
Jarrod Overson &
Jason Strimpel

Developing
Web
Components
UI FROM JQUERY TO POLYMER

■

■

■

■

www.allitebooks.com

http://www.allitebooks.org

WEB PROGR AMMING

Developing Web Components

ISBN: 978-1-491-94902-3

US $29.99 CAN $34.99

“ With this book, Jarrod

and Jason make web

components accessible

to a large number of

developers. The sections

on custom elements

and shadow DOM

will help solidify your

understanding of new

web platform features

for composition and

encapsulation, helping

you build more robust

components and apps.”
—Addy Osmani

engineer focusing on Chrome

and Polymer at Google

“ I'm really excited that

Jarrod and Jason have put

together this book to help

guide new developers and

get them started down the

path of componentizing

the Web!”
—Rob Dodson

Developer Advocate at Google

Twitter: @oreillymedia

facebook.com/oreilly

Although web components are stil l on the bleeding edge—barely

supported in modern browsers—the technology is also moving extremely

fast. This practical guide gets you up to speed on the concepts underlying

W3C’s emerging standard and shows you how to build custom, reusable

HTML5 Web Components.

Regardless of your experience with libraries such as jQuery and Polymer,

this book teaches JavaScript developers the DOM manipulations these

libraries perform. You’ll learn how to build a basic widget with vanilla

JavaScript and then convert it into a web component that’s semantic,

declarative, encapsulated, consumable, and maintainable. With custom

components, the Web can finally fulfill its potential as a natively extensible

application platform. This book gets you in at the right time.

 ■ Understand core concepts (such as normal low and

positioning, and z-index) for properly positioning, dragging,

and resizing elements

 ■ Explore UI concepts and patterns typically abstracted away by

Dojo, jQuery UI, Kendo UI, and other libraries

 ■ Dive into the W3C standard and convert your working widget

example into a fully functioning web component

 ■ Learn how to encapsulate, package, and deploy your web

components with Google’s Polymer framework

Jarrod Overson has been developing on the Web for over 15 years for startups

and global companies alike. Currently at Shape Security, Jarrod is an active pro-

ponent and contributor to open source and JavaScript language tooling; he’s cre-

ated Plato and many other tools and libraries.

Jason Strimpel is a software engineer with over 15 years experience developing

web applications. He’s currently employed at WalmartLabs where he writes soft-

ware to support UI application development. Jason is also an active member of

the open source community managing projects such as LazoJS.

www.allitebooks.com

http://www.allitebooks.org

Jarrod Overson and Jason Strimpel

Developing Web Components

www.allitebooks.com

http://www.allitebooks.org

978-1-491-94902-3

[LSI]

Developing Web Components
by Jarrod Overson and Jason Strimpel

Copyright © 2015 Jarrod Overson and Jason Strimpel. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent and Brian Anderson

Production Editor: Colleen Lobner

Copyeditor: Rachel Head

Proofreader: Charles Roumeliotis

Indexer: Wendy Catalano

Interior Designer: David Futato

Cover Designer: Ellie Volckhausen

Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2015-02-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491949023 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Developing Web Components, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491949023
http://www.allitebooks.org

Table of Contents

Preface. xi

1. Introduction. 1
What Are Web Components? 2

HTML Templates 3
HTML Imports 3
Custom Elements 4
The Shadow DOM 4

Why Web Components? 4

Part I. UI Core Concepts

2. Creating a Solid Foundation. 11
The Importance of a DOM Abstraction Layer 11
API Design and Widget Life Cycle 12
The Inheritance Pattern 14
Dependencies 15
Optimization 16
A Web Component Is Not JavaScript Alone 17
Example Widget 18

The Voltron Widget Base Class 18
Dialog Class 20
Dialog CSS and HTML 21

Summary 22

3. Normal Flow and Positioning. 23
Normal Flow 23

iii

www.allitebooks.com

http://www.allitebooks.org

Positioning Elements 24
offsetParent 25
Positioning 26

Calculating an Element’s Position 29
Relative to the Viewport 29
Relative to the Document 30

Positioning the Dialog Widget 31
Summary 31

4. Understanding and Managing z-index. 33
What Exactly Is the z-index Property? 33
Rendering Layers, Stacking Order, and z-index 34

Default Stacking Orders 34
Overriding the Default Stacking Order 35

Stacking Contexts 36
How Is a Stacking Context Created? 36
Increasing Complexity 37

Managing z-indexes 37
z-index Manager 38

Converting to a jQuery Plugin 45
Adding z-index Management to the Dialog Widget 47
Summary 47

Part II. Building Our UI

5. Cloning Nodes. 51
Using the cloneNode Method 52
Using jQuery.clone 53
Continuation of the Dialog Widget 55
Summary 55

6. Constructing an Overlay. 57
Defining an API 57
Utilities 59

Detecting Scrollbar Width 59
Accounting for the Scrollbar When Calculating a Containing Element’s

Width 60
Getting an Element’s Dimensions and Coordinates 61
Listening for Resize and Scrolling Events 62

Updating Options 62
Destroying 63

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Positioning 63
Positioning an Element Relative to the Viewport or Another Element 64
Positioning an Element Relative to Another Element 66

Adding the Overlay to the Dialog Widget 68
Summary 69

7. Making Elements Draggable. 71
Mouse Events 71

$.mousemove 71
$.mousedown 72
$.mouseup 72

Mouse Events Best Practices 72
1. Bind $.mousemove on $.mousedown 72
2. Unbind $.mousemove on $.mouseup 73
3. Bind $.mouseup to the <body> 73
4. Namespace All Event Bindings 73

Defining an API 73
Creating a Drag Handle 74
Making Things Move 75

$.mousedown Handler 75
$.mousemove Handler 76
$.mouseup Handler 77

Destroying a Draggable Instance 78
Making the Dialog Widget Draggable 78
Summary 79

8. Resizing Elements. 81
Mouse Events and Best Practices (Recap) 81

Events 81
Best Practices 82

Resizing an Element 82
Making a Resizable API 83
Defining Drag Handles 84
Binding Event Handlers 85

$.mousedown Handler 85
$.mousemove Handler 87
$.mouseup Handler 87

Destroying a Resizable Instance 88
Completed Resizing Library 88
Making the Dialog Widget Resizable 92
Summary 94

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

9. Completing the Dialog Widget. 95
Styling the Widget 95

Adding CSS 95
Concatenating the JavaScript 96
Summary 97

Part III. Building HTML5 Web Components

10. Utilizing Templates. 101
Understanding the Importance of Templates 102

Deferring the Processing of Resources 102
Deferring the Rendering of Content 102
Hiding the Content from the DOM 103

Creating and Using a Template 103
Detecting Browser Support 103
Placing a Template in Markup 103
Adding a Template to the DOM 104

Converting the Dialog Component to a Template 104
Creating a Wrapper API for the Dialog Template 105
Instantiating a Dialog Component Instance 106

Abstracting the Dialog Template Wrapper 106
Summary 107

11. Working with the Shadow DOM. 109
What Is the Shadow DOM? 109
Shadow DOM Basics 110

Shadow Host 110
Shadow Root 110

Using a Template with the Shadow DOM 111
Shadow DOM Styling 112

Style Encapsulation 112
Styling the Host Element 113
Styling Shadow Root Elements from the Parent Page 115

Content Projection 117
Projection via a Content Tag 117
Projection via Content Selectors 118
Getting Distributed Nodes and Insertion Points 119

Shadow Insertion Points 120
Events and the Shadow DOM 122
Updating the Dialog Template to Use the Shadow DOM 122

Dialog Markup 123

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Dialog API 124
Updating the Dialog show Method 124
Instantiating a Dialog Component Instance 125

Summary 125

12. Creating Custom Elements. 127
Introducing Custom Elements 128
Registering Custom Elements 128
Extending Elements 129

Extending Custom Elements 129
Extending Native Elements 130

Defining Properties and Methods 130
Resolving Custom Elements 131
Hooking Into Custom Element Life Cycles 131

createdCallback 132
attachedCallback 132
detachedCallback 132
attributeChangedCallback 133

Styling Custom Elements 133
Utilizing Templates and the Shadow DOM with Custom Elements 134
Converting the Dialog Component to a Custom Element 135

Creating the Dialog Custom Element 136
Implementing the Dialog Custom Element’s Callbacks 136
Implementing the Dialog Custom Element API 137
Showing the Dialog 138

Summary 138

13. Importing Code. 139
Declaring an Import 139
Accessing an Import’s Content 140

Referencing Documents 141
Applying Styles 142
Accessing Templates 143
Executing JavaScript 144

Understanding Imports in Relation to the Main Document 144
Parsing Imports 144
Cross-Domain Considerations 145
Subimports 145

Loading Custom Elements 145
Importing the Dialog 146
Summary 147

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Part IV. Testing, Building, and Deploying Components with Polymer

14. Introducing Polymer. 151
Polymer Elements 154

Adding Style 156
External Resources 157
Filtering Expressions 157

Template Syntax 159
Data Binding 159
Block Repetition 159
Bound Scopes 160
Conditional Blocks 160
Multiple Template Directives at Once 161

Attributes and Properties—Your Element’s API 161
Naked Attributes 161
Published Properties 162
Instance Methods 162

Polymer’s JavaScript APIs 163
Life Cycle Methods 163
Events 164
Managing Delayed Work 164

Summary 165

15. Porting Our Dialog to Polymer. 167
Why Port Anything to Polymer at All? 168
The Direct Port 169

Managing Dependencies 169
Installing Dependencies with Bower 171
Getting Started 173

That Was Easy—A Little Too Easy! 182
jQuery in a Polymer World 182

What Does jQuery Provide? 183
Removing jQuery 183
The Verdict on jQuery 186

Summary 187

16. Testing Web Components. 189
PhantomJS 1 190
PhantomJS 2 191
Selenium WebDriver 191
Karma 191

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Test Specs 196
Running Our Tests 199
Summary 201

17. Packaging and Publishing. 203
Vulcanize 204
Gulp 209
Grunt 210

Gruntfiles 212
Grunt Tasks 213
Registering Tasks 214
Grunt Configuration 214

Publishing with Bower 219
Registering the Component 220

Summary 221

18. Final Words. 223
Where Do We Go from Here? 223

Polymer 224
Mozilla X-Tag 224
document-register-element 225
WebComponents.org 225
CustomElements.io 225

Good Luck! 225

Index. 227

Table of Contents | ix

Preface

Why We Wrote This Book
Web development has not stopped evolving since I stumbled into the field over 13
years ago. If anything, the rate at which it is evolving is increasing. If you take a look
at the investment that Google has made in Polymer and web components, it is proba‐
bly safe to bet that web components will play a large role in web development in the
near future as browsers implement more support for them. There are still some issues
that need to be addressed, such as search engine optimization (SEO) concerns, but I
do not think web components are going away, and I don’t think this is bad. The intro‐
duction of web components (or a similar standard for extending, packaging, encapsu‐
lating, and importing discrete UI components) is long overdue in web development.
Even if you do not put all your stock in web components—for example, lifting back
the curtain and seeing how the Great Oz accomplishes his UI wizardry, making an
element draggable—they can be very useful.

Glenn Vanderburg said, “Developers should always understand one layer of abstrac‐
tion below their everyday work.” I agree with this statement, and I would argue that
widget libraries, jQuery plugins, and even jQuery are the levels of abstraction at
which most frontend engineers operate on a daily basis. The level just below that con‐
sists of the DOM manipulations these libraries perform, and the DOM and its native
APIs. Understanding precisely what these libraries are doing will enable you to write
more efficient code on a daily basis and prepare you for the great awakening.

Inevitably, there will come a time when one of these libraries does not fit nicely into
the use case with which your product manager or information architect has gifted
you—at which point, you either sink or swim. I for one would have preferred to have
some swimming lessons before my day arrived, but I was not that fortunate.

I was tasked with making a fixed-width portal product fluid-width, and all of the
portlets resizable. Sounds easy, right? I was informed that this had been
attempted more than once before, and that previous developers had failed and said it

xi

was impossible. Well, that was encouraging. On top of this, Internet Explorer 9 had
just hit the market, and due to technical debt we were running three different ver‐
sions of jQuery and two different versions of jQuery UI, none of which worked well
with IE9. So, before I could even start the resizing work I had to move to a single ver‐
sion of jQuery and jQuery UI that played nicely with IE9. You might think that mov‐
ing to a single version of each library would be a simple process, but I quickly realized
why we had accumulated the massive technical debt. We were running a myriad of
jQuery plugins ranging from bad to awful in quality and old to ancient in web time.
In addition to breaking our code, the upgrade broke the majority of these plugins.
This required upgrading and patching several plugins, and replacing others. This in
turn involved an intimate knowledge of the DOM, which I did not have. I console
logged, reverse engineered, and consumed Stack Overflow until I had solved every
problem. This was all before I could even get started on the column resizing and
portlet changes.

Next, I got some ridiculous requirement that the portlet column resizing had to look
precisely like a mock that had already been approved. It also had to behave just as the
approved specification described. There was not a plugin in existence that would
meet these requirements. Marvelous. I got to write my own.

Once I had that spaghetti code written, I had to make all the portlets and every
widget resizable. All of these events had to be timed properly, and nothing could spill

out of containers while resizing. setTimeout and I began a love affair that still contin‐
ues to this day.

If you can relate to this story, then you likely have your own. If so, like me, you prob‐
ably hacked something together that was a hodgepodge of Stack Overflow responses
and miscellaneous jQuery plugins held together by some glue code you wrote that
have 100 different branches to account for all the anomalies that occurred due to your
lack of understanding. I have been there, and it is not fun. This experience is why I
wrote this book.

In addition to not drowning, there are some other benefits to understanding how the
lower-level parts of UI components function:

• It allows you to define an API that makes sense to you—jQuery plugins are not
everyone’s cup of tea.

• It gives you full control over the entire stack, which makes debugging easier and
allows you to decide at what layer a change should occur.

• It allows you to decide which features are important and to limit your footprint
in cases where file size is of great concern (e.g., mobile applications).

• It allows you to make optimizations that fit your applications and use cases.

xii | Preface

http://stackoverflow.com

Lastly, I think that it is every frontend engineer’s job to understand the DOM and
vanilla JavaScript. This understanding, and the ability to design solutions, is what sets
frontend engineers apart from frontend developers.

What This Book Is
The primary goal of this book is to provide the foundational knowledge required to
develop and deploy web components. It is intended to be an introduction and to
inspire, not to be an exhaustive resource on the subject matter. This foundational
knowledge has been divided into four parts, preceded by a general introduction to
web components and the areas we will tackle in this book. Each of these sections and
their chapters will build upon a working code example.

Part I, UI Core Concepts
The first part covers core concepts such as cloning nodes, rendering layers, stacking

contexts, and z-index that are necessary for understanding how to properly position,
drag, and resize elements. These concepts are often misunderstood or only partially
understood, which can lead to poor design decisions and implementations. These
poor decisions can have a significant impact on the performance and maintainability
of your code. If you already have a firm grasp on these concepts, then feel free to skip
ahead to Part II.

The base class component and the dialog component that are used
throughout the rest of the book are introduced in Part I. If you skip
ahead and later decide that you would like to learn about the design
and implementation details, then refer back to Chapter 2.

Part II, Building Our UI
The second part provides an introduction to concepts and patterns that are typically
abstracted away from day-to-day frontend development by libraries such as Dojo,
jQuery UI, Kendo UI, and Twitter Bootstrap. These concepts and patterns are used to
implement UI components that you probably work with on a daily basis as a front-
end engineer. The benefits that these abstractions and UI components provide cannot
be understated. I highly recommend leveraging a base library such as jQuery UI that
provides good life cycles, extension points, and access to utility functions and helper
classes. If you need a more lightweight foundation you can explore using jQuery++,
which provides APIs for dragging, dropping, resizing, etc. in a single 162 KB file. It
also allows you to cherry-pick features, further reducing the file size.

A practical application of these concepts and patterns is illustrated by the continua‐
tion of the dialog component that was introduced in Part I.

Preface | xiii

http://dojotoolkit.org
http://jqueryui.com
http://www.kendoui.com
http://getbootstrap.com
http://jquerypp.com

If you are already familiar with these patterns or you would prefer to dive right into
the meat of web components, then start with Part III.

Part III, Building HTML5 Web Components
The third section provides an introduction to web components as defined by the
World Wide Web Consortium (W3C) and implemented by browsers. This section
takes the working example built in and and converts it into a fully functioning
web component.

Part IV, Testing, Building, and Deploying Components with Polymer
The fourth section covers how Google’s Polymer bridges the web component imple‐
mentation gaps in today’s browsers and provides convenient APIs for creating
extendable web components. It then guides you through converting your web compo‐
nent from Part III into a Polymer component. Finally, it shows how to package
and deploy the raw web component and the Polymerized version using different
package managers.

What This Book Isn’t
The intent of this book is not to be the definitive guide for developing web compo‐
nents across the entire spectrum of devices used to access the Internet. That would be
an impossible endeavor, for two key reasons.

First, the capabilities of the browser have increased significantly in recent years, and
the Internet has transformed from a document delivery mechanism into a quasi
application platform. This transformation has made the browser a much more robust
and feature-rich platform than I ever imagined possible back when I was using tables
to lay out pages and testing them in Netscape 4. There are now many new techniques
for achieving what would have been spectacular feats of JavaScript pixel pushing
using CSS alone. These native features continuously evolve, but are adopted at differ‐
ing rates by browser vendors. Implementation varies across browsers as well, because
browser vendors base their implementations on their own interpretations of the W3C
specifications. These features are very relevant to web component development, but
this brave new browser world is a book topic in its own right. Inclusion of this level
of detail is out of scope. While it is very relevant, it is not required for web compo‐
nent development.

Secondly, the number of device types and vendors—smartphones, tablets, phablets,
etc.—has increased significantly over the past five years. This proliferation of new
devices and manufacturers has reintroduced limitations that we assumed were issues
of the past: limited processing power, limited memory, smaller form factors, poor
network connectivity, etc. This influx of new devices has impacted web development

xiv | Preface

http://www.polymer-project.org

in interesting ways, and introduced new concepts such as responsive design and
adaptive design. They have also introduced new interaction patterns, such as the
touch event and gestures. All the devices have their own sets of quirks. The new and
expanding mobile market is a field of its own within the web development world,
though, and too deep a topic to include here.

Trying to account for these complexities and others in web development when
authoring a book of this nature is simply not feasible. The book would be larger than
he Art of Computer Programming and out of date before the first chapter
was complete.

In addition to issues relating to the number of devices on the mar‐
ket and varying device capabilities, it is equally import to note
that the W3C Web Components specification is a working specifi‐
cation. As a result, information contained in this book will likely
become dated and require the publication of new editions as the
specification is finalized. A best effort will be made to follow the
specification as closely as possible.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip or suggestion.

Preface | xv

This icon signifies a general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/webcomponentsbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Developing Web Components by Jar‐
rod Overson and Jason Strimpel (O’Reilly). Copyright 2015 Jarrod Overson and Jason
Strimpel, 978-1-491-94902-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

xvi | Preface

https://github.com/webcomponentsbook
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/developing-web-components.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Jason Strimpel
First, I would like to thank my wife Lasca for her encouragement and understanding.
I cannot imagine a better partner in life. I have never known a more intelligent, beau‐
tiful, and unique person. I love you. You are my favorite everything. Beep boop.

Preface | xvii

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
https://www.safaribooksonline.com
http://bit.ly/developing-web-components
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I would also like to thank my manager, Claude Jones, for his guidance and help.
Without it, this book would not exist.

I would like to thank my coauthor Jarrod Overson for agreeing to step in and write
Part IV. If you sometimes think you’re faking it, then I am doomed, as you are defi‐
nitely a more gifted writer, speaker, and engineer than me.

Many thanks to Simon St.Laurent for hearing out my half-baked idea, and providing
the feedback that shaped it into an acceptable book proposal. Also, my editor Brian
Anderson is the most patient person I have ever known. Without him this book
would be nothing more than the inner workings of my mind without context and
would not be understood by anyone expect myself. Thank you Brian.

Finally, I would like to thank all the silent partners—the engineers who write much
better code than I ever will and have taught me innumerable lessons. They choose to
remain out of the public eye, but if you are lucky enough run across one of them in
your career—trust me, you will know it— then listen to them. It is because of these
silent partners that I am even passable at best for an engineer and that I am able to
share what little knowledge I do posses.

Jarrod Overson
None of my work would have been possible without the support and patience of my
wife, Kate Lane. For years now she has accommodated my ramblings about
JavaScript, particles, and physics simulations while always being supportive and moti‐
vating. Thank you for giving me the opportunities to speak abroad, code into the
night, and spend far too much time organizing community events. Without your
support none of what I have now would have been possible, including my two beauti‐
ful children.

Thank you Finn, for bringing so much joy into my life. All of your great ideas leave
me amazed and thrilled to be your father. Thank you Norah, for always being able to
put a smile on my face. Both of you have been my motivation to be a father and per‐
son that you can be proud of.

Finally, thank you, Jason, for thinking of me when putting this book together. You’re
one of San Diego’s best developers and it’s always an honor working with you. I hope
to be able to work with you many more times in the future.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Introduction

Jarrod Overson and Jason Strimpel

Oh, good, you’re here! Welcome! We hope you’re in for a fun ride. If you’re the type
of person who skips the prefaces of books, we need to go over something real quick:
this book is set up in a way that takes you through basic widget creation from a
jQuery background and then translates that knowledge and understanding first into
the world of web components, and then into that of Polymerized web components
(web components created using the Polymer framework).

Web components are on the bleeding edge, barely supported in the most modern of
modern browsers, and we have a fair way to go before people start falling into gener‐
ally accepted best practices. The Polymer group is leading the way, with Mozilla hav‐
ing its own spin, and individuals in the community are adding in their own opinions
as web components start being adopted in real-world applications.

In this environment, we felt that the greatest tool that we could put in the hands of
developers interested in web components was an understanding of how to develop
facets of the user interface (UI) in a reusable manner that can also translate directly to
web components if (and when) you decide to use them.

In this book we’ll be tackling the UI aspects for a common JavaScript widget, the
dialog box. We’ll go from basic creation to a vanilla web component, and then look
at using Polymer to abstract it, build it, and deploy it as a reusable custom HTML
element.

One of the biggest takeaways we want you to have after reading this book is that the
introduction of web components, while it changes so much, doesn’t remove the need
to know and understand how to write modern JavaScript, and it doesn’t invalidate the
plethora of libraries and practices we’ve come to rely on and appreciate as part of
frontend web development. With that said, web components certainly are a fresh and

1

https://www.polymer-project.org/
http://x-tags.org/

exciting way of tackling encapsulated logic and user interfaces and the landscape is
full of innovation and opportunity.

Choose Your Own Adventure
This book is broken into four parts, allowing you to begin reading about the particu‐
lar subject that most interests you. Are you already familiar with the concepts in
Part I, UI Core Concepts? Then skip ahead to Part II, Building Our UI. Not interested
in learning UI component implementation details and how to construct a dialog com‐
ponent? Then dive right into Part III, Building HTML5 Web Components, and learn all
about this new technology. Already know about web components and are itching to
learn how to use them in production applications? Then Part IV, Testing, Building,
and Deploying Components with Polymer is for you. Where you begin and end is
entirely up to you, and we wish you success on your adventure!

What Are Web Components?
“Web components” aren’t any one thing; this is the term used for a collection of tech‐
nologies that enable developers to effectively describe the implementations of HTML
elements that already exist.

What does that even mean?

Well, if given the task of implementing a <p> tag via some other combination of
HTML, JavaScript, and CSS, how would you do it? You could reasonably assume that

the <p> tag just describes a set of styles and then maybe write a <div> with some

inline style, or maybe a p class that groups paragraph styles together.

Now how would you implement, say, a <select> tag and its constituent list of

<option> tags? That starts to get more complicated. It’s doable, sure, but it’s going to
start being a hairy mess of styles, JavaScript, and HTML. Then consider how fragile
the implementation would be. The styles may collide with the using page, as may
classes, IDs, global JavaScript, etc. Again, it’s doable, and we have done it, but it’s far
from ideal.

Further down that same path, how would you implement the <video> tag? This starts
getting dicier and dicier, and these are the types of problems that web components
technologies seek to solve. They don’t go all the way, but they give developers a stan‐
dard way to encapsulate, protect, and package these concepts.

Even if you don’t think web components are the bee’s knees (which they are, to the
extent to which a bee’s knees could possibly make web development a lot more satis‐
fying and exciting), the constituent technologies are all independently useful and will

2 | Chapter 1: Introduction

undoubtedly find their way into frameworks like Angular and Ember, so they are
worth being aware of and understanding.

What’s intriguing about web components is that the bulk of it is maddeningly obvi‐
ous. Two years after you buy into web components whole hog, you will look back at
the twenty-aughts as this primitive time filled with Neanderlithic frameworks and

“best practices” that involved putting whole string templates in <script> tags. When
recalling this era of development to your grandchildren, they will look at you with
skepticism and ask disbelievingly, “Gramps, did you really not have native templates
in your DOM or are you just yanking our chains?”

And you’ll say: “It’s true, sweet Becca and little Johnny—now go play with your robots
and don’t touch my space bike.”

Following is a rundown of some of the key areas we’ll be exploring in this book.

HTML Templates
HTML templates are the simple embodiment of a templatized, inert Document
Object Model (DOM) that can be stamped out and reused over and over again.

Before the <template> tag, there existed any number of ways that you could reuse
HTML. You could write your own functions that created and populated DOM nodes

directly via DOM methods, you could retrieve text stored in the DOM via innerHTML
and run that through a template engine, you could “precompile” templates in the
build phase and send template functions, or you could choose some other equally
uncomfortable method.

Now it’s all over. There is one way to write reusable HTML. Its usage can certainly
differ, but one thing’s for sure: you’re going to be writing your templates and partials

in <template> tags from now on.

HTML Imports
The HTML import is another foolishly simple concept that accommodates a single
interaction point for independent bundles to be loaded by. What has already been

done for <script> and <style> tags has now been done for HTML itself. The bonus,
on top of what was done for scripts and styles, is that the imported HTML can then
infinitely link to all its own dependencies in the same formats that already exist. This
will allow a developer to include miniature applications and all their dependencies

with a single @include, instead of tracking everything down and including all the
sources or links directly.

What Are Web Components? | 3

Custom Elements
Finally! There now exists a standard way of generating custom elements across
framework, platform, and all other boundaries. The core of HTML, the single ele‐
ment, is now open to everyone. The custom element API is incredibly trivial, and it’s
meant to be. This is the first step to building HTML into what our apps have always
wanted to be. This is about far more than simply creating new textual tags; it’s open‐
ing up a strict API touchpoint that everyone is inherently familiar with. It’s a contract
that is already agreed upon, tolerated, and enjoyed by every web developer that exists.

The Shadow DOM
The shadow DOM is the secret sauce to web components. Each other technology on
its own provides value that is obvious and appreciated, but the shadow DOM is the
icing on the web component waffle. It finally provides a way for us to isolate portions
of the DOM for true protection from styling, access, and modification via common
means. For anyone who has ever tried to build reusable UIs, this is a welcome change
that could nearly bring a tear to the eye of the most jaded developer.

Combining each of these things, we have the ability to generate custom elements,
generating their own subtrees that are isolated from the parent DOM, all importable
via a single tag!

If we sound excited, it’s because development with web components is like breathing
fresh air after being in a coal mine for two decades. Like standing up after 50 pounds
of weight have been removed from your back. It’s a freedom that is welcome and gen‐
uinely exciting.

Why Web Components?
The Web is in a transitional state, and has been for quite some time. It was originally
designed to view documents—that’s why the applications we use to sift through its
contents are called browsers! Since its inception, though, the Web has been slowly
morphing into an application platform, radically transforming the software develop‐
ment landscape. It has never been easier to release a new version of an application: a
developer pushes code changes or new assets to a server, and the end user refreshes
the page (as someone once said, a page refresh is the “compile” of web development).
Unfortunately, the browser has not kept pace with this revolution, forcing developers
to come up with clever solutions to make the Web more of an application platform.

The past few years have seen the emergence of JavaScript Model-View-Controller
(MVC) libraries and frameworks designed to help give web applications structure.

4 | Chapter 1: Introduction

The JavaScript MVC libraries that have been released over the past
few years have not all been strictly MVC. The acronym MV* was
created to encompass other patterns, such as MVVM and MVP.

Module loaders such as Require.JS have also helped greatly, providing more structure

by supplying the equivalent (and more) of the missing import that is standard in
other platforms. This has allowed frontend engineers to think more modularly.
Before the rise of MVC, we saw the rise of jQuery and UI widget libraries. These
libraries were developed to help normalize web development as much as possible and
to fill in the gaps in the limited set of UI components available on the Web. Before
these libraries, writing JavaScript that interacted with the DOM across browsers was a
nightmare and simple forms were the only UI natively supported by the browsers.

If you step back and look objectively at the current state of web development, it is
really a giant hack—but that has been changing in recent years.

The fact that it is a hack, in a sense, is not altogether bad. It has
provided a sense of freedom that other platforms and languages
lack. Irritating as it can be at times, it’s hard to imagine developing
in a more restrictive environment.

The emergence of HTML5 and newer APIs is evidence of a great attempt at turning
the Web into a real application platform. However, it is still missing some important
features that are in most other application platforms.

For instance, the Web is not extensible. You cannot create new types of elements or
extend existing ones, and there are no imports or methods for encapsulating compo‐
nents. Enter web components.

The term “web components” is currently being thrown around in the same way as
“HTML5.” Both terms have different meanings for different people. Taken literally,
HTML5 is simply a new document type with more elements. However, when people
talk about HTML5 they are typically including the new elements, CSS3, and the new
JavaScript APIs, which together redefine web development. The same is true of web
components—the term is used to reference a new collection of features that, when
utilized together, allow developers to create reusable components in a
standard fashion.

Imagine a world in which the web platform is natively extensible. Any element can be
extended, and new elements can be defined to easily create rich user interfaces. Also,
imagine a world in which these extensions can be imported in a uniform fashion,
including all assets such as JavaScript, CSS, and images. Imagine that this system has
been optimized to deduplicate requests for the same import and that blocks of

Why Web Components? | 5

http://bit.ly/dwc-mvvm
http://bit.ly/dwc-mvp
http://requirejs.org/

markup can be loaded and marked as inert so as not to impact performance. Imagine
a real application platform, if you will. This is the promise of web components.

What if you could create a dialog component simply by importing the resource and
declaring meaningful markup?

<head>

 <link rel="import" href="/imports/dialog/index.html">
</head>

<body>

 <dialog-component title="After Ford">
 Ending is better than mending.

 The more stitches, the less riches.
 </dialog-component>
</body>

That would be a huge improvement in terms of readability over the current standard:

<!-- based on http://jqueryui.com/dialog/ -->

<head>

 <link
 rel="stylesheet"
 href="//code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css">
 <script src="//code.jquery.com/jquery-1.10.2.js"></script>
 <script src="//code.jquery.com/ui/1.11.0/jquery-ui.js"></script>
 <script>
 $(function () {
 $("#dialog").dialog();
 });
 </script>
</head>

<body>

 <div id="dialog" title="After Ford">
 Ending is better than mending.

 The more stitches, the less riches.
 </div>
</body>

This is not to say that current widget libraries do not have anything to offer or that
their patterns are flawed. In fact, they are still quite relevant given the current browser
support for web components. Additionally, the web components specification alone is
not a panacea for creating rich user interfaces. A dialog component would still be
driven by the same code as a dialog widget. However, the dialog component would
wrap the widget code in a simplified, standardized, native interface with a convenient
method for including its dependencies.

6 | Chapter 1: Introduction

While this might not sound like a vast improvement, the ability to extend, abstract,
import, and encapsulate natively will make the development of web applications
much easier. It will allow developers to create reusable elements with standard life
cycles that can be imported by any application. This standardization will form an
implicit contract between the elements and the application, making the creation and
management of interfaces a much smoother process.

Why Web Components? | 7

PART I

UI Core Concepts

A solid foundation is the key to constructing a building that will withstand the abuses
of nature over the course of time. The same is true for software, but the foundation is
knowledge—a firm understanding of design concepts and implementation patterns—
not concrete. Without this foundation, an engineer will inevitably create unstable
software that eventually crumbles. The downfall may be code smell due to a misun‐
derstanding of a core concept, a poor API resulting from an insufficient design
period, poor implementation due to not knowing a standard pattern, etc. The intent
of Part I is to help prevent this downfall.

These opening chapters are designed to help you create a better foundation by cover‐
ing commonly misunderstood (or inadequately understood) concepts that are core to
positioning, dragging, and resizing elements—core features required of most UI com‐
ponents. In addition to these concepts, basic design considerations are discussed to
help ensure consistency across components and prevent common design mistakes.

If you already have this knowledge, then great—skip to Part II! If you want a
refresher, then just skim Part I. If you want to understand the base component class
that will be used throughout the book, then just read the last section of Chapter 2
(“Example Widget” on page 18). Remember, this is your adventure!

Throughout Parts I and II of this book, the term widget will be used
when referring to different libraries and the dialog example. You
might find yourself asking, “Why are we building a widget? I
thought this was a web components book!” That’s a valid question.
The answer is that this book is more than just a rehashing of the
Web Components specification. It is designed to provide a better
understanding of the DOM by exploring the details underlying
today’s widget interfaces. Knowledge of these details is required to
build moderately complex web components, and what better way
to understand these details than through a concrete example?

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Creating a Solid Foundation

Jason Strimpel

Before learning about and developing web components, there are a few things that
you should consider. Some of these considerations are not unique to web compo‐
nents, but rather are important aspects of software design and frontend engineering
in general.

Voltron—The Component Base Class
In this chapter we will be constructing a base class widget, Voltron. This widget will be
used to construct a dialog widget that will be iteratively built throughout this book as
new concepts are introduced. The purpose of this base widget is to provide a standard
that can be leveraged for the construction of a DOM library, irrespective of the inter‐
face—JavaScript widget, pure web component, Polymer, etc.

The Importance of a DOM Abstraction Layer
In theory, the DOM and its API provide a good interface for working with an HTML
document. However, in practice it can be a very frustrating interface. This is espe‐
cially true across browsers. In his book Learning JavaScript Design Patterns (O’Reilly),
Addy Osmani describes how jQuery abstracts away the details of element selection,
specifically selecting elements by class name. It accomplishes this by providing a con‐
venient facade, its query selector API. Selecting an element by class name can be done
in one of three ways, and the method selected is dependent upon what the browser
running jQuery supports. jQuery hides these details and automatically selects the
most efficient method. In addition to abstracting away these types of details, a good
DOM library provides convenient APIs for common traversal and manipulation use
cases.

11

http://bit.ly/ZQNe8L

The examples in this book will utilize jQuery, since it is known and
used by a larger audience than any other DOM facade library.

Suppose you wanted to find the closest ancestor element with a given tag name and
set the text color for that node to red. Using native APIs this could be accomplished
as follows:

function colorize(el, tagName) {
 // get el's parent el/node
 var parentEl = el.parentNode;
 // ensure tag name passed is uppercase
 tagName = tagName.toUpperCase();

 // loop through ancestors starting with
 // the el's parent until the node tag name
 // matches the tagName argument or 'HTML'
 while (parentEl.tagName !== 'HTML') {
 if (parentEl.tagName === tagName) {
 parentEl.style.color = '#ff0000';
 break;
 }
 parentEl = parentEl.parentNode;
 }
}

// get the element with an id of 'descendant' and set

// closest ancestor div's color to red

colorize(document.getElementById('descendant'), 'DIV');

Using jQuery this can be accomplished in a much more concise manner, and any
valid query selectors can be used to match the elements, not just the tag name:

// get the element with an id of 'descendant' and set

// closest ancestor div's color to red

$('#descendant').closest('div').css({ 'color': '#ff0000' });

You do not want to have to continuously write these types of abstractions and unearth
all the cross-browser oddities yourself, unless you intend to create the next jQuery!

API Design and Widget Life Cycle
Before writing a single line of code, you should have a rough idea of what your API
will look like and a basic understanding of how your widget life cycle will flow.
Without a consistent API and a common life cycle, others will not be able to easily
utilize your widget library, and eventually you will find it difficult to work with your
own library if you step away from the code for more than a day or two.

12 | Chapter 2: Creating a Solid Foundation

A widget life cycle consists of, but is not limited to, initialization,
rendering, event bindings, and destruction. The jQuery UI and the
widget factory are excellent examples of well-defined life cycle
management.

A good example of the need for API and life cycle consistency is how a widget cleans
up after itself. Anyone who has worked with jQuery plugins written by different
authors knows just how frustrating this can be. Some have a “destroy” method. Oth‐
ers have a “remove” method. Some do not even account for cleanup. None of them
seem to follow a common pattern or have the same behavior. This makes cleaning up
from a parent widget or object much more difficult, because there is no common API
to fall back on. The following code block is an example stub for a life cycle that will be
used for widgets in this book:

// utility function for enabling and disabling element

function disable ($el, disabled) {
 this.$el[disabled ? 'addClass' : 'removeClass']('disabled')
 .find('input, textarea, select, button')
 .prop('disabled', disabled);
}

// constructor function for creating an instance of a widget

function WidgetName (options) {
 this.options = $.extend({}, this.defaults, options);
 // initialize widget
 this.init();
 // return reference to instance
 return this;
}

// options defaults

WidgetName.prototype.defaults = {
 width: 200 // example option
};

// placeholder for widget initialization logic

WidgetName.prototype.init = function () {
 this.$el = $(options.$el);
 this.bind();
};

// placeholder for rendering logic

WidgetName.prototype.render = function () {
 // appropriate events could be triggered here and in other methods, e.g.
 this.$el.trigger('rendered', [this]);
 return this;
};

// bind events using delegation and namespace

API Design and Widget Life Cycle | 13

https://jqueryui.com/widget/

WidgetName.prototype.bind = function () {
 this.$el.on('click.cmp-name', function (e) {});
 return this;
};

// unbind events

WidgetName.prototype.unbind = function () {
 this.$el.off('click.cmp-name');
 return this;
};

// placeholder disabling a widget

WidgetName.prototype.disable = function () {
 disable(this.$el, true);
 return this;
};

// placeholder enabling a widget

WidgetName.prototype.enable = function () {
 disable(this.$el, false);
 return this;
};

// custom cleanup logic can be added here

WidgetName.prototype.destroy = function () {
 this.unbind();
 this.$el.remove();
};

Whatever names you select for your API methods, and however you decide the life
cycle should flow, just be consistent! Most developers would much rather work with
an API that is slightly less descriptive, but consistent, than with a self-describing API
that behaves erratically.

Additionally, a good API should provide sensible defaults and hook points with use‐
ful function arguments so that developers can easily override methods to meet their
needs without affecting the life cycle.

Lastly, not everything is a jQuery plugin! Your API design should not start with

$.fn.*. You should have a solid API design and adopt a sensible inheritance pattern.
Then, if it makes sense, you can turn your widget into a jQuery plugin to make it eas‐
ier for others to consume.

The Inheritance Pattern
JavaScript uses prototypal inheritance. This often confuses engineers who are transi‐
tioning over from other languages because in prototypal inheritance objects inherit
directly from other objects, as opposed to classical inheritance, where a new instance
is created from a class that is essentially a blueprint for creating an object. Initially,

14 | Chapter 2: Creating a Solid Foundation

http://bit.ly/dwc-proto

most view JavaScript as inferior to statically typed languages that use classical inheri‐
tance. I am not going debate the finer points, but in my opinion JavaScript is more
flexible because it allows engineers to implement inheritance patterns of their choos‐
ing. Personally, I am a fan of Backbone’s inheritance pattern, which was inspired by

goog.inherits from Google Closure, because it abstracts away the mechanism of
inheritance, allowing developers to focus on creating objects. Additionally, it imple‐
ments constructs with which most developers are familiar: instance properties, static
properties, and access to super properties.

The examples in this book will use a simple constructor pattern as to not detract from
the main focus of the book, developing web components:

// base class constructor

function BaseWidget(options) {
 // see previous code example on life cycles
 // for an explaination of the line below
 this.options = augment(this.defaults, options);
}

// extend base class

SubClassWidget.prototype = new BaseWidget();
SubClassWidget.prototype.constructor = SubClassWidget;
function SubClassWidget(options) {
 BaseWidget.call(this, options);
}

Dependencies
When creating a web widget, you should always do your best to limit dependencies
on other modules. I am not advocating against DRY or code reuse; I’m just saying
that you should evaluate whether adding a library as a dependency is providing value
that is worth its weight in terms of file size and maintenance, and the dependency
burden it will place on consumers of your widget. The examples in this book will rely
on jQuery only. Each example will pass dependencies into a closure. For instance:

(function (root, $) {
 // widget awesomeness goes here
})(window, jQuery);

When creating any JavaScript module that will be used by a large audience, it is best
to offer alternate formats for including your module. For instance, I always create an
AMD version. If the code runs on both the client and the server, then I ensure it is
possible to easily include the code via CommonJS, so it can be run in Node.js.

Dependencies | 15

http://bit.ly/dwc-backbone-ip
http://bit.ly/dwc-closure

The Asynchronous Module Definition (AMD) API specifies a
mechanism for defining modules such that the module and its
dependencies can be loaded asynchronously. This is particularly
well suited for the browser environment, where synchronous load‐
ing of modules incurs performance, usability, debugging, and
cross-domain access problems.

The following examples use Grunt (http://gruntjs.com) to build the files via Jarrod

Overson’s grunt-preprocess plugin (http://bit.ly/dwc-grunt-preprocess):

// https://github.com/jstrimpel/hermes/blob/master/src/hermes.amd.js

define(function () {

 'use strict';

 // @include hermes.js

 return hermes;

});

// https://github.com/jstrimpel/hermes/blob/master/src/hermes.window.js

(function (window) {

 'use strict';

 // @include hermes.js

 window.hermes = window.hermes || hermes;

})(window);

Optimization
Donald Knuth once said, “Premature optimization is the root of all evil.” I have never
known a statement to ring truer and as frequently in software engineering. I cannot
count how many times I have seen prematurely optimizing code introduce bugs.

