
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Cody Lindley

DOM Enlightenment

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-34284-5

[LSI]

DOM Enlightenment

by Cody Lindley

Copyright © 2013 Cody Lindley. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette

Production Editor: Kristen Borg

Copyeditor: Audrey Doyle

Proofreader: Linley Dolby

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

February 2013: First Edition

Revision History for the First Edition:

2013-02-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342845 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. DOM Enlightenment, the image of a Pemba Scops Owl, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342845
http://www.allitebooks.org

Table of Contents

Foreword. ix
Preface. xi

1. Node Overview. 1
1.1 The Document Object Model (a.k.a. the DOM) Is a Hierarchy/Tree of

JavaScript Node Objects 1
1.2 Node Object Types 2
1.3 Subnode Objects Inherit From the Node Object 5
1.4 Properties and Methods for Working with Nodes 7
1.5 Identifying the Type and Name of a Node 9
1.6 Getting a Node’s Value 11
1.7 Using JavaScript Methods to Create Element and Text Nodes 11
1.8 Using JavaScript Strings to Create and Add Element and Text Nodes to the

DOM 13
1.9 Extracting Parts of the DOM Tree as JavaScript Strings 15
1.10 Using appendChild() and insertBefore() to Add Node Objects to the

DOM 16
1.11 Using removeChild() and replaceChild() to Remove and Replace Nodes 18
1.12 Using cloneNode() to Clone Nodes 20
1.13 Grokking Node Collections (i.e., NodeList and HTMLCollection) 21
1.14 Getting a List/Collection of All Immediate Child Nodes 22
1.15 Converting a NodeList or HTMLCollection to a JavaScript Array 23
1.16 Traversing Nodes in the DOM 24
1.17 Verifying a Node Position in the DOM Tree with contains() and

compareDocumentPosition() 26
1.18 Determining Whether Two Nodes Are Identical 28

2. Document Nodes. 31
2.1 document Node Overview 31

iii

www.allitebooks.com

http://www.allitebooks.org

2.2 HTMLDocument Properties and Methods (Including Inherited) 32
2.3 Getting General HTML Document Information (title, url, referrer,

lastModified, and compatMode) 33
2.4 document Child Nodes 34
2.5 document Provides Shortcuts to <!DOCTYPE>, <html lang="en">,

<head>, and <body> 35
2.6 Using document.implementation.hasFeature() to Detect DOM

Specifications/Features 36
2.7 Getting a Reference to the Focus/Active Node in the Document 37
2.8 Determining Whether the Document or Any Node Inside the Document

Has Focus 38
2.9 document.defaultView Is a Shortcut to the Head/Global Object 38
2.10 Using ownerDocument to Get a Reference to the Document from an

Element 39

3. Element Nodes. 41
3.1 HTML*Element Object Overview 41
3.2 HTML*Element Object Properties and Methods (Including Inherited) 42
3.3 Creating Elements 44
3.4 Getting the Tag Name of an Element 44
3.5 Getting a List/Collection of Element Attributes and Values 45
3.6 Getting, Setting, and Removing an Element’s Attribute Value 46
3.7 Verifying Whether an Element Has a Specific Attribute 47
3.8 Getting a List of Class Attribute Values 48
3.9 Adding and Removing Subvalues to a Class Attribute 49
3.10 Toggling a Class Attribute Value 50
3.11 Determining Whether a Class Attribute Value Contains a Specific Value 50
3.12 Getting and Setting data-* Attributes 51

4. Element Node Selection. 53
4.1 Selecting a Specific Element Node 53
4.2 Selecting/Creating a List (a.k.a. NodeList) of Element Nodes 54
4.3 Selecting All Immediate Child Element Nodes 56
4.4 Selecting Contextual Elements 56
4.5 Preconfigured Selections/Lists of Element Nodes 58
4.6 Using matchesSelector() to Verify That an Element Will Be Selected 59

5. Element Node Geometry and Scrolling Geometry. 61
5.1 Element Node Size, Offsets, and Scrolling Overview 61
5.2 Getting an Element’s offsetTop and offsetLeft Values Relative to the

offsetParent 61

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

5.3 Using getBoundingClientRect() to Get an Element’s Top, Right, Bottom,
and Left Border Edge Offsets Relative to the Viewport 64

5.4 Getting an Element’s Size (Border + Padding + Content) in the Viewport 66
5.5 Getting an Element’s Size (Padding + Content) in the Viewport, Excluding

Borders 67
5.6 Using elementFromPoint() to Get the Topmost Element in the Viewport

at a Specific Point 68
5.7 Using scrollHeight and scrollWidth to Get the Size of the Element Being

Scrolled 68
5.8 Using scrollTop and scrollLeft to Get and Set Pixels Scrolled from the Top

and Left 69
5.9 Using scrollIntoView() to Scroll an Element into View 70

6. Element Node Inline Styles. 73
6.1 Style Attribute (a.k.a. Element Inline CSS Properties) Overview 73
6.2 Getting, Setting, and Removing Individual Inline CSS Properties 74
6.3 Getting, Setting, and Removing All Inline CSS Properties 78
6.4 Using getComputedStyle() to Get an Element’s Computed Styles (i.e.,

Actual Styles Including Any from the Cascade) 79
6.5 Using the class and id Attributes to Apply and Remove CSS Properties on

an Element 81

7. Text Nodes. 83
7.1 Text Object Overview 83
7.2 Text Object and Properties 84
7.3 Whitespace Creates Text Nodes 85
7.4 Creating and Injecting Text Nodes 86
7.5 Getting a Text Node Value with .data or nodeValue 87
7.6 Manipulating Text Nodes with appendData(), deleteData(), insertData(),

replaceData(), and subStringData() 88
7.7 When Multiple Sibling Text Nodes Occur 89
7.8 Using textContent to Remove Markup and Return All Child Text Nodes 90
7.9 The Difference Between textContent and innerText 91
7.10 Using normalize() to Combine Sibling Text Nodes into One Text Node 92
7.11 Using splitText() to Split a Text Node 92

8. DocumentFragment Nodes. 95
8.1 DocumentFragment Object Overview 95
8.2 Using createDocumentFragment() to Create DocumentFragments 95
8.3 Adding a DocumentFragment to the Live DOM 96
8.4 Using innerHTML on a Document Fragment 97

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

8.5 Leaving Fragments Containing Nodes in Memory by Cloning 99

9. CSS Stylesheets and CSS Rules. 101
9.1 CSS Stylesheet Overview 101
9.2 Accessing All Stylesheets (i.e., CSSStylesheet Objects) in the DOM 102
9.3 CSSStyleSheet Properties and Methods 104
9.4 CSSStyleRule Overview 106
9.5 CSSStyleRule Properties and Methods 106
9.6 Using cssRules to Get a List of CSS Rules in a Stylesheet 108
9.7 Using insertRule() and deleteRule() to Insert and Delete CSS Rules in a

Stylesheet 108
9.8 Using the .style Property to Edit the Value of a CSSStyleRule 110
9.9 Creating a New Inline CSS Stylesheet 110
9.10 Programmatically Adding External Stylesheets to an HTML Document 111
9.11 Using the .disabled Property to Disable/Enable Stylesheets 112

10. JavaScript in the DOM. 115
10.1 Inserting and Executing JavaScript Overview 115
10.2 JavaScript Is Parsed Synchronously by Default 116
10.3 Using defer to Defer the Downloading and Execution of External

JavaScript 117
10.4 Using async to Asynchronously Download and Execute External

JavaScript Files 118
10.5 Using Dynamic <script> Elements to Force Asynchronous Downloading

and Parsing of External JavaScript 120
10.6 Using the onload Callback for Asynchronous <script>s so That We

Know When They’re Loaded 121
10.7 Be Mindful of <script>s Placement in HTML for DOM Manipulation 122
10.8 Getting a List of <script>s in the DOM 122

11. DOM Events. 125
11.1 DOM Events Overview 125
11.2 DOM Event Types 127
11.3 The Event Flow 134
11.4 Adding Event Listeners to Element Nodes, the window Object, and the

document Object 137
11.5 Removing Event Listeners 138
11.6 Getting Event Properties from the Event Object 139
11.7 The Value of this When Using addEventListener() 140
11.8 Referencing the target of an Event and Not the Node or Object on Which

the Event Is Invoked 142
11.9 Using preventDefault() to Cancel Default Browser Events 143

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

11.10 Using stopPropagation() to Stop the Event Flow 144
11.11 Using stopImmediatePropagation() to Stop the Event Flow As Well As

Other Like Events on the Same Target 145
11.12 Custom Events 146
11.13 Simulating/Triggering Mouse Events 147
11.14 Event Delegation 148

12. Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers. 151
12.1 dom.js Overview 151
12.2 Creating a Unique Scope 151
12.3 Creating dom() and GetOrMakeDom(), Globally Exposing dom() and

GetOrMakeDom.prototype 152
12.4 Creating an Optional Context Parameter Passed to dom() 154
12.5 Populating an Object with DOM Node References Based on params and

a Return Object 155
12.6 Creating an each() Method and Making It a Chainable Method 158
12.7 Creating html(), append(), and text() Methods 159
12.8 Taking dom.js for a Spin 160
12.9 Summary and Continuing with dom.js 161

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

I make websites. Sometimes I make music. Over the years, I’ve noticed an interesting
pattern of behavior from some musicians—often self-taught—who think of themselves
as creative types: they display an aversion to learning any music theory. The logic, they
say, is that knowing the theory behind music will somehow constrain their creative
abilities. I’ve never understood that logic (and I secretly believe that it’s a retroactive
excuse for a lack of discipline). To my mind, I just don’t see how any kind of knowledge
or enlightenment could be a bad thing.

Alas, I have seen the same kind of logic at work in the world of web design. There are
designers who not only don’t know how to write markup and CSS, they actively refuse
to learn. Again, they cite the fear of somehow being constrained by this knowledge (and
again, I believe that’s a self-justifying excuse).

In the world of front-end development, that attitude is fortunately far less prevalent.
Most web devs understand that there’s always more to learn. But even amongst devel‐
opers who have an encyclopediac knowledge of HTML and CSS, there is often a knowl‐
edge gap when it comes to the Document Object Model. That’s understandable. You
don’t need to understand the inner workings of the DOM if you’re using a library like
jQuery. The whole point of JavaScript libraries is to abstract away the browser’s internal
API and provide a different, better API instead.

Nonetheless, I think that many front-end devs have a feeling that they should know
what’s going on under the hood. That’s the natural reaction of a good geek when pre‐
sented with a system they’re expected to work with. Now, thanks to DOM Enlighten‐
ment, they can scratch that natural itch.

Douglas Crockford gave us a map to understand the inner workings of the JavaScript
language in his book JavaScript: The Good Parts. Now Cody Lindley has given us the
corresponding map for the Document Object Model. Armed with this map, you’ll gain
the knowledge required to navigate the passageways and tunnels of the DOM.

ix

http://shop.oreilly.com/product/9780596517748.do

You might not end up using this knowledge in every project. You might decide to use a
library like jQuery instead. But now it will be your decision. Instead of having to use
a library because that’s all that you know, you can choose if and when to use a library.
That’s a very empowering feeling. That’s what knowledge provides. That is true
enlightenment.

—Jeremy Keith, founder and technical director of clearleft.com, and author of
DOM Scripting: Web Design with JavaScript and the Document Object Model

x | Foreword

http://clearleft.com/

Preface

This book is not an exhaustive reference on DOM scripting or JavaScript. It may, how‐
ever, be the most exhaustive book written about the HTML DOM without the use of a
library/framework. The lack of authorship around this topic is not without good reason.
Most technical authors are not willing to wrangle this topic because of the differences
that exist among legacy browsers and their implementations of the DOM specifications
(or lack thereof).

For the purpose of this book (i.e., grokking the concepts), I’m going to sidestep the
browser API mess and dying browser discrepancies in an effort to expose the modern
DOM. That’s right, I’m going to sidestep the ugliness in an effort to focus on the here
and now. After all, we have solutions such as jQuery to deal with all that browser ugliness,
and you should definitely be leveraging something like jQuery when dealing with dep‐
recated browsers.

While I am not promoting the idea of only going native when it comes to DOM scripting,
I did write this book in part so that developers may realize that DOM libraries are not
always required when scripting the DOM. I also wrote for the lucky few who get to write
JavaScript code for a single environment (i.e., one browser, mobile browsers, or
HTML+CSS+JavaScript-to-native via something like PhoneGap). What you learn in
this book may just make a DOM library unnecessary in ideal situations—say, for ex‐
ample, some light DOM scripting for deployment on a WebKit mobile browser only.

Who Should Read This Book
As I authored this book, I specifically had two types of developers in mind. I assume
both types already have an intermediate to advanced knowledge of JavaScript, HTML,
and CSS. The first developer is someone who has a good handle on JavaScript or jQuery,
but has really never taken the time to understand the purpose and value of a library like
jQuery (the reason for its rhyme, if you will). Equipped with the knowledge from this
book, that developer should fully be able to understand the value provided by jQuery

xi

http://javascriptenlightenment.com/

for scripting the DOM. And not just the value, but how jQuery abstracts the DOM and
where and why jQuery is filling the gaps. The second type of developer is an engineer
who is tasked with scripting HTML documents that will only run in modern browsers
or that will get ported to native code for multiple OSes and device distributions (e.g.,
PhoneGap) and needs to avoid the overhead (i.e., size or size versus use) of a library.

Technical Intentions, Allowances, and Limitations
Before reading this book, make sure you understand the following technical intentions,
allowances, and limitations:

• The content and code contained in this book was written with modern browsers
(IE 9+, Firefox latest, Chrome latest, Safari latest, Opera latest) in mind. It was my
goal to only include concepts and code that are native to modern browsers. If I
venture outside of this goal, I will bring this fact to the readers’ attention. I’ve gen‐
erally steered away from including anything in this book that is browser-specific or
implemented in a minority of the modern browsers.

• I’m not attempting in this book to dogmatically focus on a specific DOM, CSS, or
HTML specification. This would be too large an undertaking (with little value, in
my opinion) given the number of specifications at work and the history/status of
browsers correctly implementing the specifications. I have leveraged and balanced
in a very subjective manner the content from several specifications: Document
Object Model (DOM) Level 3 Core Specification, DOM4, Document Object Model
HTML, Element Traversal Specification, Selectors API Level 2, DOM Parsing and
Serialization, HTML 5 Reference, HTML 5–A vocabulary and associated APIs for
HTML and XHTML, HTML Living Standard, “HTML: The Living Standard,” De‐
veloper version, and DOM Living Standard. The content for this book is based more
on where the community is and less on dogmatically attempting to express a specific
spec.

• I’m covering several handpicked topics that are not DOM-specific. I’ve included
these topics in this book to help the reader build a proper understanding of the
DOM in relationship to CSS and JavaScript.

• I’ve purposely left out any details pertaining to XML or XHTML.

• I’ve purposely excluded the form and table APIs to keep the book small. But I can
see these sections being added in the future.

xii | Preface

http://bit.ly/11sRdVh
http://bit.ly/UJFt0Z
http://bit.ly/UJFt0Z
http://bit.ly/11oCO12
http://bit.ly/UJFwd8
http://bit.ly/WjG8Hq
http://bit.ly/WjG8Hq
http://bit.ly/VsJ5l3
http://bit.ly/12ff3Zi
http://bit.ly/12ff3Zi
http://bit.ly/XsT8YJ
http://developers.whatwg.org/
http://developers.whatwg.org/
http://dom.spec.whatwg.org/

License
The DOM Enlightenment HTML version is released under a Creative Commons
Attribution-Noncommercial-No Derivative Works 3.0 unported license.

This Book Is Not Like Other Programming Books
Before you begin, it is important to understand various styles employed in this book.
Please do not skip this section, because it contains important information that will aid
you in understanding these unique styles.

The Enlightenment series (also including jQuery Enlightenment and JavaScript En‐
lightenment) is written in a style that favors small, isolated, immediately executable code
over wordy explanations and monolithic programs. One of my favorite authors, C.S.
Lewis, asserts that words are the lowest form of communication that humans traffic in.
I totally agree with this assertion and use it as the basis for the style of these books. I feel
that technical information is best covered with as few words as possible, in conjunction
with just the right amount of executable code and commenting required to express an
idea. The style of this book attempts to present a clearly defined idea with as few words
as possible, backed with real code. Because of this, when you first start grokking these
concepts you should execute and examine the code, thereby forming the foundation of
a mental model for the words used to describe the concepts. Additionally, the format of
these books attempts to systematically break ideas down into their smallest possible
form and examine each one in an isolated context. All of this is to say that this is not a
book with lengthy explanations or in-depth coverage on broad topics. Consider yourself
warned. If it helps, think of it as a cookbook, but even terser and more succinct than
usual.

Color-Coding Conventions
In the code examples, bold text is used to highlight code directly relevant to the concept
being discussed. Any additional code used to support the bolded code will be in normal
font. Italic is reserved for comments. Here is an example:

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

// this is a comment about a specific part of the code

var foo = 'calling out this part of the code';

Preface | xiii

http://domenlightenment.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://jqueryenlightenment.com/
http://javascriptenlightenment.com/
http://javascriptenlightenment.com/
http://jsfiddle.net/user/domenlightenment/fiddles/

</script>

</body>

</html>

jsFiddle
The majority of code examples in this book are linked to a corresponding jsFiddle
page, where the code can be tweaked and executed online. The jsFiddle examples have
been configured to use the Firebug lite-dev plug-in to ensure that the reader views the
console.log prevalent in this book. Before reading this book, make sure you are com‐

fortable with the usage and purpose of console.log.

In situations where jsFiddle caused complications with the code example, I simply chose
to not link to a live example.

Conventions Used in This Book
The following typographical conventions are used in this book [see also “Color-Coding
Conventions” (page xiii)]:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Note
This icon signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

xiv | Preface

http://jsfiddle.net/
http://jsfiddle.net/
https://getfirebug.com/firebug-lite-debug.js

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “DOM Enlightenment by Cody Lindley
(O’Reilly). Copyright 2013 Cody Lindley, 978-1-449-34284-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/dom-enlightenment.

To comment or ask technical questions about this book, send email to bookques

tions@oreilly.com.

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/dom-enlightenment
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Node Overview

1.1 The Document Object Model (a.k.a. the DOM) Is a
Hierarchy/Tree of JavaScript Node Objects
When you write an HTML document, you encapsulate HTML content inside other
HTML content. By doing this, you set up a hierarchy that can be expressed as a tree.
Often this hierarchy or encapsulation system is indicated visually by indenting markup
in an HTML document. The browser, when loading the HTML document, interrupts
and parses this hierarchy to create a tree of node objects that simulates how the markup
is encapsulated.

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>HTML</title>

 </head>

 <body>

 <!-- Add your content here-->

 </body>

</html>

The preceding HTML code, when parsed by a browser, creates a document that contains
nodes structured in a tree format (i.e., DOM). In Figure 1-1, I reveal the tree structure
from the preceding HTML document using Opera’s Dragonfly DOM Inspector.

1

http://bit.ly/WHvXvN
http://bit.ly/VApJN5

Figure 1-1. Viewing a web page in Opera Dragonfly Developer Tools

On the left, you see the HTML document in its tree form. And on the right, you see the
corresponding JavaScript object that represents the selected element on the left. For
example, the selected <body> element, highlighted in blue, is an element node and an
instance of the HTMLBodyElement interface.

What you should take away here is that HTML documents get parsed by a browser and
converted into a tree structure of node objects representing a live document. The pur‐
pose of the DOM is to provide a programmatic interface for scripting (removing,
adding, replacing, eventing, and modifying) this live document using JavaScript.

Note
The DOM originally was an application programming interface for
XML documents that has been extended for use in HTML documents.

1.2 Node Object Types
Here is a list of the most common types of nodes (i.e., nodeType/node classifications)
one encounters when working with HTML documents:

• DOCUMENT_NODE (e.g., window.document)

• ELEMENT_NODE (e.g., <body>, <a>, <p>, <script>, <style>, <html>, <h1>)

• ATTRIBUTE_NODE (e.g., class="funEdges")

• TEXT_NODE (e.g., text characters in an HTML document including carriage returns
and whitespace)

2 | Chapter 1: Node Overview

www.allitebooks.com

http://www.allitebooks.org

• DOCUMENT_FRAGMENT_NODE (e.g., document.createDocumentFragment())

• DOCUMENT_TYPE_NODE (e.g., <!DOCTYPE html>)

I’ve listed the node types formatted (all uppercase, with _ separating words) exactly as
the constant property is written in the JavaScript browser environment as a property of
the Node object. These Node properties are constant values and are used to store numeric
code values that map to a specific type of node object. For example, in the following
code, Node.ELEMENT_NODE is equal to 1. And 1 is the code value used to identify element
nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(Node.ELEMENT_NODE) /* logs 1, one is the numeric code value

 for element nodes */

</script>

</body>

</html>

In the following code I log all the node types and their values.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

for(var key in Node){

 console.log(key,' = '+Node[key]);

};

/* the above code logs to the console the following

ELEMENT_NODE = 1

ATTRIBUTE_NODE = 2

TEXT_NODE = 3

CDATA_SECTION_NODE = 4

ENTITY_REFERENCE_NODE = 5

ENTITY_NODE = 6

PROCESSING_INSTRUCTION_NODE = 7

COMMENT_NODE = 8

DOCUMENT_NODE = 9

DOCUMENT_TYPE_NODE = 10

DOCUMENT_FRAGMENT_NODE = 11

NOTATION_NODE = 12

DOCUMENT_POSITION_DISCONNECTED = 1

1.2 Node Object Types | 3

http://jsfiddle.net/domenlightenment/BAVrs
http://jsfiddle.net/domenlightenment/YcXGD

DOCUMENT_POSITION_PRECEDING = 2

DOCUMENT_POSITION_FOLLOWING = 4

DOCUMENT_POSITION_CONTAINS = 8

DOCUMENT_POSITION_CONTAINED_BY = 16

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 32 */

</script>

</body>

</html>

The preceding code example gives an exhaustive list of all node types. For the purposes
of this book, I’ll be discussing the shorter list of node types shown at the start of this
section. These nodes will most likely be the ones you encounter when scripting an
HTML page.

In Table 1-1, I list the name given to the interface/constructor that instantiates the most
common node types and their corresponding nodeType classifications by number and
name. What I hope you take away from the table is that the nodeType value (i.e., 1) is
just a numeric classification used to describe a certain type of node constructed from a
certain JavaScript interface/constructor. For example, the HTMLBodyElement interface
represents a node object that has a node type of 1, which is a classification for
ELEMENT_NODEs.

Table 1-1. Node interfaces/constructors and corresponding numeric classification and
name given to instances

Node

Interface/constructor nodeType (returned from .nodeType)

HTML*Element [e.g., HTMLBodyElement] 1 (i.e., ELEMENT_NODE)

Text 3 (i.e., TEXT_NODE)

Attr 2 (i.e., ATTRIBUTE_NODE)

HTMLDocument 9 (i.e., DOCUMENT_NODE)

DocumentFragment 11 (i.e., DOCUMENT_FRAGMENT_NODE)

DocumentType 10 (i.e., DOCUMENT_TYPE_NODE)

4 | Chapter 1: Node Overview

http://bit.ly/VAqsh6
http://bit.ly/W7EPt7
http://bit.ly/VsKSqr
http://bit.ly/WFG80V
http://bit.ly/WD7YOk
http://bit.ly/12fgQNX
http://bit.ly/XsVIhp
http://bit.ly/WHxgL1

Notes
The DOM specification semantically labels nodes like Node, Element,
Text, Attr, and HTMLAnchorElement as interfaces, which they are, but
keep in mind that these are also the names given to the JavaScript con‐
structor functions that construct the nodes. As you read this book, I will
be referring to these interfaces (i.e., Element, Text, Attr, HTMLAnchor
Element) as objects or constructor functions, while the specification
refers to them as interfaces.

ATTRIBUTE_NODE is not actually part of a tree, but rather is listed for
historical reasons. In this book, I do not provide a chapter on attribute
nodes and instead discuss them in Chapter 3, given that attribute nodes
are sublike nodes of element nodes with no participation in the actual
DOM tree structure. Be aware that the ATTRIBUTE_NODE is being dep‐
recated in DOM4.

I’ve not included detail in this book on COMMENT_NODE, but you should
be aware that comments in an HTML document are Comment nodes and
are similar in nature to Text nodes.

As I discuss nodes throughout the book, I rarely refer to a specific node
using its nodeType name (e.g., ELEMENT_NODE). This is done to be con‐
sistent with verbiage used in the specifications provided by the W3C
and WHATWG.

1.3 Subnode Objects Inherit From the Node Object
Each node object in a typical DOM tree inherits properties and methods from Node.
Depending on the type of node in the document, there are also additional subnode
objects/interfaces that extend the Node object. The following list details the inheritance
model implemented by browsers for the most common node interfaces (< indicates
“inherited from”):

• Object < Node < Element < HTMLElement < (e.g., HTML*Element)

• Object < Node < Attr (this is deprecated in DOM4)

• Object < Node < CharacterData < Text

• Object < Node < Document < HTMLDocument

• Object < Node < DocumentFragment

It’s important to remember not only that all node types inherit from Node, but also that
the chain of inheritance can be long. For example, all HTMLAnchorElement nodes inherit
properties and methods from HTMLElement, Element, Node, and Object objects.

1.3 Subnode Objects Inherit From the Node Object | 5

Note
Node is just a JavaScript constructor function. Logically, therefore, Node
inherits from Object.prototype just like all objects in JavaScript.

To verify that all node types inherit properties and methods from the Node object, let’s
loop over an Element node object and examine its properties and methods (including
those that are inherited).

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi <!-- this is a HTMLAnchorElement which inherits from... -->

<script>

//get reference to element node object

var nodeAnchor = document.querySelector('a');

//create props array to store property keys for element node object

var props = [];

//loop over element node object getting all properties and methods (inherited too)

for(var key in nodeAnchor){

 props.push(key);

}

//log alphabetical list of properties and methods

console.log(props.sort());

</script>

</body>

</html>

If you run the preceding code in a web browser, you will see a long list of properties that
are available to the element node object. The properties and methods inherited from
the Node object are in this list, as are a great deal of other inherited properties and
methods from the Element, HTMLElement, HTMLAnchorElement, Node, and Object ob‐
jects. It’s not my point to examine all these properties and methods now, but rather to
simply mention that all nodes inherit a set of baseline properties and methods from
their constructor as well as properties from the prototype chain.

If you are more of a visual learner, consider the inheritance chain denoted from exam‐
ining the previous HTML document with Opera’s DOM Inspector (see Figure 1-2).

6 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/6ukxe/

Figure 1-2. Showing node inheritance in Opera Dragonfly Developer Tools

Notice in Figure 1-2 that the anchor node inherits from HTMLAnchorElement,
HTMLElement, Element, Node, and Object, all of which are shown in the list of properties
highlighted with a gray background. This inheritance chain provides a great deal of
shared methods and properties to all node types.

