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Preface

Digital image processing and analysis is a field that continues to experience rapid growth,
with applications ranging from areas such as space exploration to the entertainment indus-
try. The diversity of applications is one of the driving forces that make it such an exciting
field to be involved in for the twenty-first century. Digital image processing, also referred to
as computer imaging, can be defined as the acquisition and processing of visual informa-
tion by computer. This book presents a unique approach to the practice of digital image
processing, and will be of interest to those who want to learn about and use computer
imaging techniques.

Digital image processing can be divided into two primary application areas, human
vision and computer vision, with image analysis tying these two together. Although the
book focuses on image processing and analysis, the image analysis part provides the
reader with the tools necessary for developing computer vision applications such as those
discussed in Chapter 12. The automatic identification of land types in satellites images,
robotic control of a Mars rover, and the automatic classification of abnormalities in medical
images are examples of computer vision applications. Human vision applications involve
manipulation of image data for viewing by people. Examples include the development of
better compression algorithms, special effects imaging for motion pictures, and the resto-
ration of satellite images distorted by atmospheric disturbance.

Why Write a New Edition of This Book?

The first topic is: Why a new title? The change is primarily due to definitions used in
current practice. The previous title Computer Imaging tends now to refer to PhotoShop®-
type applications and document imaging only. Digital Image Processing and Analysis is more
comprehensive, explanatory, and up-to-date. The subtitle, Human and Computer Vision
Applications with CVIPtools, reinforces the applications-oriented nature of the book and
fact that CVIPtools is integrated more throughout this edition.

As before, this edition of the book takes an engineering approach to digital image pro-
cessing and brings image processing and image analysis into a unified framework that pro-
vides a useful paradigm for both human and computer vision applications. Additionally,
the theoretical foundation is presented as needed in order to fully understand the mate-
rial. Although theoretical-based textbooks are available, they do not really take what I con-
sider an engineering approach. I still feel that there is a need for an application-oriented
book that brings image processing and analysis together in a unified framework, and this
book fills that gap.

For the new edition of thebook Iwanted to use color throughout and add more materials on
the processing of color images. Happily, the publisher agreed. I also reorganized, updated,
expanded, and added more materials that make it more useful as an applications-oriented
textbook. I added supplementary exercises, a new chapter on applications, and developed
two new major tools that allow for batch processing, the analysis of imaging algorithms,
and the overall research and development of imaging applications.
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The creation of the two new software tools, the Computer Vision and Image Processing
Algorithm Test and Analysis Tool (CVIP-ATAT) and the CVIP Feature Extraction and
Pattern Classification Tool (CVIP-FEPC), realizes a much more powerful development
environment. The new Windows® version of CVIPtools, which has been integrated even
more throughout the book, in conjunction with the two new development tools, creates a
valuable environment for learning about imaging as well as providing a set of reusable
tools for applications development.

Who Will Use This Book?

The book is intended for use by the academic community in teaching and research, as well
as working professionals performing research and development in the commercial sectors.
This includes all areas of digital image processing and analysis, both human and computer
vision applications. It will be useful to academics and practicing engineers, consultants, and
programmers, as well as those in the graphics fields, medical imaging professionals, multi-
media specialists, and others. The book can be used for self-study and is of interest to anyone
involved with developing imaging applications, whether they are engineers, geographers,
biologists, oceanographers, or astronomers. At the university it can be used as a textbook in
standard digital image processing and/or computer vision senior-level or graduate courses,
or may be used at any level in an applications-oriented course. One essential component
that is missing from standard theoretical textbooks is a conceptual presentation of the
material, which is fundamental for gaining a solid understanding of these complex topics.
Additionally, this book provides the theory necessary to understand the foundations of digi-
tal image processing, as well as that which is needed for new algorithm development.

The prerequisites for the book are an interest in the field, a basic background in computers,
and a basic math background provided in an undergraduate science or engineering pro-
gram. Knowledge of the C® C++®, or C#® programming language will be necessary for those
intending to develop algorithms at the programming level. Some background in signal and
system theory is required for those intending to gain a deep understanding of the sections on
transforms and compression. However, the book is written so that those without this back-
ground can learn to use the tools and achieve a conceptual understanding of the material.

Approach

To help motivate the reader I have taken an approach that presents topics as needed. This
approach starts by presenting a global model to help gain an understanding of the over-
all process, followed by a breakdown and explanation of each individual topic. Instead
of presenting techniques or mathematical tools when they fit into a nice, neat theoretical
framework, topics are presented as they become necessary for understanding the practi-
cal imaging model under study. This approach provides the reader with the motivation to
learn about and use the tools and topics, because they see an immediate need for them. For
example, the mathematical process of convolution is introduced when it is needed for an
image zoom algorithm, and morphological operations are introduced when the filtering
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operations are needed after image segmentation. This approach also makes the book more
useful as a reference, or for those who may not work through the book sequentially, but
will reference a specific section as the need arises.

Organization of the Book

The book is divided into five major sections. The first section of the book, Introduction
to Digital Image Processing and Analysis, contains all of the basic concepts and defini-
tions necessary to understand digital image processing. The second section, Digital Image
Analysis and Computer Vision, describes image analysis and provides the tools, concepts,
and models required to analyze digital images and develop computer vision applications.
Section III, Digital Image Processing and Human Vision, discusses topics and application
areas for the processing of images for human consumption, so it starts with a chapter on
visual perception. Each chapter includes numerous references and examples for the mate-
rial presented. The material is presented in a conceptual and application-oriented manner,
so that the reader will immediately understand how each topic fits into the overall frame-
work of imaging applications development.

The programming and applications development part of the book, Section IV, Program-
ming and Application Development with CVIPtools, provides all the necessary informa-
tion required to use the CVIPtools environment for algorithm development. This section
also includes information to assist with the implementation of the programming exercises
included with each chapter. It also includes a chapter on using the new development tools
and examples of applications that have been developed in the past few years. The last sec-
tion, Appendices, contains reference material for use with CVIPtools, as well as other useful
computer imaging-related information.

Using the Book in Your Courses

The book is intended for use in both digital image processing and computer vision courses.
Both types of courses will use the introductory chapters in the first section. After the intro-
duction, computer vision courses will concentrate on Section II, where the introductory
chapter presents a model of image analysis and concludes with the development of a pat-
tern classification algorithm for geometric objects in images. This model provides a foun-
dation for all the tools that are developed and discussed throughout the second section.
Digital image processing courses will focus on the third section, which contains an intro-
ductory chapter on human visual perception, followed by chapters on image enhance-
ment, restoration, and compression. Most image processing courses will also want to cover
Chapter 5 on image transforms. Both computer vision and image processing courses can
use the programming parts of the book, depending on the instructor’s teaching structure.
I encourage all who use the book to explore the programming exercises as they provide a
valuable learning tool for computer imaging. There are also many tutorial exercises using
CVIPtools included with each chapter, which provide hands-on experience and allow the
user to gain insight into the various algorithms and parameters. Use the following table to
outline your course.

© 2011 by Taylor & Francis Group, LLC



xviii Preface

Senior Level/Graduate Required Additional/Optional Reference
Courses Chapters Chapters/Sections Chapters

Image Analysis 1,2,3,4,51,52,57,6,11 5.3,54,5.5,5.6,5.8,12 13, Appendices
Computer Vision
Machine Vision

Digital Image Processing 1,2,3.1,32,5.1,5.2,5.7, 5.3,5.4,5.5,5.6,11,12 13, Appendices
Digital Picture Processing 5.8,7,8,9,10
Image Processing

After the CVIPtools environment is installed from the CD, an image database will be in
the default images directory, which contains the images used in the book. The CVIPtools
Website, www.ee.siue.edu/CVIPtools, is a resource that has useful imaging examples,
information and links to other imaging Web sites of interest. Additionally, a Solutions
Manual with Instructor’s CD containing PowerPoint lecture slides is available from the
publisher to those adopting the book in their courses.

CVIPtools Software Development Environment

The software development environment includes an extensive set of standard C® libraries,
a skeleton program for using the C libraries called CVIPIlab, a dynamically linked library
(cviptools.dll) based on the common object module (COM) interface, a GUI-based program
for the exploration of computer imaging called CVIPtools, and the two new algorithm
development and batch processing tools CVIP-ATAT and CVIP-FEPC. The CVIPlab pro-
gram and all the standard libraries are ANSI-C compatible. The new version of CVIPtools
has been developed exclusively for the Windows® operating system, but various UNIX
versions are available at the Web site (www.ee.siue.edu/CVIPtools). The CVIPtools soft-
ware, the libraries, the CVIPlab program, CVIP-ATAT, CVIP-FEPC, images used in the
textbook, and associated documentation are included on the CD.

The CVIPtools software has been used in projects funded by the National Institutes of
Health, the U.S. Department of Defense, and numerous corporations in the commercial sec-
tor. CVIPtools has been used in the medical, aerospace, printing, and manufacturing fields
in applications such as the development of a helicopter simulation, automated classification
of lumber, skin tumor evaluation and analysis, embedded image processing for print tech-
nology, the automatic classification of defects in microdisplay chips, and the analysis of
veterinary thermographic images for disease evaluation. Since it is a university-sponsored
project, it is continually being upgraded and expanded, and updates are available via the
Internet (see Appendix B). This software allows the reader to learn about imaging topics in
an interactive and exploratory manner, and to develop their own programming expertise
with the CVIPlab program and the associated laboratory exercises. With the CVIPlab pro-
gram they can link any of the already defined CVIPtools functions, ranging from general
purpose input/output and matrix functions to more advanced transform functions and
complex imaging algorithms; some of these functions are state-of-the-art algorithms since
CVIPtools is continually being improved at the Computer Vision and Image Processing
Laboratory at Southern Illinois University Edwardsville (SIUE).
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Section I

Introduction to Digital Image
Processing and Analysis

© 2011 by Taylor & Francis Group, LLC






1

Digital Image Processing and Analysis

1.1 Overview

Digital image processing is a field that continues to grow, with new applications being
developed at an ever increasing pace. It is a fascinating and exciting area to be involved
in today with application areas ranging from the entertainment industry to the space pro-
gram. The Internet, with its ease of use via the World Wide Web browsers, combined with
the advances in computer power and network bandwidth has brought the world into our
offices and into our homes. One of the most interesting aspects of this information revolu-
tion is the ability to send and receive complex data that transcends ordinary written text.
Visual information, transmitted in the form of digital images, has become a major method
of communication for the twenty-first century.

Digital image processing, also referred to as computer imaging, can be defined as the acquisi-
tion and processing of visual information by computer. The importance of digital image
processing is derived from the fact that our primary sense is our visual sense. Our vision
system allows us to gather information without the need for physical interaction; it enables
us to analyze all types of information directly from pictures or video. It provides us with
the ability to navigate about our environment, and the human visual system is the most
sophisticated, advanced neural system in the human body. Most of the scientific discover-
ies and advancements have relied on the visual system for their development—from the
discovery of fire to the design of a cell phone.

The information that can be conveyed in images has been known throughout the cen-
turies to be extraordinary—one picture is worth a thousand words. Fortunately, this is
the case, because the computer representation of an image requires the equivalent of
many thousands of words of data, and without a corresponding amount of information
the medium would be prohibitively inefficient. The massive amount of data required for
images is a primary reason for the development of many subareas within the field of com-
puter imaging, such as image segmentation and image compression. Another important
aspect of computer imaging involves the ultimate “receiver” of the visual information—in
some cases the human visual system, in others the computer itself.

This distinction allows us to separate digital image processing into two primary applica-
tion areas: (1) computer vision applications, and (2) human vision applications, with image
analysis being a key component in the development and deployment of both (Figure 1.1-1). In
computer vision applications the processed (output) images are for use by a computer, while
in human vision applications the output images are for human consumption. The human
visual system and the computer as a vision system have varying limitations and strengths,
and the computer imaging specialist needs to be aware of the functionality of these two
very different systems. The human vision system is limited to visible wavelengths of light,
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Digital image processing

Computer

Image
analysis

FIGURE 1.1-1
Digital image processing (computer imaging) can be separated into computer vision and human vision applica-
tions, with image analysis being part of both.

which cover only a small portion of the electromagnetic spectrum. The computer is capable
of dealing with almost the entire electromagnetic spectrum, ranging from gamma rays to
radio waves, and can process other imaging modalities such as ultrasound and magnetic
resonance imaging.

Historically, the field of digital image processing grew from electrical engineering as an
extension of the signal processing branch, while the computer science discipline was largely
responsible for developments in computer vision applications. At some universities these
two are still separate and distinct, but the commonalities and the perceived needs have
brought the two together. Here we will simply refer to digital image processing, or computer
imaging, as the general field while allowing for separate application areas in computer and
human vision. As shown in Figure 1.1-1, image analysis applies to both applications areas.

Image analysis involves the examination of the image data to facilitate solving an imaging
problem. Image analysis methods comprise the major components of a computer vision
system, where the system is to analyze images and have a computer act on the results.
In one sense a computer vision application is simply a deployed image analysis system. In
the development of a human vision image processing application, many images must be
examined and tested so image analysis is necessary during the development of the system.

This book focuses on digital image processing and analysis, and, following this introduc-
tory part, it is divided into three main sections: (1) Digital Image Analysis and Computer
Vision, (2) Digital Image Processing and Human Vision, and (3) Programming and
Application Development with CVIPtools. Chapters 1 and 2 provide an introduction to the
basic concepts involved in computer imaging, and will provide the necessary background
for those who are new to the field. This includes a discussion of image acquisition, imaging
systems, and image representation. Chapters 3 through 6 comprise the image analysis and
computer vision part of the book, beginning with a system model for the image analysis
process, and then describing each major part of this model in separate chapters. The image
processing and human vision part of the book starts with an introductory chapter, Chapter 7,
which discusses human visual perception. Following the introduction, Chapters 8, 9, and 10
examine different application areas by presenting a system model followed by representative
algorithms within each area. Each of these chapters concludes with a key points section, fol-
lowed by references and suggestions for further reading, and a series of exercises to help the
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learning process. The exercises include definitions, discussions, problems, advanced prob-
lems, and computer exercises using the CVIPtools software and programming exercises.

For the programming exercises the CVIPlab prototype program can be used (Chapter 11),
or the experienced programmer can use the platform of their choice. The programming
environment provided with the CVIPtools software is a comprehensive environment for
computer imaging education and application development. Chapter 12 has examples of
application development, and Chapter 13 has the C® function library descriptions and
function prototypes. Finally, the appendices contain information necessary for using the
CD-ROM, installing CVIPtools, getting updates via the Internet, function quick reference
lists, useful computer imaging resources, and a description of the CVIPtools software
organization.

1.2 Image Analysis and Computer Vision

Image analysis involves investigation of the image data for a specific application. Typically,
we have a set of images and want to look beyond the raw image data, to gain insight into
what is happening with the images and determine how they can be used to extract the
information we need. The image analysis process requires the use of tools such as image
segmentation, image transforms, feature extraction, and pattern classification. Image seg-
mentation is often one of the first steps in finding higher level objects from the raw image
data. Feature extraction is the process of acquiring higher level image information, such as
shape or color information, and may require the use of image transforms to find spatial fre-
quency information. Pattern classification is the act of taking this higher level information
and identifying objects within the image.

Image analysis methods comprise the major components of a computer vision system.
Computer vision may be best understood by considering different types of applications.
Many of these applications involve tasks that are either tedious for people to perform,
require work in a hostile environment, require a high rate of processing, or require access
and use of a large database of information. Computer vision systems are used in many and
various types of environments—from manufacturing plants to hospital surgical suites
to the surface of Mars. For example, in manufacturing systems, computer vision is often
used for quality control. There, the computer vision system will scan manufactured items
for defects and provide control signals to a robotic manipulator to automatically remove
defective parts. To develop an application of this nature an image database consisting of
sample images is first created. Next, image analysis is applied to develop the necessary
algorithms to solve the problem. One interesting example of this type of system involves
the automated inspection of microdisplay chips.

Microdisplay chips are used in digital cameras, projection systems, televisions, heads-
up-displays, and any application that requires a small imaging device. Prior to the design
of this computer vision system these chips were inspected manually—a process that is
slow and prone to error. Once the market demand for these chips accelerated, the manual
inspection process was not practical. In Figure 1.2-1 we see the microdisplay chip inspec-
tion system along with two sample images. The original images were captured at 3:1 mag-
nification, which means each picture element in the microdisplay chip corresponds to a
3 x 3 array in the image. The system automatically finds various types of defects in the
chips; such as the pixel defects and the faint display defects shown here.
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FIGURE 1.2-1
(@) Computer vision system for microdisplay chip inspection, (b) microdisplay chip imagel at 3:1, (c) imagel after

pixel defect detection, (d) imagel after blob analysis to find faint defects, (e) microdisplay chip image2 at 3:1, (f)
image2 after pixel defect detection, and (g) image2 after blob analysis to find faint defects. (Photos courtesy of

Mike Wilson and Iris Cheng, Westar Display Technologies Inc.)
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FIGURE 1.2-2

(a) Computer vision system for lumber counting and grading, (b) image captured by the system, (c) intermediate
image after processing, (d) example of system output after software analysis. (Photos courtesy of Tony Berke,
River City Software.)

Another interesting computer vision application that required image analysis for algo-
rithm development involved the automatic counting and grading of lumber. Before this
system was implemented this task was done manually; which was a boring task, had an
unacceptable error rate, and was inefficient. This application was challenging due to the
variation in the lumber stack; such as, gaps between boards, variation in the wood color,
cracks in the boards, or holes in the boards. Figure 1.2-2 shows the system in operation, and a
sample input image and a processed image. The processed image is used by high level soft-
ware to count and grade the lumber in stack. With the system in place the lumberyard can
minimize errors, increase efficiency, and provide their workers with more rewarding tasks.
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Image analysis is used in the development of many computer vision applications for the
medical community, with the only certainty being that the types of applications will con-
tinue to grow. Current examples of medical systems being developed include: systems to
automatically diagnosis skin tumors, systems to aid neurosurgeons during brain surgery,
and systems to automatically perform clinical tests. Systems that automate the diagnostic
process are being developed primarily to be used as tools by medical professionals where
specialists are unavailable, or to act as consultants to the primary care givers, and may
serve their most useful purpose in the training of medical professionals. Many of these
types of systems are highly experimental, and it may be a long time before we actually
see computers playing doctor like the holographic doctor in the Star Trek series. Computer
vision systems that are being used in the surgical suite have already been used to improve
the surgeon’s ability to “see” what is happening in the body during surgery, and conse-
quently improve the quality of medical care available. Systems are also currently being
used for tissue and cell analysis; for example, to automate applications that require the
identification and counting of certain types of cells.

The field of law enforcement and security is an active area for image analysis research
and development, with applications ranging from automatic identification of fingerprints
to DNA analysis. Security systems to identify people by retinal scans, facial scans, and the
veins in the hand have been developed. Reflected ultraviolet imaging systems are being
used to find latent fingerprints, shoeprints, body fluids, and bite marks that are not vis-
ible to the human visual system. Infrared imaging to count bugs has been used at Disney
World to help keep their greenery green. Currently, systems are in place to automatically
check our highways for speeders, and in the future, computer vision systems may be used
to fully automate our transportation systems to make travel safer. The United States space
program and the Defense department and their need for robots with visual capabilities are
actively involved in image analysis research and development. Applications range from
autonomous vehicles to target tracking and identification. Satellites orbiting the Earth col-
lect massive amounts of image data every day, and these images are automatically scanned
to aid in making maps, predicting the weather, and helping us to understand the changes
taking place on our home planet.

1.3 Image Processing and Human Vision

Human vision applications of digital image processing involve a human being in the visual
loop. In other words, the images are to be examined and acted upon by people. These
types of applications require an understanding of how the human visual system oper-
ates. The major topics within the field of image processing for human vision applications
include image restoration, enhancement, and compression. As was previously mentioned,
image analysis is used in the development of these types of algorithms. In order to restore,
enhance, or compress digital images in a meaningful way, we need to examine the images
and understand how the raw image data relate to human visual perception.

Image restoration is the process of taking an image with some known, or estimated, deg-
radation, and restoring it to its original appearance. Image restoration is often used in the
field of photography or publication where an image was somehow degraded, but needs
to be improved before it can be printed. For this type of application we need to know
something about the degradation process in order to develop a model for the distortion.
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FIGURE 1.3-1
Image restoration (a) image with distortion, (b) restored image.

Once we have a model for the degradation process, we can apply the inverse process to
the image to restore it to its original form. This type of image restoration is often used in
space exploration—for example, to eliminate artifacts generated by mechanical jitter in
a spacecraft (Figure 1.3-1) or to compensate for flaws in the optical system of a telescope.
Restoration techniques can be used in noise removal (shown in Figure 1.3-2), or in fixing
geometric distortion as in Figure 1.3-3.

Image enhancement involves taking an image and improving it visually, typically by tak-
ing advantage of the human visual system’s response. One of the simplest and often dra-
matic enhancement techniques is to simply stretch the contrast of an image (Figure 1.3-4).
Another common enhancement is image sharpening, shown in Figure 1.3-5. Enhancement
methods tend to be problem specific. For example, a method that is used to enhance
satellite images may not be suitable for enhancing medical images. Although enhance-
ment and restoration are similar in aim, to make an image look better, they differ in how
they approach the problem. Restoration methods attempt to model the distortion to the
image and reverse this degradation, whereas enhancement methods use knowledge of the
human visual system’s response to improve an image visually.

Image compression involves reducing the typically massive amount of data needed to
represent an image. This is done by eliminating data that is visually unnecessary, and
by taking advantage of the redundancy that is inherent in most images. Although image
compression is used in computer vision systems, it is included here because much of the
work being done in the field involves compressing images to be examined by people, so
we want to understand exactly what part of the image data is important for human per-
ception. By taking advantage of the physiological and psychological aspects of the human
visual system, still image data can be reduced 10-50 times, and motion image data (video)
can be reduced by factors of 100 or even 200. Figure 1.3-6 shows an image with various
degrees of compression. It should be noted the amount of compression and the quality of
the compressed image is highly image dependent and will vary widely.

The medical community has many important applications for image processing, often
involving various types of diagnostic imaging. The beauty of the diagnostic imaging
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FIGURE 1.3-2
Noise removal (a) noisy image, (b) noise removed with image restoration.

FIGURE 1.3-3
Geometric distortion correction (a) distorted image, (b) restored image (note the process is not perfect).
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FIGURE 1.3-4
Contrast stretching (a) image with poor contrast, (b) image enhanced by contrast stretching.

FIGURE 1.3-5
Image sharpening (a) original image, (b) sharpened image.

modalities, including PET, CT, and MRI scanning, is that they allow the medical profes-
sional to look into the human body without the need to cut it open (ouch!). Image pro-
cessing is also widely used in many different types of biological research, for example, to
enhance microscopic images to bring out features that are otherwise indiscernible. The
entertainment industry uses image processing for special effects, editing, creating artificial
scenes and beings—computer animation, closely allied with the field of computer graphics.
Image processing is being used to enable people to see how they look with a new haircut,
a new pair of eyeglasses, or even a new nose. Computer aided design, which uses tools
from image processing and computer graphics, allows the user to design a new building
or spacecraft and explore it from the inside out. This type of capability can be used, for
example, by people wanting to explore different modifications to their homes, from a new
room to new carpeting, and will let them see the end result before the work has even begun.
Virtual reality is one application that exemplifies future possibilities, where applications
are without bound, and image processing techniques, combined with new developments in
allied areas, will continue to affect our lives in ways we can scarcely imagine.
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FIGURE 1.3-6

Image compression (a) original image, (b) image file compressed to 1/10 its original size, (c) image file com-
pressed to 1/30 its original size, and (d) image file compressed to 1/50 its original size.

I
1.4 Key Points

Digital image processing (computer imaging): The acquisition and processing of
visual information by computer. It can be divided into two main application areas:
(1) computer vision and (2) human vision, with image analysis being a key com-
ponent of both

Computer vision applications: Imaging applications where the output images are
for computer use
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Human vision applications: Imaging applications where the output images are for
human consumption

Image restoration: The process of taking an image with some known, or esti-
mated, degradation, and restoring it to its original appearance

Image enhancement: Improving an image visually
Image compression: Reducing the amount of data needed to represent an image

Image analysis: The examination of image data to solve a computer imaging
problem

Image segmentation: Used to find higher level objects from raw image data

Feature extraction: Acquiring higher-level information, such as shape or color of
objects

Image transforms: May be used in feature extraction to find spatial frequency
information

Pattern classification: Used for identifying objects in an image

Exercises
1. Define and discuss how digital image processing, computer imaging, image anal-
ysis, computer vision applications, and human vision applications are related.
2. Discuss two computer vision applications.
3. List and describe the tools used in image analysis.

4. What are the major topics in the field of image processing for human vision appli-
cations? Discuss two applications.

5. Suppose we need to develop a new image compression algorithm. Discuss the fac-
tors that must be considered.

6. What is the difference between image enhancement and image restoration?
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A comprehensive treatment of computer vision can be found in Forsyth and Ponce (2003),
Shapiro and Stockman (2001), Davies (2005), Ballard and Brown (1982), Haralick and Shapiro
(1992), Horn (1986), Granland and Knutsson (1995), and Jain, Kasturi, and Schnuck (1995).
Comprehensive image processing texts include Gonzalez and Woods (2008), Trussell and
Vrhel (2008), Castleman (1996), Jain (1989), Pratt (1991), Bracewell (1995), and Rosenfeld and
Kak (1982).

Other books that bring computer vision and image processing together include Sonka,
Hlavac, and Boyle (2008), Schalkoff (1989), Granland and Knutsson (1995), and Banks (1990).
One book that takes a more practical, lab-oriented approach to computer vision and image
processing is Galbiati (1990). A good conceptual and practical approach to computer imaging
is taken by Baxes (1994), and Myler and Weeks (1993). Additional books for practical algorithm
implementation (including code) are: Burger and Burge (2008), Seul et al. (2008), and Parker
(1997). Russ (2006) provides a good handbook for the computer imaging specialist. Some of
the applications discussed can be found in the trade magazines Advanced Imaging, Biophotonics
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Computer Imaging Systems

2.1 Imaging Systems Overview

Computer imaging systems come in many different configurations, depending on the
application. As technology advances these systems get smaller, faster, and more sophisti-
cated. In Chapter 1 we saw some imaging systems used for computer vision applications.
In this chapter we will focus on the primary aspects of a generic imaging system. We will
look at how images are sensed and transformed into computer files, how the Computer
Vision and Image Processing tools (CVIPtools) software can be used for image processing
and analysis, and how these computer files are used to represent image information.

Computer imaging systems are comprised of two primary component types: hard-
ware and software. The hardware components, as seen in Figure 2.1-1 can be divided into
the image acquisition subsystem, the computer itself, and the display devices. The soft-
ware allows us to manipulate the image and perform any desired analysis or processing
on the image data. Additionally, we may also use software to control the image acquisition
and storage process.

The computer system may be a general purpose computer with an imaging device con-
nected. Images may be acquired by the computer via a camera or scanner, or can be input
from any media that can store images such as CDs, DVDs, flash drives, or downloaded
from the Internet. The primary device for capturing live images is the camera, which can
use either a digital or analog format. Digital cameras store image data in a format similar to
that used directly by the computer, while analog cameras output a continuous video signal
that must be modified to create an image suitable for computer processing. Although digital
cameras are the newer format, analog cameras are still used in many applications due to the
large installed base, well-established standards, and inexpensive, easily available parts.

A standard analog video camera requires a frame grabber, or image digitizer, to interface
with the computer. The frame grabber is a special purpose piece of hardware that accepts
a standard analog video signal, and outputs an image in the form that a computer can
understand—a digital image. Analog video standards vary throughout the world; RS-170A,
RS-330, and RS-343A are the monochrome video standards in North America and Japan.
RS-343A is used for high resolution video with 675-1023 lines per frame. CCIR is the mono-
chrome standard used primarily in Europe. The three color standards are NTSC, PAL,
and SECAM. NTSC is used in North America, Japan, and parts of South America, while
Northern Europe uses PAL, and France and Russia use SECAM. NTSC is 525 lines, 30 frames
(60 fields) per second, 2:1 interlaced standard. PAL and SECAM are 625 lines, 25 frames (50
fields) per second, 2:1 interlaced standards.

The process of transforming a standard analog video signal into a digital image is called
digitization. This transformation is necessary because the standard video signal is in
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FIGURE 2.1-1
Computer imaging system hardware.

analog (continuous) form, and the computer requires a digitized or sampled version of
that continuous signal. A typical video signal contains frames of video information, where
each frame corresponds to a full screen of visual information. Each frame may then be
broken down into fields, and each field consists of alternating lines of video information. In
Figure 2.1-2a, we see the typical image on a display device, where the solid lines represent
one field of information and the dotted lines represent the other field. These two fields
make up one frame of visual information. This two-fields-per-frame model is referred to
as interlaced video. Some types of video signals, called noninterlaced video, have only one
field per frame. Noninterlaced video is typically used in computer monitors.

In Figure 2.1-2b we see the electrical signal that corresponds to one line of video informa-
tion. Note the horizontal synch pulse between each line of information, this synchronization
pulse tells the display hardware to start a new line. After one frame has been displayed, a
longer synchronization pulse, called the vertical synch pulse, tells the display hardware to
start a new field or frame.

The analog video signal is converted to a digital image by sampling the continuous
signal at a fixed rate. In Figure 2.1-3, we see one line of a video signal being sampled
(digitized) by instantaneously measuring the voltage of the signal at fixed intervals in
time. The value of the voltage at each instant is converted into a number that is stored,
corresponding to the brightness of the image at that point. Note that the image bright-
ness at a point depends on both the intrinsic properties of the object and the lighting con-
ditions in the scene. Once this process has been completed for an entire frame of video
information, we have “grabbed” a frame, and the computer can store it and process it as
a digital image.
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In addition to analog video, digital television (DTV) presents a new paradigm for
transmission of video signals, and supports a wide variety of formats with varying reso-
lution and interlacing defined. The U.S. Government required the change to the digital
broadcast format in 2009, and worldwide the standards are being changed over the next
few years; as examples, Japan and Canada in 2010, United Kingdom in 2012, and China
in 2015. In general terms DTV can be divided into two main categories: standard defini-
tion television (SDTV) and high definition television (HDTV). The SDTV formats are
similar to the previously defined analog NTSC, SECAM, and PAL in terms of resolution
and interlacing.

The current standards for HDTV use several different formats. These include a resolu-
tion of 1280 columns by 720 rows (lines), in progressive scan mode, referred to as 720p, or
1920 x 1080 in interlaced mode, called 1080i. While the SDTV uses a 4:3 aspect ratio, the
newer HDTYV standards specifies a 16:9 aspect ratio. The aspect ratio is the width to height
ratio of the display device, shown in Figure 2.1-4. The aspect ratio of 35mm film cameras is
3:2, and standard digital cameras typically use 3:2 or 4:3.

A digital camera can be interfaced with the computer via USB (Universal Serial Bus),
FireWire (IEEE 1394), Camera Link or Gigabit Ethernet (IEEE 802.3). Specifications for these
are shown in Table 2.1. Although digital cameras are becoming more prevalent, analog
cameras still have a large share of the market, especially when cost is a factor.

Once we have the data in digital form, whether from a digitized analog signal, or directly
from a digital camera, the image can now be accessed as a two-dimensional array of data,
where each data point is referred to as a pixel (picture element). For digital images we will
use the following notation:

I(r,c) = the brightness of the image at the point (,c)

where
r=row and ¢ = column

Note that this notation, I(r,c), is used throughout the book, to be consistent with the way
in which matrices are defined in most programming languages. But also note that most
imaging software tools (Photoshop, CVIPtools, Scion Image, etc), some other textbooks,
and resolution standards (e.g., 640 x 480 or 1920 x 1080), list the column first and row coor-
dinate second in the form I(x,y). So, do not be confused, but look carefully at which coordi-
nate is the row and which is the column.

(a) (b)

FIGURE 2.1-4

Aspect ratio. The aspect ratio is the ratio of the image or display width (columns) to the image or display height
(rows or lines). (a) The aspect ratio is 4:3 for standard definition television (SDTV), and (b) 16:9 for high defini-
tion television (HDTV).
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TABLE 2.1

Camera Interface Specifications

Gigabit Ethernet Firewire S3200
(IEEE 802.3-2005) (IEEE 1394) USB 3.0 Camera Link

Type of standard Public Public Public Commercial
Connection type Point-to-point or Local = Peer-to-peer, shared Master-slave, Point-to-point
Area Network (LAN)  bus shared bus
Maximum bandwidth ~1.0 Gigabit/sec (Gbs) ~3.2 Gbs ~5 Gbs ~2.0-7.0 Gbs
for images
Distance ~100 meters, no limit ~4.5 meters, ~72 ~5 meters, ~30 ~10 meters
with switches or fiber  meters with meters with
switches, ~200 switches
meters with fiber
PC Interface Network PCI card PCI card PCI frame grabber
Wireless support Yes No No No
Max # of Devices Unlimited 63 127 1
High level
/ Operations Image representation

Feature extraction Features/objects
Spectrum
segments

Transforms edges/lines

segmentation

edge detection Neighborhood/
subimage

Preprocessing

Pixel

Raw image data

Y
Low level

FIGURE 2.1-5
The hierarchical image pyramid.

Digital image processing involves taking the digital image, I(r,c), and applying computer
imaging software to process them. The different levels and various types of processing
can be illustrated by the hierarchical image pyramid, as seen in Figure 2.1-5. In this figure
the image operations are on the left and the corresponding image representation is on the
right. As we traverse this pyramid from the bottom up we get increasingly higher levels of
information representation and smaller numbers of items. At the very lowest level we deal
with the very large number of individual pixels, where we may perform some low-level
preprocessing. The next level up is the neighborhood, which typically consists of a single
pixel and the surrounding pixels, and we may continue to perform some preprocessing
operations at this level. As we continue to go up the pyramid, we get higher and higher
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level representations of the image, and consequently, a reduction in the amount of data.
All of the types of operations and image representations in Figure 2.1-5 will be explored
in the following chapters.

2.2 Image Formation and Sensing

Digital images are formed by energy interacting with a device that responds in a way that
can be measured. These measurements are taken at various points across a two-dimensional
grid in the world in order to create the image. These measuring devices are called sensors,
and many different types are in use. Sensors may respond to various parts of the electro-
magnetic (EM) spectrum, acoustical (sound) energy, electron beams, lasers, or any other
signal that can be measured.

The EM spectrum consists of visible light, infrared (IR), ultraviolet (UV), x-rays, micro-
waves, radio waves, or gamma waves (see Figure 2.2-1). Electromagnetic radiation consists
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FIGURE 2.2-1
The electromagnetic spectrum.
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of alternating (sinusoidal) electric and magnetic fields that are perpendicular to each other
as well as to the direction of propagation. These waves all travel at the speed of light in free
space, approximately 3 x 10% meters/second, and are classified by their frequency or wave-
length. Figure 2.2-1 shows the various spectral bands and their associated names, wave-
lengths, frequencies, and energy. The various bands in the EM spectrum are named for
historical reasons related to their discovery or to their application.

In addition to the wave model EM radiation can be modeled as a stream of massless par-
ticles called photons, where a photon corresponds to the minimum amount of energy, the
quantum, which can be measured in the EM signal. The energy of a photon is measured
in electron volts, a very small unit, which is the kinetic (motion) energy that an electron
acquires in being accelerated through an electronic potential of one volt. In Figure 2.2-1 we
see that as frequency decreases, the energy contained in a photon decreases. Radio waves
have the smallest frequencies so we believe that it is safe to be immersed in them (they're
everywhere!), whereas gamma rays have the highest energy, which makes them very dan-
gerous to biological systems.

Sensors may also respond to acoustical energy, as in ultrasound images. In some
cases images are created to produce range images, which do not correspond to what
we typically think of as images, but are measures of distance to objects, and may be
created by radar (radio detection and ranging), sound energy, or lasers. In this section,
and in this book, we will primarily focus on visible light images; however, we will
briefly discuss other types of images. Once an image is acquired it can be analyzed or
processed using all the tools discussed in this book, regardless of the type of acquisi-
tion process.

We will consider two key components of image formation:

e Where will the image point appear?
¢ What value will be assigned to that point?

The first question can be answered by investigating basic properties of lenses and the
physics of light, the science of optics; and the second will require a look into sensor and
electronic technology.

2.2.1 Visible Light Imaging

The basic model for visible light imaging is shown in Figure 2.2-2. Here the light source
emits light that is reflected from the object, and focused by the lens onto the image sen-
sor. The sensor responds to the light energy by converting it into electrical energy that is
then measured. This measurement is proportional to the incident energy, and we describe
it as the brightness of the image at that point. The way an object appears in an image is
highly dependent on the way in which it reflects light, this is called the reflectance function
of the object and is related to what we think of as color and texture. The color determines
those wavelengths of light that are absorbed and those that are reflected, and the texture
determines the angle at which the light is reflected. In Figure 2.2-3 objects of very different
reflectance functions are shown.

In imaging, two terms are necessary to define brightness. What is measured is called
irradiance, while the light reflected from an object is referred to as radiance. Figure 2.2-4
illustrates the difference between these two terms. Irradiance is the amount of light fall-
ing on a surface, such as an image sensor, while radiance is the amount of light emitted
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FIGURE 2.2-2
Model for visible light imaging. The light source emits light that is reflected from the object and focused by the
lens onto the image sensor.
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FIGURE 2.2-3

The reflectance function. Here we see that the way in which an object reflects the incident light, the reflectance
function, has a major effect on how it appears in the resulting image. The reflectance function is an intrinsic
property of the object and relates to both color and texture. (a) Monochrome image showing brightness only,
the color determines how much light is reflected and the surface texture determines the angle at which the light
is reflected, and (b) color image, the color determines those wavelengths that are absorbed and those that are
reflected.
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FIGURE 2.2-4

Irradiance and radiance. Irradiance is the measured light falling on the image plane. It is measured in power per
unit area. Radiance is the power reflected or emitted per unit area into a directional cone having a unit of solid
angle. Note that all the reflected light is not captured by the lens.

from a surface into a solid unit angle. So the units used for these two measures are
different:

. . ower
irrradiance — power
area

power
(area)(solid angle)

radiance —

The irradiance is the brightness of an image at a point, and is proportional to the scene
radiance.

A lens is necessary to focus light in a real imaging system. In Figure 2.2-5 we see the rela-
tionship between points in the world and points in the image. The relationship of distance
of the object in the world and the image plane is defined by the lens equation:

where fis the focal length of the lens and is an intrinsic property of the lens, and 2 and b
are the two distances in question. In this figure we see three rays of light shown; note that
the one through the center of the lens goes straight through to the image plane, and, if the
system is in focus, the other rays will meet at that point. If the object is moved closer to
the lens, the single point will become a blur circle; the diameter of the circle is given by
the blur equation:

- L1or-b)
b

where c is the circle diameter, d is the diameter of the lens, and a” and b’ are the distances
shown in Figure 2.2-6. This equation can be derived by the property of similar triangles.
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FIGURE 2.2-5
Relationship between points in the world and points in the image. A lens will focus an image of an object only
at a specific distance given by the lens equation.
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where fis the focal length of the lens and is an intrinsic property of the lens, and a and b are the two distances
shown.
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FIGURE 2.2-6

The blur circle from a poorly focused lens. As the object is moved closer to the lens, it gets blurry. Application of the
lens equation shows the object is actually focused behind the image plane. The blur equation defines the amount
of blur. Specifically, it gives the diameter of a blur circle, corresponding to a point in the original in focus image.

A real object typically does not appear in a single plane, so some blurring will occur.
The question is, What are the conditions that will allow an object to be focused sufficiently
well? This will be determined by the spatial resolution of the imaging device. If the blur
circles are equal to, or smaller than the device resolution, the object will be focused suf-
ficiently well. The range of distances over which objects are focused sufficiently well is
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called the depth of field. With many imaging devices, a diaphragm can be adjusted to allow
some control over the depth of field (also called depth of focus). If the diaphragm is closed
somewhat, not only does it let less light in, but it changes the effective diameter, Dz,
of the lens. The f-number (or f-stop) is defined as the ratio of the focal length to the lens
diameter, and as the f-number increases the depth of field increases.

f

effective

f - number =

Another important parameter of an imaging device is the field of view (FOV). The FOV
is the amount of the scene that the imaging device actually “sees”; that is, the angle of the
cone of directions from which the device will create the image. Note that the FOV depends
not only on the focal length of the lens, but also on the size of the imaging sensor. In
Figure 2.2-7, we can see that the FOV can be defined as

FOV =2¢, where ¢=tan-1(?)

with d being the diagonal size of the image sensor and fis the focal length of the lens. From
this figure we can also see that for a fixed size image sensor, in order to get a wider FOV
we need a lens with a shorter focal length. A lens with a very short focal length compared
to image sensor size is called a wide-angle lens. The three basic types of lenses are (1)
wide-angle, short focal length, FOV greater than 45°; (2) normal, medium focal length, FOV
25-45°% and (3) telephoto, long focal length, FOV less than 25°.

Real lenses do not typically consist of a single lens, but are multiple lenses aligned
together. This is primarily due to the fact that a single lens will have various types of dis-
tortions, called aberrations. The effect of these aberrations can be mitigated by aligning
multiple lenses of varying types and sizes to create a compound lens. One of the negative
effects of a compound lens is the vignetting effect. This effect, shown in Figure 2.2-8,
causes the amount of energy that actually makes it through the lens to the image plane to
decrease as we move farther away from the center of the image. This effect can be avoided
by only using the center portion of the lens. It is interesting to note that the human visual
system is not sensitive to these types of slow spatial variations, which is explored more in
Chapter 7.

Image sensor

FIGURE 2.2-7
Field of view (FOV). The FOV for an imaging system depends on both focal length of the lens, f, and the size of
image sensor, d.
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Image sensor

FIGURE 2.2-8
The vignetting effect. A compound lens causes less light on the edges of the image to get through to the image
sensor. This has the effect of decreasing brightness as we move away from the center of the image.

We have briefly considered where the image will appear; now we will consider how
bright the image will be. How will we sense the object and turn it into an image? How
will we measure the energy? As mentioned before, sensors are used to convert the light
energy into electrical energy; this is done by using a material that emits electrons when
bombarded with photons. In Figure 2.2-9 generic imaging sensors are shown. Single imag-
ing sensors are typically arranged in lines or in two-dimensional arrays. The line sensor
is typically used in imaging applications that require a single line scan at a time, such as
in manufacturing applications. With a line scanner speed and resolution can be increased,
while cost is minimized. The array sensor is the primary type used in digital cameras, and
the sensing element is typically a charge-coupled device (CCD) or a complementary metal-
oxide-semiconductor (CMOS) device.

