
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Developing with Google+

Jennifer Murphy

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Developing with Google+
by Jennifer Murphy

Copyright © 2012 Jennifer Murphy. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Holly Bauer
Proofreader: Christie Rears

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

Revision History for the First Edition:
2012-09-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449312268 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Developing with Google+, the image of a pardalote, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31226-8

[LSI]

1347046338

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449312268
http://www.allitebooks.org

Table of Contents

Preface . v

1. Introduction . 1
Things You May Recognize 1
Things That May Be New to You 2
Explore the API 3

2. Social Plugins . 7
The +1 Button 7

Adding the +1 Button 10
Customizing the +1 Button 13
Customizing Your Snippet 14
Leveraging the Callback 16
Special Considerations for AJAX Applications 17
Troubleshooting the +1 Button 19

The Badge 21
Adding the Badge 22

Performance Tuning Social Plugins 26
Asynchronous Loading 26
Explicit Rendering 26
Delayed Rendering 27
Keeping Up to Date 29

3. Public Data APIs . 31
Integrating Google+ Comments 31

Experiment with the APIs 31
Client Libraries 36

Registering Your Application 36
Time to Code 37
Comments Integration in Action 39
What’s Next? 40

iii

www.allitebooks.com

http://www.allitebooks.org

4. OAuth-Enabled APIs . 41
New Application: Baking Disasters 2.0 41
Authentication Using Google+ 42

OAuth 2.0 43
Accounts and API Keys 44
A Little More About OAuth 2.0 46
Starter Projects 46
Bringing it Together 49
Locking Stuff Down 54
A Preview of the Sign-in Button 57

Making Baking Disasters Social 58
Import Disasters from Google+ 58
A Preview of the History API 62

Best Practices 64

5. Collaborative Baking with Hangout Apps . 65
Potluck Party Planner 65
Architecture of a Hangout App 66
Hosting a Hangout App 66
Starting with a Starter Project 68

Convert the Starter Project to PHP 68
Run the Starter Project 69

Collaborative Planning 72
Recipe and Ingredient REST APIs 72
Hangout App Interface 75
Hangout App Startup 77
Shared State and HTML Manipulations 78

Add Reminder Sharing 81
Media APIs 84
Other Hangout APIs 86
Publishing 86

6. Wrapping Up the Baked Goods . 91

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

v

www.allitebooks.com

http://www.allitebooks.org

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Developing with Google+ by Jennifer Mur-
phy (O’Reilly). Copyright 2012 Jennifer Murphy, 978-1-449-31226-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/dev_w_google_plus.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

vi | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/dev_w_google_plus
mailto:bookquestions@oreilly.com
http://www.allitebooks.org

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Writing a book is a huge undertaking. I had lots of help along the way. There is no way
that I can cover everyone who helped me, but here's a list of a few individuals who I
would like to thank.

Thanks to all of my coworkers at Google for their technical reviews including Will
Norris, Eric Li, Brett Morgan, Gus Class, and the rest of the Google+ platform team.
Thanks to my friends at O'Reilly, especially Mike Loukides and Meghan Blanchette,
who guided me through the process. Thanks to everyone who offered support in ways
other than code, including my teammates from the Peninsula Roller Girls, who were
always by my side, Jordan Robinson, for her wonderful and potentially disastrous rec-
ipes, and my partner in crime, Winona Tong, for creating the Baking Disasters logo
and so much more.

Preface | vii

www.allitebooks.com

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Introduction

Hello there! Since you’re reading these words, the Google+ platform has probably
sparked your interest. Maybe you have a killer app in mind, or perhaps you’re just
interested in learning what’s available. Either way, by the time you’re finished with this
book, you will be comfortable digging into Google+.

The Google+ platform has three categories of features. Each of these categories is ca-
pable of standing alone, but things become more interesting when you combine them.
These categories form a natural division, so we’ll be going through them one at a time.

This means you can skip around from chapter to chapter if you wish. Once you become
familiar with the components that you’re most interested in, you will be able to combine
them into the application that you’re dreaming about. So, feel free to invoke a random
access approach to reading this book. If you’re more interested in REST APIs than
publisher plugins, skip ahead. I promise I won’t be offended.

The three categories of the Google+ platform are social plugins, like the +1 button,
RESTful web services, which provide read access to Google+ data, and hangout appli-
cations, for writing your own real time collaboration apps. Additionally, the RESTful
web services can be used in a couple of ways. You can either access public data directly
when you know what you’re looking for, or you can use OAuth 2.0 to access your user’s
data on Google+.

Since this architecture is a bit different from other platforms that you may have used,
here are a few things that you may recognize and a few things that may be new to you.

Things You May Recognize
If you’ve developed on other social platforms you’re in luck. Many of the technologies
and techniques used in the Google+ platform are very similar. This is all thanks to a
combination of open standards and best practices that have developed over the past
several years.

1

Social Plugins: If you are a content publisher, or have an existing web application,
Google+ plugins provide a simple way to integrate with Google+. They consist of Java-
Script and small snippets of HTML markup. Google provides several social plugins
including the +1 button, badge, share button, and sign-in button.

The JSON/REST/HTTP Stack: More sophisticated integrations with the Google+
platform rely heavily on JSON messages communicated with RESTful web services
over the HTTP protocol. This is how you can programmatically communicate with
Google+.

OAuth 2.0: The OAuth 2.0 specification is still in a draft state, but the need for secure
access to user data is so acute that it is already being adopted by platforms across the
Internet. Google+ has made a commitment to use OAuth 2.0 for APIs going forward.

Things That May Be New to You
As much as developing on Google+ is similar to developing on other modern social
platforms, there are a couple of things that may be new to you.

Activity writes require user interaction: This is more of a philosophical difference
than a technical one, but it will impact your designs.

A user’s activity is a portal into the lives of people they know. A high-quality stream is
very important to Google+. As a result, directly posting to a user’s stream is not sup-
ported by the API. Instead, all writes must be triggered directly by the user. This is
intended to keep the stream as high quality as possible. In practical terms this means
that all writes must be made using the +1 button or the developer preview history API.

Preferred client libraries: RESTful APIs are great in that they provide a language-
agnostic way to access data that resides on a remote system. Unfortunately, the speci-
fications can be broadly interpreted, and nuance differences between implementations
can make your code complicated.

To ease development in the language of your choice, Google is actively developing
preferred client libraries for many popular languages.

If at all possible, use one of these libraries. Everything from the reference documentation
to starter projects provided by Google is written using these libraries. In the same vein,
all of the sample code is in this book is written using these client libraries.

The recommended client libraries are open source and provided under the favorable
terms of the Apache 2.0 license.

2 | Chapter 1: Introduction

Explore the API
Without further ado, it’s time to dive into the API. The easiest way to see the
Google+ platform in action is to use the API Explorer. This tool is accessible at https:
//developers.google.com/apis-explorer/#s/plus/v1/. It provides point-and-click access to
most of the APIs that Google offers, including the REST APIs for Google+.

Follow these steps to fetch your public Google+ profile with the REST API.

1. Navigate to the API Explorer as shown in Figure 1-1. The hash fragment in the
URL above should have automatically selected the Google+ API. Near the top of
the content pane, you should see the selected API and version: Google+ API v1.
Below this is a list of the available methods.

2. Scanning through the available methods, as shown in Figure 1-2, the plus.peo
ple.get method looks like a match. Click it to reveal input fields.

3. Unfortunately, it requires a userId, which you probably don’t know. The shortcut
value me can be used in its place, but since your identity on Google+ is private
information, it is protected by OAuth 2.0. You must authorize the API explorer to
use it. Click the toggle switch entitled Authorize requests using OAuth 2.0 to initiate
this authorization.

4. An OAuth scope dialog will appear, as shown in Figure 1-3. Check the checkbox
for the https://www.googleapis.com/auth/plus.me scope, and click the Authorize
button. If this is your first time using the API Explorer with Google+ you must also
grant the API Explorer access to your identity on Google+.

5. The API Explorer now has permission to determine your userId. Specify me for
userId and to execute the query, as shown in Figure 1-4.

6. Upon execution, the request history pane at the bottom of the window displays
the API Explorer’s request and the API server’s response, as shown in Figure 1-5.
Assuming it was successful, you should see the HTTP headers from request and
the full response. This includes a JSON representation of your public Google+
profile.

Congratulations! With a just few clicks you’re already using the Google+ platform.

Over the course of these steps you witnessed many important features of the REST APIs
provided by the Google+ platform. You danced the OAuth 2.0 dance to grant the API
Explorer access to your identity on Google+, and you observed it fetching your
Google+ profile.

Explore the API | 3

https://developers.google.com/apis-explorer/#s/plus/v1/
https://developers.google.com/apis-explorer/#s/plus/v1/
https://www.googleapis.com/auth/plus.me

Figure 1-1. The API Explorer listing the methods of Google+ API v1

Figure 1-2. The API Explorer panel for crafting a people.get request

4 | Chapter 1: Introduction

Figure 1-3. The API Explorer’s OAuth 2.0 scope selection dialog for the Google+ API

Figure 1-4. A completed people.get request form on the API Explorer

Explore the API | 5

Figure 1-5. A typical response to a successful people.get request

6 | Chapter 1: Introduction

CHAPTER 2

Social Plugins

In the introduction you used the API Explorer to fetch your public profile. If the REST
API is the core of the platform, the plugins are portals into Google+ from your web
presence. This chapter explores these social plugins.

Social plugins are snippets of JavaScript code and HTML markup. They can be easily
added to existing web pages and applications with only a few lines of code. They are
also highly configurable.

A great way to learn the social plugins is to use them. You will add them to a blog called
Baking Disasters. Baking Disasters consists of a static HTML index page and two entry
pages that describe a couple of particularly disastrous baking attempts. You can see the
initial version of the blog here: http://bakingdisasters.com/social-blog/initial/. The entry
pages are a great place to experiment with the +1 button, and the index is an ideal
candidate for the Google+ badge.

The +1 Button
Before there was Google+ there was the +1 button. Announced at Google I/O in 2011,
this feature predates every other component of the Google+ platform. It provides a one-
click interface for your users to publicly identify their favorite content. Once users have
+1’d a page, they have the option to share it on Google+.

From your user’s perspective the +1 button is quite simple. They see your page, and
since your content makes their eyes light up in excitement, they click the +1 button.

Figure 2-1 shows what happens next. The button turns red and their icon is added to
the inline annotation. After this, the page is listed in the +1’s tab on their Google+
profile, and their endorsement appears in annotations for this page. These annotations
appear on your page as well in Google search result listings. Annotations are customized
to the viewing user using their circles on Google+.

7

http://bakingdisasters.com/social-blog/initial/

After your user has +1’d your webpage, they will see the share dialog. It allows them
to share your content on Google+. You can use structured markup to specify the title,
description, and thumbnail image that are used.

Finally, the +1 triggers a custom JavaScript callback. This allows you to leverage their
interest in creative and interesting ways.

Behind the scenes, a bit more happens. Many systems organize to provide this func-
tionality. When the +1 button renders, information is loaded to provide your user a
personalized annotation. When they click, a page fetcher visits your site in real time to
extract your page’s snippet: a short summary of your page. This summary is sent back
to the +1 button, allowing the user to preview what they are about to share on
Google+. Finally, when they share, an activity is posted to their stream.

Figure 2-2 illustrates this in detail.

1. The web page sources plusone.js from Google.

2. The web page renders the +1 button.

Figure 2-1. Some effects of a +1

8 | Chapter 2: Social Plugins

3. The +1 button fetches current +1 count.

4. Your user clicks the +1 button.

5. The +1 button communicates the click to Google.

6. Google fetches the target page.

7. Google generates a snippet for the target page.

8. The snippet is provided in the response to the +1 button click to preview the con-
tent that can be shared.

9. Your user shares the snippet for the target page on Google+.

Figure 2-2. A communication diagram describing a typical +1 button render, click, and share

The +1 Button | 9

Adding the +1 Button
Now that you understand how the +1 button works, it is time to use it.

The +1 button is very easy to add to a web page. In its most basic form it requires only
two lines of code. From this starting point you can further configure the button to match
your needs.

The Google+ platform social plugins feature configuration tools. This is the best place
to start. The +1 button configuration tool can be found at https://developers.google.com/
+/plugins/+1button/. The configuration tool, pictured in Figure 2-3, consists of a form,
a preview, and a text area containing code. Play with the form. Notice that the +1 button
and code automatically update.

Figure 2-3. The +1 button configuration tool

Add the default +1 button to one of the entries on Baking Disasters. Copy the +1 button
element into the place that you would like it to render. Based on the layout of the entry,
a spot to the right of the header will work perfectly. Wrap the button in a div to float
it right, as shown in Example 2-1.

Example 2-1. The +1 button markup

<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="inline"></div>
 </div>

10 | Chapter 2: Social Plugins

www.allitebooks.com

https://developers.google.com/+/plugins/+1button/
https://developers.google.com/+/plugins/+1button/
http://www.allitebooks.org

 <h2>Doom Bread</h2>
</header>

The +1 button markup is only half of the story, though. Paste the JavaScript into the
page too. It can be placed anywhere on the page, including just before the </body> tag,
as shown in Example 2-2. When it loads, it transforms all elements with class="g-
plusone" into a +1 button.

Example 2-2. The asynchronous version of the +1 button JavaScript

</footer>
<script type="text/javascript">
 (function() {
 var po = document.createElement('script'); po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s);
 })();
</script>
</body>
</html>

Reload the page to see the +1 button, as shown in Figure 2-4.