Note
Adding your own custom methods and properties to the DOM is pos‐
sible, given the mutable and dynamic nature of JavaScript. But generally,
extending host objects comes with several problems, so it’s probably
not a good idea to do so.

1.4 Properties and Methods for Working with Nodes
As we have been discussing, all node objects (e.g., Element, Attr, Text, and so on) inherit
properties and methods from a primary Node object. These properties and methods are
the baseline values and functions for manipulating, inspecting, and traversing the DOM.
In addition to the properties and methods provided by the node interface, a great deal
of other relevant properties and methods are provided by subnode interfaces such as
the document, HTMLElement, and HTML*Element interfaces.

The following are the most common Node properties and methods inherited by all node
objects, including the relevant inherited properties for working with nodes from sub‐
node interfaces.

Node properties
• childNodes

• firstChild

1.4 Properties and Methods for Working with Nodes | 7

http://perfectionkills.com/whats-wrong-with-extending-the-dom/

• lastChild

• nextSibling

• nodeName

• nodeType

• nodeValue

• parentNode

• previousSibling

Node methods
• appendChild()

• cloneNode()

• compareDocumentPosition()

• contains()

• hasChildNodes()

• insertBefore()

• isEqualNode()

• removeChild()

• replaceChild()

Document methods
• document.createElement()

• document.createTextNode()

HTML*Element properties
• innerHTML

• outerHTML

• textContent

• innerText

• outerText

• firstElementChild

• lastElementChild

• nextElementChild

• previousElementChild

• children

8 | Chapter 1: Node Overview

HTML element method
• insertAdjacentHTML()

1.5 Identifying the Type and Name of a Node
Every node has a nodeType and nodeName property that is inherited from Node. For
example, Text nodes have a nodeType code of 3 and a nodeName value of #text. As I
mentioned previously, the numeric value 3 is a numeric code representing the type of
underlying object the node represents (i.e., Node.TEXT_NODE === 3).

Here are the values returned for nodeType and nodeName for the node objects discussed
in this book. It makes sense to simply memorize these numeric codes for the more
common nodes, given that we are only dealing with five numeric codes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

<script>

/* This is DOCUMENT_TYPE_NODE or nodeType 10

because Node.DOCUMENT_TYPE_NODE === 10 */

console.log(

 document.doctype.nodeName, /* logs 'html' also try document.doctype

 to get <!DOCTYPE html> */

 document.doctype.nodeType //logs 10 which maps to DOCUMENT_TYPE_NODE

);

//This is DOCUMENT_NODE or nodeType 9 because Node.DOCUMENT_NODE === 9

console.log(

 document.nodeName, //logs '#document'

 document.nodeType //logs 9 which maps to DOCUMENT_NODE

);

/* This is DOCUMENT_FRAGMENT_NODE or nodeType 11

because Node.DOCUMENT_FRAGMENT_NODE === 11 */

console.log(

 document.createDocumentFragment().nodeName, //logs '#document-fragment'

 document.createDocumentFragment().nodeType /* logs 11 which maps to

 DOCUMENT_FRAGMENT_NODE */

);

//This is ELEMENT_NODE or nodeType 1 because Node. ELEMENT_NODE === 1

console.log(

 document.querySelector('a').nodeName, //logs 'A'

 document.querySelector('a').nodeType //logs 1 which maps to ELEMENT_NODE

1.5 Identifying the Type and Name of a Node | 9

http://jsfiddle.net/domenlightenment/8EwNu

);

//This is TEXT_NODE or nodeType 3 because Node.TEXT_NODE === 3

console.log(

 document.querySelector('a').firstChild.nodeName, //logs '#text'

 document.querySelector('a').firstChild.nodeType /* logs 3 which maps

 to TEXT_NODE */

);

</script>

</body>

</html>

In case it’s not obvious, the fastest way to determine whether a node is of a certain type
is to simply check its nodeType property. In the following code, I check to see if the
anchor element has a node number of 1. If it does, I can conclude that it’s an Element
node, because Node.ELEMENT_NODE === 1.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

<script>

//is <a> a ELEMENT_NODE?

console.log(document.querySelector('a').nodeType === 1); /* logs true,

 <a> is an Element node */

//or use Node.ELEMENT_NODE which is a property containing the numeric value of 1

console.log(document.querySelector('a').nodeType === Node.ELEMENT_NODE);

//logs true, <a> is an Element node

</script>

</body>

</html>

Determining the type of node you might be scripting can be very handy if you want to
know which properties and methods are available to script the node.

Note
The values returned by the nodeName property vary according to the
node type. See the DOM4 specification for details.

10 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/ydzWL
http://bit.ly/YIUtj9

1.6 Getting a Node’s Value
The nodeValue property returns null for most of the node types (except Text and
Comment). Its use is centered on extracting actual text strings from Text and Comment
nodes. In the following code, I demonstrate its use on all the nodes discussed in this
book.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

<script>

/* logs null for DOCUMENT_TYPE_NODE, DOCUMENT_NODE, DOCUMENT_FRAGMENT_NODE,

ELEMENT_NODE below */

console.log(document.doctype.nodeValue);

console.log(document.nodeValue);

console.log(document.createDocumentFragment().nodeValue);

console.log(document.querySelector('a').nodeValue);

//logs string of text

console.log(document.querySelector('a').firstChild.nodeValue); //logs 'Hi'

</script>

</body>

</html>

Note
Text or Comment node values can be set by providing new string values
for the nodeValue property (i.e., document.body.firstElement

Child.nodeValue = 'hi').

1.7 Using JavaScript Methods to Create Element and Text
Nodes
When a browser parses an HTML document, it constructs the nodes and tree based on
the contents of the HTML file. The browser deals with the creation of nodes for the
initial loading of the HTML document. However, it’s possible to create your own nodes
using JavaScript. The following two methods allow us to programmatically create
Element and Text nodes using JavaScript:

1.6 Getting a Node’s Value | 11

http://jsfiddle.net/domenlightenment/LNyA4

• createElement()

• createTextNode()

Other methods are available but are not commonly used (e.g., createAttribute() and
createComment()). In the following code, I show how simple it is to create element and
text nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var elementNode = document.createElement('div');

console.log(elementNode, elementNode.nodeType); /* log <div> 1, and 1 indicates

 an element node */

var textNode = document.createTextNode('Hi');

console.log(textNode, textNode.nodeType); /* logs Text {} 3, and 3 indicates

 a text node */

</script>

</body>

</html>

Notes
The createElement() method accepts one parameter that is a string
specifying the element to be created. The string is the same string that
is returned from the tagName property of an Element object.

The createAttribute() method is deprecated and should not be used
for creating attribute nodes. Instead, developers typically use the get
Attribute(), setAttribute(), and removeAttribute() methods. I
will discuss this in more detail in Chapter 3.

The createDocumentFragment() method will be discussed in Chap‐
ter 8.

You should be aware that a createComment() method is available for
creating comment nodes. It’s not discussed in this book, but is available
to any developer who finds its usage valuable.

12 | Chapter 1: Node Overview

www.allitebooks.com

http://jsfiddle.net/domenlightenment/Vj2Tc
http://www.allitebooks.org

1.8 Using JavaScript Strings to Create and Add Element
and Text Nodes to the DOM
The innerHTML, outerHTML, textContent, and insertAdjacentHTML() properties and
methods provide the functionality to create and add nodes to the DOM using JavaScript
strings.

In the following code, I am using the innerHTML, outerHTML, and textContent prop‐
erties to create nodes from JavaScript strings that are then immediately added to the
DOM.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div id="A"></div>

<div id="C"></div>

<div id="D"></div>

<div id="E"></div>

<script>

//create a strong element and text node and add it to the DOM

document.getElementById('A').innerHTML = 'Hi';

/* create a div element and text node to replace </div>

(notice span#B is replaced) */

document.getElementById('B').outerHTML = '<div id="B"

 class="new">Whats Shaking</div>'

//create a text node and update the div#C with the text node

document.getElementById('C').textContent = 'dude';

//NON standard extensions below i.e., innerText and outerText

//create a text node and update the div#D with the text node

document.getElementById('D').innerText = 'Keep it';

/* create a text node and replace the div#E with the text node

(notice div#E is gone) */

document.getElementById('E').outerText = 'real!';

1.8 Using JavaScript Strings to Create and Add Element and Text Nodes to the DOM | 13

http://jsfiddle.net/domenlightenment/UrNT3

console.log(document.body.innerHTML);

/* logs

<div id="A">Hi</div>

<div id="B" class="new">Whats Shaking</div>

dude

<div id="D">Keep it</div>

real!

*/

</script>

</body>

</html>

The insertAdjacentHTML() method, which only works on Element nodes, is a good
deal more precise than the previously mentioned methods. Using this method, it’s pos‐
sible to insert nodes before the beginning tag, after the beginning tag, before the end
tag, and after the end tag. In the following code, I construct a sentence using the
insertAdjacentHTML() method.

Live code

<!DOCTYPE html>

<html lang="en">

<body><i id="elm">how</i>

<script>

var elm = document.getElementById('elm');

elm.insertAdjacentHTML('beforebegin', 'Hey-');

elm.insertAdjacentHTML('afterbegin', 'dude-');

elm.insertAdjacentHTML('beforeend', '-are');

elm.insertAdjacentHTML('afterend', '-you?');

console.log(document.body.innerHTML);

/* logs

Hey-<i id="A">dude-how-are</i>

-you?

*/

</script>

</body>

</html>

14 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/tvpA6

Notes
The innerHTML property will convert HTML elements found in the string to
actual DOM nodes, while textContent can only be used to construct text
nodes. If you pass textContent a string containing HTML elements, it will
simply spit it out as text.

document.write() can also be used to simultaneously create and add nodes to
the DOM. However, it’s typically not used unless its usage is required to ac‐
complish third-party scripting tasks. Basically, the write() method will output
to the page the values passed to it during page loading/parsing. You should be
aware that using the write() method will stall/block the parsing of the HTML
document being loaded.

innerHTML invokes a heavy and expensive HTML parser, whereas text node
generation is trivial; thus, use innerHTML and friends sparingly.

The insertAdjacentHTML options beforebegin and afterend will only work
if the node is in the DOM tree and has a parent element.

Support for outerHTML was not available natively in Firefox until version 11. A
polyfill is available.

textContent gets the content of all elements, including <script> and <style>
elements, but innerText does not.

innerText is aware of style and will not return the text of hidden elements,
whereas textContent will.

Available to all modern browsers except Firefox are insertAdjacentElement()
and insertAdjacentText().

1.9 Extracting Parts of the DOM Tree as JavaScript Strings
Exactly the same properties (innerHTML, outerHTML, textContent) that we use to create
and add nodes to the DOM can also be used to extract parts of the DOM (or really, the
entire DOM) as a JavaScript string. In the following code example, I use these properties
to return a string value containing text and HTML values from the HTML document.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div id="A"><i>Hi</i></div>

<div id="B">Dude !</div>

<script>

console.log(document.getElementById('A').innerHTML); //logs '<i>Hi</i>'

1.9 Extracting Parts of the DOM Tree as JavaScript Strings | 15

https://gist.github.com/1044128
http://jsfiddle.net/domenlightenment/mMYWc

console.log(document.getElementById('A').outerHTML); /* logs

 <div id="A">Hi</div> */

/* notice that all text is returned even if it's in child element nodes

(i.e., !) */

console.log(document.getElementById('B').textContent); //logs 'Dude !'

//NON standard extensions below i.e., innerText and outerText

console.log(document.getElementById('B').innerText); //logs 'Dude !'

console.log(document.getElementById('B').outerText); //logs 'Dude !'

</script>

</body>

</html>

Note
The textContent, innerText, and outerText properties, when being
read, will return all the text nodes contained within the selected node.
So, as an example (note that this is not a good idea in practice), docu
ment.body.textContent will get all the text nodes contained in the
body element, not just the first text node.

1.10 Using appendChild() and insertBefore() to Add Node
Objects to the DOM
The appendChild() and insertBefore() node methods allow us to insert JavaScript
node objects into the DOM tree. The appendChild() method will append a node (or
multiple nodes) to the end of the child node(s) of the node the method is called on. If
there is no child node(s), the node being appended is appended as the first child. For
example in the following code, I am creating an element node () and a text
node (Dude). Then the <p> element is selected from the DOM and the element
is appended using appendChild(). Notice that the element is encapsulated
inside the <p> element and added as the last child node. Next, the element is
selected and the text Dude is appended to the element.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>Hi</p>

<script>

16 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/HxjFt

//create a blink element node and text node

var elementNode = document.createElement('strong');

var textNode = document.createTextNode(' Dude');

//append these nodes to the DOM

document.querySelector('p').appendChild(elementNode);

document.querySelector('strong').appendChild(textNode);

//log's <p>Hi Dude</p>

console.log(document.body.innerHTML);

</script>

</body>

</html>

When it becomes necessary to control the location of insertion beyond appending nodes
to the end of a child list of nodes, we can use insertBefore(). In the following code, I
am inserting the element before the first child node of the element.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

 2

 3

<script>

//create a text node and li element node and append the text to the li

var text1 = document.createTextNode('1');

var li = document.createElement('li');

li.appendChild(text1);

//select the ul in the document

var ul = document.querySelector('ul');

/*

add the li element we created above to the DOM, notice I call on

and pass reference to 2 using ul.firstChild

*/

ul.insertBefore(li,ul.firstChild);

console.log(document.body.innerHTML);

/*logs

1

2

1.10 Using appendChild() and insertBefore() to Add Node Objects to the DOM | 17

http://jsfiddle.net/domenlightenment/UmkME

3

*/

</script>

</body>

</html>

The insertBefore() method requires two parameters: the node to be inserted and the
reference node in the document before which you would like the node inserted.

Note
If you do not pass a second parameter to the insertBefore() method,
then it functions just like appendChild().

We have more methods (e.g., prepend(), append(), before(), and af
ter()) to look forward to in DOM4.

1.11 Using removeChild() and replaceChild() to Remove
and Replace Nodes
Removing a node from the DOM is a bit of a multistep process. First you have to select
the node you want to remove. Then you need to gain access to its parent element,
typically by using the parentNode property. It’s on the parent node that you invoke the
removeChild() method, passing it the reference to the node to be removed. Here I
demonstrate its use on an element node and a text node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div id="A">Hi</div>

<div id="B">Dude</div>

<script>

//remove element node

var divA = document.getElementById('A');

divA.parentNode.removeChild(divA);

//remove text node

var divB = document.getElementById('B').firstChild;

divB.parentNode.removeChild(divB);

18 | Chapter 1: Node Overview

http://www.w3.org/TR/dom/#mutation-methods
http://www.w3.org/TR/dom/#mutation-methods
http://jsfiddle.net/domenlightenment/VDZgP

//log the new DOM updates, which should only show the remaining empty div#B

console.log(document.body.innerHTML);

</script>

</body>

</html>

Replacing an element or text node is not unlike removing one. In the following code, I
use the same HTML structure as in the preceding code example, except this time, I use
replaceChild() to update the nodes instead of removing them.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div id="A">Hi</div>

<div id="B">Dude</div>

<script>

//replace element node

var divA = document.getElementById('A');

var newSpan = document.createElement('span');

newSpan.textContent = 'Howdy';

divA.parentNode.replaceChild(newSpan,divA);

//replace text node

var divB = document.getElementById('B').firstChild;

var newText = document.createTextNode('buddy');

divB.parentNode.replaceChild(newText, divB);

//log the new DOM updates

console.log(document.body.innerHTML);

</script>

</body>

</html>

1.11 Using removeChild() and replaceChild() to Remove and Replace Nodes | 19

http://jsfiddle.net/domenlightenment/zgE8M

Notes
Depending on what you are removing or replacing, simply providing
the innerHTML, outerHTML, and textContent properties with an empty
string might be easier and faster. Be careful, however, as memory leaks
in the browser might come back to haunt you.

replaceChild() and removeChild() return the replaced and removed
node, respectively. Basically, the node is not gone just because you re‐
place or remove it. These actions simply take the node out of the current
live document. You still have a reference to it in memory.

We have more methods (e.g., replace(), remove()) to look forward to
in DOM4.

1.12 Using cloneNode() to Clone Nodes
Using the cloneNode() method, it’s possible to duplicate a single node or a node and
all its child nodes.

In the following code, I clone only the (i.e., HTMLUListElement) that, once cloned,
can be treated like any node reference.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

 Hi

 there

<script>

var cloneUL = document.querySelector('ul').cloneNode();

console.log(cloneUL.constructor); //logs HTMLUListElement()

console.log(cloneUL.innerHTML); //logs (an empty string) as only the ul was cloned

</script>

</body>

</html>

To clone a node and all its child nodes, you pass the cloneNode() method a parameter
of true. The following code uses the cloneNode() method again, but this time, I am
cloning all the child nodes as well.

20 | Chapter 1: Node Overview

http://javascript.crockford.com/memory/leak.html
http://javascript.crockford.com/memory/leak.html
http://www.w3.org/TR/dom/#mutation-methods
http://www.w3.org/TR/dom/#mutation-methods
http://jsfiddle.net/domenlightenment/6DHgC

Live code

<!DOCTYPE html>

<html lang="en">

<body>

 Hi

 there

<script>

var cloneUL = document.querySelector('ul').cloneNode(true);

console.log(cloneUL.constructor); //logs HTMLUListElement()

console.log(cloneUL.innerHTML); //logs Hithere

</script>

</body>

</html>

Note
When cloning an Element node, all of its attributes and their values
(including in-line events) are cloned as well. Anything added with ad
dEventListener() or node.onclick is not cloned.

You might think that cloning a node and its children using clone
Node(true) would return a NodeList, but it in fact does not.

cloneNode() may lead to duplicate element IDs in a document.

1.13 Grokking Node Collections (i.e., NodeList and
HTMLCollection)
When selecting groups of nodes from a tree (see Chapter 3) or accessing predefined sets
of nodes, the nodes are placed in either a NodeList [e.g., document.querySelector
All('*')] or an HTMLCollection (e.g., document.scripts). These array-like object
collections have the following characteristics:

• A collection can be either live or static. This means the nodes contained in the
collection are either literally part of the live document or a snapshot of the live
document.

• By default, nodes are sorted inside the collection by tree order. This means the order
matches the linear path from tree trunk to branches.

1.13 Grokking Node Collections (i.e., NodeList and HTMLCollection) | 21

http://jsfiddle.net/domenlightenment/EyFEC
http://www.w3.org/TR/dom/#nodelist
http://www.w3.org/TR/dom/#htmlcollection

• The collections have a length property that reflects the number of elements in the
list.

1.14 Getting a List/Collection of All Immediate Child
Nodes
Using the childNodes property produces an array-like list [i.e., NodeList] of the im‐
mediate child nodes. In the following code, I select the element, which I then use
to create a list of all the immediate child nodes contained inside the .

Live code

<!DOCTYPE html>

<html lang="en">

<body>

 Hi

 there

<script>

var ulElementChildNodes = document.querySelector('ul').childNodes;

console.log(ulElementChildNodes); /* logs an arraylike list of all nodes

 inside of the ul */

/* Call forEach as if it's a method of NodeLists so we can loop over the NodeList.

Done because NodeLists are arraylike, but do not directly inherit from Array */

Array.prototype.forEach.call(ulElementChildNodes,function(item){

 console.log(item); //logs each item in the array

});

</script>

</body>

</html>

Notes
The NodeList returned by childNodes only contains immediate child
nodes.

Be aware that childNodes contains not only Element nodes but also all
other node types (e.g., Text and Comment nodes).

[].forEach was implemented in ECMAScript Edition 5.

22 | Chapter 1: Node Overview

www.allitebooks.com

https://developer.mozilla.org/En/DOM/NodeList
http://jsfiddle.net/domenlightenment/amDev
http://www.allitebooks.org

1.15 Converting a NodeList or HTMLCollection to a
JavaScript Array
Node lists and HTML collections are array-like but are not true JavaScript arrays, which
inherit array methods. In the following code, I programmatically confirm this using
isArray().

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(Array.isArray(document.links)); /* returns false, it's an

 HTMLCollection not an Array */

console.log(Array.isArray(document.querySelectorAll('a'))); /* returns false, it's

 a NodeList not an

 Array */

</script>

</body>

</html>

Note
Array.isArray was implemented in ECMAScript Edition 5.

Converting a node list and HTML collection list to a true JavaScript array can provide
several benefits. For one, it gives us the ability to create a snapshot of the list that is not
tied to the live DOM, considering that NodeList and HTMLCollection are live lists.
Second, converting a list to a JavaScript array gives access to the methods provided by
the Array object (e.g., forEach, pop, map, reduce, and so on.).

To convert an array-like list to a true JavaScript array we pass the array-like list to call()
or apply(), in which the call() or apply() is calling a method that returns an unaltered
true JavaScript array. In the following code, I use the .slice() method, which doesn’t
really slice anything; I am just using it to convert the list to a JavaScript Array since the
slice() returns an array.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

1.15 Converting a NodeList or HTMLCollection to a JavaScript Array | 23

http://jsfiddle.net/domenlightenment/n53Xk
http://bit.ly/Xt1Y95
http://jsfiddle.net/domenlightenment/jHgTY

<script>

console.log(Array.isArray(Array.prototype.slice.call(document.links)));

 //returns true

console.log(Array.isArray(

 Array.prototype.slice.call(document.querySelectorAll('a')))); //returns true

</script>

</body>

</html>

Notes
In ECMAScript Edition 6, we have Array.from to look forward to,
which converts a single argument that is an array-like object or list (e.g.,
arguments, NodeList, DOMTokenList [used by classList], and Name
dNodeMap [used by the attributes property]) into a new Array() and
returns it.

1.16 Traversing Nodes in the DOM
From a node reference (i.e., document.querySelector('ul')), it’s possible to get a dif‐
ferent node reference by traversing the DOM using the following properties:

• parentNode

• firstChild

• lastChild

• nextSibling

• previousSibling

In the following code example, I examine the Node properties providing DOM traversal
functionality.

Live code

<!DOCTYPE html>

<html lang="en">

<body><!-- comment -->

<li id="A">

<li id="B">

<!-- comment -->

<script>

24 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/Hvfhv

//cache selection of the ul

var ul = document.querySelector('ul');

//What is the parentNode of the ul?

console.log(ul.parentNode.nodeName); //logs body

//What is the first child of the ul?

console.log(ul.firstChild.nodeName); //logs comment

//What is the last child of the ul?

console.log(ul.lastChild.nodeName); /* logs text not comment,

 because there is a line break */

//What is the nextSibling of the first li?

console.log(ul.querySelector('#A').nextSibling.nodeName); //logs text

//What is the previousSibling of the last li?

console.log(ul.querySelector('#B').previousSibling.nodeName); //logs text

</script>

</body>

</html>

If you are familiar with the DOM, you should not be surprised that traversing the DOM
includes traversing not just element nodes, but also text and comment nodes (I believe
the preceding code example makes this clear), and this is not exactly ideal. Using the
following properties we can traverse the DOM, while ignoring text and comment nodes:

• firstElementChild

• lastElementChild

• nextElementChild

• previousElementChild

• children

• parentElement

Note
The childElementCount is not mentioned, but you should be aware of
its availability for calculating the number of child elements a node
contains.

Let’s examine our code example again using only element traversing methods.

1.16 Traversing Nodes in the DOM | 25

Live code

<!DOCTYPE html>

<html lang="en">

<body><!-- comment -->

<li id="A">foo

<li id="B">bar

<!-- comment -->

<script>

//cache selection of the ul

var ul = document.querySelector('ul');

//What is the first child of the ul?

console.log(ul.firstElementChild.nodeName); //logs li

//What is the last child of the ul?

console.log(ul.lastElementChild.nodeName); //logs li

//What is the nextSibling of the first li?

console.log(ul.querySelector('#A').nextElementSibling.nodeName); //logs li

//What is the previousSibling of the last li?

console.log(ul.querySelector('#B').previousElementSibling.nodeName); //logs li

//What are the element only child nodes of the ul?

console.log(ul.children); //HTMLCollection, all child nodes including text nodes

//What is the parent element of the first li?

console.log(ul.firstElementChild.parentElement); //logs ul

</script>

</body>

</html>

1.17 Verifying a Node Position in the DOM Tree with
contains() and compareDocumentPosition()
It’s possible to know whether a node is contained inside another node by using the
contains() node method. In the following code I ask if <body> is contained inside
<html lang="en">.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

26 | Chapter 1: Node Overview

http://jsfiddle.net/domenlightenment/Wh7nf
http://jsfiddle.net/domenlightenment/ENU4w

// is <body> inside <html lang="en"> ?

var inside =

 document.querySelector('html').contains(document.querySelector('body'));

console.log(inside); //logs true

</script>

</body>

</html>

If you need more robust information about the position of a node in the DOM tree in
regard to the nodes around it, you can use the compareDocumentPosition() node
method. Basically, this method gives you the ability to request information about a
selected node relative to the node passed in. The information that you get back is a
number that corresponds to the information shown in Table 1-2.

Table 1-2. The meaning of the numeric values returned from compareDocumentPosi‐
tion()

Number code returned from
compareDocumentPosition()

Number code information

0 Elements are identical.

1 DOCUMENT_POSITION_DISCONNECTED

Set when selected node and passed-in node are not in the same document.

2 DOCUMENT_POSITION_PRECEDING

Set when passed-in node is preceding selected node.

4 DOCUMENT_POSITION_FOLLOWING

Set when passed-in node is following selected node.

8 DOCUMENT_POSITION_CONTAINS

Set when passed-in node is an ancestor of selected node.

16, 10 DOCUMENT_POSITION_CONTAINED_BY (16, 10 in hexadecimal)

Set when passed-in node is a descendant of selected node.

Notes
contains() will return true if the node selected and the node passed
in are identical.

compareDocumentPosition() can be rather confusing, because it’s pos‐
sible for a node to have more than one type of relationship with another
node. For example, when a node both contains (16) and precedes (4),
the returned value from compareDocumentPosition() will be 20.

1.17 Verifying a Node Position in the DOM Tree with contains() and compareDocumentPosition() | 27

1.18 Determining Whether Two Nodes Are Identical
According to the DOM3 specification, two nodes are equal if and only if the following
conditions are satisfied:

• The two nodes are of the same type.

• The following string attributes are equal: nodeName, localName, namespaceURI,
prefix, and nodeValue. That is, they are both null, or they have the same length
and are identical character for character.

• The attributes NamedNodeMaps are equal. That is, they are both null, or they have
the same length and for each node that exists in one map, there is a node that exists
in the other map and is equal, although not necessarily at the same index.

• The childNodes NodeLists are equal. That is, they are both null, or they have the
same length and contain equal nodes at the same index. Note that normalization
can affect equality; to avoid this, nodes should be normalized before being
compared.