These devices are packaged in arrays of up to 9216 x 9216 elements, and continue to get
larger as technology advances. Currently, the CMOS image sensors are faster, cheaper, and
require less power than the CCDs, but the image quality is not quite as good. This makes
the CMOS sensors attractive for mass market applications where cost is a factor, low power
is desired, and lower-quality images are acceptable; such as in cell phones and toys.

When light energy (photonic energy) impinges upon the sensor, the sensing substance
will output electrons to form electrical energy. We can approximate the number of electrons
liberated in a sensor with the following sensor equation:

N = 3Adt f b(2)q(n)dn

where N is the approximate number of electrons liberated, 8A is the area, &t is the time
interval, g(}) is the quantum efficiency, and b(}) is the incident photon flux, and the inte-
gration takes place over the wavelengths of interest. The quantum efficiency of the material
is the ratio of the electron flux produced to the incident photon flux; in other words, it is
the amount of incoming light energy that is converted to electrical energy. Older tube
technology devices had a quantum efficiency of about 5%, modern solid state devices may
vary from about 60-95% efficiency.

The equation above tells us that we need to measure the light energy over a finite area
and a finite time interval—these measurements cannot be performed instantaneously.
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FIGURE 2.2-9
Generic imaging sensors (a) single imaging sensor, (b) linear or line sensor, and (c) two-dimensional or array
Sensor.

This is because the devices measuring the output signal are not sensitive enough to count
only a few electrons, and, even if they did, the signal would be overwhelmed by random
noise that exists in electronic systems. One bonus of these requirements is that some of the
noise will be averaged out by measuring over time and over a fixed area.

The two primary sources of noise in a typical CCD camera are dark current and pho-
ton noise. Dark current consists of thermally induced electrons generated by temperature
(heat) and not by impinging photons. It is particularly problematic in low light and long
exposure applications, which is the reason for nitrogen-cooling in many scientific applica-
tions requiring extremely precise measurements. Photon noise refers to the random nature
of photonic emission specified by the quantum properties of light energy, and is related
to the square root of the signal. In Chapters 4 and 9 we will further explore methods to
reduce the random noise in images.
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2.2.2 Imaging outside the Visible Range of the EM Spectrum

Imaging with gamma-rays is performed by measuring the rays as they are emitted from
the object. In nuclear medicine using positron emission tomography (PET), a patient is
injected with a radioactive isotope and as it decays gamma rays are detected and mea-
sured. X-rays are used in medical diagnostics by using film that responds to x-ray energy.
The x-rays are passed through the patient and recorded on the film. X-rays are also used
in computerized tomography (CT) where a ring of detectors encircles the patient and is
rotated to obtain two-dimensional “slices,” which can be assembled into a three-dimen-
sional image (see Chapter 9 on image reconstruction). Fluorescence microscopy works by
using dyes that emit visible light when UV light is beamed upon it. Examples of x-ray and
UV images are shown in Figure 2.2-10.

Ultraviolet (UV) imaging is used in industrial applications, law enforcement, micros-
copy, and astronomy. Reflected UV imaging is used in forensics to find evidence that is
invisible to the human visual system. For example, fingerprints, body fluids, bite marks,
and even shoe prints on waxed floors have been found. Since these systems use UV
illumination the background elements in the image are suppressed, which is a bonus
for these types of applications. These systems use short UV, below 300 nm wavelengths,
and have the added advantage of not requiring powders or chemicals on nonporous
surfaces.

Infrared (IR) images are often used in satellite imaging (remote sensing), since fea-
tures of interest (e.g., moisture content and mineral mapping) are found in the IR spec-
tral bands (Figure 2.2-11). IR imaging is also used in law enforcement and fire detection,
primarily in the middle and long wave ranges. Infrared images can be divided into
four primary spectral ranges—near IR, 780 nm-1.3 um, middle wave IR, 3-5 um, long
wave IR, 7-14 pym, and very long wave IR, 30 um and above. Recent advances in tech-
nology have dramatically reduced size, power consumption, and cost of these IR units;
thereby making these devices much more widely available, more practical, and more
cost effective.

A recent area for application research is the use of IR imaging for diagnostic purposes
in both animals and humans; this type of imaging is called thermographic imaging. It is
believed that the temperature variation and thermographic patterns in living creatures
can be useful in the diagnosis of various pathologies (diseases). Figure 2.2-11c and d show
thermographic images that are currently being used to determine their efficacy in diag-
nosing the Chiari malformation, a brain disease, in canines.

Multispectral images, which include IR bands, are often used in weather analysis (Figure
2.2-12a). Microwave images are used most often in radar applications, where the primary
requirement is the capability to acquire information even through clouds or other obsta-
cles, regardless of lighting conditions. In the radio band of the EM Spectrum, applications
are primarily in astronomy and medicine. In astronomy, radio waves can be detected and
measured in a manner similar to collecting visible light information, except that the sensor
responds to radio wave energy.

In medicine, magnetic resonance imaging (MRI) works by sending radio waves through
a patient in short pulses in the presence of a powerful magnetic field. The body responds
to these pulses by emitting radio waves, which are measured to create an image of any
part of the patient’s body (Figure 2.2-12b). MRI systems use a special antenna (receiver
coil) to detect these interactions between radio-frequency EM and atomic nuclei in the
patient’s body. The superconducting magnets used in MRI systems can generate fields
with magnitudes from 0.1 to 3.0 Tesla (1000-30,000 Gauss). By comparison, the magnetic
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FIGURE 2.2-10

X-ray and UV images. (a) X-ray of a chest with an implanted electronic device to assist the heart (Image courtesy
of George Dean.), (b) dental x-ray, (c) and (d) fluorescence microscopy images of cells, generated by emitting vis-
ible light when illuminated by ultraviolet (UV) light (Cell images courtesy of Sara Sawyer, SIUE.), (e) one “slice”
of a computerized tomography (CT) image of a patient’s abdomen, multiple 2-D image “slices” are taken at vari-
ous angles and are then assembled to create a 3-D image (Image courtesy of George Dean.).
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FIGURE 2.2-11

Infrared images. (a) Infrared satellite image showing water vapor, (b) infrared satellite imagery in the near
infrared band (Images courtesy of National Oceanic and Atmospheric Administration, NOAA.), (c) and (d) ther-
mographic images being used in research to determine their efficacy in diagnosing brain diseases in canines
(Images courtesy of Long Island Veterinary Specialists.).

field of the Earth is 0.00005 Tesla (0.5 Gauss). MRI systems have excellent contrast reso-
lution, which means they are much better at showing subtle differences among the soft
tissues and organs of the body that are not easily viewed on conventional x-ray or CT
films.

2.2.3 Acoustic Imaging

Acoustic imaging works by sending out pulses of sonic energy (sound) at various frequen-
cies and then measuring the reflected waves. The time it takes for the reflected signal to
appear contains distance information, and the amount of energy reflected contains infor-
mation about the object’s density and material. The measured information is then used to
create a two- or three-dimensional image. Acoustic imaging is used in biological systems,
for example, bats use it to “see,” and in man-made systems such as the sonar used in
submarines.

The frequency of the acoustic signals depends on the application and the medium in
which the signal is transmitted. Geological applications, for example oil and mineral
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FIGURE 2.2-12

Multispectral and radio wave images. (a) Multispectral Geostationary Operational Environmental Satellite
(GOES) image of North America, showing a large tropical storm off Baja, California, a frontal system over
the Midwest, and tropical storm Diana off the east coast of Florida (Courtesy of NOAA.), (b) magnetic reso-
nance image (MRI) of a patient’s shoulder, MRI images are created using radio waves, this is a single 2-D
“slice,” multiple images are taken at different angles and assembled to create a 3-D image (Image courtesy
of George Dean.).

exploration, typically use low frequency sounds (around hundreds of hertz). Ultrasonic,
or high frequency sound, imaging is often used in manufacturing and in medicine. The
most common use in medicine is to follow the development of the unborn baby inside the
womb. Here, at frequencies ranging from 1 to 5 megahertz, the health (and gender) of the
baby can be determined (see Figure 2.2-13). Because ultrasonic imaging allows us to “see”
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FIGURE 2.2-13

(a) Standard ultrasound image of a baby showing the head, arm, and body, (b) standard ultrasound image
showing face and eyes, (c) newer 3-D ultrasound image showing baby face and arm, and (d) 3-D ultrasound of
baby yawning (Images Courtesy of Kayla and Aaron Szczeblewski.).

inside opaque objects, it is also commonly used in manufacturing applications for defect
detection in materials.

2.2.4 Electron Imaging

Electron microscopes are used in applications that require extremely high magnification.
Standard light microscopes can magnify 1000 times, but electron microscopes can magnify
up to two hundred thousand times. These microscopes function by producing a focused
beam of electrons, which is used to image a specimen similar to the way a light beam is
used in a standard microscope. These microscopes come in two types: transmission elec-
tron microscope (TEM), and a scanning electron microscope (SEM).

A TEM works by transmitting a beam of electrons through the specimen and then pro-
jecting the results onto a screen for viewing. A SEM, as the name implies, scans the elec-
tronic beam across the specimen and detects various signals generated by the electrons
interacting with the specimen and uses these to produce an image. Figure 2.2-14 shows a
SEM and sample images.
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FIGURE 2.2-14

(a) Scanning electron microscope (SEM), (b) SEM image of a mosquito, (c) logic gate in a microchip, (d) strawberry,
(e) brittlestar, (f) hollyhock pollen. (Photos courtesy of Sue Eder, Southern Illinois University Edwardsville.)

2.2.5 Laser Imaging

Lasers (light amplification by stimulated emission of radiation) are specialized light sources
that produce a narrow light beam in the visible, IR, or UV range of the EM spectrum. In
standard light sources, such as light bulbs, the atoms do not cooperate as they emit pho-
tons; they behave in a random or chaotic manner that produces incoherent light. Lasers
are designed so that all the atoms cooperate, which produces a coherent light source that
is highly intense and monochromatic (one color). Thus lasers, first developed in the 1960s,
provide a method of controlling visible light energy in a manner similar to that in which
radio waves and microwaves can be controlled.
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Lasers are often used to create range images (also called depth maps), which contain
information about the distance of a point in the world to the image sensor. One of the
methods for this involves using structured lighting, which can be generated with a laser
and two rotating mirrors. Special lenses of cylindrical shape can also be used to create a
plane of light so that only one rotating mirror is needed. These techniques will not work
for objects that are highly reflective, unless the sensor happens to be in the direction
of the surface normal (perpendicular), since the light will not be reflected back to the
Sensor.

Another approach is to measure time-of-flight; that is, how long does it take a trans-
mitted signal to be return? As in radar imaging, a transmitter and receiver are required,
and an electronic device (for example, a computer) measures the time it takes for a
signal to be sent, reflected, and received. Various types of signals are used, including
pulses, amplitude-modulated phase shift (AM), and frequency-modulated (FM) beat
signals.

2.2.6 Computer-Generated Images

Images are not always generated by sensing real-world objects; for example, computers can
be used to create images for a myriad of applications. These include computer-generated
models for engineering, medicine, and education; computer graphics for movies, art, and
games; and many other applications. In engineering, computer-generated models are used
in design and drafting; while in medicine they are used for surgical planning and training,.
Three-dimensional computer-generated simulations are also created for training pilots in
both military and commercial aviation. The quality of computer-generated images has
improved dramatically in the past several years as a result of advancements in technol-
ogy and applied research in computer graphics. Computer graphics images are shown in
Figure 2.2-15a and b.

Images are also created by computers as a result of applying image processing methods
to images of real-world objects. For example, the output of an edge detection operation
(Figure 2.2-15c¢), a Fourier transform spectrum (Figure 2.2-15d), pseudocolor applied to an
x-ray image (Figure 2.2-15¢), or an error image from a compression scheme (Figure 2.2-15f)
can all be thought of as computer-generated images that use the original real-world image
as a model. Any image that has been remapped for display is, in a sense, a computer-
generated image since what you are looking at is not really the data itself but a representa-
tion of the underlying image data.

2.3 CVIPtools Software

The CVIPtools (Computer Vision and Image Processing tools) software was developed at
Southern Illinois University Edwardsville, and contains functions to perform all the oper-
ations that are discussed in this book. These were originally written in ANSI-compatible
C® code and divided into libraries based on function category. For the new version of
CVIPtools, a wrapper based on the Common Object Module (COM) interface was added
to each function, and these COM functions are all contained in a dynamically linked
library (dll) for use under the Windows® operating system. These functions are explored
in more detail in the fourth part of the book. A graphical user interface (GUI) was created
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FIGURE 2.2-15

Computer-generated images. (a) Graphics image of an insect that employs a particle system to simulate a plume
of fire, the right image shows the individual particles are texture-mapped squares, (b) graphics image of a sim-
ple 3-D hand where each section of the hand is a sphere, the right image shows the hand after rotating the joints
to produce a specific gesture, (c) an image of a butterfly processed by edge detection (see Chapter 4), (d) Fourier
transform spectrum image of an ellipse (see Chapter 5), (e) x-ray image of a hand processed by frequency
domain pseudocolor (see Chapter 8), (f) error image from an image compressed with block truncation coding
(see Chapter 10). (Graphics images courtesy of William White, Southern Illinois University Edwardsville; origi-
nal butterfly photo courtesy of Mark Zuke.)

for algorithm development and exploratory learning. Additionally, two new development
utility tools have been integrated into the CVIPtools environment. The CVIPtools soft-
ware is on CD-ROM (see Appendix A), and can also be accessed via the Internet (see
Appendix B).

The only requirement for the new CVIPtools software, version 5.x, is a Windows operat-
ing system (2000/XP/Vista/Windows7). Note that version 3.9 of CVIPtools is available for
UNIX operating systems, including Sun Solaris, FreeBSD, and Linux, and version 3.7c is
available for these UNIX flavors and additionally SGI IRIX systems. The libraries, and the
CVIPlab program, which is used for all the programming exercises, are also available for
all platforms.

The philosophy underlying the development of the CVIPtools is to allow the nonpro-
grammer to have access to a wide variety of digital image processing operations (not
just the “standard” ones), and provide a platform for the exploration of these opera-
tions by allowing the user to vary all the parameters and observe the results in almost
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FIGURE 2.2-15 (CONTINUED)

Computer-generated images. (a) Graphics image of an insect that employs a particle system to simulate a plume
of fire, the right image shows the individual particles are texture-mapped squares, (b) graphics image of a sim-
ple 3-D hand where each section of the hand is a sphere, the right image shows the hand after rotating the joints
to produce a specific gesture, (c) an image of a butterfly processed by edge detection (see Chapter 4), (d) Fourier
transform spectrum image of an ellipse (see Chapter 5), (e) x-ray image of a hand processed by frequency
domain pseudocolor (see Chapter 8), (f) error image from an image compressed with block truncation coding
(see Chapter 10). (Graphics images courtesy of William White, Southern Illinois University Edwardsville; origi-
nal butterfly photo courtesy of Mark Zuke.)

real-time. This is especially facilitated by the CVIPlab program with the associated
programming exercises and tutorials. Additionally, the function libraries allow those
with programming skills to develop their own imaging applications with a minimum
of coding.

The CVIPtools software will perform computer imaging operations from simple image
editing to complex analysis, enhancement, restoration, or compression algorithms. One
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of the primary advantages of the software is that it is continually under development in
a university environment, so as algorithms are developed they are made available for
exploration and research. Another advantage is that it is being developed for educational
purposes, not simply end-user results, so the focus is on learning about digital image pro-
cessing. Because it is designed specifically for research and education, and the user has
access to the many different parameters for the different algorithms, it is not constrained
by what the market has deemed “works best.” In some cases, the algorithms may not
work very well (for commercial applications), but have educational and research value.
Some of these same algorithms that “do not work very well” may be useful to researchers
for specific applications, or may become part of a larger processing algorithm that does
work well.

2.3.1 Main Window

When CVIPtools is first invoked the main window appears, as shown in Figure 2.3-1a.
The main window contains the image queue, the image viewing area, the toolbar, the
status bar, and access to all the windows and operations. The image queue is on the left
of the main window and contains the names of all the images loaded, as well as any
images that are created by CVIPtools. The image queue was implemented to facilitate fast
processing—output images are automatically put into the queue and are not written to
disk files unless the user explicitly saves them. Note that there is a checkbox at the top of
the image queue labeled Lock Input. If it is checked it will retain (lock) the current image as
input for each successive operation. This is useful when comparing various operations on
the same image. When applying a sequence of operations to an image it may be desirable
to have each sequential function operate on the output image, which happens when the
Lock Input box is unchecked. Above the Lock Input checkbox are buttons to delete selected
images or all the images in the queue. The user can select images to be deleted using stan-
dard Windows keys—the Ctrl key to select specific images, or the Shift key to select blocks
of images.

Across the top of the window are the standard File and View selections, and the pri-
mary window selections for analysis and processing—Analysis, Enhancement, Restoration,
Compression, Utilities, and Help. Directly under these we see the toolbar that contains icons
for opening, saving, printing, and capturing image files as well as frequently used func-
tions such as histogram display and red, green, and blue (RGB) band extraction. To the
right of these icons the column, row, values are displayed for the current pixel position
and values, and buttons to select the development tools, Computer Vision and Image
Processing Algorithm Test and Analysis Tool (CVIP-ATAT) and Computer Vision and
Image Processing Feature Extraction and Pattern Classification Tool (CVIP-FEPC) (see
Figure 2.3-1b and Chapter 12). The status bar at the bottom contains image specific infor-
mation as determined by the image viewer.

The items on the View menu provide useful options. Here the user can select the
Toolbar, Image Queue, CVIP Function Information, and/or the Status Bar to appear (or not)
on the main window. Removing any or all of these will free up screen space, if desired.
Here the user can also select Long File Names which will append more descriptive names
to the output images. Additionally, the user can grab the border of the image queue or
the CVIP function information with the mouse and move them to minimize their size in
the main CVIPtools window. The CVIP Function Information appears in a text window
at the bottom of the main window, as shown in Figure 2.3-1b. This window displays
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FIGURE 2.3-1
CVIPtools main window. (a) The main CVIPtools window when the program is first invoked, (b) main window
with images in the queue, and the View option CVIP Function Information at the bottom.

information that is text output from the lower level functions and is often useful to gain
insight into the inner workings of a specific function. Examples of information displayed
include: convolution mask coefficients, type of data conversion, type of remapping, com-
pression ratios of output images, and the number of clusters found for a segmentation
algorithm.

© 2011 by Taylor & Francis Group, LLC



Computer Imaging Systems 39

2.3.2 Image Viewer

To load an image into CVIPtools you simply open it using the standard file open icon of
a file folder opening in the upper left of the main window. When this is done the image
is read into memory and its name will appear in the image queue, and the image will be
displayed in the main window. Additionally, image information will appear in the status
bar at the bottom of the main window (see Figure 2.3-1b). This information includes color
format, image (file) format, data format, data type, data range (minimum and maximum),
number of bands, and image width and height. The user can select multiple images to be
loaded into the image queue by using standard Windows keys—the Ctrl key to select spe-
cific images, or the Shift key to select blocks of images.

When an image is loaded it becomes the active image, and the active image can be
changed at anytime by either clicking on the name in the queue, or clicking on the image
itself. When this is done the image is brought to the front and as the mouse is rolled around
the image the row and column coordinates, and the gray or color pixel values, will appear
in the toolbar at the top of the main window. The active image can then be processed by
selecting functions on the other windows.

The image viewer allows the user to perform standard image geometry operations,
such as resizing, rotating, flipping, as well as image enhancement via histogram equal-
ization. It is important to note that these operations affect only the image that is displayed, not
the image in the CVIPtools image queue. They are for viewing convenience only, and any
changes to the image itself (in the queue) can be accomplished by use of the standard
CVIPtools windows. Even if the image is resized within the viewer, the row and column
coordinates displayed will still correspond to the original image. Therefore, the image
can be enlarged to ease the selection of small image features, or the image can be shrunk
to minimize screen use. The keyboard and mouse can be used to perform the opera-
tions listed in Table 2.2. In addition to the keyboard commands, the user can stretch the
image by grabbing the lower right corner of the image with the left mouse button and
dragging it.

The CVIPtools image viewer allows the user to select a specific portion of an image
(a region of interest, or ROI) by drawing a box with a press of the Shift key and drag of
the left mouse button. This information is automatically passed back to the CVIPtools
GUI for use in, for example, the image crop function. A new select box can be created at
anytime on an image and automatically destroys the first select box on that image, or the
middle mouse button can be used to remove the drawn box. Once a select box has been
drawn, it retains its position throughout any image geometry operations. The viewer can
also be used to draw borders on images by pressing the Control key and using the left
mouse button, and the middle mouse button will remove it. Drawn borders are useful
to extract features about specific objects, or to provide more control on an image crop
function. Other functions are listed in Table 2.2. Note that each image can have its own
ROI selected.

2.3.3 Analysis Window

When Analysis is first selected from the main window, the drop-down menu appears as
shown in Figure 2.3-2a. Upon selection of one of the menu items the Analysis window appears
with the tab corresponding to the menu item selected (Figure 2.3-2b). At any time the user
can select another category of image analysis operations: Geometry, Edge/Line Detection,
Segmentation, Transforms, Features, and Pattern Classification. When the user makes a selection,
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TABLE 2.2

Digital Image Processing and Analysis

CVIPtools Image Viewer Keyboard and Mouse Commands

DRAW,
MARK,
SELECT

Shift key-drag left mouse
button

Control key-drag left mouse
button

Control key-click left mouse
button

Control-A
Control-C

Control-V

Alt key-click left mouse
button

Alt key-click left mouse
button drag

Right mouse button on image

Middle mouse button on
image

ROTATE t
R -
v,V

OTHERS N
n

qQ
eE

Right mouse button in image
viewing area (workspace)

Select rectangular area of image, used in crop, etc.

Select irregular shaped area of image, used in Utilities>
Create> Border Mask and Border Image and crop, etc.

Select Original Image for Analysis> Features

Select entire image for copy/paste

If image has area currently selected, copy area to
clipboard—this is used for copying images into
documents

Else, if image has current mesh (from
Restoration> Geometric Transforms), copy mesh to
clipboard

If mesh (from Restoration-> Geometric Transforms) is
available on clipboard, paste mesh to image

Mark mesh points for Restoration-> Geometric Transforms
for Enter a new mesh file; select Segmented Image for
Analysis-> Features; select Second Image for the
Utility> Arith/Logic operations

After a mesh is entered in Restoration> Geometric
Transforms, this will allow the user to move mesh points

Mesh display select box (followed by left button to
select) Copy/Paste current mesh

Removes drawn boxes and borders

turn 90° clockwise

Turn 90° counterclockwise

horizontal flip

vertical flip

Change back to original image, including size
Change back to original image, without changing size

Quit: removes image from display but leaves in queue
(clicking on the X in the upper right corner will remove
the image from queue)

Histogram equalization

Brings up Utilities menu

by clicking one of the file tabs with the left mouse button, the CVIPtools functions available

under that selection will appear.

Most of the functions can be selected by the round buttons on the left of the window.

These are called option buttons—only one can be active at a time. Once the operation
has been selected, the necessary input parameters can be typed in the text boxes, or
selected with the mouse using the arrows. Note that the text boxes will initially contain
default values, which allow for immediate use of an operation by simply selecting it via
the option button on the left, and the clicking on the Apply button (assuming an image
has been selected). Any parameters that are not used with a particular function will be
grayed out, or disappear from the screen, whenever that particular function is selected.
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FIGURE 2.3-2
CVIPtools analysis window. (a) The drop-down menu for the analysis window, and (b) the analysis window
with the Edge/Line Detection tab selected.
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The individual tabs and functions will be discussed in more detail in Chapters 3
through 6.

In addition to the Apply button at the bottom of the window, there are buttons for Help,
Cancel, and Reset. The Help button will bring up the Help window (see Section 2.3.8) Use
of the Cancel button or the &l in the upper right corner will remove the window from
the screen and automatically reset all the parameters in all the tabs in the window to
their default values. The Reset button will leave the window on the screen, but reset all
the parameters in the current tab to the default values. These buttons, and their func-
tionality, are also standard in the Enhancement, Restoration, Compression, and Utilities
windows.

2.3.4 Enhancement Window

The Enhancement window is shown in Figure 2.3-3. Across the top of the window are
file tabs that allow for selections that pertain to image enhancement: Histogram/Contrast,
Pseudocolor, Sharpening, and Smoothing. The image enhancement functions are used to make
images more appealing to the human visual system, to mitigate noise effects, to improve
image contrast or to bring out image information that is not readily visible. The histogram/
contrast tab contains functions that are primarily used to improve contrast and brightness,
and the pseudocolor tab has functions that will change a monochrome image into a color
image. The sharpening and smoothing tabs have filter functions and algorithms that will
perform these effects on images. The enhancement methods are discussed in more detail
in Chapter 8.

2.3.5 Restoration Window

The Restoration window is shown in Figure 2.3-4. Across the top of the window are
file tabs that allow for selections that pertain to image restoration: Noise, Spatial Filters,
Frequency Filters, and Geometric Transforms. The image restoration functions are used to
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Fig2 Jimagel jpg - ST
Fig2 3imaged jpg -
Fig2 JimageS.j
Bl i oo ol Y ——
O Frequency Doman Mapping
©) Intansity Skcing
< ¥ |< >
Fig2. Sinage3 g _Crops R | Pc  REAL | BE | D 255 3 & m
FIGURE 2.3-3

CVIPtools enhancement window. The enhancement window with the pseudocolor tab selected.
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CVIPtools restoration window. The restoration window with the frequency filters tab selected.

mitigate noise effects, to restore blurry images or to correct images that have been spa-
tially distorted. The noise tab has functions to add noise to images or to create noise only
images, which can be used in restoration algorithm development. The spatial filters tab
contains functions that are used to mitigate noise effects, and the frequency filters tab
has functions to restore noisy, degraded and blurred images. Geometric transforms are
used to restore spatially distorted images. The restoration functions are discussed in
more detail in Chapter 9.

2.3.6 Compression Window

The Compression window is shown in Figure 2.3-5. Across the top of the window are file
tabs that allow for selections that pertain to image compression: Preprocessing, Lossless, and
Lossy. The preprocessing tab contains functions that can be useful prior to compression.
The lossless tab has compression functions that will create images identical to the origi-
nal, while the lossy tab has the compression functions that will attempt to create the best
quality image for a given amount of image data loss.

The image compression functions are used to reduce the file size of images, so experi-
mentation and comparisons can be performed among various compression options. The
compression window has an additional button at the bottom—Save Compressed Data. This
button allows the user to save the image in its compressed format, which is a unique
CVIPtools format (except for Joint Photographic Experts Group (JPEG) and JPEG2000,
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CVIPtools compression window. The compression window with the lossy tab selected.

which are standard file formats). If you simply save the displayed image, it will be saved
as the decompressed image shown, in any file format that is selected. Compression ratios
for the output images are available with the view option CVIP Function Information. Details
of the compression functions are discussed in Chapter 10.

2.3.7 Utilities Window

The Utilities window works differently than the previously discussed windows. This is
because it contains functions that are commonly used regardless of the type of processing
being performed. It can be accessed with two methods, depending on the user’s prefer-
ences. The first method is to right click the mouse anywhere in the image viewing area.
When this is done a two-level menu will popup, as shown in Figure 2.3-6a. This menu con-
tains various categories of commonly used utilities: Arith/Logic, Compare, Convert, Create,
Enhance, Filter, Size, and Stats. Alternately, the user can select Utilities at the top of the main
window, and the previously mentioned menu items will appear across the top of the main
window as shown in Figure 2.3-6b. Selecting the Utilities button again will toggle the menu
items on/off across the top of the main widow.

After using either method to invoke Utilities the user selects a menu item, and the nec-
essary information appears in the Utilities window for that particular function (see an
example in Figure 2.3-6¢). By limiting screen usage in this manner, the Utilities window is
easily accessible when other primary windows are in use. The general philosophy guiding
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CVIPtools utilities. The utility functions can be accessed with two methods. (a) The two-level menu for Utilities
will pop-up with a right mouse click in the image viewing area, or (b) click on Utilities at the top of the main
window and the primary menu for Utilities will appear across the top, and will toggle each time the Utilities
button is selected, and (c) an example Utilities window selection.
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CVIPtools utilities. The utility functions can be accessed with two methods. (a) The two-level menu for Utilities
will pop-up with a right mouse click in the image viewing area, or (b) click on Utilities at the top of the main
window and the primary menu for Utilities will appear across the top, and will toggle each time the Utilities
button is selected, and (c) an example Utilities window selection.

the design of the Utilities GUI is to maximize utility and usage, while minimizing use of
screen space. In some cases, for example with Utilities> Enhancement, only the most com-
monly used functions will appear in the Utilities window, and the choices for the various
parameters may be limited. This allows Utilities to be used easily and quickly, and if the
user needs more, the main Enhancement window can be selected.

2.3.8 Help Window

The CVIPtools Help window can be accessed from the top of the main window, or with
the button in the lower left of any of the other windows. In Figure 2.3-7 we see the
Help window that contains information about CVIPtools development, how to use the
CVIPtools functions, and documentation for the libraries, C and the COM functions.
The Help pages for the libraries include a list of all the functions in the library as well
as the location of the files. The documentation for the C functions includes a complete
description and examples of their use in CVIPlab. Documentation for the COM func-
tions contains the function prototypes, parameter definitions, and a description. The
Help window also contains help for using the CVIPtools functions from the GUI and
has links to CVIPtools related Web sites. The Help window has an index of all the docu-
ments it contains and allows for keyword searches to assist the user in finding what
they need.

2.3.9 Development Tools

For the new version of CVIPtools, two development tools have been added. The CVIP-
ATAT was created to perform many permutations of an image processing algorithm, by
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The CVIPtools help window. The help window contains information about using CVIPtools and contains docu-
mentation for the libraries and C functions, and includes CVIPtools related Internet links. It has an index of all
the documents it contains and allows for keyword searches to assist the user in finding what they need. (a) The
help window as it appears when first selected, (b) help window showing an example of a page under How to Use
CVIPtools, (c) help window showing an example of C function documentation, (d) If the user scrolls down a C
function Help page, an example of usage in a CVIPlab program is included.
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The CVIPtools help window. The help window contains information about using CVIPtools and contains docu-
mentation for the libraries and C functions, and includes CVIPtools related Internet links. It has an index of all
the documents it contains and allows for keyword searches to assist the user in finding what they need. (a) The
help window as it appears when first selected, (b) help window showing an example of a page under How to Use
CVIPtools, (c) help window showing an example of C function documentation, (d) If the user scrolls down a C
function Help page, an example of usage in a CVIPlab program is included.
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changing processes and parameters automatically and perform the experiments on sets
of multiple images. The CVIP-FEPC was created to explore feature extraction and pattern
classification and allow for batch processing with large image sets. The tools are accessed
via the CVIPtools toolbar as shown in Figure 2.3-1b. The primary windows for these
tools are seen in Figure 2.3-8. More on using these tools for application development is in
Chapter 12.

cuments and Settings\skefel. FBI020-1\Desktop\WProject 2 [R_
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Images
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FIGURE 2.3-8

CVIPtools development utility main windows. (a) Computer Vision and Image Processing Algorithm Test and
Analysis Tool, CVIP-ATAT, showing the main window after a project is opened, (b) Computer Vision and Image
Processing Feature Extraction and Pattern Classification Tool, CVIP-FEPC, showing the main window with
images loaded.
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FIGURE 2.3-8 (CONTINUED)

CVIPtools development utility main windows. (a) Computer Vision and Image Processing Algorithm Test and
Analysis Tool, CVIP-ATAT, showing the main window after a project is opened, (b) Computer Vision and Image
Processing Feature Extraction and Pattern Classification Tool, CVIP-FEPC, showing the main window with
images loaded.

2.4 Image Representation

We have seen that an imaging sensor receives an input image as a collection of spatially
distributed light energy; this form is called an optical image. Optical images are the types we
deal with everyday—cameras capture them, monitors display them, and we see them. We
have also seen that these optical images are represented as video information in the form of
analog electrical signals, and how these are sampled to generate the digital image I(r,c).

The digital image, I(r,c), is represented as a two-dimensional array of data, where each
pixel value corresponds to the brightness of the image at the point (7,c). In linear algebra
terms, a two-dimensional array like our image model, I(r,c), is referred to as a matrix, and
one row (or column) is called a vector. This image model is for monochrome (one-color,
referred to as gray-scale) image data, but we have other types of image data that require
extensions or modifications to this model. Typically, these are multiband images (color,
multispectral), and they can be modeled by a different I(r,c) function corresponding to each
separate band of brightness information. The image types we will consider are (1) binary,
(2) gray-scale, (3) color, and (4) multispectral.

2.4.1 Binary Images

Binary images are the simplest type of images, and can take on two values, typically black
and white, or “0” and “1.” A binary image is referred to as a 1-bit per pixel image, because it
takes only 1 binary digit to represent each pixel. These types of images are most frequently
used in computer vision applications where the only information required for the task is
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@) | yhe2aca C Library Functions wht2d(3)

NAME
wht2d - performs Walsh or Hadamard transform

SYNOPSIS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CVIPtools.h"
winclude “CvIPinage.h”
#include “CVIPdef.h”

IMAGE *wht2d(IMAGE *in_IMAGE, int ibit, int block_size)
<«in_IMAGE> - pointer to an IMAGE structure

<ibit> - D=inverse Walsh transform, 1=Walsh transform
2=inverse Hadamard transform, 3=Hadamard transform

<block_size> - block size (4,8,16,...1argest_dimension/2) (b) (j

PATH
$CVIPHOME /TRANSFORMS/wht2d. ¢

DESCRIPTION

This function performs a fast Hadamard-ordered Walsh-
Hadamard Transform on an image. The result is then reor-
dered for display in sequency order. The routine works on

any 1image with dimensions that are powers of 2. Optional
zero-padding may be performed if input image has different
dimensions.

(c)

FIGURE 2.4-1
Binary images. (a) Binary text, (b) object outline, and (c) edge detection and threshold operation.

general shape, or outline information. Examples include positioning a robotic gripper to
grasp an object, checking a manufactured object for deformations, transmission of fac-
simile (FAX) images, or in optical character recognition (OCR).

Binary images are often created from gray-scale images via a threshold operation, where
every pixel above the threshold value is turned white (“1”), and those below it are turned
black (“0”). Although in this process much information is lost, the resulting image file is
much smaller making it easier to store and transmit. In Figure 2.4-1, we see examples of
binary images. Figure 2.4-1a is a page of text, such as might be used in an OCR application;
Figure 2.4-1b is the outline of an object; and in Figure 2.4-1c we have the results of an edge
detection operation (see Section 4.2).

2.4.2 Gray-Scale Images

Gray-scale images are referred to as monochrome, or one color, images. They contain
brightness information only, no color information. The number of bits used for each pixel
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FIGURE 2.4-2

Gray-scale or gray-level images; also referred to as monochrome images. (a) and (b) These images are typically
8-bits per pixel for a total of 256 brightness values (0-255). In some applications requiring higher brightness
resolution, such as medical imaging or astronomy, 12- or 16-bit per pixel representations are used.

determines the number of different brightness levels available. The typical image contains
8-bit per pixel data, which allows us to have 256 (0-255) different brightness (gray) levels.
This representation provides more than adequate brightness resolution, in terms of the
human visual system’s requirements (see Chapter 7), and provides a “noise margin” by
allowing for approximately twice as many gray levels as required. This noise margin is
useful in real-world applications due to many different types of noise (false information in
the signal) inherent in real systems. Additionally, the 8-bit representation is typical due to
the fact that the byte, which corresponds to 8-bits of data, is the standard small unit in the
world of digital computers. Figure 2.4-2 shows typical gray-scale, or gray-level, images.

In applications requiring higher brightness resolution, such as medical imaging or
astronomy, 12- or 16-bit per pixel representations are used. These extra brightness levels
only become useful when the image is “blown-up”; that is, a small section of the image is
made much larger. In this case we may be able to discern details that would be missing
without this additional brightness resolution. Of course, to be useful, this also requires a
higher level of spatial resolution (number of pixels). If we go beyond these levels of bright-
ness resolution, the light energy is typically divided into different bands, where each band
refers to a specific subsection of the visible image spectrum.

2.4.3 Color Images

Color images can be modeled as three-band monochrome image data, where each band
of data corresponds to a different color. The actual information stored in the digital image
data is the brightness information in each spectral band. When the image is displayed, the
corresponding brightness information is displayed on the screen by picture elements that
emit light energy corresponding to that particular color. Typical color images are repre-
sented as red, green, and blue, or RGB images. Using the 8-bit monochrome standard as a
model, the corresponding color image would have 24-bits per pixel (bpp)—8-bits for each
of the three color bands RGB. In Figure 2.4-3a we see a representation of a typical RGB

© 2011 by Taylor & Francis Group, LLC



Computer Imaging Systems 53

IR(r,c) The RED band

I(r,c) The GREEN band

Iy(r,c) The BLUE band

FIGURE 2.4-3

Color image representation. (a) A typical color image can be thought of as three separate images: Ix(r,c), I:(r,c),
and I(r,c), one for each of the red, green, and blue color bands. (b) The three color bands combined into a single
color image. (c) A color pixel vector consists of the red, green, and blue pixel values (R,G,B) at one given row/
column pixel coordinate (r,c). (Original image courtesy of Scott R. Smith.)
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I(r,c): The 3 bands assembled g -
together to create a color image

FIGURE 2.4-3 (CONTINUED)

Color image representation. (a) A typical color image can be thought of as three separate images: Ix(r,c), I-(r,c),
and I,(r,c), one for each of the red, green, and blue color bands. (b) The three color bands combined into a single
color image. (c) A color pixel vector consists of the red, green, and blue pixel values (R,G,B) at one given row/
column pixel coordinate (r,c). (Original image courtesy of Scott R. Smith.)

color image. Figure 2.4-3b illustrates that, in addition to referring to a row or column as a
vector, we can refer to a single pixel’s RGB values as a color pixel vector (R,G,B).

For many applications, RGB color information is transformed into a mathematical space
that decouples the brightness information from the color information, this transforma-
tion is referred as a color model, a color transform, or mapping into another color space.
Once this is done the image information consists of a one-dimensional brightness, or
luminance, space and a two-dimensional color space. Now the two-dimensional color
space does not contain any brightness information, but typically contains information
regarding the relative amounts of the different colors. An additional benefit of model-
ing the color information in this manner is that creates a more people-oriented way of
describing the colors.

For example, the Hue/Saturation/Lightness (HSL) color transform allows us to describe
colors in terms that we can more readily understand (see Figure 2.4-4). The lightness (also
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(a) White (b)

Lightness
J (shades of gray) L

Y
Black

FIGURE 2.4-4
HSL color space. (a) Schematic representation of the HSL color space, and (b) color representation of the HSL
color space.

referred to as intensity or value) is the brightness of the color, and the hue is what we nor-
mally think of as “color” (e.g., green, blue, or orange). The saturation is a measure of how
much white is in the color; for example, pink is red with more white, so it is less saturated
than a pure red. Most people can relate to this method of describing color, for example
“a deep, bright orange” would have a large intensity (“bright”), a hue of “orange,” and a
high value of saturation (“deep”). We can picture this color in our minds, but if the color is
defined in terms of its RGB components, R =245, G =110, and B = 20, most people would
have no idea how this color appears. Since the HSL color space was developed based on
heuristics relating to human perception, various methods are available to transform RGB
pixel values into the HSL color space. Most of these are algorithmic in nature and are geo-
metric approximations to mapping the RGB color cube into some HSL-type color space
(see Figure 2.4-5). Equations for mapping RGB to HSL are given below. These equations
assume that the RGB values are normalized to lie between 0 and 1. The normalization is
often done by dividing the RGB values by their sum, but other normalization methods are
possible; for example, dividing by the maximum of R, G, and B. The max and min values
in the equations below are, respectively, the largest and smallest of the RGB normalized
values.

0 if max = min
g-b )
60°x —S———+360° ifmax=r
max - min
Hue = b-r

60°x————+120° if max =
x max — min f 8

60°x— 8 1240° ifmax=>b
max — min
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B
R
RGB color cube HSL color space
FIGURE 2.4-5
RGB to HSL mapping.
. 1 .
Lightness = L = E(max + mm)
0 if max = min
. max — min - max — min .
Saturation = — = ifL<1/2
max+min 2L
max — min max — min )
— = ifL>1/2
2 — (max + min) 2-2L

Note that if the maximum and minimum RGB values are equal that the concepts of hue
and saturation are not meaningful because the “color” is gray—it is essentially a mono-
chrome pixel, so we set hue and saturation equal to 0. In other cases, the value of hue is
usually found modulo 360° to lie between 0 and 360° (or 0 and 2r radians). However, in
typical image formats these values are remapped to the 8-bit range 0-255.

For Hue/Saturation/Value (HSV) color spaces the equation for hue is the same as in HSL
conversion, saturation is similar, but the value parameter, V, equation is given by the maxi-
mum of the red, green, and blue values.

Another similar color transform is the HSI, hue, saturation and intensity, color space.
Equations for mapping RGB to HSI are given below:

0 ifB=G
H={ d

360-0 if B>G
where

Y[(R-G)+(R-B)]
[(R-G) +(R-G)(G~B)]

= -1
0 = cos 172

© 2011 by Taylor & Francis Group, LLC



Computer Imaging Systems 57

3

S= 1—m[mm(R,G,B)]
I (R+G+B)
3

These equations assume that the R, G, and B values are normalized to lie between 0 and
1, and 6 is measured in degrees from the red axis. To convert the HSI values back into
the RGB coordinates requires consideration of three different sectors in the color space;
namely Red—Green (RG), Green-Blue (GB), and the Blue—Red sector. The following equa-
tions apply:

RG Sector (0° < H < 120°)
rRe1l1s Scos(H)
cos(60° — H)

G =3I- (R + B) (note: find R and B first)
B=I1-S5)
GB Sector (120° < H < 240°)
R=I1-Y5)

Scos(H -120°)
cos(180° — H)

G=1I|1+

B=3[-(R+B)
BR Sector (240° < H < 360°)
R =3I-(G+ B) (note: find G and B first)
G=I11-Y5)

Scos(H - 240°)
cos(300° - H)

B=1I|1+

A color transform can be based on a geometrical coordinate mapping, such as the spheri-
cal or cylindrical transforms. With the spherical transform the RGB color space will be
mapped to a one-dimensional brightness space and a two-dimensional color space. The
spherical coordinate transform (SCT) has been successfully used in a color segmentation
algorithm described in Chapter 4. The equations relating the SCT to the RGB components
are as follows:

L=+vR?>+G*+B?
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(a) Blue (b) Blue

Red

FIGURE 2.4-6
Spherical coordinate transform (SCT). (a) The SCT separates the red, green, and blue information into a 2-D color
space defined by angles A and B, and a 1-D brightness space defined by L, and (b) a color pixel vector (R,G,B).