Figure 2-4. Doom bread with a default +1 button

The default width of 450 pixels has mangled the entry title. Sensible defaults are not
always perfect for every layout. Return to the configuration tool and specify a width.
Change the width to 250 pixels to leave room for longer titles, as shown in Exam-
ple 2-3 and pictured in Figure 2-5.

Copy the updated code, and paste it into the entry.

The +1 Button | 11

Example 2-3. +1 button markup configured to 250 pixels wide

<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="inline" data-width="250"></div>
 </div>
 <h2>Doom Bread</h2>
</header>

Reload the page to observe the change. It should look like Figure 2-6.

Figure 2-6. Doom Bread with a +1 button configured to a width of 250 pixels

Figure 2-5. The +1 button configuration tool with the width explicitly specified

12 | Chapter 2: Social Plugins

You can return to the configuration tool to explore the other options that it provides.

Customizing the +1 Button
The configuration tool provides a quick way to grab some code and run with the +1
button, but digging deeper unlocks more options.

The rest of the +1 button documentation can be found below the configuration tool.
It documents all of the configuration options for the +1 button, including many that
are not covered by the configuration tool.

For example, the documentation describes all of the tag attributes in detail. The an-
notation is pretty cool, but sometimes there isn’t enough space. Scanning the docu-
mentation it appears that the annotation is configurable. The options include inline,
the default, a smaller bubble, and none. Changing the annotation to none, as shown in
Example 2-4, the +1 button shrinks to a much smaller footprint.

Example 2-4. +1 button markup with no annotation

<header>
 <div style="float: right;">
 <div class="g-plusone" data-annotation="none"></div>
 </div>
 <h2>Macaron</h2>
</header>

The floating div layout slides the smaller +1 button to the right as pictured in Figure 2-7.

Figure 2-7. Macaron with a +1 button configured to display no annotation

There are many more parameters that you may find useful. Explore the documentation
to learn about them.

The +1 Button | 13

Customizing Your Snippet
+1’ing a page creates content on Google+. It inserts a brief summary on the +1’s tab
of the user’s profile, and an activity in their stream, if they share. The title, description
and thumbnail image make up the snippet. You can customize your snippet to ensure
that all of your pages look great on Google+.

By default the +1 button creates a best guess snippet. This is usually pretty good, but
you know your content best. You can specify a much better snippet. The snippet can
be specified using either schema.org markup or Open Graph tags.

Google recommends that you use schema.org markup to specify your snippet. Adding
schema.org markup involves adding attributes to your existing content, so you do not
need to add any new tags. It also allows top search engines, like Google and Bing, to
parse your pages more easily.

Now that you understand why schema.org markup is a great solution, add it to a page.
The first step is to select the correct schema. There’s a handy list published at http://
schema.org/docs/full.html. It includes all of the schemas in one long page. In general,
use the most specific schema that is appropriate to your content. It allows you to de-
scribe your content as richly as possible.

Scanning the list, it appears that there’s a recipe schema: http://schema.org/Recipe. This
is perfect for Baking Disasters. Add it to the macaron entry.

The recipe does not have content to match every single field in the schema, but it’s wise
to match as many as you can. The social plugins only understand the fields that are
inherited from the thing schema, but complete markup provides the greatest benefits
from search engines and future features of the Google+ platform. For example, the
history API, which is currently in developer preview, makes use of many other schemas.

Add the itemscope and itemtype attributes to the parent element of the recipe, as shown
in Example 2-5. On the macaron entry, the section element with class content is ap-
propriate.

Example 2-5. Schema.org itemscope and itemtype

.Schema.org itemscope and itemtype
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
<section class="content" itemscope itemtype="http://schema.org/Recipe">
 <section class="post-body">
 <header>

Next, mark individual elements by adding itemprop attributes. Start with the properties
inherited from the thing schema—description, image, name, and url—and follow by
marking up the recipe specific fields such as ingredients and recipeInstructions. The
resulting code is shown in Example 2-6.

14 | Chapter 2: Social Plugins

http://schema.org/docs/full.html
http://schema.org/docs/full.html
http://schema.org/Recipe

Example 2-6. Schema.org recipe markup on the macaron page

<header>
 <div style="float: right;"><div class="g-plusone" data-annotation="none"></div></div>
 <h2 itemprop="name">Macaron</h2>
</header>

<p itemprop="description">Few baked goods are as prone to explosions as the delicious
 and delicate French macaron. There's something about a hard outer shell attempting
 to hold back the pressure of expanding almond-flour-goo that's reminiscent of a poorly
 designed steam locomotive.</p>
<h3>The Recipe</h3>

 <li itemprop="ingredients">1 cup powdered sugar
 <li itemprop="ingredients">1/4 cup baker's superfine sugar
 <li itemprop="ingredients">3/4 cup almond flour
 <li itemprop="ingredients">3 egg whites

<ol itemprop="recipeInstructions">
 Mix powdered sugar and almond flour

Reload and +1 the page. Something slightly different happens: rather than using a best
guess snippet, the +1 button reads the schema.org markup. See the improvement in
Figure 2-8.

Schema.org markup is the preferred option for specifying your snippet, but other op-
tions are available. When schema.org markup is not present, the +1 button looks for
Open Graph markup. Open Graph markup consists of meta elements within your
HTML head. These meta elements specify details about your page. Using Open Graph
may make more sense if you already have social sharing buttons from other services on
your site that use Open Graph.

Open Graph is less expressive, but it is also simpler. Add elements to the HTML header
of the doom bread page: meta tags with property og:title, og:image and og:descrip
tion, as shown in Example 2-7.

Example 2-7. Open Graph markup on doom bread

<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css"/>
 <link rel="shortcut icon" href="images/logo_favicon.png"/>
 <link rel="canonical" href="http://bakingdisasters.com/blog/doom-bread.html"/>

 <meta property="og:title" content="Doom Bread on Baking Disasters"/>
 <meta property="og:image"
 content="http://bakingdisasters.com/blog/images/doom-bread.png"/>
 <meta property="og:description"
 content="Is it a bread or is it a roll? Within this layery monstrosity is the
 essence of fatty deliciousness."/>
</head>
<body>

The +1 Button | 15

As you can see, both of these methods provide a way to specify your snippet. Which
method is best depends on the implementation details of your application.

Leveraging the Callback
You have learned a lot about the what the +1 button can do, but you haven’t written
very much code yet. This is about to change. The callback is a software hook provided
by the +1 button.

The callback allows you to trigger your own JavaScript code when the +1 button is
clicked. It can call any function in the global namespace. Just supply it as a parameter
to the +1 button, as shown in Example 2-8.

Example 2-8. A simple callback and +1 button markup configured to call it

<script>function onPlusone(){ alert("Hello, world!"); }</script>
<div class="g-plusone" data-callback="onPlusone"></div>

Figure 2-8. Top: The best guess snippet; Bottom: The schema.org snippet

16 | Chapter 2: Social Plugins

This unlocks a lot of potential. When a user clicks the +1 button they have just indicated
their interest in your content. This is a great opportunity to engage them further.

On Baking Disasters you can leverage the callback to recommend other content that
the user might enjoy. When a user +1’s the page you can reveal this recommendation.
The recipe page seems like a great place to perform this integration.

On a more complex site the task of determining recommended would likely involve an
AJAX call, but Baking Disasters is simple. It hosts only two recipes. The only option is
to recommend the other recipe when the user clicks on the +1 button.

Include the recommendation in the page and hide it with CSS. When the callback
executes, inspect the button state and reveal or hide the recommendation appropri-
ately, as shown in Example 2-9.

Example 2-9. A JavaScript callback that reveals content when your user +1’s your page

function onPlusone(jsonParam) {
 var recommendedContent = document.getElementById("recommended-content");
 if(jsonParam.state == "on") {
 recommendedContent.className = "active";
 } else {
 recommendedContent.className = "";
 }
}

When the +1 button is toggled on, the recommendation is revealed. When the button
is toggled off, it is hidden as pictured in Figure 2-9.

The main callback is the best place to add interesting functionality, but there are a
couple other callbacks. These callbacks, onstartinteraction and onendinteraction,
trigger when a user begins and ends their interaction. They are very useful if you have
a Flash advertisement or video that appears on top of your +1 button bubble. You can
use them to hide the flash content while the user interacts with the +1 button and reveal
it again when their interaction ends.

The callback is where developing with the +1 button really comes to life. This is your
opportunity to integrate the +1 button into your core features and connect with your
most active users. Be creative and have fun.

Special Considerations for AJAX Applications
AJAX applications throw a bit of a wrench into the system described above. In general
AJAX applications track state using hash fragments. Hash fragments are the part of the
URL after the # symbol. For example, a user may enter an AJAX application at http://
example.com/ and navigate to a view of their profile at http://example.com/!profile/
123. During this navigation the domain name and path do not change. To clients that
do not execute JavaScript, like web crawlers and the +1 button’s snippet fetcher, these
URLs appear the same even though they contain very different content for the user.

The +1 Button | 17

Luckily, this problem has already been solved. Several years ago Google published a
technique to make AJAX applications crawlable. It is described here: https://developers
.google.com/webmasters/ajax-crawling/docs/getting-started. Because the +1 button
fetcher is similar to web search crawlers, you can leverage this existing solution.

When you specify the target page for your +1 button, target a URL that specifies the
state in a GET parameter instead of a hash fragment. For example, when you render a
+1 button on http://example.com/#!profile/123 specify the URL target to be http://
example.com/?_escaped_fragment_=profile/123. Your web server, of course, must be
able to understand the GET parameter and respond with the correct HTML.

There are many ways to implement this functionality on your web server. One approach
is be to replicate all client side JavaScript behavior server side. In doing so, the crawlable
version of every URL will always render the exact same HTML as if it were navigated
to via AJAX. This solution will provide the best user experience.

If replicating this functionality server-side is prohibitively expensive, you may want to
consider HTML snapshots. Create HTML snapshots by using headless browser pro-
grams, like those used for testing web applications, to regularly generate crawlable
versions of your pages. When a client requests the _escaped_fragment_ version of a page,

Figure 2-9. Clicking on the +1 button triggers the callback and reveals the recommendation in the
bottom screen shot.

18 | Chapter 2: Social Plugins

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started

your web server would then respond with the snapshot version. This technique is
described in more detail on the previously linked guide to making crawlable AJAX
applications.

Troubleshooting the +1 Button
Sometimes things don’t work as expected. Sometimes the +1 turns pink and shows an
exclamation point, as shown in Figure 2-10. This icon does not help very much on its
own, but just behind the covers there are more details. Modern web browsers provide
powerful JavaScript debugging tools such as Firebug for Mozilla Firefox and the
Chrome developer tools.

Figure 2-10. The +1 button indicating an error after an unsuccessful +1 click.

If you see a pink +1 button, open up Chrome’s developer tools and switch to the net-
work panel. Inspect the request for rpc as shown in Figure 2-11. This is the back-end
API request made by the +1 button. You should see more details in the response body.

You may see “Backend Error” in the response. This means that the Google servers,
which generate the snippet, were unable to reach or parse your page. Since the error
message does not contain details, this can be a challenging issue to troubleshoot. Here’s
a checklist of common causes.

Reachable webpage: Is your web page reachable from the Internet? If you’re devel-
oping on http://localhost, or within a corporate intranet, the snippet fetcher cannot
reach your page. Be sure to publish it somewhere that Google can access it.

The +1 Button | 19

https://developers.google.com/webmasters/ajax-crawling/docs/html-snapshot
https://developers.google.com/webmasters/ajax-crawling/docs/html-snapshot

Page response time: Since the snippet is generated in real time, your web server must
be reasonably responsive. If page loads take more than a few seconds, you may en-
counter issues.

User agent filtering: The user agent of the snippet page fetcher is not part of the
documented API. Do not filter, redirect or block traffic based on user agent.

Valid snippet markup: Paste the URL for your webpage into the Webmaster Central
Rich Snippet Testing Tool found at http://www.google.com/webmasters/tools/richsnip
pets. This will fetch your page and validate your rich snippet markup.

Valid HTML: Does your website use valid HTML markup? Check it with a tool such
as W3C’s validation service: http://validator.w3.org. A few warnings and errors are
probably fine, but the more errors your page contains, the more challenging it is to
parse.

If you’ve gone through this checklist and you’re still seeing an error when +1’ing your
webpage, you can always reach out to the Google+ team for help. Flip ahead to the last
chapter of this book to learn more about support. Do not forget to link to a place where
the issue is happening.

Figure 2-11. The +1 button’s HTTP response inspected with Chrome Debugging Tools

20 | Chapter 2: Social Plugins

www.allitebooks.com

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://validator.w3.org
http://www.allitebooks.org

The Badge
The Google+ badge makes it easy for you to advertise your presence on Google+ to
visitors of your website. The badge comes in two flavors: one for user profiles and
another for pages. Both of these badges link to you on Google+ and provide a way for
visitors to add you to their circles from the badge itself, as pictured in Figure 2-12. The
version of the badge for pages also includes a +1 button, consolidates the count of +1’s
from your Google+ page and homepage, and opens the door for Direct Connect.

Figure 2-12. Left: User profile badge; right: Google+ Page badge

Direct Connect allows visitors to navigate to your Google+ page directly from Google
Web Search. Searches for the title of your page prefixed with a plus sign, such as +an-
droid for Android, will automatically forward to your page instead of listing search
results. Additionally, since the leading plus sign demonstrates interest on the part of
your visitor, they are automatically prompted to add your page to one of their circles,
as pictured in Figure 2-13.

Figure 2-13. Entering a direct connect query into Google Web Search automatically takes you to a
Google+ page and prompts you to add the page to a circle.

