Delp, E. J., and Mitchell, O. R., Image Compression Using Block Truncation Coding, IEEE Transactions

on Communications 27, no. 9 (September 1979): 1335–42.
Fisher, Y., ed., Fractal Image Compression: Theory and Application, New York, NY: Springer-Verlag,

1995.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Upper Saddle River, NJ: Pearson Prentice

Hall, 2008.
Guo, L., Umbaugh, S., and Cheng, Y., Compression of Color Skin Tumor Images with Vector

Quantization, IEEE Engineering in Medicine and Biology Magazine 20, no.6 (Nov/Dec 2001):
152–64.

Huffman, D. A., A Method for the Reconstruction of Minimum Redundancy Codes, Proceedings of the
IRE 40, no. 10 (1952): 1098–1101.

Hunter, R., and Robinson, A. H., International Digital Facsimile Coding Standards, Proceedings of the
IEEE 68, no. 7 (1980): 854–67.

Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ: Prentice Hall, 1989.
Kjoelen, A., Wavelet Based Compression of Skin Tumor Images, Master’s Thesis in Electrical Engineering,

Edwardsville, IL: Southern Illinois University at Edwardsville, 1995.
Kjoelen, A., Umbaugh, S. E, and Zuke, M., Compression of Skin Tumor Images, IEEE Engineering in

Medicine and Biology Magazine 17, no. 3 (May/June 1998): 73–80.
Kou, W., Digital Image Compression: Algorithms and Standards, Boston, MA: Kluwer Academic

Publishers, 1995.
Kumaran, M., and Umbaugh, S. E, A Dynamic Window-Based Runlength Coding Algorithm Applied to

Gray-Level Images, Graphical Models and Image Processing 57, no. 4 (July 1995): 267–82.
Linde, Y., Buzo, A., and Gray, R. M., An Algorithm for Vector Quantizer Design, IEEE Transactions on

Communications 28, no. 1 (January 1980): 84–89.
Netravali, A. N., and Haskell, B. G., Digital Pictures: Representation and Compression, New York, NY:

Plenum Press, 1988.
Orzessek, M., and Sommer, P., ATM and MPEG-2: Integrating Digital Video into Broadband Networks,

Upper Saddle River, NJ: Prentice Hall PTR, 1998.

Image Compression	 711

© 2011 by Taylor & Francis Group, LLC

Poynton, C., Digital Video and HDTV Algorithms and Interfaces, San Francisco, CA: Morgan Kaufman,
2003.

Rabbani, M., and Jones, P. W., Digital Image Compression Techniques, Bellingham, WA: SPIE-International
Society for Optical Engineering, 1991.

Rangayyan, R. M., Biomedical Image Analysis, Boca Raton, FL: CRC Press, 2005.
Rosenfeld, A., and Kak, A. C., Digital Picture Processing, San Diego, CA: Academic Press, 1982.
Ryan, T. W, Sanders L. D., Fisher, H. D., and Iverson, A. E., Image Compression by Texture Modeling

in the Wavelet Domain, IEEE Transactions on Image Processing 5, no. 1 (January 1996): 26–36.
Sid-Ahmed, M. A., Image Processing: Theory, Algorithms, and Architectures, New York, NY: McGraw

Hill, 1995.
Sonka, M., Hlavac, V., and Boyle, R., Image Processing, Analysis and Machine Vision, 3rd ed., Toronto,

Canada: Thomson Engineering, 2008.
Taubman, D. S., and Marcellin, M. W., JPEG2000: Image Compression Fundamentals, Standards and

Practice, Norwell, MA: Kluwer Academic Publishers, 2002.
Tekalp, A. M., Digital Video Processing, Upper Saddle River, NJ: Prentice Hall, 1995.
Tranter, W. H., and Ziemer, R. E., Principles of Communications, 6th ed., Hoboken, NJ: John Wiley &

Sons, 2008.
Watt, A., and Policarpo, F., The Computer Image, New York, NY: Addison-Wesley, 1998.
Welch, T. A., A Technique for High-Performance Data Compression, IEEE Computer 17, no. 6 (1984):

8–19.
Welstead, S., Fractal and Wavelet Image Compression Techniques, Bellingham, WA: SPIE Press, 1999.
Wu, Y., and Coll, D. C., Multilevel Block Truncation Coding Using a Minimax Error Criterion for

High-Fidelity Compression of Digital Images, IEEE Transactions on Communications 41, no. 8
(August 1993).

Ziv, J., and Lempel, J., A Universal Algorithm for Sequential Data Compression, IEEE Transactions on
Information Theory 24, no. 5 (1977): 530–37.

Further Reading

The compression system model presented is based on the model in Gonzalez and Woods
(2008). More details and examples on redundancy in images can be found in Gonzalez
and Woods (2008), and coding irrelevancy in Castelman (1996). Fundamentals of informa-
tion and coding theory is in Tranter and Ziemer (2008) and Gonzalez and Woods (2008).
The Huffman coding technique is found in Huffman (1952), Gonzalez and Woods (2008),
Acharya and Ray (2005), Netravali and Haskell (1988), Rosenfeld and Kak (1982), Jain
(1989), and Sid-Ahmed (1995). More information on run length coding, including two-di-
mensional methods can be found in Gonzalez and Woods (2008), Tekalp (1995), Jain (1989),
and Hunter and Robinson (1980). Details on LZW coding are contained in Ziv and Lempel
(1977), Rangayyan (2005), and Welch (1984). The arithmetic coding method can be found in
Gonzalez and Woods (2008), Acharya and Ray (2005), and Rangayyan (2005).

The dynamic window-based RLC algorithmic details are in Kumaran and Umbaugh
(1995). Block truncation coding is explored in Wu and Coll (1993), Rabbani and Jones
(1991), Delp and Mitchell (1979), and Rosenfeld and Kak (1982). The references for vec-
tor quantization include Tekalp (1995), Rabbani and Jones (1991), Netravali and Haskell
(1988), and Linde, Buzo, and Gray (1980). Differential predictive techniques are explored
in Gonzalez and Woods (2008), Rangayyan (2005), Jain (1989), Netravali and Haskell (1988),
and Rosenfeld and Kak (1982). More on transform coding can be found in Gonzalez and

712	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Woods (2008), Rangayyan (2005), Sid-Ahmed (1995), Jain (1989), Netravali and Haskell
(1988), and Rosenfeld and Kak (1982).

Model-based compression using texture and the wavelet transform is described in Ryan
et al. (1996). More information on the wavelet/vector quantization compression algorithms
can be found in Guo, Umbaugh, and Cheng (2001), Kjoelen, Umbaugh, and Zuke (1998),
and Kjoelen (1995). Wavelet compression references include Taubman and Marcellin (2002),
Gonzalez and Woods (2008), and Welstead (1999).

For an overview of JPEG see Gonzalez and Woods (2008), Sonka, Hlavac, and Boyle (2008),
Rangayyan (2005), and Acharya and Ray (2005). For more information on fractal-based
image compression see Welstead (1999), Watt and Policarpo (1998), and Fisher (1995). For
more details on JPEG2000 see Gonzalez and Woods (2008), Acharya and Ray (2005), and
Taubman and Marcellin (2002). More information on compression of video (motion) images
can be found in Poynton (2003), Orzessek and Sommer (1998), Tekalp (1995), Sid-Ahmed
(1995), Clarke (1995), Kou (1995), Bhaskaran and Konstantinides (1995), and Netravali and
Haskell (1988).

© 2011 by Taylor & Francis Group, LLC

Section IV

Programming and Application
Development with CVIPtools

715© 2011 by Taylor & Francis Group, LLC

11
CVIPlab

11.1  Introduction to CVIPlab

The Computer Vision and Image Processing lab (CVIPlab) program was created to allow
for experimentation with the CVIPtools functions outside of the CVIPtools environment. It
is essentially a prototype program containing a sample CVIP function and a simple menu-
driven user interface. By following the format of this prototype function, using the library
function prototypes (Chapter 13), and the Help pages (with CVIPtools) the user can imple-
ment any algorithms developed in the CVIPtools environment in their own stand-alone pro-
gram. Additionally, the user can incorporate any of their own C® or C++® functions into this
program. To make it easy for those who are not experienced programmers, we have pro-
vided files and a brief tutorial for programming with Microsoft’s Visual C++ 2008 compiler.
However, any compiler can be used by the experienced programmer.

In addition to the CVIPtools libraries, the CVIPlab program requires these three files:
CVIPlab.c, threshold_lab.c, and CVIPlab.h. The CVIPlab.c file contains the main CVIPlab
program, the threshold_lab.c file contains a sample function, and the CVIPlab.h is a header
file for function declarations. Additionally, the following eight files are required by the Visual
C++ 2008 programming environment: CVIPlab_Project.sln and CVIPlab_Project.vcproj
are the CVIPlab “solution” and “project” files. They contain information that Visual Studio
needs in order to build the CVIPlab executable. CVIPlab_Project.cpp and CVIPlab_Project.h
provide the framework from which the function main_cviplab()—located in the file
CVIPlab.c—is called. CVIPlab_Project.rc and resource.h contain definitions for resources
used by the project. StdAfx.cpp and StdAfx.h provide support for precompiled header files.
The eight files required for programming in the Visual C++ 2008 environment were all gen-
erated by the Visual C++ project wizard and will not normally need to be modified when
working with CVIPlab.

CVIPlab.c contains a list of header files to include function declarations, and three func-
tions: main_cviplab, input, and threshold_Setup. The main_cviplab function is declared as a
void, indicating a function with no return value, and contains code for the menu-driven
user interface for CVIPlab. The input function illustrates how to read an image file into a
CVIPtools image structure and display the resulting image. A pointer to the populated
CVIPtools image structure is returned to the calling function. The threshold_Setup function
accepts a pointer to a CVIPtools image structure as input, gets the threshold value from the
user, and then passes these parameters to the threshold_lab function. A pointer to the resul-
tant CVIPtools image structure is returned to the calling function. The actual processing,
in this case performing a threshold operation on an image, is done by the threshold_lab func-
tion that is contained in the file threshold_lab.c. By studying these functions, the reader can
see how to access and process image files using some of the CVIPtools library functions.

716	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The CVIPlab.c program is commented to describe the details more completely, and is
included here

/* = 
*
* Computer Vision and Image Processing Lab - Dr. Scott Umbaugh SIUE
*
 = = 
*
*	 File Name: CVIPlab.c
*	 Description: This is the skeleton program for the Computer Vision
*	 and Image Processing Labs
*	 Initial Coding Date: April 23, 1996
*	 Last update Date: July 10, 2010
*	 Portability: Standard (ANSI) C
*	 Credit(s): Scott Umbaugh, Zhen Li, Kun Luo, Dejun Zhang
*			    Southern Illinois University at Edwardsville
**/

/*
**	include header files
*/

#include 	 "CVIPtoolkit.h"
#include 	 "CVIPconvert.h"
#include 	 "CVIPdef.h"
#include	 "CVIPimage.h"
#include 	 "CVIPlab.h"

#define 	 CASE_MAX 10

/*	 Put the command here, as VIDEO_APP, to run your image acquisition
application program */

#define VIDEO_APP "explorer.exe"

/*
** function declarations
*/
Image *threshold_Setup(Image *input Image);
Image *input();

/*
** start main funct
*/

void main_cviplab(){
	 IMAGE_FORMAT	 format;	 /* the input image format */
	 Image	 *cvipImage;	 /* pointer to the CVIP Image structure
*/

	 Image	 *cvipImage1;	 /* pointer to the CVIP Image structure
*/

	 char	 *outputfile;	 /* output file name */
	 int	 choice;
	 CVIP_BOOLEAN 	 done = CVIP_NO;

CVIPlab	 717

© 2011 by Taylor & Francis Group, LLC

	 print_CVIP("\n\n\n\n***************************************");
	 print_CVIP("**************************** ");
	 print_CVIP("\n*\t\t Computer Vision and Image Processing Lab\t *");
	 print_CVIP("\n*\t\t\t < Your Name Here > \t\t *");
	 print_CVIP("\n**");
	 print_CVIP("*************************\n\n\n");

while(!done) {
	 print_CVIP("\t\t0.\tExit \n");
	 print_CVIP("\t\t1.\tGrab and Snap an Image \n");
	 print_CVIP("\t\t2.\tThreshold Operation \n");
	 print_CVIP("\n\nCVIPlab >  > ");

	 /*
	 ** obtain an integer between 0 and CASE_MAX from the user
	 */
	 choice = getInt_CVIP(10, 0, CASE_MAX);

	 switch(choice) {

	 case 0:
	 done = CVIP_YES;
	 break;

	 case 1:
	� if (ShellExecute(NULL,"Open",VIDEO_APP,NULL,NULL, SW_

SHOW) < = 32)
	 print_CVIP("Error while running Video Program");
	 break;

	 case 2:
	 /*Get the input image */
	 cvipImage = input();
	 if(cvipImage =  = NULL)
	 {

		    error_CVIP("main", "could not read input image");
		    break;
	 }

	 /* calls the threshold function */
	 cvipImage = threshold_Setup(cvipImage);
	 if (!cvipImage)
	 {

		    error_CVIP("main", "threshold fails");
		    break;
	 }

	 /*
	 ** display the resultant image
	 */
	 view_Image(cvipImage," ");
	 delete_Image(cvipImage);

	 break;

718	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 default:
	 print_CVIP("Sorry ! You Entered a wrong choice");
	 break;
	 }
	 }
}
/*
** end of the function main
*/

/*
** The following function reads in the image file specified by the user,
** stores the data and other image info. in a CVIPtools Image structure,
** and displays the image.
*/
Image* input(){
	 char	 *inputfile;
	 Image	 *cvipImage;

	 /*
	 ** get the name of the file and stores it in the string 'inputfile'
	 */
	 print_CVIP("\n\t\tEnter the Input File Name:");
	 inputfile = getString_CVIP();

	 /*
	 ** creates the CVIPtools Image structure from the input file
	 */
	 cvipImage = read_Image(inputfile, 1);
	 if(cvipImage =  = NULL) {
	 error_CVIP("init_Image", "could not read image file");
	 free(inputfile);
	 return NULL;
	 }

	 /*
	 ** display the source image
	 */
	 view_Image(cvipImage,inputfile);

	 /*
	 **IMPORTANT: free the dynamic allocated memory when it is not needed
	 */
	 free(inputfile);

	 return cvipImage;
}

/*
** �The following setup function asks the threshold value from the user.

After
** �it gets the threshold value, it will call the threshold_Image()

function.
*/

CVIPlab	 719

© 2011 by Taylor & Francis Group, LLC

Image *threshold_Setup(Image *inputImage){
	 unsigned int 	 threshval;	 /* Threshold value */

/*
** Gets a value between 0 and 255 for threshold
*/
	 print_CVIP("\n\t\tEnter the threshold value:");
	 threshval = getInt_CVIP(10, 0, 255);

	 return threshold_lab(inputImage, threshval);
}

The following is the threshold function contained in the threshold_lab.c file. Note that it is
a good idea in the programming exercises to append all of your file and function names with
something, such as _lab or your initials, to avoid compilation or linker naming conflicts.

/**
* = == = = = = = = = = = = 
*
* Computer Vision and Image Processing Lab - Dr. Scott Umbaugh SIUE
*
* = = 
*
*	 File Name: threshold_lab.c
*	 Description: it contains the function to threshold BYTE images
* Initial Coding Date: April 23, 1996
*	 Portability: Standard (ANSI) C
*	 Credit(s): Zhen Li & Kun Luo
*	 Southern Illinois University at Edwardsville
*
** Copyright (c) 1995, 1996, SIUE - Scott Umbaugh, Kun Luo, Yansheng Wei
**/

/*
** include header files
*/

#include "CVIPtoolkit.h"
#include "CVIPconvert.h"
#include "CVIPdef.h"
#include "CVIPimage.h"
#include "CVIPlab.h"

/*
** The following function will compare the actual gray level of the
** input image with the threshold limit. If the gray-level value
** is greater than the threshold limit then the gray level is set
** to 255 (WHITE_LAB) else to 0 (BLACK_LAB). Note that the ‘_LAB’
** or ‘_lab’ is appended to names used in CVIPlab to avoid naming
** conflicts with existing constant and function (e.g. threshold_lab)
** names.
*/

720	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

#define 	W HITE_LAB	 255
#define	 BLACK_LAB	 0

Image *threshold_lab(Image *inputImage, unsigned int threshval){
	 byte 	 **image; 	 /* 2-d matrix data pointer */
	 unsigned int	 r,	 /* row index */
	 c, 	 /* column index */
	 bands;	 /* band index */

	 unsigned int	 no_of_rows,	 /* number of rows in image */
	 no_of_cols,	 /* number of columns in image */
	 no_of_bands;	 /* number of image bands */
	 Image	 *byteImage; 	 /* Use for remapping, if needed */

	 /*
	 ** Make sure input image is byte data type
	 */
	 if(getDataType_Image(inputImage) ! = CVIP_BYTE)
	 {
	 byteImage = remap_Image(inputImage,CVIP_BYTE,0,255);
	 delete_Image(inputImage); /* To avoid memory leaks, delete unused image
structure */
	 inputImage = byteImage; /* Assign remapped image back to original
pointer */
	 }
	 /*
	 ** Gets the number of image bands (planes)
	 */
	 no_of_bands = getNoOfBands_Image(inputImage);

	 /*
	 ** Gets the number of rows in the input image
	 */
	 no_of_rows = getNoOfRows_Image(inputImage);

	 /*
	 ** Gets the number of columns in the input image
	 */
	 no_of_cols = getNoOfCols_Image(inputImage);

	 /*
	 ** Compares the pixel value at the location (r,c)
	 ** with the threshold value. If it is greater than
	 ** the threshold value it writes 255 at the location
	 ** else it writes 0. Note that this assumes the input
	 ** image is of data type BYTE.
	 */
	 for(bands = 0; bands < no_of_bands; bands +  + ) {
	 /*
	 ** reference each band of image data in 2-D matrix form;
	 ** which is used for reading and writing the pixel values
	 */

CVIPlab	 721

© 2011 by Taylor & Francis Group, LLC

	 image = getData_Image(inputImage, bands);

	 for(r = 0; r < no_of_rows; r +  + ) {
	 for(c = 0; c < no_of_cols; C++ ) {
	 if(image[r][c] > (byte) threshval)
	 image[r][c] = WHITE_LAB;
	 else
	 image[r][c] = BLACK_LAB;
	 }
	 }
	 }

	 return inputImage;
}
/*
** end of function threshold_lab
*/

11.2  Toolkits, Toolboxes, and Application Libraries

All of the functions in the CVIPtools program are accessible to those programming with
CVIPlab. The functions are arranged in a hierarchical grouping of libraries, with the Toolkit
Libraries at the lowest level, the Toolbox Libraries at the next level, and the Application
Libraries at the highest level, as illustrated in Figure 11.2-1. This hierarchical grouping is

Highest level

Lowest level

Application
libraries

Toolbox libraries

Toolkit libraries

FIGURE 11.2-1
CVIPtools libraries. The libraries are arranged in a hierarchical manner. At the lowest level are the Toolkit
libraries (see Appendix D.1 for function list), which contain basic data manipulation and memory management
functions that are not normally used by the CVIPlab programmer. The Toolbox functions (see Appendix D.2
for function list) are higher level libraries that call the Toolkit functions and are meant for ease of use by the
CVIPlab programmer. At the highest level are libraries created by the application developer.

722	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

devised such that each successive level can use the building blocks (functions) available to
it from the previous level(s).

The Toolkit Libraries contain low-level functions, such as input/output functions, matrix
manipulation functions, and memory management functions. The Toolbox Libraries are the
primary libraries for use in application development; they contain the functions that are
available from the graphical user interface (GUI) in CVIPtools, such as the many analy-
sis, enhancement, restoration, compression, and utility functions. At the highest level, the
Application Libraries, are the libraries generated by those using the CVIPlab environment to
develop computer imaging applications. In some cases, useful functions are modified and
extracted from an application and put into a Toolbox Library. Chapter 13 contains function
prototypes for all Toolbox library functions, some of the commonly used Toolkit functions,
and a description of the memory management philosophy for these library functions. For
more details and examples see the Help pages with CVIPtools, and for a quick look at all
the available library functions see Appendix D.

11.3  Compiling and Linking CVIPlab

11.3.1  How to Build the CVIPlab Project with Microsoft’s Visual C++® 2008

	 1.	 Install CVIPtools, which include the CVIPlab package, from the CD (see Appendices
A and B).

	 2.	Choose the desired location for the installation—in this guide, we use C:\
CVIPtools\CVIPlab as the working folder.

	 3.	Run Microsoft Visual Studio 2008.
	 4.	Open the CVIPlab solution file, CVIPlab_Project.sln, in C:\CVIPtools\CVIPlab as

shown in Figure 11.3-1.
	 5.	Build the project by selecting Build → Build Solution as shown in Figure 11.3-2.
	 6.	Activate the output window by selecting Output from the View menu, or press

Ctrl + W, O (if it is not shown). CVIPlab_Project should be compiled with 0 errors
as in Figure 11.3-3a, and the executable file is located in C:\CVIPtools\CVIPlab\
Debug. It should be noted that it is not unusual to get warning messages during
compilation. These warning messages should be investigated as they may indicate
poor programming practices that can cause problems. In this case, the last few
warning messages are due to variables that are not referenced, meaning they are
not currently used in the program. Here, these variables are included for future
use so we will not worry about them.

	 7.	Press F5 to run the program. Select “2” and enter the file name for an image in the
directory, or enter the full path name for an image elsewhere—here we used cam.
pgm from the C:\CVIPtools\images directory. Enter a threshold value to perform
the threshold operation, as shown in Figure 11.3-3b. If you see this, you have com-
piled and run CVIPlab successfully!

CVIPlab	 723

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 11.3-1
Opening CVIPlab_Project.sln. (a) Select Open → Project/Solution, (b) Select the file CVIPlab_Project.sln.

724	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 8.	 If the computer being used has video capture capability, add this to your CVIPlab
as follows: Open file cviplab.c, go to the #define VIDEO_APP line directly after the
include header section, modify the video/image capture string to the executable
you plan to use (see Figure 11.3-4).

	 9.	Run CVIPlab project by pressing F5. Select 1, and your video/image capture appli-
cation will run.

11.3.2  Mechanics of Adding a Function with Microsoft’s Visual C++® 2008

The following guide provides a step-by-step process for those unfamiliar with Visual
C++ 2008. For those familiar with Visual C++ 2008, or those planning to use another com-
piler, skip to the next section, which provides details for adding a CVIP function to the
CVIPlab menu. To add a function using Visual C++ 2008:
	 1.	 First add a new file by right clicking on the Source Files folder in the Solution Explorer

window on the left. Then select Add→ New Item as shown in Figure 11.3-5a.
	 2.	From the upcoming window select C++ File (.cpp) and input test_new_file.c as the

name, as shown in Figure 11.3-5b.

	 3.	Click Add button and enter the text below in test_new_file.c, as show in Figure
11.3-5c.

		 int test _ function(int i)

		 {

		 return i + 1;

		 }

FIGURE 11.3-2
Building the project. Select Build → Build Solution.

CVIPlab	 725

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 11.3-3
Compiling and running CVIPlab. (a) Screen after compilation with no errors, and (b) Screen after running
CVIPlab and performing a threshold operation on cam.pgm. Note that CVIPlab requires a complete path name
for the image files; or the images can be put in the same directory from which CVIPlab is running.

726	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	Right click on test_new_file.c (located under CVIPlab_Project\Source Files) and
select Properties. From the upcoming window expand the C/C +  + selection on
the left and select Precompiled Headers as shown in Figure 11.3-6a. Check the text
box Create/Use Precompiled Header to make sure that Not Using Precompiled Headers
is chosen (Figure 11.3-6b). If it is chosen click OK, if not, click on the text box to
change the selection.

	 5.	Select Build → Build Solution from the menu bar above, to compile the project again.
There should be no errors in the output box.

	 6.	Double click on CVIPlab.h and CVIPlab.c to open them.
	 7. Find this line in the CVIPlab.h file:
		� extern Image *threshold _ lab(Image *imageP, unsigned int level

		 And directly after it add a new line (see Figure 11.3-7a):
		 extern int test _ function(int i);

	 8.	Build the project again. It should pass the build without any error (Warning mes-
sages are OK).

	 9.	Call this function in the main function of CVIPlab.c by inserting the following line:
		� print _ CVIP("test new function, return value is %d\n",test _

function(1));

		 after the function declarations; as shown in Figure 11.3-7b.

FIGURE 11.3-4
Adding an image capture program to CVIPlab. Go to the #define VIDEO_APP line directly after the include
header section; modify the video/image capture string to the executable for the program desired.

CVIPlab	 727

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 11.3-5
Adding a new function to CVIPlab. (a) From the Solution Explorer menu, right click on Source Files and select
Add → New Item, (b) Select C++ File (.cpp), as shown with an arrow, and name the new file “test_new_file.c” and
press Add button, (c) Select test_new_file.c from Solution Explorer menu and type in your function body.

728	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 10.	Select Build → Build Solution to build the project. There should be no errors (again,
you can ignore warnings).

	 11.	Run the project by pressing F5. You should see
		 test new function, return value is 2

		 in the second line of the console window as shown in Figure 11.3-8. If you see this,
you have added a new function successfully in the CVIPlab project.

	 12.	Exit the compiler without saving these changes.

11.3.3 � Using CVIPlab in the Programming Exercises
with Microsoft’s Visual C++® 2008

The previous section outlines the mechanics of adding a function with Visual C++ 2008.
To follow the existing format of the program and organization of the files with any com-
piler (including Visual C++ 2008), do the following:

	 1.	Create a file similar to threshold_lab.c for the new_function. The easiest method is
to select the threshold.c file and perform a Save As the new_function.c. Next, edit
the header to change the file name, description, modify the date, add your name,
and change the old comments and the function name. The last step is to modify
the code inside the band, row, and column for loop to perform the new function
(see Figure 11.3-9).

(c)

FIGURE 11.3-5  (CONTINUED)
Adding a new function to CVIPlab. (a) From the Solution Explorer menu, right click on Source Files and select
Add → New Item, (b) Select C++ File (.cpp), as shown with an arrow, and name the new file “test_new_file.c” and
press Add button, (c) Select test_new_file.c from Solution Explorer menu and type in your function body.

CVIPlab	 729

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 11.3-6
Settings for header files. (a) Right click on test_new_file.c and select Properties. From the upcoming window,
expand Configuration Properties, then expand C/C++ and select Precompiled Headers, (b) from the Precompiled
Headers section, click the combo button next to the Create/Use Precompiled Header, and select Not Using
Precompiled Headers.

730	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

FIGURE 11.3-7
Editing CVIPlab.h and CVIPlab.c to add a new function. (a) Declare the new function in the header file CVIPlab.h,
(b) call the new function in CVIPlab.c.

CVIPlab	 731

© 2011 by Taylor & Francis Group, LLC

	 2.	Add the new function to the CVIPlab menu as shown in Figure 11.3-10a. Next,
add a case statement for the function as shown in Figure 11.3-10b. The case state-
ment code for case 2 can be copied and used by modifying threshold_Setup to
new_function_Setup.

	 3.	Add the new_function_Setup to CVIPlab.c, similar to threshold_Setup.
	 4.	Add the function prototype to the CVIPlab.h header file:
		� extern Image *new _ function(new _ function parameters...).

11.3.4  Using Microsoft’s Visual C++® 2010

The CVIPlab and its associated files have been successfully tested with Microsoft’s new
Visual C++ 2010. The build process, the mechanics of adding functions, and its use in
the CVIPlab programming exercises are similar to the previous version, but Microsoft’s
Visual C++ 2010 GUI may appear somewhat different—the functionality, however,
is the same. Follow the procedures as outlined in Sections 11.3.1 through 11.3.3 with
Visual C++ 2010, and check the CVIPtools Web site (www.ee.siue.edu/CVIPtools) for any
updates.

FIGURE 11.3-8
Output from your new added function, test_function.

732	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Update header
information

Modify comments
and function name

(a)

Be sure to update
comments here and

everywhere!

Modify code to
perform the new

function

(b)

FIGURE 11.3-9
Create your new function by using the threshold function as a prototype. (a) Edit the header to change the file
name, description, modify the date, add your name, and change the old comments and the function name,
(b) the last step is to modify the code inside the band, row, and column for loop to perform the new function.

CVIPlab	 733

© 2011 by Taylor & Francis Group, LLC

Add here

(a)

Copy to here

Modify
here

(b)

FIGURE 11.3-10
Add the case statement for the new function to CVIPlab. (a) Add your new function to the menu, (b) simply copy
the statement from Case 2, and change the function name and update the comment.

734	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

11.4  Image Data and File Structures

Details of the image data structures used in CVIPtools and CVIPlab are contained in this
section. The CVIPlab programmer who is using the CVIPtools library functions typically
does not need to understand all the details for using them. The library functions provide
the user with a higher level interface so they can focus on learning about image process-
ing. However, a basic understanding of the underlying data structures is necessary and
useful for understanding problems that arise during development.

The data and file structures of interest are those that are required to process images.
In traditional structured programming, a system can be modeled as a hierarchical set
of functional modules, where the modules at one level are built of lower level modules.
Similarly, the information used in CVIPlab, which consists primarily of image data,
uses this hierarchical model. In this case we have a five-tiered model with the pixel
data at the bottom, the vector data structure at the next level, the matrix data structure
at the next level, image data structures next, and finally the image files at the top level.
Figure 11.4-1a shows a triangle to illustrate this model, since it is naturally larger at the
lower levels—it takes many pixels to make up a vector, many vectors to make an image,
and so on.

Image
files

Pixel data

Hierarchical model Image data representation

Matrix
Vector

(b)

Pixel
(a)

Vectors

Matrix structure

Image structure

Header information

Im
ag

e d
at

a

Image data structure

Image data structure and disk file

Disk file

Write

(c)

FIGURE 11.4-1
Image data and file structures.

CVIPlab	 735

© 2011 by Taylor & Francis Group, LLC

In Figure 11.4-1b we see that a vector can be used to represent one row or column of an
image, and the 2-D image data itself can be modeled by a matrix. The image data structure
(Figure 11.4-1c) consists of a header that contains information about the type of image (see
Section 2.4), followed by a matrix for each band of image data values. When the image data
structure is written to a disk file, it is translated into the specified file format (for example,
BMP, JPG, TIFF, etc.). CVIPtools has its own image file format, the Visualization in Image
Processing (VIP) format, and also supports many other standard image file formats. Since
many standard image file formats assume 8-bit data, the VIP format is required for float-
ing point data, complex data, as well as CVIPtools specific information.

The vector data structure can be defined by declaring an array in C of a given type, or by
assigning a pointer and allocating a contiguous block of memory for the vector. A pointer is
simply the address of the memory location where the data resides. In Figure 11.4-2 we see
an illustration of a vector; the pointer to the vector is actually the address of the first ele-
ment in the vector. For images, each element of the vector represents one pixel value, and
the entire vector represents one row or column. The Vector library contains the C functions
related to manipulation of vectors.

The matrix structure is at the level above vectors. A matrix can be viewed as a one-
dimensional vector, with M multiplied by N elements that has been mapped into a matrix
with M rows and N columns. This is illustrated in Figure 11.4-3, where we see how a
one-dimensional array can be mapped to a two-dimensional matrix via a pointer map. The
matrix data structure is defined as follows:

	� typedef enum {CVIP_BYTE, CVIP_SHORT, CVIP_INTEGER, CVIP_FLOAT,
CVIP_DOUBLE} CVIP_TYPE;

	 typedef enum {REAL, COMPLEX} FORMAT;
	 typedef struct {
	 CVIP_TYPE data_type;
	 FORMAT data_format;
	 unsigned int rows;
	 unsigned int cols;
	 void **rptr;	 /*real data pointer*/
	 void **iptr;	 /*imaginary data pointer*/
	 } Matrix;

The data_type field defines the type of data, such as BYTE or FLOAT, which is stored
in the matrix. The data_format field describes whether the matrix elements are real or
complex. The next two fields, rows and cols, contains the number of rows and columns in
the matrix, and the last two, **rptr and **iptr, are two-dimensional pointers to the matrix
elements—if the data_format is REAL, then the imaginary pointer is a null pointer. The
Matrix library contains these functions, and the associated memory allocation and deal-
location functions are called new_Matrix and delete_Matrix, respectively. The data type
for the real and imaginary pointers is passed as a parameter to the function that creates
and allocates memory for a matrix, the new_Matrix function. Once the matrix has been

AAddress
datum

A+1 A+2 A+3 A+N–2 A+N–1

106923438128255

FIGURE 11.4-2
Vector representation.

736	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

setup with new_Matrix, the data is accessed as a two-dimensional array by assigning a
pointer with the getData_Matrix function; note that care must be taken to cast it to the
appropriate data type.

The image structure is the primary data structure used for processing of digital images.
It is at the level above the matrix data structure, since it consists of a matrix and additional
information. The image data structure is defined as follows:

	� typedef enum {PBM, PGM, PPM, EPS, TIF, GIF, RAS, ITX, IRIS, CCC,
BIN, VIP, GLR, BTC, BRC, HUF, ZVL, ARITH, BTC2, BTC3, DPC, ZON,
ZON2, SAFVR, JPG, WVQ, FRA, VQ, XVQ, TRCM, PS, BMP, JP2, PNG}
IMAGE_FORMAT;

	� typedef enum {BINARY, GRAY_SCALE, RGB, HSL, HSV, SCT, CCT, LUV,
LAB, XYZ} COLOR_FORMAT;

	 typedef struct {
	 IMAGE_FORMAT image_format;
	 COLOR_FORMAT color_space;
	 int bands;
	 Matrix **image_ptr;
	 HISTORY story;
	 } IMAGE;

The first field, image_format, contains the file type of the original image. When the image
is read into CVIPtools, this information is retained for use during a save operation, if the
user does not specify the desired file type. However, note that the image format does not
necessarily tell us anything about the actual data in the image structure, especially after it
has been processed. The second field, color_space, determines if the image is binary (two-
valued), gray scale (typically 8-bit), or color (typically three-plane, 24-bit, RGB). If it is a

MN–N+1

MN+N

MN–N

M–1 MN–N MN–N+1 MN–1

100100255

N

0

0 1

128

245 69

100

N–1

255

3

2N–1N+1NN–110

255 128 100 3 245 69 255 100 100

MN–1MN–N+1

Pointer map array Two-dimensional matrix

One-dimensional array

0

FIGURE 11.4-3
Matrices and pointers.

CVIPlab	 737

© 2011 by Taylor & Francis Group, LLC

color image, then this field is updated when a color space conversion is performed. The
third field, bands, contains the number of bands in the image; for example, a color image
has three bands, and a gray-scale image has one band. The next field, **image_ptr, is a
pointer to an array of pointers to matrix data structures, where each matrix contains one
band of pixel data (see Figure 11.4-4). The last field is for history information, and is used
by the CVIPtools software to keep track of certain functions, such as transforms that have
been applied to an image.

The history field in the image structure, story, is a pointer to a history data structure.
The history data structure consists of packets of history information, where each packet
contains information from a particular function. The history data structure is defined as
follows:

	 typedef struct packet PACKET;
	 struct packet {
	 CVIP_TYPE *dtype;
	 unsigned int dsize;
	 void **dptr;
	 };
	 typedef struct history *HISTORY;
	 struct history {
	 PROGRAMS ftag;
	 PACKET *packetP;
	 HISTORY next;
	 };

Matrix 1

Matrix 2

Matrix 3

Blue data band

Green data band

Red data band

0

0

0

100 64

70

110

256

200

6

90

72

105125

255

255

N–1

N–1

MN–1

MN–1

MN–1MN–N MN–N+1

N–1

69

100

100

Representation of image data. In addition to the image data shown
here, the image structure contains header information.

3 245

128

1

1

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FIGURE 11.4-4
Image data.

738	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Functions relating to the history are in the Image library, also see the header file
CVIPhistory.h.

At the highest level is the image file. The image file can be any of the types previously
described as supported by CVIPtools. If the file type is an 8-bit per pixel image file, which
is typical, then it may need to be remapped after processing. For example, if the range
of the data is too large for 8-bits, if the data is in floating point format, or if it contains
negative numbers, then the data in the image structure must be remapped before it can be
written in 8-bit format. This is done automatically by the write_Image function, if required.
However, in some cases, this may not be what is desired—we may want to retain the data
as it is in the image data structure. To do this, the image must be saved in the CVIPtools
image file format, the VIP format. The VIP file format allows the image data structure to
be written to disk, and consists of an image header and the image data structure. The VIP
structure is as follows:

	 VIP	 3 bytes (the ASCII letters "ViP")
	 COMPRESS	� 1 byte, ON or OFF, depending on whether the

data is compressed)
	 IMAGE_FORMAT	 1 byte, (defined in image data structure)
	 COLOR_FORMAT	 1 byte, (e.g., BINARY, GRAYSCALE, RGB, LUV)
	 CVIP_TYPE	� 1 byte, data type, (e.g., CVIP_SHORT, CVIP_

BYTE)
	 NO_OF_BANDS	� 1 byte, (1 for gray-level, 3 for color,

other numbers allowed too)
	 NO_OF_COLS	 2 bytes,
	 NO_OF_ROWS	 2 bytes,
	 FORMAT	 1 byte (REAL or COMPLEX)
	 SIZEOF HISTORY	� 4 bytes, (Size of history information, in

bytes)
	 HISTORY	 variable size (history information)
	 RAW DATA	 variable size.

If the file is a CVIPtools compressed image file, the first field in the RAW DATA corre-
sponds to the type of compression that was performed (such as, btc, vq, etc.). Note that if
the actual data stored in a VIP image file is examined, the number of bytes stored may
vary from the above. This is due to the fact that we use the standard XDR (External Data
Representation) functions to write the VIP files. By using these functions we assure file
portability across computer platforms, but it results in most data types smaller than 32
bits (4 bytes) being written to the file in a standard 32-bit format. For example, in the
Windows® operating system the actual number of bytes stored in the image file is as
follows:

	 VIP	 3 bytes (the ASCII letters "ViP")
	 COMPRESS	� 4 bytes, ON or OFF, depending on whether the

data is compressed)
	 IMAGE_FORMAT	 4 bytes, (defined in image data structure)
	 COLOR_FORMAT	 4 bytes, (e.g., BINARY, GRAYSCALE, RGB, LUV)
	 CVIP_TYPE	� 4 bytes, data type, (e.g., CVIP_SHORT, CVIP_

BYTE)
	 NO_OF_BANDS	� 4 bytes, (1 for gray-level, 3 for color,

other numbers allowed too)
	 NO_OF_COLS	 4 bytes,
	 NO_OF_ROWS	 4 bytes,

CVIPlab	 739

© 2011 by Taylor & Francis Group, LLC

	 FORMAT	 4 bytes (REAL or COMPLEX)
	 SIZEOF HISTORY	� 4 bytes, (Size of history information, in

bytes)
	 HISTORY	 variable size (history information)
	 RAW DATA	 variable size.

To use the VIP image file format, simply use the read_Image and write_Image functions
contained in the Conversion library. These file read/write functions are in the Conversion
library since a large portion of their functionality is to convert file types to and from the
CVIPtools image data structure. These read/write functions will read/write any of the
image file formats supported by CVIPtools, and require the programmer to deal with only
one data structure, the image data structure.

11.5  CVIP Projects

The best projects are the ones that are created by you. We live in a visual world, surrounded
by images. Images in our lives, images on television, images on the internet, images in our
minds. Look around and see how to apply what has been learned to the world as you see
it. Select an area of interest to explore and capture or find the images needed. The follow-
ing sections provide procedures for project development, as well as example topics. Do
not limit project ideas to these, but rather use them as a starting point and motivation for
a project of your own. Note that the new development tools, CVIP-FEPC and CVIP-ATAT
described in chapter 12, can be used to perform batch processing and automate some of
the procedures.

11.5.1 D igital Image Analysis and Computer Vision Projects

The following process can be followed to streamline project development:

	 1.	Use CVIPtools to explore algorithm development, using primarily the Analysis
window for these types of projects. Use the image analysis process as described in
Chapter 3 and outlined as follows.

a.	 First, apply any necessary or desired preprocessing.
b.	 Experiment with the Edge/Line Detection, Segmentation, and Transforms win-

dows to investigate spatial and spectral properties of the images.
c.	 Apply filtering techniques to the resulting images. Morphological filters

are used for segmented images, and transform filters are used for the
transform images. Examine the results, keeping in mind the application.

d.	 After determining a suitable algorithm to separate the image into objects
of interest, use the Features window to perform feature extraction. Spectral
features can be selected based on results from examining spectral informa-
tion. Create separate training and test sets, if desired.

e.	 Use the Pattern Classification window to determine the success for your test
set. If the results are satisfactory proceed to the next step, or else go back to
algorithm development starting with (a) above.

740	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 2.	Code the algorithm developed into the CVIPlab program, as follows:
a.	 Find the function name that corresponds to the CVIPtools function (see

Chapter 13 and the appendices).
b.	 Use the CVIPtools Help pages to see an example of how the function is

used in a C program.
c.	 Do (a) and (b) for all functions needed.
d.	 Code the feature extraction algorithm with these functions in your CVIPlab

program.
e.	 Code your classification algorithm into your CVIPlab program; see the fea-

ture library HELP page for the function names.
	 3.	Test the algorithm(s) on real images input from an imaging device or on a test set

of images.
	 4.	Analyze the results and present them visually, in graphs or charts. If aver-

ages are used, be sure to include information about variation, such as standard
deviations.

Example Project Topics

	 1.	 Implement a program for the recognition of geometric shapes; for example circles,
squares, rectangles, and triangles. Make it robust so that it can determine if a shape is
unknown. Images can be created with CVIPtools, but they should be blurred and noise
added to them for realism. Alternately, the images can be captured with your image
acquisition system by drawing the shapes or by capturing images of real objects.

	 2.	 Experiment with the classification of tools; for example screwdrivers, wrenches, and ham-
mers. Find features that will differentiate the classes of tools. Design a method for system
calibration, and then identify various sizes of nuts and bolts, as well as number of threads
per inch.

	 3.	 Implement a program to identify of different coins and bills. Make it robust so that it
cannot be fooled by counterfeits.

	 4.	 Design a program to read bar codes. Experiment with different types of codes.
Experiment with different methods to bring images into the system. In general, scan-
ners will be easier to work with than cameras—verify this.

	 5.	 Implement a program to perform character recognition. Start with a subset, such as the
numbers 0–9, and then expand using what you have learned. Experiment with different
fonts, printers, and lighting conditions.

	 6.	 Imagine we are designing a robotic system to put dishes in the dishwasher after a meal.
Collect an image database of cups, glasses, bowls, plates, forks, knives, and spoons.
Develop an algorithm to identify the objects.

	 7.	 Take pictures of your fellow students. Develop an algorithm to identify them. This could
be done via facial recognition, iris (eye) recognition, or other suitable features based on
your image set.

	 8.	 Acquire medical images from the web for a specific pathology (disease), along with nor-
mal images. These types of images may include x-rays, MRI, or PET scans. Develop an
algorithm to differentiate the diseased images from the normal images (see Chapter 12).

	 9.	 Capture images with various colored objects in a scene. Experiment with different color
spaces to find an algorithm to identify the objects.

	 10.	 Capture images with different textures in a scene. Experiment with different features to
find an algorithm to identify the objects. Write functions for your own texture features
that are not included in the CVIPtools libraries.

CVIPlab	 741

© 2011 by Taylor & Francis Group, LLC

11.5.2 D igital Image Processing and Human Vision Projects

The following process can be followed to streamline project development:

	 1.	Use CVIPtools to explore algorithm development for image enhancement, restora-
tion, or compression. Be sure to consider human visual perception in the develop-
ment. Explore various options, sequences of operations, various parameter values,
and so on, until desired results are achieved. Be creative, the beauty of CVIPtools
is that anything can be tried and tested in a matter of seconds, and the results from
different parameter values can easily be compared side by side.

	 2.	Code the algorithm developed into the CVIPlab program, as follows:
a.	 Find the function name that corresponds to the CVIPtools function (see

Chapter 13 and the appendices).
b.	 Use the CVIPtools Help pages to see an example of how the function is

used in a C program.
c.	 Do (a) and (b) for all functions needed.
d.	 Put the functions into the CVIPlab program.
e.	 Write the necessary drivers to use the functions to implement the algo-

rithm developed.
	 3.	Test the program on images suitable for the application.
	 4.	Design experiments to collect image quality measures for the algorithm(s); see

Chapter 7.
	 5.	Analyze the results and present them visually, in graphs or charts. If aver-

ages are used, be sure to include information about variation, such as standard
deviations.

Example Project Topics

	 1.	 Find images that you want to process and improve. These may be images of poor con-
trast, blurred images, and so on. Examples: personal photos taken by “Uncle Bob,”
medical images such as x-ray images, “UFO” images. Use CVIPtools to explore image
enhancement.

	 2.	 Incorporate the CVIPtools function gray_linear (in the Histogram library) into your
CVIPlab. Use this function to implement gray-level mapping pseudocolor. Apply it to
x-ray images.

	 3.	 Implement a program for frequency domain pseudocolor enhancement. Experiment
with the FFT, DCT, Haar, Walsh, and Wavelet transforms. Apply it to ultrasound
images.

	 4.	 Find images that have been degraded, for which a degradation model is available or can
be developed. For example, satellite images, medical images, images from news stories
(e.g., the JFK assassination). Use CVIPtools to explore image restoration.

	 5.	 Define a specific image domain of interest. Collect a number of these types of images.
Explore image compression with CVIPtools. Design and perform subjective tests and
compare the results to objective measures available in CVIPtools such as signal-to-noise
ratio and RMS error.

	 6.	 Collect an image database of text images. These may be scans of typed material or
images of license plates. Use Utilities → Filter → Specify a Blur to blur the images. Then
add noise with Utilities → Create → Add Noise to add noise to the blurred images. Next,
experiment with Restoration → Frequency Filters to restore images.

742	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 7.	 Find or create images that have been geometrically distorted. Experiment with
Restoration → Geometric Transforms to restore the images. Implement your own function
using a triangular mesh, instead of the quadrilateral mesh in CVIPtools.

	 8.	 Collect satellite images from the Internet. Use Restoration → Noise to add various types
of noise at three different levels to the images. Use the Restoration → Spatial Filters to
mitigate the noise.

	 9.	 Use what you have learned to develop a novel histogram manipulation method to
improve image contrast. For example, create an adaptive histogram stretch by evaluat-
ing the histogram to find clusters and then developing creative methods to stretch the
clusters separately. Apply your method(s) to monochrome and color images that have
poor contrast.

	 10.	 Develop a histogram equalization method that will provide a truly flat histogram with
digital images. Use spatial proximity to determine how to split the mapping for the
same gray levels. Apply your method and compare to standard histogram equalization
techniques.

743© 2011 by Taylor & Francis Group, LLC

12
Application Development

12.1  Introduction and Overview

Application development is one of the primary motivations to study digital image process-
ing and analysis. As first discussed in Chapter 3, and further developed throughout the
book, the application specific nature of the subject is intrinsic to its study. As shown in
Figure 3.1-3 the application feedback loop in the image analysis process is of paramount
importance. The application itself drives the algorithm development, whether it is a com-
puter or human based application. The method of image acquisition determines the char-
acteristics of the images, which can greatly affect algorithm development. The specific
nature of the application will determine the necessary methods best suited for solving the
particular imaging problem.

The next two sections describe application development tools that are adjuncts to
Computer Vision and Image Processing tools (CVIPtools). CVIPtools is designed to pro-
cess one image at a time and allow the user to immediately view results. This paradigm
is perfectly suitable for education and initial algorithm exploration, but is rather unwieldy
for developing algorithms involving hundreds or thousands of images. The first tool,
CVIP Algorithm Test and Analysis Tool (CVIP-ATAT), allows for batch processing and
automates front-end algorithm development. This is done by selecting sequences of pro-
cesses, specifying parameters and will run through all permutations of user selected pro-
cesses and parameters. The second tool, CVIP Feature Extraction and Pattern Classification
Tool (CVIP-FEPC), is used to explore features and pattern classification methods after the
images have been properly processed to the point where the objects of interest have been
identified.

The next two sections describe the details involved in using the CVIPtools environment,
along with the two adjunct programs CVIP-ATAT and CVIP-FEPC, to develop applica-
tion-based algorithms and solutions. To illustrate this we discuss two specific applications
and provide a step-by-step process for development of solutions to the particular imaging
problems: (1) using CVIP-ATAT for the analysis of retinal fundus images by developing
automatic segmentation algorithms to identify blood vessels for diagnosing diabetic retin-
opathy (DR) and (2) the analysis of veterinary thermographic images for classification of
various pathologies (diseases) with CVIP-FEPC.

Following the sections on the development tools, applications that are meant to be rep-
resentative of the various types of computer imaging problems are presented. These appli-
cations typify research and development projects that have utilized our image analysis
process and the CVIPtools development environment.

744	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

12.2  CVIP Algorithm Test and Analysis Tool

12.2.1 O verview and Capabilities

The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-ATAT,
was created to facilitate the development of both human and computer vision applications. The
primary function of this tool is to allow the user to explore many more algorithmic possibili-
ties than can be considered by processing one image at a time with CVIPtools. It allows for
the automatic processing of large image sets with many different algorithmic and parameter
variations. We call this the “front-end” tool because its primary purpose is to find the best
algorithm to preprocess, segment, and postprocess a set of images for a particular application
in order to best separate the most important regions of interest within the image.

It has a GUI that allows the user to enter multistage algorithms for testing and analysis.
At each stage the user can specify a number of different processes to test and a range for the
processes’ parameters. The user also specifies a set of images to process and a set of “ideal”
output images that will be used to determine the success for each algorithm. Note that one
algorithm is defined as a specific set of processes and a specific set of parameter values.

The tool will then automatically perform algorithms that consist of all the permutations
of the values for each of the parameters for each process and all the processes for each stage.
Next, the user can compare the various algorithm results to determine the best set of processes
and parameters for the particular application. The tool is useful for application development
where the ideal image results are available or can be created. Additionally, it can serve as a
front-end development tool for image analysis to find the optimal set of processes and param-
eters for extracting regions of interest for further processing. To use the tool most effectively
a computer system with maximal processor power, memory and disk space is advised.

12.2.2  How to Use CVIP-ATAT

12.2.2.1  Running CVIP-ATAT

The easiest way to invoke CVIP-ATAT is by clicking on the icon on the CVIPtools tool-
bar (see Figure 12.2-1). CVIP-ATAT requires two files: CVIP-ATAT.exe and CVIPtools.dll.
The GUI is implemented in file CVIP-ATAT.exe. All C functions for image processing
and analysis are implemented in file CVIPtools.dll, which is invoked by CVIP-ATAT.exe.
Alternately, the user can run the executable directly, if desired.

12.2.2.2  Creating a New Project

A new project should be created for the images that will be tested and analyzed.
Different projects can be created for different types of images; however, just one project
can be opened at one time. In order to create a new project, the following steps should
be followed:

	 1.	Select File from the menu toolbar and then select New Project to open the New
Project dialog box. See Figure 12.2-2a (first step) and Figure 12.2-2b (second step).

	 2.	 In the New Project dialog box, type in a directory for the new project or use the
Browse button to select a directory for the project.

	 3.	 In the New Project dialog box, provide a name for the new project. Note that the
tool will create a new folder whose name will be identical with the project name
and that will contain all of the files related to the new project.

Application Development	 745

© 2011 by Taylor & Francis Group, LLC

	 4.	Press the OK button in the New Project dialog box to complete the creation of the
new project. The creation can be stopped simply by pressing the Cancel button.

	 5.	The interface of your newly created project will look just like the one in Figure
12.2-3. With this window the user has tabs for entering images, processes, and test
functions to be used in the project.

	 6.	Note: after a project has been created it is opened by selecting Open Project from
the main menu and open its configuration file, *.cfg.

12.2.2.3  Inserting Images

After creating a new project, the user can import images in the image interface. After open-
ing an existing project, the user can add more images or delete some images for retesting.
In order to add or delete images the user should apply the following steps:

	 1.	The image input interface is one of the three tab pages shown in Figure 12.2-3. If
the image interface has not been selected, click on the Images tab to open it by click-
ing on the mouse left key.

	 2.	Click the Add Image button to add original images. After clicking the Add Image
button, an Add Image dialog will appear as shown in Figure 12.2-4. The user can
add a single original image or multiple original images at one time. If the user
wants to add multiple original images, the Ctrl key should be held down, while
using the mouse to select several images.

	 3.	After original images have been added, ideal images can be added by clicking the
Add Ideal Image button. First, the user should select the original images by using the

Click here for CVIP-ATAT

Figure 12.2-1
Invoking CVIP-ATAT. Select the CVIP-ATAT button on the top right of the CVIPtools toolbar.

746	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

left mouse key to choose them from the list table. After the user has selected the
original images then the Add Ideal Image button should be clicked. Now, the user
selects the directory where the ideal images are located and the program matches
them by name. Note: the file names of the original images and ideal images should
be the same, but the file extensions can be different.

	 4.	The user can delete all of the original images (including the ideal images) by click-
ing the Delete ALL Images button or delete some of the original images by clicking
the Delete Selected Image button. When the user wants to delete some of the original
images, the original images that will be deleted should be selected first by holding
down the Ctrl key and mouse left key.

	 5.	 If the user wants to delete the ideal images only, the Delete Selected Ideal Image and
the Delete ALL Ideal Images buttons can be used to do so.

Figure 12.2-4b illustrates how the image interface should look like after the insertion of the
images is complete.

(a)

(b)

Figure 12.2-2
Creating a new Project. (a) Step 1, select File → New Project, (b) Step 2, enter a name for your project and a file
folder will be created with that name which will hold all the files related to the project.

Application Development	 747

© 2011 by Taylor & Francis Group, LLC

Notes : The original images are used for testing and the resultant images (output images
of the original images) are compared with the ideal images; however, the ideal images
must match the resultant images. It means that the ideal images and their correspond-
ing resultant images must have the same bands and size with regard to the Logical XOR,
Subtraction Energy, Signal-to-Noise Ratio (SNR), and Root-Mean-Square (RMS) Error
comparisons.

12.2.2.4  Inputting an Algorithm

The user can input algorithms that will be tested on the images using the algorithm input
interface. The algorithm input interface is shown in Figure 12.2-5.

In order to input an algorithm, the user should apply the following steps:

	 1.	The algorithm input interface is one of the three tab pages shown in Figure 12.2-5.
If the algorithm input interface has not been selected, click on the Processes tab
shown in the figure to open it clicking on the mouse left key.

	 2.	The user can select an algorithm through the ComboBox named Select Processes. After
an algorithm is selected, the user can adjust the parameters for that algorithm.

	 3.	The user has to specify a stage for every algorithm through the ComboBox named
Select Stage. Notice that the image testing process can be broken down into several
stages and more than one process (function) can be applied for each stage. Each
stage can have multiple processes and the tool will test all algorithmic possibilities.

Figure 12.2-3
The project interface. With this window the user has tabs for entering images, processes, and test functions to
be used in the project.

748	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Figure 12.2-4
Adding images. (a) After selecting the Add Images button, this window will appear and images can be selected,
(b) the screen after image insertion is complete. Note that ideal images have not been specified, so these entries
are listed as Null.

Application Development	 749

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Enter parameter values

Delete processes

Select stage

Enter parameter values

Figure 12.2-5
The project interface with the Processes tab selected. Here the user can enter the desired processes for algorithm
testing and analysis. (a) Select a process from the list. For each process the user selects each parameter’s range
and increment values, and selects the process stage. (b) Here is the window after addition of a few processes.
Each stage can have multiple processes and the tool will test all algorithmic possibilities. Note that for one algo-
rithmic run only one process, with one set of parameter values, will be tested in each stage.

750	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Note that for one algorithmic iteration only one process, with one set of param-
eter values, will be tested in each stage. However, the user is able to test all pos-
sible processes and parameter combinations in one run of CVIP-ATAT. See Figure
12.2-6 for an example.

	 4.	After the stage is specified, the user selects the possible parameter values for each
parameter of the process. This is done by selecting the lower, increment, and upper
values for each parameter. For example, if a parameter’s lower value is 1, the incre-
ment value is 2, and upper value is 5, then the possible values for this parameter
are 1, 3, or 5. Each process has default values that can be used, or the user can enter
the desired values (see Figure 12.2-5b) to limit the number of algorithms tested.

	 5.	After selecting the process and its stage, the user needs to click on the Add Process
button to add the selected process and its stage into the Processes list table. Though
when inserting a process into a stage the user must be careful to put the stages into
order without skipping any stage. For example without a Stage 3 the user can not
insert a process into Stage 4.

	 6.	The user can repeat Steps 3, 4, and 5 until all of the required processes have been
selected.

	 7.	The user can delete one or multiple processes listed in the list table easily by check-
ing them using the mouse left key, then by clicking on the Delete Checked Process
button (see Figure 12.2-5b).

	 8.	 If the user wants to delete all of the processes in the list table, he/she just needs to
click on the Delete ALL Process button.

(a)

(b) Algorithm1: S1P1→S2P1

Algorithm2: S1P1→S2P2

Algorithm3: S1P2→S2P1

Algorithm4: S1P2→S2P2

STAGE 1 (S1) PROCESSES:

1) Process1, S1P1

2) Process2, S1P2

STAGE 2 (S2) PROCESSES:

1) Process1, S2P1

2) Process2, S2P2

Figure 12.2-6
A Two-Stage run of CVIP-ATAT. (a) For this algorithm test and analysis we select two stages and two processes
for each stage, (b) the algorithms tested are shown here. Note that for simplicity and clarity the parameters are
not included, but all permutations of all parameters will be tested.

Application Development	 751

© 2011 by Taylor & Francis Group, LLC

	 9.	The user can also adjust the order of the processes in the list table by selecting
one of the processes and then moving it by clicking on the Up button or the Down
button.

	 10.	The number of images that the algorithm will be tested on and the number of options
for one image are displayed at the bottom of the algorithm input interface.

12.2.2.5  Performing an Algorithm Test Run

The test interface (see Figure 12.2-7) is used to test algorithms on images and display the
test results. The following steps should be followed:

	 1.	The testing interface is one of the three tab pages shown in Figure 12.2-7. If the test
interface is not selected, click the Test tab to open it clicking on the mouse left key.
Since the user has not yet performed the algorithm test run the screen as shown in
Figure 12.2-7a, which holds the resultant images, is empty.