LA =cos! [B]
L

/B =cos! L
Lsin(ZA)

where L is the length of the RGB vector, angle A is the angle from the blue axis to the RG
plane, and angle B is the angle between the R and G axes. Here, L contains the brightness
information and the two angles contain the color information (see Figure 2.4-6).

The cylindrical coordinate transform (CCT) is different than most color mappings
because it does not completely decouple brightness from color information. With this
transform we can align the z-axis along the R, G, or B axis of choice; this choice will be
application dependent. The cylindrical coordinates are found as follows, assuming the
z-axis aligned along the blue axis:

z=B
d=~+R?+G?
9=tan-1(§)
R

The CCT may be useful in applications where one of the RGB colors is of primary impor-
tance, since it can be mapped directly to the z component, and the ratio of the other two is
significant. Here, the brightness information is now contained in the d and z coordinates,
while the color information is still distributed across all three components, but in a dif-
ferent manner than with the original RGB data. This is illustrated in Figure 2.4-7, where
we can see that 0 is related to hue in the RG plane, and d is related to the saturation in the
RG plane.

One problem associated with the color spaces previously described is that they are
not perceptually uniform. This means that two different colors in one part of the color
space will not exhibit the same degree of perceptual difference as two colors in another
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FIGURE 2.4-7
Cylindrical coordinates transform.

i

UL

HSL color
space

FIGURE 2.4-8

Color perception. Color A may be green and color B may be orange. Colors C and D may be slightly different
shades of green, but ACD = AAB. In this case, we have two pair of colors with the same “color difference,” but
the perceptual difference is much greater for one pair than the other.

part of the color space, even though they are the same “distance” apart (see Figure 2.4-8).
Therefore, we cannot define a metric to tell us how close, or far apart, two colors are in
terms of human perception. In computer imaging applications a perceptually uniform
color space could be very useful. For example, if we are trying to identify objects for a com-
puter vision system by color information, we need some method to compare the object’s
color to a database of the colors of the available objects. Or if we are trying to develop a
new image compression algorithm, we need a way to determine if we can map one color to
another without losing significant information.
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The science of color and how the human visual system perceives color has been stud-
ied extensively by an international body, the Commission Internationale de I’Eclairage (CIE).
The CIE has defined internationally recognized color standards. One of the basic concepts
developed by the CIE involves chromaticity coordinates. For our RGB color space, chroma-
ticity coordinates are defined as follows:

R
" R+G+B
.G

8 R+G+B

oo B

R+G+B

These equations basically normalize the individual color components to the sum of the
three, which we have seen is one way to represent the brightness information. This decou-
ples the brightness information from the coordinates, and the CIE uses chromaticity coor-
dinates as the basis of the color transforms they define. These include the standard CIE
XYZ color space (related to the tristimulus curves discussed in Chapter 7), and the percep-
tually uniform L*u*v* L*a*b* color spaces. The science of color and human perception is a
fascinating topic and can be explored in greater depth with the references.

Another important international committee for developing standards of interest to
those involved in computer imaging is the International telecommunications Union
Radio (ITU-R, previously CCIR). This committee has specified the standard for digital
video known as ITU-R 601. This standard is based on one luminance signal (Y) and two
color difference signals (Cr and Cb). Given a 24-bit RGB signal, we can find the Y, Cr, and
Cb values as follows:

Y =0.299R + 0.587G + 0.114B
Cb=0.564(B-Y)+128 =-0.1687R - 0.3313G + 0.5B + 128
Cr=0.713(R-Y)+128 =0.5R - 0.4187G - 0.0813B + 128
The 128 offset factor is included here to maintain the data range of [0-255] for 8-bit per
color band data. This transform is used in many color image compression algorithms, such

as MPEG and JPEG, implemented in both hardware and software. This transform is also
called YUV encoding and is defined as follows:

Y =0.299R + 0.587G + 0.114B
U=0493(B-Y)
V =0.877(R-Y)
Note that the 128 offset value for U and V can be added to these equations, if desired.

All the previous color transforms are based on an additive color model such as RGB,
where we consider adding red, green, or blue light to a black background. For color
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printing a subtractive color model is used. Here, we consider subtracting cyan, magenta,
or yellow (CMY) from white, such as printing on white paper illuminated by white light.
The model for white light is that it consists of RGB. The CMY conversion from RGB is
defined as follows (these equations assume that the RGB values are normalized to the
range of 0-1):

C=1-R
M=1-G
Y=1-B

Cyan absorbs red light, magenta absorbs green, and yellow absorbs blue. Thus, to print a
normalized RGB triple that appears green, (0,1,0), we would use CMY (1,0,1). For this exam-
ple the cyan will absorb the red light and the yellow absorbs the blue light, leaving only the
green light to be reflected and seen. Also, to print black we print all three (CMY) inks, and
all the components of white light, RGB, will be absorbed. In practice, this produces a poor
looking black, so black ink is added to the printing process leading to a four-color printing
system, called CMYK.

The final color transform we will discuss is called the principal components transform
(PCT). This mathematical transform allows us to apply statistical methods to put as much
of the three-dimensional color information as possible into only one band. This process
decorrelates the RGB data components. The PCT works by examining all the RGB vectors
within an image and finding the linear transform that aligns the coordinate axes so that
most of the information is along one axis, the principal axis. Often, we can get 90% or more
of the information into one band. The PCT is used in image segmentation and compres-
sion schemes (see Chapters 4 and 10), and the mathematical details of the transform are
discussed in more detail in Chapter 5.

2.4.4 Multispectral Images

Multispectral images typically contain information outside the normal human perceptual
range, as discussed in Section 2.2.2. They may include IR, UV, x-ray, or other bands in the
EM spectrum. These are not images in the usual sense, since the information represented
is not directly visible by the human visual system. However, the information is often rep-
resented in visual form by mapping the different spectral bands to RGB components. If
more than three bands of information are in the multispectral image, the dimensionality
is reduced for display by applying a PCT (see Chapter 5).

Sources for these types of images include: satellite systems, underwater sonar systems,
various types of airborne radar, IR imaging systems, and medical diagnostic imaging sys-
tems. The number of bands into which the data are divided is strictly a function of the
sensitivity of the imaging sensors used to capture the images. For example, even the visible
spectrum can be divided into many more than three bands; three are used because this
mimics the human visual system. The older satellites currently in orbit collect image infor-
mation in two to seven spectral bands; typically one to three are in the visible spectrum and
one or more in the IR region, and some have sensors that operate in the microwave range.
The newest satellites have sensors that collect image information in 30 or more bands.
For example, the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging
Spectrometer (AVRIS) collects information in 224 spectral bands covering the wavelength
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region from 0.4 to 2.5 um. As the amount of data that needs to be transmitted, stored, and
processed increases, the importance of topics such as compression becomes more and more
apparent.

2.4.5 Digital Image File Formats

Why do we need so many different types of image file formats? The short answer is that
there are many different types of images and applications with varying requirements. A
more complete answer (which we will not go into here) also considers market share, pro-
prietary information, and a lack of coordination within the imaging industry. However,
there have been some standard file formats developed, and the ones presented here are
widely available. Many other image types can be readily converted to one of the types
presented here by easily available image conversion software.

A field related to computer imaging is that of computer graphics. Computer graphics is
a specialized field within the computer science realm that refers to the reproduction of
visual data through the use of the computer. This includes the creation of computer images
for display or print, and the process of generating and manipulating any images (real or
artificial) for output to a monitor, printer, camera, or any other device that will provide us
with an image. Computer graphics can be considered a part of computer imaging, insofar
as many of the same tools the graphics artist uses may be used by the computer imaging
specialist.

In computer graphics, types of image data are divided into two primary categories: bit-
map and vector. Bitmap images (also called raster images) can be represented by our image
model, I(r,c), where we have pixel data and the corresponding brightness values stored in
some file format. Vector images refers to methods of representing lines, curves, and shapes
by storing only the key points. These key points are sufficient to define the shapes, and
the process of turning these into an image is called rendering. Once the image has been
rendered, it can be thought of as being in bitmap format, where each pixel has specific
values associated with it.

Most of the types of file formats discussed fall into the category of bitmap images,
although some are compressed, so the I(r,c) values are not directly available until the file
is decompressed. In general, these types of images contain both header information and
the pixel data itself. The image file header is a set of parameters normally found at the start
of the file and must contain information regarding: (1) the number of rows (height), (2) the
number of columns (width), (3) the number of bands, (4) the number of bpp, and (5) the file
type. Additionally, with some of the more complex file formats, the header may contain
information about the type of compression used and any other necessary parameters to
create the image, I(r,c).

The simplest file formats are the BIN and the PPM file formats. The BIN format is simply
the raw image data, I(r,c). This file contains no header information, so the user must know
the necessary parameters—size, number of bands, and bpp—to use the file as an image.
The PPM formats are widely used and a set of conversion utilities are freely available
(pbmplus). They basically contain raw image data with the simplest header possible. The
PPM format includes: PBM (binary), PGM (gray scale), PPM (color), and PNM (handles
any of the previous types). The headers for these image file formats contain a “magic
number” that identifies the file type, the image width and height, the number of bands,
and the maximum brightness value (which determines the required number of for each
band).
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The Microsoft Windows bitmap (BMP) format is commonly used today in Windows-
based machines. Most imaging and graphics programs in this environment support the
BMP format. This file format is fairly simple, with basic headers followed by the raw image
data. Another commonly used format is JPEG. This file format is capable of high degrees
of image compression, so is typically used on the Internet to reduce bandwidth require-
ments—meaning you don’t need to wait forever for images to appear. JPEG files come in
two main varieties, the original JPEG and the newer JPEG2000. The JPEG2000 file format
provides higher compression ratios, while still maintaining high quality images, but is not
used as often due to its higher decompression time.

Two image file formats commonly used on many different computer platforms, as well
as on the Internet, are the TIFF (Tagged Image File Format) and GIF (Graphics Interchange
Format) file formats. GIF files are limited to a maximum of 8 bpp, and allow for a type of
compression called LZW (Lempel-Ziv-Welch, see Chapter 10). The 8 bpp limitation does
not mean it does not support color images, it simply means that no more than 256 colors
(2%) are allowed in an image. This is typically implemented by means of a look-up-table
(LUT), where the 256 colors are stored in a table, and one byte (8 bits) is used as an index
(address) into that table for each pixel (see Figure 2.4-9). The concept of LUT-based images
is also referred to palette-based images. The GIF image header is 13 bytes long, and con-
tains the basic information required.

8-Bit index Red Green Blue
0 R, Gy B,
1 Ry Gy B,
9 R, G, B,
254 Rosa Gosy Bass
255 Ryss Gass Byss

One byte is stored for each pixel in I(r, ). when displayed
this 8-bit value is used as an index into the LUT, and the
corresponding RGB values are displayed for that pixel.

FIGURE 2.4-9
Look-up table (LUT)
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The TIFF file format is more sophisticated than GIF, and has many more options and
capabilities. TIFF files allow a maximum of 24 bpp, and support five types of compression,
including RLE (run length encoding), LZW, and JPEG (see Chapter 10). The TIFF header
is of variable size and is arranged in a hierarchical manner. The TIFF format is one of the
most comprehensive formats available and is designed to allow the user to customize it for
specific applications.

Two formats that were initially computer-specific, but became commonly used through-
out the industry, are the Sun Raster and the SGI (Silicon Graphics, Inc) file formats. As the
Windows operating system has become more prevalent in the imaging industry, these two
file formats are being used less often. The SGI format handles up to 16 million colors and
supports RLE compression. The Sun Raster format is defined to allow for any number of
bpp and also supports RLE compression.

PNG, portable network graphics, is a file format that supports LUT type images (1, 2,
4, 8-bit) like GIF, as well as full 24-bit color like TIFF. It provides direct support for color
correction, which theoretically allows an image to look the same on different computer
systems—although in practice this is quite difficult to achieve. The PICT format is unique
to the Macintosh computer system, which is widely used in many imaging applications. It
allows for both vector and bitmap images. The newer version of the operating system for
Macintosh, Mac OS X, uses the PDF (Portable Document Format) format. One of the file
formats developed specifically for digital cameras is FlashPix format, FPX. This format
was originally developed by Kodak, but has become used in digital cameras due to the
creation of a consortium consisting of Kodak, Adobe, Canon, Fuji, Hewlett-Packard, IBM,
Intel, Live Picture, and Microsoft.

One file format discussed here, EPS (encapsulated PostScript), is not of the bitmap vari-
ety. It is actually a language that supports more than images, and is commonly used in
desktop publishing. EPS is directly supported by many printers (in the hardware itself),
so is commonly used for data interchange across hardware and software platforms. It is
a commonly used standard that allows output devices, monitors, printers, and computer
software to communicate regarding both graphics and text. The primary advantage of the
EPS format is its wide acceptance. The disadvantage of using EPS is that the files are very
big, since it is a general purpose language designed for much more than just images. In
computer imaging, EPS is used primarily as a means to generate printed images. The EPS
files actually contain text and can be created by any text editor, but are typically generated
by applications software. The language itself is very complex and continually evolving,.

The final image file type discussed here is the VIP (Visualization in Image Processing) for-
mat, developed specifically for the CVIPtools software. When performing computer imag-
ing tasks, temporary images are often created that use floating point representations that are
beyond the standard 8-bpp capabilities of most display devices. The process of represent-
ing this type of data as an image is referred to as data visualization, and can be achieved by
remapping the data to the 8-bit range, 0-255. Remapping is the process of taking the original
data and defining an equation to translate the original data to the output data range, typi-
cally 0-255 for 8-bit display. The two most commonly used methods in computer imaging
are linear and logarithmic mapping. In Figure 2.4-10 we see a graphical representation and
example of how this process is performed. In this example the original data ranges from
—200 to 440. An equation is found that will map the lowest value (200)-0 and the highest
value (440)-255, while all the intermediate values are remapped to values within this range
(0-255). We can see that this process may result in a loss of information.

The VIP file format was required since we needed to support many nonstandard image
formats. This format was defined to allow disk file support for the image data structure
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FIGURE 2.4-10
Remapping for display. Original data ranges outside the bounds of a standard image. It is remapped to the 8-bit
range from 0 to 255.

used within the CVIPtools software (see Chapter 11). It allows any data type, includ-
ing floating point and complex numbers, any image size, any number of bands, and has
a special history data structure built into it that allows the maintenance of a record of
operations that have been performed on the image. More details on the VIP format are
included in Section IV of the book, Programming and Application Development with
CVIPtools.

2.5 Key Points

IMAGING SYSTEMS

Two primary components: hardware and software
Hardware: image acquisition subsystem, computer, display devices
Software: allows for image manipulation, analysis, and processing

Digital camera interface: USB, FireWire, Camera Link, or Gigabit Ethernet

Frame grabber: special purpose piece of hardware that converts an analog video
signal into a digital image

RS-170A/RS-330/RS-343A: monochrome video standards used in North America

NTSC: color video standard used in North America

CCIR or PAL: color video standards used in northern Europe

SECAM: color video standard used in France and Russia, a CCIR equivalent

Frame: one screen of video information

Field: alternating lines of video information creating one-half of a frame in interlaced
video
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Interlaced video: two-fields-per-frame video, used in television and video cameras
Noninterlaced video: one field per frame video, used in computer monitors

Horizontal synch pulse: control signal in the video signal that occurs between each
line of video information

Vertical synch pulse: control signal in the video signal that occurs between each
field or frame of video information

Digital television (DTV): two main categories: standard definition television (SDTV)
and high definition television (HDTV)

HDTYV standard formats: 720p operates in progressive scan mode is 1280 columns
by 720 rows (lines); 1080i is 1920 x 1080 in interlaced mode

Aspect ratio: width to height ratio of the display device (Figure 2.1-4). SDTV uses a
4:3 aspect ratio, HDTV standards specifies a 16:9 aspect ratio. Aspect ratio of 35
mm film cameras is 3:2, and standard digital cameras typically use 3:2 or 4:3.

I(r,c): a two-dimensional array of data, the digital image function, a matrix where the
brightness of the image at the point (r,c) is given, with r = row and ¢ = column

Image brightness: depends on both lighting conditions and the intrinsic object
properties

Hierarchical image pyramid: describes the various levels for processing of images
(see Figure 2.1-5)

IMAGE FORMATION AND SENSING
Sensor: a device to measure a signal which can be converted into a digital image

Electromagnetic spectrum: electromagnetic signals which, at various wavelengths,
consists of gamma rays, x-rays, ultraviolet light, visible light, infrared, microwaves,
and radio waves, and can be measured by sensors to produce images

Photon: massless particles that correspond to the minimum amount of energy, the
quantum, which can be measured in the EM signal

Range image: created by radar, sonar, or lasers to produce an image that depicts
distance as brightness

Image formation: two key components: (1) where will the image point appear (the
row and column coordinates) and (2) what value will be assigned to that point (the
brightness value)

Optics: the physics of light and the study of lenses, required to determine where an
image point appears
Reflectance function: the way in which an object reflects light

Irradiance: the amount of light energy falling on a surface, measured by a sensor to
create an image

Radiance: the amount of light energy emitted, or reflected, from an object into a solid
unit angle

Lens: necessary to focus light in an imaging system

Lens equation: 1/a+1/b=1/f

Blur equation: c=d/b’'|b-b'|

Depth of field: range of distances over which an object is focused sufficiently well
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Field of view (FOV): angle of the cone of directions from which the device will cre-
ate the image

Lens types: normal, telephoto, and wide-angle
Charge-coupled device (CCD): sensor used in digital cameras for imaging

Complementary metal-oxide-semiconductor (CMOS) device: sensor used for imag-
ing; image quality not as good as CCD, but cheaper and requires less power

Quantum efficiency [g(A)]: the ratio of the electron flux produced to the incident pho-
ton flux

Sensor equation: N = dAdt [b(N)q(N)dA
Dark current: thermally induced electrons, not from impinging photons, problem in

low light applications, nitrogen-cooling in applications requiring extremely pre-
cise measurements

Photon noise: random nature of photonic emission specified by the quantum prop-
erties of light energy, related to the square root of the signal

Imaging outside of visible EM spectrum: used in medicine, astronomy, microscopy,
satellite imaging, military, law enforcement, and industrial applications

Thermographic imaging: infrared imaging as a diagnostic aid for medical profes-
sionals, an active research area, it is believed thermographic patterns can be used
in the diagnosis of various pathologies (diseases) in both animals and humans

Acoustic imaging: measures reflected sound waves, applications in medicine, mili-
tary, geology, and manufacturing

Electron imaging: using a focused beam of electrons to magnify up to two hundred
thousand times

Laser imaging: used to create range images

CVIPtools: a comprehensive computer imaging software package to allow for the
exploration of image processing and analysis functions, including algorithm
development for applications

IMAGE REPRESENTATION

Optical image: a collection of spatially distributed light energy to be measured by an
image sensor to generate I(,c)

Binary image: a simple image type that can take on two values, typically black and
white, or “0” and “1”

Gray-scale image: one-color or monochrome image that contains only brightness
information, no color information

Color image: modeled as a three-band monochrome image; the three bands are typi-
cally red, green, and blue, or RGB

Color pixel vector: a single pixel’s values for a color image (R,G,B)

Color transform/color model: a mathematical method or algorithm to map RGB data
into another color space, typically to decouple brightness and color information

HSL (Hue/Saturation/Lightness): a color transform that describes colors in terms
that we can easily relate to the human visual system’s perception, where hize is the
“color,” for example red or yellow, saturation is the amount of white in the color,
and lightness is the brightness
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HSV (Hue/Saturation/Value): similar to HSL, but Value is the maximum of (R,G,B)
HSI (Hue/Saturation/Intensity): similar to HSL, but Intensity is average of (R,G,B)

SCT (spherical coordinate transform): maps the color information into two angles,
and the brightness into the color vector length

CCT (cylindrical coordinate transform): does not completely decouple color and
brightness, unlike most color transforms, definition tends to be application specific

Chromaticity coordinates: normalizes RGB values to the sum of all three

CIE L*u*v*/CIE L*a*b*: perceptually uniform color spaces defined by the Commission

Internationale de 1’Eclairage (CIE), the international standards group for color
science

YUV/YcbCr: linear transforms of RGB data used in compression algorithms, Y is the
luminance, and the other two are color difference signals

CMY (Cyan, Magenta, Yellow)/CMYK: color transforms based on a subtractive
model, used for color printing; K is added when a separate ink is used for black

PCT (principal components transform): decorrelates RGB data by finding a linear
transform using statistical methods to align the coordinate axes along the path of
maximal variance in the data

Multispectral image: images of many bands containing information outside of the
visible spectrum

DIGITAL IMAGE FILE FORMATS
Bitmap images: images we can represent by our model, I(r,c), also called raster images

Vector images: artificially generated images by storing only mathematical descrip-
tions of geometric shapes using key points

Rendering: the process of changing a vector image into a bitmap image
Image file header: a set of parameters normally found at the start of the image file
and must contain information regarding: (1) the number of rows (height), (2) the

number of columns (width), (3) the number of bands, (4) the number of bits per
pixel (bpp), and (5) the file type; additional information may be included

Common image file formats: BIN, PPM, PBM, PGM, BMP, JPEG, JPEG2000, TIFF,
GIF, RAS, SGI, PNG, PICT, PDF, FPX, EPS, VIP

LUT: look up table, used for storing RGB values for 8-bit color images

Exercises
Problems

1. What are the two types of components in a computer imaging system?
2. Name four types of video camera interfaces.
3. Describe how a frame grabber works.

4. What is a sensor? How are they used in imaging systems?
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o U1

. What is a range image? How are they created?

. What is a reflectance function? How does it relate to our description of object
characteristics?

7. Describe the difference between radiance and irradiance.

8.
9.

10.

11.

12.

13.
14.
15.
16.

What is a photon? What does CCD stand for? What is quantum efficiency?

Show that the focal length of a lens can be defined by the distance from the lens at
which an object at infinity is focused.

Find the number of electrons liberated in a sensor if:
irradiation = 600\ photons/(second)nm?

quantum efficiency of device = 0.95

area = 20 nm?

time period = 10 milliseconds

the photon flux is bandlimited to visible wavelengths
Is this a solid state device? Explain.

A video frame is scanned in 1/30 of a second, using interlaced scanning. If we
have 480 lines of interest, and 640 pixels per line, at what rate must we perform the
analog to digital conversion? (ignore synch pulse time)

Which band in the electromagnetic spectrum has the most energy? Which has the
least energy? What significance does this have to human life?

Name some applications for UV and IR imaging.
How does acoustic imaging work? What is it used for?
How does an electron microscope differ from a standard light microscope?

What are two methods for lasers to create depth maps?

17. What is an optical image? How are they used to create digital images?

18.

19.

20.

21.

22.

23.

24.
25.
26.

What is the difference between a “real” image and a computer-generated
image?

Discuss advantages and disadvantages of binary, gray-scale, color, and multispec-
tral images.

Why would we transform a standard color image consisting of RGB data into
another color space? Describe the HSL color space.

What does it mean when we say a color space is not perceptually uniform? Name
a color space that is perceptually uniform.

Find the inverse equations for the SCT and the CCT.

Describe the color spaces used in printing. If we had a 24-bit color pixel (R,G,
B) = (100, 50, 200), what amounts of cyan, magenta, and yellow would our printer
print?

Describe the difference between a bitmap and a vector image.

Name the elements required in an image file header.

Name the image file type used by CVIPtools. Why did we not use a standard file
type, such tiff or gif? Why do we sometimes remap image data?

27. Run the CVIPtools software and load a color image. Experiment. Have fun.
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Programming Exercises

Introduction to CVIPlab

1. Review the first two sections of Chapter 11, Sections 11.1 and 11.2, to become famil-
iar with the CVIPlab C functions.

2. Review Section 11.3 and compile the CVIPlab.c and threshold_lab.c functions.

3. Run CVIPlab, select menu choice 2, threshold, and experiment with various thresh-
old values.

4. Edit the CVIPlab.c program to include your name in the header. Study the CVIPlab.c
file and understand how this program is organized and how the threshold func-
tion works. In particular, learn how images are read, written, and manipulated.
The functions for the following progamming exercises are to be added to the
CVIPlab program.

5. Run the CVIPtools program. Next open the desired images with the file open icon
near the top left of the main window. Select Utilities, then select the Convert/Binary
Threshold option. Use this to compare results to your CVIPlab threshold program
to verify correctness. You can use the Utilities> Compare option. At the end of this
exercise you should understand the CVIPlab environment and be able to write
functions by using the threshold function as a prototype.

Supplementary Exercises
Supplementary Problems

1. Draw a picture and write the equations that shows the blur equation is given by
c=L1o-p|
b

2. (@) Show that the f-number of a lens can be increased by placing a variable size
aperture in front of the lens and, (b) that the image brightness will be inversely
proportional to the f-number squared. Hint: Consider how light energy is mea-
sured related to the surface area of the sensor.

3. (a) Find the approximate number of electrons liberated in a sensor if:
irradiation = A/(5\ + 8)* photons/(second)nm?
quantum efficiency of device = 0.8
area = 1000 nm?
time period = 10 seconds
the photon flux is bandlimited to visible wavelengths
(b) Is this a solid state device? Explain.

4. An imaging system has a lens with a diameter of 50 mm and a focal length of
10 mm. The system is setup so that objects at a distance of 3.0 meters are correctly
focused. Quantitatively and qualitatively describe how an object at 2.0 meter

© 2011 by Taylor & Francis Group, LLC



Computer Imaging Systems

appears in the image. Assume that the imaging device is a CCD with round pixel
elements that have a 0.1 mm diameter.

5. Consider the imaging situation in the figure. Find a and b so that a 50 mm focal
length lens will correctly focus the object onto the image plane.

| o o

L

a L«-b
200 mm:

©OO000O0

6. Given an image with a data range of -333 to 577, at what gray level will the
CVIPtools viewer display the following values: (a) =333, (b) 577, (c) 455?

7. An imaging system has a lens with a diameter of 100 mm and a focal length of
10 mm. The system is setup so that objects at a distance of 4.0 meters are correctly
focused. Quantitatively and qualitatively describe how an object at 3.0 meter
appears in the image. Assume that the imaging device is a CCD with round pixel
elements that have a 0.075 mm diameter.

Supplementary Programming Exercises

Graphical User Interface

1. Put a GUI (Graphical User Interface) on the CVIPlab program.

2. Allow the user to vary parameters of the imaging functions via the GUI and have
the image results displayed in (almost) real-time. For example, use sliders to vary
parameters

Color Space Conversion

1. Write a function to perform color space conversion. Include forward and inverse
transforms for HSL, SCT, and CCT. Add this to your CVIPlab program.

2. Compare your results to those obtained with CVIPtools using Utilities>
Convert> Color Space. Are the results the same? Why or why not?

3. Research the CIE color spaces, and implement the L'uv’ and L'a’b" color conversion
functions.

4. Compare your results to those obtained with CVIPtools using Utilities>
Convert> Color Space. Are the results the same? Why or why not?

Image Viewer

1. Write your own image viewer to use in CVIPlab. Model it on the CVIPtools
viewer.

2. Integrate the viewer with the image processing functions so that the user can vary
parameters in real-time and the image will be updated accordingly.
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Further Reading

More information can be found on imaging in the various EM spectral bands and on
image acquisition devices in Gonzalez and Woods (2008), Shapiro and Stockman (2001),
and Sanchez and Canton (1999). Gonzalez and Woods (2008) and Jain (1989) have more
details regarding computed tomography. Laser-based range images are discussed in more
detail in Forsyth and Ponce (2003), Russ (1992), and Gonzalez/Woods (2008) contains infor-
mation regarding electron imaging. For further study of satellite imaging, see Sanchez and
Canton (1999), Bell (1995), and for more information on UV and IR imaging in law enforce-
ment see Kummer (2003) and West et al. (1990). More on lenses and optics can be found in
Forsyth and Ponce (2003), Horn (1986), and Jain, Kasturi, and Schnuck (1995). More infor-
mation on input and output devices for imaging can be found in Trussell and Vrhel (2008),
Davies (2005), and Burdick (1997).

For further study of digital video processing, see Orzessek and Sommer (1998), Tekalp
(1995), and Sid-Ahmed (1995). Tekalp (1995) has much information on motion estimation
methods not available in other texts. For details on video standards and hardware see Jack
(1996), and Poynton (2003). For further study regarding color see Lee (2009), Trussell and
Vrhel (2008), Wyszecki and Stiles (2000), Giorgianni and Madden (1998), and Durrett (1987).
For more information on JPEG2000, see Taubman and Marcellin (2002). For further study
on computer-generated images see Blundell (2008), Watt and Policarpo (1998), Foley et al.
(1995), and Hill (1990).

For other sources of software see Burger and Burge (2008), Seul et al. (2008), Parker (1997),
Myler and Weeks (1993), Baxes (1994), and Sid-Ahmed (1995). Also, the CVIPtools homep-
age (www.ee.siue.edu/CVIPtools) has useful Internet links. Additionally, the Computer
Vision Homepage, sponsored by Carnegie Mellon University (www.cs.cmu.edu/~cil/
vision.html) is a great resource for imaging software available on the Internet. Two excel-
lent sources for information on image and graphics file formats, which include code, are
Burdick (1997) and Murray and VanRyper (1994).
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Introduction to Digital Image Analysis

3.1 Introduction

Digital image analysis is a key factor in solving any computer imaging problem. Acquisition
of a sample image database and examination of these images for the application is the
first step in development of an imaging solution. Image analysis involves manipulating the
image data to determine exactly the information required to develop the computer imag-
ing system. The solution to the problem may require use of existing hardware, software,
or may require development of new algorithms and system designs. The image analysis
process helps to define the requirements for the system being developed. This analysis is
typically part of a larger process, is iterative in nature, and allows us to answer applica-
tion-specific questions such as, How much spatial and brightness resolution is needed?
Will existing methods solve the problem? Is color information needed? Do we need to
transform the image data into the frequency domain? Do we need to segment the image to
find object information? What are the important features in the images? Is the hardware
fast enough for the application?

3.1.1 Overview

Image analysis is primarily a data reduction process. As we have seen, images contain
enormous amounts of data, typically on the order of hundreds of kilobytes, megabytes
or even gigabytes. Often much of this information is not necessary to solve a specific
imaging problem, so a primary part of the image analysis task is to determine exactly
what information is necessary. With many applications the determining factor in the fea-
sibility of system development are the results of the preliminary image analysis. Image
analysis is used in the development of both computer vision and human vision imaging
applications.

For computer vision, the end product is typically the extraction of high level information
for computer analysis or manipulation. This high level information may include shape
parameters to control a robotic manipulator, terrain analysis to enable a vehicle to navi-
gate on mars, or color and texture features to help in the diagnosis of a skin tumor. Image
analysis is central to the computer vision process and is often uniquely associated with
computer vision; however, image analysis is an important tool for human vision applica-
tions as well.

In human vision applications, image analysis methods may be used to help determine
the type of processing required and the specific parameters needed for that processing. For
example, developing an enhancement algorithm (Chapter 8), determining the degradation
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function for an image restoration procedure (Chapter 9), and determining exactly what
information is visually important for an image compression method (Chapter 10) are all
image analysis tasks. In this chapter we present the system model for the image analysis
process, preprocessing methods, and a simple example of image analysis using binary
images.

3.1.2 System Model

The image analysis process, illustrated in Figure 3.1-1, can be broken down into three pri-
mary stages: (1) Preprocessing, (2) Data Reduction, and (3) Feature Analysis. Preprocessing
is used to remove noise, and eliminate irrelevant, visually unnecessary information. Noise
is unwanted information that can result from the image acquisition process. Other pre-
processing steps might include gray level or spatial quantization (reducing the number of
bits per pixel or the image size), or finding regions of interest for further processing. The
second stage, data reduction, involves either reducing the data in the spatial domain and/
or transforming it into another domain called the frequency domain (Figure 3.1-2) and
then extracting features for the analysis process. In the third stage, feature analysis, the
features extracted by the data reduction process are examined and evaluated for their use
in the application.

A more detailed diagram of this process is shown in Figure 3.1-3. After preprocessing
we can perform segmentation on the image in the spatial domain (Chapter 4) or convert it
into the frequency domain via a mathematical transform (Chapter 5). Note the dotted line
between segmentation and the transform block; this is for extracting spectral features on
segmented parts of the image. After either of these processes we may choose to filter the
image. This filtering process further reduces the data and allows us to extract the features
that may be required for analysis. After the analysis, we have a feedback loop that pro-
vides for an application-specific review of the analysis results. This approach often leads to
an iterative process that is not complete until satisfactory results are achieved. The applica-
tion feedback loop is a key aspect of the entire process.

Pre- Data Feature

processing reduction analysis

FIGURE 3.1-1
Image analysis.

Frequency
(spectral)
d .
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processing

Feature
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Spatial
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FIGURE 3.1-2
Image analysis domains.
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Image analysis.

3.2 Preprocessing

The preprocessing algorithms, techniques, and operators are used to perform initial pro-
cessing that makes the primary data reduction and analysis task easier. They include oper-
ations related to extracting regions of interest, performing basic mathematical operations
on images, simple enhancement of specific image features (for more on enhancement see
Chapter 8), color space transforms (see Chapter 2 and 4) and data reduction in both resolu-
tion and brightness. Preprocessing is a stage where the requirements are typically obvious
and simple, such as the removal of artifacts from images, or the elimination of image infor-
mation that is not required for the application. For example, in one application we needed
to eliminate borders from the images that resulted from taking the pictures by looking out
a window; in another we had to mask out rulers that were present in skin tumor slides.
Another example of a preprocessing step involves a robotic gripper that needs to pick
and place an object; for this, a gray-level image is reduced to a binary (two-valued) image,
which contains all the information necessary to discern the object’s outline. For applica-
tions involving color, a color space transform may be desired. Two of these examples can
be seen in Figure 3.2-1.

3.2.1 Region of Interest Image Geometry

Often, for image analysis, we want to investigate more closely a specific area within the
image, called a Region-of-Interest (ROI). To do this we need operations that modify the
spatial coordinates of the image, and these are categorized as image geometry operations.
The image geometry operations discussed here include crop, zoom, enlarge, shrink, trans-
late, and rotate.

The image crop process is the selection of a portion of the image, a subimage, and cutting
it away from the rest of the image—that’s how the border was removed in Figure 3.2-1b.
Once we have cropped a subimage from the original image we can zoorm in on it by enlarg-
ing it. Image enlargement is useful in a variety of applications since it can help visual
analysis of detailed objects. For example, some imaging applications require that two
input images be in tight geometrical alignment prior to their combination; this process is
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FIGURE 3.2-1

Preprocessing examples. (a) An image needing border removal, (b) the image after the border is removed,
(c) an image where only shape information is necessary in order to control a robotic gripper, (d) the image after
unnecessary information removal which leaves only the object shape.

called image registration. Improper alignment of images can produce distortion at object
boundaries. Enlargement of the images eases the task of manual alignment. Additionally,
enlargement may allow visible recognition of image degradation, helping in the selection
of a restoration model (see Chapter 9).

This zoom process can be done in numerous ways, but typically a zero-order hold or a
first-order hold is used. A zero-order hold is performed by repeating previous pixel values,
thus creating a blocky effect. To extend the image size with a first-order hold we do linear
interpolation between adjacent pixels. A comparison of the images resulting from these
two methods is shown in Figure 3.2-2.

Although the implementation of the zero-order hold is straightforward, the first-order
hold is more complicated. The easiest way to do this is to find the average value between
two pixels and use that as the pixel value between those two; we can do this for the rows
first, as follows:

ORIGINAL IMAGE ARRAY IMAGE WITH ROWS EXPANDED

8 4 8 8 6 4 6 8
4 8 4 4 6 8 6 4
8§ 2 8 8§ 5 2 5 8
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FIGURE 3.2-2
Zooming methods. (a) Original image. The ape’s face will be zoomed by a factor of five, (b) image enlarged by
zero-order hold, notice the blocky effect, (c) image enlarged by first-order hold. Note the smoother effect.

The first two pixels in the first row are averaged (8 +4)/2 = 6, and this number is inserted
in between those two pixels. This is done for every pixel pair in each row. Next, take that
result and expand the columns in the same way;, as follows:

IMAGE WITH ROWS AND COLUMNS EXPANDED

8 6 4 6 8
6 6 6 6 6
4 6 8 6 4
6 55 5 55 6
8 5 2 5 8
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This method will allow us to enlarge an N x N sized image to a size of (2N-1) x (2N-1), and
can be repeated as desired.

Another method that achieves a similar result requires a mathematical process called
convolution. With this method of image enlargement a two-step process is required:
(1) extend the image by adding rows and columns of zeros between the existing rows and
columns and (2) perform the convolution. The image is extended as follows:

ORIGINAL IMAGE ARRAY IMAGE EXTENDED WITH ZEROS
0 0 0 0 0 0 0]

0o 3 0 5 0 7 0

3 5 7 0o 0 0 0 0 0 0

2 7 0o 2 0 7 0 6 0

3 4 9 0o 0 0 0 0 0 0

0 3 0 4 0 9 0

0 0 0 0 0 0 0

Next, we use what is called a convolution mask, which is slid across the extended image
and a simple arithmetic operation is performed at each pixel location.

CONVOLUTION MASK FOR FIRST-ORDER HOLD

o Yo W
1 %
Va Yo Vu

The convolution process requires us to overlay the mask on the image, multiply the coincident
values, and sum all these results. This is equivalent to finding the vector inner product of the
mask with the underlying subimage. For example, if we put the mask over the upper left
corner of the image, we obtain (from right to left, and top to bottom):

14(0) + %2(0) + %4(0) + ¥2(0) + 1(3) + ¥2(0) + Y4(0) + ¥2(0) + Y4(0) = 3

Note that the existing image values do not change. The next step is to slide the mask over
by one pixel and repeat the process, as follows:

Y4(0) + ¥2(0) + %4(0) + ¥2(3) + 1(0) + Y4(5) + %4(0) + ¥2(0) + *4(0) = 4

Note this is the average of the two existing neighbors. This process continues until we
get to the end of the row, each time placing the result of the operation in the location cor-
responding to center of the mask. Once the end of the row is reached, the mask is moved
down one row and the process is repeated row by row until this procedure has been per-
formed on the entire image; the process of sliding, multiplying, and summing is called
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convolution (see Figure 3.2-3). Note that the output image must be put in a separate image
array, called a buffer, so that the existing values are not overwritten during the convolu-
tion process. If we call the convolution mask M(r,c), and the image I(r,c), the convolution
equation is given by

I(r-x,c-y)M(x,y)

X=-0Y=-0

(a) Mask

Image Buffer

Mask _Reshltof |
| “sumihation

centery.,

Overlay the convolution mask in upper left corner of the image.
Multiply coincident terms, sum, put result into the image buffer
at the location that corresponds to the mask’s current center,
which is (r, ¢) = (1, 1).

(b) Mask
Image Buffer
Mask . Regultof |
centery ~| " sumjmation

Move the mask one pixel to the right, multiply coincident terms,
sum, and place the new result into the buffer at the location that
corresponds to the new center location of the convolution mask,
now at (r, ¢) = (1, 2). Continue to the end of the row.

C Image Buffer
() Mask ¢

Mask
centery.

Move the mask down one row and repeat the process until the mask is
convolved with the entire image. Note that we ‘lose’ the outer row(s)
and column(s).

FIGURE 3.2-3
The convolution process.
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For theoretical reasons beyond the scope of this discussion this equation assumes that
the image and mask are extended with zeros infinitely in all directions, and that the origin
of the mask is at its center. Also, for theoretical reasons, the previous description of convo-
lution assumes that the convolution mask is symmetric; meaning if it is flipped about its
center it will remain the same. If it is not symmetric, it must be flipped before the proce-
dure given can be followed. For computer imaging applications these convolution masks
are typically symmetric.

At this point a good question would be, Why use this convolution method when it
requires so many more calculations than the basic averaging-of-neighbors method? The
answer is that many imaging systems can perform convolution in hardware, which is gen-
erally very fast, typically much faster than applying a faster algorithm in software. Not
only can first-order hold be performed via convolution, but zero-order hold can also be
achieved by extending the image with zeros and using the following convolution mask:

ZERO-ORDER HOLD CONVOLUTION MASK
1 1
1 1
Note that for this mask we will need to put the result in the pixel location corresponding
to the lower right corner, since there is no center pixel.

The above methods will only allow us to enlarge an image by a factor of (2N-1), but what
if we want to enlarge an image by something other than a factor of (2N-1)? To do this we
need to apply a more general method; we take two adjacent values and linearly interpolate
more than one value between them. This linear interpolation technique is equivalent to find-
ing the line that connects the two values in the brightness space and sampling it faster to
get more samples, thus artificially increasing the resolution. This is done by defining an
enlargement number K, then following this process: (1) subtract the two adjacent values,

(2) divide the result by K, (3) add that result to the smaller value, and keep adding the
result from (2) in a running total until all (K-1) intermediate pixel locations are filled.

Example 3.2.1

We want to enlarge an image to three times its original size, and we have two adjacent pixel
values 125 and 140.

1. Find the difference between the two values, 140 — 125 = 15.

2. Enlargement desired is K =3, so we get 15/3 = 5.

3. Next determine how many intermediate pixel values we need K-1=3 —1=2. The two
pixel values between the 125 and 140 are

125+5=130 and 125 +2 x5 =135

We do this for every pair of adjacent pixels, first along the rows and then along the col-
umns. This will allow us to enlarge the image to a size of K(N-1) + 1, where K is an integer
and N X N is the image size. Typically, N is large and K is small, so this is approximately
equal to KN.

Image enlargement methods that use brightness values in both the row and column
direction are also available. This technique is called bilinear interpolation and is explored in
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Chapter 9, as applied to geometric restoration. More sophisticated methods that fit curves
and surfaces to the existing points, and then sample these surfaces to obtain more points,
can be explored in the references.