The Badge | 21

Adding the Badge
Baking Disasters is not a person, so you must use the badge for Google+ pages. Baking
Disasters already has a Google+ page, shown in Figure 2-14, that you can use for the
badge. If you don’t have a page already, you can create one now. Follow the step-by-
step tutorial to create one here: https://plus.google.com/pages/create.

Figure 2-14. The Baking Disasters Google+ page in all its glory

Now that you have both pieces, a homepage and a Google+ page, you can set up the
badge. Just like the +1 button, the badge provides a configuration tool that is accessible
at https://developers.google.com/+/plugins/badge/ and shown in Figure 2-15. Several
more advanced configuration options are documented below. Use the configuration
tool to add a page badge to the index page.

Unlike the +1 button, the badge needs to know the page or profile that it links to. The
configuration tool has a drop-down that lists your Google+ profile and the pages you
manage.

Alternatively, if you are creating a badge for a page that you do not manage, or for a
profile that is not yours, use the other option to specify the badge target by copying and
pasting the URL as shown in Figure 2-16 and Figure 2-17.

Just like the +1 button configuration tool, the badge configuration tool automatically
produces a preview and source code. The default badge is a bit large for Baking Disas-
ters, but with a few clicks you can make it smaller. A small badge with a width of 170
pixels should fit nicely into the header. This configuration is shown in Figure 2-18.

22 | Chapter 2: Social Plugins

https://plus.google.com/pages/create
https://developers.google.com/+/plugins/badge/

The code for the badge has a two parts: JavaScript and HTML markup. The JavaScript
portion probably looks familiar; it’s the exact same code that renders the +1 button.
You only need to include it once, so if you have any other Google+ plugin already on
your page, you can ignore it. Next, the HTML markup must be placed where you would
like the badge to render.

Here’s the updated index page with the badge source in Example 2-10 and a screenshot
of the rendered badge in Figure 2-19.

Figure 2-15. The badge configuration tool

Figure 2-16. Copy and paste the numeric ID from your page URL into the badge configuration tool

The Badge | 23

Figure 2-17. Copying the page URL into the badge configuration tool

Figure 2-18. The badge code configured for placement in the Baking Disasters index page header

24 | Chapter 2: Social Plugins

Figure 2-19. The badge rendered on Baking Disasters

Example 2-10. The Baking Disasters blog index page: now with a Google+ badge in the header

<header class="blog-header">
 <div class="header-badge">
 <div class="g-plus" data-width="171"
 data-href="//plus.google.com/116852994107721644038?rel=publisher"></div>
 </div>

 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
...
<!-- Asynchronously load the +1 button JavaScript -->
<script type="text/javascript">
 (function() {
 var po = document.createElement('script');
 po.type = 'text/javascript'; po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(po, s);
 })();
</script>
</body>
</html>

With the badge installed, visitors can now discover Baking Disasters on Google+ and
add its Google+ page to one of their circles.

The Badge | 25

Performance Tuning Social Plugins
Social plugins add a lot of value, but this value comes at a small cost. They load and
execute JavaScript code. This additional code can slow down page loads and reduce
the quality of your user’s experience. Luckily, there is a bag of tricks to pull from to
mitigate this. These tricks work for any social plugin.

Asynchronous Loading
You may already be using asynchronous loading. The configuration tools supply you
with asynchronous code by default. Asynchronous loading delays the rendering of all
plugins until later in the page load, which makes pages feel more responsive.

If you are using this JavaScript to load your plugins, as shown in Example 2-11:

Example 2-11. Synchronous +1 button JavaScript code

<script src="https://apis.google.com/js/plusone.js"></script>

change it to this code, as shown in Example 2-12:

Example 2-12. Asynchronous +1 button JavaScript code

<script>
 (function() {
 var po = document.createElement('script'); po.type = 'text/javascript';
 po.async = true;
 po.src = 'https://apis.google.com/js/plusone.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s);
 })();
</script>

To take this philosophy one step further, you can even delay the execution of the asyn-
chronous loader until after most of your page has been downloaded and parsed. Move
the asynchronous JavaScript to the bottom of your page just before the closing
</body> tag.

Explicit Rendering
By default the social plugins search the entire page for placeholder elements, such as
<g:plusone>, <g:plus> and <div class="g-plus"></div>, and replace them with the
plugins. If your page is very large, this may be inefficient.

You can reduce the size of this search with explicit rendering. When you source the
JavaScript use a special piece of JSON to prevent the initial page scan. The responsibility
of rendering now falls on you, but along with this responsibility comes the power to
specify exactly where to render the plugins. Code illustrating both the special JSON
and the explicit rendering is shown in Example 2-13.

26 | Chapter 2: Social Plugins

Example 2-13. Explicit +1 button rendering

<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css" />
 <script type="text/javascript"
 src="https://apis.google.com/js/plusone.js">
 {parsetags: 'explicit'}
 </script>
</head>
<body>
...
<section class="content">
 <section class="post-summary" id="macaron">
 <div class="g-plusone"
 data-href="http://bakingdisasters.com/social-blog/final/macaron.html">
</div>
 <header><h2>Macaron</h2></header>
...
</footer>
<script type="text/javascript">
 gapi.plusone.go("macaron");
 gapi.plusone.go("doom-bread");
</script>
</body>
</html>

Using your own code to render the plugin has one caveat. You must load the plusone
.js file synchronously.

Delayed Rendering
If you have an extremely large number of social plugins on one page, you may want to
delay their rendering until the user interacts with elements near the plugin.

Specify a placeholder image for the social plugin and add a mouseover event handler to
content that the user is likely to mouse over, before they can reach the social plugin.
To keep this from being too jarring, use an image of the rendered plugin as a place-
holder. Example 2-14 shows this trick being used on the Baking Disasters index page.

Example 2-14. Delayed +1 button rendering

<script>
 function renderPlusone(placeholderId, targetUrl, origin) {
 origin.onmouseover = null;
 gapi.plusone.render(placeholderId, {"annotation":"none", "href":targetUrl});
 }
</script>
<section class="content">
 <section class="post-summary" id="macaron"
 onmouseover="renderPlusone('plusone-macaron',
 'http://bakingdisasters.com/blog/macaron.html', this)">

Performance Tuning Social Plugins | 27

 <div id="plusone-macaron"
 style="width:38px;height:24px;display:inline-block;
 background-image:url(images/plusone_button_placeholder.png);">
</div>
 <header><h2>Macaron</h2></header>
 <p>Few baked goods are as prone to explosions as the delicious and delicate

The JavaScript function, which replaces the placeholder div with a +1 button.

Mousing over this section triggers the +1 button rendering.

The placeholder for the +1 button.

When visitors reach the page they will see the placeholder image of the +1 button until
they mouse over the recipe summary.

Can you see a difference between the left and right versions in Figure 2-20? If the answer
is no, you’re doing it correctly. The left browser window contains the placeholder while
the one on the right contains the rendered button.

Figure 2-20. A placeholder image being replaced by a real +1 button

Use this technique only where necessary. Any image placeholder you use must be kept
up to date as the plugins change. Also, no matter how perfect the placeholder image
is, it will not be able to display annotations or existing +1 button state. If they have
already +1’d your page, they will not be able to see it until they trigger the plugin to
render.

28 | Chapter 2: Social Plugins

Keeping Up to Date
There are always enhancements to the existing plugins and entirely new features being
explored by the Google+ team. Before launching new features to everyone, they’re
tested with a preview group. If you’d like to stay on the bleeding edge you can join this
preview group to gain early access to new features.

To join the platform preview group complete the form at http://www.google.com/+/
learnmore/platform-preview with an email address for a Google+ profile. When new
features enter publisher preview you will be notified via email at that address. You will
only see publisher preview features while you’re logged in to this account.

Platform preview is a great opportunity to experiment with features before full release.
You can configure the new features, such as new display options, so only you can see
them. Once the features enter graduate to full release they will automatically appear to
all visitors.

Performance Tuning Social Plugins | 29

http://www.google.com/+/learnmore/platform-preview
http://www.google.com/+/learnmore/platform-preview

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Public Data APIs

The RESTful data APIs are the core of the Google+ platform. These APIs provide read
access to public fields on profiles, activities, and comments. Access to private data,
specifically a user’s identity on Google+, is controlled by OAuth 2.0, and API quotas
are controlled by API keys.

The easiest way to gain an understanding of the public data APIs is to see them in action.

Integrating Google+ Comments
Baking Disasters is pretty cool, but do you know what would make it cooler? Comments
would. Discussion can bring a blog to life, but sadly, they come at a cost. Not only do
you need to worry about spam comments, but you also have to expose potentially
sensitive software to the outside world.

Fortunately, the Google+ public data APIs expose the comments on your public ac-
tivities. Since you’re already sharing your blog posts to Google+, you can use JavaScript
to render the comments from the activity right in the blog entry. Not only does this
prequalify users to reduce spam, but it also allows you to keep Baking Disasters static
HTML.

Experiment with the APIs
Before you start coding, spend some time to become comfortable with how the APIs
behave. The API Explorer from the introduction chapter is perfect for this. You can
find it here: https://developers.google.com/apis-explorer/#s/plus/v1/.

Use the API Explorer to trace the same steps that the comments plugin will follow.

1. Scan through the available methods in the API Explorer. The comments.list
method, pictured in Figure 3-1, looks perfect. Unfortunately, it requires an activity
ID.

31

https://developers.google.com/apis-explorer/#s/plus/v1/

2. Just above the comments.list method there is an activities.list method, pictured
in Figure 3-2. This lists recent activities and provides their IDs.

3. Listing activities requires one more piece of information: your userId. The easiest
way to determine your userId is to copy it from your Google+ profile URL, as
shown in Figure 3-3. This technique works for both Google+ pages and user pro-
files.

4. Paste your userId into the activities.list form and select the public collection.
Click execute to trigger the API call. The JSON response body renders in the history
pane at the bottom of the page, as shown in Figure 3-4.

5. The response consists of some top-level attributes and a collection of activities
within the items array. Each entry in the items array has an activity ID, as shown
in Figure 3-5. Copy the ID for your most recent entry.

6. Switch to the comments.list method and supply the activity ID that you just copied,
as shown in Figure 3-6.

7. Execute this request. The history pane now contains the comments associated with
that activity, as shown in Figure 3-7.

Figure 3-1. The API Explorer’s form for creating a comments.list request

32 | Chapter 3: Public Data APIs

Figure 3-2. The API Explorer’s form for creating an activities.list request

Figure 3-3. The location of the Google+ Page ID in the profile URL

Integrating Google+ Comments | 33

Figure 3-4. The response from an activity.list request for the Baking Disasters public activity

Figure 3-5. An activity ID from the activity.list response

34 | Chapter 3: Public Data APIs

Figure 3-6. A comments.list request prepared with an explicit activity ID

Figure 3-7. The comments.list response for a Baking Disasters public activity

Integrating Google+ Comments | 35

This flow that you just traced in the API Explorer is a reasonable flow for a comments
plugin. Manually discover the activity ID for your activity on Google+, and use Java-
Script to fetch and render the comments associated with it.

Client Libraries
Google probably provides an official client library for your favorite language. These
client libraries make development against APIs faster by taking care of low-level tasks
and providing you with an interface that embraces the development style of your lan-
guage. You’ll save yourself a lot of time by using the official client libraries.

The current library offering is shown in Table 3-1.

Table 3-1. Links to the Google API Client Libraries

Language Project

.NET http://code.google.com/p/google-api-dotnet-client/

Go http://code.google.com/p/google-api-go-client/

Google Web Toolkit http://code.google.com/p/gwt-google-apis/

Java http://code.google.com/p/google-api-java-client/

JavaScript https://code.google.com/p/google-api-javascript-client/

Objective C http://code.google.com/p/google-api-objectivec-client/

PHP http://code.google.com/p/google-api-php-client/

Python http://code.google.com/p/google-api-python-client/

Ruby http://code.google.com/p/google-api-ruby-client/

The comments plugin will use the JavaScript client library.

Registering Your Application
Before you can use the APIs to access public data you must register your application
on the API console. This is how Google identifies the source of API calls and provision
quota.

1. Navigate to the API Console on Google Developers: https://developers.google.com/
console. Create a new project using the project drop down menu as shown in
Figure 3-8.

2. Click “Services” in the API Console menu and toggle the Google+ API to “on,” as
shown in Figure 3-9.

3. Click “API Access” in the API Console menu to access the API key for your appli-
cation, as shown in Figure 3-10.

36 | Chapter 3: Public Data APIs

http://code.google.com/p/google-api-dotnet-client/
http://code.google.com/p/google-api-go-client/
http://code.google.com/p/gwt-google-apis/
http://code.google.com/p/google-api-java-client/
https://code.google.com/p/google-api-javascript-client/
http://code.google.com/p/google-api-objectivec-client/
http://code.google.com/p/google-api-php-client/
http://code.google.com/p/google-api-python-client/
http://code.google.com/p/google-api-ruby-client/
https://developers.google.com/console
https://developers.google.com/console

Time to Code
Just like the official Google+ plugins, the comments plugin renders comments within
a div identified by a special class. It uses JavaScript to replace this placeholder div with
the comments for that entry. Example 3-1 shows an example of a div element that the
comments plugin will look for:

Figure 3-8. Creating a new API project in the API Console

Figure 3-9. Enabling the Google+ API

Figure 3-10. The API key as displayed on the API console

Client Libraries | 37

Example 3-1. The div element that will be replaced by a list of comments

<div class="g-comments-for z13zevjymuuge1zvl23lyv3a2n3owdxxd04"></div>

Create a new JavaScript file named pluscomments.js and include it into each blog entry.
Edit the JavaScript file and create a namespace for your functions, and create a variable
for your API key, as shown in Example 3-2.