	 2.	 In order to test the algorithm the user needs to click on the Run button. Then all of
the selected algorithms will be tested on all of the selected images automatically.
This process may take days or even weeks depending on the number of options
selected and the resources of the computer being used.

	 3.	During the test, a progress bar is used to display the progress and below it the
percentage of the progress is displayed.

	 4.	Because of the multithread technique, the user can pause or stop the test process at
any time by clicking on the Stop or Pause button. After the Pause button is clicked
on the test can be resumed by clicking on the Run button again.

	 5.	The test results are displayed in the result list table as shown in Figure 12.2-7b. The
resultant images can be viewed by double clicking on the image file in the list. One
image can be viewed at once. In order to view another image the user must close
the opened image.

	 6.	The user can delete any of the test result images by checking the items in the list
table, and then by clicking on the Delete Checked Result button.

	 7.	The user can also delete all of the test results by clicking on the Delete ALL Results
button.

12.2.2.6  Comparing Images

The comparison interface is used to compare images with their corresponding ideal images.
It allows the user to compare the results from the various algorithm and parameter values.
It will sort the algorithm results from best to worst, displaying the average and standard
deviation across the entire set of images.

The steps for comparing the original images with their ideal images is given as follows:

	 1.	Select Comparison from menu toolbar to open the comparison interface, see
Figure 12.2-8.

	 2.	Select one method to compare the images, from RMS Error, SNR, Subtraction
Energy, or Logical XOR methods. The user can adjust the parameters of every
comparison method easily if necessary.

	 3.	 If remapping the image is necessary, then the Remap Image First box should be
checked before proceeding to the comparison methods.

752	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 4.	After finishing Steps 2 and 3, the user needs to click on the Analyze button
for the selected method to do the calculation. Then the comparison will run
automatically.

	 5.	The user can stop the analysis process at any time just by clicking on the Stop but-
ton. However, the Stop button aborts the analysis and if restarted by clicking the
Analyze button it will not continue from where it left off but will start over.

(a)
Test tab

Run button

(b)

Figure 12.2-7
The Test interface. (a) The screen after starting the test by clicking the Run button. The screen, which holds the
resultant images, is empty because the algorithm test run has not yet completed. (b) After the test run is complete
the resultant image names are shown. Note that no ideal images have been specified, so these entries are Null.

Application Development	 753

© 2011 by Taylor & Francis Group, LLC

(a)

Select a metric for comparison

Click to analyze

(b)

Select sorting column

Select view option–
average or standard
deviation

Figure 12.2-8
The Image Comparison tab selected. The images will be compared with the corresponding ideal images. (a) Here
the user can select the comparison metric to be used in the analysis, and then perform the comparison on the
algorithms previously tested by clicking the Analyze button. (b) After the Image Comparison has been performed,
the comparison results are sorted according to their average or standard deviation in the Algorithm Comparison
tab. The user can select to view the averages or the standard deviations via the buttons, and then click on the
desired column for sorting.

754	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

	 6.	The comparison results will be listed in the tab pages. Since there are four com-
parison methods, there are four tab pages, respectively. So the user can see all of
the results by going through the tabs.

	 7.	The Algorithm Comparison tab contains the results for each algorithm. An algo-
rithm consists of a sequence of processes, and the associated parameter values.
Here the averages and standard deviations of the comparison metric are calcu-
lated. These statistics are generated for each algorithm, using all the images, and
are then sorted and listed from best to worst. The user can sort these based on
either the average value or the standard deviation.

12.2.3 A pplication Development Example with Fundus Images

12.2.3.1  Introduction and Overview

For this application the goal is to automatically extract the blood vessels from images of the
retina of the human eye. The input images are called retinal fundus images. The blood ves-
sel information can be used in diagnosis of various retinal pathologies, such as DR, where
early diagnosis can lead to prevention of blindness.

Ideal images hand drawn by experts (ophthalmologists) were available for comparison.
Figure 12.2-9 shows example images, where we can observe that the algorithm developed
with the aid of CVIP-ATAT provides encouraging visual results. Here we see that all the pri-
mary vessels are found, but to find the smaller vessels effectively more work is required.

In a previous study, described in the paper “Comparison of Two Algorithms in the
Automatic Segmentation of Blood Vessels in Fundus Images” (see Section 12.5), two

(a) (b) (c)

(d) (e) (f)

Figure 12.2-9
Fundus Images Application Development Example. The goal of the project is to automatically extract the blood
vessels from the original images. (a,d) Original images, (b,e) the ideal output images, hand-drawn by the expert –
an ophthalmologist, (c,f) example output images from the algorithm developed with CVIP-ATAT.

Application Development	 755

© 2011 by Taylor & Francis Group, LLC

algorithms were developed to perform this task. Here we used CVIP-ATAT to see if a bet-
ter algorithm could be developed. We describe the new algorithm and compare its results
with those from the two algorithms previously developed. Overall, the results obtained
from the new algorithm were much better. These comparisons were made using the RMS
error, SNR and Pratt’s figure of merit (FOM) as success metrics.

12.2.3.2  New Algorithm

The new algorithm uses a similar structure that was used in a previous study (described in
Section 12.5). Through the use of CVIP-ATAT we determined that by using different filters
and repeating some algorithmic steps better results can be obtained. We also found that
removing the outer ring in the fundus images improved the results. The outer ring image
masks were created by thresholding the original images to create masks of the entire eye-
ball and then extracting the outer ring only from the resulting sphere.

The flow chart of the algorithm developed with CVIP-ATAT is given in Figure 12.2-10.
The number of initial algorithmic and parameter variations was approximately 600,000.

After initial studies were performed with CVIP-ATAT, the final algorithm was run on the
retinal fundus images. All possible parameter values were tested for every function. The
parameter values that gave optimal results were determined. These parameter values are
as follows:

•	 Histogram Stretch:
Low Limit: 0
High Limit: 255
Low Clip: 0.025
High Clip: 0.025

•	 Laplacian Edge Detection:
Mask Choice: 3
Mask Size: 1 or 2
Choice of keeping it DC: 0 (No)

•	 Mean Filtering: (was applied 3 times)
Mask Size: 3

•	 Color-to-Gray Conversion: conversion type was selected as luminance
•	 Histogram Stretch:

Low Limit: 0
High Limit: 255
Low Clip Percentage: 0.05
High Clip Percentage: 0.05

•	 Binary Threshold: threshold value was selected as 73 (on original image)
•	 Adaptive Median Filter:

Mask Size: 3
•	 Not Operation
•	 Edge-Linking: (was applied twice)

Max. Connect Distance: 3

756	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 12.2-11 shows examples of the output images obtained from the algorithm.
After obtaining the resultant images the success of the algorithm was measured by

comparing the resultant images with the ideal images that were hand drawn by ophthal-
mologists. The comparison metrics used were; SNR, RMS, and FOM.

Table 12.2-1 shows the SNR, RMS and FOM results respectively, of the previous two algo-
rithms (Algorithm 1 and Algorithm 2) and the newly developed algorithm (NEW) along
with their average results and the improvement in the results by using the CVIP-ATAT.
The original study used 15 fundus images, so the same 15 images were used here for com-
parison. It should be noted that in previous algorithms the outer ring was not removed, so
this factor contributed to the improvement.

Input image (Green band extracted image)

Histogram stretch

Laplacian edge detection

Mean filtering

Color-to-gray conversion

Histogram stretch

Binary threshold

Adaptive median filter

Not operation

Edge-linking Outer ring mask

Subtraction

Final image

Figure 12.2-10
The new algorithm flowchart as developed by CVIP-ATAT.

Application Development	 757

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

ORIGINAL IMAGES ALGORITHM OUTPUT IMAGES

(e) (f)

Figure 12.2-11
The new algorithm resulting images. The goal of the project is to extract the blood vessels from the origi-
nal images. (a,c,e,g) Original images. (b,d,f,h) Images output from the new algorithm on four different input
images.

758	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(g) (h)

ORIGINAL IMAGES ALGORITHM OUTPUT IMAGES

Figure 12.2-11 (Continued)
The new algorithm resulting images. The goal of the project is to extract the blood vessels from the origi-
nal images. (a,c,e,g) Original images. (b,d,f,h) Images output from the new algorithm on four different input
images.

Table 12.2-1

Results of Comparing the Three Algorithms Using the Signal-to-Noise
Ratio (SNR) Comparison Metric

Images
SNR for

Algorithm 1
SNR for

Algorithm 2
SNR for New CVIP-ATAT

Developed Algorithm

Image 1 12.14 10.536 13.667
Image 2 11.11 10.136 13.588
Image 3 11.669 10.859 12.523
Image 4 10.774 9.859 13.627
Image 5 12.952 9.055 13.31
Image 6 11.915 9.749 12.89
Image 7 12.296 10.419 13.038
Image 8 11.961 9.981 12.436
Image 9 10.595 9.736 13.019
Image 10 10.948 9.95 13.495
Image 11 10.166 9.016 12.779
Image 12 10.698 9.744 12.712
Image 13 11.747 10.124 12.96
Image 14 11.3 10.873 13.49
Image 15 10.794 9.356 12.197
Average 11.404 9.959 13.109

Percentage Increase
(Alg.1 vs. NEW)

Percentage Increase (Alg.2
vs. NEW)

14.95% 31.63%

Notes:	 On average the new algorithm has an SNR value that is 14.95% higher than
Algorithm 1. Again on average the new algorithm has an SNR value that is
31.63% higher than Algorithm 2.

Application Development	 759

© 2011 by Taylor & Francis Group, LLC

As it is seen in Table 12.2-1, for every output image of the new algorithm the SNR value
is better when compared to both Algorithm 1 and Algorithm 2.

Table 12.2-2

Results of Comparing the Three Algorithms Using the
Root-Mean-Square Error (RMS) Comparison Metric

Images
RMS for

Algorithm 1
RMS for

Algorithm 2
RMS for New

Algorithm

Image 1 63.027 65.81 52.866
Image 2 70.967 69.389 53.354
Image 3 66.545 63.044 60.31
Image 4 73.76 71.773 53.109
Image 5 57.407 70.435 55.084
Image 6 64.684 73 57.812
Image 7 61.91 66.837 56.838
Image 8 64.339 70.814 60.919
Image 9 75.295 73.122 56.962
Image 10 72.303 71.105 53.495
Image 11 79.108 80.307 58.556
Image 12 79.73 73.048 59.01
Image 13 65.994 69.492 57.35
Image 14 69.429 62.924 53.958
Image 15 73.595 69.823 62.615
Average 69.206 70.061 56.815

Percentage Decrease
(Alg.1 vs. NEW)

Percentage Decrease
(Alg.2 vs. NEW)

–17.90% –18.91%

Notes:	 On average the new algorithm has an RMS value that is
17.90% lesser than Algorithm 1. Again on average the
new algorithm has an RMS value that is 18.91% lesser
than Algorithm 2.

As it is seen in Table 12.2-2, for every output image of the new algorithm, the RMS value
is smaller when compared to both Algorithm 1 and Algorithm 2. The elimination of the
outer ring was a major factor for this decrease in the RMS Error.

760	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

As it is seen in Table 12.2-3, for every output image of the new algorithm, the Pratt FOM
value is better when compared to both Algorithm 1 and Algorithm 2. The elimination of
the outer ring was a major factor for this decrease in the RMS Error.

12.2.3.3  Conclusion

The results obtained from the newly developed algorithm were better when compared to
the previously developed algorithms. The results illustrate the efficacy of the CVIP-ATAT
that enabled us to test many more functions and parameter values than could have been
done manually. This task would have been impractical to do manually, one image at a
time, one function at a time, and one set of parameter values at a time. This is of particu-
lar importance as in many CVIP applications hundreds or thousands of images may be
used in algorithm development. This example shows that the CVIP-ATAT is very useful in
processing numerous permutations of processes and function parameter values and is a
valuable aid in algorithm development.

Table 12.2-3

Results of Comparing the Three Algorithms Using the
Pratt’s Figure of Merit (FOM) Comparison Metric

Images

Pratt’s FOM
for

Algorithm 1
(Scale

Factor:1/9)

Pratt’s FOM
for

Algorithm 2
(Scale

Factor:1/9)

Pratt’s FOM
for New

Algorithm
(Scale Factor:

1/9)

Image 1 0.6506 0.6685 0.9115
Image 2 0.5361 0.5577 0.7301
Image 3 0.6418 0.5825 0.8812
Image 4 0.4877 0.5164 0.7267
Image 5 0.5972 0.5429 0.7219
Image 6 0.6197 0.5734 0.8005
Image 7 0.4996 0.58 0.7625
Image 8 0.5102 0.561 0.8653
Image 9 0.382 0.4453 0.8323
Image 10 0.3421 0.4513 0.8745
Image 11 0.4885 0.4961 0.8108
Image 12 0.4414 0.5158 0.8571
Image 13 0.3592 0.5245 0.7063
Image 14 0.3503 0.593 0.9135
Image 15 0.4205 0.5328 0.7627
Average 0.488 0.542 0.810

Percentage Increase
(Alg.1 vs. NEW)

Percentage Increase
(Alg.2 vs. NEW)

65.92% 49.33%

Notes:	 On average the new algorithm has an FOM value that is
65.92% higher than Algorithm 1. Again on average the
new algorithm has an RMS value that is 49.33% higher
than Algorithm 2.

Application Development	 761

© 2011 by Taylor & Francis Group, LLC

12.3  CVIP Feature Extraction and Pattern Classification Tool

12.3.1 O verview and Capabilities

The Computer Vision and Image Processing Feature Extraction and Pattern Classification
Tool, CVIP-FEPC, was created to facilitate the development of both human and computer
vision applications. The primary application area is computer vision, but it can be used,
for example, as an aid in the development of image compression schemes for human
vision applications. This can be done by helping to determine salient image features that
must be retained for a given compression scheme. Conversely, computer vision applica-
tions are essentially deployed image analysis systems for a specific application, so the
feature extraction and pattern classification is an integral part of all computer vision
systems.

The primary function of this tool is to explore feature extraction and pattern classifica-
tion and allow the user to perform batch processing with large image sets and is thus
much more efficient than processing one image at a time with CVIPtools. It allows the user
to select the features and pattern classification parameters for the automatic processing of
these large image sets. CVIP-FEPC enables the user to easily specify the training and test
sets and run multiple experiments in an efficient manner. Its primary purpose is to find
the best parameters for a particular application in order to best classify the image objects
of interest.

This tool is designed to work with a set of images that have binary masks that have been
created for the objects of interest—one object per image. These masks can be created man-
ually with CVIPtools, or, many image database applications will have the masks available.
In general, the user will load the images, specify the classes, select the features, select the
test set, choose the pattern classification parameters and then let the program process the
entire image set. An output file will be created with the results for the experiment.

12.3.2  How to Use CVIP-FEPC

12.3.2.1  Running CVIP-FEPC

The easiest way to invoke CVIP-FEPC is by clicking on the icon on the CVIPtools toolbar
(see Figure 12.3-1a). After this the main window will appear as shown in Figure 12.3-1b.
CVIP-ATAT requires two files: CVIP-FEPC.exe and CVIPtools.dll. The GUI is implemented
in file CVIP-FEPC.exe. All C functions for image analysis and processing are implemented
in file CVIPtools.dll, which is invoked by CVIP-FEPC.exe. Alternately, CVIP-FEPC can be
invoked by running the executable directly.

12.3.2.2  Creating a New Project

The first step in starting a new project is to organize the images. The images are put in
separate folders (directories) based on their class, as shown in Figure 12.3-2. Here we see
20 separate folders, corresponding to 20 different classes. Each folder should contain all
the images in one class and also a subfolder called Masks, where all the binary masks for
the object of interest in the corresponding class images will be stored. The binary masks
will contain a “1” (typically 255 for 8-bit image data) for the object, and a binary “0” for the

762	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

background. All the images and their corresponding masks should have same name, but
the file extensions may differ. Note that these mask image can be created with CVIPtools,
using Utilities→ Create→ Border Mask. Be sure to save the border mask images as bmp or
another uncompressed file format. If they are saved as compressed files, for example jpg,
the resulting image may contain more than two gray-level values and will not be proper
masks.

(a)

(b)

Click here for CVIP-FEPC

Figure 12.3-1
Invoking CVIP-FEPC. (a) To invoke CVIP-FEPC, select the CVIP-FEPC button on the top right of the CVIPtools
toolbar, (b) the main widow for CVIP-FEPC will appear as shown here.

Application Development	 763

© 2011 by Taylor & Francis Group, LLC

12.3.2.3  Entering Classes in CVIP-FEPC

The classes are declared in CVIP-FEPC by clicking on Settings → Class List in the tool, which
brings up the Class List window as shown in Figure 12.3-3. Next, the new class name is
entered in the New Class box, and clicking on the Add button adds the class name, as shown
in Figure 12.3-3b. Additional class names can be added in a similar manner. After all the
desired classes have been entered, click on OK button to go back to the main window. All
the classes added to the CVIP-FEPC tool can be seen by clicking on the arrow next to the
Class box. Caution! Do not use spaces in class names as CVIP-FEPC uses spaces for delimiters in
the feature files!

12.3.2.4  Adding Images and Associated Classes

Images can be added to application by clicking on the Add files button from the selection
window, which allows you to browse for the location of images, as shown in Figure 12.3-4a.
Images added to the application can be viewed clicking on the names of the images or by
using the arrow buttons beside the image. We can see the original image, mask, and the
masked image by selecting corresponding radio buttons, as shown in Figure 12.3-4b. All
the images in a folder, corresponding to one class, can be added to the application concur-
rently by selecting them all and clicking Open. Now the class can be assigned by selecting
all the images and selecting the class name from the Class dropdown box. The class names
will be displayed in the Class column on the right side, by the image name, as shown in
Figure 12.3-4c. This process continues until all the images have been loaded and the classes
assigned.

�is application has 20
different classes to identify

Figure 12.3-2
Organization of the image directory. Arrange folders (directories) so that each class has its own folder. All the
images for that class will be in the corresponding folder. Each class folder will also contain a subfolder called
Masks, which contains the binary masks for the object of interest in the original images. The name of the original
image and the corresponding mask image should be the same, although the file name extensions may differ.

764	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

12.3.2.5  Applying Feature Extraction and Pattern Classification

After assigning classes to every image, desired features for the experiment(s) are chosen
using the Feature Selection window of CVIP-FEPC. The Features button in the main window
opens the Feature Selection window, as shown in Figure 12.3-5.a. The user can select the
features of interest with the checkboxes, and then entering the desired parameter values.
After the features have been selected, the user clicks the OK button and is now ready to

1

2
3

4

(a)

(b)

Figure 12.3-3
Entering the classes. (a) Select Settings → Class List, this will bring up the Class List window, (b) in the Class List
window enter the class name, then click Add and the class name shows up in the Classes box. When the user is
done entering all the classes, click the OK button. Here we see the user adding a class name severe after a class
moderate has already been put on the list. Caution! Do not use spaces in class names as CVIP-FEPC uses spaces for
delimiters in the feature files!

Application Development	 765

© 2011 by Taylor & Francis Group, LLC

define the pattern classification method(s) to be used. Clicking on the Classification button
opens the Pattern Classification window shown in Figure 12.3-5.b. Here the user selects the
Data Normalization Method(s), the Distance and Similarity Measure(s), and the Classification
Algorithm(s) to be used. Currently, the CVIP-FEPC tool will run only one experiment at a
time, but by the time this book is published we anticipate that the tool will have the capa-
bility to run experiments for all permutations of features and pattern classification meth-
ods selected. Try it. If it does not have this functionality, check the Web site for updates
(www.ee.siue.edu/CVIPtools).

�e Add Files button

Selection window

Select images to viewSelect image type to view

(b)

(a)

Figure 12.3-4
Adding image files and associated classes. (a) Click the Add Files button, and the selection window will appear,
here the user can select the images to be used. They will then appear in the Image File box of the main window.
(b) An image, its mask image, or the corresponding masked image can be viewed by selecting one in the View
section. The user can scroll through the images with the arrows next to the Image File box. (c) The user can
associate the class with the images by selecting the image(s) in the Image File box, and then the class in the Class
dropdown box.

766	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

12.3.2.6  Running the Test

Before running the test, the training and test sets must be selected. The user can select the
test set by clicking on the check boxes by the image names, and the unchecked images
will automatically be used for the training set. Alternately, the Random button can be used
to randomly select the test, as shown in Figure 12.3-6a. Next, the test is run by clicking
the Test button shown in Figure 12.3-6b. After the pattern classification test is complete a
popup window will open showing where the Results file is stored. By default the results
are stored in the FEPC_Results folder on user’s Desktop. After an experimental run the user
may desire to verify or cross-validate success results by swapping the training and test
sets. This is easily accomplished by clicking the Invert button, as shown in Figure 12.3-6c,
which will swap these sets. Following this the user selects the Run Test button and the
test will be performed with the previous training and test sets interchanged. If similar
results are obtained this will increase our confidence in the validity of the success results
previously obtained. Currently, the CVIP-FEPC tool uses training and test sets, but by the
time this book is published we anticipate that the tool will also have the capability to run
leave-one-out experiments. Try it. If it does not have this functionality, check the web site
for updates (www.ee.siue.edu/CVIPtools).

12.3.2.7  Result File

The results file from the pattern classification test contains: (1) the selected features, (2) the
classification algorithm, (3) the data normalization method, (4) the distance/similarity met-
ric, (5) the name of each image in the test set and its class along with how it was classified

(c)

1) Select images

2) Select class

3) Class will appear

Figure 12.3-4 (Continued)
Adding image files and associated classes. (a) Click the Add Files button, and the selection window will appear,
here the user can select the images to be used. They will then appear in the Image File box of the main window.
(b) An image, its mask image, or the corresponding masked image can be viewed by selecting one in the View
section. The user can scroll through the images with the arrows next to the Image File box. (c) The user can
associate the class with the images by selecting the image(s) in the Image File box, and then the class in the Class
dropdown box.

Application Development	 767

© 2011 by Taylor & Francis Group, LLC

�e Features button

Feature Selection Window

�e Classification button

Pattern Classification Window

(b)

(a)

Figure 12.3-5
Extracting features and applying pattern classification. (a) The Features button opens the Feature Selection
window. Here the user selects the features of interest for the experiment(s), by checking the corresponding
checkboxes and entering desired parameters values. (b) The Classification button opens the Pattern Classification
window. Here the user selects the Data Normalization Method(s), the Distance and Similarity Measure(s), and the
Classification Algorithm(s) to be used.

768	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

in the test, and (6) the classification success rates. The success rate table, at the bottom of
the file, contains the number of images identified correctly, the number of images misclas-
sified, also the percentage correct for each class. A sample results file is shown in Figure
12.3-7. In addition to the Result file, a Test set feature file and a Train set feature file will be
stored in the FEPC_Results folder.

(a)

(b)

�e test set can be selected
manually or automatically

�e Run Test button

Location of Results file will popup

Figure 12.3-6
Selecting the training and test sets and running the test. (a) The user can select the test set manually with the
check boxes. Unchecked images will be used for the training set. Alternately, the user can have the test set
automatically and randomly selected with the Random button. (b) The Run Test button will perform the selected
test and output the results files which contains information regarding the classification success rates. The loca-
tion and name of the results file will appear; the default location is the FEPC_Results folder on the desktop. (c) A
validation experiment can be performed by swapping the training and test sets with the Invert button.

Application Development	 769

© 2011 by Taylor & Francis Group, LLC

(c)

The Invert button

Figure 12.3-6 (Continued)
Selecting the training and test sets and running the test. (a) The user can select the test set manually with the
check boxes. Unchecked images will be used for the training set. Alternately, the user can have the test set
automatically and randomly selected with the Random button. (b) The Run Test button will perform the selected
test and output the results files which contains information regarding the classification success rates. The loca-
tion and name of the results file will appear; the default location is the FEPC-Results folder on the desktop. (c) A
validation experiment can be performed by swapping the training and test sets with the Invert button.

b) Pattern Classification Information

a) Features

c) Test Set Image Information

d) Success Result Table

Figure 12.3-7
The result file. (a) It contains a list of the features used, (b) the pattern classification parameters, (c) individual test
set images, the correct class, the classfound in this test, and the distance measure, (d) success results. Here we have
the number of images incorrectly classified, correctly classified and the classification success rate for each class.

770	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

12.3.3 A pplication Development Example with Veterinary Thermographic Images*

12.3.3.1  Introduction and Overview

The application involves investigation into the efficacy of thermographic images for a
diagnosis of brain disease in canines. Specifically, canines of the breed Cavalier King
Charles Spaniel were examined to investigate the Chiari malformation, or COMS, pathol-
ogy. Pattern classification algorithms were developed for severe and moderate classes of
the pathology. The eventual goal for the research is to be able to differentiate normal and
abnormal thermographic patterns in canines as a diagnostic and research tool.

In this example we used thermographic images of canines taken from front of the head
with the two severity classes, moderate and severe. Preliminary experiments determined
that the features of inertest are (1) texture inertia, (2) texture inverse difference, and (3)
histogram entropy. The pattern classification parameters used include: (1) K-Nearest
Neighbor with k = 6, (2) distance metric: Euclidean, and (3) data normalization method:
Soft max r = 1 are used to run the test.

12.3.3.2  Experiments

The first step is to setup the image file organization. Here we have two classes, moderate
and severe, so we create a Moderate and Severe file folder and subfolders in each one called
Masks. Next we put the images into their corresponding folders. Then images are added to
the tool using Add Files button, as shown in Figure 12.3-8. Here we see the Moderate folder
images and masks being added. A class name is assigned to the added images, moderate,
and another set of images are added to tool and the severe class name is assigned for
second folder of images (as in Figure 12.3-4).

The Feature Selection window is opened by clicking on the Features button. The features
texture inertia, texture inverse difference, and histogram entropy are selected by checking
the appropriate boxes as shown in Figure 12.3-9. Note that for the texture features we must
set the distance parameter and here set it to 6. After the features are selected we click OK
and return to the main window.

The next step is to select the pattern classification methods for this experiment. This
is done by clicking the Classification button on the main window to bring up the Pattern
Classification window, as shown in Figure 12.3-10. Here we see that we have selected soft-
max scaling for data normalization, with r = 1, Euclidean distance, and k-nearest neighbor
with k = 6 for the classification method.

Next, the test images are selected manually by selecting every other one so that we
have both classes represented in the training and test sets, as shown in Figure 12.3-11. The
experiment, or test, is performed by clicking on the Run Test button, and the results are
stored on the desktop in the FEPC_Results folder (see Figure 12.3-12). One simple form of
validation of test results is to swap the training and test sets. In CVIP-FEPC this can easily
be done with the Invert button, as shown in Figure 12.3-13. The second experiment is then
performed by clicking the Run Test button.

*	 This section is an edited version of the original papers, “Veterinary Thermographic Image Analysis: Data and
Temperature Normalization,” S. Umbaugh and P. Solt, Report Number 4878-3, January 23, 2008, ECE Department,
SIUE; “Veterinary Thermographic Image Analysis: Data and Temperature Normalization,” S. Umbaugh and Solt,
Report Number 4878-5, August 20, 2008, ECE Department, SIUE; and “Veterinary Thermographic Image Analysis,”
S. Umbaugh, P. Solt, and H. K. Akkineni, Report Number 4878-9, January 22, 2010, ECE Department, SIUE.

Application Development	 771

© 2011 by Taylor & Francis Group, LLC

Select images and click Open

Figure 12.3-8
Adding images. Here we see the moderate class of images being added to CVIP-FEPC.

Selected features and parameters

Figure 12.3-9
Feature selection. In this case we select the three features histogram entropy, texture inverse difference, and
texture inertia. We set the texture distance parameter to 6. After the features are selected we click OK and return
to the main window.

772	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 12.3-10
Selecting the pattern classification methods. First, we select the data normalization method. Here we select
Softmax Scaling and use the default r parameter, r = 1. Next we select the distance or similarity measure to be
used. Here we select Euclidean distance. Finally, we select K-Nearest Neighbor and set K = 3 for our classification
algorithm. Clicking the OK button returns to the main window.

Manually selected
images for the test set

Figure 12.3-11
Selecting images for test set. Here the images have been manually selected by picking every other one so that
we have both classes in the training and test sets.

Application Development	 773

© 2011 by Taylor & Francis Group, LLC

Figure 12.3-12
Running the test. The Run Test button initiates the experiment or test. When the test run is completed the path
and file name for the resultant information is shown in a popup window.

Figure 12.3-13
Result validation. A simple method of validation of results is to swap the training and test sets. This can be done
with CVIP-FEPC by clicking the Invert button and then running the test again with the Run Test button.

774	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b)

Figure 12.3-14
Results files. (a) The first experiment results – 100% classification success for both classes, (b) the second experi-
ment results from swapping the training and test sets with the Invert button. Again, we achieved 100% clas-
sification success for both classes.

Application Development	 775

© 2011 by Taylor & Francis Group, LLC

12.3.3.3  Results

Figure 12.3-14 shows the results files from the two experiments. In both the cases, the suc-
cess rate is 100% for both classes, moderate and severe. We can see in these files the distance
metric values for each image in the test set, as well as all the other information applicable
to each particular test run. With this information the test can be repeated at a later date,
which is often necessary in application development for verification and to test repeat-
ability. Additionally, the details may be used for further application specific analysis and
investigation.

12.3.3.4  Conclusion

The investigation into the efficacy of thermographic images for diagnosis of brain disease
in canines was explored. Specifically, canines of the breed Cavalier King Charles Spaniel
were examined to investigate the Chiari malformation, or COMS, pathology. Pattern clas-
sification algorithms were developed for the severe and moderate classes of the pathology.
Success rates of 100% were achieved for the two classes. These results were validated by
swapping the training and test sets and again 100% classification success was achieved.

Although this example used only a total of nine images (four for training and five for
testing), this was done primarily for ease of illustration. One major advantage of the CVIP-
FEPC tool is that any number of images can be processed with no additional effort, other
than computer processing time. The capability to process and analyze many images is
typically necessary for application development, since in most real applications hundreds
or thousands images are needed to create a robust algorithm or system. The CVIP-FEPC
should be an invaluable tool for algorithm development involving feature extraction and
selection followed by pattern classification.

12.4  Skin Lesion Classification Using Relative Color Features*

12.4.1  Introduction and Project Overview

In this application, CVIPtools was used to develop an image processing algorithm to pre-
process, segment, filter, and extract features from images of skin lesions. The features were
then used to classify the various diseases (pathologies) as diagnosed by a dermatologist.
Another software tool, Partek, was used to develop models for the classification. Numerous
experiments were performed and the best obtained results are reported, as well as sugges-
tions for future research based on our findings.

Malignant melanoma is one of the deadliest forms of skin cancer. With 59,580 new cases
and 7770 deaths in the United States estimated in 2005 (Jemal et al. 2005), it is easily cured
if detected at an early stage. To the total of 59,580 new cases of melanoma, we can add
an estimated 46,170 current cases of melanoma, a number growing at 15% per year in
some countries (Thorn et al. 1998). Unfortunately, the accuracy of physicians in diagnosing

*	 This section is an edited version of the original paper, “Skin Lesion Classification Using Relative Color
Features,” Y. Cheng, R. Swamisai, S. E Umbaugh, R. H. Moss, W. V. Stoecker, S. Teegala, and S. K. Srinivasan,
Skin Research and Technology, Volume 14, Issue 1, February, 2008, pp. 53–64, Blackwell Publishing, Ltd, Copyright
(c) 2008 Blackwell Munksgaard. Reprinted with permission.

776	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

melanoma in the clinic is not high. In a recent study, general practitioners had a success
rate for detection of melanoma of about 63%, while dermatologists had corresponding suc-
cess of 70–80% (Menzies et al. 2005).

Dermoscopy is a specialized form of image acquisition where the lens sits on the skin
directly and is coupled to the skin by a gel. Dermoscopic examination can improve mela-
noma diagnostic accuracy (Bono et al. 2003; Elbaum et al. 2001). Although digital analysis of
dermoscopic images gives more accurate results than analysis of standard photographic, also
called clinical, images (Rosado et al. 2003), there may be a role for analysis of clinical lesions,
as combining clinical and dermoscopic examinations has improved melanoma diagnostic
accuracy (Bono et al. 2003). In this project, automatic classification of clinical images using
relative color features was studied. Two types of benign lesion images: Clark or dysplastic
nevi and nevocellular nevi were used along with images of malignant melanoma.

Here we use computer imaging and pattern recognition in classification of skin lesions.
CVIPtools was used to extract the relative color features from the segmented skin lesion
images. In order to maximize the possibility of achieving the goal of accurate classification,
two feature spaces, the lesion feature space and the object feature space, were established
with different combinations of the features. The feature spaces serve as two distinct data
models to be analyzed with Partek (Partek Inc., 2005), a pattern analysis and recognition
software package, for analyzing and determining the best features through experiments.
The statistical analysis model based on the best features was found to better classify the
various skin lesions with a successful classification rate of 86% for detecting malignant
melanoma. This is comparable to the clinical accuracy of dermatologists.

12.4.2  Materials and Methods

12.4.2.1  Image Database

The original skin lesion images for this project were obtained from 35 mm color pho-
tographic slides. Digitization was performed on these images and the resulting digital
images had a spatial resolution of 512 × 512 pixels, and a gray-scale resolution of 8 bits
per color band giving 256 possible intensity levels per color band. Thus, the color images
obtained had a resolution of 24 bits per pixel with each pixel having one of 16,777,216 pos-
sible colors. Border images are binary images, which represent the borders of the lesions
(Umbaugh, Moss, and Stoecker 1992). The borders were drawn manually and reviewed by
a dermatologist for accuracy. These images were used to create relative color images. Both
the lesion image and the border image were in PPM format and of the same size. The
data type of the images was BYTE and the format was REAL. Relative color images were
created to normalize the skin color and the lesion color. These images were created using
a series of steps with the border images and original lesion images. The database used
for this project contains 160 melanoma (mel), 42 dysplastic nevi (dys), and 83 nevus (nev)
images, along with their border images.

12.4.2.2  Creation of Relative Color Images

A skin lesion image consists of skin, lesion, and other “noise“ such as hair and extraneous
artifacts. Different people have different normal skin color tones. Photographic film from
which images are processed plays a vital role in the color of the image. All those factors
suggest that the absolute color of the lesion is not optimal for the research. So a relative
color concept was developed in order: (1) to equalize any variations caused by the lighting,
photography/printing or digitization processes, (2) to equalize variations in normal skin

Application Development	 777

© 2011 by Taylor & Francis Group, LLC

color between individuals, and (3) to account for the human visual system’s color percep-
tion being relative (Umbaugh, Moss, and Stoecker 1992).

Therefore, the relative color images were created and used in all the analysis and experi-
mentation to develop the classification models (McLean 1994). The steps involved in creat-
ing relative color images are as follows:

	 1.	A nonskin algorithm based on heuristics was performed on the original image
to eliminate the extra artifacts such as hair, clothing, teeth rulers, shadows, and
reflections (Umbaugh, Moss, and Stoecker 1989). This is done by turning the non-
skin pixels to zero.

	 2.	Next, a binary border image of the lesion was used to mask out the lesion. In the
border image the lesion is white (255) and the background is black (0), so the nor-
mal skin image is created with an AND operation.

	 3.	The average R, G, and B values of the normal skin color are calculated. This is
done by removing artifacts and the lesion itself from the image—what is left is
“normal” skin.

	 4.	The relative color image of the lesion is created by subtracting the average R, G,
and B of the normal skin from the corresponding R, G, and B values of the lesion
image.

12.4.2.3  Segmentation and Morphological Filtering

The relative color skin lesion images were segmented to find regions that represent
objects or meaningful parts of objects. After much experimentation it was determined
that the PCT/median split segmentation algorithm performed the best on those images.
Experimentally and according to previous research (Hance et al. 1996) it was determined
that using five for the number of colors was optimum. Segmentation using five colors
retains information of interest, while vastly simplifying the image. Figure 12.4-1a shows a
segmented skin lesion image.

After segmentation, morphological filters were used to reduce the number of objects
(Dougherty and Lotufo 2003). First, an opening filter with a circular, 5 × 5, kernel was used
as shown in Figure 12.4-1b. After this step a 5 × 5, circular, morphological closing filter was
used as shown in Figure 12.4-1c.

12.4.2.4  Feature Extraction

Feature extraction is necessary to simplify the raw image data into higher level, mean-
ingful information (Umbaugh, Wei, and Zuke 1997). Feature vectors are a standard tech-
nique for classifying objects, where each object is defined by a set of attributes in a feature
space. A feature vector is an n-dimensional vector, which contains the measurements of
the selected features corresponding to objects of interest in the image.

With the images that had been processed by segmentation and morphological filtering,
the two or three largest objects were selected (a minimum object size was defined) and
features were extracted for each object. Histogram features were extracted in each color
band, along with the binary features area and thinness.

The specific 17 features extracted by using CVIPtools software were

1. Area that indicates the area of the object.
2. Thinness that indicates the measure of roundness.

778	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

3, 4, 5. Mean that indicates the brightness of the image in the red, green, and blue bands,
respectively.

6, 7, 8. Standard Deviation that indicates the contrast of the image in the red, green,
and blue bands, respectively.

9, 10, 12. Skewness that indicates the asymmetry about the mean in the intensity-
level distribution in the red, green, and blue bands, respectively.

12, 13, 14. Energy that indicates how the intensity level is distributed in the red, green,
and blue bands, respectively.

15, 16, 17. Entropy that indicates how many bits are needed to code the image data in
the red, green, and blue bands, respectively.

(a) (b)

(c)

Figure 12.4-1
(a) A relative color skin lesion image after PCT/Median segmentation with five colors, (b) segmented image after a
5 × 5, circular, morphological opening filter, (c) image after morphologicalclosing with a 5 × 5, circular filter.

Application Development	 779

© 2011 by Taylor & Francis Group, LLC

12.4.2.5  Lesion and Object Feature Spaces

For the purpose of experimentation and in order to maximize the possibility of suc-
cess, we created two different feature spaces, the lesion feature space and the object fea-
ture space. The object feature space required a minimum object size for selection, and
had 842 feature vectors corresponding to the 842 selected image objects. The selected
image objects are the two or three largest objects within each skin lesion image. Each
feature vector has 17 feature elements, which were the binary features and color fea-
tures as stated above. The lesion feature space consists of 277 feature vectors correspond-
ing to the 277 selected skin lesion images; images with only two objects were not used
for the lesion feature space experiments. Each feature vector in the lesion feature space has
51 feature elements, which are the total of 17 features from each of the three largest
objects within the same lesion.

12.4.2.6  Establishing Statistical Models

Two classification models, discriminant analysis and a multilayer perceptron (MLP), were
developed for both feature spaces. The Partek software was used to analyze the data rep-
resenting the features and also to develop a model or rules to classify the lesions.

Discriminant Analysis. Quadratic discriminant analysis is a statistical pattern recogni-
tion technique based on Bayesian theory (Gelman et al. 2003), which classifies data based
on the distribution of measurement data into predefined classes. The class of an observa-
tion is determined based on a set of variables known as predictors or input variables. It
uses the features as input variables and determines what combination of features is a bet-
ter predictor of the class to which the object belongs. We used a method that divides the
feature space using quadratic curves. The model is built based on a set of observations for
which the classes are known.

In this project some dominant features were first selected by the variable selection
method because, even though a large number of independent variables (features) are avail-
able for a given modeling problem (classification of lesions), not all of these predictor vari-
ables contributed equally well to solve the modeling problem. Some of the independent
variables (features) did not contribute at all to the model. Thus we had to select from these
variables (features) to obtain a model that contained as few variables as possible while still
being the “best” model.

Data normalization is performed to maximize the potential of the features to separate
classes and to satisfy the requirement of the modeling tool such as quadratic discriminant
analysis with a Bayesian method (Gelman et al. 2003). A normalization method was cho-
sen for each feature based on the type and degree of skew in the feature’s data distribution
(histogram). In our experiments the histogram of the features were manually examined
and the best normalization technique was experimentally determined.

Upon observing the histograms of each feature, it was found that some of the features
had skewed distributions, and the Bayesian approaches assumes Gaussian distributions.
Histograms for area, standard deviation, and energy were skewed. To correct this skew and
make the data distribution more Gaussian, the log-scaling (base = 10) method was applied.
The distributions for the features mean and entropy were normalized by using zero mean
and standard deviation = 1, because the original data histograms appeared Gaussian. The
feature data for thinness and skewness was skewed, and the data was squared to normalize,
and then log scaling (base = 10) was applied to the data.

780	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Multilayer Perceptron. Neural networks are modeled after the nervous system in bio-
logical systems, and based on the neuron as the processing element (Gurney 1996). MLPs
(Zurada 1992) are feed-forward neural networks; all the connections are from input to
output (i.e., there is no feedback path). These networks require supervised training, so the
classes of the input samples must be known. In this application the known classes are the
skin lesion diagnoses. These type of networks are widely used for pattern classification,
since they learn how to transform a given set of data into a desired output. Normalization
to a Gaussian distribution, as was done with discriminant analysis, is not required since
the data will undergo a principal component analysis (PCA) to normalize the data. This is
done because highly correlated data tends to confuse neural network training.

PCA, or application of the principal component transform (PCT), to the feature space,
packs the information content into a smaller dimensionality. The PCT (Jolliffe 1992; Moller
1993) maps the original feature vector components to a set of uncorrelated components,
each of which is a particular linear combination of the original variables. The extracted
uncorrelated components are called principal components (PC) and are calculated from
the eigenvectors of the covariance or correlation matrix of the original variables. Therefore,
the objective of PCA is to reduce dimensionality by extracting the smallest number of com-
ponents that account for most of the variation or information in the original feature vector
and to do this with as little information loss as possible (Duda, Hart, and Stork 2000).

The dispersion matrix selected for PCA in this project is the correlation matrix, since it
gave better results than the other available matrices—covariance, sum of squares, and sum
of products. The results from PCA are inserted into a separate spreadsheet for the use by
MLP module in Partek.

For the MLP, first, a network should be created, trained, and tested for accuracy. Creation
of a neural network involves selection of hidden and output neuron types and a random
seed for random number generation. There are four output neuron types available, softmax,
Gaussian, linear, and sigmoid, and three hidden neuron types, sigmoid, Gaussian, and lin-
ear. These neuron types represent the activation function (Fu 1994; Moller 1993) being used.

After the network is created, it needs to be trained on the data using a learning algorithm.
There are two learning algorithms provided in the Partek software, back propagation and
the scaled conjugate gradient (SCG) algorithms. For this research, the SCG algorithm was
used for learning because the back propagation algorithm is usually not best for a large set
of data (Ercal et al. 1994).

After the SCG is chosen for training, a stopping criterion is selected. The stopping cri-
terion relates to the sum-squared error (actual output minus desired output). Training
should be done until the error decreases to a minimum value. Numerous experiments
were performed to determine the optimal stopping criterion, because success rates may
oscillate and not decrease simply with more training.

The neural network is tested using a cross-validation option available in Partek. Cross-
validation will divide the data set into a specified number of partitions and then all but x
of the partitions will be trained using the chosen training algorithm, leaving x partitions
out for testing the algorithm. This process continues for all the partitions and the average
of all the results will be reported. This provides a testing method that is reasonable and
reliable and allows use of all the data.

12.4.3  Experiments and Data Analysis

The training and test paradigm is used in statistical analysis to report unbiased results of
a particular algorithm. A training set is used for training or developing the algorithm, and

Application Development	 781

© 2011 by Taylor & Francis Group, LLC

the test set is used for testing the algorithm. Due to the small size of data set, we used the
leave x out method, with both 1 and 10 for x. In the leave-ten-out method, 10 samples from
a data set of n samples are saved for testing and an algorithm is developed based on the
remaining (n-10) samples. The 10 samples that were withheld are then tested. This proce-
dure is repeated for n/10 iterations, with each iteration using (n-10) samples for developing
the algorithm and with the testing performed on the 10 remaining samples, which are not
used in the training set. The leave-ten-out method was preferred over the leave-one-out
method because it requires fewer computations to develop a classification model, and it
was determined that results were similar with both techniques.

12.4.3.1  Lesion Feature Space

Here we discuss using the discriminant analysis approach. First we used the leave-ten-out
method to develop a model with a data set consisting of 23 features selected via the variable
selection method. The leave-ten-out will require fewer computations and is faster than the
leave-one-out method. We chose the three largest objects from each lesion as the representative
for the lesion. The objects were placed in the feature set in increasing order of their size. A total
of 51 features from the three largest objects, 17 from each object, are regarded as the features
for the lesion. The features selected with the variable selection method are marked with an “x”
in Table 12.4-1 and Table 12.4-2 shows the success percentages for discriminant analysis.

Next the leave-ten-out method was performed on the data set with the 10 best features
selected via variable selection. Those features are marked with an “x” in Table 12.3-3.
Success percentages for classifying lesions using discriminant analysis on this data set are
listed in Table 12.4-4 as follows.

Results from the above analysis shows a good improvement in classifying dysplastic nevi
lesions compared to the analysis performed on a data set with 23 features, at the expense
of missing more melanomas. However, missing melanomas is a much more costly error
due to the seriousness of this diagnosis—an undiagnosed melanoma can lead to death.

Table 12.4-1

23 Features Selected Via Variable Selection Method

Histogram
Features Area Thinness

Mean STD Skewness Energy Entropy

R G B R G B R G B R G B R G B

Object 1 x x x x x x x x

Object 2 x x x x x x x

Object 3 x x x x x x x x

Table 12.4-2

Classifying Summary for Discriminant Analysis on Using Leave-Ten-
Out Method Data with 23 Selected Features

Per Class # Correct # Errors % Correct % Error

Dys 40 10 30 25.00% 75.00%
Mel 158 135 23 85.44% 14.56%
Nev 79 46 33 58.23% 41.77%

Total 277 191 86 68.95% 31.05%

782	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Next, the experiments were repeated using the leave-one-out testing method. These
results can be compared to the leave-ten-out in Figure 12.4-2. Here we see that results for
the leave-ten-out are similar to the leave-one-out experiment. We can also see that using
23 features is better for the detection of melanoma than just the 10 features. This is as
expected and the 10% improvement is considered worth the extra cost in compute time.

0

10

20

30

40

50

60

70

80

90

100

DA on data with 23
features using
leave 10 out

DA on data with 10
features using
leave 10 out

DA on data with 23
features using

leave 1 out

DA on data with 10
features using

leave 1 out

Dys %
Mel %
Nev %

Su
cc

es
s p

er
ce

nt
ag

e

Figure 12.4-2
Result of discriminant analysis in lesion feature space. This chart compares the leave-ten-out, on the left, to the
leave-one out, on the right. Additionally, it compares using 23 versus using 10 features. We see that comparable
results with the leave-ten-out or leave-one-out testing method. Also, we see that using 23 features gives us
about 10% better results for melanoma detection.

Table 12.4-3

10 Features Selected Via Variable Selection

Histogram
Features Area Thinness

Mean STD Skewness Energy Entropy

R G B R G B R G B R G B R G B

Object 1 x x x

Object 2 x x x x

Object 3 x x x

Table 12.4-4

Classifying Summary for Discriminant Analysis Using Leave-Ten-
Out Method on Data with 10 Selected Features

Per Class # Correct # Errors % Correct % Error

Dys 40 27 13 67.50% 32.50%
Mel 158 119 39 75.32% 24.68%
Nev 79 30 49 37.97% 62.03%
Total 277 176 101 63.54% 36.46%

Application Development	 783

© 2011 by Taylor & Francis Group, LLC

The second approach was to use an MLP. As a preprocessing step, the PCA was per-
formed on the feature set, but excluding the area and thinness features. Because the MLP
is a neural classifier, it is best to decorrelate the input data with the PCA before feeding it
to the neural network. The input layer passes the knowledge of the input attributes to the
hidden layer for processing. Since the best features occur in the first few components of the
PCA projection data, no other variable selection method was required. Here, the first three
components of the PCA projection were used. Numerous experiments were performed by
varying the number of hidden layers, the types of neurons, and the number of training
iterations. Figure 12.4-3 represents the best results obtained and Table 12.4-5 lists the best
result among them. The results in Table 12.4-5 were from using a hidden sigmoid layer and
a softmax output layer for 700 iterations. Success percentages of melanoma as high as 77%
and of nevus as high as 68% were obtained. This shows an increase in nevus and dysplas-
tic success percentages compared to discriminant analysis on PCA projection data.

12.4.3.2  Object Feature Space

In the object feature space discriminant analysis approach was compared to the MLP,
as was done with the lesion feature space. First the feature data were normalized with
a PCA, followed by variable selection to select the most significant features. Finally, the

Table 12.4-5

Classifying Summary for MLP Analysis on PCA Projection Data over 700
Iterations Using Sigmoid Hidden Layer and Softmax Output Layer

Per Class # Correct # Errors % Correct % Error

Dys 40 23 17 57.5 42.5
Mel 158 123 35 77.85 22.15
Nev 79 54 25 68.35 31.65
Total 277 200 77 72.2 27.8

0

10

20

30

40

50

60

70

80

90

700 iterations
sigmoid hidden
layer softmax
output layer

1000 iterations
sigmoid hidden
layer softmax
output layer

700 iterations
sigmoid hidden
layer sigmoid
output layer

100 iterations
sigmoid hidden
layer sigmoid
output layer

800 iterations
Gaussian hidden

layer softmax
output layer

Dys correct %
Mel correct %
Nev correct %

Figure 12.4-3
Results from the multi-layer perceptron (MLP) analysis using the PCA projection data in the lesion feature
space.

784	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

discriminant analysis was performed on the filtered data. Now the cross-validation option
was used and data was partitioned into 842 partitions. All partitions but one was used for
training, leaving one partition out for testing.

Table 12.4-6 lists all the 8, 9, 11, and 12 significant features selected, respectively, for
leave-one-out testing method. Table 12.4-7 shows the best result obtained by using the
discriminant analysis method for the classification of data using the 11 most statistically
significant features. Figure 12.4-4 shows the overall best results.

Table 12.4-6

8, 9, 11, and 12 Features Selected, Respectively, for Leave-One-Out Method

Number of
Histogram
Features Area

Mean STD Skewness Energy Entropy

R G B R G B R G B R G B R G B

8 x x x x x x x x

9 x x x x x x x x x

11 x x x x x x x x x x x

12 x x x x x x x x x x x x

Table 12.4-7

Classifying Summary for Discriminant Analysis on Data with 11
Features

Per Class # Correct # Errors % Correct % Error

Dys 122 69 53 56.56 43.44
Mel 472 395 77 83.69 16.31
Nev 248 155 93 62.50 37.50
Total 842 619 223 73.52 26.48

0

10

20

30

40

50

60

70

80

90

100

12 Features 11 Features
Number of Features

9 Features 8 Features

Dys %
Mel %
Nev %

Su
cc

es
s p

er
ce

nt
ag

e

Figure 12.4-4
Discriminant analysis result in the object feature space. Here we see that the experiment with 11 features had the
best results for melanoma detection.

Application Development	 785

© 2011 by Taylor & Francis Group, LLC

The next set of experiments used the MLP. Numerous experiments were performed
to select different combinations of neuron types for hidden and output layers. Because
there are three hidden layer neuron types, and four output layer neuron types, 12
combinations are possible. But of all the 12 combinations, only five combinations gave
better classification results. The five hidden-output layer neuron combinations are (1)
sigmoid–sigmoid, (2) Gaussian–Gaussian, (3) Gaussian-linear, (4) Gaussian-softmax, and
(5) sigmoid-softmax.

Table 12.4-8 shows the best results obtained by using MLP module for the classification
of data using maximum iterations of 425. The neuron types used are Gaussian for both
hidden layer and output layer.

MLP analysis has yielded success percentage as high has 86% for classifying melanoma.
The MLP has higher success rates and is more consistent in classifying melanoma and
nevus skin lesions as shown in Figure 12.4-5.

12.4.4  Conclusions

Based on the results from both the lesion feature space and the object feature space, the MLP with
feature data preprocessed by PCA gave better classification results than the discriminant

0

10

20

30

40

50

60

70

80

90

130 iterations
sigmoid

hidden layer
Sigmoid

outputlayer

425 iterations
Gaussian

hidden layer
Gaussian

outputlayer

225 iterations
Gaussian

hidden layer
Linear

outputlayer

700 iterations
Gaussian

hidden layer
Softmax

output layer

130 iterations
Sigmoid

hidden layer
Softax

outputlayer

Dys correct %
Mel correct %
Nev correct %

Figure 12.4-5
Results from the multilayer perceptron (MLP) analysis in the object feature space.

Table 12.4-8

Results Obtained by Using MLP Module with Gaussian Neurons for Both
Hidden and Output Layers—Maximum Number of Iterations 425

Per Class # Correct # Errors % Correct % Error

Dys 122 69 53 56.56 43.44
Mel 472 407 65 86.23 13.77
Nev 248 188 60 75.81 24.19
Total 842 664 178 78.86 21.14

786	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

analysis. The best classification results with the MLP are achieved with a Gaussian hidden
and output layer neuron type for the MLP with PCA on the object feature space. It gave
the best overall success rate of 79%, with 86% correct melanoma classification, 76% correct
nevus classification, and 57% correct dysplastic nevi classification. We successfully classi-
fied 86% of malignant melanoma within the database, accuracy comparable to the clinical
accuracy of dermatologists.

Comparing the two feature spaces, the success rate using MLP with PCA as preprocess-
ing on both is similar. This suggests that either the lesion feature space or the object feature
space are good relative color feature spaces for establishing a statistical model to differ-
entiate the malignant and benign skin lesions. It also implies that the three largest lesion
objects are representative of the whole skin lesion.

Also, from the variable selection and discriminant analysis results, we think the features
area, mean in the red and blue bands, standard deviation in the red and green bands, skewness
in the green band, as well as entropy in the red band are the best color features to differenti-
ate the various lesions.

However, the misclassification of a small percentage of melanoma, as well as the rela-
tively low success rate for nevus and dysplastic nevi suggests that we may not have a
complete data set for the experiments. Therefore, in order to achieve better classification
results, future experiments need a more complete skin lesion image database. One promis-
ing idea is to combine the relative color features and texture features for future research.
By combining the color and texture features we believe that a more complete feature space
will allow for a better differentiation and yield productive results.

12.5  Automatic Segmentation of Blood Vessels in Retinal Images*

12.5.1  Introduction and Overview

Diabetes causes diabetic retinopathy (DR) by damaging the smaller blood vessels in the
eye. The early stage of DR is characterized by arteries that swell, weaken, become dam-
aged and leak blood and serum deposits into the macula (center of the retina). These
deposits of protein called exudates make the macula swell, which decreases vision and
can eventually lead to blindness. However, if the disease is found in the early stages,
it can be effectively treated. Lack of screening, as well as a shortage of ophthalmolo-
gists, help contribute to approximately 8000 cases per year of people who lose their sight
to DR, the leading cause of new cases of blindness (Meadows 2002; Teng, Lefley, and
Claremont 2002).

Timely treatment for DR prevents severe vision loss in over 50% of eyes tested (Teng,
Lefley, and Claremont 2002). Retinal images, also called fundus images, are images of the
interior surface of the eye and can provide information for detecting and monitoring eye-
related diseases, such as DR (Fang, Hsu, and Lee 2003; Iqbal, Aibinu and Gubbal 2006).
So, early detection of damaged vessels in retinal images can provide valuable information
about the presence of the disease, thereby helping to prevent vision loss.

*	 This section is an edited version of the original paper, “Comparison of Two Algorithms in the Automatic
Segmentation of Blood Vessels in Fundus Images,” R. W. LeAnder, S. Myneni, S. Mokkapati, and S. E Umbaugh,
Proceedings of the SPIE Medical Imaging 2008 Conference, February 16–21, 2008, San Diego, California, © 2008
SPIE. Reprinted with permission.

Application Development	 787

© 2011 by Taylor & Francis Group, LLC

The purpose of this study was to compare the effectiveness of two blood vessel segmen-
tation algorithms. The segmented images resulting from processing by the two algorithms
were visually and quantitatively compared to ophthalmologist hand-drawn images for
their effectiveness in segmenting blood vessels in the original images. When the seg-
mented images were compared to the hand-drawn images, it was observed that the seg-
mented images extracted most of the major vessels and some of the minor ones, but with
some intersections missing.

12.5.2  Materials and Methods

Thirty images from the STructured Analysis of the Retina (STARE) database were used in the
development of two algorithms with the CVIPtools software environment. These images
consisted of 15 original fundus images and 15 images of ophthalmologists’ hand-drawn
tracings over the retinal vessels in the original 15. These expert hand-drawn tracings were
used as the “gold standard” for perfect segmentation and compared with the segmented
images output by the two algorithms.

The CVIPtools software development environment was used to perform the image pro-
cessing operations as well as to calculate the differences between the hand-drawn images
and the segmented images output by the two algorithms. For objective comparison met-
rics we used Pratt’s FOM, peak SNR, and RMS error.

The first algorithm developed to extract the blood vessel information consists of the fol-
lowing steps:

	 1.	 Images are resized from 150 × 130 to 300 × 260 pixels to make visual analysis easier.
	 2.	The green band is then extracted from the color fundus images because it contains

the greatest amount of contrast, is less affected by variations in illumination and
consequently has the most pertinent visual information (Rapantzikos, Zervakis,
and Balas 2003).

	 3.	A histogram stretch is performed to improve contrast.
	 4.	A morphological filter with a 3 × 3 rectangular structuring element is used to

perform an opening operation. This will “smooth” the vessels’ shapes, opens up
(expands) holes, and erodes edges. Also, removes small noise points, so noise pat-
terns were removed.

	 5.	Apply a Laplacian edge detector
	 6.	A morphological filter with a 3 × 3 rectangular structuring element is used to per-

form an opening operation. This second morphological filtering step was done to
split objects that are connected by narrow strips, and thereby eliminate extrane-
ous peninsulas.

	 7.	Color to gray conversion
	 8.	A binary threshold was determined manually and was image dependent.
	 9.	Logical NOT

Output images from Algorithm 1 are shown in Figure 12.5-1.
The second algorithm developed to extract the blood vessel information consists of the

following steps:

	 1.	 Images are resized from 150 × 130 to 300 × 260 pixels to make visual analysis
easier.

788	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a) (b)

(c) (d)

(e) (f)

Figure 12.5-1
Output images from Algorithm 1. (a) original image, after resizing, (b) image after green band extraction,
(c) after histogram stretch to improve contrast, (d) after morphological opening with a 3 × 3 rectangular struc-
turing element, (e) Laplacian edge detection, (f) morphological opening operation, (g) color to gray, (h) binary
threshold, (i) logical NOT, this is the output of Algorithm 1, (j) handrawn image from STARE database, compare
to Algorithm 1 output in (i).