The process opposite to enlarging an image is shrinking it. This is not typically done to
examine an ROI more closely, but to reduce the amount of data that needs to be processed.
Shrinking is explored more in Section 3.2.4 Image Quantization.

Two other operations of interest for the ROl image geometry are translation and rotation.
These processes may be performed for many application-specific reasons, for example,
to align an image with a known template in a pattern matching process, or to make cer-
tain image details easier to see. The translation process can be done with the following
equations:

r'=r+1,
c'=c+c,

where r” and c’are the new coordinates, r and ¢ are the original coordinates and r, and ¢,
are the distances to move or translate the image.
The rotation process requires the use of these equations:

7 = 1(cos0) + c(sin B)

¢ =—1(sin0) + c(cos0)

where 7 and ¢ are the new coordinates, r and ¢ are the original coordinates, and 0 is the
angle to rotate the image. 0 is defined in a clockwise direction from the horizontal axis at
the image origin in the upper left corner.

The rotation and translation process can be combined into one set of equations:

7' =(r +7,)(cosB) + (c + ¢, )(sin )

¢'==(r+1,)(sin0) +(c +¢,)(cos0)

where 7[  and ¢[ are the new coordinates and 7, ¢, 7, c,, and 0 are defined as above.

There are some practical difficulties with the direct application of these equations. When
translating, what is done with the “left-over” space? If we move everything one row down,
what do we put in the top row? There are two basic options: fill the top row with a constant
value, typically black (0) or white (255), or wrap-around by shifting the bottom row to the
top, shown in Figure 3.2-4. Rotation also creates some practical difficulties. As Figure 3.2-5a
illustrates, the image may be rotated off the “screen” (image plane). Although this can be
fixed by a translation back to the center (Figure 3.2-5b and c), we have leftover space in the
corners. We can fill this space with a constant or extract the central, rectangular portion of
the image and enlarge it to the original image size.

3.2.2 Arithmetic and Logic Operations

Arithmetic and logic operations are often applied as preprocessing steps in image analysis
in order to combine images in various ways. Addition, subtraction, division, and multipli-
cation comprise the arithmetic operations, while AND, OR, and NOT make up the logic
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(@) )= -1
| |
I ¥
1 | 27?7
|
2 I 1
|
3 | 2
|
I 1
Before: A 4-row image “— = After: If we wraparound,
translating down by one row 4 goes into ???. otherwise
row, ry =1 the top row is filled with a
constant, typically zero.
FIGURE 3.2-4
Translation.
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FIGURE 3.2-5
Rotation.
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operations. These operations are performed on two images, except the NOT logic opera-
tion, which requires only one image and are done on a pixel-by-pixel basis.

To apply the arithmetic operations to two images, we simply operate on corresponding
pixel values. For example, to add images I, and I, to create I;:

Example 3.2.2

I,(r,c)+ I,(r,c) = I;(r,c)

3 4 7 6 6 6 3+6 4+6 7+6 9 10 13
L=|13 4 5| [,=|14 2 6| I;={3+4 4+2 5+6|=|7 6 11
2 4 6 3 5 5 2+3 445 645 5 9 11

Addition is used to combine the information in two images. Applications include devel-
opment of image restoration algorithms for modeling additive noise, as one step of image
sharpening algorithms, and for special effects, such as image morphing, in motion pic-
tures (Figure 3.2-6). Note that true image morphing may also require the use of geometric
transforms (see Chapter 9), to align the two images. Image morphing is also usually a
time-based operation, so that a proportionally increasing amount of the second image is
usually added to the first image over time.

FIGURE 3.2-6

Image addition examples. This example shows one step in the image morphing process where an increasing per-
centage of the one image is slowly added to another image, and a geometric transformation is usually required
to align the images. (a) First original, (b) second original, (c) addition of 50% of (a) and 100% of (b). The next
example shows adding noise to an image which is often useful for developing image restoration models.
(d) original image, (¢) Gaussian noise, variance = 400, mean = 0, (f) addition of images (d) and (e).
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Subtraction of two images is often used to detect motion. Consider the case where noth-
ing has changed in a scene; the image resulting from subtraction of two sequential images
is filled with zeros—a black image. If something has moved in the scene, subtraction pro-
duces a nonzero result at the location of movement, enabling detection of both the motion
and the direction. If the time between image acquisition is known, the moving object’s
speed can also be calculated. Figure 3.2-7 illustrates the use of subtraction for motion detec-
tion. Here we can learn two things: (1) we must threshold the result and (2) the process is
imperfect and will require some further processing.

Another term for image subtraction is background subtraction, since we are really simply
removing the parts that are unchanged, the background. Although the process is the same
as in motion detection, it is thought of differently. In comparing complex images, it may be
difficult to see small changes. By subtracting out common background image information,
the differences are more easily detectable. Medical imaging often uses this type of opera-
tion to allow the doctor to more readily see changes that are helpful in the diagnosis. The
technique is also used in law enforcement and military applications; for example, to find
an individual in a crowd or to detect changes in a military installation. The complexity of
the image analysis is greatly reduced when working with an image enhanced through this
process.

Multiplication and division are used to adjust the brightness of an image. This is done
on a pixel-by-pixel basis and the options are to multiply or divide an image by a constant
value, or by another image. Multiplication of the pixel values by a value greater than one

FIGURE 3.2-7

Image subtraction. (a) Original scene, (b) same scene later, (c) subtraction of scene a, from scene b, (d) the sub-
tracted image with a threshold of 50, (e) the subtracted image with a threshold of 100, (f) the subtracted image
with a threshold of 150. Theoretically, only image elements that have moved should show up in the resultant
image. Due to imperfect alignment between the two images, other artifacts appear. Additionally, if an object
that has moved is similar in brightness to the background it will cause problems—in this example the bright-
ness of the car is similar to the grass.
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will brighten the image (or division by a value less than one), and division by a factor greater
than one will darken the image (or multiplication by a value less than one). Brightness
adjustment by a constant is often used as a preprocessing step in image enhancement and
is shown in Figure 3.2-8.

Applying multiplication or division to two images can be done to model a multiplica-
tive noise process (see Chapter 9), or to combine two images in unique ways for special
effects. In Figure 3.2-9 we see the results of multiplying two images together. The first set
of images superimposes an x-ray of a hand onto another image, and the second set shows
how multiplication can be used to add texture to a computer-generated image. In both
cases the output image has been remapped to byte data range (0-255) for display purposes.
Note that multiplication and division of images can also be used for image filtering in the
spectral domain (see Chapter 5).

The logic operations AND, OR, and NOT form a complete set, meaning that any other
logic operation (XOR, NOR, NAND) can be created by a combination of these basic opera-
tions. They operate in a bitwise fashion on pixel data.

FIGURE 3.2-8
Image division. (a) Original image, (b) image divided by a value less than 1 to brighten, (c) image divided a value
greater than 1 to darken.
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FIGURE 3.2-9

Image multiplication. (a) Original image, (b) x-ray image of a hand, (c) images (a) and (b) multiplied together
which superimposes the hand onto the original, (d) the output image (c) after image enhancement, (e) a com-
puter-generated image of a hand, (f) Gaussian noise image, (g) the result of multiplying image (d) and image
(e), this operation adds texture to a computer-generated image, (h) image enhanced version of the hand image
with texture added by multiplication.

Example 3.2.3

We are performing a logic AND on two images. Two corresponding pixel values are 111, in
one image and 88,, in the second image. The corresponding bit strings are

111,, = 01101111, 88 = 01011000,
01101111,
AND 01011000,

01001000,
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FIGURE 3.2-9 (CONTINUED)

Image multiplication. (a) Original image, (b) x-ray image of a hand, (c) images (a) and (b) multiplied together
which superimposes the hand onto the original, (d) the output image (c) after image enhancement, (e) a
computer-generated image of a hand, (f) Gaussian noise image, (g) the result of multiplying image (d) and
image (e), this operation adds texture to a computer-generated image, (h) image enhanced version of the hand
image with texture added by multiplication.

The logic operations AND and OR are used to combine the information in two images.
This may be done for special effects, but a more useful application for image analysis is
to perform a masking operation. AND and OR can be used as a simple method to extract
a ROI from an image. For example, a white mask ANDed with an image will allow only
the portion of the image coincident with the mask to appear in the output image, with the
background turned black; and a black mask ORed with an image will allow only the part
of the image corresponding to the black mask to appear in the output image, but will turn
the rest of the image white. This process is called image masking and Figure 3.2-10 illustrates
the results of these operations. The NOT operation creates a negative of the original image,
by inverting each bit within each pixel value, and is shown in Figure 3.2-11.

3.2.3 Spatial Filters

Spatial filtering is typically applied for noise mitigation or to perform some type of image
enhancement. These operators are called spatial filters since they operate on the raw image
data in the (r,c) space, the spatial domain. This is in contrast to the frequency or spectral
domain filters discussed in Chapter 5. They operate on the image data by considering small
neighborhoods in an image, such as 3 x 3, 5 x 5, and so on, and returning a result based on
a linear or nonlinear operation; moving sequentially across and down the entire image.

The three types of filters discussed here include: (1) mean filters, (2) median filters, and
(3) enhancement filters (for more on these filters, see Chapter 8). The first two are used
primarily to deal with noise in images, although they may also be used for special applica-
tions. For instance, a mean filter adds a “softer” look to an image, as in Figure 3.2-12. The
enhancement filters highlight edges and details within the image.

Many spatial filters are implemented with convolution masks. Since a convolution mask
operation provides a result that is a weighted sum of the values of a pixel and its neighbors,
itis called a linear filter. One interesting aspect of convolution masks is that the overall effect
can be predicted based on their general pattern. For example, if the coefficients of the mask
sum to one, the average brightness of the image will be retained. If the coefficients sum to
zero, the average brightness will be lost and will return a dark image. Furthermore, if the
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FIGURE 3.2-10

Image masking. (a) Original image of two cats, (b) image mask for AND operation to extract one cat only, (c)
Resulting image from (a) AND (b), resulting in one cat on black background, (d) image mask for OR operation,
created by performing a NOT on mask (b), (¢) Resulting image from (a) OR (d), resulting in one cat on white
background.

coefficients are alternating positive and negative, the mask is a filter that will sharpen an
image; if the coefficients are all positive, it is a filter that will blur the image.

The mean filters are essentially averaging filters. They operate on local groups of pixels
called neighborhoods, and replace the center pixel with an average of the pixels in this
neighborhood. This replacement is done with a convolution mask such as the following
3 x 3 mask:

O | =
[N
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(@)

FIGURE 3.2-11
Complement image—NOT operation (a) Original, (b) NOT operator applied to the image.

FIGURE 3.2-12
Mean filter. (a) Original image, (b) mean filtered image, 3x3 kernel. Note the softer appearance.
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The result is normalized by multiplying by 1/9, so overall mask coefficients sum to one.
It is more computationally efficient to perform the integer operations and only multi-
ply by the 1/9 after the image has been processed. Often, with convolution masks, the
normalization factor is implied and may not appear in the mask itself. Since the mask
coefficients sum to one the average image brightness will be retained, and, since the coef-
ficients are all positive, it will tend to blur the image. Other more complex mean filters
are available that are designed to deal with specific types of noise. These are discussed
in Chapter 9.

The median filter is a nonlinear filter. A nonlinear filter has a result that cannot be found
by a weighted sum of the neighborhood pixels, such as is done with a convolution mask.
However, the median filter does operate on a local neighborhood. After the size of the local
neighborhood is defined, the center pixel is replaced with the median, or middle, value
present amonyg its neighbors, rather than by their average.

Example 3.2.4

Given the following 3 x 3 neighborhood:

5 6
3 4 5
3 4 7

We first sort the values in order of size: (3,3,4,4,5,5,5,6,7), then we select the middle value, in
this case it is 5. This 5 is then placed in the center location.

A median filter can use a neighborhood of any size, but 3 x 3, 5x 5, and 7 X 7 are typi-
cal. Note that the output image must be written to a separate image (a buffer), so that the
results are not corrupted as this process is performed. Figure 3.2-13 illustrates the use of a
median filter for noise removal.

The enhancement filters are linear filters, implemented with convolution masks having
alternating positive and negative coefficients, so they will enhance image details. Many
enhancement filters can be defined, here we include Laplacian-type and difference filters.
Three 3 x 3 convolution masks for the Laplacian-type filters are

Filter 1 Filter 2 Filter3

The Laplacian-type filters are called rotationally invariant, or isotropic, which means
they tend to enhance details in all directions equally. The difference filters, also called
emboss filters, will enhance details in the direction specific to the mask selected. There are
four primary difference filter convolution masks, corresponding to edges in the vertical,
horizontal, and two diagonal directions:
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FIGURE 3.2-13

Median filter. (a) Original image with added salt-and-pepper noise, (b) median filtered image using a 3x3 mask.
(Original butterfly photo courtesy of Mark Zuke.)

VERTICAL HORIZONTAL DIAGONAL1 DIAGONAL2

0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 1 1 -1 0 1 0 0 1 0
0 -1 0 0 0 0 0 0 -1 -1 0 0

Note that these are all simply rotated versions of the first mask. By completing the rotation
we have four more difference filter masks:

0 -1 0 0O 0 O -1 0 0o 0 -1
0 1 0 -1 1 1 0 1 1 0
0 1 0 0O 0 O 0 1 1 0 0

The results of applying the Laplacian-type and difference filters are shown in Figure 3.2-14.
A more detailed discussion of these and related filters is given in Chapters 4 (edge detec-
tion) and 8 (sharpening).

3.2.4 Image Quantization

Image quantization is the process of reducing the image data by removing some of the detail
information by mapping groups of data points to a single point. This can be done to either
the pixel values themselves, I(r,c), or to the spatial coordinates, (r,c). Operation on the pixel
values is referred to as gray-level reduction, while operating on the spatial coordinates is
called spatial reduction.

The simplest method of gray-level reduction is thresholding. We select a threshold gray
level and set everything above that value equal to “1” (255 for 8-bit data), and everything at
or below the threshold equal to “0.” This effectively turns a gray-level image into a binary
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FIGURE 3.2-14

Enhancement filters. (a) Original image, (b) image after laplacian filter (in CVIPtools be sure to check “Keep
DC”), (c) contrast enhanced version of laplacian filtered image, compare with (a) and note the improvement in
fine detail information, (d) result of a difference (emboss) filter applied to image (a), (e) difference filtered image
added to the original, (f) contrast enhanced version of image (e).

© 2011 by Taylor & Francis Group, LLC



Introduction to Digital Image Analysis 97

(two-level) image and is often used as a preprocessing step in the extraction of object fea-
tures such as shape, area, or perimeter.

A more versatile method of gray-level reduction is the process of taking the data and
reducing the number of bits per pixel, which allows for a variable number of gray levels.
This can be done very efficiently by masking the lower bits via an AND operation. With
this method, the number of bits that are masked determine the number of gray levels
available.

Example 3.2.5

We want to reduce 8-bit information containing 256 possible gray-level values down to 32
possible values. This can be done by ANDing each 8-bit value with the bit-string 11111000,.
This is equivalent to dividing by eight (23), corresponding to the lower three bits that we are
masking, and then shifting the result left three times. Now, gray-level values in the range of
0-7 are mapped to 0, gray levels in the range of 8-15 are mapped to 8, and so on.

We can see that by masking the lower three bits, by setting those bits to 0 in the mask, we
reduce 256 gray levels to 32 gray levels: 256 + 8 = 32. The general case requires us to mask
k bits, where 2* is divided into the original gray-level range to get the quantized range
desired. Using this method we can reduce the number of gray levels to any power of 2.

The AND-based method maps the quantized gray-level values to the low end of each
range; alternately, if we want to map the quantized gray-level values to the high end of
each range we use an OR operation. The number of “1” bits in the OR mask determine how
many quantized gray levels are available.

Example 3.2.6

To reduce 256 gray levels down to 32 we use a mask of 00000111,. Now, values in the range of
0-7 are mapped to 7, those ranging from 8 to 15 are mapped to 15, and so on.

Example 3.2.7

To reduce 256 gray levels down to 16 we use a mask of 00001111,. Now, values in the range of
0-15 are mapped to 15, those ranging from 16 to 31 are mapped to 31, and so on.

To determine the number of “1” bits in our OR mask we apply a method similar to the
AND mask method. We set the lower k bits equal to “1,” where 2*is divided into the origi-
nal gray-level range to get the quantized range desired. Note that the OR mask can also be
found by negating (NOT) the AND mask previously described.

Another potentially useful variation is to map the quantized values to the midpoint of
the range. This is done by an AND after the OR operation, or an OR after the AND opera-
tion, to either shift the values up or down.

Example 3.2.8

If we performed the quantization down to 16 levels by an OR with a mask of 00001111,, which
maps the values to the high end of the range, we could shift the values down to the middle of
the range by ANDing with a mask of 11111100,.
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FIGURE 3.2-15

False contouring. (a) Original 8-bit image, 256 gray levels, (b) quantized to 7 bits, 128 gray levels, (c) quantized
to 6 bits, 64 gray levels, (d) quantized to 5 bits, 32 gray levels, (e) quantized to 4 bits, 16 gray levels, (f) quantized
to 3 bits, 8 gray levels, (g) quantized to 2 bits, 4 gray levels, (h) quantized to 1 bit, 2 gray levels.

Using these AND/OR techniques for gray-level quantization the number of gray levels can
be reduced to any power of 2, such as 2, 4, 8, 16, 32, 64, or 128, as illustrated in Figure 3.2-15.
As the number of gray levels decreases we see an increase in a phenomenon called false
contouring. Contours appear in the images as false edges, or lines, as a result of the gray-
level quantization. We can see in the figure that these contour lines do not become very
visible until we get down to about 4 bits per pixel, and then become very prominent as we
use fewer bits.

The false contouring effect can be visually improved upon by using an improved gray
scale (IGS) quantization method. The IGS method takes advantage of the human visual
system’s sensitivity to edges by adding a small random number to each pixel before quan-
tization, which results in a more visually pleasing appearance (see Figure 3.2-16). If we look
at Figure 3.2-16¢ closely we can see that IGS eliminates the appearance of false contours by
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FIGURE 3.2-15 (CONTINUED)

False contouring. (a) Original 8-bit image, 256 gray levels, (b) quantized to 7 bits, 128 gray levels, (c) quantized
to 6 bits, 64 gray levels, (d) quantized to 5 bits, 32 gray levels, (e) quantized to 4 bits, 16 gray levels, (f) quantized
to 3 bits, 8 gray levels, (g) quantized to 2 bits, 4 gray levels, (h) quantized to 1 bit, 2 gray levels.

breaking the sharp edges into smaller random pieces, so the human visual system does a
better job of blending the false contours together.

The way IGS works is similar to dithering, or halftoning, which is typically used in print-
ing or in any application where we desire to reduce the number of gray levels or colors. For
example, newspapers are printed in only two levels but we still get the illusion of varying
shades of gray in newspaper photographs. Many dithering algorithms have been created
and are based on the idea of diffusing the quantization error across edges, where changes
occur in the image. In Figure 3.2-17 we see the results of applying three algorithms that
are representative of the types in use. With these techniques various gray levels are rep-
resented by different geometric patterns or various size dots, so the effective spatial reso-
lution is reduced. Looking closely at the examples in Figure 3.2-17 we can see that the
closer the black pixels are spaced together, the darker the area appears. As a result of this
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FIGURE 3.2-16

IGS quantization. (a) Original image, (b) uniform quantization to 8 gray levels (3 bits), (c) IGS quantization to
8 gray levels (3 bits). (Original butterfly photo courtesy of Mark Zuke.)

it requires multiple pixels to represent different gray levels and this is what causes the
reduction in effective spatial resolution.

Gray-level quantization using the previously discussed AND/OR method is very efficient
for quantization, but it is not flexible since the size of the quantization bins is uniform, which
is uniform bin width quantization (see Figure 3.2-18a). There are other methods of gray-level
quantization that allow for variable bin sizes called variable bin width quantization (Figure 3.2-
18b). These methods are more complicated than, and not as fast as, those used with uniform
bins. One such use is in simulating the response of the human visual system by using loga-
rithmically spaced bins. The use of variable bin size is application-dependent, and requires
application-specific information. For example, in Figure 3.2-19 we can see the result of an
application where four gray levels provided optimal results. Here we are applying vary-
ing bin sizes and mapping them to specific gray levels. In Figure 3.2-19, the gray levels in
the range 0-101 were mapped to 79, 102-188 mapped to 157, 189234 mapped to 197, and
235-255 mapped to 255. These numbers were determined as the result of application specific
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FIGURE 3.2-17

Halftoning and dithering. (a) Original image, 8-bits per pixel, (b) Floyd-Steinberg error diffusion, 1-bit per pixel, (c)
Bayer’s ordered dither, 1-bit per pixel, (d) 45-degree clustered-dot dither, 1-bit per pixel, (e) color version of original,
24-bit per pixel, (f) Floyd-Steinberg error diffusion, 3-bit per pixel, 1-bit per color band, (g) Bayer’s ordered dither,
3-bit per pixel, 1-bit per color band, (h) 45-degree clustered-dot dither, 3-bit per pixel, 1-bit per color band.
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FIGURE 3.2-17 (CONTINUED)

Halftoning and dithering. (a) Original image, 8-bits per pixel, (b) Floyd-Steinberg error diffusion, 1-bit per pixel, (c)
Bayers ordered dither, 1-bit per pixel, (d) 45-degree clustered-dot dither, 1-bit per pixel, (e) color version of original,
24-bit per pixel, (f) Floyd-Steinberg error diffusion, 3-bit per pixel, 1-bit per color band, (g) Bayeris ordered dither,
3-bit per pixel, 1-bit per color band, (h) 45-degree clustered-dot dither, 3-bit per pixel, 1-bit per color band.

(@) (b)

binwidth } 3 2
- e -

Uniform quantization bins: all bins are the same width. Variable quantization bins are of different widths.
Values that fall within the same bin can be mapped to
the low end (1), high end (2), or the middle (3).

FIGURE 3.2-18
Quantization bins.

feedback, an important aspect of image analysis as shown in Figure 3.1-3. For this applica-
tion, the second brightest gray level (197), was used to identify fillings in dental x-rays.
Quantization of the spatial coordinates, spatial quantization, results in reducing the actual
size of the image. This is accomplished by taking groups of pixels that are spatially adjacent
and mapping them to one pixel. This can be done in one of three ways: (1) averaging,
(2) median, or (3) decimation. For the first method, averaging, we take all the pixels in each
group and find the average gray level by summing the values and dividing by the number
of pixels in the group. With the second method, median, we sort all the pixel values from
lowest to highest and then select the middle value. The third approach, decimation, also
known as subsampling, entails simply eliminating some of the data. For example, to reduce
the image by a factor of two, we simply take every other row and column and delete them.
To perform spatial quantization we specify the desired size, in pixels, of the resulting image.
For example, to reduce a 512 x 512 image to 1/4 its size, we specify that we want the output
image to be 256 x 256 pixels. We now take every 2 x 2 pixel block in the original image and
apply one of the three methods listed above to create a reduced image. It should be noted that
this method of spatial reduction allows for simple forms of geometric distortion, specifically,
stretching or shrinking along the horizontal or vertical axis. Geometric distortion is explored
more fully in Chapter 9. If we take a 512 x 512 image and reduce it to a size of 64 x 128, we will
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FIGURE 3.2-19
Variable bin-width quantization. (a) Original image, (b) after variable bin-width quantization.

© 2011 by Taylor & Francis Group, LLC



104 Digital Image Processing and Analysis

ompy el

Viiiop

(d)

FIGURE 3.2-20

Spatial reduction. (a) Original 512x512 image, (b) spatial reduction to 64x128 via averaging, (c) spatial reduction
to 64x128 via median method, note the space in the “s” and “r” is filled in, (d) spatial reduction to 64x128 via
decimation method, note the “0” is split and “s” is filled in.

have shrunk the image as well as squeezed it horizontally. This result is shown in Figure 3.2-20,
where we can see that the averaging method blurs the image, and the median and decimation
methods produce some visible artifacts. With the median method the space in the “s” and the
“r” is filled in, and with decimation the "0” is split and the “s” is filled in.

To improve the image quality when applying the decimation technique, we may want to
preprocess the image with an averaging, or mean, spatial filter—this type of filtering is called
anti-aliasing filtering. In Figure 3.2-21, we can compare reduction done with or without an
anti-aliasing filter. Here, the decimation technique was applied to a text image with a factor
of four reduction; note that without the anti-aliasing filter the letter “S” becomes enclosed.
The cost of retaining this information is that the output image is slightly blurred.

3.3 Binary Image Analysis

To complete this introductory chapter on image analysis we will look at basic binary object
features and examine how they can be applied to our image analysis process shown in
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FIGURE 3.2-21

Decimation and anti-aliasing filter. (a) Original 512x512 image, (b) result of spatial reduction to 128x128 via
decimation, (c) result of spatial reduction to 128x128 via decimation, but the image was first preprocessed by a
5x5 averaging filter, an anti-aliasing filter. Note that the “s” is still clear and the “0” is not so jagged.

Figure 3.1-3. Since most cameras will give us color or gray-level images, we will first con-
sider how to create binary images from gray-level images; followed by extraction of simple
binary features; and finally look at some simple methods to classify binary objects. This
will clarify the image analysis process and lay the groundwork for Chapter 4, 5, and 6.

3.3.1 Basic Image Thresholding

In order to create a binary image from a gray-level image we must perform a threshold
operation. This is done by specifying a threshold value and will set all values above the
specified gray level to “1” and everything below or equal to the specified value to “0.”
Although the actual values for the “0” and “1” can be anything, typically 255 is used for
“1” and 0 is used for the “0” value. The “1” value will appear white and the “0” value will
appear black.

In many applications the threshold value will be determined experimentally and is
highly dependent on lighting conditions and object to background contrast. It will be
much easier to find an acceptable threshold value with proper lighting and good contrast
between the object and the background. Figure 3.3-1a and b shows an example of good
lighting and high object to background contrast, while in Figure 3.3-1c and d illustrates a
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(b)

(d

FIGURE 3.3-1

Effects of lighting and object to background contrast on thresholding. (a) An image of a bowl with high object
to background contrast and good lighting, (b) result of thresholding image (a), (c) an image of a bowl with poor
object to background contrast and poor lighting, (d) result of thresholding image (c).

poor example. Imagine trying to identify the object based on the poor example compared
to the good example.

To select the proper threshold value, the histogram is examined. The histogram of an
image is a plot of gray level versus the number of pixels in the image at each gray level (see
Section 8.2 for more details). Figure 3.3-2 shows the two bowl images and their correspond-
ing histograms. The peaks and valleys in the histogram are examined and a threshold is
experimentally selected that will best separate the object from the background. Notice the
peak in Figure 3.3-2b on the far right; this corresponds to the maximum gray-level value
and has the highest number of pixels at that value. This peak and the two small peaks to
its left represent the bowl. Although many nice valleys can be seen in the histogram for the
poor example (Figure 3.3-2d), none will separate the object from the background success-
fully, which serves to illustrate the vital importance of proper lighting.

With many applications the threshold must be found automatically, it may not be prac-
tical to have a human being in the process. The basic method of automatically finding a
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Threshold 1

FIGURE 3.3-2

Histograms. (a) An image of a bowl with high object to background contrast and good lighting, (b) the his-
togram of image (a), showing the threshold that separates object and background, (c) the result after the
threshold, (d) an image of a bowl with poor object to background contrast and poor lighting, (e) the histogram
of image (d), showing what appears to be a good threshold, but it does not successfully separate object and
background, (f) the result after the threshold.

threshold is an iterative process, easily implemented via computer program, and allows
the user to specify a parameter to control the process. This method is referred to as the
isodata (iterative self-organizing data analysis technique algorithm) method, and is basi-
cally the k-means clustering algorithm used in pattern recognition to separate two clusters.
It proceeds as follows:

1. Select an initial value for the threshold, T; typically the average gray-level value for
the image.

2. Apply the selected threshold value, T. This will separate the image into two groups
of gray levels, those greater than the threshold and those less than or equal to the
threshold.

3. Find the average (mean) values for each of these two groups of pixels.

1
Mean forG l=m=—-—"-— Z I(r,
eanforGroup1=m, 4 pixels>T 2 (r,c)

Mean for Group2 = m, = # I(r,c)
#pixels<T tr
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4. Calculate a new threshold by finding the average of the two mean values:

Tnew = (ml + mz)/2

5. If the change in threshold value from one iteration to the next is smaller than a
previously specified limit, we are done.

T,1s = Thews| < Limit ?— Done!

If the change is still greater than the specified limit, go to Step 2 and use T,,,,.

This method will work best for an image with good object to background contrast, with
well-separated peaks in the histogram. A good choice for the initial threshold value will
help the algorithm to converge faster. Although the image’s average gray level is typically
used, the weighted average of the two gray levels corresponding to the largest two histo-
gram peaks may also be a good choice for the initial threshold. By weighting this average
by the number of pixels at each value, convergence may occur faster. Selection of the value
used as a limit in Step 5 will also help determine how long the algorithm will take by
limiting the number of iterations; but will also affect the resulting image (see Figure 3.3-3).

FIGURE 3.3-3

The limit parameter with the automatic thresholding algorithm. (a) An image of a bowl with high object to back-
ground contrast and good lighting, (b) result of using the automatic thresholding algorithm with a limit = 10,
(c) result of using the automatic thresholding algorithm with a limit = 4. Although using a higher value for the
limit will require fewer iterations and is faster, the results may be undesireable.
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Automatically finding methods to separate objects in an image will be examined more
thoroughly in Chapter 4.

3.3.2 Connectivity and Labeling

The images considered in the previous section contained only one object. What will hap-
pen if the image contains more than one object? In order to handle images with more than
one object we need to consider exactly how pixels are connected to make an object, and
then we need a method to label the objects separately. Since we are dealing with digital
images, the process of spatial digitization (sampling) can cause problems regarding con-
nectivity of objects. These problems can be resolved with careful connectivity definitions
and heuristics applicable to the specific domain. Connectivity refers to the way in which
we define an object; once we performed a threshold operation on an image, which pixels
should be connected to form an object? Do we simply let all pixels with value of “1” be the
object? What if we have two overlapping objects?

First, we must define which of the surrounding pixels are considered to be neighboring
pixels. A pixel has eight possible neighbors: two horizontal neighbors, two vertical neigh-
bors, and four diagonal neighbors. We can define connectivity in three different ways:
(1) four-connectivity, (2) eight-connectivity, and (3) six-connectivity. Figure 3.3-4 illustrates
these three definitions. With four-connectivity the only neighbors considered connected
are the horizontal and vertical neighbors; with eight-connectivity all of the eight possible
neighboring pixels are considered connected, and with six-connectivity the horizontal,
vertical, and two of the diagonal neighbors are connected. The definition that is chosen
depends on the application, but the key to avoiding problems is to be consistent.

If we select four or eight-connectivity the connectivity dilemma arises. Consider the fol-
lowing binary image segment:

0 1 0
1 0 1
0 1 0

Assuming four-connectivity there are four separate objects and five separate background
objects. The dilemma is that if the objects are separated, shouldn’t the background be
connected? Alternately, if we assume eight-connectivity we have one connected object, a
closed curve, but the background is also connected. This creates another dilemma because
a closed curve should separate the background into distinct objects. How do we resolve
this issue? These are our choices:

1. Use eight-connectivity for background and four-connectivity for the objects
2. Use four-connectivity for background and eight-connectivity for the objects

3. Use six-connectivity

The first two choices are acceptable for binary images, but get quite complicated when
extended to gray level and color images, and we want a standard definition we can use
throughout this book. The third choice is a good compromise in most situations, as long as
we are aware of the bias created by selection of one diagonal direction. That is, connection
by a single diagonal pixel will only be defined in one of two possible directions. For most
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4-connectivity 8-connectivity

6-connectivity NW/SE 6-connectivity NE/SW

FIGURE 3.3-4
Connectivity. (a) 4-connectivity, (b) 8-connectivity, (c) 6-connectivity NW/SE, (d) 6-connectivity, NE/SW.

real images, this is not a problem. We will use the definition of six-connectivity as shown
in Figure 3.3-4¢c, with the northwest (NW) and southeast (SE) diagonal neighbors.

After the definition of connectivity is chosen, a labeling algorithm is needed to differen-
tiate between multiple objects within an image. The labeling process requires us to scan
the image and label connected objects with the same symbol. With the definition of six-
connectivity selected, we can apply the algorithm given in Figure 3.3-5 to label the objects
in the image. (Note that this flowchart will label objects in images with more than two
gray levels if we assume that any areas not of interest have been masked out by setting the
pixels equal to zero.) The UPDATE block in the flowchart refers to a function that will keep
track of objects that have been given multiple labels. This can occur with a sequential scan-
ning of the image if the connecting pixels are not encountered until after different parts of
the object have already been labeled (see Figure 3.3-6).

By labeling the objects, an image filled with object numbers is created. With this labeled
image we can extract features specific to each object. These features are used to locate and
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FIGURE 3.3-5

Labeling algorithm flowchart. (a) Definition of pixel neighbors, (b) the flowchart based on 6-connectivity with
NWY/SE diagonal neighbors connected.

classify the binary objects. The binary object features defined here include area, center of
area, axis of least second moment, projections, and Euler number. The first three tell us
something about where the object is, and the latter two tell us something about the shape
of the object. More features are provided in Chapter 6.

3.3.3 Basic Binary Object Features

In order to provide general equations for area, center of area, and axis of least second
moment, we define a function, L(r,¢):

1 if I(r,c) = i" object number
Li(r,c) =

0 otherwise

Now we can define the area of the i*h object as

N-1 N-1

A= 2 Zli(rw)
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The labeling algorithm requires an UPDATE function to
keep track of objects with more than one label. Multiple
labeling can occur during sequential scanning, as shown
above on the “J” shaped object. We label two different
objects until we reach the pixel marked “X” , where we
discover that objects 1 and 2 are connected.

FIGURE 3.3-6
Multiple labels.

The area, A, is measured in pixels, and indicates the relative size of the object. We can then
define the center of area (centroid in the general case), which finds the midpoint along each
row and column axis corresponding to the “middle” based on the spatial distribution of
pixels within the object. It can be defined by the pair (E,E,-) :

1 N-1 N-1 1 N-1 N-1
= rli(r,c) Ci=— cli(r,c)
Ai r=0 “c=l Ai r=0 “c=l

These correspond to the row coordinate of the center of area for the ith object, 7;, and the
column coordinate of the center of area for the ith object, ¢; . This feature will help to locate
an object in the two-dimensional image plane. The next feature we will consider, the axis
of least second moment, provides information about the object’s orientation. This axis corre-
sponds to the line about which it takes the least amount of energy to spin an object of like
shape, or the axis of least inertia. If we move our origin to the center of area, (r,c), the axis
of least second moment is defined as follows:

N-1 N-1

Z Zrcli(r,c)
tan(20,)=2 =0 =

N-1N-1 N-1 N-1

R
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FIGURE 3.3-7
Axis of least second moment. The angle is defined through the centroid and counter-clockwise to the vertical
axis.

This is shown in Figure 3.3-7. The origin is moved to the center of area for the object, and
the angle is measured from the r-axis counterclockwise.

The projections of a binary object, which also provide shape information, are found by
summing all the pixels along rows or columns. If we sum the rows we have the horizontal
projection, if we sum the columns we have the vertical projection. We can define the horizon-

tal projection, h,(r), as follows:
N-1
hi(r)= Zw,c)

And the vertical projection, v;(c):

0i(0)= 21,-<r,c>

An example of the horizontal and vertical projection for a binary image is shown in
Figure 3.3-8. Projections are useful in applications like character recognition, where the
objects of interest can be normalized with regard to size.

With the projection equations we can define the equations for the center of area as
follows:

N-1 N-1

Zerc)- 2rh<r)
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h(r)
o= |
r
lOOOOIOOOOI

0 0] 0 0 011 1 0 0 2
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re—s 0 1 2 2 4 4 3 0 0

To find the projections, we sum the number of 1s
in the rows and columns.

FIGURE 3.3-8
Projections.

N-1 N-1 N-1

e jl 2 Zrz,(r,c) - 22 0, (c)

Given these equations we can more easily understand their meaning. Referring to
Figure 3.3-8 and the above equations, we can see that a larger projection value along a
given row or column will weigh that particular row or column value more heavily in the
equation. This will tend to move the center of area coordinate toward that particular row
or column; note that all values are normalized by the object area.

The Euler number of an image is defined as the number of objects minus the number of
holes. For a single object, it relates to the number of closed curves the object contains. It is
often useful in tasks such as optical character recognition (OCR), as shown by the example
in Figure 3.3-9. Shown in (a) we have eight objects (don’t forget the dots on the i’s) and one
hole; Figure 3.3-9b has three objects and two holes. Note that we can find the Euler number
for the entire image, or for a single object within the image. For example, the letter “i” has
an Euler number of 2, and the letter “0” has an Euler number of 0.

Using the connectivity definition we defined when we labeled the image, we can find
the Euler number by finding convexities and concavities. The Euler number will be equal
to the number of convexities minus the number of concavities, which are found by scan-
ning the image for the following patterns (note: to apply this method the outer rows and
columns of the image must be zeros):

CONVEXITIES CONCAVITIES
0 0 0 1
0 1 1 1

Each time one of these patterns is found the count is increased for the corresponding
pattern.
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Vision % %
2

This image has eight objects and one This image has three objects and two
hole, so its euler numberis 8 — 1 =7. holes, so the euler numberis 3 —2 = 1.
the letter ‘V’ has euler number of 1,

“i7=2,“"=1,“0"=0,and “n” = 1.

FIGURE 3.3-9
Euler Number.

Euler number = (Count of convexities) — (Count of concavities)

= (Number of objects) - (Number of holes)
The number of convexities and concavities can also be useful features for binary objects.

3.3.4 Binary Object Classification

To complete our introduction to image analysis we will apply the process (see Figure 3.1-3)
to the development of an algorithm for classifying geometric shapes. We will use Computer
Vision and Image Processing tools (CVIPtools) to create the objects and analyze the images.
In this process we will explore the Utilities functions, which include the preprocessing
utilities and other utilities, and the Features tab of the Analysis window. The binary fea-
tures discussed previously will be used for the classification. For this experiment we will
develop an algorithm to classify the following shapes: (1) circles, (2) ellipses, (3) rectangles,
and (4) ellipses with holes.

To create our objects we first invoke CVIPtools, and select the Utilities functions
(Figure 3.3-10, remember this can also be done with a right click on the image viewing
area). Next, we select Create and then click on Circle (Figure 3.3-11), and select an image size
of 512 x 512 by a mouse click on the arrow next to the Image width and Image height boxes.
Note that these text boxes allow for selection via the mouse and the arrow, or allow the
user to type in any value. With a mouse click on the Apply button in the lower right corner
of the window the circle image is created, as shown in Figure 3.3-12. We want to have two
of each type of object, so we create another circle but select a different location and size.

Next, we OR these two images together by using Arith/Logic> OR (this is not required,
we could use separate images, but it will streamline the processing and help to illustrate
some important CVIPtools concepts). This is done by selecting one circle as the current
image by clicking on the image, or by clicking on the image name in the image queue—
the names of the images in the image queue are listed on the left side of the main window.
The second image is selected via the mouse and the arrow on the right of the Second image
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FIGURE 3.3-10

CVIPtools main window and utilities functions.
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FIGURE 3.3-11

Selection for creating a circle with the utilities.
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FIGURE 3.3-12
CVIPtools after creating the circle image.
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FIGURE 3.3-13
OR’ing two circles together to create a composite image with both objects.

© 2011 by Taylor & Francis Group, LLC

117



118 Digital Image Processing and Analysis

box, or can be selected with the Alt-key and a mouse click on the image itself. The result is
shown in Figure 3.3-13. Now, we create four ellipses and two rectangles of various sizes
and locations, and OR each new object with the current composite image that contains
the previous objects. Note that it is easy to select a location for a new object by moving the
mouse pointer on the current composite image and observing the row and column coordi-
nates on the top of the main window.

The next task is to create the ellipses with holes. This is done by creating a small circle in
and then performing an XOR operation with the circle and the ellipse. Note that the circles
need to be in a location within, and smaller than, the ellipses to create these objects. To do
this select Arith/Logic> XOR on the Utilities window (Figure 3.3-14). Perform the XOR to
create an ellipse with a hole as shown in Figure 3.3-15, followed by repeating the process
to make the second example. Next create the composite image by OR’ing the ellipses with
holes with the previous composite image containing all the other objects (Figure 3.3-16).

In order to better simulate a real application we will blur and add noise to the image
containing the objects. To blur the image select Filter-> Specify a Blur. Use the default param-
eters and click Apply. To add noise, select Create-> Add Noise. Select Salt and Pepper noise,
and click Apply. The result is shown in Figure 3.3-17. We now have an image with two
circles, two ellipses, two rectangles, and two ellipses with holes and we have blurred and
added noise to better simulate a real application.

Now that our example image database has been created, we are ready to analyze the
images and develop our classification algorithm. Referring to Figure 3.1-3, we will try the
following steps:

1. Preprocessing: noise removal with a median filter
2. Segmentation: thresholding

B Cviitants for ¥indows - Southern (inods University Edwardsville

Ellgset GRAY | PGM | REAL BTE 0 =5 1 512 | 512

FIGURE 3.3-14
Selection for XOR of two images.
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FIGURE 3.3-15
XOR of circle and ellipse to create a new object—ellipse with hole.
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FIGURE 3.3-16
Composite image created by OR’ing individual object images together.
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FIGURE 3.3-17
Adding salt and pepper noise to the blurred composite image.

3. Filtering: none required (we hope!)

4. Feature Extraction: area, center of area, axis of least second moment, projections,
and Euler number.

5. Feature Analysis: we will do this manually by examining the feature file

6. Application feedback: are we successful in developing an algorithm that will iden-
tify the objects? If not, go back to step 1 and modify the algorithm based on our
results.

For Step 1, select Filter> Median. Apply this to our composite image. This is shown in
Figure 3.3-18. Here we see that the noise has been successfully removed. For Step 2 we
want to find a proper threshold so that the blurring is mitigated and the objects are clearly
defined. This is done with Convert> Binary Threshold. After some experimentation we
determine a threshold of 155 gives us the desired results, shown in Figure 3.3-19. Now we
are ready to extract the features.