People frequently advocate caching jQuery objects, which is a practice I am not
against in principle. But imagine you have a node that is destroyed because a widget
component has completely replaced its inner HTML by redrawing itself via a tem‐
plate. You now have a reference to an orphaned node. This orphaned node cannot be
garbage collected, and your application has a memory leak. It is a small leak, but if
you are applying the same pattern across all widgets, then it can become a much
larger problem rather quickly. This is especially true if your application goes for an
extended period of time without doing a hard refresh.

16 | Chapter 2: Creating a Solid Foundation

http://bit.ly/dwc-amd
http://gruntjs.com
http://bit.ly/dwc-grunt-preprocess

Aside from the leak, any code that was utilizing this reference to perform DOM
manipulations is now broken. The obvious solution is to understand the entire life
cycle of your application, but this becomes impossible once an application reaches a
certain size. Even if you could keep track of the entire application, you are likely using
third-party libraries. While these libraries provide great benefits by encapsulating sol‐
utions to common problems, they hide the implementation details of how they are
manipulating the DOM.

Your design, life cycles, and API should be your first considerations. In the case of
Voltron, our UI base widget, the specific primary considerations were rendering, UI
(un)binding, and disabling, so we created a generic interface that could be extended
to support these concepts. Additional concerns, common to most software compo‐
nents, were construction, inheritance, and initialization, so we used a well-known
inheritance pattern and provided an extendable hook point for initialization. This
allows us to periodically run performance tests as we are implementing the details the
underlie the API.

If you have a well-designed API, then you should be able to make
optimizations on a case-by-case basis at a later date if significant
performance bottlenecks are found.

The bottom line is to code sensibly by adhering to some best practices (like perform‐
ing batch updates on the DOM), performance test as you implement your API, and
then wait until a performance issue arises before further optimizing.

A Web Component Is Not JavaScript Alone
The first section of this book covers the JavaScript details of developing a web com‐
ponent, but web components are not solely comprised of JavaScript. If they were,
then adopting a module format such as AMD or CommonJS, or simply using

<script> tags, would make web components unnecessary. Web components attempt
to solve a much larger problem, which is how to encapsulate HTML, CSS, and Java‐
Script, and make this encapsulation extensible without any impact on surrounding
nodes in the DOM. For example, if a developer wants to create an image slider, it
should be possible to do this in a declarative manner via a custom element in the
document:

<!-- http://css-tricks.com/modular-future-web-components/ -->

<div class="img-slider">

A Web Component Is Not JavaScript Alone | 17

http://bit.ly/dwc-css-tricks

</div>

The resources that support this custom element should be easily included in
an import and the implementation details should not be a concern for the author of
the document.

The realization of this encapsulated, declarative approach will transform the Web
from a quasi development platform to a bona fide development platform.

Example Widget
A dialog widget will be constructed throughout the course of the book as new
concepts are introduced in each chapter. The end result will be a fully functioning
modal dialog that can be instantiated, initialized with data, moved, resized, and
shown/hidden on demand. This example will include all the necessary CSS, HTML,
and JavaScript.

The Voltron Widget Base Class
Typically, I create a base class for any object that creates instances of itself. The base
class contains common methods that can be easily overridden by the classes that

extend it. It also allows for easily calling the base class’s prototype method.

We use classic object-oriented programming (OOP) terms such as
“base” and “super” throughout the book. This is not because classic
OOP in better than prototypal inheritance; it is because these terms
provide a frame of reference for explaining concepts.

The base class for the Voltron widget looks like this:

// calling a base class method

Super.prototype.doSomething = function () {
 Base.prototype.doSomething.call(this);
 // now do some other stuff that is unique to the Super class
};

(function (root, $) {

 // https://github.com/jashkenas/backbone/blob/master/backbone.js#L1027
 // cached regex to split keys for `delegate`
 var delegateEventSplitter = /^(\S+)\s*(.*)$/;

 // constructor; creates instance
 function Voltron(options) {
 this.init(options);
 return this;
 }

18 | Chapter 2: Creating a Solid Foundation

 // default options
 Voltron.prototype.defaults = {};

 // events hash
 Voltron.prototype.events = {};

 // initialization code
 Voltron.prototype.init = function (options) {
 this.options = $.extend({}, this.defaults, options);
 this.$el = $(options.$el);
 this.bind();
 return this;
 };

 // heavily based on Backbone.View.delegateEvents
 // https://github.com/jashkenas/backbone/blob/master/backbone.js#L1088
 // bind using event delegation
 Voltron.prototype.bind = function () {
 var events = this.options.events ? Voltron.result(this.options.events) :
 null;

 if (!events) {
 return this;
 }

 // prevent double binding of events
 this.unbind();

 // iterate over events hash
 for (var key in events) {
 var method = events[key];
 // if value is not a function then
 // find corresponding instance method
 if (!$.isFunction(method)) {
 method = this[events[key]];
 }
 // if a method does not exist move
 // to next item in the events hash
 if (!method) {
 continue;
 }

 // extract event name and selector from
 // property
 var match = key.match(delegateEventSplitter);
 var eventName = match[1];
 var selector = match[2];

 // bind event callback to widget instance
 method = $.proxy(method, this);

Example Widget | 19

 if (selector.length) {
 this.$el.on(eventName, selector, method);
 } else {
 this.$el.on(eventName, method);
 }
 }
 };

 // used to unbind event handlers
 Voltron.prototype.unbind = function () {
 this.$el.off();
 return this;
 };

 // destroy instance
 Voltron.prototype.destroy = function () {
 this.unbind();
 this.$el.remove();
 };

 // static util method for returning a value
 // of an unknown type - if value is a function then execute
 // and return value of function
 Voltron.result = function (val) {
 return $.isFunction(val) ? val() : val;
 };

 window.Voltron = window.Voltron || Voltron;

})(window, jQuery);

Dialog Class
The dialog widget will extend the Voltron base class example from the previous sec‐
tion. The source code that follows is the stub for the dialog widget, which will be fil‐
led in progressively over the next two chapters:

(function () {

 'use strict';

 // set prototype to base widget and assign
 // Dialog constructor to the constructor prototype
 Dialog.prototype = new Voltron({});
 Dialog.prototype.constructor = Dialog;

 // constructor
 function Dialog (options) {
 Voltron.call(this, options);
 return this;

20 | Chapter 2: Creating a Solid Foundation

www.allitebooks.com

http://www.allitebooks.org

 }

 // defaults, e.g., width and height
 Dialog.prototype.defaults = {};

 // event listeners; this is processed by Voltron.prototype.bind
 Dialog.prototype.events = {};

 // process template for injection into DOM
 Dialog.prototype.render = function () {};

 // makes dialog visible in the UI
 Dialog.prototype.show = function () {};

 // makes dialog invisible in the UI
 Dialog.prototype.hide = function () {};

 window.Dialog = window.Dialog || Dialog;

})(window, jQuery, Voltron);

Dialog CSS and HTML
The HTML and CSS that follows is intended to provide the basic structure for ren‐
dering the dialog widget:

<div role="dialog" aria-labelledby="title" aria-describedby="content">
 <h2 id="title">Dialog Title</h2>
 <p id="content">I am the dialog content.</p>
</div>

[role="dialog"] {
 width: 400px;
 height: 200px;
 position: absolute;
}

[role="dialog"] h2 {
 background: #ccc;
 font-size: 16px;
 font-weight: normal;
 padding: 10px;
 margin: 0;
}

[role="dialog"] p {
 margin: 0;
 padding: 10px;
 font-size: 12px;
}

Example Widget | 21

Summary
In this chapter we covered the productivity and normalization benefits of a DOM
abstraction library and selected a well-known library, jQuery, as the library to be used
throughout the course of the book. We then discussed how defining a common life
cycle and base class can help make applications easier to develop, maintain, and
debug because it helps define expected outcomes and behaviors. Next we explored
how to include library dependencies and described a common inheritance pattern
that will be used throughout the book. Finally, we created Voltron, the base class
widget, and extended it to create the dialog widget, which will be iteratively built in
the following chapters to turn concepts into a working component. You now have the
necessary knowledge to begin your web components journey!

22 | Chapter 2: Creating a Solid Foundation

CHAPTER 3

Normal Flow and Positioning

Jason Strimpel

Every web component will be appended to the DOM and ultimately rendered to the
screen for users to interact with. Understanding where and how an element,
the building block of a web component, is positioned is key to developing web com‐
ponents.

Not understanding fundamental layout concepts can have a great impact on your web
component’s design and implementation. For instance, depending on the require‐
ments, a modal dialog can be rendered by calculating its size relative to the viewport
and positioning it absolutely, or a simpler technique using fixed positioning and mar‐
gins can be utilized. The latter technique uses pure CSS to do the positioning, so it
performs much better, and the likelihood of bugs is decreased because you are doing
significantly less DOM manipulation via JavaScript.

The two key concepts for understanding how the browser lays out a page are normal
flow and positioning.

Normal Flow
The browser renders elements by placing them on a page according to what is known
as normal low.

Per the W3C CSS 2.1 specification:

Boxes in the normal flow belong to a formatting context, which may be block or inline,
but not both simultaneously. Block-level boxes participate in a block formatting con‐
text. Inline-level boxes participate in an inline formatting context.

Let’s translate this W3C-speak into something someone other than a browser devel‐
oper can understand.

23

http://bit.ly/dwc-normal-flow

“Boxes” refers to the box model, which describes how boxes represent elements.
Every element on the page is a box composed of pixels. Boxes have properties such as
padding, margins, and borders that, combined with the box content, determine how

much space an element will occupy on a page. There are other properties, like box-

sizing and the document type (in older versions of Internet Explorer), that can
impact how these rules are interpreted and the resulting space occupied, but for the
most part it a very simple model.

Block elements flow vertically (stacked one on top of the other) and fill their parent
container if a width is not set. Inline elements flow horizontally (side by side) and
occupy only as much width as the box context, left and right margins, and padding
require. Figure 3-1 illustrates the difference. Setting the width and height on an inline
element does not have any effect on the space it occupies.

Figure 3-1. An inline element occupies only as much width as its content requires, while
a block element occupies the full width of its containing element unless a speciic width
value is set

This is how elements normally flow within a document, if specific position values
are not applied.

Positioning Elements
In the normal flow, an element’s default position value is static. A static element is

technically not positioned. A positioned element is said to have a position value of

relative, absolute, or fixed, and it is removed from the normal flow:

<!-- not positioned -->

<div>Some amazing text</div>

<!-- positioned -->

<div style="position: relative">Some amazing text</div>

Positioning does not cascade (i.e., it is not inherited by child ele‐
ments), so you have to specifically set it on an element. Otherwise,

the default value of static will be applied.

24 | Chapter 3: Normal Flow and Positioning

http://bit.ly/dwc-box
http://bit.ly/dwc-box-sz
http://bit.ly/dwc-box-sz
http://bit.ly/dwc-block
http://bit.ly/dwc-inline

ofsetParent
When an element is positioned, it is considered to be a containing element. A

containing element is a reference point for positioning child elements using the top,

right, bottom, and/or left properties. This containing element then becomes the

offsetParent for its child elements and any ancestors of the children that are not
descendants of closer-positioned ancestors. Figure 3-2 illustrates the effects of differ‐
ent position values.

Figure 3-2. A relative-positioned containing element with a static element and an
absolute-positioned element that has top and let values of 40px

How the browser determines an element’s ofsetParent

An element’s offsetParent property can be either null, the <body>, or an ancestor

element other than the <body>. The browser uses the W3C specification to determine

an element’s offsetParent value, as follows:

offsetParent is null

Occasionally, an element’s offsetParent value will be null. This occurs when

the element is the <body>, when the element does not have a layout box (i.e., its

display is none) and when the element has not been appended to the DOM. The

offsetParent will also be null if the element’s position is fixed because it is
positioned relative to the viewport, not another element. The following example
illustrates these cases:

<div id="div1" style="display: none"></div>
<div id="div2" style="position: fixed"></div>

var $body = $('body');
console.log($body.offsetParent()[0]); // logs <html>
console.log($body[0].offsetParent); // logs null

var $div1 = $('#div1');

Positioning Elements | 25

http://bit.ly/dwc-offsetparent
http://bit.ly/dwc-w3c-op

console.log($div1.offsetParent()[0]); // logs <html>
console.log($div1[0].offsetParent); // logs null

var $div2 = $('#div2');
console.log($div2.offsetParent()[0]); // logs <html>
console.log($div2[0].offsetParent); // logs null

While the value of offsetParent can be null, the return value

from jQuery’s offsetParent method is never null. jQuery returns

<html> as the offsetParent, ensuring that there is always an ele‐
ment against which to operate.

offsetParent is <body>

If the element is not a descendant of a positioned element and it does not meet

any of the null criteria, then its offsetParent will be the <body>.

offsetParent is an ancestor element other than <body>

If the element is a descendant of a positioned element, then the closest positioned

ancestor will be its offsetParent. If an element is not a descendant of a posi‐

tioned element but is a descendant of <td>, <th>, or <table>, then its

offsetParent will be the closest of the aforementioned tags.

Positioning
Positioning is frequently misunderstood. Often developers will set a different posi

tion value on an element in an attempt to fix a layout when things are not looking
quite right. While this approach can “fix” a layout, it does not promote an under‐
standing of how positioning actually works. Having a firm grasp of positioning can
save you a great deal of time in the long run, because once you understand how it
works you will begin to construct pages in a much more efficient manner.

Relative positioning

When an element is positioned relatively, the space it would have occupied in the
normal flow is reserved. All other elements in the normal flow render around the

space as if the element were in the normal flow. Visually, it is placed as if its position

value were static. However, as Figure 3-3 illustrates, unlike with a static element,

setting the top, right, bottom, or left values will shift the element accordingly. Posi‐
tioning an element relatively is typically done to create a containing element for posi‐

tioning child elements, or to apply a z-index (z-index is not applicable to statically
positioned elements). Relative positioning is assigned as follows:

.some-class-selector {
 position: relative;
}

26 | Chapter 3: Normal Flow and Positioning

Think of relative as being relative to the element and the space it
occupies in the normal flow.

Figure 3-3. A relatively positioned element with top and let values of 10px—note that
the space it would have occupied in the normal low remains intact

Absolute positioning

When an element is positioned absolutely, it is taken out of the normal flow of the
document and the space the element would have occupied collapses (see Figure 3-4).

The element can then be positioned by setting the top, right, bottom, and left val‐
ues. Absolute positioning is useful for creating components such as tooltips, overlays,
or anything that should be positioned at a precise location outside of the normal flow.

Positioning Elements | 27

Figure 3-4. An absolutely positioned element with an opacity of 0.75 and top and let
values of 75px—note that the space it would have occupied in the normal low collapses

Fixed positioning

An element is also taken out of the normal flow of the document when its position is
fixed. It is positioned relative to the viewport, not the document, so when the page is
scrolled the element remains fixed in place as if it were part of the viewport itself.
This is useful for creating sticky headers and footers, and modal overlays. Here’s
an example:

/*

Covers the viewport when applied to an

element that is a child of the <body>.

It stretches the element across the <body> by

fixing its position and setting all the position

properties to 0. This makes it impossible to

interact with any elements that are in lower rendering

layers.

*/

.modal-overlay {
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 background: #000;
 opacity: .5;
}

/*

Centers an element in the viewport by setting the top and left

properties to 50%. It then accounts for the height and width of the element

by taking half the height and width, and sets the top and left properties

respectively by negating these values.

*/

.modal-content {
 position: fixed;

28 | Chapter 3: Normal Flow and Positioning

 top:50%;
 left:50%;
 margin-top: -100px;
 margin-left: -200px;
 width: 400px;
 height: 200px;
 background: #fff;
 padding: 10px;
 overflow: auto;
}

<div class="modal-overlay"></div>
<div class="modal-content">I am the modal content. Fear me.</div>

Calculating an Element’s Position
In addition to understanding positioning, it is important to know how to get an ele‐
ment’s position relative to the viewport and the document. This is useful for position‐
ing elements relative to each other when creating components such as tooltips,
dialogs, sliders, etc.

Relative to the Viewport
Getting an element’s position relative to the viewport alone is typically not that useful.
Most of the time you want the element’s position relative to the document, so you can
absolutely position another element next to it.

However, the method used to retrieve the position relative to the viewport, ele

ment.getBoundingClientRect, returns the top, right, bottom, and left values, which
allows you to easily calculate an element’s width and height. This information, in con‐
junction with an element’s position relative to the document, is useful when creating
components that need to align with another element or be constrained by another
element’s size, such as drop-downs or tooltips.

Alternatively, you could just use $.outerWidth and $.outerHeight to obtain an ele‐

ment’s dimensions, but element.getBoundingClientRect is significantly faster. Also,

element.getBoundingClientRect can be used with a couple of other properties to
quickly look up an element’s position relative to the document:

<body>

...
 <form>
 ...
 <input name="fname" />
 ...
 </form>
...
</body>

Calculating an Element’s Position | 29

http://bit.ly/dwc-gbcr
http://bit.ly/dwc-gbcr
http://bit.ly/dwc-outerw
http://bit.ly/dwc-outerh
http://bit.ly/dwc-vs

var $input = $('[name="fname"]');
var rect = $input[0].getBoundingClientRect();

Relative to the Document
Getting an element’s position relative to the document is useful for absolutely posi‐
tioning an element so that it remains positioned as the page scrolls, and for position‐
ing elements relative to each other within the document. It is a fairly straightforward

process. You traverse the DOM, finding each offsetParent, and get its offsetLeft

and offsetTop. These values are the offset from the next offsetParent, so you have

to sum the values until you reach the <body>:

function getElOffsets(el) {
 var offsets = {
 left: el.offsetLeft || 0,
 top: el.offsetTop || 0
 };

 // loop through ancestors while ancestor is an offsetParent
 while (el = el.offsetParent) {
 // sum the offset values
 offsets.left += el.offsetLeft || 0;
 offsets.top += el.offsetTop || 0;
 }

 return offsets;
}

A quick Internet search for “JavaScript get element position relative to the body” will
result in numerous examples that are roughly the same as the one outlined here.

However, there is a much better way of doing this in conjunction with element.get

BoundingClientRect, courtesy of jQuery:

// https://github.com/jquery/jquery/blob/master/src/offset.js#L105

// box is the el.getBoundingClientRect()

// win is the window object

// docElem is <html> (see

// https://developer.mozilla.org/en-US/docs/Web/API/document.documentElement)

//

// calculating left and top return values

// 1. get the distance of top or bottom from the viewport

// 2. get the distance between the viewport top or left from the top of the page

// & add it to the value from distance of top or bottom from the viewport

// 3. subtract any top or left offsets of <html>, e.g., margins

offset: function(options) {
...
 return {
 top: box.top + win.pageYOffset - docElem.clientTop,
 left: box.left + win.pageXOffset - docElem.clientLeft
 };
}

30 | Chapter 3: Normal Flow and Positioning

www.allitebooks.com

http://www.allitebooks.org

I recommend just using $.offset as it performs consistently across browsers, and

jQuery has been well tested and vetted by a very large user community. $.offset is
an excellent example of the benefits of using a DOM manipulation library: you get
the collective intelligence of a community wrapped up in a nice API.

Positioning the Dialog Widget
The dialog widget will need to be absolutely positioned, so that it can be removed
from the normal flow and not impact the page’s layout. Ignoring all other factors,
such as the dialog element’s location in the DOM tree, this is very easy to accomplish:

function Dialog (options) {
 // call superclass constructor
 Voltron.call(this, options);
 return this;
}

Dialog.prototype.init = function (options) {
 // call super method
 Voltron.prototype.init.call(this, options);
 // position the dialog's root element absolutely
 this.$el.css({ position: 'absolute' });
};

Summary
In this chapter we examined the importance of understanding normal flow and posi‐
tioning, and specifically how having a firm understanding of these concepts can sig‐
nificantly improve the design and performance of a component (e.g., using JavaScript
versus pure CSS to position a dialog). As part of this examination we reviewed the
box model and the two main types of boxes, block and inline. Next we covered the
different types of positioning: relative, absolute, and fixed. After that we discussed
how the browser positions an element and how to determine a positioned element’s

offsetParent. Finally, we applied this knowledge to the dialog widget.

Positioning the Dialog Widget | 31

http://api.jquery.com/offset/

CHAPTER 4

Understanding and Managing z-index

Jason Strimpel

How many times have you seen CSS similar to the following?

.some-selector {
 position: relative;
 z-index: 3870814; /* do NOT change!!! */
}

It is probably safe to assume that the element in question is not competing with
3,800,000+ elements to be the top element on the page. If so, the developer has an
amazing mental map of a massive page that would likely crash any browser!

Typically when you encounter CSS and comments like these it is because there was

confusion not about the z-index property and value itself, but rather about the other
factors that contribute to the stacking order of an element on a page—stacking con‐
texts, positioning, opacity, etc.

Certain steps can be taken to prevent CSS and comments like those in the previous

example, but first one must have a solid understanding of the z-index property and
all the contributing factors that ultimately determine how elements are layered.

What Exactly Is the z-index Property?
Per the W3C, the z-index property is used to specify:

1. The stack level of the box in the current stacking context

2. Whether the box establishes a stacking context

The W3C definition is concise and accurate. However, the definition assumes knowl‐

edge of stacking contexts, which is not an introductory z-index topic. The W3C also

33

http://bit.ly/dwc-zindex

provides an elaborate explanation of stacking contexts. This information, while accu‐

rate, does not make a good basis for fully understanding the z-index property unless
you already have intimate knowledge of other specifications that describe how a

browser renders a page. A better place to begin understanding z-index is to first
understand rendering layers and stacking order.

Rendering Layers, Stacking Order, and z-index
The previous chapter introduced normal flow and described how elements are ren‐
dered in the normal flow. It also described how positioned elements are taken out of
the normal flow. The removal of positioned elements from the normal flow is an

excellent starting point for understanding z-index because it is related to the concept
of rendering layers.

A web page is often thought of in terms of two dimensions: the horizontal axis, x, and

the vertical axis, y. However, there is a third dimension, which is the z-axis. The z-

index value of an element represents the layer in which the element is rendered on
the z-axis.

The default rendering layer (z-axis) is 0. Setting a negative z-index
value places the rendering layer behind the default rendering layer,
making it “invisible.” This technique is often used for performing
calculations on an element that the developer does not want the
user to see, but that require an element to have dimensions.

When an element is positioned, it is removed from the normal flow but remains in
the same rendering layer. The positioning impacts the element’s placement in the
stacking order.

Default Stacking Orders
Elements without a z-index are positioned in order from bottom to top within a
stacking context as follows:

1. Background and borders of the root element

2. Descendant blocks in the normal flow, in order of appearance (in HTML)

3. Descendant positioned elements, in order of appearance (in HTML)

Figure 4-1 illustrates the default stacking order for various positioned and nonposi‐
tioned elements.

34 | Chapter 4: Understanding and Managing z-index

http://bit.ly/dwc-stacking

Figure 4-1. Default stacking order for positioned and nonpositioned elements (source:
http://bit.ly/dwc-stacking-z)

The default stacking order must also take loated elements into account. Floated
elements are stacked between non-positioned (static) elements, and positioned ele‐
ments. Figure 4-2 shows how they fit into the default stacking order.

Figure 4-2. Default stacking order for positioned, nonpositioned, and loated elements
(source: http://bit.ly/dwc-stackloat-z)

Overriding the Default Stacking Order
z-index is used to specify a stacking order other than the default. To move an ele‐
ment closer to the top of the stack (i.e., visually closer to the user), a positive integer

value is assigned to the z-index property of the element. If no other values in the

same stacking context have a z-index property, then a value of 1 will move an ele‐

ment to the top. If other elements have z-index values assigned to them, then a value

Rendering Layers, Stacking Order, and z-index | 35

http://bit.ly/dwc-stacking-z
http://bit.ly/dwc-stackfloat-z

higher than the highest z-index value in the same stacking context will place the ele‐
ment at the top of the stack. A negative value will position an element below the
default rendering layer.

Elements with the same z-index follow the default stacking rules.

Seems pretty simple, right? If you read the last paragraph carefully, though, you will

notice that there was always a qualifying condition to the effect of the z-index value:
the elements must be within the same stacking context.

z-index only has an effect on positioned elements.

Stacking Contexts
The default stacking order and the effects of z-index values apply only to child ele‐
ments of the element that creates a stacking context. Figure 4-3 shows an example of

a stacking context with nested elements. Note how <div> 1 overlays <div> 4, even

though it has a lower z-index value.

How Is a Stacking Context Created?
The default stacking context is the root element, <html>. A stacking context is created

when an element is positioned and assigned a z-index value other than auto, or
when an element has an opacity value less than 1. In WebKit and Chrome 22+ an ele‐

ment with a fixed position always creates a stacking context, even when the z-index

value is auto. In addition to these properties and values, newer CSS properties and

values, such as transform with a value other than none, also create stacking contexts.

36 | Chapter 4: Understanding and Managing z-index

Figure 4-3. A stacking context with nested elements (source: http://bit.ly/dwc-stacking-
context)

It is helpful to think of stacking contexts as establishing a new page
in the sense that they have a self-contained normal flow and ren‐
dering layers.

Increasing Complexity
The significance of stacking contexts is that they create an independent set of render‐

ing layers that are not impacted by the default stacking orders and z-index values of
elements that reside outside them. In a simple web page stacking contexts usually are
not a concern because there is often only one stacking context: the root element,

<html>. However, as an interface becomes more sophisticated—e.g., as richer UI con‐
trols (dialogs, sliders, tooltips, etc.) are added—the likelihood of multiple stacking
contexts existing increases. As more stacking contexts are introduced, the complexity

of z-index management increases.

Managing z-indexes
A common approach to minimizing the z-index complexities that arise in dynamic
web applications is to assign ranges to different types of controls. For example, if you
look at some web advertising specifications, they provide ranges for different layers to
help ensure that the layer in question is placed on top. The Interactive Advertising

Managing z-indexes | 37

http://bit.ly/dwc-stacking-context
http://bit.ly/dwc-stacking-context

Bureau (IAB) z-index guidelines are reproduced in Table 4-1, to give you an idea of
what these guidelines may look like.

Table 4-1. IAB Display Advertising z-index Guidelines

Z-Index Range Content Type Details

< 0 Background Elements

0 - 4,999 Main Content, Standard Ads Standard ad tags in place with regular content. Includes OBA Self

Regulation Message (CLEAR Ad Notice)

5,000 - 1,999,999 Expanding Advertising The entire expandable ad unit should be set within this range

2,000,000 - 2,999,999 Floating Advertising Over The Page ads (OTP’s)

3,000,000 - 3,999,999 Pop-up Elements Chat windows, message notiications

4,000,000 - 4,999,999 Non-anchored Floating

Elements

Survey recruitment panels

5,000,000 - 5,999,999 Expanding Site Navigation

Elements

Drop down navigation, site warnings, etc. Only the expanding portion

of navigation elements should be included on this level.

6,000,000+ Full-page Overlays Full-window Over-the-Page (OTP) ads and Between-the-Page ads IF

they cover page content

This approach works well in less dynamic environments, such as ecommerce sites,

but it falls short in web applications where the DOM and z-index values are con‐
stantly being modified by application-layer JavaScript and third-party plugins. A

more reliable approach is to take your knowledge of z-indexes and manage them
programmatically within your components and application code, in addition to

assigning ranges to larger, static containers such as <header>, <footer>, <aside>, and

<article> elements, or other logical groupings that makes sense within the context
of your application.

z-index Manager
This section will cover the creation of a z-index manager. The manager will have the
ability to send an element to the front or the back of a stacking context, get an ele‐
ment’s stacking context, and determine if an element creates a stacking context.

38 | Chapter 4: Understanding and Managing z-index

http://bit.ly/dwc-guidelines

API stub

The first step I always take when creating a new component is stubbing out an API. I

then use this as a guide for implementing the functionality. Here, we’ll create a z-

index manager called Jenga:

// from this point forward all code examples will assume this closure

// and that jenga will be a property on the global window object

//

// AMD and jQuery versions are available at https://github.com/jstrimpel/jenga

var jenga = (function (global) {

 'use strict';

 return {

 isStackingCtx: function (el) {},

 getStackingCtx: function (el) {},

 bringToFront: function (el, createStackingCtx, root) {},

 sendToBack: function (el, createStackingCtx, root) {}
 };

})(this);

Utilities

Before stacking contexts can be determined and z-indexes managed, functions for
identifying properties that create stacking contexts need to be written. This is done
for reusage and to make the code that relies on these functions easier to read.

The rules for determining stacking contexts vary across browsers and browser ver‐
sions. Accounting for these variations using feature detection would be next to
impossible to maintain, because the implementation across browsers is constantly in

flux. For this reason, the z-index manager utilizes browser detection:

// this will be used for addressing all the browser- & version-specific

// items that impact stacking contexts

// fixed - the version where position: fixed started creating a stacking context

var browsers = {
 chrome: {
 fixed: 22
 }
};

// get browser version and name

// (we did not write this; if someone knows who did please let us know

// so we can attribute the code to the author!)

var browser = (function () {

Managing z-indexes | 39

http://bit.ly/dwc-feature-detection

 var N = navigator.appName;
 var ua = navigator.userAgent;
 var tem;
 var M = ua.match(
 /(opera|chrome|safari|firefox|msie)\/?\s*(\.?\d+(\.\d+)*)/i);
 if (M && (tem = ua.match(/version\/([\.\d]+)/i)) != null) {
 M[2] = tem[1];
 }
 M = M ? [M[1], M[2]] : [N, navigator.appVersion, '-?'];

 return {
 name: M[0].toLowerCase(),
 version: M[1]
 };
})();

The following functions are used to determine if an element creates a
stacking context:

// use browser and version to determine if position: fixed

// creates a stacking context

var isFixedStackingCtx = (function () {
 return browsers[browser.name].fixed >= parseInt(browser.version, 10);
})();

// is a value a function?

function isFunction(thing) {
 return typeof thing === 'function';
}

// if element is positioned and has a z-index other than 0

// it creates a stacking context

function isPosAndHasZindex(el) {
 return el.style.position !== 'static' && el.style.zIndex !== 'auto';
}

// these values cause an element to create a stacking context

function doesStyleCreateStackingCtx(el) {
 var styles = el.style;

 if (styles.opacity < 1) {
 return true;
 }
 if (styles.transform !== 'none') {
 return true;
 }
 if (styles.transformStyle === 'preserve-3d') {
 return true;
 }
 if (styles.perspective !== 'none') {
 return true;
 }
 if (styles.flowFrom !== 'none' && styles.content !== 'normal') {

40 | Chapter 4: Understanding and Managing z-index

www.allitebooks.com

http://www.allitebooks.org

 return true;
 }
 if (styles.position === 'fixed' && isFixedStackingCtx) {
 return true;
 }

 return false;
}

Determining if an element creates a stacking context

The first thing our z-index manager needs to be able to do is determine if an element
creates a stacking context. So, we need to translate the stacking context rules to code.

All Jenga method code examples will omit other methods except
the one currently being described. A completed Jenga object exam‐
ple will be provided later.

Our isStackingCtx function looks like this:

var jenga = {
 isStackingCtx: function (el) {
 return el.tagName === 'HTML' ||
 (isPosAndHasZindex(el) && doesStyleCreateStackingCtx(el));
 }
};

Finding an element’s stacking context

We can now use the function from the previous section to find an element’s stacking

context. This information is useful for adjusting an element’s z-index within a stack‐
ing context:

var jenga = {

 getStackingCtx: function (el) {
 var parentNode = el.parentNode;

 // recurse up the DOM tree until a stacking
 // context is found
 while (!jenga.isStackingCtx(parentNode)) {
 parentNode = parentNode.parentNode;
 }

 return parentNode;

Managing z-indexes | 41

 }
};

Modifying an element’s z-index

This is where things get interesting! This section will describe adjusting an element’s

z-index to move it to the top or bottom of a stacking context.

The first step is to create a function, moveUpDown, that will move an element to the top
or bottom of the stack, creating a stacking context along the way if that is the desired
behavior. The reason for creating a stacking context is that the element that is being
moved to the top or the bottom may be part of another stacking context much further
up the tree. If this is the case, then it is necessary to adjust the last ancestor of the

element whose z-index is to be adjusted that is the first descendant of the current

stacking context. This option is specified through the createStackingCtx argument,
which can have either a Boolean or a function value. If it is a Boolean and the value is

true, then it will create a stacking context by setting the element’s parent’s position

to relative and setting the z-index to 0. If the value is a function, then it will be
called and passed the element that should become a stacking context. It is then this
function’s responsibility to create a stacking context.

The moveUpDown function will also take three other parameters. The first is the ele‐

ment to move to the top or bottom, el. The next is the root element at which to stop

adjusting z-indexes.

The root element argument is optional. It is useful for complex UI cases where there
are several stacking contexts and simply raising the element in its direct stacking con‐
text may not bring it to the top because it could be nested in several other stacking
contexts. One of the nested stacking contexts could cause the element to be hidden,
because an ancestor could be toward the bottom of that context.

The last argument is increment. This accepts a Boolean value. true will send the ele‐
ment to the top of the stacking context and a falsy value will send it to the bottom
(back) stacking context.

The moveUpDown function looks like this:

function moveUpDown(el, createStackingCtx, root, increment) {
 var stackingCtxEl = jenga.getStackingCtx(el);

 // if element's parent node does not create a stacking context
 // and createStackingCtx is defined, then force a stacking
 // context to be created on the element's parent node
 if (createStackingCtx && stackingCtxEl !== el.parentNode) {
 // if developer provided a custom function for creating
 // a stacking context, then use it
 if (isFunction(createStackingCtx)) {
 createStackingCtx(el.parentNode);

42 | Chapter 4: Understanding and Managing z-index

http://bit.ly/dwc-boolean

 // create a stacking context in the least impactful
 // way to the DOM possible
 } else {
 el.parentNode.style.position = 'relative';
 el.parentNode.style.zIndex = 0;
 }
 }

 modifyZindex(el, increment); // defined in the next code block
 if (root && (root !== jenga.getStackingCtx(el) &&
 stackingCtxEl.tagName !== 'HTML')) {
 moveUpDown(stackingCtxEl, createStackingCtx, root, increment);
 }
}

Now for the really, really fun part! If you read the previous code block carefully, you

probably noticed a reference to the modifyZindex function. This is where all the
magic happens!

The modifyZindex function takes an element, finds the element that creates a stack‐
ing content, gets the child nodes of the stacking context, and then raises or lowers the

z-index value of el until it is at the top or bottom of the stack:

function modifyZindex(el, increment) {
 var stackingCtxEl = jenga.getStackingCtx(el);
 var siblings = stackingCtxEl.childNodes;
 var siblingsMaxMinZindex = increment ? 0 : -1;

 var siblingZindex;

 // loop through element's siblings
 for (var i = 0; i < siblings.length; i++) {
 // if current element has a z-index and is not el...
 if (siblings[i].nodeType === 1 && isPosAndHasZindex(siblings[i]) &&
 siblings[i] !== el) {
 // check if sibling has a z-index value
 siblingZindex = parseInt(siblings[i].style.zIndex, 10);
 if (isNaN(siblingZindex)) {
 continue;
 }

 if (increment) {
 // update max z-index value for siblings
 siblingsMaxMinZindex = siblingZindex > siblingsMaxMinZindex ?
 siblingZindex : siblingsMaxMinZindex;
 } else {
 // update min z-index value for siblings
 siblingsMaxMinZindex = siblingsMaxMinZindex < 0 ||
 siblingZindex < siblingsMaxMinZindex ?
 siblingZindex : siblingsMaxMinZindex;
 }
 }

Managing z-indexes | 43

 }

 // if adjusted z-index is 0 and we're sending to the back, bump
 // all other elements up by 1
 if (!siblingsMaxMinZindex && !increment) {
 for (i = 0; i < siblings.length; i++) {
 if (siblings[i].nodeType === 1 && siblings[i] !== el) {
 siblingZindex = parseInt(siblings[i].style.zIndex, 10);
 if (isNaN(siblingZindex)) {
 continue;
 }

 siblings[i].style.zIndex = ++siblingZindex;
 }
 }
 }

 // adjust element's z-index
 el.style.zIndex = increment ? siblingsMaxMinZindex + 1 :
 (siblingsMaxMinZindex ? siblingsMaxMinZindex - 1 : 0);
}

Now that we can determine an element’s stacking context, we can bring it to the top
of its stacking context:

// Bring an element to the top of stacking context

var jenga = {

 bringToFront: function (el, createStackingCtx, root) {
 moveUpDown(el, createStackingCtx, root, true);
 }

};

And now that we can send an element to the top of a stacking context, we can just as
easily send it to the back by inverting the rules:

var jenga = {

 sendToBack: function (el, createStackingCtx, root) {
 moveUpDown(el, createStackingCtx, root, false);
 }
};

Example usages

Now that we have a fully functioning z-index manager, let’s take a look at some
example calls:

var el = document.getElementById('some-id');
var rootEl = document.getElementsByTagName('body')[0];

44 | Chapter 4: Understanding and Managing z-index

// bring an element to the top

// create stacking contexts

jenga.bringToFront(el, true);

// bring an element to the top

// do NOT create stacking contexts

jenga.bringToFront(el, false);

// bring an element to the top, including all ancestor stacking contexts

// create stacking contexts

jenga.bringToFront(el, true, rootEl);

// send an element to the back

// create stacking contexts

jenga.sendToBack(el, true);

// send an element to the back

// do NOT create stacking contexts

jenga.sendToBack(el, false);

// send an element to the back, including all ancestor stacking contexts

// create stacking contexts

jenga.sendToBack(el, true, rootEl);

Summary

We now have a nice API for determining stacking contexts and adjusting an element’s

z-index, ensuring that it is placed in the top rendering layer or the bottom rendering
layer. This functionality is very useful when creating components where we need to
ensure an element is on the top of a stack, such as a dialog or tooltip. It is also useful

in complex applications in which stacking contexts and z-indexes frequently change.

It ensures that the element in question will still render in the correct layer even if a z-

index range guideline is not followed or a third-party plugin modifies the DOM.

Converting to a jQuery Plugin
As pervasive as jQuery is on the Web, it is sometimes a good idea to create a plugin
wrapper for code in order to reach a larger audience. However, a plugin wrapper
should only be created if the code provides a limited and specific set of functionality

on an element or a collection of elements. The z-index manager is a good candidate

because it is only concerned with adjusting z-indexes (limited and specific) on a sin‐
gle element or its ancestors (a collection of elements).

Converting to a jQuery Plugin | 45

The jQuery website provides an excellent introductory tutorial for
creating plugins. It covers the basic structure, chaining, options,
etc.

Following is the code we use to create the plugin wrapper for our z-index manager:

// account for AMD

(function (factory) {
 if (typeof define === 'function' && define.amd) {
 define(['jquery'], factory);
 } else {
 factory(jQuery);
 }
}(function ($) {
 // Jenga code is here
 // https://github.com/jstrimpel/jenga/blob/master/dist/jenga.plugin.js

 $.fn.bringToFront = function (options) {
 options = options || {};
 if (this[0]) {
 jenga.bringToFront(this[0], options.createStackingCtx, options.root);
 }
 return this;
 };

 $.fn.sendToBack = function (options) {
 options = options || {};
 if (this[0]) {
 jenga.sendToBack(this[0], options.createStackingCtx, options.root);
 }
 return this;
 };

 $.fn.isStackingCtx = function () {
 return this[0] ? jenga.isStackingCtx(this[0]) : false;
 };

 $.fn.getStackingCtx = function () {
 return this[0] ? jenga.getStackingCtx(this[0]) : undefined;
 };

}));

46 | Chapter 4: Understanding and Managing z-index

http://bit.ly/dwc-jquery-tutorial

Vanilla JavaScript and native DOM APIs were used for the z-index
manager, as opposed to leveraging jQuery. This was done for a few
different reasons. First, native DOM APIs are faster than jQuery,
and speed is of the essence when code impacts rendering. Second,
there was not much to gain by leveraging jQuery—there were no
browser quirks to abstract, nor was there a need to encapsulate or
simplify native APIs. Lastly, plugin wrapper aside, I completely
removed the dependency on jQuery. As difficult as it is to imagine,
some people do not use jQuery (an alternative is AngularJS). I am
not opposed to using jQuery—I actually advocate its usage. How‐
ever, I believe that developers should always weigh the pros and
cons of adding a dependency to a project, and in this case the pros
did not outweigh the cons of including jQuery as a dependency.

Adding z-index Management to the Dialog Widget
We will now be applying the information from this chapter to our dialog widget. If

you remember, the dialog widget had a show method. This method should show the
dialog and bring it to the top of the stack:

Dialog.prototype.show = function () {
 jenga.bringToFront(this.$el[0]);
};

This example strictly shows the application of the code from this
chapter to a specific method of the dialog widget. Other details,
such as positioning the dialog and packaging, will be covered in
later chapters. However, if you absolutely, positively cannot wait,
the completed dialog example from Part I can be viewed on Git‐
Hub.

Summary
In this chapter we took a deep dive into the layering of elements on the z-axis. We

discovered why the seemingly simple z-index property baffles even the seasoned
frontend engineer. We gained an understanding of stacking order rules, stacking con‐
texts, and how changing the values of certain element properties can greatly impact
the layering of an element on a web page. Armed with this information, we explored

why simply increasing or decreasing the z-index value of an element does not neces‐
sarily have the outcome one would expect. We then formulated a strategy for properly
managing the layering of elements in a web application by classifying and assigning

z-index ranges for UI elements. Next, we looked at a programmatic approach for
layering elements in nondeterministic UIs, creating a library, Jenga, that we can use to

Adding z-index Management to the Dialog Widget | 47

http://angularjs.org
https://github.com/webcomponentsbook
https://github.com/webcomponentsbook

manage the layering of elements in any application. We looked briefly at how to cre‐
ate a jQuery plugin for our code, and finally, we incorporated the Jenga library into
the dialog widget.