Application Development	 789

© 2011 by Taylor & Francis Group, LLC

	 2.	The green band is then extracted from the color fundus images because it contains
the greatest amount of contrast, is less affected by variations in illumination, and
consequently has the most pertinent visual information (Rapantzikos, Zervakis,
and Balas 2003).

	 3.	Preprocessing with a Yp mean filter to remove noise and to smooth the images.
	 4.	Laplacian edge detection
	 5.	Arithmetic mean filter
	 6.	Color to gray conversion
	 7.	A binary threshold was determined manually and was image dependent.
	 8.	Logical NOT

Output images from Algorithm 2 are shown in Figure 12.5-2.

(g) (h)

(i) (j)

Figure 12.5-1 (Continued)
Output images from Algorithm 1. (a) original image, after resizing, (b) image after green band extraction,
(c) after histogram stretch to improve contrast, (d) after morphological opening with a 3 × 3 rectangular struc-
turing element, (e) Laplacian edge detection, (f) morphological opening operation, (g) color to gray, (h) binary
threshold, (i) logical NOT, this is the output of Algorithm 1, (j) handrawn image from STARE database, compare
to Algorithm 1 output in (i).

790	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

(a)

(b) (c)

(d) (e)

Figure 12.5-2
Output images from Algorithm 2. (a) Original image, after resizing, (b) image after green band extraction, (c) Yp
mean filtering, (d) Laplacian edge detection, (e) arithmetic mean filter, (f) color to gray, (g) gray to binary, (h) logi-
cal NOT, this is the output of Algorithm 2, (i) handrawn image from STARE database, compare to Algorithm 2
output in (h).

Application Development	 791

© 2011 by Taylor & Francis Group, LLC

The output images from the two algorithms were analyzed by computing the following
metrics:

	 1.	Pratt’s Figure of Merit: The hand-drawn image is the ideal image and the algo-
rithm’s output is the found image. A perfect match gives a Pratt FOM equal to
100% or 1.0.

	 2.	Peak Signal to Noise Ratio: It is an objective measure used to measure the amount
of error. The hand-drawn image is considered the perfect result, so it is the “sig-
nal.” The “noise” then is the difference between the hand-drawn image and the
algorithm’s output image.

	 3.	Root-Mean-Square (RMS) Error: Here the hand-drawn image is the correct,
original or standard image, and the algorithm’s output is the estimated, or recon-
structed image.

(f) (g)

(i) (j)

Figure 12.5-2 (Continued)
Output images from Algorithm 2. (a) Original image, after resizing, (b) image after green band extraction, (c) Yp
mean filtering, (d) Laplacian edge detection, (e) arithmetic mean filter, (f) color to gray, (g) gray to binary, (h) logi-
cal NOT, this is the output of Algorithm 2, (i) handrawn image from STARE database, compare to Algorithm 2
output in (h).

792	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

A flowchart comparing the two algorithms is shown in Figure 12.5-3. The primary differ-
ences are processing before and after the Laplacian edge detector, where Algorithm 1 uses
a histogram stretch and morphological filtering, while Algorithm 2 uses mean filters.

12.5.3  Results

The images were analyzed to compare the algorithms’ extraction effectiveness, using oph-
thalmologists’ hand-drawn images from the STARE database. The hand-drawn images
were originally three-band, so they were converted to binary images by a luminance
transform followed by a threshold at a value of 75. Comparison parameters included SNR,
RMS error, and Pratt’s FOM.

Figure 12.5-4 shows the results from the 15 images for Pratt’s FOM. The mean for
Algorithm 1 is 49% and 54% for Algorithm 2. The standard deviations are 10% and 6%,

Original image

Resize

Green band extraction

Algorithm 1 Algorithm 2

Algorithm 1 Algorithm 2

Histogram stretch

Morphological opening-operation with
size-5 rectangular structuring element

Morphological opening-operation with
size-15 rectangular structuring element

Yp mean filtering to remove
noise

Laplacian edge detection

Arithmetic mean filtering to
remove noise

Color-to-gray conversion

Binary thresholding

Not operation

Final image

Figure 12.5-3
Flowchart comparing Algorithms 1 and 2. Here we see that the differences between the two are the processing
before and after the edge detection.

Application Development	 793

© 2011 by Taylor & Francis Group, LLC

respectively. Given that Algorithm 2 has a 5% higher mean and a standard deviation about
half that of Algorithm 1, we can say that by this measure, Pratt’s FOM, Algorithm 2 per-
forms better.

Figure 12.5-5 shows the results from the 15 images for the signal-to-noise metric. The
mean for Algorithm 1 is 11.4 and 10.0 for Algorithm 2. The standard deviations are 0.77 and
0.57, respectively. Given that Algorithm 1 has a higher mean and the standard deviations
are similar, we can say that by this measure, SNR, Algorithm 1 performs better.

Figure 12.5-6 shows the results from the 15 images for the RMS error metric. The mean
for Algorithm 1 is 69.2 and 70.1 for Algorithm 2. The standard deviations are 6.5 and 4.4,

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 15

Images number
14

Algorithm 1
Algorithm 2

pr
at

t F
O

M

Figure 12.5-4
Results from Pratt’s figure of merit (FOM). The mean for Algorithm 1 is 49% and 54% for Algorithm 2. The stan-
dard deviations are 10% and 6%, respectively. Given that Algorithm 2 has a 5% higher mean and a standard devia-
tion about half that of Algorithm 1, we can say that by this measure, Pratt’s FOM, Algorithm 2 performs better.

14

12

10

8

6

4

2

0
1 2 3 4 5 6 7 8 9 10 11 12 13 15

Image number
14

Algorithm 1
Algorithm 2

SN
R

Figure 12.5-5
Signal-to-Noise ratio (SNR) results. The mean for Algorithm 1 is 11.4 and 10.0 for Algorithm 2. The standard
deviations are 0.77 and 0.57, respectively. Given that Algorithm 1 has a higher mean and the standard deviations
are similar, we can say that by this measure, SNR, Algorithm 1 performs better.

794	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

respectively. These values are too close to determine if one algorithm is better than the
other for this application and test set.

12.5.4  Postprocessing with Hough Transform and Edge Linking

The application of these algorithms shows promising results. However, some of the inter-
sections and connections are missing from the resulting blood vessel extracted images (see
Figure 12.5-1i and h). Preliminary work for postprocessing with the Hough transform and
edge linking methods was attempted to reintegrate some of these vessels. We found that
not all the missing vessels were integrated, and, moreover, the SNR and RMS error values
for the resulting images were not very good. Although application of this type of postpro-
cessing had limited success here, we believe it merits further work. Figure 12.5-7 shows an
example of using the Hough and edge linking for postprocessing.

12.5.5  Conclusion

In this project we proposed two algorithms for automatic detection and segmentation of
blood vessels in fundus images. Both algorithms were applied to 15 images. The major
difference in the results between the algorithms was that Algorithm 1 had difficulty with
intersections and bifurcations. To overcome this, we tried to perform a reconstruction pro-
cess using the Hough transform and edge linking, this could recover the intersections
of major vessels, but at a cost of missing some of the originally detected minor vessels.
After a subjective evaluation of the resulting images we believe that Algorithm 2 did a
better job at extracting the major blood vessels and many of the minor ones. The results
from our objective success metrics, Pratt’s FOM, RMS error, and SNR, were inconclusive.
Current work includes refinement of minor vessel extraction and further investigation into
postprocessing methods to reintegrate disconnected vessels and missing intersections. We
also are continuing to perform algorithm development through the use of our new auto-
matic algorithm development tool CVIP-ATAT.

1 2 3 4 5 6 7 8 9 10 11 12 13 15
Image number

14

Algorithm 1
Algorithm 2

90

80

70

60

50

40

30

20

10

0

RM
S

er
ro

r

Figure 12.5-6
Root-Mean-Square-Error (RMS error) results. The mean for Algorithm 1 is 69.2 and 70.1 for Algorithm 2. The
standard deviations are 6.5 and 4.4, respectively. These values are too close to determine if one algorithm is bet-
ter than the other for this application and test set.

Application Development	 795

© 2011 by Taylor & Francis Group, LLC

12.6 � Classification of Land Types from Satellite Images Using
Quadratic Discriminant Analysis and Multilayer Perceptrons*

12.6.1  Introduction and Overview

More and more civilian applications such as communication and remote sensing demand
the launching of satellites into space. This has been accompanied by a rising demand for

*	 This section is an edited version of the original paper, “Automatic Recognition and Classification of Land
Cover Types from Satellite Images Using Quadratic Discriminant Analysis and Multilayer Perceptrons,” H.
K. Choge and S. E Umbaugh, Proceedings of the International Conference on Engineering and Mathematics, Bilbao,
Spain, July 10–11, 2006. Reprinted with permission.

(a) (b)

(d)(c)

Figure 12.5-7
Postprocessing with Hough and Edge Linking. (a) Original image, after resizing, (b) hand-drawn ideal image-
from STARE database, (c) resultant image from Algorithm 1, (d) image after application Hough and edge link-
ing. CVIPtools Hough transform parameters: line angles 0-180, line pixels -10, Delta length -6, Segment pixels-5,
Connect distance -5. Note the edges of major vessels are better defined, but some intersections of vessels are still
missing and minor vessels are lost.

796	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

better and more flexible tools for interpreting and processing the massive amounts of
information relayed back to Earth by these satellites. Particularly, for those applications
that use the images relayed back by the satellites, such as weather and other geographic
images, much processing is needed before the images can be of any use. This is because the
cameras and scanners mounted on these satellites sense and capture images in the invis-
ible portions of the electromagnetic spectrum, especially the near, middle, and far infrared
portions. Infrared rays can penetrate the hazy atmosphere and ionosphere that envelop
the Earth much better than visible light. Different land covers reflect, absorb, and transmit
different levels of the infrared spectrum, as shown in Figure 12.6-1.

Classification of different land covers can be performed by measuring the amount of
near infrared reflected by objects in the image, after proper segmentation has been done.
In this project, both the training and test image sets were acquired from LANDSAT image
bank used by the Geography department at Southern Illinois University Edwardsville.
Minimal compression with Joint Photographic Experts Group (JPEG) was used to reduce
data, and bigger images were split into manageable 512 × 512 pixel subimages. CVIPtools
was used for segmentation and feature extraction. Objects in the images were manually
assigned one of four classes: (1) healthy vegetation, (2) sparse vegetation, (3) water, and (4)
urban areas, which included roads and other infrastructure.

Here we apply two schemes to the recognition and classification of objects in the satellite
images, Bayesian quadratic discriminant analysis and artificial neural networks, specifi-
cally the MLP. They are used to recognize and classify four land cover types. The two meth-
ods are used in order to compare the performance of the MLP to that of statistical methods
in terms accuracy and speed. The training set consists of uncompressed, segmented JPEG
satellite images of uniform size. Objects on each image in this set are manually assigned
a class to train the system until convergence. The network is then used to classify the test

Visible Near infrared Middle infrared

80

60

40

20

0
0.4 0.8 1.2 1.6

Alfalfa
Maple trees
Dry silt loam
Moist silt loam
Turbid river water
Clear lake water

Wavelength (µm)

Re
fle

ct
an

ce
 (%

)

2.0 2.4

Figure 12.6-1
Typical spectral curves produced by different plants and soils. From the distinct shapes of each curve, it is pos-
sible to distinguish between them on satellite images. This distinction is most apparent in the near-infrared
portion of the spectrum, (From Pearson, R. S., Spectral Nature of Remote Sensing, Department of Geography,
Edwardsville, IL: Southern Illinois University at Edwardsville, IL, 2002.)

Application Development	 797

© 2011 by Taylor & Francis Group, LLC

set, consisting of similarly sized and processed images. The MLP is initially trained using
both histogram and binary object features. Experiments show that histogram features are
sufficient, and that the MLP is able to classify land cover types from satellite images with
a high degree of accuracy.

In Section 12.6.2, we demonstrate how the spherical coordinates transform (SCT) is used
for the segmentation stage, prior to feature extraction. We also show how we determined
that only color or histogram features are needed for the classification without considering
texture features. Campbell, Thomas, and Troscianko (1997) used both texture and color or
histogram features, and they also used artificial neural networks for both segmentation
and classification. In the last part of the section, we explain how the features were chosen
for extraction, and how we manually extracted these and other features before reducing
the list to just histogram features. Discriminant analysis is then used for variable selection,
where different combinations of features are ranked according to how well they model the
data and perform the classification. This step helped to drastically reduce the computational
load by providing an advance view of how accurate the classification would be for different
feature sets. The variables with the lowest correlation between the different classes were
ranked highest.

In Section 12.6.3, we show how the features extracted, including the histogram mean, vari-
ance, entropy among others were used both to train an MLP and to perform Bayesian or qua-
dratic discriminant analysis. We then compare the results from both classification schemes,
with the percentage of correct classifications used as the comparison metric. Confusion
matrices are also shown and a discussion of the results given at the end of the section. Section
12.6.4 provides a brief conclusion and suggestion for further work.

12.6.2 D ata Reduction and Feature Extraction

Segmentation. The methodology used was arrived at heuristically, by applying the seg-
mentation and observing the results. The SCT/Center algorithm, was chosen because it
produced a segmented image that retained most of the color properties of the original,
which made it easier to perform manual classification of objects. Unlike histogram thresh-
olding techniques, the SCT/Center algorithm decouples the color information from the
brightness information, which may vary with lighting conditions. It basically converts the
RGB values of the original image into spherical coordinates L, angle A and Angle B. The L
is a one-dimensional brightness space while angles A and B form a two-dimensional color
space with A representing the angle between the blue coordinate and L, and B represent-
ing the angle between the red and green coordinates.

The segmented images contained much less data, and cut the memory requirements for
the training and test images by half, without much loss of visual information, as seen in
Figure 12.6-2. After trying out different numbers of colors for the A and B axes, an optimal
number of seven along each axis was arrived at after observing that more colors created
contours in the segmented image while fewer colors caused different classes to merge into
each other.

Feature Selection and Extraction. At the start, it was expected that a combination of
geometric, texture as well as color or histogram features would be the optimal means of
classifying land cover types. But after experimenting with each set separately, we noticed
that histogram features alone were sufficient for accurate classification, especially after
noting that the two geometric features included in one experiment, namely the area of
the object and its Euler number contributed a significant amount of the total variance
when PCA is performed, which could cause misclassification if used in training the MLP.

798	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Table 12.6-1 below shows the features used, together with their respective columns in the
features spreadsheet.

Feature extraction was then performed using CVIPtools. The features listed above were
extracted for an average of 15 objects per training and test image, each of whose class
was visually determined and assigned. About 1000 such observations were extracted, and
exported as Comma Separated Values (CSV) into a spreadsheet that was then used for vari-
able selection, training of the MLP and for Bayesian or quadratic discriminant analysis.

Table 12.6-1

The Features Used—the Same Feature was
Evaluated for Each of the Three Bands

Feature # Feature or Variable Name

1 Histogram mean of band 1
2 Histogram mean of band 2
3 Histogram mean of band 3
4 Standard deviation—band 1
5 Standard deviation—band 2
6 Standard deviation—band 3
7 Skew—band 1
8 Skew—band 2
9 Skew—band 3
10 Energy—band 1
11 Energy—band 2
12 Energy—band 3
13 Entropy—band 1
14 Entropy—band 2
15 Entropy—band 3

(a) (b)

Figure 12.6-2
(a) The original, minimally compressed JPEG image and, (b) the image after SCT/Center segmentation with
seven colors each along A and B axes. This segmentation reduced the number of objects from about 50,000 in
the original image to about 4000 in the segmented image.

Application Development	 799

© 2011 by Taylor & Francis Group, LLC

12.6.3 O bject Classification

In this section, we describe how the data obtained from the previous section was analyzed
visually, and also using PCA, in order to determine those features that would be redun-
dant in the classification, and also those features that were most likely to give the best
results. In the second part of the section we demonstrate how both classification schemes
were performed and compared.

Visual and Principal Component Analysis. Again, this part of the project was per-
formed to provide an advance view of what the results were expected to be. In visual
analysis, a histogram per class for each feature was generated and its shape compared
to those of the other classes. If each class possessed a uniquely shaped histogram with
distinct peaks, then the feature in question would most likely be useful for classifica-
tion. Other measures used here included the mean, variance, and skew of the histogram
obtained. From this analysis, it was found that features #1 through #6, and #13 to #15 from
Table 12.6.1 would be the best-suited features as all possessed distinctly shaped histo-
grams for the four classes.

This was confirmed when PCA was performed. PCA converts a set of interrelated vari-
ables into a new uncorrelated set while still accounting for all the variance in the original
variables. The correlation matrix was used as the dispersion matrix for computing the PC,
and the results dumped into a spreadsheet as a projection table, which takes every value,
computes its projection, and replaces the original value with the projection. After these
observations were made, a choice was made to reduce the number of variables from 15 to
just 9, as the energy and skew features would introduce unnecessary redundancy and a
reduction in speed of classification, especially for the MLP.

Classification with the Multilayer Perceptron (MLP). The MLP was trained and opti-
mized using the spreadsheet that contained the projection table obtained above. It con-
sisted of an input layer with nine inputs corresponding to each of the nine variables chosen
during visual analysis, and four label outputs corresponding to the four classes of land
covers. Only 1 hidden layer with 10 nodes was used, after noting that an increase in the
number of hidden layers did not improve the results, while almost doubling processing
time for every additional layer. The sigmoid neuron type was used for both the output and
input layers, with steepness of 1.0, momentum of 0.9 and a learning rate of 0.05. The neuron
weight or bias was set with an active range scale factor of 0.9. This implied that the sigmoid
neurons would produce a minimum of 0.05 and a maximum of 0.95, or 90% of the full
range from 0 to 1, thus avoiding saturation. The network parameters to be optimized were
the weight and the input bias, using the Hestenes–Stiefel training method for a maximum
of 10,000 iterations. Hestenes–Stiefel’s method of conjugate gradients, requires less compu-
tation while providing faster convergence unlike other finite methods like Gaussian elimi-
nation, according to Lide (2001). The results from this and quadratic discriminant analysis
are compared and discussed in the last part of this section.

Quadratic (Bayesian) Classifier. The Bayesian classifier attempts to classify by deter-
mining the most economic way of distinguishing the different groups in the data, for
example, by discarding variables that are little related to group distinctions. It maxi-
mally separates groups of observations and deals with two or more groups. An attempt
is made to delineate based upon maximizing between-group variance while minimiz-
ing within-group variance thus building a model for optimal group prediction. Variable
selection for this part was done using backward elimination, in which all 15 features
were searched, and the best 14 out of these determined. The remaining 14 are searched
again and the best 13 selected, and continued until the best nine were obtained. The

800	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

biggest advantage of this method is that when determining the best variables to use, the
expected misclassification rate as a result of using these variables is also predicted, and
this way it was determined that using the same nine variables used for the MLP would
produce optimal results with an expected misclassification rate of only 0.7%. The clas-
sification results are given below.

12.6.4  Results

Tables 12.6-2 and 12.6-3 show the classification summary and confusion matrix respec-
tively after creating and training the MLP with 10,000 iterations.

From Table 12.6-2, it is seen that water and sparse vegetation were the most misclassified,
and the confusion matrix in Table 12.6-3 shows that the wrongly classified sparse veg-
etation was classified as healthy vegetation, which can be understood, since pixels at the
boundaries of the segmented image would most likely mistake the two. Table 12.6-4 and

Table 12.6-2

Classification Summary from the Perceptron Showing a Normalized Error of Only 3.9%

Class # per Class
Classified

Correctly
Classified

Wrong % Correct % Error

Healthy vegetation 155 152 3 98.1 1.9
Sparse vegetation 169 158 11 93.5 6.5
Urban areas and roads 171 168 3 98.3 1.7
Water 106 100 6 94.3 5.7
Total 601 578 23 96.2 3.8
Normalized 96.1 3.9

Table 12.6-3

Confusion Matrix, from MLP

Class
Healthy

Vegetation
Sparse

Vegetation Urban + Roads Water

Healthy vegetation 152 3 0 0
Sparse vegetation 8 158 1 2
Urban + roads 0 0 168 3
Water 0 3 3 100

Table 12.6-4

Results from the Bayesian Classifier Slightly Better than the MLP

Class # Per Class
Classified

Correct
Classified

Wrong % Correct % Error

Healthy Vegetation 155 153 2 98.71 1.29
Sparse vegetation 169 162 7 95.86 4.14
Urban + Roads 171 166 5 97.08 2.92
Water 106 104 2 98.11 1.89
Total 601 585 16 97.34 2.66
Normalized 97.44 2.56

Application Development	 801

© 2011 by Taylor & Francis Group, LLC

12.6-5 show the results from running the Bayesian classifier, using the test set for valida-
tion. Cross-validation was also tried, where the same data used for training was split into
10 partitions (see Table 12.6-6). Classification was then performed using nine of these, leav-
ing one partition out to be used for testing the results. This is a faster method, but does not
adequately represent the results since it makes no use of the test data. However, applying
this method to both sets of data produced nearly similar results, and hence the inclusion
here of these results.

Figure 12.6-3 compares the results from the MLP and the Bayesian classifier. Here we
see that results are similar and very few areas were misclassified. The Bayesian classifier
performed slightly better for three of the four classes.

12.6.5  Conclusion

Here we have shown that artificial neural networks can be used to classify land cover
types almost as accurately as statistical methods like the Bayesian classifier, though it is
much slower because of the amount of computation required. We have also shown that
for classification of land cover types from satellite images, it is possible to attain above
96% for the MLP and 97% correct classification for the Bayesian classifier using just the
histogram or color features, without the need to include texture and geometrical infor-
mation. Only one hidden layer was used for the MLP, and using cross-validation, it is
possible to check the validity of the classification. Future work will involve the applica-
tion of the perceptron in classification of a larger data set, with extracted features not
just limited to histogram properties. The system can also be adapted to perform finger

Table 12.6-5

Confusion Matrix, Showing that the Bayesian Classifier did not Suffer the
Same Setbacks Seen in the MLP, when it Comes To Borderline Objects

Class
Healthy

Vegetation
Sparse

Vegetation Urban + Roads Water

Healthy vegetation 153 2 0 0
Sparse vegetation 2 162 4 1
Urban + roads 0 1 166 4
Water 0 0 2 104

Table 12.6-6

Results from the Bayesian Classifier, But with a 10-Partition Cross-Validation
Used Instead of the Test Data

Class # Per Class # Correct # Error % Correct % Error

Healthy vegetation 155 153 2 98.71 1.29
Sparse vegetation 169 163 6 96.45 3.55
Urban + roads 171 166 5 97.08 2.92
Water 106 104 2 98.11 1.89
Total 601 586 15 97.50 2.50
Normalized 97.59 2.41

802	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

or palm-print recognition for biometric applications by including geometric and other
features that do not vary with rotation, scaling, and translation. Different training, opti-
mization, and stopping criteria could also be applied in training the network, and more
layers would then be necessary.

We have also shown that care has to be taken in selecting what variables to use for
the input layer of the perceptron because a large number of features that may be inter-
related across classes results in a reduction of the accuracy, while at the same dramati-
cally increasing computational time. In this experiment, we tried using all the extracted
features without any kind of selection and the accuracy went down to 49%. On the other
hand, after running the backward elimination method of variable selection and choosing
the best two features, the classification rate was still a healthy 80% from the Bayesian clas-
sifier and 75% for the MLP. This underlines the importance of using visual and PCA in any
image processing application.

MLP classification results

Bayesian classifier results

Total number Number correct Number incorrect

Total number Number correct Number incorrect

155152
169

158
171 168

106 100

3 11 3 6

Healthy
vegetation

Sparse
vegetation

Urban areas
and roads

Water

Healthy
vegetation

Sparse
vegetation

Urban+roads Water

155 153
169 162 171 166

106 104

2 7 5 2

(a)

(b)

Figure 12.6-3
(a) Classification results with the multilayer perceptron, (b) classification results with Bayesian classifier. Here
we see that the Bayesian did slightly better with the Healthy Vegetation, Sparse Vegetation, and Waterclasses, but
slightly worse with the Urban Areas and Roads class. Overall, very few areas were misclassified.

Application Development	 803

© 2011 by Taylor & Francis Group, LLC

12.6.6 A cknowledgments

In addition to using CVIPtools, the Partek Discovery Suite of software tools was used for
pattern classification. Specifically, the MLP and Bayesian analysis tools were used. This
includes variable selection, PCA, visualization tools and generation of the tables shown in
the paper. We would like to thank Donald J. Meyer from Partek, Inc., for his assistance.

12.7  Watershed-Based Approach to Skin Lesion Border Segmentation*

12.7.1  Introduction

Computer-assisted diagnosis of skin lesions for detection of malignant melanoma, the
deadliest form of skin cancer, requires automatic segmentation of skin lesions from the
background skin. An automated, morphological watershed-based algorithm for lesion
segmentation in dermoscopy images is presented here. Dermoscopy is a simple technique
that enables detailed examination of the structure of pigmented skin lesions. Dermoscopy
images contain visual information that cannot be seen in the clinical (photographic) images
and provide much greater detail of the structure within the skin lesion.

The main challenges involved in applying the watershed segmentation technique are
over-segmentation, mis-estimation of final lesion size, and noisy areas outside the main
lesion. The proposed solutions of preprocessing using a mean filter and a projection bound-
ary box based lesion area estimate, and postprocessing using small-object removal appear
to meet these challenges in this evaluation. The flooding variant of the watershed segmen-
tation method investigated yielded satisfactory lesion segmentation for the dermoscopy
image set examined (Chen 2007).

12.7.2  Materials and Methods

This algorithm was developed using the CVIPtools development environment. Manual
lesion segmentation by a dermatologist was used as the benchmark for comparison and
used to create an error metric. As an additional control, a second dermatologist created
lesion border images and these were compared with the benchmark borders from the
primary dermatologist. Additionally, the results from the watershed-based algorithm
developed here were compared with the results from two previously developed border
extraction algorithms.

The image data set examined contained 30 invasive malignant melanomas and 70
benign skin lesions, diagnosed as nevocellular nevi and benign dysplastic nevi. Images
were full-color, 24-bit images with typical resolutions of 1024 × 768 in uncompressed tiff
format. Original skin lesion images are converted to gray-level images and the morpho-
logical watershed algorithm is performed on the gray-scale images. A standard flooding
variant of the watershed algorithm was modified by preprocessing with a 9 × 9 mean filter,
estimating the lesion size using the blue band histogram, and merging until the estimated
size is reached. Postprocessing was performed to obtain the final segmented lesion by
removing smaller objects, and a B-spline function was used to smooth boundary pixels.

*	 This section is an edited version of the original paper, “A Watershed-Based Approach to Skin Lesion Border
Segmentation,” X. Chen, R. H. Moss, W. V. Stoecker, S. E Umbaugh, R. J. Stanley, and B. J. Threstha, presented at
the 6th World Congress on Melanoma, Vancouver BC, Canada, September 6–10, 2005. Reprinted with permission.

804	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The watershed-based algorithm consists of five major steps: (1) preprocessing with a lumi-
nance transform and a 9 × 9 mean filter, (2) the watershed algorithm, (3) object histogram
merging, (4) noise removal, and (5) spline border smoothing. After the border is found the
average error is found by comparison with the expert (dermatologist) marked borders.

Preprocessing

The original color images are converted to gray-level images with a standard luminance
equation:

	 Y = 0.299R + 0.587G + 0.114B

Next, the image undergoes a blurring process with a 9 × 9 averaging filter, which removes
fine details in the image. This helps keep the watershed algorithm from creating a seg-
mented image with too many tiny segments, commonly called an over-segmented image,
which is often a problem with the watershed algorithm. Figure 12.7-1 shows an example
of an over-segmented image and the improvement with the processing filter. In this figure
the watershed segments are delineated by white line boundaries, and the number of seg-
ments in Figure 12.7-1b is so excessive the lesion can barely be seen. The improvement by
using the averaging filter for preprocessing is readily apparent in Figure 12.7-1c.

(a)

(c)

(b)

Figure 12.7-1
(a) An original image, (b) the original image segmented without the preprocessing filter, giving an overseg-
mented image, (c) an image segmented after preprocessing with a 9 × 9 averaging filter. Note much larger
segments delineated by white lines.

Application Development	 805

© 2011 by Taylor & Francis Group, LLC

The Watershed Algorithm

The watershed algorithm, which has many variations, is based upon a topographical repre-
sentation of an image gray-level map. Figure 12.7-2 shows a lesion image topographical mesh
grid with the z (vertical) axis representing gray-level value. A set of adjacent pixels with the
same gray-level is called a plateau. Figure 12.7-3 shows the rainfall simulation method where the
rain starts at a high point and flows downward into minima. Points belonging to a minimum,
or where water following the steepest path would flow to, are called catchment basins. After

0
10

20
30

40

0

10

20

30
0

0.2

0.4

0.6

0.8

Row coordinates

Column coordinates

Re
la

tiv
e b

rig
ht

ne
ss

Figure 12.7-2
For the watershed algorithm the image brightness levels are represented as a topological map with the floor rep-
resenting the (r,c) coordinates and the z-axis, or vertical axis, representing the brightness levels. In this example
the image brightness levels are also color coded with the cool colors, such as blue and green, being lower bright-
ness levels, and the hot colors, such as yellow and red, being brighter. In this example the skin lesion is the
darker section in the center of the image, and is approximately round in shape.

Normal neighbors

Flooding area

Plateau pixels

Rainfall simulation start point

Flooding simulation start point
at rainfall regional minimum
Rainfall path

Figure 12.7-3
The Watershed algorithm. A rainfall simulation starts at a high point and the raindrops flow down to the low-
est level. At this point the flooding procedure starts and floods the area corresponding to the original rainfall
simulation.

806	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the water reaches the minimum, the flooding procedure starts. When the flooding procedure
terminates, the watershed lines are defined that determines the image segmentation.

This flooding variant of the morphological watershed algorithm can be described by the
following steps:

	 1.	Using the rainfall simulation, determine regional minima by following raindrop
paths until a regional minimum is reached. The rainfall minima become the flood-
ing start points, as in Figure 12.7-3.

	 2.	Launch flooding procedure at a regional minimum. Rainfall simulations are
repeated on all pixels adjacent to the rainfall start point to see if the points could
reach the same regional minimum. If that is true, the neighbor pixel will be given
the same label as the one with the regional minimum; otherwise a new regional
minimum will be pushed onto the stack for further flooding processing. The pro-
cedure stops when all regional minima in the stack are processed. As the water-
line increases; more pixels beyond the regional minimum are flooded and given
the same label.

	 3.	When the rising waters in different catchment basins are about to merge, a dam
is built to prevent the merging. When the flooding procedure finally reaches the
global peak, the whole area is flooded except those stopped by the dam boundar-
ies, which correspond to the watershed lines. These watershed lines define bound-
aries for the different image segments.

Object Histogram Merging

After the watershed segmentation, an object histogram is created by counting the number
of image objects (segments) at each gray-level, shown in Figure 12.7-4a. A merging algo-
rithm based on the object-histogram is then applied to merge the segments. The merg-
ing method is initiated by finding the maximum value in the object histogram, shown in
Figure 12.7-4b. Starting from the maximum value of the histogram, a procedure expands
on both sides of the object histogram. When the number of objects within the range exceeds
the lesion-to-image area ratio estimate, the procedure stops, and the lower limit and upper
limit are recorded.

A projected bounding box is calculated to estimate the lesion-to-image area ratio. The
method is illustrated in Figure 12.7-5. The outer bounding box is found by (1) find the gray-
level projection along each row and column by adding the gray levels, the projected curve
in Figure 12.7-5, (2) approximating the projection curve with a second-order polynomial, a
parabola, the second-order curve in the figure, (3) subtracting the second-order curve from the
projected curve, producing the final subtracted curve. We then find the two major maxima,
noted by * in the figure, on the final subtracted curve. The inner bounding box is found by
the location where the projection curve’s value equals the mean value of the second-order
fitting curve (noted by + in the figure).

Noise Removal

A morphological opening filter was applied to the result of the previous steps to remove
isolated noise of the binary border mask while keeping the largest object in the mask. A
circular structuring element was used to best mimic manually drawn borders.

Application Development	 807

© 2011 by Taylor & Francis Group, LLC

350

300

250

200

150

100

50

0

N
um

be
r o

f o
bj

ec
ts

Blue plane

0 50 100 150 200 250
Average gray level of the watershed objects

(a)

(b)

N
um

be
r o

f o
bj

ec
ts

Range

Gray level

T – τ1 T + τ2T

Figure 12.7-4
Object histogram merging method to separate lesion from background. (a) An object histogram, (b) the merging
methods expands the objects starting at the maximum, when the number of objects included exceeds the lesion-
to-image area ratio estimate, the procedure stops, and the lower limit and upper limit are recorded.

808	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

B-Spline Border Smoothing

Image boundary pixels are then processed by 32 × 32 block averaging and passed to a
b-spline interpolation algorithm to form the final smooth border. See Figure 12.7-6.

Spline border smoothing consists of the following steps:

•	 Mark the origin point.
•	 Follow the boundary and mark all the pixels along the path.
•	 Calculate the average row and column values, (r,c), for marked points in a 32 × 32

block.
•	 Repeat the procedure until the closed loop is iterated.
•	 Connect the resulting points with a second-order B-spline interpolation.

Error Estimating

Previously, the borders of the lesions had been manually determined by a derma-
tologist using software that creates a closed curve based on selected points using a

Horizontal projection

Vertical projection

LESION IMAGE

* **

* *

*
*

*

+

+

+

*

*

* *

+

+

+ +

+

100 100

200 200

300 300

400 400

500 500

500

600

500 600

600

300

400

700 200 400 600 800 1000

200 400 600 800 1000

Projected curve

2nd order curve

Final subtraction

Figure 12.7-5
Lesion-to-image area ratio estimate. This ratio estimate is found by using the horizontal and vertical gray-level
projections and a second-order approximation to the projection, and then subtracting the two. The final subtraction
result has two peaks that are used for the outer bounding box, denoted by *. The inner bounding box is found by the
location where the projection curve’s value equals the mean value of the second-order fitting curve, denoted by + .

Application Development	 809

© 2011 by Taylor & Francis Group, LLC

second-order B-spline. The resulting closed skin lesion borders are filled to obtain
binary border masks that are then used to estimate the error of the computer-gener-
ated lesion borders.

The error was measured finding the pixels that were falsely classified as either being in
the tumor border or outside of the lesion when compared to the expert border image. The
ratio of the sum of these to the lesion area was the error:

	
% %Error

FP FN
LesionArea

=
∑ + ∑

× 100

where
FP = false positives, those pixels found in the lesion, but should be outside
FN = false negatives, those pixels found outside the lesion, but should be in the lesion.

12.7.3  Experiments, Results, and Conclusions

We performed experiments with 70 benign images and 30 malignant melanoma images.
The results were compared to results from two other algorithms, gradient vector flow (GVC;
Erkol et al. 2005) and the Pagadala algorithm (Pagadala 1998). These two algorithms, along
with our algorithm, were compared to expertly drawn borders to calculate an error metric.
The expert borders were created by the principal dermatologist on this project. As a con-
trol the expertly drawn borders were compared to those drawn by a second dermatologist
(expert). These results are shown in Figure 12.7-7. Here we see that the watershed-based
algorithm presented here outperformed the other two and the results are comparable to

50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Figure 12.7-6
B-spline border smoothing. The red line is the original jagged border and the blue line is the final border after
the b-spline smoothing.

810	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the error between the two dermatologists’ borders, with 5.4% average area error for the 70
benign images and 9.2% average error for the 30 melanoma images.

Figure 12.7-8 shows an example lesion border with an average error of 6.54%. The red
and green borders are borders drawn by two dermatologists. The blue border is the water-
shed algorithm result. Overall experimental results also show showed an average of 93.5%
lesion area accuracy, equivalent to 97.7% border length accuracy.

Figure 12.7-8
Example image border error of 6.54%. The red and green borders were hand-drawn by two dermatologists. The
blue border is the watershed algorithm result.

100

25

20

15

10

5

0

5.4

9.2

13.77

19.87 19.87

91.96

8.71 8.13

Watershed GVF Pagadala 2nd dermatologist

To
ta

l e
rr

or
: p

er
ce

nt
 o

f p
ix

el
s m

isc
la

ss
ifi

ed Total error for benign images

Total error for melanoma images

Figure 12.7-7
Error measurements for border results from the watershed-based, the gradient vector flow (GVF), and the
Pagadala algorithms. Also shown is the comparison to the second dermatologist’s borders. Here we see that
the watershed-based algorithm had the best results and was comparable to the discrepancies between the two
dermatologists’ borders.

Application Development	 811

© 2011 by Taylor & Francis Group, LLC

12.8  Faint Line Defect Detection in Microdisplay (CCD) Elements*

12.8.1  Introduction and Project Overview

In this application CVIPtools was used to develop an image processing algorithm to iden-
tify faint lines in images of microdisplay elements. These faint lines are defects in the
CCD element. The algorithm we developed is based on spatial filtering using the Moore–
Penrose generalized inverse matrix (Noble 1969), edge detection using the co-occurrence
matrix (Park, Nam, and Park 1994), followed by the Hough transform. Using modeling of
the lines and statistical properties, the result of the Hough transform is further processed
to eliminate false detections.

Recognizing the anomalies in images is an important task for microdisplay test sys-
tems. The investigation of detection of one primary defect type—vertical and/or horizon-
tal straight lines in noisy, gray-scale CCD images is critical. These lines, which are dark
or bright, are defined as an abrupt change of at least 5% in gray level, and at the limit of
human visual detection. The images may contain linear bands (multiple lines together)
or single lines. However, the differentiation of the line or band type, or as dark or bright,
is not required. However, for high performance microdisplay imagers, determining if a
display has vertical and/or horizontal line(s) is paramount.

12.8.2 D esign Methodology

A program in the C® language was developed using the CVIPtools libraries. The 8-bit
gray-scale CCD images were used for the research and development. These images are
over sampled from LCOS displays by a CCD camera with 1280 × 1024 resolution, which
provides a value of 9:1 CCD pixels per display under test (DUT) pixel.

The images contained both random noise and fixed pattern noise in the form of a peri-
odic grid structure, due to the interpixel gap. The removal of this grid is necessary in
order to succeed in straight line detection since the grid often overlaps the straight lines.
The grid removal can be achieved by using a frequency domain filter to filter the prob-
lematic spatial frequencies. For minimizing the computations and time in the filtering
step, a bandpass filter in the frequency domain was approximated as a spatial filter using
the Moore–Penrose generalized inverse matrix (Gonzales and Woods 1992; Noble 1969).
CVIPtools was used to determine the optimal parameters for the filter.

For edge detection in noisy images, an edge detection method based on the co-occur-
rence matrix is used (Park, Nam, and Park 1994). Instead of conventional gradient edge
detectors, a step-edge model with Gaussian noise is used as a model. The step-edge model
uses the local mean to divide a region into two, classifying the small and large intensity
changes equally. The method constructs a bit-map image by operating on a local win-
dow, and thresholding the gray levels with the local mean (Park, Nam, and Park 1994).
The co-occurrence matrix is then used to detect the edges. Similar to using four compass
masks, the co-occurrence matrix includes four directions: vertical, horizontal, diagonal,
and antidiagonal (Park, Nam, and Park 1994). For the detection of vertical and horizontal
lines, only the vertical and horizontal directions are used in manner similar to the Sobel

*	 This section is an edited version of the original paper, “Faint Line Defect Detection in Gray-Scale Images,”
I. Y. Cheng, M. Wilson, S. Umbaugh, and T. Ceylan, Society for Information Display (SID) 2002 Microdisplay
Conference Digest, pp. 74–77, Westminster, Colorado, September 18–20, 2002. Reprinted with permission of The
Society for Information Display.

812	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

or Prewitt operators. The Hough transform is then used to scan the edge detected image
for vertical and horizontal straight lines. The defect line candidates in the Hough space,
which conform to special properties of straight lines, are then selected as the final results.

Experimental and statistical methods were used for the development of the line defect
detection algorithm. The parameters used were optimized with experimentation. To con-
verge to optimum parameters we conducted a number of experiments using heuristics
obtained from the statistical properties of histograms features. The image database was
divided into two sets: the development (training) set, and the test set. Ten images were
used for development of the line detection algorithm, and 130 images were used for testing
and evaluating the algorithm.

12.8.3 L ine Detection Algorithm

The algorithm consists of four basic steps: (1) preprocessing, (2) edge detection, (3) Hough
transform, and (4) analysis of the Hough space. At the preprocessing stage the images
undergo contrast enhancement, and the random noise and the grid are removed with a
spatial filter, which makes the primary data reduction and image analysis easier.

Then the edge detection phase enhances the edge information and segments the image
into two gray levels. Next the Hough transform uses the segmented image to scan for
vertical and horizontal lines. Finally, in the analysis phase, the defect lines are detected in
the Hough space.

12.8.3.1  Preprocessing

In microdisplay images, the noise can be caused by dust particles, pixel defects (in the
line defect detection case), spacer balls, noise originating from the camera, random noise,
a grid in the background, and nonuniformities, which are still present after the normal-
ization process. In line defect detection, dust particles, spacer balls, and pixel defects do
not adversely affect the results, because usually such types of noise are not prominent
enough to suppress line defects. But the random noise, the grid, and the poor contrast in
the images (Figure 12.8-1) can impair the line defect detection algorithm.

In Figure 12.8-2, the image is histogram equalized so that we can see the grid, the nonunifor-
mity, and the noise, and a horizontal line; that is, a line defect. For minimization of the effects of
this noise, or the unwanted information, filtering was essential. Two methods of filtering, fre-
quency domain filtering and spatial domain filtering, are widely used in many applications and
the optimum filter method depends on the application. Frequency domain filters provide us
with the most conveniently defined filter types such as the notch filter, and/or bandpass filter for
efficiently filtering out specific frequencies. However, with the Fast Fourier Transform used here,
the frequency domain filters operate on square images such as 1024 × 1024, and our oversampled
images are 1280 × 1024. This restriction required us to divide the input image into square subim-
ages (or to pad the image for extending it to 2048 × 2048). Moreover, computationally expensive
frequency domain filters are impractical for real-time applications, whereas spatial domain con-
volution filters are much faster, and can be implemented by hardware. Thus to avoid the square
image restriction, and the extensive arithmetic, the Moore–Penrose generalized inverse matrix is
used to approximate a frequency domain filter as a spatial domain filter.

A frequency domain bandpass filter was developed for this purpose. CVIPtools was
used to determine the optimal parameters to mitigate noise effects and to account for
illumination anomalies. High frequency information, which includes random noise and
the grid artifact, and low frequency noise caused by illumination inconsistencies can be

Application Development	 813

© 2011 by Taylor & Francis Group, LLC

Horizontal line defect
more prominent

Figure 12.8-2
The input image after histogram equalization. Here the grid caused by the interpixel gap can be seen. The grid
is very fine, so it corresponds to a high spatial frequency. The horizontal line defect is also much more visible.
Additionally, the overall brightness decrease from the lower left to upper right is more prominent.

Horizontal line
barely visible

Figure 12.8-1
A typical input image. Note the image appears brighter in the lower left, and darker in the upper right. Also,
random noise appears and a faint horizontal line defect can barely be seen in the middle.

814	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

removed using a bandpass filter (see Figure 12.8-3). The specific frequencies correspond-
ing to the grid, can be determined by examining the Fourier transform of the input image.
The grid frequencies appear on the vertical and horizontal axes as four bright spots sym-
metrically located in the frequency space (see Figure 12.8-4).

After using CVIPtools to experimentally determine the best high and low cutoff fre-
quencies for the filter, a program for approximation of the frequency domain filter with a
spatial convolution mask was developed. After creating a 13 × 13 spatial mask for filtering
the noise, the input image is convolved with the spatial mask, and the resulting image
(Figure 12.8-5) is enhanced using the histogram stretch method. In histogram stretch, 1%
of the pixels from both sides of the histogram are clipped.

12.8.3.2  Edge Detection

Edge detection can be one of the most important steps in image analysis. For this applica-
tion, an edge is defined as an abrupt 5% change in gray-level within a specific neighbor-
hood size. With the presence of noise, a 5% change in gray-level proved to be difficult to
detect. Edge detectors such as Sobel, Prewitt, Laplace, or Kirsch, were overwhelmed with
noise that was still present after the spatial filtering.

The step-edge mode (Park, Nam, and Park 1994) does not use the conventional gradient
edge model, which evaluates the maximum gradient magnitude as an edge. In the step-edge
model, the local window operated on is thresholded with the gray-level local mean. Over
uniform regions with Gaussian noise, the resulting binary image is distributed randomly,
whereas on boundary regions, the higher gray-level region tends to be higher, and lower

Low frequency cutoff

High frequency cutoff

Figure 12.8-3
The type of bandpass filter used in the frequency domain, white is the passband, black is the stopband.
Eliminating the high frequencies mitigates random noise as well as the grid artifact. Removing low frequencies
helps with illumination anomalies.

Application Development	 815

© 2011 by Taylor & Francis Group, LLC

The frequencies corresponding
to the grid seen in Figure 12.8-2

Figure 12.8-4
The Fourier transform, the log remapped magnitude, of an original image. The frequencies corresponding to
the grid are seen as four bright spots in the spectrum. Note that the bright spot in the center is the DC term.

Figure 12.8-5
The input image after convolution with the 13 × 13 spatial mask, and enhancement using a histogram stretch,
with 1% of the pixels in the histogram clipped at both ends.

816	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

gray-level region tends to be lower than the local mean. Thus, on boundary regions, the
thresholding with the local mean results in densely distributed regions with 0s and 1s.

The co-occurrence matrix method (Park, Nam, and Park 1994) can be used to classify
these densely distributed regions. A 2 × 2 co-occurrence matrix is used for the local win-
dow since the thresholded image is a binary image. The co-occurrence matrix contains
four elements: the number of transitions of gray level from 0 to 1, from 1 to 0, the number
of nontransitions from 0 to 0, from 1 to 1. Due to Gaussian noise, transitions from 0 to 1,
and 1 to 0 will be high in uniform regions. However, in boundary regions, nontransitions
(from 0 to 0, and from 1 to 1) will be dominant. Therefore, the edge detector uses the no-
transition counts in co-occurrence matrices for the local window being operated on. For
detecting vertical and horizontal lines, vertical and horizontal direction operators for the
co-occurrence matrix are used. The co-occurrence matrix for each direction operator is
calculated, and the nontransition counts are used as edge magnitudes.

The edge detector algorithm (Park, Nam, and Park 1994) is implemented, and the result-
ing image (Figure 12.8-6) is applied the Hough transform for further analysis.

12.8.3.3  Analysis of the Hough Space

The Hough transform is used to scan the image for horizontal and vertical line equations,
and calculate the number of pixels that satisfy each equation. The analysis of the Hough
space is the final step in the line detection algorithm. At this stage, the Hough space is
analyzed to detect the line defects. For each scanned line, the Hough transform calculates
the number of pixels that satisfy that linear equation. For simplicity, we are only going to
discuss the analysis of horizontal line defects.

The pixel hits for each horizontal line equation for an input image is plotted in Figure
12.8-7. The line defect for this image corresponds to the maximum in the plot. The histogram

Figure 12.8-6
The input image after histogram equalization, filtering and edge detection.

Application Development	 817

© 2011 by Taylor & Francis Group, LLC

of the same data (Figure 12.8-8a) shows that this line equation has around 260 pixel hits. In
this example, the line defect is prominent and can be easily detected using the maximum
in the histogram.

For more complex images with several maximums in their histograms, statistical prop-
erties are used to eliminate the false lines. Here we assume that the Hough histogram in
Figure 12.8-8 is approximately a Gaussian distribution. We then find and upper and lower
threshold for the histogram using the mean and the standard deviation. The values that
are outside of the region µ – Cσ, and µ + Cσ are selected. The constant C is determined
experimentally. This is shown in Figure 12.8-8b.

The lower part of the histogram selected is the region with the equations that least num-
ber of pixels satisfy. In Figure 12.8-7, an example of such a region is the minimum. The
maximums corresponding to line defects are found to be coupled with minimums. By this
model of the line defect, another heuristic for the detection can be constructed: the proxim-
ity of a minimum to a maximum.

The higher part of the histogram (Figure 12.8-8) selected after the thresholding opera-
tion is the region where the prominent line defects are located. Also, due to extreme noise,
the false lines often are in this region. Using the heuristic proposed above, the line detec-
tion analysis step looks for minimums around the prominent line defects (maximum) in
a given neighborhood size. The neighborhood size, K, for proximity of maximums and
minimums is also determined experimentally (see Figure 12.8-7).

K

400

350

300

250

200

150

N
um

be
r o

f p
ix

el
s f

or
 th

e e
qu

at
io

n

Equation y = row

100

50

0
0 100 300200 400 500 600 700 800 900 1000

Figure 12.8-7
The number of pixels for the horizontal line equations in the Hough transform is on the vertical axis, while
across the horizontal axis is the row number in the image. Any spikes in the plot are potential horizontal line
defects. “K” is the width of the neighborhood in which we look for minimums next to maximums (“K” is a usu-
ally a small number such as 3 or 6).

818	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

µ= mean

�is linear equation
has about 260 pixels
in hough space

Cσ Cσ

18

16

14

12

10

8

6

4

2

0

0 100 150 200 25050

0 100 150 200 25050

Number of pixels satisfying the equation

Number of pixels satisfying the equation

N
um

be
r o

f e
qu

at
io

ns

18

16

14

12

10

8

6

4

2

0

N
um

be
r o

f e
qu

at
io

ns

(a)

(b)

Figure 12.8-8
The histogram of the Hough space. (a) On the horizontal axis is the number of pixels satisfying linear equation(s).
On the vertical axis is the number of equations that have that number of pixels satisfying them. As examples,
many linear equations have between 100 and 150 pixels; but very few have less than 50 or more than 200 pix-
els that lie on a particular line. The one with the highest number of pixels correspond to the line defect in the
microdisplay element. (b) Assume a Gaussian distribution and find the value for C, so that true line defects are
only beyond C σ.

Application Development	 819

© 2011 by Taylor & Francis Group, LLC

12.8.4  Results and Discussion

An image database of 130 images was used for testing and evaluating the algorithm. The
histogram threshold, which is the standard deviation constant, was varied from 2.0 to 2.5.
The neighborhood size to search for the minimums around maximums tested was 3 and
6 pixels. Our results (Figure 12.8-9) show that as the histogram thresholding parameter is
decreased, there is a slight increase in the success rate of the algorithm. However, at the
same time the percentage of false detections increase drastically.

If we assume the histogram of Hough results is a Gaussian distribution, then z-table
lookups for the histogram thresholding parameter (standard deviation constant) are

	 P(µ – 2σ ≤ x ≤ µ + 2σ) = 0.9544 when 2, and

	 P(µ – 2.5σ ≤ x ≤ µ + 2.5σ) = 0.9876 when 2.5

where σ2 is the variance, and µ is the mean of the histogram.
In other words, if we decrease this constant from 2.5 to 2, the filtered percentage of the

histogram will decrease from 98.76 to 95.44%. As this parameter converges toward 2.0,
the algorithm relies more on the neighborhood size parameter to detect the line defects.
Therefore, when the histogram threshold is around 2.0, the percentage of false detec-
tions decrease from 36% to 13% when the neighborhood size is decreased from 6 to 3.
However, when the histogram thresholding parameter is 2.5, the neighborhood size does
not affect the percentage of false detections more than 1–2%. The success rate is slightly

100

90

80

70

60

50

40

30

20

10

0
2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

k = 6

k = 6

k = 3

k = 3

Standard deviation constant σ for thresholding

Pe
rc

en
ta

ge Successful detections (neighborhood 3)
Successful detections (neighborhood 6)

False detections (neighborhood 6)
False detections (neighborhood 3)

Figure 12.8-9
Here we plot the standard deviation constant versus percentage of success in the test set. The solid lines, at the
top, represent successful line defect detection for two values of K, 3 and 6 (remember K is the neighborhood
size for the proximity of a minimum). The dotted lines, near the bottom of the graph, represent false line defect
detections with the two values for K of 3 and 6. It is determined that optimal values for the parameters are
standard deviation constant = 2.4 and K = 3.

820	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

more (2–3%) at all times when the neighborhood size is 6. The overall success of the algo-
rithm was about 88% in a database of 130 images. However, some of these images con-
tained line noise due to unequal balancing of the parallel video drivers. This contributed
to the difficulty in finding faint line defects because the background image had many
very faint lines.

12.8.5  Summary and Conclusion

We have presented an algorithm for line defect detection in the presence of noise. The
algorithm is suitable for real-time applications where speed and reliability are essential.
The algorithm consists of four basic steps: (1) filtering based on Moore–Penrose general-
ized inverse matrix approximation (Gonzales and Woods 1992; Noble 1969), (2) edge detec-
tion using the co-occurrence matrix (Park, Nam, and Park 1994), (3) Hough transform for
vertical and horizontal lines, and (4) analysis of the Hough results.

The image database used in this evaluation had grid noise, nonuniform brightness vari-
ation, and the faint line defects of interest. Moreover, a few lines in the test set did not fit
our line model that relies on the proximity between the minimums and the maximums in
the Hough space. Our results show that the parameter pair for the lowest false detection
rate and the highest success rate is 2.4 for the histogram thresholding constant, and 3 for
the neighborhood size for the proximity check. Our overall success rate of 88%, with an
image database of 130 extremely noisy images, indicates the promise of the algorithm for
line defect detection in microdisplay (CCD) elements.

12.9 � Melanoma and Seborrheic Keratosis
Differentiation Using Texture Features*

12.9.1  Introduction and Overview

Malignant melanoma is a lethal form of skin cancer and its incidence rate is continuing
to increase. When diagnosed in the early stages, melanoma is relatively easy to treat, so
accurate and early detection is extremely important for patient survival. The problem of
differentiating melanoma from a benign lesion, such as seborrheic keratosis (seb ker), is
an important and difficult problem since they may be similar in appearance. If a reliable
method is found to differentiate these two diagnoses it will lead to a greater understand-
ing of the visual features, which can be used in the education and training of medical
professionals. As an added benefit, by better distinguishing benign lesions from malig-
nant ones, the cost of unnecessary biopsies can be reduced (Kjoelen et al. 1995). The cost
of misclassifying malignant melanoma as benign is much greater than misclassifying a
benign lesion as malignant. In the former case, the patient dies whereas in the latter case
the patient is subjected to temporary mental tension. Thus, to be useful in a clinical setting,
no melanomas can be misclassified.

*	 This section is an edited version of the original paper, “Melanoma and Seborrheic Keratosis Differentiation
Using Texture Features,” S. V. Deshabhoina, S. E Umbaugh, W. V. Stoecker, R. H. Moss, and S. K. Srinivasan,
Skin Research and Technology, November 2003, No. 9, pp. 348–56, Blackwell Publishing, Ltd., © 2003 Blackwell
Munksgaard. Reprinted with permission.

Application Development	 821

© 2011 by Taylor & Francis Group, LLC

Our primary objective was to find texture features that will consistently classify the
skin lesions. Classification rules, using the ID3 algorithm (Baram 2000; Quinlan 1983) were
generated in this endeavor. Data analysis and modeling software tools (Partek, Inc. 2001)
were used to aid in feature selection. The proposed approach aims to yield a reduction
of misclassified skin lesions, relating the classification process to a clustering property of
the features. A texture-based method is presented that uses second-order histogram fea-
tures to develop a consistent classification rule. The most predictive features are sought for
lesion classification and the key findings from the numerous experiments performed for
this investigation are discussed and summarized.

12.9.2  Materials and Methods

The images used in this research were digitized from 35 mm color photographic slides
and photographs. The digital images had a spatial resolution of 512 × 512 pixels, and
a gray-scale resolution of 8 bits per pixel per color-band giving 256 possible intensity
levels. Thus, the color images had a resolution of 24 bits per pixel with each pixel hav-
ing one of 16,777,216 possible colors. A border image was manually determined by the
dermatologist to find where the lesion was located in the image. The lesion images and
the border images were in PPM or TIF format. The data type was BYTE and the format
was REAL.

The image database used in the preliminary experiments contained 57 melanoma
and 26 seb ker images, along with their border images. As the research progressed, we
obtained more images for a total of 173 melanoma and 98 seborrheic keratosis images and
equal number of their borders; these were used in the final experiments. They are clinical
images from private dermatological practices and from university archives (Menzies n.d.;
Marghood, n.d.). The database is still growing and currently (2010) contains thousands
of digitized images of skin lesions. In addition to the clinical images the current research
image database includes dermoscopic images as discussed in Section 12.3.

CVIPtools (http://www.ee.siue.edu/CVIPtools) was used for the texture feature extrac-
tion. The first-class Fusion expert system development software (1st-Class Expert Systems
1989) was used as an automated induction engine for the development of classification
rules. The data analysis and modeling software package Partek (Partek, Inc. 2001) was
used for data analysis and visualization. All the experiments were performed on a SUN-
SPARC station operating on a SUN-SOLARIS platform.

Feature information for each lesion was generated using the CVIPtools software. The
texture features were extracted by using the lesion image (Umbaugh, Wei, and Zuke
1997), in conjunction with its border image, so that texture information was extracted
solely on the lesion and not on surrounding skin. The texture features were obtained
for varying pixel distances. The pixel distance is the distance that is used in calculating
the co-occurrence matrix (Harris 1991; Nadler and Smith 1992; similar to second-order
or joint histogram, which approximates the joint probability distribution). This distance
defines which pairs of pixels are used to determine the co-occurrence matrix. A larger
distance will define a coarser structure while a smaller distance will define a finer tex-
ture. For these texture features, the software performs a luminance transform on the
image before extracting the features. It extracts features for four different orientations;
specifically, angles of 0°, 45°, 90°, and 135° and returns the average and the range for each
feature. These feature files provide a database, which can be used for testing the success
of any feature identification rule.