Example 3-2. The comment plugin namespaced and configured with an API key

var commentr = commentr || {};
var apiKey = "AIzaSyA-H-eBvhWOyzjIJ2bWeaf1XAn855s8IRN";

To make calls you need an instance of the JavaScript API client. Load the client library
with the name and version of the API and tell it your API key, as shown in Exam-
ple 3-3. This function is automatically called by the JavaScript client library when it
has finished loading and hence must reside in the global namespace.

Example 3-3. Bootstrapping the JavaScript API client library

function commentrLoad() {
 gapi.client.load('plus', 'v1', commentr.go);
 gapi.client.setApiKey(apiKey);
}

Next, find all of the g-comment-for divs and extract the activity ID, as shown in Exam-
ple 3-4.

Example 3-4. Search the DOM for all of the g-comments-for elements

// search for g-comments-for classes
commentr.go = function() {
 var fetchElements =
 document.getElementsByClassName('g-comments-for');
 for(var i=0; i<fetchElements.length; i++) {
 var activityId = fetchElements[i].classList[1];
 commentr.fetchComments(activityId);
 }
}

Take the resulting collection of activity IDs and list the comments for each one. Each
API response triggers the same callback function. Example 3-5 shows how to do this.

Example 3-5. Extract the appropriate activity ID, fetch its comments and insert them into the
appropriate g-comments-for element

commentr.fetchComments = function(activityId) {
 var request = gapi.client.plus.comments.list({
 'activityId': activityId,
 'maxResults': '100'
 });
 request.execute(commentr.parseComments);
}

38 | Chapter 3: Public Data APIs

commentr.parseComments = function(responseJson) {
 var activity = responseJson.items[0].inReplyTo[0];
 var comments = responseJson.items;

 var insertionElements = document.getElementsByClassName('g-comments-for ' +
 activity.id);
 var insertionElement = insertionElements[0];

 var newContents = "";
 for(i=0; i<comments.length; i++) {
 var actor = comments[i].actor;

 var commentBody = comments[i].object.content;

 newContents += "<dt><img src='" +
 actor.image.url +
 "' /></dt>" + "<dd>" + actor.displayName +
 ": " + commentBody + "</dd>";

 }
 insertionElement.innerHTML = "<dl>" + newContents +
 "</dl> <p class='g-commentlink'>Please comment on the <a href='" +
activity.url +
 "'>Google+ activity</p>";
}

fetchComments is run for each discovered activity ID.

Each response calls back to the parseComments function.

Rediscover the place to insert the comment, since this information was lost in the
chain of callbacks.

Construct HTML for all of the comments and insert it into the document.

Finally, source the JavaScript client library and configure it to load the comments
plugin. Source it in the entry pages and specify the init function to the onload param-
eter. Example 3-6 shows the macaron entry header with the client library added:

Example 3-6. Load the JavaScript API client library and execute the comment plugin’s load function

<head>
 <title>Baking Disasters</title>
 <link rel="stylesheet" href="style.css" />
 <link rel="shortcut icon" href="images/logo_favicon.png" />
 <script src="pluscomments.js"></script>
 <script src="https://apis.google.com/js/client.js?onload=commentrLoad">
 </script>
</head>

Comments Integration in Action
That was pretty easy, wasn’t it? Now let’s see the comments plugin in action.

Client Libraries | 39

Use the API Explorer to discover the activity ID of your most recently public entry. For
example, z133jnaofxb5wzfnx23lyv3a2z3owdxxd04. Return to that entry and add the
placeholder div, such as the one in Example 3-7, that becomes the list of comments.

Example 3-7. A div element configured with an activity ID

<div class="g-comments-for z133jnaofxb5wzfnx23lyv3a2n3owdxxd04"></div>

Reload the page to see the rendered comments. It should look similar to Figure 3-11.

Figure 3-11. A Google+ comment rendered in the Baking Disasters web interface

What’s Next?
The comments plugin is simple, but this simplicity comes at a cost. It’s brittle and
requires a hard-coded activity ID. A good companion to this plugin would be a tool
that fetches your most recent activities and provides a placeholder div to paste into
your entries.

40 | Chapter 3: Public Data APIs

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

OAuth-Enabled APIs

JavaScript plugins, like the comment plugin from Chapter 3, allow you to move beyond
the official social plugins, but the depth of integration that they provide is limited. As
you move on to deeper integration, some processing must be done server-side. To
accommodate this, further examples are written in PHP. You will need to an environ-
ment capable of running PHP and a SQLite database.

The Google+ platform is not limited to PHP. You can find client libraries and starter
projects for many popular languages including Java, Python, .NET, and Ruby. If Google
does not supply an official client library for your language of choice, you may still use
the REST APIs directly.

New Application: Baking Disasters 2.0
Baking Disasters is fun to publish as a static HTML blog, but as time passes visitors
have started to express a desire to contribute their baking experiences. Being a social
baker with a streak of PHP ability, this seems like the perfect opportunity to transform
Baking Disasters into a social web application where everyone can contribute.

After one night of frenzied PHP hacking, Baking Disasters 2.0, as pictured in Fig-
ure 4-1, was born. It consists of an administration page for managing recipes and a
public page for each recipe where visitors can publish their hilarious baking disasters.

Consisting of a couple hundred lines of PHP and a SQLite database, Baking Disasters
2.0 may not scale to millions of users, but it is a great starting point for further explo-
ration of the Google+ Platform. Its simple architecture is described by Figure 4-2.

You can see the initial state of this application in action at http://bakingdisasters.com/
app-initial. It’s read only, for reasons that will become apparent shortly.

41

http://bakingdisasters.com/app-initial
http://bakingdisasters.com/app-initial

Authentication Using Google+
Within hours of launch the site has been overrun with spam. Since visitors can post
content without identifying themselves, the application is being abused. You must find
a way to lock down Baking Disasters and protect it.

Fortunately, the Google+ platform provides APIs for identifying users. The REST API
exposes public profile fields. It also allows visitors to share their identity with us via
OAuth 2.0. This provides everything that you need to address the spam problem,
without having to build your own user management infrastructure.

Figure 4-1. The screens of Baking Disasters 2.0. Upper left, index page for recipes; lower left, an
administrative console to add new recipes; right, detail pages for each recipe that include user
contributed attempts and a form to submit a new attempt.

42 | Chapter 4: OAuth-Enabled APIs

OAuth 2.0
The Google+ platform uses OAuth 2.0 to authenticate users, and to authorize your
access to their private data. Scopes control which data is accessible. When the user
grants access, Google will provide your application with tokens that can be used to
access your user’s private data hosted by Google. Baking Disasters can use this to iden-
tify users as shown in Figure 4-3.

Figure 4-3. A sequence diagram, which illustrates the OAuth 2.0 flow for Baking Disasters.

Figure 4-2. The Baking Disasters web application baseline architecture

Authentication Using Google+ | 43

Once a user’s identity is known, you can use the REST APIs to fetch their public data.
This includes their profile photo and their public activity on Google+. Additionally,
their user ID makes a great user identifier in your application.

Accounts and API Keys
Your application must be configured on the API Console to use OAuth 2.0. Return to
the Google API console to generate a client ID and secret. Use the client ID and secret
to initiate the OAuth dance. They guarantee to the user that they are authorizing the
correct application.

The client ID is publicly exposed during several steps of the authentication dance, but
you should keep your client secret secure. If at any time your client secret is compro-
mised you can return to this page to reset it.

Follow these steps to create your OAuth 2.0 credentials:

1. Navigate to the API console on Google Developers: https://developers.google.com/
console.

2. Select your application from the drop down and click API Access in the menu.

3. Click on the large blue button shown in Figure 4-4 to create an OAuth 2.0 client ID.

4. Next, specify branding information for your application as shown in Figure 4-5.
The product name and logo that you specify here are presented to your user on the
OAuth grant screen.

5. Now for the tricky part. The OAuth dance requires you to specify the destination
page, as shown in Figure 4-6. Google will redirect users there, once they have
granted you privileges.

6. You should now see your client ID and secret, as shown in Figure 4-7.

Figure 4-4. The big blue button that you must click to create an OAuth 2.0 client ID

44 | Chapter 4: OAuth-Enabled APIs

https://developers.google.com/console
https://developers.google.com/console

Figure 4-5. Creating an API client ID for Baking Disasters

Figure 4-6. Configuring the redirect URI

Authentication Using Google+ | 45

Figure 4-7. The resulting client ID and secret

A Little More About OAuth 2.0
OAuth 2.0 is designed to solve the general problem of accessing user data that exists
on a third-party system. This is a big problem to solve. Baking Disasters uses the basic
flow for web applications that are running on a server. This flow is only a tiny sliver of
the much larger OAuth 2.0 specification.

Not every application runs in a web browser. Applications that run as native code on
a mobile device, or as a command line script, are also valid clients. To accommodate
these applications OAuth 2.0 provides a variety of flows, each with their own nuances.

OAuth 2.0 is big enough that any discussion here can’t do it justice. You can learn more
about OAuth at Google here: http://code.google.com/apis/accounts/docs/OAuth2.html.

Starter Projects
Client libraries make development much faster in the long run. However, just like any
other tool, they have a learning curve. It will take you some time to make the most of
their time-saving features. To smooth out this potentially sharp learning curve, the
Google+ platform provides starter projects for the most popular client libraries. They
are listed in Table 4-1.

Table 4-1. Google+ REST API starter projects

Language Project

Go https://code.google.com/p/google-plus-go-starter/

Java http://code.google.com/p/google-plus-java-starter/

PHP http://code.google.com/p/google-plus-php-starter/

Python http://code.google.com/p/google-plus-python-starter/

Ruby http://code.google.com/p/google-plus-ruby-starter/

46 | Chapter 4: OAuth-Enabled APIs

http://code.google.com/apis/accounts/docs/OAuth2.html
https://code.google.com/p/google-plus-go-starter/
http://code.google.com/p/google-plus-java-starter/
http://code.google.com/p/google-plus-php-starter/
http://code.google.com/p/google-plus-python-starter/
http://code.google.com/p/google-plus-ruby-starter/

These aptly named starter projects provide you with a turnkey foundation for whatever
you would like to write. All you need to do is download the starter project and add
your application identifiers. Starting from working code makes further development
much easier.

Baking Disasters is written in PHP, so the PHP starter project is a great place to start.
Once it’s working you can merge them together to start your Google+ integration.

1. Download the starter project from the downloads tab on http://code.google.com/p/
google-plus-php-starter/. Unzip the archive to reveal that the project contains three
files, including a readme with usage instructions, as shown in Figure 4-8.

2. The readme opens with a description of the starter project prerequisites. Most PHP
installations will include the cURL and JSON extensions. The only thing that you
need is the PHP client library.

3. Download the PHP client library from http://code.google.com/p/google-api-php-cli
ent/ and extract it in the starter project’s folder. You should end up with a directory
structure that looks like Figure 4-9.

4. The readme instructs you to set up an application on the API Console to create a
Client ID, Client Secret, and API key. Use the values that you set up for your API
project in the previous section, as shown in Figure 4-10.

5. Use your favorite text editor to edit index.php. Scroll to about line 30 and paste
these identifiers in the appropriate places, as shown in Example 4-1.

6. Next, update the redirectURI field to match the value in the API console and the
place you’ll be hosting this file. If you plan to run the starter project from a your
workstation, this may be localhost.

Figure 4-8. The Google+ API PHP starter project’s archive contents and readme file

Authentication Using Google+ | 47

http://code.google.com/p/google-plus-php-starter/
http://code.google.com/p/google-plus-php-starter/
http://code.google.com/p/google-api-php-client/
http://code.google.com/p/google-api-php-client/

Figure 4-9. The PHP starter project with the PHP API client library

Example 4-1. The fully configured PHP Google+ API starter project

$client = new apiClient();
$client->setApplicationName("Google+ PHP Starter Application");
// Visit https://code.google.com/apis/console to generate your
// oauth2_client_id, oauth2_client_secret, and to register your oauth2_redirect_uri.
$client->setClientId('116363269786.apps.googleusercontent.com');
$client->setClientSecret('EJlqDrWkEYmmYznlken2JW-B');
$client->
 setRedirectUri('http://bakingdisasters.com/web-app/php-starter');
$client->setDeveloperKey('AIzaSyDrH_5j2-cPK7EZRANWjA6_g0xCZRrxH-U');
$client->setScopes(array('https://www.googleapis.com/auth/plus.me'));
$plus = new apiPlusService($client);

if (isset($_REQUEST['logout'])) {
 unset($_SESSION['access_token']);
}

It’s ready to go. Deploy the starter project to your web server, and view it in a web
browser. Figure 4-11 shows what happens next. You’ll be greeted by a page that asks
you to log in. Clicking the big blue link redirects you to Google’s authentication service
where you’ll be asked to grant the starter project permissions to know who you are on
Google. Click the Allow access button.

Having been granted access, the starter project now completes the OAuth dance. It
exchanges a code for an access token. This token is used to make API calls, which are
shown in Figure 4-12.

With only a few minutes invested you now have a self contained web application ca-
pable of making API calls to the Google+ REST APIs. If you run into issues as you
progress you can always return to this code as a sanity check.