48 | Chapter 4: Understanding and Managing z-index

PART II

Building Our UI

The Dialog Widget
In Part II, we will continue constructing the dialog widget introduced in Part I. If you
skipped the first part of the book and would like to learn about the design and imple‐
mentation details of the dialog widget, please refer back to Chapter 2. Subsequent
chapters in Part I contain sections that apply the concepts they cover to the dialog
widget as well. These sections are located toward the ends of the chapters and can be
referenced as needed for understanding code in the dialog widget not introduced in
Part II.

Part II introduces concepts and patterns that are typically abstracted away from day-
to-day frontend development by libraries such as Dojo, jQuery UI, Kendo UI, and
Twitter Bootstrap. These concepts and patterns are used to implement UI widgets
that you probably work with on a daily basis as a frontend engineer. After reading
this part of the book, you will have a solid understanding of how elements are posi‐
tioned and how to manipulate element positions using JavaScript.

If you skipped Chapter 2, you might find yourself asking, “Why are
we building a widget? I thought this was a web components book!”
That’s a valid question. The answer is that this book is more than
just a rehashing of the Web Components specification. It is
designed to provide a better understanding of the DOM by explor‐
ing the details underlying today’s widget interfaces. Knowledge of
these details is required to build moderately complex web compo‐
nents, and what better way to understand these details than
through a concrete example?

http://dojotoolkit.org
http://jqueryui.com
http://www.kendoui.com
http://getbootstrap.com

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5

Cloning Nodes

Jason Strimpel

Frequently when you see a drag-and-drop interface on the Web, nodes are being

cloned—that is, copies of the original nodes are being made (using the cloneNode
method, described in the next section). This is done because it is more efficient to
clone the node that is being dragged than it would be to detach it from its original
location in the DOM, reattach it, and then move it. This is especially true in the case
where a user tries to drop the node outside of the defined drop target—the cloned
node is deleted and the original node is then shown again, without having to be
detached and reattached. If the cloned node is successfully dropped into the target
node, then it remains, and the original node is deleted. Cloning can also be useful in
the case where you do not want the original node to be removed or hidden until the
cloned node is dropped into a target.

Another use case in which cloning is useful is for copying nodes. For instance, an
interface may need to provide the functionality for classifying items by one or more
characteristics. This functionality could be accomplished by creating an interface that
allows a user to drop items into different drop targets, which could be easily accom‐
plished by cloning nodes.

A third use case is that you want to perform some calculations based on a node’s
dimensions. For instance, if the node contains text of an unknown length that needs
to be truncated in a unique fashion—e.g., the beginning and end of the text need to
remain, but an undetermined amount needs to be trimmed from the middle—then
the containing node can be cloned and the necessary measurements can be done in a
rendering layer below the default rendering layer, out of view. Once the string has
been truncated accordingly, it can be inserted into the original node, and the clone
can then be deleted.

51

Cloning nodes incurs overhead and is not always the best
approach. Cases where a simple click event or form value change
moves a node to another location in the DOM are not good clon‐
ing candidates, because these types of actions are not subject to the
error that can occur when a human is manually moving nodes.

Using the cloneNode Method
All browsers natively support cloning nodes via a node’s cloneNode method. The
method accepts an optional argument for creating a deep clone, which clones all
descendant nodes:

var el = document.querySelector('.some-class');

// shallow clone

var elShallowClone = el.cloneNode(false);

// deep clone

var elDeepClone = el.cloneNode(true);

The default value for cloneNode’s deep argument has changed
between browser versions as the specification has changed. The

current default value is false. To ensure backward compatibility,

always pass the deep argument.

When a node is cloned, all of its attributes and values are copied to the clone.
This includes inline listeners, but it does not include any event listeners bound using

addEventListener or those assigned to element properties:

<!-- inline event handler -->

<!-- this will be bound to the cloned node -->

<div onclick="someFunction();">Click Me</dv>

var el = document.querySelector('.some-class');

// addListener; this will not be bound to the cloned node

el.addEventListener('click', function (e) {
 // someone clicked me
}, false);

// bound using element property; this will not be bound to the cloned node

el.onclick = function (e) {
 // someone clicked me again
};

cloneNode does not attach the returned node to the document. The node can be

attached to the document using appendChild or a similar method for adding a node
to the document:

52 | Chapter 5: Cloning Nodes

https://developer.mozilla.org/en-US/docs/Web/API/Node.cloneNode
http://bit.ly/dwc-addevent
http://bit.ly/dwc-appendchild

var elToClone = document.querySelector('.clone-me-please');
var elToAppend = elToClone.cloneNode(true); // ***not part of the DOM***

// add cloned node to the DOM

document.body.appendChild.appendChild(elCloneToAppend);

cloneNode copies all attributes and properties, so be careful not to
create duplicate element IDs when cloning nodes. Duplicate IDs
are technically not allowed because they are supposed to be unique
identifiers, but in practice browsers do allow them. Having dupli‐
cate IDs can cause problems when code is expecting only a single
element to be returned when querying for an element by ID.

Using jQuery.clone
The native cloneNode method works well for cloning nodes and their attributes, but
it does not do a good job of cloning events bound to the element being cloned. Fortu‐

nately, jQuery has a method, $.clone, for ensuring that all events bound by jQuery
can be copied to the new element if this is the desired behavior. This means that any

events bound by $.on, $.bind, $.click, etc. are copied if the withDataAndEvents or

deepWithDataAndEvents argument is set to true.

$.clone always does a deep clone (i.e., clones all descendant nodes

of the nodes matched by the query selector passed to $), so use cau‐
tion when cloning. Otherwise, you could end up copying very large
branches of the DOM tree, which could be a very costly operation.

The $.clone method is used as follows:

var $el = $('.clone-me-please');

// clone without data and events

var $clone1 = $el.clone(false);

// clone with data and events for $el and all children

var $clone2 = $el.clone(true);

// deep clone with data and events for only $el

var $clone3 = $el.clone(true, false);

jQuery is able to copy the events because it keeps an internal cache of all event han‐
dlers it binds. This is also what enables it to automatically remove event handlers

when elements are explicitly removed ($.remove) or implicitly removed ($.html).
This is done to help prevent any references to elements that have been removed from
the DOM from being retained, which helps reduce memory leaks.

Using jQuery.clone | 53

http://api.jquery.com/clone/

$.clone does not copy event handlers bound to an element outside

of jQuery unless they are inline event handlers (e.g., <div

onclick="someFunction();">).

In addition to copying all event handlers bound by jQuery, jQuery.clone also copies

all data that was related to an element via $.data.

Arrays and objects are copied by reference, not by value, so all
cloned nodes’ data as well as the original node’s data will point to
the same arrays and objects. A shallow copy of an array or object
can be done after the node is cloned, as seen in the following code
examples.

You use the $.data and $.clone methods as follows:

// get a reference to a jQuery selection and set data

// on the element

var $el = $('.some-el');
$el.data({
 arr: [1,2,3],
 obj: { foo: 'bar' }
});

// get references to the data from the elements

var arr = $el.data('arr');
var obj = $el.data('obj');

// jQuery provides a utility method for copying arrays and objects

var arrCopy = $.extend([], arr);
var objCopy = $.extend({}, obj);

// clone $el and set copies

$clone = $el.clone(true);
$clone.data({
 arr: arrCopy,
 obj: objCopy
});

// if someone ever asks you how to copy an array or object in an interview...

var arrCopy = arr.slice(0);

var objCopy = {};
for (var k in obj) {
 objCopy[k] = obj[k];
}

// then say whoomp, there it is!

54 | Chapter 5: Cloning Nodes

// if they are past a certain age they will appreciate this reference

// and your poor sense of humor :)

Continuation of the Dialog Widget
Oftentimes, a widget gets a reference to a DOM element. This element is then used as
the container for the widget. In other cases the element is cloned because the original
element should not be modified. The dialog will be treated as the latter case because

its containing element will be appended to the <body>. This makes managing the z-

index much easier, because it will only be competing with other elements that are

children of the <body>. Additionally, the dialog widget should not make any assump‐
tions as to the consumer’s alternate intended uses of that element. It could be used for
other purposes than just the dialog widget, and if it were used directly any modifica‐
tions made to the element by the dialog widget could inadvertently impact other
areas of the web application. For these reasons, the dialog widget will do a deep clone

of the element passed during construction using $.clone if options.clone is true
(this option enables developers to decide whether or not to clone, providing them
with a convenient API for avoiding the aforementioned issues):

function Dialog (options) {
 // optionally clone dialog $el
 options.$el = options.clone ? $(options.$el).clone() :
 $(options.$el);
 // append to body
 if (options.appendToEl) {
 $(options.appendToEl).append(options.$el);
 }

 Voltron.call(this, options);

 return this;
}

Summary
In this chapter we introduced the concept of cloning nodes and presented some com‐

mon use cases. We then covered the native method for cloning nodes, cloneNode, and

the jQuery method, jQuery.clone. We discussed the enhanced event handler copy‐

ing provided by the jQuery.clone method, then took this knowledge and applied it
to the dialog widget as an illustration of how to handle cases in which the node
selected to create a widget should be copied and not used to directly to create the
widget instance.

Continuation of the Dialog Widget | 55

You now have the proper background information to clone nodes effectively in any
situation, and a working example. For more information on cloning nodes please

refer to the MDN cloneNode documentation and the jQuery.clone documentation.

56 | Chapter 5: Cloning Nodes

http://bit.ly/dwc-clonenode
http://api.jquery.com/clone/

CHAPTER 6

Constructing an Overlay

Jason Strimpel

Anytime you see a tooltip, dialog, drop-down menu, etc. on the Web, an overlay is
likely driving the component. This is especially likely if reusability was a design con‐
cern or if the requirements called for more than CSS alone could provide.

An overlay is a widget that provides basic functionality for positioning an element
relative to the document or another element. You can think of an overlay as a new
window that is part of the document. It is an element in the DOM: a blank canvas
that can contain any content that you want. This lower-level widget can then be
extended, mixed in, or applied to another widget to create a widget with which a user
interacts (such as our dialog widget).

An overlay should have two primary functions. First, it should be able to position an
element relative to the viewport. This is useful for directing a user’s focus to a critical
item such as an error. Second, the overlay should be able to position an element rela‐
tive to another element in the document. This functionality allows a developer to
bring attention to a specific item on the page—e.g., a tooltip—or position related
items, such as a drop-down for constructing UI controls.

This chapter will discuss how to construct an overlay. This overlay will be used to add
more functionality to the dialog widget.

Deining an API
Before getting into the details of the overlay code, let’s stub out an API to help us
determine the necessary supporting private methods and where we can gain reusage
across the public API methods. Our overlay library will be called Duvet:

// pass in dependencies to closure - window, jQuery, and z-index manager

var Duvet = (function (global, $, jenga) {

57

 'use strict';

 // default options
 var defaults = {
 alignToEl: null,
 align: 'M',
 fixed: true,
 offsets: {
 top: 0,
 right: 0,
 bottom: 0,
 left: 0
 }
 };

 // creates an overlay instance
 function Duvet(el, options) {
 // create references to overlay element
 this.el = el;
 this.$el = $(el);

 // extend default options with developer-defined options
 this.setOptions(options);

 // return instance reference
 return this;
 }

 // positions the overlay element
 Duvet.prototype.position = function (options) {};

 // sets instance options
 Duvet.prototype.setOptions = function (options) {};

 // clears out any developer-defined references to ensure
 // that no element references remain - i.e., helps prevent
 // memory leaks!
 Duvet.prototype.destroy = function (options) {};

 return Duvet;

})(window, jQuery, jenga);

There is a great deal of functionality that can be added to an over‐
lay widget. The overlay in this chapter is intentionally simple and
meant to be a starting point for understanding how an overlay
works.

58 | Chapter 6: Constructing an Overlay

Utilities
There are some utility methods and functions that can be defined within the overlay
widget’s closure. These are introduced in the following sections.

These methods could potentially be moved to a component utility
library to be shared across all components that need to perform
calculations for sizing and positioning elements.

Detecting Scrollbar Width
When positioning an element, it is sometimes necessary to account for the width of
the containing element’s scrollbar. The space the scrollbar occupies is not automati‐

cally subtracted from an element’s offsetWidth and offsetHeight, and this space
needs to be accounted for so that the overlay can be positioned precisely. You can get
the width of an element’s scrollbar with the following function:

function getScrollbarWidth(parentEl) {
 var innerCss = {
 width: '100%',
 height: '200px'
 };
 var outerCss = {
 width: '200px',
 // outer element height is smaller than inner element height;
 // this will cause a scrollbar
 height: '150px',
 position: 'absolute',
 top: 0,
 left: 0,
 visibility: 'hidden',
 overflow: 'hidden'
 };
 var $inner = $('<div>test</div>').css(innerCss);
 var $outer = $('<div></div>').css(outerCss).append($inner);
 var innerEl = $inner[0];
 var outerEl = $outer[0];

 $(parentEl || 'body').append(outerEl);
 // get the layout width of the inner element, including the scrollbar
 var innerWidth = innerEl.offsetWidth;
 $outer.css('overflow', 'scroll');
 // get the inner width of the outer element, NOT including the scrollbar
 var outerWidth = $outer[0].clientWidth;
 // remove the elements from the DOM
 $outer.remove();

 // subtract the outer element width from the inner element width -

Utilities | 59

 // this difference is the width of the scrollbar
 return (innerWidth - outerWidth);
}

// cache value for cases where scrollbar widths are consistent

var scrollbarWidth = getScrollbarWidth();

If there is a possibility that containing elements will have differing

scrollbar widths, then getScrollbarWidth needs to be executed
each time an overlay is instantiated and the value saved as a prop‐
erty of that instance. The containing element’s calculated property
for the scrollbar width will have to be applied to the element

against which the measurement is being done. Duvet will assume

the worst-case scenario and execute getScrollbarWidth every
time it positions an element.

Accounting for the Scrollbar When Calculating a Containing Element’s
Width
Once the scrollbar width for an element has been determined, it can be used to deter‐
mine the actual amount of available space in the containing element. This can be

done by subtracting the containing element’s scrollWidth and scrollHeight from

the element’s offsetWidth and offsetHeight, respectively, enabling you to calculate
the proper position for the overlay:

// scrollWidth and scrollHeight values will be larger than the actual

// width or height of the element itself if the content exceeds the

// width or height; in this case, the scrollbar width needs to be

// accounted for when positioning the overlay element

function getScrollbarOffset(el) {
 var $el = $(el);
 var $body = $('body');
 var scrollWidth = el.scrollWidth === undefined ? $body[0].scrollWidth :
 el.scrollWidth;
 var scrollHeight = el.scrollHeight === undefined ? $body[0].scrollHeight :
 el.scrollHeight;
 var scrollbarWidth = getScrollbarWidth();

 return {
 x: scrollWidth > $el.outerWidth() ? scrollbarWidth : 0,
 y: scrollHeight > $el.outerHeight() ? scrollbarWidth : 0
 };
}

60 | Chapter 6: Constructing an Overlay

Getting an Element’s Dimensions and Coordinates
The positioning of an overlay is done by using the overlay’s dimensions and coordi‐
nates relative to the containing or aligning element’s dimensions and coordinates.
The overlay is then positioned absolutely relative to the containing element or the
aligning element.

An aligning element is an element next to which an overlay is posi‐
tioned; e.g., an element over which a user hovers and a tooltip
(overlay) is displayed.

We can use this function to get the dimensions of an element:

function getDimensions(el) {
 // https://developer.mozilla.org/en-US
 // /docs/Web/API/Element.getBoundingClientRect
 // relative to the viewport
 var rect;
 // https://api.jquery.com/position/
 // relative to the offset parent
 var offset = el === window ? { top: 0, left: 0 } : $(el).position();

 // if containing element is the window object
 // then use $ methods for getting the width and height
 if (el === window) {
 var width = $(window).width();
 var height = $(window).height();

 rect = {
 right: width,
 left: 0,
 top: 0,
 bottom: height
 };
 } else {
 rect = el.getBoundingClientRect();
 }

 return {
 width: rect.right - rect.left,
 height: rect.bottom - rect.top,
 // top relative to the element's offset parent
 top: offset.top,
 // bottom relative to the element's offset parent
 bottom: offset.top + (rect.bottom - rect.top),
 // left relative to the element's offset parent
 left: offset.left,
 right: rect.right

Utilities | 61

 };
}

Listening for Resize and Scrolling Events
When an overlay is in a fixed position it should not move from its position relative to
its containing element when the containing element has an overflow and is scrolled,
or when the document window is resized. In order to maintain the fixed position, the
overflow must reposition itself as the containing element is scrolled or resized.

“Fixed position” in this case refers to the element being visually

fixed, not having a position value of fixed.

Listeners are bound by passing a callback that adjusts the overlay element position to
event handlers that listen for scroll and resize events:

function bindListeners($offsetParent, callback) {
 // unbind event to ensure that event listener is never bound more than once
 $offsetParent.off('scroll.duvet').on('scroll.duvet', function (e) {
 callback();
 });
 $offsetParent.off('resize.duvet').on('resize.duvet', function (e) {
 callback();
 });
}

Updating Options
An overlay’s functionality may need to change at runtime. For instance, if it is being
used to create a tooltip component, then you might not want to incur the overhead of
setup and teardown every time the tooltip is triggered to be shown. This could be
costly, because in each case an element would have to be created and destroyed. This
could happen frequently if, for example, the user were hovering over a table contain‐
ing cells that trigger tooltips to reveal additional information related to the cells’ con‐
tent. In the case of tooltips, it’s much more efficient to have a function that can be

used to reset the el and alignTo properties. Fortunately, there is just such a function:

Duvet.prototype.setOptions = function (options) {
 this.options = options ? $.extend(this.options, options) : this.options;
};

62 | Chapter 6: Constructing an Overlay

Destroying
A good practice for widget cleanup is to leave the DOM as you found it. The destroy

function will simply null out the el and alignTo properties and unbind any event
handlers to prevent potential memory leaks. The responsibility for the actual destruc‐
tion of these elements lies outside the scope of the overlay widget, as it only applies a
limited set of functionality to an element and should not make any assumptions as to
the state of the element outside of its scope.

We use the destroy function as follows:

Duvet.prototype.destroy = function (options) {
 var $parent = $(el.parentNode);

 // unbind event handlers
 $parent.off('scroll.duvet');
 $parent.off('resize.duvet');

 // null out references
 this.el = null;
 this.$el = null;

 // clear out any developer-defined options
 this.options = defaults;
};

Positioning
When <instance>.position is called it will position the element using one of two

private functions, defined in “JavaScript overlay” on page 65. align will be called if an

element is to be aligned relative to another element. position will called if an element

is to be positioned absolutely relative to its offsetParent:

Duvet.prototype.position = function (options) {
 // allow modification of options before positioning
 this.setOptions(options);

 // call private functions (will be defined later)
 if (this.options.alignToEl) {
 // if alignToEl is body, then reassign to window since body height
 // is equal to content height
 this.options.alignToEl = this.options.alignToEl.tagName === 'BODY' ?
 $(window)[0] : this.options.alignToEl;
 align(this.el, this.options);
 } else {
 position(this.el, this.options);
 }
};

Destroying | 63

Positioning an Element Relative to the Viewport or Another Element
There are a few different ways to position an element relative to the viewport or
another element, depending upon the requirements. The simplest cases (e.g., where
the element is centered and its position is fixed) can be handled with CSS alone, while
more complicated examples, such as positioning an element that is draggable, require
performing calculations based on the element’s position relative to the viewport.
Some of the code used to support this will be used to position an element relative to
another element as well. The first method will be shown for informational purposes,
but the latter method will be used in all other examples since it is more applicable to
our working example—creating a dialog that could be draggable, but that has to be
positioned absolutely. That said, there is no reason that the CSS example could not be
incorporated into an overlay widget as an optimization.

CSS overlay

The following example (from “Fixed positioning” on page 28) shows how to create a
simple centered overlay using only CSS:

/*

Covers the viewport when applied to an

element that is a child of the <body>.

It stretches the element across the <body> by

fixing its position and setting all the position

properties to 0. This makes it impossible to

interact with any elements that are in lower rendering

layers.

*/

.modal-overlay {
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 background: #000;
 opacity: .5;
}

/*

Centers an element in the viewport by setting the top and left

properties to 50%. It then accounts for the height and width of the element

by taking half the height and width, and sets the top and left properties

respectively by negating these values.

*/

.modal-content {
 position: fixed;
 top:50%;
 left:50%;
 margin-top: -100px;
 margin-left: -200px;

64 | Chapter 6: Constructing an Overlay

 width: 400px;
 height: 200px;
 background: #fff;
 padding: 10px;
 overflow: auto;
}

<div class="modal-overlay"></div>
<div class="modal-content">I am the modal content. Fear me.</div>

JavaScript overlay

The next example shows how to create an overlay that is positioned relative to the
viewport or another element using JavaScript. This is useful for overlays that start out
centered, but can be dragged or moved about in the document:

function position(el, options) {
 var pos = {};
 var $parent = el.parentNode.tagName === 'BODY' ? $(window) : $(el.parentNode);
 var $el = $(el);
 // get the scrollbar offset
 var scrollbarOffset = getScrollbarOffset(el.parentNode.tagName === 'BODY' ?
 window : el.parentNode);

 // parent el is the offset parent
 if (el.parentNode !== el.offsetParent) {
 el.parentNode.style.position = 'relative';
 }

 switch (options.align) {
 case 'TL':
 pos.top = 0;
 pos.left = 0;
 break;
 case 'TR':
 pos.top = 0;
 pos.right = 0;
 break;
 case 'BL':
 pos.bottom = 0;
 pos.left = 0;
 break;
 case 'BR':
 pos.bottom = 0;
 pos.right = 0;
 break;
 case 'BC':
 pos.bottom = 0;
 pos.left = ((($parent.outerWidth() -
 scrollbarOffset.y - $el.outerWidth()) / 2) +
 $parent.scrollLeft());
 break;
 case 'TC':

Positioning | 65

 pos.top = 0;
 break;
 case 'M':
 pos.left = ((($parent.outerWidth() -
 scrollbarOffset.y - $el.outerWidth()) / 2) +
 $parent.scrollLeft());
 pos.top = ((($parent.outerHeight() -
 scrollbarOffset.x - $el.outerHeight()) / 2) +
 $parent.scrollTop());
 break;
 }

 // if the positions are less than 0 then the
 // element being positioned is larger than
 // its container
 pos.left = pos.left > 0 ? pos.left : 0;
 pos.top = pos.top > 0 ? pos.top : 0;

 // position the element absolutely and
 // set the top and left properties
 $el.css($.extend({
 position: 'absolute',
 display: 'block'
 }, pos));

 // if the element should not move when the containing
 // element is resized or scrolled then bind event listeners
 // and call the position function
 if (options.fixed && options.align === 'M' && !options.bound) {
 options.bound = true;
 bindListeners($parent, function () {
 position(el, options);
 });
 }
}

Positioning an Element Relative to Another Element
It is often useful to position an element relative to another element. Common use
cases include tooltips, drop-downs, and UI controls (sliders). These types of use cases
require the ability to define different positions, such as top center, bottom right, mid‐
dle, bottom left, etc.

The following functions can be used to position one element relative to another:

// used to get the margins for offset parents

function getMargins(el) {
 var $el = $(el);
 var marginTop = parseInt($el.css('margin-top'), 10);
 var marginLeft = parseInt($el.css('margin-left'), 10);

66 | Chapter 6: Constructing an Overlay

 return {
 top: isNaN(marginTop) ? 0 : marginTop,
 left: isNaN(marginLeft) ? 0 : marginLeft
 };
}

// align the overlay el to another element in the DOM

function align(el, options) {
 var alignToElDim = getDimensions(options.alignToEl);
 var css = { display: 'block', visibility: 'visible', position: 'absolute' };
 var $el = $(el);
 var parentAlignToElMargins = getMargins(options.alignToEl.parentNode);

 // hide element, but keep dimensions by setting the visibility to hidden
 $el.css({
 visibility: 'hidden',
 display: 'block',
 'z-index': -1000
 });

 // get element's dimensions
 var elDim = getDimensions(el);

 // ensure that alignToEl parent el is the offset parent
 if (options.alignToEl.parentNode !== options.alignToEl.offsetParent) {
 options.alignToEl.parentNode.style.position = 'relative';
 }

 // use the alignToEl and el dimensions and positions to calculate
 // the el's position
 switch (options.align) {
 case 'TL':
 css.top = (alignToElDim.top - elDim.height) -
 parentAlignToElMargins.top;
 css.left = alignToElDim.left - parentAlignToElMargins.left;
 break;
 case 'TR':
 css.top = (alignToElDim.top - elDim.height) -
 parentAlignToElMargins.top;
 css.left = (alignToElDim.right - elDim.width) -
 parentAlignToElMargins.left;
 break;
 case 'BL':
 css.top = alignToElDim.bottom - parentAlignToElMargins.top;
 css.left = alignToElDim.left - parentAlignToElMargins.left;
 break;
 case 'BR':
 css.top = alignToElDim.bottom - parentAlignToElMargins.top;
 css.left = (alignToElDim.right - elDim.width) -
 parentAlignToElMargins.left;
 break;

Positioning | 67

 case 'BC':
 css.top = alignToElDim.bottom - parentAlignToElMargins.top;
 css.left = (((alignToElDim.width - elDim.width) / 2) +
 alignToElDim.left) - parentAlignToElMargins.left;
 break;
 case 'TC':
 css.top = (alignToElDim.top - elDim.height) -
 parentAlignToElMargins.top;
 css.left = (((alignToElDim.width - elDim.width) / 2) +
 alignToElDim.left) - parentAlignToElMargins.left;
 break;
 case 'M':
 css.top = (((alignToElDim.height - elDim.height) / 2) +
 alignToElDim.top) - parentAlignToElMargins.top;
 css.left = (((alignToElDim.width - elDim.width) / 2) +
 alignToElDim.left) - parentAlignToElMargins.left;
 break;
 }

 jenga.bringToFront(el, true);
 $el.css(css);
}

Adding the Overlay to the Dialog Widget
In the previous chapter we added z-index management to the dialog widget. Since

Jenga, the z-index manager, is now a dependency of the overlay library, the call to
Jenga can be completely replaced by a call to the overlay library:

function Dialog (options) {
 // optionally clone dialog $el
 options.$el = options.clone ? $(options.$el).clone() :
 $(options.$el);
 // append to body
 if (options.appendToEl) {
 $(options.appendToEl).append(options.$el);
 }

 Voltron.call(this, options);
 // create overlay instance

 this.overlay = new Duvet(this.$el[0]);
 return this;
}

Dialog.prototype.show = function () {
 // this will adjust z-index, set the display property,
 // and position the dialog
 this.overlay.position();
};

68 | Chapter 6: Constructing an Overlay

Dialog.prototype.destroy = function () {
 // clean up overlay
 this.overlay.destroy();

 // call superclass
 Voltron.prototype.destroy.call(this);
};

Summary
In this chapter we constructed a fully functioning overlay. In order to accomplish
that, we first created utility methods to measure and account for scrollbars, and to get
the dimensions of an element. Next, we covered resize and scroll event listeners for

overlays that are fixed in a container—either an element or the document’s <body>.
Then we covered both CSS and JavaScript techniques for positioning and aligning an
element. Finally, we applied this knowledge to the dialog widget.

Summary | 69

CHAPTER 7

Making Elements Draggable

Frequently in web applications you will see elements that are draggable—slider han‐
dles, dialogs, column resizing handles, etc. If you have ever wondered exactly how
this is accomplished, or needed to implement this behavior, then this is the chapter
for you! The first step in the process is learning about mouse events.

This and subsequent chapters will utilize jQuery events, which, for
the most part, are wrappers to native JavaScript events that are nor‐
malized for cross-browser consistency.

Mouse Events
jQuery supports eleven different mouse events. However, making an element dragga‐

ble only requires understanding three of these events: $.mousemove, $.mousedown,

and $.mouseup.

$.mousemove
Tracking mouse movements is fundamental to making an element draggable because
the mouse position will be used to coordinate the movement of the element being

dragged. The native JavaScript mousemove event provides the mouse position data,

such as the values of clientX and clientY, which are properties of the native event
object. However, support for these properties varies between browsers. Fortunately,
jQuery normalizes these properties as part of the jQuery event object. We bind the

$.mousemove event listener as follows:

71

http://api.jquery.com/category/events/mouse-events/

$('body').on('mousemove', function (e) {
 // log the normalized mouse coordinates
 console.log('pageX: ' + e.pageX + ' ' + 'pageY: ' + e.pageY);
});

mousemove is useful for tracking user mouse movements, which can
be used to gather analytics. These analytics can be used to improve
the functionality of a UI by helping users to get to information and
complete frequent actions faster.

$.mousedown
Determining when a user presses the mouse button (mousedown event) is required for

dragging elements because this is the event that marks the moment when the mouse

move event translates into moving the element marked to be dragged. We bind the

$.mousedown event listener as follows:

$('body').on('mousedown', function (e) {
 console.log('Yo. You just pressed the mouse down.');
});

$.mouseup
Knowing when to stop moving an element is the final step during a drag sequence. As

soon as the mouseup event is fired, the last mouse position is used to determine the
final location of the element being dragged. We bind this event listener as follows:

$('body').on('mouseup', function (e) {
 console.log('Dude. You just let the mouse go up.');
});

Mouse Events Best Practices
In addition to knowing the required mouse events for making an element draggable,
it is equally important to know how to optimize the usage of these events. I do not
advocate premature optimization, but these are not strictly optimizations: they are
common patterns and best practices that have been vetted by UI widget libraries such
as jQuery UI. jQuery advocates their usage as well.

1. Bind $.mousemove on $.mousedown
mousemove is triggered every time the mouse is moved, even if it is only by a pixel.
This means hundreds of events can easily be triggered in a matter of seconds if a user
is interacting with a UI that requires frequent mouse movements. To ensure that

mousemove events are only processed when necessary, it is best to bind the

$.mousemove handler on $.mousedown:

72 | Chapter 7: Making Elements Draggable

http://api.jquery.com/mousedown/
http://api.jquery.com/mouseup/

$('.some-element').on('mousedown', function (e) {
 $('.some-element').on('mousemove', function (e) {
 // this is where the dragging magic will happen
 });
});

2. Unbind $.mousemove on $.mouseup
Just as you should only bind the $.mousemove handler on $.mousedown, you should

unbind the $.mousemove handler on $.mouseup—for every action. This will prevent

any unnecessary mousemove events from being processed after the dragging of the ele‐
ment has been completed:

$('body').on('mouseup', function (e) {
 // stop processing mousemove events
 $('.some-element').off('mousemove');
});

3. Bind $.mouseup to the <body>
You may have noticed in the previous code block that the mouseup event was bound

to the <body>. This is because, according to the API documentation, in some cases

“the mouseup event might be sent to a different HTML element than the mousemove

event was.” For this reason alone, it is best to always bind the $.mouseup handler to

the <body> tag.

4. Namespace All Event Bindings
It is always a good practice to namespace all event bindings. This ensures that events
that are bound by a widget do not conflict with other event handlers, which makes
cleanup easier as you don’t have to worry about destroying event handlers bound by

processes outside of the widget. Since the $.mouseup event handler is bound to the

<body>, the namespace is also used to filter out other mouse events that have bubbled

up to the <body>:

// namespace all events

$('body').on('mouseup.draggable', function (e) {

});

Deining an API
In order to make our code for making an element draggable more reusable, it is nec‐
essary to create an object with a convenient API that can be applied to any element:

Deining an API | 73

http://api.jquery.com/mousemove/
http://api.jquery.com/event.namespace/

// I can move any mountain

var Shamen = (function (global, $) {

 'use strict';

 // instance default options
 var defaults = {
 dragHandle: null
 };

 // create draggable instance
 function Shamen(el, options) {
 this.options = $.extend({}, defaults, options);
 var css = { cursor: (this.options.cursor || 'move') };

 // check if element is a child of a document fragment (i.e.,
 // a shadow DOM); this will be important later
 this.isChildOfDocFragment = isChildOfDocFragment(el);
 this.el = el;
 this.$el = $(el);
 this.$dragHandle = this.options.dragHandle ?
 this.$el.find(this.options.dragHandle) : this.$el;
 this.bind();
 this.originalDragHandleCursor = this.$dragHandle.css('cursor');
 // apply cursor css
 this.$dragHandle.css(css);
 }

 // bind mousedown event handler
 Shamen.prototype.bind = function () {

 };

 // clean up to prevent memory leaks
 Shamen.prototype.destroy = function () {

 };

 return Shamen;

})(window, jQuery);

Creating a Drag Handle
In some cases you only want a specific child element of the draggable element to be
the drag handle, as opposed to the entire element. For instance, in the case of a dialog
it is often the title or header bar that is the drag handle.

74 | Chapter 7: Making Elements Draggable

A drag handle is an element that responds to a drag or resize event

when a mousedown event occurs, allowing a user to move or resize
an ancestor node of the drag handle. In this book the ancestor ele‐

ment will be the widget’s el or $el property.

We can implement a drag handle as follows:

.drag-handle {
 cursor: move;
}

<div class="draggable">
 <div class="drag-handle"></div>
</div>

$('.draggable').on('mousedown.draggable', '.drag-handle', function (e) {

});

Making Things Move
Now that the nuts and bolts of making an element draggable have been defined, it is
time to use these pieces to make something move!

$.mousedown Handler
The first step is to write the $.mousedown handler, which gets the mouse’s current
position:

// bind mousedown event handler

Shamen.prototype.bind = function () {
 // filter on drag handle if developer defined one
 var selector = this.options.dragHandle || null;
 var self = this;
 // account for margins if element is position absolutely;
 // code reused from Duvet.js
 var parentMargins = this.$el.attr('position') === 'absolute' ?
 getMargins(this.$el.parent()[0]) : { top: 0, left: 0};;

 this.$el.on('mousedown.shamen', selector, function (e) {
 // get the initial mouse position
 var mousePos = {
 x: e.pageX,
 y: e.pageY
 };
 });
};

Making Things Move | 75

$.mousemove Handler
This is where the moving of an element occurs! On mousemove the $.mousemove han‐

dler uses the element dimension and position values set in the $.mousedown handler

to move the draggable element pixel for pixel as mousemove events are triggered:

// bind mousedown event handler

Shamen.prototype.bind = function () {
 // filter on drag handle if developer defined one
 var selector = this.options.dragHandle || null;
 var self = this;
 // account for margins if element is position absolutely;
 // code reused from Duvet.js
 var parentMargins = this.$el.attr('position') === 'absolute' ?
 getMargins(this.$el.parent()[0]) : { top: 0, left: 0};

 this.$el.on('mousedown.shamen', selector, function (e) {
 // get the initial mouse position
 var mousePos = {
 x: e.pageX,
 y: e.pageY
 };

 // bind mousemove event handler
 $(window).on('mousemove.shamen', function (e) {
 // get the differences between the mousedown position and the
 // positions from the mousemove events
 var xDiff = e.pageX - mousePos.x;
 var yDiff = e.pageY - mousePos.y;
 // get the draggable el's current position relative to the document
 var elPos = {
 left: el.offsetLeft,
 top: el.offsetTop
 };

 // apply the mouse position differences to the el's position
 self.$el.css({
 top: elPos.top + yDiff,
 left: elPos.left + xDiff
 });

 // store the current mouse position
 // to diff with the next mousemove positions
 mousePos = {
 x: e.pageX,
 y: e.pageY
 };
 });
 });
};

76 | Chapter 7: Making Elements Draggable

$.mouseup Handler
When the mouseup event is fired the $.mousemove handler is unbound, and the drag‐
gable element is in its final resting place (at least, until dragging is initiated again by

another mousedown event). The $.mouseup event handler looks like this:

// bind mousedown event handler

Shamen.prototype.bind = function () {
 // unbind mousemove handler on mouseup
 $('body').on('mouseup.shamen', function (e) {
 $(window).off('mousemove.shamen');
 });
};

Now that have seen the $.mouseup handler binding, we need to fill in the details:

// bind mousedown event handler

Shamen.prototype.bind = function () {
 // filter on drag handle if developer defined one
 var selector = this.options.dragHandle || null;
 var self = this;
 // account for margins if element is position absolutely;
 // code reused from Duvet.js
 var parentMargins = this.$el.attr('position') === 'absolute' ?
 getMargins(this.$el.parent()[0]) : { top: 0, left: 0};

 // unbind mousemove handler on mouseup
 $('body').on('mouseup.shamen', function (e) {
 $(window).off('mousemove.shamen');
 });

 this.$el.on('mousedown.shamen', selector, function (e) {
 // get the initial mouse position
 var mousePos = {
 x: e.pageX,
 y: e.pageY
 };

 // bind mousemove event handler
 $(window).on('mousemove.shamen', function (e) {
 // get the differences between the mousedown position and the
 // positions from the mousemove events
 var xDiff = e.pageX - mousePos.x;
 var yDiff = e.pageY - mousePos.y;
 // get the draggable el's current position relative to the document
 var elPos = self.$el.offset();

 // apply the mouse position differences to the el's position
 self.$el.css({
 top: elPos.top + yDiff,
 left: elPos.left + xDiff,
 position: 'absolute'

Making Things Move | 77

 });

 // store the current mouse position
 // to diff with the next mousemove positions
 mousePos = {
 x: e.pageX,
 y: e.pageY
 };
 });
 });
};

Destroying a Draggable Instance
Like with the overlay widget and any other widget, it is always good practice to clean
up. This helps to prevent memory leaks and reduces the possibility of a destroyed
widget having an impact on the application (e.g., through a lingering node property
or event handler):

// clean up to prevent memory leaks

Shamen.prototype.destroy = function () {
 // unbind mousedown
 this.$el.off('mousedown.shamen');
 // revert cursor for drag handle
 this.$dragHandle.css({ cursor: this.originalDragHandleCursor });

 // null out jQuery object, element references
 this.el = null;
 this.$el = null;
 this.$dragHandle = null;

 // revert options to defaults
 this.options = defaults;
};

Making the Dialog Widget Draggable
In some cases you may want a dialog to be draggable (for example, so that a user can
see content that is obfuscated by the dialog). However, this may not always be the
case, so making the dialog draggable will be optional.

78 | Chapter 7: Making Elements Draggable

We can use the following code to make our dialog widget draggable:

function Dialog (options) {
 // optionally clone dialog $el
 options.$el = options.clone ? $(options.$el).clone() :
 $(options.$el);
 // append to body
 if (options.appendToEl) {
 $(options.appendToEl).append(options.$el);
 }

 Voltron.call(this, options);

 // create a draggable instance
 if (options.draggable) {
 this.shamen = new Shamen(this.$el[0], {
 // dialog header is the drag handle
 dragHandle: '#title'
 });
 }

 // create overlay instance
 this.overlay = new Duvet(this.$el[0], {
 fixed: options.draggable ? false : true
 });

 return this;
}

Dialog.prototype.destroy = function () {
 // clean up overlay
 this.overlay.destroy();

 // clean up draggable
 if (this.shamen) {
 this.shamen.destroy();
 }

 // call superclass
 Voltron.prototype.destroy.call(this);
};

Summary
In this chapter we demystified how elements are moved along the x- and y-axes by a
user via a mouse. This demystification involved understanding the relevant mouse

events: mousedown, mousemove, and mouseup. We covered best practices for the differ‐
ent events, then used this knowledge to create a small library that could be used to
make any element draggable. We then integrated this library into the dialog widget,

Summary | 79

so you know how to create a draggable dialog instance when a use case requires that
the dialog be movable.

This was just one possible use case and implementation, but it highlighted common
patterns that are useful in general when handling different mouse events. This knowl‐
edge is useful for other use cases too, such as creating drop-down menus, and we will
leverage it in the next chapter to make elements resizable.

80 | Chapter 7: Making Elements Draggable

CHAPTER 8

Resizing Elements

Jason Strimpel

Oftentimes in web applications you will see a drag handle, which is used to adjust the
size of an element. This may be done to improve usability, or to support some func‐
tionality. For instance, the developer might make an element resizable to allow
users to alter the line wrapping of text inside the element, to make it easier to read. A
functional application could be for a matrix of elements that needs to be resized. In
this chapter we will create a widget that can be used to make any element resizable.
We will then integrate this widget into the dialog widget, so that dialog instances can
optionally be made resizable.

Mouse Events and Best Practices (Recap)
The same mouse events and best practices described in Chapter 7 apply when resiz‐
ing an element. If you are jumping around the book and did not read the previous
chapter, you’ll find a brief synopsis of the mouse events and best practices here
(although I’d advise reading the previous chapter before going further!)

Events
jQuery supports eleven different mouse events. However, making an element dragga‐
ble only requires understanding three of these events:

• $.mousemove is used to get the mouse coordinates. jQuery normalizes these in

the event object as the properties e.pageX and e.pageY.

• $.mousedown is used to bind the $.mousemove handler and get the initial mouse
coordinates.

81

http://bit.ly/dwc-jquery-mouse

• $.mouseup is used to unbind the $mousemove handler to prevent excessive

$mousemove events from being triggered.

Best Practices
In addition to knowing the required mouse events for making an element resizable, it
is equally important to know how to optimize the usage of these events. Here are a
few best practices:

• Bind $.mousemove on $.mousedown to prevent unnecessary mousemove events
from being triggered.

• Unbind $.mousemove on $.mouseup to prevent unnecessary mousemove events
from being triggered.

• Bind the $.mouseup event handler to the <body>. The API documentation recom‐

mends this because in some cases, “the mouseup event might be sent to a different

HTML element than the mousemove event was.”

Resizing an Element
The same basic mouse movement and positioning best practices that apply to drag‐
ging an element also apply to resizing an element. However, additional properties can
be set depending on the direction of the resizing. There are eight different possible
directions when resizing an element:

• North or top middle

• Northeast or top right

• East or middle right

• Southeast or bottom right

• South or bottom middle

• Southwest or bottom left

• West or middle left

• Northwest or top left

In the case of right (east) or bottom (south) resizing the element’s width or height
property is adjusted, respectively. In the case of left (west) or top (north) resizing the

element’s left or top property is adjusted, in addition to the width or height prop‐
erty.