822	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The training/test set paradigm was used here, and is extensively used in statistical stud-
ies (Kjoelen et al. 1995). Data is separated into two distinct sets—one used for training
or developing the algorithms and the other used for testing the algorithms. This allows
for unbiased testing of algorithm performance. If the same set is used to train and test
an algorithm, algorithm performance on other independent data is not predictable. Some
experiments were performed with equal sizes of training and testing sets and some with
using an increasing training set size.

Texture relates to the arrangement of brightness patterns within image objects. The
essential characteristic of a texture is the relationship between pixels. The set of 10 texture
features used in these experiments are also known as second-order histogram features
(Nadler and Smith 1992), which are statistics based on pairs of pixels. The following fea-
tures were used

	 1.	Texture_energy_average: A feature indicating the average distribution of gray levels
(i.e., it is a measure of the brightness of the texture).

	 2.	Texture_energy_range: A feature indicating the variation of energy along the four
orientations.

	 3.	 Inertia_average: A feature indicating the average contrast of the texture.
	 4.	 Inertia_range: A feature indicating the variation of inertia along four directions.
	 5.	Correlation_average: A feature indicating the average measure of similarity between

adjacent pixels.
	 6.	Correlation_range: A feature indicating the variation of correlation along four

directions.
	 7.	 Inverse_difference_average: A feature indicating the average local homogeneity of

the texture.
	 8.	 Inverse_difference_range: A feature indicating the variation of homogeneity along

four directions.
	 9.	Texture_entropy_average: A feature indicating the average information content of

the texture.
	 10.	Texture_entropy_range: A feature indicating the variation of entropy along four

directions.

Induction is the process of generating a general classification algorithm from a set of
specific examples. It is a reasoning process that allows human beings to formulate theo-
ries from limited and specific experience that can be used to predict future events, such
as the results of an experiment. Here induction was used to generate a classification rule.
The mechanism used by the software is based on an algorithm known as ID3. The ID3
algorithm is the induction engine, which operates by generating decision trees based on
input examples. ID3 was specifically designed to handle large masses of data, with the
processing time growing linearly with the size of the data (Quinlan 1983; Umbaugh, Moss,
and Stoecker 1992).

The classification rules generated were essentially nested if-then structures or rule trees.
These rules were analyzed, and the primary features used by the induction software in
generating the rules were selected for further experimentation. The following example
illustrates this point. In the sample rule shown below, the features corr_a (correlation_aver-
age) and tex_energy_a (texture_energy_average) are the first and the foremost features used in
this rule. Note also that the correlation_range and texture_energy_range (corr_r, tex_energy_r)

Application Development	 823

© 2011 by Taylor & Francis Group, LLC

are used, and that the inertia_range are all that are required to fully differentiate melanoma
from seb ker, for this experiment.

 1: CORR_A??
 2: < 0.91992: --- melanoma
 3: > 0.91992: TEX_ENERGY_A??
 4: < 307.469: --------------------------- seb ker
 5: > 307.469: CORR_R??
 6: < 0.17054: --------------------------- melanoma
 7: > 0.17054: TEX_ENERGY_R??
 8:	  < 244.965: INERT_R??
 9: < 0.002118: ------- seb ker
 10: > 0.002118: ------- melanoma
 11: > 244.965: --------------seb ker

In the experiments described below, the rules generated using 1st-Class induction soft-
ware (1st-Class Expert Systems 1989), are based on two methods: (1) Optimize and (2) Left–
Right. This was primarily done to facilitate comparison between the two methods. The
Optimize method attempts to produce the smallest possible rule tree (1st-Class Expert
Systems 1989). It creates compact decision trees by choosing the “best” features in the
proper sequence. In this method the ID3 algorithm selects the features that will make the
most progress toward completing the decision tree. It discards irrelevant and redundant
features. It’s easy, fast and efficient. The Optimize method can find simple rules underlying
complex data. The Left–Right method processes the features in left to right order as they
appear on the definition screen. It does this by discarding the irrelevant features. This
method is especially useful when we would like to force certain features to be used first in
generating classification rules.

12.9.3 Texture Analysis Experiments

As a first step toward consistent classification, the texture features for the two diagnoses,
melanoma and seb ker, were extracted for varying pixel distances (i.e., 2, 3, and 5). The idea
was to compare the results for different pixel distances to determine what one best serves
the purpose. The rules were generated with a training set and then tested with a test set
for their accuracy.

The initial experiments were performed with three pixel distances (using both the Left–
Right and Optimize method). The results have been tabulated in Tables 12.9-1 and 12.9-2 and
depicted in Figure 12.9-1. Here we see that texture features with a pixel distance of two

Table 12.9-1

Success Rates in the Diagnosis of Melanoma and Seb Ker Using Left–Right Method for
Pixel Distances 2, 3, and 5

Pixel distance 2 3 5

Diagnoses Melanoma Seb Ker Melanoma Seb Ker Melanoma Seb Ker
Training set (43) 27 16 27 16 27 16s
Test set (40) 30 10 30 10 30 10
Detected 30 6 29 5 23 4
Success rate (%) 100.00 60.00 96.66 50.00 76.66 40.00

824	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

120

100

80

60

40

20

0

120

100

80

60

40

20

0

Mel

Mel

Seb ker

Seb ker

Diagnoses

Diagnoses

Plot comparing the success rates of
Melanoma and Seb ker for pixel distance 2

Plot comparing the success rates of
Melanoma and Seb ker for pixel distance 3

Left–Right
method

Optimize
method

Left–Right
method

Optimize
method

Su
cc

es
s r

at
es

 (%
)

Su
cc

es
s r

at
es

 (%
)

(a)

(b)

Figure 12.9-1
(a) Success rates for the two methods as a function of the two diagnoses, melanoma and seb ker, for pixel dis-
tances 2, (b) pixel distance of 3, and (c) distance of 5.

Table 12.9-2

Success Rates in the Diagnosis of Melanoma and Seb Ker Using Optimize Method for
Pixel Distances 2, 3, and 5

Pixel distance 2 3 5

Diagnoses Melanoma Seb Ker Melanoma Seb Ker Melanoma Seb Ker
Training set (43) 27 16 27 16 27 16
Test set (40) 30 10 30 10 30 10
Detected 30 4 26 3 25 4
Success rate (%) 100.00 40.00 86.60 30.00 83.33 40.00

Application Development	 825

© 2011 by Taylor & Francis Group, LLC

have a 100% success rate in identifying melanoma. Due to the high cost for misclassifying
melanoma, these results indicate that two is the best pixel distance for these texture fea-
tures. Moreover, the features correlation and texture_energy appear to be the most promis-
ing in detecting melanoma since these were the main distinguishing features in the rules
generated. Correlation is the measure of similarity between adjacent pixels while energy is
the measure of brightness distribution of the texture. Additionally, Figure 12.9-1 illustrates
that Left–Right method is best for rules generation.

The next group of experiments involved attempting to improve the success for seb ker by
using visual analysis tools (Partek Inc. 2001), i.e., 1D-histogram and scatter plots, to explore
optimal feature sets. Scatter plots are statistical tools that show how much one variable is
affected by another (Duda and Hart 1996). The 1D-histogram plots depict how one inde-
pendent variable affects each class of data. Various feature subsets were plotted and visu-
ally analyzed. As an example, Figure 12.9-2 shows the feature correlation_average where we
see distinct peaks in the plots for the two diagnoses. This implies that this feature is useful
for differentiating melanoma from seb ker.

For this group of experiments we also used variable selection and discriminant analy-
sis modeling tools. The variable selection tool is an important technique for reducing the
dimensionality in multivariate predictive classification (Gose, Johnsonbaugh, and Jost 1996).
The variable selection tool was used to train the data and the discriminant analysis tool was
used for testing. The discriminant analysis tool is a statistical tool that looks at all the features
and works out what combinations of features are the most characteristic of a class (Schalkoff
1992). As the modeling tools assume a Bayesian distribution of the data (Gaussian distribu-
tion and zero mean), the data were preprocessed using the standardization method.

While training the data, the quadratic discriminant classifier was used as the evalu-
ation criteria and the forward selection and backward elimination methods were used
as the search methods. The forward selection method starts with an empty subset to
which is added one variable at a time—the one that most reduces the error. The backward

90

80

70

60

50

40

30

20

10

0
Mel Seb ker

Diagnoses

Plot comparing the success rates of
Melanoma and Seb ker for pixel distance 5

Su
cc

es
s r

at
es

 (%
)

Left–Right
method

Optimize
method

(c)

Figure 12.9-1 (Continued)
(a) Success rates for the two methods as a function of the two diagnoses, melanoma and seb ker, for pixel dis-
tances 2, (b) pixel distance of 3, and (c) distance of 5.

826	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

elimination method starts with the full subset from which one variable is removed at a
time—the one that least increases the error. With the backward elimination method, the
best results for seb ker were obtained with three variables, of which correlation was one,
with a success rate of 88%. On the other hand, with the forward selection method the best
results for seb ker were obtained with one variable with a success rate of 96%. In a group of
similar experiments the forward selection method produced better results than the back-
ward elimination method.

As the number of seb ker images was smaller than the melanoma image set, a unique
method was adopted to compare the results. The variable selection tool was used to train
the data and the discriminant analysis tool was used for testing, using all 10 texture fea-
tures. While training, the quadratic discriminant classifier was used as for the evaluation
criteria and the forward selection method was used as the search method. The training set
was gradually increased from 10% of the total images to 90% of the total images, and was
tested with the remaining images. Three readings were taken at each size and the mean
calculated. The results have been plotted with the training set size as a percentage of the
total size on the x-axis and the test set success rate on the y-axis (Figure 12.9-3). The plot
shows that as the training set size increases the success rate of seb ker also increased con-
siderably, except for the first three values from 10%, 20% and 30% of the total seb ker set.
This illustrates that these small set sizes were not sufficient for training. On the other hand
the success rates for melanoma showed no unique trend, which implies that the melanoma
set is neither consistent nor complete.

Next, the four features correlation_average, correlation_range, texture_energy_average, and tex-
ture_energy_range were selected and the above experiment was repeated. These four features
were found to be the primary features, for classifying melanoma, in the rules generated in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
al

ise
d

fre
qu

en
cy

CORR_A

Histogram

MEL
SEB

Figure 12.9-2
This histogram plot shows the distribution for the texture feature Correlation Average for the two diagnoses
melanoma and seb ker. The horizontal axis corresponds to the value for this feature, and the vertical axis shows
the normalized frequency for each value across the entire training set of images. The fact that we have separate
peaks for the two classes tells us that this feature is useful in differentiating the two classes.

Application Development	 827

© 2011 by Taylor & Francis Group, LLC

the preliminary experiments performed using melanoma and seb ker. The results have been
plotted in Figure 12.9-4. As expected, the success rate for seb ker increased with the training
set size but the melanomas success decreased. The high and almost constant success rates
for seb ker are clearly suggestive of the fact that the features texture_energy and correlation are
good indicators of seb ker. We can see from this plot that with these data sets and features,
increasing the training set beyond 50% yields little change in the results.

At this point in our research we were able to expand the image database by including
two image sets, from private dermatological practices (Menzies and Marghoob). The new,
larger database was split into two equal halves randomly called the training set and the
test set, each consisting of 86 melanoma and 49 seb ker images. Experiments were per-
formed with the discriminant analysis tool. First, one of the sets was used for training and
the second set was used for testing. The tests were repeated for varying prior probabilities
with the training sets and test sets and the sets being exchanged. The results are tabulated
in Tables 12.9-3 and 12.9-4, respectively. The results show that with the same prior prob-
ability, but for different training set and test sets, the success rates are nearly consistent for
seb ker. These results imply that the two seb ker sets are similar and complete. For mela-
noma, the success rates for first experiment vary from 39% to 65% and for the second from
65% to 86%. These disjoint success rates imply that, again, the two melanoma sets are not
similar nor complete.

Next, experiments were performed to compare results from the initial smaller set to the
new larger set. As before we increased the training set size gradually from 10% of the total
size to 90% and measured success on the test set. The corresponding success rates have been
plotted in Figure 12.9-5. The success rates for seb ker increased gradually as the training set

0 20 40 60 80 100

100

90

80

70

60

50

40

30

20

10

0

Training set size (% of total set)

Te
st

 se
t s

uc
ce

ss
 ra

te
 (%

)
Success rates of Melanoma and Seb ker for varying training set size

(including all the texture features)

Melanoma

Seb ker

Figure 12.9-3
Here we see that as the training set size increases the success rate for seb ker increases, while the success rate
for the melanomas actually goes down and oscillates.

828	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

size increased whereas for melanoma there was an initial decrease followed by an increas-
ing trend. These results further support our conclusion that the melanoma set is still incom-
plete, but may be improving in consistency due to the lack of oscillations in the plot.

These experiments were followed by performing a principal component analysis (PCA;
Kjoelen, Umbaugh, and Zuke 1998). The experiments with the PCA were performed on
all the images in the database as a single set. The PCA finds the linear transform of the
10 texture features that will produce new features that are uncorrelated. These new fea-
tures are found by using the eigenvectors of the covariance matrix of the data set. The
orthogonal basis of the covariance matrix can be found by calculating the eigenvalues and

Table 12.9-3

Success Rates of Melanoma and Seb Ker for
Varying Prior Probabilities Using Discriminant
Analysis Tool

Prior Probabilities Success Rates (%)

Melanoma Seb Ker Melanoma Seb Ker

0.1 0.9 65 73
0.2 0.8 70 71
0.3 0.7 70 71
0.4 0.6 72 71
0.5 0.5 77 71
0.6 0.4 78 69
0.7 0.3 80 69
0.8 0.2 80 65
0.9 0.1 86 51

0 20 40 60 80 100
Training set size (% of total set)

Te
st

 se
t s

uc
ce

ss
 ra

te
 (%

)

Melanoma

Seb ker

120

100

80

60

40

20

0

Figure 12.9-4
Success rates using the four features correlation_average, correlation_range, texture_energy_average and texture_
energy_range. Here we see the seb ker show an increasing trend, while the melanoma set oscillates and then levels
off. This indicates that these four features alone will not allow us to differentiate these two diagnoses.

Application Development	 829

© 2011 by Taylor & Francis Group, LLC

eigenvectors. By ordering the eigenvectors in the order of descending eigenvalues (larg-
est first), one can create an ordered orthogonal basis with the first eigenvector having the
direction of largest variance of the data. In this way, we can find directions in which the
data set has the most significant amounts of energy.

The original feature vector was projected on the coordinate axes defined by the new
orthogonal basis. The original vector was then reconstructed by a linear combination of
the orthogonal basis vectors. Instead of using all the eigenvectors of the covariance matrix,
we may represent the data in terms of only a few basis vectors of the orthogonal basis. By
comparing the values of eigenvalues to the total sum of eigenvalues, we can get an idea
how much of the energy is concentrated along the particular eigenvector.

Table 12.9-4

Success Rates of Melanoma and Seb Ker for
Varying Prior Probabilities Using Discriminant
Analysis Tool (With the Training and Test Sets
Swapped from Table 12.9-3).

Prior Probabilities Success Rates (%)

Melanoma Seb Ker Melanoma Seb Ker

0.1 0.9 39 71
0.2 0.8 44 69
0.3 0.7 45 69
0.4 0.6 48 69
0.5 0.5 49 63
0.6 0.4 52 63
0.7 0.3 56 61
0.8 0.2 63 59
0.9 0.1 65 57

100

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100

Training set size (% of total set)

Te
st

 se
t s

uc
ce

ss
 ra

te
 (%

)

Melanoma

Seb ker

Figure 12.9-5
Success rates using the ten texture features and the larger image set, which includes the Marghoob and Menzies
images. Here we see that as the training set size increases the success rate for seb ker increases, while the suc-
cess rate for the melanomas actually goes down and then increases.

830	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

From the experiment it has been determined that first three components have a contribution
of 79.32%. The eigenvector contributions were found to be U1: 39.52%, U2: 24.68%, and U3: 15.12%.
The results showed that the features correlation and texture_energy are good indicators of seb ker
because of their contributions to the eigenvalues. Correlation appears to be a major contributor in
U2 and U3 whereas texture_energy appears to be a contributor in all the three (i.e., U1, U2, and
U3). This confirms the previous results obtained from the induction software that correlation and
texture_energy are good features for the differentiation of seb ker from melanoma.

12.9.4  Results and Discussion

These results clearly suggest the fact that the texture features can serve as good classifiers
of seborrheic keratosis. Of these, the features texture_energy_average, texture_energy_average,
correlation_average, and correlation_range serve the purpose the best. Also, the pixel distance
of two gave good results when compared to other pixel distances (i.e., three and five).

The experiments performed by varying the training set size as a percentage of the total set
size yield some useful results. The plots show that the texture features are good identifiers
of seb ker. This is confirmed by the increasing success rates for the seb ker as the training set
size is increased. The results obtained in Figure 12.9-4 clearly show the fact that the features
correlation and texture_energy are the primary features to distinguish seb ker from melanoma.
This could be said from the nearly consistent and increasing success rates for seb ker.

The results from the experiments performed with the discriminant analysis tool by
varying the prior probabilities further confirm the above results. It was observed that the
seb ker showed consistent success rates over varying prior probabilities. Moreover for the
same prior probability (i.e., 0.5 for melanoma and 0.5 for seb ker) the success rate for seb
ker (82%) and for melanoma (60%) was reasonably good. Figure 12.9-5 shows the useful-
ness of the texture features in identifying melanoma. The results obtained from the PCA
once again confirm the fact that the features texture_energy and correlation contribute the
most, in the correct classification of seb ker. The results obtained from the experiments
performed by the texture features are useful in classifying seb ker.

Overall, the ID3 algorithm produced results that favored Left–Right method over the
Optimize method. Even though the Optimize method resulted in more compact and general
rules its success rate was considerably lower. On the other hand, the Left–Right method,
generated rules with distributed clusterings, but with much more consistent results than
the Optimize method.

12.9.5 Conclusion

This research has shown that texture features extracted from color skin lesion images can
be good discriminators of malignant lesions from benign ones; specifically, malignant
melanoma from seborrheic keratosis. Reliability was demonstrated by the consistent suc-
cess rates with different testing sets in the case of melanoma and seborrheic keratosis.

Of the 10 texture features considered, texture_energy_average, texture_energy_range, corre-
lation_average, and correlation_range, were shown to be the best features in the accurate and
consistent classification of seborrheic keratosis. These features were first shown useful by the
automatic induction software and later were confirmed by data analysis tools. Specifically,
discriminant analysis and PCA showed the importance of these features in differentiating
melanoma from seb ker. In Figure 12.9-5 about 90% of seborrheic keratosis images were cor-
rectly differentiated from the malignant skin lesions. However, the fact that only about 70%
of the melanomas were correctly classified indicates that more research is required. The high
cost associated with missing any melanomas precludes the use of these algorithms in a clinical

Application Development	 831

© 2011 by Taylor & Francis Group, LLC

setting. We believe that further research will improve the algorithms and that what we have
learned here will help provide direction for future research.

12.9.6 A cknowledgments

This research was funded in part by an SBIR Phase II grant from the National Institutes of
Health, through a subcontract from Stoecker and Associates, Rolla, Missouri, SIUE account
#2-70252. The authors would also like to thank Donald J. Meyer of Partek Corporation for
his assistance with the pattern recognition software.

12.10 � Compression of Color Skin Tumor
Images with Vector Quantization*

12.10.1  Introduction and Project Overview

The many different imaging modalities used in medicine, combined with digital imaging
computer systems being widely available, and the advent of telemedicine have created
the need for new image compression methods. Even well-established imaging modali-
ties such as x-rays and ultrasound are increasingly being processed and stored in a digi-
tal format. If we need to keep multiple copies in different sites, or need to transfer these
images from site to site through the internet or certain physical channels, the need for
high-performance compression algorithms to reduce storage and transmission costs is evi-
dent (Kjoelen, Umbaugh, and Zuke 1998).

Our goal here was to investigate new compression algorithms for a set of skin tumor
images, building on previous work (Golston, Stoecker, and Moss 1992; Kjoelen, Umbaugh,
and Zuke 1998; Kjoelen et al. 1993; Stoecker, Li, and Moss 1992; Umbaugh, Moss, and
Stoecker 1989). The CVIPtools development environment was used for this investigation.
One potential application of this work is to provide a tool that can be used in mass screen-
ing in settings such as shopping malls or nursing homes. As a result, a relatively large
data base consisting of more than 1000 digital skin tumor images has been established for
the purpose of developing and testing the analysis tool. Each original image has a spatial
resolution of 512 × 512 pixels, 24-bit magnitude (8 bits for each band), and occupies 786 K
bytes of storage space. There are two most important points to be considered for designing
the compression schemes: (1) compression ratio, and (2) compression quality.

For the compression ratio, to meet different possible requirements, four compression
ratios were designed: 4:1, 8:1, 14:1, and 20:1. For the compression quality, the compression
schemes aimed at keeping as much of pertinent information in a skin tumor image as pos-
sible, and coarsely compressing the information not significant for a dermatologist’s evalu-
ation. As shown in Figure 12.10-1, the tumor area is most pertinent for a dermatologist, and
the pattern of the skin around the tumor is an important reference, while the black edge at
the bottom and the ruler are not of interest.

There is a trade-off between the compression ratio and the compression quality. Normally,
the higher compression ratio, the lower the compression quality will be. The compression

*	 This section is an edited version of the original paper, “Compression of Color Skin Tumor Images with Vector
Quantization,” L. Guo, S. Umbaugh, and Y. Cheng, IEEE Engineering in Medicine and Biology Magazine, Vol. 20,
No. 6, November/December 2001, pp. 152–64, © 2001 IEEE. Reprinted with permission.

832	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

quality can also be affected by other factors. For example, color shifting, which is trouble-
some from a dermatologist’s perspective, can be caused by quantization from using the
PCT. Another example, common to image compression schemes, is contrast loss that can
be enhanced during postprocessing by histogram stretching techniques.

Previous research in image compression for skin tumor images (Kjoelen 95), discussed
in Section 10.3.7, used a combination of the wavelet transform and vector quantization
(WVQ; Kjoelen, Umbaugh, and Zuke 1998). Three compressions schemes were designed,
which perform vector quantization in the wavelet transform domain. The PCT was used
as a preprocessing step in one of the three schemes.

The compression algorithms gave fairly good compression results. They performed both
an objective test (SNRs) and a subjective test, and made comparisons with the JPEG and
the color cell compression (CCC) algorithms (Campbell 1986). According to the subjective
tests, two of their three compression schemes were rated equal to or better than the CCC
compression scheme. Although the JPEG was rated as the best one, one of their compres-
sion schemes was rated equal to or better than the JPEG for 19 out of 66 images. The SNRs
of their compression schemes range from 17 to 25dB.

For this research we wanted to extend the compression schemes to include the discrete
cosine transform (DCT), and resolve some of the issues caused by preprocessing with the
PCT. Also, since we were more interested in comparing the wavelet to the DCT, compari-
sons to older compression algorithms were not included.

12.10.2  Materials and Methods

12.10.2.1  Compression Schemes

To meet different requirements, four compression ratios were designed; which are 4:1, 8:1,
14:1, and 20:1. The compression ratios at 4:1 and 8:1 are designed to give high compression

Area of interest

Figure 12.10-1
An original image showing the area of interest. Also, artifacts not of interest are shown, such as the ruler at the
top and the black area at the bottom.

Application Development	 833

© 2011 by Taylor & Francis Group, LLC

quality with relatively low compression ratios, while 14:1 and 20:1 are designed to offer
relatively high compression ratios with acceptable compression quality.

For each compression ratio, the compression was performed in both the DCT domain
and the discrete wavelet transform (DWT) domain. The functions in the CVIPtools library
Transform.lib were used. For each domain, two schemes were designed—with the PCT as a
preprocessing step or without the PCT. The histogram stretching was used as a postprocess-
ing step for each compression scheme. So, all together, 4(compression ratios) × 2(domains) ×
2(with or without the PCT) = 16 compression schemes were designed.

Vector quantization was used to code the transformed images. Bit allocation for the vec-
tor quantization was based largely on heuristics and on trial error, although the “optimal”
bit allocation rule is used as a general guideline. The LBG algorithm (Antonini et al. 1992;
Linde, Buzo, and Gray 1980) for optimizing the codebook was used. Figure 12.10-2 shows
the flowchart of the basic compression process. The decompression process basically fol-
lows the inverse sequence of the compression process.

12.10.2.2  Subjective Evaluation of the Images

The decompressed images were evaluated by three graduate students majoring in elec-
trical engineering, two image processing professors, and one dermatologist. They were
asked to grade the decompressed images according to the grading scale used to evaluate

Begin compression

Use PCT as
preprocess?

Yes, use PCT

Perform PCT transform
No, PCT not

used

DWTDCT or DWT
domain?

DCT

Perform DCT transform Perform DWT transform

Perform vector quantization
and generate the
compressed file

Figure 12.10-2
The flowchart for the basic compression process.

834	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

the quality of analog television signals (Golding 1978). This scale grades picture impair-
ment on a scale from 1 to 6, as shown in Table 12.10-1.

To eliminate bias, the evaluations were performed blindly; that is, observers were not
informed as to which compression scheme had been applied to an image. Each decom-
pressed image and the original image were shown side by side. Observers were allowed to
examine the decompressed images from any desired distance.

12.10.2.3  Objective Measurement of the Images

The quality of the decompressed images was also measured by computing the SNRs. The
SNR for each image is calculated from the squared error between the original and the
decompressed images. For a digital image, which has L gray levels in each band, the SNR
between the original and the decompressed image is defined as

	

SNR
L

N
x x

dB

k k
k

N() log
()

()
= ×

−

− ʹ
=∑

10
1

110

2

2

1

where xk are original pixel values, and x’k are the decompressed pixel values.

12.10.3  Compression Schemes

12.10.3.1  Preprocessing and Transforms

The 24-bit color skin tumor images used in this research are composed of three color
bands—red, green, and blue. Figure 12.10-3 shows each color band of skin tumor image
327n.ppm. The redundancies that are inherent in such color images can be seen in the
figure, by observing that the separate color band images look very similar, thus they are
highly correlated. Using the PCT as a preprocessing technique aimed at removing such
redundancies among color bands. Known as the eigenvector transform, the PCT can map
most of the information in R (red), G (green), and B (blue) bands into the principal band.
Since the R band is typically the first band in an image file, after the PCT is performed
most of the information is contained in the “R” band. This is because here we adopted the
method that the R band is the first band in the image file, and, respectively, the G band and
the B band are the second and third band in the image file. Figure 12.10-4 shows each band
of skin tumor image 327 n.ppm after the PCT transformation.

Wavelet transforms can be described as a family of transforms that have basis functions
that are shifted and expanded versions of themselves. Because of this, the wavelet trans-
form contains not just frequency information but also spatial information. To perform a
2-D wavelet transform on an image, one lowpass filter and one highpass filter are required.
At each stage of decomposition, we perform circular convolution with the two wavelet

Table 12.10-1

Subjective Measurement Scale

Grades Comments

1 Imperceptible impairment
2 Just perceptible impairment
3 Perceptible but not disturbing
4 Somewhat objectionable impairment
5 Definitely objectionable impairment
6 Extremely objectionable impairment

Application Development	 835

© 2011 by Taylor & Francis Group, LLC

basis vectors along the row and column directions, and then decimate both the rows and
columns by two. This is done by eliminating every other sample.

As the skin tumor images are 512 × 512 pixels, the wavelet decomposition levels can
range from 1 to 9. Considering that vectors will be used for quantizing each subimage,
three decomposition levels were used, as shown in Figure 12.10-5. Here we show the num-
bering used for the different wavelet bands. Figure 12.10-6 compares a linear remap versus
a log remap of the wavelet transform for a skin tumor image, 327 n.ppm. Although both
mappings allow us to see that the most important visual information is contained in the
lower frequency band(s), we see that with a linear remap all the visible information in the
higher bands is lost. These images also illustrates that the wavelet transform retains both
spectral and spatial information—we can see that original image in all the bands.

In the DCT spectrum the frequencies increase from left top corner to right bottom corner.
Figure 12.10-7b shows the DCT transformed image spectrum. Normally, for a skin tumor

(a) (b)

(c)

(d)

Figure 12.10-3
(a) Original image 327n.ppm, (b) the red band image, (c) the green band image, (d) the blue band image. Here we
can see that the three bands, red, green and blue, are highly correlated since the images look similar.

836	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

image, most of the important information exists in the top left area of the DCT spectrum,
corresponding to low frequency information. We can see the left top area is brighter than
the right bottom area, due to more energy in low frequencies. Here we can also see that the
DCT spectrum contains no visible spatial information.

12.10.3.2  Vector Quantization

Vector quantization uses a set of subimages to represent the image. For example, given a
256 × 256 gray-scale image, we can represent it with a group of 4 × 4 subimages. To repre-
sent the image, we will have (256 ÷ 4) × (256 ÷ 4) = 4,096 blocks to quantize. If we have 64
such 4 × 4 subimages as codebook, 6 bits will be required for quantizing each block. And if
each subimage needs 4 × 4 × 8 = 128 bits to store, we will need 4,096 × 6 + 128 × 64 = 32,768

(a)

(c) (d)

(b)

Figure 12.10-4
(a) Original image, 327n.ppm after the PCT and remapped to BYTE, (b) the first principal components band, the “R”
band image, (c) the second principal components band, the “G” band image, (d) the third principal components
band, the “B” band image. Here we can see that the most of the information is in the first band—the “R” band.

Application Development	 837

© 2011 by Taylor & Francis Group, LLC

bits (4096 bytes) to store the image, including the codebook. Compared to an 8 bits/pixel
scalar quantization, which requires 256 × 256 = 65,536 bytes, we have a compression ratio
at 16:1. If we do not save the codebook along with the compressed data, we can have a
higher compression ratio, which is around 21.3:1.

Minimizing the average distortion is very difficult for a random sequence such as an
image. However, we may use an iterative method to achieve minimum distortion, which can
be diagrammed as Figure 12.10-8 (Kjoelen 1995). This algorithm is referred to as the Linde,
Buzo, Gray (LBG) algorithm (1980). The LBG algorithm and other iterative codebook design
methods do not, in general, yield truly optimum codes. Subject to certain conditions, the LBG

(a) (b)1 2 5

6 7

8

9 10

3 4

Figure 12.10-5
(a) The numbering for the bands used with a three level wavelet decomposition, (b) image 327n.ppm after a
three level decompositionwith a wavelet transform.

(a) (b)

Figure 12.10-6
Comparison of linear remap to log remap for wavelet transform. Image 327n.ppm after a three level decomposi-
tion. (a) Linearly remapped to byte, (b) log remapped. We can see that the most important information is in the
upper left corner –the Low-Low term of the third decomposition.

838	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

algorithm will yield locally optimum quantizers, but in general, there may be many locally
optimum codes, and some will yield poor performance (Linde, Buzo, and Gray 1980).

The LBG algorithm results can be improved by the choice of a good initial codebook,
or by trying it on several different initial codebooks. One method to find a good initial
codebook is to group the vectors and find centroids of the groups, and then use those as
the initial codebook. Alternately, methods have been explored that start with a small code-
book size and recursively enlarge it (Kjoelen 1995). With this method, the codebook can be
“optimized” at each iteration, resulting in a better codebook.

Vector quantization was performed in the DCT and the DWT domain. As for the DCT,
most of the information in the image exists in the low frequency part of the spectrum. For
the DWT transformation, three decomposition levels were used, and most of the informa-
tion also exists in the low frequency bands. Lower frequency bands were more precisely
compressed, which keeps as much of the information as possible. The higher frequency
bands were more coarsely compressed by using fewer bits.

Algorithms were developed with and without using the PCT in both the DCT and the DWT
domains. Without the PCT as a preprocessing step, identical compression was performed
throughout the R, G, B bands in each subimage. In another words, each subimage was treated
as a small color image, and the same codebook was used for all the three bands. So for the
compression schemes without the PCT as a preprocessing step, each transformed image
was divided into 10 subimages, the sizes are in Table 12.10-2 (also see Figure 12.10-5a).

For those compression schemes with the PCT as a preprocessing step, the “R” band (the
principal band) should be compressed more precisely to keep as much information as pos-
sible, and the “G” and “B” bands may be compressed more coarsely. So different vector
sets were designed for “R,” “G,” and “B” band for each subimage. The vector sizes and
the codebook sizes directly determine the compression ratio and the compression quality.
For a specific subimage, the vector sizes are defined by two factors: the vector width and
the vector height, and the codebook size defines how many vectors will be saved in the
codebook (Kjoelen 1995).

(b)(a)

Figure 12.10-7
(a) Image 327n.ppm after crop, (b) DCT spectrum of cropped image, log remapped. We can see that the most
energy is in low frequencies, in the upper left corner where the image is brighter. Additionally, unlike the wave-
let transform, the DCT spectrum contains no spatial information.

Application Development	 839

© 2011 by Taylor & Francis Group, LLC

Normally, with the same vector size, the larger the codebook, the better the compression
quality. As all the data is saved via a binary computer, a power of two was chosen for the
codebook sizes. With the same codebook size, the larger the vector sizes, the larger the
space required to store the whole codebook, and also the encoding speed will be much
slower. So relatively small vector sizes and proper codebook sizes were chosen according
to the required compression ratios and compression quality (Kjoelen 1995).

As most of the important information is located in the low frequency area, for those
compression schemes with compression ratio at 4:1 and 8:1, subimage 1 was specially

Choose an arbitrary codebook

Encode each input vector according to the
nearest-neighbor criterion

Distortion small
enough?

Yes

No

Quit and output the
compressed data.

For each codebook entry v, compute the Euclidean
centroid of all the input vectors encoded into v.

Use the computed centroids as the new codebook

Figure 12.10-8
Flowchart for Linde-Buzo-Gray (LBG) algorithm. This algorithm is used to find a “good,” but not necessarily
optimal, codebook for a given set of vectors.

Table 12.10-2

Sizes of the 10 Subimages in the Transform Domain for the 512 × 512 Images

Subimage 1 2 3 4 5 6 7 8 9 10

Width 64 64 64 64 128 128 128 256 256 256
Height 64 64 64 64 128 128 128 256 256 256
Number of color bands 3 3 3 3 3 3 3 3 3 3

840	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

quantized by vector(s) with the same sizes as the subimage, in another words, those sub-
images were scalar quantized pixel by pixel. For the schemes with compression ratio at
14:1 and 20:1, to achieve a higher compression ratio, subimage 1 was more precisely vector
quantized so that not much information was lost in the low frequencies.

In designing the vector sizes for high compression ratios, some subimages in the high
frequency area, especially those in the “G” and “B” bands for schemes with the PCT as
a preprocessing step, were quantized with a codebook size of 0; that is, those subimages
were totally discarded. As such subimages located in high frequency area are relatively
large, discarding such subimages can greatly increase the compression ratio. Considering
that the human visual system is not sensitive to such high frequency information, discard-
ing this information did not reduce the compression quality much.

12.10.3.3  Postprocessing

It was found that the decompressed images always showed poorer contrast than the origi-
nal images. Also, a few pixels in each color band were at the top end or the bottom end of
the histogram. For such an image, direct histogram stretching will not enhance the con-
trast, but we need to perform histogram stretching with clipping. The histogram stretch-
ing with clipping is done by clipping some of the pixels at the high end and low end of the
histogram, and stretch the other pixels, which should be most of original pixels, from 0 to
255. Figure 12.10-9 shows an example of application of this technique.

Figure 12.10-9a shows one of the decompressed images, 327 n.ppm, compressed in the
DCT domain, 8:1 compression, without any postprocessing steps. We can see the contrast
lost in the decompressed image, so we performed histogram stretching with clipping as
a postprocessing step on each color band with 2.5% (0.025) of the pixels clipped at both
the top end and the bottom end of the histogram. In Figure 12.10-9b we see the improved
contrast in the image. The SNRs of the decompressed image without postprocessing
shown in Figure 12.10-9a is 22.2dB, while the SNR of the decompressed image after the

(a) (b)

Figure 12.10-9
Image 327n.ppm. Compression schemes often result in poor contrast images, so postprocessing with a contrast
improvement method is often desirable. (a) Before postprocessing, (b) after postprocessing with a histogram
stretch with 2.5% (0.025) clipping.

Application Development	 841

© 2011 by Taylor & Francis Group, LLC

postprocessing step, shown in Figure 12.10-9b, is 30.5dB. Research has shown such a post-
processing step can enhance the SNRs about 5–8 dB.

12.10.4  Results and Analysis

Subjective and objective tests were performed for all the compression schemes. Sixty-five
skin tumor images were evaluated. The SNR was used as an objective metric. For the sub-
jective analysis the scale given in Table 12.10-1 was used and six individuals participated
in the evaluations. These six individuals were divided into two groups—three experts and
three students.

12.10.4.1  Results and Analyses for the Schemes with Compression Ratio 4:1

Figure 12.10-10 shows the subjective evaluation for the compression schemes at 4:1. It is
shown that the compression quality among the four schemes is very similar—the best is
about 0.45 better than the worst, but overall the experts ranked the images one grade lower
than the students did. The experts ranked the DWT as the best one, and the DCT with the
PCT as a preprocessing step as the worst one. Inconsistently, students ranked the DCT as
the best one while the DWT, which was ranked as the best one by experts, as the worst
one. As both the experts and the students gave good evaluations to the DCT, the DCT is
thought to be the best one, and the DCT with the PCT as a preprocessing step is thought to
be the worst one, and the difference between them is only 0.3 of a grade.

1.00

2.00

3.00

4.00

5.00

6.00

D
CT

 P
RO

D
CT

 S
TU

D
W

T
PR

O

D
W

T
ST

U

PC
T_

D
CT

 P
RO

PC
T_

D
CT

 S
TU

PC
T_

D
W

T
PR

O

PC
T_

D
W

T
ST

U

Su
bj

ec
tiv

e e
va

lu
at

io
n

Compression schemes
STU: Students

PRO: Professionals

Subjective evaluation for 4:1Worse

Better

Figure 12.10-10
Subjective evaluation results for 4:1 compression. Results for the DCT and DWT, with and without the PCT pre-
processing. The “PRO” are the experts and the “STU” are the student evaluation results. The bars show the mean
and standard deviation from the three evaluators. In general the students thought the images were better than the
experts—remember ‘1’ is no impairment, so the better image evaluations are at the bottom of the scale.

842	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Figure 12.10-11 shows the objective measurements (SNRs). We can see the DWT and the
DCT show the two highest SNRs, and the DCT with the PCT as a preprocessing step shows
the lowest one, which is consistent with the experts’ evaluation. Similar to the subjective
evaluation, the difference among the SNRs of the four schemes is not obvious; the highest
average is only 2.9 dB higher than the lowest one.

As the compression ratio, 4:1, is relatively low, all the R, G, and B bands did not lose
much information during the compression. So the advantage of performing the PCT as
a preprocessing step is not readily apparent. If the vector sizes and codebook sizes used
in the schemes with the PCT as a preprocessing step can be optimized more, the com-
pression quality may be enhanced to be a bit better than those schemes without the PCT.
Figure 12.10-12 shows the image 327 n.ppm compressed at 4:1.

12.10.4.2  Results and Analyses for the Schemes with Compression Ratio 8:1

Figure 12.10-13 shows the subjective evaluations for the compression schemes at 8:1. It is
shown that both the experts and students ranked the DCT with the PCT as a preprocess-
ing step as the worst one. The experts ranked the DCT as the best one, while the students
ranked the DWT with the PCT as a preprocessing step as the best one, which is ranked by
experts as the third best one. Similar to the evaluations for 4:1, the difference among the
four schemes is not significant, but the experts ranked the images around 0.6 of a grade
worse than the students did. Considering both the experts’ and the students’ evaluations,
the DCT and the DWT with the PCT as a preprocessing step are thought to be the best two,
and the DCT with the PCT as a preprocessing step is thought to be the worst one.

Figure 12.10-14 shows the objective measurements (SNRs). The DWT with the PCT as
a preprocessing step showed the highest SNR, while the DWT, which was ranked as the
second best by the experts, shows the lowest SNR. Similar to the subjective evaluations, the
average SNRs of the four schemes do not differ much, the highest is only about 1 dB higher
than the lowest one. And since the standard deviations are similar, it can be concluded
that no significant difference is found by this measure. As the compression ratio, 8:1, is still
relatively low, the advantage of performing the PCT as a preprocessing step still did not
show obviously. Figure 12.10-15 shows the image 327n.ppm compressed at 8:1.

10.00

20.00

30.00

40.00

DCT DWT PCT_DCT PCT_DWT

O
bj

ec
tiv

e m
ea

su
re

m
en

t (
dB

)

Compression schemes

Objective measurement for 4:1

Figure 12.10-11
Objective measurement—the signal-to-noise ratio. The SNR is calculated by using the original image as the sig-
nal and the difference between it and the decompressed image as the noise. This shows the objective evaluation
results for 4:1 compression; the DCT and DWT, with and without the PCT preprocessing.

Application Development	 843

© 2011 by Taylor & Francis Group, LLC

12.10.4.3  Results and Analyses for the Schemes with Compression Ratio 14:1

Figure 12.10-16 shows the subjective evaluations for the compression schemes at 14:1. The
experts and students gave consistent evaluations among the four schemes. Both ranked
the DCT with the PCT as a preprocessing step as the best one, and the DWT as the worst
one, around one grade worse than the best one. The difference of the compression quality
among the four compression schemes is more obvious than with the 4:1 and 8:1 compres-
sion schemes. Remember a rating of 3 means “somewhat objectionable impairment,” and
4 is “definitely objectionable impairment.”

Figure 12.10-17 shows the objective measurements (SNRs). Consistent with the subjec-
tive evaluation, the DCT shows the highest SNR, and the DWT showed the lowest, which
is around 1.9 dB lower than the highest. As the compression ratio, 14:1, is relatively high,
more information in each color band was lost during compression. The PCT did provide
some improvement—in both the subjective evaluation and the objective tests. The DCT
with the PCT as a preprocessing step, is ranked around 0.6 of a grade better than the DCT
by the subjective evaluations, and shows 0.7 dB higher than the DCT in SNRs tests. The
DWT with the PCT as a preprocessing step, is ranked around 0.8 of a grade better than the

(a) (b)

(c) (d)

Figure 12.10-12
Image 327n.ppm compressed at 4:1. (a) DCT, (b) DWT, (c) DCT with PCT preprocessing, (d) DWT with PCT
preprocessing.

844	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

1.00

2.00

3.00

4.00

5.00

6.00

D
CT

 P
RO

D
CT

 S
TU

D
W

T
PR

O

D
W

T
ST

U

PC
T_

D
CT

 P
RO

PC
T_

D
CT

 S
TU

PC
T_

D
W

T
PR

O

PC
T_

D
W

T
ST

U

Su
bj

ec
tiv

e e
va

lu
at

io
n

Compression schemes
STU: Students

PRO: Professionals

Subjective evaluation for 8:1Worse

Better

Figure 12.10-13
Subjective evaluation results for 8:1 compression. Results for the DCT and DWT, with and without the PCT
preprocessing.

10.00

20.00

30.00

40.00

DCT DWT PCT_DCT PCT_DWT

O
bj

ec
tiv

e m
ea

su
re

m
en

t (
dB

)

Compression schemes

Objective measurement for 8:1

Figure 12.10-14
Objective measurement—the signal-to-noise ratio. The SNR is calculated by using the original image as the sig-
nal and the difference between it and the decompressed image as the noise. This shows the objective evaluation
results for 8:1 compression; the DCT and DWT, with and without the PCT preprocessing.

Application Development	 845

© 2011 by Taylor & Francis Group, LLC

DWT by the subjective evaluations, and shows 1.4 dB higher than the DWT in SNRs tests.
Figure 12.10-18 shows the 327 n.ppm compressed with the schemes at 14:1.

12.10.4.4  Results and Analyses for the Schemes with Compression Ratio 20:1

Figure 12.10-19 shows the subjective evaluations for the compression schemes at 20:1. The
experts ranked the DCT with the PCT as a preprocessing step as the best one, while the
students ranked the DWT with the PCT as a preprocessing step as the best one. But both
groups ranked the DCT as the worst one because of the color shifts, more than one full
grade worse the other three schemes. We can see the compression quality among the four

(c) (d)

(a) (b)

Figure 12.10-15
Image 327n.ppm compressed at 4:1. (a) DCT, (b) DWT, (c) DCT with PCT preprocessing, (d) DWT with PCT
preprocessing.

846	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

schemes at 20:1 spread out in a relatively large range⎯the DCT with the PCT as a prepro-
cessing step maintained most of the information and produced acceptable compression
quality, while the DCT caused unacceptable color shifts and the compression quality is
much worse.

Figure 12.10-20 shows the objective measurements (SNRs). Consistent with the subjec-
tive evaluations, the DCT with the PCT a preprocessing step and the DWT with the PCT a
preprocessing step show the highest two SNRs, and the DCT shows the lowest SNR, about

10.00

20.00

30.00

40.00

DCT DWT PCT_DCT PCT_DWT

O
bj

ec
tiv

e m
ea

su
re

m
en

t (
dB

)

Compression schemes

Objective measurement for 14:1

Figure 12.10-17
Objective measurement—the signal-to-noise ratio. The SNR is calculated by using the original image as the sig-
nal and the difference between it and the decompressed image as the noise. This shows the objective evaluation
results for 14:1 compression; the DCT and DWT, with and without the PCT preprocessing.

Worse

Better

1.00

2.00

3.00

4.00

5.00

6.00

D
CT

 P
RO

D
CT

 S
TU

D
W

T
PR

O

D
W

T
ST

U

PC
T_

D
CT

 P
RO

PC
T_

D
CT

 S
TU

PC
T_

D
W

T
PR

O

PC
T_

D
W

T
ST

U

Su
bj

ec
tiv

e e
va

lu
at

io
n

Compression schemes
STU: Students

PRO: Professionals

Subjective evaluation for 14:1

Figure 12.10-16
Subjective evaluation results for 14:1 compression. Results for the DCT and DWT, with and without the PCT
preprocessing.

Application Development	 847

© 2011 by Taylor & Francis Group, LLC

6 dB lower than the other schemes. At the 20:1 compression ratio the advantage of using
the PCT as a preprocessing step is apparent. The DCT without the PCT as a preprocessing
step exhibits a noticeable color shift, while the DCT with the PCT as a preprocessing step
is ranked by the experts as the best and shows the highest SNR. Figure 12.10-21 shows the
image 327n.ppm compressed at 20:1.

12.10.4.5  Comprehensive Analysis of the Four Compression Ratios

Figure 12.10-22 shows both the experts’ and students’ subjective evaluations of the four
schemes along with the compression ratios. For the curve of the DWT, we can see, the com-
pression ratio of 14:1 showed worse evaluations than 20:1. We believe the reason for this is
that when the evaluators were grading the 20:1 compressed images, compared to the other
compression schemes that showed relatively low quality, evaluation for the DWT was
psychologically biased. At the compression ratio of 4:1, all the four compression schemes
showed similar compression quality, but as the compression ratio goes higher and higher,
the compression qualities among the four schemes are more and more different, and using
the PCT as a preprocessing step shows more and more enhancement in the compression

(a) (b)

(c) (d)

Figure 12.10-18
Image 327n.ppm compressed at 14:1. (a) DCT, (b) DWT, (c) DCT with PCT preprocessing, (d) DWT with PCT pre-
processing. With this compression ratio we start to artifacts and blurring—look at the letters on the ruler.

848	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

quality. At 4:1, the two schemes without the PCT as a preprocessing show a bit better com-
pression quality than the two schemes with the PCT as a preprocessing step, but at 20:1,
the DCT with PCT as a preprocessing step shows much better compression quality than
the DCT.

Figure 12.10-23 shows the SNRs of the four schemes along the compression ratios. We
can see the compression quality of the scheme with the DCT decreases quickly as the

10.00

20.00

30.00

40.00

DCT DWT PCT_DCT PCT_DWT

O
bj

ec
tiv

e m
ea

su
re

m
en

t (
dB

)

Compression schemes

Objective measurement for 20:1

Figure 12.10-20
Objective measurement—the signal-to-noise ratio. The SNR is calculated by using the original image as the sig-
nal and the difference between it and the decompressed image as the noise. This shows the objective evaluation
results for 20:1 compression; the DCT and DWT, with and without the PCT preprocessing.

Worse

Better

1.00

2.00

3.00

4.00

5.00

6.00

D
CT

 P
RO

D
CT

 S
TU

D
W

T
PR

O

D
W

T
ST

U

PC
T_

D
CT

 P
RO

PC
T_

D
CT

 S
TU

PC
T_

D
W

T
PR

O

PC
T_

D
W

T
ST

U

Su
bj

ec
tiv

e e
va

lu
at

io
n

Compression schemes
STU: Students

PRO: Professionals

Subjective evaluation for 20:1

Figure 12.10-19
Subjective evaluation results for 20:1 compression. Results for the DCT and DWT, with and without the PCT
preprocessing.

Application Development	 849

© 2011 by Taylor & Francis Group, LLC

compression ratio goes up the SNR at 20:1 is 13 dB lower than 4:1; while the compression
quality of the DCT with the PCT as a preprocessing step does not go down nearly as much,
only 4.5 dB lower.

12.10.5  Conclusions and Future Work

The compression schemes designed achieved reasonable compression results, except for
the DCT at 20:1, which caused unacceptable color shifts. At the compression ratio of 4:1,
the two schemes without the PCT as a preprocessing step show a little better compression
quality than the two schemes with the PCT. If the codebook sizes can be better optimized,
we believe higher compression quality can be achieved for the schemes with the PCT.

(a) (b)

(c) (d)

Figure 12.10-21
Image 327n.ppm compressed at 20:1. (a) DCT, (b) DWT, (c) DCT with PCT preprocessing, (d) DWT with PCT
preprocessing. At this compression ratio we see the color shift with the DCT, and observe that use of the PCT
as a preprocessing step eliminates the color shift (shown in a and c). The color is critical in the dermatologists’
diagnosis of a skin lesion, so for this application the color shift is unacceptable. The DWT has no color shift, but
has more visible blurring compared to the DCT.

850	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

15

20

25

30

35

4–1 8–1 14–1 20–1

SN
R(

dB
)

Compression ratio

SNR of the four compression ratios

DCT

DWT

DCT_PCT

DWT_PCT

Figure 12.10-23
Signal-to-noise, SNR, for the four compression ratios. The SNR is calculated by using the original image as the
signal and the difference between it and the decompressed image as the noise. Here we see that all four are
reasonably close, except for the DCT only at the 20:1 compression ratio due to the color shift that occurs.

(a)

(b)

4–1

6

5

4

3

2

1
8–1 14–1 20–1

Su
bj

ec
tiv

e e
va

lu
at

io
n

6

Worse

Better

Worse

Better

5

4

3

2

1

Su
bj

ec
tiv

e e
va

lu
at

io
n

Compression ratio

Professionals' subjective evaluation for the
four compression ratios

DCT

DWT

DCT_PCT

DWT_PCT

4–1 8–1 14–1 20–1
Compression ratio

Students' subjective evaluation for the four
compression ratios

DCT

DWT

DCT_PCT

DWT_PCT

Figure 12.10-22
(a) Average experts’ subjective evaluation for the four compression ratios, (b) average students’ subjective evalu-
ation for the four compression ratios. In both graphs we can see that as the compression ratio increases, the need
for the PCT as a preprocessing step becomes more apparent.

Application Development	 851

© 2011 by Taylor & Francis Group, LLC

To help reduce the ringing artifacts at the compression ratios of 14:1 and 20:1, optimized
wavelet transform basis vectors can be investigated.

In this research, the codebook is saved as the float data type, which uses 4 bytes. Higher
compression ratios can be achieved by using a less precise data type to save the codebook,
such as the byte data type, which uses one byte to store each number. If the codebook is
saved as byte type, the compression quality will not be changed much, while the sizes of
the codebooks will be reduced by a factor of four. Such an improvement will enhance the
compression ratio 1.5~2.5 times higher, while keeping the compression quality almost the
same. This is because the byte data range can accommodate the data range of most of the
transformed images. Thus, we can remap the float data type of the codebook, after the
transforms, into the byte data type before saving the codebook. Also, with vector quan-
tization and using the byte data type, we can further improve the compression quality
by keeping the DC term separately in the compressed image file. This is because after
doing the DCT transform, the value corresponding to the DC term is always much greater
than the other terms, which tend to be clustered. Thus, by removing the DC term, we can
improve the data precision when remapping the float into byte for the other frequency
components.

The color shift is a problem for this research. Here, compression was performed on a
group of skin tumor images, and any color shift can be critical to a dermatologist’s analy-
sis. For other possible uses, small color shifts may not be as problematic. Here, a color
shift is most obvious in the compression schemes without the PCT preprocessing at high
compression ratios, such as the DCT at 20:1. As the compression was performed more
coarsely at high compression ratios, if one of the three color bands lose, or retain, much
more information than the other two bands, the color shift will appear. The PCT is a good
method for solving this problem. We can see, the compression schemes with the PCT as a
preprocessing step exhibit much less color shift. The reason is that the PCT transforms the
majority of the information from the three color bands into the principal band.

The histogram stretching with clipping was used as a postprocessing step, which
enhanced the SNRs substantially. However, in the subjective evaluations, in those bright
areas with pixel values higher than 240, some detailed patterns could not be seen clearly.
The reason is, for the human visual system, gray levels from 240 to 255 almost look the
same, so the information is not perceptible. One of the possible methods to alleviate this
problem is to perform an “adaptive clipping,” where we adjust the percentage of the pix-
els to be clipped according to the specific histogram of an image. Other future areas of
investigation include optimizing the vector sizes and codebook sizes, the preprocessing
techniques, and the postprocessing techniques.

Note: Subsequent to this research being completed the wavelet transform has proved
most effective in commercial compression schemes, such as JPEG2000.

12.10.6 A cknowledgments

This research was funded in part by SIUE FUR Grant number F-EN927, SIUE FUR Grant
number 2-79433, and NIH SBIR Grant number 2-R44-CA60294-02A2 by Stoecker &
Associates. Dr. W. Stoecker and Dr. R. Moss of the University of Missouri–Rolla took the
time to provide expert evaluations for all the compressed images.

852	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

References

1st-Class Expert Systems, Inc., Reference Manual, 1st Printing 1989, 526 Boston Post Road-150, East
Wayland, MA, 01778.

Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I., Image Coding Using Wavelet Transform,
IEEE Transactions on Image Processing 1, no. 2 (1992).

Baram, Y., A Geometric Approach to Consistent Classification, Pattern Recognition 33, no. 2 (2000):
177–84.

Bono, A., Bartoli, C., Baldi, M., Tomatis, S., Bifulco, C., and Santinami, M., Clinical and Dermatoscopic
Diagnosis of Small Pigmented Skin Lesions, European Journal of Dermatology 12, no. 6 (2002):
573–76.

Campbell, G., DeFanti T. A., Frederiksen, J., Joyce, S. A., and Leske, L. A., Two Bit/Pixel Full Color
Encoding, Siggraph 20, no. 4 (1986).

Campbell, N. W., Thomas, B. T., and Troscianko, T., Automatic Segmentation and Classification of
Outdoor Images Using Neural Networks, International Journal of Neural Systems, 8 (1997): 137–44.

Chen, X., Automatic Detection of Lesion Border and Edge-Related Structures in Dermoscopy Images, PhD
Dissertation, Department of Electrical and Computer Engineering, Rolla, MO: University of
Missouri-Rolla, August 2007.

Dougherty, E. R., and Lotufo, R. A., Hands-On Morphological Image Processing, Bellingham, WA: SPIE
Press, 2003.

Duda, R. O., and Hart, P. E., Pattern Classification and Scene Analysis, New York, NY: Wiley, 1973.
Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, 2nd ed., New York, NY: John Wiley &

Sons, Inc., 2000.
Elbaum, M., Kopf, A. W., Rabinovitz, H. S., Langley, R. G., Kamino, H., Mihm, M. C., Jr, Sober, A.

J., et al., Automatic Differentiation of Melanoma from Melanocytic Nevi with Multispectral
Digital Dermoscopy: A Feasibility Study, Journal of the American Academy of Dermatology 44, no.
2 (2001): 207–18.

Ercal, F., Chawla, A., Stoecker, W. V., Lee, H.-C., and Moss, R. H., Neural Network Diagnosis of
Malignant Melanoma From Color Images, IEEE Transactions on Biomedical Engineering, 41, no.
9 (1994): 837–44.

Erkol, B., Moss, R. H., Stanley, R. J., Stoecker, W. V., and Hvatum, E., Automatic Lesion Boundary
Detection in Dermoscopy Images Using Gradient Vector Flow Snakes, Skin Research Technology
11, no. 1 (2005): 17–26.

Fang, B., Hsu, W., and Lee, M. L., Reconstruction of Vascular Structure in Retinal Images, Singapore-MIT
Alliance, National University of Singapore, IEEE, 2003.

Fu, L., Neural Networks in Computer Intelligence, New York, NY: McGraw-Hill, Inc., 1994.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B., Bayesian Data Analysis, 2nd ed., Boca Raton,

FL: Chapman & Hall/CRC, 2003.
Golding, L. S., Quality Assessment of Digital Television Signals, SMPTE Journal 87 (1978): 153–57.
Golston, J., Stoecker, W., and Moss, R., Automatic Detection of Irregular Borders in Melanoma and

Other Skin Tumors, Computerized Medical Imaging and Graphics 16 (1992): 199–203.
Gonzales, R. C., and Woods, R. E., Digital Image Processing, 218–21, Reading, MA: Addison-Wesley,

1992.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, 2nd ed., Upper Saddle River, NJ: Prentice

Hall, 2002.
Gose, E., Johnsonbaugh, R., and Jost, S., Pattern Recognition and Image Analysis, Upper Saddle River,

NJ: Prentice Hall PTR, 1996.
Gurney, K., An Introduction to Neural Networks, London, UK: UCL Press, 1996.
Hance, G. A., Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Unsupervised Color Image

Segmentation with Application to Skin Tumor Borders, IEEE Engineering in Medicine and Biology
15, no. 1 (1996): 104–11.

Application Development	 853

© 2011 by Taylor & Francis Group, LLC

Harris, D. E., Texture Analysis of Skin Cancer Images, PhD Dissertation, ECE Department, Rolla, MO:
University of Missouri-Rolla, 1991.

Iqbal, M., Aibinu, A., and Gubbal, N., Automatic Diagnosis of Diabetic Retinopathy Using Fundus
Images, MS Thesis, Bleking Institute of Technology, Karlskrona, Sweden, 2006.

Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J., and Thun, M. J.,
Cancer Statistics 2005. CA–A Cancer for Clinicians 55 (2005): 10–30.

Jiang, X., Harvey, A., and Wah, K. S., Constructing and Training Feed-Forward Neural Networks for
Pattern Classification, Pattern Recognition Journal 36, no. 4 (2003): 853–67.

Jolliffe, I. T., Principal Component Analysis, 2nd ed., New York, NY: Springer-Verlag, 2002.
Kjoelen, A., Thompson, M. J., Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Performance of AI

Methods in Detecting Melanoma, IEEE Engineering in Medicine and Biology 14, no. 4 (1995):
411–16.

Kjoelen, A., Umbaugh, S. E, and Zuke, M., Compression of Skin Tumor Images, IEEE Engineering
Medicine and Biology 17, no. 3 (May/June 1998): 73–80.

Kjoelen, A., Umbaugh, S., Stoecker, W., and Moss, R., Artificial Intelligence Applied to Detection of
Melanoma, Proceedings of the 15th IEEE Conference on Engineering in Medicine and Biology, San
Diego, CA, 1993.

Kjoelen, A., Wavelet Based Compression of Color Skin Tumor Images, MS Thesis, Edwardsville, IL:
Southern Illinois University, 1995.

Kou-Yuan, H., Neural Network for Robust Recognition of Seismic Patterns, Proceedings of the
International Joint Conference on Neural Networks, 4 (2002): 2930–35.

Lide, D. R., ed., Methods of Conjugate Gradients for Solving Linear Systems, A Century of Excellence
in Measurements, Standards, and Technology, NIST Special Publication 958, http://nv1.nist.gov/
pub/nistpubs/sp 958-lide/081-085.pdf, 2001.

Linde, Y., Buzo, A., and Gray, R., An Algorithm for Vector Quantizer Design, IEEE Transactions on
Communications, 28 no. 1 (1980).

Marghoob, A., M.D., Dermatology, Memorial Sloan Kettering, 800 Veterans Memorial Parkway,
Hauppauge, NY, 11788.

McLean, R., Tumor Classification Based on Relative Color Analysis of Melanoma and Non Melanoma
Lesion Images, MS Thesis, Department of Electrical Engineering, University of Missouri-Rolla,
1994.

Meadows, M., Saving Your Sight: Early Detection is Critical, FDA Consumer Magazine, March–April
2002. http://www.fda.gov/fdac/features/2002/202_eyes.html

Menzies, S. W., Bischof, L., Talbot, H., Gutenev, A., Avramidis, M., Wong, L., Lo, S. K., et al., The
Performance of SolarScan: An Automated Dermoscopy Image Analysis Instrument for the
Diagnosis of Primary Melanoma, Archives of Dermatology 141, no. 11 (2005): 1388–96.

Menzies, S., M.D., Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia.
Moller, M. F., A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks,

6, no. 4 (1993): 525–33.
Nadler, M., and Smith, E. P., Pattern Recognition Engineering, 266–68, New York, NY: Wiley, 1992.
Noble, B., Applied Linear Algebra, Upper Saddle River, NJ: Prentice Hall, 1969.
Pagadala, P., Tumor Border Detection in Epiluminescence Microscopy Images, M.S. Thesis, ECE Department,

Rolla, MO: University of Missouri-Rolla, 1998.
Park, D. J., Nam, K. M, and Park, R. H., Edge Detection in Noisy Images Based On the Co-Occurrence

Matrix, Pattern Recognition 27, no. 6 (1994): 765–75.
Partek Inc., Partek Tutorials, St. Charles MO, 2001.
Partek Inc., Partek Tutorials, St. Charles, MO, 2005.
Pearson, R. S., Spectral Nature of Remote Sensing, Department of Geography, Edwardsville, IL: Southern

Illinois University at Edwardsville, IL, 2002.
Quinlan, J. R., Learning Efficient Classification Procedures and Their Application to Chess End

Games, Machine Learning: An Artificial Intelligence Approach, eds. R. S. Michalski, T. F. Carbonell,
and T. M. Mitchell, 461–82, Palo Alto CA: Tiog9 Publishing Co., 1983.

854	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Rapantzikos, K., Zervakis, M., and Balas, K., Detection and Segmentation of Drusen Deposits on
Human Retina: Potential in the Diagnosis of Age-Related Macular Degeneration, Medical Image
Analysis 7, no. 1 (March 2003): 7(1): 95–108.

Rosado, B., Menzies, S., Harbauer, A., Pehamberger, H., Wolff, K., Binder, M., and Kittler, H., Accuracy
of Computer Diagnosis of Melanoma. A Quantitative Meta-Analysis. Archives of Dermatology
139 (2003): 361–67.

Schalkoff, R. J., Pattern Recognition: Statistical, Structural, and Neural Network Approaches, New York,
NY: John Wiley & Sons, 1992.

Schalkoff, R., Pattern Recognition, New York, NY: Wiley, 1992.
Stoecker, W., Li, W., and Moss, R., Automatic Detection of Asymmetry in Skin Tumors, Computerized

Medical Imaging and Graphics 16 (1992): 191–97.
Teng, T., Lefley, M., and Claremont, D., Progress Towards Automatic Diabetic Ocular Screening:

A Review of Image Analysis and Intelligent Systems for Diabetic Retinopathy, Medical and
Biological Engineering and Computing 40, no. 1 (2002): 2–13.

Thorn, M., Penten, F., Johansson, B., et al., Rapid Increase in Diagnosis of Cutaneous Melanoma In
Situ in Sweden, 1968–1992, Ca Detection and Prevention 22 (1998): 430.

Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., An Automatic Color Segmentation Algorithm with
Application to Identification of Skin Tumor Borders, Computerized Medical Imaging and Graphics
16, no. 3 (May/June 1992): 227–35.

Umbaugh, S. E, Moss, R. H., and Stoecker, W. V., Automatic Color Segmentation of Images with
Application to Detection of Variegated Coloring in Skin Tumors, IEEE Engineering in Medicine
and Biology 8, no. 4 (December 1989).

Umbaugh, S. E, Wei, Y., and Zuke, M., Feature Extraction in Image Analysis, IEEE Engineering in
Medicine and Biology Magazine 16, no. 4 (1997): 62–73.

Zurada, J. M., Introduction to Artificial Neural Systems, St. Paul, MN: West Publishing Company,
1992.

855© 2011 by Taylor & Francis Group, LLC

13
CVIPtools C® Function Libraries

13.1  Introduction and Overview

This chapter contains a brief description of each of the Computer Vision and Image
Processing tools (CVIPtools) Toolbox libraries, and prototypes for all the functions. Some
of the commonly used Toolkit functions from the Band, Mapping, and Image libraries are
also included. The libraries are in alphabetical order, as are all the functions contained
in each library. Additionally, information about related functions is included to ease the
function search process. This information will facilitate the use of these functions in the
CVIPlab program, or any other C® or C++® program.

In general, many functions return pointers to CVIPtools Image structures (IMAGE or
Image are both valid designations). If the return value is NULL, an error has occurred. The
general philosophy regarding memory management is that whoever has control is responsi-
ble. This means that any parameters passed to a function will be either used for return data
or freed. It also means that if a programmer wants to retain a data structure, they should
pass a copy of it to any CVIPtools function. By clearly following this simple rule, memory
leaks can be avoided. For details of the operation of a specific function, see the Help pages
in the CVIPtools. For a quick look at the function list see Appendix D.

13.2  Arithmetic and Logic Library: ArithLogic.lib

Functions for the application of arithmetic and logic operations to images are contained in
this library. These functions require one or two Image pointers as input and all return an
Image pointer. Related functions, specifically multiplication functions that perform gray-
level mapping, are in the library Histo.lib.

Arithlogic Library Function Prototypes

Image *add_Image(Image *inputIMAGE1,Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

Image *and_Image(Image *inputIMAGE1, Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

856	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *divide_Image(Image *inputIMAGE1,Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

Image *multiply_Image(Image *inputIMAGE1,Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

Image *not_Image(Image *inputIMAGE)
< inputIMAGE > ‑ pointer to an image

Image *or_Image(Image *inputIMAGE1, Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

Image *subtract_Image(Image *inputIMAGE1, Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

Image *xor_Image(Image *inputIMAGE1, Image *inputIMAGE2)
< inputIMAGE1 > ‑ pointer to an image
< inputIMAGE2 > ‑ pointer to an image

13.3  Band Image Library: Band.lib

Although Band.lib is a Toolkit library, consisting of lower level functions, these two are of
particular utility so they are listed here. These functions allow for processing of individual
bands of multiband images.

Image *assemble_bands(Image **inImgs, int noimgs)
< inImgs > ‑ pointer to array of image pointers
< noimgs > ‑ number of image pointers contained in the array

Image *extract_band(Image *inImg, int bandno)
< inImgs > ‑ Pointer to image
< noimgs > ‑ band number to be extracted from the image

13.4  Color Image Library: Color.lib

The color library, Color.lib, primarily contains functions that modify color image informa-
tion by a color transform. This includes principal components, luminance, and various
color space transforms. In addition, the frequency domain pseudocolor is contained here,
but the gray-level mapping pseudocolor that appears in CVIPtools uses the gray-level lin-
ear transform contained in Histo.lib.

CVIPtools C® Function Libraries	 857

© 2011 by Taylor & Francis Group, LLC

Color Library Function Prototypes

Image *colorxform(const Image *rgbIMAGE, COLOR_FORMAT newcspace, float *norm,
float *refwhite, int dir)
< rgbIMAGE > ‑ pointer to an image (data type equal to or less precise than type
CVIP_FLOAT)
< newcspace > ‑ desired color space, one of: RGB, HSL, HSV, SCT, CCT, LUV, LAB, XYZ
< norm > ‑ pointer to a normalization vector
< refwhite > ‑ pointer to reference white values (for LUV and LAB only)
< dir > ‑ direction of transform (1 = > (RGB‑ > newcspace) else (newcspace‑ > RGB)

Image *luminance_Image(Image *inIm)
< inIm > ‑ pointer to an image

Image *lum_average(Image *input_Image)
< input_Image > ‑ pointer to an image

Image *ipct(Image *imgP, CVIP_BOOLEAN is_mask, float *maskP)
< imgP > ‑ pointer to an image
< is_mask > ‑ whether to ignore a background color (CVIP_YES or CVIP_NO)
< maskP > ‑ background color to ignore

Image *pct(Image *imgP, CVIP_BOOLEAN is_mask, float *maskP)
< imgP > ‑ pointer to an image
< is_mask > ‑ whether to ignore a background color (CVIP_YES or CVIP_NO)
< maskP > ‑ background color to ignore

Image *pct_color(Image *imgP, CVIP_BOOLEAN is_mask, float *maskP, int choice)
< imgP > ‑ pointer to Image structure
< is_mask > ‑ whether to ignore a background color (CVIP_YES or CVIP_NO)
< maskP > ‑ background color to ignore
< choice > ‑ 1 = perform PCT, 2 = perform IPCT

Image *pseudocol_freq(Image *grayIMAGE, int inner, int outer, int blow, int bband, int bhigh)
< grayIMAGE > ‑ input gray image
< inner > ‑ low cutoff frequency
< outer > ‑ high cutoff frequency
< blow > ‑ map lowpass results to band # (R = 0,G = 1,B = 2)
< bband > ‑ map bandpass results to band # (R = 0,G = 1,B = 2)
< bhigh > ‑ map highpass results to band # (R = 0,G = 1,B = 2)
(note: blow ! = bband ! = bhigh)

13.5  Compression Library: Compression.lib

The image compression library contains functions that compress and decompress
images, as well as associated functions. The compression functions write the compressed
data file to disk, and return a 0 upon successful completion and a –1 if an error occurs.

858	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

The compressed data file is either in CVIPtools VIP format or a standard compression
file format such as JPEG or JPEG2000. The decompression functions take file names as
input, and output Image pointers to the decompressed image. Two utility functions,
rms_error and srn, which return the root-mean-square error and signal-to-noise ratio are
included.

Compression Library Function Prototypes

int bit_compress(Image *inputIMAGE, char *filename, byte sect)
< inputIMAGE > ‑ pointer to the image
< filename > ‑ pointer to a character array
< sect > ‑ bitmask of planes to retain

Image *bit_decompress(char *filename)
< filename > ‑ pointer to a character string containing the file name

Image *bit_planeadd(char *filename)
< filename > ‑ pointer to a character array

int btc_compress(Image *inputIMAGE, char *filename)
< inputIMAGE > ‑ pointer to the image

Image *btc_decompress(char *filename)
< filename > ‑ pointer to a character string containing the file name

int btc2_compress(Image *inputIMAGE, char *filename, int blocksize)
< inputIMAGE > ‑ pointer to an image
< filename > ‑ pointer to character string containing the output file name
< blocksize > ‑ blocksize

Image *btc2_decompress(char *filename)
< filename > ‑ pointer to character string containing filename

int btc3_compress(Image *inputIMAGE, char *filename, int blocksize)
< inputIMAGE > ‑ pointer to an image
< filename > ‑ pointer to character string containing output filename
< blocksize > ‑ blocksize

Image *btc3_decompress(char *filename)
< filename > ‑ pointer to a character string containing the file name

int dpc_compress(Image *inputIMAGE, char *filename, float ratio, int bit_length, int clip-
ping, int direction, int origin)
< inputIMAGE > ‑ pointer to an image
< filename > ‑ pointer to character string containing output filename
< ratio > ‑ the correlation factor
< bit_length > ‑ number of bits for compression (1 to 8)
< clipping > ‑ clip to maximum value (1), otherwise 0
< direction > ‑ scan image horizontally (0) or vertically (1)
< origin > ‑ use original (1) or reconstructed (0) values

Image *dpc_decompress(char *filename)
< filename > ‑ pointer to a character string containing the name of the compressed file

CVIPtools C® Function Libraries	 859

© 2011 by Taylor & Francis Group, LLC

int frac_compress(Image *inputImage,char *filename, double tol, int min_part1, int max_
part1, int dom_type1, int dom_step1, char c1, char c2, int s_bits1, int o_bits1)
< inputImage > ‑ pointer to an Image structure
< filename > ‑ character array
< tol > ‑ tolerance value
< min_part1 > ‑ recursion size min.
< max_part1 > ‑ recursion size max.
< dom_type1 > ‑ domain type
< dom_step1 > ‑ domain step
< c1 > ‑ character(y/n) for searching 24 domain classes
< c2 > ‑ character(y/n) for searching 3 domain classes
< s_bits1 > ‑ scaling bits
< o_bits1 > ‑ offset bits

Image *frac_decompress(char *filename)
< filename > ‑ name of the compressed file

int glr_compress(Image *inputIMAGE, char *filename, int win)
< inputIMAGE > ‑ pointer to an image
< filename > ‑ pointer to character string containing output filename
< win > ‑ size of window (1‑128)

Image *glr_decompress(char *filename)
< filename > ‑ name of the compressed file

int huf_compress(Image *inputIMAGE, char *filename)
< inputIMAGE > ‑ pointer to the image
< filename > ‑ pointer to character string containing output filename

Image *huf_decompress(char *filename)
< filename > ‑ pointer to character string containing compressed filename

int jpg_compress(Image *cvipImage, char *filename, int quality, CVIP_BOOLEAN gray-
scale, CVIP_BOOLEAN optimize, int smooth, CVIP_BOOLEAN verbose, char *qtablesFile)
< cvipImage > ‑ pointer to the image
< filename > ‑ pointer to character string containing filename
< quality > ‑ quality factor, determines amount of compression
< grayscale > ‑ output image grayscale only (CVIP_YES or CVIP_NO)?
< optimize > ‑ fast or slower (better results) (CVIP_YES or CVIP_NO)?
< smooth > ‑ smooth out artifacts, (CVIP_YES or CVIP_NO)?
< verbose > ‑ text messages during compression (CVIP_YES or CVIP_NO)?
< qtablesFile > ‑ pointer to file containing user specified quantization tables (NULL pointer
will use default tables)

Image *jpg_decompress(char *filename, int colors, CVIP_BOOLEAN blocksmooth, CVIP_
BOOLEAN grayscale, CVIP_BOOLEAN nodither, CVIP_BOOLEAN verbose);)
< filename > ‑ pointer to character string containing compressed filename
< colors > ‑ number of colors to use
< blocksmooth > ‑ postprocess to improve visual results for block artifacts (CVIP_YES or
CVIP_NO)?
< grayscale > ‑ output image grayscale (CVIP_YES or CVIP_NO)?
< nodither > ‑ use no dithering on the output mage (CVIP_YES or CVIP_NO)?
< verbose > ‑ text messages during compression (CVIP_YES or CVIP_NO)?

860	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

int jp2_compress(Image *inputImage, char *filename, int rate, int quality, int numberoflay-
ers, int block_size)
< inputImage > ‑ pointer to an input Image
< filename > ‑ pointer to the name of the file
< rate > ‑ compression ratio that is to be applied to the image
< quality > ‑ quality level that is to be achieved during the compression of the image
< numberoflayers > ‑ number of resolution for the discrete wavelet transform (DWT) to
be applied
< block_size > ‑ size of the code block

Image *jp2_decompress(char *filename)
< filename > ‑ pointer to the name of the file

float *rms_error(Image *im1, Image *im2)
< im1 > ‑ pointer to Image
< im2 > ‑ pointer to Image

float *snr(Image *im1, Image *im2)
< im1 > ‑ pointer to Image
< im2 > ‑ pointer to Image

int vq_compress (Image *inputImage, char *outfile_name, int cdbook_in_file, int fixed_
codebook, float in_error_thres, char *cdbook_file, int in_no_of_entries, int in_row_vector,
int in_col_vector, XFORM_FMT xform)
< inputImage > ‑ pointer to an Image structure
< outfile_name > ‑ output file name
< cdbook_in_file > ‑ codebook file writing control
< fixed_codebook > ‑ codebook file reading control
< in_error_thres > ‑ distortion control
< cdbook_file > ‑ the codebook file name
< in_no_of_entries > ‑ total number of vectors in the code-book
< in_row_vector > ‑ total number of rows in a vector
< in_col_vector > ‑ total number of cols in a vector
< xform > ‑ what kind of transform and compression ratio are used

Image *vq_decompress(char *filename)
< filename > ‑ pointer to a character string containing the compressed file name

Image *xvq_compress(Image *image, int xform, int scheme, char *filename, int file_type,
int remap_type, int dc)
< image > ‑ input image
< xform > ‑ transform domain:1 – DCT, 2 ‑ PCT_DCT, 3 – WAVELET, 4 ‑ PCT_WAVELET
< scheme > ‑ VQ schemes:1-8 ‑ compression schemes in the domain mentioned above; 9 ‑ cus-
tomize the vector sets, but this can only be used in CVIPtools; 10 ‑ VQ in spatial domain.
< filename > ‑ temporary file name
< filetype > ‑ the file type you want to save as: 1 ‑ CVIP_FLOAT, 2 ‑ CVIP_BYTE,
3 ‑ CVIP_SHORT
< remap_type > the remap method that you should choose when you save file as CVIP_
BYTE data type or CVIP_SHORT data type: 1 ‑ linear remap, 2 ‑ log remap
< dc > ‑ indicates whether you want to quantize DC term when doing vector quantization
(only valid when you want to save file as CVIP_BYTE data type or CVIP_SHORT data
type): 0 ‑ quantize DC term, 1 – separate DC term and keep it in history

CVIPtools C® Function Libraries	 861

© 2011 by Taylor & Francis Group, LLC

Image *xvq_decompress(char *filename)
< filename > ‑ character array

int zon_compress(Image *inputIMAGE, char *filename, int block_size, int choice, int
mask_type, float compress_ratio)
< inputIMAGE > ‑ pointer to an Image
< filename > ‑ pointer to character string containing output filename
< block_size > ‑ a power of 2; kernel size is < block_size > ^2
< choice > ‑ transform to use: 1 = FFT, 2 = DCT, 3 = Walsh, 4 = Hadamard
< mask_type > ‑ type of kernel to use: 1 = triangle, 2 = square, 3 = circle
< compress_ratio > ‑ compression ratio, from 1.0 (min) to (block_size*block_size/4) (max)
for all kinds of transforms

Image *zon_decompress(char *filename)
< filename > ‑ pointer to a character string containing the compressed file name

int zon2_compress(Image *inputIMAGE, char *filename, int block_size, int choice, int
mask_type, float compress_ratio)
< inputIMAGE > ‑ pointer to an Image
< filename > ‑ pointer to character string containing output filename
< block_size > ‑ a power of 2; kernel size is < block_size > ^2
< choice > ‑ transform to use: 1 = FFT, 2 = DCT, 3 = Walsh, 4 = Hadamard
< mask_type > ‑ type of kernel to use: 1 = triangle, 2 = square, 3 = circle
< compress_ratio > ‑ compression ratio, from 1.0 (min) to (block_size*block_size/4) (max)
for all kinds of transforms

Image *zon2_decompress(char *filename)
< filename > ‑ pointer to a character string containing the compressed file name

int zvl_compress(Image *inputIMAGE, char *filename)
< inputIMAGE > ‑ pointer to an image
< filename > ‑ pointer to character string containing output filename

Image *zvl_decompress(char *filename)
< filename > ‑ pointer to character string containing the compressed file name

13.6  Conversion Library: Conversion.lib

The conversion library contains all the functions that convert the various image file
types to the CVIPtools Image structure, and back from the Image structure to the file
type. However, the programmer does not need to use these functions directly, since the
higher level read and write image functions (read_Image and write_Image) take care of any
required overhead. The function that converts between gray code and natural binary code,
gray_binary, and a halftone function, CVIPhalftone, are also in this library.

Conversion Library Function Prototypes

Image *bintocvip(char *raw_image, FILE *inputfile, int data_bands, COLOR_ORDER
color_order, INTERLEAVE_SCHEME interleaved, int height, int width, CVIP_BOOLEAN
verbose)

862	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *bmptocvip(char *name, FILE *in, int imageNumber, int showmessage)

Image *ccctocvip(char *prog_name, FILE *cccfile, int verbose)

Image *CVIPhalftone(Image *cvip_IMAGE, int halftone, int maxval, float fthreshval,
CVIP_BOOLEAN retain_image, CVIP_BOOLEAN verbose)
< cvip_IMAGE > ‑ pointer to input image
< halftone > ‑ indicates method used to convert from grayscale to binary (one of QT_FS,
QT_THRESH, QT_DITHER8, QT_CLUSTER3, QT_CLUSTER4, QT_CLUSTER8)
< maxval > ‑ specifies maximum range of input image (usually 255)
< fthreshval > ‑ threshold value (for QT_THRESH) between [0.0 … 1.0].
< retain_image > ‑ retain image after writing
< verbose > ‑ shall I be verbose (CVIP_YES or CVIP_NO)?

void cviptobin(Image *raw_IMAGE, char *raw_image, FILE *outputfile, COLOR_ORDER
color_order, INTERLEAVE_SCHEME interleaved, CVIP_BOOLEAN verbose)

void cviptobmp(Image *raw_Image, char *raw_image, FILE *outputfile, CVIP_BOOLEAN
verbose)

void cviptoccc(Image *cvip_IMAGE, char *ccc_name, FILE *cccfile, int maxcolor, int derm-
vis, int verbose)

void cviptoeps(Image *cvip_IMAGE, char *eps_name, FILE * outputfile, float scale_x, float
scale_y, CVIP_BOOLEAN verbose)

void cviptogif(Image *gif_IMAGE, char *gif_name,FILE * outfp, int interlace, int
verbose)

void cviptoitex(Image *cvip_IMAGE, char *cvip_name, FILE *outputfile, char *image_com-
ment, int verbose)

void cviptoiris(Image *cvipIMAGE, char *f_name,FILE *fp, int prt_type, int verb)

int cviptojpg(Image *cvipImage, char *filename, int quality, CVIP_BOOLEAN grayscale,
CVIP_BOOLEAN optimize, int smooth, CVIP_BOOLEAN verbose, char *qtablesFile)

int cviptojp2(Image *inputImage, char *filename, int rate, int quality, int numberoflayers,
int block_size)

int cviptopng(Image *cvipImage, char *filename)

void cviptopnm(Image *cvip_IMAGE , char *pnm_name, FILE *outfp, int verbose)

void cviptoras(Image *ras_IMAGE,char * ras_name,FILE *outfp, int pr_type, int verbose)

void cviptotiff(Image *cvip_IMAGE, char *tiff_name, unsigned short compression,
unsigned short fillorder, long g3options, unsigned short predictor, long rowsperstrip, int
verbose)

CVIP_BOOLEAN cviptovip(Image *cvipIMAGE, char *filename, FILE *file, CVIP_BOOLEAN
save_history, CVIP_BOOLEAN is_compressed, CVIP_BOOLEAN verbose)

Image *epstocvip(char *eps_image, FILE *inputfile, CVIP_BOOLEAN verbose)

Image *giftocvip(char *name, FILE *in, int imageNumber, int showmessage)

CVIPtools C® Function Libraries	 863

© 2011 by Taylor & Francis Group, LLC

Image *gray_binary(Image *inputIMAGE, int direction)
< inputIMAGE > ‑ pointer to an Image
< direction > ‑ direction (0 = gray→ binary 1 = binary→ gray)

Image *iristocvip(char *f_name,FILE *fp, int format, int verb)

Image *itextocvip(char *itex_image, FILE *inputfile, CVIP_BOOLEAN verbose)

Image *jpegtocvip(char *filename, int quality, CVIP_BOOLEAN grayscale, CVIP_
BOOLEAN optimize, int smooth, CVIP_BOOLEAN verbose, char *qtablesFile)

Image *jp2tocvip(char *filename)

Image *pnmtocvip(char *pnm_file, FILE *ifp, int format, int verbose)

Image *pngtocvip(char *filename)

Image *rastocvip(char *rasterfile, FILE * ifp, int verbose)

Image *read_Image(char *filename, IMAGE_FORMAT format, int showmessages)
< filename > ‑ pointer to an character string containing the file name
< format > ‑ IMAGE_FORMAT, not used, retained for historical compatibility
< showmessages > ‑ shall I be verbose?

Image *tifftocvip(char *tiff_file, int verbose)

Image *viptocvip(char *filename, FILE *file, CVIP_BOOLEAN verbose)

int write_Image(Image *cvip_IMAGE, char *filename, CVIP_BOOLEAN retain_
image, CVIP_BOOLEAN set_up, IMAGE_FORMAT new_format, CVIP_BOOLEAN
showmessages)
< cvip_IMAGE > ‑ pointer to valid CVIP Image structure
< filename > ‑ pointer to an character string containing the file name
< retain_image > ‑ retain image after writing (CVIP_YES or CVIP_NO)?
< set_up > ‑ run setup (CVIP_YES or CVIP_NO)?
< new_format > ‑ enumeration constant specifying the format of the file to be read
< showmessages > ‑ shall I be verbose (CVIP_YES or CVIP_NO)?

13.7  Display Library: Display.lib

The display library contains functions relating to image display and viewing. The view_
Image function provides the interface for image viewing that is most accessible and flexible
for the programmer. This function is in the file RamViewerDlg.cpp in the Display directory.
It displays the image directly from memory, thus RamViewer (the Dlg stands for Dialog), to
save I/O time and disk space. Note that CVIPtools uses an extended version of this image
viewer.

void view_Image(Image *inputIMAGE, char *imagename)
< inputIMAGE > ‑ pointer to the input Image structure
< imagename > ‑ character string as the image name in display window

864	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

13.8  Feature Extraction Library: Feature.lib

The feature extraction library contains the functions that extract binary (object), histogram,
texture, and spectral features from images. All of the feature functions require a labeled
image, generated by the label function, and any spatial coordinate in the object of interest
as input parameters. In addition, the spectral, texture, and histogram features require the
original image as input. These four functions, called spectral_feature, texture, texture2, and
hist_feature use the object selected in the labeled image as a mask on the original image,
so that only the selected object is included in the calculations. The new texture function,
texture2, was designed for ease of use and efficiency, and is used in the new version of
CVIPtools. Features can be extracted from any of the bands of a multiband image by first
using the function extract_band in the Band library (in CVIPtools, this is done automati-
cally for a multiband image).

Feature Library Function Prototypes

long area(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ Pointer to the labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image

double aspect(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ Pointer to the labeled image
< r > ‑ row coordinate of the point on the labeled image
< c > ‑ column coordinate of the point on the labeled image

int *centroid(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image

int euler(Image * labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image

double *hist_feature(Image *originalIMAGE,IMAGE *labeledIMAGE, int r, int c)
< originalIMAGE > ‑ Pointer to the original image
< labeledIMAGE > ‑ Pointer to the labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image
Note: Returns five histogram features–mean, standard deviation, skew, energy, and entropy
via a pointer to double, its value is equal to the initial address of a one-dimensional array,
which contains the five histogram features for each band. If the original image is a color
image, the first five values are for band 0, the next five data are for band 1, and so on.

double irregular(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on a labeled image
< c > ‑ column coordinate of a point on a labeled image

CVIPtools C® Function Libraries	 865

© 2011 by Taylor & Francis Group, LLC

Image *label(const Image *imageP)
< imageP > ‑ pointer to an Image

double orientation(Image * labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on a labeled image
< c > ‑ column coordinate of a point on a labeled image

int perimeter(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image

int *projection(Image * labeledIMAGE, int r, int c, int height, int width)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image
< height > ‑ image height after the object of interest is normalized
< width > ‑ image width after the object of interest is normalized

double *rst_invariant(Image *label_image, int row, int col)
< label_image > ‑ pointer to a labeled Image structure
< row > ‑ a row coordinate within the object of interest
< column > ‑ a column coordinate within the object of interest

POWER *spectral_feature(Image * originalIMAGE,IMAGE * labeledIMAGE, int no_of_
rings, int no_of_sectors, int r, int c)
< originalIMAGE > ‑ pointer to the original image
< labeledIMAGE > ‑ Pointer to the labeled image
< no_of_rings > ‑ number of rings
< no_of_sectors > ‑ number of sectors
< r > ‑ row coordinate of a point on the labeled image
< c > ‑ column coordinate of a point on the labeled image
POWER data structure:
typedef struct
{
int		 no_of_sectors
int		 no_of_bands
int		 imagebands
double	 	 *dc
double	 	 *sector
double	 	 *band
} POWER

TEXTURE *texture(const Image *ImgP, const Image *segP, int band, int r, int c, long int
hex_equiv, int distance)
< ImgP > ‑ pointer to source Image structure
< segP > ‑ pointer to labeled Image structure
< band > ‑ the band of the source image to be worked on
< r > ‑ the row coordinate of the object
< c > ‑ the column coordinate of the object

866	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

< hex_equiv > ‑ the hex equivalent of the Texture feature map
< distance > ‑ the pixel distance to calculate the cooccurence matrix
TEXTURE data structure:
typedef struct {
/* [0] ‑ > 0 degree, [1] ‑ > 45 degree, [2] ‑ > 90 degree, [3] ‑ > 135 degree, [4] ‑ > average,
[5] ‑ > range (max ‑ min) */

float ASM[6];	 /* (1) Angular Second Moment */
float contrast[6];	 /* (2) Contrast */
float correlation[6];	 /* (3) Correlation */
float variance[6];	 /* (4) Variance */
float IDM[6];	 /* (5) Inverse Difference Moment */
float sum_avg[6];	 /* (6) Sum Average */
float sum_var[6];	 /* (7) Sum Variance */
float sum_entropy[6];	 /* (8) Sum Entropy */
float entropy[6];	 /* (9) Entropy */
float diff_var[6];	 /* (10) Difference Variance */
float diff_entropy[6];	 /* (11) Difference Entropy */
float meas_corr1[6];	 /* (12) Measure of Correlation 1 */
float meas_corr2[6];	 /* (13) Measure of Correlation 2 */
float max_corr_coef[6];	 /* (14) Maximal Correlation Coefficient */
} TEXTURE

TEXTURE2 *texture2(Image *inputImage, Image *labeledImage, int band, int row,
int col, int distance, int energy, int inertia, int correlation, int invDiff, int entropy,
int zero_rowcol)
< inputImage > ‑ pointer to source Image structure
< labeledImage > ‑ pointer to labeled Image structure
< band > ‑ the band of the source image to be worked on
< row > ‑ the row co-ordinate of the object
< col > ‑ the column co-ordinate of the object
< distance > ‑ the pixel distance used to calculate the cooccurence matrix
< energy > ‑ flag for calculating energy, 0 (no) or 1 (yes)
< inertia > ‑ flag for calculating inertia, 0 (no) or 1 (yes)
< correlation > ‑ flag for calculating correlation, 0 (no) or 1 (yes)
< invDiff > ‑ flag for calculating inverse difference, 0 (no) or 1 (yes)
< entropy > ‑ flag for calculating entropy, 0 (no) or 1 (yes)
< zero_rowcol > ‑ flag to include pixels pairs with zeros, 0 (no – used for masked image
objects) or 1 (yes)
TEXTURE2 data structure:
typedef struct {
/* [0] → 0 degree, [1] → 45 degree, [2] → 90 degree, [3] → 135 degree, [4] → average, [5] → range
(max - min) */

float energy[6];	 /* (1) Energy */
float inertia[6];	 /* (2) Inertia */
float correlation[6];	 /* (3) Correlation */
float IDM[6];	 /* (4) Inverse Difference Moment */
float entropy[6];	 /* (5) Entropy */
} TEXTURE2

CVIPtools C® Function Libraries	 867

© 2011 by Taylor & Francis Group, LLC

double thinness(Image *labeledIMAGE, int r, int c)
< labeledIMAGE > ‑ pointer to a labeled image
< r > ‑ row coordinate of a point on a labeled image
< c > ‑ column coordinate of a point on a labeled image

13.9  Geometry Library: Geometry.lib

The geometry library contains all functions relating to changing image size and orientation,
as well as functions that create images of geometric shapes and sinusoidal waves. These
functions all return Image structures, except mesh_to_file and display_mesh that are used as
utility functions by the image warping and geometric restoration function, mesh_warping.

Geometry Library Function Prototypes

Image *bilinear_interp(Image *inImg, float factor)
< inImg > ‑ pointer to an image
< factor > ‑ factor > 1 to enlarge, factor < 1 to shrink

Image *create_black(int width, int height)
< width > ‑ desired image width
< height > ‑ desired image height

Image *create_circle(int im_width, int im_height, int center_c, int center_r, int radius)
< im_width > ‑ image width, number of columns
< im_height > ‑ image height, number of rows
< center_c > ‑ circle center column coordinate
< center_r > ‑ circle center row coordinate
< radius > ‑ radius of circle

Image *create_checkboard(int im_width, int im_height,int first_r, int first_c, int block_c,
int block_r)
< im_width > ‑ image width, number of columns
< im_height > ‑ image height, number of rows
< first_c > ‑ first column of checkerboard
< first_r > ‑ first row of checkerboard
< block_c > ‑ width of checkerboard blocks
< block_r > ‑ height of checkerboard blocks

Image *create_cosine(int img_size, int frequency, int choice)
< img_size > ‑ number of rows (and columns) in new image
< frequency > ‑ sine wave frequency
< choice > ‑ enter 1 for horizontal, 2 for vertical cosine wave

Image *create_ellipse(int width, int height, int centerrow, int centercol, int hor_length,
int ver_length)
< width > ‑ image width, number of columns
< height > ‑ image height, number of rows
< centerrow > ‑ row coordinate for the center of the ellipse

868	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

< centercol > ‑ column coordinate of center of the ellipse
< hor_length > ‑ length of the horizontal of the ellipse
< ver_length > ‑ length of the vertical axis of the ellipse

Image *create_line(int im_width, int im_height, int start_c, int start_r, int end_c, int end_r)
< im_width > ‑ image width, number of columns
< im_height > ‑ image height, number of rows
< start_c > ‑ first row coordinate of line
< start_r > ‑ first row coordinate of line
< end_c > ‑ last column of line
< end_r > ‑ last row of line

Image *create_rectangle(int im_width, int im_height, int start_c, int start_r, int rect_width,
int rect_height)
< im_width > ‑ image width, number of columns
< im_height > ‑ image height, number of rows
< start_c > ‑ first column for rectangle
< start_r > ‑ first row for rectangle
< rect_width > ‑ width of rectangle
< rect_height > ‑ rectangle height

Image *create_sine(int img_size, int frequency, int choice)
< img_size > ‑ number of rows (and columns) in new image
< frequency > ‑ sine wave frequency
< choice > ‑ enter 1 for horizontal, 2 for vertical sine wave

Image *create_squarewave(int img_size, int frequency, int choice)
< img_size > ‑ number of rows (and columns) in new image
< frequency > ‑ sine wave frequency
< choice > ‑ enter 1 for horizontal, 2 for vertical square wave

Image *crop(Image *imgP, unsigned row_offset, unsigned col_offset, unsigned rows,
unsigned cols)
< imgP > ‑ pointer to an image
< row_offset > ‑ row coordinate of upper-left corner
< col_offset > ‑ column coordinate of upper-left corner
< rows > ‑ height of desired subimage
< cols > ‑ width of desired subimage

int display_mesh(Image* inputImage,struct mesh *inmesh)

Image *enlarge(Image *cvipIMAGE, int row, int col)
< cvipIMAGE > ‑ pointer to an image
< row > ‑ number of rows for enlarged image
< column > ‑ number of columns for enlarged image

void mesh_to_file(struct mesh *mesh_matrix, char* mesh_file)

Image *mesh_warping(Image *inputImage,struct mesh *inmesh,int method)
< inputImage > ‑ pointer to Image structure
< inmesh > ‑ mesh structure
< method > ‑ Method used for gray-level interpolation: 1-nearest neighbor, 2-bilinear inter-
polation, 3-neighborhood average

CVIPtools C® Function Libraries	 869

© 2011 by Taylor & Francis Group, LLC

Mesh data structure:
struct mesh_node {

int x;
int y;

};
struct mesh {

int width;
int height;
struct mesh_node** nodes;

}

Image *object_crop (Image *imgP,int no_of_coords,int *rcList, int format, int Rvalue, int
Gvalue, int Bvalue)
< imgP > ‑ pointer to the input image structure
< no_of_coords > ‑ the number of (row, col)coordinates in rclist
< rcList > ‑ pointer to an array of alternating [0] = row, [1] = column positions that create a
pixel position in the image
< format > ‑ 1 = crop rectangle containing border, 2 = border mask, and 3 = border image
< Rvalue > ‑ red value for border color
< Gvalue > ‑ green value for border color
< Bvalue > ‑ blue value for border color

Image *rotate(Image *input_IMAGE, float degree)
< input > ‑ pointer to an image
< degree > ‑ amount to rotate image (1 ‑ 360)

Image *shrink(Image *input_IMAGE, float factor)
< input_Image > ‑ pointer to an image
< factor > ‑ scaling factor (0.1 ‑ 1.0)

int solve_c(struct mesh_node intie[4],struct mesh_node outtie[4],float *c)
< intie > ‑ input tie points
< outtie > ‑ output tie points
< c > ‑ pointer to result array

Image *spatial_quant(Image *cvipIMAGE, int row, int col, int method)
< cvipIMAGE > ‑ pointer to an image
< row > ‑ number of rows for reduced image
< column > ‑ number of columns for reduced image
< method > ‑ reduction method to use where: 1 = average, 2 = median, 3 = decimation

Image *translate(Image *cvipIMAGE, CVIP_BOOLEAN do_warp, int r_off, int c_off, int
r_mount, int c_mount, int r_slide, int c_slide, float fill_out)
< cvipIMAGE > ‑ pointer to an image
< do_warp > ‑ wrap image during translation if CVIP_YES
< r_off > ‑ row # of upper-left pixel in area to move
< c_off > ‑ column # of upper-left pixel in area to move
< r_mount > ‑ height of area to move
< c_mount > ‑ width of area to move
< r_slide > ‑ distance to slide vertically
< c_slide > ‑ distance to slide horizontally
< fill_out > ‑ value to fill vacated area in cut-and-paste

870	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *zoom(Image *input_IMAGE, int quadrant, int r, int c, int width, int height, float
temp_factor)
< input_IMAGE > ‑ pointer to an Image
< quadrant > ‑ 1 = UL, 2 = UR, 3 = LL, 4 = LR, 5 = ALL, 6 = Specify (x,y), dx, dy
< r > ‑ column coordinate of area’s upper-left corner
< c > ‑ row coordinate of area’s upper-left corner
< width > ‑ width of area to enlarge
< height > ‑ height of area to enlarge
< temp_factor > ‑ degree of enlargement

13.10  Histogram Library: Histogram.lib

The histogram library, Histogram.lib, contains functions relating to modifying the image
by histogram manipulation or gray-level mapping. The histogram shrink operation in
CVIPtools is performed with the remap_Image function (see Mapping.lib).

Histogram Library Function Prototypes

float **define_histogram(int bands, int mode, char **eq)
< bands > ‑ number of bands in the image
< mode > ‑ prompt the user for input (mode = 1), or use < eq > (mode = 0)
< eq > ‑ string for mapping equation

float **get_histogram(Image *inputP)
< input_image > ‑ pointer to an Image structure from which a histogram is obtained

Image *get_histogram_Image(Image *inputP)
< input_image > ‑ pointer to an Image structure from which a histogram is obtained

Image *gray_linear(Image * inputIMAGE, double start, double end, double s_gray, double
slope, int change)
< inputIMAGE > ‑ pointer to an Image
< start > ‑ initial gray level to modify
< end > ‑ final gray level to modify
< s_gray > ‑ new initial gray level
< slope > ‑ slope of modifying line
< change > ‑ 0 = change out-of-range pixels to black, 1 = don’t modify out-of-range pixel
values

Image *gray_multiply(Image *input,float ratio)
< input > ‑ pointer to an Image
< ratio > ‑ multiplier

Image *gray_multiply2(Image *input,float ratio)
< input > ‑ pointer to an Image
< ratio > ‑ multiplier

Image *histeq(Image *in, int band)
< in > ‑ pointer to an image
< band > ‑ which band (0, 1, or 2) to operate on; use 0 for gray

CVIPtools C® Function Libraries	 871

© 2011 by Taylor & Francis Group, LLC

void histogram_show(float **histogram)
< histogram > ‑ a 2-D array containing a histogram for each image band

Image *hist_spec(Image *imageP, int mode, char **input)
< imageP > ‑ pointer to an image
< mode > ‑ prompt the user for input (mode = 1), or use < eq > (mode = 0)
< input > ‑ a 2-D string array for mapping equation for each image band

Image *histogram_spec(Image* imageP, float **histogram)
< imageP > ‑ pointer to the input Image structure
< histogram > ‑ the specified histogram

Image *hist_slide(Image *input, int slide)
< input > ‑ pointer to an image
< slide > ‑ amount of histogram slide

Image *hist_stretch(Image * inputIMAGE, int low_limit, int high_limit, float low_clip, float
high_clip)
< inputIMAGE > ‑ pointer to an Image
< low_limit > ‑ lower limit for stretch
< high_limit > ‑ high limit for stretch
< low_clip > ‑ percentage of low values to clip before stretching
< high_clip > ‑ percentage of high values to clip before stretching

Image *local_histeq(Image *in, int size, int mb)
< in > ‑ pointer to an Image structure
< size > ‑ desired blocksize
< mb > ‑ RGB band on which to calculate histogram (0,1,2)

Image *make_histogram(float **histogram, IMAGE_FORMAT image_format, COLOR_
FORMAT color_format)
< histogram > ‑ a 2-D float array of the histogram data
< image_format > ‑ the Image format of the resulting image
< color_format > ‑ the Color format of the resulting image

void showMax_histogram(float **histogram, char *title)
< histogram > ‑ pointer to a histogram pointer
< title > ‑ name given to histogram image

13.11  Image Library: Image.lib

Although the image library is a Toolkit library, consisting of lower level functions, the
commonly used functions are included here for reference. For complete details, see the
Help pages in CVIPtools.

int cast_Image(Image *src, CVIP_TYPE dtype)
< src > ‑ pointer to Image structure
< type > ‑ new data type

Image *duplicate_Image(const Image *a)
< a > ‑ pointer to Image structure

872	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

void delete_Image(Image *A)
< A > ‑ pointer to Image structure

unsigned getNoOfBands_Image(Image *image)
< image > ‑ pointer to an Image

unsigned getNoOfCols_Image(Image *image)
< image > ‑ pointer to an Image

unsigned getNoOfRows_Image(Image *image)
< image > ‑ pointer to an Image

CVIP_TYPE getDataType_Image(Image *image)
< image > ‑ pointer to an Image

Image *new_Image(IMAGE_FORMAT image_format, COLOR_FORMAT color_space,
int bands, int height, int width, CVIP_TYPE data_type, FORMAT data_format)
< image_format > ‑ original file format of image
< color_space > ‑ current color space of image
< bands > ‑ number of spectral bands
< height > ‑ height of image (no. of rows)
< width > ‑ width of image (no. of cols)
< data_type > ‑ current data type of image
< data_format > ‑ specifies real or complex data

13.12  Data Mapping Library: Mapping.lib

Although Mapping.lib is a Toolkit library, consisting of lower level functions, the com-
monly used functions are included here for reference. These functions are used primarily
for remapping images for display purposes. For complete details, see the Help pages in
CVIPtools.

Image *condRemap_Image(const Image *imageP, CVIP_TYPE dtype, unsigned dmin,
unsigned dmax)
< imageP > ‑ pointer to an Image
< dtype > ‑ datatype of data to be mapped
< dmin > ‑ minimum value for range
< dmax > ‑ maximum value for range

Image *logMap_Image(Image *image, int band)
< image > ‑ pointer to Image structure
< band > ‑ the band to do log mapping: -1 = all bands, 0 = 1st band, 1 = 2nd band, and so
on

Image *remap_Image(const Image *imageP, CVIP_TYPE dtype, unsigned dmin, unsigned
dmax)
< imageP > ‑ pointer to an Image
< dtype > ‑ datatype of data to be mapped
< dmin > ‑ minimum value for range
< dmax > ‑ maximum value for range

CVIPtools C® Function Libraries	 873

© 2011 by Taylor & Francis Group, LLC

13.13  Morphological Library: Morphological.lib

The morphological library, Morphological.lib, contains all functions relating to image mor-
phology. All the functions return Image structures. The functions morphIterMod_Image
and morpho, which implement the iterative method described in Chapter 4, will accept only
binary images as input. The functions morph_hitmiss, morph_skeleton, and morph_thinning
also work only on binary images. The functions for morphological dilation, erosion, open-
ing, and closing, will accept gray-level images as input. Note that these functions can be
used on multiband images with the use of the extract_band and assemble_bands functions in
the Band library. In CVIPtools this is done automatically, so they will work on color images
from the CVIPtools GUI.

The dilate, erode, open, and close functions are available in two forms: those that allow
the user to set up the matrix structure for the morphological kernel, and those that only
require an integer to specify one of the predefined kernels. The first type, with an _Image
extension appended to the function name, are more flexible but more difficult to use. The
second type, without the _Image extension, are easier to use because they require param-
eters like the morphological functions in CVIPtools.

Morphological Library Function Prototypes

Image *MorphClose_Image(Image *imageP, Matrix *kernelP, CVIP_BOOLEAN user_org,
int row, int col)
< inputIMAGE > ‑ pointer to an image
< kernelP > ‑ a pointer to a Matrix structure
< user_org > ‑ define center of kernel
< row > ‑ user-defined row of kernel center
< col > ‑ user-defined column of kernel center

Image *MorphClose(Image *inputIMAGE, int k_type, int ksize, int height, int width)
< inputIMAGE > ‑ pointer to an Input
< k_type > ‑ kernel type (1 = disk, 2 = square, 3 = rectangle, 4 = cross)
< ksize > ‑ size of the kernal (height and width of mask)
< height/thickness > ‑ for square, rectangle/cross
< width/size > ‑ for rectangle/cross

Image *MorphDilate_Image(Image *imageP, Matrix *kernelP, CVIP_BOOLEAN user_org,
int row, int col)
< inputIMAGE > ‑ pointer to an image
< kernelP > ‑ a pointer to a Matrix structure
< user_org > ‑ define center of kernel
< row > ‑ user-defined row of kernel center
< col > ‑ user-defined column of kernel center

Image *MorphDilate(Image *inputIMAGE, int k_type, int ksize, int height, int width)
< inputIMAGE > ‑ pointer to an Input image structure
< k_type > ‑ kernel type (1 = disk, 2 = square, 3 = rectangle, 4 = cross)
< ksize > – size of the kernal (height and width of mask)
< height/thickness > ‑ for square, rectangle/cross
< width/size > ‑ for rectangle/cross

874	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *MorphErode_Image(Image *imageP, Matrix *kernelP, CVIP_BOOLEAN user_org,
int row, int col)
< inputIMAGE > ‑ pointer to an image
< kernelP > ‑ a pointer to a Matrix structure
< user_org > ‑ define center of kernel
< row > ‑ user-defined row of kernel center
< col > ‑ user-defined column of kernel center

Image *MorphErode(Image *inputIMAGE, int k_type, int ksize, int height, int width)
< inputIMAGE > ‑ pointer to an Input
< k_type > ‑ kernel type (1 = disk, 2 = square, 3 = rectangle, 4 = cross
< ksize > ‑ size of the kernal (height and width of mask)
< height/thickness > ‑ for square, rectangle/cross
< width/size > ‑ for rectangle/cross

Image *morph_hitmiss((longImage *inputImage, int MaskSize, char *HitmissFilter)
< inputImage > ‑ pointer to an Image
< MaskSize > ‑ mask size (3,5,7,9,...)
< HitmissFilter > ‑ Filter values

Image *morphIterMod_Image(Image *binImage, const Matrix **surMATS, CVIP_
BOOLEAN(*const boolFUNC)(CVIP_BOOLEAN a,CVIP_BOOLEAN b), int no_of_sur,
int connectedness, int no_of_iter, int f)
< binImage > ‑ pointer to an image (binary image)
< surMATS > ‑ pointer to set S (surrounds) for which a_ij = 1
< boolFUNC > ‑ pointer to Boolean function of form L(a,b) (c_ij = L(a_ij,b_ij))
< no_of_sur > ‑ number of surrounds
< connectedness > ‑ the connectivity scheme being used; one of the constants: FOUR,
EIGHT, SIX_NWSE, SIX_NESW.
< no_of_iter > ‑ number of iterations to perform
< f > ‑ number of subfields into which the image tessellation will be divided

Image *morpho(const Image *binImage, const char * surround_str, CVIP_BOOLEAN
rotate, int boolFUNC, int connectedness, unsigned no_of_iter, int fields)
< binImage > ‑ pointer to Image structure (binary image)
< surround_str > ‑ pointer to a string holding the set of surrounds, such as “1, 7, 8”.
< boolFUNC > ‑ integer number for the Boolean function (1‑6): 1: 0, 2: !a, 3: ab, 4: a + b,
5: a^b, 6: (!a)b
< rotate > ‑ rotate or not (CVIP_YES, CVIP_NO)
< no_of_sur > ‑ number of surrounds
< connectedness > ‑ the connectivity scheme being used (FOUR, EIGHT, SIX_NWSE, or
SIX_NESW)
< no_of_iter > ‑ number of iterations to perform
< fields > ‑ number of subfields into which the image tessellation will be divided

Image *MorphOpen_Image(Image *imageP, Matrix *kernelP, CVIP_BOOLEAN user_org,
int row, int col)
< inputIMAGE > ‑ pointer to an image
< kernelP > ‑ a pointer to a Matrix structure
< user_org > ‑ define center of kernel
< row > ‑ user-defined row of kernel center
< col > ‑ user-defined column of kernel center

CVIPtools C® Function Libraries	 875

© 2011 by Taylor & Francis Group, LLC

Image *MorphOpen(Image *inputIMAGE, int k_type, int ksize, int height, int width)
< inputIMAGE > ‑ pointer to an input IMAGE structure
< k_type > ‑ kernel type (1 = disk, 2 = square, 3 = rectangle, 4 = cross)
< ksize > ‑ size of the kernal (height and width of mask)
< height/thickness > ‑ for square, rectangle/cross
< width/size > ‑ for rectangle/cross

Image *morph_skeleton(Image *inputImage, int FilterDimension, char * SkeletonFilter, int
Iterations, int four_eight_mask, int method);
< inputImage > ‑ pointer to an Image
< FilterDimension > ‑ mask size (3,5,7,9,...)
< SkeletonFilter > ‑ Filtervalues
< Iterations > ‑ number of iterations
< four_eight_mask > ‑ 	 0 for four directional mask
		 1 for eight directional mask
< method >   -	 0 for AND method
		 1 for sequential method

Image *morph_thinning(Image *inputImage,int MaskSize,char *ThinningFilter)
< inputImage > ‑ pointer to an Image
< MaskSize > ‑ mask size (3,5,7,9,...)
< ThinningFilter > ‑ Filter values(single dimension)

13.14  Noise Library: Noise.lib

The noise library, Noise.lib, contains all functions that add noise to an image. The
amount of noise added to the image, which will determine the signal-to-noise ratio,
can be controlled through the variance parameter. The larger the variance, the more
noise will be added. Note that a noise-alone image can be created by adding noise to
an all black image (an all black image can be created using the function create_black in
Geometry.lib).

Noise Library Function Prototypes

Image *gamma_noise(Image *imageP, float *var, int *alpha)
< imageP > ‑ pointer to an image structure
< var > ‑ variance of the noise distribution
< alpha > ‑ alpha parameter for gamma distribution

Image *Gaussian_noise(Image *imageP, float *var, float *mean)
< imageP > ‑ pointer to an image structure
< var > ‑ variance of the noise distribution
< mean > ‑ mean or average value for distribution

Image *neg_exp_noise(Image *imageP, float *var)
< imageP > ‑ pointer to an image structure
< var > ‑ variance of the noise distribution

876	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *rayleigh_noise(Image *imageP, float *var)
< imageP > ‑ pointer to an image structure
< var > ‑variance of the noise distribution

Image *speckle_noise(Image *imageP, float *psalt, float *ppepper)
< imageP > ‑ pointer to an image structure
< var > ‑ variance of the noise distribution
< psalt > ‑ probability of salt noise (high gray level = 255)
< ppepper > ‑ probability of pepper noise (low gray level = 0)

Image *uniform_noise(Image *imageP, float *var, float *mean)
< imageP > ‑ pointer to an image structure
< var > ‑ variance of the noise distribution
< mean > ‑ mean or average value of distribution

13.15  Segmentation Library: Segmentation.lib

The segmentation library, Segmentation.lib, contains all functions that perform image seg-
mentation. These functions all require an input Image structure, and any parameters for
the specific algorithm; they return the segmented image as an Image structure.

Segmentation Library Function Prototypes

Image *auto_threshold_segment(Image *inputImage, float limit)
< inputImage > ‑ pointer to input image
< float > ‑ limiting value

Image *fuzzyc_segment(Image *srcIMAGE, float variance)
< srcIMAGE > ‑ pointer to an image
< variance > ‑ value for Gaussian kernal variance

Image *gray_quant_segment(Image *cvipIMAGE, int num_bits)
< cvipIMAGE > ‑ pointer to an image
< num_bits > ‑ number of gray levels desired (2,4,8,...,128)

Image *gvfsnake_segment(Image *inputImage, int num_iter, double alpha, double beta,
double kappa)

< inputImage > ‑ pointer to an Image structure
< num_iter > ‑ number of iterations
< alpha > ‑ coefficient of the second derivative of the function in the energy equation
< beta > ‑ coefficient of the fourth derivative of the function in the energy equation
< kappa > ‑ coefficient of the external forces in the energy equation

Image *hist_thresh_segment(Image *imgP)
< imgP > ‑ pointer to an image structure

Image *igs_segment(Image *inputIMAGE, int gray_level)
< inputIMAGE > ‑ input image pointer
< gray_level > ‑ the number of gray levels desired (2,4,8,...,256)

CVIPtools C® Function Libraries	 877

© 2011 by Taylor & Francis Group, LLC

Image *median_cut_segment(Image *imgP, int newcolors, CVIP_BOOLEAN is_bg,
Color bg)
< impP > ‑ pointer to an image
< newcolors > ‑ desired number of colors
< is_bg > ‑ is background color?
< bg > ‑ background color
Color data structure:
struct ColorType {

byte r, g, b;
};
typedef struct ColorType Color

Image *multi_resolution_segment(Image *imgP, unsigned int choice, void *parameters,
CVIP_BOOLEAN Run_PCT)
< imgP > ‑ pointer to source Image structure
< level > ‑ the level to begin procedure
< choice > ‑ Predicate test chosen: (1) pure uniformity; (2) local mean versus global; (3) local
standard deviation versus global mean; (4) number of pixels within 2 times standard devi-
ation; (5) weighted gray-level distance test; (6) texture homogeneity test
< parameters > ‑ cutoff value usage determined by predicate test
< Run_PCT > ‑ choice to run PCT on color images

Image *otsu_segment (Image *inputImage)
< inputImage > ‑ pointer to an input image structure

Image *pct_median_segment(Image *imgP, unsigned colors)
< impP > ‑ pointer to an image
< colors > ‑ desired number of colors

Image *sct_split_segment(Image *inP, int A_split, B_split)
< imgP > ‑ a pointer to an image structure
< A_split > ‑ number of colors to divide along angle A
< B_split > ‑number of colors to divide along angle B

Image *split_merge_segment(Image *imgP, unsigned int level, unsigned int choice,void
*parameters, CVIP_BOOLEAN Run_PCT)
< imgP > ‑ pointer to source Image structure
< level > ‑ the level to begin procedure
< choice > ‑ Predicate test chosen: (1) pure uniformity; (2) local mean versus global; (3) local
standard deviation versus global mean; (4) number of pixels within 2 times standard devi-
ation; (5) weighted gray-level distance test; (6) texture homogeneity test
< parameters > ‑ cutoff value usage determined by predicate test
< Run_PCT > ‑ choice to run PCT on color images

Image *threshold_segment(Image *inputIMAGE, unsigned int threshval, CVIP_BOOLEAN
thresh_inbyte)
< inputIMAGE > ‑ pointer to Image structure
< threshval > ‑ threshold value
< thresh_inbyte > ‑ CVIP_NO (0) apply threshval directly to image data; CVIP_YES
(1) threshval is CVIP_BYTE range; remap to image data range before thresholding

878	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *watershed_segment(Image *inputIMAGE, float threshold, CVIP_BOOLEAN
choice)
< inputIMAGE > ‑ pointer to Image structure
< threshold > ‑ threshold value
< choice > ‑ CVIP_NO (0) do not merge result; CVIP_YES (1) to merge result

13.16  Spatial Filter Library: SpatialFilter.lib

The spatial filter library, SpatialFilter.lib, contains all functions relating to spatial filter-
ing. Many of the edge detection functions—Kirsch, Robinson, pyramid, Laplacian, Sobel,
Roberts, Prewitt, and Frei–Chen—can all be accessed via the function, edge_detect_fil-
ter, which has preprocessing and postprocessing functions built in. It should be noted
that edge_detect_filter returns the magnitude image only. There are separate functions for
the Kirsch, Prewitt, Sobel, and Robinson that calculate the direction image in addition
to returning the magnitude image. This library also contains the Hough transform, the
unsharp masking algorithm, and the visual acuity/night vision simulation function. Note
that some of the spatial filtering functions in CVIPtools are implemented using convolve_
filter and get_default_filter.