Calling the isEqualNode() method on a node in the DOM will ask if that node is equal
to the node that you pass it as a parameter. In the following code, I exhibit a case of two
identical nodes and two nodes that do not meet the conditions of being equal to each
other.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<input type="text">

<input type="text">

<textarea>foo</textarea>

<textarea>bar</textarea>

<script>

//logs true, because they are exactly identical

var input = document.querySelectorAll('input');

console.log(input[0].isEqualNode(input[1]));

//logs false, because the child text node is not the same

var textarea = document.querySelectorAll('textarea');

console.log(textarea[0].isEqualNode(textarea[1]));

</script>

</body>

</html>

28 | Chapter 1: Node Overview

http://bit.ly/TlJjOl
http://jsfiddle.net/domenlightenment/xw68Q

Note
If you don’t care about two nodes being exactly equal, and instead you
want to know whether two node references refer to the same node, you
can simply check them using the === operator (i.e., document.body ===
document.body). This will tell you if they are identical but not equal.

1.18 Determining Whether Two Nodes Are Identical | 29

CHAPTER 2

Document Nodes

2.1 document Node Overview
The HTMLDocument constructor (which inherits from document) creates a DOCU
MENT_NODE (i.e., a window.document) in the DOM. To verify this, I can simply ask which
constructor was used in the creation of the document node object.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(window.document.constructor); /* logs function HTMLDocument()

 { [native code] } */

console.log(window.document.nodeType); /* logs 9, which is a numeric key

 mapping to DOCUMENT_NODE */

</script>

</body>

</html>

The preceding code concludes that the HTMLDocument constructor function constructs
the window.document node object and that this node is a DOCUMENT_NODE object.

31

http://jsfiddle.net/domenlightenment/qRAzL

Note
Both Document and HTMLDocument constructors are typically instanti‐
ated by the browser when you load an HTML document. However,
using document.implementation.createHTMLDocument(), it’s possible
to create your own HTML document outside the one currently loaded
in the browser. In addition to createHTMLDocument(), it’s possible to
create a document object that has yet to be set up as an HTML document
using createDocument(). An example use of these methods might be
to programmatically provide an HTML document to an iframe.

2.2 HTMLDocument Properties and Methods (Including
Inherited)
To get accurate information pertaining to the available properties and methods on an
HTMLDocument node, it’s best to ignore the specification and to ask the browser what is
available. Examine the arrays created in the following code detailing the properties and
methods available from an HTMLDocument node (a.k.a. window.document) object.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

//document own properties

console.log(Object.keys(document).sort());

//document own properties and inherited properties

var documentPropertiesIncludeInherited = [];

for(var p in document){

 documentPropertiesIncludeInherited.push(p);

}

console.log(documentPropertiesIncludeInherited.sort());

//documment inherited properties only

var documentPropertiesOnlyInherited = [];

for(var p in document){

 if(

 !document.hasOwnProperty(p)){documentPropertiesOnlyInherited.push(p);

 }

}

console.log(documentPropertiesOnlyInherited.sort());

</script>

</body>

</html>

32 | Chapter 2: Document Nodes

www.allitebooks.com

http://jsfiddle.net/domenlightenment/jprPe
http://www.allitebooks.org

Many properties are available, even if the inherited properties were not considered. I’ve
handpicked a list of noteworthy properties and methods for the context of this chapter:

• doctype

• documentElement

• implementation.*

• activeElement

• body

• head

• title

• lastModified

• referrer

• URL

• defaultview

• compatMode

• ownerDocument

• hasFocus()

Note
The HTMLDocument node object (i.e., window.document) is used to access
a great deal of the methods and properties available for working with
the DOM (i.e., document.querySelectorAll()). Many of the proper‐
ties that we do not cover in this chapter are discussed elsewhere in the
book.

2.3 Getting General HTML Document Information (title,
url, referrer, lastModified, and compatMode)
The document object provides access to some general information about the HTML
document/DOM being loaded. In the following code, I use the document.title, docu
ment.URL, document.referrer, document.lastModified, and document.compatMode
properties to gain some general information about the document. Based on the property
name, the returned values should be obvious.

2.3 Getting General HTML Document Information (title, url, referrer, lastModified, and compatMode) | 33

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var d = document;

console.log('title = ' +d.title);

console.log('url = ' +d.URL);

console.log('referrer = ' +d.referrer);

console.log('lastModified = ' +d.lastModified);

//logs either BackCompat (Quirks Mode) or CSS1Compat (Strict Mode)

console.log('compatibility mode = ' +d.compatMode);

</script>

</body>

</html>

2.4 document Child Nodes
document nodes can contain one DocumentType node object and one Element node
object. This should not be a surprise, since HTML documents typically contain only
one doctype (e.g., <!DOCTYPE html>) and one element (e.g., <html lang="en">). Thus,
if you ask for the children (e.g., document.childNodes) of the document object, you will
get an array containing, at the very least, the document’s doctype/DTD and <html
lang="en"> element. The following code showcases the fact that window.document is a
type of node object (i.e., Document) with child nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

//This is the doctype/DTD

console.log(document.childNodes[0].nodeType); /* logs 10, which is a numeric key

 mapping to DOCUMENT_TYPE_NODE */

//This is the <html> element

console.log(document.childNodes[1].nodeType); /* logs 1, which is a numeric key

 mapping to ELEMENT_TYPE_NODE */

</script>

</body>

</html>

34 | Chapter 2: Document Nodes

http://jsfiddle.net/domenlightenment/pX8Le
http://jsfiddle.net/domenlightenment/UasKc

Notes
Don’t confuse the window.document object created from the HTMLDocu
ment constructor with the Document object. Just remember that
window.document is the starting point for the DOM interface. That is
why document.childNodes contains child nodes.

If a comment node (not discussed in this book) is made outside the
<html lang="en"> element, it will become a child node of the win
dow.document. However, having comment nodes outside the <html>
element can cause some buggy results in IE and is a violation of the
DOM specification.

2.5 document Provides Shortcuts to <!DOCTYPE>,
<html lang="en">, <head>, and <body>
Using the following properties, we can get a shortcut reference to the following nodes:

• document.doctype refers to <!DOCTYPE>.

• document.documentElement refers to <html lang="en">.

• document.head refers to <head>.

• document.body refers to <body>.

This is demonstrated in the following code.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(document.doctype); /* logs DocumentType {nodeType=10,

 ownerDocument=document, ...} */

console.log(document.documentElement); // logs <html lang="en">

console.log(document.head); // logs <head>

console.log(document.body); // logs <body>

</script>

</body>

</html>

2.5 document Provides Shortcuts to <!DOCTYPE>, <html lang="en">, <head>, and <body> | 35

http://jsfiddle.net/domenlightenment/XsSTM

Note
The doctype or DTD is a nodeType of 10 or DOCUMENT_TYPE_NODE and
should not be confused with the DOCUMENT_NODE (a.k.a. window.docu
ment constructed from HTMLDocument()). The doctype is constructed
from the DocumentType() constructor.

In Safari, Chrome, and Opera, the document.doctype does not appear
in the document.childNodes list.

2.6 Using document.implementation.hasFeature() to
Detect DOM Specifications/Features
It’s possible, using document.implementation.hasFeature(), to ask the current docu‐
ment (for a boolean) what feature and level the browser has implemented/supports. For
example, we can ask if the browser has implemented the Core DOM Level 3 specification
by passing the name of the feature and the version to the hasFeature() method. In the
following code, I ask if the browser has implemented the Core 2.0 and 3.0 specifications.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(document.implementation.hasFeature('Core','2.0'));

console.log(document.implementation.hasFeature('Core','3.0'));

</script>

</body>

</html>

Table 2-1 defines the features [the spec calls these modules] and versions to which you
can pass the hasFeature() method.

Table 2-1. hasFeature() parameter values

Feature Supported versions

Core 1.0, 2.0, 3.0

XML 1.0, 2.0, 3.0

HTML 1.0, 2.0

Views 2.0

StyleSheets 2.0

CSS 2.0

CSS2 2.0

36 | Chapter 2: Document Nodes

http://jsfiddle.net/domenlightenment/TYYZ6
http://bit.ly/14vfuNS

Feature Supported versions

Events 2.0, 3.0

UIEvents 2.0, 3.0

MouseEvents 2.0, 3.0

MutationEvents 2.0, 3.0

HTMLEvents 2.0

Range 2.0

Traversal 2.0

LS (loading and saving between files and DOM trees synchronously) 3.0

LS-Async (loading and saving between files and DOM trees asynchronously) 3.0

Validation 3.0

Notes
Don’t trust hasFeature() alone; you should use capability detection in
addition to hasFeature().

Using the isSupported method, implementation information can be
gathered for a specific/selected node only (i.e., element.isSuppor
ted(feature,version).

You can determine online what a user agent supports. On this site, you
will find a table indicating what the browser loading the URL claims to
implement.

2.7 Getting a Reference to the Focus/Active Node in the
Document
Using the document.activeElement, we can quickly get a reference to the node in the
document that is focused/active. In the following code, on page load, I am setting the
focus of the document to the <textarea> node and then gaining a reference to that node
by using the activeElement property.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<textarea></textarea>

<script>

//set focus to <textarea>

document.querySelector('textarea').focus();

2.7 Getting a Reference to the Focus/Active Node in the Document | 37

http://bit.ly/XcI54f
http://www.w3.org/2003/02/06-dom-support.html
http://jsfiddle.net/domenlightenment/N9npb

 //get reference to element that is focused/active in the document

console.log(document.activeElement); //logs <textarea>

</script>

</body>

</html>

Note
The focused/active element returns elements that have the ability to be
focused. If you visit a web page in a browser and start pressing the Tab
key, you will see focus shifting from one element to another element in
the page that can receive focus. Don’t confuse the selection of nodes
(highlighting sections of the HTML page with your mouse) with ele‐
ments that get focus for the purpose of inputting something with key‐
strokes, the space bar, or a mouse.

2.8 Determining Whether the Document or Any Node
Inside the Document Has Focus
Using the document.hasFocus() method, it’s possible to know whether the user cur‐
rently is focused on the window that has the HTML document loaded. In the following
code, you can see that if I execute the code and then focus another window, tab, or
application all together, getFocus() will return false.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

/* If you keep focus on the window/tab that has the document loaded it's true.

If not it's false. */

setTimeout(function(){console.log(document.hasFocus())},5000);

</script>

</body>

</html>

2.9 document.defaultView Is a Shortcut to the Head/
Global Object
You should be aware that the defaultView property is a shortcut to the JavaScript head
object, or what some refer to as the global object. The head object in a web browser is

38 | Chapter 2: Document Nodes

http://jsfiddle.net/domenlightenment/JkE3d

the window object, and defaultView will point to this object in a JavaScript browser
enviroment. The following code demonstrates the value of defaultView in a browser.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

console.log(document.defaultView) //reference, head JS object.

 Would be window object in a browser. */

</script>

</body>

</html>

If you are dealing with a DOM that is headless or a JavaScript environment that is not
running in a web browser [i.e., Node.js], this property can get you access to the head
object scope.

2.10 Using ownerDocument to Get a Reference to the
Document from an Element
The ownerDocument property, when called on a node, returns a reference to the docu
ment within which the node is contained. In the following code, I get a reference to the
document of the <body> in the HTML document and the document node for the <body>
element contained inside the iframe.

Live code: N/A

<!DOCTYPE html>

<html lang="en">

<body>

<iframe src="http://someFileServedFromServerOnSameDomain.html"></iframe>

<script>

//get the window.document that the <body> is contained within

console.log(document.body.ownerElement);

//get the window.document the <body> inside of the iframe is contained within

console.log(window.frames[0].document.body.ownerElement);

</script>

</body>

</html>

If ownerDocument is called on the document node, the value returned is null.

2.10 Using ownerDocument to Get a Reference to the Document from an Element | 39

http://jsfiddle.net/domenlightenment/QqK6Q
http://nodejs.org/

CHAPTER 3

Element Nodes

3.1 HTML*Element Object Overview
Each element in an HTML document has a unique nature, and as such, each has a unique
JavaScript constructor that instantiates the element as a node object in a DOM tree. For
example, an <a> element is created as a DOM node from the HTMLAnchorElement()
constructor. In the following code, I verify that an anchor element is created from
HTMLAnchorElement().

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<a>

<script>

/* grab <a> element node from DOM and ask for the name of the constructor

that constructed it */

console.log(document.querySelector('a').constructor);

//logs function HTMLAnchorElement() { [native code] }

</script>

</body>

</html>

In the preceding code example, I am trying to make the point that each element in the
DOM is constructed from a unique JavaScript interface/constructor. The following list
should give you a good sense of the interfaces/constructors used to create HTML
elements.

HTMLHtmlElement HTMLParagraphElement

HTMLHeadElement HTMLHeadingElement

41

http://bit.ly/UJFt0Z
http://jsfiddle.net/domenlightenment/TgcNu

HTMLLinkElement HTMLQuoteElement

HTMLTitleElement HTMLPreElement

HTMLMetaElement HTMLBRElement

HTMLBaseElement HTMLBaseFontElement

HTMLIsIndexElement HTMLFontElement

HTMLStyleElement HTMLHRElement

HTMLBodyElement HTMLModElement

HTMLFormElement HTMLAnchorElement

HTMLSelectElement HTMLImageElement

HTMLOptGroupElement HTMLObjectElement

HTMLOptionElement HTMLParamElement

HTMLInputElement HTMLAppletElement

HTMLTextAreaElement HTMLMapElement

HTMLButtonElement HTMLAreaElement

HTMLLabelElement HTMLScriptElement

HTMLFieldSetElement HTMLTableElement

HTMLLegendElement HTMLTableCaptionElement

HTMLUListElement HTMLTableColElement

HTMLOListElement HTMLTableSectionElement

HTMLDListElement HTMLTableRowElement

HTMLDirectoryElement HTMLTableCellElement

HTMLMenuElement HTMLFrameSetElement

HTMLLIElement HTMLFrameElement

HTMLDivElement HTMLIFrameElement

The complete list is available here. Keep in mind that each HTML*Element in the pre‐
ceding list inherits properties and methods from HTMLElement, Element, Node, and
Object.

3.2 HTML*Element Object Properties and Methods
(Including Inherited)
To get accurate information pertaining to the available properties and methods on an
HTML*Element node, it’s best to ignore the specification and to ask the browser what is
available. Examine the arrays created in the following code detailing the properties and
methods available from HTML element nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

42 | Chapter 3: Element Nodes

www.allitebooks.com

http://bit.ly/YIV4RR
http://jsfiddle.net/domenlightenment/vZUHw
http://www.allitebooks.org

<script>

var anchor = document.querySelector('a');

//element own properties

console.log(Object.keys(anchor).sort());

//element own properties and inherited properties

var documentPropertiesIncludeInherited = [];

for(var p in document){

 documentPropertiesIncludeInherited.push(p);

}

console.log(documentPropertiesIncludeInherited.sort());

//element inherited properties only

var documentPropertiesOnlyInherited = [];

for(var p in document){

 if(!document.hasOwnProperty(p)){

 documentPropertiesOnlyInherited.push(p);

 }

}

console.log(documentPropertiesOnlyInherited.sort());

</script>

</body>

</html>

Many properties are available, even if the inherited properties were not considered. Here
is a list of noteworthy properties and methods (including inherited) that I handpicked
for the context of this chapter:

• createElement()

• tagName

• children

• getAttribute()

• setAttribute()

• hasAttribute()

• removeAttribute()

• classList()

• dataset

• attributes

For a complete list, check out the MDN documentation, which covers the general prop‐
erties and methods available to most HTML elements.

3.2 HTML*Element Object Properties and Methods (Including Inherited) | 43

http://mzl.la/YRmqp5

3.3 Creating Elements
Element nodes are instantiated for us when a browser interprets an HTML document
and a corresponding DOM is built based on the contents of the document. After this
fact, it’s also possible to programmatically create Element nodes using createEle
ment(). In the following code, I create a <textarea> element node and then inject that
node into the live DOM tree.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var elementNode = document.createElement('textarea'); /* HTMLTextAreaElement()

 constructs <textarea> */

document.body.appendChild(elementNode);

console.log(document.querySelector('textarea')); //verify it's now in the DOM

</script>

</body>

</html>

The value passed to the createElement() method is a string that specifies the type of
element [a.k.a. tagName] to be created.

Note
The value passed to createElement is changed to a lowercase string
before the element is created.

3.4 Getting the Tag Name of an Element
Using the tagName property, we can access the name of an element. The tagName prop‐
erty returns the same value that using nodeName would return. Both return the value in
uppercase, regardless of the case in the source HTML document.

In the following code, I get the name of an <a> element in the DOM.

44 | Chapter 3: Element Nodes

http://jsfiddle.net/domenlightenment/d3Yvv
http://bit.ly/14DnOfk

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

<script>

console.log(document.querySelector('a').tagName); //logs A

//the nodeName property returns the same value

console.log(document.querySelector('a').nodeName); //logs A

</script>

</body>

</html>

3.5 Getting a List/Collection of Element Attributes and
Values
Using the attributes property (inherited by element nodes from Node), we can get a
collection of the Attr nodes that an element currently has defined. The list returned is
a NamedNodeMap. In the following code, I loop over the attributes collection, exposing
each Attr node object contained in the collection.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<a href='#' title="title" data-foo="dataFoo" class="yes" style="margin:0;"

 foo="boo">

<script>

var atts = document.querySelector('a').attributes;

for(var i=0; i< atts.length; i++){

 console.log(atts[i].nodeName +'='+ atts[i].nodeValue);

}

</script>

</body>

</html>

3.5 Getting a List/Collection of Element Attributes and Values | 45

http://jsfiddle.net/domenlightenment/YJb3W
http://bit.ly/14DpTrC
http://mzl.la/WDbKr8
http://jsfiddle.net/domenlightenment/9gVQf

Notes
The array returned from accessing the attributes property should be
considered live. This means its contents can be changed at any time.

The array that is returned inherits from the NamedNodeMap, which pro‐
vides methods to operate on the array, such as getNamedItem(),
setNamedItem(), and removeNamedItem(). Operating on attributes
with these methods should be secondary to using getAttribute(),
setAttribute(), hasAttribute(), and removeAttribute(). It’s this
author’s opinion that dealing with Attr nodes is messy. The only benefit
in using attributes is found in its functionality for returning a list of
live attributes.

The attributes property is an array-like collection and has a read-only
length property.

Boolean attributes (e.g., <option selected>foo</option>) show up in
the attributes list, but of course they have no value unless you provide
one (e.g., <option selected="selected">foo</option>).

3.6 Getting, Setting, and Removing an Element’s
Attribute Value
The most consistent way to get, set, and remove an element’s attribute value is to use
the getAttribute(), setAttribute(), and removeAttribute() methods. In the fol‐
lowing code, I demonstrate each method for managing element attributes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<a href='#' title="title" data-foo="dataFoo" style="margin:0;" class="yes"

 foo="boo" hidden="hidden">#link

<script>

var atts = document.querySelector('a');

//remove attributes

atts.removeAttribute('href');

atts.removeAttribute('title');

atts.removeAttribute('style');

atts.removeAttribute('data-foo');

atts.removeAttribute('class');

atts.removeAttribute('foo'); //custom attribute

atts.removeAttribute('hidden'); //boolean attribute

46 | Chapter 3: Element Nodes

http://bit.ly/14DpTrC
http://bit.ly/14vbs8d
http://jsfiddle.net/domenlightenment/wp7rq

//set (really re-set) attributes

atts.setAttribute('href','#');

atts.setAttribute('title','title');

atts.setAttribute('style','margin:0;');

atts.setAttribute('data-foo','dataFoo');

atts.setAttribute('class','yes');

atts.setAttribute('foo','boo');

atts.setAttribute('hidden','hidden'); /* boolean attribute requires sending the

 attribute as the value too */

//get attributes

console.log(atts.getAttribute('href'));

console.log(atts.getAttribute('title'));

console.log(atts.getAttribute('style'));

console.log(atts.getAttribute('data-foo'));

console.log(atts.getAttribute('class'));

console.log(atts.getAttribute('foo'));

console.log(atts.getAttribute('hidden'));

</script>

</body>

</html>

Notes
Use removeAttribute() instead of setting the attribute value to null
or '' using setAttribute().

Some element attributes are available from element nodes as object
properties (i.e., document.body.id or document.body.className).
This author recommends avoiding these properties and using the
remove, set, and get attribute methods.

3.7 Verifying Whether an Element Has a Specific Attribute
The best way to determine (i.e., true or false) whether an element has an attribute is to
use the hasAttribute() method. In the following code, I verify whether the <a> has an
href, title, style, data-foo, class, and foo attribute.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<a href='#' title="title" data-foo="dataFoo" style="margin:0;" class="yes"

 goo>

<script>

3.7 Verifying Whether an Element Has a Specific Attribute | 47

http://jsfiddle.net/domenlightenment/hbCCE

var atts = document.querySelector('a');

console.log(

 atts.hasAttribute('href'),

 atts.hasAttribute('title'),

 atts.hasAttribute('style'),

 atts.hasAttribute('data-foo'),

 atts.hasAttribute('class'),

 atts.hasAttribute('goo') /* Notice this is true regardless of whether a value

 is defined */

)

</script>

</body>

</html>

This method will return true if the element contains the attribute, even if the attribute
has no value. For example, using hasAttribute(), we can get a Boolean response for
Boolean attributes. In the code example that follows, I test to see whether a checkbox is
checked.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<input type="checkbox" checked></input>

<script>

var atts = document.querySelector('input');

console.log(atts.hasAttribute('checked')); //logs true

</script>

</body>

</html>

3.8 Getting a List of Class Attribute Values
Using the classList property available on element nodes, we can access a list [i.e.,
DOMTokenList] of class attribute values that is much easier to work with than a space-
delimited string value returned from the className property. In the following code, I
contrast the use of classList with className.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

48 | Chapter 3: Element Nodes

http://bit.ly/VsPTPP
http://jsfiddle.net/domenlightenment/tb6Ja
http://bit.ly/VzGviA
http://jsfiddle.net/domenlightenment/DLJEA

<div class="big brown bear"></div>

<script>

var elm = document.querySelector('div');

console.log(elm.classList); /* big brown bear {0="big", 1="brown",

 2="bear", length=3, ...} */

console.log(elm.className); //logs 'big brown bear'

</script>

</body>

</html>

Notes
Given that the classList is an array-like collection, it has a read-only
length property.

classList is read-only but can be modified using the add(), re
move(), contains(), and toggle() methods.

IE 9 does not support classList. Support will be available in IE 10.
Several polyfills are available (such as https://github.com/eligrey/class
List.js or https://gist.github.com/1381839).

3.9 Adding and Removing Subvalues to a Class Attribute
Using the classList.add() and classList.remove() methods, it’s extremely simple
to edit the value of a class attribute. In the following code, I demonstrate adding and
removing class values.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div class="dog"></div>

<script>

var elm = document.querySelector('div');

elm.classList.add('cat');

elm.classList.remove('dog');

console.log(elm.className); //'cat'

</script>

</body>

</html>

3.9 Adding and Removing Subvalues to a Class Attribute | 49

http://bit.ly/12fn4xk
https://github.com/eligrey/classList.js
https://github.com/eligrey/classList.js
https://gist.github.com/1381839
http://jsfiddle.net/domenlightenment/YVaUU

3.10 Toggling a Class Attribute Value
Using the classList.toggle() method, we can toggle a subvalue of the class attribute.
This allows us to add a value if it’s missing or remove a value if it has already been added.
In the following code, I toggle the 'visible' value and the 'grow' value. This essentially
means I remove 'visible' and add 'grow' to the class attribute value.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div class="visible"></div>

<script>

var elm = document.querySelector('div');

elm.classList.toggle('visible');

elm.classList.toggle('grow');

console.log(elm.className); //'grow'

</script>

</body>

</html>

3.11 Determining Whether a Class Attribute Value
Contains a Specific Value
Using the classList.contains() method, it’s possible to determine (i.e., true or false)
whether a class attribute value contains a specific subvalue. In the following code, I test
whether the <div> class attribute contains a subvalue of brown.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div class="big brown bear"></div>

<script>

var elm = document.querySelector('div');

console.log(elm.classList.contains('brown')); //logs true

</script>

</body>

</html>

50 | Chapter 3: Element Nodes

http://jsfiddle.net/domenlightenment/uFp6J
http://jsfiddle.net/domenlightenment/njyaP

3.12 Getting and Setting data-* Attributes
The dataset property of an element node provides an object containing all the attributes
of an element that start with data-*. Because it’s simply a JavaScript object, we can
manipulate dataset and have the element in the DOM reflect those changes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div data-foo-foo="foo" data-bar-bar="bar"></div>

<script>

var elm = document.querySelector('div');

//get

console.log(elm.dataset.fooFoo); //logs 'foo'

console.log(elm.dataset.barBar); //logs 'bar'

//set

elm.dataset.gooGoo = 'goo';

console.log(elm.dataset); /* logs DOMStringMap {fooFoo="foo", barBar="bar",

 gooGoo="goo"} */

//what the element looks like in the DOM

console.log(elm); /* logs <div data-foo-foo="foo" data-bar-bar="bar"

 data-goo-goo="goo"> */

</script>

</body>

</html>

Notes
dataset contains camelCase versions of data attributes. This means
data-foo-foo will be listed as the property fooFoo in the dataset DOM
StringMap object. The hyphen is replaced by camelCasing.

Removing a data-* attribute from the DOM is as simple as using the
delete operator on a property of the dataset (e.g., delete data
set.fooFoo).

dataset is not supported in IE 9. A polyfill is available.

However, you can always just use getAttribute('data-foo'),
removeAttribute('data-foo'), setAttribute('data-foo'), and
hasAttribute('data-foo').

3.12 Getting and Setting data-* Attributes | 51

http://jsfiddle.net/domenlightenment/ystgj
http://bit.ly/YoKOKP

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Element Node Selection

4.1 Selecting a Specific Element Node
The most common methods for getting a reference to a single element node are:

• querySelector()

• getElementById()

In the following code, I leverage both of these methods to select an element node from
the HTML document.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hello

big

bad

<li id="last">world

<script>

console.log(document.querySelector('li').textContent); //logs Hello

console.log(document.getElementById('last').textContent); //logs world

</script>

</body>

</html>

53

http://jsfiddle.net/domenlightenment/b4Rch

The getElementById() method is pretty simple compared to the more robust query
Selector() method. The querySelector() method permits a parameter in the form
of a CSS selector syntax. Basically, you can pass this method a CSS3 selector (e.g.,
#score>tbody>tr>td:nth-of-type(2)), which it will use to select a single element in
the DOM.

Notes
querySelector() will return the first node element found in the docu‐
ment based on the selector. For example, in the preceding code, I pass
a selector that will select all the elements in CSS, but only the first
one is returned.

querySelector() is also defined on element nodes. This allows the
method to limit its results to a specific vein of the DOM tree, thereby
enabling context quering.