From the main CVIPtools window, select the Analysis window, and select the Features
tab. For the original image we want to use the image after noise removal, and for the
segmented image we will use the image after thresholding. Next, we type in a feature file
name, a class (circle, ellipse, rectangle, or ellipse_hole), and any coordinates within the
object of interest. The coordinates can also be selected with a mouse click on the object in
the original image. Next, we select the features of interest by clicking on the checkboxes
for area, centroid, orientation (axis of least second moment), Euler number and projections
(see Figure 3.3-20). Note that for the projections feature we need to specify the normal-
izing height and width. The default normalizing size is 10 x 10 and will shrink the object
into a 10 x 10 box and then extract the projections. This is done so that the number of
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FIGURE 3.3-18
Blurry, noisy composite image after median filtering.
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FIGURE 3.3-19
Image after thresholding, note the output shapes still have some minor distortion.
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Feature tab with features selected.

projections does not get too large, and so that that the values will relate to object shape
and not object size.

Now, we are ready to extract the features by clicking on the Apply button on the lower
right of the Analysis window. We do this for each object in our image by selecting the
object coordinates and typing in the desired class name. When we have extracted the
features for all the objects we can look at the feature file with the View Feature File button.
The feature file, shown in Figure 3.3-21, contains the sample number (S. No.), the image
file name, the row and column coordinates of a point in the object, followed by the feature
values for that object. In the lower right corner of the feature file displayed in CVIPtools
is a green button labeled Save as Excel, which allows the user to save the file in an Excel
spreadsheet. The Excel spreadsheet provides a format that is easy to use, modify, and
analyze. The task now is to examine this data and look for features that will differentiate
the classes.

First, we deduce that area and centroid may be useful for some applications, but will not
help us in classification. The next observation is that the orientation will not be necessary
in the classification of these objects; although it, along with the area and centroid, would
be useful to control a robot in finding and placing the objects. In Table 3.1 the data from the
feature file for the Euler number and projection data are shown.

Next, we observe the Euler number feature will identify the class ellipse_hole, since it
is 0 for this class and 1 for all others. Upon close examination of the projections, we can
see that they can be used to differentiate the circles, ellipses, and rectangle. In general,
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FIGURE 3.3-21

CVIPtools feature file. (a) The feature file displayed in CVIPtools, the green button in the lower right corner can
be used to save it as an Excel spreadsheet (b), The feature file after it has been saved as an Excel spreadsheet.
Note: In CVIPtools the feature values for Projections are each put in a separate column, they are displayed this
way here for simplicity.
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TABLE 3.1

Feature File Data

Digital Image Processing and Analysis

ellipse 1
ellipse
circle

circle
ellipse_hole
ellipse_hole
rectangle

=R =N

rectangle

510800000001 223333321
23445654433 910107 10000
368 9 10 10 10 9 75 3 6 8 9 10 10 10 9 7 5
379 910 10 10 9 9 73 7 9 9 10 10 10 9 9 7
3998900000144 4535444

076 6930000034433 3443

10 10 10 10 10 0 0 0 0 0 5 55555055565
0999999999099 9999 999

the ellipses have some zeros and increasing and decreasing projections, the circles have
increasing and decreasing projections, and the rectangles have constant projections, pos-
sibly with some zeros. Thus, we have our algorithm:

If Euler number = 0

Then Object = ellipse_hole

Else (Euler number = 1)

If projections are increasing and decreasing
If projections has zeros
Then Object = ellipse
Else (projections has no zeros)
Then Object = circle
Else (projections not increasing and decreasing)

Then Object = rectangle

What we have done is develop a classification algorithm by the use of a training set. A
training set is a set of sample images used to develop an algorithm. To complete Step 6 in
the image analysis process, application feedback, we need to generate some test images.
This test set of images is then used to see how well the algorithm actually works on a
different set of images. The idea is that these results will simulate the real application
in practice, and will not be biased by the training process—it is easy to get 100% success
on the training set! Success on the test set increases our confidence that the algorithm
will work in practice. Test sets can be created with CVIPtools and it is left as an exercise
for the reader to validate the algorithm. Pattern classification will be explored further in

Chapter 6.
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3.4 Key Points
IMAGE ANALYSIS PROCESS MODEL

Image analysis: manipulating the image data to determine exactly the information
necessary to help solve a computer imaging problem, primarily a data reduction
process

Image analysis process model (see Figure 3.1-3): consists of three primary stages:
(1) preprocessing, (2) data reduction, (3) feature analysis

Preprocessing: used to remove noise and artifacts, visually irrelevant information,
preliminary data reduction

Noise: unwanted information from the data acquisition process

Data reduction: reducing data in the spatial domain or transforming into the spec-
tral domain, followed by filtering and feature extraction

Feature analysis: examining the extracted features to see how well they will solve
the application problem

Application feedback loop: key aspect of the image analysis process that incorpo-
rates application-based information in the development process

PREPROCESSING

Region of interest geometry: to inspect more closely a specific area of an image

Crop: process of selecting a portion of an image, a subimage, and cutting it away
from the image

Zoom: enlarging a section of an image, zero-order hold or first-order may be used
Zero-order hold: repeating pixels
First-order hold: linear interpolation between adjacent pixels

Convolution: overlay the mask, multiply coincident values, sum results, move to next
pixel, across entire image (see Figure 3.2-3), equation:

El(r—x,c—wM(x,y)

X=—00 =—c0

Vector inner product: multiplying coincident terms of two vectors and summing
results

Translation: moving the image data along the row and/or column axes, equations:

rlEr+r1,

clEc+c,
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Rotation: clockwise rotation through a fixed angle 6, given by these equations:

7 = r(cos0) + c(sin B)

¢ = —r(sin®) + c(cos0)

Arithmetic and logic operations: performed on a pixel-by-pixel basis; arithmetic
operations: add, subtract, multiply, divide; logic operations: AND, OR, NOT

Addition: used to combine information in two images, applications include creating
models for restoration algorithm development, image sharpening algorithms, and
special effects such as image morphing

Subtraction: used for motion detection and background subtraction, applications
include object tracking, medical imaging

Multiplication: used to brighten or darken an image, or to combine two images

Division: used to darken or brighten an image

AND: a logical operation performed on a pixel-by-pixel basis, using two images, by
a logical AND of the corresponding bits in each corresponding pixel, defined for
BYTE-type images; used to combine two images or for image masking

Image masking: extracting a portion of an image with an AND or OR operation
using a binary image mask; masking out image artifacts by setting to zero

OR: a logical operation performed on a pixel-by-pixel basis, using two images, by
a logical OR of the corresponding bits in each corresponding pixel, defined for
BYTE-type images; used to combine two images or for image masking

NOT: creates a negative on an image by performing a logical NOT on each bit

Spatial filters: operate on the image data by considering small neighborhoods in an
image, such as 3 x 3, 5 x5, and so on, and returning a result based on a linear or
nonlinear operation; moving sequentially across and down the entire image

Linear filters: can be implemented with a convolution mask, since the output is a
linear combination of the (neighborhood) inputs

Mask coefficients: all positive will blur an image, alternating positive and negative
will sharpen an image; if they sum to one will tend to retain original image bright-
ness, if they sum to zero will tend to lose original image brightness

Mean filters: averaging filters, will blur an image, all mask coefficients are positive

Median filter: sorts the pixel values in a small neighborhood and replaces the center
pixel with the middle value in the sorted list, is a nonlinear filter

Nonlinear filter: cannot be implemented with a convolution mask since the result
cannot be represented as a weighted sum of the neighborhood pixel values

Enhancement filters: linear filters, the convolution masks have alternating positive
and negative coefficients; will enhance image details via image sharpening, able
to enhance details in a specific direction by careful mask selection

Laplacian filters: enhancement filters with convolution masks of alternating positive
and negative coefficients, will bring out image details equally in all directions

Difference (emboss) filters: enhancement filters with convolution masks of alternat-
ing positive and negative coefficients, will bring out image details in a specific
direction based on the mask used
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Image quantization: the process of reducing image data by removing some of the
detail information by mapping groups of data points to a single point, performed
in the spatial or gray-level domain

Gray-level reduction: reducing the number of gray levels, typically from 256 levels
for 8-bit per pixel data to fewer than 8 bits, can be performed with AND or OR
masks (see examples)

Thresholding: the simplest method of gray-level reduction performed by setting a
threshold value and setting all pixels above it to “1” (typically 255), and those
below it to “0,” output is a binary image

False contouring: artificial lines that appear in images with reduced number of gray
levels (Figure 3.2-15)

IGS: improved gray scale, a method to visually improve the results of gray-level
reduction by adding a random number to each pixel value before the quantization
(Figure 3.2-16)

Halftoning/dithering: methods for reducing the number of gray levels by creating
dot patterns or dither patterns to represent various gray levels, reduces effective
spatial resolution also (Figure 3.2-17)

Uniform bin width quantization: the size of the bins for quantization is equal
(Figure 3.2-18)

Variable bin width quantization: the size of the bins for quantization is not equal
but may be assigned on an application specific basis (Figure 3.2-18)

Spatial quantization: reducing image size by taking groups of spatially adjacent pix-
els and mapping them to one pixel, can be done by: (1) averaging, (2) median, or (3)
decimation (Figure 3.2-20)

Averaging: performing size reduction by averaging groups of pixels and replacing
the group by the average

Median: sorting the pixel gray values in small neighborhood and replacing the
neighborhood with the middle value

Decimation: also known as subsampling, reduces image size by eliminating rows
and columns

Anti-aliasing filtering: a technique to improve image quality by averaging before
decimation (Figure 3.2-21)

BINARY IMAGE ANALYSIS

Threshold via histogram: examining the histogram to find clusters by looking
at peaks and valleys and thresholding the image gray values at one of the val-
leys in the histogram, effects of lighting and background contrast are important
(Figure 3.3-1)

Automatic Thresholding Algorithm: also called the isodata method or k-means clus-
tering algorithm. (1) Select an initial value for the threshold, T, typically the average
gray-level value; (2) apply the selected threshold value, T, separating image into
two groups; (3) find the average (mean) values for each of these two groups of pix-
els; (4) calculate a new threshold by finding the average of the two mean values;
and (5) if the change in threshold value from one iteration to the next is smaller
than a previously specified limit, we are done. If the change is still greater than the
specified limit, go to Step 2 with the new threshold value.
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Histogram: a plot of gray values versus numbers of pixels at each gray value
(Figure 3.3-2)
Connectivity: defining how pixels are connected by selecting which of the eight

neighboring pixels, assuming a square gird, are connected to the center pixel
(Figure 3.3-4)

Four-connectivity: the connected neighbors are the two horizontal neighbors, to the
left and right, and the two vertical neighbors, above and below

Eight-connectivity: horizontal, vertical, and all diagonal neighbors are considered
connected

Six-connectivity: horizontal, vertical, and two diagonal neighbors are considered
connected, this type of connectivity is used in this book

Connectivity dilemma: the dilemma that arises when we use four or eight connec-
tivity for both objects and background where closed curves do not separate the
background (eight-connectivity), or we do not have a closed curve and the back-
ground is separated (four-connectivity)

Labeling: the process of assigning labels to connected objects in an image
Labeling algorithm flowchart: see Figure 3.3-5

UPDATE: a method needed in a sequential labeling algorithm to deal with the situa-
tion when two pixels are found connected, but connected neighbors have different
labels

Binary object features: features that can be extracted from labeled objects in binary
images, which can be used to classify the objects

Area: the size in pixels of a binary object, indicating the relative size of the object,
found by summing all the pixels in the object:

N-1 N-1

Ai=2 Zli(rIC)

Center of area (centroid): the midpoint along each row and column axis correspond-
ing to the “middle” based on the spatial distribution of pixels within the object,
used to locate the object spatially, defined by

1 N-1 N-1 1 N-1 N-1
r= i) ci= - cIi(r,c)
" A Z CZ Ai ZZ
Axis of least second moment: defines the object’s orientation, given by

N-1 N-1
reli(r,c)

tan(29,)=2 =

N-1 N-1 N-1 N-1

2 Z rZIi(r,c)—Z Z lir,c)
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Projections: found by summing pixels along each row or column, provides informa-
tion about an object’s shape, and provides simpler equations for center of area

Horizontal projection: sum of pixels along the rows
Vertical projection: sum of pixels along the columns

Euler number: defined as the number of objects minus the number of holes, or the
number of convexities minus the number of concavities

Binary object classification: the process of identifying binary objects through appli-
cation of the image analysis process given in Figure 3.1-3, consisting of the fol-
lowing steps: (1) preprocessing, (2) thresholding, (3) filtering (optional), (4) feature
extraction, (5) feature analysis, and (6) application feedback.

Exercises

Problems

1. What is image analysis? How is it used in computer vision? How is it used in
image processing? Give examples of each.

2. What are the three primary stages of image analysis? The second stage can be
done in two different domains, what are they?

3. Draw a detailed figure of the image analysis process. Explain each block. Why do
we need feedback?

4. List and describe the image geometry operations used in preprocessing for
image analysis. Run CVIPtools and experiment with the functions under
Analysis> Geometry, and Utilities> Size.

5. Use zero-order to increase the size of following image by a factor of 2.

6 7 8
2 6 4
6 3 8

6. Use first-order hold to increase the image by a factor of about 3. Apply the method
that will increase the image size to K(N-1) + 1. What is the resulting image size? Is
this “about a factor of 3”? Why or why not?

2 5 9
5 6 4
9 3 8

7. We want to translate imagel by 45 columns to the right and 18 rows up, what are
the new coordinates for the point (r,c) = (120, 22)? We want to rotate image2 in
the clockwise direction 50°, what are the new coordinates for the point (r,c) = (42,
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100)? We want to rotate and translate image3 the same as we did for imagel and
image?, what are the new coordinates for the point (r,c) = (100, 66)? Use CVIPtools
to verify your answers, note that the origin given by the equations is different than
the output equation in the CVIPtools image.

8. Subtract the following two images. What is an example of an application for image
subtraction? How do we display negative numbers?

In CVIPtools subtract a dark image from a brighter image. Observe the data range
shown in the lower right of the main window. What does CVIPtools do with the
negative numbers for display?

9. Perform a logical OR with the following two images. What can this operation be
used for?

Use CVIPtools to OR images together. During this process consider potential
applications.

10. How is image masking performed? What are its uses? Use Utilities> Create-> Border
Mask in CVIPtools to create mask images and then use AND to mask the original
image.

11. What does a NOT operation do to the appearance of an image? Perform the NOT
operation in CVIPtools on a color image, are the results what you expected?
Multiply an image by 1.8 without byte clipping. What is the output image data
type? Now perform a NOT on the image multiplied by 1.8. What is the data type
of this output image? Explain.

12. What does a convolution filter do that has all positive coefficients? What does a
convolution filter do that has alternating positive and negative coefficients? How
about one where the coefficients sum to zero? What happens if a filter mask coef-
ficients sum to one? Use CVIPtools Utilities> Filter> Specify a filter to verify your
answers.

13. Are convolution filters linear? Name a nonlinear filter. Given the following 3 x 3
neighborhood in an image, what is the result of applying a 3 x 3 median filter to
the center pixel?

1 2 7
3 4 2
9 3 9
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Use CVIPtools Utilities> Create> Add Noise to add salt and pepper noise to an
image. Now, perform a median filter on the noisy image using Utilities> Filter>
Median. How does it affect the appearance of the image as you increase mask size
of the filter?

14. What are the coefficients for a typical 3 X 3 mean convolution filter? What are the
coefficients for a typical 3 X 3 enhancement filter? Use CVIPtools to verify your
results.

15. Why does Figure 3.2-7c look mostly gray? (hint: remap) Since the gray level of the
car is similar to that of the grass, we lost the lower half of the car in its second loca-
tion in the results. What could we do to avoid this? Open the image in CVIPtools
and experiment with various threshold values.

16. What are example applications for image multiplication and division? Demonstrate
your examples with CVIPtools.

17. What is the bit string we would use for an AND mask to reduce 8-bit image
information to 64 gray levels? Does this map the data to the low or high end
of the range? Use CVIPtools Utilities> Convert> Gray-level Quantization to reduce
the number of gray levels of an 8-bit image to 32 gray levels. Look at the histo-
gram of the output image by selecting the bar graph icon just to the left of the
RGB icons. Does CVIPtools map the output data to the low or high end of the
range?

18. What is false contouring? How can we visually improve this effect? Explain. Use
CVIPtools to reduce the number of gray levels on an 8-bit image to 8 gray levels,
select standard method. Now, select the IGS method and compare the results.

19. What s halftoning and dithering? Why is it used? Use CVIPtools Utilities-> Convert-
Halftone and compare the various methods. Which one do you think works the
best? Do you think this is true for all images?

20. Describe variable bin width quantization. Why is it used?

21. Describe the three methods used for spatial reduction. Which method do you
think is the fastest? The slowest? When using the decimation technique how can
we improve the results? Use CVIPtools Utilities> Size > Spatial Quant to compare
the three methods.

22. What is a histogram? How can it be useful?

23. In CVIPtools you can threshold an image with Utilities> Convert> Binary Threshold.
Using CVIPtools try to find a good threshold to separate the object from back-
ground in Figure 3.3-1c. Are you successful? Why or why not? Look at the his-
togram of various images with CVIPtools (the histogram icon looks like a bar
graph).

24. Draw a binary image to illustrate the dilemma that arises when using four or
eight-connectivity. Explain three ways to avoid this dilemma. Label all objects and
background objects. Remember a connected line should separate the objects on
either side of the line.

25. What is the UPDATE block for in the flowchart in Figure 3.3-5?

26. Given an application where we need to control a robotic gripper to pick and place
items on an assembly line, what are the most useful binary features?
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27. Find the horizontal and vertical projections for the following binary image:

28. The Euler number for an object is equal to the number of objects minus the num-
ber of holes, and equal to the number of convexities minus the number of concavi-
ties. Is the number of objects necessarily equal to the number of convexities? Is the
number of holes necessarily equal to the number of concavities? Explain.

Programming Exercises

Image Geometry

1. Write a function to implement an image crop. Incorporate this function call into
the case statement at the beginning of the CVIPlab program (refer to Chapter 11,
as required), so that it can be accessed via the menu (do this for all the functions
written).

2. Write a function to implement an image zoom, have the user specify the starting
(r,c) coordinates, the height and width and the zoom factor. Use zero-order hold.

3. Incorporate the CVIPtools zoom (in the Geometry library) into your CVIPlab pro-
gram. Experiment with enlarging an image by different factors. The minimum
and maximum factors allowed are 1 and 10, respectively. You have the option of
choosing the whole of the image, or any particular quadrant, or you can specify
the starting row and column, and the width and height for the enlargement of the
particular region of the image.

4. Write a function to rotate an image. Experiment with various degrees of rotation.

Incorporate the CVIPtools rotate (Geometry library) function into your CVIPlab
program. Does this differ from how your rotate function works?

Arithmetic/Logic Operations

1. Write functions that perform the following logical operations on two images:
AND, OR, NOT.

2. Write a function to subtract two images, put this function in a separate file from
the logic functions. Initially, use BYTE data types that will result in clipping at
zero for negative results. Next, modify the function to use FLOAT data types (use
cast_Image in the Image library) and then remap when the process in completed
(use remap_Image in the Mapping library). Note that these two methods will result
in different output images.

3. Extend the logic operations to work with data types other than BYTE.

4. Extend the logic operations to include NAND, NOR, and more complex Boolean
expressions.

5. Extend the subtraction function to perform addition, multiplication, and division.
6. Experiment with different methods of handling overflow and underflow with the
arithmetic operations.
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Spatial Filters

1. Write a program to implement spatial convolution masks. Let the user select from
one of the following masks:

Mean filter masks:

1 1 1 1 1 1 2 1
11 1 1 l1 1 i2 2
9 10 16

1 1 1 1 1 1 1 2 1

-1 -1 -1 1 -1 1 0 -2 0
-1 9 -1 -2 5 =2 -1 5 -1
-1 -1 -1 1 -2 1 0 -1 0

. Modify the program to allow the user to input the coefficients for a 3 x 3 mask.
. Experiment with using the masks. Try images with and without added noise.

. Modify the program to handle larger masks.

QO = W DN

. Write a median filtering function. Compare the median filter to the mean filter
masks for image smoothing.

6. Incorporate the CVIPtools function median_filter (SpatialFilter library) into your
CVIPlab program. Is it faster or slower than your median filtering function?

Image Quantization

1. Write a function to reduce the number of gray levels in an image by uniform quan-
tization. Allow the user to specify: (1) how many gray levels in the output image
and (2) to map the gray levels to the beginning, middle, or end of the range.

2. Write a function to reduce the number of gray levels in an image by nonuniform
quantization. Allow the user to specify the input ranges and the output value for
up to four output gray levels

3. Write a function to perform spatial quantization by decimation.
Binary Object Features

1. Write a C® function to find the area, and coordinates of center of area of a binary
image. Assume the image only contains one object. Remember that the value that
represents “1” for the binary images are actually 255, and “0” is 0.

2. Test this function using images you create with CVIPtools. Use Utilities to create
test images with the Create option (Utilties> Create). To create images with multiple
objects, use the AND and OR logic functions available from Utilities> Arith/Logic.

3. Modify the label function so that it will find the area and center of area for each
object. Note that you can modify the variables for area and center of area to be
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arrays and use the label as the index into the array (be sure to initialize the array
elements to 0). The information for each object should be printed to the screen,
along with the object number.

4. Write a C function to find the number of upstream facing convexities (X), upstream
facing concavities (V), and the Euler number for a binary image. Use the method
discussed in Section 3.3.3, assuming six-connectivity.

The function should display the following:
The number of upstream facing convexities = <X>
The number of upstream facing convexities = <V>
The Euler number for the image = <X-V>

5. Test this function using images you create with CVIPtools. Use Utilities to create
test images with the Create option (Utilities> Create). To create images with mul-
tiple objects, use the AND and OR logic functions available from Utilities> Arith/
Logic.

6. Modify the Euler function to find the Euler number for each object in a binary
image containing multiple objects.

7. Modify your Euler function to handle other connectivity types (four, eight, and
four/eight).

8. Modify your functions to handle gray-level images.

9. Modify your functions to handle color images.

I
Supplementary Exercises
Supplementary Problems

1. a. Find the area and the center of area for the following binary image:

O O O O O
S = O = O
O =) O = =
_ = e
[ R T T
o O O = O
o O O = O
o O ©O © o

b. find the axis of least second moment, (c) find the Euler number based on six-
connectivity NW/SE, and (d) find the Euler number based on six-connectivity
NE/SW.

2. Use CVIPtools to create a test set of images for the algorithm developed in Section
3.3.4. Vary the size of objects, the amount of noise added, and the degree of blurring.
Extract the features of interest using CVIPtools. Examine the feature file. Does the
classification algorithm developed in this section work successfully? How is the
success rate affected as the amount of blur and added noise is increased? Develop
a more robust algorithm that will work with high levels of blurring and noise.
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3. Research and discuss methods for automatic image thresholding. Automatic
thresholding refers to algorithmic methods to determine the threshold from the
image data itself. Typically, the histogram is used to make this determination.

4. Collect a set of images of various objects that you want to identify. Using CVIPtools
apply the image analysis process. Experiment with preprocessing, segmentation,
and filtering methods. Extract the features of interest using CVIPtools. Examine
the feature file. Develop a classification algorithm. Experiment with blurring and
adding noise to the images. Develop a more robust algorithm that will work with
high levels of blurring and noise.

5. Apply the basic automatically thresholding algorithm to the following 2-bit
per pixel image using a limit of 0.01 and initial value of: (a) image mean and (2)
weighted average from two histogram peaks. Show your results from each step.

N P = W W W R~k =
O R P W W W R~ -
OO P W W W W W

N —m, W W W W~k -
N —m, W W W W R~ -
N P W W W WwWR -
N —, W W W W R~k -
O = = W W W=

Supplementary Programming Exercises
Connectivity and Labeling

1. Write a function to implement the labeling algorithm described. You may assume
that row and column 0 do not contain objects, so start the scan with row 1 and col-
umn 1. Follow the flowchart for the labeling algorithm. Define a two-dimensional
array for the labels using a fixed size, for example for a 256 x 256 image:
int label[256][256]; /*declaration*/

NOTE: Be sure to initialize the array elements (for example, via “for” loops),
if needed. When the memory is allocated for the array it may contain garbage
depending on the compiler and the operating system.

2. Test this function using images you create with CVIPtools. Use the Utilities to create
test images with the Create option (Utilties> Create). To create images with multiple
objects, use the AND and OR logic functions available from Utilities> Arith/Logic.

3. Once you are certain that your function implements the algorithm correctly, mod-
ify the label function using a matrix structure for the label array. This will allow
the use of any size image, without the need to change the size of the array. This is
done as follows:

Matrix *label ptr; /* declaration of pointer to Matrix data
structure */

int **label; /* declaration of pointer to matrix data */
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label ptr = new Matrix(no of rows, no_ of cols, CVIP
INTEGER, REAL); /*allocating the memory for the matrix
structure*/

label = (int **) getData Matrix(label ptr); /* getting the
matrix data into the label array*/

labellr][c] /*accessing the array elements */

delete Matrix(label ptr); /*freeing the memory space used
by the matrix*/

4. Modify the function so that it will handle objects on the edges of the image.

5. Modify the Update function (see flowchart, Figures 3.3-5 and 3.3-6) so that it
does not require multiple image scans, for example keep a linked list or table
of equivalent labels and rescan the image only once (after all the labeling
is done).

6. Modify the function to work with gray-level images.

7. Modify the function to work with color images.

8. Modify the function to handle any number of objects.

9. Modify the function so that it will output the labeled image (that is, the label array
written to disk as an image, with appropriate gray levels to make all the objects
visible).

Programming Exercise: Image Quantization 11

1. Write a function to perform IGS quantization, see the Noise library in Chapter 13
for the noise functions.

2. Compare your results to those obtained with CVIPtools. Are the results the same?
Why or why not?

3. Write a function to quantize images of any image data type. Let the user specify
the number of quantization bins.

4. Write a function to allow for variable bin-width quantization. Let the user specify
the bin ranges and the mapping value(s).

5. Write a function to perform spatial quantization. Allow the user to specify the
method: decimation, median, and averaging. Incorporate an anti-aliasing filter
option for the decimation method.

Programming Exercise: Image Geometry Il

1. Write a function to implement an image zoom, have the user specify the starting
(r,c) coordinates, the height and width and the zoom factor. Let the user specify
zero-order or first-order hold.

2. Write a function to rotate an image. Experiment with various degrees of rotation.
Enhance your rotate function to select the center portion of rotated image and
enlarge it to the original image size.

3. Incorporate the CVIPtools rotate (Geometry library) function into your CVIPlab
program. Does this differ from how your rotate function works?
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4. Incorporate the CVIPtools zoom, crop, and bilinear_interp (Geometry lib) into your
CVIPlab program. Crop and bilinear_interp will provide similar functionality to the
zoom function. Compare the results of using bilinear_interp to zoom. The zoom func-
tion performs a zero-order hold, while bilinear_interp performs a bilinear interpo-
lation, providing a smoother appearance in the resulting image.

5. Put the CVIPtools spatial_quant into your CVIPlab program. Compare using the
three different reduction methods available: average, median, and decimation.

Programming Exercise: Automatic Thresholding
1. Research and implement a method for automatic image thresholding, where it
finds the “best” threshold value.

2. Find a method that allows the user to specify the number of threshold values and
implement in your CVIPlab.

Programming Exercise: Image Morphing

1. Write a function to implement image morphing. Allow the user to specify the per-
centage of the second image to be added to the first after each iteration.

2. Modify the function to allow the user to specify the corresponding (r,c) pairs
in imagel and image2, and warp the image(s) accordingly as they are morphed
together. Hint: linear interpolation is required.
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Further Reading

For more information on image preprocessing, see Sonka, Hlavac, and Boyle (2008). The
method of zooming via convolution masks is described in Sid-Ahmed (1995). For spatial
filtering, Gonzalez and Woods (2008), Sonka, Hlavac, and Boyle (2008), Jain, Kasturi, and
Schnuck (1995), Galbiati (1990), Pratt (1991), and Myler and Weeks (1993) contain addi-
tional information. More on connectivity can be found in Gonzalez and Woods (2008),
Jain, Kasturi, and Schnuck (1995), Horn (1986), and Haralick and Shapiro (1992). For more
background on the Euler number see Horn (1986). More information on halftoning and
dithering can be found in Watt and Policarpo (1998), Hill (1990), and Durrett (1987). The
definitions for connectivity are described in Horn (1986), and further information can be
found in Haralick and Shapiro (1992). More labeling algorithms can be found in Shapiro
and Stockman (2001), Sonka, Hlavac, and Boyle (2008), Jain, Kastuiri, and Schnuck (1995).
More on thresholding techniques can be found in Shapiro and Stockman (2001) and Davies
(1997). Details on improved gray-scale (IGS) quantization can be found in Gonzalez and
Woods (2008). Additional information on the processing of binary images can be found in
Shapiro and Stockman (2001), Jain, Kasturi, and Schunck (1995), Davies (1997), and Russ
(1999).

© 2011 by Taylor & Francis Group, LLC



4

Segmentation and Edge/Line Detection

4.1 Introduction and Overview

The image analysis process requires us to take vast amounts of low level pixel data and
extract useful information. In this chapter we will explore methods to divide the image into
meaningful regions that represent higher level information. We will discuss edge detec-
tion, line detection, and finally image segmentation. We will see that edge and line detec-
tion are important steps in one category of image segmentation methods.

The goal of image segmentation is to find regions that represent objects or meaningful
parts of objects. Division of the image into regions corresponding to objects of interest
is necessary before any processing can be done at a level higher than that of the pixel.
Identification of real objects, pseudo-objects, shadows, or actually finding anything of
interest within the image, requires some form of segmentation.

Image segmentation methods will look for objects that either have some measure of
homogeneity within themselves, or have some measure of contrast with the objects on
their border. Most image segmentation algorithms are modifications, extensions, or com-
binations of these two basic concepts. The homogeneity and contrast measures can include
features such as gray-level, color, and texture. Once we have performed some preliminary
segmentation we may incorporate higher-level object properties, such as shape or color
features, into the segmentation process.

We can divide image segmentation techniques into three main categories (see Figure 4.1-1):
(1) region growing and shrinking, (2) clustering methods, and (3) boundary detection. The
region growing and shrinking methods use the row and column, (,¢), based image domain;
while the clustering techniques can be applied to any domain, such as any N-dimensional
color or feature space, whose components may even include the spatial domain’s (7,c) coor-
dinates. From this perspective, the region growing and shrinking category can be consid-
ered a subset of the clustering methods, but is limited to the spatial domain. We separate
them here since the spatial domain is of primary significance in images. The boundary
detection methods are extensions of the edge detection techniques.

Edge detection techniques are discussed in Section 4.2, as well as metrics to measure
edge detector performance. Section 4.2 includes a discussion of the Hough transform for
line finding, and concludes with a section on corner detection. Section 4.3 will explore var-
ious representative examples of the many image segmentation algorithms and this chap-
ter concludes with a discussion of morphological filtering in Section 4.3.5. Morphological
filtering is essentially filtering of objects in the spatial domain, and binary, monochrome,
and color images will be considered.
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l Shrinking

— —

Growing
Region growing/shrinking is performed by finding Clustering looks for data that can be grouped
homogeneous regions and changing them until in domains other than the spatial domain.

they no longer meet the homogeneity criteria.

(o)

Boundary detection is often achieved using a
differentiation operator to find lines or edges,
followed by postprocessing to connect the
points into borders.

FIGURE 4.1-1
Image segmentation categories.

4.2 Edge/Line Detection

The edge and line detection operators presented here represent the various types of opera-
tors in use today. Many are implemented with convolution masks, and most are based on
discrete approximations to differential operators. Differential operations measure the rate
of change in a function, in this case, the image brightness function. A large change in
image brightness over a short spatial distance indicates the presence of an edge. Some
edge detection operators return orientation information (information about the direction
of the edge), while others only return information about the existence of an edge at each
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point. Also included in this section is a special transform, the Hough transform, which is
specifically defined to find lines.

Edge detection methods are used as a first step in the line detection process. Edge detec-
tion is also used to find complex object boundaries by marking potential edge points cor-
responding to places in an image where rapid changes in brightness occur. After these
edge points have been marked, they can be merged to form lines and object outlines. Often
people are confused about the difference between an edge and a line. This is illustrated in
Figure 4.2-1 where we see that an edge occurs at a point and is perpendicular to the line.
The edge is where the sudden change occurs, and a line or curve is a continuous collection
of edge points along a certain direction.

With many of the edge detection operators, noise in the image can create problems. That
is why it is best to preprocess the image to eliminate, or at least minimize, noise effects. To
deal with noise effects we must make tradeoffs between the sensitivity and the accuracy
of an edge detector. For example, if the parameters are adjusted so that the edge detector
is very sensitive, it will tend to find many potential edge points that are attributable to
noise. If we make it less sensitive, it may miss valid edges. The parameters that we can
vary include the size of the edge detection mask and the value of the gray-level threshold.
A larger mask or a higher gray-level threshold will tend to reduce noise effects, but may
result in a loss of valid edge points. The tradeoff between sensitivity and accuracy is illus-
trated in Figure 4.2-2.

Edge detection operators are based on the idea that edge information in an image is
found by considering the relationship a pixel has with its neighbors. If a pixel’s gray-level

FIGURE 4.2-1

Edges and lines are perpendicular. The line shown here is vertical and the edge direction is horizontal. In this
case the transition from black to white occurs along a row, this is the edge direction, but the line is vertical along
a column.
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FIGURE 4.2-2

Noise in images requires tradeoffs between sensitivity and accuracyfor edge detectors. (a) Noisy image,
(b) edge detector too sensitive, many edge points found that are attributable to noise, (c) edge detector not
sensitive enough, loss of valid edge points, (d) reasonable result obtained by compromise between sensitivity
and accuracy.

value is similar to those around it, there is probably not an edge at that point. However,
if a pixel has neighbors with widely varying gray levels, it may represent an edge point.
In other words, an edge is defined by a discontinuity in gray-level values. Ideally, an edge
separates two distinct objects. In practice, apparent edges are caused by changes in color,
texture, or by the specific lighting conditions present during the image acquisition process.
This means that what we refer to as image objects may actually be only parts of the objects
in the real world, see Figure 4.2-3.

Figure 4.2-4 illustrates the differences between an ideal edge and a real edge. Figure 4.2-4a
shows a representation of one row in an image of an ideal edge. The vertical axis repre-
sents brightness, and the horizontal axis shows the spatial coordinate. The abrupt change in
brightness characterizes an ideal edge. In the corresponding image, the edge appears very
distinct. In Figure 4.2-4b we see the representation of a real edge, which changes gradually.
This gradual change is a minor form of blurring caused by the imaging device, the lenses,
and/or the lighting, and is typical for real-world (as opposed to computer-generated) images.
In the figure, where the edge has been exaggerated for illustration purposes, note that from
a visual perspective this image contains the same information as does the ideal image: black
on one side, white on the other, with a line down the center.

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 143

FIGURE 4.2-3

Image objects may be parts of real objects. (a) Butterfly image (original photo courtesy of Mark Zuke), (b) Butterfly
after edge detection, note that image objects are separated by color and brightness changes, (c) image of objects
in kitchen corner, (d) image after edge detection, note that some image objects are created by reflections in the
image due to lighting conditions and object properties.
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Brightness
Brightness

Spatial coordinates Spatial coordinates

Ideal edge Real edge

FIGURE 4.2-4
Ideal versus real edge.

4.2.1 Gradient Operators

Gradient operators are based on the idea of using the first or second derivative of the gray-
level function as an edge detector. Remember from calculus that the derivative measures
the rate of change of a line, or the slope of the line. If we model the gray-level transition
of an edge by a ramp function (which is a good approximation to a real edge), we can see
what the first and second derivatives look like in Figure 4.2-5. When the gray level is con-
stant the first derivative is zero, and when it is linear it is equal to the slope of the line. With
the following operators we will see that this is approximated with a difference operator,
similar to the methods used to derive the definition of the derivative. The second deriva-
tive is positive at the change on the dark side of the edge, negative at the change on the
light side, and zero elsewhere.

In Figure 4.2-5¢ we can see that the magnitude of the first derivative will mark edge
points, with steeper gray-level changes corresponding to stronger edges and larger mag-
nitudes from the derivative operators. In Figure 4.2-5d we can see that applying a second
derivative operator to an edge returns two impulses, one on either side of the edge. An
advantage of this is that if a line is drawn between the two impulses the position where
this line crosses the zero axis is the center of the edge, which theoretically allows us to
measure edge location to subpixel accuracy. Subpixel accuracy refers to the fact that the
zero-crossing may be at a fractional pixel distance, for example halfway between two pix-
els, so we could say the edge is at, for instance, c =75.5.
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FIGURE 4.2-5

Edge model. (a) A portion of an image with an edge, which has been enlarged to show detail, (b) ramp edge
model, (c) first derivative, (d) second derivative with a line drawn between the two pulses that crosses the zero
axis at the edge center.

The Roberts operator is a simple approximation to the first derivative. It marks edge
points only; it does not return any information about the edge orientation. It is the simplest
of the edge detection operators and will work best with binary images (gray-level images
can be made binary by a threshold operation). There are two forms of the Roberts operator.
The first consists of the square root of the sum of the differences of the diagonal neighbors
squared, as follows:

o) =10 =1,c =D +[I(r,c = 1) -1 = 1,0)]

© 2011 by Taylor & Francis Group, LLC



146 Digital Image Processing and Analysis

The second form of the Roberts operator is the sum of the magnitude of the differences of
the diagonal neighbors, as follows:

I(r,c)=I(r=1,c = 1) +|I(r,c = 1) = I(r - 1,0)

The second form of the equation is often used in practice due to its computational efficiency—it
is typically faster for a computer to find an absolute value than to find square roots.

The Sobel operator approximates the gradient by using a row and a column mask, which
will approximate the first derivative in each direction. The Sobel edge detection masks
find edges in both the horizontal and vertical directions, and then combine this informa-
tion into two metrics—magnitude and direction. The masks are as follows:

VERTICAL EDGE  HORIZONTAL EDGE

-1 -2 -1 -1 0 1
0 0 -2 0 2
1 2 1 -1 0 1

These masks are each convolved with the image. At each pixel location we now have two
numbers: s;, corresponding to the result from the vertical edge mask, and s,, from the hori-
zontal edge mask. We use these numbers to compute two metrics, the edge magnitude and
the edge direction, defined as follows:

EDGE MAGNITUDE /5.2 + 5,2

5
5
As seen in Figure 4.2-1, the edge direction is perpendicular to the line (or curve), because the
direction specified is the direction of the gradient, along which the gray levels are changing.

The Prewitt is similar to the Sobel, but with different mask coefficients. The masks are
defined as

EDGE DIRECTION Tan"!

VERTICAL EDGE = HORIZONTAL EDGE

-1 -1 -1 -1 0 1
-1 0 1
1 1 1 -1 0 1

These masks are each convolved with the image. At each pixel location we find two num-
bers: p,, corresponding to the result from the vertical edge mask and p,, from the horizon-
tal edge mask. We use these results to determine two metrics, the edge magnitude and the
edge direction, which are defined as follows:

EDGE MAGNITUDE /p;% + p,?

EDGE DIRECTION Tan-! pl]
P>
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As with the Sobel edge detector, the direction lies 90° from the apparent direction of the
line or curve. The Prewitt is easier to calculate than the Sobel, since the only coefficients
are 1s, which makes it easier to implement in hardware. However, the Sobel is defined to
place emphasis on the pixels closer to the mask center, which may be desirable for some
applications.

The Laplacian operators described here are similar to the ones used for preprocessing
as described in Section 3.2.3 Spatial Filters. The three Laplacian masks presented below
represent various practical approximations of the Laplacian, which is the two-dimensional
version of the second derivative (note that these are masks used in practice and true
Laplacians will have all the coefficients negated). Unlike the Sobel and Prewitt edge detec-
tion masks, the Laplacian masks are rotationally symmetric, or isotropic, which means
edges at all orientations contribute to the result. They are applied by selecting one mask
and convolving it with the image. The sign of the result (positive or negative) tells us what
side of the edge is brighter.

LAPLACIAN MASKS
Type 1 Type 2 Type 3
0 -1 0 -2 1 =2 -1 -1 -1
-1 4 -1 1 4 1 -1 8§ -1
0 -1 0 -2 1 -2 -1 -1 -1

These masks differ from the Laplacian-type previously described in that the center coef-
ficients have been decreased by one. With these masks, we are trying to find edges, and are
not interested in the image itself—if we increase the center coefficient by one it is equiva-
lent to adding the original image to the edge detected image.

An easy way to picture the difference is to consider the effect each mask has when
applied to an area of constant value. The above convolution masks return a value of zero.
If we increase the center coefficients by one, each mask returns the original gray level.
Therefore, if we are only interested in edge information, the sum of the coefficients should
be zero. If we want to retain most of the information that is in the original image, the coef-
ficients should sum to a number greater than zero. The larger this sum, the less the pro-
cessed image is changed from the original image. Consider an extreme example in which
the center coefficient is very large compared with the other coefficients in the mask. The
resulting pixel value will depend most heavily upon the current value, with only minimal
contribution from the surrounding pixel values.

4.2.2 Compass Masks

The Kirsch and Robinson edge detection masks are called compass masks since they are
defined by taking a single mask and rotating it to the eight major compass orientations:
North, Northwest, West, Southwest, South, Southeast, East, and Northeast. The Kirsch
compass masks are defined as follows:

3 3 5 3 5 5 5 5 5 5 5 -3
k|-3 0 5| k|3 0 5| k|3 0 -3 k|5 0 -3
3 3 5 3 -3 -3 3 -3 -3 3 -3 -3
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5 -3 -3 3 -3 -3 3 -3 -3 3 -3 -3
k(5 0 -| k|5 o0 -3/ k|3 0 -3 k|3 0 5
5 -3 -3 5 5 -3 5 5 5 3 5 5

The edge magnitude is defined as the maximum value found by the convolution of each
of the masks with the image. The edge direction is defined by the mask that produces the
maximum magnitude; for instance, k, corresponds to a horizontal edge, whereas k; cor-
responds to a diagonal edge in the Northeast/Southwest direction (remember edges are
perpendicular to the lines). We also see that the last four masks are actually the same as
the first four, but flipped about a central axis.