82 | Chapter 8: Resizing Elements

http://api.jquery.com/mousemove/

The examples from this point forward will use position-based
descriptors (top, left, bottom, and right) instead of direction-based
descriptors (north, east, south, and west) as position-based descrip‐
tors relate directly to CSS positioning, which makes things easier
for me to visualize. Also, I’m an engineer, not a navigator! The
direction-based descriptors were listed because some libraries, such
as jQuery UI, use them. This is probably because they correspond
with the cursor properties.

Making a Resizable API
As in the previous chapters, the first step is to stub out an API:

// Eh-neeek-chock

var ApacheChief = (function (global, $) {

 'use strict';

 // default resize handle CSS
 var handlesCss = {
 width: '10px',
 height: '10px',
 cursor: 'se-resize'
 };

 // options defaults
 var defaults = {
 handles: ['BR'],
 handlesCss: {
 BR: handlesCss
 }
 };

 // merge default CSS and developer-defined CSS -
 // this is necessary because $.extend is shallow
 function mergeResizeHandleCss(defaultCss, instanceCss) {

 }

 // create resizable instance
 function ApacheChief(el, options) {
 this.el = el;
 this.$el = $(el);
 // extend options with developer-defined options
 this.options = $.extend({}, defaults, options);

 // extend isn't deep, so ensure that resize handle CSS
 // is merged properly
 mergeResizeHandleCss(this.options, options || {});

 // create resize handles

Making a Resizable API | 83

https://jqueryui.com/
http://bit.ly/dwc-cursor

 this.createResizeHandles();

 // bind event handlers
 this.bind();
 }

 // create resize handles
 ApacheChief.prototype.createResizeHandles = function () {

 };

 // resize function
 ApacheChief.prototype.resize = function () {

 };

 // bind event handlers
 ApacheChief.prototype.bind = function () {

 };

 // clean up instance
 ApacheChief.prototype.destroy = function () {

 };

 return ApacheChief;

})(window, jQuery);

Deining Drag Handles
In order for an element to be resizable, it must have drag handles. We can implement
these via a function that accepts an element and positions object as arguments.

The first step is to merge any developer-defined resize handle CSS with the default

CSS by filling in the mergeResizeHandleCss function defined in the API stub:

// merge default CSS and developer-defined CSS -

// this is necessary because $.extend is shallow

function mergeResizeHandleCss(defaultCss, instanceCss) {
 var retVal = {};

 // iterate over default CSS properties
 for (var k in defaultCss) {
 // set return value property equal to the instance property defined
 // by the developer or the default CSS property value; it is also
 // possible to go down one more layer, but this assumes wholesale
 // property replacement
 retVal[k] = instanceCss[k] || defaultCss[k];
 }

84 | Chapter 8: Resizing Elements

 return retVal;
}

The next step is to create the resize handles by creating new DOM elements and
applying the resize handle CSS to these newly defined elements. These elements are
then inserted into the DOM:

// create resize handles

ApacheChief.prototype.createResizeHandles = function () {
 var handlesCss = this.options.handlesCss;
 var handles = this.options.handles;
 var $handles;

 // loop the resize handles CSS hash, create elements,
 // and append them to this.$el
 // data-handle attribute is used to help determine what element
 // properties should be adjusted when resizing
 for (var i = 0; i < handles.length; i++) {
 if (handlesCss[handles[i]]) {
 this.$el
 .append($('<div class="apache-chief-resize" data-handle="' +
 handles[i] + '">')
 .css(handlesCss[handles[i]]));
 }
 }

 $handles = this.$el.find('.apache-chief-resize');
 // ensure that container is an offset parent for positioning handles
 if (this.$el !== $handles.offsetParent()) {
 this.$el.css('position', 'relative');
 }
 $handles.css('display', 'block');
};

Binding Event Handlers
The event handlers bound in ApacheChief.prototype.bind are very similar to the

ones bound in Shamen.prototype.bind from the previous chapter and follow the
same mouse events best practices.

$.mousedown Handler
In addition to capturing the initial mouse coordinates like the draggable $.mousedown

handler, the resizable $.mousedown handler extracts the direction from the handle ele‐

ment, which was set by ApacheChief.prototype.createResizeHandles:

$('.apache-chief-resize').on('mousedown.apache-chief', function (e) {
 var $handle = $(this);
 var direction = $handle.attr('data-handle');

Binding Event Handlers | 85

 // if true then the handle moves in a position
 // that only affects width and height
 var adjustPosition = direction !== 'BM' &&
 direction !== 'MR' && direction !== 'BR';
 // get the initial mouse position
 var mousePos = {
 x: e.pageX,
 y: e.pageY
 };

 // this will be used by the mousemove handler
 // get coordinates for resizing
 function getPositionDiffs(adjustPosition, e, mousePos, direction) {
 var diffs = {
 xDim: direction === 'BM' ? 0 : e.pageX - mousePos.x,
 yDim: direction === 'MR' ? 0 : e.pageY - mousePos.y,
 xPos: 0,
 yPos: 0
 };

 if (!adjustPosition) {
 return diffs;
 }

 switch (direction) {
 case 'TR':
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 break;
 case 'TL':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 break;
 case 'BL':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 break;
 case 'ML':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 diffs.yDim = 0;
 break;
 case 'TM':
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 diffs.xDim = 0;
 break;
 }

 return diffs;

86 | Chapter 8: Resizing Elements

 }
});

$.mousemove Handler
The $.mousemove handler is bound in the $.mousedown handler. Just like with the

draggable $.mousemove handler, the previous mouse coordinates are subtracted from

the current mouse coordinates. These values are then used to adjust the width and

height properties and, depending on the resize direction, the top and left properties:

$(window).on('mousemove.apache-chief', function (e) {
 // get the differences between the mousedown position and the
 // positions from the mousemove events
 var diffs = getPositionDiffs(adjustPosition, e, mousePos, direction);
 // get the draggable el's current position relative to the document
 var elPos;

 // adjust the width and height
 self.$el.css({
 width: self.$el.width() + diffs.xDim,
 height: self.$el.height() + diffs.yDim
 });

 // adjust the top and left
 if (adjustPosition) {
 elPos = self.$el.offset();
 self.$el.css({
 top: elPos.top + diffs.yPos,
 left: elPos.left + diffs.xPos,
 position: 'absolute'
 });
 }

 // store the current mouse position
 // to diff with the next mousemove positions
 mousePos = {
 x: e.pageX,
 y: e.pageY
 };
});

$.mouseup Handler
The $.mouseup handler is bound to the <body>, per the best practices described in the

previous chapter. It unbinds the $.mousemove handler to prevent unnecessary mem‐

ory consumption (it is then rebound when the next mousedown event is captured on a
resize handle):

Binding Event Handlers | 87

$('body').on('mouseup.apache-chief', function (e) {
 $(window).off('mousemove.apache-chief');
});

Destroying a Resizable Instance
Just as with any other widget, it is good practice to clean up to help prevent memory
leaks. In addition to nulling out the element references and unbinding the event han‐
dlers, we’ll remove the drag handle elements from the DOM:

// clean up instance

ApacheChief.prototype.destroy = function () {
 this.$el.off('mousedown.apache-chief');
 // remove the resize handles
 this.$el.find('.apache-chief-resize').remove();

 this.el = null;
 this.$el = null;
 this.options = defaults;
};

Completed Resizing Library
A few parts were missing from the original API stub, such as the full definitions for
the drag handles. These missing pieces, along with all the code from the previous sec‐
tions, have been added here so that the widget can be easily viewed in its entirety:

// Eh-neeek-chock

var ApacheChief = (function (global, $) {

 'use strict';

 // default resize handle CSS
 var handlesCss = {
 width: '10px',
 height: '10px',
 cursor: 'se-resize',
 position: 'absolute',
 display: 'none',
 'background-color': '#000'
 };

 // options defaults
 var defaults = {
 handles: ['BR'],
 handlesCss: {
 TM: $.extend({}, handlesCss, {
 cursor: 'n-resize', top: 0, left: '50%'
 }),

88 | Chapter 8: Resizing Elements

 TR: $.extend({}, handlesCss, {
 cursor: 'ne-resize', top: 0, right: 0
 }),
 MR: $.extend({}, handlesCss, {
 cursor: 'e-resize', bottom: '50%', right: 0
 }),
 BR: $.extend({}, handlesCss, { bottom: 0, right: 0 }),
 BM: $.extend({}, handlesCss, {
 cursor: 's-resize', bottom: 0, left: '50%'
 }),
 ML: $.extend({}, handlesCss, {
 cursor: 'w-resize', bottom: '50%', left: 0
 }),
 BL: $.extend({}, handlesCss, {
 cursor: 'sw-resize', bottom: 0, left: 0
 }),
 TL: $.extend({}, handlesCss, { cursor: 'nw-resize' }),
 }
 };

 // merge default CSS and developer-defined CSS -
 // this is necessary because $.extend is shallow
 function mergeResizeHandleCss(defaultCss, instanceCss) {
 var retVal = {};

 // iterate over default CSS properties
 for (var k in defaultCss) {
 // set return value property equal to the instance property defined
 // by the developer or the default CSS property value; it is also
 // possible to go down one more layer, but this assumes wholesale
 // property replacement
 retVal[k] = instanceCss[k] || defaultCss[k];
 }

 return retVal;
 }

 // create resizable instance
 function ApacheChief(el, options) {
 this.el = el;
 this.$el = $(el);
 // extend options with developer-defined options
 this.options = $.extend({}, defaults, options);

 // extend isn't deep, so ensure that resize handle CSS is merged
 // properly
 mergeResizeHandleCss(this.options, options || {});

 // create resize handles
 this.createResizeHandles();

 // bind event handlers

Completed Resizing Library | 89

 this.bind();
 }

 // create resize handles
 ApacheChief.prototype.createResizeHandles = function () {
 var handlesCss = this.options.handlesCss;
 var handles = this.options.handles;
 var $handles;

 // loop the resize handles CSS hash, create elements,
 // and append them to this.$el
 // data-handle attribute is used to help determine what element
 // properties should be adjusted when resizing
 for (var i = 0; i < handles.length; i++) {
 if (handlesCss[handles[i]]) {
 this.$el
 .append($('<div class="apache-chief-resize" data-handle="' +
 handles[i] + '">')
 .css(handlesCss[handles[i]]));
 }
 }

 $handles = this.$el.find('.apache-chief-resize');
 // ensure that container is an offset parent for positioning handles
 if (this.$el !== $handles.offsetParent()) {
 this.$el.css('position', 'relative');
 }
 $handles.css('display', 'block');
 };

 // bind event handlers
 ApacheChief.prototype.bind = function () {
 var self = this;

 $('body').on('mouseup.apache-chief', function (e) {
 $(window).off('mousemove.apache-chief');
 });

 this.$el.find('.apache-chief-resize').on('mousedown.apache-chief',
 function (e) {
 var $handle = $(this);
 var direction = $handle.attr('data-handle');
 // if true then the handle moves in a position
 // that only affects width and height
 var adjustPosition = direction !== 'BM' &&
 direction !== 'MR' && direction !== 'BR';
 // get the initial mouse position
 var mousePos = {
 x: e.pageX,
 y: e.pageY
 };

90 | Chapter 8: Resizing Elements

 // get coordinates for resizing
 function getPositionDiffs(adjustPosition, e, mousePos, direction) {
 var diffs = {
 xDim: direction === 'BM' ? 0 : e.pageX - mousePos.x,
 yDim: direction === 'MR' ? 0 : e.pageY - mousePos.y,
 xPos: 0,
 yPos: 0
 };

 if (!adjustPosition) {
 return diffs;
 }

 switch (direction) {
 case 'TR':
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 break;
 case 'TL':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 break;
 case 'BL':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 break;
 case 'ML':
 diffs.xPos = diffs.xDim;
 diffs.xDim = -diffs.xDim;
 diffs.yDim = 0;
 break;
 case 'TM':
 diffs.yPos = diffs.yDim;
 diffs.yDim = -diffs.yDim;
 diffs.xDim = 0;
 break;
 }

 return diffs;
 }

 $(window).on('mousemove.apache-chief', function (e) {
 // get the differences between the mousedown position and the
 // positions from the mousemove events
 var diffs = getPositionDiffs(adjustPosition, e, mousePos,
 direction);
 // get the draggable el's current position relative to the
 // document
 var elPos;

Completed Resizing Library | 91

 // adjust the width and height
 self.$el.css({
 width: self.$el.width() + diffs.xDim,
 height: self.$el.height() + diffs.yDim
 });

 // adjust the top and left
 if (adjustPosition) {
 elPos = self.$el.offset();
 self.$el.css({
 top: elPos.top + diffs.yPos,
 left: elPos.left + diffs.xPos,
 position: 'absolute'
 });
 }

 // store the current mouse position
 // to diff with the next mousemove positions
 mousePos = {
 x: e.pageX,
 y: e.pageY
 };
 });
 });
 };

 // clean up instance
 ApacheChief.prototype.destroy = function () {
 this.$el.off('mousedown.apache-chief');
 // remove the resize handles
 this.$el.find('.apache-chief-resize').remove();

 this.el = null;
 this.$el = null;
 this.options = defaults;
 };

 return ApacheChief;

})(window, jQuery);

Making the Dialog Widget Resizable
In some cases you may want a dialog widget instance to be resizable, so that a user
can better interact with the dialog’s content. For instance, it could be that a form that
would normally fit within the dialog could have fields dynamically appended to it
depending on a user’s actions, causing it to overflow. Making the dialog resizable
would make it much easier for the user to view and interact with all the form fields
without having to scroll.

92 | Chapter 8: Resizing Elements

We can use the following code to make our dialog widget resizable:

function Dialog (options) {
 // optionally clone dialog $el
 options.$el = options.clone ? $(options.$el).clone() :
 $(options.$el);
 // append to body
 if (options.appendToEl) {
 $(options.appendToEl).append(options.$el);
 }

 Voltron.call(this, options);

 // create a draggable instance
 if (options.draggable) {
 this.shamen = new Shamen(this.$el[0], {
 // dialog header is the drag handle
 dragHandle: '#title'
 });
 }

 // create a resizable instance
 if (options.resizable) {
 this.apacheChief = new ApacheChief(this.$el[0], {
 handles: ['BR']
 });
 }

 // create overlay instance
 this.overlay = new Duvet(this.$el[0], {
 fixed: options.draggable ? false : true
 });

 return this;
}

Dialog.prototype.destroy = function () {
 // clean up overlay
 this.overlay.destroy();

 // clean up draggable
 if (this.shamen) {
 this.shamen.destroy();
 }

 // clean up resizable
 if (this.apacheChief) {
 this.apacheChief.destroy();
 }

 // call superclass
 Voltron.prototype.destroy.call(this);
};

Making the Dialog Widget Resizable | 93

Summary
In this chapter we examined the events and patterns used to implement a drag
handle on an element to make it resizable. We encapsulated this knowledge into a
reusable widget that we then incorporated into the dialog widget, making it option‐
ally resizable.

The information in this chapter enhanced the knowledge gained from the previous
chapter, providing a richer understanding of handling mouse events. For more infor‐
mation on the mouse events from these chapters and others, please refer to the MDN
documentation and the jQuery documentation on mouse events.

94 | Chapter 8: Resizing Elements

http://bit.ly/dwc-mdn
http://bit.ly/dwc-mdn
http://bit.ly/dwc-jquery-mouse

CHAPTER 9

Completing the Dialog Widget

Jason Strimpel

This chapter focuses on completing the dialog widget that will be used throughout
the rest of the book.

Styling the Widget
I am not a UI/UX expert, nor am I a designer. The selected styles were based on the
default styling for jQuery UI. The drag handle image is a portion of a jQuery UI
sprite as well.

The intent of this styling is not to advise on styling in the sense of aesthetics or usabil‐
ity, but rather to describe how to apply any styles to a widget.

Adding CSS
The dialog CSS is very minimal. It could easily be stored internally in the dialog
widget JavaScript and then applied directly to the elements in question upon instan‐
tiation of a dialog widget. However, this approach would not scale well or lend itself
to ease of maintenance.

For instance, if you wanted to add a positioned background image it would require
setting each property individually as opposed to being able to simply apply all styling

in the value of the background property of a selector in a stylesheet. Additionally,
applying the CSS via JavaScript is not nearly as efficient as allowing the browser to
apply the styles defined in a stylesheet. Lastly, it makes overriding the CSS properties
more difficult—because the CSS is applied inline if done via JavaScript, a higher level
of specificity is required than when overriding CSS set in a stylesheet.

With those caveats in mind, here’s the CSS for our simple dialog widget:

95

[role="dialog"] {
 display: none;
}

[role="dialog"] {
 width: 400px;
 height: 200px;
 position: absolute;
 border: 1px solid #bbb;
 border-radius: 5px;
 font-family: "Trebuchet MS", "Helvetica", "Arial", "Verdana", "sans-serif";
}

[role="dialog"] h2 {
 background: #bbb;
 font-size: 16px;
 font-weight: normal;
 padding: 10px;
 margin: 3px;
 border-radius: 5px;
 padding: 5px;
 color: #eee;
}

[role="dialog"] p {
 margin: 0;
 padding: 10px;
 font-size: 12px;
 color: #333;
}

I reserve using !important for state overrides such as error messages, to ensure that
the proper error styling takes effect regardless of specificity, and overriding the styles
set via JavaScript (inline styles). In this case we are overriding one of the latter, which

is being set by ApacheChief:

[role="dialog"] .apache-chief-resize {
 background: url(jquery-ui-icons.png) -64px -224px !important;
 width: 16px !important;
 height: 16px !important;
}

Concatenating the JavaScript
The JavaScript was concatenated using grunt-preprocess. The dialog widget depen‐
dencies were included inside a closure so as to create the minimal global footprint:

(function (global, $) {

 // @include components/jquery/dist/jquery.sj

96 | Chapter 9: Completing the Dialog Widget

https://github.com/jsoverson/grunt-preprocess

 // @include components/chapter-6_duvet/duvet.js
 // @include components/chapter-7_shamen/shamen.js
 // @include components/chapter-8_apache-chief/apacheChief.js
 // @include components/chapter-2_voltron/voltron.js
 // @include dialog.js

})(window, jQuery);

Summary
Congratulations—you now have a fully functioning dialog widget! More importantly,
you have a better understanding of how other UI libraries implement similar compo‐
nents. This understanding was gained by breaking the dialog widget into smaller,
reusable widgets, each of which handled a specific requirement (resizing, dragging,
cloning, etc.). Armed with this knowledge you now have an understanding of “one
layer of abstraction below your everyday work,” so you can make more informed
design and implementation decisions. The end result is the development of better
software and easier maintenance of this software, which will make you a more pro‐
ductive and happier engineer. And doesn’t everyone want to be happier?

Summary | 97

PART III

Building HTML5 Web Components

Part I of this book provided an understanding of how a browser lays out a page by
introducing normal flow, positioning, and stacking contexts. Part II described how to
use this understanding to manipulate the properties that affect the aforementioned
topics to control a page’s layout. This knowledge was then used to create small widg‐
ets with specific purposes that could be combined to create a larger UI widget, the
dialog example. However, these widgets are not web components as described by the
W3C. They were designed to function within the current context of the Web. Part III
is all about true web components and the benefits they offer. It will cover the parts
that comprise the W3C Web Components specification, templates, custom elements,
the shadow DOM, and imports. As part of this learning process, in this section of the
book we will take the dialog widget from Parts I and II and convert it to a bona fide
web component, making it more semantic, declarative, encapsulated, consumable,
and maintainable. More importantly, here we will truly extend the web platform for
the first time.

http://www.w3.org/TR/components-intro/
http://www.w3.org/TR/components-intro/

CHAPTER 10

Utilizing Templates

Jason Strimpel

As you read the title of this chapter you might have thought to yourself, “But we
already have client-side templates for rendering markup!” Here’s an example:

<script id="some-template" type="text/x-handlebars-template">
 <p class="description">{{description}}</p>
</script>

<div id="some-template" style="display: none;">
 <p class="description">{{description}}</p>
</div>

function (Handlebars,depth0,helpers,partials,data) {
 this.compilerInfo = [4,'>= 1.0.0'];
helpers = this.merge(helpers, Handlebars.helpers); data = data || {};
 var buffer = "", stack1, helper, functionType="function",
 escapeExpression=this.escapeExpression;

 buffer += "<div id=\"some-template\" style=\"display: none;\">";
 buffer += "<p class=\"description\">";
 if (helper = helpers.description) {
 stack1 = helper.call(depth0, {hash:{},data:data}); }
 else { helper = (depth0 && depth0.description);
 stack1 = typeof helper === functionType ?
 helper.call(depth0, {hash:{},data:data}) : helper; }
 buffer += escapeExpression(stack1)
 + "</p></div>";
 return buffer;
 }

While these approaches allow you to utilize templates on the client, they have their
drawbacks. This is because they are really just workarounds designed to implement a
missing feature: native templates in the browser. The good news is that this feature is

101

no longer missing. It is now a W3C specification and is running in some of the latest
browser versions. This new specification will allow you to begin writing native tem‐
plates in a standardized fashion that are specifically designed to work more efficiently
with the browser.

Eric Bidelman has created a significant amount of the web compo‐
nent content on the Web outside of the W3C specifications. Eric’s
postings and the W3C specifications were the primary sources for
the majority of Part III, including this chapter. A big thanks to Eric
and the many others who have been posting and speaking on this
topic for helping to drive our learning.

Understanding the Importance of Templates
Many different template solutions currently exist in the market: Handlebars, Dust,
Nunjucks, micro templating, etc. While these are useful and amazing solutions, they
are only templates in a limited sense. They provide functionality similar to their
server-side counterparts, compiling strings to functions. These functions then take
data and output strings comprised of the original strings with the data substituted per
the template tokens and processing rules. This functionality is extremely important,
but the browser is a much different environment than the server. Since it is a different
environment, it requires different features and optimizations.

Native templates are not a replacement for existing template solu‐
tions. They are just a standardized way to get a chunk of markup to
the browser and have it remain inert until it is needed. Per the

W3C Web Components specification, “The <template> element

has a property called content which holds the content of the tem‐
plate in a document fragment. When the author wants to use the
content they can move or copy the nodes from this property.”

Deferring the Processing of Resources
One of the optimizations that templates afford is the deferment of the processing of
assets such as scripts and images. This delay of processing allows developers to
include as many templates as they want with virtually no impact on the rendering of
the page (although transferring larger files over the network will, of course, affect the
time to render).

Deferring the Rendering of Content
In addition to deferring the processing of assets, template markup is not rendered by
the browser, regardless of where the template is located. This allows a developer to

102 | Chapter 10: Utilizing Templates

http://bit.ly/dwc-w3c-html
http://handlebarsjs.com/
https://github.com/linkedin/dustjs
http://mozilla.github.io/nunjucks/
http://underscorejs.org/#template
http://bit.ly/dwc-w3c-webcomp

place templates in any location and conditionally render them without the need to

toggle display properties or be concerned about the overhead of parsing markup not
used by the browser.

Hiding the Content from the DOM
The template content is also not considered to be part of the DOM. When a query is
made for DOM nodes, none of the template child nodes are returned. This ensures
that templates do not slow down node lookups and that template content remains
hidden until it is activated.

Creating and Using a Template
A template is created by adding a <template> to the markup, selecting the template
node, cloning its content, and then inserting the cloned content into the DOM.

Detecting Browser Support
In order to make use of native templates, the first step is to determine if a browser
supports them. This check can then be used to implement a polyfill to support tem‐
plates in older browsers:

var supportsTemplates = (function () {
 return 'content' in document.createElement('template');
})();

Placing a Template in Markup
A template is created by adding a <template> tag to a <head>, <body>, or <frameset>,
or any descendant tag of the aforementioned tags:

<head>

 <template id="atcq">
 <p class="response"></p>
 <script type="text/javascript">
 (function () {
 var p = confirm('You on point Tip?');
 var responeEl = document.querySelector('.response');

 if (p) {
 responeEl.innerHTML = 'All the time Phife';
 } else {
 responeEl.innerHTML = 'Check the rhyme y\'all';
 }
 })();
 </script>
 </template>
</head>

Creating and Using a Template | 103

Adding a Template to the DOM
To add a template to the DOM and render it, you must first get a reference to the
template node. Then you need to make a copy of the node, and finally add the new
node to the DOM:

// get a reference to the template node

var template = document.querySelector('#atcq');
// clone it

var templateClone = document.importNode(template.content, true);
// append the cloned content to the DOM

document.body.appendChild(templateClone);

Converting the Dialog Component to a Template
Converting the dialog component to a template is done by taking the JavaScript, CSS,

and HTML required to render the dialog, and embedding it inside a <template> tag.
This will make the JavaScript and CSS inert until the template is cloned and added to
the DOM. Our dialog template looks like this:

<head>

 <script type="text/javascript" src="/vendor/jquery.js"></script>
 <template id="dialog">
 <style>
 // styling src
 </style>
 <script type="text/javascript">
 // dialog component source
 </script>
 <div role="dialog" aria-labelledby="title" aria-describedby="content">
 <h2 id="title">I am a title</h2>
 <p id="content">Look at me! I am content.</p>
 </div>
 </template>
</head>

This template injects the inert resources into the DOM, but it does not provide a con‐
venient API for developers to leverage the dialog component. If the template and the
dialog component it contains is to be reused, then an API for accessing the dialog
component must be created.

104 | Chapter 10: Utilizing Templates

You may have noticed that the template is embedding scripts

directly as opposed to using the src attribute to import them. That

is because any script added to the DOM after the document has
been parsed loads sources asynchronously. Per the W3C HTML5

specification, one of the pieces of state associated with a script ele‐
ment is “a flag indicating whether the element will ‘force-async’.

Initially, script elements must have this flag set. It is unset by the

HTML parser and the XML parser on script elements they insert.”
If the scripts were not embedded a number of possible errors could
occur, as the resources would not be available until the scripts had
completed loading.

Creating a Wrapper API for the Dialog Template
If you want to encapsulate cloning and appending the template, then it is best to cre‐
ate a wrapper constructor function that encapsulates this logic along with the dialog
component instantiation. This encapsulation also allows you to embed optimizations
such as only cloning the template once:

function DialogTemplate(options) {
 this.querySelector = '[role="dialog"]';
 this.template = document.querySelector('#dialog');
 this.el = document.querySelector(this.querySelector);
 this.options = options;

 // only import and append once
 if (!this.el) {
 this.clone = document.importNode(this.template.content, true);
 document.body.appendChild(this.clone);
 this.el = document.querySelector('[role="dialog"]');
 }

 // create dialog instance
 this.options.$el = this.querySelector;
 this.api = new Dialog(this.options);

 // set the title and content for the dialog
 this.api.$el.find('#title').html(this.options.title);
 this.api.$el.find('#content').html(this.options.content);

 return this;
}

Converting the Dialog Component to a Template | 105

http://bit.ly/dwc-w3c-script
http://bit.ly/dwc-w3c-script

Instantiating a Dialog Component Instance
The dialog component can now be instantiated as before, but now it will be done
from the template using the new wrapper constructor function:

var dialog = new DialogTemplate({
 draggable: true,
 resizable: true,
});
dialog.api.show();

Abstracting the Dialog Template Wrapper
The dialog component wrapper constructor function was specific to the dialog com‐
ponent. If you would like to create a more generic wrapper, it is possible. The trade-
offs are that all your templates have to expose the same public API with the same
signature, and you cannot encapsulate optimization logic inside of the wrapper con‐
structor function. A generic template wrapper might look like the following:

// assumes that all templates return a public

// API that has the same signature

var templateFactory = (function (window) {

 'use strict';

 return function (template, API) {
 function Template(options, callback) {
 var self = this;

 this.options = options;
 // clone template content
 this.clone = document.importNode(this.template.content, true);
 // append cloned template content to target el
 options.target.appendChild(this.clone);
 // get el for public API exposed by appending template
 this.el = document.querySelector(options.$root);
 options.$el = this.el;

 // assumes that template adds public API
 // to the window and that API uses a
 // constructor to create new instance
 self.api = new window[self.API](options);

 return this;
 }

 TemplateAPI.prototype.template = template;
 TemplateAPI.prototype.API = API;

106 | Chapter 10: Utilizing Templates

 return Template;
 };

})(window);

Summary
In this chapter we covered web component templates as defined by the W3C. First,
we discussed the benefits these templates afford over the current template solutions
(similar to their server-side counterparts):

• The processing of resources such as images and tags is deferred, so they do not
impact performance in that respect (any additional content sent across the net‐
work always decreases performance).

• The rendering of content is deferred; content is not rendered unless it is explicitly
added to the DOM.

• Template content is hidden from the DOM, so it does not slow down query selec‐
tions.

Then we created a template and imported it into the DOM. Next, we took the dialog
component and made it into a template. Finally, we created a wrapper for instantiat‐
ing dialog components from the dialog component template node and examined con‐
verting the dialog component template into a factory function that could be used to
wrap any template that returned an API that subscribed to the contract defined in the
template wrapper code.

Summary | 107

CHAPTER 11

Working with the Shadow DOM

Jason Strimpel

The shadow DOM is not the dark side of the DOM, but if it were I would definitely
give in to my hatred of the lack of encapsulation the DOM normally affords and
cross over.

One of the aspects of the DOM that makes development of widgets/components diffi‐
cult is this lack of encapsulation. For instance, one major problem has always been
CSS rules bleeding into or out of a component’s branch of the DOM tree: it forces one

to write overly specific selectors or abuse !important so that styles do not conflict,
and even then conflicts still happen in large applications. Another issue caused by
lack of encapsulation is that code external to a component can still traverse into the
component’s branch of the DOM tree. These problems and others can be prevented
by using the shadow DOM.

What Is the Shadow DOM?
So what exactly is this mysterious-sounding shadow DOM? According to the W3C:

Shadow DOM is an adjunct tree of DOM nodes. These shadow DOM subtrees can be
associated with an element, but do not appear as child nodes of the element. Instead
the subtrees form their own scope. For example, a shadow DOM subtree can contain
IDs and styles that overlap with IDs and styles in the document, but because the
shadow DOM subtree (unlike the child node list) is separate from the document, the
IDs and styles in the shadow DOM subtree do not clash with those in the document.

109

http://www.w3.org/TR/components-intro/

I am an admirer of the W3C, but oftentimes their specifications,
albeit accurate, need to be translated into something that the rest of
us—myself included—can more easily comprehend. The shadow
DOM is essentially a way to define a new DOM tree whose root
container, or host, is visible in the document, while the shadow
root and its children are not. Think of it as a way to create isolated
DOM trees to prevent collisions such as duplicate identifiers, or
accidental modifications by broad query selectors. That is a simpli‐
fication, but it should help to illustrate the purpose.

So what benefits does the shadow DOM provide to developers? It essentially provides
encapsulation for a subtree from the parent page. This subtree can contain markup,
CSS, JavaScript, or any asset that can be included in a web page. This allows you to
create widgets without being concerned that of any of the assets will impact the par‐
ent page, or vice versa. Previously this level of encapsulation was only achievable by

using an <iframe>.

Shadow DOM Basics
The shadow DOM is a simple concept, but it has some intricacies that make it
appear more complex than it really is. This section will focus on the basics. The intri‐
cacies that afford the developer even more control and power will be covered later in
this chapter.

Shadow Host
A shadow host is a DOM node that contains a shadow root. It is a regular element
node within the parent page that hosts the scoped shadow subtree. Any child nodes
that reside under the shadow host are still selectable, with the exception of the
shadow root.

Shadow Root
A shadow root is an element that gets added to a shadow host. The shadow root is the
root node for the shadow DOM branch. Shadow root child nodes are not returned by
DOM queries even if a child node matches the given query selector. Creating a
shadow root on a node in the parent page makes the node upon which it was created
a shadow host.

Creating a shadow root

Creating a shadow root is a straightforward process. First a shadow host node is
selected, and then a shadow root is created in the shadow host.

110 | Chapter 11: Working with the Shadow DOM

To inspect shadow DOM branches using the Chrome debugger,
check the “Show Shadow DOM” box under the “Elements” section
in the “General” settings panel of the debugger.

The code to create a shadow root looks like this:

<div id="host"></div>

var host = document.querySelector('#host');
var root = host.createShadowRoot();

If you do not prefix createShadowRoot with “webkit” in Chrome

34 and below you are going to have a bad time. All calls to create

ShadowRoot should look like host.webkitCreateShadowRoot().

It is possible to attach multiple shadow roots to a single shadow host. However, only
the last shadow root attached is rendered. A shadow host follows the LIFO pattern
(last in, first out) when attaching shadow roots. At this point you might be asking
yourself, “So what is the point of hosting multiple shadow roots if only the last one
attached is rendered?” Excellent question, but you are getting ahead of the game! This
will be covered later in this chapter (see “Shadow Insertion Points” on page 120).

Using a Template with the Shadow DOM
Using a template to populate a shadow root involves almost the same process as using
a template to add content to a DOM node in the parent page. The only difference is

that the template.content is added to the shadow root.

The first step is to create a template node. This example leverages the template from
the previous chapter, with the addition of an element that will be the shadow host:

<head>

 <template id="atcq">
 <p class="response"></p>
 <script type="text/javascript">
 (function () {
 var p = confirm('You on point Tip?');
 var responeEl = document.querySelector('#atcq-root')
 .shadowRoot
 .querySelector('.response');

 if (p) {
 responeEl.innerHTML = 'All the time Phife';
 } else {
 responeEl.innerHTML = 'Check the rhyme y\'all';

Using a Template with the Shadow DOM | 111

http://caniuse.com/shadowdom

 }
 })();
 </script>
 </template>
</head>

<body>

 <div id="atcq-root"></div>
</body>

Next, we create a shadow root using the shadow host element, get a reference to the
template node, and finally append the template content to the shadow root:

// create a shadow root

var root = document.querySelector('#atcq-root').createShadowRoot();
// get a reference to the template node

var template = document.querySelector('#atcq');
// append the cloned content to the shadow root

root.appendChild(template.content);

Shadow DOM Styling
I cannot count the number of times I have encountered CSS scoping issues through‐

out my career. Some of them were due to broad selectors such as div, the overusage

of !important, or improperly namespaced CSS. Other times it has been difficult to
override widget CSS or widget CSS has bled out, impacting application-level CSS. As
an application grows in size, especially if multiple developers are working on the code
base, it becomes even more difficult to prevent these problems. Good standards can
help to mitigate these issues, but most applications leverage open source libraries
such as jQuery UI, Kendo UI, Bootstrap, and others, which makes good standards
alone inadequate. Addressing these problems and providing a standard way of apply‐
ing styles to scoped elements are two of the benefits of using a shadow DOM.

Style Encapsulation
Any styles defined in the shadow DOM are scoped to the shadow root. They are not
applied to any elements outside of this scope, even if their selector matches an ele‐
ment in the parent page. Styles defined outside of a shadow DOM are not applied to
elements in the shadow root either.

In the example that follows, the text within the <p> that resides outside of the shadow
root will be blue because that style is external to the shadow DOM that is created. The

text within the <p> that is a child node of the shadow root will initially be the default
color. This is because the styles defined outside of the shadow root are not applied to

elements within the shadow root. After two seconds, the text within the <p> inside

the shadow root will turn green, because the callback for the setTimeout function

injects a <style> tag into the shadow root. The text within the <p> that resides out‐
side of the shadow root will remain blue because the style injected into the shadow

112 | Chapter 11: Working with the Shadow DOM

root is scoped to elements that are children of the shadow root. Here’s the code that
achieves this styling:

<head>

 <style>
 p {
 color: blue;
 }
 </style>
 <template><p>I am the default color, then green.</p></template>
</head>

<body>

 <div id="host"></div>
 <p>I am blue.</p>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 setTimeout(function () {
 root.innerHTML += '<style>p { color: green; }</style>';
 }, 2000)
 </script>
</body>

Styling the Host Element
In some cases you will want to style the host element itself. This is easily accom‐
plished by creating a style anywhere within the parent page, because the host element
is not part of the shadow root. This works fine, but what if you have a shadow host
that needs different styling depending on the contents of the shadow root? And what
if you have multiple shadow hosts that need to be styled based on their contents? As
you can imagine, this would get very difficult to maintain. Fortunately, there is a new

selector, :host, that provides access to the shadow host from within the shadow root.
This allows you to encapsulate your host styling to the shadow root:

<head>

 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a red border!
 </template>
</head>

<body>

 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')

Shadow DOM Styling | 113

 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);
 </script>
</body>

The parent page selector has a higher specificity than the :host selector, so it will
trump any shadow host styles defined within the shadow root:

<head>

 <style>
 #host {
 border: 1px solid green;
 }
 </style>
 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a green border!
 </template>
</head>

<body>

 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')
 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);
 </script>
</body>

If you want to override styles set in the parent page, this must be done inline on the
host element:

<head>

 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a blue border!
 </template>
</head>

<body>

 <div id="host" style="border: 1px solid blue;"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')
 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);

114 | Chapter 11: Working with the Shadow DOM

 </script>
</body>

The :host selector also has a functional form that accepts a selector, :hostselector,
allowing you to set styles for specific hosts. This functionality is useful for theming
and managing states on the host element.

Styling Shadow Root Elements from the Parent Page
Encapsulation is all well and good, but what if you want to target specific shadow root
elements with a styling update? What if you want to reuse templates and shadow host
elements in a completely different application? What if you do not have control over
the shadow root’s content? For instance, you could be pulling the code from a reposi‐
tory that is maintained by another department internal to your organization, or a
shared repository that is maintained by an external entity. In either case you might
not have control over the shadow root’s contents, or the update process might take a
significant amount of time, which would block your development. Additionally, you
might not want control over the content. Sometimes it is best to let domain experts
maintain certain modules and to simply override the default module styling to suit
your needs. Fortunately, the drafters of the W3C specification thought of these cases
(and probably many more), so they created a selector that allows you to apply styling
to shadow root elements from the parent page.

The ::shadow pseudoelement selects the shadow root, allowing you to target child
elements within the selected shadow root:

<head>

 <style>
 #host::shadow p {
 color: blue;
 }
 </style>
 <template><p>I am blue.</p></template>
</head>

<body>

 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 </script>
</body>

The ::shadow pseudoelement selector can be used to style nested shadow roots:

<head>

 <style>
 #parent-host::shadow #child-host::shadow p {
 color: blue;

Shadow DOM Styling | 115

 }
 </style>
 <template id="child-template"><p>I am blue.</p></template>
 <template id="parent-template">
 <p>I am the default color.</p>
 <div id="child-host"></div>
 </template>
</head>

<body>

 <div id="parent-host"></div>
 <script type="text/javascript">
 var parentTemplate = document.querySelector('#parent-template');
 var childTemplate = document.querySelector('#child-template');
 var parentRoot = document.querySelector('#parent-host')
 .createShadowRoot();
 var childRoot;

 parentRoot.appendChild(parentTemplate.content);
 childRoot = parentRoot.querySelector('#child-host').createShadowRoot();
 childRoot.appendChild(childTemplate.content);
 </script>
</body>

Sometimes targeting individual shadow roots using the ::shadow pseudoelement is
very inefficient, especially if you are applying a theme to an entire application of
shadow roots. Again, the drafters of the W3C specification had the foresight to antici‐

pate this use case and specified the /deep/ combinator. The /deep/ combinator
allows you cross through all shadow roots with a single selector:

<style>

 /* colors all <p> text within all shadow roots blue */
 body /deep/ p {
 color: blue;
 }

 /* colors all <p> text within the child shadow root blue */
 #parent-host /deep/ #child-host # p {
 color: blue;
 }

 /* targets a library theme/skin */
 body /deep/ p.skin {
 color: blue;
 }
</style>

116 | Chapter 11: Working with the Shadow DOM

At this point you might be asking yourself, “Doesn’t this defeat the
purpose of encapsulation?” But encapsulation does not mean
putting up an impenetrable force field that makes crossing bound‐
aries for appropriate use cases, such as theming UI components,
impossible. The problem with the Web is that it has never had a
formalized method of encapsulation or a defined API for breaking
through an encapsulated component, like in other development
platforms. The formalization of encapsulation and associated
methods makes it clear in the code what the developer’s intent is
when encapsulation is breached. It also helps to prevent the bugs
that plague a web platform that lacks formalized encapsulation.

Content Projection
One of the main tenets of web development best practices is the separation of content
from presentation, the rationale being that it makes application maintenance easier
and more accessible.

In the past separation of content from presentation has simply meant not placing
styling details in markup. The shadow DOM takes this principle one step further.

In the examples we have seen thus far the content has been contained within a tem‐
plate and injected into the shadow root. In these examples no significant changes
were made to the presentation, other than the text color. Most cases are not
this simple.

In some cases it is necessary to place the content inside of the shadow host element
for maintenance and accessibility purposes. However, that content needs to be projec‐
ted into the shadow root in order to be presented. Luckily, the building blocks for
projecting the content from the shadow host into the shadow root exist.

Projection via a Content Tag
One way to project content from the shadow host into the shadow root is by using a

<content> element inside of a <template>. Any content inside the shadow host will

be automatically projected into the <content> of the <template> used to compose
the shadow root:

<head>

 <meta charset="utf-8">
 <title>Test Code</title>
 <template>
 <p>I am NOT projected content.</p>
 <content></content>
 </template>
</head>

<body>

Content Projection | 117

 <div id="host">
 <p>I am projected content.</p>
 </div>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 </script>
</body>

Projection via Content Selectors
In some cases you may not want to project all of the content from the shadow host.

You might want to select specific content for injection in different <content> ele‐
ments in the shadow root. A common case is that some markup in the shadow
host has semantic meaning and helps with accessibility, but doesn’t add anything to
the presentation of the shadow root. The mechanism for extracting content from the

shadow host is the select attribute. This attribute can be added to a <content>
element with a query selector value that will match an element in the shadow host.