4.2 Selecting/Creating a List (a.k.a. NodeList) of
Element Nodes
The most common methods for selecting/creating a list of nodes in an HTML document
are:

• querySelectorAll()

• getElementsByTagName()

• getElementsByClassName()

In the following code, I use all three of these methods to create a list of the elements
in the document.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<li class="liClass">Hello

<li class="liClass">big

<li class="liClass">bad

<li class="liClass">world

<script>

54 | Chapter 4: Element Node Selection

http://www.w3.org/TR/css3-selectors/#selectors
http://jsfiddle.net/domenlightenment/nT7Lr

/* all of the methods below create/select the same list of elements from

the DOM */

console.log(document.querySelectorAll('li'));

console.log(document.getElementsByTagName('li'));

console.log(document.getElementsByClassName('liClass'));

</script>

</body>

</html>

Note that the methods used in the preceding code example do not select a specific
element; instead, they create a list of elements [a NodeList] from which you can choose.

Notes
NodeLists created from getElementsByTagName() and getElements
ByClassName() are considered live and will always reflect the state of
the document, even if the document is updated after the list is created/
selected.

The querySelectorAll() method does not return a live list of elements.
This means the list created from querySelectorAll() is a snapshot of
the document at the time it was created and does not reflect the docu‐
ment as it changes. The list is static, not live.

querySelectorAll(), getElementsByTagName(), and getElementsBy
ClassName are also defined on element nodes. This allows the methods
to limit their results to a specific vein (or set of veins) of the DOM tree
(e.g., document.getElementById('header').getElementsByClass

Name('a')).

I did not mention the getElementsByName() method, as it does not
commonly leverage over other solutions, but you should be aware of its
existence for selecting from a document form, img, frame, embed, and
object elements that all have the same name attribute value.

Passing either querySelectorAll() or getElementsByTagName() the
string '*', which generally means “all,” will return a list of all elements
in the document.

Keep in mind that childNodes will also return a NodeList, just like
querySelectorAll(), getElementsByTagName(), and getElementsBy
ClassName.

The NodeLists are array-like lists/collections and have a read-only
length property (but they do not inherit array methods).

4.2 Selecting/Creating a List (a.k.a. NodeList) of Element Nodes | 55

http://mzl.la/14Dr5eO

4.3 Selecting All Immediate Child Element Nodes
Using the children property from an element node, we can get a list [an HTMLCollec
tion] of all the immediate child nodes that are element nodes. In the following code, I
use children to create a selection/list of all the s contained within the .

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hi

there

<script>

var ulElement = document.querySelector('ul').children;

//logs a list/array of all immediate child element nodes

console.log(ulElement); //logs [,]

</script>

</body>

</html>

Notice that using children only gives us the immediate element nodes, excluding any
nodes (e.g., text nodes) that are not elements. If the element has no children, chil
dren will return an empty array-like list.

Notes
HTMLCollections contain elements in document order; that is, they are
placed in the array in the order the elements appear in the DOM.

HTMLCollections are live, which means any change to the document
will be reflected dynamically in the collection.

4.4 Selecting Contextual Elements
The methods querySelector(), querySelectorAll(), getElementsByTagName(), and
getElementsByClassName, typically accessed from the document object, are also defined
on element nodes. This allows these methods to limit their results to a specific vein (or
set of veins) of the DOM tree. In other words, you can select a specific context in which
you would like the methods to search for element nodes by invoking these methods on
element node objects.

56 | Chapter 4: Element Node Selection

https://developer.mozilla.org/en/DOM/HTMLCollection
https://developer.mozilla.org/en/DOM/HTMLCollection
http://jsfiddle.net/domenlightenment/svfRC

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>

<li class="liClass">Hello

<li class="liClass">big

<li class="liClass">bad

<li class="liClass">world

</div>

<li class="liClass">Hello

<script>

/* select a div as the context to run the selecting methods only on the

contents of the div */

var div = document.querySelector('div');

console.log(div.querySelector('ul'));

console.log(div.querySelectorAll('li'));

console.log(div.getElementsByTagName('li'));

console.log(div.getElementsByClassName('liClass'));

</script>

</body>

</html>

These methods operate not only on the live DOM, but also on programmatic DOM
structures that are created in code.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

//create DOM structure

var divElm = document.createElement('div');

var ulElm = document.createElement('ul');

var liElm = document.createElement('li');

liElm.setAttribute('class','liClass');

ulElm.appendChild(liElm);

divElm.appendChild(ulElm);

//use selecting methods on DOM structure

4.4 Selecting Contextual Elements | 57

http://jsfiddle.net/domenlightenment/fL6tV
http://jsfiddle.net/domenlightenment/CCnva

console.log(divElm.querySelector('ul'));

console.log(divElm.querySelectorAll('li'));

console.log(divElm.getElementsByTagName('li'));

console.log(divElm.getElementsByClassName('liClass'));

</body>

</html>

4.5 Preconfigured Selections/Lists of Element Nodes
You should be aware that there are some preconfigured, legacy array-like lists, contain‐
ing element nodes from an HTML document. In the following list, I cover a few of these
that might be handy to be aware of:

document.all

All elements in the HTML document

document.forms

All <form> elements in the HTML document

document.images

All elements in the HTML document

document.links

All <a> elements in the HTML document

document.scripts

All <script> elements in the HTML document

document.styleSheets

All <link> or <style> elements in the HTML document

Notes
These preconfigured arrays are constructed from the HTMLCollec
tion interface/object, except for document.styleSheets, which uses
StyleSheetList.

HTMLCollection is live, just like NodeList [except for querySelector
All()].

Oddly, document.all is constructed from an HTMLAllCollection, not
an HTMLCollection, and is not supported in Firefox.

58 | Chapter 4: Element Node Selection

http://mzl.la/VsQCAn
http://mzl.la/VsQCAn
http://mzl.la/11degsA
http://mzl.la/14Dr5eO

4.6 Using matchesSelector() to Verify That an Element
Will Be Selected
Using the matchesSelector() method, we can determine whether an element will
match a selector string. For example, say we want to determine whether an is the
first child element of a . In the following code example, I select the first inside
the and then ask whether that element matches the selector, li:first-child.
Because if it in fact does, the matchesSelector() method returns true.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

Hello

world

<script>

//fails in modern browser must use browser prefix moz, webkit, o, and ms

console.log(document.querySelector('li').matchesSelector('li:first-child'));

//logs false

//prefix moz

/* console.log(document.querySelector('li').mozMatchesSelector

('li:first-child')); */

//prefix webkit

/* console.log(document.querySelector('li').webkitMatchesSelector

('li:first-child')); */

//prefix o

/* console.log(document.querySelector('li').oMatchesSelector

('li:first-child')); */

//prefix ms

/* console.log(document.querySelector('li').msMatchesSelector

('li:first-child')); */

</script>

</body>

</html>

4.6 Using matchesSelector() to Verify That an Element Will Be Selected | 59

http://jsfiddle.net/domenlightenment/9RayM

Notes
matchesSelector() has not seen much love from the browsers, as its
usage is behind that of the browser prefixes mozMatchesSelector(),
webkitMatchesSelector(), oMatchesSelector(), and msMatchesSe
lector().

In the future, matchesSelector() will be renamed to matches().

60 | Chapter 4: Element Node Selection

CHAPTER 5

Element Node Geometry and
Scrolling Geometry

5.1 Element Node Size, Offsets, and Scrolling Overview
DOM nodes are parsed and painted into visual shapes when viewing HTML documents
in a web browser. Nodes, mostly element nodes, have a corresponding visual represen‐
tation made viewable/visual by browsers. To inspect and in some cases manipulate the
visual representation and geometry of nodes programmatically, a set of APIs exist and
are specified in the CSSOM View Module. A subset of methods and properties found
in this specification provide an API to determine the geometry (i.e., size and position
using offset) of element nodes as well as hooks for manipulating scrollable nodes and
getting values of scrolled nodes. This chapter breaks down these methods and proper‐
ties.

Note
Most of the properties (excluding scrollLeft and scrollTop) from the
CSSOM View Module specification are read-only and calculated each
time they are accessed. In other words, the values are live.

5.2 Getting an Element’s offsetTop and offsetLeft Values
Relative to the offsetParent
Using the properties offsetTop and offsetLeft, we can get the offset pixel value of an
element node from the offsetParent. These element node properties give us the dis‐
tance in pixels from an element’s outside top and left borders to the inside top and left
borders of the offsetParent. The value of the offsetParent is determined by searching
the nearest ancestor elements for an element that has a CSS position value not equal to

61

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/#Painting
http://www.w3.org/TR/cssom-view/

static. If none are found, the <body> element, or what some refer to as the “document”
(as opposed to the browser viewport), is the offsetParent value. If, during the ancestral
search, a <td>, <th>, or <table> element with a CSS position value of static is found,
this becomes the value of offsetParent.

Let’s verify that offsetTop and offsetLeft provide the values one might expect. The
properties offsetLeft and offsetTop in the following code tell us that the <div> with
an id of red is 60 pixels from the top and left of the offsetParent (i.e., the <body>
element in this example).

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

body{margin:0;}

#blue{height:100px;width:100px;background-color:blue;border:10px solid gray;

 padding:25px;margin:25px;}

#red{height:50px;width:50px;background-color:red;border:10px solid gray;}

</style>

</head>

<body>

<div id="blue"><div id="red"></div></div>

<script>

var div = document.querySelector('#red');

console.log(div.offsetLeft); //logs 60

console.log(div.offsetTop); //logs 60

console.log(div.offsetParent); //logs <body>

</script>

</body>

</html>

Take a look at Figure 5-1, which shows what the code displays in the browser, to get a
better understanding of how the offsetLeft and offsetTop values are determined.
The red <div> shown in the image is exactly 60 pixels from the offsetParent.

Notice that I am measuring from the outside border of the red <div> element to the
inside border of the offsetParent (i.e., the <body>).

62 | Chapter 5: Element Node Geometry and Scrolling Geometry

http://jsfiddle.net/domenlightenment/dj5h9

Figure 5-1. <div id=“red”></div> is 60 pixels from offsetParent

As I mentioned previously, if I were to change the blue <div> in the preceding code to
have a position of absolute, this would alter the value of the offsetParent. In the
following code, absolutely positioning the blue <div> will cause the values returned
from offsetLeft and offsetTop to report an offset of 25 pixels. This is because the
offset parent is now the blue <div> and not the <body>.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

#blue{height:100px;width:100px;background-color:blue;border:10px solid gray;

 padding:25px;margin:25px;position:absolute;}

#red{height:50px;width:50px;background-color:red;border:10px solid gray;}

</style>

</head>

<body>

<div id="blue"><div id="red"></div></div>

<script>

var div = document.querySelector('#red');

console.log(div.offsetLeft); //logs 25

console.log(div.offsetTop); //logs 25

console.log(div.offsetParent); //logs <div id="blue">

</script>

</body>

</html>

5.2 Getting an Element’s offsetTop and offsetLeft Values Relative to the offsetParent | 63

http://jsfiddle.net/domenlightenment/ft2ZQ

The image of the browser view shown in Figure 5-2 clarifies the new measurements
returned from offsetLeft and offsetTop when the offsetParent is the blue <div>.

Figure 5-2. <div id=“red”></div> is 25 pixels from offsetParent

Notes
Many of the browsers break the outside border to the inside border
measurement when the offsetParent is the <body> and the <body> or
<html> element has a visible margin, padding, or border value.

offsetParent, offsetTop, and offsetLeft are extensions to the
HTMLElement object.

5.3 Using getBoundingClientRect() to Get an Element’s
Top, Right, Bottom, and Left Border Edge Offsets Relative
to the Viewport
Using the getBoundingClientRect() method, we can get the position of an element’s
outside border edges as the element is painted in the browser viewport relative to the
top and left edges of the viewport. This means the left and right edges are measured
from the outside border edge of an element to the left edge of the viewport, and the top
and bottom edges are measured from the outside border edge of an element to the top
edge of the viewport.

In the following code, I create a 50 × 50-pixel <div> with a 10-pixel border and a 100-
pixel margin. To get the distance in pixels from each border edge of the <div>, I call the
getBoundingClientRect() method on the <div>, which returns an object containing
a top, right, bottom, and left property.

64 | Chapter 5: Element Node Geometry and Scrolling Geometry

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

body{margin:0;}

div{height:50px;width:50px;background-color:red;border:10px solid gray;

 margin:100px;}

</style>

</head>

<body>

<div></div>

<script>

var divEdges = document.querySelector('div').getBoundingClientRect();

console.log(divEdges.top, divEdges.right, divEdges.bottom, divEdges.left);

//logs '100 170 170 100'

</script>

</body>

</html>

Figure 5-3 shows the browser-rendered view of the preceding code with some added
measurement indicators to show exactly how getBoundingClientRect() is calculated.

Figure 5-3. <div id=“red”></div> top, right, bottom, and left are 100 pixels from the
viewport edge

The top outside border edge of the <div> element is 100 pixels from the top edge of the
viewport. The right outside border edge of the <div> element is 170 pixels from the
left edge of the viewport. The bottom outside border edge of the <div> element is 170

5.3 Using getBoundingClientRect() to Get an Element’s Top, Right, Bottom, and Left Border Edge Offsets Relative to the
Viewport | 65

http://jsfiddle.net/domenlightenment/A3RN9

pixels from the top edge of the viewport. And the left outside border edge of the <div>
element is 100 pixels from the left edge of the viewport.

5.4 Getting an Element’s Size (Border + Padding +
Content) in the Viewport
The getBoundingClientRect() method returns an object with a top, right, bottom,
and left property/value as well as a height and width property/value. The height and
width properties indicate the size of the element where the total size is derived by adding
together the content of the div, its padding, and its borders.

In the following code, I use getBoundingClientRect() to get the size of the <div>
element in the DOM.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{height:25px;width:25px;background-color:red;border:25px solid gray;

 padding:25px;}

</style>

</head>

<body>

<div></div>

<script>

var div = document.querySelector('div').getBoundingClientRect();

console.log(div.height, div.width); //logs '125 125'

//because 25px border + 25px padding + 25 content + 25 padding + 25 border = 125

</script>

</body>

</html>

The same size values can also be found using the offsetHeight and offsetWidth
properties. In the following code, I leverage these properties to get the same height and
width values provided by getBoundingClientRect().

Live code

<!DOCTYPE html>

<html lang="en">

<head>

66 | Chapter 5: Element Node Geometry and Scrolling Geometry

http://jsfiddle.net/domenlightenment/PuXmL
http://jsfiddle.net/domenlightenment/MSzL3

<style>

div{height:25px;width:25px;background-color:red;border:25px solid gray;

 padding:25px;}

</style>

</head>

<body>

<div></div>

<script>

var div = document.querySelector('div');

console.log(div.offsetHeight, div.offsetWidth); //logs '125 125'

//because 25px border + 25px padding + 25 content + 25 padding + 25 border = 125

</script>

</body>

</html>

5.5 Getting an Element’s Size (Padding + Content) in the
Viewport, Excluding Borders
The clientWidth and clientHeight properties return the total size of an element by
adding together the content of the element and its padding, excluding the border sizes.
In the following code, I use these two properties to get the height and width of an
element, including padding but excluding borders.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{height:25px;width:25px;background-color:red;border:25px solid gray;

 padding:25px;}

</style>

</head>

<body>

<div></div>

<script>

var div = document.querySelector('div');

console.log(div.clientHeight, div.clientWidth); /* logs '75 75' because

 25px padding + 25 content +

 25 padding = 75 */

5.5 Getting an Element’s Size (Padding + Content) in the Viewport, Excluding Borders | 67

http://jsfiddle.net/domenlightenment/bSrSb

</script>

</body>

</html>

5.6 Using elementFromPoint() to Get the Topmost
Element in the Viewport at a Specific Point
Using elementFromPoint(), it’s possible to get a reference to the topmost element in
an HTML document at a specific point in the document. In the following code example,
I simply ask what is the topmost element 50 pixels from the top and left of the viewport.
Since we have two <div>s at that location, the topmost div (or, if there is no z-index set,
the last one in document order) is selected and returned.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{height:50px;width:50px;background-color:red;position:absolute;top:50px;

 left:50px;}

</style>

</head>

<body>

<div id="bottom"></div><div id="top"></div>

<script>

console.log(document.elementFromPoint(50,50)); //logs <div id="top">

</script>

</body>

</html>

5.7 Using scrollHeight and scrollWidth to Get the Size of
the Element Being Scrolled
The scrollHeight and scrollWidth properties simply give you the height and width
of the node being scrolled. For example, open any HTML document that scrolls in a
web browser and access these properties on the <html> (e.g., document.documentEle
ment.scrollWidth) or <body> (e.g., document.body.scrollWidth), and you will get
the total size of the HTML document being scrolled. Since we can apply scrolling, using
CSS (i.e., overflow:scroll), to elements, let’s look at a simpler code example. In the
following code, I make a <div> scroll a <p> element that is 1,000 × 1,000 pixels. Accessing

68 | Chapter 5: Element Node Geometry and Scrolling Geometry

http://jsfiddle.net/domenlightenment/8ksS5

the scrollHeight and scrollWidth properties on the <div> will tell us that the element
being scrolled is 1,000 × 1,000 pixels.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

*{margin:0;padding:0;}

div{height:100px;width:100px; overflow:auto;}

p{height:1000px;width:1000px;background-color:red;}

</style>

</head>

<body>

<div><p></p></div>

<script>

var div = document.querySelector('div');

console.log(div.scrollHeight, div.scrollWidth); //logs '1000 1000'

</script>

</body>

</html>

Note
If you need to know the height and width of the node inside a scrollable
area when the node is smaller than the viewport of the scrollable area,
don’t use scrollHeight and scrollWidth, as they will give you the size
of the viewport. If the node being scrolled is smaller than the scroll area,
use clientHeight and clientWidth to determine the size of the node
contained in the scrollable area.

5.8 Using scrollTop and scrollLeft to Get and Set Pixels
Scrolled from the Top and Left
The scrollTop and scrollLeft properties are read/write properties that return the
pixels to the left or top that are not currently viewable in the scrollable viewport due to
scrolling. In the following code, I set up a <div> that scrolls a <p> element.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

5.8 Using scrollTop and scrollLeft to Get and Set Pixels Scrolled from the Top and Left | 69

http://jsfiddle.net/domenlightenment/9sZtZ
http://jsfiddle.net/domenlightenment/DqZYH

<style>

div{height:100px;width:100px;overflow:auto;}

p{height:1000px;width:1000px;background-color:red;}

</style>

</head>

<body>

<div><p></p></div>

<script>

var div = document.querySelector('div');

div.scrollTop = 750;

div.scrollLeft = 750;

console.log(div.scrollTop,div.scrollLeft); //logs '750 750'

</script>

</body>

</html>

I programmatically scroll the <div> by setting scrollTop and scrollLeft to 750. Then
I get the current value of scrollTop and scrollLeft, which, since we just set the value
to 750, will return a value of 750. The 750 reports the number of pixels scrolled and
indicates 750 pixels to the left and top are not viewable in the viewport. If it helps, just
think of these properties as the pixel measurements of the content that is not shown in
the viewport to the left or top.

5.9 Using scrollIntoView() to Scroll an Element into View
By selecting a node contained inside a node that is scrollable, we can tell the selected
node to scroll into view by using the scrollIntoView() method. In the following code,
I select the fifth <p> element contained in the scrolling <div> and call scrollInto
View() on it.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{height:30px;width:30px; overflow:auto;}

p{background-color:red;}

</style>

</head>

<body>

70 | Chapter 5: Element Node Geometry and Scrolling Geometry

http://jsfiddle.net/domenlightenment/SyeFZ

<div>

<content>

<p>1</p>

<p>2</p>

<p>3</p>

<p>4</p>

<p>5</p>

<p>6</p>

<p>7</p>

<p>8</p>

<p>9</p>

<p>10</p>

</content>

</div>

<script>

/* select <p>5</p> and scroll that element into view, I pass children '4' because

it's a zero index array-like structure */

document.querySelector('content').children[4].scrollIntoView(true);

</script>

</body>

</html>

By passing the scrollIntoView() method a parameter of true, I am telling the method
to scroll to the top of the element being scrolled to. The true parameter is not needed,
however, as this is the default action performed by the method. If you want to scroll to
the bottom of the element, pass a parameter of false to the scrollIntoView() method.

5.9 Using scrollIntoView() to Scroll an Element into View | 71

CHAPTER 6

Element Node Inline Styles

6.1 Style Attribute (a.k.a. Element Inline CSS Properties)
Overview
Every HTML element has a style attribute that can be used to insert inline CSS prop‐
erties specific to the element. In the following code, I am accessing the style attribute
of a <div> that contains several inline CSS properties.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div style="background-color:red;border:1px solid black;height:100px;

 width:100px;"></div>

<script>

var divStyle = document.querySelector('div').style;

//logs CSSStyleDeclaration {0="background-color", ...}

console.log(divStyle);

 </script>

</body>

</html>

Notice in the code that the style property returns a CSSStyleDeclaration object and
not a string. Additionally, note that only the element’s inline styles (i.e., not the computed
styles, which are any styles that have cascaded from stylesheets) are included in the
CSSStyleDeclaration object.

73

http://jsfiddle.net/domenlightenment/A4Aph

6.2 Getting, Setting, and Removing Individual Inline CSS
Properties
Inline CSS styles are individually represented as a property (i.e., an object property) of
the style object available on element node objects. This provides the interface for us
to get, set, or remove individual CSS properties on an element by simply setting an
object’s property value. In the following code, I set, get, and remove styles on a <div>
by manipulating the properties of the style object.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div></div>

<script>

var divStyle = document.querySelector('div').style;

//set

divStyle.backgroundColor = 'red';

divStyle.border = '1px solid black';

divStyle.width = '100px';

divStyle.height = '100px';

//get

console.log(divStyle.backgroundColor);

console.log(divStyle.border);

console.log(divStyle.width);

console.log(divStyle.height);

/* remove

divStyle.backgroundColor = '';

divStyle.border = '';

divStyle.width = '';

divStyle.height = '';

*/

</script>

</body>

</html>

74 | Chapter 6: Element Node Inline Styles

http://jsfiddle.net/domenlightenment/xNT85

Notes
The property names contained in the style object do not contain the
normal hyphen that is used in CSS property names. The translation is
pretty simple. Remove the hyphen and use camelCase (e.g., font-
size = fontSize and background-image = backgroundImage). In the
case in which a CSS property name is a JavaScript keyword, the Java‐
Script CSS property name is prefixed with css (e.g., float = cssFloat).

Shorthand properties are available as properties as well. So you can set
margin as well as marginTop.

For any CSS property value that requires a unit of measure, remember
to include the appropriate unit (e.g., style.width = '300px'; not
style.width = '300';). When a document is rendered in standards
mode, the unit of measure is required; otherwise, it will be ignored. In
quirks mode, assumptions are made if no unit of measure is included.

Table 6-1 lists some CSS properties and their equivalents in JavaScript.

Table 6-1. CSS properties translated to JavaScript property names

CSS property JavaScript property

background background

background-attachment backgroundAttachment

background-color backgroundColor

background-image backgroundImage

background-position backgroundPosition

background-repeat backgroundRepeat

border border

border-bottom borderBottom

border-bottom-color borderBottomColor

border-bottom-style borderBottomStyle

border-bottom-width borderBottomWidth

border-color borderColor

border-left borderLeft

border-left-color borderLeftColor

border-left-style borderLeftStyle

border-left-width borderLeftWidth

border-right borderRight

border-right-color borderRightColor

border-right-style borderRightStyle

6.2 Getting, Setting, and Removing Individual Inline CSS Properties | 75

CSS property JavaScript property

border-right-width borderRightWidth

border-style borderStyle

border-top borderTop

border-top-color borderTopColor

border-top-style borderTopStyle

border-top-width borderTopWidth

border-width borderWidth

clear clear

clip clip

color color

cursor cursor

display display

filter filter

font font

font-family fontFamily

font-size fontSize

font-variant fontVariant

font-weight fontWeight

height height

left left

letter-spacing letterSpacing

line-height lineHeight

list-style listStyle

list-style-image listStyleImage

list-style-position listStylePosition

list-style-type listStyleType

margin margin

margin-bottom marginBottom

margin-left marginLeft

margin-right marginRight

margin-top marginTop

overflow overflow

padding padding

padding-bottom paddingBottom

padding-left paddingLeft

76 | Chapter 6: Element Node Inline Styles

CSS property JavaScript property

padding-right paddingRight

padding-top paddingTop

page-break-after pageBreakAfter

page-break-before pageBreakBefore

position position

float styleFloat

text-align textAlign

text-decoration textDecoration

text-decoration: blink textDecorationBlink

text-decoration: line-through textDecorationLineThrough

text-decoration: none textDecorationNone

text-decoration: overline textDecorationOverline

text-decoration: underline textDecorationUnderline

text-indent textIndent

text-transform textTransform

top top

vertical-align verticalAlign

visibility visibility

width width

z-index zIndex

The style object is a CSSStyleDeclaration object and it provides access not only
to individual CSS properties, but also to the setPropertyValue(propertyName), get
PropertyValue(propertyName,value), and removeProperty() methods used to ma‐
nipulate individual CSS properties on an element node. In the following code, I set, get,
and remove individual CSS properties on a <div> using these methods.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

</style>

</head>

<body>

<div style="background-color:green;border:1px solid purple;"

<script>

6.2 Getting, Setting, and Removing Individual Inline CSS Properties | 77

http://jsfiddle.net/domenlightenment/X2DyX

var divStyle = document.querySelector('div').style;

//set

divStyle.setProperty('background-color','red');

divStyle.setProperty('border','1px solid black');

divStyle.setProperty('width','100px');

divStyle.setProperty('height','100px');

//get

console.log(divStyle.getPropertyValue('background-color'));

console.log(divStyle.getPropertyValue('border'));

console.log(divStyle.getPropertyValue('width'));

console.log(divStyle.getPropertyValue('height'));

/* remove

divStyle.removeProperty('background-color');

divStyle.removeProperty('border');

divStyle.removeProperty('width');

divStyle.removeProperty('height');

*/

</script>

</body>

</html>

Note
The property name is passed to the setProperty() and getProperty
Value() methods using the CSS property name plus a hyphen (e.g.,
background-color and not backgroundColor).

For more detailed information about the setProperty(), getProper
tyValue(), and removeProperty() methods, as well as additional
properties and methods, consult the Mozilla documentation.

6.3 Getting, Setting, and Removing All Inline CSS
Properties
Using the cssText property of the CSSStyleDeclaration object, as well as the get
Attribute() and setAttribute() methods, it’s possible to get, set, and remove the
entire value (i.e., all inline CSS properties) of the style attribute using a JavaScript
string. In the following code, I get, set, and remove all inline CSS (as opposed to indi‐
vidually changing CSS properties) on a <div>.