48 | Chapter 4: OAuth-Enabled APIs

Bringing it Together
You now have two functioning applications: Baking Disasters, and the PHP starter
project. Combine them to add sign-in functionality to Baking Disasters. This consists
mostly of strategic copy-and-paste from the starter project into the appropriate places
in Baking Disasters.

Figure 4-10. The client ID, client secret and API key on the API console

Authentication Using Google+ | 49

Create new PHP files for the sign-in and sign-out operations and store the currently
signed in state within PHP’s session. Add code that’s shared across multiple files, such
as code to create or manage API clients, to util.php.

All of the pages in Baking Disasters require the use of an API client. Take the code from
the top of the starter project and copy it into util.php, as shown in Example 4-2. Create
a new function that returns a Google+ API client.

Figure 4-11. Top: The starter project landing page; Bottom: The permission grant page

50 | Chapter 4: OAuth-Enabled APIs

www.allitebooks.com

http://www.allitebooks.org

Example 4-2. A PHP function that creates a configured API client

require_once 'google-api-php-client/src/apiClient.php';
require_once 'google-api-php-client/src/contrib/apiPlusService.php';

session_start();

date_default_timezone_set('America/Los_Angeles');

function init_api_client()
{
 global $app_base_path;

 $client = new apiClient();
 $client->setApplicationName("Baking Disasters");
 $client->setClientId('116363269786.apps.googleusercontent.com');
 $client->setClientSecret('EJlqDrWkEYmmYznlken2JW-B');
 $client->setRedirectUri($app_base_path . '/login.php');
 $client->setDeveloperKey('AIzaSyDrH_5j2-cPK7EZRANWjA6_g0xCZRrx');
 $client->setScopes(array('https://www.googleapis.com/auth/plus.me'));
 return $client;
}

Load the core PHP API client library.

Load the generated Google+ API client library extension.

Figure 4-12. The completed flow of the starter project displaying your name, profile icon, and recent
activity

Authentication Using Google+ | 51

Start the session so that you have a place to store access tokens for your users.

Create a new client library instance configured for your API project and server.

Next, copy the rest of the authentication logic into two PHP files: login.php and log
out.php. With a bit of shuffling login.php looks Example 4-3.

Example 4-3. Initiate an OAuth 2.0 flow from login.php

<?php
include_once("util.php");
$client = init_api_client();
$auth_url = $client->createAuthUrl();
if(!isset($_GET['code'])) {
 header("location: " . $auth_url);
}
else { //if (isset($_GET['code'])) {
 $client->authenticate();
 $_SESSION['access_token'] = $client->getAccessToken();
 header('Location: '.$app_base_path);
}

If the code GET parameter is not set, initiate a new OAuth 2.0 flow.

If code is set, use it to complete the OAuth flow.

And logout.php looks like Example 4-4.

Example 4-4. Sign users out by deleting their access and refresh tokens from the session

<?php
include_once("util.php");
unset($_SESSION['access_token']);
header('Location: '.$app_base_path);

With these files created add sign-in and sign-out links to the header of every page with
the code in Example 4-5.

Example 4-5. Sign-in and sign-out links for the header of each page

<body>
<header class="blog-header">

 <?php if(isset($_SESSION['access_token'])) { ?>
 Logout
 <?php } else { ?>
 Sign in with Google+
 <?php } ?>

 <h1>Baking Disasters</h1>

This implementation allows users to sign in and out, but it can already benefit from
some refactoring. Currently, signing in and out redirects users back to the index page.

52 | Chapter 4: OAuth-Enabled APIs

Use the session and referrer header to return them to the page where they started.
Example 4-6 is an updated login.php.

Example 4-6. Redirecting the user to the page from which they initiated the sign in improves their
experience

// If there's a code we need to swap it for an access token
else { //if (isset($_GET['code'])) {
 $client->authenticate();
 $_SESSION['access_token'] = $client->getAccessToken();

 if(isset($_SESSION['original_referrer'])) {
 header('Location: ' . $_SESSION['original_referrer']);
 unset($_SESSION['original_referrer']);
 } else {
 header('Location: '.$app_base_path);
 }
}

Example 4-7 shows the updated logout.php.

Example 4-7. Also redirect the user to the page from which they initiated the sign out

<?php
include_once("util.php");
unset($_SESSION['access_token']);
if(isset($_SERVER['HTTP_REFERER'])) {
 header('Location: '.$_SERVER['HTTP_REFERER']);
} else {
 header('Location: '.$app_base_path);
}

The page header determines if a user is currently signed in by checking the existence
of an access token in the session. Checking the signed-in state is something that many
parts of the Baking Disasters needs, so refactor this into a utility function. Add this
function to util.php, as shown in Example 4-8.

Example 4-8. A function that checks the current user’s sign-in state

function is_logged_in()
{
 if (isset($_SESSION['access_token'])) {
 return true;
 } else {
 return false;
 }
}

And update the header of each page to use it, as shown in Example 4-9.

Authentication Using Google+ | 53

Example 4-9. Using the is_logged_in() function abstracts the session implementation out of your PHP
pages

<body>
<header class="blog-header">

 <?php if(is_logged_in()) { ?>
 Logout
 <?php } else { ?>
 Sign in with Google+
 <?php } ?>

 <h1>Baking Disasters</h1>

Locking Stuff Down
Now that users can sign in, you can restrict access to sensitive features such as the
disaster submission form and the administration console.

Restricting the disaster submission form to currently signed in users is quite easy. Just
add an is_logged_in check when you render the form in recipe.php, as shown in
Example 4-10.

Example 4-10. Only display the report attempt form to signed in users

<section class="content attempt-form">
<?php if(is_logged_in()) { ?>
 <h2>Report Your Attempt</h2>

 <p>Have you attempted this recipe with disastrous results?
 Tell us about it!</p>

 <form method="post">
 <input type="hidden" name="recipe_id" value="<?= $_GET['id'] ?>"/>
 <label>Your Name: <input name="author_name"></label>
 <label>Description: <textarea name="description"></textarea></label>
 <label>Photo URL: <input type="text" name="photo_url"/></label>
 <input type="submit"/>
 </form>
<?php } else { ?>
 <p>Log in to tell us about your attempt!</p>
<?php } ?>
</section>

And when you insert into the database, as shown in Example 4-11.

Example 4-11. Only allow signed-in users to write to the database

<?php
include_once("util.php");
if ($_POST && is_logged_in()) {
 insert_attempt($_POST['recipe_id'], $_POST['author_name'],
 $_POST['description'], $_POST['photo_url']);

54 | Chapter 4: OAuth-Enabled APIs

 echo "<p class='notice'>Attempt inserted!</p>";
}
?>

Unauthenticated users are now asked to log in to share their attempts, as shown in
Figure 4-13.

Figure 4-13. The logged-out view of the recipe page

This plugs up the biggest opening for spam, but what if someone discovers
admin.php? They could insert new recipes. To ensure that only the site administrator,
Jenny Murphy, can add new recipes, check to see if the signed in user has the correct
user ID. To make this comparison fetch the signed in user’s profile from the API.

The starter project shows us how to make this call. It fetches the current user’s profile
just after it validates that the current user has an access token. This call is shown in
Example 4-12.

Example 4-12. Fetch the signed-in user from the API

$me = $plus->people->get('me');

Wrap this behavior into a get_plus_profile function, as shown in Example 4-13.

Example 4-13. A function that fetches the signed-in user

function get_plus_profile()
{
 if (!is_logged_in()) {
 die("Expected to be logged in here");
 }

 $client = init_api_client();
 $client->setAccessToken($_SESSION['access_token']);

Authentication Using Google+ | 55

 $plus = new apiPlusService($client);
 $me = $plus->people->get('me');
 return $me;
}

And then use the code in Example 4-14 to verify that Jenny is the user viewing admin.php.

Example 4-14. Check the signed-in user’s profile ID to restrict access to admin.php

</header>
<?php
if(is_logged_in()) {
 $me = get_plus_profile();
 if($me['id'] == "102817283354809142195") {
 if ($_POST) {
 insert_recipe($_POST['name'], $_POST['description'],
 $_POST['ingredients'], $_POST['directions'],
 $_POST['photo_url']);
 echo "<p class='notice'>Recipe inserted.</p>";
 }
?>
<section class="content">
...
</section>
 <?php } else { echo "Only Jenny Murphy can access this page."; }}?>
<footer>

This prevents interlopers from adding recipes. Instead, they see the error message
shown in Figure 4-14.

Figure 4-14. The logged-out view of the Baking Disasters administration console.

All writes to Baking Disasters are now protected, but there’s so much more that you
can do with Google+.

56 | Chapter 4: OAuth-Enabled APIs

A Preview of the Sign-in Button
OAuth 2.0 is an amazing standard. It gives your users a way to share their Google data
and identity with your application. Unfortunately, to support OAuth, you had to add
quite a bit of code to your application. OAuth is complex, but implementing it does
not have to be.

The Google+ sign-in button, shown in Figure 4-15, aims to make implementing OAuth
easier. It accomplishes this by providing you with a plugin just like the +1 button. When
the user clicks the Sign In button they are taken through an OAuth flow and the code
is returned to your application. This replaces the first half of your OAuth code with a
single line of markup, shown in Example 4-15.

Figure 4-15. Baking Disasters refactored to use the sign-in button

Example 4-15. Sign-in button markup

<g:plus action="connect"
 clientid="1234567890.apps.googleusercontent.com"
 callback="onSignInCallback"></g:plus>

The sign-in button is currently in developer preview. During this time, preview only
works for developers who are enrolled in the preview. You can start experimenting with
it, but you can’t release software that uses it until the developer preview has finished.
You should also be prepared for breaking changes at any point during this developer
preview.

The developer preview is tied to a Google account. When you are logged in to Google
with a developer preview account, the sign-in button will render. Use this form to sign
up: https://developers.google.com/+/history/preview/.

Google Developers provides theoretical explanation, API reference material, and starter
projects that use the Sign In button: https://developers.google.com/+/history/.

Authentication Using Google+ | 57

https://developers.google.com/+/history/preview/
https://developers.google.com/+/history/

Making Baking Disasters Social
Baking Disasters now requires authentication for the creation of data. Authentication
is useful, but it’s neither very exciting nor does it add any new features to your site.
Let’s knock it up a notch and use the APIs to leverage even more features of Google+.

Import Disasters from Google+
Baking Disasters would benefit a lot from importing content from Google+. If users
could import attempts from their recent activity on Google+ they can leverage the
Google+ mobile application. They can live-share their baking attempt on the Google+
mobile application. Once the smoke has cleared and they return to their laptops, they
can import content at their convenience. This flow is described in Figure 4-16.

Figure 4-16. During the baking party the user takes photos and records activity on their cell phone;
after the party ends, the user can import that activity from Google+ into Baking Disasters

Importing activity is a bit more involved than the previous enhancements. It will require
you to add a new page to provide an import interface and update the recipe page to
render imported attempts.

To comply with the developer policies, which restrict the storage of Google+ user data,
you must store references to the activities on Google+ instead of the whole activity.
This requires refactoring of your database. It also means that you must handle activities
that have been deleted. However, it pays off in the form of automatically handling
updates and edits. The resulting flow is shown in Figure 4-17.

The database schema changes are simple, but they do require a breaking change. Ex-
ample 4-16 shows the new table creation statement. You can either run this by hand
using the SQLite command line interface or delete the database and start from scratch.

58 | Chapter 4: OAuth-Enabled APIs

Example 4-16. A new table schema for baking attempts

sqlite_exec($db, 'create table attempts (recipe_id int,
 google_plus_activity_id text);');

Just as in the previous enhancements most of the heavy lifting will be done by functions
in util.php. Add a function that fetches a page of public activities for the currently logged
in user. You can model this code from the activity list in the starter project. The resulting
code is shown in Example 4-17.

Figure 4-17. A sequence diagram describing what happens during the baking party, when the user
imports activity into Baking Disasters, and when Baking Disasters renders the activity on the recipe
page

Making Baking Disasters Social | 59

Example 4-17. Fetch the signed in user’s recent public activities from the API

function get_recent_activities()
{
 if (!is_logged_in()) {
 die("Expected to be logged in here");
 }

 $client = init_api_client();
 $client->setAccessToken($_SESSION['access_token']);
 $plus = new apiPlusService($client);

 $optional_parameters = array('maxResults' => 20);
 $activities =
 $plus->activities->listActivities('me', 'public', $optional_parameters);
 return $activities;
}

Having changed the way activities are stored, you also need to update the way that you
recall them, as shown in Example 4-18. The database only stores the activity ID. The
rest of the fields must come from an API call to fetch each activity.

The fetch is a great time to clean up any activities that were deleted from Google+. If
the API returns a 404, you know that the activity is gone and you should clean up the
reference to it.

Example 4-18. This code fetches the activities associated with each recorded attempt for a specific
recipe ID. If an activity no longer exists, it removes it from the database

function list_attempts($recipe_id)
{
 $db = init_db();
 $recipe_id = sqlite_escape_string(strip_tags($recipe_id));

 $query = sqlite_query($db, "select * from attempts where recipe_id = '$recipe_id'");
 $attempt_stubs = sqlite_fetch_all($query, SQLITE_ASSOC);

 $client = init_api_client();
 $plus = new apiPlusService($client);

 $attempts = Array();
 foreach ($attempt_stubs as $attempt_stub) {
 $google_plus_activity_id = $attempt_stub['google_plus_activity_id'];
 try {
 $activity = $plus->activities->get($google_plus_activity_id);

 $attempt = Array();
 $attempt['url'] = $activity['url'];
 $attempt['author'] = $activity['actor'];
 $attempt['description'] = $activity['object']['content'];
 if (count($activity['object']['attachments']) > 0) {
 $attempt['photo_url'] =
 $activity['object']['attachments'][0]['image']['url'];
 }
 array_push($attempts, $attempt);

60 | Chapter 4: OAuth-Enabled APIs

www.allitebooks.com

http://www.allitebooks.org

 } catch (Exception $e) {
 if ($e->getCode() == 404) {
 // If it's a 404, it has been deleted by the user. Clean it up.
 sqlite_exec($db, "delete from attempts where
 google_plus_activity_id='$google_plus_activity_id';");
 }
 }
 }
 return $attempts;
}

Fetch the list of activity IDs for this recipe from the database.