Spatial Filter Library Function Prototypes

Image *ace2_filter(Image *inputIMAGE, int size, float alpha, float beta)
< inputImage > ‑ pointer to an Image
< size > ‑ mask size (3,5,7,9,...)
< alpha > ‑ local mean factor
< beta > ‑ local gain factor

Image *acuity_nightvision_filter(Image *cvipIMAGE,char reason, int threshold, int
choice)
< cvipIMAGE > ‑ pointer to an Image
< reason > ‑ y = nightvision, n = acuity simulation
< threshold > ‑ binary threshold for nightvision simulation (pass –1 if acuity selected)
< choice > ‑ visual acuity value, 20, 30, 40, ... (pass –1 if nightvision selected)

Image *adaptive_contrast_filter(Image *inputIMAGE, float k1, float k2, unsigned int
kernel_size, float min_gain, float max_gain)
< inputIMAGE > ‑ pointer to Image structure
< k1 > ‑ local gain factor multiplier
< k2 > ‑ local mean multiplier
< kernal_size > ‑ size of local window (must be odd)
< min_gain > ‑ local gain factor minimum
< max_gain > ‑ local gain factor maximum

Image *ad_filter(Image *inputImage, int iteration_num, int speed, int edge_height)
< inputImage > ‑ pointer to an input Image
< iteration_num > ‑ maximum number of complete iterations
< speed > ‑ number of diffusions to be applied at each iteration
< edge_height > ‑ minimum strength of edges to be preserved by the filter

CVIPtools C® Function Libraries	 879

© 2011 by Taylor & Francis Group, LLC

Image *adapt_median_filter(Image *inputIMAGE, int wmax)
< inputImage > ‑pointer to an Image
< wmax > ‑window maximum size (3,5,7,9,...)

Image *alpha_filter(Image *imageP, int mask_size, int p)
< imageP > ‑ pointer to an Image.
< mask_size > ‑ size of the filtering window (3 → 3 × 3)
< p > ‑ number of maximum and minimum pixels to be excluded from the mean
calculation

Image *boiecox_filter(Image *inputImage, float var, unsigned int do_thresh, unsigned int
do_hyst,unsigned int do_thin, float high_factor, float low_factor, Image *Imagethld, Image
*Imagehyst)
< inputImage > ‑ pointer to the input image structure
< var > ‑ variance 0.5 < = var < = 5 of Gaussian filter
< do_thresh > ‑ 0 or 1
< do_hyst > ‑ 0 or 1
< do_thin > ‑ 0 or 1
< high_factor > ‑ high threshold scale factor for the hysteresis threshold
< low_factor > ‑ low threshold scale for the hysteresis threshold or threshold scale factor
for normal thresholding
< Imagethld > ‑ pointer to an intermediate image structure
< Imagehyst > ‑ pointer to an intermediate image structure

Image *canny_filter (float low, float high, float var, Image *inputImage, Image *nonmax_
mag, Image *nonmax_dir)
< low > ‑ low threshold scale factor for the hysteresis threshold value estimated from the
image
< high > ‑ high threshold scale factor for the hysteresis threshold value estimated from the
image
< var > ‑ variance, range: 0.5 < = var < = 5
< inputImage > ‑ pointer to the input image structure
< nonmax_mag > ‑ pointer to an intermediate image structure
< nonmax_dir > ‑ pointer to an intermediate image structure

Image *cerchar_filter(Image *inputImage)
< inputImage > ‑ pointer to an Image

Image *contra_filter(Image *imageP, int mask_size, int p)
< imageP > ‑ pointer to an Image
< mask_size > ‑ size of the filtering window (3 → 3 × 3)
< p > ‑ filter order

Image *convolve_filter(Image *imageP, Matrix *filP)
< imageP > ‑ pointer to an Image
< filP > ‑ pointer to a Matrix containing the kernel to be convolved with < imageP > 

Image *edge_detect_filter(Image *imageP, int program, int mask_choice, int mask_size,
int keep_dc, int threshold, int threshold1, int thresh, int thr)
< imageP > ‑ pointer to an Image

880	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

< program > ‑ desired edge detector: EDGE_KIRSCH, EDGE_ROBINSON, EDGE_
PYRAMID, EDGE_LAPLACIAN, EDGE_SOBEL, EDGE_ROBERTS, EDGE_PREWITT,
EDGE_FREI
< mask_choice > ‑ type of smoothing filter: 1 = Gaussian blur, 2 = generic lowpass 1,
3 = generic lowpass 2, 4 = neighborhood average
< mask_size > ‑ Laplacian/Roberts (1,2); Sobel/Prewitt (3, 5, 7)
< keep_dc > ‑ 0 (no) or 1 (yes)
< threshold > ‑ value for postprocessing binary threshold
< threshold1 > ‑ Frei-Chen projection method: 1 = Project onto edge subspace, 2 = Project
onto line subspace, 3 = Show complete projection
< thresh > ‑ Frei-Chen projection threshold: 1 = Set threshold on edge projection, 2 = Set
threshold on line projection, 3 = Smallest angle between the above
< thr > ‑ if < thresh > = 1 or 2, set threshold for angle (in radians) for Frei-Chen

Image *edge_link_filter(IMAGE *cvipIMAGE, int connection)
< cvipIMAGE > ‑ pointer to an Image
< connection > ‑ maximum connect distance

Image *exp_ace_filter(Image *inputIMAGE, int size, float beta, float alpha)
< inputImage > ‑ pointer to an Image
< size > ‑ mask size (3,5,7,9,...)
< alpha > ‑ local gain factor
< beta > ‑ local mean factor

Image *geometric_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to an Image
< mask_size > ‑ size of the filtering window (3 → 3 × 3)

Matrix *get_default_filter(PROGRAMS type, int dimension,int direction)
< type > ‑ type of filter needed: BLUR_SPATIAL, DIFFERENCE_SPATIAL, LOWPASS_
SPATIAL, LAPLACIAN_SPATIAL, HIGHPASS_SPATIAL
< dimension > ‑ size of blur filter needed
< direction > ‑ direction for difference filter; 0 = horizontal, 1 = vertical

Image *harmonic_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to an Image
< mask_size > ‑ size of the filtering window (3 → 3 × 3)

Image *harris_corner_filter(Image *inputImage, float alpha, int threshold, int border, float
dmin)

< inputImage > ‑ pointer to an Image
< alpha > ‑ sensitivity of the detector
< threshold > ‑ threshold value
< border > ‑ size of matrix to find the largest corner
< dmin > ‑ radius of the circle to check for the corner

Image *hough_filter(Image *cvipIMAGE, char *name, char *degree_string, int threshold,
int connection, int interactive)
< inputIMAGE > ‑ pointer to a binary Image structure
< name > ‑ name of the input image
< degree_string > ‑ a string indicating angles of interest

CVIPtools C® Function Libraries	 881

© 2011 by Taylor & Francis Group, LLC

< threshold > ‑ minimum number of pixels to define a line
< connection > ‑ maximum distance to link on a line
< interactive > ‑ 0 = use above parameters; 1 = read degree_string, threshold, and connec-
tion from standard input

Image * improved_mmse_filter(Image * inputImage, float threshval, int kernel_size, float
noise_var)
< inputImage > ‑ pointer to the input image structure
< threshval > ‑ threshold value for noise-to-local-variance ratio, gain value
< noise_var > ‑ noise variance of input image
< kernel_size > ‑ initial, maximum kernel (window) size (an odd number)

Image *kirsch_filter(Image *inputImage, Image *dirImage, int mask_choice, int mask_size,
int keep_dc, int threshold)

< inputImage > ‑ pointer to an Image
< dirImage > ‑ pointer to direction Image
< mask_choice > ‑ type of smoothing filter
< mask_size > ‑ kernel size
< keep_dc > ‑ 0 (no) or 1 (yes)
< threshold > ‑ value for binary threshold

Image *kuwahara_filter(Image *inputImage, int mask_size)
< inputImage > – pointer to an input image structure
< mask_size > – the size of filtering window (3 → 3 × 3)

void image_sharp(Image *inputImage)
< inputImage > – pointer to an Image structure

Image *log_ace_filter(Image *inputIMAGE, int size, float alpha,float beta)
< inputImage > – pointer to an Image
< size > – mask size (3,5,7,9,...)
< alpha > – local mean factor
< beta > – local gain factor

Image *marr_hildreth_filter (Image* inputImage, float sigma)
< inputImage > – pointer to the input image structure
< sigma > – Gaussian variance for smoothing filter

Image *maximum_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to the input image structure
< mask_size > ‑ size of the filtering window (3 → 3 × 3)

Image *mean_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to an Image
< mask_size > ‑ size of the filtering window (3 → 3 × 3)

Image *median_filter(Image *inputIMAGE, int size)
< inputIMAGE > ‑ pointer to an Image
< size > ‑ mask size (3,5,7,9,...)

Image *midpoint_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to an Image
< mask_size > ‑ size of filtering window (3 → 3 × 3)

882	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *minimum_filter(Image *imageP, int mask_size)
< imageP > ‑ pointer to an image.
< mask_size > ‑ size of filtering window (3 → 3 × 3)

Image *mmse_filter(Image *inputIMAGE, float noise_var, unsigned int kernel_size)
< inputIMAGE > ‑ pointer to an Image
< noise_var > ‑ noise variance of input image
< kernel_size > ‑ kernel size (an odd number)

Image *moravec_corner_filter(Image *inputImage, float threshval)
< inputImage > ‑ pointer to an Image
< threshval > ‑ threshold value

Image *param_ad_filter(Image *inputImage, int iteration_num, int speed, int edge_height,
int blk_size)
< inputImage > ‑ pointer to an input Image
< iteration_num > ‑ maximum number of complete iterations
< speed > ‑ number of diffusions that is to be applied at each iteration
< edge_height > ‑ minimum strength of edges to be preserved by the filter
< blk_size > ‑ size of the blocks that is to be used during the calculation of variance

float pratt_merit (Image *inputImage1, Image *inputImage2, float a)
< inputImage1 > ‑ pointer to the ideal edge image structure
< inputImage2 > ‑ pointer to the output edge image structure from edge detection
operation
< a > ‑ scaling constant that can be adjusted to adjust the penalty for offset edges

Image *prewitt_filter(Image *inputImage, Image *dirImage, int mask_choice, int mask_
size, int keep_dc, int threshold)

< inputImage > ‑ pointer to an Image
< dirImage > ‑pointer to direction Image
< mask_choice > ‑ type of smoothing filter
< mask_size > ‑ kernel size
< keep_dc > ‑ 0 (no) or 1 (yes)
< threshold > ‑ value for binary threshold

Image *raster_deblur_filter(Image *cvip_image)
< cvip_image > ‑ pointer to an Image structure

Image *robinson_filter(Image *inputImage, Image *dirImage, int mask_choice, int mask_
size, int keep_dc, int threshold)

< inputImage > ‑ pointer to an Image
< dirImage > ‑ pointer to direction Image
< mask_choice > ‑ type of smoothing filter
< mask_size > ‑ kernel size
< keep_dc > ‑ 0 (no) or 1 (yes)
< threshold > ‑ value for binary threshold

Image *shen_castan_filter (Image *inImage, Image *zeroInter, float b, int window_size,
float low_thresh, float high_thresh, int thinFactor)
< inImage > ‑ pointer to the input image structure
< zeroInter > ‑ pointer to an intermediate image structure

CVIPtools C® Function Libraries	 883

© 2011 by Taylor & Francis Group, LLC

< b > ‑ smoothing factor for the ISEF function (0 < b < 1).
< window_size > ‑ size of window under consideration
< low_thresh > ‑ low threshold scale factor for the hysteresis threshold value estimated
from the image
< high_thresh > ‑ high threshold scale factor for the hysteresis threshold value estimated
from the image
< thinFactor > ‑ distance between final line points

Image *single_filter(Image *orig_image, float s_c, float s_r, int r_cen, int c_cen, float rot,
float beta, int N, float *h, int choice)
< orig_image > ‑ pointer to an Image
< s_c > ‑ horizontal sizing factor, 1 for no change
< s_r > ‑ vertical sizing factor, 1 for no change
< r_cen > ‑ row coordinate for new center, 0 for no change
< c_cen > ‑ column coordinate for new center, 0 for no change
< rot > ‑ angle of rotation, 0 for no change
< beta > ‑ value for beta, typically 0.3 ‑ 0.8
< N > ‑ kernel size (3,5,7,...)
< h > ‑ kernel array (of size N × N)
< choice > ‑ operation of filter: 1 = (‑ ‑); 2 = ( +  + ); 3 = ( + ‑); 4 = (‑ + )

Image *smooth_filter(IMAGE *inputIMAGE,int kernel)
< inputIMAGE > ‑ pointer to an Image
< kernel > ‑ kernel size, from 2 to 10

Image *sobel_filter(Image *inputImage, Image *dirImage, int mask_choice, int mask_size,
int keep_dc, int threshold)

< inputImage > ‑ pointer to an Image
< dirImage > ‑ pointer to direction Image
< mask_choice > ‑ type of smoothing filter
< mask_size > ‑ kernel size
< keep_dc > ‑ 0 (no) or 1 (yes)
< threshold > ‑ value for binary threshold

Matrix *specify_filter(int row, int col, float **temp)
< row > ‑ number of rows of mask
< col > ‑ number of columns of mask
< temp > ‑ mask value array

Image *Ypmean_filter(Image *imageP, int mask_size, int p)
< imageP > ‑ pointer to an Image structure
< mask_size > ‑ size of the filtering window (3 → 3 × 3)
< p > ‑ filter order

Image *unsharp_filter(Image *inputIMAGE, int lower, int upper, float low_clip, float
high_clip)
< inputIMAGE > ‑ pointer to an Image structure
< lower > ‑ lower limit for histogram shrink (0‑254)
< upper > ‑ upper limit for histogram shrink (1‑255)
< low_clip > ‑ percentage of low values to clip during hist_stretch
< high_clip > ‑ percentage of high values to clip during hist_stretch

884	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

13.17  Transform Library: Transform.lib

The transform library, Transform.lib, contains all functions relating to frequency or sequency
domain transforms. The transforms have all been implemented with fast algorithms, so
they require the input images to have dimensions that are powers of two. If the input
images have non-power-of-two dimensions, the images will be automatically padded with
zeros to conform to this criterion. If zero-padding is required, using a small block size will
minimize it. These functions all return Image structures.

Transform Library Function Prototypes

Image *fft_transform(Image *input_IMAGE, int block_size)
< input_IMAGE > ‑ pointer to an Image
< block_size > ‑ size of the subimages on which to perform the transform (e.g., 8 for 8 × 8
blocks)

Image *fft_phase(Image *fftIMAGE, int remap_norm, float k)
< fftIMAGE > ‑ pointer to a complex image structure
< remap_norm > ‑ 0 = remaps the phase data and returns a CVIP_BYTE image; 1 = normal-
izes the magnitude, using value of k, returns a complex image
< k > ‑ constant to normalize the magnitude

Image *dct_transform(Image* inputImage, int blocksize)
< inputIMAGE > ‑ pointer to an Image
< blocksize > ‑ size of the subimages on which to perform the transform (e.g., 8 for 8 × 8
blocks)

Image *haar_transform(Image *in_IMAGE, int ibit, int block_size)
< in_IMAGE > ‑ pointer to an Image
< ibit > ‑ 1 (forward transform) or 0 (inverse transform)
< block_size > ‑ block size (4,8,16, largest_dimension/2)

Image *idct_transform(Image* inputImage, int blocksize)
< inputIMAGE > ‑ pointer to an Image
< blocksize > ‑ block size used for forward transform

Image *ifft_transform(Image *in_IMAGE, int block_size)
< in_IMAGE > ‑ pointer to an Image
< block_size > ‑ block size used for forward transform

Image *wavdaub4_transform(Image *image, int isign, int lowband)
< image > ‑ pointer to an Image
< isign > ‑ 1 (forward transform) or 2 (inverse transform)
< lowband > ‑ # of rows/(2^([(# bands desired ‑1)/3]‑1))

Image *wavhaar_transform(Image *image, int isign, int lowband)
< image > ‑ pointer to an Image
< isign > ‑ 1 (forward transform) or 2 (inverse transform)
< lowband > ‑ # of rows/(2^([(# bands desired ‑1)/3]‑1))

CVIPtools C® Function Libraries	 885

© 2011 by Taylor & Francis Group, LLC

Image *walhad_transform(Image *in_IMAGE, int ibit, int block_size)
< in_IMAGE > ‑ pointer to an Image
< ibit > ‑ 0 = inverse Walsh transform, 1 = Walsh transform, 2 = inverse Hadamard trans-
form, 3 = Hadamard transform
< block_size > ‑ block size (4,8,16,...,largest_dimension/2)

13.18  Transform Filter Library: TransformFilter.lib

The transform filter library, TransformFilter.lib, contains all functions relating to trans-
form domain filtering. Lowpass, highpass, bandpass, bandreject filters are available in
both ideal and Butterworth filter types. A high-frequency emphasis filter is also included,
which uses a Butterworth highpass filter. The notch filter in this library allows the user to
pass multiple notches by using a pointer to a NOTCH_ZONE data structure. These filters
take an Image structure as input, which is assumed to be the output from a transform
function, and they output the filtered transform data as an Image structure. In order to get
the filtered image back, the corresponding inverse transform must be applied to the out-
put from these functions (in CVIPtools, this is done automatically). These standard filters
assume FFT symmetry; consequently, use with a non-FFT transform requires the use of
the function nonfft_xformfilter. These filters all use a circular filter shape.

Frequency domain restoration filters, such as Wiener filters and inverse filters are con-
tained in this library. The restoration filters will accept either the original images or the trans-
formed images as inputs. To obtain the restored image, the inverse FFT (ifft_transform) must
be applied to the restoration filter output. A utility function to create various point spread
function (PSF) images for these filters is called h_image. The homomorphic filter, typically
used in image enhancement to equalize uneven contrast, is also contained in this library.

Transform Filter Library Function Prototypes

Image *Butterworth_Band_Pass(Image *in_IMAGE, int block_size, int dc, int inner, int
outer, int order)
< in_IMAGE > ‑ pointer to an Image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< inner > ‑ inner cutoff frequency
< outer > ‑ outer cutoff frequency
< order > ‑ filter order

Image *Butterworth_Band_Reject(Image *in_IMAGE, int block_size, int dc, int inner, int
outer, int order)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< inner > ‑ inner cutoff frequency
< outer > ‑ outer cutoff frequency
< order > ‑ filter order

886	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

Image *Butterworth_High(Image *in_IMAGE, int block_size, int dc, int cutoff, int order)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< cutoff > ‑ cutoff frequency
< order > ‑ filter order

Image *Butterworth_Low(Image *in_IMAGE, int block_size, int dc, int cutoff, int order)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< cutoff > ‑ cutoff frequency
< order > ‑ filter order

Image *geometric_mean(Image *degr, Image *degr_fn, Image *p_noise, Image *p_orig,
float gamma, float alpha, int choice, int cutoff)
< degr > ‑ pointer to the degraded image
< degr_fn > ‑ pointer to the degradation function
< p_noise > ‑ pointer to the noise power spectral density
< p_orig > ‑ pointer to the original image power spectral density
< gamma > ‑ ‘gamma’ in the generalized restoration equation
< alpha > ‑ ‘alpha’ in the generalized restoration equation
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is restoration filter, this is used
when denominator = 0)
< cutoff > ‑ cutoff frequency for filtering

Image *High_Freq_Emphasis(Image *in_IMAGE,int block_size,int dc,int Cutoff,float
alfa, int order)
< in_IMAGE > ‑ pointer to an Image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< Cutoff > ‑ cutoff frequency
< alfa > ‑ a constant (typically 1.0 to 2.0)
< order > ‑ filter order

Image *h_image(int type, unsigned int height, unsigned int width)
< type > ‑ mask type: 1‑Constant, 2‑Center weighted, 3‑Gaussian
< height > ‑ height of the mask image
< width > ‑ width of the mask image

Image *homomorphic(Image *cvipIMAGE,float upper, float lower,int cutoff)
< cvipIMAGE > ‑ pointer to an Image
< upper > ‑ upper limit, > 1
< lower > ‑ lower limit, < 1
< cutoff > ‑ cutoff frequency

Image *Ideal_Band_Pass(Image *in_IMAGE,int block_size,int dc,int inner,int outer)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< inner > ‑ inner cutoff frequency
< outer > ‑ outer cutoff frequency

CVIPtools C® Function Libraries	 887

© 2011 by Taylor & Francis Group, LLC

Image *Ideal_Band_Reject(Image *in_IMAGE,int block_size,int dc,int inner,int outer)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< inner > ‑ inner cutoff frequency
< outer > ‑ outer cutoff frequency

Image *Ideal_High(Image *in_IMAGE,int block_size,int dc,int cutoff)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< cutoff > ‑ cutoff frequency

Image *Ideal_Low(Image *in_IMAGE,int block_size,int dc,int cutoff)
< in_IMAGE > ‑ pointer to an image
< block_size > ‑ desired block size
< dc > ‑ drop(0) or retain(1) dc component
< cutoff > ‑ cutoff frequency

Image *inverse_xformfilter(Image *numP, Image *denP, int choice, float cutoff)
< numP > ‑ pointer to the numerator, the degraded image
< denP > ‑ pointer to the denominator, the inverse filter (PSF)
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is restoration filter, this is used
when denominator = 0)
< cutoff > ‑ cutoff frequency

Image *least_squares(Image *degr, Image *degr_fn, Image *snr_approx, float gamma, int
choice, int cutoff)
< degr > ‑ pointer to the degraded image
< numP > ‑ pointer to the degradation function
< denP > ‑ pointer to an approximation of Pn/Pf
< gamma > ‑ gamma in least_squares equation.
< cutoff > ‑ cutoff frequency
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is restoration filter, this is used
when denominator = 0)

Image *nonfft_xformfilter(Image *imgP, int block_size, int dc, int filtertype, int p1, int p2,
int order)
< imgP > ‑ pointer to an Image structure
< block_size > ‑ size of blocks used in the transform
< dc > ‑ retain the DC term (1) or not (0)
< filtertype > ‑ one of: IDEAL_LOW, BUTTER_LOW, IDEAL_HIGH, BUTTER_
HIGH, IDEAL_BAND, BUTTER_BAND, IDEAL_REJECT, BUTTER_REJECT,
HIGH_FREQ_EMPHASIS
< p1 > ‑ cutoff frequency for lowpass and highpass, lower cutoff for bandpass
< p2 > ‑ upper cutoff for bandpass filters
< order > ‑ filter order, if Butterworth filter selected

Image *notch(Image *cvipIMAGE, char *name, NOTCH_ZONE *zone, int number, CVIP_
BOOLEAN interactive)
< cvipIMAGE > ‑ input image data
< name > ‑ the name of the image

888	 Digital Image Processing and Analysis

© 2011 by Taylor & Francis Group, LLC

< zone > ‑ a data structure containing information about which part of the image to
remove
< number > ‑ number of notches to perform (ignored if interactive = CVIP_YES)
< interactive > ‑ ask for input from keyboard (CVIP_YES or CVIP_NO)
NOTCH_ZONE data structure:
typedef struct {

int x;
int y;
int radius;

} NOTCH_ZONE

Image *parametric_wiener(Image *degr, Image *degr_fn, Image *p_noise, Image *p_orig,
float gamma, int choice, int cutoff)
< degr > ‑ pointer to the degraded image
< degr_fn > ‑ pointer to the degradation function
< p_noise > ‑ pointer to the noise power spectral density
< p_orig > ‑ pointer to the original image power spectral density
< gamma > ‑ ‘gamma’ in the parametric wiener filter equation
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is restoration filter, this is used
when denominator = 0)
< cutoff > ‑ cutoff frequency for filtering

Image *power_spect_eq(Image *degr, Image *degr_fn, Image *p_noise, Image *p_orig, int
choice, int cutoff)
< degr > ‑ pointer to the degraded image
< degr_fn > ‑ pointer to the degradation function
< p_noise > ‑ pointer to the noise power spectral density
< p_orig > ‑ pointer to the original image power spectral density
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is the restoration filter, this is used
when denominator = 0)
< cutoff > ‑ cutoff frequency for filtering

Image *simple_wiener(Image *degr, Image *degr_fn, Image *denP, float k)
< degr > ‑ pointer to the degraded image
< denP > ‑ pointer to the degradation function
< k > ‑ a constant

Image *wiener(Image *degr, Image *degr_fn, Image *p_noise, Image *p_orig, int choice,
int cutoff)
< degr > ‑ pointer to the degraded image
< degr_fn > ‑ pointer to the degradation function
< p_noise > ‑ pointer to the noise power spectral density
< p_orig > ‑ pointer to the original image power spectral density
< choice > ‑ 1 to let R(u,v) = 1, or 2 to let R(u,v) = 0; (R(u,v) is restoration filter, this is used
when denominator = 0)
< cutoff > ‑ cutoff frequency for filtering

© 2011 by Taylor & Francis Group, LLC

Section V

Appendices

891© 2011 by Taylor & Francis Group, LLC

Appendix A: CVIPtools CD

The CVIPtools CD contains all the necessary files and information to setup and maintain
a CVIPtools environment. This includes:

•	 CVIPtools C® source code
•	 CVIPtools COM source code
•	 CVIPtools GUI source code
•	 CVIPtools COM dynamically linked library for Windows®, cviptools.dll
•	 CVIPtools executable for Windows, CVIPtools.exe
•	 CVIPlab source code
•	 CVIPtools C code libraries for Windows, *.lib
•	 CVIPtools header (include) files for C code
•	 CVIPlab executable for Windows
•	 CVIPtools environment installation program
•	 CVIP-ATAT source code and executable
•	 CVIP-FEPC source code and executable
•	 Help pages for C functions
•	 Help pages for libraries
•	 Help pages for COM functions
•	 Help pages for using CVIPtools
•	 Images

For more information see the README file on the CD. To get CVIPtools updates and other
useful information see the CVIPtools Homepage on the Internet: http://www.ee.siue.edu/
CVIPtools

893© 2011 by Taylor & Francis Group, LLC

Appendix B: Installing and Updating CVIPtools

The entire CVIPtools environment can be setup on any computer running a Windows®
operating system. This includes the CVIPtools files, the CVIPlab files, the Help files, CVIP-
ATAT files, CVIP-FEPC files, and the images. The CVIPtools environment can be installed
from the CD, and updates can be obtained via the Internet.

To install from the CD:

•	 Insert the CD into your CD drive, and the installation should start automatically
•	 If the installation does not start automatically, CVIPtools.msi or setup.exe can be

run manually and in either case it will (1) prompt the user for desired installation
parameters and, (2) copy the contents to the directory where the CVIPtools envi-
ronment is to reside, this directory will correspond to the environment variable,
$CVIPtoolsHOME

•	 After installation CVIPtools can be run by clicking on the desktop icon or by run-
ning $CVIPtoolsHOME\bin\CVIPtools.exe

To get updated versions via the Internet:

•	 Access the CVIPtools Homepage at http://www.ee.siue.edu/CVIPtools

•	 Follow the directions for downloading CVIPtools
•	 Run the installation program and update CVIPtools as desired

895© 2011 by Taylor & Francis Group, LLC

Appendix C: CVIPtools Software Organization

C. 1 Overview

CVIPtools for Windows® is made of several layers; each layer has its own distinct purpose.
Lower layers process the image and deal with the algorithms; middle layers provide trans-
parent access to the lower algorithm layers and offer data security to the higher layers. The
higher layer interacts with the user and sends commands to execute the operations.

C.2 The Four Layers

CVIPtools for Windows is implemented in four layers: the algorithms code layer, the COM
interface layer, the CvipOp layer, and the Graphical User Interface (GUI; see Figure C.1).
The algorithms code layer, which is mainly based on the previous version of CVIPtools,
consists of all image and data processing procedures and functions. The COM interface
layer implements the COM interface for each higher level CVIPtools function, primar-
ily the previous Toolbox functions with a few Toolkit functions, as in Chapter 13. The
CvipOp layer encapsulates the COM interface functions and provides an Object Oriented
Architecture (OOA) for the CVIPtools functions, and the class CvipOp helps to consoli-
date data safety and memory management. The GUI layer, written in C#®, implements the
image queue and manages user input and resultant output.

C.3 File and Directory Organization

After CVIPtools installation from the CD, the file and directory organization is as follows.
The primary directory at the top level is referred to as $CVIPtoolsHOME and is typically
called CVIPtools or CVIPtools5.x, and so on. Under this directory the following directories
reside:

Algorithm Layer (C)

P
aram

eters
R

et
ur

n
V

al
ue

s

COM Interface Layer
(C++)

OOP Layer
(C#)

GUI Layer
(C#)

FIGURE C.1
CVIPtools application infrastructure.

896	 Appendix C: CVIPtools Software Organization

© 2011 by Taylor & Francis Group, LLC

CVIPATAT contains source code for the CVIP Algorithm Test and Analysis Tool, only
with Source installation
CVIPC contains the C® source code for the CVIPtools functions, only with Source
installation
CVIPCOM contains the C++® COM code and all other associated files including links to
the C source code and header files, only with Source installation
CVIPFEPC contains source code for the CVIP Feature Extraction and Pattern Classification
tool, only with Source installation
CVIPGUI contains the code for the GUI, only with Source installation
CVIPlab contains the entire CVIPlab source C/C++ code, and all other associated files
including links to the libraries and header files (see Chapter 11), with Source or Library
installation
HELP contains the CVIPtools Help executable, CVIPtoolsHelp.CHM, compiled with Visual
CHM using html files, and the CVIP-ATAT Help file
include contains the header files for CVIPtools C source code, with Source or Library
installation
lib contains CVIPtools C/C++ source code libraries for use with CVIPlab, with Source or
Library installation
images contains images from the figures in the book
bin contains the executable to run CVIPtools, CVIPtools.exe, the library cviptools.dll and
other associated files and directories used by CVIPtools, including: (1) codebook, (2) com-
pression, (3) feature, (4) mesh, (5) pseudocolor, and (6) remap. Also contains the executables
for CVIP-ATAT and CVIP-FEPC.

897© 2011 by Taylor & Francis Group, LLC

Appendix D: CVIPtools C® Functions

This document contains the most recent listing of all C® functions available to CVIPtools
developers. The functions are grouped by class and library. There are two classes of librar-
ies within CVIPtools: Toolkit and Toolbox.

The Toolkit libraries contain low-level functions, such as data handling and memory
management. The Toolbox libraries contain the functions that are typically used by
CVIPlab programmers, such as transforms or segmentation routines. This organization
is a hierarchical grouping of libraries in which each class successively builds upon the
previous class by using the lower-level functions to create higher-level functions. For more
detailed information on a particular function see the associated Help pages in CVIPtools.

D.1 Toolkit Libraries

Band.lib: data handling of multi-spectral imagery

assemble_bands �assembles multiband image from single band images
bandcast cast image data to greater precision
bandcopy copy band data
band_minmax �find the min and max values of each band
extract_band �extracts one band from a multiband image
matalloc allocate an array of matrices
matfree free memory allocated by matalloc
vecalloc allocate an array of vectors
vecfree free memory allocated by vecalloc

Image.lib: basic image class methods for type conversion, memory management, and
so on. (Note: see $CVIPtoolsHOME\include\CVIPimage.h for the get and set macros,
such as getData_Image)

cast_Image cast an image
delete_Image Image class destructor
dump_Image print image information
duplicate_Image �create a new instance of an existing image
getBand_Image reference a band of matrix data
getBandVector_Image unload image bands into a vector
getColorSpace_Image �get color space of image (e.g., RGB, GRAY, etc.)
getDataFormat_Image �get data format (i.e., REAL or COMPLEX)
getDataType_Image �get data type of image (e.g. CVIP_BYTE, CVIP_FLOAT, etc.)
getData_Image �returns pointer to data (macro in CVIPimage.h)
getFileFormat_Image �get file format of image (e.g., PPM, PGM, etc.)
getImagPixel_Image �read an imaginary pixel sample from the image
getImagRow_Image �reference an imaginary row of the image
getNoOfBands_Image �get number of data bands of image
getNoOfCols_Image get width of image

898	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

getNoOfRows_Image get height of image
getPixel_Image same as “getRealPixel_Image”
getRealPixel_Image �read a real pixel sample from the image
getRealRow_Image reference a real row of the image
getRow_Image same as “getRealRow_Image”
history_add add info to image history structure
history_check �check if an operation has been done on an image
history_copy copies information from old_story
history_get �get info about an operation done on an image
history_show setup routine for history print
history_print �performs output of history structure to h_story
makeComplex_Image make real image complex
makeReal_Image make complex image real
new_Image Image class constructor
setBand_Image �add a new reference to a band of matrix data
setImagPixel_Image �write an imaginary pixel sample to the image
setPixel_Image same as “setRealPixel_Image”
setRealPixel_Image �write a real pixel sample to the image data

IO.lib: general purpose Input/Output, memory management routines

allocMatrix3D_CVIP allocate memory for volume matrix
allocMatrix_CVIP allocate memory for regular matrix
close_CVIP close a file for reading or writing
error_CVIP print error message to terminal
freeMatrix3D_CVIP �free memory associated with volume matrix
freeMatrix_CVIP �free memory associated with regular matrix
getFloat_CVIP get floating point value from the user
getInt_CVIP get integer value from user
getString_CVIP get character string
getUInt_CVIP get unsigned integer value from user
init_CVIP �parse standard info. from command line
msg_CVIP print regular message to terminal
openRead_CVIP �open a file for reading (handles “stdin”)
openWrite_CVIP �open a file for writing (handles “stdout”)
perror_CVIP �print system error message to terminal
print_CVIP �same as “msg_CVIP” minus extra argument
quiet_CVIP turn off messaging
usage_CVIP print usage message
verbose_CVIP turn on messaging

Mapping.lib: image data mapping functions

condRemap_Image �if the range is 0–255 no remap is done, if it exceeds this range
it is linearly remapped from 0 to 255

Appendix D: CVIPtools C® Functions	 899

© 2011 by Taylor & Francis Group, LLC

linearTrans_Image �perform linear mapping of an image through a transforma-
tion matrix

logMap_Image �map image data logarithmically for better display of FFT-
transformed images

remap_Image map image data into a specified range
trun_Image �remap image data, maintain relative size of each data band

Matrix.lib: matrix algebra, manipulation, and numerical analysis routines (Note:
see $CVIPtoolsHOME\include\CVIPmatrix.h for the get and set macros, such as
getData_Matrix)

add_Matrix add two matrices
and_Matrix �perform a bitwise AND on two matrices
cbrt_Matrix �finds cube root of a matrix (real/complex)
clone_Matrix returns a new matrix
conj_Matrix find complex conjugate of matrix
copy_Matrix copy matrix a to matrix b
covariance_Matrix �find the covariance estimate of N data bands
crop_Matrix �create a new matrix from region of original
delete_Matrix matrix class destructor
det_Matrix find the determinant of a matrix
duplicate_Matrix �create new instance of an existing matrix
eigenSystem_Matrix find the eigenvectors of a matrix
fastCopy_Matrix faster copy if data types are the same
getDataFormat_Matrix �get data format (i.e., REAL or COMPLEX)
getData_Matrix same as “getRealData_Matrix”
getDataType_Matrix �get data type of matrix (e.g., CVIP_BYTE, CVIP_FLOAT, etc.)
getImagData_Matrix reference imaginary data (mapped into rows)
getImagRow_Matrix get row of imaginary row
getImagVal_Matrix get an “imaginary” matrix element
getNoOfCols_Matrix get number of columns in matrix
getNoOfRows_Matrix get number of rows in matrix
getRealData_Matrix �reference real data (mapped into rows)
getRealRow_Matrix get row of real data
getRealVal_Matrix get a “real” matrix element
getRow_Matrix same as “getRealRow_Matrix”
getVal_Matrix same as “getRealVal_Matrix”
invert_Matrix invert a matrix
mag_Matrix �find magnitude of a matrix (real/complex)
makeComplex_Matrix make real matrix complex
makeReal_Matrix make complex matrix real
mult_Matrix �perform vector multiplication of two matrices
multPWise_Matrix perform piecewise multiplication
new_Matrix matrix class constructor
print_Matrix �print contents of matrix in row major form

U
FM

|4
84

94
2|

14
35

73
06

88

900	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

read_Matrix read a matrix structure from disk
rect2pol_Matrix �convert from rectangular to polar coordinates
scale_Matrix scale a matrix by some factor
setImagVal_Matrix set an “imaginary” matrix element
setRealVal_Matrix set a “real” matrix element
setVal_Matrix same as “setRealVal_Matrix”
sqrt_Matrix �find square root of matrix (real/complex)
square_mag_Matrix �find magnitude squared of a matrix (real/complex)
sub_Matrix subtract two matrices
transpose_Matrix find the transpose of a matrix
write_Matrix write a matrix structure to disk

Object.lib: object analysis and identification routines

build_ChainCode �find the chain-code “contour” of an object
delete_ChainCode �delete an instance of a chain code object
delete_Object object class destructor
drawBB_Objects �draw a bounding box around all objects
draw_ChainCode �draw the contour of an object onto an image using the

object’s chain code
getProp_Object find object moment properties
getProp_Objects �find moment properties of multiple objects
getXY_ChainCode �turn a chain code into a list of X-Y coordinates
label_Objects �sequentially label objects (used by label function in

libfeature)
listToVector_Objects �create an object vector from an object list
match_Object match an object
new_ChainCode �create a new instance of a chain code object
new_Object object class constructor
print_ChainCode print the chain code results to a file
printLabel_Objects print an object list to a file
print_Object print object statistics to file
printProp_Objects �print a list of object properties to a file
read_ChainCode read a chain code from a file
readLabel_Objects read an object list from a file
read_Object read object statistics from disk
readProp_Objects �read a list of object properties from a file
report_ChainCode print out the chain code values
trimList_Objects trim an object list based on properties

ObjectManager.lib: object managers/handlers

addhead_DLL add link to head of list
addnext_DLL add link following the current link
addtail_DLL add link to tail of list
delete_DLL double linked list class destructor
find_DLL find a particular object in the list

Appendix D: CVIPtools C® Functions	 901

© 2011 by Taylor & Francis Group, LLC

head_DLL set current link to head of list
isempty_DLL is the list empty?
ishead_DLL is current link pointing to head?
istail_DLL is current link pointing to tail?
new_DLL double linked list class constructor
next_DLL point to next link
previous_DLL point to previous link
print_DLL print list
print_reverse_DLL print list in reverse order
promote_DLL promote current link to head of list
removecurr_DLL remove current link
removehead_DLL remove link from head of list
removetail_DLL remove link from tail of list
replace_DLL �replace object pointed to be current link
retrieve_DLL �retrieve object pointed to by current link
size_DLL get size of list (number of links)
tail_DLL set current link to tail of list
addhead_LL add link to head of list
addnext_LL add link following the current link
delete_LL linked list class destructor
find_LL find a particular object in the list
head_LL set current link to head of list
isempty_LL is the list empty?
ishead_LL is current link pointing to head?
istail_LL is current link pointing to tail?
new_LL linked list class constructor
next_LL point to next link
previous_LL point to previous link
print_LL print list
promote_LL promote current link to head of list
removehead_LL remove head link
removenext_LL remove next link
replace_LL �replace object pointed to be current link
retrieve_LL �retrieve object pointed to by current link
size_LL return size of list
tail_LL set current link to tail of list
addobject_HT �add object using separate chaining technique
delete_HT hash table class destructor
findobject_HT find object
new_HT hash table class constructor
setkey_HT set the hash table key
isempty_Stack determine whether a stack is empty
new_Stack �create a new instance of an object stack
pop_Stack pop on object off of the stack

902	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

push_Stack push an object onto the stack

ROI.lib: region/area of interest designation, manipulation of an image

asgnFullImage_ROI assign ROI as full image dimension
asgnImage_ROI assign a ROI to an image
delete_ROI ROI class destructor
getDataFormat_ROI get data format of ROI
getDataType_ROI get data type of ROI
getHorOffset_ROI get horizontal offset from pixel (0,0)
getHorSize_ROI get height/horizontal size of region
getImagPixel_ROI �get/read imaginary pixel sample from ROI
getImagRow_ROI reference imaginary row from the ROI
getNoOfBands_ROI get number of data bands in ROI
getNoOfCols_ROI same as “getHorSize_ROI”
getNoOfRows_ROI same as “getVerSize_ROI”
getPixel_ROI same as “getRealPixel_ROI”
getRealPixel_RO get/read real pixel sample from ROI
getRealRow_ROI reference real row from the ROI
getRow_ROI same as “getRealRow_ROI”
getVerOffset_ROI get vertical offset from pixel (0,0)
getVerSize_ROI get width/vertical size of region
loadRow_ROI load data from a buffer into ROI
new_ROI ROI class constructor
setImagPixel_RO �set/write imaginary pixel sample to ROI
setPixel_ROI same as “setRealPixel_ROI”
setRealPixel_ROI set/write real pixel sample to ROI
unloadRow_ROI �unload row of data from ROI into buffer

Vector.lib: vector algebra and manipulation routines

band2pixel_Vector convert a band vector to a pixel vector
convolve_Vector convolve two vectors
copy_Vector copy vector a to vector b
findHisto_Vector find the histogram of a vector
findMaxVal_Vector return maximum value in vector
findMinVal_Vector return minimum value in vector
normalize_Vector normalize a vector between 0 and 1
pixel2band_Vector convert a pixel vector to a band vector
printHisto_Vector print histogram values out to a file
subSample_Vector sub-sample a list of vector points

D.2 Toolbox Libraries

ArithLogic.lib: arithmetic and logical operations on images

add_Image add two images
and_Image perform a logical AND on two images

Appendix D: CVIPtools C® Functions	 903

© 2011 by Taylor & Francis Group, LLC

divide_Image divide one image by another
multiply_Image multiply two images
not_Image perform a logical NOT on an image
or_Image perform a logical OR on two images
subtract_Image subtract one image from another
xor_Image perform a logical XOR on two images

Color.lib: color map utilities and color transforms

colorxform �performs seven color transforms and inverse transforms
ipct �performs the inverse principal components transform
luminance_Image �performs color to luminance transform
lum_average �performs color to monochrome using average of all bands
pct �performs the principal components transform in RGB-

space
pct_color �handles both forward and inverse PCT
pseudocol_freq �pseudocolor transform using FFT spectrum and filters

Compression.lib: image compression/data reduction routines

bit_compress �decomposes grey level image into eight bit planes. Each
bitplane is then run-length encoded and stored in a binary
file

bit_decompress �decompresses each binary file (corresponding to a particu-
lar bit plane) into corresponding binary images

bit_planeadd �decompresses bitplane files and add any combinations of
bitplanes to produce the resultant gray-level image.

btc_compress �compress the image in 4∗4 blocks, store it in a binary file
btc2_compress �multilevel block truncation coding (BTC) image compression
btc3_compress predictive BTC compression
btc_decompress �decompress the image from the encoded binary file
btc2_decompress �decompress multilevel BTC encoded image
btc3_decompress �decompress predictive BTC encoded image
dpc_compress �differential predictive coding compression
dpc_decompress �differential predictive coding decompression
frac_compress fractal compression
frac_decompress fractal decompression
glr_compress �performs gray-level runlength coding for any window

length specified by the user (window range 1–125)
glr_decompress �perform gray-level runlength decoding from the encoded

binary file
huf_compress �perform huffman coding and store the probability table and

encoded data into a binary file
huf_decompress �perform huffman decoding from the encoded binary file
jpg_compress JPEG compression
jpg_decompress JPEG decompression
jp2_compress JPEG2000 compression

904	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

jp2_decompress JPEG2000 decompression
rms_error �calculates root-mean-square error between two images
snr �calculates peak signal-to-noise ratio in decibels
vq_compress vector quantization compression
vq_decompress vector quantization decompression
xvq_compress �transform/vector_quantization compression
xvq_decompress �transform/vector_quantization decompression
zon_compress �zonal coding based compression, DC quantize
zon_decompress �zonal coding based decompression, DC quantize
zon2_compress �zonal coding based compression, no DC quantize
zon2_decompress �zonal coding based decompression, no DC quantize
zvl_compress Ziv-Lempel compression
zvl_decompress Ziv-lempel decompression

Conversion.lib: image conversion, I/O utilities

bintocvip �convert binary (raw) file format to CVIPtools data structure
bmptocvip �convert BMP (Windows raw data) to CVIPtools data structure
ccctocvip �convert CCC file format to CVIPtools data structure
cviptoiris �convert SGI IRIX file format to CVIPtools data structure
CVIPhalftone �quantizes gray image to binary, dithering options
cviptobin �convert CVIPtools data structure to binary (raw) file format
cviptobmp �convert CVIPtools data structure to BMP file format
cviptoccc �convert CVIPtools data structure to CCC file format
cviptoeps �convert CVIPtools data structure to EPS file format
cviptoitex �convert CVIPtools data structure to ITEX file format
cviptojpg �convert CVIPtools data structure to JPEG file format
cviptojp2 �convert CVIPtools data structure to JPEG2000 file format
cviptopnm �convert CVIPtools data structure to PNM file format
cviptopng �convert CVIPtools data structure to PNG file format
cviptoras �convert CVIPtools data structure to Sun RAS file format
cviptotiff �convert CVIPtools data structure to TIFF file format
cviptovip �convert CVIPtools data structure to VIP file format
epstocvip �convert EPS file format to CVIPtools data structure
giftocvip �convert GIF file format to CVIPtools data structure
gray_binary �converts natural binary code to gray code and gray to binary
iristocvip �convert SGI IRIX file format to CVIPtools data structure
itextocvip �convert ITEX file format to CVIPtools data structure
jpgtocvip �convert JPEG file format to CVIPtools data structure
jp2tocvip �convert JPEG2000 file format to CVIPtools data structure
pngtocvip �convert PNG file format to CVIPtools data structure
pnmtocvip �convert PNM file format to CVIPtools data structure
rastocvip �convert Sun RAS file format to CVIPtools data structure
read_Image read image from disk
tifftocvip �convert TIFF file format to CVIPtools data structure

Appendix D: CVIPtools C® Functions	 905

© 2011 by Taylor & Francis Group, LLC

viptocvip �convert VIP file format to CVIPtools data structure
write_Image write image to disk

Display.lib: display and view functions
view_Image �general purpose image view function for CVIPlab (note: it is

a C/C++® function)

Feature.lib: feature extraction functions

area �find area of binary object (number of pixels)
aspect �find aspect ratio (based on bounding box) of binary object
centroid �find row and column coordinates of a binary object
euler find Euler number of a binary object
hist_feature �find histogram features: mean, standard deviation, skew,

energy, entropy
irregular �find irregularity (1/thinness ratio) of binary object
label labels connected objects in an image
orientation �finds orientation of a binary object via axis of least second

moment
perimeter �find the perimeter length of a binary object
projection �find row and column projections of size normalized object
rst_invariant �finds seven rotation/scale/translation-invariant moment

based on features of binary object
spectral_feature �finds spectral features based on FFT power in rings and

sectors
texture �finds up to 14 texture features for four orientations
texture2 �new texture function that finds five texture features for four

orientations
thinness finds thinness ratio of binary object

Geometry.lib: geometry manipulation routines

bilinear_interp �shrinks or enlarges an image using bilinear interpolation to
calculate the gray-level value of new pixels

copy_paste �copy a subimage from one image and paste it into another
create_black create an all-black image
create_checkboard create a checkerboard image
create_circle create a binary image of a circle
create_cosine �create a cosine wave image of any size and desired frequency
create_ellipse create a binary image of an ellipse
create_line create a line image
create_rectangle create a rectangular image
create_sine �create a sine wave image of any size and desired frequency
create_squarewave �create a square wave image of any size and desired frequency
crop crop a subimage from an image
display_mesh �displays a mesh file as an image, used in warp
enlarge enlarges image to a user-specified size
keyboard_to_mesh �creates a mesh structure from keyboard entry for mesh_warping

906	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

mesh_warping geometrically distort an image
mesh_to_file �saves a mesh structure to a file, used in warp
object_crop �special crop function used in border mask and border image
rotate �rotate the given image by an angle specified by the user (range

1 ~ 360 degrees)
shrink �shrinks the given image by a factor specified by the user

(range 0.1 ~ 1)
solve_c �solves bilinear equation, used with warp
spatial_quant �quantize an image by one of the following methods: aver-

age, median, or decimation
translate �move the entire image horizontally and/or vertically; also

used for cut-and-paste of subimage
zoom �zoom the given image by a factor specified by the user

(range 1 ~ 10)

Histogram.lib: image histogram modification/contrast manipulation routines

define_histogram �allows user to specify an equation for histogram modification
get_histogram �generates a histogram array from an image
get_histogram_Image �generates a histogram Image from an image
gray_linear gray-level linear modification
gray_multiply �remap (if necessary) to byte and multiply, clip at 255
gray_multiply2 �cast image to float, multiplies by constant, outputs float

image
histeq histogram equalization
histogram_show �prints ASCII representation of a histogram
hist_spec �perform histogram manipulation using formula specified

by character string(s) for the equation(s)
histogram_spec �perform histogram manipulation using formula specified

by define_histogram
hist_slide histogram slide
hist_stretch �histogram stretch, specify range and percent clip both ends
local_histeq local histogram equalization
make_histogram generates an image of a histogram
showMax_histogram �creates an image of a histogram of an image

Morphological.lib: morphological image processing routines

MorphClose_Image �perform grayscale morphological closing
MorphClose �perform grayscale morphological closing
MorphDilate_Image �perform grayscale morphological dilation

MorphDilate �perform grayscale morphological dilation
MorphErode_Image �perform grayscale morphological erosion
MorphErode �perform grayscale morphological erosion
morph_hitmiss �perform morphological hit-or-miss transform
morphIterMod_Image �perform iterative morphological modification of an image

Appendix D: CVIPtools C® Functions	 907

© 2011 by Taylor & Francis Group, LLC

morpho �performs iterative modification of an image
MorphOpen_Image �perform grayscale morphological opening
MorphOpen �perform grayscale morphological opening
morph_skeleton �perform morphological skeletonization
morph_thinning perform morphological thinning

Noise.lib: noise generating routines

gamma_noise add gamma noise to an image
Gaussian_noise add Gaussian noise
neg_exp_noise add negative-exponential noise
rayleigh_noise add rayleigh noise
speckle_noise add speckle (salt-and-pepper) noise
uniform_noise add uniform noise

Segmentation.lib: image segmentation routines

auto_threshold_
segment

�perform automatic thresholding segmentation

fuzzyc_segment �perform Fuzzy c-Means color segmentation
gray_quant_segment perform gray-level quantization
gvfsnake_segment �perform gradient vector flow snake segmentation
hist_thresh_segment �perform adaptive thresholding segmentation
igs_segment �perform improved gray scale (IGS) quantization
median_cut_segment perform median cut segmentation
multi_resolution_

segment
�perform multiresolution segmentation

otsu_segment perform otsu method thresholding
pct_median_segment �perform PCT/median cut segmentation
sct_split_segment �perform SCT/center split segmentation
split_merge_segment �perform split and merge, and multiresolution segmentation
threshold_segment perform binary threshold on an image
watershed_segment �perform watershed segmentation on an image

SpatialFilter.lib: spatial filtering routines and noise creation

ace2_filter �adaptive contrast filter, adapts to local gray-level statistics
acuity_night_vision_

filter
�visual acuity and night vision application (various blur levels)

ad_filter �anisotropic diffusion filter, for smoothing and noise
mitigation

adaptive_contrast_filter �adaptive contrast filter, adapts to local gray-level statistics
adaptive_median_filter �median filter algorithm that retains image details
alpha_filter perform an alpha-trimmed mean filter
boie_cox_filter perform a Boie–Cox edge detection
canny_filter perform a Canny edge detection
cerchar_filter �perform a Cervenka and Charvat multispectral edge detection
contra_filter perform a contra-harmonic mean filter

908	 Appendix D: CVIPtools C® Functions

© 2011 by Taylor & Francis Group, LLC

convolve_filter convolve an image with a matrix
edge_detect_filter �perform edge detection on an image (Frei–Chen, Kirsch,

Laplacian, Prewitt, Pyramid, Roberts, Robinson, or Sobel)
edge_link_filter links edge points into lines
exp_ace_filter �adaptive contrast filter using exponential equation
geometric_filter performs a geometric mean filter
get_default_filter �gets Matrix for predefined spatial masks, used with

convolve_filter
harmonic_filter performs a harmonic mean filter
harris_corner_filter performs a Harris corner detection
hough_filter �performs an hough transform, links specified lines
improved_mmse_filter �improved version of minimum mean squared error restora-

tion filter
image_sharp sharpening algorithm II
kirsch_filter �kirsch edge detection, returns magnitude, and direction

images
kuwahara_filter �adaptive, edge-preserving, smoothing spatial filter
log_ace_filter �adaptive contrast filter using log equation
marr_hildreth_filter perform Marr–Hildreth edge detection
maximum_filter performs a maximum filter
mean_filter perform a mean filter
median_filter �performs a fast histogram-method median filter
midpoint_filter performs a midpoint filter
minimum_filter �performs a minimum filter on an image
mmse_filter �minimum mean squared error restoration filter
moravec_corner_filter performs Moravec corner detection
param_ad_filter �anisotropic diffusion filter, for smoothing and noise mitigation
pratt_merit calculate Pratt’s figure of merit
prewitt_filter �prewitt edge detector, returns magnitude and direction

images
raster_deblur_filter raster deblurring filter
robinson_filter �Robinson edge detector, returns magnitude and direction

images
shen_castan_filter perform a Shen–Castan edge detection
single_filter �performs geometric manipulation and enhancement with a

single spatial filter
smooth_filter �smooths the given image (kernel size in the range 2 ~ 10)
sobel_filter �sobel edge detector, returns magnitude and direction images
unsharp_filter performs unsharp masking algorithm
Ypmean_filter performs a Yp mean filter

Transform.lib: two-dimensional unitary transforms

dct_transform �performs blockwise Discrete Cosine Transform
fft_phase �normalizes magnitude and remaps phase data into a BYTE

image

Appendix D: CVIPtools C® Functions	 909

© 2011 by Taylor & Francis Group, LLC

fft_transform �performs blockwise Fast Fourier Transform
haar_transform �performs forward or inverse Haar transform
idct_transform �performs inverse Discrete Cosine Transform
ifft_transform �performs inverse Fast Fourier Transform
wavtdaub4_transform �performs wavelet transform based on Daubechies wavelet
wavthaar_transform �performs wavelet transform based on Haar wavelet
walhad_transform �performs Walsh/Hadamard transform (forward or inverse)

TransformFilter.lib: transform filtering routines

Butterworth_Band_Pass �apply Butterworth bandpass filter in transform domain
Butterworth_Band_

Reject
�apply Butterworth bandreject filter in transform domain

Butterworth_High �apply Butterworth highpass filter in transform domain
Butterworth_Low �apply Butterworth lowpass filter in transform domain
geometric_mean geometric mean restoration filter
High_Freq_Emphasis �perform a high frequency emphasis (HP Butterworth +

offset)
h_image �creates an image for the degradation function, h(r,c)
homomorphic perform homomorphic filtering
Ideal_Band_Pass �apply ideal bandpass filter in transform domain
Ideal_Band_Reject �apply an ideal bandreject filter in transform domain
Ideal_High �apply ideal highpass filter in transform domain
Ideal_Low �apply ideal lowpass filter in transform domain
inverse_xformfilter perform inverse restoration filter
least_squares perform least squares restoration filter
nonfft_xformfilter �perform standard filters (lowpass, highpass, etc.) on non-

FFT symmetry transforms
notch perform a notch filter
parametric_wiener �parametric wiener restoration filter, variable gamma
power_spect_eq �power spectrum equalization restoration filter
simple_wiener �simple wiener restoration filter (K parameter)
wiener Wiener restoration filter

911© 2011 by Taylor & Francis Group, LLC

Appendix E: Common Object Module
(COM) Functions: cviptools.dll

The following functions are in the dynamically linked library, cviptools.dll. They are all
based on the common object module interface (COM), and can be used directly by those
familiar with this interface. The COM functions are essentially the CVIPtools C® func-
tions with a COM wrapper on top. These functions are in the CVIPTools.cpp file in the
$CVIPtoolsHOME\CVIPCOM directory.

Note that the CVIPtools installation program performs system registration for cviptools.
dll, which is required to run CVIPtools.exe. If any changes are made to cviptools.dll, the user
needs to perform system registration. This can be done in a DOS shell with this command:
regsvr32 cviptools.dll.