78 | Chapter 6: Element Node Inline Styles

https://developer.mozilla.org/en/DOM/CSSStyleDeclaration

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div></div>

<script>

var div = document.querySelector('div');

var divStyle = div.style;

//set using cssText

divStyle.cssText = 'background-color:red;border:1px solid black;height:100px;

 width:100px;';

//get using cssText

console.log(divStyle.cssText);

//remove

divStyle.cssText = '';

//exactly that same outcome using setAttribute() and getAttribute()

//set using setAttribute

div.setAttribute('style','background-color:red;border:1px solid black;

 height:100px;width:100px;');

//get using getAttribute

console.log(div.getAttribute('style'));

//remove

div.removeAttribute('style');

</script>

</body>

</html>

Note
Replacing the style attribute value with a new string is the fastest way
to make multiple changes to an element’s style.

6.4 Using getComputedStyle() to Get an Element’s
Computed Styles (i.e., Actual Styles Including Any from
the Cascade)
The style property only contains the CSS that is defined via the style attribute. To get
an element’s CSS from the cascade (i.e., cascading from inline stylesheets, external
stylesheets, and browser stylesheets) as well as its inline styles, you can use getCompu
tedStyle(). This method provides a read-only CSSStyleDeclaration object similar

6.4 Using getComputedStyle() to Get an Element’s Computed Styles (i.e., Actual Styles Including Any from the Cascade)
| 79

http://jsfiddle.net/domenlightenment/wSv8M

to style. In the following code, I demonstrate the reading of cascading styles, not just
element inline styles.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

 div{

 background-color:red;

 border:1px solid black;

 height:100px;

 width:100px;

}

</style>

</head>

<body>

<div style="background-color:green;border:1px solid purple;"></div>

<script>

var div = document.querySelector('div');

//logs rgb(0, 128, 0) or green, this is an inline element style

console.log(window.getComputedStyle(div).backgroundColor);

/* logs 1px solid rgb(128, 0, 128) or 1px solid purple, this is an inline

element style */

console.log(window.getComputedStyle(div).border);

//logs 100px, note this is not an inline element style

console.log(window.getComputedStyle(div).height);

//logs 100px, note this is not an inline element style

console.log(window.getComputedStyle(div).width);

</script>

</body>

</html>

The getComputedStyle() method honors the CSS specificity hierarchy. For example,
in the preceding code, the backgroundColor of the <div> is reported as green, not red,
because inline styles are at the top of the specificity hierarchy; thus, the browser applies
the inline backgroundColor value to the element and considers it to be the final com‐
puted style.

80 | Chapter 6: Element Node Inline Styles

http://jsfiddle.net/domenlightenment/k3G5Q
http://css-tricks.com/specifics-on-css-specificity/

Notes
No values can be set on a CSSStyleDeclaration object returned from
getComputedStyles(), as it’s read-only.

The getComputedStyles() method returns color values in the
rgb(#,#,#) format, regardless of how they were originally authored.

Shorthand properties are not computed for the CSSStyleDeclara
tion object; you will have to use nonshorthand property names for
property access (e.g., marginTop, not margin).

6.5 Using the class and id Attributes to Apply and Remove
CSS Properties on an Element
Style rules defined in an inline stylesheet or an external stylesheet can be added or
removed from an element by using the class and id attributes. This is the most common
pattern for manipulating element styles. In the following code, leveraging setAttri
bute() and classList.add(), inline style rules are applied to a <div> by setting the
class and id attribute values. Using removeAttribute() and classList.remove(),
these CSS rules can be removed as well.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style>

.foo{

 background-color:red;

 padding:10px;

}

#bar{

 border:10px solid #000;

 margin:10px;

}

</style>

</head>

<body>

<div></div>

<script>

var div = document.querySelector('div');

//set

div.setAttribute('id','bar');

div.classList.add('foo');

6.5 Using the class and id Attributes to Apply and Remove CSS Properties on an Element | 81

http://bit.ly/YoM0Oc
http://jsfiddle.net/domenlightenment/BF9gM

/* remove

div.removeAttribute('id');

div.classList.remove('foo');

*/

</script>

</body>

</html>

82 | Chapter 6: Element Node Inline Styles

CHAPTER 7

Text Nodes

7.1 Text Object Overview
Text in an HTML document is represented by instances of the Text() constructor
function, which produces text nodes. When an HTML document is parsed, the text
mixed in among the elements of an HTML page is converted to text nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>hi</p>

<script>

//select 'hi' text node

var textHi = document.querySelector('p').firstChild

console.log(textHi.constructor); //logs Text()

//logs Text {textContent="hi", length=2, wholeText="hi", ...}

console.log(textHi);

</script>

</body>

</html>

The preceding code concludes that the Text() constructor function constructs the text
node, but keep in mind that Text inherits from CharacterData, Node, and Object.

83

http://jsfiddle.net/domenlightenment/kuz5Z

7.2 Text Object and Properties
To get accurate information pertaining to the available properties and methods on a
Text node, it’s best to ignore the specification and to ask the browser what is available.
Examine the arrays created in the following code detailing the properties and methods
available from a text node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>hi</p>

<script>

var text = document.querySelector('p').firstChild;

//text own properties

console.log(Object.keys(text).sort());

//text own properties and inherited properties

var textPropertiesIncludeInherited = [];

for(var p in text){

 textPropertiesIncludeInherited.push(p);

}

console.log(textPropertiesIncludeInherited.sort());

//text inherited properties only

var textPropertiesOnlyInherited = [];

for(var p in text){

 if(!text.hasOwnProperty(p)){

 textPropertiesOnlyInherited.push(p);

 }

}

console.log(textPropertiesOnlyInherited.sort());

</script>

</body>

</html>

Many properties are available, even if the inherited properties were not considered. The
following properties and methods are noteworthy based on the context of this chapter:

• textContent

• splitText()

• appendData()

• deleteData()

• insertData()

84 | Chapter 7: Text Nodes

http://jsfiddle.net/domenlightenment/Wj3uS

• replaceData()

• subStringData()

• normalize()

• data

• document.createTextNode() (not a property or inherited property of text nodes
but discussed in this chapter)

7.3 Whitespace Creates Text Nodes
When a DOM is constructed either by the browser or by programmatic means, text
nodes are created from whitespace as well as from text characters. After all, whitespace
is a character. In the following code, the second paragraph, containing an empty space,
has a child text node while the first paragraph does not.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p id="p1"></p>

<p id="p2"> </p>

<script>

console.log(document.querySelector('#p1').firstChild) //logs null

console.log(document.querySelector('#p2').firstChild.nodeName) //logs #text

</script>

</body>

</html>

Don’t forget that whitespace and text characters in the DOM are typically represented
by a text node. This of course means that carriage returns are considered text nodes. In
the following code, I log a carriage return highlighting the fact that this type of character
is a text node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p id="p1"></p> /* yes there is a carriage return text node before this comment,

 even this comment is a node */

<p id="p2"></p>

7.3 Whitespace Creates Text Nodes | 85

http://jsfiddle.net/domenlightenment/YbtnZ
http://jsfiddle.net/domenlightenment/9FEzq

<script>

console.log(document.querySelector('#p1').nextSibling) //logs Text

</script>

</body>

</html>

The reality is that if you can input the character or whitespace into an HTML document
using a keyboard, it can potentially be interpreted as a text node. If you think about it,
unless you minimize/compress the HTML document, the average HTML page contains
a great deal of whitespace and carriage return text nodes.

7.4 Creating and Injecting Text Nodes
Text nodes are created automatically for us when a browser interprets an HTML docu‐
ment, and a corresponding DOM is built based on the contents of the document. After
this automation, it’s also possible to programmatically create Text nodes using create
TextNode(). In the following code, I create a text node and then inject that node into
the live DOM tree.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div></div>

<script>

var textNode = document.createTextNode('Hi');

document.querySelector('div').appendChild(textNode);

console.log(document.querySelector('div').innerText); // logs Hi

</script>

</body>

</html>

Keep in mind that we can also inject text nodes into programmatically created DOM
structures. In the following code, I place a text node inside a <p> element before I inject
it into the live DOM.

86 | Chapter 7: Text Nodes

http://jsfiddle.net/domenlightenment/xC9q3

Live code

<!DOCTYPE html>

<html lang="en">

<div></div>

<body>

<script>

var elementNode = document.createElement('p');

var textNode = document.createTextNode('Hi');

elementNode.appendChild(textNode);

document.querySelector('div').appendChild(elementNode);

console.log(document.querySelector('div').innerHTML); //logs <div>Hi</div>

</script>

</body>

</html>

7.5 Getting a Text Node Value with .data or nodeValue
The text value/data represented by a Text node can be extracted from the node by using
the .data or nodeValue property. Both of these return the text contained in a Text node.
In the following code, I demonstrate both of these to retrieve the value contained in the
<div>.

Live code

<!DOCTYPE html>

<html lang="en">

<p>Hi, cody</p><body>

<script>

console.log(document.querySelector('p').firstChild.data); //logs 'Hi,'

console.log(document.querySelector('p').firstChild.nodeValue); //logs 'Hi,'

</script>

</body>

</html>

Notice that the <p> contains two Text nodes and two Element (i.e.,) nodes.
Also note that we are only getting the value of the first child node contained in the <p>.

7.5 Getting a Text Node Value with .data or nodeValue | 87

http://jsfiddle.net/domenlightenment/PdatJ
http://jsfiddle.net/domenlightenment/dPLkx

Note
Getting the length of the characters contained in a text node is as simple
as accessing the length property of the node itself or the actual text
value/data of the node (i.e., document.querySelector('p').first
Child.length or document.querySelector('p').firstChild.da

ta.length or document.querySelector('p').firstChild.nodeVal
ue.length).

7.6 Manipulating Text Nodes with appendData(),
deleteData(), insertData(), replaceData(), and
subStringData()
The CharacterData object from which Text nodes inherit methods provides the fol‐
lowing methods for manipulating and extracting subvalues from Text node values:

• appendData()

• deleteData()

• insertData()

• replaceData()

• subStringData()

Each of these is leveraged in the following code example.

Live code

<!DOCTYPE html>

<html lang="en">

<p>Go big Blue Blue<body>

<script>

var pElementText = document.querySelector('p').firstChild;

//add !

pElementText.appendData('!');

console.log(pElementText.data);

//remove first 'Blue'

pElementText.deleteData(7,5);

console.log(pElementText.data);

//insert it back 'Blue'

pElementText.insertData(7,'Blue ');

console.log(pElementText.data);

88 | Chapter 7: Text Nodes

http://jsfiddle.net/domenlightenment/B6AC6

//replace first 'Blue' with 'Bunny'

pElementText.replaceData(7,5,'Bunny ');

console.log(pElementText.data);

//extract substring 'Blue Bunny'

console.log(pElementText.substringData(7,10));

</script>

</body>

</html>

Note
These same manipulation and subextraction methods can be leveraged
by Comment nodes.

7.7 When Multiple Sibling Text Nodes Occur
Typically, immediate sibling Text nodes do not occur, because DOM trees created by
browsers intelligently combine text nodes. However, two cases exist that make sibling
text nodes possible. The first case is rather obvious. If a text node contains an Element
node (e.g., <p>Hi, cody welcome!</p>), the text will be split into
the proper node groupings. It’s best to look at a code example, as this might sound more
complicated than it really is. In the following code, the content of the <p> element is not
a single Text node; it is in fact three nodes: a Text node, an Element node, and another
Text node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>Hi, cody welcome!</p>

<script>

var pElement = document.querySelector('p');

console.log(pElement.childNodes.length); //logs 3

console.log(pElement.firstChild.data); // is text node or 'Hi, '

console.log(pElement.firstChild.nextSibling); // is Element node or

console.log(pElement.lastChild.data); // is text node or ' welcome!'

</script>

</body>

</html>

7.7 When Multiple Sibling Text Nodes Occur | 89

http://jsfiddle.net/domenlightenment/2ZCn3

The next case occurs when we are programmatically adding Text nodes to an element
we created in our code. In the following code, I create a <p> element and then append
two Text nodes to this element. This results in sibling Text nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var pElementNode = document.createElement('p');

var textNodeHi = document.createTextNode('Hi ');

var textNodeCody = document.createTextNode('Cody');

pElementNode.appendChild(textNodeHi);

pElementNode.appendChild(textNodeCody);

document.querySelector('div').appendChild(pElementNode);

console.log(document.querySelector('div p').childNodes.length); //logs 2

</script>

</body>

</html>

7.8 Using textContent to Remove Markup and Return All
Child Text Nodes
The textContent property can be used to get all child text nodes, as well as to set the
contents of a node to a specific Text node. When it’s used on a node to get the textual
content of the node, it will return a concatenated string of all text nodes contained with
the node on which you call the method. This functionality makes it very easy to extract
all text nodes from an HTML document. In the following code, I extract all the text
contained within the <body> element. Notice that textContent gathers not just imme‐
diate child text nodes, but all child text nodes no matter the depth of encapsulation
inside the node on which the method is called:

<!DOCTYPE html>

<html lang="en">

<body>

<h1> Dude</h2>

<p>you rock!</p>

<script>

console.log(document.body.textContent); /* logs 'Dude you rock!' with some added

 white space */

90 | Chapter 7: Text Nodes

http://jsfiddle.net/domenlightenment/jk3Jn

</script>

</body>

</html>

When textContent is used to set the text contained within a node, it will remove all
child nodes first, replacing them with a single Text node. In the following code, I replace
all the nodes inside the <div> element with a single Text node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>

<h1> Dude</h2>

<p>you rock!</p>

</div>

<script>

document.body.textContent = 'You don\'t rock!'

console.log(document.querySelector('div').textContent); //logs 'You don't rock!'

</script>

</body>

</html>

Notes
textContent returns null if used on a document or doctype node.

textContent returns the contents from <script> and <style>
elements.

7.9 The Difference Between textContent and innerText
Most modern browsers, except Firefox, support a seemingly similar property to text
Content, named innerText. However, these properties are not the same. You should be
aware of the following differences between textContent and innerText:

• innerText is aware of CSS. So, if you have hidden text, innerText ignores this text,
whereas textContent does not.

• Because innerText cares about CSS, it will trigger a reflow, whereas textContent
will not.

• innerText ignores the Text nodes contained in <script> and <style> elements.

• innerText, unlike textContent, will normalize the text that is returned. Just think
of textContent as returning exactly what is in the document, with the markup
removed. This will include whitespace, line breaks, and carriage returns.

7.9 The Difference Between textContent and innerText | 91

http://jsfiddle.net/domenlightenment/m766T

• innerText is considered to be nonstandard and browser-specific while
textContent is implemented from the DOM specifications.

If you intend to use innerText, you’ll have to create a workaround for Firefox.

7.10 Using normalize() to Combine Sibling Text Nodes into
One Text Node
Sibling Text nodes are typically only encountered when text is programmatically added
to the DOM. To eliminate sibling Text nodes that contain no Element nodes, we can
use normalize(). This will concatenate sibling text nodes in the DOM into a single Text
node. In the following code, I create sibling text, append it to the DOM, and then nor‐
malize it.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div></div>

<script>

var pElementNode = document.createElement('p');

var textNodeHi = document.createTextNode('Hi');

var textNodeCody = document.createTextNode('Cody');

pElementNode.appendChild(textNodeHi);

pElementNode.appendChild(textNodeCody);

document.querySelector('div').appendChild(pElementNode);

console.log(document.querySelector('p').childNodes.length); //logs 2

document.querySelector('div').normalize(); //combine our sibling text nodes

console.log(document.querySelector('p').childNodes.length); //logs 1

</script>

</body>

</html>

7.11 Using splitText() to Split a Text Node
When splitText() is called on a Text node, it will alter the text node on which it’s
being called (leaving the text up to the offset) and return a new Text node that contains
the text split off from the original text based on the offset. In the following code, the

92 | Chapter 7: Text Nodes

http://jsfiddle.net/domenlightenment/LG9WR

text node Hey Yo! is split after Hey, and Hey is left in the DOM while Yo! is turned into
a new text node and returned by the splitText() method.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>Hey Yo!</p>

<script>

//returns a new text node, taken from the DOM

console.log(document.querySelector('p').firstChild.splitText(4).data); //logs Yo!

//What remains in the DOM...

console.log(document.querySelector('p').firstChild.textContent); //logs Hey

</script>

</body>

</html>

7.11 Using splitText() to Split a Text Node | 93

http://jsfiddle.net/domenlightenment/Tz5ce

CHAPTER 8

DocumentFragment Nodes

8.1 DocumentFragment Object Overview
The creation and use of a DocumentFragment node provides a lightweight document
DOM that is external to the live DOM tree. Think of a DocumentFragment as an empty
document template that acts just like the live DOM tree, but only lives in memory, and
its child nodes can easily be manipulated in memory and then appended to the live
DOM.

8.2 Using createDocumentFragment() to Create
DocumentFragments
In the following code, a DocumentFragment is created by using createDocumentFrag
ment(), and s are appended to the fragment.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var docFrag = document.createDocumentFragment();

["blue", "green", "red", "blue", "pink"].forEach(function(e) {

 var li = document.createElement("li");

 li.textContent = e;

 docFrag.appendChild(li);

});

console.log(docFrag.textContent); //logs bluegreenredbluepink

95

http://jsfiddle.net/domenlightenment/6e3uX

</script>

</body>

</html>

Using a document fragment to create node structures in memory is extremely efficient
when it comes time to inject the document fragment into live node structures.

You might wonder what is the advantage to using a document fragment over simply
creating (via createElement()) a <div> in memory and working within this <div> to
create a DOM structure. Here are the differences between the two:

• A document fragment may contain any kind of node (except <body> or <html>),
whereas an element may not.

• The document fragment itself is not added to the DOM when you append a frag‐
ment. The contents of the node are. This is in contrast to appending an element
node in which the element itself is part of the append operation.

• When a document fragment is appended to the DOM, it transfers from the docu‐
ment fragment to the place where it is appended. It’s no longer in memory in the
place you created it. This is not true for element nodes that are used to contain
nodes only briefly and then are moved to the live DOM.

8.3 Adding a DocumentFragment to the Live DOM
When you pass a document fragment argument to the appendChild() and insert
Before() node methods, the child nodes of the document fragment are transported as
child nodes to the DOM node on which the methods are called. In the following code,
I create a document fragment, add some s to it, and then append these new element
nodes to the live DOM tree by using appendChild().

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

var ulElm = document.queryselector('ul');

var docFrag = document.createDocumentFragment();

["blue", "green", "red", "blue", "pink"].forEach(function(e) {

 var li = document.createElement("li");

 li.textContent = e;

 docFrag.appendChild(li);

});

96 | Chapter 8: DocumentFragment Nodes

http://jsfiddle.net/domenlightenment/Z2LpU

ulElm.appendChild(docFrag);

//logs bluegreenredbluepink

console.log(document.body.innerHTML);

</script>

</body>

</html>

Note
Document fragments passed as arguments to inserting node methods
will insert the entire child node structure, ignoring the document frag‐
ment node itself.

8.4 Using innerHTML on a Document Fragment
Creating a DOM structure in memory using node methods can be verbose and labor-
intensive. One way around this is to create a document fragment, append a <div> to
this fragment because innerHTML does not work on document fragments, and then use
the innerHTML property to update the fragment with a string of HTML. As a result of
this, a DOM structure is crafted from the HTML string. In the following code, I con‐
struct a DOM structure that I can then treat as a tree of nodes and not just a JavaScript
string.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

//create a <div> and document fragment

var divElm = document.createElement('div');

var docFrag = document.createDocumentFragment();

//append div to document fragment

docFrag.appendChild(divElm);

//create a DOM structure from a string

docFrag.querySelector('div').innerHTML = 'foobar';

/* the string becomes a DOM structure I can call methods on like

querySelectorAll() */

//Just don't forget the DOM structure is wrapped in a <div>

console.log(docFrag.querySelectorAll('li').length); //logs 2

8.4 Using innerHTML on a Document Fragment | 97

http://jsfiddle.net/domenlightenment/4W9sH

</script>

</body>

</html>

When it comes time to append a DOM structure created using a document fragment
and <div>, you’ll want to append the structure, skipping the injection of the <div>.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div></div>

<script>

//create a <div> and document fragment

var divElm = document.createElement('div');

var docFrag = document.createDocumentFragment();

//append div to document fragment

docFrag.appendChild(divElm);

//create a DOM structure from a string

docFrag.querySelector('div').innerHTML = 'foobar';

//append, starting with the first child node contained inside of the <div>

document.querySelector('div').appendChild(

 docFrag.querySelector('div').firstChild);

//logs foobar

console.log(document.querySelector('div').innerHTML);

</script>

</body>

</html>

Note
In addition to DocumentFragment, we have DOMParser to look forward
to. DOMParser can parse HTML stored in a string into a DOM docu‐
ment. It’s only supported in Opera and Firefox at the time of this writing,
but a polyfill is available. Of course, if you need a standalone HTML-
to-DOM script, try domify.

98 | Chapter 8: DocumentFragment Nodes

http://jsfiddle.net/domenlightenment/kkyKJ
http://bit.ly/11dfxzT
https://developer.mozilla.org/en/DOM/document
https://developer.mozilla.org/en/DOM/document
https://gist.github.com/1129031
https://github.com/component/domify

8.5 Leaving Fragments Containing Nodes in Memory by
Cloning
When appending a document fragment, the nodes contained in the fragment are moved
from the fragment to the structure you are appending to. To leave the contents of a
fragment in memory so that the nodes remain after appending, simply use clone
Node() and clone the document fragment when appending. In the following code, in‐
stead of transporting the s from the document fragment, I clone the s, which
keeps the s being cloned in memory inside the document fragment node.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<script>

//create ul element and document fragment

var ulElm = document.querySelector('ul');

var docFrag = document.createDocumentFragment();

//append li's to document fragment

["blue", "green", "red", "blue", "pink"].forEach(function(e) {

 var li = document.createElement("li");

 li.textContent = e;

 docFrag.appendChild(li);

});

//append cloned document fragment to ul in live DOM

ulElm.appendChild(docFrag.cloneNode(true));

//logs bluegreenredbluepink

console.log(document.querySelector('ul').innerHTML);

//logs [li,li,li,li,li]

console.log(docFrag.childNodes);

</script>

</body>

</html>

8.5 Leaving Fragments Containing Nodes in Memory by Cloning | 99

http://jsfiddle.net/domenlightenment/bcJGS

CHAPTER 9

CSS Stylesheets and CSS Rules

9.1 CSS Stylesheet Overview
A stylesheet is added to an HTML document by using either the HTMLLinkElement node
(i.e., <link href="stylesheet.css" rel="stylesheet" type="text/css">) to in‐
clude an external stylesheet or the HTMLStyleElement node (i.e., <style></style>) to
define a stylesheet inline. In the following HTML document, both of these Element
nodes are in the DOM and I verify which constructor constructs these nodes.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<link id="linkElement"

 href="http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css"

 rel="stylesheet" type="text/css">

<style id="styleElement">

body{background-color:#fff;}

</style>

</head>

<body>

<script>

//logs function HTMLLinkElement() { [native code] }

console.log(document.querySelector('#linkElement').constructor);

//logs function HTMLStyleElement() { [native code] }

console.log(document.querySelector('#styleElement').constructor);

101

http://jsfiddle.net/domenlightenment/yPYyC

</script>

</body>

</html>

Once a stylesheet is added to an HTML document, it’s represented by the CSSStyle
sheet object. Each CSS rule (e.g., body{background-color:red;}) inside a stylesheet
is represented by a CSSStyleRule object. In the following code, I verify which con‐
structor constructed the stylesheet and each CSS rule (selector and its CSS properties
and values) in the stylesheet.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

body{background-color:#fff;}

</style>

</head>

<body>

<script>

/* logs function CSSStyleSheet() { [native code] } because this object is the

stylesheet itself */

console.log(document.querySelector('#styleElement').sheet.constructor);

/* logs function CSSStyleRule() { [native code] } because this object is the rule

inside of the stylesheet */

console.log(document.querySelector(

 '#styleElement').sheet.cssRules[0].constructor);

</script>

</body>

</html>

Keep in mind that selecting the element that includes the stylesheet (i.e., <link> or
<style>) is not the same as accessing the actual object (CSSStylesheet) that represents
the stylesheet itself.

9.2 Accessing All Stylesheets (i.e., CSSStylesheet Objects)
in the DOM
document.styleSheets gives access to a list of all stylesheet objects (a.k.a. CSSStyle
sheet objects) explicitly linked (i.e., <link>) or embedded (i.e., <style>) in an HTML
document. In the following code, styleSheets is leveraged to gain access to all the
stylesheets contained in the document:

102 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/UpLzm

<!DOCTYPE html>

<html lang="en">

<head>

<link href="http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css"

 rel="stylesheet" type="text/css">

<style>

body{background-color:red;}

</style>

</head>

<body>

<script>

console.log(document.styleSheets.length); //logs 2

console.log(document.styleSheets[0]); // the <link>

console.log(document.styleSheets[1]); // the <style>

</script>

</body>

</html>

Notes
styleSheets is live just like most other nodelists.

The length property returns the number of stylesheets contained in the
list, starting at the 0 index (i.e., document.styleSheets.length).

The stylesheets included in a styleSheets list typically include any
stylesheets created using the <style> element or using a <link> element
where rel is set to stylesheet.

In addition to using styleSheets to access a document’s stylesheets, it’s possible to
access a stylesheet in an HTML document by first selecting the element in the DOM
(<style> or <link>) and then using the .sheet property to gain access to the CSS
Stylesheet object. In the following code, I access the stylesheets in the HTML docu‐
ment by first selecting the element used to include the stylesheet and then leveraging
the .sheet property.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

9.2 Accessing All Stylesheets (i.e., CSSStylesheet Objects) in the DOM | 103

http://jsfiddle.net/domenlightenment/jFwKw

<link id="linkElement"

 href="http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css"

 rel="stylesheet" type="text/css">

<style id="styleElement">

body{background-color:#fff;}

</style>

</head>

<body>

<script>

//get CSSStylesheet object for <link>

console.log(document.querySelector('#linkElement').sheet);

 //same as document.styleSheets[0]

//get CSSStylesheet object for <style>

console.log(document.querySelector('#styleElement').sheet);

 //same as document.styleSheets[1]

</script>

</body>

</html>

9.3 CSSStyleSheet Properties and Methods
To get accurate information pertaining to the available properties and methods on a
CSSStyleSheet node, it’s best to ignore the specification and to ask the browser what is
available. Examine the arrays created in the following code detailing the properties and
methods available from a CSSStyleSheet node.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

body{background-color:#fff;}

</style>

</head>

<body>

<script>

var styleSheet = document.querySelector('#styleElement').sheet;

//text own properties

console.log(Object.keys(styleSheet).sort());

104 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/kNyL2

//text own properties and inherited properties

var styleSheetPropertiesIncludeInherited = [];

for(var p in styleSheet){

 styleSheetPropertiesIncludeInherited.push(p);

}

console.log(styleSheetPropertiesIncludeInherited.sort());

//text inherited properties only

var styleSheetPropertiesOnlyInherited = [];

for(var p in styleSheet){

 if(!styleSheet.hasOwnProperty(p)){

 styleSheetPropertiesOnlyInherited.push(p);

 }

}

console.log(styleSheetPropertiesOnlyInherited.sort());

</script>

</body>

</html>

A CSSStylesheet object accessed from a styleSheets list or via the .sheet property
has the following properties and methods:

• disabled

• href

• media

• ownerNode

• parentStylesheet

• title

• type

• cssRules

• ownerRule

• deleteRule

• insertRule

Note
href, media, ownerNode, parentStylesheet, title, and type are read-
only properties. You can’t provide new values for them.