Fetch the full activity for each one using the Google+ API.

Assuming that the first attachment is an image, extract it from the API response.

Deleted activities return a 404. If you see one, remove the activity ID from your
database.

This method returns a list of activities that is far more rich than the previous represen-
tation. All you need to do is to update the code that renders it in recipes.php, as shown
in Example 4-19. You also can also take advantage of the profile icon that is returned
with the attached user object.

Example 4-19. Display attempts from Google+ on the recipe page

<section class="content attempts">
 <?php foreach ($attempts as $attempt) { ?>
 <div class="attempt">
 <?php if(isset($attempt['photo_url'])) { ?>
 <img class="attempt-photo" src="<?= $attempt['photo_url'] ?>" />
 <?php } ?>

 <h3>
 <a href="<?= $attempt['author']['url']?>">
 <img src="<?= $attempt['author']['image']['url']?>"/>
 <?= $attempt['author']['displayName'] ?>'s Attempt
 <a class="import-link" href="<?= $attempt['url'] ?>">imported from Google+
 </h3>

 <p>
 <?= str_replace("\n", "
\n", stripslashes($attempt['description'])) ?>
 </p>
 <div style="clear:both;"></div>
 </div>
 <?php } ?>
</section>

Reload Baking Disasters and use the new import feature to pull in some of your recent
baking attempts. The resulting import should look like Figure 4-18.

Your modest PHP web application is better than ever. You have used the Google+ APIs
for a simple sign-in solution. Knowing who is signed in has provided the tools that you

Making Baking Disasters Social | 61

need to restrict administrative features to the correct users. You’ve also used the activity
APIs to enable users import their recent adventures and associate them with a recipe.
The way this integration was implemented has the added benefit of automatically up-
dating the imported view when the canonical copy on Google+ is updated or deleted.

Additional endpoints exist for searching activities, listing people who took action on a
specific activity and viewing comments. You can use these same techniques to add
functionality that pulls data from these endpoints.

A Preview of the History API
The same developer preview for the sign-in button also includes a write API for
Google+ called the history API. This API allows your application to write moments
that represent your user’s activity to a private place on Google+. Later your user can
share the moments that are important to them with the right people on Google+.

Signing up for this developer preview follows the same process as for the sign-in button.
Complete the sign-up form and your account will be able to create API projects that
use the history API and write moments to your Google history. You can also see these

Figure 4-18. Two baking attempts imported from Google+

62 | Chapter 4: OAuth-Enabled APIs

https://developers.google.com/

moments in a beta version of the Google+ history user interface at https://plus.google
.com/history.

Each write to the history API has two parts: an HTTP POST and a publicly accessible
target page with schema.org structured markup. The POST body, shown in Exam-
ple 4-20, describes the type of activity that has occurred. It includes the URL of the
entity that was the target of the activity and a JSON representation of any content
created as the result of the activity.

Example 4-20. A CommentActivity

{
 "type": "http://schemas.google.com/CommentActivity",
 "target": {
 "url": "https://developers.google.com/+/plugins/snippet/examples/blog-entry"
 },
 "result": {
 "type": "http://schema.org/Comment",
 "url": "https://developers.google.com/+/plugins/snippet/examples/blog-entry#comment-1",
 "name": "This is amazing!",
 "text": "I can't wait to use it on my site :)"
 }
}

The type of activity that has been performed. This must be one of the types prede-
fined by Google.

The publicly accessible URL of the entity upon which the activity occurred.

If the activity created content, a JSON representation of that data.

The target page, specified in the POST by target.url, is the second part of the moment
write. It is fetched when the moment is written. This fetch extracts schema.org markup
and includes it into the moment.

If you have already added schema.org markup to your pages for other social plugins
like the +1 button, you will not need to make any additional changes to them.

The history API is currently in developer preview. Expect rapid changes.
Expect these changes to break your code.

Please see the documentation to see the latest starter projects, reference
docs, and implementation advice.

The developer preview of the history API provides a rare opportunity. Google is very
interested in feedback from developers as they experiment with the APIs. For example,
there is a pre-populated form for requesting new moment types: https://developers.goo
gle.com/+/history/api/moments#request_a_new_type. If you request a moment type or
change to the API during the developer preview it is much more likely to be incorporated
into the released API.

Making Baking Disasters Social | 63

https://plus.google.com/history
https://plus.google.com/history
https://developers.google.com/+/history
https://developers.google.com/+/history/api/moments#request_a_new_type
https://developers.google.com/+/history/api/moments#request_a_new_type

Best Practices
For the sake of simplicity and ease of understanding the example code presented so far
has cut some corners. For example, code has been copied and pasted in many places
and it is not as efficient as it could be. Here are some tips to help guide you through
efficient usage of the API.

Cache
The code presented above creates client libraries and often uses them only once.
Cache client libraries. They can be reused. Leverage caches for API requests too.
Most of the client libraries take care of this for you, but you should still make sure
that the client library is configured to cached data appropriately for your project.
For example, the PHP client library provides four different cache implementations,
one of which may work better for you.

Be paranoid
Don’t trust anyone when it comes to cross site scripting. Be very cautious when
rendering input that comes from a user, even if it’s coming via a Google API. Escape
everything. The implementation of these practices will differ a bit on your language
and platform.

64 | Chapter 4: OAuth-Enabled APIs

CHAPTER 5

Collaborative Baking with
Hangout Apps

Google+ Hangouts provide an easy way to create 10-way video conferences. This is a
pretty cool feature on its own, but with the Hangout API you can extend them.

You can author your own JavaScript applications that have access to a data structure
that is automatically synchronized between all participants in the hangout. You can
also programmatically manipulate many aspects of the running hangout environment,
including adding image overlays to the video streams of hangout participants.

Potluck Party Planner
As fun as it is to experiment alone, inviting friends takes baking disasters to the next
level. You can distribute the cost of your baking party by making it an ingredient pot-
luck. Your baking friends can each volunteer to bring some of the ingredients for the
recipe that you’re going to attempt together.

The process of deciding who will bring what is highly collaborative. It’s a perfect case
for a Hangout App. This is a great opportunity to extend your baking disasters web
application into a hangout with a Potluck Party Planner app.

Potluck Party Planner allows the hangout participants to select a recipe that they wish
to attempt. Next, a list of ingredients is displayed. Participants can then volunteer to
bring an ingredient to the party by clicking it. The participant who has agreed to bring
the most ingredients is rewarded with a virtual chef’s hat made possible by a media
overlay. Finally, participants share a reminder to Google+ with a list of the ingredients
that they have volunteered to bring. The flow is shown in Figure 5-1.

65

Architecture of a Hangout App
A Hangout Application consists of three parts, as shown in Figure 5-2: a gadget.xml
specification file, JavaScript for the real-time interaction, and optional server-side APIs.
These APIs allow your hangout application to access data that resides outside the
hangout.

Hosting a Hangout App
You’re probably eager to dive into the code, but to save headaches later you need to
take care of a few things first. There are special considerations you must take into
account when hosting them.

Figure 5-1. Users select a recipe to bake → users volunteer to bring ingredients and the top volunteer
is provided a chef’s hat → users share their shopping list to Google+

66 | Chapter 5: Collaborative Baking with Hangout Apps

The sample applications provided by Google all run on Google App Engine. App Engine
provides a great place to host Hangout Apps, but it does not support PHP and hence
can’t run Baking Disasters. To achieve tight integration between your web application
and Hangout App you will need to make some changes. You’ll need to serve files over
SSL and configure cache control headers.

SSL is a must both during development and later when your application is in produc-
tion. Hangouts themselves run in SSL. You’re free to create hangout apps that include
content served over unencrypted HTTP, but web browsers do not like it when you do
this. Even in web browsers configured with the default security settings you’ll see mixed
content warnings and even errors resulting from files failing to load.

You must serve your static files and API requests over SSL. There are a few ways to do
this. If you’re running on a subdomain of a shared domain from your provider, as is
the case with Google App Engine’s appspot.com, you can leverage their existing wild-
card SSL certificate. If that’s not available or you are running on your own domain,
you’ll need to purchase and install an SSL certificate.

If this is a lengthy process, there is an alternative that you can use during development.
You can use a self-signed SSL certificate and force your web browser or operating system
to trust it.

In addition to being able to serve content over SSL, you should have control over the
HTTP cache headers. While you develop your hangout application you’re going to be
going through the familiar code, deploy, and test loop. In fact, you’re going to be doing
it quite rapidly. The hangout APIs will respect cache directives in serving these files.
This means that the default cache directives set by your web server will probably make
development quite cumbersome. While you are developing your application you
should disable caching, but don’t forget to then it back on when you’re ready to release
your application to the world!

With these two issues taken care of, you’re ready to build.

Figure 5-2. A typical Hangout App architecture featuring XML configuration, JavaScript that runs
within the hangout, and REST APIs on a remote system

Hosting a Hangout App | 67

Starting with a Starter Project
Now that you know what you’re going to build and where you’re going to host the
code, it’s time to start hacking. Starter apps are a great place to start, and the Hangouts
API is no different. As mentioned above, the Google-provided sample applications are
all intended to be hosted on Google App Engine, but with a few tweaks you can convert
them to your PHP environment.

Convert the Starter Project to PHP
Download a copy of the starter app from the hangouts sample apps page: https://devel
opers.google.com/+/hangouts/sample-apps. This archive contains several files, as shown
in Figure 5-3.

Figure 5-3. The contents of the Hangout API starter project

Two YAML files contain App Engine configuration. Because we’re not running on App
Engine, you can ignore them. The app.js and app.xml files in the static folder contain
most of the Hangout App code. Following the instructions in the included readme,
update the URLs inside of them to refer to your web host.

The initial contents of app.js in Example 5-1 become Example 5-2, and so on elsewhere
in the starter project files.

Example 5-1. The initial contents of app.js

var serverPath = '//YOUR_APP_ID.appspot.com/';

function countButtonClick() {

Example 5-2. app.js with a server path specified

var serverPath = '//bakingdisasters.com/potluck-party-planner/hangoutstarter/';

function countButtonClick() {

68 | Chapter 5: Collaborative Baking with Hangout Apps

https://developers.google.com/+/hangouts/sample-apps
https://developers.google.com/+/hangouts/sample-apps

Next, open main.py. As shown in Example 5-3, this file contains a simple AJAX handler.

Example 5-3. A simple AJAX handler in Python for App Engine

class MainHandler(webapp.RequestHandler):
 def get(self):
 # Set the cross origin resource sharing header to allow AJAX
 self.response.headers.add_header("Access-Control-Allow-Origin", "*")
 # Print some JSON
 self.response.out.write('{"message":"Hello World!"}\n')

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

Reproducing it in PHP is easy. Create a file named index.php in the root of your project
with the code in Example 5-4.

Example 5-4. The same AJAX handler written in PHP

<?php
header("Access-Control-Allow-Origin: *");
header("Content-type: application/json");
?>
{"message":"Hello World!"}

A simple cross-origin resource sharing header to make cross domain requests easier.
If you host your app.js file on the same domain as index.php, this is not strictly
necessary.

By default PHP sets a text/html content type. Override it because this file responds
with JSON.

Finally, deploy the updated starter project to your web host.

Run the Starter Project
There is one last step that you must complete to run the Hangout App starter project.
You must enable the Hangouts API on the Baking Disasters API console project. Follow
these steps to configure your API console project and start the hangout in development
mode.

1. Return to the service panel for Baking Disasters on the API console: https://devel
opers.google.com/console#:services.

2. Enable the hangouts API on the services panel by toggling the switch to ON as
shown in Figure 5-4.

Starting with a Starter Project | 69

https://developers.google.com/console#:services
https://developers.google.com/console#:services

3. Switch to the newly revealed Hangouts panel shown in Figure 5-5. Paste the URL
for your deployed app.xml into the Application URL field.

4. Scroll to the bottom of the page, as shown in Figure 5-6. Click Save and then the
Enter a hangout link to initiate a development mode hangout running your starter
project.

5. If you’re asked about permissions, grant them to allow the hangout app to start.

The application, shown in Figure 5-7, is quite simple. It consists of a count that is
synchronized across all users, and a Get Message button, which uses AJAX to fetch the
response from index.php.

Alongside the features contained in your starter project there are a some development
tools. The Reset app state button deletes the contents of the shared state, and the Reload
app button reloads the app’s html and JavaScript, but it does not clear the shared state.
If you are not careful with your code, using these buttons independently may result in
some unusual behavior.

To fully experience the starter application, now is a good time to recruit a friend to join
your hangout. Since your application is still in development mode, you must add your
collaborators to your development team on the API console. You can use the team
panel, shown in Figure 5-8 of the API console to add your collaborators: https://devel
opers.google.com/console#:team

Once you have added them to your project, restart your hangout and invite them to
join you.