Ace2_Filter([in] long* image,[in] long wsize,[in]double alpha, [in] double
beta,[out,retval] long* Result_Image);

Acuity_Nightvision_Filter([in] long* image,[in] long reason, [in] long threshold, [in]
long choice,[out,retval] long* Result_Image);

AD_Filter([in] long* image,[in] long iteration_num,[in] long speed,[in] long edge_
height,[out,retval] long* Result_Image);

Adapt_Median_Filter([in] long* image,[in] long mask_size,[out,retval] long*
Result_Image);

Adaptive_Contrast_Filter([in] long* image,[in] double k1, [in] double k2,[in]
long kernel_size,[in] double min_gain, [in] double max_gain,[out,retval] long*
Result_Image);

Add_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);
Alpha_Filter([in] long* image,[in] long mask_size, [in] long p,[out,retval] long*

Result_Image);
And_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);
Area([in] long* image,[in] int r, [in] int c, [out,retval] long* Result);
Aspect([in] long* image,[in] int r, [in] int c, [out,retval] long* Result);
Assemble_Bands([in] long image[3],[out,retval] long* Result_Image);
Auto_Threshold_Segment([in] long* inputImage, [in] float limit, [out,retval] long*

Result_Image);
Bilinear_Interp([in] long* image, [in] float factor,[out,retval] long* Result_Image);
Bintocvip([in] BSTR *File_Name, [in] long data_bands, [in] long color_order, [in] long

interleaved, [in] long height, [in] int width, [in] long verbose, [out, retval] long*
Result_Image);

Bit_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]long sect);
Bit_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Boiecox_Filter([in] long* image,[in] double var,[in] long do_threshold, [in] long

do_hyst, [in] long thin, [in] double high_threshold, [in] double low_threshold,

912	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

[out] long *imageThreshold, [out] long *imageHyst, [out,retval] long*
Result_Image);

Btc_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]long blocksize);
Btc_Decompression([in] BSTR *File_Name, [out,retval] long* Result_Image);
Btc2_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]long blocksize);
Btc2_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Btc3_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]long blocksize);
Btc3_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Butterworth_Band_Pass([in] long* image,[in] long block_size, [in] long dc, [in] long

inner, [in] long outer, [in] long order,[out,retval] long* Result_Image);
Butterworth_Band_Reject([in] long* image,[in] long block_size, [in] long dc, [in] long

inner, [in] long outer, [in] long order,[out,retval] long* Result_Image);

Butterworth_High([in] long* image,[in] long block_size, [in] long dc, [in] long cutoff,
[in] long order,[out,retval] long* Result_Image);

Butterworth_Low([in] long* image,[in] long block_size, [in] long dc, [in] long cutoff,
[in] long order,[out,retval] long* Result_Image);

Canny_Filter([in] long *image, [in] double low, [in] double high, [in] double var, [in]
long *nonmax_mag, [in] long *nonmax_dir, [out,retval] long *Result_Image);

Cast_Image([in] long* image,[in] long dtype);
CentroID([in] long* input_im1, [in] long r, [in] long c ,[out,retval] VARIANT

*result_array);

Cerchar_Filter([in] long *inputImage, [out,retval] long *Result_image);
Check_Bin([in] long* image,[out,retval] long* Result);
Check_xform_history([in] long* image,[in] int filter, [out,retval] long* Result);
Close_Consol();
Close_Console();
ColorXform([in] long* image,[in]long newcspace, [in]double *norm, [in]

double*refwhite,[in] long dir, [out,retval] long* Result_Image);
CondRemap_Image([in] long * image, long dtype, int min, int max,[out,retval] long

*Result_Image);
Contra_Filter([in] long* image,[in] long mask_size, [in] long p,[out,retval] long*

Result_Image);

Copy_Paste([in] long* src_image, [in] long* dest_image, [in] int start_r, [in] int
start_c, [in] int height, [in] int width, [in] int dest_r, [in] int dest_c, [in] long
transparent,[out,retval] long* Result_Image);

Create_Black([in] int width, [in] int height,[out,retval] long* Result_Image);
Create_Checkboard([in] int width, [in]int height,[in]int firstx,[in]int firsty,[in]int

blockx,[in]int blocky,[out,retval] long* Result_Image);
Create_Circle([in] int width, [in] int height,[in]int centerx,[in]int centery,[in]int

radius,[out,retval] long* Result_Image);
Create_Cosine([in] int img_size, [in] int frequency, [in] int choice,[out,retval] long*

Result_Image);

Appendix E: Common Object Module (COM) Functions: cviptools.dll	 913

© 2011 by Taylor & Francis Group, LLC

Create_Degenerate_Circle([in] int width, [in] int height,[in]int centerx,[in]int
centery,[in]int radius1,[in]int radius2,[out,retval] long* Result_Image);

Create_Ellipse([in] int width, [in] int height,[in]int centerx,[in]int centery,[in]int hor_
length,[in]int ver_length,[out,retval] long* Result_Image);

Create_Line([in] int width, [in] int height, [in] int tlx, [in] int tly, [in] int brx, [in] int
bry,[out,retval] long* Result_Image);

Create_Rectangle([in] int width, [in] int height, [in] int tlx, [in] int tly, [in] int sqwidth,
[in] int sqheight,[out,retval] long* Result_Image);

Create_Sine([in] int img_size, [in] int frequency, [in] int choice,[out,retval] long*
Result_Image);

Create_Squarewave([in] int img_size, [in] int frequency, [in] int choice,[out,retval]
long* Result_Image);

Crop([in] long* image, [in] int row_offset, [in] int col_offset, [in] int rows, [in] int
cols,[out,retval] long* Result_Image);

CVIP_OUTPUT([out, retval] BSTR * sMessage);
CVIPhalftone([in] long* image, [in] int halftone, [in] int maxval, [in] float fthreshval,

[in] long retain_image, [in] long verbose,[out,retval] long* Result_Image);
Cviptoccc([in] BSTR *File_Name, [in] long maxcolor,[in] long verbose, [in] long

dermvis,[in] long* cvip_Image);
Cviptoeps([in] BSTR *File_Name,[in] long* cvip_Image, [in] double scale_x, [in] dou-

ble scale_y, [in] long band, [in] long verbose);

Cviptogif([in] BSTR *File_Name,[in] long* cvip_Image, [in] long interlace, [in] long
verbose);

Cviptoiris([in] BSTR *File_Name,[in] long* cvip_Image,[in] long verbose,[in] long
prt_type);

Cviptoitex([in] BSTR *File_Name,[in] long* cvip_Image, [in] BSTR *comment,[in] long
verbose);

Cviptojpg([in] BSTR *File_Name, [in] long* Input_image,[in] int quality, [in] long gray-
scale, [in] long optimize, [in] int smooth, [in] long verbose, [in]BSTR *qtablesFile);

Cviptojp2([in] BSTR *File_Name, [in] int rate, [in] int quality, [in] int umberoflayers,
[in] int block_size);

Cviptopng([in] long* Input_image, [in] BSTR *File_Name);
Cviptopnm([in] BSTR *File_Name,[in] long* cvip_Image, [in] long verbose);
Cviptoras([in] BSTR *File_Name,[in] long* cvip_Image, [in] long pr_type, [in] long

verbose);
Cviptotiff([in] BSTR *File_Name,[in] long* cvip_Image, [in] long compression, [in]

long fillorder, [in] long g3options, [in] long predictor, [in] long rowsperstrip, [in]
long verbose);

Cviptovip([in] BSTR *File_Name,[in] long* cvip_Image, [in] long verbose,[in] long
save_history,[in] long is_compressed);

Date_Range([in] long* input_im1, [out,retval] VARIANT *result_array);
Dct_Transform([in] long* image,[in] long block_size,[out,retval] long*

Result_Image);

914	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

Delete_Image([in] long* image);
Divide_Image([in] long* input_im1,[in] long* input_im2,[in]long zero2num, [out,retval]

long* result_im);
Dpc_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]float ratio,[in]int

bit_length, [in] int clipping, [in]int direction, [in]int origin, [in]float deviation);
Dpc_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);

Draw_mesh([in] long* image,[in] long* pmesh);
Duplicate_Image([in] long* image,[out,retval] long* Result_Image);
DynRLC_Compression([in] BSTR* File_Name, [in] long *inputImage, [in] long WindowSize,

[out, retval] long * result);
DynRLC_deCompression([in] BSTR* File_Name, [out, retval] long *Result_Image);
Edge_Detect_Filter([in] long* image, [in] long program, [in] long mask_choice, [in]

long mask_size, [in] long keep_dc, [in] long threshold,[in] long threshold1, [in] long
thresh,[in] long thr,[out,retval] long* Result_Image);

Edge_Link_Filter([in] long* image,[in] long connection,[out,retval] long* Result_Image);
Enlarge([in] long* image, [in] int row, [in] int col,[out,retval] long* Result_Image);
Epstocvip([in] BSTR *File_Name,[in] long verbose);
Euler([in] long* image,[in] long row, [in] long col, [out,retval] long *Result_Image);

Exp_Ace_Filter([in] long* image,[in] long wsize,[in]double alpha, [in] double
beta,[out,retval] long* Result_Image);

Extract_Band([in] long* image,[in] int bandno, [out,retval] long* Result_Image);
Fft_Phase([in] long* image,[in] long remap_norm, [in] double k,[out,retval] long* Result_

Image);

Fft_Transform([in] long* image,[in] long block_size,[out,retval] long* Result_Image);
File_To_Mesh([in] BSTR *File_Name, [out, retval] long* Result_Image);
Fractal_Compression([in] long *inputImage, [in] BSTR *File_Name, [in] double

Tolerate, [in] long min_part, [in] long max_part, [in] long dom_type, [in] long
dom_step, [in] long c1, [in] long c2, [in] long s_bits, [in] long o_bits, [out, retval]
long * result);

Fractal_deCompression([in] BSTR *File_Name, [out, retval] long * Result_Image);
Fuzzyc_Segment([in] long* image,[in] double variance, [out,retval] long* Result_

Image);
Gamma_Noise([in] long* image,[in] double var, [in] int alpha,[out,retval] long* Result_

Image);
Gaussian_Noise([in] long* image,[in] double var, [in] double mean,[out,retval] long*

Result_Image);
Geometric_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_

Image);

Geometric_Mean([in] long* image,[in] long* image1,[in] long* image2,[in] long*
image3,[in] double gamma,[in] double alpha,[in] long choice,[in] long cutoff,[out,retval]
long* Result_Image);

get_hist_real([in] long* image,[out,retval] long* Result_Image);

Appendix E: Common Object Module (COM) Functions: cviptools.dll	 915

© 2011 by Taylor & Francis Group, LLC

Get_Histogram_Image([in] long* image,[out,retval] long* Result_Image);
Get_max_min_value([in] long* image,[in] double* Result);
GetDataFormat_Image([in] long* image,[out,retval] long* Result);
GetDataType_Image([in] long* image,[out,retval] long* Result);
GetImageInfo([in] long* orig_im, [out,retval] VARIANT *result_array);
Getlast_Hist([in] long* input_im, [in] long * program,[in] int nprogs, [out, retval]

long* Result);
GetNoOfBands_Image([in] long* image,[out,retval] long* Result);
GetNoOfCols_Image([in] long* image,[out,retval] long* Result);
GetNoOfRows_Image([in] long* image,[out,retval] long* Result);
giftocvip([in] BSTR *File_Name,[in] long* cvip_Image, [in] long imageNumber,[in]

long showmessage);
Glr_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]long win);
Glr_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Gray_Binary([in] long* image,[in] int direction,[out,retval] long* Result_Image);
Gray_Linear([in] long* image, [in] double start, [in] double end,[in] double s_gray, [in]

double slope, [in] int change, [in] int band,[out,retval] long* Result_Image);
Gray_Multiplication([in] long* image,[in] float ratio,[in] long options, [out,retval]

long* Result_Image);
Gray_Multiply([in] long* image,[in] float ratio,[out,retval] long* Result_Image);
Gray_Multiply2([in] long* image,[in] float ratio,[out,retval] long* Result_Image);
Gray_Quant_Segment([in] long* image,[in] long num_bits,[out,retval] long*

Result_Image);
Graylevel_Quant([in] long* image,[in] long num_bits, [in] long choice, [out,retval]

long* Result_Image);
Graylevel_Remap([in] long* inputImage,[in] long bandR, [in] long bandG, [in] long

bandB, [out,retval] long *Result_Image);
GVFSnake_Segment([in] long* image, [in] long num_iter, [in] long alpha, [in] long

beta, [in] long kappa, [out,retval] long* Result_Image);
H_image([in] long type, [in] long height, [in] long width,[out,retval] long* Result_Image);
Haar_Transform([in] long* image,[in] long param1,[in] long param2, [out,retval]

long* Result_Image);
Harmonic_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_Image);
Harris_Corner_Filter([in] long *inputImage, [in] float alpha, [in] int threshold, [in] int

border, [in] float dmin, [out,retval] long *Result_Image);
High_Freq_Emphasis([in] long* image,[in] long block_size, [in] long dc, [in] long

Cutoff, [in] double alfa, [in] long order,[out,retval] long* Result_Image);

Highboost([in] long *inputImage, [in] long MaskSize, [in] long CenterValue, [in] long
ifAdd2Origin, [out, retval] long * Result_Image);

HighFreq_Emphasis([in] long * inputImage, [in] long TransformMethod, [in] long
CutoffFreq, [in] long FilterOrder, [in] double OffSet, [in] long KeepDC, [out, retval]
long * Result_Image);

916	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

Highpass_Spatial([in] long *inputImage, [in] long ifAdd2Origin, [out, retval] long *
Result_Image);

Hist_Feature([in] long* orig_im, [in] long* labeled_im, [in] long r, [in] long c
,[out,retval] VARIANT *result_array);

Hist_Slide([in] long* image,[in] int slide,[out,retval] long* Result_Image);

Hist_Spec([in] long * InputImage, [in] BSTR *bandR, [in] BSTR *bandG, [in] BSTR
bandB, [out, retval] long Result_Image);

Hist_Stretch([in] long* image, [in] int low_limit, [in] int high_limit,[in] float low_clip,
[in] float high_clip,[out,retval] long* Result_Image);

Hist_Thresh_Segment([in] long* image,[out,retval] long* Result_Image);
Histeq([in] long* image,[in] int mb,[out,retval] long* Result_Image);
Histogram_Spec([in] long * InputImage, [in]double* sped_in,[out, retval] long*

Result_Image);
History_Add([in] long* input_im,[in] long* input_history);
History_Check([in] long* image,[in] int program, [out,retval] long* Result);
History_Copy([in] long* input_from,[in] long* input_to);
history_create([in] long prog, [in] long type, [in] float value, [out, retval] long* Result);
History_Get([in] long* image,[in] int program,[out,retval] long* Result);
History_get_data([in] long* history,[in] int program, [out,retval] long* Result);
Homomorphic([in] long* image,[in] double upper, [in] double lower,[in] long cutoff,

[in] long ifAdd2Origin, [out,retval] long* Result_Image);
Horizontal_Flip([in] long* image,[out,retval] long* Result_Image);
Hough_Filter([in] long *image, [in] BSTR * name_in, [in] BSTR * degree_string_in,[in]

long threshold, [in] long connection, [in] long interactive, [in] long delta_length,
[in] long segment_length,[out, retval] long* Result_Image);

Huf_Compress([in] BSTR *File_Name, [in] long* Input_image);
Huf_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Idct_Transform([in] long* image,[in] long block_size,[out,retval] long* Result_Image);
Ideal_Band_Pass([in] long* image,[in] long block_size, [in] long dc, [in] long inner,

[in] long outer, [out,retval] long* Result_Image);
Ideal_Band_Reject([in] long* image,[in] long block_size, [in] long dc, [in] long inner,

[in] long outer, [out,retval] long* Result_Image);
Ideal_High([in] long* image,[in] long block_size, [in] long dc, [in] long cutoff,[out,retval]

long* Result_Image);
Ideal_Low([in] long* image,[in] long block_size, [in] long dc, [in] long cutoff,[out,retval]

long* Result_Image);
Ifft_Transform([in] long* image,[in] long block_size,[out,retval] long* Result_Image);
Igs_Segment([in] long* image,[in] long gray_level,[out,retval] long* Result_Image);
Improved_Mmse_Filter([in] Long* inputImage, [in] float threshval, [in] int kernel_

size, [in] float noise_var, [out,retval] Long* Result_Image);
Input_Mesh([in] long * mesh_array,[out, retval] long* Result_Image);

Appendix E: Common Object Module (COM) Functions: cviptools.dll	 917

© 2011 by Taylor & Francis Group, LLC

Intensity_Slicing([in] long *inputImage,[in] long *lookupTable, [in] long options,
[out,retval] long *Result_Image);

Inverse_Xformfilter([in] long* image,[in] long* image1,[in] long choice,[in] double
cutoff,[out,retval] long* Result_Image);

Ipct([in] long* image, [in] long is_mask, [out,retval] long* Result_Image);
Irregular([in] long* image,[in] int r, [in] int c, [out,retval] long* Result);
Jpg_Compress([in] BSTR *File_Name, [in] long* Input_image,[in] int quality, [in]

long grayscale, [in] long optimize, [in] int smooth, [in] long verbose, [in]BSTR
*qtablesFile);

Jpg_Decompress([in] BSTR *File_Name, int colors, [in] long blocksmooth, [in] long
grayscale, [in] long nodither, [in] long verbose, [out,retval] long* Result_Image);

Jpgtocvip([in] BSTR *File_Name, [in] int colors, [in] long blocksmooth, [in] long gray-
scale, [in] long nodither, [in] long verbose,[out, retval] long* Result_Image);

Jp2tocvip([in] BSTR *File_Name, [out,retval] long* Result_Image);
Jp2_Compress([in] BSTR *File_Name, [in] long* Input_image, [in] int rate, [in] int

quality, [in] int numberoflayers, [in] int block_size);
Jp2_DeCompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Kirsch_Filter([in] long* image, [in] long* dirImage, [in] long mask_choice, [in] long

mask_size, [in] long keep_dc, [in] long threshold,[out,retval] long* Result_Image);
Kuwahara_Filter ([in] long *image, [in] long mask_size, [out, retval] long *Result_Image);
Label([in] long* image,[out,retval] long* Result_Image);

Least_Squares([in] long* image,[in] long* image1,[in] long* image2,[in] double
gamma,[in] long choice,[in] long cutoff,[out,retval] long* Result_Image);

Local_Histeq([in] long* image,[in] int size, [in] int mb,[out,retval] long* Result_Image);

Log_Ace_Filter([in] long* image,[in] long wsize,[in]double alpha, [in] double beta,[out,
retval] long* Result_Image);

Log_Remap([in] long* image,[in] long band, [out,retval] long* Result_Image);

LogMap_Image([in] long* image, int band,[out,retval] long* Result_Image);
Lum_Average([in] long* image,[out,retval] long* Result_Image);
Luminance_Image([in] long* image,[out,retval] long* Result_Image);

Make_Histogram([in]double* sped_in,[in]long image_format,[in]long color_format,[in]
long bands,[out, retval] long* Result_Image);

Marr_Hildreth_Filter ([in] long *image, [in] float sigma, [out, retval] long* Result_Image);

Maximum_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_Image);
Mean_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_Image);

Median_Cut_Segment([in] long* image,[in] long newcolors, [in] long is_bg, [in] long
r_bg, [in] long g_bg, [in] long b_bg,[out,retval] long* Result_Image);

Median_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_Image);
Mesh_To_File([in] BSTR *File_Name, [in] long* pmesh);
Mesh_Warping([in] long* image,[in] long* pmesh, [in] long method,[out,retval] long*

Result_Image);

918	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

Mesh_WarpingRI([in] long* image,[in] long* pmesh, [in] long method, [in] long
zero_out,[out,retval] long* Result_Image);

Midpoint_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_Image);

Minimum_Filter([in] long* image,[in] long mask_size,[out,retval] long* Result_
Image);

Mmse_Filter([in] long* image,[in] double noise_var, [in] long kernel_size,[out,retval]
long* Result_Image);

Moravec_Corner_Filter([in] long *inputImage, [in] float threshval, [out,retval] long
*Result_Image);

MorphClose([in] long* image,int k_type, int ksize, int height,int width,[out,retval]
long* Result_Image);

MorphDilate([in] long* image, int k_type, int ksize, int height,int width,[out,retval]
long* Result_Image);

MorphErode([in] long* image,int k_type, int ksize, int height,int width,[out,retval]
long* Result_Image);

Morph_Hitmiss([in] long* inputImage, [in] long MaskSize, char* HitmissFilter, [out,
retval] long* Result_Image);

Morpho([in] long* input_im1, [in] BSTR *File_Name, [in] long rotate,[in] long
boolFUNC,[in] long connectedness, [in] long no_of_iter, [in] long fields, [out,retval]
long* Result_Image);

Morpho_com([in] long* image, [in] BSTR *sur_set, [in] long p1,[in] long p2, [in] long
p3,[in] long p4, [in] long p5, [out,retval] long* Result_Image);

MorphOpen([in] long* image,int k_type, int ksize, int height,int width,[out,retval]
long* Result_Image);

Morph_Skeleton([in] Long* inputImage, [in] Long FilterDimension, [in] char*
SkeletonMatrix, [in] Long Iterations,[in] Long four_eight_mask, [in] Long method,
[out,retval] Long* Result_Image);

Morph_Thinning([in] Long* inputImage,[in] Long MaskSize,[in] char* ThinningFilter,
[out,retval] Long* Result_Image);

Multi_Resolution_Segment([in] long* image,[in] long choice, [in] double param1,
[in] double param2, [in] long run_PCT, [out,retval] long* Result_Image);

Multiply_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);
Neg_Exp_Noise([in] long* image,[in] double var, [out,retval] long* Result_Image);
New_Image(long image_format, long color_space, int bands, int height, int width,

long data_type, long data_format,[out,retval] long* Result_Image);

Nonfft_Xformfilter([in] long* image,[in] long block_size, [in] long dc, [in] long filter-
type, [in] long p1, [in] double p2, [in] long order,[out,retval] long* Result_Image);

Not_Image([in] long* image,[out,retval] long* Result_Image);

Notch([in] BSTR *File_Name, [in] long x, [in] long y, [in] long radius,[in] long* image,[in]
long number, [in] long interactive, [out,retval] long* Result_Image);

Object_Crop([in] long* image, [in] long * coordinates ,[in] long format, [in] long R, [in]
long G,[in] long B,[out, retval] long* Result_Image);

Appendix E: Common Object Module (COM) Functions: cviptools.dll	 919

© 2011 by Taylor & Francis Group, LLC

Open_Consol_Redirect_Output();

Or_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);

Orientation([in] long* image,[in] int r, [in] int c, [out,retval] long* Result);
Otsu_Segment ([in] long *image, [out, retval] long *Result_Image);

Param_AD_Filter([in] long* image,[in] long iteration_num,[in] long speed,[in] long
edge_height,[in] long blk_size,[out,retval] long* Result_Image);

Parametric_Wiener([in] long* image,[in] long* image1,[in] long* image2,[in] long*
image3,[in] double gamma,[in] long choice,[in] long cutoff,[out,retval] long*
Result_Image);

Pct([in] long* image,[in] long is_mask,[in] double *maskP,[out,retval] long* Result_Image);
Pct_Color([in] long* image,[in] long is_mask,[in] double *maskP,[in] long choice,

[out,retval] long* Result_Image);
Pct_Median_Segment([in] long* image,[in] long colors,[out,retval] long* Result_Image);
Perimeter([in] long* image,[in] int r, [in] int c, [out,retval] long* Result);

Power_Spect_Eq([in] long* image,[in] long* image1,[in] long* image2,[in] long*
image3,[in] long choice,[in] long cutoff,[out,retval] long* Result_Image);

Pratt_Merit([in] long *image1, [in] long *image2, [in] double scale_factor, [out,retval]
double *Result);

Prewitt_Filter([in] long* image, [in] long* dirImage, [in] long mask_choice, [in] long
mask_size, [in] long keep_dc, [in] long threshold,[out,retval] long* Result_Image);

Projection([in] long* input_im1, [in] int r, [in] int c ,[in] int height, [in] int
width,[out,retval] VARIANT *result_array);

Pseudo_Remap([in] long* image,[in] long * lookupTable,[out,retval] long* Result_Image);

Pseudocol_Freq([in] long* image, [in] int inner, [in] int outer, [in] int blow,[in] int
bband, [in] int bhigh, [out,retval] long* Result_Image);

Raster_Deblur_Filter([in] long* image,[out,retval] long* Result_Image);

Rayleigh_Noise([in] long* image,[in] double var, [out,retval] long* Result_Image);
Read_Image([in] BSTR *File_Name, [out, retval] long* Result_Image);
Remap_Image([in] long* image,long dtype, long dmin, long dmax,[out,retval] long*

Result_Image);

REMAPP([in] long* image,long dtype, long dmin, long dmax,[out,retval] long* Result_
Image);

Rms_Error([in] long* input_im1,[in] long* input_im2, [out,retval] VARIANT *result_
array);

Robinson_Filter([in] long* image, [in] long* dirImage, [in] long mask_choice, [in] long
mask_size, [in] long keep_dc, [in] long threshold,[out,retval] long* Result_Image);

Rotate([in] long* image,[in] float degrees,[out,retval] long* Result_Image);

Rst_invariant([in] long* input_im1, [in] long r, [in] long c ,[out,retval] VARIANT
*result_array);

Save_Compressed_Data([in] long* input_im, [in] BSTR*File_Name);

920	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

Sct_Split_Segment([in] long* image,[in] long A_split, [in] long B_split,[out,retval]
long* Result_Image);

Set_Console([in] long Handle);
Sharpen_I([in] long *inputImage, [in] long ifRemap, [in] long MaskChoice, [in] long

MaskSize, [in] float LowClip, [in] float HighClip, [in] long ifAdd2Origin, [out, ret-
val] long * Result_Image);

Sharpen_II([in] long *inputImage, [in] long ifAdd2Origin, [out, retval] long *
Result_Image);

Shen_Castan_Filter([in] long *Image,[in] double b, [in] long window_size, [in]
double low_threshold, [in] double high_threshold, [in] long thin_factor, [in] long
*ZeroInterImage, [out,retval] long *Result_Image);

Show_Image([in] int dc, [in] int x, [in]int y, [in] long* image);
Show_Image_Ex([in] int dc,[in] long* mem_dc, [in] int x, [in]int y, [in] long* image);
Shrink([in] long* image,[in] float factor ,[out,retval] long* Result_Image);
Simple_Wiener([in] long* image,[in] long* image1,[in] double k,[out,retval] long*

Result_Image);
Single_Filter([in] long* image, [in] double sx, [in] double sy, [in] long xcen, [in] long

ycen,[in] double rot, [in] double beta, [in] long N, [in] double *h, [in] long choice,
[out,retval] long* Result_Image);

Smooth_Filter([in] long* image,[in] long kernel,[out,retval] long* Result_Image);
Snr([in] long* input_im1,[in] long* input_im2, [out,retval] VARIANT *result_array);
Sobel_Filter([in] long* image, [in] long* dirImage, [in] long mask_choice, [in] long

mask_size, [in] long keep_dc, [in] long threshold,[out,retval] long* Result_Image);
Spatial_Quant([in] long* image,[in] int row,[in] int col,[in] int method,[out,retval]

long* Result_Image);
Spec_Hist_Image([in] long *InputImage, [in] BSTR * bandR, [in] BSTR * bandG, [in]

BSTR * bandB, [out,retval] long *Result_Image);
Specify_Filter([in] long* image,[in] long mask_height,[in] long mask_width,[in] dou-

ble *maskP, [in] int normalization, [out,retval] long* Result_Image);

Speckle_Noise([in] long* image,[in] double psalt, [in] double ppepper,[out,retval]
long* Result_Image);

Spectral_Feature(long *input_im1, long *input_im2, [in] long no_of_bands, [in] long
no_of_sectors,[in] long r,[in] long c,[out,retval] VARIANT *result_array);

Split_Merge_Segment([in] long* image,[in] long level, [in] long choice,[in] dou-
ble parameter0,[in] double parameter1,[in] long Run_PCT, [out,retval] long*
Result_Image);

Subtract_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);

TextureFeature([in] long* orig_im, [in] long* labeled_im, [in] long r, [in] long c , [in]
long distance , [in] long hex_equiv ,[out,retval] VARIANT *result_array);

TextureFeature2([in] long* inputImage, [in] long* labeledImage, [in] long band,
[in] long r, [in] long c, [in] long distance, [in] long energy, [in] long inertia, [in]
long correlation, [in] long invDiff, [in] long entropy, [in] long zero_rc, [out,retval]
VARIANT* result);

Appendix E: Common Object Module (COM) Functions: cviptools.dll	 921

© 2011 by Taylor & Francis Group, LLC

Thinness([in] long* image,[in] int r, [in] int c, [out,retval] double* Result);

Threshold_Segment([in] long* image,[in] long threshval, [in] long thresh_inbyte,
[out,retval] long* Result_Image);

Tifftocvip([in] BSTR *File_Name, [in] int verbose, [out, retval] long* Result_Image);

Tile_by_name([in] BSTR *File_Name);

Transform_Compression([in] long *image, [in] BSTR * filename, [in] long color_space,
[in] long xform, [in] long WaveletBasis, [in] long subimage_size, [in] long quant, [in]
long JPEG_Q_Table, [in] long coding, [in] long data_type, [in] long remap_type,
[in] long KeepDC, [out, retval] long *Result_Image);

Transform_Sharpen([in] long * inputImage, [in] long TransformMethod, [in] long
CutoffFreq, [in] long FilterOrder, [in] long Offset, [in] long KeepDC, [in] long
Add2Origin, [out, retval] long * Result_Image);

Transform_Smoothing([in] long * inputImage, [in] long TransformMethod, [in] long
CutoffFreq, [in] long FilterOrder, [in] long Offset, [in] long KeepDC, [out, retval]
long * Result_Image);

Translate([in] long* image, [in] long do_wrap, [in] int y_off, [in] int x_off,[in] int y_
mount,[in] int x_mount,[in] int y_slide, [in] int x_slide, [in] float fill_out,[out,retval]
long* Result_Image);

Uniform_Noise([in] long* image,[in] double var, [in] double mean,[out,retval] long*
Result_Image);

Unsharp_Filter([in] long* image, [in] long lower, [in] long upper,[in] double low_clip,
[in] double high_clip,[out,retval] long* Result_Image);

Vq_Compress([in] long *inputImage,[in] BSTR *File_Name,[in] long cdbook_in_file,[in]
long fixed_codebook, [in] double in_error_thres,[in] BSTR* cdbook_file,[in] long in_no_
of_entries,[in] long in_row_vector,[in] long in_col_vector, [out, retval] long * result);

Vq_Decompress([in] BSTR *File_Name, [out, retval] long *Result_Image);

Walhad_Transform([in] long* image,[in] long param1,[in] long param2, [out,retval]
long* Result_Image);

Watershed_Segment([in] long * inputImage, [in] int choice, [in] float threshold,
[out,retval] long * Result_Image);

Wavdaub4_Transform([in] long* image,[in] long param1,[in] long param2, [out,retval]
long* Result_Image);

Wavhaar_Transform([in] long* image,[in] long param1,[in] long param2, [out,retval]
long* Result_Image);

Wiener([in] long* image,[in] long* image1,[in] long* image2,[in] long* image3,[in] long
choice,[in] long cutoff,[out,retval] long* Result_Image);

Write_Image([in] long* input_im,[in]BSTR*File_Name, [in] long retain_image, [in]
long set_up, [in]long new_format, [in] long showmessages);

Xor_Image([in] long* input_im1,[in] long* input_im2, [out,retval] long* result_im);
Xvq_Compress([in] long* image,[in] long xform, [in] long scheme, [in] BSTR *file-

name, [in] long file_type, [in] long remap_type, [in] long dc,[out,retval] long*
Result_Image);

922	 Appendix E: Common Object Module (COM) Functions: cviptools.dll

© 2011 by Taylor & Francis Group, LLC

Xvq_Decompress([in] BSTR *filename, [out, retval] long *Result_Image);
Ypmean_Filter([in] long* image,[in] long mask_size, [in] long p,[out,retval] long*

Result_Image);
Zon_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]int block_size,[in]

int choice, [in]int mask_type, [in]float compress_ratio);
Zon_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Zon2_Compress([in] BSTR *File_Name, [in] long* Input_image, [in]int block_size,[in]

int choice, [in]int mask_type, [in]float compress_ratio);
Zon2_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image);
Zoom([in] long* image, [in] int quadrant, [in] int X, [in] int Y, [in] int dx, [in] int dy, [in]

float temp_factor,[out,retval] long* Result_Image);
Zvl_Compress([in] BSTR *File_Name, [in] long* Input_image);
Zvl_Decompress([in] BSTR *File_Name, [out,retval] long* Result_Image)

U
FM

|4
84

94
2|

14
35

73
06

58

923© 2011 by Taylor & Francis Group, LLC

Appendix F: CVIP Resources

This appendix contains useful resources for those involved with computer imaging edu-
cation, research, and application development. In these days of instant worldwide com-
munication it is not meant to be comprehensive, but can serve as a guide in the quest for
more information.

Useful Cvip Software (free or shareware)

	 AdOculus	 Imaging educational software, free student version
		� http://www.theimagingsource.com/prod/soft/adoculos/adoculos.

htm
	 CVIPtools	 http://www.ee.siue.edu/CVIPtools
	 GIMP	 GNU image manipulation program
		 http://www.gimp.org
	 ImageJ	� Java-based image processing and analysis from National Institutes of

Health
		 http://rsbweb.nih.gov/ij/
	 ImageTool	 Image processing and analysis program
		 http://ddsdx.uthscsa.edu/dig/itdesc.html
	 JPEG	 JPEG C® source code
		 http://www.jpeg.org
	 LaboImage	 Image processing and analysis software
		 http://cuiwww.unige.ch/~vision/LaboImage/labo.html
	 LIBTIFF	 Portable library of routines for TIFF files
		 http://www.libtiff.org
	 OpenCV	 Open source code for computer vision
		 http://opencv.willowgarage.com/wiki/
	 PBMPLUS	 Portable library of routines for pnm image file formats
		 http://www.acme.com/software/pbmplus/

Useful Internet Resources

Computer Vision Homepage	� Site contains links to software, images data-
bases, etc.

www.cs.cmu.edu/~cil/vision.html

Gonzalez and Woods Image Database links
http://imageprocessingplace.com/root_files_V3/image_databases.htm

924	 Appendix F: CVIP Resources

© 2011 by Taylor & Francis Group, LLC

Open Directory Project	� Allows for organized search of imaging
software

http://dmoz.org/Computers/Software 	� Search on image analysis, image process-
ing or computer vision

PEIPA	� Contains many links with focus on com-
puter vision

http://peipa.essex.ac.uk 	 (Pilot European Image Processing Archive)

Professional Societies

These societies sponsor conferences and publish conference proceedings, magazines, and
journals of interest to imaging professionals

Association for Computing Machinery (ACM)
http://www.acm.org
Institute of Electrical and Electronic Engineers (IEEE)
http://www.ieee.org
International Association of Pattern Recognition (IAPR)
http://www.iapr.org/
International Association of Science and Technology for Development (IASTED)
http://www.iasted.com/
Society for Imaging Science and Technology (IS&T)
http://www.imaging.org/
Society of Motion Picture and Television Engineers (SMPTE)
http://smpte.org
Society of Photo-Optical Instrumentation Engineers (SPIE)
http://spie.org

Cvip-Related Standards

Acronyms

ANSI: American Standards Institute
CIE: Commission Internationale de l’Eclairage
FCC: Federal Communication Commission
ISO: International Standards Organization: JPEG/MPEG
ITU: International Telecommunications Union (formerly CCITT)
ITU-R: International Telecommunications Union-Radio (formerly CCIR)
NTSC: National Television Standards Committee
PAL: Phase Alternation Line
SECAM: Sequential Coleur Avec Memoire (Sequential Color with Memory)
VESA: Video Electronics Standards Association

Appendix F: CVIP Resources	 925

© 2011 by Taylor & Francis Group, LLC

ANSI Standards:

ANSI
Washington, DC Headquarters
1819 L Street, NW, 6th Fl.
Washington, DC, 20036
Tel: 202.293.8020
Fax: 202.293.9287 11
http://www.ansi.org

ISO Standards:
International Organization for Standardization (ISO)
1, rue de Varembé, Case postale 56
CH-1211 Geneva 20, Switzerland
Telephone +41 22 749 01 11; Fax +41 22 733 34 30
 http://www.iso.org/iso/en/ISOOnline.frontpage

ITU Standards:
International Telecommunication Union
Central Library
Place des Nations
CH-1211 Geneva 20
Switzerland
Telephone: +41 22 730 69 00
Fax: + 41 22 730 53 26
E-mail: library@itu.int
http://www.itu.int/library/
http://www.itu.int/home/index.html

Journals and Trade Magazines

IEEE Transactions on Image Processing
IEEE Transactions on Medical Imaging
IEEE Transactions on Pattern Analysis and Machine Intelligence
Pattern Recognition—The Journal of the Pattern Recognition Society
Journal of Electronic Imaging—SPIE and IS&T
IEEE Signal Processing Magazine
IEEE Computer Graphics and Applications
IEEE Robotics and Automation Magazine
OE Magazine—SPIE
Advanced Imaging, www.advancedimagingpro.com
Vision Systems Design, http://www.vision-systems.com
Photonics Spectra, http://www.photonics.com
Computer Graphics World, cgw.pennnet.com/home.cfm
Laser Focus World, http://www.laserfocusworld.com
Computerized Medical Imaging and Graphics, publisher Elsevier
Journal of Visual Communication and Image Representation, publisher Elsevier
Image and Vision Computing, publisher Elsevier

927© 2011 by Taylor & Francis Group, LLC

Index

A

Absolute value metric, 359, 383–384
Acoustic imaging, 30–32
Activation function, 372
Adaptive contrast enhancement (ACE)

equation for, 475–476
filtering with sliding window, 472–473
global parameters, 471–472
local enhancement, 469
local gain factor, 474
logarithmic and exponential

filters, 476
Adaptive filtering, 587

block-by-block/subimage-by-subimage
processing, 588

blocking effect/blocking artifact, 588
computational intelligence, 588

Adaptive filters, 508, 548
alpha-trimmed mean, 558
image variance used, 569
MMSE filter, 559, 561–564
noise-to-local-variance ratio, 562

Adaptive median filter, 564–565, 616
algorithm, 565, 567
defined, 564

Airborne visible/infrared imaging
spectrometer (AVRIS), 61–62

Algorithms
adaptive median filter, 564–565, 616
application of, 665
automatic thresholding, 108
binary thresholding, 198
block truncation coding (BTC), 661
Boie–Cox, 148
b-spline interpolation, 808
Canny, 148, 238
classification with training set, 124
for classifying geometric shapes, 115
color contrast enhancement

flowchart for, 487
resultant images for, 488–489

data preprocessing, 364
DCT-based JPEG, 689–691
defined, 5
development, 7
dithering, 99
dynamic window-based RLC, 659

edge detector-based sharpening
in CVIPtools as Sharpening

Algorithm I and II, 499, 501–502
fast algorithms for median

filtering, 506
Frei–Chen masks, 148
front-end, 743
Harris corner detection, 186–187
Hough transform, 176, 183, 208

post-processing, 184
Huffman, 649
image compression, 59–60, 335, 640–641,

643, 646, 658
image enhancement, 444–445
image processing, 46–47
image segmentation, 139, 194
image sharpening, 87, 459–460
inputting, 747
isodata method, 107
JPEG and JPEG2000, 658
JPEG compression, 687–688
k-means clustering, 107
labeling, 110

flowchart, 111
UPDATE function, 112

Lempel–Ziv 77, 656
Lempel–Ziv–Welch (LZW) coding, 655–656
Linde–Buzo–Gray (LBG), 670
line detection

analysis of Hough space, 812–817
bandpass filter used, 814
edge detection, 812
high and low cutoff frequencies

for filter, 814
histogram stretch method, 814, 818
Hough transform, 812
input image, 813
preprocessing, 812–816

Marr–Hildreth, 148, 238
median split, 201
multiresolution, 192
Otsu, 204
Pagadala, 809–810
pattern classification development

computer vision, 368
cost/risk functions and success

measures, 373–374
learning, 373

928	 Index

© 2011 by Taylor & Francis Group, LLC

Nearest Neighbor method, 370
perfect classification, 374
training and testing methods, 368–370

PCT/Median color segmentation, 201–203
preprocessing, 79
restoration, 43
scaled conjugate gradient (SCG), 780
SCT/center color segmentation, 198–201
segmentation, 38
Shen–Castan, 148
snake eating, 183
split and merge technique, 191
STARE database

output images from Algorithm 1, 787–789
output images from Algorithm 2, 789–792

testing method, 376–377
test run, 751–752
two-stage run of CVIP-ATAT, 750
unsharp masking, 497–498
watershed segmentation, 193, 805–806, 810
wavelet/vector quantization (WVQ), 692

Alpha-trimmed mean, 558
American Standards Institute (ANSI), 924
Amplitude-modulated phase shift (AM), 34
Analog video

digitizing (sampling), 17
standards

color, 15
process of transforming, 15–16
RS-170A, 15
RS-330, 15
RS-343A, 15

Analog video camera
frame grabber, 15
image digitizer, 15

AND-based method, 97
AND/OR techniques, 98
Anisotropic diffusion (AD) filters, 510

application of, 511
in CVIPtools, 511, 566
edge threshold, 512
with Gaussian noise, 568–569
parametric, 572
with various noise types, 570–571

ANSI, see American Standards Institute (ANSI)
Anti-aliasing filtering, 104–105
Applications

automatic segmentation of blood vessels
in retinal images

comparison parameters, 792–793
CVIPtools software development, 787
damaged vessels detection, 786–787
flowchart comparing algorithms, 792

FOM, 793
output images and algorithm

development, 787–791
RMS, 794–795
SNR, 793

CVIP-ATAT
algorithm, 747–751
capabilities, 744
fundus images, 754–760
image comparing, 751–754
images insertion, 745–749
implementation, 744
project creation, 744–745
test run, 751

CVIP-FEPC
adding images and associated

classes, 763–764
capabilities, 761
class declaration, 763
classification algorithm, 765–766
implementations, 761
output, 766–769
parameter values, 765–766
project creation, 761–763
testing, 766
veterinary thermographic

images, 770–775
postprocessing with Hough transform

and edge linking, 794–795
relative color features

creation, 776–777
feature extraction, 777–778
image database, 776
lesion feature space, 779, 781–783
object feature space, 779, 783–785
segmentation and morphological

filtering, 777
statistical models, 779–780

Arithmetic and Logic Library (ArithLogic.lib),
function prototypes for, 855–856

Arithmetic and logic operations, see under
Preprocessing

Arithmetic coding, 698–699
input symbol, 656
probability distribution of data, 656–657

Array sensor, see Two-dimensional sensor
Artificial images, 282
Artificial intelligence, 210, 244
Artificial neural networks (ANN), 372

activation function, 373
architecture, 373
learning algorithm, 373

Aspect ratio, defined, 18

Index	 929

© 2011 by Taylor & Francis Group, LLC

Association for Computing Machinery
(ACM), 924

Automatic threshold
isodata method, 127
k-means clustering, 127
with Otsu method, 254–255

AVRIS, see Airborne visible/infrared
imaging spectrometer (AVRIS)

Axis of least second moment, 112–113

B

Background subtraction, 88
Band Image Library (Band.lib), functions of, 856
Bandpass filters, 301–302, 307

for extraction of periodic noise
patterns, 588–590, 592

Band-reject filters, 295–296, 301–302, 307
for removal of periodic noise, 588–591

Basis functions
Fourier transform, 265
Walsh–Hadamard transform (WHT), 288

Basis images
discrete cosine transform (DCT), 287
off-axis Walsh–Hadamard, 291

Basis vectors
Daubechies function, 309
discrete transforms, 260, 292
Frei–Chen masks, 154–155
Haar transform, 292, 309
wavelet transform, 310

Bayer’s ordered dither, 101
Bayesian classifier, 799–800
Bayesian distribution of data, 825
Bilinear interpolation, 84–85
Binary images

analysis, 104
after thresholding, 121
algorithm, 124
application feedback, 120
area of object, 111–112
axis of least second moment, 112–113
blurry and noisy composite image, 121
classification of object, 115
connectivity, 114–115
convexities and concavities, 115
CVIPtools main window, 116–117, 123
Euler number, 114–115
Excel spreadsheet format, 122
feature extraction, 120
feature file data, 124
filtering, 120
labeling and connectivity, 109–111

multiple labels, 112
preprocessing, 118
projections of object, 113–114
salt and pepper noise, 120
segmentation, 118
thresholding, 105–109
training set, 124
XOR operation, 118–119

defined, 50–51
BIN file formats, 62
Bin width quantization, 100, 103
Bitmap images, 62
Blind spot, 405
Block-by-block/subimage-by-subimage

processing, 588
Blocking artifact, 588
Blocking effect/blocking artifact, 588
Block truncation coding (BTC), 699

algorithm, 664–666
basic, 664
bytes, 664
multilevel, 665–666
pixel value, 661–665
quantizer, 660–661

Blur equation, 23
Blur filter masks, 573
Blur mask coefficients, 576
Blurring artifact, 607–608
Blurry and noisy composite image, 121
BMP format, see Microsoft Windows

bitmap (BMP) format
Boie–Cox algorithm, 148

matched filters and Wiener filters, 154
Border mask image, creation of extract

features, 356
Boundary detection, 203
Boxcar operators, 173
BTC, see Block truncation coding (BTC)
Butterworth filter, 297–298; see also

Principal components transform (PCT)

C

Camera interface specifications, 19
Camera Link or Gigabit Ethernet (IEEE

802.3), 18
Canny algorithm, 148

results from, 156
steps

CVIPtools, 153
Gaussian filter mask, 152, 154
Gaussian variance with, 155
hysteresis thresholding, 153

930	 Index

© 2011 by Taylor & Francis Group, LLC

nonmaxima suppression, 153
Sobel/Prewitt edge detectors, 152–153

CCD, see Charge-coupled device (CCD)
CCT, see Cylindrical coordinate

transform (CCT)
Central moments, 339
Central-slice theorem, see Fourier-slice theorem
Cervenka and Charvat multispectral

image detector, 165
Charge-coupled device (CCD), 26
Chromaticity coordinates (CT), 60
Circular convolution, 308–309
1st-Class Expert Systems, see First-class

Fusion expert system development
software (1st-Class Expert Systems)

Classification algorithms, 124
CLS filter, see Constrained least

squares (CLS) filter
Clustering algorithm, see Linde–Buzo–

Gray (LBG) algorithm
Clustering techniques, 139
CMOS device, see Complementary metaloxide-

semiconductor (CMOS) device
CMY conversion, 61
Code

gray, 52
Huffman, 673

Coding; see also Differential predictive
coding (DPC); Transform coding

arithmetic, 698–699
input symbol, 656
probability distribution of data, 656–657

block truncation coding (BTC), 661, 699
algorithm, 664–666
basic, 664
bytes, 664
multilevel, 665–666
pixel value, 661–665
quantizer, 660–661

gray level run-length coding (GLRLC), 658
Huffman, 698

algorithm, 649
gray levels, 649, 650
histogram, 650
reorder and add, 650
unequal/variable length code, 649

Lempel–Ziv–Welch (LZW), 63, 655–656, 698
code words, 656
GIF image file format, 656
strings of data, 655–656

run-length coding (RLC), 698
binary and complex images, 652
bit-plane, 653

convention, 652–653
gray code, 653–655
gray-level, 699
run, 655
run-length, 651–652
standards, 655

YUV encoding, 60
Coherent light, 33
Color Image Library (Color.lib), 856

color library function prototypes, 857
Color images

edge/line detection in, 159
areas of reflection, 162
binary threshold with Frei–Chen, 161
Euclidean distance, 163
in HSV space, 162
“location error,” 161
in multispectral images, 164
in RGB space, 163
Roberts gradient, 164
three-band image, 163

enhancement, 476–489
representation, 52

Color perception, 59
COM interface, see Common object

module (COM)
Comma separated values (CSV), 798
Commission Internationale de

l’Eclairage (CIE), 924
chromaticity coordinates use, 60
color standards by, 60

Common object module (COM)
functions, 911–922
interface, 34

Compactness ratio, 338
Comparison tests, 426
Compass masks, 147–148
Complementary metaloxide-semiconductor

(CMOS) device, 26
Complement image, 93
Complex numbers, 269
Compressed file, 638
Compression

10–1 compression, 638
algorithms

image, 59–60, 335, 640–641, 643,
646, 658

JPEG, 687–688
bandwidth and storage requirements, 638
block-based transform enhancement

techniques, 444
color image ratio, 687–688, 691
compressed file, 638

Index	 931

© 2011 by Taylor & Francis Group, LLC

Compression Library (Compression.lib), 857
function prototypes, 858–861

CVIPtools, 641
data, 640
decompressed, 638
decorrelation process, 641
description, 637
digitized color transmission, 639
discrete cosine transform (DCT), 284–285
DSL, 639
file size reduction, 638
gray scale modification, 445

mapping equation, 445, 455–456
hybrid compression methods

spatial and transform domain, 688
wavelet transform, 701–702

image, 9
information, 640
interlaced video transmission, 639–640
Joint Photographers Expert Group

(JPEG), 284–285
lossless methods, 640

arithmetic coding, 656–657
coder performance, 647, 649
data compaction, 646
entropy, 646–648
Huffman coding, 649–651
information and randomness, 647
LZW, 655–656
marginal compression of complex

image data, 645–646
medical, 645
RLC, 651–655

lossy method, 640, 699
algorithm tools, 658
BTC, 660–666
DPC, 670–678
gray-level RLC, 659–660
hybrid and wavelet methods, 688–696
image quality, 657
JPEG2000, 657
model-based and fractal

compression, 678–681, 700–701
ratio and image fidelity, 658
spatial and transform domains, 658–659
transform coding, 681–688
VQ, 666–670

model-based, 700–701
fractal, 681

ratio, 638
redundancy

coding, 640
inter-frame, 640

interpixel, 640
psychovisual, 640

RGB transmission, 638–639
satellite images, 637
system model

algorithm coding stage, 643, 645
bit plane images, 644–645
compressor, 641–642, 697
decompressor, 642–643, 697
differential coding, 643
mapping process, 643, 697
nonuniform quantization, 643
uniform quantization, 643
variable bit rate, 643

Compression Library (Compression.lib), 857
function prototypes, 858–861

Computational intelligence, 588
Computed tomography (CT), 604
Computer-aided design (CAD) graphics, 599
Computer generated images, 35–36
Computer imaging, see Digital

image processing
Computer vision and image processing

algorithm test and analysis tool (CVIP-
ATAT), 37, 744

algorithm test run (test interface), 751, 752
capabilities, 744
comparing images steps, 751–754
fundus images

algorithm, 755–760
diagnosis, 754
goals, 754–755

images insertion
adding images, 746, 748
new project creation, 746
project interface, 746–747

implementation, 744
inputting algorithm

project interface, 747, 749
two-stage process, 750

project creation, 744–745
Computer vision and image processing feature

extraction and pattern classification
tool (CVIP-FEPC), 37, 761

adding image files, 764–766
associated classes, 763–764
capabilities

classification parameters, 761
salient image features, 761

class declaration, 763, 764
classification algorithm, 765–766
implementations, 761
parameter values, 765–766

932	 Index

© 2011 by Taylor & Francis Group, LLC

pattern classification
extracting features, 767
parameters, 769
training and test sets, 768–769

project creation, 761–763
testing, 766
veterinary thermographic images

adding images, 770–771
in diagnosis, 770
experiment results, 775
feature selection, 771
pattern classification methods, 772
result validation, 772
training and test sets, 772

Computer vision and image processing
lab (CVIPlab) program; see also
Microsoft Visual C++

CVIPlab.c
main_cviplab, input, and

threshold_Setup, 715
program, 716–719

CVIPlab_Project.cpp and
CVIPlab_Project.h, 715

CVIPlab_Project.sln and CVIPlab_Project.
vcproj, 715

CVIPtools, 715
image data and file structures

8-bit per pixel, 738
32-bit format, 738–739
Conversion library, 739
digital, 736–737
history, 737–738
library functions, 734
matrix, 735–736
model, 734
pointers, 735, 736
traditional programming, 734
vector, 735
VIP format, 738–739

projects
digital image analysis and

computer vision, 739–740
digital image processing and

human vision, 741
threshold_lab.c file program, 719–721
toolkits

functions, 722
hierarchical grouping, 721–722

Computer vision and image processing
tools (CVIPtools), 15, 566, 641, 855

analysis window, 39–42
COM interface, 34
compression window, 43–44

CVIPlab program, 36
development, 35–37

tools, 46
enhancement window

histogram/contrast, 42
pseudocolor, 42

graphical user interface (GUI), 34–35
help window, 46–48
image structures, 855
image viewer

crop function, 39
geometry operations, 39
keyboard and mouse commands, 40

requirement for, 35
restoration window

blurry images, 43
frequency filters and geometric

transforms, 42
noise and spatial filters, 42
sharpening and smoothing, 42

utilities window, 49–50
arith/logic and compare, 44–46
convert and create, 44–46
enhance and filter, 44–46
size and stats, 44–46

version 3.7c, 35
version 3.9, 35
version 5.x, 35
window

file and view selections, 37
image queue, 37
image viewing area, 37
toolbar and status bar, 37

Computer vision systems
applications, 3–4
color information, 59
hardware and software, 15
for lumber counting and grading, 7
for microdisplay chip inspection, 5

Concavities, 115
Connectivity, 109–111
Constrained least squares (CLS) filter, 578, 586

Fourier transform, 583–585
Laplacian filter mask, 584

Contra-harmonic mean filter, 557–558
Contrast stretching, 11
Conversion Library (Conversion.lib)

function prototypes, 861–863
Convexities, 115
Convolution

mask, 82
process, 82–83
theorem, 308

Index	 933

© 2011 by Taylor & Francis Group, LLC

Corner detection; see also Edge/line detection
convolution with Gaussian, 187
Frei–Chen masks, 188, 190
Harris corner detection algorithm, 186
Moravec detector, 185, 187
Prewitt or Sobel masks, 187

Correlation coefficient, 360
Cosine spectra, 313–315
Cosine transform, see Discrete cosine

transform (DCT)
Cost function, 374
Crop process, 79–80
CSV, see Comma separated values (CSV)
Cubic convolution interpolation, 599
Cutoff frequencies for filter, 814
CVIPlab.c program, 716–719
CVIPlab_Project.rc, 715
CVIP projects

digital image analysis and computer vision
algorithm coding, 740
result analysis and presentation, 740
testing algorithm, 739
tools to explore algorithm

development, 741
digital image processing and human vision

algorithm coding, 741
CVIPtools, 741
program test, 741
result analysis and presentation, 741

CVIP resources
AdOculus software, 923
ANSI standards, 925
GIMP software, 923
ImageJ software, 923
ImageTool software, 923
Internet resources, 924

computer vision homepage, 923
Gonzalez and Woods Image

Database links, 923
open directory project, 924

ISO standards, 925
ITU standards, 925
journals and trade magazines, 925
JPEG software, 923
Laboimage software, 923
LIBTIFF software, 923
OpenCV, 923
PBMPLUS, 923
professional societies

Association for Computing
Machinery (ACM), 924

Institute of Electrical and Electronic
Engineers (IEEE), 924

International Association of Pattern
Recognition (IAPR), 924

International Association of
Science and Technology for
Development (IASTED), 924

Society for Imaging Science and
Technology (IS&T), 924

Society of Motion Picture and Television
Engineers (SMPTE), 924

Society of Photo-Optical Instrumentation
Engineers (SPIE), 924

related standards
American Standards Institute (ANSI), 924
Commission Internationale de

l’Eclairage (CIE), 924
Federal Communication

Commission (FCC), 924
International Standards

Organization (ISO), 924
International Telecommunications

Union (ITU), 924
International Telecommunications Union-

Radio
(ITU-R), 924

National Television Standards
Committee (NTSC), 924

Phase Alternation Line (PAL), 924
Sequential Coleur Avec Memoire

(SECAM), 924
Video Electronics Standards

Association (VESA), 924
CVIPtools, see Computer vision and image

processing tools (CVIPtools)
CVIPtools CD

application infrastructure, 895
C code libraries for Windows, 891
C functions

toolbox libraries, 902–909
toolkit libraries, 897–902

COM source code, 891
C source code, 891
CVIP-ATAT source code and executable, 891
CVIP-FEPC source code and executable, 891
CVIPlab source code, 891
environment installation program, 891
GUI source code, 891
header files for C code, 891
Help pages for

C functions, 891
COM functions, 891
libraries, 891

images, 891
installing and updating, 893

934	 Index

© 2011 by Taylor & Francis Group, LLC

software organization
file and directory organization, 895–896
four layers, 895

Cylindrical coordinate transform (CCT), 58
RGB colors, 58

D

Dark current, 27
Dark threshold, 415–416
Data Mapping Library (Mapping.lib), 872

function prototypes, 873–875
Data reduction and feature extraction

classification, 800
with MLP, 799

comma separated values (CSV), 798
confusion matrix from MLP, 800–801
cross-validation, 801
feature selection and extraction, 797
Hestenes–Stiefel training method for, 799
minimally compressed JPEG image, 798
quadratic (Bayesian) classifier, 799–800
SCT/center algorithm, 797
segmentation, 797
visual and principal component

analysis, 799
Daubechies basis vectors, 309
Daubechies function, 309
DCT, see Discrete cosine transform (DCT)
Decimation filter, 105
Degradation function

blur mask coefficients, 576
estimation of

mathematical models, 577
PSF, 576
temperature variation, 577

frequency domain
atmospheric turbulence, 575
and charge-coupled device (CCD), 575
degradation process, 574
modulation transfer function (MTF), 573
optical transfer function (OTF), 573
sinc function, 575

spatial domain, 569
blur filter masks, 573
CVIPtools, 573
PSF, 573–574

Deployed image analysis system, 4
Depth maps, 33–34
Design methodology and microdisplay

(CCD) elements
faint line defect detection in

bit-map image, 811

co-occurrence matrix use, 811
edge detection in noisy images, 811
experimental and statistical

methods, 812
Hough transform use, 812
Prewitt operators, 811
step-edge model with Gaussian

noise, 811
Diabetic retinopathy (DR), 786
Differential predictive coding (DPC), 658, 700

decompression system, 671–673
errors, 675–677

calculation and signal, 673
Huffman coder, 673
Lloyd-Max quantizer and

1-D predictor, erro and decompressed
images, 676, 678–680

and truncation, 676–677
original image values, 673–675
predictor

1-D and 2-D equations, 674
and actual value, 670–671
dimensions, 675
values during compression and

decompression, 673–675
Digital camera

FlashPix format (FPX), 64
image data, 15
images with notation, 18
interfaced with computer, 18
noise, 537
sensor equation, 26

Digital image analysis and computer
vision projects, 739–741

algorithm coding, 740
result analysis and presentation, 740
testing algorithm, 739

Digital image file formats
BIN and PPM file formats, 62
bitmap images, 62
computer graphics, 62
data visualization, 64
image file header, 62
information about, 62
types of, 62
vector images, 62

Digital image processing
application areas

computer vision, 3
human vision, 3

and human vision projects, 741
Digital negative, 447, 449–450
Digital subscriber lines (DSL), 639