9.3 CSSStyleSheet Properties and Methods | 105

9.4 CSSStyleRule Overview
A CSSStyleRule object represents each CSS rule contained in a stylesheet. Basically, a
CSSStyleRule is the interface to the CSS properties and values attached to a selector. In
the following code, I programmatically access the details of each rule contained in the
inline stylesheet by accessing the CSSStyleRule object that represents the CSS rule in
the stylesheet.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

body{background-color:#fff;margin:20px;} /* this is a css rule */

p{line-height:1.4em; color:blue;} /* this is a css rule */

</style>

</head>

<body>

<script>

var sSheet = document.querySelector('#styleElement').sheet;

console.log(sSheet.cssRules[0].cssText); /* logs "body { background-color: red;

 margin: 20px; }" */

console.log(sSheet.cssRules[1].cssText); /* logs "p { line-height: 1.4em;

 color: blue; }" */

</script>

</body>

</html>

9.5 CSSStyleRule Properties and Methods
To get accurate information pertaining to the available properties and methods on a
CSSStyleRule node, it’s best to ignore the specification and to ask the browser what is
available. Examine the arrays created in the following code detailing the properties and
methods available from a CSSStyleRule node.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

106 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/fPVS8
http://jsfiddle.net/domenlightenment/hCX3U

<style id="styleElement">

body{background-color:#fff;}

</style>

</head>

<body>

<script>

var styleSheetRule = document.querySelector('#styleElement').sheet.cssRule;

//text own properties

console.log(Object.keys(styleSheetRule).sort());

//text own properties and inherited properties

var styleSheetPropertiesIncludeInherited = [];

for(var p in styleSheetRule){

 styleSheetRulePropertiesIncludeInherited.push(p);

}

console.log(styleSheetRulePropertiesIncludeInherited.sort());

//text inherited properties only

var styleSheetRulePropertiesOnlyInherited = [];

for(var p in styleSheetRule){

 if(!styleSheetRule.hasOwnProperty(p)){

 styleSheetRulePropertiesOnlyInherited.push(p);

 }

}

console.log(styleSheetRulePropertiesOnlyInherited.sort());

</script>

</body>

</html>

Scripting the rules (e.g., body{background-color:red;}) contained inside a stylesheet
is made possible by the cssRules object. This object provides the following properties:

• cssText

• parentRule

• parentStylesheet

• selectorText

• style

• type

9.5 CSSStyleRule Properties and Methods | 107

9.6 Using cssRules to Get a List of CSS Rules in a Stylesheet
As previously discussed, the styleSheets list provides a list of stylesheets contained in
a document. The cssRules list provides a list (a.k.a. cssRulesList) of all the CSS rules
(i.e., CSSStyleRule objects) in a specific stylesheet. The following code logs a cssRules
list to the console.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

body{background-color:#fff;margin:20px;}

p{line-height:1.4em; color:blue;}

</style>

</head>

<body>

<script>

var sSheet = document.querySelector('#styleElement').sheet;

/* arraylike list containing all of the CSSrule objects representing each CSS

rule in the stylesheet */

console.log(sSheet.cssRules);

console.log(sSheet.cssRules.length); //logs 2

//rules are indexed in a CSSRules list starting at a 0 index

console.log(sSheet.cssRules[0]); //logs first rule

console.log(sSheet.cssRules[1]); //logs second rule

</script>

</body>

</html>

9.7 Using insertRule() and deleteRule() to Insert and
Delete CSS Rules in a Stylesheet
The insertRule() and deleteRule() methods provide the ability to programmatically
manipulate the CSS rules in a stylesheet. In the following code, I use insertRule() to
add the CSS rule p{color:red} to the inline stylesheet at index 1. Remember, the CSS
rules in a stylesheet are numerically indexed starting at 0. So when you insert a new rule
at index 1, the current rule at index 1 (i.e., p{font-size:50px;}) is pushed to index 2.

108 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/qKqhJ

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

p{line-height:1.4em; color:blue;} /* index 0 */

p{font-size:50px;} /* index 1 */

</style>

</head>

<body>

<p>Hi</p>

<script>

//add a new CSS rule at index 1 in the inline stylesheet

document.querySelector('#styleElement').sheet.insertRule('p{color:red}',1);

//verify it was added

console.log(document.querySelector('#styleElement').sheet.cssRules[1].cssText);

//Delete what we just added

document.querySelector('#styleElement').sheet.deleteRule(1);

//verify it was removed

console.log(document.querySelector('#styleElement').sheet.cssRules[1].cssText);

</script>

</body>

</html>

Deleting or removing a rule is as simple as calling the deleteRule() method on a style‐
sheet and passing it the index of the rule in the stylesheet to be deleted.

Note
Inserting and deleting rules is not a common practice given the diffi‐
culty around managing the cascade and using a numeric indexing sys‐
tem to update a stylesheet (i.e., determining at what index a style is
located without previewing the contents of the stylesheet itself). It’s
much simpler working with CSS rules in CSS and HTML files before
they are served to a client than programmatically altering them in the
client after the fact.

9.7 Using insertRule() and deleteRule() to Insert and Delete CSS Rules in a Stylesheet | 109

http://jsfiddle.net/domenlightenment/T2jzJ

9.8 Using the .style Property to Edit the Value of a
CSSStyleRule
Just as we have the .style property that facilitates the manipulation of inline styles on
element nodes, we also have a .style property for CSSStyleRule objects that orches‐
trates the same manipulation of styles in stylesheets. In the following code, I leverage
the .style property to set and get the value of CSS rules contained in the inline
stylesheet.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<style id="styleElement">

p{color:blue;}

strong{color:green;}

</style>

</head>

<body>

<p>Hey Dude!</p>

<script>

var styleSheet = document.querySelector('#styleElement').sheet;

//Set css rules in stylesheet

styleSheet.cssRules[0].style.color = 'red';

styleSheet.cssRules[1].style.color = 'purple';

//Get css rules

console.log(styleSheet.cssRules[0].style.color); //logs 'red'

console.log(styleSheet.cssRules[1].style.color); //logs 'purple'

</script>

</body>

</html>

9.9 Creating a New Inline CSS Stylesheet
To craft a new stylesheet on the fly after an HTML page is loaded, one only has to create
a new <style> node, use innerHTML to add CSS rules to this node, and then append the
<style> node to the HTML document. In the following code, I programmatically craft
a stylesheet and add the body{color:red} CSS rule to it, then append the stylesheet to
the DOM.

110 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/aZ9CQ

Live code

<!DOCTYPE html>

<html lang="en">

<head></head>

<body>

<p>Hey Dude!</p>

<script>

var styleElm = document.createElement('style');

styleElm.innerHTML = 'body{color:red}';

//notice markup in the document changed to red from our new inline stylesheet

document.querySelector('head').appendChild(styleElm);

</script>

</body>

</html>

9.10 Programmatically Adding External Stylesheets to an
HTML Document
To add a CSS file to an HTML document programmatically, you create a <link> element
node with the appropriate attributes and then append the <link> element node to the
DOM. In the following code, I programmatically include an external stylesheet by
crafting a new <link> element and appending it to the DOM.

Live code

<!DOCTYPE html>

<html lang="en">

<head></head>

<body>

<script>

//create and add attributes to <link>

var linkElm = document.createElement('link');

linkElm.setAttribute('rel', 'stylesheet');

linkElm.setAttribute('type', 'text/css');

linkElm.setAttribute('id', 'linkElement');

linkElm.setAttribute('href',

 'http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css');

//Append to the DOM

document.head.appendChild(linkElm);

9.10 Programmatically Adding External Stylesheets to an HTML Document | 111

http://jsfiddle.net/domenlightenment/bKXAk
http://jsfiddle.net/domenlightenment/dtwgC

//confirm its addition to the DOM

console.log(document.querySelector('#linkElement'));

</script>

</body>

</html>

9.11 Using the .disabled Property to Disable/Enable
Stylesheets
Using the .disabled property of a CSSStylesheet object, it’s possible to enable or dis‐
able a stylesheet. In the following code, I access the current disabled value of each
stylesheet in the document and then proceed to disable each stylesheet, leveraging
the .disabled property.

Live code

<!DOCTYPE html>

<html lang="en">

<head>

<link id="linkElement"

 href="http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css"

 rel="stylesheet" type="text/css">

<style id="styleElement">

body{color:red;}

</style>

</head>

<body>

<script>

//Get current boolean disabled value

console.log(document.querySelector('#linkElement').disabled); //log 'false'

console.log(document.querySelector('#styleElement').disabled); //log 'false'

//Set disabled value, which of course disables all styles for this document

document.document.querySelector('#linkElement').disabled = true;

document.document.querySelector('#styleElement').disabled = true;

</script>

</body>

</html>

112 | Chapter 9: CSS Stylesheets and CSS Rules

http://jsfiddle.net/domenlightenment/L952Z

Note
Disabled is not an available attribute of a <link> or <style> element,
according to the specification. Trying to add this as an attribute in the
HTML document itself will fail (and likely will cause parsing errors
where styles are ignored) in the majority of modern browsers in use
today.

9.11 Using the .disabled Property to Disable/Enable Stylesheets | 113

CHAPTER 10

JavaScript in the DOM

10.1 Inserting and Executing JavaScript Overview
JavaScript can be inserted into an HTML document by including external JavaScript
files or writing page-level inline JavaScript, which is basically the contents of an external
JavaScript file literally embedded in the HTML page as a text node. Don’t confuse
element inline JavaScript contained in attribute event handlers (i.e., <div on

click="alert('yo')"></div>) with page inline JavaScript (i.e., <script>alert('hi')
</script>).

Both methods of inserting JavaScript into an HTML document require the use of a
<script> element node. The <script> element can contain JavaScript code or can be
used to link to external JavaScript files via the src attribute. Both methods are explored
in the following code example.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- external, cross domain JavaScript include -->

<script src=

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

<!-- page inline JavaScript -->

<script>

console.log('hi');

</script>

</body>

</html>

115

http://bit.ly/VsS59S
http://bit.ly/VsS59S
http://jsfiddle.net/domenlightenment/g6T5F

Notes
It’s possible to insert and execute JavaScript in the DOM by placing the
JavaScript in an element attribute event handler (i.e., <div on

click="alert('yo')"></div>) and using the javascript: protocol
(e.g.,), but this is no longer
considered a modern practice.

Trying to include an external JavaScript file and writing page inline
JavaScript using the same <script> element will result in the page inline
JavaScript being ignored and the external JavaScript file being down‐
loaded and executed.

Self-closing script tags (i.e., <script src="" />) should be avoided,
unless you are rocking some old-school XHTML.

The <script> element does not have any required attributes but offers
the following optional attributes: async, charset, defer, src, and type.

Page inline JavaScript produces a text node, which permits the usage of
innerHTML and textContent to retrieve the contents of a line
<script>. However, appending a new text node made up of JavaScript
code to the DOM after the browser has already parsed the DOM will
not execute the new JavaScript code. It simply replaces the text.

If JavaScript code contains the string '</script>' you will have to es‐
cape the closing '/' with '<\/script>' so that the parser does not think
this is the real closing </script> element.

10.2 JavaScript Is Parsed Synchronously by Default
By default, when the DOM is being parsed and it encounters a <script> element, it will
stop parsing the document, block any further rendering and downloading, and execute
the JavaScript. Because this behavior is blocking and does not permit parallel parsing
of the DOM or execution of JavaScript, it’s considered to be synchronous. If the Java‐
Script is external to the HTML document, the blocking is exacerbated, because the
JavaScript must first be downloaded before it can be parsed. In the following code ex‐
ample, I comment on what is occurring during browser rendering when the browser
encounters several <script> elements in the DOM.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- stop document parsing, block document parsing, load js, execute js, then

resume document parsing... -->

<script src=

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

116 | Chapter 10: JavaScript in the DOM

http://jsfiddle.net/domenlightenment/rF3Lh

</script>

<!-- stop document parsing, block document parsing, execute js, then resume

document parsing... -->

<script>console.log('hi');</script>

</body>

</html>

You should make note of the differences between inline scripts and external scripts as
they pertain to the loading phase.

Note
The default blocking nature of a <script> element can have a significant
effect on the performance and perceived performance of the visual
rendering of an HTML web page. If you have a couple of script elements
at the start of an HTML page, nothing else is happening (e.g., DOM
parsing and resource loading) until each one is downloaded and exe‐
cuted sequentially.

10.3 Using defer to Defer the Downloading and Execution
of External JavaScript
The <script> element has an attribute called defer that will defer the blocking, down‐
loading, and execution of an external JavaScript file until the browser has parsed the
closing </html> node. When you use this attribute, you simply defer what normally
occurs when a web browser encounters a <script> node. In the following code, I defer
each external JavaScript file until the final <html> is encountered.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- defer, don't block just ignore this until the <html> element node is

parsed -->

<script defer src=

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

<!-- defer, don't block just ignore this until the <html> element node is

parsed -->

<script defer src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js">

</script>

10.3 Using defer to Defer the Downloading and Execution of External JavaScript | 117

http://jsfiddle.net/domenlightenment/HDegp

<!-- defer, don't block just ignore this until the <html> element node is

parsed -->

<script defer src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery-mousewheel/3.0.6/

 jquery.mousewheel.min.js">

</script>

<script>

/* We know that jQuery is not available because this occurs before the closing

<html> element */

console.log(window['jQuery'] === undefined); //logs true

/* Only after everything is loaded can we safely conclude that jQuery was

loaded and parsed */

document.body.onload = function(){console.log(jQuery().jquery)}; //logs function

</script>

</body>

</html>

Notes
According to the specification, deferred scripts are supposed to be ex‐
ecuted in document order and before the DOMContentLoaded event.
However, adherence to this specification among modern browsers is
inconsistent.

defer is a Boolean attribute; it does not have a value.

Some browsers support deferred inline scripts, but this is not common
among modern browsers.

By using defer, the assumption is that document.write() is not being
used in the JavaScript that will be deferred.

10.4 Using async to Asynchronously Download and
Execute External JavaScript Files
The <script> element has an attribute called async that will override the sequential
blocking nature of <script> elements when the DOM is being constructed by a web
browser. By using this attribute, we are telling the browser to not block the construction
of the HTML page (i.e., DOM parsing, including downloading other assets such as
images, stylesheets, etc.) and to forego the sequential loading as well.

When you use the async attribute, the files are loaded in parallel and parsed in order of
download once they are fully downloaded. In the following code, I comment on what
is happening when the HTML document is being parsed and rendered by the web
browser.

118 | Chapter 10: JavaScript in the DOM

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script async src=

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script async src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js">

</script>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script async src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery-mousewheel/3.0.6/

 jquery.mousewheel.min.js">

</script>

<script>

// we have no idea if jQuery has been loaded yet likely not yet...

console.log(window['jQuery'] === undefined);//logs true

/* Only after everything is loaded can we safely conclude that jQuery was

loaded and parsed */

document.body.onload = function(){console.log(jQuery().jquery)};

</script>

</body>

</html>

Notes
IE 10 has support for async, but IE 9 does not.

A major drawback to using the async attribute is that JavaScript files
potentially get parsed out of the order in which they are included in the
DOM. This raises a dependency management issue.

async is a Boolean attribute; it does not have a value.

By using async, the assumption is that document.write() is not being
used in the JavaScript that will be deferred.

The async attribute will trump the defer if both are used on a <script>
element.

10.4 Using async to Asynchronously Download and Execute External JavaScript Files | 119

http://jsfiddle.net/domenlightenment/p97Hd/

10.5 Using Dynamic <script> Elements to Force
Asynchronous Downloading and Parsing of External
JavaScript
A known hack for forcing a web browser into asynchronous JavaScript downloading
and parsing without using the async attribute is to programmatically create <script>
elements that include external JavaScript files and insert them in the DOM. In the fol‐
lowing code, I programmatically create the <script> element node and then append it
to the <body> element, which forces the browser to treat the <script> element
asynchronously.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script>

var underscoreScript = document.createElement("script");

underscoreScript.src =

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js";

document.body.appendChild(underscoreScript);

</script>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script>

var jqueryScript = document.createElement("script");

jqueryScript.src =

 "http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js";

document.body.appendChild(jqueryScript);

</script>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script>

var mouseWheelScript = document.createElement("script");

mouseWheelScript.src =

 "http://cdnjs.cloudflare.com/ajax/libs/jquery-mousewheel/3.0.6/

 jquery.mousewheel.min.js";

document.body.appendChild(mouseWheelScript);

</script>

<script>

/* Only after everything is loaded can we safely conclude that jQuery was loaded

and parsed */

document.body.onload = function(){console.log(jQuery().jquery)};

</script>

120 | Chapter 10: JavaScript in the DOM

http://jsfiddle.net/domenlightenment/du94d

</body>

</html>

Note
A major drawback to using dynamic <script> elements is that Java‐
Script files potentially get parsed out of the order in which they are
included in the DOM. This raises a dependency management issue.

10.6 Using the onload Callback for Asynchronous
<script>s so That We Know When They’re Loaded
The <script> element supports a load event handler (i.e., onload) that will execute once
an external JavaScript file has been loaded and executed. In the following code, I leverage
the onload event to create a callback programmatically, notifying me when the Java‐
Script file has been downloaded and executed.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script>

var underscoreScript = document.createElement("script");

underscoreScript.src =

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js";

underscoreScript.onload =

 function(){console.log('underscsore is loaded and executed');};

document.body.appendChild(underscoreScript);

</script>

<!-- Don't block, just start downloading and then parse the file when it's done

downloading -->

<script async src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js"

 onload="console.log('jQuery is loaded and exectuted');">

</script>

</body>

</html>

10.6 Using the onload Callback for Asynchronous <script>s so That We Know When They’re Loaded | 121

http://pieisgood.org/test/script-link-events/
http://jsfiddle.net/domenlightenment/XzAFx

Note
The onload event is only the tip of the iceberg in terms of where on
load is supported; you also have use of onerror, load, and error.

10.7 Be Mindful of <script>s Placement in HTML for DOM
Manipulation
Given a <script> element’s synchronous nature, placing one in the <head> element of
an HTML document presents a timing problem if the JavaScript execution is dependent
on any of the DOM that precedes the <script>. In a nutshell, if JavaScript is executed
at the beginning of a document that manipulates the DOM that precedes it, you are
going to get a JavaScript error, as shown in the following code example:

<!DOCTYPE html>

<html lang="en">

<head>

<!-- stop parsing, block parsing, execute js then resume... -->

<script>

/* we can't script the body element yet, it's null, not even been parsed by the

browser, it's not in the DOM yet */

console.log(document.body.innerHTML); /* logs Uncaught TypeError: Cannot read

 property 'innerHTML' of null */

</script>

</head>

<body>

Hi

</body>

</html>

For this reason, many developers, myself included, will attempt to place all <script>
elements before the closing </body> element. By doing this, you can rest assured that
the DOM in front of the <script>s has been parsed and is ready for scripting. As well,
this strategy will remove a dependency on DOM-ready events that can litter a code base.

10.8 Getting a List of <script>s in the DOM
The document.scripts property available from the document object provides a list (i.e.,
an HTMLCollection) of all the scripts currently in the DOM. In the following code, I
leverage this property to gain access to each <script> element’s src attributes:

<!DOCTYPE html>

<html lang="en">

<body>

<script src=

 "http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

122 | Chapter 10: JavaScript in the DOM

http://pieisgood.org/test/script-link-events/
http://pieisgood.org/test/script-link-events/

<script src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js">

</script>

<script src=

 "http://cdnjs.cloudflare.com/ajax/libs/jquery-mousewheel/3.0.6/

 jquery.mousewheel.min.js">

</script>

<script>

Array.prototype.slice.call(document.scripts).forEach(function(elm){

 console.log(elm);

});//will log each script element in the document

</script>

</body>

</html>

10.8 Getting a List of <script>s in the DOM | 123

CHAPTER 11

DOM Events

11.1 DOM Events Overview
An event, in terms of the DOM, is either a predefined or a custom moment in time that
occurs in relationship to an element in the DOM, the document object, or the window
object. These moments are typically predetermined and programmatically accounted
for by associating functionality (i.e., handlers/callbacks) to occur when these moments
in time come to pass. These moments can be initiated by the state of the UI (e.g., input
is focused or something has been dragged), the state of the environment that is running
the JavaScript program (e.g., a page is loaded or an XHR request has finished), or the
state of the program itself (e.g., monitor all mouse clicks for 30 seconds after the page
has loaded).

Setting up events can be accomplished using inline attribute event handlers, property
event handlers, or the addEventListener() method. In the following code, I’m dem‐
onstrating these three patterns for setting up an event. All three patterns add a click
event that is invoked whenever the <div> in the HTML document is clicked by the
mouse.

Live code

<!DOCTYPE html>

<html lang="en">

<!-- inline attribute event handler pattern -->

<body onclick="console.log('fire/trigger attribute event handler')">

<div>click me</div>

<script>

var elementDiv = document.querySelector('div');

125

http://jsfiddle.net/domenlightenment/4EPjN

// property event handler pattern

elementDiv.onclick = function()

 {console.log('fire/trigger property event handler')};

//addEventListener method pattern

elementDiv.addEventListener('click',function()

 {console.log('fire/trigger addEventListener')}, false);

</script>

</body>

</html>

Notice that one of the events is attached to the <body> element. If you find it odd that
the attribute event handler on the <body> fires by clicking the <div> element, consider
that when the <div> is clicked, you are also clicking on the <body> element. Click any‐
where but on the <div>, and you still see the attribute handler fire on the <body> element
alone.

While all three of these patterns for attaching an event to the DOM programmatically
schedule the event, only the addEventListener() provides a robust and organized sol‐
ution. The inline attribute event handler mixes together JavaScript and HTML, and best
practices advise keeping these things separate.

The downside to using a property event handler is that only one value can be assigned
to the event property at a time. This means you can’t add more than one property event
handler to a DOM node when assigning events as property values. The following code
shows an example of this by assigning a value to the onclick property twice; the last
value set is used when the event is invoked.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

var elementDiv = document.querySelector('div');

// property event handler

elementDiv.onclick = function()

 {console.log('I\'m first, but I get overridden/replaced')};

//overrides/replaces the prior value

elementDiv.onclick = function(){console.log('I win')};

</script>

</body>

</html>

126 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/U8bWR

Additionally, using event handlers inline on property event handlers can suffer from
scoping nuances as one attempts to leverage the scope chain from the function that is
invoked by the event. The addEventListener() method smooths out these issues, and
we will use it throughout this chapter.

Notes
Element nodes typically support inline event handlers (e.g., <div on
click=""></div>), property event handlers (e.g., document.querySe
lector('div').onclick = function(){}), and the use of the
addEventListener() method.

The Document node supports property event handlers (e.g., docu
ment.onclick = function()) and the use of the addEventListen
er() method.

The window object supports inline event handlers via the <body> or
<frameset> element (e.g., <body onload=""></body>), property event
handlers (e.g., window.load = function(){}), and the use of the
addEventListener() method.

A property event handler historically has been referred to as a “DOM
Level 0 event.” And the addEventListener() is often referred to as a
“DOM Level 2 event.” This is rather confusing, considering that there
is no Level 0 event or Level 1 event specification. Additionally, inline
event handlers are known to be called “HTML event handlers.”

11.2 DOM Event Types
In Tables 11-1 through 11-10, I detail the most common predefined events that can be
attached to Element nodes, the document object, and the window object. Of course, not
all events are directly applicable to the node or object they can be attached to. That is,
just because you can attach the event without error, and most likely invoke the event
(i.e., bubbling events like onchange to window), this does not mean that adding some‐
thing like window.onchange is logical, given that this event, by design, was not meant
for the window object.

Table 11-1. User interface events

Event type Event interface Description Event targets Bubbles? Cancelable?

load Event,

UIEvent

Fires when an asset (HTML page,

image, CSS, frameset, <object>, or

JavaScript file) is loaded

Element, Document, win

dow, XMLHttpRequest,

XMLHttpRequestUp

load

No No

11.2 DOM Event Types | 127

Event type Event interface Description Event targets Bubbles? Cancelable?

unload UIEvent Fires when a user agent removes the

resource (document, element,

defaultView) or any depending

resources (images, CSS file, etc.)

window, <body>,

<frameset>

No No

abort Event,

UIEvent

Fires when a resource (object/image)

is stopped from loading before it is

completely loaded

Element,

XMLHttpRequest,

XMLHttpRequestUp

load

Yes No

error Event,

UIEvent

Fires when a resource failed to load, or

has been loaded but cannot be

interpreted according to its semantics,

such as an invalid image, a script

execution error, or non-well-formed

XML

Element,

XMLHttpRequest,

XMLHttpRequestUp

load

Yes No

resize UIEvent Fires when a document view has been

resized; this event type is dispatched

after all effects for that occurrence of

resizing of that particular event target

have been executed by the user agent

window, <body>,

<frameset>

Yes No

scroll UIEvent Fires when a user scrolls a document

or an element

Element, Document,

window

Yes No

context

menu

MouseEvent Fires by right-clicking an element Element Yes Yes

Table 11-2. Focus events

Event type Event interface Description Events targets Bubbles? Cancelable?

blur FocusEvent Fires when an element loses focus either via

the mouse or via tabbing

Element (except

<body> and

<frameset>),

Document

No No

focus FocusEvent Fires when an element receives focus Element (except

<body> and <frame

set>), Document

No No

focusin FocusEvent Fires when an event target is about to receive

focus but before the focus is shifted; this

event occurs right before the focus event

Element Yes No

focusout FocusEvent Fires when an event target is about to lose

focus but before the focus is shifted; this

event occurs right before the blur event

Element Yes No

128 | Chapter 11: DOM Events

Table 11-3. Form events

Event type Event interface Description Event targets Bubbles? Cancelable?

change Specific to HTML forms Fires when a control loses the input focus and its

value has been modified since gaining focus

Element Yes No

reset Specific to HTML forms Fires when a form is reset Element Yes No

submit Specific to HTML forms Fires when a form is submitted Element Yes Yes

select Specific to HTML forms Fires when a user selects some text in a text field,

including input and textarea

Element Yes No

Table 11-4. Mouse events

Event type Event interface Description Event targets Bubbles? Cancelable?

click MouseEvent Fires when a mouse pointer is clicked (or the user

presses the Enter key) over an element. A click is

defined as a mousedown and mouseup over

the same screen location. The sequence of these

events is mousedown>mouseup>click.