Figure 5-4. Enabling the Google+ Hangouts API on the API console

70 | Chapter 5: Collaborative Baking with Hangout Apps

https://developers.google.com/console#:team
https://developers.google.com/console#:team

As simple as the starter app is, it contains basic usage of all of the APIs that you will
need to write the potluck planner app. It uses the shared state and callbacks to maintain
the synchronized count and makes AJAX calls to APIs hosted server side.

Figure 5-5. Associating the deployed app.xml file in the API console

Figure 5-6. Saving the Hangout App configuration and starting a developer hangout

Starting with a Starter Project | 71

Collaborative Planning
The starter project provides a solid foundation. It’s time to mold it into the potluck
party planner. Taking a bottom-up approach this involves enhancing the AJAX handler
to communicate recipes and ingredients, modifying the HTML in app.xml, and then
adding JavaScript to synchronize participant state and manipulate the HTML. This
design is shown in Figure 5-9.

Once the core interaction features are implemented, you can loop back and add en-
hancements like the ingredient reminder sharing and the chef’s hat overlay for the top
contributor.

Recipe and Ingredient REST APIs
The hangout app needs data from Baking Disasters to function. Specifically, it needs
access to a list of all available recipes and a way to list the ingredients required for each
of those recipes.

Figure 5-7. Running the Hangout API starter app

72 | Chapter 5: Collaborative Baking with Hangout Apps

REST APIs are a great way to communicate data to AJAX applications. Implementing
simple REST APIs is quite easy in PHP. Create a new file, api.php. Start by adding some
headers to turn this php file into a REST API, as shown in Example 5-5.

Example 5-5. HTTP headers that allow a PHP file to be used as an AJAX handler

<?php
header("Access-Control-Allow-Origin: *");
header("Content-type: application/json");

include_once("util.php");

Use GET parameters to control which data you will return. If recipes is set, you know
that the hangout is asking for a list of all available recipes, so fetch them from the
database, convert, and print them into the response, as shown in Example 5-6.

Example 5-6. Print a list of all recipes as JSON

 if ($_GET['recipes']) {
 $recipes = list_recipes();
 $response = array();

 foreach ($recipes as $recipe) {
 array_push($response, array(
 'id'=>$recipe['rowid'],
 'name'=>$recipe['name'],
 'imageUrl'=>$recipe['photo_url']

Figure 5-8. Adding project team members on the API console

Collaborative Planning | 73

));
 }
}

If ingredients is set, use the id parameter to look up the ingredients for that recipe and
respond with them in the same way, as shown in Example 5-7.

Example 5-7. Print a list of ingredients for a recipe as JSON

} else if ($_GET['ingredients']) {
 $recipe = get_recipe($_GET['id']);
 if($recipe) {
 $response = array(
 'name'=>$recipe['name'],
 'ingredients'=>explode("\r\n", $recipe['ingredients']));
 echo str_replace('\/', '/', json_encode($response));
 }
}

And finally, fall through to a simple error if neither are set, as shown in Example 5-8.

Example 5-8. Respond to all other requests with a 404 status code

} else {
 header("HTTP/1.0 404 Not Found");
 echo '{"error":"not found"}';
}

This single file API provides all of the data access that the hangout application needs.

In practice on your application, the implementation of any APIs you provide will be
different. If you’re using an MVC framework, it probably provides an easy way to ex-
pose entities in your application as simple APIs.

Figure 5-9. The architecture of the Potluck Party Planner Hangout App.

74 | Chapter 5: Collaborative Baking with Hangout Apps

Hangout App Interface
Hangout apps, at their core, are HTML web applications that run inside of an iframe.
All user interaction is made through HTML. The initial state of this HTML is specified
inside the app.xml file and manipulated as the app runs by JavaScript.

The potluck party planner has two screens: one for recipe selection and another for
ingredient selection. An easy way to model this is to create both screens within the
initial HTML. Use CSS to hide them at startup and then use JavaScript to display at
the right time.

Merge the header from Baking Disasters into app.xml to provide a foundation for further
features. Example 5-9 shows the result of this merger.

Example 5-9. The result of merging the Baking Disasters layout with the app.xml file from the
Hangout Apps starter project

<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters 2.0</title>
 <script src="//hangoutsapi.talkgadget.google.com/hangouts/api/hangout.js?v=1.0">
 </script>
 <script src="//bakingdisasters.com/potluck-party-planner/final/app.js?foo=bar">
 </script>
 <script src="//apis.google.com/js/plusone.js"></script>
 <link rel="stylesheet"
 href="//bakingdisasters.com/potluck-party-planner/final/style.css"/>
 <link rel="shortcut icon"
 href="//bakingdisasters.com/potluck-party-planner/final/images/logo_favicon.png" />
</head>
<body>
<header class="blog-header">
 <img id="blog-logo"
 src="//bakingdisasters.com/potluck-party-planner/final/images/logo.png"/>
 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
 <section class="content">
 </section>
<footer>
 By Baking Disasters
</footer>
</body>
</html>

With this foundation created add some content panes. The design calls to start with a
list of recipes, but calling the recipe list API may take some time so start with a content
panel that displays a loading message, as shown in Example 5-10.

Collaborative Planning | 75

Example 5-10. A loading message that is displayed while the Hangout App starts up

<section class="content" id="loading">
 <p>Hang in there! Stuff is still loading.</p>
</section>

Once the app has finished loading it should display a list of recipes. Create a section
for this but make it hidden by default, as shown in Example 5-11.

Example 5-11. HTML for an empty recipe list

<section class="content" id="recipe-list-content" style="display: none;">
 <h2>Potluck Planner</h2>
 <p>Select a recipe for your potluck:</p>
 <ul id="recipe-list">
 <div style="clear: both;"></div>
</section>

The display: none; CSS prevents this section from being visible.

Recipes render within the recipe-list list.

And finally, once the recipe has been selected, users need a way to volunteer to bring
ingredients. The HTML for the ingredients panel is shown in Example 5-12.

Example 5-12. HTML for an empty ingredients list

<section class="content" id="ingredient-list-content" style="display: none;">
 <h2>
 ←
 Recipe selected:
 </h2>
 <p>Select stuff to bring:</p>
 <table class="who-bring-what">
 <thead>
 <tr><th>Who</th><th>What</th></tr>
 </thead>
 <tbody id="claim-list">
 </tbody>
 </table>
 </section>

Ingredients render within the claim-list element of the who-bring-what table.

JavaScript is the glue that puts this interface and the Baking Disasters REST APIs to-
gether, in a hangout.

You can put JavaScript in app.xml too, but it quickly becomes cumbersome. It’s easier
to break it out into a separate file. Create a new file, app.js, and include it into the
head element, as shown in Example 5-13.

Example 5-13. Including app.js into app.xml

<script src="//bakingdisasters.com/potluck-party-planner/final/app.js"></script>

76 | Chapter 5: Collaborative Baking with Hangout Apps

Hangout App Startup
When the hangout starts up, Potluck Party Planner must be initialized to render the
list of recipes that available for selection. The Hangout API can be configured to call a
function once loading is complete using the function shown in Example 5-14.

Example 5-14. Registering an init function

gadgets.util.registerOnLoadHandler(init);

Within the init function you register a callback that executes when the Hangout API
has finished its own initialization. Within this function you can register other callbacks,
as shown in Example 5-15. In an application as simple as this one, you can funnel the
initialization and other callbacks into a single updateUi function, as shown in Exam-
ple 5-16.

Example 5-15. Registering more specific callbacks within the init function

function init() {
 var apiReady = function(eventObj) {
 if (eventObj.isApiReady) {

 // set up the handlers for callback from the hangout
 gapi.hangout.data.onStateChanged.add(function(eventObj) {
 updateUi();
 });
 gapi.hangout.onParticipantsChanged.add(function(eventObj) {
 updateUi();
 });

 // Render the initial interface
 updateUi();

 gapi.hangout.onApiReady.remove(apiReady);
 }
 };
 gapi.hangout.onApiReady.add(apiReady);
}

Register the apiReady function to execute when the Hangouts API is ready for in-
structions.

Wait for the API to become fully ready.

Update the user interface whenever the shared state changes.

Update the user interface when participants join or leave the hangout.

Render the initial user interface.

Remove the apiReady callback to ensure that it does not run again.

Initially, the function shown in Example 5-17 renders the recipe list.

Collaborative Planning | 77

Example 5-16. One function to handle all interface updates

function updateUi() {
 renderRecipes();
}

Example 5-17. Render the list of recipes fetched from app.php into the empty recipes list and make it
visible

function renderRecipes() {
 // Toggle the recipe list to on
 document.getElementById("loading").style.display = "none";
 document.getElementById("ingredient-list-content").style.display = "none";
 document.getElementById("recipe-list-content").style.display = "block";

 var recipes = getRecipes();

 var recipeList = document.getElementById("recipe-list");
 recipeList.innerHTML = "";
 for (var i in recipes) {
 var recipeElement = document.createElement("li");
 var recipeImage = document.createElement("img");
 recipeImage.src = recipes[i].imageUrl;
 recipeElement.appendChild(recipeImage);
 recipeElement.appendChild(document.createTextNode(recipes[i].name));
 recipeElement.id = "recipe_" + recipes[i].id;
 recipeElement.addEventListener("click", recipeSelect, false);
 recipeList.appendChild(recipeElement);
 }
}

Toggle the interface to display the recipe list section and hide everything else.

Fetch the list of recipes from the simple API on Baking Disasters.

Clear the current recipe list if any. It may have since the last invocation.

Create HTML elements for the recipes and insert them into the recipe list.

Shared State and HTML Manipulations
The most important function of app.js is to respond to participant actions and to
update everyone’s user interface. The Hangout API’s shared state API takes care of the
heavy lifting. All you need to do is update the state in response to user actions and it
will automatically trigger callbacks in every participant’s app. This includes the par-
ticipant who triggered took the original action. The recommended sequence is shown
in Figure 5-10.

It is important that you never update the shared state from a function
that is directly or indirectly executed as the result of a state change. This
results in an infinite loop.

78 | Chapter 5: Collaborative Baking with Hangout Apps

Participants can take three possible actions when using potluck party planner. They
can select or unselect a recipe and they can volunteer to bring an ingredient. The in-
terface HTML already has JavaScript methods specified for these actions, so all you
need to do is fill in the implementations.

Recipe selection, shown in Example 5-18, happens first. When a participant clicks on
a recipe, the hangout app determines the recipe that they selected. Next, it makes an
API call to Baking Disasters to fetch the ingredients for that recipe.

Once all of the important details about the selected recipe are known, you can update
the shared state by calling gapi.hangout.data.submitDelta(). The shared state can only
store strings, though, so all complex data, like the ingredients list, must be converted
into a string to be stored.

Example 5-18. Respond to user clicks on a recipe in the list

function recipeSelect() {
 var recipeId = this.id.split("_")[1];
 var ingredientResponse = getIngredients(recipeId);

 var delta = {'recipeName':ingredientResponse.name};
 var ingredients = new Array();
 for(var i in ingredientResponse.ingredients) {
 ingredients.push({"claimedBy":null, "ingredient":ingredientResponse.ingredients[i]});
 }
 delta['ingredients'] = JSON.stringify(ingredients);

 gapi.hangout.data.submitDelta(delta);
}

Fetch the ingredients list for this recipe from the simple API.

Gather up all changes to the shared state into a single local variable.

Convert arrays and objects into strings to store them in the shared state.

Submit the updates using submitDelta.

Figure 5-10. The update flow for shared state

Collaborative Planning | 79

Use submitDelta() whenever multiple keys are updated rather than
many calls to setValue(). Shared state updates are limited to several
updates per second, but submitDelta() only counts as one call.

Unselecting recipes is much simpler. No data needs to be fetched from any API. Simply
clear the ingredients list from the shared state using the gapi.hangout.data.clear
Value() function, as shown in Example 5-19.

Example 5-19. Return to the recipes list by clearing the ingredients list

function recipeUnselect() {
 gapi.hangout.data.clearValue('ingredients');
}

When the shared state has been updated, the Hangouts API will trigger the callback
function you registered earlier. Update this function to render the correct panel based
on the new value in the shared state, as shown in Example 5-20.

Example 5-20. An expanded UI updated function that decides which list to display

function updateUi() {
 if (gapi.hangout.data.getValue('ingredients') == null) {
 renderRecipes();
 } else {
 renderIngredients();
 }
}

If there is no ingredient set in the shared state, display the recipe list.

Volunteering for ingredients follows a very similar flow, except since only one value is
updated in the shared state, gapi.hangout.data.setValue() is sufficient.

Example 5-21. Respond to user clicks on ingredients

function ingredientSelect() {
 var claimId = this.id.split("_")[1];

 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients'));
 ingredients[claimId].claimedBy = gapi.hangout.getParticipantId();

 gapi.hangout.data.setValue('ingredients', JSON.stringify(ingredients));
}

Recall the ingredients list from the shared state.

Update the claimant for the target ingredient.

Store the updated ingredient list back into the shared state.

80 | Chapter 5: Collaborative Baking with Hangout Apps

The basic flow is ready for testing. Deploy the code and start a hangout. It will look
something like Figure 5-11. You and your friends can select a recipe and volunteer for
ingredients together.

Figure 5-11. Potluck party planner running in a hangout: Left: The recipe selection panel; Right: The
ingredient selection panel

Add Reminder Sharing
As it’s implemented, the final list of ingredients that each person selected is lost at the
end of the hangout. The share link can help close this loop by allowing participants to
post a reminder to Google+.

Content that is posted to Google+ must have a publicly accessible URL. A simple way
to implement this is to create a reminder.php file, as shown in Example 5-22. It accepts
reminder text as a GET parameter and formats it for sharing on Google+ with
schema.org markup.