The Robinson compass masks are used in a manner similar to the Kirsch masks, but
are easier to implement, as they rely only on coefficients of 0, 1, and 2, and are symmetrical
about their directional axis—the axis with the zeros that corresponds to the line direction.
We only need to compute the results on four of the masks; the results from the other four
can be obtained by negating the results from the first four. The masks are as follows:

-1 0 1 0 1 2 1 2 1 2 1 0
-2 0 rn|-1 0 1| n| O 0 0 rn |1 0 -1
-1 0 1 -2 -1 0 -1 -2 -1 0o -1 -2

1 0 -1 0o -1 -2 -1 -2 - -2 -1 0
2 0 =2 |1 0 -1 | O 0 0] r -1 0 1
0 -1 2 1 0 1 2 1 0 1 2

The edge magnitude is defined as the maximum value found by the convolution of each
of the masks with the image. The edge direction is defined by the mask that produces the
maximum magnitude. It is interesting to note that masks r, and r, are the same as the Sobel
masks. We can see that any of the edge detection masks can be extended by rotating them
in a manner like these compass masks, which will allow us to extract explicit information
about edges in any direction.

4.2.3 Advanced Edge Detectors

The edge detectors considered here include the Marr—Hildreth algorithm, the Canny algo-
rithm, the Boie-Cox algorithm, the Shen—Castan algorithm, and the Frei-Chen masks.
They are considered to be advanced because they are algorithmic in nature, which basi-
cally means they require multiple steps. Except for the Frei-Chen masks, these algorithms
begin with the idea that, in general, most edge detectors are too sensitive to noise and by
blurring the image prior to edge detection we can mitigate these noise effects. The noise
considered here includes irrelevant image detail, as well as a combination of blurring from
camera optics and signal corruption from camera electronics.

The simplest of these is the Marr-Hildreth algorithm, based on a model of the human
visual system’s response first developed by neuroscientist David Marr (see Figure 7.2.5).
The algorithm requires three steps:

1. Convolve the image with a Gaussian smoothing filter.
2. Convolve the image with a Laplacian mask.

3. Find the zero-crossings of the image from Step 2.
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By preprocessing with a smoothing filter we can mitigate noise effects (see Section 4.2.5),
and then use the Laplacian to enhance the edges. By adjusting the spread, or variance, of the
Gaussian we can adjust the filter for different amounts of noise and various amounts of
blurring. The combination of the Gaussian followed by a Laplacian is called a Laplacian
of a Gaussian (LoG), or the Mexican hat operator since the function resembles a sombrero (see
Figure 4.2-6). Since the process requires the successive convolution of two masks, they can be
combined into one LoG mask. Commonly used 5 x 5 and 17 x 17 masks that approximate the
combination of the Gaussian and Laplacian into one convolution mask are as follows:

5 x 5 Laplacian of a Gaussian mask:

00
0 -1
-1 -2
0 -1
0 o0
0 0
0 0
0 0
0 0
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
0 -1
0 -1
0 -1
0 -1
0 0
0 0
0 0
0 o0

-2

0

0
-1
-2
-1

0

0
0

0
0
-1
0
0

0
-1

The equation for the LoG filter is

where (1,c) are the row and column coordinates and ¢ is the Gaussian variance. From the

LOG=[

17 x 17 Laplacian of a Gaussian mask:

-1 -1 -1
-1 -1 -1
-3 -3 -3
-3 -3 -3
-2 -3 =2
2 4 2
10 12 10
18 21 18
21 24 21
18 21 18
10 12 10
2 4 2
-2 -3 -2
-3 -3 -3
-3 -3 -3
-1 -1 -1
-1 -1 -1

r2 +¢2 =202

o4

N r2+cz)
e L 202

149

equation we can see that zero-crossings occur at (12 + ¢?) = 26% or V26 from the mean, as
shown in Figure 4.2-6a.
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Zero-crossing

Zero-crossing /

§<—2\/20 —»:

FIGURE 4.2-6

Laplacian of a Gaussian. (a) One-dimensional plot of the LoG function, (b) the LoG as an image with white repre-
senting positive numbers, black negative numbers, and gray representing zero, (c) three LoG plots with 6 =0.5,
1.0 and 1.5. Note for 6 = 0.5, the mask size, 1, should be about 5 x 5; for 6 =1,9 x 9, and so on. This is done so the
mask covers the entire function as it goes negative and then goes back up to zero. Note this is 46 to the left, 4c
to the right and the center term corresponding to the term at the 0 point on the graph.
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To determine the size of the mask to use we consider that 99.7% of the area under a
Gaussian curve is within +3c of the mean. Keeping in mind that the sampling grid is fixed
by the pixel spacing, the variance and the mask size must be related (see Figure 4.2-6¢). So
we want to select a value of n for the n x n convolution mask that is an odd integer greater
than or equal to 60, or we will get only a portion of the curve with our sampled filter mask.
In Computer Vision and Image Processing tools (CVIPtools) we use the following equation
to determine 7, based on the variance, o:

n=[2*TRUNCATE(3.350 + 0.33) + 1]

This equation assures us we have the complete spread of the LoG filter, and actually pro-
vides us with an n that corresponds to about +4c.

The third step for the Marr—-Hildreth algorithm is to find the zero-crossings after the LoG
is performed. This can be accomplished by considering a pixel and its surrounding pix-
els, thus a 3 x 3 subimage, and looking for sign changes between two of the opposing
neighbors. That is, we check the left/right, up/down, and the two diagonal neighboring
pairs. Figure 4.2-7 illustrates the results from the standard Marr-Hildreth algorithm. The
disadvantages of the Marr-Hildreth algorithm, or any second derivative/zero-crossing
method, is that it tends to smooth shapes too much that has the effect of eliminating cor-
ners and creating closed loops in the resulting lines/curves. The Marr-Hildreth results are
often referred to as a “plate of spaghetti,” as seen in the figure.

FIGURE 4.2-7

Results from using different variances with the Marr-Hildreth Algorithm. As the variance is increased, which
is the equivalent of using a larger mask size for the filters, the resulting edge lines are farther apart. (a) Original
image, (b) results with variance = 2.5, (c) results with variance = 3.5, (d) results with variance = 5.
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In practice, we may want to set a threshold to use before a pixel is classified as an
edge. The threshold is tested against the absolute value of the difference between the
two pixels that have the sign changes. If this value exceeds the threshold it is classified
as an edge pixel.

Example 4.2.1

Applying a threshold to step 3 of the Marr-Hildreth algorithm.
Suppose, after the LoG, we have a 3 x 3 subimage as follows:

-10 11 17
18 2 15
21 33 28

The only pair that has a sign change is the NW/SE diagonal. So, the center pixel may be con-
sidered an edge pixel. If we apply a threshold, we calculate the absolute value of the difference
of this pair:

|-10 - 28| =38

Now, if this value exceeds the threshold we have set, then the center pixel is determined to be
an edge pixel.

The Marr-Hildreth as implemented in CVIPtools has a parameter to allow the user to
select single variance or dual variance. If dual variance is selected, the user specifies a sigma
(variance) value and a delta value. CVIPtools then computes the Marr-Hildreth results
using two variances, the specified sigma plus the delta value and the specified sigma
minus the delta value. These results are then combined into a single image with a logical
AND function. For color images the user can also select to combine the bands, which per-
forms a logical AND of the red, green, and blue (RGB) band results.

The Canny algorithm, developed by John Canny in 1986, is an optimal edge detection
method based on a specific mathematical model for edges. The edge model is a step edge
corrupted by Gaussian noise. The algorithm consists of four primary steps:

1. Apply a Gaussian filter mask to smooth the image to mitigate noise effects. This can
be performed at different scales, by varying the size of the filter mask that corre-
sponds to the variance of the Gaussian function. A larger mask will blur the image
more and will find fewer, but more prominent, edges.

2. Find the magnitude and direction of the gradient using equations similar to the Sobel
or Prewitt edge detectors, for example:

VERTICAL HORIZONTAL

12 -1 —1} 1/2[—1 1}

1 1 -1 1

These masks are each convolved with the image. At each pixel location we find two num-
bers: ¢,, corresponding to the result from the vertical edge mask and c,, from the
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horizontal edge mask. We use these results to determine two metrics, the edge
magnitude and the edge direction, which are defined as follows:

EDGE MAGNITUDE /c;2 + ¢,2

EDGE DIRECTION Tan-! [Cl}
C2

3. Apply nonmaxima suppression that results in thinned edges. This is done by con-
sidering small neighborhoods in the magnitude image, for example 3 x 3, and
comparing the center value to its neighbors in the direction of the gradient. If the
center value is not larger than the neighboring pixels along the gradient direction,
then set it to zero. Otherwise, it is a local maximum, so we keep it. In Figure 4.2-8
we see an example of a 3 x 3 neighborhood showing the magnitude at each loca-
tion, and use an arrow to show the gradient direction. The center pixel has a value
of 100 and the gradient direction is horizontal (corresponding to a vertical line),
so it is compared to the pixels to the right and left; which are 40 and 91. Since it
is greater than both, it is retained as an edge pixel; if it was less than either one it
would be removed as an edge point. Note that this will have the effect of making

thick edges thinner, by selecting the “best” point along a gradient direction.

4. Apply two thresholds to obtain the final result. This technique, known as hysteresis
thresholding helps to avoid false edges caused by too low a threshold value or miss-
ing edges caused by too high a value. It is a two step thresholding method, which
first marks edge pixels above a high threshold; and then applies a low threshold
to pixels connected to the pixels found with the high threshold. This can be per-
formed multiple times, as either a recursive or iterative process.

In CVIPtools the high threshold is computed from the image by finding the value that
is greater than 90% of the pixels after applying nonmaxima suppression to the magnitude
images. The high threshold is multiplied with the high threshold factor to obtain the final
high threshold for hysteresis. The low threshold is computed from the image by averag-
ing the high threshold and minimum value in the image after applying the nonmaxima
suppression to the magnitude images. The low threshold is then multiplied with the low
threshold factor to obtain the final low threshold for hysteresis. CVIPtools also allows the
variance of the Gaussian filter as an input parameter. Figures 4.2-9 and 4.2-10 show results
from varying these parameters.

< 50 112 — 20 —
< 40 100 > 91—
<88 9%5 —> 92—

FIGURE 4.2-8

Nonmaxima suppression. A 3 x 3 subimage of the magnitude image, which consists of the magnitude results
in an image grid. The arrows show the gradient directions. This particular subimage has a vertical line (a
horizontal edge). To apply nonmaxima suppression we compare the center pixel magnitude along the gradi-
ent direction. Here the 100 is compared with the 40 and the 91. Since it is a local maximum, it is retained as an
edge pixel.
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FIGURE 4.2-9

Results from changing high threshold with Canny Algorithm. As the high threshold is increased, small details
are removed. In the results the Gaussian variance = 0.5 and the low threshold = 1. (a) Original image, (b) results
high threshold factor = 1, (c) high threshold factor = 2, (d) high threshold factor = 3.

The Boie—Cox algorithm, developed in 1986 and 1987, is a generalization of the Canny
algorithm. It consists of similar steps, but uses matched filters and Wiener filters (see
Chapter 9) to allow for a more generalized edge model. The Shen—Castan algorithm,
developed in 1992, uses an optimal filter function they derived called an infinite symmet-
ric exponential filter. Shen and Castan claim that their filter does better than the Canny at
finding the precise location of the edge pixels. Like the Canny, it uses a smoothing filter
followed by a similar multistep algorithm to find edge pixels. The search includes steps
similar to the Canny, but with modifications and extensions (for more details see the refer-
ences). Figure 4.2-11 shows results from these algorithms.

The Frei-Chen masks are unique in that they form a complete set of basis vectors. This
means we can represent any 3 x 3 subimage as a weighted sum of the nine Frei-Chen
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FIGURE 4.2-10

Results from changing Gaussian variance with Canny Algorithm. As the Gaussian variance is increased, the
Canny should find fewer, but more prominent edges. In these results the low and high threshold factors =1.
(@) Original image, (b) Canny results with Gaussian variance =1, (c), Gaussian variance = 3, (d) Gaussian vari-
ance = 5. Note that if the variance is too large, the image is blurred too much and instead of finding “fewer,
more prominent edges” we find fuzzy and then multiple edges. To avoid this we need to also increase the high
threshold. In the next two images the low threshold is 1, but the high threshold has been increased to 2. Now we
do see fewer, more prominent edges. (¢) Gaussian variance = 2, (f) Gaussian variance = 3. Results with noise in
the image. Note that as the variance is increased the false edges from the salt and pepper noise are eliminated.
(g) Original image with salt-and-pepper noise added, 2% each, (h) Canny with variance = 0.5, (i) Canny with
variance = 1.0, (j) Canny with variance = 1.5.
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FIGURE 4.2-10 (CONTINUED)

Results from changing Gaussian variance with Canny Algorithm. As the Gaussian variance is increased, the
Canny should find fewer, but more prominent edges. In these results the low and high threshold factors =1.
(a) Original image, (b) Cannyresults with Gaussian variance = 1, (c), Gaussian variance = 3, (d) Gaussian vari-
ance = 5. Note that if the variance is too large, the image is blurred too much and instead of finding “fewer,
more prominent edges” we find fuzzy and then multiple edges. To avoid this we need to also increase the high
threshold. In the next two images the low threshold is 1, but the high threshold has been increased to 2. Now we
do see fewer, more prominent edges. (e) Gaussian variance = 2, (f) Gaussian variance = 3. Results with noise in
the image. Note that as the variance is increased the false edges from the salt and pepper noise are eliminated.
(g) Original image with salt-and-pepper noise added, 2% each, (h) Canny with variance = 0.5, (i) Canny with
variance = 1.0, (j) Canny with variance = 1.5.

masks (Figure 4.2-12). These weights are found by projecting a 3 x 3 subimage onto each
of these masks. This projection process is similar to the convolution process in that both
overlay the mask on the image, multiply coincident terms, and sum the results (also called
a vector inner product). This is best illustrated by example.

Example 4.2.2

Suppose we have the following subimage, I:

1 0 1
L={1 0 1
1 0 1

To project this subimage onto the Frei-Chen masks, start by finding the projection onto f;.
Overlay the subimage on the mask and consider the first row. The 1 in the upper left corner of
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FIGURE 4.2-11

Comparision of Canny, Shen-Casten, and Boie—Cox Algorithms. These results used the default parameters in
CVIPtools. (a) original image, (b) Canny, (c) Shen—Casten, (d) Boie-Cox.

the subimage coincides with the 1 in the upper left corner of the mask, the 0 is over the v2,
and the 1 on the upper right corner of the subimage coincides with the 1 in the mask. Note that
all these must be summed and then multiplied by the 1/2+2 factor to normalize the masks.
The projection of I, onto f; is equal to:

%[1(1%0(&”1(1)+1(0)+0(0)+1(0)+1(- 1)+0(=v2)+1(-1)] =0

If we follow this process and project the subimage, I, onto each of the Frei-Chen masks, we
get the following;:

f1_>0’f2_>0’f3_>0’f490’f5_>_1/f<7_>0'f7_>0'f8_>_1/f9_>2

We can now see what is meant by a complete set of basis vectors allowing us to represent a
subimage by a weighted sum. The basis vectors in this case are the Frei-Chen masks, and
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1 o) 1 1 0 -1 0 -1 V2
! 0 0 0 ! :
242 242 V2 0 |2 22 1 0 -1
-1 | 2| -1 1 0 -1 2|1 0
1 b 5
V2 -1 0 0 1 0 -1 0 1
1 1 1
— -1 1 —| -1 0 -1 —] o0 0 0
242 0 2 2
0 1 0 0 1 0 1 0 -1
A Js e
1 -2 1 -2 1 -2 1 1 1
1
—| 2| a 1 1 4 1 L 1 1
6 6 3
1 -2 1 -2 1 -2 1 1 1
f, Js %
FIGURE 4.2-12

Frei—chen masks. The first four masks, f,—f, comprise the edge subspace. The next four masks, f;—f; comprise the
line subspace. The final mask, f,, is the average subspace. More specifically, f; and f, are the gradient masks, f; and
fi the ripple masks, f; and f; the line masks, and f, and f; the Laplacian masks.

the weights are the projection values. Take the weights and multiply them by each mask,
then sum the corresponding values. For this example the only nonzero terms correspond
to masks f;, fs, and f,, and we find the following:

, 0 1 0 , -2 1 =2 . 1 1 1 1 0 1
n3)[ 0 asen(g) e o5l 11l 0 -
0 1 0 -2 1 =2 1 1 1 0 1

We have seen how the Frei-Chen masks can be used to represent a subimage as a weighted
sum, but how are they used for edge detection? The Frei-Chen masks can be grouped into
a set of four masks for an edge subspace, four masks for a line subspace, and one mask for
an querage subspace. These subspaces can be further broken down into gradient, ripple, line,
and Laplacian subspaces (see Figure 4.2-12). To use them for edge detection, select a par-
ticular subspace of interest and find the relative projection of the image onto the particular
subspace. This is given by the following equation:

cos(®) = \/?
M= ;(zs,fkf

where

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 159

(5]

$

&

el

2 :

3 . :

= S '

o .
6 E

< M

Subspace of interest, e

cose = M
S
FIGURE 4.2-13

Frei—Chen projection. A 2-D representation of the Frei-Chen projection concept. The actual Frei-Chen space is
nine-dimensional, where each dimension is given by one of the masks, f,. S is the vector that represents the
subimage, and M is projection of the subimage vector onto the subspace of interest. The smaller the angle, the
larger M is, and the more the subimage is similar to the subspace of interest.

9

S=e (I.f)

k=1

The set {e} consists of the masks of interest. The (I,f;) notation refers to the process of over-
laying the mask on the subimage, multiplying coincident terms, and summing the results
(a vector inner product). The lengths of the vectors from the origin in the nine-dimensional
Frei-Chen space are represented by VM and the VS, with S corresponding to the entire
nine-dimensional subimage vector and M the subspace of interest. An illustration of this is
shown in Figure 4.2-13. The advantage of this method is that we can select particular edge
or line masks of interest, and consider the projection of those masks only. To use for edge
detection we typically set a threshold on the angle to determine if a point will be considered
a “hit” for the edge and/or line subspace of interest. Any pixel that with a corresponding
angle value below the threshold is similar enough to the subspace of interest to be consid-
ered a “hit,” and is marked accordingly.

In CVIPtools the user can select one of four different “projection” choices: (1) the edge
subspace, (2) the line subspace, (3) the maximum of the edge and line subspace projec-
tion, and (4) the minimum angle from the edge and line subspace projections. In all cases
CVIPtools will return an image of data type SHORT with the actual projection values. With
the first two options the user selects a threshold for the angle and only the pixel locations
where the angle is smaller than the threshold will have the projection value, other pixels
are set to zero. In the images shown in Figure 4.2-14 all the results have been postprocessed
with a binary threshold operation, using the average value in the Frei-Chen output image
as the threshold. Figure 4.2-15 shows the effect of changing the binary threshold value.

4.2.4 Edges in Color Images

We saw in Chapter 2 that color images are described as three bands of monochrome image
data, and typical images use RGB bands. We also saw that various color transforms exist
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FIGURE 4.2-14

Frei—Chen results using CVIPtools. (a) Original image, (b) results from the maximum of edge and line selec-
tion, (c) edge subspace angle threshold = 60, (d) edge subspace, angle threshold = 80, (e) line subspace, angle
threshold = 60, (f) line subspace, angle threshold = 80. Note: for display purposes the images shown have been
postprocesssed with a binary threshold operation using the average value of the output image.

to map these RGB images into different color spaces. Given these choices, more than one
possible definition of what constitutes a color edge exists. The simplest method is to extract
the luminance, or brightness information and use the previously defined methods. Or the
RGB data can be mapped into another color space and edges are found in one of those
bands. For example, for a particular application we may not be interested in changes in
brightness, but in changes in what we classically think of as “color”; so the RGB data can
be mapped into the Hue/Saturation/Value (HSV) color space and edges are sought in the
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FIGURE 4.2-15

Changing the binary threshold with the Frei-Chen and maximum of edge or line subspace. (a) Original image,
(b) output from the maximum value of the edge or line subspace (linearly remapped to BYTE), (c) threshold =
average value, (d) threshold = 1.5 times the average value, (e) threshold = 2 times the averagevalue, (f) threshold =
3 times the average value.

hue or saturation bands. Figure 4.2-16 illustrates this by showing that the areas of reflection
are found in the saturation band, but not in the value (brightness) band.

Alternately, all three bands are used. We can require an edge to be present in all three
bands at the same location. With this scheme we can use any of the color spaces, depending
on the application, and we may want to define a quantum for “location error,” and not
require the edge to be at exactly the same pixel location in all three bands. Also, with this
scheme, we can use any of the previously defined edge detection methods on each of the
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FIGURE 4.2-16

Color edge detection in HSV space. (a) Original image, (b) original image mapped into HSV color space and
displayed as an RGB image, (c) the saturation band, (d) Canny edge detection applied to the saturation band, (e)
the value band, (f) Canny edge detection applied to the value band. Note that the areas of reflection, marked with
the yellow arrows on image (d), are found in the saturation band, but not in the value band, image (f).
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three bands individually. We can then combine the results from all three bands into a
three-band image (as is done in CVIPtools, see Figure 4.2-17), or simply retain the maxi-
mum value at each pixel location from all three bands and output a monochrome image.
With application specific reasons a linear combination of all three results can be used to
create a monochrome image.

Another method that uses all three bands simultaneously is to consider the color pixel
vectors and search through the image marking edge points only if two neighboring
color pixel vectors differ by some minimum distance measure. Here we can use any vec-
tor distance measure, such as Euclidean distance (see Chapter 6 for definitions of other
distance measures).

()

FIGURE 4.2-17

Color edge detection in RGB Space. (a) Original image in RGB space, (b) Canny edge detector, all three bands
displayed, (c) Boie-Cox edge detector, all three bands displayed. The edges that appear white are in all three
RGB bands. Note that some edges only appear in one or two color bands.
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One specific method for finding edges in multispectral images, developed by Cervenka
and Charvat in 1987, uses pixel values in all the image bands. This can be applied to three-
band color images, as well as multispectral satellite images. It uses equations similar to
the Roberts gradient, but is applied to all the image bands with a simple set of equations.
The result of this edge detector at pixel (r,c) is the smaller of the two values from these two
equations:

n

Z[Ib(r,c)—l(r,c)] [Ib(r +1c+)=-I(r+1,c+ 1)]

\/Z[Ib(r,c)— T(r,c)]2 z[lb(r +1c+)=-I(r+1,c+ 1):|2

n

Z[Ih(r +1,0)-I(r+ 1,c)] [Ib(r,c +1)=I(r,c+ 1)]

\/2[11,(7+ Lo)-I(r+ 1,c)]2 Z[Ib(r,c +1)-I(r,c+ 1)]2

where

I(r,c) is the arithmetic average of all the pixels in all bands at pixel location (r,c),

I,(r,c) is the value at location (7,¢) in the bth band, with a total of # bands.

This edge detector has been used successfully on multispectral satellite images. An exam-
ple is shown in Figure 4.2-18. Here we see the Cervenka and Charvat (1987) method applied
and the results histogram equalized to show detail, and two different thresholds applied
to the resultant image.

4.2.5 Edge Detector Performance

In evaluating the performance of many processes, we can consider both objective and sub-
jective evaluations. The objective metric allows us to compare different techniques with
fixed analytical methods, whereas the subjective methods may have unpredictable results.
However, for many image processing applications, the subjective measures tend to be the
most useful. We will examine the types of errors encountered with edge detection, look at
an objective measure based on these criteria, and review results of the various edge detec-
tors for our own subjective evaluation.

To develop a performance metric for edge detection operators, we need to define what
constitutes success. For example, the Canny algorithm was developed considering three
important edge detection success criteria:

Detection: the edge detector should find all real edges and not find any false edges.
Localization: the edges should be found in the correct place.
Single Response: there should not be multiple edges found for a single edge.

These correlate nicely with Pratt’s Figure of Merit (FOM) defined in 1978. Pratt first con-
sidered the types of errors that can occur with edge detection methods. The types of errors
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FIGURE 4.2-18
Cervenka and Charvat multispectral image detector. (a) Original image, (b) result from the Cerchar in CVIPtools
after histogram equalization to show detail, (c) result from thresholding the Cerchar image at 10, (d) threshold-

ing the Cerchar results at 50.
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are (1) missing valid edge points, (2) classifying noise pulses as valid edge points, and (3)
smearing of edges (see Figure 4.2-19). If these errors do not occur, we can say that we have

achieved success.
The Pratt FOM, is defined as follows:

Ip

1-"OM=i 1
Iy £ 1+ oud?

Iy = the maximum of [, and I

I, = the number of ideal edge points in the image

I; = the number of edge points found by the edge detector

o = a scaling constant that can be adjusted to adjust the penalty for offset edges and
d; = the distance of a found edge point to an ideal edge point.

(a) (b)

FIGURE 4.2-19
Errors in edge detection. (a) Original image, (b) missed edge points, examples marked with arrows, (c) noise
misclassified as edge points, examples marked with arrows, (d) smeared edge.
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For this metric, FOM will be 1 for a perfect edge. Normalizing to the maximum of the
ideal and found edge points guarantees a penalty for smeared edges or missing edge points.
In general, this metric assigns a better rating to smeared edges than to offset or missing
edges. This is done because techniques exist to thin smeared edges, but it is difficult to
determine when an edge is found in the wrong location or is completely missed. The dis-
tance, d, can be defined in more than one way and typically depends on the connectivity
definition used. The possible definitions for d are as follows:

Let the (r,c) values for two pixels be (r,, ¢;) and (r,, ¢,).

1. City block distance, based on four connectivity:
d=n-n|+lc,-c,)

With this distance measure we can only move horizontally and vertically.

2. Chessboard distance, based on eight-connectivity:

Cq —CZD

d= max(‘r1 -1

7

With this distance measure we can move diagonally, as well as horizontally or
vertically.

3. Euclidean distance, based on actual physical distance:

d= [(7’1 —5K)+(c - 6)? ]1/2

Example 4.2.3

Given the following image array, find the Figure of Merit for the following found edge points,
designated by 1s, in (a), (b), and (c). Let 0.= 0.5, and use the city block distance measure. We
assume that the actual edge is in the locations where the line appears; that is, at the 100s.

o o o 0 o0

o o0 o0 0 o0

Image Array |0 100 100 100 O

o o o0 0 O

o o o 0 O
0 0 0 0 O 0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 1 1 1 0 0 0 0 0 O
@0 11 1 0 (|0 1 1 1 0| 90 0 0 0 O
0 0 0 0 O 0 0 0 0 O o1 1 1 1
0 0 0 0 O 0 0 0 0 O 0 0 0 0 O

d 1 1 1

(a)FOM—i ! =l + + =1
In & 1+ad? 311+0.5(0)> 1+0.5(0)> 1+0.5(0)
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Ip

(b)FOM:12 !

In £y 1+ad?
A v o r 0t 1 1 ] 58333
6|1+050) 140507 140500 140517 140517 ' 1+0.5(17
1w 1 1] 1 1 1 1
FOM = - ~0.5833
© In 2 lvad? 4 [1+0.5(1)2 T1+05(1)2 140517 T 1+0.5(2)2 ]

With result (a), we find a perfect edge. In result (b), we see that a smeared edge provides us
with about 83%, and an offset edge in (c) gives us about 58%. Note that the o parameter can be
adjusted to determine the penalty for offset edges.

Applying the Pratt FOM to selected edge detectors from each category—gradient opera-
tors, compass masks, and the advanced edge detectors—results are shown in Figure 4.2-20
and Figure 4.2-21. Figure 4.2-20 shows example test images, and the Pratt FOM results are
plotted as the noise variance increases. The original test image has a gray level of 127 on
the left and 102 on the right side, and then Gaussian noise was added. Figure 4.2-21 shows
resulting images with noise variances of 50 and 100 added to the test image. As expected,
the advanced algorithms will have the best result as shown here with the Canny.

As previously mentioned, the objective metrics are often of limited use in practical applica-
tions, so we will take a subjective look at the results of the edge detectors. The human visual
system is still superior, by far, to any computer vision system that has yet been devised, and
is often used as the final judge in application development. Figure 4.2-22 shows the magni-
tude images resulting from the basic edge detection operators. The magnitude images have
been postprocessed with a threshold operation, using the average value for the threshold.
Here we see similar results from all the operators, but the Laplacian. This results from the
Laplacian being based on the second derivative, while the others are based on the first
derivative. In Figure 4.2-23 we show the magnitude and direction images from the basic
gradient and compass mask edge detection operators. Here we stretch the histogram of the
magnitude images and remap the direction images from 0 to 255 (BYTE datatype).

If we add noise to the image, the edge detection results are not as good. The edge detector
will tend to find more false edges as a result of the noise. As mentioned before, we can pre-
process the image with mean, or averaging, spatial filters to mitigate the effects from noise
(this is explored more in Chapter 9), or we can expand the edge detection operators them-
selves to mitigate noise effects. One way to do this is to extend the size of the edge detection
masks. An example of this method is to extend the Prewitt edge mask as follows:

EXTENDED PREWITT EDGE DETECTION MASK

1 1 1 0 -1 -1 =17
1 1 1 0 -1 -1 -1
1 1 1 0 -1 -1 -1
1 1 1 0 -1 -1 -1
1 1 1 0 -1 -1 -1
1 1 1 0 -1 -1 -1
1 1 1 0 -1 -1 -1]
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FIGURE 4.2-20

Pratt figure of merit. (a) The original test image, 256 x 256 pixels, brightness level of 127 on the left and 102 on
the right, (b) test image with added Gaussian noise with a variance of 25, (c) test image with added Gaussian
noise with a variance of 100, (d) a 16 x 16 subimage cropped from image (c), enlarged to show that the edge is
not as easy to find at the pixel level, (e) this graph shows that as the noise variance increases the Canny has the
best performance. We also see that the Roberts has the worst performance at high noise levels. The Roberts does
poorly due to being based on a 2 x 2 mask, as opposed to the Sobel and Kirsch which are based on 3 x 3 masks.
As we have seen with noisy images, a larger mask will perform better because it tends spread the noise out—it
is effectively a lowpass filter. The disadvantage of this is that fine details will be missed. This is the tradeoff
that occurs with all edge detection—sensitivity versus accuracy. The test image was a step edge with Gaussian
noise, so it is expected that the Canny performs the best because its development was based on this model.
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FIGURE 4.2-21
Pratt figure of merit images. (a) Test image with added Gaussian noise with a variance of 50, (b) a 16 x 16 subim-

age cropped from image (a), enlarged to show that the edge is not as easy to find at the pixel level, (c) Roberts
result, FOM = 0.498, (d) Sobel result, FOM = 0.853, (e) Kirsch result, FOM = 0.851, (f) Canny result, FOM = 0.963,
(g) test image with added Gaussian noise with a variance of 100, (h) a 16 x 16 subimage cropped from image (g),
enlarged to show that the edge is not as easy to find at the pixel level, (i) Roberts, FOM = 0.194, (j) Sobel,

FOM = 0470, (k) Kirsch, FOM = 0.640, (1) Canny, FOM = 0.956.
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FIGURE 4.2-21 (CONTINUED)
Pratt figure of merit images. (a) Test image with added Gaussian noise with a variance of 50, (b) a 16 x 16 subim-

age cropped from image (a), enlarged to show that the edge is not as easy to find at the pixel level, (c) Roberts
result, FOM = 0.498, (d) Sobel result, FOM = 0.853, (e) Kirsch result, FOM = 0.851, (f) Canny result, FOM = 0.963,
(g) test image with added Gaussian noise with a variance of 100, (h) a 16 x 16 subimage cropped from image (g),
enlarged to show that the edge is not as easy to find at the pixel level, (i) Roberts, FOM = 0.194, (j) Sobel,

FOM = 0.470, (k) Kirsch, FOM = 0.640, (I) Canny, FOM = 0.956.
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FIGURE 4.2-22

Edge detection examples. After the edge detector operator was performed a threshold corresponding to the
average value was used on the magnitude image. (a) Original image, (b) Roberts operator, (c) Sobel operator,
(d) Prewitt operator, (e) Laplacian operator, (f) Kirsch operator, (g) Robinson operator. Note that the resultant
images all look similar, except for the Laplacian. The Laplacian is based on the approximation of the second
derivative, unlike the others that are based on the first derivative.

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 173

FIGURE 4.2-22 (CONTINUED)

Edge detection examples. After the edge detector operator was performed a threshold corresponding to the
average value was used on the magnitude image. (a) Original image, (b) Roberts operator, (c) Sobel operator,
(d) Prewitt operator, (e) Laplacian operator, (f) Kirsch operator, (g) Robinson operator. Note that the resultant
images all look similar, except for the Laplacian. The Laplacian is based on the approximation of the second
derivative, unlike the others that are based on the first derivative.

We then can rotate this by 90° and have both row and column masks that can be
used like the Prewitt operators to return the edge magnitude and gradient. These types
of operators are called boxcar operators and can be extended to any size, although
7x7 9x9, and 11 x 11 are typical. The Sobel operator can be extended in a similar
manner:
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FIGURE 4.2-23

Edge detection examples with direction images. After the edge detector operator is applied, the magnitude
image is remapped to BYTE and its histogram is stretched. The direction images are remapped to BYTE range,
0-255. Note the original range on the direction images is —r to + 7. (a) Original image, (b) Sobel magnitude
image, (c) Sobel direction image, (d) Prewitt magnitude, (e) Prewitt direction, (f) Kirsch magnitude, (g) Kirsch
direction, (h) Robinson magnitude, (i) Robinson direction. Note the magnitude images all look similar, but the
Sobel/Prewitt direction images differ from the Kirsch/Robinson due to the method in which they are defined.
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FIGURE 4.2-23 (CONTINUED)

Edge detection examples with direction images. After the edge detector operator is applied, the magnitude
image is remapped to BYTE and its histogram is stretched. The direction images are remapped to BYTE range,
0-255. Note the original range on the direction images is —m to + m. (a) Original image, (b) Sobel magnitude
image, (c) Sobel direction image, (d) Prewitt magnitude, (e) Prewitt direction, (f) Kirsch magnitude, (g) Kirsch
direction, (h) Robinson magnitude, (i) Robinson direction. Note the magnitude images all look similar, but the
Sobel/Prewitt direction images differ from the Kirsch/Robinson due to the method in which they are defined.

EXTENDED SOBEL EDGE DETECTION MASK

-1 -1 -1 -2 -1 -1 -17
-1 -1 -1 -2 -1 -1 -1
-1 -1 -1 -2 -1 -1 -1

0 0 0 0 0 0 0
1 1 1 2 1 1 1
1 1 1 2 1 1 1
1 1 1 2 1 1 1
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If we approximate a linear distribution we obtain the truncated pyramid operator, as follows:

1 1 1 0 -1 -1 =17
1 2 2 0 -2 -2 -1
1 2 3 0 -3 -2 -1
1 2 3 0 -3 -2 -1
1 2 3 0 -3 -2 -1
1 2 2 0 -2 -2 -1
1 1 1 0 -1 -1 -1]

This operator provides weights that decrease as we get away from the center pixel,
which will smooth the result in a more natural manner. These operators are used in the
same manner as the Prewitt and Sobel—we define a row and column mask, and then find
a magnitude and direction at each point. A comparison of applying the extended opera-
tors and the standard operators to a noisy image is shown in Figure 4.2-24. Comparing
Figure 4.2-24c and d and Figure 4.2-24e and f we see that with noisy images the extended
operators exhibit better performance than the smaller masks. However, they require more
computations and will smear the edges, which can be alleviated by postprocessing to thin
the smeared edges and remove any leftover noise.

The advanced edge detectors can also be used effectively in noisy images. Results from
applying the Marr-Hildreth, Canny, Boie-Cox, Shen—-Castan, and Frei-Chen algorithms
to an image with salt-and-pepper noise are shown in Figure 4.2-25. Here we see that most
of these algorithms perform well in the presence of salt-and-pepper noise. However, the
Frei-Chen does not do as well as the others and the Marr—Hildreth is plagued by its usual
“spaghetti-effect.” In Figure 4.2-26 we apply the same edge algorithms to an image with
Gaussian noise. Here we see that the Shen—Casten retains numerous spurious edges and
again the Marr-Hildreth has the spaghetti-effect. However, with Gaussian noise, the
Frei-Chen, Canny, and Boie—Cox appear to perform well.

4.2.6 Hough Transform

The Hough transform is designed specifically to find lines. A line is a collection of edge
points that are adjacent and have the same direction. The Hough transform is an algorithm
that will take a collection of 1 edge points, as found by an edge detector, and efficiently
find all the lines on which these edge points lie. Although a brute force search method can
be used that will find all the lines associated with each pair of points, then check every
point with every possible line, it involves finding n(n — 1)/2 (on the order of n?) lines, and
comparing every point to all the lines, which is (n)(n(n — 1))/2 or about n* comparisons.
This heavy computational burden is certainly not practical for real time applications, and
provides much more information than is necessary for most applications. The advantage
of the Hough transform is that it provides parameters to reduce the search time for finding
lines based on a set of edge points, and that these parameters can be adjusted based on
application requirements.

In order to understand the Hough transform we will first consider the normal (perpen-
dicular) representation of a line:

p =1 cos(0) + c sin(0)
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(d)

FIGURE 4.2-24

Edge detection examples with noise—larger masks mitigate noise effects. (a) Original image, (b) Image with
added Gaussian noise, (c) Robert’s edge detection, 2 x 2, (d) Sobel with a 3 x 3 mask, (e) Sobel with a 7 x 7 mask,
(f) a7 x 7 truncated pyramid. The images have undergone a threshold with the average value. In (c), with the
2 x 2 Roberts, the noise conceals almost all the edges. In (d), with a 3 x 3 Sobel mask, the edges are visible, but
the resultant image is very noisy. With the 7 X 7 mask, shown in (e) and (f), the edges are much more prominent
and the noise much less noticeable.
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FIGURE 4.2-25

Advanced edge detectors with salt-and-pepper noise. (a) Original image with salt-and-pepper noise added with
a probability of 3% each, (b) Marr-Hildreth, dual variance, sigma = 4.0, delta = 0.8, (c) Canny results, parame-
ters: % Low Threshold = 1, % High Threshold = 1.5, Variance = 2, (d) Boie—Cox results, low threshold factor = 0.3,
high threshold factor = 1.0, variance = 2.0, (¢) Shen—Castan results, parameters: % Low Threshold =1, % High
Threshold = 2, Smooth factor = 0.9, Window size = 7, Thin Factor = 1, (f) Frei-Chen results, parameters: Gaussian
2 prefilter, max(edge,line), post-threshold = 190. These results show that the Marr-Hildreth has the “spaghetti-
effect” as expected, and that the Frei-Chen does not work too well with salt and pepper noise. The Canny,
Boie-Cox and Shen—Casten work the best with salt and pepper noise.

If we have a line in our row and column, (r,c) based image space, we can define that line by
p, the distance from the origin to the line along a perpendicular to the line, and 6, the angle
between the r-axis and the p-line (see Figure 4.2-27). Now, for each pair of values of p and 6
we have defined a particular line. The range on 8 is 180° and p ranges from 0 to +2 N, where
N is the image size. Next, we can take this pd parameter-space and quantize it, to reduce our
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FIGURE 4.2-26

Advanced edge detectors with Gaussian noise. (a) Original image with Gaussian noise added with zero mean
and a variance of 400, (b) Marr-Hildreth, dual variance, sigma = 4.0, delta= 0.8, (c) Canny results, parameters:
% Low Threshold =1, % High Threshold = 1.5, Variance = 1.5, (d) Boie-Cox results, low threshold factor =0.3,
high threshold factor = 1.0, variance = 2.0, (¢) Shen—Castan results, parameters: % Low Threshold =1, % High
Threshold = 2, Smooth factor = 0.8, Window size = 7, Thin Factor = 1, (f) Frei-Chen results, parameters: Gaussian 2
prefilter, max(edge,line), postthreshold = 80. These results show that the Marr-Hildreth has the “spaghetti-effect”
as expected, and that the Shen—Casten retains spurious edges with Gaussian noise. The Canny, Boie—Cox, and
Frei—-Chen work the best with Gaussian noise.
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FIGURE 4.2-26 (CONTINUED)

Advanced edge detectors with Gaussian noise. (a) Original image with Gaussian noise added with zero mean
and a variance of 400, (b) Marr-Hildreth, dual variance, sigma = 4.0, delta = 0.8, (c) Canny results, parameters:
% Low Threshold =1, % High Threshold = 1.5, Variance = 1.5, (d) Boie-Cox results, low threshold factor =0.3,
high threshold factor = 1.0, variance = 2.0, (¢) Shen—Castan results, parameters: % Low Threshold =1, % High
Threshold =2, Smooth factor = 0.8, Window size = 7, Thin Factor = 1, (f) Frei-Chen results, parameters: Gaussian2
prefilter, max(edge line), postthreshold = 80. These results show that the Marr-Hildreth has the “spaghetti-effect”
as expected, and that the Shen—Casten retains spurious edges with Gaussian noise. The Canny, Boie-Cox, and
Frei—Chen work the best with Gaussian noise.

search time. We quantize the p0 parameter-space, as shown in Figure 4.2-28, by dividing the
space into a specific number of blocks. Each block corresponds to a line, or group of possible
lines, with p and 6 varying across the increment as defined by the size of the block. The size
of these blocks corresponds to the coarseness of the quantization; bigger blocks provide less
line resolution.

The algorithm used for the Hough transform (see Figure 4.2-29 for a flowchart of the
process) will help understand what this means. The algorithm consists of three primary
steps:

1. Define the desired increments on p and 6, A, and A, quantize the space accordingly.

2. For every point of interest (typically points found by edge detectors that exceed
some threshold value), plug the values for r and c into the line equation:

p = cos(0) + ¢ sin(0)

Then, for each value of 6 in the quantized space, solve for p.

3. For each pb pair from Step 2, record the r and ¢ pair in the corresponding block in
the quantized space. This constitutes a hit for that particular block.
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The line of interest

FIGURE 4.2-27
The Hough transform can be defined by using the normal (perpendicular) representation of a line and the

parameters p and 6.

0 PN 180°

Y
@
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FIGURE 4.2-28
The quantized Hough space. Theta, 6, varies from 0 to 180 degrees, and rho, p, varies from 0 to V2N for a square

N x N image. Each block in this quantized space represents a group of lines whose parameters can vary over
one increment of 6 and p, defined by Ap and A®.
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FIGURE 4.2-29
Hough transform flowchart. The flowchart is followed until all I(r, ¢) have been examined.