Depending on the environment configuration, the

click event may be dispatched if one or more

of the event types mouseover, mouse

move, and mouseout occur between the press

and release of the pointing device button. The

click event may also be followed by the

dblclick event.

Element,

Document,

window

Yes Yes

dblclick MouseEvent Fires when a mouse pointer is clicked twice over an

element. The definition of a double-click depends

on the environment configuration, except that the

event target must be the same between mouse

down, mouseup, and dblclick. This event

type must be dispatched after the event type

click if a click and double-click occur

simultaneously, and after the event

type mouseup otherwise.

Element,

Document,

window

Yes Yes

mousedown MouseEvent Fires when a mouse pointer is pressed over an

element.

Element,

Document,

window

Yes Yes

mouseenter MouseEvent Fires when a mouse pointer is moved onto the

boundaries of an element or one of its descendent

elements. This event type is similar to mouse

over, but differs in that it does not bubble and it

must not be dispatched when the pointer device

moves from an element onto the boundaries of one

of its descendent elements.

Element,

Document,

window

No No

11.2 DOM Event Types | 129

Event type Event interface Description Event targets Bubbles? Cancelable?

mouseleave MouseEvent Fires when a mouse pointer is moved off the

boundaries of an element and all its descendent

elements. This event type is similar to mouse

out, but differs in that it does not bubble and it

must not be dispatched until the pointing device

has left the boundaries of the element and the

boundaries of all its children.

Element,

Document,

window

No No

mousemove MouseEvent Fires when a mouse pointer is moved while it is

over an element. The frequency rate of events while

the pointing device is moved is implementation-,

device-, and platform-specific, but multiple

consecutive mousemove events should be fired

for sustained pointer-device movement, rather

than a single event for each instance of mouse

movement. Implementations are encouraged to

determine the optimal frequency rate to balance

responsiveness with performance.

Element,

Document,

window

Yes No

mouseout MouseEvent Fires when a mouse pointer is moved off the

boundaries of an element. This event type is similar

to mouseleave, but differs in that it does

bubble and it must be dispatched when the

pointer device moves from an element onto the

boundaries of one of its descendent elements.

Element,

Document,

window

Yes Yes

mouseup MouseEvent Fires when a mouse pointer button is released over

an element.

Element,

Document,

window

Yes Yes

mouseover MouseEvent Fires when a mouse pointer is moved over an

element.

Element,

Document,

window

Yes Yes

Table 11-5. Wheel event

Event type Event interface Description Event targets Bubbles? Cancelable?

wheel

(browsers use

mousewheel

but the

specification uses

wheel)

WheelEvent Fires when a mouse wheel has been rotated

around any axis, or when an equivalent input

device (such as a mouseball, certain tablets or

touchpads, etc.) has emulated such an action.

Depending on the platform and input device,

diagonal wheel deltas may be delivered either as

a single wheel event with multiple nonzero axes

or as separate wheel events for each nonzero axis.

Some helpful details about browser support can

be found here.

Element,

Document,

window

Yes Yes

130 | Chapter 11: DOM Events

http://bit.ly/YIZl84

Table 11-6. Keyboard events

Event
type

Event interface Description Event
targets

Bubbles? Cancelable?

key

down

KeyboardEvent Fires when a key is initially pressed. This is sent after

any key mapping is performed, but before any input

method editors receive the keypress. This is sent for any

key, even if it doesn’t generate a character code.

Element,

Document

Yes Yes

key

press

KeyboardEvent Fires when a key is initially pressed, but only if that key

normally produces a character value. This is sent after

any key mapping is performed, but before any input

method editors receive the keypress.

Element,

Document

Yes Yes

keyup KeyboardEvent Fires when a key is released. This is sent after any key

mapping is performed, and always follows the

corresponding keydown and keypress events.

Element,

Document

Yes Yes

Table 11-7. Touch events

Event type Event interface Description Event targets Bubbles? Cancelable?

touchstart TouchEvent Fires an event to indicate when the user places a

touch point on the touch surface

Element,

Document,

window

Yes Yes

touchend TouchEvent Fires an event to indicate when the user removes

a touch point from the touch surface, as well as

cases where the touch point physically leaves the

touch surface, such as being dragged off the screen

Element,

Document,

window

Yes Yes

touchmove TouchEvent Fires an event to indicate when the user moves a

touch point along the touch surface

Element,

Document,

window

Yes Yes

touchenter TouchEvent Fires an event to indicate when a touch point

moves onto the interactive area defined by a DOM

element

Element,

Document,

window

No N/A

touchleave TouchEvent Fires an event to indicate when a touch point

moves off the interactive area defined by a DOM

element

Element,

Document,

window

No N/A

touchcancel TouchEvent Fires an event to indicate when a touch point has

been disrupted in an implementation-specific

manner, such as a synchronous event or action

originating from the UA canceling the touch, or

the touch point leaving the document window

into a nondocument area that is capable of

handling user interactions

Element,

Document,

window

Yes No

11.2 DOM Event Types | 131

http://www.w3.org/TR/2011/WD-touch-events-20110505/#dfn-touch-point

Note
Touch events are typically only supported in iOS, Android, and Black‐
Berry browsers, or browsers that can switch on touch modes (e.g.,
Chrome).

Table 11-8. Window, <body>, and frame-specific events

Event type Event interface Description Event targets Bubbles? Cancelable?

afterprint N/A Fires on the object

immediately after its

associated document prints

or previews for printing

window,

<body>,

<frameset>

No No

beforeprint N/A Fires on the object before its

associated document prints

or previews for printing

window,

<body>,

<frameset>

No No

beforeunload N/A Fires prior to a document

being unloaded

window,

<body>,

<frameset>

No Yes

hashchange HashChangeEvent Fires when there are changes

to the portion of a URL that

follows the number sign (#)

window,

<body>,

<frameset>

No No

message N/A Fires when the user sends a

cross-document message or

a message is sent from a

Worker with

postMessage

window,

<body>,

<frameset>

No No

offline NavigatorOffLine Fires when the browser is

working offline

window,

<body>,

<frameset>

No No

online NavigatorOnLine Fires when the browser is

working online

window,

<body>,

<frameset>

No No

pagehide PageTransitionEvent Fires when a session history

event is being traversed from

window,

<body>,

<frameset>

No No

pageshow PageTransitionEvent Fires when a session history

entry is being traversed to

window,

<body>,

<frameset>

No No

132 | Chapter 11: DOM Events

Table 11-9. Document-specific events

Event type Event
interface

Description Event targets Bubbles? Cancelable?

readystatechange Event Fires an event when ready

State is changed

Document,

XMLHttpRe

quest

No No

DOMContentLoaded Event Fires when a web page has been

parsed, but before all resources have

been fully downloaded

Document Yes No

Table 11-10. Drag events

Event type Event
interface

Description Event targets Bubbles? Cancelable?

drag DragEvent Fires on the source object continuously during a drag

operation.

Element,

Document,

window

Yes Yes

dragstart DragEvent Fires on the source object when the user starts to drag

a text selection or selected object. The ondrag

start event is the first to fire when the user starts

to drag the mouse.

Element,

Document,

window

Yes Yes

dragend DragEvent Fires on the source object when the user releases the

mouse at the close of a drag operation. The

ondragend event is the final drag event to fire,

following the ondragleave event, which fires on

the target object.

Element,

Document,

window

Yes No

dragenter DragEvent Fires on the target element when the user drags the

object to a valid drop target.

Element,

Document,

window

Yes Yes

dragleave DragEvent Fires on the target object when the user moves the

mouse out of a valid drop target during a drag

operation.

Element,

Document,

window

Yes No

dragover DragEvent Fires on the target element continuously while the user

drags the object over a valid drop target. The on

dragover event fires on the target object after the

ondragenter event has fired.

Element,

Document,

window

Yes Yes

drop DragEvent Fires on the target object when the mouse button is

released during a drag-and-drop operation. The on

drop event fires before the ondragleave and

ondragend events.

Element,

Document,

window

Yes Yes

11.2 DOM Event Types | 133

Notes
Tables 11-1 through 11-10 were crafted from the following resources:
Document Object Model (DOM) Level 3 Events Specification 5 User
Event Module, DOM event reference, HTML Living Standard 7.1.6
Event handlers on elements, Document objects, and Window objects,
and Event compatibility tables.

In this section, I’ve only mentioned the most common event types. Keep
in mind that there are numerous HTML5 APIs that I’ve excluded from
this section, among them, media events for <video> and <audio> ele‐
ments as well as all state change events for XMLHttpRequest Level 2.

The copy, cut, and textinput events are not defined by DOM3 events
or HTML5.

Use mouseenter and mouseleave instead of mouseover and mouseout.
Unfortunately, Chrome and Safari still haven’t added these events!

11.3 The Event Flow
When an event is invoked, the event flows or propagates through the DOM, firing the
same event on other nodes and JavaScript objects. The event flow can be programmed
to occur as a capture phase (i.e., DOM tree trunk to branches) or as a bubbling phase
(i.e., DOM tree branches to trunk), or both.

In the following code, I set up 10 event listeners that can all be invoked, due to the event
flow, by clicking once on the <div> element in the HTML document. When the <div>
is clicked, the capture phase begins at the window object and propagates down the DOM
tree firing the click event for each object (i.e., window > document > <html> ><body> >
event target) until it hits the event target. Once the capture phase ends, the target phase
starts, firing the click event on the target element itself. Next, the propagation phase
propagates up from the event target firing the click event until it reaches the window
object (i.e., event target > <body> > <html> > document > window). With this knowledge,
it should be obvious why clicking the <div> in the code example logs to the console
1,2,3,4,5,6,7,8,9,10.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me to start event flow</div>

<script>

/* notice that I am passing the addEventListener() a boolean parameter of true so

capture events fire, not just bubbling events */

134 | Chapter 11: DOM Events

http://bit.ly/WYNJZv
http://bit.ly/WYNJZv
http://mzl.la/12fpBaY
http://bit.ly/Xt8lcj
http://bit.ly/Xt8lcj
http://bit.ly/TlScYl
http://bit.ly/U8J1fj
http://bit.ly/14DtF4h
http://bit.ly/XYlGbB
http://jsfiddle.net/domenlightenment/CAdTv

//1 capture phase

window.addEventListener('click',function(){console.log(1);},true);

//2 capture phase

document.addEventListener('click',function(){console.log(2);},true);

//3 capture phase

document.documentElement.addEventListener

 ('click',function(){console.log(3);},true);

//4 capture phase

document.body.addEventListener('click',function(){console.log(4);},true);

//5 target phase occurs during capture phase

document.querySelector('div').addEventListener

 ('click',function(){console.log(5);},true);

//6 target phase occurs during bubbling phase

document.querySelector('div').addEventListener

 ('click',function(){console.log(6);},false);

//7 bubbling phase

document.body.addEventListener('click',function(){console.log(7);},false);

//8 bubbling phase

document.documentElement.addEventListener

 ('click',function(){console.log(8);},false);

//9 bubbling phase

document.addEventListener('click',function(){console.log(9);},false);

//10 bubbling phase

window.addEventListener('click',function(){console.log(10)},false);

</script>

</body>

</html>

After the <div> is clicked, the event flow proceeds in this order:

1. Capture phase invokes click events on window that are set to fire on capture

2. Capture phase invokes click events on document that are set to fire on capture

3. Capture phase invokes click events on <html> element that are set to fire on capture

4. Capture phase invokes click events on <body> element that are set to fire on capture

5. Target phase invokes click events on <div> element that are set to fire on capture

6. Target phase invokes click events on <div> element that are set to fire on bubble

7. Bubbling phase invokes click events on <body> element that are set to fire on bubble

11.3 The Event Flow | 135

8. Bubbling phase invokes click events on <html> element that are set to fire on bubble

9. Bubbling phase invokes click events on document that are set to fire on bubble

10. Bubbling phase invokes click events on window that are set to fire on bubble

The use of the capture phase is not all that common, due to a lack of browser support
for this phase. Typically, events are assumed to be invoked during the bubbling phase.
In the following code, I remove the capture phase from the previous code example and
demonstrate what is usually occurring during an event invocation.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me to start event flow</div>

<script>

//1 target phase occurs during bubbling phase

document.querySelector('div').addEventListener('click',function()

 {console.log(1);},false);

//2 bubbling phase

document.body.addEventListener('click',function(){console.log(2);},false);

//3 bubbling phase

document.documentElement.addEventListener('click',function()

 {console.log(3);},false);

//4 bubbling phase

document.addEventListener('click',function(){console.log(4);},false);

//5 bubbling phase

window.addEventListener('click',function(){console.log(5)},false);

</script>

</body>

</html>

Notice in the last code example that if the click event is initiated on the <body> element
(a click anywhere except on the <div>), the click event attached to the <div> is not
invoked and bubbling invocation starts on the <body>. This is because the event target
is no longer the <div> but rather is the <body> element.

136 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/C6qmZ

Notes
Modern browsers do support the use of the capture phase, so what was
once considered unreliable might just serve some value today. For ex‐
ample, one could intercept an event before it occurs on the event target.

Keep this knowledge of event capturing and bubbling at the forefront
of your thoughts when you read the event delegation section of this
chapter.

The event object passed to event listener functions has an eventPhase
property containing a number that indicates in which phase an event is
invoked. A value of 1 indicates the capture phase. A value of 2 indicates
the target phase. And a value of 3 indicates the bubbling phase.

11.4 Adding Event Listeners to Element Nodes, the
window Object, and the document Object
The addEventListener() method is available on all Element nodes, the window object,
and the document object, providing the ability to add event listeners to parts of an HTML
document as well as JavaScript objects relating to the DOM and the Browser Object
Model [or BOM]. In the following code, I leverage this method to add a mousemove
event to a <div> element, the document object, and the window object. Notice, due to
the event flow, that mouse movement specifically over the <div> will invoke all three
listeners each time a movement occurs.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>mouse over me</div>

<script>

/* add a mousemove event to the window object, invoking the event during the

bubbling phase */

window.addEventListener('mousemove',function()

 {console.log('moving over window');},false);

/* add a mousemove event to the document object, invoking the event during the

bubbling phase */

document.addEventListener('mousemove',function()

 {console.log('moving over document');},false);

/* add a mousemove event to a <div> element object, invoking the event during the

bubbling phase */

11.4 Adding Event Listeners to Element Nodes, the window Object, and the document Object | 137

http://mzl.la/11dh48Y
http://jsfiddle.net/domenlightenment/sSFK5

document.querySelector('div').addEventListener('mousemove',function()

 {console.log('moving over div');},false);

</script>

</body>

</html>

The addEventListener() method used in the preceding code example takes three ar‐
guments. The first argument is the type of event to listen for. Notice that the event type
string does not contain the “on” prefix (i.e., onmousemove) that event handlers require.
The second argument is the function to be invoked when the event occurs. The third
parameter is a Boolean indicating whether the event should be fired during the capture
phase or the bubbling phase of the event flow.

Notes
I’ve purposely avoided discussing inline event handlers and property
event handlers in favor of promoting the use of addEventListener().

Typically, a developer wants events to fire during the bubbling phase so
that object eventing handles the event before bubbling the event up the
DOM. Because of this, you almost always provide a false value as the
last argument to the addEventListener(). In modern browsers, if the
third parameter is not specified, it will default to false.

You should be aware that the addEventListener() method can be used
on the XMLHttpRequest object.

11.5 Removing Event Listeners
The removeEventListener() method can be used to remove event listeners, if the orig‐
inal listener was not added using an anonymous function. In the following code, I add
two event listeners to the HTML document and attempt to remove both of them. How‐
ever, only the listener that was attached using a function reference is removed.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click to say hi</div>

<script>

var sayHi = function(){console.log('hi')};

//adding event listener using anonymous function

document.body.addEventListener('click',function(){console.log('dude');},false);

138 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/XP2Ug

//adding event listener using function reference

document.querySelector('div').addEventListener('click',sayHi,false);

/* attempt to remove both event listeners, but only the listener added with a

function reference is removed */

document.querySelector('div').removeEventListener('click',sayHi,false);

/* this of course does not work as the function passed to removeEventListener is a

new and different function */

document.body.removeEventListener('click',function(){console.log('dude');},false);

/* clicking the div will still invoke the click event attached to the body

element, this event was not removed */

</script>

</body>

</html>

Anonymous functions added using the addEventListener() method simply cannot be
removed.

11.6 Getting Event Properties from the Event Object
By default, the handler or callback function invoked for events is sent a parameter that
contains all relevant information about the event itself. In the following code, I demon‐
strate access to this event object and log all its properties and values for a load event as
well as a click event. Make sure you click the <div> to see the properties associated with
a click event.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

document.querySelector('div').addEventListener('click',function(event){

Object.keys(event).sort().forEach(function(item){

 console.log(item+' = '+event[item]); //logs event properties and values

});

},false);

//assumes 'this' is window

this.addEventListener('load',function(event){

Object.keys(event).sort().forEach(function(item){

 console.log(item+' = '+event[item]); //logs event properties and values

});

11.6 Getting Event Properties from the Event Object | 139

http://jsfiddle.net/domenlightenment/d4SnQ

},false);

</script>

</body>

</html>

Keep in mind that each event will contain slightly different properties based on the event
type—for example, MouseEvent, KeyboardEvent, and WheelEvent.

Notes
The event object also provides the stopPropagation(), stopImmedia
tePropagation(), and preventDefault() methods.

In this book, I use the argument name event to reference the event
object. In truth, you can use any name you like, and it’s not uncommon
to see e or evt.

11.7 The Value of this When Using addEventListener()
The value of this inside the event listener function passed to the addEventListen
er() method will be a reference to the node or object the event is attached to. In the
following code, I attach an event to a <div> and then use this inside the event listener
to gain access to the <div> element the event is attached to.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

document.querySelector('div').addEventListener('click',function(){

// 'this' will be the element or node the event listener is attached to

console.log(this); //logs '<div>'

},false);

</script>

</body>

</html>

When events are invoked as part of the event flow, the this value will continue to be
the value of the node or object that the event listener is attached to. In the following
code, I add a click event listener to the <body>, and regardless of whether you click on
the <div> or the <body>, the value of this always points to <body>.

140 | Chapter 11: DOM Events

http://mzl.la/14Dva2A
http://mzl.la/14veold
http://mzl.la/VzJYxC
http://jsfiddle.net/domenlightenment/HwKgH

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

/* click on the <div> or the <body> the value of this remains the <body>

element node */

document.body.addEventListener('click',function(){

console.log(this); //log <body>...</body>

},false);

</script>

</body>

</html>

Additionally, it’s possible using the event.currentTarget property to get the same ref‐
erence, to the node or object invoking the event listener, that the this property provides.
In the following code, I leverage the event.currentTarget event object property show‐
casing that it returns the same value as this.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

document.addEventListener('click',function(event){

console.log(event.currentTarget); //logs '#document'

//same as...

console.log(this);

},false);

document.body.addEventListener('click',function(event){

console.log(event.currentTarget); //logs '<body>'

//same as...

console.log(this);

},false);

document.querySelector('div').addEventListener('click',function(event){

console.log(event.currentTarget); //logs '<div>'

//same as...

console.log(this);

},false);

11.7 The Value of this When Using addEventListener() | 141

http://jsfiddle.net/domenlightenment/NF2gn
http://jsfiddle.net/domenlightenment/uQm3f

</script>

</body>

</html>

11.8 Referencing the target of an Event and Not the Node
or Object on Which the Event Is Invoked
Because of the event flow, it’s possible to click a <div> contained inside a <body> element
and have a click event listener attached to the <body> element get invoked. When this
happens, the event object passed to the event listener function attached to the <body>
provides a reference (i.e., event.target) to the node or object that the event originated
on (i.e., the target). In the following code, when the <div> is clicked, the <body> element’s
click event listener is invoked, and the event.target property references the original
<div> that was the target of the click event. The event.target can be extremely useful
when an event fires, because the event flow needs knowledge about the origin of the
event.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

document.body.addEventListener('click',function(event){

/* when the <div> is clicked logs '<div>' because the <div> was the target in

the event flow */

console.log(event.target);

},false);

</script>

</body>

</html>

Consider that, in our code example, if the <body> element is clicked instead of the
<div>, the event target and the element node that the event listener is invoked on are
the same. Therefore, event.target, this, and event.currentTarget will all contain a
reference to the <body> element.

142 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/dGkTQ

11.9 Using preventDefault() to Cancel Default Browser
Events
Browsers provide several events already wired up when an HTML page is presented to
a user. For example, clicking a link has a corresponding event (i.e., you navigate to a
URL). So does clicking a checkbox (i.e., a box is checked) or typing text into a text field
(i.e., text is input and appears on the screen). These browser events can be prevented
by calling the preventDefault() method inside the event handler function associated
with a node or object that invokes a browser default event. In the following code, I
prevent the default event that occurs on <a>, <input>, and <textarea>.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

no go</div>

<input type="checkbox" />

<textarea></textarea>

<script>

document.querySelector('a').addEventListener('click',function(event){

event.preventDefault(); /* stop the default event for <a>, which would be to load

 a url */

},false);

document.querySelector('input').addEventListener('click',function(event){

event.preventDefault(); /* stop default event for checkbox, which would be to

 toggle checkbox state */

},false);

document.querySelector('textarea').addEventListener('keypress',function(event){

event.preventDefault(); /* stop default event for textarea, which would be to add

 characters typed */

},false);

/* keep in mind that events still propagate, clicking the link in this html

document will stop the default event but not event bubbling */

document.body.addEventListener('click',function(){

console.log('the event flow still flows!');

},false);

</script>

</body>

</html>

11.9 Using preventDefault() to Cancel Default Browser Events | 143

http://jsfiddle.net/domenlightenment/Ywcyh

All attempts to click the link, check the box, or type in the text input area in the preceding
code example will fail because I am preventing the default events for these elements
from occurring.

Notes
The preventDefault() method does not stop events from propagating
(i.e., bubbling or capture phases).

Providing a return false at the end of the body of the event listener
has the same result as calling the preventDefault() method.

The event object passed to event listener functions contains a Boolean
cancelable property that indicates whether the event will respond to
the preventDefault() method and cancel the default behavior.

The event object passed to event listener functions contains a default
Prevented property that indicates true if preventDefault() has been
invoked for a bubbling event.

11.10 Using stopPropagation() to Stop the Event Flow
Calling stopPropagation() from within an event handler/listener will stop the capture
and bubble event flow phases, but any events directly attached to the node or object will
still be invoked. In the following code, the onclick event attached to the <body> never
gets invoked, because we are stopping the event from bubbling up the DOM when
clicking on the <div>.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

document.querySelector('div').addEventListener('click',function(){

console.log('me too, but nothing from the event flow!');

},false);

document.querySelector('div').addEventListener('click',function(event){

console.log('invoked all click events attached, but cancel capture and

 bubble event phases');

event.stopPropagation();

},false);

document.querySelector('div').addEventListener('click',function(){

console.log('me too, but nothing from the event flow!');

144 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/RFKmA

},false);

/* when the <div> is clicked, this event is not invoked because one of the events

attached to the <div> stops the capture and bubble flow. */

document.body.addEventListener('click',function(){

console.log('What, denied from being invoked!');

},false);

</script>

</body>

</html>

Notice that other click events attached to the <div> still get invoked! Additionally, using
stopPropagation() does not prevent default events. Had the <div> in our code example
been an <a> with an href value, calling stopPropagation would not have stopped the
browser default events from getting invoked.

11.11 Using stopImmediatePropagation() to Stop the
Event Flow As Well As Other Like Events on the Same
Target
Calling stopImmediatePropagation() from within an event handler/listener will stop
the event flow phases (i.e., stopPropagation()), as well as any other like events attached
to the event target that are attached after the event listener that invokes the stopImme
diatePropagation() method. In the following code example, if I call stopImmediate
Propagation() from the second event listener attached to the <div>, the click event
that follows will not get invoked.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

//first event attached

document.querySelector('div').addEventListener('click',function(){

console.log('I get invoked because I was attached first');

},false);

//second event attached

document.querySelector('div').addEventListener('click',function(event){

console.log('I get invoked, but stop any other click events on this target');

event.stopImmediatePropagation();

},false);

11.11 Using stopImmediatePropagation() to Stop the Event Flow As Well As Other Like Events on the Same Target |
145

http://jsfiddle.net/domenlightenment/znSjM

/* third event attached, but because stopImmediatePropagation() was called above

this event does not get invoked */

document.querySelector('div').addEventListener('click',function(){

console.log('I get stopped from the previous click event listener');

},false);

/* notice that the event flow is also cancelled as if stopPropagation was

called too */

document.body.addEventListener('click',function(){

console.log('What, denied from being invoked!');

},false);

</script>

</body>

</html>

Note
Using stopImmediatePropagation() does not prevent default events.
Browser default events still get invoked, and only calling preventDe
fault() will stop these events.

11.12 Custom Events
A developer is not limited to the predefined event types. It’s possible to attach and invoke
a custom event, using the addEventListener() method like normal in combination
with document.createEvent(), initCustomEvent(), and dispatchEvent(). In the
following code, I create a custom event called goBigBlue and invoke that event.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>click me</div>

<script>

var divElement = document.querySelector('div');

//create the custom event

var cheer = document.createEvent('CustomEvent'); /* the 'CustomEvent' parameter

 is required */

//create an event listener for the custom event

divElement.addEventListener('goBigBlue',function(event){

 console.log(event.detail.goBigBlueIs)

},false);

146 | Chapter 11: DOM Events

http://jsfiddle.net/domenlightenment/fRndj

/* Use the initCustomEvent method to set up the details of the custom event.

Parameters for initCustomEvent are: (event, bubble?, cancelable?, pass values

to event.detail) */

cheer.initCustomEvent('goBigBlue',true,false,{goBigBlueIs:'its gone!'});

//invoke the custom event using dispatchEvent

divElement.dispatchEvent(cheer);

</script>

</body>

</html>

Notes
IE 9 requires the fourth parameter on initCustomEvent(). It is not
optional.

The DOM4 specification added a CustomEvent() constructor that has
simplified the life cycle of a custom event, but it’s not supported in IE
9, and as of this writing, it is still in flux.