Example 5-22. A PHP page that displays reminders, which are passed in via a GET parameter

<!DOCTYPE html>
<html>
<head>
 <title>Baking Disasters 2.0</title>
 <link rel="stylesheet" href="style.css"/>
 <link rel="shortcut icon" href="images/logo_favicon.png" />
</head>
<body>
<header class="blog-header">

Add Reminder Sharing | 81

 <h1>Baking Disasters</h1>
 <p>Because sometimes molecular gastronomy explodes.</p>
</header>
<section class="content" itemscope itemtype="http://schema.org/Thing">
 <h2 itemprop="name">Potluck Reminder</h2>
 <p>Remember to bring:</p>
 <pre itemprop="description">
<?= htmlspecialchars(urldecode($_GET["reminder"]), ENT_QUOTES, 'UTF-8'); ?>
 </pre>
 <div style="clear: both;"></div>
</section>
<footer>
 By Baking Disasters
</footer>
</body>
</html>

Schema.org does not specify a schema for a reminder, so fall back to thing.

Use htmlspecialchars to prevent cross-site scripting issues.

For large ingredient lists, this implementation will produce very large
URLs. A more robust implementation might involve POSTing a re-
minder and creating a shareable URL that refers to that reminder by ID.

Wiring reminder.php into the hangout app involves adding a place for the share link to
render and rendering a share link with the GET parameter populated by the current
ingredient list.

Add a placeholder reminder button to app.xml in the head element of the interface
HTML, as shown in Example 5-23.

Example 5-23. A placeholder share link

<a style="display: none;" id="reminder-share-link"
href="https://plus.google.com/share?url=http://bakingdisasters.com">
 Share a shopping reminder on <img
 src="https://www.gstatic.com/images/icons/gplus-16.png"
 alt="Share a shopping reminder on Google+"/>

Next, add a function to app.js that updates the placeholder reminder link to share the
list of ingredients that the current user has committed to bring, as shown in Exam-
ple 5-24.

Example 5-24. JavaScript that updates the share link to the participants ingredient list

function renderReminderButton() {
 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients'));
 var participantId = gapi.hangout.getParticipantId();
 var reminderText = gapi.hangout.getParticipantById(participantId).person.displayName;
 reminderText += " will bring: ";

82 | Chapter 5: Collaborative Baking with Hangout Apps

 for (var i in ingredients) {
 if(ingredients[i].claimedBy == participantId) {
 reminderText += ingredients[i].ingredient + "%0A";
 }
 }
 if(reminderText.length > 0) {
 var reminderShareLink = document.getElementById("reminder-share-link");

 var reminderUrl = "https://plus.google.com/share?url=" +
 encodeURIComponent(BACKEND_BASE_URI + "/reminder.php?reminder=" +
 encodeURIComponent(reminderText));

 reminderShareLink.href = reminderUrl;

 reminderShareLink.onclick = function() {
 window.open(reminderUrl, '',
 'menubar=no,toolbar=no,resizable=yes,scrollbars=yes,height=600,width=600');
 };

 reminderShareLink.style.display = "inline";
 }
}

Recall the ingredients list from the shared state.

Crudely URL-encode the list of ingredients claimed by the current participant.

Construct the share link URL.

Update the href attribute of the reminder link to point to the share link URL.

Add a JavaScript callback to open the share link in a new window.

Display the share link if it is still hidden.

This share link must be updated in response to ingredient selection. Add it to the
updateUi() function, as shown in Example 5-25.

Example 5-25. The updateUi function enhanced to add the reminder share link.

function updateUi() {
 // If there's no ingredient state, display the recipes list
 if (gapi.hangout.data.getValue('ingredients') == null) {
 renderRecipes();
 } else {
 renderIngredients();
 renderReminderButton();
 }
}

The next time you run the hangout, a reminder link will appear. Clicking on the re-
minder link will bring up a share window. Share it with yourself, or whoever does your
grocery shopping. An example reminder is shown in Figure 5-12.

Add Reminder Sharing | 83

Media APIs
The shared state APIs provide you everything you need to get the job done, but hangouts
are supposed to be fun. You can use the media APIs to make the application a little
more fun and provide an incentive for users to volunteer to bring ingredients: during
ingredient selection, the user who has volunteered to bring the greatest number of
ingredients to the party will be rewarded with a chef’s hat that appears in their thumb-
nail to everyone in the hangout.

Media overlays are created from images and later attached to a user’s face with a dif-
ferent API call. You can create media overlays dynamically with any URI, even a data
URI, but this use case can be satisfied by reusing a single overlay. Create the overlay at
startup from a static image and store it into a global variable for use later, as shown in
Example 5-26.

Example 5-26. Create a chef’s hat overlay during initialization and store it into a global variable

var chefHatOverlay;
...
function createHatOverlay() {
 var chefHat = gapi.hangout.av.effects.createImageResource(
 BACKEND_BASE_URI + '/images/chef_hat.png');
 chefHatOverlay = chefHat.createFaceTrackingOverlay(
 {'trackingFeature':
 gapi.hangout.av.effects.FaceTrackingFeature.NOSE_ROOT,
 'scaleWithFace': true,
 'rotateWithFace': true,
 'scale': 4,
 'offset': {x: 0, y: -0.3}});
}

Use a global variable to store the overlay.

Create the overlay by calling createHatOverlay from init.

Figure 5-12. Left, a share window rendered from a share link in the Potluck Party Planner; right, the
resulting activity on Google+

84 | Chapter 5: Collaborative Baking with Hangout Apps

This code specifies some seemingly arbitrary values for the attachment point, scale, and
offset. These parameters behave consistently, but it’s usually easiest to guess some
reasonable values for your image and make adjustments to the working application.

Now that you have an overlay to apply, you must tell the app when to render it. The
app already has an updateUI() function that updates the interface after a user selects
an ingredient. Use the same logic to trigger the assignment of the chef’s hat, as shown
in Example 5-27.

Example 5-27. Recalculate the chef’s hat assignment within the updateUi+ function

function updateUi() {
 // If there's no ingredient state, display the recipes list
 if (gapi.hangout.data.getValue('ingredients') == null) {
 renderRecipes();
 } else {
 renderIngredients();
 assignChefHat();
 renderReminderButton();
 }
}

Each time an ingredient is selected you can inspect the shared state to determine the
participant who has volunteered to bring the greatest number of ingredients. Next, loop
through the participants, assign the hat to the top contributor and clear out the hats
worn by everyone else. Example 5-28 shows how to do this.

Example 5-28. Determine the leading participant and assign them the chef’s hat

function assignChefHat() {
 var ingredients = JSON.parse(gapi.hangout.data.getValue('ingredients'));
 var totals = new Array();

 for(var i in ingredients) {
 var ingredient = ingredients[i];
 var person = ingredient.claimedBy;
 if(person != null) {
 if(totals[person]) {
 totals[person]++;
 } else {
 totals[person] = 1;
 }
 }
 }

 var hatOwner = null;
 var currentMax = 0;
 for(person in totals) {
 if(totals[person] > currentMax) {
 currentMax = totals[person];
 hatOwner = person;
 }
 }

Media APIs | 85

 console.log(hatOwner + " gets the hat with total of " + currentMax);

 if(hatOwner == gapi.hangout.getParticipantId()) {
 chefHatOverlay.setVisible(true);
 } else {
 chefHatOverlay.setVisible(false);
 }
}

Recall the ingredients list from the shared state.

Determine the participant who has claimed the greatest number of ingredients.

Display the chef’s hat if the current participant claimed the most ingredients.

Deploy the code, start a hangout, and select a few ingredients to see a chef’s hat render
above your head, as shown in Figure 5-13.

In this exercise you applied a media overlay. The media APIs provide other features
that may be useful in your application. You can play sounds in the hangout. The sound
APIs leverage the noise-canceling features of the hangout to ensure they are only heard
by the correct participants. You can also affix images to the thumbnail view itself instead
of the participants’ faces. You can even access the coordinates of the participants’ facial
features programmatically. You can learn more about the available media API methods
in the Hangout API reference documentation: https://developers.google.com/+/hang
outs/api/gapi.hangout.av.effects

Other Hangout APIs
The Hangouts API is quite broad. It has many other methods and callbacks related to
other hangout features. You can change the state of cameras and microphones, make
your app react to changes in the On Air broadcast state of the hangout, and even embed
video feeds into your main application pane. The best way to explore these features is
to pursue the API reference documentation: https://developers.google.com/+/hangouts/
api/gapi.hangout

Publishing
Now that you have a working hangout application, it’s time to allow people outside of
your development team to use it. Follow these steps to make your hangout app public.

1. Return to the API console, https://developers.google.com/console.

2. Open the Hangouts panel for your application.

3. Provide URLs for the Privacy Policy, Terms of Service, and Contact fields.

4. Create a Chrome Web Store account and verify it by paying a one-time $5 fee, as
shown in Figure 5-14.

86 | Chapter 5: Collaborative Baking with Hangout Apps

https://developers.google.com/+/hangouts/api/gapi.hangout.av.effects
https://developers.google.com/+/hangouts/api/gapi.hangout.av.effects
https://developers.google.com/+/hangouts/api/gapi.hangout
https://developers.google.com/+/hangouts/api/gapi.hangout
https://developers.google.com/console

5. Check the published checkbox on the API console, shown in Figure 5-15, and click
Save.

6. Create and add the hangout button to your website. Start by copying your appli-
cation ID from the URL in the address bar on the API console, as shown in Fig-
ure 5-16.

7. Create a button with that ID. The resulting markup is shown in Example 5-29.

Figure 5-13. Potluck Party Planner rendering a chef’s hat on Jenny’s head

Publishing | 87

Figure 5-14. Registering your developer account in the Chrome web store

Figure 5-15. Publishing your hangout app

88 | Chapter 5: Collaborative Baking with Hangout Apps

Figure 5-16. Copying the project ID from the URL on the API console

Example 5-29. HTML markup for a hangout button

<a href="https://plus.google.com/hangouts/_?gid=1234567890"
 style="text-decoration:none;">
 <img
src="https://ssl.gstatic.com/s2/oz/images/stars/hangout/1/gplus-hangout-20x86-normal.png"
 alt="Start a Hangout"
 style="border:0;width:86px;height:20px;"/>

Add it to a webpage, such as the Baking Disasters main index as shown in Fig-
ure 5-17, and click the button to start a hangout.

Use the built in hangout invitation features to invite your friends. You can now plan
your potluck disaster.

Publishing | 89

Figure 5-17. Using the Hangout button to initiate a hangout running the potluck party planner

90 | Chapter 5: Collaborative Baking with Hangout Apps

CHAPTER 6

Wrapping Up the Baked Goods

Over the course of this book you have enhanced a blog with social plugins, written a
web application that uses Google+ for authentication and as a data source, created a
hangout app to make potluck planning easier, and taken a sneak peak at the upcoming
history API. You can find the latest source code for all of these projects at http://code
.google.com/p/baking-disasters/ and running examples at https://bakingdisasters.com/.

As you’ve completed these projects you’ve carved a path through the Google+ platform,
but there are many other features to explore. As you explore you can find help in many
places. As you start your project you can find configuration tools, starter projects, ref-
erence documentation and samples at https://developers.google.com/+. As your project
evolves, you can find help overcoming the roadblocks that you encounter through many
support channels such as hangout office hours, IRC chat, StackOverflow and a dis-
cussion forum. Links to these support resources can be found at https://developers.goo
gle.com/+/support.

91

http://code.google.com/p/baking-disasters/
http://code.google.com/p/baking-disasters/
https://bakingdisasters.com/
https://developers.google.com/+
https://developers.google.com/+/support
https://developers.google.com/+/support

About the Author
Jennifer works in Developer Relations on social products at Google. Previously she has
worked in a wide variety of software engineering roles, from robotics at NASA to the
architect of a social media startup. She is passionate about writing and education, es-
pecially on the subjects of technology and science.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Things You May Recognize
	Things That May Be New to You
	Explore the API

	Chapter 2. Social Plugins
	The +1 Button
	Adding the +1 Button
	Customizing the +1 Button
	Customizing Your Snippet
	Leveraging the Callback
	Special Considerations for AJAX Applications
	Troubleshooting the +1 Button

	The Badge
	Adding the Badge

	Performance Tuning Social Plugins
	Asynchronous Loading
	Explicit Rendering
	Delayed Rendering
	Keeping Up to Date

	Chapter 3. Public Data APIs
	Integrating Google+ Comments
	Experiment with the APIs

	Client Libraries
	Registering Your Application
	Time to Code
	Comments Integration in Action
	What’s Next?

	Chapter 4. OAuth-Enabled APIs
	New Application: Baking Disasters 2.0
	Authentication Using Google+
	OAuth 2.0
	Accounts and API Keys
	A Little More About OAuth 2.0
	Starter Projects
	Bringing it Together
	Locking Stuff Down
	A Preview of the Sign-in Button

	Making Baking Disasters Social
	Import Disasters from Google+
	A Preview of the History API

	Best Practices

	Chapter 5. Collaborative Baking with Hangout
 Apps
	Potluck Party Planner
	Architecture of a Hangout App
	Hosting a Hangout App
	Starting with a Starter Project
	Convert the Starter Project to PHP
	Run the Starter Project

	Collaborative Planning
	Recipe and Ingredient REST APIs
	Hangout App Interface
	Hangout App Startup
	Shared State and HTML Manipulations

	Add Reminder Sharing
	Media APIs
	Other Hangout APIs
	Publishing

	Chapter 6. Wrapping Up the Baked Goods