The matched element’s content is then injected into the <content> tag.

Only the first element matched by a <content> element’s select
attribute is injected into the element—keep this in mind when
using selectors that are likely to match a number of elements, such

as tag selectors (e.g., div).

The following example is a product listing with a review widget. The shadow host
contains semantic markup that is accessible, and the template contains the presenta‐
tion details. The template presentation does not lend itself well to accessibility and
contains extraneous markup that is used for presentation purposes only—e.g., the

column containers are there for positioning purposes only and the review items

do not contain text (the interface would be purely graphical). In this example, select

attributes are used in the <template> <content> elements to extract content from the
shadow root:

<!--

 Only the relevant markup is shown. All other details,

 such as template CSS and JavaScript, have been omitted,

 so that the focus is on the selector projection use case.

-->

<template>

 <div class="product">
 <div class="column main">
 <content select="h2"></content>
 <content select=".description"></content>
 </div>

118 | Chapter 11: Working with the Shadow DOM

 <div class="column sidebar">
 <content select="h3"></content>
 <ul class="ratings">
 <li class="1-star">
 <li class="2-star">
 <li class="3-star">
 <li class="4-star">

 </div>
 </div>
</template>

<div id="host" class="product">
 <h2>ShamWow</h2>
 <p class="description">
 ShamWow washes, dries, and polishes any surface. It's like a towel,
 chamois, and sponge all in one!
 </p>
 <h3>Ratings</h3>
 <ul class="ratings">
 1 star
 2 stars
 3 stars
 4 stars

</div>

Only nodes that are children of the shadow host can be projected,
so you cannot select content from any lower descendant in the
shadow host.

Getting Distributed Nodes and Insertion Points
Nodes that are projected from a host are referred to as distributed nodes. These nodes
do not actually move locations in the DOM, which makes sense because the same
host child node can be projected to different insertion points across shadow roots. As
you can imagine, things can get complicated rather quickly, and at times you may
need to do some inspecting and take action on distributed nodes in your application.

There are two different methods that support this, Element.getDistributedNodes

and Element.getDestinationInsertionPoints.

Content Projection | 119

You cannot traverse into a <content> tree, because a <content>
node does not have any descendant nodes. It is helpful to think of a

<content> node as a television that is displaying a program. The
television’s only role in producing the program is to display it. The
program itself was filmed and edited elsewhere for consumption by
an unlimited number of televisions.

We use these methods as follows:

// Element.getDistributedNodes

var root = document.querySelector('#some-host').createShadowRoot();

// iterate over all the content nodes in the root

[].forEach.call(root.querySelectorAll('content'), function (contentNode) {
 // get the distributed nodes for each content node
 // and iterate over the distributed nodes
 [].forEach.call(contentNode.getDistributedNodes(),
 function (distributedNode) {
 // do something cool with the contentNode
 });
});

// Element.getDestinationInsertionPoints

var hostChildNode = document.querySelector('#some-host .some-child-node');

// get child node insertion points and iterate over them

[].forEach.call(hostChildNode.getDestinationInsertionPoints(),
 function (contentNode) {
 // do something cool with the contentNode
});

Shadow Insertion Points
In the previous section we examined how shadow host content can be projected into

insertion points, <content>. Just as content can be projected into insertion points, so

can shadow roots. Shadow root insertion points are defined using <shadow> tags. Like
any other tags, these can be created directly in markup or added to the DOM pro‐
grammatically.

Shadow roots are stacked in the order they are added, with the
youngest shadow root tree appearing last and rendering. Trees
appearing earlier in the stack are referred to as older trees, while
trees appearing after a given shadow root are referred to as younger
trees.

120 | Chapter 11: Working with the Shadow DOM

At the beginning of this chapter it was stated that a shadow host could contain multi‐
ple shadow roots, but that only the last shadow root defined would be rendered. This

is true in the absence of <shadow> elements. The <shadow> tag provides a point for
projecting an older shadow root using a younger shadow root tree. If a shadow root

tree contains more than one <shadow> element, the first one is used and the rest are

ignored. Essentially, <shadow> allows you to render an older shadow root in a stack by
providing an insertion point for it to be projected into.

Projecting nodes to an insertion point does not affect the tree
structure. The projected nodes remain in their original locations
within the tree. They are simply displayed in the assigned insertion
point.

Here’s an example:

<template id="t-1">I am t1. </template>
<template id="t-2"><shadow></shadow>I am t2. </template>
<template id="t-3"><shadow></shadow>I am t3. </template>
<div id="root"></div>
<script type="text/javascript">
 (function () {
 var t1 = document.querySelector('#t-1');
 var t2 = document.querySelector('#t-2');
 var t3 = document.querySelector('#t-3');
 var host = document.querySelector('#root')
 var r1 = host.createShadowRoot();
 var r2 = host.createShadowRoot();
 var r3 = host.createShadowRoot();

 r1.appendChild(t1.content);
 r2.appendChild(t2.content);
 r3.appendChild(t3.content);
 })();
</script>

<!-- renders: "I am t1. I am t2. I am t3." -->

The previous code block renders from the bottom (youngest tree) up, projecting the

next-oldest shadow root tree into the <shadow> insertion point. This was a very sim‐
ple example. In a real application, the code will be more complicated and dynamic.

Because of this it is helpful to have a way to inspect a <shadow> programmatically or
to determine a shadow host’s root:

// using the previous code block as an example

// determine older shadow root

r1.olderShadowRoot === null; // true; first in the stack
r2.olderShadowRoot === r1; // true
r3.olderShadowRoot === r2; // true

Shadow Insertion Points | 121

// determine a host's shadow root

host.shadowRoot === r1; // false; there can only be one (LIFO)
host.shadowRoot === r2; // false; ditto
host.shadowRoot === r3; // true

// determine a shadow root's host

r1.host === host; // true
r2.host === host; // true
r3.host === host; // true

Events and the Shadow DOM
At this point you might be thinking that projecting nodes instead of cloning them is a
great optimization that will help to keep changes synchronized—but what about
events bound to these projected nodes? How exactly does this work if they are not
copied? In order to normalize these events, they are sometimes retargeted to appear
as if they were triggered by the host element rather than the projected element in the
shadow root. In these cases you can still determine the shadow root of the projected

node by examining the path property of the event object. Some events are never
retargeted, though, which makes sense if you think about it. For instance, how would

a scroll event be retargeted? If a user scrolls one projected node, should the others
scroll? The events that are not retargeted are:

• abort

• error

• select

• change

• load

• reset

• resize

• scroll

• selectstart

Updating the Dialog Template to Use the Shadow DOM
You might have noticed generic id values such as title and content were used in the
dialog component, and you probably thought, “This idiot is going to have duplicate

id values, which are supposed to be unique in the DOM, colliding left and right…”
This was intentional, though, and has been leading up to this moment!

122 | Chapter 11: Working with the Shadow DOM

http://bit.ly/dwc-shadow-dom

One of the benefits of the shadow DOM is the encapsulation of markup, which

means the encapsulation of id values and a decrease in the likelihood of id value col‐
lisions in your application.

This code will leverage the previous chapter’s code that demonstrated using a tem

plate to make the dialog component markup and JavaScript inert until it was
appended to the DOM.

Dialog Markup
The dialog component will utilize a template, like the previous example, but this tem‐

plate will be appended to a shadow root that is hosted by <div id="dialog-host">.
The interesting part about this example is that it is practically the reverse of our

review widget example in terms of accessibility and readability. The aria attributes
are contained within the shadow DOM, and the markup a developer writes is not

exactly semantic. However, if you think about it, the aria attributes are primarily
used for accessibility implementation details, so it makes sense that these details are
obfuscated from the developer. The part that does not make sense is that the host
markup is not very semantic, but please reserve judgment on that until the next chap‐
ter!

Here’s the code for our updated dialog template:

<head>

 <script type="text/javascript" src="/vendor/jquery.js"></script>
 <template id="dialog">
 <style>
 // styling src
 </style>
 <script type="text/javascript">
 // dialog component source
 </script>
 <div role="dialog" aria-labelledby="title" aria-describedby="content">
 <h2 id="title"></h2>
 <p id="content"></p>
 </div>
 </template>
</head>

<!-- example host node -->

<div id="dialog-host">
 <h2>I am a title</h2>
 <p>Look at me! I am content.</p>
</div>

Updating the Dialog Template to Use the Shadow DOM | 123

http://bit.ly/dwc-aria

Dialog API
If you want to encapsulate the creation of the shadow root, the cloning and append‐
ing of the template, and the dialog component instantiation, then it is best to create a
wrapper constructor function that encapsulates all of these implementation details:

function DialogShadow(options) {
 this.options = options;
 // get the host node using the hostQrySelector option
 this.host = document.querySelector(options.hostQrySelector);
 // grab the template
 this.template = document.querySelector('#dialog');
 this.root = this.host.createShadowRoot();
 // append the template content to the root
 this.root.appendChild(this.template.content);
 // get a reference to the dialog container element in the root
 this.el = this.root.querySelector('[role="dialog"]');

 this.options.$el = this.el;
 // align element to body since it is a fragment
 this.options.alignToEl = document.body;
 this.options.align = 'M';
 // do not clone node
 this.options.clone = false;

 // get the content from the host node; projecting would retain host
 // node styles and not allow for encapsulation of template styles
 this.el.querySelector('#title').innerHTML = this.host.querySelector('h2')
 .innerHTML;
 this.el.querySelector('#content').innerHTML = this.host.querySelector('p')
 .innerHTML;

 // create a dialog component instance
 this.api = new Dialog(this.options);

 return this;
}

Updating the Dialog show Method
Since the shadow root and its children are a subtree that is not part of the parent

document, we have to ensure that the host element’s z-index value is modified so that

it appears on the top of its stacking context, the <body>:

// see GitHub repo for full example

(function (window, $, Voltron, Duvet, Shamen, ApacheChief, jenga) {

 'use strict';

 // makes dialog visible in the UI
 Dialog.prototype.show = function () {

124 | Chapter 11: Working with the Shadow DOM

 // this will adjust the z-index, set the display property,
 // and position the dialog
 this.overlay.position();
 // bring the host element to the top of the stack
 jenga.bringToFront(this.$el[0].parentNode.host);
 };

})(window, jQuery, Voltron, Duvet, Shamen, ApacheChief, jenga);

Instantiating a Dialog Component Instance
The dialog component can now be instantiated just as before, but it will now be
scoped to the shadow root:

var dialog = new DialogShadow({
 draggable: true,
 resizable: true,
 hostQrySelector: '#dialog-host'
});

dialog.api.show();

Summary
In this chapter we introduced the shadow DOM and discussed the primary benefit it
affords developers: encapsulation. Before the shadow DOM, the only way to achieve

this level of encapsulation was to use an <iframe>. We then discussed, in great detail,
the encapsulation of styling, including the new supporting CSS selectors and the
rationale for these new selectors. We then covered the projection of nodes to inser‐

tion points, using <content> and <shadow> elements. This included the usage of the

new select attribute for selecting specific content from a host node. Next, we exam‐
ined the properties and methods for inspecting distributed, host, and root nodes.
After that, we highlighted how events work in host and root nodes. Finally, we upda‐
ted the dialog component example to use a shadow DOM.

Summary | 125

CHAPTER 12

Creating Custom Elements

Jason Strimpel

Raise your hand if you have seen markup like this:

<ul class="product-listing">
 <li class="product">

 <h3>log</h3>
 <p>
 What rolls down stairs

 alone or in pairs,

 and over your neighbor's dog?

 What's great for a snack,

 And fits on your back?

 It's log, log, log

 <p>
 <ul class="reviews">
 <li class="review">
 <div class="reviewer">

 <div class="reviewer-name">R. Crumb</div>
 </div>
 <p>
 We are living surrounded by illusion, by professionally
 created fairy tales. We barely have contact with the real
 world.
 </p>

This markup is fairly semantic, and you can easily determine its intent. However,
what if you could make it even more semantic and easier to understand? Consider
this version:

127

<product-listing>

 <product-desc name="log" img="img/log.jpg">
 What rolls down stairs

 alone or in pairs,

 and over your neighbor's dog?

 What's great for a snack,

 And fits on your back?

 It's log, log, log

 <product-reviews>
 <product-review>
 <product-reviewer name="R. Crumb" img="img/rcrumb.jpg" />
 We are living surrounded by illusion, by professionally
 created fairy tales. We barely have contact with the real
 world.
 </product-review>
 </product-reviews>
 </product-desc>
</product-listing>

All the extraneous markup and properties have been eliminated, making it under‐
standable at a glance. Until recently, this second version would not have been possi‐
ble. What makes it possible today are custom elements.

Introducing Custom Elements
The intent of custom elements is to provide a common way to encapsulate function‐
ality in a self-describing manner that can be reused. Additionally, this mechanism
provides a consistent life cycle for elements, and an API for registering and extending
elements.

In order to leverage custom elements, you must first determine if the browser render‐
ing the page supports them:

// determine if browser supports custom elements

var supportsCustomElements = (function () {
 return 'registerElement' in document;
})();

Registering Custom Elements
In order for a browser to recognize and support a custom element, it must first be

registered with the browser. This is done via document.registerElement, which
takes two arguments. The first argument is the name of the custom element being
registered. The second argument is an options object, which allows you to define the
prototype from which the element inherits. The default prototype is

HTMLElement.prototype. This options argument also provides a mechanism for
extending native elements, which will be covered in the next section of this chapter.

You register an element as follows:

128 | Chapter 12: Creating Custom Elements

http://bit.ly/dwc-custom

// register an element

document.registerElement('product-listing');

// reigster an element and specify the prototype option

document.registerElement('product-listing', {
 prototype: Object.create(HTMLElement.prototype)
});

Registering a custom element adds the element to the browser’s
registry. This registry is used for resolving elements to their defini‐
tions.

Once a custom element has been registered, it can be referenced and utilized like a
native element:

// create an instance of the product-listing custom element

var productListingEl = document.createElement('product-listing');
// append it to the DOM

document.body.appendChild(productListingEl);

Naming Conventions
You might have noticed that the name of our example custom element was all lower‐

case, and contained a dash (-). This is per the W3C specification. The rationale
behind the naming convention is to prevent name collisions from occurring as new
elements are added to the HTML specification and to allow browsers to easily distin‐
guish custom elements from native elements.

Extending Elements
document.registerElement provides a method for extending both custom elements
and native elements via the options argument.

Extending Custom Elements
Custom elements can be extended by adding the extends property to the

document.registerElement options object in addition to specifying the prototype:

// create a custom element that represents a turtle

var Turtle = document.registerElement('regular-turtle');

// extend regular-turtle custom element

var NinjaTurtle = document.registerElement('ninja-turtle', {
 prototype: Object.create(turtle.prototype, {
 isMutant: { value: true },

Extending Elements | 129

http://bit.ly/dwc-registry
http://bit.ly/dwc-concepts

 isNinja: { value: true }
 }),
 extends: 'regular-turtle'
});

These extended custom elements and their bases can then be instantiated in three dif‐
ferent ways:

// declared in markup

<regular-turtle></regular-turtle>
<ninja-turtle></ninja-turtle>

// document.createElement

var regularTurtle = document.createElement('regular-turtle');
var ninjaTurtle = document.createElement('ninja-turtle');

// new operator

var regularTurtle = new Turtle();
var ninjaTurtle = new NinjaTurtle();

Extending Native Elements
Native elements can be extended in the same fashion as custom elements:

var fancyTable = document.registerElement('fancy-table', {
 prototype: Object.create(HTMLTableElement.prototype),
 extends: 'table'
});

When a native element is extended by a custom element it is referred to as a type
extension custom element. The difference between extending custom elements and
native elements is that native elements have the added benefit of declaratively defin‐
ing themselves as being enhanced versions of their native counterparts. For example,

this HTML declaration is stating that <table> is a type of fancy-table:

<table is="fancy-table"></table>

Deining Properties and Methods
This is where the fun begins! Just as native elements have properties (e.g., parentNode

and methods (e.g., cloneNode), custom elements can define their own. This allows a
developer to create a public API for a custom element.

The process for adding properties to an element prototype is not any different than
doing so for other object prototypes. We have already seen one example that uses

Object.create to define all the properties at once, but the following code block illus‐
trates some different methods:

// better like this?

Turtle.prototype.walk = function () {
 // walk this way

130 | Chapter 12: Creating Custom Elements

};

// or better like this?

Object.defineProperty(NinjaTurtle.prototype, 'fight', {
 value: function () {
 // hiya
 }
});

// better like this?

Turtle.prototype.legs = 4;

Resolving Custom Elements
If you have experimented with creating elements that are not defined by one of

the HTML specifications—e.g., <jason-is-awesome>—then you know that a brows‐
er’s HTML parser will happily accept such an element and continue processing the
document without hesitation. This is because the browser resolves the element to

HTMLUnknownElement. All elements of unknown type and deprecated elements

(remember <blink>?) inherit from this type. The same is true for custom elements

that have yet to be registered. For instance, <jason-is-awesome> could be declared in
the markup and then registered after the fact:

<body>

 <jason-is-awesome>Let me count the ways.</jason-is-awesome>
 <script type="text/javascript">
 var jasonIsAwesomeEl = document.querySelector('jason-is-awesome');
 // isUnknown is true
 var isUnknown = jasonIsAwesomeEl.__proto__ === HTMLUnknownElement
 .prototype;

 document.registerElement('jason-is-awesome');
 // isUnknown is false
 isUnknown = jasonIsAwesomeEl.__proto__ === HTMLUnknownElement.prototype;
 </script>
</body>

If a custom element’s prototype is no longer an HTMLUnknownElement.prototype

once it has been registered, then what is it? In this case it is an HTMLElement.proto

type, because that is the default prototype:

// continuing from the last example...

// isHTMLElement is true

var isHTMLElement = jasonIsAwesomeEl.__proto__ === HTMLElement.prototype;

Hooking Into Custom Element Life Cycles
One feature that JavaScript widgets lack is a clearly defined life cycle. Libraries such as
YUI have done a great job of defining a life cycle for their base class widgets. How‐

Resolving Custom Elements | 131

http://bit.ly/dwc-htmlunknown
http://bit.ly/dwc-yui

ever, there is not a standardized widget life cycle across libraries. In my opinion as an
application and framework developer, this is one of the greatest benefits that custom
elements offer.

I cannot count how many times I have encountered life cycle issues combining differ‐
ent widgets and widget libraries. You spend all your time either attempting to wrap
them in a common life cycle or applying miscellaneous patches until your application
becomes completely unmanageable. Custom elements are not the panacea for life
cycle issues, but they at least provide a standardized set of hook points into an ele‐
ment’s life cycle. If they provided too much structure, then they would be extremely
inflexible and likely make a fair amount of assumptions that turned out to
be incorrect.

Fortunately, custom elements have hook points at specific times in their life cycles
that help provide consistency in terms of when and how your code executes:

createdCallback
createdCallback is called when an instance of the element is created:

var CallbackExample = document.registerElement('callback-example');
CallbackExample.prototype.createdCallback = function () {
 alert('and boom goes the dynomite');
}

// createdCallback is executed

document.createElement('callback-example');

attachedCallback
attachedCallback is called when an element is attached to the DOM:

var CallbackExample = document.registerElement('callback-example');
CallbackExample.prototype.attachedCallback = function () {
 alert('Put yourself in my position.');
}
var cbExampleEl = document.createElement('callback-example');

// attachedCallback is executed

document.body.appendChild(cbExampleEl);

detachedCallback
detachedCallback is called when an element is removed from the DOM:

var CallbackExample = document.registerElement('callback-example');
CallbackExample.prototype.detachedCallback = function () {
 alert('He died, too. So it goes.');
}
var cbExampleEl = document.createElement('callback-example');

132 | Chapter 12: Creating Custom Elements

document.body.appendChild(cbExampleEl);
// detachedCallback is executed

document.body.removeChild(cbExampleEl);

attributeChangedCallback
attributeChangedCallback is called when an element attribute has changed. The
callback is passed three arguments—the attribute name, previous attribute value, and
new attribute value:

<head>

 <script type="text/javascript">
 var CallbackExample = document.registerElement('callback-example');
 CallbackExample.prototype
 .attributeChangedCallback = function (attr, prevVal, newVal) {
 alert('Change places!');
 }
 </script>
</head>

<body>

 <callback-example change-places="fry" />
 <script type="text/javascript">
 var cbExampleEl = document.querySelector('callback-example');

 // attributeChangedCallback is executed
 cbExampleEl.setAttribute('change-places', 'bender');
 </script>
</body>

Styling Custom Elements
Styling a custom element is no different from styling any other element:

/* type extension attribute selector */

[is="four-roses"] {
 color: Brown;
 opacity: 0.5;
}

/* custom element tag name */

sculpin-ipa {
 color: GoldenRod
 opacity: 0.4;
}

The only difference is that a new pseudoselector, :unresolved, now exists to help
prevent FOUCs (flashes of unstyled content) for custom elements that have not been
registered when the DOM is being parsed and rendered.

Styling Custom Elements | 133

This occurs because the custom element will not be rendered until its definition is
resolved by the browser. In some cases this may not matter because the element regis‐

tration will occur before rendering, as with a nondeferred <script> in the <head>,

but in other cases registration will occur after rendering, as in the case of a <script>

at the bottom of the <body>. In the latter case the custom element would render
unstyled. Then, once the element had been registered, the styling would be applied
and a repaint or redraw would occur, resulting in a FOUC. This is a good example

use case for :unresolved. One preventative measure would be to set the opacity of

the unresolved elements to 0:

[is="four-roses"]:unresolved {
 // nothing to see here
 opacity: 0;
}

sculpin-ipa:unresolved {
 // nothing to see here
 opacity: 0;
}

Utilizing Templates and the Shadow DOM with Custom
Elements
One of the benefits of web components is that they are just sets of APIs that support
the concept of making the Web a better development platform, so you can decide
when and how you utilize them. In the case of custom elements it makes sense to
store the element contents inside of a template, so they remain inert until an instance
of the element is created. The shadow DOM is also useful in the case that you do not
want the innards of your custom element exposed, to prevent potential issues if devel‐
opers intentionally or accidentally manipulate the element’s child nodes. The shadow
DOM also provides the added benefit of style encapsulation so that none of the cus‐
tom element styles bleed out and parent page styles do not bleed through.

The following example illustrates the use of a template and shadow DOM with a cus‐
tom element:

<head>

 <template class="draag-children">
 <style>
 p span {
 text-decoration: underline;
 }
 </style>
 <p>
 Draag child 1: It doesn't move.
 </p>

134 | Chapter 12: Creating Custom Elements

 <p>
 Draag child 2: What a shame we can't play with her any
 more.
 </p>
 </template>
 <script type="text/javascript">
 document.registerElement('fantastic-planet', {
 prototype: Object.create(HTMLElement.prototype, {
 createdCallback: {
 value: function () {
 var template = document
 .querySelector('.draag-children');

 var content = document
 .importNode(template.content, true);

 // the context, this, is the custom element in
 // element instance methods
 this.createShadowRoot().appendChild(content);
 }
 }
 })
 });
 </script>
</head>

<body>

 <fantastic-planet />
</body>

Converting the Dialog Component to a Custom Element
This is where the power of web components really begins to shine. The ability to
encapsulate (and obfuscate) a UI component, such as a dialog, into a declarative
interface, a custom element, is an extremely concise and powerful pattern. It frees the
custom element implementer, to a certain degree, from the concern of maintaining
backward compatibility with an extensive public API. It also allows the implementer
to easily interchange implementation details and technologies in an inert template.
Lastly, it protects the implementer and the consumer from runtime conflicts because
of the encapsulation the shadow DOM offers.

The sections that follow display the applicable portions of the

registerElement prototype with the call for context. In reality

these would all be part of the same prototype of a single

registerElement call.

Converting the Dialog Component to a Custom Element | 135

Creating the Dialog Custom Element
The first step in converting the dialog component to a custom element is to define the
template and register the element (the life cycle callback will be implemented in a
later section):

<head>

 <script type="text/javascript" src="/vendor/jquery.js"></script>
 <template id="dialog">
 <style>
 // styling source
 </style>
 <script type="text/javascript">
 // dialog component source
 </script>
 <div role="dialog" aria-labelledby="title" aria-describedby="content">
 <h2 id="title"></h2>
 <p id="content"></p>
 </div>
 </template>
 <script type="text/javascript">
 // callback will be implemented later
 document.registerElement('dialog-component', {
 prototype: Object.create(HTMLElement.prototype, {
 createdCallback: { value: function () {} }
 });
 });
 </script>
</head>

<body>

 <dialog-component title="Heavy Traffic">
 What makes you happy? What makes you happy? Where do you go?

 Where do you go? Where do you hide? Where do you hide?

 Who do you see? Who do you see? Who do you trust?

 Who do you trust?
 </dialog-component>
</body>

Implementing the Dialog Custom Element’s Callbacks
The injection and activation of the template contents should be done upon element
creation. This ensures that the content will only be activated once per element:

// private and public properties and methods referenced in the callback

// will be defined in the next section

document.registerElement('dialog-component', {
 prototype: Object.create(HTMLElement.prototype, {
 createdCallback: {
 enumerable: false,
 value: function () {
 var template = document.querySelector('#dialog');
 var content = document.importNode(template.content, true);

136 | Chapter 12: Creating Custom Elements

 var draggable = this.getAttribute('draggable');
 var resizable = this.getAttribute('resizable');
 var options = {
 draggable: draggable === undefined ? true : draggable,
 resizable: resizable === undefined ? true : resizable,
 hostQrySelector: this
 };

 this.root = this.createShadowRoot().appendChild(content);
 // get a reference to the dialog container element in the root
 this.dialogEl = this.root.querySelector('[role="dialog"]');
 options.$el = this.dialogEl;
 // align element to body since it is a fragment
 options.alignToEl = document.body;
 options.align = 'M';
 // do not clone node
 options.clone = false;

 // get the content from the host node; projecting would retain
 // host node styles and not allow for encapsulation of template
 // styles
 this.setTitle(this.host.getAttribute('title'));
 this.setContent(this.innerHTML);

 // create a dialog component instance
 this.api = new Dialog(this.options);
 }
 }
 });
});

Implementing the Dialog Custom Element API
The final step is creating an API. Some properties will be considered public and will
be enumerable. Private properties will not be enumerable:

document.registerElement('dialog-component', {
 prototype: Object.create(HTMLElement.prototype, {
 // public
 show: {
 value: function () {
 this.api.show();
 },
 enumerable: true
 },
 hide: {
 value: function () {
 this.api.hide();
 },
 enumerable: true
 },
 setTitle: {

Converting the Dialog Component to a Custom Element | 137

 value: function (title) {
 this.dialogEl.querySelector('#title').innerHTML = title;
 },
 enumerable: true
 },
 setContent: {
 value: function (content) {
 this.dialogEl.querySelector('#content').innerHTML = content;
 },
 enumerable: true
 },
 // private
 dialogEl: {},
 root: {},
 api: {}
 });
});

Showing the Dialog
Now that an API for the dialog custom element has defined, a developer can show it
and set values:

// get a reference to the custom element

var dialog = document.querySelector('dialog-component');
// use the custom element's public API to show it

dialog.show();

Summary
In this chapter, we first introduced custom elements and outlined the primary bene‐
fits: maintainability, readability, encapsulation, etc. Next, we examined registering ele‐
ments, extending custom and native elements, and adding properties and methods to
elements, affording developers a way to extend the Web. Then we reviewed how the
browser resolves elements. After that we looked at the custom element life cycle and
the callbacks available for different points in the life cycle. We discussed how these
callbacks help to create a consistent life cycle, which makes development, debugging,
and maintenance easier. Next, we saw that native element styling rules apply to cus‐
tom elements as well and introduced a new pseudoselector that helps to prevent
FOUCs, a common problem with modern web applications. Then we saw the benefits
of using templates and the shadow DOM in conjunction with custom elements.
Finally, we applied these learnings to create a custom element for the dialog compo‐
nent, adding all the aforementioned benefits to our component.

138 | Chapter 12: Creating Custom Elements

CHAPTER 13

Importing Code

Jason Strimpel

Practically every other application platform allows packaging and importing code,
but the web platform does not. This makes it extremely difficult to share code in a
common fashion across applications. In the absence of a standard import, many
other creative solutions have been invented and adopted by developers. However,
none of these solutions have holistically addressed the need to include CSS, Java‐
Script, HTML, images, etc. as a single resource. This is what imports promise
to deliver.

There are imports already, in the sense that there are <link> tags

for CSS and <script> tags for JavaScript that work for including
code. However, these do not scale well or allow developers to define
complete resources in a standard way that works consistently.

Declaring an Import
Importing code is as simple as adding a <link> and setting the rel value to import:

<head>

 <link id="meeseeks-import" rel="import" href="/imports/meeseeks/index.html">
</head>

Imports can also be added to a document programmatically:

<head>

 <script type="text/javascript">
 var link = document.createElement('link');
 link.rel = 'import';
 link.id = 'meeseeks-import';
 link.href = '/imports/meeseeks/index.html';
 link.onload = function (e) {

139

 // do something with import
 };
 link.onerror = function (e) {
 // doh! something went wrong loading import
 // handle error accordingly
 };

 document.head.appendChild(link);
 </script>
</head>

An import is only loaded and parsed once, based on the URL,
regardless of how many times it is requested, so the imported Java‐
Script is only executed once.

In order to make use of the resources in an import—CSS, HTML, and JavaScript—
the browser must support imports. Detecting support for imports can be done by

checking for the import property in a <link>:

// determine if browser supports imports

var supportsImports = (function () {
 return 'import' in document.createElement('link');
})();

Accessing an Import’s Content
The content of an import can be accessed by getting a reference to the import <link>

and accessing the import property. Let’s use the source of the import referenced in

the previous section, /imports/meeseeks/index.html, as an example:

<link rel="stylesheet" href="index.css" id="meeseeks-styles"></link>
<template id="meeseeks-template">
 <p>I'm Mr. Meeseeks, look at me!</p>
</template>

<script type="text/javascript">
 var MrMeeseeks = (function () {
 'use strict';

 // importer/parent document; more on this later
 var parentDocument = document;
 // import document; more on this later
 var importDocument = parentDocument.currentScript.ownerDocument;
 var template = importDocument.querySelector('#meeseeks-template')
 .content;

 function MrMeeseeks(el, options) {
 var self = this;

140 | Chapter 13: Importing Code

 this.options = options;
 this.el = el;
 // append template to parent el
 this.el.appendChild(parentDocument
 .importNode(template.content, true);
 // set interval to check if task has been completed
 this.isDoneInterval = setInterval(function () {
 self.isTaskComplete();
 }, this.interval);
 }

 MrMeeseeks.prototype.limit = 3600000;

 MrMeeseeks.prototype.interval = 60000;

 MrMeeseeks.prototype.taskComplete = false;

 MrMeeseeks.prototype.isTaskComplete = function () {
 if (this.taskComplete) {
 clearInterval(this.isDoneInterval);
 return;
 }

 alert('Existence is pain to a Meeseeks Jerry...' +
 'and we will do anything to alleviate that pain!');
 }

 return MrMeeseeks;
 })();
</script>

There is quite a bit of new material in the previous code block. Let’s break it down

section by section. The MrMeeseeks constructor is handling all the resources in this
import, but the parent document that imported the code can just as easily access the
code as well.

Referencing Documents
You might have noticed parentDocument.currentScript.ownerDocument at the top

of the immediately invoked function wrapper inside of the /imports/meeseeks/

index.html import. parentDocument is a reference to document, which is the docu‐

ment that imported the import. document is always the top-level document, regard‐

less of the context. The currentScript value is the “<script> element whose script is

currently being processed,” and ownerDocument returns the top-level document object
for a node. The combination of these two properties returns a reference to the import
document.

An import document can be referenced from the main document by selecting the

import node and accessing the import property:

Accessing an Import’s Content | 141

http://bit.ly/dwc-currentscript
http://bit.ly/dwc-nodeowner

var importDocument = document.querySelector('#meeseeks-import').import

Applying Styles
Styles are automatically applied to the main document when an import is loaded, so it
is important to ensure that the import being loaded has properly namespaced its

selectors. Styles can be removed by deleting the import node or by targeting <link>

and <style> nodes in the import:

// remove the import

var link = document.querySelector('#meeseeks-import');
link.parentNode.removeChild(link);

// remove an import link node

var importDocument = document.querySelector('#meeseeks-import').import
var importLink = importDocument.querySelector('#meeseeks-styles');
importLink.parentNode.removeChild(importLink);

If an import <link> with the same URL as a previously added
import is added to the main document, it does not impact the CSS

cascade. However, if an import <link> is removed from the main

document and then an import <link> with the same URL as the
removed import is added, it does impact the CSS cascade. The CSS

cascade is also impacted if the import <link> nodes’ order is pro‐
grammatically modified in the DOM tree.

The latter example is probably not that useful, but there are a couple of different use
cases that make the former example of removing imports from the main document
worthwhile. One use case is if you are using imports to apply themes to an application
and the application allows users to toggle between themes (e.g., Gmail). A second use
case is if you have a single-page application that lazy loads resources on a per-route
basis, which requires adding and removing resources as a user navigates throughout
the application.

In a single-page application (SPA), either all necessary code—
HTML, JavaScript, and CSS—is retrieved with a single page load,
or the appropriate resources are dynamically loaded and added to
the page as necessary, usually in response to user actions. The page
does not reload at any point in the process, nor does control trans‐
fer to another page, although modern web technologies (such as
those included in HTML5) can provide the perception and naviga‐
bility of separate logical pages in the application. Interaction with
the SPA often involves dynamic communication with the web
server behind the scenes.

142 | Chapter 13: Importing Code

http://bit.ly/dwc-spa

The following example demonstrates the first use case, applying themes:

<!-- possible theme import examples to be loaded -->

<link data-theme="Stummies" rel="import" href="/imports/themes/stummies.html">
<link data-theme="GLeeMONEX" rel="import" href="/imports/themes/gleemonex.html">

// called on theme load

function onLoad(e) {
 var theme = this.dataset.theme;
 removeNodes('[data-theme]:not([data-theme="' + theme + '"])');
}

// called on theme load error

function onError(e) {
 var theme = this.dataset.theme;
 alert('Error loading the ' + theme + '!');
}

// used to remove previously loaded theme(s)

function removeNodes(selector) {
 var nodes = document.querySelectorAll(selector);

 [].forEach.call(nodes, function (node) {
 node.parentNode.removeChild(node);
 });
}

// called when user has selected a new theme in the UI

function setTheme(theme) {
 var link = document.createElement('link');

 link.rel = 'import';
 link.dataset.theme = theme;
 link.href = '/imports/themes/' + theme.toLowerCase() + '.html';
 link.onload = onLoad;
 link.onerror = onError;

 document.head.appendChild(link);
}

Accessing Templates
An import is an excellent mechanism for loading templates in the main document.

Import templates can be accessed just like <link> nodes:

var importDocument = document.querySelector('#meeseeks-import').import;
var template = importDocument.querySelector('#meeseeks-template');
var templateClone = document.importNode(template.content, true);

document.querySelector('body').appendChild(templateClone);

Accessing an Import’s Content | 143

One use case for importing templates is loading a commonly used set of templates,
such as error pages that could be used by every route in a single-page application. For
instance, if a route cannot locate a resource such as a controller object or there is an
error loading the model data for the route, then it might be appropriate to respond

with a 404-template or 500-template error:

<!-- import template content error -->

<template id="500-template">Something went terribly wrong.</template>
<template id="404-template">We can't find it.</template>

function onError(code, target) {
 var errorDocument = document.querySelector('#errors-import').import;
 var template = errorDocument.querySelector('#' + code + '-template');
 var templateClone = document.importNode(template.content, true);

 target.appendChild(templateClone);
}

Executing JavaScript
JavaScript in an import is executed in the context of the main document,

window.document. This is important because it means that any variables or functions

defined within a <script> in an import, outside of a closure, will be part of the global

context, window. This is useful for exporting functions to the main document, but at
the same time it creates the potential for global name collisions, so use it with care!

Removing an import <link> from the main document does not
remove the JavaScript that was executed by the import—keep this
in mind when loading imports.

Understanding Imports in Relation to the Main Document
It is important to remember that basic best practices still apply when dealing with
imports—minimize network calls, minify files, place scripts at the bottom of the page,
etc. In addition to performance considerations, though, there are other aspects that
need to be understood when importing documents.

Parsing Imports
Imports do not block the parsing of the main document, which means that all import

scripts are processed as if they had the defer property set. Import scripts are pro‐
cessed in order after the main document has finished executing any JavaScript in its

<script> nodes and external JavaScript that is not marked as deferred. This non-

144 | Chapter 13: Importing Code

blocking behavior is beneficial because it means imports can be placed at the top of

the <head>, allowing the browser to begin downloading and processing the content as
soon as possible without impacting the loading and rendering of the main document
As a consequence, all performance best practices for improving the rendering time of

a page—e.g., placing <script> nodes at the bottom—still hold true.

Cross-Domain Considerations
Import URLs are governed by the same rules as AJAX requests, so cross-origin
requests are not allowed unless the server that is responsible for delivering the
imports has been configured to support cross-origin resource sharing (CORS). These
restrictions should be taken into consideration when configuring a server that will be
used as an import repository for serving applications on different domains.

Subimports
Imports can import other imports. The rationales for this are the same as for modula‐
rizing other code: reuse, abstractions, testability, extendibility, etc. The same parsing
and execution rules apply.

Loading Custom Elements
Up to this point we have evaluated imports for loading CSS, templates, and Java‐
Script, and have explored ways for accessing and managing these resources.
Throughout the examples the onus has been on the parent document to leverage

these resources. The MrMeeseeks import example managed some of the resources
through an API it exposed. This API made the management of resources easier and

limited the exposure of implementation details. However, it attached the MrMeeseeks

object to window, which violates a JavaScript best practice: do not pollute the global
namespace. In a small application this is less of a problem, but the larger an applica‐

tion becomes the more likely there is to be a name collision in window, which could
cause an application error. In order to properly manage this, a registration system and
a contract between the import and the main document would need to be defined.
Fortunately, web components make this possible for us via custom elements:

<style>

 sea-of-green:unresolved {
 opacity: 0;
 }

 sea-of-green {
 opacity: 1;
 background: green;
 border-radius: 50%
 }

Loading Custom Elements | 145

http://bit.ly/dwc-cors

</style>

<template id="sea-of-green">
 Hydrolate, verdant chrysoidine.
</template>

<script type="text/javascript">
 document.registerElement('sea-of-green', {
 prototype: Object.create(HTMLElement.prototype, {
 createdCallback: {
 value: function () {
 var template = document.querySelector('#sea-of-green');
 var content = document.importNode(template.content, true);

 this.createShadowRoot().appendChild(content);
 }
 }
 })
 });
</script>

The import loads a custom element that is self-registering because the JavaScript
is executed after the import content and the main document have been parsed. This
makes the custom element available to the main document automatically. In addition
to this, the custom element provides a commonly understood contract because it has
a natively defined life cycle. This custom element can then easily be used in the main
document:

<head>

 <link rel="import" href="/imports/sea-of-green/index.html">
</head>

<body>

 <sea-of-green />
</body>

Importing the Dialog
Including the dialog custom element source in an import is simply a matter of copy‐
ing and pasting the source into an import file. Then any page that includes the import
can easily use the dialog custom element:

<head>

 <link rel="import" href="/imports/dialog/index.html">
</head>

<body>

 <dialog-component title="After Ford">
 Ending is better than mending.

 The more stitches, the less riches.
 </dialog-component>
</body>

146 | Chapter 13: Importing Code

Summary
In this chapter we first introduced the premise for imports, then covered how to
declare an import both programmatically and declaratively. Next we examined how
to access an import’s content, which included referencing the import and main docu‐
ments, accessing styles, leveraging templates, and understanding JavaScript execution
in an import. After that we looked at how imports are processed by the main docu‐
ment. Then we covered using imports to load custom elements and the benefits that
the self-registering pattern offers. Finally, we saw how to use imports to load the dia‐
log custom element into the main document.

Summary | 147

PART IV

Testing, Building, and Deploying
Components with Polymer

In Part III we went over the core of web components and their constituent technolo‐
gies, gaining an understanding of the complexity that they present. In Part IV we will
be porting our web component to take advantage of the Polymer framework, incor‐
porating it into a Grunt build process, packaging it with Vulcanize, and publishing it
with Bower. We’ll also take a look at some of the currently available options for test‐
ing web components and show the end-to-end process of writing and running unit
tests using Karma.

The Polymer Project is more than just a pleasing API for web components. It pro‐
vides many, many shims that bring the future of web development to most relatively
modern browsers today. Technologies like the shadow DOM aren’t the easiest to
polyfill, but the community has rallied around this suite of shims in order to provide
consistent behavior across all modern browsers and in all competing frameworks.
This means that you can feel relatively confident investing time in understanding Pol‐
ymer, what its developers are trying to do, and how they are doing it even if you have
not fully bought into the API.

As your projects grow and your usage of Polymerized web components increases,
you’ll soon find that managing web component source files requires a different level
of concern than traditional development. You’ll be managing multiple JavaScript,
HTML, and CSS resources that can’t be concatenated blindly with others of their
kind. Gone are the days of treating JavaScript as an afterthought, and it is important
to consider your source code as first class, having its own build process, pipeline, unit
tests, linters, and analytics. Committing to a build tool like Grunt or Gulp early will
allow you to manage these disparate tools, creating a task chain with a smooth flow
and resulting in fewer headaches and less maintenance frustration. Vulcanize, a
project created and maintained by the Polymer group, will help you package your

web components for deployment or distribution. Finally, we’ll cover publishing with
Bower, an excellent tool for development that also provides an intuitive and standard
way for users of your libraries to install them and get started quickly.