When this process is completed, the number of hits in each block corresponds to the
number of pixels on the line as defined by the values of on p and 6 in that block. The
advantage of large quantization blocks is that the search time is reduced, but the price paid
is less line resolution in the image space. Examining Figure 4.2-30, we can see that this
means the line of interest in the image space can vary more. One block in the Hough space
corresponds to all the solid lines in this figure—this is what we mean by reduced line
resolution.

Next, select a threshold and examine the quantization blocks that contain more points
than the threshold. Here, we look for continuity by searching for gaps in the line by look-
ing at the distance between points on the line (remember the points on a line correspond
to points recorded in the block). When this process is completed, the lines are marked in
the output image. Note that the Hough transform will allow us to look for lines of specific
orientation, if desired.

A more advanced post-processing algorithm is implemented in CVIPtools with the
Hough transform. Images resulting from this algorithm searching for lines at 45° are
shown in Figure 4.2-31, and any of these intermediate images is available as output in
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Range of lines included
by choice of Ap

(b)

183

Range of lines included
by choice of Ag

(©

Range of lines included
by choice of block size

FIGURE 4.2-30

Effects of quantization block size for Hough transform.

CVIPtools with the Output Image select box for the Hough transform. The algorithm works

as follows:

1. Perform the Hough transform on the input image containing marked edge points,
which we will callimagel. The result, image2, is an image in Hough space quantized
by the parameter delta length (p) and delta angle (fixed at one degree in CVIPtools).

2. Threshold image2 by using the parameter line pixels, which is the minimum num-
ber of pixels in a line (or in one quantization box in Hough space), and do the
inverse Hough transform. This result, image3, is a mask image with lines found
in the input image at the specified angle(s), illustrated in Figure 4.2-31c. Note that

these lines span the entire image.

3. Perform a logical operation, imagel AND image3. The result is image4, see

Figure 4.2-31d.

4. Apply an edge linking process to image4 to connect line segments; specifically we
implemented a snake eating algorithm. This works as follows:

a. Aline segment is considered to be a snake. It can eat another snake within con-
nect distance along line angles, and becomes longer (see Figure 4.2-31e). This will

connect disjoint line segments.

b. If a snake is too small, less than segment length, it will be extinct. This will
remove small segments. The output from the snake eating algorithm is the
final result, illustrated in Figure 4.2-31f.
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FIGURE 4.2-31

Hough transform post-processing algorithm details. The Hough parameters used are as follows: Line Angles:
45°, Line Pixels (min): 25, Connect distance (max): 5, Delta Length: 1, Segment Length (min): 15. (a) Original image,
(b) Image after applying the Kirsch edge operator and a threshold operation, (c) The mask image created from
the Hough result for lines at 45°, (d) Result of logical AND of the images in (b) and (c), (¢) Image (d) after snake
eating, see that the camera’s handle has been connected, (f) The final result after snake extinction, small dashed
lines are removed. Note that we have four lines, starting from the upper left: one line corresponding to the lower
part of the arm above the elbow, note that the upper part of the arm is missing as it is not quite at 45°; one line
for the camera handle; the next line corresponds to the part of his other arm from elbow to wrist, and the last
line (the lower one) that is not a true line in the image but is created by a combination of the edge detail in that
area and using a connect distance of 5.

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 185

4.2.6.1 CVIPtools Parameters for the Hough Transform

Line Angles: The range of angles for which the Hough transform will search.

Line Pixels (min): The minimum number of pixels a line must possess to be retained,
also referred to as the threshold value in the Hough image.

Connect distance (max): Controls how far apart two line segments can be and still be
connected.

Delta Length: Quantizes the Hough space p parameter. Controls how “thick” a line
can be; note that a “thick” line might consist of multiple separate lines if they are
in close proximity.

Segment Length (min): The minimum number of pixels in a line segment for it to be
retained.

Segment length controls how many pixels a solid line must have while line pixels con-
trols how many pixels a dashed line must have.

The result of applying the Hough transform to an aircraft image is shown in Figure 4.2-32.
The Sobel edge detection operator was used on the original image to provide input to the
Hough transform. The Sobel edge detection results were thresholded at a gray level of
about 200. The Hough transform parameter delta length (rho) was set at 1, line pixels (the
number-of-points threshold) was set at a minimum of 20 pixels per line, and segment length
set to 10. The figure illustrates the effects of changing the range of line angles and the
connect distance between line segments. Although the Hough transform is an efficient line
finding algorithm, when a post-processing algorithm is applied as defined above we have a
boundary detection segmentation method, and these are discussed more in Section 4.3.3.

4.2.7 Corner Detection

We have seen that edges are found by considering the rate of change, or gradient, in image
brightness (gray level) in a specific direction. Lines and curves are then a collection of these
edge points along a specific path. Corners are simply points where there is a high rate of
change in more than one direction. Corner detection is useful for many applications. For
example, object tracking is facilitated by the ability to delineate an object by its corners and
following the movement of the corners through space. In addition to tracking the object
in space the orientation can be followed more easily with corner detection. Corners are
also useful features for matching multiple images, for example, to use as match points for
creation of three-dimensional models from stereo images.

Corners are used by the human visual system to provide cues about object boundaries,
and are also important in computer vision applications because they are robust features.
We refer to corners as robust features because they can be found accurately in the presence
of noise or even if image acquisition conditions, such as lighting or camera angles, vary.
Note that even though the corner features themselves are robust, the corner detector may
not be.

The Moravec detector is the simplest corner detector, but not necessarily robust. It finds
points of maximum contrast, which correspond to potential corners and sharp edges. This
operator is as follows:

1 r+1  c+l
MDI(r,0l= ¢ N N 1,6 = 16,

i=r-1 j=c-1
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FIGURE 4.2-32

Hough transform. (a) Original image, (b) Sobel edge operator followed by a thresholding, (c) Hough output
with the range of line angles = 0-45°, delta length (p) = 1, minimum number of pixels per line = 20, maximum
connect distance = 2, minimum segment size = 10, (d) Hough output with same parameters as (c) except range
of angles from 0 to 90 degrees, (¢) Hough output with same parameters as (d) except connect distance =5,
(f) Hough output with same parameters as (e) except connect distance = 10.

In words, it finds the average of the sum of the absolute values of the differences between
a pixel and its neighbors. Or, put more simply, finds the average difference between a pixel
and its neighbors in all directions. After this operator is applied the result can undergo
a threshold operation to select only pixels above a certain value. Results of varying the
threshold are shown in Figure 4.2-33. Here we see that as the threshold is increased we
get fewer of the edge pixels and more of the corners only. We can also observe on a digital,
rectangular sampling grid that curves have “corners.” Note that this operator is not isotro-
pic, which means it does not treat edges in all directions equally. In other words, a corner
not in the direction of the neighbors will not be detected.

A more robust corner detector is the Harris corner detection algorithm, developed by
Harris and Stephens in 1988. The Harris method consists of four steps: (1) Blur the image
with a 2-D Gaussian convolution mask, (2) Find the approximate brightness gradient in
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FIGURE 4.2-33

Moravec corner detector. (a) Original image, (b) resultant image from Moravec corner detector with a threshold
of 50, (c) threshold of 100, (d) threshold of 150. Note that the threshold of 150 gets the corners only, whereas lower
threshold values get more edge pixels.

two perpendicular directions, for example, use the two Prewitt or Sobel masks, (3) Blur the
two brightness results with a 2-D Gaussian, (4) Find the corner response function, CRF(r,c),
and (5) Threshold the CRF and apply nonmaxima suppression, similar to what was done
with the Canny.

Now, we need to define the CRF(r,c). To do this we must select a gradient function for
Step 2, so, for simplicity we will use the Prewitt edge detector that results in p, for the verti-
cal edges (horizontal lines) and p, for the horizontal edges (vertical lines). Remember that
p, and p, are both functions of the row and column coordinates, (7,c); this is implied in the
below equation. Now we can define:

CRE(r,c) = [G(p})G(p3) - [G(pip,)F]- < [G(p1) + G(p2)F
where G(e) represents the result after convolution with a Gaussian.
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The larger the magnitude of CRF(r,c), the more likely a corner is at that point. The param-
eter o determines the sensitivity of the corner detector—a larger o makes it less sensitive
and will result in fewer corners being found. The maximum value for o is 0.25, but typi-
cally values vary from 0.04 to 0.15, with 0.06 being the default value.

After the CRF(r,c) is found it must undergo a threshold process and application of
nonmaxima suppression. The threshold is based on image content, and the nonmaxima
suppression works by finding the largest value of the CRF within a given spatial area.
Figure 4.2-34 shows application of the Harris corner detector, with example intermediate
images for each step in the process.

The Frei-Chen masks can also be used as a corner detector. Results are shown in
Figure 4.2-35. Here we have simple binary shapes and show the projection onto the edge
subspace with a threshold angle of 50° and the projection onto the line subspace with
threshold angles of 50° and 40°. Note that the projection onto the edge subspace finds the
corners at a 45° angle to the corner and the projection onto the line subspace finds the
corners on the corner itself. The edge subspace projection does not find the horizontal and
vertical lines at the top and sides of the curves, but the projection onto the lines subspace
does. Also, in (d) the line subspace with a lower angle threshold finds the “corners” of the
holes only. These results are a function of the Frei-Chen masks (see Figure 4.2-12).

4.3 Segmentation

Image segmentation is one of the most important processes for many applications. In
image analysis and computer vision, segmenting the image correctly into real objects of
interest is critical for object classification that will determine the success or failure of the
algorithm. For example, in a robotic control application that needs to remove “bad” parts
from an assembly line, incorrect classification will result in bad parts being shipped to
the customer, or good parts being removed. In either case, the cost to the manufacturer is
increased. In a medical diagnostic application, a poor classification process can be even
more costly, in terms of both dollars and human life.

In many applications the illumination system is critical to acquiring an image that
has a reasonable chance for a successful segmentation. The lighting system in indus-
trial inspection applications can be controlled and designed to make the segmentation
process easier. Special purpose lighting is often used in these types of applications
where the designer can control the environment. Other applications may not allow for
environmental control, such as military or police applications, but the imaging system
designer can specify the types of sensor to be used. Infrared imaging sensors are a
natural choice for image acquisition in military applications where many of the objects
of interest, such as troops or fighter jets, radiate heat. These examples all serve to illus-
trate the importance of the application feedback loop in the image analysis process (see
Figure 3.1.3).

As discussed at the beginning of this chapter, the goal of image segmentation is to find
regions that represent objects or meaningful parts of objects. Image segmentation methods
will look for objects that either have some measure of homogeneity within themselves, or
have some measure of contrast with the objects on their border. The homogeneity and con-
trast measures can include features such as gray level, color, and texture. In Figure 4.1-1 we
saw the three categories of image segmentation methods: (1) Region growing/shrinking,
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FIGURE 4.2-34

Harris corner detector. (a) Original image after application of 5 x 5 Gaussian mask, (b) strength of the horizontal
lines, from the vertical gradient, by application of Prewitt, p1, squared followed by a Gaussian, G(p?) (c) strength
of the vertical lines, from the horizontal gradient, by application of Prewitt, p2, squared followed by a Gaussian,
G(p3) (d) Gaussian of the product of the horizontal and vertical gradient, G(p,,p,) (e) result from the corner
response function, CRF(r,c), (f) the final detected corners after thresholding and nonmaxima suppression of the
CREF(r,c), shown overlaid on the original shapes.
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FIGURE 4.2-35

Frei—-Chen masks for corner detector. (a) Original image, (b) Projection onto edge subspace with a threshold
angle of 50° (c) Projection onto line subspace with a threshold angle of 50°, (d) Projection onto line subspace with
a threshold angle of 40°. Note that the projection onto the edge subspace finds the corners at a 45° angle to the
corner and the projection onto the line subspace finds the corners on the corner itself. The edge subspace pro-
jection does not find the horizontal and vertical lines at the top and sides of the curves, but the projection onto
the lines subspace does. Also, in (d) the line subspace with a lower angle threshold finds the “corners” of the
holes only.

(2) Clustering, and (3) Boundary detection. In this section we will examine algorithms that
are representative of each of these categories.

4.3.1 Region Growing and Shrinking

Region growing and shrinking methods segment the image into regions by operating
principally in the row and column, (r,c), based image space. Some of the techniques used
are local, in which small areas of the image are processed at a time; others are global, with
the entire image considered during processing. Methods that can combine local and global
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techniques, such as split and merge, are referred to as state space techniques and use
graph structures to represent the regions and their boundaries. The data structure most
commonly used for this is the quadtree. A tree is a data structure that has nodes that point
to (connect) the elements. The top element is called the parent, and the connected elements
are called children. In a quadtree each node can have four children; this is illustrated in
Figure 4.3-1. This data structure facilitates the splitting and merging of regions.

Various split and merge algorithms have been described, but they all are most effective
when heuristics applicable to the domain under consideration can be applied. This gives
a starting point for the initial split. In general, the split and merge technique proceeds as
follows:

1. Define a homogeneity test. This involves defining a homogeneity measure, which
may incorporate brightness, color, texture, or other application-specific information,
and determining a criterion the region must meet to pass the homogeneity test.

2. Split the image into equal sized regions.

3. Calculate the homogeneity measure for each region.

()

Ry

FIGURE 4.3-1

Quadtree data structure. (a) A partitioned image where R; represents different regions, (b) The corresponding
quadtree data structure.
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4. If the homogeneity test is passed for a region, then a merge is attempted with its
neighbor(s). If the criterion is not met, the region is split.

5. Continue this process until all regions pass the homogeneity test.

There are many variations of this algorithm. For example, we can start out at the global
level, where we consider the entire image as our initial region, and then follow an algorithm
similar to the above, but without any region merging. Algorithms based on splitting only
are called multiresolution algorithms. Alternately, we can start at the smallest level and
only merge, with no region splitting. This merge-only approach is one example of region
growing methods. Often the results from all of these approaches will be quite similar, with
the differences apparent only in computation time. Parameter choice, such as the mini-
mum block size allowed for splitting, will heavily influence the computational burden as
well as the spatial resolution available in the results.

The user-defined homogeneity test is largely application-dependent, but the general idea
is to find features that will be similar within an object and different from the surrounding
objects. In the simplest case the gray level may be used as the feature of interest. Here, the
gray-level variance can be used as our homogeneity measure and we can define a homo-
geneity test that requires the gray-level variance within a region to be less than a specified
threshold. We can define gray-level variance as

Gray-level variance = N1 1 ; U(r,c)- 1T
B (r,c) ION

= 1
I=— I(r,
(r,c) ION

Note that the sum is taken over the region of interest and N is the number of pixels in the
region. The variance is basically a measure of how widely the gray levels within a region
vary. Higher order statistics can be used for features such as texture, and are explored in
Chapter 6.

A similar approach involves searching the image for a homogeneous region and enlarg-
ing it until it no longer meets the homogeneity criteria. At this point, a new region is
found that exhibits homogeneity and is grown. This process continues until the entire
image is divided into regions. With this technique the initial regions are called seed regions,
and their selection can heavily influence the resulting segmented image. The choice of a
homogeneity metric for the seed regions will be application specific; for some applications
texture may be of paramount importance and for others it may be color.

In CVIPtools a general split and merge algorithm is implemented with the following
homogeneity criteria available:

where

1. Pure uniformity: A region is considered homogeneous if the gray levels are
constant.

2. Local mean versus global mean: A region is considered homogeneous if the local
mean is greater than the global mean.

3. Local standard deviation versus global mean: A region is considered homogeneous if
the local standard deviation, which is the square root of the variance, is less than
10% of the global mean.
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4. Variance: A region is considered homogeneous if a minimum percentage of the
pixels, specified by the CVIPtools parameter Percentage, are within two standard
deviations of the local mean, unless the standard deviation exceeds a maximum
Threshold value.

5. Weighted gray-level distance: A region is considered homogeneous if the weighted
gray-level value, which is based on the mode and the gray-level distance from the
mode weighted by the distribution, is less than a specified Threshold value.

6. Texture: A region is considered homogeneous if the four quadrants of the region
have similar texture, based on five of the textural features defined in Chapter 6;
specifically energy, inertia, correlation, inverse difference, and entropy. The parameters
specified are pixel distance and similarity.

Figure 4.3-2 shows results of applying the split and merge algorithm to an image with the
various homogeneity criteria. The original image is 256 x 256 pixels and the Entry level
parameter determines the size of the initial regions. For example, if the entry level is 1,
the image is divided once (see Figure 4.3-1), so the initial region size is 128 x 128 for a
256 x 256 image. If the entry level is 2, the initial region is 64 x 64 for a 256 X 256 image,
and so on. In this figure the entry level was set to 6, which provides an initial region size
of 256/26 x 256/2¢, or 4 x 4 pixels. Note that this particular image is probably not a good
candidate for texture based segmentation.

Another segmentation method we include in the region growing and shrinking category
is the watershed segmentation algorithm. This method is often classified as a morpholog-
ical technique because it is implemented with morphological methods (see Section 4.3.5).
We include it here since it operates in the row and column based image space. The water-
shed algorithm is a morphological technique based on the idea of modeling a gray-level
image as a topographic surface, with higher gray levels corresponding to higher eleva-
tions. The image is then flooded with a rainfall simulation, and pools of water are created
corresponding to segments within the image. When rising water reaches a point where
two pools will merge, a dam is built to prevent the merging. These dams are the watershed
lines, which mark the boundaries used to segment the image into its various regions (see
Section 12.7 for more details).

Many different variations of the watershed algorithm can be implemented. The water-
shed segmentation algorithm as implemented in CVIPtools was initially designed to
separate a single object from the background in color images. It provides the user with
two parameters—merge and threshold. The merge parameter has a checkbox, to merge
or not to merge. If merge is selected, the threshold parameter determines the amount of
merging that will occur. The threshold parameter works by creating a histogram using
the average gray value within each watershed segment. Next, it finds the maximum
value in the histogram and merges this group with adjacent lower and higher gray
levels until the threshold is reached. The threshold represents the percent of total area
in the image.

In Figure 4.3-3 we show a skin lesion image where the goal is to separate the lesion
(tumor) from normal skin. The results of the watershed segmentation are shown along with
various values for the threshold. In Figure 4.3-3c we can tell that the maximum histogram
value corresponds to the bright area to the left and right of the lesion. As the threshold is
increased in the following three images, we can see this area expand as it is merged with
neighboring gray-level values. Figure 4.3-4 shows the watershed segmentation algorithm
applied to a natural scene; and also shows borders that have been extracted after the merge
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FIGURE 4.3-2

Segmentation with split and merge algorithm, various homogeneity criteria. The original image is 512 x 512 pixels,
and the Entry level parameter was set to 6. (a) Original image, (b) Local mean versus global mean, (c) Local standard
deviation versus global mean, (d) Variance with Threshold = 25, Percentage = 0.7 (70%), (€) Weighted gray-level dis-
tance with Threshold = 25, (f) Texture homogeneity with Similarity = 50, and Pixel distance =2.
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(b)

FIGURE 4.3-3

Watershed segmentation. (a) Original image of a skin lesion, (b) result of watershed segmentation without
merging, (c) borders shown after merging with a threshold of 0.4, (d) merge with a threshold of 0.5, (e) merge
with a threshold of 0.6, (f) merge with a threshold of 0.7.

process. In CVIPtools the borders are extracted with a simple threshold at 254 of the output
merged image.

4.3.2 Clustering Techniques

Clustering techniques are image segmentation methods by which individual elements are
placed into groups; these groups are based on some measure of similarity within the group.
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FIGURE 4.3-4
Watershed segmentation. (a) Original image, (b) result of watershed segmentation without merging, (c) image

with borders after merging with a threshold of 0.3, (d) borders only with threshold of 0.3, (e) image with borders
after merging with a threshold of 0.6, (f) borders only with threshold of 0.6, (g) image with borders after merg-
ing with a threshold of 0.8, (h) borders only with threshold of 0.8.
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(g F

FIGURE 4.3-4 (CONTINUED)

Watershed segmentation. (a) Original image, (b) result of watershed segmentation without merging, (c) image
with borders after merging with a threshold of 0.3, (d) borders only with threshold of 0.3, (e) image with borders
after merging with a threshold of 0.6, (f) borders only with threshold of 0.6, (g) image with borders after merg-
ing with a threshold of 0.8, (h) borders only with threshold of 0.8.

The major difference between these techniques and the region growing techniques is that
domains other than the row and column, (r,¢), based image space (the spatial domain) may
be considered as the primary domain for clustering. Some of these other domains include
color spaces, histogram spaces, or complex feature spaces. [Note that the terms domain and
space are used interchangeably here, these terms both refer to some abstract N-dimensional
mathematical space, not to be confused with the spatial domain, which refers to the row
and column, (r,c), image space.]

What is done is to look for clusters in the domain, or mathematical space, of interest.
The simplest method is to divide the space of interest into regions by selecting the center
or median along each dimension and splitting it there; this can be done iteratively until
the space is divided into the specific number of regions needed. This method is used
in the spherical coordinate transform (SCT)/Center and principal coordinate transform
(PCT)/Median segmentation algorithms. This method will be most effective if the algo-
rithm is designed in conjunction with the application and the mathematical space being
used. Otherwise, the center or median split alone may not find good clusters.

The next level of complexity uses an adaptive and intelligent method to decide where
to divide the space. These methods include histogram thresholding and other, more com-
plex feature-space-based statistical methods. A simple histogram thresholding method for
binary segmentation was discussed in Chapter 3; and another method, the Otsu method,
is presented in the next section. For the more complex methods, representative algorithms
will be discussed conceptually here, and a detailed look will be taken at two application-
specific algorithms.

Recursive region splitting is a clustering method that has become a standard technique.
This method uses a thresholding of histograms technique to segment the image. A set of
histograms is calculated for a specific set of features, and then each of these histograms is
searched for distinct peaks (see Figure 4.3-5). The best peak is selected and the image is
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Region 1

Region 2 Region 2

Number of pixels

/\/\

Two thresholds are selected, one on each side of the best peak. The image
is then split into two regions. Region 1 corresponds to those pixels with
feature values between the selected thresholds, known as those in the peak
Region 2 consists of those pixels with feature values outside the threshold.

Feature value

FIGURE 4.3-5
Histogram Peak Finding.

split into regions based on this thresholding of the histogram. One of the first algorithms
based on these concepts proceeds as follows:

1. Consider the entire image as one region and compute histograms for each compo-
nent of interest (for example red, green, and blue for a color image).

2. Apply a peak finding test to each histogram. Select the best peak and put thresholds
on either side of the peak. Segment the image into two regions based on this peak.

3. Smooth the binary thresholded image so only a single connected subregion is left.

4. Repeat steps 1-3 for each region until no new subregions can be created; that is, no
histograms have significant peaks.

Many of the parameters of this algorithm are application-specific. For example, what peak
finding test do we use and what is a “significant” peak? An example of histogram-threshold-
ing-based image segmentation is shown in Figure 4.3-6. In addition to the two basic binary
thresholding algorithms in CVIPtools, the Otsu and automatic single threshold method, we
have two gray-level or color histogram thresholding based segmentation methods, called
histogram thresholding and fuzzy c-means. These are explored in the exercises at the end
of this chapter and details of these particular algorithms can be found in the references.

The SCT/Center color segmentation algorithm was initially developed for the identifica-
tion of variegated coloring in skin tumor images. Variegated coloring is a feature believed
to be highly predictive in the diagnosis of melanoma, the deadliest form of skin cancer.
The SCT was chosen for this segmentation method, as it decouples the color information
from the brightness information. The brightness levels may vary with changing lighting
conditions, so by using the two-dimensional color subspace defined by two angles (Figure
4.3-7a) we have a more robust algorithm.

If we slice a plane through the RGB color space, we can model a color triangle (Figure
4.3-7b). The vertices of the color triangle were chosen to bear some correlation to the human
visual system. The placement of blue at the top of the triangle, and the way in which
the spherical transform was defined, relates to the physiological fact that the cones in the
human visual system that see blue are more discriminatory than the red or green sensitive
cones (see Chapter 7 for more information on the human visual system).
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Original image Image after histogram thresholding

segmentation using 4 gray levels

Histogram of image (a Histogram of image (b)

(d)

FIGURE 4.3-6
Histogram thresholding segmentation.

We can segment the image by taking the color triangle and dividing it into blocks based
on limits on the two angles. Figure 4.3-7c shows the shape of the resulting blocks. We can
see that for a region defined by a range of minima and maxima on the two angles, the side
of the region that is closest to the blue vertex is shorter than the side that is closest to the
line that joins the red and green vertices.

Also, the distortion caused by the transform facilitates the perception-based aspect of
the image segmentation; the closer to the perimeter of the triangle, the larger the region
that is defined by a fixed angle range. This is analogous to the observation that as the white
point is approached in the color space, a greater number of hues will be observable in a
fixed area by the human visual system than on the perimeter of the color triangle. This
observation is application-specific, since it only applies to colors from white (in the center
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The spherical coordinate transform separates The color triangle
the red, green and blue information into a

2-D color space defined by angles A and B,

and a 1-D brightness space defined by L.

(©
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The color triangle showing regions defined by 10 degree increments on Angle A and Angle B.

FIGURE 4.3-7
SCT/Center and color triangles.

of the triangle) to the green and red vertices. Skin tumor colors typically range from white
out to the red vertex. The SCT/Center segmentation algorithm is outlined as follows:

1. Convert the (R,G,B) triple into spherical coordinates—(L, angle A, angle B).

2. Find the minima and maxima of angle A and angle B.

3. Divide the subspace, defined by the maxima and minima, into equal-sized blocks.
4. Calculate the RGB means for the pixel values in each block.

5. Replace the original pixel values with the corresponding RGB means.

For the identification of variegated coloring in the skin tumor application it was deter-
mined that segmenting the image into four colors was optimal. An example of this seg-
mentation method is shown in Figure 4.3-8.
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a1

(d)

FIGURE 4.3-8
SCT/Center segmentation algorithm applied to a skin lesion image. (a) Original image, (b) SCT/Center segmen-
tation result with two colors, (c) segmentation into four colors, (d) segmentation into six colors.

The PCT/Median color segmentation algorithm was developed because, for certain
features other than variegated coloring, the results provided by the previously described
algorithm were not totally satisfactory. This algorithm is based around the PCT. The
median split part of the algorithm is based on an algorithm developed for color com-
pression to map 24-bits per pixel color images into images requiring an average of 2-bits
per pixel.

The PCT (defined in Chapter 5) is based on statistical properties of the image, and can
be applied to any K-dimensional mathematical space. In this case, the PCT is applied
to the three-dimensional color space. It was believed that the PCT used in conjunction
with the median split algorithm would provide a satisfactory color image segmentation,
since the PCT aligns the main axis along the maximum variance path in the data set (see
Figure 4.3-9). In pattern recognition theory a feature with large variance is said to have
large discriminatory power. Once we have transformed the color data so that most of the
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FIGURE 4.3-9

Principal components transform.

information (variance) lies along a principal axis, we proceed to divide the image into dif-
ferent colors by using a median split on the transformed data. The PCT/Median segmenta-

tion algorithm proceeds as follows:

1. Find the PCT for the RGB image. Transform the RGB data using the PCT.

2.

Perform the median split algorithm: find the axis that has the maximal range (ini-
tially it will be the PCT axis). Divide the data along this axis so that there are equal
numbers of points on either side of the split—the median point. Continue splitting
at the median along the maximum range segment until the desired number of

colors is reached.

3. Calculate averages for all the pixels falling within a single parallelepiped (box).
4. Map each pixel to the closest average color values, based on a Euclidean distance

measure.

For the skin tumor application it was determined that the optimum number of colors
was dependent upon the feature of interest. Results of this segmentation algorithm are
shown in Figure 4.3-10. Here we observe that if the image is segmented with more colors,
then more of the details in the image are retained (as expected), while a smaller number
of colors will segment the image on a coarser scale, leaving only relatively large features.
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FIGURE 4.3-10
PCT/Median segmentation algorithm. (a) Original image, (b) PCT/Median segmented image with 3 colors,
(c) PCT/Median segmented image with 6 colors, (d) PCT/Median segmented image with 8 colors.

Selection of the number of colors for segmentation has a significant impact on the difficulty
of the feature identification task—if the proper number of colors is selected for a specific
feature it can make the feature identification process relatively easy.

4.3.3 Boundary Detection

Boundary detection, as a method of image segmentation, is performed by finding
the boundaries between objects, thus indirectly defining the objects. This method is usu-
ally begun by marking points that may be a part of an edge. These points are then merged
into line segments, and the line segments are then merged into object boundaries. The
edge detectors previously described are used to mark points of rapid change, thus indicat-
ing the possibility of an edge. These edge points represent local discontinuities in specific
features, such as brightness, color, or texture.
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FIGURE 4.3-11

Edge detection thresholding via histogram. The histogram can be examined manually to select a good thresh-
old. This method is easiest with a bimodal (two peaks) histogram. Alternately, the threshold can be found auto-
matically with the algorithm described in Chapter 3 or the Otsu algorithm described here.

After the edge detection operation has been performed, the next step is to threshold the
results. One method to do this is to consider the histogram of the edge detection results,
looking for the best valley manually (Figure 4.3-11), or by application of the automatic
thresholding algorithm described in Chapter 3. With a bimodal histogram, a histogram
with two major peaks, another analytical algorithm is available to find a good threshold
value. A bimodal histogram is typical for computer applications where we have one object
against a background of high contrast. The following method provides a theoretically
good solution based on the assumption that each peak has a Gaussian shape and the peaks
are fairly well separated. This method is called minimizing within group variance, or the Otsu
method, and works as follows:

Let P(g) be the histogram probability for gray level g, which is simply the count of the
number of pixels at gray level ¢ normalized by the total number of pixels in the image, and
is given by

B 1 I(r,c)
(#Rows)#Columns) . 8

P(g)

where (#Rows)#Columns) is the total number of pixels

Let 62,(t) be the within group variance, which is a weighted sum of the variance of the two
groups, as a function of the threshold ¢, defined as follows:

05, (t) = P (t)ot () + B (t)o3(t)
where

P(t) = 2 P(g)
£

Maxgray

By(t) = P(g)

g=t+1
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i ()= ) gxP()/Pi(t)
=
Maxgray

wy (8) = g x P(g)/By(t)

g=t+1

oi(t) = » [g- (P P(8)/Pi(t)
g=
Maxgray

o3(t) = [ -, () P(R)/ Py (t)

g=t+1

where Maxgray is the maximum gray-level value.

Now we simply find the value of the threshold ¢ that will minimize the within group
variance, 62,(f). This can be done by calculating the values for 2 (t) for each possible gray-
level value and selecting the one that provides the smallest 62 (). We can usually stream-
line this search by limiting the possible threshold values to those between the modes, the
two peaks, in the histogram. Additional algorithms based on the Otsu method to find
multiple thresholds and to perform the calculations more efficiently can be explored in the
references.

Often, the histogram of an image that has been operated on by an edge detector is uni-
modal (one peak), so it may be difficult to find a good valley. A method that provides
reasonable results for unimodal histograms is to use the average value for the threshold, as
in Figure 4.3-12. With very noisy images and a unimodal histogram, a good rule of thumb
is to use 10-25% of the maximum value as a threshold. An example of this is shown in
Figure 4.3-13.

After we have determined a threshold for the edge detection, we need to merge the exist-
ing edge segments into boundaries. This is done by edge linking. The simplest approach
to edge linking involves looking at each point that has passed the threshold test, and con-
necting it to all other such points that are within a maximum distance. This method tends
to connect many points and is not useful for images where too many points have been
marked; it is most applicable to simple images.

Instead of thresholding and then edge linking, we can perform edge linking on the edge
detected image before we threshold it. If this approach is used, we look at small neighbor-
hoods (3 x 3 or 5x5) and link similar points. Similar points are defined as having close
values for both magnitude and direction. The entire image undergoes this process, while
keeping a list of the linked points. When the process is complete, the boundaries are deter-
mined by the linked points.

The Hough transform combined with the snake eating edge linking algorithm described in the
previous section is one method to use for segmentation via boundary detection. However,
if we are searching for specific geometric shapes we can extend the Hough transform to
search for any geometric shape that can be described by mathematical equations, such as
circles, ellipses, or parabolas. The line finding Hough transform we discussed previously
was defined by quantizing the parameter space that defined the lines, specifically the
mathematical space defined by the parameters p and 6. To extend this concept we simply
define a parameter vector and apply the Hough algorithm to this new parameter space. The
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FIGURE 4.3-12

Average value thresholding. (a) Original image, (b) image after Sobel edge detector, (c) unimodal histogram of
image after Sobel, (d) Sobel image after thresholding with average value.

extended Hough transform can be applied to any geometric shape that can be described by
an equation of the following form:

f(r,c;p) =0

where () is any function of the row and column coordinates, (,c), and a parameter vector
p. In the case of the line finding Hough transform, the function is
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(d)

FIGURE 4.3-13
Thresholding noisy images. (a) Original image with Gaussian noise added (zero mean, variance = 800), (b) Sobel

edge detector results (remapped), (c) threshold on Sobel at 10% of maximum value, (d) threshold on Sobel at 20%
of maximum, (e) threshold on Sobel at 25% of maximum.
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p = rcos(0)+ csin(0)

and the parameter vector is

In the case of a circle, with the equation of a circle as follows, where a and b are the center
coordinates of the circle and d is the diameter:

2

(r-a)®+(c-b)? = (g)

The parameter vector is
a
p=|b
d

To apply the Hough transform to find circles we follow the same procedure as for line
finding, but with an increased dimensionality to the search space—it is now a three-
dimensional parameter space.

To search for general geometric shapes that are not readily described by parametric
equations, such as the circle in the previous example, a generalized Hough transform can
be used. The generalized Hough works by creating a description of the shape defined by a
reference point and a table of lines, called an R-table. The reference point is chosen inside
the sample shape, and a random line is found from the reference point to a point on the
border. This intersection information is recorded in the table. The shape is then described
by a multitude of line intersection information in the R-table. The generalized Hough algo-
rithm is then used to search for shapes described by this table; details of this algorithm can
be found in the references.

Another approach to image segmentation via boundary detection is the use of active
contours or snakes. For these types of methods an initial boundary must be estimated
or given, and then the active contour or snake is deformed by consideration of applica-
tion features of interest. Typically, this is done mathematically by minimizing an energy
function and is controlled by the features of interest and the application. As the border is
deformed there are vectors, or forces, pushing it in, and vectors, or forces, pushing it out in
an attempt to reach equilibrium.

In CVIPtools we implemented a gradient vector flow snake (GVF snake) for an applica-
tion to find skin lesion borders. The algorithm is initialized by a rough approximation
to the border; obtained, in this case, by preprocessing the original image and then draw-
ing an approximate border. This initial border, referred to as a snake, is then iteratively
processed to converge on the actual border. For this application the features of interest
selected to control the process include the image edge strengths and internal properties
such as smoothness (texture).
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FIGURE 4.3-14

Gradient vector flow snake. The gradient vector flowsnake (GVF snake) is used to find borders on single objects.
(a) Original image, (b) image with an initial border drawn in CVIPtools with a Ctrl-key left mouse button, (c) bor-
der found by GVF snake, the border is white (d) border after morphological dilation to make it more visible.

In Figure 4.3-14 we show the algorithm applied to an idealized image, where an arbi-
trary shape has been created. In CVIPtools the user draws an initial border by holding the
Cntrl-key on the keyboard and using the left mouse button. Here we see the resulting bor-
der shown in white. Next, a morphological dilation is performed to make the border more
readily visible. This algorithm does an excellent job of finding the border, but the image
that is input must be properly preprocessed.

For a skin lesion image, typical preprocessing includes a rough image segmentation fol-
lowed by morphological filtering. In Figure 4.3-15 we see the results from application of
the GVF snake to a skin lesion image. The original image is preprocessed by these steps:
(1) Otsu thresholding segmentation, (2) a logical NOT operation, (3) a color to gray-level
conversion using a luminance transform, (4) a binary threshold operation, (5) morphologi-
cal dilation with a circular element of diameter of 5, and (6) multiplying by 0.5 so the white
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(@) (b)

FIGURE 4.3-15

Gradient vector flow snake applied to a skin lesion image. The gradient vector flow snake (GVF snake) needs
preprocessing for use with real images. (a) Original image, (b) image after an Otsu thresholding segmentation,
(c) Otsu image after a logical NOT, color to gray conversion, a binary threshold operation, morphological filter-
ing, and a multiplication by 0.5 so the white border will be visible, (d) image after GVF snake and morphological
dilation to thicken the border.

border will be visible. Figure 4.3-15 shows that real images, properly preprocessed, can
benefit from using the GVF snake for border delineation.

4.3.4 Combined Segmentation Approaches

Image segmentation methods may actually be a combination of region growing meth-
ods, clustering methods, and boundary detection. As previously mentioned, we could
consider the region growing methods to be a subset of the clustering methods, by
allowing the space of interest to include the row and column parameters. Quite often,
in boundary detection, heuristics applicable to the specific domain must be employed
in order to find the true object boundaries. What is considered noise in one application
may be the feature of interest in another application. Finding boundaries of differ-
ent features, such as texture, brightness, or color, and applying artificial intelligence
techniques at a higher level to correlate the feature boundaries found to the specific
domain may give the best results. Optimal image segmentation is likely to be achieved
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by focusing on the application, and on how the different methods can be used, sin-
gly or in combination, to achieve the desired results. See the references for further
information.

4.3.5 Morphological Filtering

Morphology relates to the structure or form of objects. Morphological filtering simplifies
a segmented image to facilitate the search for objects of interest. This is done by smooth-
ing out object outlines, filling small holes, eliminating small projections, and with other
similar techniques. While this section will focus on applications to binary images, the
extension of the concepts to gray-level images will also be discussed. For color images,
each band can be processed separately. We will look at the different types of operations
available and at some examples of their use.

The two principal morphological operations are dilation and erosion. Dilation allows
objects to expand, thus potentially filling in small holes and connecting disjoint objects.
Erosion shrinks objects by etching away (eroding) their boundaries. These operations
can be customized for an application by the proper selection of the structuring element,
which determines exactly how the objects will be dilated or eroded. Basically, the struc-
turing element is used to probe the image to find how it will fit, or not fit, into the image
object(s).

The dilation process is performed by laying the structuring element on the image and
sliding it across the image in a manner similar to convolution. The difference is in the
operation performed. It is best described in a sequence of steps:

1. If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

2. If the origin of the structuring element coincides with a “1” in the image, perform
the OR logic operation on all pixels within the structuring element.

An example is shown in Figure 4.3-16. Note that with a dilation operation, all the “1”
pixels in the original image will be retained, any boundaries will be expanded, and small
holes will be filled.

(a) — (©

Original image Structuring Image after dilation;
element; x = origin original in dashes

FIGURE 4.3-16
Dilation.
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Example 4.3.1

Given the following image and structuring element, perform a dilation operation. We assume
the origin of the structuring element is in the center and ignore cases where the structuring
element extends beyond the image. Note that since the holes are all smaller than the structur-
ing element, they are all filled.

STRUCTURING ELEMENT
0 1 0
1 1 1
0o 1 O
IMAGE
11 1 1 1 1 1
1 0 0 1 0 0 1
11 1 1 1 1 1
1 0 0 0 0 0 1
11 1 1 1 1 1
11 1 1 1 1 1
1 1 0 0 1 1 1
RESULT
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

The erosion process is similar to dilation, but we turn pixels to “0,” not “1.” As before,
slide the structuring element across the image, and:

1. If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

2. If the origin of the structuring element coincides with a “1” in the image, and any
of the “1” pixels in the structuring element extend beyond the object (“1” pixels) in
the image, then change the “1” pixel in the image, whose location corresponds to
the origin of the structuring element, to a “0.”

In Figure 4.3-17, the only remaining pixels are those that coincide to the origin of the struc-
turing element where the entire structuring element was contained in the existing object.
Since the structuring element is three pixels wide, the two-pixel-wide right “leg” of the
image object was eroded away, but the three-pixel-wide left “leg” retained some of its
center pixels.
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()

Original image Structuring Image after erosion;
element; x = origin original in dashes
FIGURE 4.3-17
Erosion.
Example 4.3.2

Given the following image and structuring element, perform an erosion operation. We assume
the origin of the structuring element is in the center and ignore cases where the structuring
element extends beyond the image. Note the only 1s left inside the image mark places where
the shape of the structuring element exists in the image.

STRUCTURING ELEMENT

1 0 0
1 1 1
1 0 0
IMAGE
1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 1 1 1
RESULT
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 0 0 1 0 1
1 0 0 0 0 0 1
1 1 0 0 1 0 1
1 1 1 0 0 1 1
1 1 0 0 1 1 1
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These two basic operations, dilation and erosion, can be combined into more complex
sequences. The most useful of these for morphological filtering are called opening and
closing. Opening consists of an erosion followed by a dilation, and can be used to eliminate
all pixels in regions that are too small to contain the structuring element. In this case the
structuring element is often called a probe, as it is probing the image looking for small
objects to filter out of the image. In Figure 4.3-18 we can see that opening expands holes
(“opens” them up) and may erode edges, in a way that depends on the structuring element
shape. The output image tends to take a shape similar to the structuring element itself.

Closing consists of a dilation followed by erosion, and can be used to fill in holes and
small gaps as shown in Figure 4.3-19. Here we see that the two small holes have been
closed and the gap has been partially filled; if a different structuring element is used the
results will be similar but different (see some of the following figures). Comparing Figures
4.3-18 and 4.3-19, we see that the order of operation is important. Closing and opening will
have different results even though both consist of an erosion and a dilation.

@ T (c)

Original image Structuring Image after opening =
element; x = origin erosion followed by dilation

FIGURE 4.3-18
Opening.

Original image Structuring element; Image after closing = dilation
X = origin followed by erosion;
original in dashes

FIGURE 4.3-19
Closing.
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The following two figures show results of dilation from varying the shape and size of the
structuring element. The original image is a microscopic image of a cell that has undergone
a threshold operation to create a binary image. Figure 4.3-20 illustrates dilation using differ-
ent shape structuring elements. Here we see that the small objects, as well as edges on larger
objects, will take on the shape of the structuring element itself. In Figure 4.3-21 we see that
effect of using the same shape structuring element, but increasing the size of the structuring
element—as it gets larger the size of the holes that get filled increases. Here we also see that
small objects are merged together by dilation, and that the degree of the merging depends
on the size of the structuring element. Also note that in Figure 4.3-21b, even though a circu-
lar structuring element was used, the small objects appear to be rectangular—why is this?
(Hint: consider the shape of a binary circle on a 4 x 4 rectangular grid).