Index	 935

© 2011 by Taylor & Francis Group, LLC

Digital television (DTV), categories of, 18
Direct Fourier reconstruction, 610–611
Directional difference filters, 496
Discrete cosine transform (DCT)

2-D equation for, 282
basis images, 287
cosine symmetry, 286
image compression, 284–285
inverse cosine transform, 285
spectrum, 286

Discrete Fourier transform (DFT)
displaying

data format, 279
log transform of spectrum, 280–281
spectral aliasing, 280

one-dimensional
complex numbers, 269
equation for, 268
Euler’s identity, 268
inverse DFT, 268
magnitude and phase of

sinusoidal waves, 269
memory aid for, 270
spectral component, 268

with remap methods, 283
two-dimensional

CVIPtools, 274
equation in, 273
inverse transform, 272
magnitude and phase of complex

spectral component, 271
physical interpretation of, 272
separability, 272–274

Discrete Haar transform, basis
vectors in, 292

Discrete transforms, 259, 260
coefficients, 262
equations, 262

inverse transform equation, 263
frequency domain variables, 262
orthogonality, 264
process, 263
projection, 264
spatial frequency, 261
square waves and sinusoids, 261
vector inner product, 264
zero frequency, 261

Discrete Walsh–Hadamard transform, 287
Discrete wavelet transform

perfect reconstruction filters, 303
quadrature mirror filters, 303

Display Library (Display.lib), 863
Display under test (DUT) pixel, 811

Dithering and halftoning, 99, 101
DPC, see Differential predictive coding (DPC)
Dynamic window range, defined, 659
Dynamic windows-based RLC, 659–663, 705

E

Eccentricity, 338
Edge detection techniques, 139
Edge detectors

advanced
Canny algorithm, 152
Laplacian of a Gaussian (LoG), 149–150
Marr–Hildreth algorithm, 148
nonmaxima suppression, 153
thresholds, 153

Cervenka and Charvat, 165
Frei–Chen, 188, 190
Kirsch, 173
Prewitt, 173
Pyramid, 246
Roberts, 145–146
Robinson, 148
Shen-Casten, 157

Edge/line detection, 140
in color images, 159

areas of reflection, 162
binary threshold with Frei–Chen, 161
Euclidean distance, 163
in HSV space, 162
“location error,” 161
in multispectral images, 164
in RGB space, 163
Roberts gradient, 164
three-band image, 163

compass masks, 147–148
corner detection

convolution with Gaussian, 187
Frei–Chen masks, 188, 190
Harris corner detection algorithm, 186
Moravec detector, 185, 187
Prewitt or Sobel masks, 187

detector performance, 164
algorithms, 176
with direction images, 174–175
examples, 172–173
extended sobel edge detection mask, 175
multispectral image, 165
with noise, 177, 179–180
Pratt FOM, 164–168
with salt-and-pepper noise, 178
“spaghetti-effect,” 179
truncated pyramid operator, 176

936	 Index

© 2011 by Taylor & Francis Group, LLC

errors in, 166
gradient operators, 144
Hough transform, 140–141, 176

aircraft images, 186
algorithm used for, 180
CVIPtools with, 183, 185
edge linking process, 183
flowchart, 182
post-processing algorithm, 182, 184
quantized, 181
representation of line, 181
Sobel edge detection, 185

model, 145
noise in image, 141

sensitivity and accuracy, 142
Prewitt operator, 146
real objects, 143–144
Roberts operator, 145–146
Robinson compass masks, 148
Sobel operator, 146–147

Edge-preserving smoothing filter, 507–508;
see also Anisotropic diffusion (AD)
filters; Kuwahara filter

Effects noise, mitigating, 296
Electromagnetic (EM) spectrum

gamma waves, 20
infrared (IR), 20
massless particles stream, 21
microwaves, 20
radio waves, 20
ultraviolet (UV), 20
visible light, 20
X-rays, 20

Electron imaging, 32–33
Elongation, 338
Emboss filters, see Laplacian-type filters
Encapsulated PostScript (EPS), 64
Enhanced pixel values, 445
Enhancement filters, 94, 96
Enhancement image, 9
Enhancement techniques

block-based transform compression
algorithm, 444

in computer vision applications, 443
global operations, 443
for image restoration, 444
mask operations, 443
point operations, 443
process, 444

Entropy, 646–648
EPS, see Encapsulated PostScript (EPS)
Error metric image, 423–424
Errors in edge/line detection, 166

Euclidean distance, 163
Euler number, 114–115
Exponential ACE filters, 475–476

F

Facsimile (FAX) images, 51
Faint line defect detection in microdisplay

(CCD) elements
co-occurrence matrix method, 816
CVIPtools, 811
design methodology

bit-map image, 811
co-occurrence matrix use, 811
edge detection in noisy images, 811
experimental and statistical methods, 812
Hough transform use, 812
Prewitt operators, 811
step-edge model with Gaussian

noise, 811
Fourier transform, 815
Gaussian distribution, 817
Gaussian noise, 811
image database, 820
input image, 815–816
line detection algorithm

analysis of Hough space, 812
bandpass filter used, 814
edge detection, 812
high and low cutoff frequencies for

filter, 814
histogram stretch method, 814, 818
Hough transform, 812
input image, 813
preprocessing, 812

microdisplay elements
Hough transform, 811
in images, 811
Moore–Penrose generalized

inverse matrix, 811
spatial filtering using, 811

number of pixels for horizontal line
equations, 817

optimal values for parameters, 819
step-edge model, 811
z-table lookups for thresholding

parameter, 819
False contouring effect, 98
Fast Fourier transform (FFT), 274
FAX images, see Facsimile (FAX) images
Feature extraction, 5, 336, 354–357
Feature Extraction Library (Feature.lib)

function prototypes, 864–866

Index	 937

© 2011 by Taylor & Francis Group, LLC

Features, 104–105, 110–111
binary, 110–115
color, 347
histogram, 341–346
RST-invariant, 339
shape, 337–341
spectral, 347–349
texture, 349–354

Federal Communication Commission (FCC), 924
Fidelity criteria, 421

objective, 422
peak signal-to-noise ratio, 425
pixel value, 424
root-mean-square error, 424, 425
root-mean-square signal-to-noise ratio, 425
signal-to-noise ratio, 424
subjective fidelity criteria, 423
total error in, 424

Fidelity measures
objective

peak signal-to-noise ratio, 435
root-mean-square error, 435
total error, 435

subjective, 429–431
comparison tests, 426, 436
impairment tests, 425–426, 436
lighting conditions in room, 427
methodology used, 425
metrics used for, 427
quality tests, 426, 436
scoring scales, 427, 428

Field of view (FOV), 25
Figure of Merit (FOM), 760
Filtering, frequency and sequency

spectrum, 295
Filter(s)

adaptive, 508
anisotropic diffusion (AD), 510
bandpass and bandreject, 301–302, 307
Butterworth, 297–298
constrained least squares (CLS), 578, 586

Fourier transform, 583–585
Laplacian filter mask, 584

cosine and Hamming, 608
decimation, 105
directional difference, 496
edge-preserving smoothing, 507–508
enhancement, 94, 96
homomorphic, 494, 496
ideal, 296–297
Kuwahara, 507
Laplacian-type, 94–95
linear, 91–92

lowpass, 298
matched, 154
maximum, 548
mean, 91–92
median, 94–95
midpoint, 504
minimum, 548
nonideal, 297–299
nonlinear, 94
Notch, 307
pseudomedian, 506–507
Shepp–Logan, 608
spatial, 91, 94
Wiener, 154

Fingerprints, automatic identification, 8
FireWire (IEEE 1394), 18
First-class Fusion expert system development

software (1st-Class Expert Systems), 821
FlashPix format (FPX), 64
Flicker sensitivity, 420
Floyd-Steinberg error diffusion, 101–102
Fluorescence microscopy images, 29
f-Number/f-stop, 25
Focal length, 23–25
Fourier-slice theorem, 610–611
Fourier transform

with 1-D continuous transform, 265
2-D rectangle function, 267
basis functions, 265
direct mapping of magnitude data, 281
example of, 267
heat conduction, 265
magnitude and phase information, 282
properties

convolution, 274–275
linearity, 274
modulation, 275, 277
periodicity, 276–277, 279
rotation, 275–276
sampling and aliasing, 277–279
translation, 275–276

spectra, 313–315
spectral images of, 284
square wave with, 266
temperature distribution, 265

FOV, see Field of view (FOV)
FPX, see FlashPix format (FPX)
Fractal-based methods, 658
Frame grabber, 15
Frei–Chen masks, 148

basis vectors, 154–155
Frequency domain

atmospheric turbulence, 575

938	 Index

© 2011 by Taylor & Francis Group, LLC

and charge-coupled device (CCD), 575
degradation process, 574
modulation transfer function

(MTF), 573
optical transfer function (OTF), 573
sinc function, 575

Frequency domain filters
adaptive filtering, 587

block-by-block/subimage-by-subimage
processing, 588

blocking effect/blocking artifact, 588
computational intelligence, 588

bandpass, bandreject and notch
filters, 588–590

CLS filter, 578, 586
Fourier transform of, 583–585
Laplacian filter mask, 584

Fourier transform, 577–578
geometric mean filter

defined, 586
Fourier transform, 587
parametric Wiener filter, 587
power spectrum equalization

filter, 586
inverse filter, 580

Fourier transform, 578, 579
pseudoinverse filter, 581–582
restoration filters, 578

Wiener filter, 578
compared with inverse filter, 584–585
Fourier transform, 582
minimum mean square estimator, 582
optimal value, 583

Frequency-modulated (FM) beat signals, 34
Fundus images

diagnosis, 754
goals, 754–755
new algorithm

CVIP-ATAT, 755
flowchart, 756
FOM, 760
parameter values, 755
resulting images, 757–758
RMS, 759
SNR, 758

Fuzzy c-means, 198
Fuzzy features, 358, 362–363
Fuzzy similarity, 363, 397

G

Gamma-correction equation, 456
Gamma noise, 541

Gaussian noise, 170–171, 554, 556, 557
anisotropic diffusion (AD) filter

with, 568–569
detector performance with, 179–180
step-edge model with, 811

Gaussian noise distribution
of bell-shaped curve, 537
electronic noise in image acquisition

system, 539
uniform and salt-and-pepper noise

distribution, 538, 540–541
Geometric distortion correction, 10
Geometric mean filter, 557

defined, 586
Fourier transform, 587
parametric Wiener filter, 587
power spectrum equalization filter, 586

Geometric transforms
geometric restoration

with CVIPtools, 601
example, 600
image registration methods, 601
procedure, 599
regular and irregular image

mappings, 602–603
gray level interpolation, 594

bilinear interpolation, 598, 603
computer-aided design (CAD)

graphics, 599
cubic convolution interpolation, 599
medical imaging, 599
nearest neighbor method, 597, 603
neighborhood average, 603
values, 598

spatial transform, 594
distorted image coordinates, 595
mapping, 595, 597
restoring geometric distortion, 596
tiepoints, 595

Geometry Library (Geometry.lib) function
prototypes, 867–870

GIF file formats, see Graphics Interchange
Format (GIF) file formats

Gigabytes, 77
Glare limit, 415–416
Global operations, 443
GLRLC, see Gray level run-length coding

(GLRLC)
GOES image, see Multispectral Geostationary

Operational Environmental Satellite
(GOES) image

Gonzalez and Woods Image Database
links, 923

Index	 939

© 2011 by Taylor & Francis Group, LLC

Gradient vector flow snake (GVF snake), 208
skin lesion image, 209–210
steps, 209–210

Graphical user interface (GUI), 34–35
Graphics image, 35
Graphics Interchange Format (GIF) file

formats, 63
Gray level run-length coding (GLRLC), 658
Gray-scale images

brightness levels, 52
number of bits, 51–52
pixel data, 52
resolution, 52

Gray scale modification, 446
adaptive contrast enhancement (ACE)

equation for, 475–476
filtering with sliding window, 472–473
global parameters, 471–472
local enhancement, 469
local gain factor, 474
logarithmic and exponential filters, 476

color
CVIPtools, 478, 482
flowchart for, 487
frequency domain, 484–486
image examples, 480–481, 483, 488–489
intensity slicing, 477
pseudocolor, 476
spatial domain, 476, 479

histogram modification
with clipping, 459
equalization process, 461, 463–465
gray level histogram, 456
histogram stretch, 457
image and stretch, 457
OFFSET value, 460
scaling, 456
shrink procedure, 457–460
slide technique, 460
specification, 466, 470–471

mapping equation
compression, 445
with CVIPtools, 448–449
digital negative, 447, 449–450
enhanced pixel values, 445
gamma-correction equation, 456
image complementing, 447
initial value and slope, 448–449
intensity level slicing, 451
inverse mapping equation, 447
notation used, 445
from piece-wise linear

modification, 455

power-law transform, 455–456
range compression, 455–456
stretching, 445

H

Haar transform, basis vectors for, 292, 309
Hadamard ordering, 290
Halftoning and dithering, 101–102
Harmonic mean filter, 557
Harris corner detector, 188, 256

detection algorithm
images, 189
steps, 186

HDTV, see High definition television (HDTV)
Hestenes–Stiefel training method, 799
Hierarchical image pyramid, 19
High boost spatial filtering, 492
High definition television (HDTV), 414–415

standards for, 18
High frequency emphasis filter

functions, 305
Highpass filters; see also Principal

components transform (PCT)
1-D and 2-D ideal, 304
1-D and 2-D non-ideal, 304
Butterworth filter, 299, 302
filtering, 306
high frequency emphasis filter, 300

Histogram; see also Gray scale modification,
histogram modification; Noise histograms

defined, 106
equalization, 461–469, 483, 486, 813, 816

local, 469, 471
mapping table, 466–468
process, 462, 466

features, 341–346, 777–778, 822
energy, 343–346, 778
entropy, 343–346, 778
mean, 343–346, 778
skew, 343–346, 778
standard deviation, 343–346, 778

modification, 456–468
scaling, 456
second-order, 350, 821, 822
shrink, 456–458, 460–462, 498–499
slide, 456, 457, 460–462
specification, 466–470
stretch, 457, 814, 818
thresholding, 107, 197–199, 819

Histogram Library (Histogram.lib) function
prototypes, 870–871

Hit-or-miss transform, 215–221, 245

940	 Index

© 2011 by Taylor & Francis Group, LLC

Homogeneity test, 241
Homomorphic filters, 494, 496

filtering process, 497
Horizontal synch pulse, 16
Hough transform, 176, 183, 208
HSL color transform, see Hue/Saturation/

Lightness (HSL) color transform
Hue/saturation/lightness (HSL)

color transform
lightness, 54–55
saturation, 55
type color space, 55

Hue/saturation/value (HSV) color
spaces, 56–57

Huffman coding, 698
algorithm, 649
gray levels, 649, 650
histogram, 650
reorder and add, 650
unequal/variable length code, 649

Human vision applications, 3–4
Human visual perception

brightness adaptation, 416, 434
bit-planes in color image, 418–419
dark threshold, 415
false contouring, 417
glare limit, 415
pupil diameter, 416
using fewer gray levels, 417
vertical axis, 416

enhancement methods, 404
field rate, 420
flicker sensitivity, 420
images, 403–404
newer HD standards, 421
NTSC television standard used in United

States, 420
perception and illusion, 434

Mach Band effect, 421–422
neural system, 421
optical illusions, 421, 424
simultaneous contrast, 421, 423

restoration methods, 404
spatial frequency resolution, 410–411, 433

cutoff frequency, 413
cycles-per-degree, 412
gross imperfections, 413
HDTV, 414–415
high definition (HD) display

format, 414
physical mechanisms, 412–413
vertical axis, 413

storage requirements, 404

temporal cutoff frequency, 420
temporal resolution, 419, 434

Human visual system (HVS)
blind spot on retina, 405
components, 404–405
cone types, 406–407
eye, 404–405, 409
high-pass filter effect, 409–410
high-resolution-capability cones, 406
imaging systems spectrum, 405
lateral inhibition, 409
metameric, 408
neural processing system, model for, 410
neural system model, 409
relative response of rods and cones, 407
RGB color bands, 404–405, 407
sensors, 405

distribution of rods, 406
strength, 409
structure, 404
three mega-pixel CCD imaging chip, 409
tristimulus curves, 406
visible light spectrum, 405
vision, 404

Hybrid compression methods
spatial and transform domain, 688
wavelet transform, 701–702

DCT-based techniques, 688
JPEG2000 standard, 693–695
and VQ, algorithms for, 689–690
wavelet/vector quantization

(WVQ), 692–694
Hyperplane, 372
Hyperquadrics, 372
Hyperspace, 358

I

IASTED, see International Association
of Science and Technology for
Development (IASTED)

Ideal filter, 296–297; see also Principal
components transform (PCT)

IEEE, see Institute of Electrical and Electronic
Engineers (IEEE)

IGS quantization method, see Improved gray
scale (IGS) quantization method

Image analysis, 4
algorithm development, 7
application feedback loop, 78
in biological research, 11
and computer vision, 5–8
diagnostic, 9–10

Index	 941

© 2011 by Taylor & Francis Group, LLC

domains, 78
field of law enforcement and security, 8
in medical systems, 8
research and development, 8
stages

data reduction, 78
feature analysis, 78
preprocessing, 78

Image compression, 296
10–1 compression, 638
bandwidth and storage requirements, 638
compressed file, 638
CVIPtools, 641
data, 640
decompressed, 638
decorrelation process, 641
description, 637
digitized color transmission, 639
DSL, 639
file size reduction, 638
information, 640
interlaced video transmission, 639–640
lossless methods, 640

arithmetic coding, 656–657
coder performance, 647, 649
data compaction, 646
entropy, 646–648
Huffman coding, 649–651
information and randomness, 647
LZW, 655–656
marginal compression of complex

image data, 645–646
medical, 645
RLC, 651–655

lossy method, 640, 699
algorithm tools, 658
BTC, 660–666
DPC, 670–678
gray-level RLC, 659–660
hybrid and wavelet methods, 688–696
image quality, 657
JPEG2000, 657
model-based and fractal

compression, 678–681, 700–701
ratio and image fidelity, 658
spatial and transform domains,

658–659
transform coding, 681–688
VQ, 666–670

ratio, 638
redundancy

coding, 640
inter-frame, 640

interpixel, 640
psychovisual, 640

RGB transmission, 638–639
satellite images, 637
system model

algorithm coding stage, 643, 645
bit plane images, 644–645
compressor, 641–642, 697
decompressor, 642–643, 697
differential coding, 643
mapping process, 643, 697
nonuniform quantization, 643
uniform quantization, 643
variable bit rate, 643

Image data and file structures; see also
Computer vision and image
processing lab (CVIPlab) program

8-bit per pixel, 738
32-bit format, 738–739
Conversion library, 739
digital, 736–737
history, 737–738
library functions, 734
matrix, 735–736
model, 734
pointers, 735, 736
traditional programming, 734
vector, 735
VIP format, 738

Image fidelity criteria, 421
objective fidelity criteria, 422

peak signal-to-noise ratio, 425
pixel value, 424
root-mean-square error, 424, 425
root-mean-square signal-to-noise

ratio, 425
signal-to-noise ratio, 424
subjective fidelity criteria, 423
total error in, 424

objective fidelity measures
peak signal-to-noise ratio, 435
root-mean-square error, 435
total error, 435

subjective fidelity measures, 429–431
comparison tests, 426, 436
impairment tests, 425–426, 436
lighting conditions in room, 427
methodology used, 425
metrics used for, 427
quality tests, 426, 436
scoring scales, 427, 428

Image Library (Image.lib) functions, 871–872
Image processing and human vision, 8

942	 Index

© 2011 by Taylor & Francis Group, LLC

Image quantization
AND-based method, 97
AND/OR techniques, 98
anti-aliasing filtering, 104
bin width quantization, 100, 103
dithering and halftoning, 99
false contouring, 99

effect, 98
gray level reduction, 95–96
salt-and-pepper noise, 95
spatial, 102, 104

reduction, 95, 104
Image reconstruction, 603

with color image, 604
computed tomography (CT), 604
direct Fourier reconstruction for MRI, 604
Fourier-slice theorem and direct Fourier

reconstruction, 610
spectrum, 611

Radon transform, 608
and Fourier transform, 610
line integral, 609
and projections, 609

using backprojections, 604
blurring artifact, 607–608
cosine and Hamming filter, 608
CVIPtools, 605
image creation, 607
ramp-like filter, 608
Shepp–Logan filter, 608
star artifact, 606–607
vertical and horizontal, 606

Image restoration methods
noise estimation, 543–544
noise models

digital image acquisition process, 537
histograms, 537–542
periodic noise, 542–543

noise removal using spatial filters
adaptive filters, 558–559, 561–569
mean filters, 546, 553–557
order filters, 545, 548–553
practical mean and order filters, 547

spatial domain, 536
system model, 535

Images; see also Binary images; Digital image
analysis; Retinal images

analog video camera digitizer, 15
Band Image Library (Band.lib)

functions, 856
bitmap, 62
Cervenka and Charvat multispectral

image detector, 165

Color Image Library (Color.lib), 856
color library function prototypes,

857
complement image, 93
compression image, 9
computer generated, 35–36
CVIP-ATAT

comparing, 751–754
fundus, 754–760
insertion, 745–729

CVIP-FEPC
adding and associated classes,

763–764
veterinary thermographic, 770–775

CVIPtools CD, 891
data and file structures

8-bit per pixel, 738
32-bit format, 738–739
Conversion library, 739
digital, 736–737
history, 737–738
library functions, 734
matrix, 735–736
model, 734
pointers, 735, 736
traditional programming, 734
vector, 735
VIP format, 738

deployed image analysis system, 4
digital camera

data, 15
with notation, 18

discrete cosine transform (DCT)
basis images, 287
image compression, 284–285

edge/line detection, 159
areas of reflection, 162
binary threshold with Frei–Chen, 161
with direction images, 174–175
Euclidean distance, 163
Hough transform, 186
in HSV space, 162
“location error,” 161
in multispectral images, 164–165
noise in image, 141
in RGB space, 163
Roberts gradient, 164
three-band image, 163

electromagnetic spectrum, 20
enhancement, 9

contrast stretching, 11
facsimile (FAX) images, 51
fluorescence microscopy, 29

Index	 943

© 2011 by Taylor & Francis Group, LLC

formation
components of, 21
and sensing, 20

fundus
algorithm, 755–760
diagnosis, 754
goals, 754–755

graphics, 35
gray-scale images

brightness levels, 52
number of bits, 51–52
pixel data, 52
resolution, 52

hierarchical image pyramid, 19
histogram of, 106–107
ImageJ software, 923
ImageTool software, 923
insertion

adding images, 746, 748
new project creation, 746
project interface, 746–747

Internet resources, 923, 924
isodata, 107
k-means clustering algorithm, 107
Laboimage software, 923
limit parameter with automatic

thresholding algorithm, 108
monochrome, 22
multispectral wave, 28, 31
radio wave, 31
representation

binary images, 50–51
color images, 52–61
digital image file formats, 62–65
gray-scale images, 51–52

restoration, 8
geometric, 10
noise removal, 10

sharpening, 11
structures, 855
threshold value, 107–108
veterinary thermographic images

adding images, 770–771
in diagnosis, 770
experiment results, 775
feature selection, 771
pattern classification methods, 772
result validation, 772
training and test sets, 772

viewer
crop function, 39
geometry operations, 39
keyboard and mouse commands, 40

Image segmentation, 5, 139–140, 188–190
boundary detection, 203
clustering techniques, 195–203

average value thresholding, 206
components transform, 202
CVIPtools, 208
domains, 196
fuzzy c-means, 198
gradient vector flow snake, 208–209
histogram thresholding, 198
Hough transform, 208
Maxgray, 204–205
Otsu method, 197, 204
parameter vector, 208
PCT/median algorithm, 201–202
perception-based aspect, 199
recursive region splitting, 197–198
SCT/center, 198
snake eating edge linking

algorithm, 205
threshold for, 205
thresholding noisy images, 207
thresholding segmentation, 199

combined segmentation approaches, 210–211
illumination system, 188
measure of homogeneity, 188
morphological filtering

binary dilation with, 215–216
dilation process, 211
erosion process, 212–213
Euler number, 220–221
examples, 211–213, 216, 218–235
hexagonal grid, 228
hit-or-miss transform, 215–216
iterative modification approach, 233, 235
logical subtraction, 220
opening and closing, 214, 220
pruning operation, 224
skeletonization, 223–227
structuring element, shape and

size, 215, 217–219, 222
surrounds for, 229
thinning operation, 219

region growing/shrinking, 188, 190–195
CVIPtools, 192–193
gray level variance, 192
homogeneity test, 191
multiresolution algorithms, 192
quadtree data structure, 191
split and merge, 191
with split and merge algorithm, 194
watershed segmentation algorithm,

193, 195–197

944	 Index

© 2011 by Taylor & Francis Group, LLC

Image sharpening, 489
algorithms, 490
directional difference filters

filter masks, 493
image sharpening, 494

edge detector-based sharpening
algorithms, 499, 501–502

high frequency emphasis, 491, 493
edge detection spatial masks, 491
spatial filter mask, 490

highpass filtering, 490
homomorphic filtering

image model for, 494
steps in, 494, 496

unsharp masking algorithm, 497
enhancement, 499
flowchart for, 498

Image smoothing
comparison of filters, 513
convolution mask lowpass filtering

with arithmetic mean and
Gaussian filters, 505

Gaussian filters, 503
mean filters use, 504
remapping image data, 504

frequency domain lowpass filtering, 503
nonlinear filters, 505

with arithmetic mean and
Gaussian filters, 506

edge-preserving smoothing filter,
507–508

Kuwahara filter, 507–508
with median filter, 507, 508
pseudomedian filter, 506–507

Image variance, 569
Impairment tests, 425–426
Improved gray scale (IGS)

quantization method, 98–100
Incoherent light, 33
Information theory, 422
Infrared images, 30
Inner product, 360
Input function, 715
Institute of Electrical and Electronic

Engineers (IEEE), 924
Intensity level slicing, 451
Interband redundancy, 640
International Association of Pattern

Recognition (IAPR), 924
International Association of Science and

Technology for Development
(IASTED), 924

International Standards Organization (ISO), 924

International Telecommunications Union
(ITU), 924

International Telecommunications Union-
Radio (ITU-R), 60, 655, 924

Internet resources
computer vision homepage, 923
open directory project, 924

Inverse cosine transform, 285
Inverse degradation process, 535
Inverse mapping equation, 447
Inverse wavelet transform, 311
Irradiance, 21, 23
Irregularity ratio, 338
Isodata method, see Iterative self-organizing

data analysis technique algorithm
(Isodata) method

IS&T, see Society for Imaging Science and
Technology (IS&T)

Iterative self-organizing data
analysis technique algorithm
(Isodata) method, 127

ITU-R, see International Telecommunications
Union-Radio (ITU-R)

J

Japanese Advanced Earth Observing Satellite
(ADEOS), 640

Joint Photographers Expert Group
(JPEG), 656

image compression method, 284–285
satellite images and land types

classification, 796

K

Karhunen-Loeve transform, 292–293
Kirsch compass masks, 147–148
Kirsch magnitude, 174–175
Kirsch operator, 172–173
K-Means clustering algorithm, 107
Kuwahara filter, 507

CVIPtools with square window, 508
means and standard deviations, 509
window size, 508

L

Labeling algorithm flowchart, 111
Laplacian filter mask, 584
Laplacian operators, 147
Laplacian-type filters, 94–95
Leave-One-Out testing method, 376

Index	 945

© 2011 by Taylor & Francis Group, LLC

Lempel–Ziv–Welch (LZW) coding, 63, 698
code words, 656
GIF image file format, 656
strings of data, 655–656

Lenses types, 25
Lesion feature space

discriminant analysis, 782
leave-one-out testing method, 782–783
leave-ten-out method data, 781–782
multi-layer perceptron (MLP)

analysis, 783
variable selection method, 781

Library of Congress, U.S., 637
Linde–Buzo–Gray (LBG) algorithm, 670
Linear filter, 91–92
Linear interpolation technique, 84
Linear/line sensor, 27
Line detection algorithm

analysis of Hough space, 812
Gaussian distribution, 817
histogram of, 818
input image after histogram

equalization, 816
number of pixels for horizontal line

equations, 817
thresholding operation, 817
thresholding parameter, 819

bandpass filter used, 814
edge detection, 812–816

co-occurrence matrix method, 816
Fourier transform, 815
step-edge mode, 814

high and low cutoff frequencies for
filter, 814

histogram stretch method, 814, 818
Hough transform, 812
input image, 813
preprocessing

bandpass filter used, 814
CVIPtools, 812–813
Fast Fourier Transform, 812
frequency domain filters, 812
histogram equalization, 813
input image, 813
in microdisplay images, 812
Moore–Penrose generalized inverse

matrix, 812
spatial domain filtering, 812

Lloyd–Max quantizer, 675–676
1-D predictor, erro and decompressed

images, 676, 678–680
and truncation, 676–677

Look-up-table (LUT), 63

Lossless methods, 640; see also
Image compression

coder performance, 647, 649
data compaction, 646
entropy, 646–648
Huffman coding, 649–651
information and randomness, 647
LZW, 655–656
marginal, complex image, 645–646
medical, 645
RLC, 651–655

Lossy method, 640, 699; see also Image compression
algorithm tools, 658
BTC, 660–666
DPC, 670–678
gray-level RLC, 659–660
hybrid and wavelet methods, 688–696
image quality, 657
JPEG2000, 657
model-based and fractal compression,

678–681, 700–701
ratio and image fidelity, 658
spatial and transform domains, 658–659
transform coding, 681–688
VQ, 666–670

Lowpass filters; see also Principal
components transform (PCT)

blurring effect, 298
Butterworth filter, 297–298

Fourier spectrum, 300
cutoff frequency, 296
filtering process equation, 296
ideal filter, 296–297
matrix, 296
nonideal filter, 297–299
point-by-point method, 296
stopband, 296
uses, 296

Lumber counting and grading, computer
vision system for, 7

Luminance equation, 804
LUT, see Look-up-table (LUT)

M

Mach Band effect, 421–422
Macintosh computer system, PICT format, 64
Main_cviplab function, 715
Marr–Hildreth algorithm

in CVIPtools, 152
results from, 151
steps, 148

Masking, 92

946	 Index

© 2011 by Taylor & Francis Group, LLC

Mask operations, 443
Maximum filter, 548
Mean filters, 91–92, 546, 557
Median filter, 94–95
Medical systems, image analysis and, 8
Melanoma, differentiation using texture

features, 820
data analysis, 821
ID3 algorithm, 821
materials and methods

classification rules, 822
co-occurrence matrix, 821
CVIPtools, 821
digital images, 821
Fusion expert system development

software, 821
ID3 algorithm, 822
Left–Right method, 823
nested if-then structures, 822
Optimize method, 823
Partek software package, 821
second-order histogram features, 822
second-order/joint histogram, 821
SUN-SOLARIS platform, 821
texture features, 821
training/test set paradigm, 822

success rates in diagnosis, 823–825
texture analysis experiments, 823

1D-histogram and scatter plots, 825
Bayesian distribution of data, 825
correlation and texture_energy, 830
discriminant analysis tool, 825, 828–829
eigenvectors of covariance matrix, 829
histogram plot, 826
Left–Right method, 830
Optimize method, 830
original feature vector, 829
principal component analysis, 828
success for seb ker images, 825–826
training set size, 827
variable selection tool, 825

Metamers, 408
Mexican hat operator, 149
Microdisplay chip inspection, 5
Microdisplay chips

computer vision systems for inspection, 6
use, 5

Microdisplay (CCD) elements, faint line
defect detection in

co-occurrence matrix method, 816
CVIPtools, 811
design methodology

bit-map image, 811

co-occurrence matrix use, 811
edge detection in noisy images, 811
experimental and statistical methods, 812
Hough transform use, 812
Prewitt operators, 811
step-edge model with Gaussian noise, 811

Fourier transform, 815
Gaussian distribution, 817
Gaussian noise, 811
image database, 820
input image, 815–816
line detection algorithm

analysis of Hough space, 812
bandpass filter used, 814
edge detection, 812
high and low cutoff frequencies

for filter, 814
histogram stretch method, 814, 818
Hough transform, 812
input image, 813
preprocessing, 812

microdisplay elements
Hough transform, 811
in images, 811
Moore–Penrose generalized inverse

matrix, 811
spatial filtering using, 811

number of pixels for horizontal line
equations, 817

optimal values for parameters, 819
step-edge model, 811
z-table lookups for thresholding

parameter, 819
Microsoft Encarta encyclopedia, 681
Microsoft Visual C++ 2008

with CVIPlab project
building, 724
compiling and running, 722, 725
installation location, 722
opening CVIPlab_Project.sln, 722, 723

function adding mechanism, 724, 726–728
CVIPlab.h and CVIPlab.c editing, 730
header files settings, 729
output, 731

Microsoft Visual C++ 2008 programming, 715
CVIPlab exercises

new file creation, threshold_lab.c, 728, 732
new function and case statement

adding, 731, 733
new_function_Setup, 731

Microsoft Visual C++ 2010, 731–733
GUI, 731

Microsoft Windows bitmap (BMP) format, 63

Index	 947

© 2011 by Taylor & Francis Group, LLC

Microwave images, 28
Midpoint filters, 504
Minimum filter, 548
Minimum mean-squared error (MMSE)

filter, 561–562, 564
defined, 559
flowchart, 563

Minkowski distance, 360
Model-based compression, 700–701

fractal
advantage, 681
affine transformations, 680
butterfly image at various

compression ratios, 681–683
domains and range, 681
self-similar, 680

objects, defined, 678
Models

based and fractal compression,
678–681, 700–701

for edge/line detection, 145
mathematical, 577
neural system, 409
noise

digital image acquisition process, 537
histograms, 537–542
periodic noise, 542–543

statistical, 779–780
step-edge, 811
system

algorithm coding stage, 643, 645
bit plane images, 644–645
compressor, 641–642, 697
decompressor, 642–643, 697
differential coding, 643
mapping process, 643, 697
nonuniform quantization, 643
uniform quantization, 643
variable bit rate, 643

two-fields-per-frame, 16
visible light imaging for, 22

Modulation transfer function
(MTF), 573–574

Moment of order, 338
Monochrome edge detection method, 239
Monochrome image, 22
Moore–Penrose generalized inverse

matrix, 490, 811
Moravec corner detector, 185, 187
Morphing process, 87
Morphological filtering; see also Image

segmentation
binary dilation with, 215–216

dilation process, 211
erosion process, 212–213
Euler number, 220–221
hexagonal grid, 228
hit-or-miss transform, 215–216
iterative modification approach, 233, 235
logical subtraction, 220
opening and closing, 214, 220
pruning operation, 224
skeletonization, 223–227
structuring element, shape and size,

215, 217–219, 222
surrounds for, 229
thinning operation, 219

MTF, see Modulation transfer function (MTF)
Multi-layer perceptron (MLP) analysis, 783
Multiresolution decomposition, 311
Multispectral Geostationary

Operational Environmental
Satellite (GOES) image, 31

Multispectral images, 28
detection, 165
sources for

airborne radar, 61
IR imaging systems, 61
medical diagnostic imaging system, 61
satellite systems, 61
underwater sonar systems, 61

Multispectral wave images, 31

N

National Television Standards Committee
(NTSC), 924

Negative exponential noise, 540
Neural networks, 372, 373
Noise

effects, 296
in image, 141

sensitivity and accuracy, 142
Noise histograms

electronic noise in image acquisition
system, 539

equation for gamma noise, 541
Gaussian noise distribution

of bell-shaped curve, 537
uniform and salt-and-pepper noise

distribution, 538, 540–541
negative exponential noise, 540
probability density function (PDF), 537
radar range and velocity images, 539
Rayleigh distribution, 539, 541
salt-and-pepper distribution, 539

948	 Index

© 2011 by Taylor & Francis Group, LLC

uniform distribution, 538–539
uniform noise, 539
values, 538
white noise, 542

Noise Library (Noise.lib) function
prototypes, 875–876

Noise models
digital camera, 537
estimation of noise, 543–544

with crop and histogram, 547
histograms, 537–542

gamma noise equation for, 541
Gaussian noise distribution, 537,

538, 540–541
image acquisition system, 539
negative exponential noise, 540
probability density function (PDF), 537
radar range and velocity images, 539
Rayleigh distribution, 539, 541
salt-and-pepper distribution, 539
uniform distribution, 538–539
uniform noise, 539
values, 538
white noise, 542

periodic noise
electrical interference in system, 543
image, 546
image acquisition mechanical jitter/

vibration, 542–543
realistic complex pattern, 593

Rayleigh, negative exponential and
gamma noise, 543–544

real images and Fourier spectra, 545
Nonideal filter, 297–299; see also Principal

components transform (PCT)
Noninterlaced video, 16
Nonlinear filter, 94
Normalized central moments, 339
Notch filters, 307, 588–590

O

Object feature space
discriminant analysis approach, 783–784
hidden-output layer neuron, 785
leave-one-out testing method, 784
MLP analysis, 784–785

Objective fidelity criteria, 422
peak signal-to-noise ratio, 425
pixel value, 424
root-mean-square error, 424, 425
root-mean-square signal-to-

noise ratio, 425

signal-to-noise ratio, 424
subjective fidelity criteria, 423
total error in, 424

Objective fidelity measures
peak signal-to-noise ratio, 435
root-mean-square error, 435
total error, 435

Off-axis Walsh–Hadamard basis image, 291
One-dimensional DFT; see also Discrete

Fourier transform (DFT)
complex numbers, 269
equation for, 268
Euler’s identity, 268
inverse DFT, 268
magnitude and phase of sinusoidal

waves, 269
memory aid for, 270
spectral component, 268

Optical character recognition (OCR), 51
Optical illusions, 421
Optical transfer function (OTF), 573
Order filters, 545
OTF, see Optical transfer function (OTF)
Otsu thresholding, 254–255
Outer product, 291

P

Palette-based images, 63
Parametric Wiener filter, 587
Pattern classification, 5
PCT, see Principal components transform

(PCT)
PDF, see Probability density function (PDF)
PDF format, see Portable Document

Format (PDF) format
Peak signal-to-noise ratio, 425
Pearson’s correlation coefficient, 384
PEIPA, see Pilot European Image

Processing Archive (PEIPA)
Phase Alternation Line (PAL), 924
Phase contrast filtering, 490
Photon noise, 27
Photoshop software tool, 18
PICT format, 64
Piece-wise linear modification, 455
Pilot European Image Processing

Archive (PEIPA), 924
PNG, see Portable network graphics (PNG)
Point operations, 443
Point spread function (PSF), 573–574

mask, 575
Portable Document Format (PDF) format, 64

Index	 949

© 2011 by Taylor & Francis Group, LLC

Portable network graphics (PNG), 64
Power-law transform, 455–456
PPM formats, 62
Practical Wiener, 583
Pratt’s figure of merit (FOM), 164

applying on edge detectors, 168
chessboard distance, 167
city block distance, 167
defined, 166
edge mask, 168
Euclidean distance, 167
test image, 169

Gaussian noise with, 170–171
Preprocessing, 78

algorithms, 79
arithmetic and logic operations, 85

background subtraction, 88
image masking, 91
image morphing, 87–88
multiplication and division, 88–91
rotation, 86

image quantization
AND-based method, 97
AND/OR techniques, 98
anti-aliasing filtering, 104
bin width quantization, 100, 103
dithering and halftoning, 99
false contouring, 99
false contouring effect, 98
gray level reduction, 95–96
spatial, 102, 104
spatial reduction, 95

region-of-interest (ROI) geometry, 79
buffer, 83
convolution mask, 82
crop process, 79–80
zoom process, 80–81

spatial filter
enhancement, 91, 94
Laplacian-type, 94
linear, 91–92
mean, 91
median, 91, 94–95
nonlinear, 94

Prewitt operator, see Edge/line
detection

Principal component analysis (PCA), 780
Principal components transform (PCT),

61, 259, 292, 780
bandpass and bandreject filters

cutoff frequencies, 301
used in, 302

covariance matrix in RGB space, 293

cross-covariance terms, 294
eigenvalues of covariance matrix, 295
highpass filters, 300
linear transform on RGB data, 295
lowpass filters

blurring effect, 298
Butterworth filter, 297–298
cutoff frequency, 296
filtering process equation, 296
ideal filter, 296–297
matrix, 296
nonideal filter, 297–299
point-by-point method, 296
stopband, 296
used for, 296

multiband image data, 293
used in image compression, 295

Probability density function (PDF), 537
Professional societies

Association for Computing
Machinery (ACM), 924

Institute of Electrical and Electronic
Engineers (IEEE), 924

International Association of Pattern
Recognition (IAPR), 924

International Association of Science
and Technology for Development
(IASTED), 924

Society for Imaging Science and
Technology (IS&T), 924

Society of Motion picture and Television
Engineers (SMPTE), 924

Society of Photo-Optical Instrumentation
Engineers (SPIE), 924

Projection-slice theorem, 610
Pseudomedian filter, 506–507
PSF, see Point spread function (PSF)

Q

Quadratic (Bayesian) classifier, 799–800
Quadratic discriminant analysis and

multilayer perceptrons
classification results with, 802
data reduction and feature extraction

classification, 800
classification with MLP, 799
comma separated values (CSV), 798
confusion matrix from MLP, 800–801
cross-validation, 801
feature selection and extraction, 797
Hestenes–Stiefel training method

for, 799

950	 Index

© 2011 by Taylor & Francis Group, LLC

minimally compressed JPEG image, 798
quadratic (Bayesian) classifier, 799–800
SCT/center algorithm, 797
segmentation, 797
visual and principal component

analysis, 799
satellite images and land types

classification, 795
discriminant analysis, 797
infrared rays, 796
Joint Photographic Experts Group

(JPEG) use and, 796
LANDSAT image, 796
MLP, 796–797
spectral curves, 796
spherical coordinates transform

(SCT) use, 797
use of CVIPtools, 796

Quality tests, 426, 436
Quantization bins, 102

R

Radiance, 21, 23
Radio wave images, 31
Radon transform, 608

and Fourier transform, 610
line integral, 609
and projections, 609

Range compression, 455–456
Rayleigh distribution, 539, 541

negative exponential and gamma
noise distributions, 542

Real lenses, 25
Redundancy

coding, 640
inter-frame, 640
interpixel, 640
psychovisual, 640

Reflectance function, 22
Reflected ultraviolet imaging systems, 8
Region growing and shrinking methods, 139
Region-of-interest (ROI) geometry, 79;

see also Preprocessing
bilinear interpolation, 84–85
buffer, 83
convolution mask, 82

for first-order hold, 82
convolution process, 82–83
crop process, 79–80
linear interpolation technique, 84
rotation process, 85
translation process, 85

two-step process, 82
zero-order hold, 80, 84
zoom process, 80–81

Relative color features, skin lesion classification
color image

concept, 776–777
creation steps, 777

computer imaging and pattern
recognition, 776

dermoscopy, 776
diagnosis, 775–776
feature extraction

CVIPtools software, 777–778
histogram, 777–778

image database, 776
image processing algorithm, 775
leave-ten-out method, 781
lesion feature space

discriminant analysis, 782
leave-one-out testing method, 782–783
leave-ten-out method data, 781–782
multi-layer perceptron (MLP)

analysis, 783
variable selection method, 781

object feature space
discriminant analysis approach, 783–784
hidden-output layer neuron, 785
leave-one-out testing method, 784
MLP analysis, 784–785

segmentation and morphological
filtering, 777

statistical models
discriminant analysis, 779
multilayer perceptron, 780

training and test paradigm, 780
Remap methods, 283
Remapping, 64–65
Rendering, 62
Restoration image, 8; see also Image

restoration methods
degradation process, 9
noise removal, 10

Restoration window
blurry images, 43
frequency filters and geometric

transforms, 42
noise and spatial filters, 42
sharpening and smoothing, 42

Retina, blind spot in, 405
Retinal images, automatic segmentation of

blood vessels in
blood vessel segmentation

algorithms, 787–791

Index	 951

© 2011 by Taylor & Francis Group, LLC

comparison parameters, 792–793
CVIPtools software development, 787
damaged vessels detection, 786–787
flowchart comparing algorithms, 792
FOM, 793
and hand-drawn images, 787
RMS, 794–795
SNR, 793

RGB color information, 54
Roberts operator, 145–146; see also Edge/

line detection
Robinson compass masks, 148; see also Edge/

line detection
Root-mean-square (RMS) error, 759, 791
Root-mean-square signal-to-noise ratio, 425
Rubber-sheet transforms, see

Geometric transforms
Run-length coding (RLC), 698

binary and complex images, 652
bit-plane, 653
convention, 652–653
dynamic window-based gray-level, 659–663
gray code, 653–655
run, 655
run-length, 651–652
standards, 655

S

Satellite images, 637
Scaled conjugate gradient (SCG) algorithms,

780
Scanning electron microscope (SEM), 32–33
Scatterplot, 372
Scion Image software tool, 18
Scoring scales, 428
SCT, see Spherical coordinates transform (SCT)
SDTV, see Standard definition television

(SDTV) formats
Seborrheic keratosis, differentiation using

texture features, 820
data analysis, 821
ID3 algorithm, 821
materials and methods

classification rules, 822
co-occurrence matrix, 821
CVIPtools, 821
digital images, 821
Fusion expert system

development software, 821
ID3 algorithm, 822
Left–Right method, 823
nested if-then structures, 822

Optimize method, 823
Partek software package, 821
second-order histogram features, 822
second-order/joint histogram, 821
SUN-SOLARIS platform, 821
texture features, 821
training/test set paradigm, 822

success rates in diagnosis, 823–825
texture analysis experiments, 823

1D-histogram and scatter plots, 825
Bayesian distribution of data, 825
correlation and texture_energy, 830
discriminant analysis tool, 825, 828–829
eigenvectors of covariance matrix, 829
histogram plot, 826
Left–Right method, 830
Optimize method, 830
original feature vector, 829
principal component analysis, 828
success for seb ker images, 825–826
training set size, 827
variable selection tool, 825

Segmentation, image, see Image segmentation
Segmentation and edge/line detection

boundary detection, 139
clustering methods, 139
region growing and shrinking, 139

Segmentation Library (Segmentation.lib)
function prototypes, 876–878

SEM, see Scanning electron microscope (SEM)
Sensing, image formation and

acoustic imaging, 30–32
components of, 21
computer generated images, 34
electron imaging, 32–33
EM spectrum, 20–21
imaging outside visible range of

EM spectrum
IR images, 28
microwave images, 28
MRI imaging, 28
multispectral images, 28
PET and computerized tomography

(CT), 28
thermographic imaging, 28
X-rays and UV imaging, 28

laser imaging, 33–34
photon, 21
range images, 21
sensors in, 20
visible light imaging, 21, 23–25

aberrations, 25
blur equation, 23

952	 Index

© 2011 by Taylor & Francis Group, LLC

depth of field, 24–25
f-number/f-stop, 25
focal length, 23–24
intrinsic property, 24
irradiance, 21, 23
lens equation, 24
model for, 22
quantum efficiency, 26
radiance, 21, 23
reflectance function, 21, 22
sensor equation, 26
wide-angle lens, 25

Sensitivity, 374
Sensors, generic imaging, 27
Sensors devices, 20
Sequential Coleur Avec Memoire

(SECAM), 924
Sharpening algorithm, 501–502
Shen–Castan algorithm, 148

optimal filter function, 154
Signal-to-noise ratio (SNR), 758
Similarity measure

correlation coefficient, 360
fuzzy similarity, 363, 397
Tanimoto metric, 360
vector inner product, 360

Single imaging sensor, 27
Single layer networks, 373
Skeletonization, 223–227
Skin lesion border segmentation, watershed-

based approach to
algorithm, 805
blue border, 810
B-spline border smoothing, 808–809
catchment basins, 805
computer-assisted diagnosis, 803
dermoscopy, 803
error measurements for, 808–810
flooding variant of, 805
image border error, 810
materials and methods

image data set, 803
standard flooding variant, 803

noise removal
lesion-to-image area ratio

estimate, 807
object histogram merging method, 807

object histogram merging, 806
plateau, 805
preprocessing, 804
rainfall simulation method, 805

Skin lesion classification using relative
color features

color image
concept, 776–777
creation steps, 777

computer imaging and pattern
recognition, 776

dermoscopy, 776
diagnosis, 775–776
feature extraction

CVIPtools software, 777–778
histogram, 777–778

image database, 776
image processing algorithm, 775
leave-ten-out method, 781
lesion feature space

discriminant analysis, 782
leave-one-out testing method, 782–783
leave-ten-out method data, 781–782
multi-layer perceptron (MLP)

analysis, 783
variable selection method, 781

object feature space
discriminant analysis approach, 783–784
hidden-output layer neuron, 785
leave-one-out testing method, 784
MLP analysis, 784–785

segmentation and morphological
filtering, 777

statistical models
discriminant analysis, 779
multilayer perceptron, 780

training and test paradigm, 780
SMPTE, see Society of Motion picture and

Television Engineers (SMPTE)
Sobel operator, 146–147; see also Edge/line

detection
Society for Imaging Science and

Technology (IS&T), 924
Society of Motion Picture and Television

Engineers (SMPTE), 924
Society of Photo-Optical Instrumentation

Engineers (SPIE), 924
Spatial domain, 569

blur filter masks, 573
CVIPtools, 573
PSF, 573–574

Spatial Filter Library (SpatialFilter.lib)
function prototypes, 878–883

Spatial filters
adaptive filters, 548

alpha-trimmed mean, 558
image variance used, 569
MMSE filter, 559, 561–564
noise-to-local-variance ratio, 562

Index	 953

© 2011 by Taylor & Francis Group, LLC

adaptive median filter algorithm, 565, 567
defined, 564

anisotropic diffusion (AD) filter
in CVIPtools, 566
with Gaussian noise, 568–569
parametric, 572
with various noise types, 570–571

enhancement, 91, 94
Laplacian-type, 94
linear, 91–92
mean filters, 91, 546

alpha-trimmed, 551–553
arithmetic, 553–554
contra-harmonic, 557–558
defined, 557
Fourier spectra for, 554–556
Gaussian noise, 554, 556, 557
geometric, 557, 559
harmonic, 557, 560
midpoint and alpha-trimmed, 550
pixel values, 557

median, 91, 94–95
for noise removal

adaptive filters, 558–559, 561–569
in digital images, 545
mean filters, 546, 547, 553–557
order filters, 545, 547–553
practical mean and order

filters, 547
nonlinear, 94
order filters, 545–546

maximum and minimum
filters, 548–549, 551

median filter, 548, 549
midpoint filter, 551
pixel values, 548
statistics, 548

practical mean, 547
Specificity, 374
Spherical coordinates transform (SCT),

57–58, 797
satellite images and land types

classification, 797
SPIE, see Society of Photo-

Optical Instrumentation
Engineers (SPIE)

Standard definition television (SDTV)
formats, 18

Standard normal density (SND), 360–361
Star artifact, 606–607
Step-edge model with Gaussian noise, 811
Stretching, 445
Structured analysis of retina (STARE), 787

Subjective fidelity measures, 429–431
comparison tests, 426, 436
impairment tests, 425–426, 436
lighting conditions in room, 427
methodology used, 425
metrics used for, 427
quality tests, 426, 436
scoring scales, 427–428

Sun Raster and SGI file formats, 64
Sun Raster format, 64
System model; see also Image compression

algorithm coding stage, 643, 645
bit plane images, 644–645
compressor, 641–642, 697
decompressor, 642–643, 697
differential coding, 643
inverse degradation process, 535
mapping process, 643, 697
nonuniform quantization, 643
uniform quantization, 643
variable bit rate, 643

T

Tagged Image File Format (TIFF), 63
Tanimoto metric, 360
Temporal cutoff frequency, 420
Thermographic imaging, 28
Thinning, 219–225
Threshold_lab.c file program, 719–721
Threshold_Setup function, 715
TIFF, see Tagged Image File Format (TIFF)
Training/Test set, 376
Transform coding, 701

bit allocation, 681, 683
DCT, 683–684
description, 681
filtering, 681
frequency coefficients, 681
JPEG algorithm, 681
Lloyd-Max quantization, 684
transform calculation, 681
variable bit rate/nonuniform

quantization, 683
zonal, 701

color image compression ratio, 687–688, 691
DCTand Walsh transforms, 684, 686–687
DCT coefficients, 685, 687, 688
JPEG, 684
JPEG compression algorithm,

687, 689–690
pixel value level shifting, 684
threshold and mask, 684, 685

954	 Index

© 2011 by Taylor & Francis Group, LLC

Transform Filter Library (TransformFilter.lib)
function prototypes, 885–888

Transform Library (Transform.lib) function
prototypes, 884–885

Transforms; see also Discrete cosine transform
(DCT); Fourier transform; Principal
components transform (PCT);
Walsh-Hadamard transform (WHT);
Wavelet transform

Haar, 292, 309
Transmission electron microscope

(TEM), 32–33
Two-dimensional DFT

CVIPtools, 274
equation in, 273
inverse transform, 272
magnitude and phase of complex

spectral component, 271
physical interpretation of, 272
separability, 272–274

Two-dimensional (2-D) methods, 637
Two-dimensional sensor, 27
Two-fields-per-frame model, 16

U

Ultrasound image, 29, 32
Ultraviolet (UV) imaging, reflected, 28
Ultraviolet (UV) waves, 20
Uncompressed image file, 638
Uniform bin width quantization, 100, 102
Uniform noise, 539
Universal Serial Bus (USB), 18
Unsharp masking algorithm, 497, 500;

see also Image sharpening
enhancement, 499
flowchart for, 498

USB, see Universal Serial Bus (USB)
User-defined homogeneity test, 192
U.S. Library of Congress, 637
Utilities window, 49–50

arith/logic and compare, 44–46
convert and create, 44–46
enhance and filter, 44–46
size and stats, 44–46

V

Variable bin width quantization, 100, 102–103
Vector images, 62
Vector inner product, 360
Vector outer product, 291

Vector quantization (VQ), 658, 699–700
advantage, 670
application in spatial and spectral

domains, 670, 671
codebook, 668–669
description, 666
LBG algorithm, 670
scalar, 668
transform domain, 672

Vertical axis, 416
Vertical synch pulse, 16
Veterinary thermographic images

adding images, 770–771
in diagnosis, 770
experiment results, 775
feature selection, 771
pattern classification methods, 772
result validation, 772
training and test sets, 772

Video Electronics Standards
Association (VESA), 924

Video signal, 17
Vignetting effect, 26
VIP format, see Visualization in Image

Processing (VIP) format
Virtual reality, 11–12
Visible light imaging, 21

aberrations, 25
blur equation, 23
depth of field, 24–25
field of view (FOV), 25
f-number/f-stop, 25
focal length, 23
intrinsic property, 24
irradiance, 22
lens equation, 24
model for, 22
quantum efficiency, 26
radiance, 21, 23
reflectance function, 22
sensor equation, 26
wide-angle lens, 25

Visual C++, see Microsoft Visual C++ 2010
Visualization in Image Processing

(VIP) format, 64

W

Walsh–Hadamard transform (WHT), 287
basis functions, 288

1-D and 2-D, 289
CVIPtools, 290

Index	 955

© 2011 by Taylor & Francis Group, LLC

inverse WHT equation, 290
off-axis Walsh–Hadamard basis image, 291
sequency, 288
spectrum, 313–315
vector outer product, 291

Watershed segmentation algorithm,
193, 195–197; see also Image
segmentation

Wavelet transform, 701–702; see also Hybrid
compression methods

basis vectors, 310
DCT-based techniques, 688
display, 311
image, 311
JPEG2000 standard, 693–695
spatial and frequency domain, 688
use of, 312
and VQ, algorithms for, 689–690
wavelet/vector quantization (WVQ), 692–694

Window
file and view selections, 37

image queue, 37
image viewing area, 37
toolbar and status bar, 37

X

X-ray images, 29

Y

Yp mean filter, 557, 561, 616, 789, 790–792
defined, 557

YUV encoding, 60

Z

Zero-order hold convolutionmask, 84
Zero-padding, 309, 310, 321
Zonal coding, 707–709; see also

Transform coding, zonal
Zoom process, 80–81

K10112 Cover 10/18/10 3:20 PM Page 1

C M Y CM MY CY CMY K

Whether for computer evaluation of otherworldly
terrain or the latest high definition 3D blockbuster,
digital image processing involves the acquisition,
processing, and analysis of visual information by
computer and requires a skill set that has yet to
be defined in a single text. Until now. Taking an
applications-oriented, engineering approach, Digital

Image Processing and Analysis provides the
tools for developing and advancing computer and
human vision applications and brings image
processing and analysis together into a unified
framework.

NEW TO THIS EDITION:

• Uses color throughout and adds more materials on the processing of color images

• New functions for image segmentation, edge detection, corner detection, morphological filters, fuzzy
features, nonlinear filters, and image reconstruction are discussed, and many are included in the new
CVIPtools development environment

• Reorganizes, updates, expands and adds more materials that make it more useful as an applications-
oriented textbook including supplementary exercises

• Adds a new chapter on algorithm development along with example applications

• Develops two new major tools that allow for batch processing, the analysis of imaging algorithms,
and the overall research and development of imaging applications

Providing information and background in a logical, as-needed fashion, the author offers a conceptual
presentation of the material for a solid understanding of complex topics and discusses the theory and
foundations of digital image processing and the algorithm development needed to advance the field. The
book covers two new software tools, the Computer Vision and Image Processing Algorithm Test and
Analysis Tool (CVIP-ATAT) and the CVIP Feature Extraction and Pattern Classification Tool (CVIP-FEPC).

The book provides the concepts and models required to analyze digital images and develop human and
computer vision applications as well as all the necessary information to use the CVIPtools environment
for algorithm development, making it an ideal teaching and reference
tool for this fast growing field.

Electrical Engineering

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
270 Madison Avenue
New York, NY 10016
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

K10112

DIGITAL IMAGE PROCESSING
AND ANALYSIS
Human and Computer Vision Applications
with CVIPtools
SECOND EDITION

UMBAUGH

SECOND
EDITION

D
IG

IT
A

L
 IM

A
G

E
 P

R
O

C
E

S
S

IN
G

A
N

D
 A

N
A

L
Y

S
IS

H
u
m

an
 an

d
 C

o
m

p
u
te

r V
isio

n
A

p
p

licatio
n
s w

ith
 C

V
IP

to
o

ls