CHAPTER 14

Introducing Polymer

Jarrod Overson

There are a number of caveats to the use of web components as they stand today,
but there are lots of people from lots of companies doing their best to help get you
started as quickly as possible. Polymer is one such project that has gained traction
quickly and has proven itself to be invaluable in the web component revolution. Poly‐
mer is a BSD-licensed suite of libraries that enable you to be productive with web
components immediately.

Polymer Mission Statement
The expressed focus of Polymer is to “embrace HTML as much as possible by encour‐
aging the use of custom elements wherever possible.”

To help speed the adoption of future web technology, Polymer’s authors have created
shims for all related aspects of web components and tangential technologies. These
shims are entirely usable outside of Polymer and are accepted as standard shims by
companies like Mozilla and Microsoft, who use them with their own web component
frameworks.

Considering that it is such a bleeding-edge technology, the Polymer group has done
excellent work easing the transition to web component adoption. Polymer (outside of
the Polymer elements) consists of two distinct layers of code. In this respect it is simi‐
lar to jQuery, which is made up of jQuery itself and Sizzle. Sizzle is the independent

selector engine that normalizes DOM selection for browsers that don’t support get

QuerySelector and similar methods. Most people aren’t even aware of this abstrac‐
tion because it’s largely invisible to the end user.

151

Polymer proper is the opinionated sugar on top of standard APIs that provides a
satisfying framework for creating and managing web components. The second, lower
layer of code, known as platform.js (soon to be known as webcomponents.js), is an
extensive series of shims that iron out APIs and inconsistencies across evergreen
browsers.

Evergreens
“Evergreen” is the term adopted for AAA browsers that keep themselves up to date
without user interaction. This includes every version of Chrome, modern Firefox,
modern Opera, and IE 10+.

This is not a term used to denote browsers that support any particular technology
and, as such, can be misleading when used to describe support. Unless browsers start
deviating dramatically from specifications, it can be thought of as a term that means
“a browser that will probably support emerging technologies in a reasonable time
frame.”

Figure 14-1 shows the Polymer group’s explanation of its component pieces. You can
see the distinct layers that make up the Polymer framework and the foundational
pieces that make up the platform.

The long-term goal of Polymer, with respect to its platform shims, is to eventually
reduce and eliminate the need for them completely. In its heyday, jQuery (like many
other libraries) was required to support very old browsers, due to the time between
version upgrades. Over the years this added up to a substantial amount of code that
has been and will be around for a long time. Polymer’s commitment to only support‐
ing evergreen browsers ensures that the gradual removal of shim code is likely to be a
reality, albeit at the substantial cost of limited browser support. Internet Explorer’s
support starts at version 10, and Safari’s support doesn’t extend to versions before
Safari 6. There are other community shims that provide limited support to earlier
browsers, but that is beyond the scope of Polymer and this book.

152 | Chapter 14: Introducing Polymer

Figure 14-1. Polymer components (source: https://www.polymer-project.org)

Polymer Versions
This book was conceived during the Polymer 0.1 era (the “alpha” years), started tak‐
ing form while Polymer 0.2 was in use, and matured to completion as Polymer
evolved to version 0.8. Polymer 0.8 is still in preview on a branch on GitHub at the
time of this book’s publication. The jump from 0.5 to 0.8 saw some major changes to
the Polymer philosophy, but the majority of those choices don’t affect the common
usage of Polymer. Polymer 0.8 focuses on performance and cutting out features that,
ultimately, people weren’t using. The functionality still exists in add-on libraries but
has been removed from the core Polymer builds.

Since the changes in 0.8 (at the time of publication) don’t substantially affect the ideas
in this book, and given that the Polymer team is still making decisions as to what
Polymer 0.8 (and Polymer 1.0) will look like, the book’s code is tailored around the
0.5 release.

Introducing Polymer | 153

https://www.polymer-project.org

Polymer’s syntax was inspired by the <element> element, which is currently in spec
limbo. This element was conceived as a way to declaratively define elements within
an HTML document. It was removed due to complexities in its implementation but
the fact that it can live on spiritually within Polymer is a testament to this shift in how
the Web is evolving. As developers, we are being provided with the tools necessary to
build pieces of the Web at a very low level.

Polymer Elements
A basic Polymer element definition looks like this:

<polymer-element name="hello-world" noscript>
 <template>
 <h1>Hello World</h1>
 </template>
</polymer-element>

The syntax should look reasonably intuitive, and if you’ve just read Part III, the sim‐
plicity is probably welcome. This small chunk of code defines a custom element

called hello-world that, when instantiated, will clone the template’s content and

append it to the element’s shadow root. The noscript attribute on polymer-element
just tells Polymer that we’re not doing any scripting inside the element and that the
element can be created automatically with the default options.

Now contrast this to the steps you needed to take with bare web component APIs in
Part II, and you might get that “Ohhh, neat” feeling you had when you first started
working with jQuery. There’s no doubt that the web component APIs can be a little
cumbersome and unintuitive, especially when combined with each other, so the bene‐
fit of this sugar is immediately apparent.

One of the substantial gains Polymer provides beyond the syntactic sugar is its two-
way data binding integrated into templates and the JavaScript API. This allows you to
declaratively define template replacements that are bound to attributes and other
changing properties. For example, the following code:

<polymer-element name="x-greeting" attributes="target">
 <template>
 <h1>Hello {{target}}</h1>
 </template>
 <script>
 Polymer('x-greeting', {
 target: "World"
 });
 </script>
</polymer-element>

154 | Chapter 14: Introducing Polymer

http://bit.ly/dwc-speclimbo
http://bit.ly/dwc-speclimbo

creates the x-greeting element, whose target attribute can be used to specify who

should be greeted (defaulting to World):

<x-greeting target=Mom></x-greeting>

Given the requirement that a custom element must have a hyphen
in its name (see the sidebar “Naming Conventions” on page 129), a

common practice is to namespace custom elements, as in polymer-

tabs or myapp-button. In the case of reusable elements that don’t

exist in a logical namespace, a growing standard is to use the x- or

sometimes ui- prefix for the element names.

For some elements, such as this one, it may be more intuitive to make use of the con‐
tent of a custom element instead of an attribute. This can easily be done with the

<content> tag:

<polymer-element name="x-greeting" noscript>
 <template>
 <h1>Hello <content>World</content></h1>
 </template>
</polymer-element>

Here we default our content to World again, but we can change who is greeted by
specifying different content in the custom element instead of using an attribute:

<x-greeting>World!</x-greeting>

Notice we went back to using noscript in the preceding code sample; this isn’t

required to use <content>, but it’s a good exercise to see just how complex we can
make a custom element without requiring any scripting whatsoever. This is more
important than it may seem—this is not an exercise for curiosity’s sake. When you’re
playing with web components you are implicitly defining your environment as being
close to or beyond the leading edge. This provides you with a wide array of CSS
styles, animations, and techniques that most people probably aren’t familiar with, due
to common browser compatibility requirements. It’s important to reset your baseline
in order to make the most out of web components.

Resetting Your Baseline
It’s not only CSS that you may need to brush up on. Technologies like SPDY now
become something you can reliably invest in, and SPDY itself is more than just a
“faster Web.” SPDY dramatically reduces the cost of serving many small files from the
same server. This will have substantial implications for how web sources are struc‐
tured, maintained, and built in the future.

Polymer Elements | 155

http://bit.ly/dwc-spdy

AMD or ES6 modules will not need to be concatenated together. HTML imports will
not only be a viable solution, they will be the preferred abstraction layer, and sprite‐
sheets may be a thing of the past.

In this weird, alien future, even using a content delivery network may adversely affect
perceived performance. Crazy, I know.

Adding Style
To start adding CSS rules to your elements, you simply add a <style> block to the

<template>. We can use Polymer templates in CSS styles as well, allowing us to create
dynamic styles with little extra effort.

Since we’re in control of our own elements now, let’s resurrect an old favorite, the

 tag. Deprecation be damned!

<polymer-element name="x-font" attributes="color" noscript>
 <template>
 <style>
 span {
 color:{{color}};
 }
 </style>
 <content></content>
 </template>
</polymer-element>

<x-font color=red>Hello World!</x-font>

There’s an important subtlety in the preceding code; did you spot it? If you don’t

specify a color attribute, what happens? It’s probably an easy guess that the color of
the resulting element is the inherited text color of the context the element is used in,

but why? We actually get a “broken” CSS rule specifying that the color is "null". This,
conveniently, isn’t a useful color, so the CSS engine just ignores it, but it’s important to
call out because web components should act like normal elements—and that means
silent errors and obvious fallbacks.

There’s a second important thing to note about our element. What do you think
would happen if you did this?

<x-font color="red;font-style:italic">Hello World!</x-font>

Congratulations if you guessed that you’d get a red, italic “Hello World!” This isn’t an
artifact of web components—it’s due to Polymer itself—but regardless of what you
use to make web components, you’re going to need to account for them being used in
ways you don’t expect. Maybe now we can all sit back and start to appreciate the jobs
spec writers have been doing for the past few decades.

156 | Chapter 14: Introducing Polymer

External Resources
As your web components grow in size, you’ll need a way to better manage larger
styles. Unfortunately, as we went over in Part III, you can’t easily add external style‐

sheets via <link> tags to a shadow DOM. Fortunately, though, many smart people
have traversed this path before us and have simplified some common use cases like
this one. A template like the following wouldn’t include any external styles when
added to the shadow DOM manually:

<template>

 <link rel="stylesheet" href="styles.css">
 Hello World
</template>

span {
 font-style:italic;
}

In Polymer, though, that template would work perfectly fine and the styles would be
applied to the elements in the shadow root (and the shadow root alone). How does

that work? Polymer simply finds the <link> elements, asynchronously grabs the ref‐

erenced CSS via an XMLHttpRequest, deletes the original <link> element, and inlines

the CSS into a <script> tag at the location of the original link element. Simple, right?
The resulting element in the DOM would look very similar to this:

<template>

 <style>
 span {
 font-style:italic;
 }
 </style>
 <link rel="stylesheet" href="styles.css">
 Hello World
</template>

Filtering Expressions
Polymer’s templating additions also provide the ability to filter expressions through
simple JavaScript functions. This provides a layer of abstraction between any
advanced logic and the template itself, somewhat similar to the features provided by a
lot of limited-logic templating solutions available for JavaScript right now. Let’s add

some classiness to our x-font tag by way of a type attribute where we can specify a
predefined set of styles to apply:

<polymer-element name="x-font" attributes="type color" noscript>
 <template>
 <style>
 span {
 color:{{color}};
 }

Polymer Elements | 157

 .shadow {
 text-shadow: 2px 2px 2px grey;
 }
 </style>

 <content></content>

 </template>
</polymer-element>

The block class="{{ {shadow: type == 'fancy'} | tokenList }}" probably
looks like it’s doing a lot more than it really is. To isolate the important parts, we can

get rid of the attribute and wrapping quotes, class="", and the Polymer template

delimiters, {{ and }}. We’re then left with { shadow: type == 'fancy' } | token

List, which we can further separate into two parts. The first part is a plain old Java‐

Script object with one key, shadow, the value of which is the return value of the

comparison type == 'fancy'. The second part, | tokenList, is Polymer syntax that

pipes the lefthand side into the filter specified on the righthand side. tokenList is just

a plain JavaScript function located on the PolymerExpressions.prototype:

PolymerExpressions.prototype = {
 tokenList: function(value) {
 var tokens = [];
 for (var key in value) {
 if (value[key])
 tokens.push(key);
 }
 return tokens.join(' ');
 },
 [...]
}

Here we can see that the tokenList function takes in a JavaScript object and, for
every key, tests the truthiness of the key’s value; it then adds the key name to an array

if it es. That array’s values are then joined together, separated by a space (' '). We’re
going through filters in depth here because they are very powerful and often over‐
looked, and when you see them in a context like this one they are regularly seen as
more complicated than they really are. The filter in our Polymer template can be seen
as being equivalent to the following code:

var originalValue = {
 shadow: type == 'fancy' // 'type' is a defined attribute on our element
 // e.g. <x-font type='fancy'></x-font>
};

var filteredValue = tokenList(originalValue);

// filteredValue === 'shadow'

158 | Chapter 14: Introducing Polymer

Filters and data binding provide you with a substantial amount of control, without
exposing much actual JavaScript. This is a great step toward creating maintainable
applications and client code.

Template Syntax
We’ve already seen several examples of Polymer’s template syntax, and there’s a lot
more going on with templates than we’ll deal with here. More advanced expressions

make use of attributes on nested <template> elements that provide common tem‐
plate functions like block repetition and conditional blocks.

Data Binding
Polymer offers intuitive data binding for anyone who has used Handlebars-style
templates in other frameworks/templating solutions (i.e., where you bind a property
of the context to a portion of a template by surrounding the identifier with double
curly braces):

<polymer-element name="x-simple">
 <template>
 {{value}}
 </template>
 <script>
 Polymer('x-simple',{
 ready : function () {
 this.value = "Hello World!";
 }
 })
 </script>
</polymer-element>

Block Repetition
This approach combines the double curly brace style with HTML attributes in
order to specify the behavior of subtree nodes, very similar to AngularJS-style tem‐
plate loops:

<polymer-element name="x-repeat">
 <template>

 <template repeat="{{ value in values }}">
 {{value}}
 </template>

 </template>
 <script>
 Polymer('x-repeat',{
 ready : function () {
 this.values = [1,2,3,4];

Template Syntax | 159

 }
 })
 </script>
</polymer-element>

Bound Scopes
Bound scopes are the template equivalent of JavaScript’s with statement: they extend
the scope chain of a subtree. They allow you to simplify references to extended prop‐
erties without specifying redundant identifiers repeatedly:

<polymer-element name="x-bind">
 <template>

 {{outerObject.outerValue}}

 <template bind="{{outerObject.innerObject}}">
 {{innerValue}}
 </template>
 </template>
 <script>
 Polymer('x-bind',{
 ready : function () {
 this.outerObject = {
 outerValue : "Hello",
 innerObject : {
 innerValue : "World"
 }
 };
 }
 })
 </script>
</polymer-element>

Conditional Blocks
Polymer’s conditional blocks follow the same style and are immediately intuitive:

<polymer-element name="x-editable">
 <template>
 {{value}}
 <template if="{{ !readonly }}">
 <input value="{{value}}">
 </template>
 </template>
 <script>
 Polymer('x-editable',{
 value : 'default',
 readonly : true
 })
 </script>
</polymer-element>

160 | Chapter 14: Introducing Polymer

Multiple Template Directives at Once
An often underused aspect of template directives is the ability to combine items like

repeat and if. Rather than nesting templates with their own directives, you can
combine them in one template for a terser syntax:

<polymer-element name="x-combo">
 <template>
 <h1>A list of values</h1>

 <template repeat="{{ value in values }}" if="{{ open }}">
 {{ value }}
 </template>

 </template>
 <script>
 Polymer('x-combo',{
 values : [1,2,3,4],
 open : true
 })
 </script>
</polymer-element>

Attributes and Properties—Your Element’s API
There is a lot to consider when determining how to construct and expose your cus‐
tom element’s API. When should something be an attribute? When should it be a
property? Should it be both? How should it be bound? Should it be read-only? What
should happen if it changes after instantiation? Should your element emit events? If
so, what events? Should you model your element’s API after an existing element or
toss existing best practices aside?

There are other frameworks out there that do things strikingly similarly to what web
components and Polymer provide, but web components exist on an isolated island far
away from any application framework. The responsibility to create consistent, intu‐
itive, and decidedly “HTML-like” APIs is important.

With Polymer you have the power to create a variety of API touchpoints that all have
their own benefits and drawbacks.

Naked Attributes
As you’d probably expect, you can add any attribute you want to your custom element

and access it via the standard getAttribute method that exists on instances of ele‐
ments. You don’t need to explicitly code this support, but it isn’t bindable within tem‐

Attributes and Properties—Your Element’s API | 161

plates, and Polymer doesn’t offer you much sugar on top of it. You can add an
attribute to your element as follows:

<polymer-element name="x-example" noscript>
</polymer-element>

<x-example attr="my attribute"></x-example>
<script>

 var myElement = document.querySelector('x-example');
 myElement.getAttribute('attr') == "my attribute"; // true
</script>

Published Properties
Polymer’s “published properties” are probably what is going to get the most use in
your custom elements. These properties are exposed versions of element attributes
and are bindable within templates; when the attribute changes or the property
changes, the templates will reflect this. Here’s how to add a published property to
your custom element:

<polymer-element name="x-example" noscript>
 <template>
 {{myAttribute}}
 </template>
</polymer-element>

<x-example myAttribute="hello world"></x-example>
<script>

 var myElement = document.querySelector('x-example');
 myElement.getAttribute('myAttribute'); // "hello world"
 myElement.myAttribute; // "hello world"
 myElement.setAttribute('myAttribute', 'til next time');
 myElement.myAttribute = 'later!';
</script>

Published properties are popular because they offer a lot of functionality in a simple
package, and also because they are intuitive to users and are discoverable via Java‐
Script introspection and browser devtools.

Instance Methods
All methods applied to the prototype of the element within the Polymer definition are
exposed as instance methods of the element within JavaScript:

<polymer-element name="x-example">
 <template>
 {{myAttribute}}
 </template>
 <script>
 Polymer('x-example', {
 myMethod : function(value) {
 this.myAttribute = value;
 }

162 | Chapter 14: Introducing Polymer

 })
 </script>
</polymer-element>

<x-example myAttribute="hello world"></x-example>
<script>

 var myElement = document.querySelector('x-example');
 myElement.myMethod('howdy world');
</script>

This can be useful, but side effects should be kept to a minimum. Always keep in
mind that you are notified when attributes have changed, so it may make more sense
at an API level to have certain functionality triggered upon attribute change instead
of via an instance method.

Polymer’s JavaScript APIs
This chapter is nearly over, and we’re only now touching on Polymer’s JavaScript
APIs. This is by design, because the beauty of web components, and the philosophy of
Polymer, is to embrace HTML with all its modern power. HTML is no longer some‐
thing you need to treat gently and twist and tweak to get where you want. You are
defining the power of HTML. You’ll be doing this with JavaScript, of course, but
HTML is now sharing the front seat again.

Life Cycle Methods
The life cycle methods you are used to with custom elements are supported and easy
to use within Polymer. For convenience, though, they are shorter than their spec
equivalents. Polymer also adds other methods that align with important events in the
Polymer life cycle. Table 14-1 lists these methods, and their spec equivalents (if any).

Table 14-1. Polymer life cycle methods

Polymer Spec equivalent Called when

created createdCallback The element has been created.

ready None Polymer has completed its initialization of the element.

attached attachedCallback The element has been attached to the DOM.

domReady None The initial set of children is guaranteed to exist.

detached detachedCallback The element has been detached from the page.

attributeChanged attributeChangedCallback An attribute has been added, removed, or changed.

Polymer’s JavaScript APIs | 163

Note and memorize the difference between created and ready.

created simply marks that the element has been created and is an

analog to createdCallback on naked custom elements; ready is
called when Polymer has done its initialization work, injected the
shadow DOM, set up listeners, and is largely ready to interact with.
In a Polymer mindset, you’ll likely always want to deal with the

ready callback.

Events
You can emit events easily from your web component yourself, but for consistency in

creation and usage, Polymer provides the fire method that automates this for you.
The method’s signature is intutive and expected, but it abstracts away common event
boilerplate:

fire: function(type, detail, onNode, bubbles, cancelable) {
 var node = onNode || this;
 var detail = detail === null || detail === undefined ? {} : detail;
 var event = new CustomEvent(type, {
 bubbles: bubbles !== undefined ? bubbles : true,
 cancelable: cancelable !== undefined ? cancelable : true,
 detail: detail
 });
 node.dispatchEvent(event);
 return event;
}

Usage is straightforward, and you’ll commonly only use the first one or two parame‐

ters (the event name and the data payload). The following example issues an open
event with the target being the current context—which, in this example, would be the
element itself:

this.fire('open', { target: this });

Managing Delayed Work
When you start encapsulating all work in components, you may find yourself com‐
monly dealing with timeouts and the management thereof to ensure work is done
only once and after a certain period of time. This could be for animations, notifica‐
tions, event throttling… anything. It’s so common that Polymer provides a common

API for it, .job:

this.job('openDialog', function () {
 this.fire('open');
}, 100);

164 | Chapter 14: Introducing Polymer

Summary
In this chapter we caught a glimpse of the future of the World Wide Web. It is impor‐
tant to note how the somewhat disparate technologies we looked at in Part III have
been joined together by the community to offer a fairly pleasing API. This is a core
philosophy touched on by the “Extensible Web Manifesto,” a series of principles that
seek to influence how web technology is standardized in the future.

Extensible Web Manifesto

• Focus on adding new low-level capabilities to the web platform that are secure and
efficient.

• Expose low-level capabilities that explain existing features, such as HTML and
CSS, allowing authors to understand and replicate them.

• Develop, describe, and test new high-level features in JavaScript, and allow web
developers to iterate on them before they become standardized. This creates a
virtuous cycle between standards and developers.

• Prioritize eforts that follow these recommendations and deprioritize and refocus
those which do not.

This chapter outlined a large slice of what Polymer can do, and after reading it you
should be able to create your own highly functional web components with ease. In the
coming chapters we’ll explore how to port our existing dialog to Polymer, test it, and
build a distributable, installable package.

Summary | 165

CHAPTER 15

Porting Our Dialog to Polymer

Jarrod Overson

There are 200 ways to write any one thing in browserland JavaScript, 400 ways of
writing an encapsulated component, and 800 ways of porting any one component
implemented within one framework to another.

We’ll go over two such ways.

Web components provide a lot. They also introduce many questions, and each one of
those questions can be answered differently depending on perspective, time con‐
straints, and development attitude. Web components, at their base, provide a layer of
abstraction and push an API touchpoint to the HTML itself. This is already a win,
and for a lot of people, that is the primary appeal.

At the other extreme, there are people who see web components as an opportunity to
implement the next generation of building blocks that will compose the Web of the
future. There are already implementations of spec proposals floating around on the
Internet, and it’s not a stretch to believe that independently developed individual web
components may end up as official elements existing in the actual HTML spec
one day.

Neither attitude is necessarily better than the other; they are just different and excel
in their own ways. With those two attitudes, though, comes a choice of tools and
implementations. Do you reuse what you know, love, and are familiar with to get a
job done? Or do you toss the past aside, and implement these building blocks from
the ground up?

167

Why Port Anything to Polymer at All?
Why port anything to Polymer, or even use web components, at all? It’s an extra bur‐
den and effort, for what gain? Those are questions we all should be asking ourselves
when we incorporate any new technology into our existing workflows.

Libraries, frameworks, and tools hit their peak popularity after people recognize them
as filling a need better than the tools around them. Once that need is filled and the
best practices are understood, these offerings become the new baseline and develop‐
ers start looking forward to new holes that need patching. As new libraries start from
an existing baseline of experience and solutions, they provide extra value that old
libraries may or may not compare to.

The libraries, patterns, and tools you use now will remain just as useful in the future,
but they may or may not progress to take advantage of new practices that may start
becoming standard. This can affect maintenance, hiring of new employees, and the
speed at which new features can be developed.

The Progressive Web
Have you ever seen a JavaScript project managed by Ant? Or one built by Rhino?
They exist, but you’d be hard pressed to find a popular project that deals with either of
those technologies today.

Ant is still useful, as is Rhino, but they temporarily filled a gap that was better handled
by tools that came later. Grunt and Node.js, by and large, have almost completely
replaced Ant and Rhino in the JavaScript developer’s toolbox.

What’s next? Gulp became extremely popular very quickly because it leveraged a lot
of the best ideas in Grunt, and iterated upon the ones that weren’t so great.

What will come after Node.js? I don’t know—there are projects attempting to bite off
a piece of that pie, but it’s far too early to tell what might stick. One such project is
JXcore, a Node.js fork that handles multithreading and thread recovery and is seeking
to provide a JavaScript-to-llvm solution.

The Web evolves quickly, and our websites and applications never “go gold” to be left
and forgotten about. The ability to maintain and adapt is what separates successful
web applications from their counterparts. There is always benefit in looking forward,
keeping abreast of what is becoming popular and what is losing favor.

Getting comfortable is the Achilles’ heel of software development, and doubly so for
web development. If you seek to provide value and advance in your career, leaning
toward the leading edge will pay off in spades. Getting set up with a web component
flow now will help you going forward.

168 | Chapter 15: Porting Our Dialog to Polymer

Web components are the future. There is tooling around them and there will be
more, so a bet on them is one that will keep on paying out. They are not the only
future, merely one rung in the ladder of progress—but it’s a strong one that leads to a
new, stable platform that we will spring off of again and again.

The Direct Port
It’s relatively simple to do basic ports of your existing UI widgets to Polymer. You can
reuse a lot of the logic for widgets written with libraries like jQuery, Backbone, or
even Angular and Ember. This is part of the beauty of web components: they aren’t
introducing anything very new; they are offering you the opportunity to augment
the old.

Managing Dependencies
You’ve already seen a lot of reusable code in this book so far, and it is probably start‐
ing to feel similar to code bases you have worked on yourself. There are very few ways
to effectively manage JavaScript dependencies in browserland, and there are even
fewer ways to manage third-party dependencies. The two major registries for browser
based JavaScript are npm and Bower, both of which have very different ways of man‐
aging their packages.

While npm, the Node.js package manager, has become very effective for some people
as a way to manage browser-based JavaScript, the methods of managing it are more
tied to the Node world than to traditional browser development. We won’t be cover‐
ing npm-based browser code, but if you’re interested, look into tools like Browserify
and Webpack; they offer excellent solutions for a specific demographic.

npm, Inc., the company formed to manage npm, recently posted on
its blog the intent to “officially” support browser-based packages in
the future. While we have no idea what that really means right now,
it is a very appealing message and is worth keeping track of as an
alternate solution in the future.

npm and its core developers have proven to be extremely adept at
providing scalable, intuitive, and attractive dependency manage‐
ment solutions, so this is very good news.

Bower is a tool born out of Twitter specifically intended to manage browser-based
JavaScript. There is, technically, a “registry,” but it exists almost strictly as a URL-
redirection service, mapping common names to destinations serving static files or Git
repositories. Modules installed by Bower can specify a list of ignored files and depen‐
dencies, allowing you to automate the installation of many third-party files with one
command.

The Direct Port | 169

http://bit.ly/dwc-npm-update
http://bit.ly/dwc-npm-update

One of the established patterns for reusable web components is to expect that all
dependencies, components or otherwise, are flattened siblings in the immediate par‐
ent directory. This leaves a lot to be desired, but until something better comes along,
it’s the standard to abide by. This means that we can and should reference dependen‐
cies using relative paths, as siblings to the dependent module.

For example, we might reference an HTML file like this:

<link rel="import" href="../another_component/dependency.html">

and a script like this:

<script src="../jquery/jquery.js"></script>
<!--

Some component that is used by our original file.

-->

The dependency directory ends up looking a lot like this:

dependency_directory
|
|-- jquery
| |-- jquery.js
| |-- jquery.min.js
| +-- jquery.js.map
|-- polymer
| |-- polymer.js
| |-- polymer.js.map
| +-- polymer.html
+-- platform
 |-- platform.js
 +-- platform.js.map

Conveniently, (or likely because) Bower installs modules in this exact pattern, we can
use it effectively to manage our web components and their dependencies. By default,
Bower installs its packages in a bower_components directory, but this can be config‐
ured via a .bowerrc JSON file installed per project or in your home directory. For
example, to use the vendor directory:

{
 "directory": "vendor"
}

For convenience and clarity, though, we’ll continue to use bower_components here.
That you are able to configure the directory is mentioned solely because that is very
often the first question about the tool from people familiar with different develop‐
ment environments.

170 | Chapter 15: Porting Our Dialog to Polymer

Installing Dependencies with Bower
Installing dependencies like Polymer with Bower is extremely easy, but first you need
to have Node.js installed—it provides you with the runtime for the tools and with the
package manager, npm, that is necessary to install another package manager, Bower.
Node.js is installable in several different ways, all documented on the website. To get
Bower, you install it globally via npm:

$ npm install -g bower

On a standard install in a Linux-like environment like OS X or Ubuntu, you may

need to sudo the command in order for it to install globally:

$ sudo npm install -g bower

Bower’s basic usage is no different from nearly any other package manager: you sim‐

ply issue an install command and then Bower will go out, find the destination for
your package (often somewhere on GitHub), download and cache the files, parse the
bower.json file for metadata, copy the listed files over to your destination directory,
and then repeat the process for all the specified dependencies. If Bower cannot
resolve a dependency properly, then it will prompt you for a decision and move on
from there.

Library maintainers are able to tag a version in a Git repository for Bower to use as
the install version, but in practice, good version tags don’t always exist. The version
you get may be based off the head of the master branch, and this can easily lead to
unexpected conflicts. Bower and the “anarchaic” development environment of the
Web don’t protect developers enough to let them ignore all the nitty gritty details of
our frontend dependencies. As it is, it’s useful primarily as an automated installer for
libraries and their dependencies, which then still get checked into a source code
repository.

To install Polymer and its related dependencies, simply run the following command:

$ bower install polymer

The install command is useful to install libraries for one explicit use but by default,
it doesn’t keep track of any of your installed dependencies, which will make further
updates, reinstallations, and tree shaking more difficult. To get this we’ll need a
bower.json configuration file, which will hold the metadata necessary to track our
dependencies. We can do this nearly the same way we set up a default package.json
with npm in Node.js:

$ bower init

After you’ve answered the prompts with data relevant to the project, you can save
your dependencies via:

$ bower install --save polymer

The Direct Port | 171

http://nodejs.org

This will install and save the dependencies necessary to install Polymer. Right now
that will also include Polymer’s platform.js, though in the future that will hopefully be
minimized or even removed. That’s part of the benefit of using something like Bower
to manage dependencies: if the dependencies of your dependencies change, your
installation process will manage itself accordingly.

Earlier, I mentioned that Bower and common practice dictate that all dependencies
be flat and referenced via relative paths. You might have wondered how that works
for local development and referencing dependencies in a maintainable way. I wish I
had a great answer for you, but there are actually two (maybe three) only somewhat
suitable camps on this topic right now:

1. Have your component be in the root of your development directory, with your
dependencies installed as siblings in your parent directory.

This has the side effect of polluting that parent directory with dependencies from
any number of components actively in development and each of their respective
dependencies.

Development with dependencies would then look like this:

|-- my-element
| |-- my-element.html
+-- polymer
| |-- polymer.html
+-- platform
 |-- platform.js

2. Have your component be two directories down in your development directory,
with your dependencies installed one directory down:

my-element
|-- components
 |-- src
 |-- my-element.html

This has the drawback of requiring some kind of build step in order to place the
distributable element at the root so that it can reference dependencies in the con‐
suming application’s directory tree.

With dependency installation being in the components directory and the “built”
artifact being at the root, the end structure looks like this:

my-element
|-- components
| |-- src
| | |-- my-element.html
| +-- polymer
| | |-- polymer.html
| +-- platform

172 | Chapter 15: Porting Our Dialog to Polymer

| |-- platform.js
+-- my-element.html

The answer to the quick knee-jerk reaction “But how do I
ignore those dependencies in source control?” is (for Git) to
put the following in your .gitignore file:

components/*/
!components/src/

3. Don’t worry about dependencies at all, and expect the host page to manage them
for you.

This is the same as classic dependency management for distributed libraries right
now. Libraries are created and their dependencies listed somewhere for the con‐
suming developers to download and manage in their web pages. This has worked
for nearly two decades and can work now, but it increases the user’s overhead. It’s
also 2015, we’re not cavemen, so we’re going to stick with option 2. The first is
too invasive and fragile, and the third is not interesting enough to put in a book.

Getting Started
To begin, set up the source root as x-dialog and set up the source tree so that it looks
like this:

x-dialog
|-- index.html
|-- components
| |-- src
| | |-- x-dialog.html

Are you on an OS X or Linux machine and find yourself making a

directory that you immediately cd into frequently? Set this up in
your .bashrc to make doing that a breeze:

md ()
{
 mkdir -p "$@" && cd "$@"
}

Now you can compress that task into the following command:

$ md x-dialog/components/src
$ touch x-dialog.html

Now I initialize the bower metadata as described earlier, by executing bower init
and filling out the appropriate answers:

The Direct Port | 173

$ bower init
[?] name: x-dialog
[?] version: 0.0.0
[?] description: a dialog box web component
[?] main file: ./x-dialog.html
[?] what types of modules does this package expose? globals
[?] keywords: dialog
[?] authors: Your Name <email@email.com>
[?] license: MIT
[?] homepage: http://github.com/YOURUSER/x-dialog.html
[?] set currently installed components as dependencies? Yes
[?] add commonly ignored files to ignore list? Yes
[?] would you like to mark this package as private which prevents it from being
 accidentally published to the registry? No

{
 name: 'x-dialog',
 version: '0.0.0',
 authors: [
 Your Name <email@email.com>
],
 description: 'a dialog box web component',
 main: './x-dialog.html',
 moduleType: [
 'globals'
],
 keywords: [
 'dialog'
],
 license: 'MIT',
 homepage: 'http://github.com/YOURUSER/x-dialog.html',
 ignore: [
 '**/.*',
 'node_modules',
 'bower_components',
 'vendor',
 'test',
 'tests'
]
}

[?] Looks good? Yes

We’ll also want to add a .bowerrc file so that we can specify that we want our test
dependencies installed into our components directory:

{
 "directory" : "components"
}

If we’re using Git, then we can set up our .gitignore file as follows:

174 | Chapter 15: Porting Our Dialog to Polymer

components/*/
!components/src/

Now we can install our dependencies into our components directory and have them
saved for the future. We’ll obviously need Polymer, and since we’re doing a basic port,
we’ll include jQuery as well. Jenga is a dependency also available in Bower, so we can
install them all in one fell swoop:

$ bower install --save polymer jquery jenga

[... cut some information logging ...]

polymer#0.3.3 components/polymer
└── platform#0.3.4

platform#0.3.4 components/platform

jenga#912f71e4cc components/jenga

jquery#2.1.1 components/jquery

Now we have four libraries available with one command, all installed in our compo‐

nents directory. If you ls inside that directory you’ll see how the dependencies will
look in somebody else’s project (aside from the src directory being called x-dialog), so
this is a great way to develop and test code.

Before we jump into coding our component, let’s get our test page up and running so
we can stub out our expected component API and see our work. We’ll start our
index.html file with the basic few tags that compose nearly every modern HTML file:

<!DOCTYPE html>
<html>

<head>

 <meta charset="UTF-8">
 <title><x-dialog></title>
</head>

<body>

</body>

</html>

Next we’ll add some simple references to platform.js and import our element. It’s good
practice to include platform.js in our demo page even if our browser is set up for all
native web components because it eases the process for anyone else getting into devel‐
opment with our element:

<head>

 <meta charset="UTF-8">
 <title><x-dialog></title>

 <script src="components/platform/platform.js"></script>

The Direct Port | 175

 <link rel="import" href="src/x-dialog.html">
</head>

Now we can add our element, with some reasonable options that provide the func‐
tionality we’re looking to test (actual unit testing is an entirely different matter, as
we’ll see in the next chapter; this is for spot checking during the porting process):

<body>

 <x-dialog draggable resizable></x-dialog>
</body>

That’s it! Your final index.html should look like this:

<!DOCTYPE html>
<html>

<head>

 <meta charset="UTF-8">
 <title><x-dialog></title>

 <script src="components/platform/platform.js"></script>

 <link rel="import" href="components/src/x-dialog.html">
</head>

<body>

<x-dialog draggable resizable></x-dialog>

</body>

</html>

Now for the main course! There are a few Polymer boilerplate seed repositories out
there, each with a slightly different style; you should look around to see what suits
your fancy. For this book we’ll be using the boilerplate from Addy Osmani and other
contributors, slightly modified to fit our data and dependency location:

<!-- Import Polymer -->

<link rel="import" href="../polymer/polymer.html">

<!-- Define your custom element -->

<polymer-element name="x-dialog">

 <script>
 Polymer('x-dialog', {
 // Fires when an instance of the element is created
 created: function () {},

 // Fires when the element's initial set of children and siblings
 // are guaranteed to exist
 domReady: function () {},

 // Fires when the "<polymer-element>" has been fully prepared
 ready: function () {},

176 | Chapter 15: Porting Our Dialog to Polymer

https://github.com/webcomponents/element-boilerplate

 // Fires when the element was inserted into the document
 attached: function () {},

 // Fires when the element was removed from the document
 detached: function () {},

 // Fires when an attribute was added, removed, or updated
 attributeChanged: function (attr, oldVal, newVal) {}
 });
 </script>

</polymer-element>

The boilerplate already includes an import for Polymer. Now we need to include our
other dependency libraries, the same way we would in any other HTML file:

<!-- Import Polymer -->

<link rel="import" href="../polymer/polymer.html">

<script src="../jquery/dist/jquery.js"></script>
<script src="../jenga/jenga.js"></script>

Notice how we’re including these in the root of the imported HTML document, not
within the template. There are reasons to do one or the other (deferred loading, man‐
aging dependencies more granularly, etc.), but the easiest way to depend on other
resources is to do it at the import level, not the custom element level.

How should we include the other sources in this book? They’re written to be reusable
but aren’t yet Bower resources. Should they be? Maybe, but it’s a good practice to wait
until something proves to be reusable multiple times before abstracting it into a pub‐
lishable package. In this case, we’ll directly include all of the libraries we’ve created as
source files within this component. Since we’re also directly porting the existing logic
into what essentially amounts to just a web component container, we can also
bring along our existing implementation unchanged and see how we can use it within
Polymer.

After copying those libraries to our src directory, our development structure now
looks like this:

├── .bowerrc
├── bower.json
├── components
│ ├── jenga
│ ├── jquery
│ ├── platform
│ ├── polymer
│ └── src
│ ├── ApacheChief.js
│ ├── BaseComponent.js
│ ├── DialogComponent.css
│ ├── DialogComponent.js

The Direct Port | 177

│ ├── Duvet.js
│ ├── Shamen.js
│ └── x-dialog.html
└── index.html

And the preface of our component’s import.html looks like this:

<!-- Import Polymer -->

<link rel="import" href="../polymer/polymer.html">

<script src="../jquery/dist/jquery.js"></script>
<script src="../jenga/jenga.js"></script>

<script src="Duvet.js"></script>
<script src="Shamen.js"></script>
<script src="ApacheChief.js"></script>
<script src="BaseComponent.js"></script>
<script src="DialogComponent.js"></script>

This gives us the foundation from which we started implementing the API in our
original usage, selecting elements and manually “upgrading” them to dialog status.
When doing a port of this level, what we’re basically doing is abstracting the manual
instantiation of such libraries behind an HTML API. If we think about it this way, we
can start by proxying the touchpoints of our API at the point where our elements are
created and in the host DOM. We’ll also need a base DOM in our template so that we
can render something useful:

<template>

 <div id="dialog" role="dialog"
 aria-labelledby="title" aria-describedby="content">
 <h2 id="title">I am a title</h2>

 <p id="content">Look at me! I am content.</p>
 </div>
</template>

If you checked this element out right now you’d see a pretty unexcitingly styled bit
of text on the page. True, we haven’t done anything useful yet, but during the porting
process, any time a page isn’t in an entirely broken state then we’re in a good spot!
Pushing forward, we know we need to style the dialog so that it is invisible by default.
If we wire in our existing CSS file, we’ll find our unexciting bit of text completely
invisible. Success! This porting process is easy! Now we have absolutely nothing
styled on the page. We need to get something showing again, so let’s wire up our
existing implementation and see if we can get it to display and style itself
dynamically:

this.dialog = new Dialog({
 $el: this.$.dialog,
 draggable: this.attributes.hasOwnProperty('draggable'),
 resizable: this.attributes.hasOwnProperty('resizable'),
 alignToEl: window,

178 | Chapter 15: Porting Our Dialog to Polymer

 align: 'M',
 hostQrySelector: this.$
});
this.dialog.show();

You’ll notice a few potentially nonobvious references there. First, our $el is pointing

to Polymer’s ID tree hanging off the element on a $ property. This allows us to specify

the element with the ID dialog in our template easily as this.$.dialog. This is also

what we’re using for the hostQrySelector property, specifying our root as the root
to query.

Second, we’re referring to the existence of our attributes draggable and resizable in
order to set the Boolean values in the constructor.

Normally we wouldn’t show our dialog immediately upon attaching to the DOM, but
we’re just trying to get to a midway point where we get our visual component up and
beautiful.

Figure 15-1 shows what we see when we reload the page now.

Figure 15-1. he styled dialog

Holy moly, it worked!

Well, that’s that. Book’s over. Port all your jQuery widgets in an hour, right? Well, you
know what? That’s not too far off. If you’ve written well-encapsulated code, then that’s
close to some version of reality. Our component isn’t quite done—we’ll take care of
the finishing touches now—but the important point is that it works, and it didn’t take
much effort.

First off, we’ll want to move that show call to a method on its own so that it can be
accessed off the DOM element in a consumer page. Add the following as another
method on the Polymer prototype, and we’re all set:

show: function () {
 this.dialog.show();
}

The Direct Port | 179

Now to show the dialog, we can simply add the following to our index:

var dialog = document.querySelector('x-dialog');
dialog.show();

Well, that’s almost all—we’ll need to listen for the polymer-ready event in order to
catch our elements when they’ve been “upgraded” by Polymer:

window.addEventListener('polymer-ready', function () {
 var dialog = document.querySelector('x-dialog');
 dialog.show();
})

This will do it, and can be added anywhere in the index—before the closing </body>
works perfectly.

There’s one major problem with this, though. Our DOM is unchangeable, and it cer‐
tainly wouldn’t make sense to make a new custom element for every dialog we might
have in an application. That’s not a very good use for custom elements. What would a
good API be defining the inner content of a dialog?