Figure 4.3-22 illustrates erosion using different shape structuring elements. Here we see
that the holes, as well as edges on larger objects, will take on the shape of the structuring
element itself. Figures 4.3-23 and 4.3-24 show the results of opening and closing using
various shape structuring elements. Here we can see how the shape of the structuring
elements affects the results of these operations. In Figure 4.3-25 we see a comparison of
opening and closing with different size circular structuring elements.

The morphological hit-or-miss transform is a fundamental method for detection of simple
shapes. It is a basic pattern recognition tool that, like the previous morphological methods,
uses a structuring element to determine the patterns or shapes it detects. In addition to
the 1s (object) and Os (background), the structuring element may contain “don’t cares,”

FIGURE 4.3-20

Binary dilation with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) dilation with a circular
structuring element, (c) dilation with a square structuring element, (d) dilation with a cross shape structuring
element.
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FIGURE 4.3-21

Dilation with different size structuring elements. (a) Original image, (b) Dilation with a circular structuring
element of size 3, (c) Dilation with a circular structuring element of size 7, (d) Dilation with a circular structur-
ing element of size 11.

specified with an x. The hit-or-miss transform works by overlaying the structuring ele-
ment on the image, and requires an exact match for a “hit” to occur—a hit is marked with
a 1. The following example shows a hit-or-miss transform that finds the upper right corner
points of binary objects.

Example 4.3.3: Finding upper-right corner points with the hit-or-miss transform

x 0 0
The structuring element: (1 1 0
x 1 «x
0 0 0 0 0 0 0 0]
o o 1 1 1 1 1 0
0o 1.1 1 0 0 1 0
The image: oo o010
o 1 1 1 1 1 1 O
0 1 1 1 1 1 1 0
o 1 1 1 0 0 0 O
o 0 0 0 0 0 0 O

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 217

FIGURE 4.3-22

Binary erosion with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) erosion with a circular
structuring element, (c) erosion with a square structuring element, (d) erosion with a cross shape structuring
element.

Hit-or-miss result:

o O O O O O o O
O O O O O o o o
o O O O O o O
o O O O O o O
O O O O O o o

O O O O O O - O
O 0 o o o o o o

‘o oo oo oo o

Note that there is only one upper right corner to this object.

To find all the corners with a hit-or-miss transform we need to consider the four types
of corners: upper-right, upper-left, lower-right, and lower-left, and their corresponding
structuring elements. To detect all the corners, we combine the results from the hit-or-miss
transform with each structuring element by using a logical OR operation. The following
example illustrates this.
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FIGURE 4.3-23

Binary opening with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) opening with a circular
structuring element, (c) opening with a square structuring element, (d) opening with a cross shape structuring
element.

Example 4.3.4: Finding all corner points with the hit-or-miss transform

x 0 0]([0 O x 1 X
The structuring elements: |1 1 0(,{0 1 1,1 1 0|0 1 1
x 1 1 x| |(x 0 0] |0 X
0 0 0 0 0 0 0 0]
o 0o 1 1 1 1 1 0
o 1.1 1 0 0 1 0
The image: oo 0
o 1 1 1 1 1 1 0
o 1 1 1 1 1 1 0
o 1.1 1 0 0 0 O
o 0 0 0 0 0 0 O0f
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FIGURE 4.3-24

Binary closing with various shape structuring elements. (a) Original image, a microscope cell image that has
undergone a threshold operation (original image courtesy of Sara Sawyer, SIUE), (b) closing with a circular struc-
turing element, (c) closing with a square structuring element, (d) closing with a cross shape structuring element.

The result from ORing the hit-or-miss output from each structuring element

S O O O O O =, O
o = O O O O O O
o O O O O o o O
S O O O O o o o

‘o o oo oo oo
O, o oc o~ oo
cCo R~ oo o Rk o
oo ocoo o oo

Note that all corner points have been detected.

One important operation, which is a controlled erosion process, is called skeletonization.
It is often used in optical character recognition and in many other applications. A skeleton
is what is left of an object when it has been eroded to the point of being only one pixel
wide. To find the skeleton of a binary image we first define the thinning operation, with a
given structuring element, SE:

Thin[I(r,c),SE] = I(r,c) — hit-or-miss[I(r,c),SE]
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- 8 Image after
B threshold
-

) : ; B Closing
Opening 2 i [ circular
circular
size =5

B size=5

Opening Closing
circular circular
size = 13 i size =13

FIGURE 4.3-25

Opening and closing with different size structuring elements. (a) Original microscopic cell image (courtesy of
Sara Sawyer, SIUE), (b) image after undergoing color to gray conversion and a threshold operation, (c) opening-
with a circular structuring element of size 5, (d) closing with a circular structuring element of size 5, (e) opening
with a circular structuring element of size 13, (f) closing with a circular structuring element of size 13.

In other words, the thinning operation is defined by subtracting the result from the hit-
or-miss operation from the original image at each point. Note that this subtraction is the
logical subtraction defined by

A-B = (A) AND (NOT B), where the AND and NOT are logical operators

The typical thinning operation uses the line detection structuring elements shown in the
next example. The process of skeletonization gives the result from applying each of the line
structuring elements to thin the image, and then performing a logical AND of the thinned
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results. Note that the AND should be performed after each iteration. This process is con-
tinued until the lines are one pixel wide and no changes in connectivity have occurred;
that is, no change in the Euler number.

Example 4.3.5: Thinning

The structuring element for a top horizontal line:

0 0 O
SE,=|x 1 «x
1 1 1
0 0 0 0 0 0 0 0]
o 1 1 1 1 1 1 0
o 1 1 1 1 1 1 O
. o 1 1 1 1 1 1 0
image = I(r,c) =
o 1 1 1 1 1 1 O
o 1 1 1 1 1 1 0
0 0o 0 0 0 0 0 O
o 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0]
o o 1 1 1 1 0 O
0O 0 0 0 0 0 0 O
hit- or-miss[I(r,c), SE;] = 00000000
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
o 0 0 0 0 0 0 O
then, Thin[I(r,c),SE,] = I(r,c) — hit-or-miss[I(r,c),SE,]:
0 0 0 0 0 0 0 0]
0o 1.0 0 0 0 1 o0
o 1 1 1 1 1 1 0
o 1.1 1 1 1 1 0
o 1 1 1 1 1 1 0
o 11 1 1 1 1 0
0 0 0 0 00 0 O
o 0 0 0 0 0 0 O

Next, we apply the thinning operation with each of the other structuring elements, then
perform a logical AND of all four results for each iteration. This process continues until
the skeleton is obtained as shown in the next example.
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Example 4.3.6: Skeletonization

1 0 1 1 1 0
The other three structuring elements: SE, = |1 1 0|,SE;=|x 1 «x|,SE,=|x
1 x O 0 0 O 0 «x

After thinning with each of the four structuring elements and the logical AND of the results,
we obtain:

S O kR O O O~ O
IOOOOOOOQ

O O O = = = O O
O O O R Rk Pk O O
O O O =k = =k OO
O O O = = = O O

‘o oo o oo oo
co oo o R o

After one more iteration for the skeletonization process we obtain

‘o o oo oo oo
co~,r oo o~ o
cCoO O Rk O R oo
cCoo0 o~ o oo
cCcCooc o~k o oo
cCoO O Rk O R oo
co R, oo o~ o
oo ocoo o oo

At this point we cannot thin anymore, so the skeletonization process is complete. Results
from skeletonization with simple shapes are shown in Figure 4.3-26. Here we see rect-
angles, squares, ellipses, and ellipses with holes. The figure shows the resulting skeletons
after various number of iterations. For these objects the skeletonization process is complete
after about 60 iterations. With more irregularly shaped objects, the process is more com-
plex. Using the four simple masks previously defined may not complete the process. We
can add four more structuring elements (diagonal masks) as follows:

x 0 O 1 1 «x x 1 1 x 0 O
SE.=(1 1 O|,SE,=(1 1 0|, SE,={0 1 1f,SEg={1 1 0
1 1 «x x 0 O 0 0 «x 1 1 «x

In Figure 4.3-27 we compare using the original four structuring elements, the horizontal
and vertical (called the 4-masks), with adding the four diagonal masks to create the 8-masks.
Here we see that it requires all eight masks to get the desired results. Even if we continued
processing with the 4-masks, no further changes will occur. Why not?
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FIGURE 4.3-26

Skeletonization with simple shapes. (a) Original image, (b) resultant image after 20 iterations, (c) resultant image
after 40 iterations, (d) resultant image after 60 iterations.

Using the previously described method, which ANDs the images from all the masks
after thinning, can result in loss of connectivity, as shown in Figure 4.3-28b and 4.3.28c.
One method to avoid this problem is to use the output image after thinning with one
mask as input to the thinning with the next mask. This is done sequentially for all
masks, and no AND operation is performed. Thus, we have two methods available in
CVIPtools—the AND method and the sequential method. Figure 4.3-28d and e shows
results from the sequential method. Here we see that the sequential method maintains
connectivity, but that extra lines appear that may be desired or extraneous, depending
on the application.

The skeletonization process works best with elongated shapes such as is found in appli-
cations as hand-written character recognition or in blood vessel recognition. With complex
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FIGURE 4.3-27

Skeletonization with irregular shapes using four or eight masks. (a) Original image, (b) resultant image after
20 iterations with the four original masks—horizontal and vertical only (4-masks), (c) resultant image after
20 iterationswith the four original horizontal masks and the four diagonal masks (8-masks), (d) resultant image
after 40 iterations with the 4-masks, (e) resultant image after 40 iterations with the 8-masks, (f) resultant image
after 60 iterations with the 4-masks, (g) resultant image after 60 iterations with the 8-masks. Continued skeleton-
ization with the 4-masks alone will not change the output image.

shapes the skeletonization process often leaves many extra small lines, called spurs (seen in
Figure 4.3-28¢), which must be dealt with through a pruning process. One method of prun-
ing to remove undesired, small line segments is to use the Hough transform in CVIPtools,
where the minimum segment size is one of the parameters. Examples of this are shown in
Figure 4.3-28f and g.

The standard pruning operation is a form of thinning with a single pixel as the struc-
turing element. The structuring element is rotated throughout the eight possible compass
directions to prune lines in all directions. Typically pruning is only performed for a small
number of iterations to remove small spurs, or all lines except for closed loops will be
removed.
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FIGURE 4.3-27 (CONTINUED)

Skeletonization with irregular shapes using four or eight masks. (a) Original image, (b) resultant image after
20 iterations with the four original masks—horizontal and vertical only (4-masks), (c) resultant image after
20 iterationswith the four original horizontal masks and the four diagonal masks (8-masks), (d) resultant image
after 40 iterations with the 4-masks, (e) resultant image after 40 iterations with the 8-masks, (f) resultant image
after 60 iterations with the 4-masks, (g) resultant image after 60 iterations with the 8-masks. Continued skeleton-
ization with the 4-masks alone will not change the output image.

Example 4.3.7: Pruning

The structuring elements for pruning;:

[0 0 0] [0 0 0] [0 0 0] x 0 O
SE,=|0 1 O0|,SE,=|0 1 O|,SE;={x 1 O|,SE,={x 1 O
0 x x| |x x 0] x 0 O 0 0 0
b x 0] 0 X 0 0 «x 0 0 0
SE;={0 1 O0|,SE,=|0 1 O0|,SE,=|0 1 «x|,SE,=|0 1 «x
0O 0 O 0 0 0 0 0 0 «x
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FIGURE 4.3-28

Skeletonization using four or eight masks with AND or sequential method. The number of iterations is until no
further changes occur. (a) Original image, (b) results with 4-masks and AND method, (c) results with 8-masks
and AND method, (d) results with 4-masks and sequential method, (e) results with 8-masks and sequential
method. With the AND method connectivity may be lost. With the sequential method connectivity is main-
tained, but more lines may occur. These extra lines, or spurs, may be desired or extraneous, depending on the
application. (f) Using the Hough transform to remove spurs for (e) with minimum number of segment pixels = 12,
(g) using the Hough transform to remove spurs from (e) with minimum number of segment pixels = 20.

Results from previous skeletonization:

o
O o~ oo o R~ O
oo o~ O R OO
O o oo~ o oo
oo oo r o oo
oo o, O R OO

S O kR O O O~ O
lOOCDCDOC)C)O‘

‘o o o oo
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FIGURE 4.3-28 (CONTINUED)

Skeletonization using four or eight masks with AND or sequential method. The number of iterations is until no
further changes occur. (a) Original image, (b) results with 4-masks and AND method, (c) results with 8-masks
and AND method, (d) results with 4-masks and sequential method, (e) results with 8-masks and sequential
method. With the AND method connectivity may be lost. With the sequential method connectivity is main-
tained, but more lines may occur. These extra lines, or spurs, may be desired or extraneous, depending on the
application. (f) Using the Hough transform to remove spurs for () with minimum number of segment pixels = 12,
(g) using the Hough transform to remove spurs from (e) with minimum number of segment pixels = 20.

Application of one iteration of pruning to the result from the previous example.

O O O O O o O O
O O O O O o O O
S O O = O = O O
o O O O = O O O
O O O O = O O O
S O O = O = O O
O O O O O o O O
O O O O O o O O

© 2011 by Taylor & Francis Group, LLC



228 Digital Image Processing and Analysis

(@)

AN

<« >

AR

Rectangular image grid with Hexagonal grid
every other row shifted by
one-half pixel

FIGURE 4.3-29
Hexagonal grid.

Another approach to binary morphological filtering is based on an iterative approach.
The usefulness of this approach lies in its flexibility. It is based on a definition of six-
connectivity, in which each pixel is considered connected to its horizontal and vertical
neighbors, but to only two diagonal neighbors (the two on the same diagonal). This
connectivity definition is equivalent to assuming that the pixels are laid out on a hex-
agonal grid, which can be simulated on a rectangular grid by assuming that each row
is shifted by one-half a pixel (see Figure 4.3-29). With this definition a pixel can be
surrounded by 14 possible combinations of 1s and Os, as seen in Figure 4.3-30; we call
these different combinations surrounds. For this approach to morphological filtering,
we define:

1. The set of surrounds S, where a = 1.

2. A logic function, L(a,b), where b is the current pixel value, and the function speci-
fies the output of the morphological operation.

3. The number of iterations, 7.

The function L(a,b), and the values of a and b are all functions of the row and column, (7,c),
but for concise notation this is implied. Set S can contain any or all of the 14 surrounds
defined in Figure 4.3-30. L(a,b) can be any logic function, but it turns out that the most
useful are the AND and OR functions. The AND function tends to etch away at object
boundaries (erosion) and the OR function tends to grow objects (dilation). The following
examples illustrate iterative morphological filtering. In these examples we will not change
the outer rows and columns, since the image is undefined beyond the borders and the 3 x 3
surrounds will not fit within the image in these cases.

Example 4.3.8

Let L(a,b) = ab (logical AND operation).
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FIGURE 4.3-30
Surrounds for iterative morphological filtering.

0o 0 0 0 0 0 0 0]

o 1 1 1 1 1 1 O

IMAGE o 1 o0 1 1 1 1 0

0 0 0 01 1 1 0O

o 1 1 1 1 1 1 0

o 0 0 0 0 0 0 0
1 1 «x

S={5}=|1 , 1|5 assume the origin is in the center.

x 0 O

Notes: this means the set S contains surround number 5 from Figure 4.3-30 and the x’s are not
neighbors, since we are using six-connectivity.

The window S (a 3 x 3 window) is scanned across the image. If a match is found, then
a =1 and the output is computed by performing the specified L(a,b) function, in this case by
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ANDing a with b (b is the center pixel of the subimage under the window). This gives the
value of our new image, which will equal ab = (1)b = b. If the window S does not match the
underlying subimage, then a = 0 (false) and L(a,b) = ab = (0)b = 0. In either case, the resulting
value is written to the new image at the location corresponding to the center of the window.
The window S is scanned across the entire image in this manner and the resultant image
is as follows:

o O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O = O O O O

o O O O O O
o o o o o o

Here we see that the AND operation erodes the object. Also note that the set S can contain
more than one surround; if it does, then a = 1 when the underlying neighborhood matches any
of the surrounds in the set S. Another parameter that can be considered is the rotation of the
surrounds in S. For example, rotating surround S = {5} counterclockwise we have the follow-
ing five possibilities:

1 x][1 1 x][1 O x][0 O «x]JfO0O 1 «x][1 1 «x
x 1|,{1 x 0,1 x O0|,{1 x 1{,{0 x 1[,]10 «x

With iterative morphological filtering, normally it is implied that the surrounds in S can be
rotated when looking for a match. Additionally, since this is an iterative approach, n is used to
define the number of iterations. Following are more examples of this technique:

Example 4.3.9
S=1{},L@bh=0n=1

The set of surrounds (neighbors) is a null set. This implies a = 0; since a surround is not speci-
fied. The Boolean function L(a,b) = 0. For this combination, all the cells of the image are set to
zero; that is, we have a black image as output.

Example 4.3.10
S={} Lab)=(b,n=1

In this case a =0, but this is irrelevant since L(a,b) = /b, which implies that the center pixel is
negated (complimented).

Ifb=1,L(ab)(1) =0

Elseif b=0, L(a,b) = (10) = 1
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Example 4.3.11
S={7}, L(a,b)=abn=1

Consider the following image with the surround S as follows:

M 0 0 0 0 0 0 0]
o 1 1 1 1 1 1 0
o 1 1 1 1 1 1 0
o0 1 1 1 1 1 1 0
o0 1 1 1 1 1 1 0
0o 1.1 0 0 0 0 O
o 1 1 0 0 0 0 O
1
LetS={7}={1 «x 1
x 1 1

In this case, a=1 for the surround shown above. If the surround does not match then
L(a,b) = 0(b) = 0. If there is a match then L(a,b) = 1(b) = b. The resultant image is as follows:

O O O O O O O
O O O O O O O
O O O = =k O O
O O O Rk =k O O
O O O R -k O O
O O O = - O O

o O O O O o O
o o o o o o o

Since the logic function is a logical AND operation, if the edge pixels are not “1s,” the edges
are removed. This operation retains a cluster of “1s” with the edge pixels removed. So, the
appendages (thin lines) are removed from the original image—this is an erosion operation.

Example 4.3.12
S={1,7}, L(a,b) = (la)b,n =1

Consider the following image with the surrounds {S} as follows:

‘o o oo o oo
[ Y S U )
[ J S G G R )
[ Y S G )
©C OO Rk =Rk O
C OO Rk k= O
C OO Rk Rk = Oo
o oocooc oo
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0 0 «x 1 1 x
LetS={1,7}; thatisS=J{0 «x Of, {1 «x 1
x 0 O] |x 1 1

Ifb=1,L@ab)=_al="a

Elseif b= 0, L(a,b) = (1a)0 = 0

The new image after the above operation is

‘o o o oo oo
o R =B = = R o
o oo o= o
o R P P o R o
coc o o o
c ook o= o
c oo P = o
o ococoo oo

We can see that this operation removes interior pixels and keeps the edges only. Hence, this
is an edge detection operation.

Example 4.3.13

Let5=1{2,34,56,7} and L=a+b. (+=OR).

(0 0 0 0 0 0 0 0]

0O 1 1 0 0 O 0 O

IMAGEOlOOOOOO

0O 1 0 0 O O 0 O

o o0 1 1 1 1 1 0

o 0 0 0 0 0 0 O
0 1 x]J1 1 «x 1 x] 1 X X X
S=J10 x 00 «x O}, {1 «x O0],|1 x 0f, x 1], 1§,
x 0 O|l|x O Ol|x O Offx 1 O]|x 1 O} |x 1 1

Because L(a,b) is an OR operation, all pixels that are 1 in the original will remain 1. That is

L=a+b=a+1=1
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The only pixels that will change are those that are 0 in the original image and have a surround
thatis S (this means that a = 1). That is

L=a+b=a+0=a

If we examine the set S we see that this set contains all pixels that are surrounded by a con-
nected set of 1s. This operation will expand the object, and illustrates that the OR operation
results in a dilation. The resultant image is

= I = =)
O = Rk O O O
O = = O O O
O = O O O O
) o O O O O CDI

O O = == O
O = O = = O

'c o o o o o

We can see from these examples that this iterative morphological approach is quite ver-
satile. The process can be iterated, or repeated, to any degree desired. We can use this
technique to define methods for dilation, erosion, opening, closing, marking corners, find-
ing edges, and other binary morphological operations. For this technique the selection of
the set S is comparable to defining the structuring element in the previously described
approaches, and the operation L(a,b) defines the type of filtering that occurs. In general,
if L(a,b) is an OR operation it will tend to grow, or dilate, objects. When L(a,b) is an AND
operation, it will tend to shrink, or erode, objects.

As illustrated in Figure 4.3-31, we can use the iterative modification approach to find the
skeleton of a binary image by using the following parameters: L(a,b) = (a/)b, and S = (3,4). In
this figure we show results as the number of iterations is increased, and can be compared
to results from using the previously defined skeletonization method. In Figure 4.3-32 we
use the same operation, but change the set S and see that it now works as an edge detector.
In this case these are the parameters: L(a,b) = (a/)b, and S = (1,7).

The morphological operations described (dilation, erosion, opening, and closing) can be
extended to gray-level images in different ways. The easiest method is to simply threshold
the gray-level image to create a binary image, and then apply the existing operators. For
many applications this is not desired, as too much information is lost during the thresh-
olding process. Another method that allows us to retain more information is to treat the
image as a sequence of binary images by operating on each gray level as if it were the “1”
value and assuming everything else to be “0.” The resulting images can then be combined
by laying them on top of each other and “promoting” each pixel to the highest gray-level
value coincident with that location.

An example of results from gray-level morphological filtering is shown in Figure 4.3-33.
For this application an opening operation followed by a closing operation was performed.
A circular structuring element was used, as the object of interest was the skin tumor bor-
der. The opening procedure served to smooth the contours of the object, break narrow
isthmuses, and eliminate thin protrusions and small objects. Next, the closing was per-
formed to fill in gaps and eliminate small holes. To fully understand gray-level morphol-
ogy, we must remember that with two adjacent gray levels, the brightest one is considered
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FIGURE 4.3-31
Skeletonization. For the iterative approach. L(a,b) = (la)b, and S = (3/4). (a) Original image, (b) after 10 itera-

tions, (c) after 20 iterations, (d) iterating until no more changes occur, (e) results from previous skeletonization
technique with 4-masks, AND method (f) results from previous skeletonization technique with 8-masks, AND

method.
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FIGURE 4.3-32
Edge detection via iterative modification morphological filtering. In this example: L(a,b) = (fa)b, and S=(1,7).

(a) Original image, (b) resultant image after one iteration.

(a)fF

Hislaa

FIGURE 4.3-33
Gray-level morphological filtering. (a) Original segmented skin tumor image, contains 1,708 objects, (b) Image

(a) after morphological opening using a 5 x 5 circular structuring element, contains 443 objects (c) Image (b)
after morphological closing using a 5 x 5 circular element, contains 136 objects.
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to be the object (the equivalent of “1” in a binary image) and the darker is the back-
ground (the “0” equivalent in binary morphology). In this figure we see the tremendous
data reduction achieved, thus simplifying the process of identifying the tumor features
of interest.

4.4 Key Points

Overview: Image Analysis and Segmentation

¢ Image analysis requires data reduction and segmentation is the primary method
in the spatial domain to accomplish it.

e The goal of segmentation is to find regions that represent objects or meaningful
parts of objects.

¢ Image segmentation methods look for regions that have some measure of homo-
geneity within themselves, or some measure of contrast with objects on their
border.

e Three categories for image segmentation methods: (1) region growing and
shrinking, (2) clustering methods, and (3) boundary detection.

Edge/Line Detection

e Edge detection operators are often implemented with convolution masks.

e Edge detection operators are often discrete approximations to differential
operators.

e Edge detection operators may return magnitude and direction information, some
return magnitude only.

* The Hough transform is used for line finding, but can be extended to find arbi-
trary shapes.

e Edge direction and lines are perpendicular to each other, because the edge direc-
tion is the direction of change in gray level.

® There is tradeoff between sensitivity and accuracy in edge detection (see
Figure 4.2-2).

e Potential edge points are found by examining the relationship a pixel has with its
neighbors; an edge implies a change in gray level.

¢ Edges may exist anywhere and be defined by color, texture, shadow, and so on,
and may not necessarily separate real-world objects.

e Areal edge in an image tends to change slowly, compared to the ideal edge model
that is abrupt (see Figure 4.2-4).

Gradient Operators

e Gradient operators are based on the idea of using the first or second derivative of
the gray level.
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® The first derivative will mark edge points, with steeper gray-level changes provid-
ing stronger edge points (larger magnitudes).
e The second derivative returns two impulses, one on either side of the edge.

Roberts operator: a simple approximation to the first derivative, two forms of the
equations:

\/[I(r,c)— I(r-1,c-DF+[I(r,c-1)-I(r-1,0)
I(r,c)=I(r-1,c=1)|+|I(r,c = 1) = I(r - 1,¢)|

Sobel operator: approximates the gradient with a row and column mask, and returns
both magnitude and direction:

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
2 1 -1 0 1

EDGE MAGNITUDE 4/5,2 + 5,2

EDGE DIRECTION Tan-! [Sl}
52

Prewitt operator: approximates the gradient with a row and column mask, and returns
both magnitude and direction, it is easier to calculate or implement in hardware than the
Sobel, as it uses only 1s in the masks:

-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 -1 0 1
EDGE MAGNITUDE 4/p;? + p,?

EDGE DIRECTION Tan-!

P1

P2
Laplacian operators: these are two-dimensional discrete approximations to the second

derivative, it is implemented by applying one of the following convolution masks:

o -1 0 -1 -1 -1 -2 1 =2
-1 4 -1 -1 8 -1 1 4 1
0o -1 0 -1 -1 -1 -2 1 =2

Compass Masks

¢ The compass mask edge detectors are created by taking a single mask and rotating
it to the eight major compass orientations.
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¢ The edge magnitude is found by convolving each mask with the image and select-
ing the largest value at each pixel location.

e The edge direction at each point is defined by the direction of the edge mask that
provides the maximum magnitude.

Kirsch compass masks:

3 3 5 3 5 5 5 5 5 5 5 -3
k|-3 0 5| k|-3 0 5| k|-3 0 -3| k, |5 0 -3
3 3 5 3 -3 -3 3 -3 -3 3 -3 -3
5 -3 -3 3 -3 -3 3 -3 -3 3 -3 -3
k5 0 3| k|5 o0 -3| k|3 0 -3 k|3 0 5
5 -3 -3 5 5 -3 5 5 5 3 5 5

-1 0 0 1 2 [ 1 2 1 2 1 0
ni-2 0 2 n -1 0 1| n| O 0 0| s |1 0 -
-1 0 1 -2 -1 0 -1 -2 -1 0o -1 -2
1 0 -1 0o -1 -2 -1 -2 -1 -2 -1 0
Ty 0 -2 r|1 0 -1 »| O 0 0 r|-1 0 1
1 0 -1 2 1 0 1 2 1 0 1 2

Advanced Edge Detectors

Marr-Hildreth Algorithm: consists of three steps: (1) convolve the image with a
Gaussian smoothing filter, (2) convolve the image with a Laplacian mask, and

(3) find the zero-crossings of the image from Step 2. The first two steps can be
combined into one convolution filter, such as

The simplest method to find zero-crossings is to examine 3 x 3 subimages and look
for changing signs (positive/negative) in at least two opposing neighbors.

Canny algorithm: an optimal edge detector based on a specific mathematical model,
it is a four step process: (1) apply a Gaussian filter mask to smooth the image
to mitigate noise effects, (2) find the magnitude and direction of the gradient,
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(3) apply nonmaxima suppression that results in thinned edges, and (4) apply two
thresholds known as hysteresis thresholding.

Hysteresis thresholding: mark pixels above a high threshold, and then apply a low
threshold to connected pixels.

Boie—Cox algorithm: a generalization of the Canny algorithm using matched filters
and Wiener filters.

Shen-Castan algorithm: developed as an optimal solution to a specific mathemati-
cal model, similar to Canny, but with modifications and extensions.

Frei-Chen masks: they form a complete set of basis vectors, which means any 3 x 3
subimage can be represented as a weighted sum of the basis vectors. The weights
are found by projecting the subimage onto each basis vector; that is, perform a vec-
tor inner product. Can be used to find edges or lines of specific orientation.

Vector inner product: found by multiplying coincident terms of two vectors and
summing the results.

Edges in Color Images

Edge detection in color images can be performed on the original RGB data, or on the data
after mapping into another color space. The edges are found using different methods:

1. Extract the luminance or brightness information and apply a monochrome
edge detection method. The brightness information can be found by averag-
ing the RGB components: L=[(R+G+B)/3], or by the luminance equation:
Y =0.299R + 0.587G + 0.114B, or by the vector length: L =R? + G* + B>.

2. Apply a monochrome edge detection method to each of the RGB bands separately
and then combine the results into a composite image.

3. Apply a monochrome edge detection method to each of the RGB bands separately
and then retain the maximum value at each location.

4. Apply a monochrome edge detection method to each of the RGB bands separately
and then use a linear combination of the three results at each location.

5. Apply a monochrome edge detection method to each of the RGB bands separately
and then select specific criteria at each pixel location to find an edge point.

6. Equations for multispectral edges, developed by Cervenka and Charvat:

n

Z[Ib(r,c) ~1(r, 0 L,(r + L,c+ 1)~ I(r+1,c+1)]

\/E[Ib(r,c)— T(r,c)]2 z[lb(r +Le+)-I(r+1,c+ 1)]2

n

Z[Ib(r +1,0)-I(r+ l,c)][Ib(r,c +1)-I(r,c+ 1)]

\/2[1;,(r+ 1,¢)-1(r+ 1,c):|2 i[lb(r,c +1)=I(r,c+ 1)]2
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where

I(r,c) is the arithmetic average of all the pixels in all bands at pixel location (r,c),

I,(r,c) is the value at location (7,c) in the bth band, with a total of # bands.

Edge Detector Performance

® Objective and subjective evaluations can be useful.

® Success criteria must be defined, such as was used to develop the Canny algo-
rithm: (1) Detection—the edge detector should find all real edges and not find
any false edges. (2) Localization—the edges should be found in the correct place.
(3) Single Response—there should not be multiple edges found for a single edge.

e Extended edge detection masks can be defined to improve performance in the
presence of noise (see Figure 4.2-24).

Pratt Figure of Merit (FOM): an objective measure developed by Pratt in 1978, which
ranges from 0 (0%) for a missing edge to 1 (100%) for a perfectly found edge. It is
defined as follows:

IF

FOM = - L
In = 1+ag

the maximum of I; and I

the number of ideal edge points in the image;

the number of edge points found by the edge detector;

a scaling constant that can be adjusted to adjust the penalty for offset edges; and
the distance of a found edge point to an ideal edge point.

Iy
I
I
o
d

The distance measure can be defined in one of three ways:

1. City block distance, based on four connectivity:
d=r -n|+|c, - c)

With this distance measure we can only move horizontally and vertically.
2. Chessboard distance, based on eight-connectivity:

d= rnax(\r1 -1, - cz\)

4

With this distance measure we can move diagonally, as well as horizontally or
vertically.

3. Euclidean distance, based on actual physical distance:
d=[(n-nf+-cP]”
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Hough Transform

Designed as an efficient method to find lines from marked edge points, consisting of three
primary steps based on using the normal representation of a line, p = r cos(6) + c sin(0):

1. Define the desired increments on p and 6, Ap and Ay, and quantize the space
accordingly.

2. For every point of interest (typically points found by edge detectors that exceed
some threshold value), plug the values for r and c into the line equation:

p = rcos(0) + csin(0)

Then, for each value of 6 in the quantized space, solve for p.

3. For each p# pair from Step 2, record the r and c pair in the corresponding block in
the quantized space. This constitutes a hit for that particular block.

After performing the Hough transform, post-processing must be done to extract the line
information.

Segmentation

e The goal of segmentation is to find regions that represent objects or meaningful
parts of objects.

¢ Image segmentation methods look for regions that have some measure of homoge-
neity within themselves, or some measure of contrast with objects on their border.

e Three categories for image segmentation methods: (1) region growing and shrink-
ing, (2) clustering methods, and (3) boundary detection.

Region Growing and Shrinking

e Operate principally on the row and column, (7,c), based image space.

® Methods can be local, operating on small neighborhoods, global, operating on the
entire image, or a combination of both.

Split and Merge: a segmentation method that divides regions that do not pass a
homogeneity test, and combines regions that pass the homogeneity test. This tech-
nique proceeds as follows:

1. Define a homogeneity test. This involves defining a homogeneity measure, which
may incorporate brightness, color, texture, or other application-specific information,
and determining a criterion the region must meet to pass the homogeneity test.

2. Split the image into equal sized regions.
3. Calculate the homogeneity measure for each region.

4. If the homogeneity test is passed for a region, then a merge is attempted with its
neighbor(s). If the criterion is not met, the region is split.

5. Continue this process until all regions pass the homogeneity test.
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Quadtree: a data structure used in split and merge in which each node can have
four children.

Homogeneity criteria: a measure of similarity within a region in an image. In
CVIPtools these are available: (1) pure uniformity, (2) local mean versus global
mean, (3) local standard deviation versus global, (4) variance, (5) weighted
gray-level distance, and (6) texture.

Watershed algorithm: a morphological technique based on the ideas of model-
ing a gray-level image as a topographic surface, with higher gray levels cor-
responding to higher elevations. The image is then flooded with a rainfall
simulation, and pools of water are created corresponding to segments within
the image.

Clustering Techniques

e Segments the image by placing similar elements into groups, or clusters, based on
some similarity measure.

¢ Differs from region growing and shrinking methods in that the mathematical
space includes dimensions beyond the row and column image space.

e The mathematical space used for clustering may include, as examples, color spaces,
histogram spaces, or complex feature spaces.

Recursive region splitting: uses a thresholding of histograms to segment the image.
An example of this type of algorithm:

1. Consider the entire image as one region and compute histograms for each compo-
nent of interest (for example red, green, and blue for a color image).

2. Apply a peak finding test to each histogram. Select the best peak and put thresholds
on either side of the peak. Segment the image into two regions based on this peak.

3. Smooth the binary thresholded image so only a single connected subregion
is left.

4. Repeat steps 1-3 for each region until no new subregions can be created; that is, no
histograms have significant peaks.

SCT/Center algorithm: a color segmentation algorithm initially developed for use
in skin tumor identification, defined based on the human visual system response.
The algorithm proceeds as follows:

1. Convert the (R,G,B) triple into spherical coordinates — (L, angle A, angle B).

2. Find the minima and maxima of angle A and angle B.

3. Divide the subspace, defined by the maxima and minima, into equal-sized blocks.
4. Calculate the RGB means for the pixel values in each block.

5. Replace the original pixel values with the corresponding RGB means.

PCT/Median algorithm: a color segmentation method initially developed for use
in skin tumor identification, based on the principal components transform (PCT).
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The PCT provides a linear transform that will align the primary axis along the
path of maximum variance. The algorithm proceeds as follows:

1. Find the PCT for the RGB image. Transform the RGB data using the PCT.

2. Perform the median split algorithm: find the axis that has the maximal range (ini-
tially it will be the PCT axis). Divide the data along this axis so that there are equal
numbers of points on either side of the split—the median point. Continue splitting
at the median along the maximum range segment until the desired number of
colors is reached.

3. Calculate averages for all the pixels falling within a single parallelepiped (box).

4. Map each pixel to the closest average color values, based on a Euclidean distance
measure.

Boundary Detection

¢ Boundary detection for image segmentation is performed by finding boundaries
between objects, thus indirectly defining the objects.

e The general steps are (1) mark potential edge points by finding discontinuities in
features such as brightness, color, or texture, (2) threshold the results, and (3) merge
edge segments into boundaries via edge linking.

Thresholding: a technique where pixels are marked above a specified value. Various
algorithms are available, including: (1) by manually examining the histogram and
looking for the best valley, (2) use the isodata method from Chapter 3, (3) minimizing
within group variance, Otsu method—an analytical algorithm that works well for
bimodal histograms based on the assumption that each peak is Gaussian shaped
and the peaks are well separated, (4) use the average value, and (5) use 10-25% of
the maximum value for noisy images.

Edge linking: methods to link the edge points into segments and boundaries,
including: (1) consider points that have passed the threshold test and connect
them to other marked points within some maximum distance, (2) consider small
neighborhoods and link points with similar magnitude and direction, then link
points together to form boundaries, and (3) the snake eating algorithm described
in Section 4.2.6.

Extended Hough transform: is used to find shapes and mark boundaries that can
be defined by analytical equations, such as circles or ellipses. The search space is
a parameter space, where the parameters are found in the equation describing the
shape of interest.

Generalized Hough transform: is used to find any arbitrary shape. It works by cre-
ating a description of the shape defined by a reference point and a table of lines,
the R-table.

Gradient Vector Flow Snake (GVF snake): initialized by a rough approximation
to the border, referred to as a snake; features of interest control the process
by defining forces that will push and/or pull the border until equilibrium is
reached.
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Combined Segmentation Approaches

* Image segmentation methods may actually be a combination of region growing
methods, clustering methods, and boundary detection.

e Optimal image segmentation is likely to be achieved by focusing on the
application.

¢ Finding boundaries of different features, such as texture, brightness, or color, and
applying artificial intelligence techniques at a higher level to correlate the feature
boundaries found to the specific domain may give the best results.

Morphological Filtering

* Morphology relates to structure or form of objects.

e Morphological filtering simplifies segmented images by smoothing out object out-
lines, filling small holes, eliminating small projections, or skeletonizing a binary
object down to lines that are a single pixel wide.

¢ Primary operations are dilation and erosion.

¢ These operations use a structuring element that determines exactly how the object
will be dilated or eroded.

® Opening and closing are useful combinations of dilation and erosion.

Dilation: the process of expanding image objects by changing pixels with value of
“0” to “1.” It can be done in two steps:

1. If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

2. If the origin of the structuring element coincides with a “1” in the image, perform
the OR logic operation on all pixels within the structuring element.

Erosion: the process of shrinking binary objects by changing pixels with a value of
“1” to “0.” It can be done in two steps:

1. If the origin of the structuring element coincides with a “0” in the image, there is
no change; move to the next pixel.

2. If the origin of the structuring element coincides with a “1” in the image, and any
of the “1” pixels in the structuring element extend beyond the object (“1” pixels) in
the image, then change the “1” pixel in the image, whose location corresponds to
the origin of the structuring element, to a “0.”

Opening: an erosion followed by a dilation. This will eliminate all pixels in regions
too small to contain the structuring element. It will expand holes, erode edges, and
eliminate small objects. It may split objects that are connected by narrow strips,
and eliminate peninsulas.

Closing: a dilation followed by an erosion. It can be used to fill holes and small
gaps. It will also connect separate objects if the gap is smaller than the structuring
element.

© 2011 by Taylor & Francis Group, LLC



Segmentation and Edge/Line Detection 245

Hit-or-miss transform: The morphological hit-or-miss transform is a fundamental
method for detection of simple shapes and works by overlaying the structuring
element on the image, and requires an exact match for a “hit” to occur—a hit is
marked with a 1. See Examples 4.3.3 and 4.3.4.

Thinning: etching away at an object boundary with a structuring element, SE, by
this equation (see Example 4.3.5):

Thin[I(r,c),SE] = I(r,c) — hit-or-miss[I(r,c),SE].

Skeleton: What is left of a binary object after it has been eroded to the point of being
only one pixel wide.

Skeletonization: a controlled erosion process to create a skeleton of a binary object
(see Example 4.3.6).

Spur: small, extraneous lines left after the skeletonization process.
Pruning: Iteratively removing spurs from a skeleton (see Example 4.3.7).

Iterative morphological filtering: as defined here, it is based on a definition of six-
connectivity, so a pixel can be surrounded by 14 possible combinations (allowing for
rotation). This approach can be used to dilate, erode, open, close, skeletonize, mark
corners, find edges, and perform other binary morphological operations. To do this,
we define: (1) the set of surrounds S, where a =1, (2) a logic function, L(a,b), where b
is the current pixel value, and the function specifies the output of the morphological
operation, (3) the number of iterations,  (see Examples 4.3.8 through 4.3.13).

Gray-level morphological filtering: the previously defined binary operations can be
extended to gray-level images in various ways: (1) threshold the image to create
a binary image and apply binary operators and (2) treat the image as sequence
of binary images by operating on each gray level as if it were the “1” value and
assuming everything else to be “0.” The resulting images can then be combined by
laying them on top of each other and “promoting” each pixel to the highest gray-
level value coincident with that location.

Exercises
Problems
1. (a) What is the goal of image segmentation? (b) What type of objects do segmenta-
tion methods look for? (c) List the three categories of segmentation methods.

2. What does a differential operator measure, and how does this relate to edge
detectors?

3. In dealing with noise in edge detection there is a tradeoff between sensitivity and
accuracy. Explain what this means.

4. Compare and contrast an ideal edge and a real edge in an image. Draw a picture
of both.

5. (a) Explain the idea on which gradient edge detection operators are based. (b) How
do the results differ if we use a second order compared to a first order derivative
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operator? (c) Explain what is meant by subpixel accuracy and how it relates to
gradient-based edge detectors.

6. Find the results of applying the Robert’s edge detector to the following image. Use
the absolute value form of the operator. For the result, don’t worry about top row
and left column.

5 4 3
0 0
6 1 2 1

7. Find the results, magnitude, and direction, of applying the Prewitt edge detector
to the following image. For the result, don’t worry about the outer rows and col-
umns row and left column.

o O o O
@ 0 o @
o O o O
o O o O

8. Two of the three Laplacian masks given are based on eight-connectivity, the other
one is based on four-connectivity—which one? Devise a Laplacian type edge
detection mask based on six-connectivity.

9. Find the results of applying the Robinson compass masks to the following image.
For the result, don’t worry about the outer rows and columns row and left column.
Keep track of the maximum magnitude and which mask corresponds to it.

S a1 © O
o o1 © O
o o1 © ©

o a1 © O

10. Use CVIPtools to explore the basic edge detection operators. (a) Run CVIPtools,
and load test images of your choice. As one of the test images, create a binary
image of a circle with Utilities> Create- Circle. (b) Select Utilities> Create-