<x-dialog draggable resizable>
 <x-title>This is my title!</x-title>
 <x-content>This is the content of my dialog</x-content>
</x-dialog>

Yikes—that’s possible, but it wouldn’t make sense strictly for our element. This is one
of the first traps people commonly fall into when dealing with custom components
(especially when using Polymer, because it’s just so easy). Only make new elements for
things that make sense as elements. Maybe title and content elements do make sense,
but not specifically for our use case. Let’s try again:

<x-dialog draggable resizable>
 <header>
 <h1>This is my title!</h1>
 </header>
 <p>
 This is my content
 </p>
</x-dialog>

This reuses sane HTML and is much less obscure, but it also complicates the inner
structure. It is viable, but what about this?

<x-dialog draggable resizable title="This is my title!">
 This is my content
</x-dialog>

This is pretty lightweight and easy to understand. It comes at the cost of limited com‐
posability of the title bar, but that might not be a bad thing. To use it effectively in our

template we use a mixture of {{}} binding and the <content> tag to selectively decide
where to render the “light-DOM” within our component:

180 | Chapter 15: Porting Our Dialog to Polymer

<template>

 <link rel="stylesheet" href="DialogComponent.css">
 <div id="dialog" role="dialog">
 <h2 id="title">{{title}}</h2>

 <p id="content"><content></content></p>
 </div>
</template>

Here is what our final component looks like, trivially ported from a pure jQuery
mindset into the world of web components:

<!-- Import Polymer -->

<link rel="import" href="../polymer/polymer.html">

<script src="../jquery/dist/jquery.js"></script>
<script src="../jenga/dist/jenga.js"></script>

<script src="Duvet.js"></script>
<script src="Shamen.js"></script>
<script src="ApacheChief.js"></script>
<script src="BaseComponent.js"></script>
<script src="DialogComponent.js"></script>

<!-- Define your custom element -->

<polymer-element name="x-dialog" attributes="title draggable resizable">
 <template>
 <link rel="stylesheet" href="DialogComponent.css">
 <div id="dialog" role="dialog">
 <h2 id="title">{{title}}</h2>

 <p id="content"><content></content></p>
 </div>
 </template>
 <script>
 Polymer('x-dialog', {
 attached: function() {
 this.dialog = new Dialog({
 $el: this.$.dialog,
 draggable: this.attributes.hasOwnProperty('draggable'),
 resizable: this.attributes.hasOwnProperty('resizable'),
 alignToEl: window,
 align: 'M',
 hostQrySelector: this.$
 });
 },
 show: function() {
 this.dialog.show();
 }
 });
 </script>

</polymer-element>

The Direct Port | 181

That Was Easy—A Little Too Easy!
This simple process goes to show how easy it can be to embrace web components.
Though, having said that, all we really did was go from a jQuery implementation of a
dialog box to a jQuery implementation of a dialog box wrapped with Polymer.

There’s nothing wrong with jQuery, but I can understand some of you might have felt
a little robbed there. The beautiful world of web components promises progress, large
steps forward, and a hearty “goodbye” to the legacy of today. jQuery has traditionally
been used to iron out the wrinkles of inconsistent, ancient browsers. Does jQuery
have a place in the world of Polymer?

jQuery in a Polymer World
Any professional that relies on his or her toolbox—whether a woodworker, mecha‐
nin, or software developer—is likely to recall a time when a new tool was released that
promised the world and purported to make the tools of the past irrelevant, clearing
up valuable space in the workshop.

Polymer and jQuery are indeed tools, not frameworks. They don’t define how an
application should be developed; in fact, they don’t even provide you with the tools
necessary to make a maintainable application. Multiple tools aren’t a problem, but
can be a “code smell” for browser-based applications. One of the biggest issues in
browser JavaScript, with its poor (absent) dependency management and module sys‐
tem, is that popular tools end up having a lot of overlap in order to reduce their own
dependencies on others. Including multiple tools that overlap bloats your code base
and increases the distributable size.

Polymer, being more modern and able to define its path based on current best practi‐
ces, tries to be more focused (though it still includes the kitchen sink when it comes
to polyfills). On the other hand, jQuery includes an incredible array of features that
can make it seem oversized, and the library itself is not uncommonly seen as a red
flag, indicating inefficient or amateur development practices. This is a wild oversim‐
plification, but nonetheless it has inspired attempts at creating lighterweight imple‐
mentations, like Xepto.js and Minified.js.

It’s important to know what a library is offering you when you include it. Every
library brings in a potentially substantial download and parse cost, and responsible
developers should make sure all that code brings more value than it costs.

182 | Chapter 15: Porting Our Dialog to Polymer

What Does jQuery Provide?
Do you know and use everything that jQuery provides? You should make sure. It may
well all be excellent and useful, but how much of it you actually use is definitely worth
thinking about.

At the least, jQuery provides:

• An intuitive chaining API

• Utility functions for objects, arrays, and strings

• DOM selection

• DOM traversal

• DOM manipulation

• CSS animations

• Normalized CSS getters/setters

• Promise/deferred implementation

• AJAX methods

• An event API

This is not meant to be an exhaustive list; these are just some of the most commonly
used features of jQuery. It’s hard to get a good overview of what jQuery features a
project uses, but once you go through the practice once, it gives you a great baseline
of what types of things are common in different scenarios.

How much jQuery do you think we’ve used in the book so far? Let’s find out! The
quickest way to determine the value of something is to go without it, so let’s go ahead
and rip jQuery out of the dependencies and reload the page. It’ll all work, right? Of
course not. We’re about to embark on a horrible exercise that everyone attempts at
least once in their browser development lives.

We’re going to remove jQuery.

Removing jQuery
Of course, the first errors we get are just undefined errors because we’re trying to
pass jQuery into the immediately invoked function expression (IIFE) that contains all
our library code. After taking care of that, we can start stepping through the jQuery
method invocations and try to port each individual one to a generic method. Remem‐
ber, if we’re working with web components and Polymer, we’re already stating that
we’re working with a very modern matrix of supported browsers. There are a lot of
common APIs that replace jQuery methods.

jQuery in a Polymer World | 183

We’re not going to go through all the replacements necessary, but we are going to go
through the general themes and how the replacements might work.

The immediate case we run into is using jQuery to create DOM elements, style them
with an object filled with CSS properties, and append one onto another:

//Duvet.js

var $inner = $('<div>test</div>').css(innerCss);
var $outer = $('<div></div>').css(outerCss).append($inner);

One thing that becomes immediately apparent is just how much code jQuery saves us
from writing. That is actually a nutty amount of functionality in a miniscule number
of characters.

We’re not going to work hard at implementing the best solutions for these problems
right now. The goal is simply to remove jQuery, so the biggest benefit is abstracting
out any changes for refactoring later. No effort is made here for cross-compatibility,
edge cases, or security:

function htmlify(html) {
 var div = document.createElement('div');
 div.innerHTML = html;
 return div.children[0];
}

The CSS method looks like it’s doing a lot of work up front, but at the end of the day,

a large amount of what it’s doing is merging an object with the style property of an

HTML element. We can do that easily by creating our own extend-like function:

function mergeObjects(dest /* varargs */) {
 var args = Array.prototype.slice.call(arguments, 1);
 args.forEach(function(obj) {
 for (var i in obj) {
 if (obj.hasOwnProperty(i)) {
 dest[i] = obj[i]
 }
 }
 });
 return dest;
}

The preceding jQuery code then becomes:

var $inner = htmlify('<div>test</div>');
mergeObjects($inner.style, innerCss);

var $outer = htmlify('<div></div>');
mergeObjects($outer.style, outerCss);

$outer.appendChild($inner);

184 | Chapter 15: Porting Our Dialog to Polymer

Not quite as terse, but entirely approachable. The bulk of the cleanups immediately
thereafter amount to changing:

• append() to appendChild()

• References from the first collection element to the variable itself ($element[0] to

element)

• extend() to mergeObject()

• clone() to cloneNode(true)

• el.find() to el.querySelector() or el.querySelectorAll()

• el.css(obj) to mergeObjects(el.style, obj)

• el.parent() to el.parentElement()

The first major hiccup comes in the event binding for ApacheChief.js and Shamen.js.
These use event namespaces, which is an entirely separate concept added by jQuery
that allows you to group events by application or widget for easy unbinding or query‐
ing later. Without this, you’ll need to more carefully manage your bindings in order
to prevent memory leaks and odd behavior. It’s certainly doable, but it’s a really nice
feature. Event handling in JavaScript is a very sensitive proposition prone to human
error, and a management framework provides a lot of benefit—not so much because
events are necessarily hard to create or unbind, but because a framework provides an
interface that proxies all that interaction so the event handlers can be referenced and
dereferenced automatically later.

Pushing through for the sake of the exercise, we come across a few more simple
things to change:

• width() to innerWidth()

• Ensuring that assignments to CSS position integers end with px

The last serious issue that we come across is getting the positions of elements.

JQuery’s method el.getPosition does more work than we can easily replace, so we
can modify the original jQuery source to provide us with a workable shim:

function getPosition(elem) {
 var offsetParent, offset,
 parentOffset = { top: 0, left: 0 };

 offset = elem.getBoundingClientRect();

 // Fixed elements are offset from window (parentOffset = {top:0, left: 0},
 // because it is its only offset parent
 if (elem.style.position !== "fixed") {
 // Get *real* offsetParent

jQuery in a Polymer World | 185

 offsetParent = elem.offsetParent;

 // Get correct offsets
 offset = {
 top: offset.top + window.pageYOffset -
 document.documentElement.clientTop,
 left: offset.left + window.pageXOffset -
 document.documentElement.clientLeft
 };

 // Add offsetParent borders
 parentOffset.top += offsetParent.style.borderTopWidth = true;
 parentOffset.left += offsetParent.style.borderLeftWidth = true;
 }

 // Subtract parent offsets and element margins
 return {
 top: offset.top - parentOffset.top - elem.style.marginTop,
 left: offset.left - parentOffset.left - elem.style.marginLeft
 };
}

After this our element is dependency-free outside of Polymer. We are resizable, drag‐
gable, and showable!

As we’ve already seen, we could even remove Polymer to get a web component that
relied on no outside code. That’s kind of fun sounding isn’t it? We have a brand new
HTML element with 100% pure JavaScript, and it wasn’t even that hard. But… have
you tried to load that component in Firefox? Or Safari? Or Android? What about the
memory leaks we neglected to account for in the HTML creation? What about every‐
thing else?

The Verdict on jQuery
JQuery gets a lot of flak because a lot of its methods mask seemingly trivial tasks that
have their own native counterparts. What people often forget is that jQuery excels at
leveling the playing field, ironing out cross-browser issues, providing consistent APIs
for inconsistent browser methods, and providing excellent wrappers for difficult or
frustrating aspects of the DOM.

You can absolutely work without jQuery, but the simple fact is that you’ll probably
want something in its place to provide you with the utility, consistency, and compati‐
bility jQuery offers. If you resign yourself to needing something, then you can choose
an existing alternative or attempt to create and maintain one yourself. At first glance,
an internally maintained implementation sounds perfectly reasonable, but as you
round each corner and find a new mountain of browser bugs to accommodate, the
task quickly becomes a frustrating beast. In early 2014 Rick Waldron put together a
quick roundup of all the cross-browser bugs that jQuery accounts for, and it is any‐

186 | Chapter 15: Porting Our Dialog to Polymer

http://bit.ly/dwc-waldron
http://bit.ly/dwc-waldron

thing but light reading. Certainly, a lot of these issues are for browsers that wouldn’t
be in a support matrix for a website implementing web components, but there are
some that would. Regardless, it is a certainty that jQuery will continue to fix bugs
found in future browsers, so you can imagine the list shrinking in some areas of leg‐
acy support but growing to account for new bugs.

There is a place for jQuery, both now and in the future. If your code base makes sub‐
stantial use of jQuery, don’t worry about it. If you want to write a web component and
find the need for utilities that jQuery will provide, you’re not hurting much by
depending on it.

Summary
In this chapter we learned how to incorporate current philosophies behind widget
creation into the wild world of Polymerized web components. We also learned that a
lot of our existing ideas are still relevant and that Polymerized web components are
an excellent technology to work into existing code in a piecemeal fashion. Polymer
provides intuitive hooks inward and a valuable interface outward that can benefit any
encapsulated widget that you’ve written in the past.

We also learned that jQuery, while often jeered at for being a relic of the past, still
includes valuable logic in a familiar package. Polymer doesn’t replace jQuery, and
even if you have a tremendous amount of code wrapped up in jQuery plugins, you
can still benefit from Polymer and web components.

Summary | 187

CHAPTER 16

Testing Web Components

Jarrod Overson

The biggest problem with any new technology is fitting it into an existing flow with
minimal turbulence. The pieces of the flow that are subject to the most friction are:

Development (IDE assistance, documentation)

Where do you go for questions? How will you be able to solve problems that
come up?

Maintenance

How stable is the technology? Is it undergoing massive changes? Will going back
to code written with this tech one year from now be simple or a nightmare?

Testing

How are unit tests written? How testable is code written with this new technol‐
ogy?

Building

Does this new technology affect the build process at all?

Deploying

Do your deployments change? What metrics need to be tracked in order to meas‐
ure the impact of the new technology?

It’s important to run through at least these checkpoints in order to get a high-level
overview of the problems you might face, although it might be tempting to charge
forward once you’ve gotten past the first hurdle because that’s usually the primary
focus of technology marketing.

189

The Impact of Marketing
By “marketing,” we mean whatever influences what frameworks and libraries become
popular. It’s not simply a matter of advertising dollars spent by open source develop‐
ers (though that can be a factor); it’s GitHub stars, Twitter followers, blog posts, docu‐
mentation, websites, podcasts—the lot of it and more.

It’s all tailored to you, and it’s important to see through the viral fluff to find the
answers to the questions you really have. Libraries, specs, frameworks, and tools are
written by developers for developers, so they’re optimized for productive
development.

Deploying Angular code almost seemed like it was an afterthought by the Angular
team, as the community found it couldn’t be effectively minimized by current tools,
affecting deployments and builds late in the process.

Backbone was the bee’s knees until many people found sparse documentation on
building large applications, which affected long-term maintainability.

Web components are being touted as the future of everything (by this book’s authors,
no less!) without having much real-world usage yet. The deficiencies are being filled
in, but it’s still turbulence that will affect your flow. Make sure you look past our fluff
and promises and find out how web components will really work in your flow.

The biggest problem with web components, in my humble opinion, is the lack of tes‐
tability and the complications that web components introduce when testing, espe‐
cially at this phase. It might seem silly; at the end of the day we’re just talking about
HTML elements, which have been around since the middle ages (approximately).
That may be true, but with the substantial polyfills that are used in different combina‐
tions for every browser on the market right now, the need for automated cross-
browser testing is critical, and the tools that normally help us with that task aren’t yet
perfectly suited for web component testing.

There are a number of different ways to test browser-destined code, each of which
has its drawbacks when testing web components (in their current state) and web
component polyfills. Here we’ll look at a few of the popular testing tools for web
applications and see how they stack up.

PhantomJS 1
PhantomJS, as of version 1.9, is 100% out of the equation when testing web compo‐
nents due to its lack of support for the core technologies and the inability to work
with some of the polyfills the Polymer group provides. The author, Ariya Hidayat, is
at work on version 2.0, but as of yet it’s unknown how well PhantomJS will support

190 | Chapter 16: Testing Web Components

http://phantomjs.org/

web components in the future. This immediately kills a lot of common tasks and
tools that leverage PhantomJS for headless testing and will likely affect a lot of peo‐
ple’s testing in Continuous Integration (CI) environments.

PhantomJS 2
By the time you read this book, PhantomJS 2 will have been released. It provides a
capable headless browser with which to test shimmed web components. QTWebKit,
upon which PhantomJS is based, does not have native support for web component
technologies, but the shims go a long way toward providing a headless solution to
unit testing web components. Polymer functions and behaves well in the environ‐
ment and web components are of interested to the PhantomJS team, so the current
level of support can be expected to be maintained or improved.

Selenium WebDriver
Selenium WebDriver is, by and large, the most commonly used tool for automating
web page UI testing, and it is almost completely broken as soon as you include plat‐
form.js on your page (as of version 0.2.4). This is noted and the Google team is aware
of it, but it means that if you maintain a large suite of automated frontend tests, they
may all be rendered useless by the simple introduction of a single Polymer compo‐
nent—regardless of whether that component is even being tested.

These are horror stories that, if told around a campfire in the woods, would send
some developers running for their sleeping bags, praying for morning to come and
the nightmares to stop.

It’s not all fright and fear, though, and given the progress everyone is making, some of
these issues may be rectified shortly after this book is published. Don’t take anything
in this book as gospel (until the second or third revision, at least). These topics are
discussed because they hold true at the moment and are important to be aware of.

Karma
Fortunately, one of the best modern day choices in testing browser code, Karma (for‐
merly Testacular), is still a top-of-the-line choice for unit testing Polymer compo‐
nents. There are some quirks and a few edge cases that aren’t well supported, but it’s
still a solid option that will probably expand to fill the role better in the future.

If you’re already familiar with Karma, you’ll probably still want to have a separate
configuration in order to manage maintainability of the test framework going for‐
ward. It is highly likely that the practices outlined here will evolve and the plugins will
change, so you don’t want the Polymer testing to get in the way of established and
stable testing elsewhere.

PhantomJS 2 | 191

http://bit.ly/dwc-webdriver
http://bit.ly/dwc-karma

For those just getting started with Karma, it’s a Node.js tool that can be installed glob‐
ally with its per-project plugins installed locally as developer dependencies. You can
install Karma via npm as follows:

$ npm install -g karma-cli

This will give you the tool that then delegates to a local installation of the Karma

libraries. The base library you’ll need for Karma is, appropriately, karma:

$ npm install karma

Karma requires a sometimes extensive configuration, but thankfully, the boilerplate

and some sensible defaults can be automatically generated via the init command
from the Karma CLI. This can only be done after installing a local version of Karma,
so don’t skip the previous step before running this command:

$ karma init

This will guide you through a series of questions that will help you to get started with
most common testing implementations. We’re going to be working with Mocha and
Chai, and you can choose the browsers you want to run when you get to the prompts.
It’s recommended that you run at least one other browser outside of Chrome in order
to ensure that you are using as many of the polyfills as possible. Chrome has full sup‐
port for web components from version 36 onward, so the behavior and performance
could be substantially different.

Outside of what is automated with init, a good set of modules to start with is:

karma

5H3 base Karma library

karma-mocha

A plugin that wires Mocha into Karma

karma-chai

A plugin for the Chai assertion library

karma-chrome-launcher

A launcher for Chrome

karma-firefox-launcher

A launcher for Firefox

karma-webcomponent-helpers

Some helper scripts to assist with loading fixtures for web component testing

These can be installed in one fell swoop via npm:

$ npm install --save-dev karma karma-mocha karma-chai \
karma-chrome-launcher karma-firefox-launcher \

karma-webcomponent-helpers

192 | Chapter 16: Testing Web Components

Part of the complication of using Polymer as our web component framework is that
we are writing and storing all of our base component files as HTML and importing
them as relative HTML imports. This is 100% foreign to almost every existing use
case, and no testing framework supports this at all yet. Some may support loading fix‐
tures, which can be used depending on the implementation, but this is largely a prob‐
lem that still needs to be solved.

A unit testing framework specific to Polymer is something that could have potential,
as could a unit testing framework for whatever web component manager ends up
leading the pack in the next 12 months. There are not yet any true best practices for
testing web components or Polymer, so take our recommendations with a grain of
salt. They have worked, and currently do work, but as and when something new
comes along, it should be evaluated with preference.

The primary tasks that need to be addressed immediately are:

1. Find a way to dynamically load HTML imports from the test specs.

2. Create HTML snippets that Polymer can recognize and upgrade before the tests
run.

To this end, we’ve isolated some practices that have worked in the past into the Karma

plugin karma-webcomponent-helpers. It’s a minimal set of assistant helpers that will
probably grow as necessary.

Making Karma aware of what files to automatically load and serve is also accom‐
plished a little differently than normal. Since we’re not loading script files as our
source, we can’t use Karma’s default configuration. Our files config ends up looking
like this:

// list of files/patterns to load in the browser

files: [
 'components/platform/platform.js',
 {
 pattern:'components/src/**/*',
 included: false,
 watched: true,
 served: true
 },
 {
 pattern:'components/**/*.html',
 included: false,
 watched: false,
 served: true
 },
 {
 pattern:'components/**/*.css',
 included: false,
 watched: false,

Karma | 193

 served: true
 },
 {
 pattern:'components/**/*.js',
 included: false,
 watched: false,
 served: true
 },
 'test/**/*.spec.js'
],

The first and most obvious thing to note are the first and last lines: we’re loading
platform.js first in order to ensure polyfills are loaded, and the last line includes all the
test scripts that actually define our test JavaScript, with assertions and all.

The middle four lines define a wide net of stuf that Karma should be aware of but

shouldn’t actually include in our template HTML (included: false). The first line is
a pattern that matches everything in our components/src/ directory and lets Karma

know it should watch those files for changes (watched: true). All of the patterns also

specify served: true, meaning that, if we ask for a resource, Karma should serve it
on its own HTTP server. This allows us to import HTML and have the browser ask
for whatever is referenced without us explicitly defining it here.

For those familiar with unit testing browser code, this probably looked ugly until you
got to that last line. This method of dependency management means that we can just
import our HTML file, and it will include everything it needs to in order to run prop‐
erly. Without this, we’d need to make sure we manually included and determined the
order of third-party libraries like Jenga and jQuery along with our internal source.
This can easily lead to lists dozens of lines long with sensitive ordering dependencies
that need to be managed in parallel with the code and other test pages themselves.

Our entire karma.conf.js follows. The only other major changes to the default Karma

configuration are to the plugins, browsers, and frameworks properties:

module.exports = function(config) {
 config.set({

 // base path that will be used to resolve all patterns (e.g. files, exclude)
 basePath: '',

 // frameworks to use
 // available frameworks: https://npmjs.org/browse/keyword/karma-adapter
 frameworks: ['mocha', 'chai', 'webcomponent-helpers'],

 polymerTest: {
 },

 // list of files/patterns to load in the browser

194 | Chapter 16: Testing Web Components

 files: [
 'components/platform/platform.js',
 'test/**/*.spec.js',
 {
 pattern:'components/src/**/*',
 included: false,
 watched: true,
 served: true
 },
 {
 pattern:'components/**/*.html',
 included: false,
 watched: false,
 served: true
 },
 {
 pattern:'components/**/*.css',
 included: false,
 watched: false,
 served: true
 },
 {
 pattern:'components/**/*.js',
 included: false,
 watched: false,
 served: true
 }
],

 // list of files to exclude
 exclude: [
],

 // preprocess matching files before serving them to the browser
 // available preprocessors:
 // https://npmjs.org/browse/keyword/karma-preprocessor
 preprocessors: {
 },

 // test results reporter to use
 // possible values: 'dots', 'progress'
 // available reporters: https://npmjs.org/browse/keyword/karma-reporter
 reporters: ['progress'],

 // web server port
 port: 9876,

Karma | 195

 // enable / disable colors in the output (reporters and logs)
 colors: true,

 // level of logging
 // possible values:
 // config.LOG_DISABLE
 // config.LOG_ERROR
 // config.LOG_WARN
 // config.LOG_INFO
 // config.LOG_DEBUG
 logLevel: config.LOG_INFO,

 // enable/disable watching file and executing tests when any file changes
 autoWatch: true,

 // start these browsers
 // available browser launchers:
 // https://npmjs.org/browse/keyword/karma-launcher
 browsers: ['Chrome', 'Firefox'],

 plugins: [
 'karma-webcomponent-helpers',
 'karma-mocha',
 'karma-chai',
 'karma-chrome-launcher',
 'karma-firefox-launcher'
],

 // Continuous Integration mode
 // if true, Karma captures browsers, runs the tests, and exits
 singleRun: false
 });
};

Test Specs
Our tests largely follow standard Mocha design with some boilerplate setup and tear‐
down. If you’re unfamiliar with Mocha, it is designed to follow behavior-driven
development (BDD) practices and has functions named as such. Mocha itself is a
fairly lightweight harness for the organization of blocks that include assertions. Every
spec starts off as a description of what feature is being tested:

describe('<x-dialog>', function () {

});

196 | Chapter 16: Testing Web Components

The karma-webcomponent-helpers plugin provides us with some useful functions to
both import an HTML document (as a proper HTML import) and create elements.
Nothing fancy, but both things we’ll want to do regularly when testing web compo‐
nents. At the start of our tests we’ll need to import our custom component. That

can be done with Mocha’s before method, which runs once at the start of its

describe block:

describe('<x-dialog>', function () {

 before(function(done){
 helpers.importHref('./base/components/src/x-dialog.html', function () {
 Polymer.whenPolymerReady(done);
 });
 });

});

The helpers.injectElement(url, callback) function takes a callback that is called

when the load event is dispatched on the related <link> element. Since we want to
wait for our import to load before running our tests, we make this an asynchronous

task simply by specifying a function argument as part of what is passed to before.
Mocha will assume any of its methods that take in an argument are asynchronous and
will wait for that argument to be called before moving on. This is important to note
because it is not uncommon during refactoring to eliminate the need for some asyn‐

chronous call, thus deleting the subsequent call to done, which then hangs your tests
without much description of why. We also ensure we are avoiding all the race condi‐

tions we can by delegating our asynchronous completion function to Polymer’s when

PolymerReady method. This is a handy method that is analogous to the globally

dispatched polymer-ready event, with the added sugar of immediately calling the

passed handler if polymer-ready has already been dispatched.

In order to create an element that we can test appropriately we can use another helper

method, helpers.injectElement(snippet, callback), which will inject the passed
HTML into the body of the document, return the created element, and run the call‐
back after execution has been yielded to the browser for processing.

The creation of the element should be done before actual tests are executed and the
element should be destroyed after every test in order to ensure the state is consistent
and uncontaminated for each test scenario:

describe('<x-dialog>', function () {
 var element;

 before(function(done){
 helpers.importHref(
 './base/components/src/x-dialog.html', function () {
 Polymer.whenPolymerReady(done);
 });

Test Specs | 197

 });

 beforeEach(function(done){
 element = helpers.injectElement(
 '<x-dialog title="Hello World">Content</x-dialog>', done);
 });

 afterEach(function () {
 element.remove();
 })

});

Now the structure is well set up for a decent romp through unit testing. Tests are

written as part of it blocks, which encourages the test author to describe the tests
from the perspective of interaction, not the perspective of the developer. This sounds
trivial, but it’s a valuable perspective shift that allows you to focus on what’s impor‐
tant, not what actually exists. Consider this example test plan:

1. Test the ignition.

2. Test the engine.

3. Test the tire capacity and durability.

versus this one:

1. It should turn on when you pull the pull cord.

2. It should spin the blade when the engine is on.

3. It should be able to withstand bumping into rocks and walls.

This is an obviously contrived example, but the second method of explaining what is
being tested better outlines what is important in the tests so that it can be focused on.
Getting back to our example, we can specify the following tests:

it('should instantiate via a constructor', function () {
 var dialog = new XDialog();
 expect(dialog).to.be.an.instanceof(HTMLElement)
});

it('should have a title', function () {
 expect(element).to.be.an.instanceof(HTMLElement)
 assert.equal(element.title, 'Hello World');
});

it('should open without throwing an error', function () {
 element.show();
});

198 | Chapter 16: Testing Web Components

Notice how we’re testing the most minimal set of functionality per test. This ensures
that failures are obvious in our scope and also reduces the effort necessary to write
tests. Sure, these tests could be made better, but they serve as an example as to what
can be done here. The full test spec looks like this:

describe('<x-dialog>', function () {
 var element;

 before(function(done){
 helpers.importHref('./base/components/src/x-dialog.html', function () {
 Polymer.whenPolymerReady(done);
 });
 });

 beforeEach(function(done){
 element = helpers.injectElement(
 '<x-dialog title="Hello World">Content</x-dialog>', done);
 });

 it('should instantiate via a constructor', function () {
 var dialog = new XDialog();
 expect(dialog).to.be.an.instanceof(HTMLElement)
 });

 it('should have a title', function () {
 expect(element).to.be.an.instanceof(HTMLElement)
 assert.equal(element.title, 'Hello World');
 });

 it('should open', function () {
 element.show();
 });

 afterEach(function () {
 element.remove();
 })

});

Running Our Tests
Our tests can be run via the command line simply by executing karma start (output
truncated where necessary to fit within the page margins):

$ karma start
INFO [karma]: Karma v0.12.19 server started at http://localhost:9876/
INFO [launcher]: Starting browser Chrome
INFO [launcher]: Starting browser Firefox
INFO [Firefox 31.0.0 (Mac OS X 10.9)]: Connected on socket fsQW with id

Running Our Tests | 199

INFO [Chrome 36.0.1985 (Mac OS X 10.9.2)]: Connected on socket Gl7a with id …
Firefox 31.0.0 (Mac OS X 10.9) WARN: 'platform.js is not the first script …

Chrome 36.0.1985 (Mac OS X 10.9.2): Executed 3 of 3 SUCCESS (0.201 secs … secs)
Firefox 31.0.0 (Mac OS X 10.9): Executed 3 of 3 SUCCESS (0.222 secs … secs)
TOTAL: 6 SUCCESS

This will also watch all of our source files, rerunning tests as anything changes. If we
need to debug our code within a browser, we can click the “DEBUG” button in the
upper righthand corner of the Karma test page that gets loaded in each of the
spawned browsers (see Figure 16-1).

Figure 16-1. he Karma test page

This will bring you to a blank page allowing you to open the browser’s developer tools
and inspect at will.

Running these tests manually is useful, but unit tests aren’t worth much unless they
are run automatically. In the next chapter we’ll be incorporating our build process
and will see how Karma and other testing tools can play a role as part of a larger task
chain.

200 | Chapter 16: Testing Web Components

Summary
A lot of exciting promises have been made about web components. In this chapter, we
faced one of the hard truths—lack of testability—and provided you with a possible
route through. Solid unit tests are the foundation on which maintainable applications
are made, and without them, teams can find themselves floundering around trying to
keep their heads above water.

Unit tests automated via JavaScript and Karma are, in our eyes, the best way to test
Polymerized web components right now. Tools will absolutely emerge to fill in the
gaps, but this may be your largest pain point right now.

To be honest, though, there are many people and teams who don’t actually do very
thorough unit testing. I know, it amazes even me, but it’s true. If you happen to be
part of such a team (I won’t tell anybody), then I can assure you Polymer and web
components will help the maintainability of your application. The concrete line of
demarcation with web components—HTML tags, attributes, and associated public
JavaScript methods—helps to encapsulate logic in a very strict manner. This strictness
and the natural desire to adhere to it benefit everyone in the long run.

Summary | 201

CHAPTER 17

Packaging and Publishing

Jarrod Overson

Build processes in JavaScript are a subject of common debate. On the one hand, there
is a beautifully romantic simplicity in being able to author code that gets delivered
directly to an end user and runs without modification. There are people who opti‐
mize for that simplicity, using it as a creative constraint to encourage simple and
clever programming. On the other hand, authored code and delivered code exist in
different environments and are read by different machines. On the client side, the
user’s machines parses the code and runs it to deliver the end user experience. On the
development side, the machine is you, and you parse code in a very different way
than an executable interpreter. Good development practice may actually result in very
poorly optimized code when it comes to delivery and parsing.

When acknowledging those differences, an intermediary process that translates the
code from one environment to the deployable artifact for the other seems like an
obvious necessity and something that one should optimize for from the start.

The important aspects to consider when determining the extent of a build process are
the same as for anything else: what is the cost and value of one choice versus another?
It’s impossible for anyone to tell you what you should do in your particular situation,
so it’s important to test it yourself.

Oftentimes one of the biggest red flags in browser code is the number of requests
being made, and it is trivial to make more requests than you realize when importing a
single HTML file. This is more of a concern today than it used to be because while
there has never been a great way to refer to and load dependencies in widget code like
this, now, one poorly optimized HTML import can easily link to dozens of other
resources—and we (and our implementers) don’t want to worry about things
like that.

203

Our element includes a number of external scripts that aren’t immediately reused
anywhere else. It also includes dependencies on Polymer, jQuery, and Jenga, which
are third-party libraries that we shouldn’t be worrying about at the moment; our
main concern is all the internal code. In traditional widgets and modular JavaScript
code developed to be distributed, the build and delivery process often consists simply
of the minification and concatenation of all the project’s files into one distributable,
compressed file. You see this regularly with libraries like jQuery (and even Polymer’s
platform.js): there is an uncompressed (though maybe concatenated) deployable
called jquery.js and another smaller distributable called jquery.min.js. The source of
jQuery is actually a couple dozen AMD modules that can be used independently but
go through an extensive build process to arrive at the deployable artifact that
optimizes the footprint, produces source maps, and generates multiple versions of
“jQuery” proper.

For code meant to be delivered as HTML files and imported by way of HTML
imports, though, we can’t use all the same tools because we’re potentially linking to a
variety of resources that need to be embedded into the HTML file itself. UglifyJS,
Esmangle, and the like only work for JavaScript. Fortunately, the Polymer team
already has us covered here and has been working on a tool specifically for this
problem.

Vulcanize
Vulcanize is the first major solution for packaging up web components for deploy‐
ment: it provides a way to manage custom elements written with Polymer in external
HTML files. It is both a library and a tool written in JavaScript on top of Node.js and
can be installed via npm. Since Vulcanize is a library as well it can be incorporated
into build tools, but the command-line functionality is a great way to test its viability
before going through the effort of fitting it into a build.

You can install it globally in order to easily access its executable, vulcanize, from
your command line:

$ npm install -g vulcanize
vulcanize@0.3.1
├── nopt@2.2.1 (abbrev@1.0.5)
├── clean-css@2.1.8 (commander@2.1.0)
├── cheerio@0.15.0 (entities@1.0.0, CSSselect@0.4.1, lodash@2.4.1, ...)
└── uglify-js@2.4.15 (uglify-to-browserify@1.0.2, async@0.2.10, ...)

Node.js Command-Line Tools
Vulcanize follows one of the current established best practices for command-line
tools written on Node.js, the “library-first” pattern. This pattern establishes, first and
foremost, that the functionality of a tool should be delivered in a reusable library

204 | Chapter 17: Packaging and Publishing

while the command-line interface (CLI) exists only as a very minimal wrapper
between the command line and the library, passing options largely unchanged.

Consider the vulcanize options:

$ vulcanize --help
vulcanize: Concatenate a set of Web Components into one file

Usage:
 vulcanize [OPTIONS] <html file>*

Options:
 --output, -o: Output file name (defaults to vulcanized.html)
 --verbose, -v: More verbose logging
 --help, -h, -?: Print this message
 --config: Read the given config file
 --strip, -s: Remove comments and empty text nodes
 --csp: Extract inline scripts to a separate file (uses <output filename>.js)
 --inline: The opposite of CSP mode, inline all assets (script and css) into
 the document
 --csp --inline: Bundle all javascript (inline and external) into <output
 filename>.js

Config:
 JSON file for additional options

 {
 "excludes": {
 "imports": ["regex-to-exclude"],
 "styles": ["regex-to-exclude"],
 "scripts": ["regex-to-exclude"],
 }
 }

You can see where some concessions were made (by way of the JSON configuration).
There isn’t an attempt to fully encompass every conceivable option by way of CLI
arguments; the important arguments are covered and the rest can be configured via a
simple JSON object.

This allows vulcanize to be reused in ways that the authors didn’t necessarily intend.

For a tool like vulcanize, this might mean incorporating it as part of tasks in tools

like grunt, gulp, or broccoli. For other command-line tools like jshint or coffee

script, this could also mean allowing the library to be consumed by the browser. If
all of these tools were written “CLI-first,” this would be much less of a possibility.

Vulcanize | 205

Running vulcanize without any options other than the input document produces a
vulcanized.html file next to your input:

$ vulcanize components/src/x-dialog.html

$ ls -l components/src/*.html
-rw-r--r-- 7224 components/src/vulcanized.html
-rw-r--r-- 1303 components/src/x-dialog.html

Right away we notice that 1) vulcanize did something, since our output file is larger
than the input, and 2) it did it fast. (The curious among you will also have noticed

that vulcanize didn’t tell us a damned thing about what it did do—and, no,

--verbose doesn’t change that.)

By default, vulcanize inlines imported HTML and leaves linked JavaScript in place.
Depending on your use cases, that may be exactly what you want, but we’re looking to
produce a fully encapsulated deliverable that can be imported easily. In this case, the

--inline option is exactly what we want:

$ vulcanize --inline components/src/x-dialog.html

$ ls -l components/src/*html
-rw-r--r-- 357090 components/src/vulcanized.html
-rw-r--r-- 1301 components/src/x-dialog.html

Clearly, a 357 KB web component isn’t what we’re going for. We didn’t specify what

we wanted to inline, so vulcanize inlined Polymer, jQuery, and Jenga along with all
of our dialog’s source. That’s rarely what anyone would want to do, and fortunately it’s
possible to configure what to include and exclude via an external JSON configuration
file. I have a habit of prefixing the names of optional configuration files with a dot, so
I’ve called this file .vulcanize.json. It looks like this:

{
 "excludes": {
 "imports": [
 "polymer"
],
 "scripts": [
 "jquery",
 "jenga"
]
 }
}

Here we specify that we’re not looking to import the polymer HTML file, nor are we

looking to inline jquery or jenga. Those values are all regular expressions, so they

would match any files that include the terms polymer, jenga, or jquery. We don’t
have any other files, but this is worth noting in case you do have anything that might

get matched (a common practice for jQuery plugins is to name them jquery.<plugin>.

206 | Chapter 17: Packaging and Publishing

1 JavaScript developers often do check their distributable artifacts into source control because of the nature of

how JavaScript is used and because there is no good browser code registry. Even so, the artifacts are treated

like versioned binaries, not editable source code with changes tracked by commits.

js, and it’s not unreasonable to think that some plugins may be better inlined than
depended upon externally). With this configuration file in place, let’s have another go:

$ vulcanize --config .vulcanize.json --inline components/src/x-dialog.html

$ ls -l components/src/*html
-rw-r--r-- 30405 components/src/vulcanized.html
-rw-r--r-- 1301 components/src/x-dialog.html

This is substantially better. But we don’t want our built file to be called vulcan‐
ized.html, nor do we want it in our src folder, remember? This is where our choice of
directory structure starts paying off when incorporated as part of a build process with
a distributable artifact.

Artifacts, Distributables, and Builds, Oh My!
The terms used here may be foreign to some people, but they go a long way toward
describing an end goal effectively. “Widgets” and similar terms aren’t often appropri‐
ate because they can mean just about anything to different people. Let’s take a look at
a few definitions:

Build process
A pipeline that is initiated and completes on its own.

Build
An individual run of a build pipeline. There can be successful builds and failed
builds.

Artifact
A by-product.

Distributable
A self-contained file (or limited set of files) that can be distributed on its own.

Consumer
The end user (developer).

Publish
The act of making a distributable artifact available to consumers.

So, the term “build artifact” simply means a by-product of the build: something that
does not exist as part of the source code and probably shouldn’t be tracked as source
code.1 Analysis reports and test results are also build artifacts, but they are not (likely)
distributable artifacts.

Vulcanize | 207

An example outside of web components and Polymer would be a library written in
CoffeeScript. The CoffeeScript source code is the important stuff to be tracked by ver‐
sion control, and the build process produces executable JavaScript that is published as
the distributable artifact.

In this case, our distributable artifact needs to enable us to be imported at the base of
our directory structure, both for ease of use and, critically, to be able to access depen‐
dencies relatively in the exact same way we access them in our src folder. This can be
done simply with the following command run in the root of our project directory:

$ vulcanize --config .vulcanize.json \
--inline components/src/x-dialog.html \

-o x-dialog.html

This does just what we want, but there is a concern we’re not addressing. Some of our
users may want to be able to use our component in an environment that is secured by
a security model that supports the W3C’s Content Security Policy (CSP) recommen‐
dation. This is a security measure that prevents, among other things, inline scripts
from being executed. Vulcanize supports this handily in a couple of different ways.
The method that works best for us is to have Vulcanize aggregate, concatenate, and
extract all scripts to a separate file:

$ vulcanize --config .vulcanize.json \
--inline --csp components/src/x-dialog.html \

-o x-dialog.html

In order to accommodate both styles, we named the output file x-dialog-csp.html.

The Importance of Automation
Now we have two commands we need to run upon every build, both with a number
of arguments that can easily be forgotten, munged, or transposed between com‐
mands. Even with only one command like this, it is incredibly important that it be
condensed down to a single idiotproof script. Why? Because builds are always the last
step. They are the step we rush because the “important” stuff is done. We publish pre‐
maturely. We shout, “Let me just commit this and I’ll be done.” We run builds and
leave without checking the results.

Builds are the shopping carts of the developer world. They are the task at the end of
all the real work that isn’t accounted for, is trivialized, and isn’t a priority.

Build pipelines without automation force you to bring the shopping cart all the way
back to the front of the store every single time. Automated builds are the equivalent
of having a handy SuperMart™ employee waiting to whisk that cart away from you as
soon as you are done. Think about it: do you always return your cart exactly where
you should? No. You don’t. No one does.

208 | Chapter 17: Packaging and Publishing

http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/

And even if you really want to believe that you do it, your coworker doesn’t. That con‐
tributor to your project doesn’t. The user playing with your code won’t.

In order to keep these commands under control, we should put them in some sort of
manageable automated build process. There are an infinite number of ways this can
be done, depending on your background. It’s not as easy as having a build.sh and a
build.bat, because that would still require two commands to be run, maintained, and
kept in sync.

If you come from a Unixy upbringing, make is an extremely popular and battle-tested
tool that seems to fit the bill entirely. The only major problem is that it isn’t easy to
install and use on Windows, and once the commands start scaling you run into cross-
compatibility issues at every turn.

Coming from a Java background? If so, ant is probably your go-to and can very easily
be made to automate a couple of shell commands with a few deft swishes of the XML
pen. It’s a bit heavy-handed, but it can definitely work.

If you come from the Ruby world, rake is very popular and can easily work just as

well as the previous two tools. One of the benefits of rake, though, is how well it ties
into Ruby tools and libraries in order to automate functionality that would normally
be delegated to the command line. That doesn’t apply here.

Fortunately, a few tools have arisen in the JavaScript world that embrace the Node.js
and JavaScript ecosystem to provide massive amounts of functionality in tight little

automated packages. By far the most popular are grunt and gulp, both of which have

plugins that tie directly into vulcanize as a library.

Gulp
Gulp became popular after Grunt and addresses some of the drawbacks of the earlier
tool. Most notably, it alleviates the verbose and heavy configuration syntax with pure
code and the long wait times with a lot of asynchronous, stream-based beauty.

Gulp’s community has exploded, and a lot of the major tasks that people use Grunt
for have Gulp equivalents. The process of using this tool is excellent, straightforward,
and scalable.

Whatever you choose, you will be taken care of; the drawbacks of one are benefits of
the other. We’ll be working with Grunt from this point on because it is the most pop‐
ular tool at the moment and shows all signs of continuing to improve and grow.

Gulp | 209

Grunt
Grunt became popular nearly immediately after it came on the scene because it
answered a question so many frontend developers were starting to have at the exact
same time: “How do I manage these scripts I run every time I am at the end of devel‐
opment?” The road up to Grunt was littered with numerous options that linted your
code, optimized it, built its modules, transpiled whatever, and then bundled every‐
thing up at the end. All of this quickly became unmaintainable, and something had to
be done. Ben Alman, then at Bocoup, was looking for a way to automate the cumber‐
some maintenance tasks that came with managing many jQuery plugins, and out of
that frustration came Grunt.

Grunt has its rough edges, but it was at the forefront of the modular, composable
command pipeline, and as such, it amassed well over 1,500 plugins in short order,
doing everything from simple concatenation to building AMD modules to transpiling
EcmaScript 6 code to IE8-compatible JavaScript.

Grunt is not the answer to everything, but it’s a great answer to the problem we
have now: how do we automate the usage of Vulcanize to create multiple web compo‐
nent artifacts?

To get started with Grunt, it’s important to know how it’s architected. Grunt leverages
Liftoff (by Tyler Kellen and born out of the experience developing Grunt), which is a
library that allows tools to look for local modules to bootstrap into its further func‐

tionality. That translates to Grunt being a global tool, grunt, that leverages local mod‐

ules for the entirety of its functionality. The global grunt executable is installed via

the grunt-cli npm package:

$ npm install -g grunt-cli

Whenever this executable is run it will look for a local installation of the grunt mod‐

ule. The reason it does this is to support various versions of the grunt library via any

arbitrary version of the grunt command-line interface. With this pattern, you’ll rarely

ever need to update grunt-cli on any local box since the updated versions will be
taken care of on a project-by-project basis. It’s a clever style that has worked out well
and is emulated by several projects now.

Running grunt without a local Grunt install will net you the following message:

$ grunt
grunt-cli: The grunt command line interface. (v0.1.11)

Fatal error: Unable to find local grunt.

If you're seeing this message, either a Gruntfile wasn't found or grunt
hasn't been installed locally to your project. For more information about
installing and configuring grunt, please see the Getting Started guide:

210 | Chapter 17: Packaging and Publishing

https://github.com/tkellen/node-liftoff

http://gruntjs.com/getting-started

In an established project, this almost always means that you have yet to run npm

install. In a new project, it just means you haven’t installed grunt locally yet (or, if

you have already run npm install, then it means you haven’t saved grunt as a devel‐
opment dependency to the project).

To get started using Grunt for our project, we need to initialize the project with npm
so that dependencies can be tracked automatically, similar to how this was done with
Bower in the previous chapter:

$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg> --save` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: *(x-dialog-grunt-vulcanize) x-dialog*
version: (0.0.0)
[...snipped...]

npm walks through some basic questions in order to set some sensible defaults in our
package.json file. This package.json file is npm’s way of tracking the metadata associ‐
ated with a project that either is published to npm or uses npm in some way. Even if
publishing to npm is not in the pipeline (which it’s not, until the developers explicitly
support client-side modules), it’s important to treat the metadata as important and
relevant because it’s used informally by other projects as a central metadata touch‐
point for JavaScript-related projects. This includes accessing things like version data,
test commands, author names, etc.

Installing Grunt plugins is trivially easy thanks to npm, and plugins are searchable
from the official Grunt website. Many popular and well-supported tasks are simply

named grunt-<task>. For example, Vulcanize’s task is grunt-vulcanize, and it can
be installed with npm alongside Grunt itself:

$ npm install grunt grunt-vulcanize

Grunt | 211

http://gruntjs.com/plugins

There was an initiative by Tyler Kellen shortly before Grunt 0.4 was
released to centralize a wide number of common or first-class
Grunt plugins under the umbrella of a Grunt Contrib team. Those
who were part of the team were committed to keeping a large num‐

ber of highly depended upon tasks (the grunt-contrib plugins) as
up-to-date as possible with the most current Grunt version. Unless

you know what you are doing, if there is a grunt-contrib-* ver‐
sion of the task you are looking for, it is recommended to start with
that and only move on if it doesn’t suit your needs.

Ben Alman created Grunt, but a lot of its functionality and consis‐
tency is largely due to Tyler Kellen and the Grunt Contrib team,
which includes members like Sindre Sorhus, Kyle Young, and Vlad
Filippov.

Gruntiles
The basic configuration for Grunt build chains is done via a Gruntile (spiritual kin to
the Makeile, Rakeile, Jakeile, Gulpile, and build.xml).

Running grunt with a local installation but without an available Gruntile.js, you’ll see
the following error:

$ grunt
A valid Gruntfile could not be found. Please see the getting started guide for
more information on how to configure grunt: http://gruntjs.com/getting-started
Fatal error: Unable to find Gruntfile.

The Gruntile is a plain old Node.js module that exports a function taking one argu‐

ment, the context for the current project’s installed Grunt version. That grunt object
is used to load plugins, configure tasks, and set up build chains. A basic, albeit use‐
less, Gruntile looks like this:

module.exports = function (grunt) {

};

Running grunt now will net you the error:

$ grunt
Warning: Task "default" not found. Use --force to continue.

Aborted due to warnings.

One of the frustrating aspects of getting started with Grunt is the
number of ways you can be tripped up without knowing why, or
where to turn. Knowing the basic errors and their solutions will
allow you to jump the hurdles a little bit faster and get productive
sooner.

212 | Chapter 17: Packaging and Publishing

Grunt Tasks
Grunt runs on the concept of “tasks.” Each task can lead to a JavaScript function or
can be made up of an array of other tasks, forming a task chain that in turn can lead
to functions or further task chains. Grunt doesn’t have a single task built in, so by

default it looks for a task registered as the default and complains if it cannot
find one.

If we wanted to, we could define a very basic function that runs as the default task:

module.exports = function (grunt) {

 grunt.registerTask('default', function () {
 console.log('Running our own task!');
 })

};

Now we have a fully qualified Grunt installation that actually does something!

$ grunt
Running "default" task
Running our own task!

Done, without errors.

The text around our printed string is interesting and further clarifies what kind of
framework Grunt provides. Chunks of functionality are broken up into “tasks” and
can end with success or failure. Any task that causes errors in part of a chain will
abort the rest of the execution and cause the process to exit with a failure. If we were
to throw an error there:

module.exports = function (grunt) {

 grunt.registerTask('default', function () {
 throw new Error("I broke.");
 })

};

Grunt would respond appropriately, giving a warning and aborting with an error
code:

$ grunt
Running "default" task
Warning: I broke. Use --force to continue.

Aborted due to warnings.

Admittedly, this default task is not very useful, and truth be told, we don’t really
want to be writing our own plugins at this time—that’s not why one would choose
Grunt off the bat. The real benefit comes in the community plugins.

Grunt | 213

Registering Tasks
In order for Grunt to be aware of a plugin installed via npm, you need to explicitly

load it via loadNpmTasks. For example, to load our previously installed grunt-

vulcanize plugin, we’d simply run grunt.loadNpmTasks('grunt-vulcanize');.

Many plugins register tasks themselves, but you’ll either need to run grunt --help to
find out what the exact names are or read the documentation. There is no standard
mapping from plugin name to task name. The rule of thumb, though, is that the reg‐
istered task is the most obvious possible name for the task. For example, for a plugin

like grunt-vulcanize the task is assumed to be (and is) vulcanize, for a plugin like

grunt-contrib-jasmine the task is assumed to be jasmine, etc.

Use grunt --help in order to get a lot of contextual assistance as
well as a list of the registered tasks in a project.

We can run our vulcanize task with the command grunt vulcanize, but since that
is the main focus of our Grunt configuration right now, it may as well be the default:

module.exports = function (grunt) {

 grunt.loadNpmTasks('grunt-vulcanize');

 grunt.registerTask('default', ['vulcanize']);

};

Running grunt now will net us a new error, indicating that there are no “targets”
found:

$ grunt
>> No "vulcanize" targets found.
Warning: Task "vulcanize" failed. Use --force to continue.

Aborted due to warnings.

There are two major task concepts in Grunt: regular tasks, which are simple functions
run without any explicit configuration, and “multitasks,” which operate over a set of
“targets.” Targets are individually configured runs of a task, configured manually or
programmatically in the Grunt config setup.

Grunt Coniguration
The largest number of lines your Gruntile will have will almost always be in the con‐

figuration block, an object passed into the initConfig method. For people getting

214 | Chapter 17: Packaging and Publishing

started with Grunt, it always starts innocently, but once the grunt Kool-Aid kicks in
and plugins start falling from the sky it quickly stretches to 50, then 100, then 300
lines long. There are ways to manage it, but that’s for another book.

A Grunt configuration loading the vulcanize plugin starts off like this:

module.exports = function (grunt) {

 grunt.loadNpmTasks('grunt-vulcanize');

 var config = {};

 grunt.initConfig(config);

 grunt.registerTask('default', ['vulcanize']);

};

Task configurations are located in configuration properties of the same name. For a

task like vulcanize, the configuration is located in a vulcanize property:

module.exports = function (grunt) {

 grunt.loadNpmTasks('grunt-vulcanize');

 var config = {
 vulcanize: {}
 };

 grunt.initConfig(config);

 grunt.registerTask('default', ['vulcanize']);

};

Multitask “targets” can be seen as conceptually equivalent to individual configura‐
tions of a task at one property deeper than the main task configuration. For example,

for a target named “main” the task configuration would start at con

fig.vulcanize.main, and to add another literal target, you’d add another key.

This is where the “library-first” pattern of tool development starts exhibiting true

benefits. With grunt-vulcanize, we’re not interacting with a command line at all;
we’re tying directly into the library itself, passing commands in and massaging return
values into things that make sense to Grunt. This allows our previous work on the
command line to translate over trivially, as the command-line options map to library

options. Our primary vulcanize run then looks like this:

var config = {
 vulcanize: {
 main: {
 src: "components/src/x-dialog.html",

Grunt | 215

 dest: "x-dialog.html",
 options: {
 inline: true,
 excludes : {
 imports: [
 "polymer"
],
 scripts: [
 "jquery",
 "jenga"
]
 }
 }
 }
 }
};

Using that configuration, we can now use Grunt to automate our base vulcanize run:

$ grunt
Running "vulcanize:main" (vulcanize) task
OK

Done, without errors.

Now to add our CSP build, we just add a new target with similar configuration and
one new option. You may be thinking that sounds like a lot of duplicated configura‐
tion if this pattern holds true for other tasks. Thankfully, Grunt has a way of setting

common configuration through an options property at the root task configuration
level. With no actual configuration except two targets and shared options, the proper‐

ties of the vulcanize task then look like this:

var config = {
 vulcanize: {
 options: {},
 main: {},
 csp: {}
 }
};

Adding the configuration, we then have two distinct targets with the same sources
and nearly the same options, except the CSP target has a different destination and
one added flag:

var config = {
 vulcanize: {
 options: {
 inline: true,
 excludes : {
 imports: [
 "polymer"
],

216 | Chapter 17: Packaging and Publishing

 scripts: [
 "jquery",
 "jenga"
]
 }
 },
 main: {
 src: "components/src/x-dialog.html",
 dest: "x-dialog.html"
 },
 csp: {
 src: "components/src/x-dialog.html",
 dest: "x-dialog-csp.html",
 options: {
 csp: true
 }
 }
 }
};

This is already a hefty amount of configuration for a seemingly basic task, and this is
one of the primary complaints Grunt detractors have. I can empathize, but there’s
very little superfluous configuration there, so it’s mostly a matter of recognizing
where that configuration lies. With Grunt, it’s passed in via one object to one method.
With other tools, it’s managed at different levels, but it still has to exist somewhere.

For those actually following along in code, you’ll notice that vulcan

ize (and grunt-vulcanize) doesn’t perform much optimization
outside of the inlining and concatenation of scripts. The JavaScript
file that is created isn’t minified at all and can have a substantial
weight to it. Ours, right now, already weighs in at ~30 KB. When
gzipped, as it would likely be served from a server, it’s 6.3 KB—
which isn’t much, but any extra weight shouldn’t be tolerated. Mini‐
fied, that code would be around 9 KB, gzipped and minified 2.9 KB
—substantial enough savings to worry about.

Fortunately, we’re using Grunt and can tie a virtually infinite number of plugins into
our flow!

The method of chaining together disparate tasks may take some creativity, but the

overall benefit should be obvious. To minify our JavaScript we’ll use grunt-contrib-

uglify, and we’ll vulcanize the CSP build first in order to get all of our JavaScript in
one place without excess configuration. We’ll minify that file in place, and then run

vulcanize on the CSP build to inline the minified JavaScript into a single HTML file.
The total Gruntile.js follows—see if you can spot the changes and the reasoning

behind them (and don’t forget to install grunt-contrib-uglify via npm install --

save-dev grunt-contrib-uglify!):

Grunt | 217

module.exports = function (grunt) {

 grunt.loadNpmTasks('grunt-vulcanize');
 grunt.loadNpmTasks('grunt-contrib-uglify');

 var config = {
 uglify: {
 csp: {
 files: {
 'x-dialog-csp.js': ['x-dialog-csp.js']
 }
 }
 },
 vulcanize: {
 options: {
 inline: true,
 excludes : {
 imports: [
 "polymer"
],
 scripts: [
 "jquery",
 "jenga"
]
 }
 },
 main: {
 src: "x-dialog-csp.html",
 dest: "x-dialog.html"
 },
 csp: {
 src: "components/src/x-dialog.html",
 dest: "x-dialog-csp.html",
 options: {
 csp: true
 }
 }
 }
 };

 grunt.initConfig(config);

 grunt.registerTask('default', [
 'vulcanize:csp',
 'uglify:csp',
 'vulcanize:main'
]);

218 | Chapter 17: Packaging and Publishing

Publishing with Bower
Up until this point, Bower has been used to manage the installation of dependencies.
Now that the component is nearing completion, it’s time to think about how consum‐
ers of this project might use it. Fortunately, if you’ve been managing dependencies
with Bower already, then it becomes trivially easy to publish the package to the Bower
registry.

The x-dialog package has already been using a bower.json file to keep track of its
dependencies, so half of our metadata is already taken care of. Filling out the rest is
fairly straightforward. Here’s what it might look like:

{
 "name": "x-dialog",
 "version": "0.0.0",
 "authors": [
 "Your Name <email@email.com>"
],
 "description": "a dialog box web component",
 "main": "./x-dialog.html",
 "keywords": [
 "dialog"
],
 "license": "MIT",
 "homepage": "http://github.com/YOURUSER/x-dialog.html",
 "ignore": [
 "**/.*",
 "node_modules",
 "bower_components",
 "vendor",
 "test",
 "tests"
],
 "dependencies": {
 "polymer": "~0.3.3",
 "jquery": "~2.1.1",
 "jenga": "*"
 }
}

Proper Git tags are an important aspect of using Git repository endpoints for Bower
packages. If a consumer specifies a version of a library—say, 1.2.1—the only way

Bower can look for that in a Git repository is by looking up the tag name v1.2.1. An

extremely important note is that the Git tag will always win. If v1.2.1 is checked out

and the bower.json file is specifying the package version is 1.0.1, it won’t matter;

Publishing with Bower | 219

whatever state the code was in when the repo was tagged v1.2.1 is what will
be installed.

The Wonder of the Web
This is yet another reason why Bower’s usefulness is primarily due to the diligence of
the web community, and another example of “worse is better.” A vast majority of
projects are actually managed in public Git repositories, and maintainers of public
projects try to do a really good job of limiting backward compatibility concerns
because they just have to.

The limitations of the Web have encouraged a substantial community of people to
adopt standards that “just work.” There have been countless attempts at making things
“better,” but they always fail when confronted with “what just works” because “what
just works” gets adopted first.

In order to make the tagging easier and to ensure things stay in line, you can tag your

Git repository and update the metadata with Bower itself. Issuing a bower version

0.0.1 command will update bower.json and tag our Git repository with v0.0.1 so
that all we have to do from this point onward is push our changes live:

$ bower version 0.0.1
$ git tag
v0.0.1
$ git push --tags

Registering the Component
The metadata is in order and the code is working and packaged; it’s time to make it
public. Doing so is trivially easy with Bower and GitHub, because all we need to do is
pick a name and link it to our public Git location. That’s as easy as:

$ bower register x-dialog git://github.com/WebComponentsBook/x-dialog.git

Bower will indeed make sure this endpoint exists, but it won’t do much more than
that. Managing releases from this point onward is as simple as tagging our Git reposi‐
tory when we push new versions public. It’s simple enough to be dangerous, so it
encourages proper Git workflows and ensures a stable master branch.

To use our new component, install it like anything else:

$ bower install x-dialog

All of the dependencies will be pulled in and it’ll be ready to go!

220 | Chapter 17: Packaging and Publishing

Summary
In this chapter we’ve solidified our process to account for packaging and deployment
of our web component. After this point you should be able to create, test, package,
deploy, and install an individual web component.

Some readers may feel compelled to question the value of all this if they never plan to
distribute a web component publicly. The benefit of this process is the process. It is
overhead that ensures appropriate dependency management, encapsulated logic,
faster unit test suites, proper versioning of components, and overall easier mainte‐
nance long term. Getting into this flow may be a burden in the short term, but it pays
off in spades.

Summary | 221

CHAPTER 18

Final Words

Jarrod Overson

Congratulations—you know just enough about web components to start having a
good time developing web applications. Once you start scratching the surface you’ll
discover a vast world that will delight and surprise you. Web components aren’t the
solution to every problem, though, and they present more questions than they answer
—new questions that require new paradigms and patterns.

The field is also moving extremely quickly. To put it in perspective, when we started
working on this book we planned to include a chapter on decorators, but that was
eventually scrapped as the spec fizzled into nonexistence; the specs around creating
custom components changed; Polymer went from alpha to beta to nearing a 1.0
release; and Chrome 36 stable shipped with full web component support out of the
box. In a very short time web components went from a barely usable pipe dream to
something that is legitimate and out in the wild.

This book is early for the realm of web components. We’re on top of it all and intend
this book to be a transitional primer for people moving from the existing world of
widget writing to the new world of web component authoring. Hopefully you’ll see
multiple revisions of this book, each focusing on current best practices as the land‐
scape evolves.

Where Do We Go from Here?
It is important to stay up to speed with the state of web components on the Web. This
book is not able to be the final answer (yet…), so you’ll need to seek out information
and read the news as it occurs. We are already starting to see alternatives to the web
components game; Polymer is actively changing before its 1.0 release; and Microsoft
is approaching web components with force.

223

This section outlines some of the ones to watch, as well as a few hot sources of infor‐
mation to get you started.

Polymer
Polymer has rapidly evolved from being an interesting project to being at the absolute
forefront of custom element creation. It provides a slew of custom components ready
to be used, and examples to help you get into them. When Google announced its
material design at I/O 2014, Polymer elements implementing the design were
announced the same day, with tutorials at the conference. It is clear that Polymer is
going to continue being a force and should be followed, respected, and questioned
like any front-runner in a new technology. Polymer 0.8 incorporates some serious
changes that will improve performance dramatically and shows that the team is dedi‐
cated to making Polymer the first choice in serious web component development.

Mozilla X-Tag
Mozilla’s foray into the space, X-Tag, is less opinionated than Polymer and attempts to
ease the creation of custom components. The developers initially implemented their
own polyfills, including an attempt at substantial shadow DOM shimming, but the
group of early adopters eventually came to the conclusion that, to speed up adoption,
standardizing on one set of polyfills was important. Now the polyfill implementations
are the same as Polymer’s, omitting the bulk of platform.js and including some exten‐
sions that provide support where Polymer lacks.

Mozilla also showcases a large number of custom compontents built using X-Tag and
is a great resource for seeing what you can do outside of the world of Polymer.

Polymer and X-Tag have had the freedom to run for years in con‐
trolled environments, though, and the assumptions they made a
few years ago may no longer be the best of the breed when it comes
to modern practice. Don’t get me wrong, they very certainly do a
lot of things very well, but the rest of the world is starting to jump
on board and all the flaws that are revealed and changes that are
made are going to spawn different implementations. Don’t wait to
find out who wins. Web components provide value now. Polymer is
a fantastic solution, and the people putting it to use are doing beau‐
tiful things with it. It’s attracting the best of the brightest and will
surely be supported for many years in the future. If your environ‐
ment doesn’t need all of what Polymer provides, look around at the
other options, but be realistic about your future support require‐
ments; Polymer and web components may be a more viable option
than you expect. Make sure the browsers you support are still
highly used on BrowserUsage.org before omitting this valuable
technology to accommodate potentially dying browsers.

224 | Chapter 18: Final Words

https://www.polymer-project.org
http://bit.ly/dwc-google-md
http://x-tags.org
http://brick.mozilla.io
http://browserusage.org

document-register-element
Andrea Giammarchi created a polyfill for custom components after some frustration
with the heavy implementation promoted by Polymer. This version clocks in at
around 2 KB and certainly works for basic implementations of custom elements. It
isn’t mentioned here because of its astounding uniqueness, but as an example of web
components turning the corner into real-world usage.

WebComponents.org
Zeno Rocha, Rob Dodson, Addy Osmani, Eric Bidelman, and a slew of others have
banded together to centralize modern information regarding web components on
WebComponents.org. This is intended to be a reliable location for charting up-to-
date practices and specifications and is a welcome addition. Web components have
been a hot topic for over two years now, and this has resulted in a large number of
out-of-date blog posts, repositories, and tweets floating around in the ether. Having a
reliable, current website curated by some of the best in the field is a big benefit.

CustomElements.io
CustomElements.io has been around for much longer than you’d probably expect and
houses a wide range of community implementations of custom components. Since
the site has been around for so long, it also contains references to a fair number of
unmaintained components that may or may not run on modern versions of their
dependencies. It remains, though, one of the top non-Polymer and non–X-Tag
resources for community component listings and will likely grow to become much
more relevant as community components start becoming more popular.

Having a site dedicated to components is and will continue to be important. Applica‐
tions and development flows that take full advantage of the HTML APIs presented by
web components are going to benefit from staying in that environment. There’s noth‐
ing preventing a developer from using a widget developed with this or that library,
but it’s that cognitive switch that will be optimized against. The future holds a large
number of reimplementations of existing widgets in its path, and sites like Custom‐
Elements.io are going to be important to manage them.

Good Luck!
You’re about to embark on a journey that this book’s authors are going on with you.
This is an excellent opportunity to make your mark on a virgin canvas. If you’ve ever
been interested in reinventing your career, the modern Web holds unlimited potential
for you right now.

Good Luck! | 225

http://bit.ly/dwc-cc-polyfill
http://webcomponents.org
http://customelements.io

Web components is a technology that will benefit from new minds and new ways of
thinking about applications. You can easily become an expert in a field where exper‐
tise is highly sought after by expending some effort playing with cool technology.
This, coupled with the fact that the technology will breathe new life into all existing
widget ideas, means that there is a tremendous opportunity to become well versed in
the technology simply by reimplementing old ideas in new ways.

Good luck, and we’ll see you at the next revision!

226 | Chapter 18: Final Words

Index

A
absolute positioning, 27
aligning elements, 61
Angular, 3, 190
Ant, 168, 209
API design, 12-14
APIs

defining, 73
dialog API, 124
dialog custom element, 137
in overlay construction, 57
JavaScript, 163-164
native, 47
Polymer custom elements, 161-163
query selector, 11
resizeable, 83
stubbing out, 39
wrapper API, 105

artifact, 207
Asynchronous Module Definition (AMD), 16
attachedCallback, 132
attributeChangeCallback, 133
automated builds, 208

B
Backbone, 190
base class, 18-20
Bidelman, Eric, 102
block elements, 24
Bower, 169-172, 219
box model, 23-24
box sizing, 24
Browserify, 169
build, 207

build process, 207
builds, automated, 208

C
cleanup (see destroy function)
cloning nodes, 51-56

cloneNode method, 52-53
deep clone, 52
definition and usage, 51
and duplicate IDs, 53
jQuery.clone, 53-55

code, importing (see importing code)
command-line interface, 205
component testing (see testing)
consumer, 207
content projection

via content selectors, 118-119
via content tag, 117
distributed nodes and insertion points, 119

createdCallback, 132
cross-origin resource sharing, 145
CSS

dialog, 95
with imports, 142
in Polymer, 155-156

CSS overlay, 64
custom elements, 4, 127-138

defining properties and methods, 130
dialog custom element, 135
extending, 129
in imports, 145-146
and life cycle issues, 131-133
naming conventions, 129
registering, 128

227

resolving, 131
styling, 133-134
use of templates and shadow DOM with,

134
CustomElements.io, 225

D
deep clone, 52
default rendering layer, 34
default stacking orders, 34-36
dependencies, 15
destroy function, 63, 88
detachedCallback, 132
dialog class, 20
dialog CSS and HTML, 21
dialog custom element, 135-138

in imports, 146
dialog template, 104
dialog template updating, 122-125

dialog API, 124
dialog markup, 123
dialog show method, 124
instantiating a dialog component instance,

125
dialog template wrapper, 105-107
dialog widget

adding overlay to, 68
adding z-index manager to, 47
cloning and, 55
concatenating JavaScript, 96
making draggable, 78
making resizeable, 92
styling, 95-96

direction-based descriptors, 82
distributable, 207
distributed nodes, 119
Document Object Model (DOM), 3

(see also shadow DOM)
abstraction layer, 11

Document Object Model (DOM) APIs, 47
document type, 24
document-register-element, 225
drag and drop interfaces, 51
drag handles, 74, 81, 84

(see also resizing elements)
draggable elements, 71-80

defining an API, 73
destroying, 78
dialog widget, 78

drag handle creation, 74
element movement, 75-78
mouse events, 71-73

(see also mouse events)

E
elements

aligning, 61
block, 24
floated, 35
inline, 24
obtaining dimensions, 29
positioning (see positioning)

Ember, 3
encapsulation, 109, 112, 117

(see also shadow DOM)
Evergreens, 152
extending elements

custom elements, 129
native elements, 130

Extensible Web Manifesto, 165

F
fixed positioning, 28
flashes of unstyled content (FOUCs), 134
floated elements, 35
fundamental layout concepts, 23

G
Grunt, 168, 210-218

configuration, 214-218
grunt preprocess plugin, 16
Gruntfiles, 212
tasks, 213-214

Gulp, 168, 209

H
HTML imports, 3
HTML templates, 3
HTML5

defining, 5

I
importing code, 139-147

accessing content, 140-144
accessing templates, 143
applying styles, 142-143
cross-domain considerations, 145

228 | Index

declaring an import, 139
and dialog custom element, 146
executing JavaScript, 144
loading custom elements, 145-146
parsing imports, 144
referencing documents, 141
subimports, 145

Inheritance pattern, 14
inline elements, 24
insertion points, shadow, 120-122
instance methods, 162

J
JavaScript

concatenating, 96
in imports, 144
in Polymer, 163-164
MVC libraries, 4
Node.js, 204
overlays, 65-66
PhantomJS 1, 190
PhantomJS 2, 191
prototypal inheritance, 14

jQuery, 151, 182-187
effects of removing, 183-186
features, 183
jQuery.clone, 53-55
query selector API, 11
value of, 186
for z-index manager plugin, 45

JXcore, 168

K
Karma, 191-196

L
life cycle issues, 12-14, 131-133
life cycle methods, 163
Liftoff, 210
listeners, 62

M
marketing impact and infuences, 190
mocha, 196-197
Model-View-Controller (MVC) libraries, 4
module loaders, 5
mouse events, 71-73, 81

best practices, 72, 82

and element movement, 75
mousedown, 72
mousemove, 71
mouseup, 72
resizing and, 85-88

Mozilla X-Tag, 224
MVC libraries, 4

N
naked attributes, 161
naming conventions, 129, 155
native elements, extending, 130
native templates, 102
Node.js, 168, 204
normal flow, 23-24
npm, 169, 211

O
offset parent, 25-26
optimization, 16
orphaned nodes, 16
overlay construction, 57-69

adding to dialog widget, 68
CSS overlay, 64
defining an API, 57
destroy function, 63
JavaScript overlay, 65-66
listeners, 62
positioning, 61, 62-68

(see also positioning)
scrollbars, 59-60
updating options, 62
utilities, 59-62

overlays, primary functions, 57

P
packaging and publishing, 203-221

automated builds, 208
Bower, 219-220
Grunt, 210-218

(see also Grunt)
Gulp, 209
terms and definitions, 207
Vulcanize, 204-209

parsing, 144
PhantomJS 1, 190
PhantomJS 2, 191
plugins, 45-47

Index | 229

Polymer
adding style, 156
block repitition, 159
bound scopes, 160
comparing to jQuery, 182
conditional blocks, 160
created versus ready, 164
custom element API, 161-163
data binding, 159
delayed work, 164
elements, 154-159
events, 164
external resources, 157
filtering expressions, 157-159
future outlook for, 224
instance methods, 162
JavaScript API, 163-164
life cycle methods, 163
multiple template directives at once, 161
naked attributes, 161
overview, 149, 151-154
porting dialog to, 167-187

(see also porting to Polymer)
published properties, 162
shims, 151-152
template syntax, 159-161
versions, 153

porting to Polymer, 167-187
direct port, 169-182
installing dependencies with Bower,

171-173
and jQuery, 182-187
managing dependencies, 169-170
reasons for, 168-169

position-based descriptors, 82
positioning, 24-31

absolute, 27
calculating, 29-31
CSS overlay, 64
dialog widget, 31
dimensions and coordinates, 61
fixed, 28, 62
JavaScript overlay, 65-66
offset parent, 25-26
overlays, 62-68
relative, 26
relative to the document, 30-31
relative to the viewport, 29

premature optimization, 16

Progressive Web, 168
projection (see content projection)
prototypal inheritance, 14
publish, 207
published properties, 162
publishing (see packaging and publishing)

R
rake, 209
registering custom elements, 128
relative positioning, 26
rendering layers, 34-36
resizing elements, 81-94

API creation, 83
binding event handlers, 85-88
completed library, 88-92
defining drag handles, 84
destroy function, 88
direction-based versus position-based

descriptors, 82
mouse events, 81

Rhino, 168

S
scrollbars, 59-60
Selenium WebDriver, 191
shadow DOM, 4, 109-125

content projection, 117-120
custom elements and, 134
defining, 109
events and, 122
shadow host, 110
shadow insertion points, 120-122
shadow root, 110-111
shadow root insertion points, 120
style encapsulation, 112
styling shadow root elements from parent

page, 115-116
styling the host element, 113-115
trees, 120
updating dialog template, 122-125

(see also dialog template updating)
using a template with, 111

shims, 151-152
single-page application (SPA), 142
Sizzle, 151
SPDY, 155
stacking contexts, 36-37

creating, 42

230 | Index

determining, 39-41
finding, 41

stacking orders, 34-36
static elements, 24

T
templates, 101-107

adding to the DOM, 104
content rendering deferment, 102
creating and using, 103-104
custom elements and, 134
detecting browser support, 103
dialog template, 104-107
hiding content from the DOM, 103
import, 143
importance of, 102
native, 102
native browser templates, 101
placing in markup, 103
in Polymer, 159-161
resource processing deferment, 102
with shadow DOM, 111

testing, 189-201
Karma, 191-196
PhantomJS 1, 190
PhantomJS 2, 191
Selenium WebDriver, 191
test specs, 196-199

tooltips, 62
type extension custom element, 130

U
Unixy, 209

V
Vulcanize, 204-209

W
W3C’s Content Security Policy (CSP) recom‐

mendation, 208
Waldron, Rick, 186
web components

beyond JavaScript, 17
defining, 2, 5

WebComponents.org, 225
Webpack, 169
widgets, 11

about, 9
dialog, 31, 47
life cycle, 12-14
reasons for building, 49

Z
z-index, 33-48

defining, 33
managing, 37

(see also z-index manager)
overriding default stacking order, 35
rendering layers and stacking order, 34-36
stacking context determination, 39-41
stacking contexts, 36-37

z-index manager, 38-45
adding to dialog widget, 47
API stub, 39
converting to a jQuery plugin, 45-47
examples, 44
finding stacking contexts, 41
modifying an element’s z-index, 42-44
utilities, 39-41

Index | 231

About the Authors

Jarrod Overson has been developing on the Web for over 15 years in both startups
and global companies, and currently works at Shape Security. He founded Gossamer
to help bootstrap companies into developing for the modern Web and has provided
free community training on everything from Node.js to Backbone. Jarrod is an active
proponent of and contributor to open source software, the creator of Plato, and a
member of the Grunt, Marionette, and ES-Analysis teams.

Jason Strimpel is a Staff Software Engineer on the Platform team at WalmartLabs
who specializes in the UI layer. Jason has been building web applications for the past
12 years. Approximately three years ago, Jason began specializing in the frontend, in
particular JavaScript. Since then, he has worked with several component libraries and
frameworks. However, he found limitations to these libraries when presented with
uniquely challenging UI requirements, so he began developing his own custom com‐
ponents and catalog of helpers. He is an extremely passionate developer with a very
bad sense of humor who loves simplifying the complexities that arise when building
rich UIs.

Colophon

The animals on the cover of Developing Web Components are horse mackerel (Trachu‐
rus trachurus), also called scad. A species of jack mackerel in the family Carangidae,
this fish is found primarily in the northeastern Atlantic and in the Mediterranean Sea.

The horse mackerel matures rapidly during the first few years of life and grows more
slowly thereafter, commonly reaching between 15 and 40 centimeters in length. It has
a metallic grayish-blue body with green tints, anchored by a large head and a forked
tail. The fish’s distinguishing marks include a black blotch on the edge of its gill cov‐
ers. Its strong fins make it a fast, powerful swimmer; its common name derives from
a legend that smaller fish could ride on its back like a horse.

The horse mackerel’s diet mainly consists of small fish, crustaceans, and squid. Young
horse mackerel have been known to shelter underneath large jellyfish, as they are
immune to their venomous sting. These juveniles enjoy the dual benefit of evading
predators—such as large tuna and dolphins—and garnering food remains from the
jelly’s prey.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Preface
	Why We Wrote This Book
	What This Book Is
	Part I, UI Core Concepts
	Part II, Building Our UI
	Part III, Building HTML5 Web Components
	Part IV, Testing, Building, and Deploying Components with Polymer

	What This Book Isn’t
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Jason Strimpel
	Jarrod Overson

	Chapter 1. Introduction
	What Are Web Components?
	HTML Templates
	HTML Imports
	Custom Elements
	The Shadow DOM

	Why Web Components?

	Part I. UI Core Concepts
	Chapter 2. Creating a Solid Foundation
	The Importance of a DOM Abstraction Layer
	API Design and Widget Life Cycle
	The Inheritance Pattern
	Dependencies
	Optimization
	A Web Component Is Not JavaScript Alone
	Example Widget
	The Voltron Widget Base Class
	Dialog Class
	Dialog CSS and HTML

	Summary

	Chapter 3. Normal Flow and Positioning
	Normal Flow
	Positioning Elements
	offsetParent
	Positioning

	Calculating an Element’s Position
	Relative to the Viewport
	Relative to the Document

	Positioning the Dialog Widget
	Summary

	Chapter 4. Understanding and Managing z-index
	What Exactly Is the z-index Property?
	Rendering Layers, Stacking Order, and z-index
	Default Stacking Orders
	Overriding the Default Stacking Order

	Stacking Contexts
	How Is a Stacking Context Created?
	Increasing Complexity

	Managing z-indexes
	z-index Manager

	Converting to a jQuery Plugin
	Adding z-index Management to the Dialog Widget
	Summary

	Part II. Building Our UI
	Chapter 5. Cloning Nodes
	Using the cloneNode Method
	Using jQuery.clone
	Continuation of the Dialog Widget
	Summary

	Chapter 6. Constructing an Overlay
	Defining an API
	Utilities
	Detecting Scrollbar Width
	Accounting for the Scrollbar When Calculating a Containing Element’s Width
	Getting an Element’s Dimensions and Coordinates
	Listening for Resize and Scrolling Events

	Updating Options
	Destroying
	Positioning
	Positioning an Element Relative to the Viewport or Another Element
	Positioning an Element Relative to Another Element

	Adding the Overlay to the Dialog Widget
	Summary

	Chapter 7. Making Elements Draggable
	Mouse Events
	$.mousemove
	$.mousedown
	$.mouseup

	Mouse Events Best Practices
	1. Bind $.mousemove on $.mousedown
	2. Unbind $.mousemove on $.mouseup
	3. Bind $.mouseup to the <body>
	4. Namespace All Event Bindings

	Defining an API
	Creating a Drag Handle
	Making Things Move
	$.mousedown Handler
	$.mousemove Handler
	$.mouseup Handler

	Destroying a Draggable Instance
	Making the Dialog Widget Draggable
	Summary

	Chapter 8. Resizing Elements
	Mouse Events and Best Practices (Recap)
	Events
	Best Practices

	Resizing an Element
	Making a Resizable API
	Defining Drag Handles
	Binding Event Handlers
	$.mousedown Handler
	$.mousemove Handler
	$.mouseup Handler

	Destroying a Resizable Instance
	Completed Resizing Library
	Making the Dialog Widget Resizable
	Summary

	Chapter 9. Completing the Dialog Widget
	Styling the Widget
	Adding CSS

	Concatenating the JavaScript
	Summary

	Part III. Building HTML5 Web Components
	Chapter 10. Utilizing Templates
	Understanding the Importance of Templates
	Deferring the Processing of Resources
	Deferring the Rendering of Content
	Hiding the Content from the DOM

	Creating and Using a Template
	Detecting Browser Support
	Placing a Template in Markup
	Adding a Template to the DOM

	Converting the Dialog Component to a Template
	Creating a Wrapper API for the Dialog Template
	Instantiating a Dialog Component Instance

	Abstracting the Dialog Template Wrapper
	Summary

	Chapter 11. Working with the Shadow DOM
	What Is the Shadow DOM?
	Shadow DOM Basics
	Shadow Host
	Shadow Root

	Using a Template with the Shadow DOM
	Shadow DOM Styling
	Style Encapsulation
	Styling the Host Element
	Styling Shadow Root Elements from the Parent Page

	Content Projection
	Projection via a Content Tag
	Projection via Content Selectors
	Getting Distributed Nodes and Insertion Points

	Shadow Insertion Points
	Events and the Shadow DOM
	Updating the Dialog Template to Use the Shadow DOM
	Dialog Markup
	Dialog API
	Updating the Dialog show Method
	Instantiating a Dialog Component Instance

	Summary

	Chapter 12. Creating Custom Elements
	Introducing Custom Elements
	Registering Custom Elements
	Extending Elements
	Extending Custom Elements
	Extending Native Elements

	Defining Properties and Methods
	Resolving Custom Elements
	Hooking Into Custom Element Life Cycles
	createdCallback
	attachedCallback
	detachedCallback
	attributeChangedCallback

	Styling Custom Elements
	Utilizing Templates and the Shadow DOM with Custom Elements
	Converting the Dialog Component to a Custom Element
	Creating the Dialog Custom Element
	Implementing the Dialog Custom Element’s Callbacks
	Implementing the Dialog Custom Element API
	Showing the Dialog

	Summary

	Chapter 13. Importing Code
	Declaring an Import
	Accessing an Import’s Content
	Referencing Documents
	Applying Styles
	Accessing Templates
	Executing JavaScript

	Understanding Imports in Relation to the Main Document
	Parsing Imports
	Cross-Domain Considerations
	Subimports

	Loading Custom Elements
	Importing the Dialog
	Summary

	Part IV. Testing, Building, and Deploying Components with Polymer
	Chapter 14. Introducing Polymer
	Polymer Elements
	Adding Style
	External Resources
	Filtering Expressions

	Template Syntax
	Data Binding
	Block Repetition
	Bound Scopes
	Conditional Blocks
	Multiple Template Directives at Once

	Attributes and Properties—Your Element’s API
	Naked Attributes
	Published Properties
	Instance Methods

	Polymer’s JavaScript APIs
	Life Cycle Methods
	Events
	Managing Delayed Work

	Summary

	Chapter 15. Porting Our Dialog to Polymer
	Why Port Anything to Polymer at All?
	The Direct Port
	Managing Dependencies
	Installing Dependencies with Bower
	Getting Started

	That Was Easy—A Little Too Easy!
	jQuery in a Polymer World
	What Does jQuery Provide?
	Removing jQuery
	The Verdict on jQuery

	Summary

	Chapter 16. Testing Web Components
	PhantomJS 1
	PhantomJS 2
	Selenium WebDriver
	Karma
	Test Specs
	Running Our Tests
	Summary

	Chapter 17. Packaging and Publishing
	Vulcanize
	Gulp
	Grunt
	Gruntfiles
	Grunt Tasks
	Registering Tasks
	Grunt Configuration

	Publishing with Bower
	Registering the Component

	Summary

	Chapter 18. Final Words
	Where Do We Go from Here?
	Polymer
	Mozilla X-Tag
	document-register-element
	WebComponents.org
	CustomElements.io

	Good Luck!

	Index
	About the Authors