11.13 Simulating/Triggering Mouse Events
Simulating an event is not unlike creating a custom event. In the case of simulating a
mouse event, we create a MouseEvent by using document.createEvent(). Then, using
initMouseEvent(), we set up the mouse event that is going to occur. Next, the mouse
event is dispatched on the element on which we’d like to simulate an event (i.e., the
<div> in the HTML document). In the following code, a click event is attached to the
<div> in the page. Instead of clicking the <div> to invoke the click event, the event is
triggered or simulated by programmatically setting up a mouse event and dispatching
the event to the <div>.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<div>no need to click, we programmatically trigger it</div>

<script>

var divElement = document.querySelector('div');

//setup click event that will be simulated

divElement.addEventListener('click',function(event){

 console.log(Object.keys(event));

},false);

11.13 Simulating/Triggering Mouse Events | 147

http://bit.ly/YoOXy9
http://jsfiddle.net/domenlightenment/kx7zJ

//create simulated mouse event 'click'

var simulateDivClick = document.createEvent('MouseEvents');

/* setup simulated mouse 'click'

initMouseEvent(type,bubbles,cancelable,view,detail,screenx,screeny,clientx,clienty,

ctrlKey,altKey,shiftKey,metaKey,button,relatedTarget) */

simulateDivClick.initMouseEvent(

 'click',true,true,document.defaultView,0,0,0,0,0,false,false,false,0,null,null);

//invoke simulated clicked event

divElement.dispatchEvent(simulateDivClick);

</script>

</body>

</html>

Note
As of this writing, simulating/triggering mouse events works in all
modern browsers. Simulating other event types quickly becomes more
complicated, and leveraging simulate.js or jQuery (e.g., the jQuery
trigger() method) becomes necessary.

11.14 Event Delegation
Event delegation, stated simply, is the programmatic act of leveraging the event flow
and a single event listener to deal with multiple event targets. A side effect of event
delegation is that the event targets don’t have to be in the DOM when the event is created
in order for the targets to respond to the event. This is, of course, rather handy when
dealing with XHR responses that update the DOM. By implementing event delegation,
new content that is added to the DOM post JavaScript load parsing can immediately
start responding to events. Imagine we have a table with an unlimited number of rows
and columns. Using event delegation, we can add a single event listener to the <table>
node that acts as a delegate for the node or object that is the initial target of the event.
In the following code example, clicking any of the <td>s (i.e., the target of the event)
will delegate its event to the click listener on the <table>. Don’t forget, this is all made
possible because of the event flow, and in this specific case, the bubbling phase.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

<p>Click a table cell</p>

148 | Chapter 11: DOM Events

http://bit.ly/11dhFI2
http://jsfiddle.net/domenlightenment/BRkVL

<table border="1">

 <tbody>

 <tr><td>row 1 column 1</td><td>row 1 column 2</td></tr>

 <tr><td>row 2 column 1</td><td>row 2 column 2</td></tr>

 <tr><td>row 3 column 1</td><td>row 3 column 2</td></tr>

 <tr><td>row 4 column 1</td><td>row 4 column 2</td></tr>

 <tr><td>row 5 column 1</td><td>row 5 column 2</td></tr>

 <tr><td>row 6 column 1</td><td>row 6 column 2</td></tr>

 </tbody>

</table>

<script>

document.querySelector('table').addEventListener('click',function(event){

 if(event.target.tagName.toLowerCase() === 'td'){ /* make sure we only run code

 if a td is the target */

 console.log(event.target.textContent); /* use event.target to gain access

 to target of the event which is

 the td */

 }

},false);

</script>

</body>

</html>

If we were to update the table in the code example with new rows, the new rows would
respond to the click event as soon as they were rendered to the screen, because the
click event is delegated to the <table> element node.

Note
Event delegation is ideally leveraged when you are dealing with a click,
mousedown, mouseup, keydown, keyup, and keypress event type.

11.14 Event Delegation | 149

CHAPTER 12

Creating dom.js: A Wishful jQuery-Inspired
DOM Library for Modern Browsers

12.1 dom.js Overview
I want you to take the information and knowledge from this book and leverage it as I
walk you through a foundation for a wishful, modern, jQuery-like DOM library called
dom.js. Think of dom.js as the foundation to a modern library for selecting DOM nodes
and doing something with them. Not unlike jQuery, the dom.js code will provide a
function for selecting something from the DOM (or creating something) and then doing
something with it. Here are some examples of the dom() function that shouldn’t look
all that foreign if you are familiar with jQuery or any DOM utility for selecting elements.

/* select in a document all li's in the first ul and get the innerHTML for the

first li */

dom('li','ul').html();

//create html structure using a document fragment and get the innerHTML of ul

dom('hi').html()

For most readers, this chapter is simply an exercise in taking the information in this
book and applying it to a JavaScript DOM library. For others, this might just shed some
light on jQuery itself and any DOM manipulation logic used in JavaScript frameworks
today. Ideally, in the end, I hope this exercise inspires readers to craft their own micro-
DOM abstractions on an as-needed basis when the situation is right. With that said, let’s
begin.

12.2 Creating a Unique Scope
To protect our dom.js code from the global scope, I will first create a unique scope within
which it can live and operate without fear of collisions in the global scope. In the

151

following code, I set up a pretty standard Immediately-Invoked Function Expression
to create this private scope. When the IIFE is invoked, the value of global will be set to
the current global scope (i.e., window).

GitHub code

(function(win){

var global = win;

var doc = this.document;

}}(window);

Inside the IIFE we set up a reference to the window and document objects (i.e., doc) to
speed up access to these objects inside the IIFE.

12.3 Creating dom() and GetOrMakeDom(), Globally
Exposing dom() and GetOrMakeDom.prototype
Just like we did with jQuery, we are going to create a function that will return a chainable,
wrapped set (i.e., a custom array-like object) of DOM nodes (e.g., {0:ELEMENT_NODE,
1:ELEMENT_NODE,length:2}) based on the parameters sent into the function. In the
following code, I set up the dom() function and parameters that get passed on to the
GetOrMakeDOM constructor function that, when invoked, will return the object contain‐
ing the DOM nodes that dom() then returns.

GitHub code

(function(win){

var global = win;

var doc = global.document;

var dom = function(params,context){

 return new GetOrMakeDom(params,context);

};

var GetOrMakeDom = function(params,context){

};

})(window);

In order for the dom() function to be accessed/called from outside the private scope set
up by the IIFE, we have to expose the function (i.e., create a reference) to the global
scope. We do this by creating a property in the global scope, called dom, and pointing
that property to the local dom() function. When dom is accessed from the global scope,

152 | Chapter 12: Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers

http://bit.ly/XcFZ4q
https://github.com/codylindley/domjs/blob/master/builds/dom.js
https://github.com/codylindley/domjs/blob/master/builds/dom.js

it will point to our locally scoped dom() function. In the following code, global.dom =
dom; does the trick.

GitHub code

(function(win){

var global = win;

var doc = global.document;

var dom = function(params,context){

 return new GetOrMakeDom(params,context);

};

var GetOrMakeDom = function(params,context){

};

//expose dom to global scope

global.dom = dom;

})(window);

The last thing we need to do is expose the GetOrMakeDom.prototype property to the
global scope. As with jQuery (e.g., jQuery.fn), we are simply going to provide a shortcut
reference from dom.fn to GetOrMakeDOM.prototype. This is shown in the following
code.

(function(win){

var global = win;

var doc = global.document;

var dom = function(params,context){

 return new GetOrMakeDom(params,context);

};

var GetOrMakeDom = function(params,context){

};

//expose dom to global scope

global.dom = dom;

//short cut to prototype

dom.fn = GetOrMakeDom.prototype;

})(window);

Now anything attached to dom.fn is actually a property of the GetOrMakeDOM.proto
type object and is inherited during property lookup for any object instance created from
the GetOrMakeDOM constructor function.

12.3 Creating dom() and GetOrMakeDom(), Globally Exposing dom() and GetOrMakeDom.prototype | 153

https://github.com/codylindley/domjs/blob/master/builds/dom.js

Note
The getOrMakeDom function is invoked with the new operator. Make sure
you understand what happens when a function is invoked using the new
operator.

12.4 Creating an Optional Context Parameter Passed to
dom()
When dom() is invoked, it also invokes the GetOrMakeDom function, passing it the pa‐
rameters that are sent to dom(). When the GetOrMakeDOM constructor is invoked the first
thing we need to do is determine the context. The context for working with the DOM
can be set by passing a selector string used to select a node or a node reference itself.
Passing a context to the dom() function provides the ability to limit the search for ele‐
ment nodes to a specific branch of the DOM tree. This is almost identical to the second
parameter passed to the jQuery or $ function. In the following code, I default the context
to the current document found in the global scope. If a context parameter is available,
I determine what it is (i.e., a string or node) and either make the node pass in the context
or select a node via querySelectorAll().

GitHub code

(function(win){

var global = win;

var doc = global.document;

var dom = function(params,context){

 return new GetOrMakeDom(params,context);

};

var GetOrMakeDom = function(params,context){

 var currentContext = doc;

 if(context){

 if(context.nodeType){//it's either a document node or element node

 currentContext = context;

 }else{ //else it's a string selector, use it to select a node

 currentContext = doc.querySelector(context);

 }

 }

};

//expose dom to global scope

global.dom = dom;

154 | Chapter 12: Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers

http://mzl.la/WYOJNp
http://mzl.la/WYOJNp
https://github.com/codylindley/domjs/blob/master/builds/dom.js

//shortcut to prototype

dom.fn = GetOrMakeDom.prototype;

})(window);

With the context parameter logic set up, we can next add the logic required to deal with
the params parameter used to actually select or create nodes.

12.5 Populating an Object with DOM Node References
Based on params and a Return Object
The type of params parameter passed to dom(), and then on to getOrMakeDom(), varies.
Similar to jQuery, the types of values passed can be any one of the following:

• CSS selector string (e.g., dom('body'))

• HTML string (e.g., dom('<p>Hello</p><p> World!</p>'))

• Element node (e.g., dom(document.body))

• Array of element nodes (e.g., dom([document.body]))

• A NodeList (e.g., dom(document.body.children))

• An HTMLcollection (e.g., dom(document.all))

• A dom() object itself (e.g., dom(dom()))

The result of passing params is the construction of a chainable object containing refer‐
ences to nodes (e.g., {0:ELEMENT_NODE,1:ELEMENT_NODE,length:2}) either in the
DOM or in a document fragment. Let’s examine how each of the aforementioned pa‐
rameters can be used to produce an object containing node references.

The logic to permit such a wide variety of parameter types is shown in the following
code and starts with a simple check to verify that params is not undefined, an empty
string, or a string with empty spaces. If this is the case, we add a length property with
a value of 0 to the object constructed from calling GetOrMakeDOM and return the object
so that the execution of the function ends. If params is not a false or false-like value, the
execution of the function continues.

Next, the params value, if it is a string, is checked to see if it contains HTML. If the string
contains HTML, a document fragment is created and the string is used as the in
nerHTML value for a <div> contained in the document fragment so that the string is
converted to a DOM structure. With the HTML string converted to a node tree, the
structure is looped over accessing top-level nodes, and references to these nodes are
passed to the object being created by GetOrMakeDom. If the string does not contain
HTML, execution of the function continues.

12.5 Populating an Object with DOM Node References Based on params and a Return Object | 155

http://bit.ly/UJTHyO
http://mzl.la/W7Wcds

The next check simply verifies whether params is a reference to a single node, and if it
is, we wrap a reference to it in an object and return it; otherwise, we are pretty sure the
params value is an HTML collection, node list, array, string selector, or object created
from dom(). If it’s a string selector, a node list is created by calling the queryselector
All() method on the currentContext. If it’s not a string selector, we loop over the
HTML collection, node list, array, or object, extracting the node references and using
the references as values contained in the object sent back from calling GetOrMakeDom.

All this logic inside the GetOrMakeDom() function can be a bit overwhelming; just realize
that the point of the constructor function is to construct an object containing references
to nodes (e.g., {0:ELEMENT_NODE,1:ELEMENT_NODE,length:2}) and return this object
to dom().

GitHub code

(function(win){

var global = win;

var doc = global.document;

var dom = function(params,context){

 return new GetOrMakeDom(params,context);

};

var regXContainsTag = /^\s*<(\w+|!)[^>]*>/;

var GetOrMakeDom = function(params,context){

 var currentContext = doc;

 if(context){

 if(context.nodeType){

 currentContext = context;

 }else{

 currentContext = doc.querySelector(context);

 }

 }

 //if no params, return empty dom() object

 if(!params || params === '' ||

 typeof params === 'string' && params.trim() === ''){

 this.length = 0;

 return this;

 }

 //if HTML string, construct domfragment, fill object, then return object

 if(typeof params === 'string' && regXContainsTag.test(params)){

 //yup it's for sure html string

 /* create div and docfrag, append div to docfrag, then set its div's inner

 HTML to the string, then get first child */

 var divElm = currentContext.createElement('div');

 divElm.className = 'hippo-doc-frag-wrapper';

 var docFrag = currentContext.createDocumentFragment();

156 | Chapter 12: Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers

http://mzl.la/11degsA
http://mzl.la/YJ06hh
http://bit.ly/W7WpNN
https://github.com/codylindley/domjs/blob/master/builds/dom.js

 docFrag.appendChild(divElm);

 var queryDiv = docFrag.querySelector('div');

 queryDiv.innerHTML = params;

 var numberOfChildren = queryDiv.children.length;

 /* loop over nodelist and fill object, needs to be done because a string

 of html can be passed with siblings */

 for (var z = 0; z < numberOfChildren; z++) {

 this[z] = queryDiv.children[z];

 }

 //give the object a length value

 this.length = numberOfChildren;

 //return object

 return this; //return e.g. {0:ELEMENT_NODE,1:ELEMENT_NODE,length:2}

 }

 //if a single node reference is passed, fill object, return object

 if(typeof params === 'object' && params.nodeName){

 this.length = 1;

 this[0] = params;

 return this;

 }

 /* if it's an object but not a node assume nodelist or array, else it's a

 string selector, so create nodelist */

 var nodes;

 if(typeof params !== 'string'){//nodelist or array

 nodes = params;

 }else{//ok string

 nodes = currentContext.querySelectorAll(params.trim());

 }

 //loop over array or nodelist created above and fill object

 var nodeLength = nodes.length;

 for (var i = 0; i < nodeLength; i++) {

 this[i] = nodes[i];

 }

 //give the object a length value

 this.length = nodeLength;

 //return object

 return this; //return e.g., {0:ELEMENT_NODE,1:ELEMENT_NODE,length:2}

};

//expose dom to global scope

global.dom = dom;

//shortcut to prototype

dom.fn = GetOrMakeDom.prototype;

})(window);

12.5 Populating an Object with DOM Node References Based on params and a Return Object | 157

12.6 Creating an each() Method and Making It a Chainable
Method
When we invoke dom(), we can access anything attached to dom.fn by way of proto‐
typical inheritance (e.g., dom().each()). Not unlike jQuery, methods attached to
dom.fn operate on the object created from the GetOrMakeDom constructor function. The
following code sets up the each() method.

GitHub code

dom.fn.each = function (callback) {

 var len = this.length; /* the specific instance created from getOrMakeDom()

 and returned by calling dom() */

 for(var i = 0; i < len; i++){

 /* invoke the callback function setting the value of this to element node

 and passing it parameters */

 callback.call(this[i], i, this[i]);

 }

}

As you might expect, the each() method takes a callback function as a parameter and
invokes the function (setting the this value to the element node object with call())
for each node element in the getOrMakeDom object instance. The this value inside the
each() function is a reference to the getOrMakeDom object instance (e.g., {0:ELE
MENT_NODE,1:ELEMENT_NODE,length:2}).

When a method does not return a value (e.g., dom().length returns a length), it’s pos‐
sible to allow method chaining by simply returning the object the method belongs to
instead of a specific value. Basically, we are returning the GetOrMakeDom object so that
another method can be called on this instance of the object. In the following code, I
would like the each() method to be chainable, meaning more methods can be called
after calling each(), so I simply return this. The this in the code is the object instance
created from calling the getOrMakeDom function.

GitHub code

dom.fn.each = function (callback) {

 var len = this.length;

 for(var i = 0; i < len; i++){

 callback.call(this[i], i, this[i]);

 }

 return this; /* make it chainable by returning e.g.,

 {0:ELEMENT_NODE,1:ELEMENT_NODE,length:2} */

};

158 | Chapter 12: Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers

https://github.com/codylindley/domjs/blob/master/builds/dom.js
https://github.com/codylindley/domjs/blob/master/builds/dom.js

12.7 Creating html(), append(), and text() Methods
With the core each() method created and implicit iteration available, we can now build
out a few dom() methods that act on the nodes we select from an HTML document or
that we create using document fragments. The three methods we are going to create are:

• html() / html('html string')

• text() / text('text string')

• append('html | text | dom() | nodelist/HTML collection | node |

array')

The html() and text() methods follow a very similar pattern. If the method is called
with a parameter value, we loop (using dom.fn.each() for implicit iteration) over each
element node in the getOrMakeDom object instance, setting either the innerHTML value
or the textContent value. If no parameter is sent, we simply return the innerHTML or
textContent value for the first element node in the getOrMakeDom object instance. In
the following example, you will see this logic coded.

GitHub code

dom.fn.html = function(htmlString){

 if(htmlString){

 return this.each(function(){ /* notice I return this so it's chainable if

 called with param */

 this.innerHTML = htmlString;

 });

 }else{

 return this[0].innerHTML;

 }

};

dom.fn.text = function(textString){

 if(textString){

 return this.each(function(){ /* notice I return this so it's chainable if

 called with param */

 this.textContent = textString;

 });

 }else{

 return this[0].textContent.trim();

 }

};

The append() method leveraging insertAdjacentHTML will take an HTML string, text
string, dom() object, node list/HTML collection, single node, or array of nodes and
append it to the nodes that have been selected.

12.7 Creating html(), append(), and text() Methods | 159

https://github.com/codylindley/domjs/blob/master/builds/dom.js

GitHub code

dom.fn.append = function(stringOrObject){

 return this.each(function(){

 if(typeof stringOrObject === 'string'){

 this.insertAdjacentHTML('beforeend',stringOrObject);

 }else{

 var that = this;

 dom(stringOrObject).each(function(name,value){

 that.insertAdjacentHTML('beforeend',value.outerHTML);

 });

 }

 });

};

12.8 Taking dom.js for a Spin
During the development of dom.js, I created some very simple QUnit tests that we are
now going to run outside the testing framework. However, you can also run the testing
framework to see dom.js in action. The follow code demonstrates the code created in
this chapter.

Live code

<!DOCTYPE html>

<html lang="en">

<body>

1

2

3

<script src=

 "https://raw.github.com/codylindley/domjs/master/builds/dom.js">

</script>

<script>

//dom()

console.log(dom());

console.log(dom(''));

console.log(dom('body'));

console.log(dom('<p>Hello</p><p> World!</p>'));

console.log(dom(document.body));

console.log(dom([document.body, document.body]));

console.log(dom(document.body.children));

console.log(dom(dom('body')));

160 | Chapter 12: Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers

https://github.com/codylindley/domjs/blob/master/builds/dom.js
https://github.com/codylindley/domjs/tree/master/test
https://github.com/codylindley/domjs/blob/master/test/index.html
https://github.com/codylindley/domjs/blob/master/test/index.html
http://jsfiddle.net/domenlightenment/7aqKm

//dom().html()

console.log(dom('ul li:first-child').html('one'));

console.log(dom('ul li:first-child').html() === 'one');

//dom().text()

console.log(dom('ul li:last-child').text('three'));

console.log(dom('ul li:last-child').text() === 'three');

//dom().append()

dom('ul').append('4');

dom('ul').append(document.createElement('li'));

dom('ul').append(dom('li:first-child'));

</script>

</body>

</html>

12.9 Summary and Continuing with dom.js
This chapter was about creating a foundation to a jQuery-like DOM library. If you’d
like to continue studying the building blocks to a jQuery-like DOM library, I suggest
checking out hippo.js, which is an exercise in recreating the jQuery DOM methods for
modern browsers. Both dom.js and hippo.js make use of grunt, QUnit, and JS Hint
which I highly recommend looking into if building your own JavaScript libraries is of
interest. In addition to the aforementioned developer tools, I highly recommend reading
“Designing Better JavaScript APIs”. Now go build something for the DOM.

12.9 Summary and Continuing with dom.js | 161

https://github.com/codylindley/hippojs
https://github.com/codylindley/domjs
https://github.com/codylindley/hippojs
http://gruntjs.com/
http://qunitjs.com/
http://jshint.com/
http://coding.smashingmagazine.com/2012/10/09/designing-javascript-apis-usability/

About the Author
Cody Lindley is a client-side engineer (a.k.a. frontend developer) and recovering Flash
developer. He has an extensive background working professionally (11+ years) with
HTML, CSS, JavaScript, Flash, and client-side performance techniques as they pertain
to web development. If he is not wielding client-side code, he is likely toying with in‐
terface/interaction design or authoring material and speaking at various conferences.
When not sitting in front of a computer, it is a sure bet he is hanging out with his wife
and kids in Boise, Idaho—training for triathlons, skiing, mountain biking, road biking,
alpine climbing, reading, watching movies, or debating the rational evidence for a
Christian worldview.

Colophon
The animal on the cover of DOM Enlightenment is the Pemba Scops Owl (Otus
pembaensis).

The cover image is from Bernard’s Histoire Naturelle. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.codylindley.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Technical Intentions, Allowances, and Limitations
	License
	This Book Is Not Like Other Programming Books
	Color-Coding Conventions
	jsFiddle
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Node Overview
	1.1 The Document Object Model (a.k.a. the DOM) Is a Hierarchy/Tree
 of JavaScript Node Objects
	1.2 Node Object Types
	1.3 Subnode Objects Inherit From the Node Object
	1.4 Properties and Methods for Working with Nodes
	1.5 Identifying the Type and Name of a Node
	1.6 Getting a Node’s Value
	1.7 Using JavaScript Methods to Create Element and Text
 Nodes
	1.8 Using JavaScript Strings to Create and Add Element and Text
 Nodes to the DOM
	1.9 Extracting Parts of the DOM Tree as JavaScript Strings
	1.10 Using appendChild() and insertBefore() to Add Node Objects to
 the DOM
	1.11 Using removeChild() and replaceChild() to Remove and Replace
 Nodes
	1.12 Using cloneNode() to Clone Nodes
	1.13 Grokking Node Collections (i.e., NodeList and
 HTMLCollection)
	1.14 Getting a List/Collection of All Immediate Child Nodes
	1.15 Converting a NodeList or HTMLCollection to a JavaScript
 Array
	1.16 Traversing Nodes in the DOM
	1.17 Verifying a Node Position in the DOM Tree with contains() and
 compareDocumentPosition()
	1.18 Determining Whether Two Nodes Are Identical

	Chapter 2. Document Nodes
	2.1 document Node Overview
	2.2 HTMLDocument Properties and Methods (Including
 Inherited)
	2.3 Getting General HTML Document Information (title, url,
 referrer, lastModified, and compatMode)
	2.4 document Child Nodes
	2.5 document Provides Shortcuts to <!DOCTYPE>, <html lang="en">, <head>, and
 <body>
	2.6 Using document.implementation.hasFeature() to Detect DOM
 Specifications/Features
	2.7 Getting a Reference to the Focus/Active Node in the
 Document
	2.8 Determining Whether the Document or Any Node Inside the
 Document Has Focus
	2.9 document.defaultView Is a Shortcut to the Head/Global
 Object
	2.10 Using ownerDocument to Get a Reference to the Document from an
 Element

	Chapter 3. Element Nodes
	3.1 HTML*Element Object Overview
	3.2 HTML*Element Object Properties and Methods (Including
 Inherited)
	3.3 Creating Elements
	3.4 Getting the Tag Name of an Element
	3.5 Getting a List/Collection of Element Attributes and
 Values
	3.6 Getting, Setting, and Removing an Element’s Attribute
 Value
	3.7 Verifying Whether an Element Has a Specific Attribute
	3.8 Getting a List of Class Attribute Values
	3.9 Adding and Removing Subvalues to a Class Attribute
	3.10 Toggling a Class Attribute Value
	3.11 Determining Whether a Class Attribute Value Contains a
 Specific Value
	3.12 Getting and Setting data-* Attributes

	Chapter 4. Element Node Selection
	4.1 Selecting a Specific Element Node
	4.2 Selecting/Creating a List (a.k.a. NodeList) of Element Nodes
	4.3 Selecting All Immediate Child Element Nodes
	4.4 Selecting Contextual Elements
	4.5 Preconfigured Selections/Lists of Element Nodes
	4.6 Using matchesSelector() to Verify That an Element Will Be
 Selected

	Chapter 5. Element Node Geometry and Scrolling Geometry
	5.1 Element Node Size, Offsets, and Scrolling Overview
	5.2 Getting an Element’s offsetTop and offsetLeft Values Relative
 to the offsetParent
	5.3 Using getBoundingClientRect() to Get an Element’s Top, Right,
 Bottom, and Left Border Edge Offsets Relative to the Viewport
	5.4 Getting an Element’s Size (Border + Padding + Content) in the
 Viewport
	5.5 Getting an Element’s Size (Padding + Content) in the Viewport,
 Excluding Borders
	5.6 Using elementFromPoint() to Get the Topmost Element in the
 Viewport at a Specific Point
	5.7 Using scrollHeight and scrollWidth to Get the Size of the
 Element Being Scrolled
	5.8 Using scrollTop and scrollLeft to Get and Set Pixels Scrolled
 from the Top and Left
	5.9 Using scrollIntoView() to Scroll an Element into View

	Chapter 6. Element Node Inline Styles
	6.1 Style Attribute (a.k.a. Element Inline CSS Properties)
 Overview
	6.2 Getting, Setting, and Removing Individual Inline CSS
 Properties
	6.3 Getting, Setting, and Removing All Inline CSS
 Properties
	6.4 Using getComputedStyle() to Get an Element’s Computed Styles
 (i.e., Actual Styles Including Any from the Cascade)
	6.5 Using the class and id Attributes to Apply and Remove CSS
 Properties on an Element

	Chapter 7. Text Nodes
	7.1 Text Object Overview
	7.2 Text Object and Properties
	7.3 Whitespace Creates Text Nodes
	7.4 Creating and Injecting Text Nodes
	7.5 Getting a Text Node Value with .data or nodeValue
	7.6 Manipulating Text Nodes with appendData(), deleteData(),
 insertData(), replaceData(), and subStringData()
	7.7 When Multiple Sibling Text Nodes Occur
	7.8 Using textContent to Remove Markup and Return All Child Text
 Nodes
	7.9 The Difference Between textContent and innerText
	7.10 Using normalize() to Combine Sibling Text Nodes into One Text
 Node
	7.11 Using splitText() to Split a Text Node

	Chapter 8. DocumentFragment Nodes
	8.1 DocumentFragment Object Overview
	8.2 Using createDocumentFragment() to Create
 DocumentFragments
	8.3 Adding a DocumentFragment to the Live DOM
	8.4 Using innerHTML on a Document Fragment
	8.5 Leaving Fragments Containing Nodes in Memory by Cloning

	Chapter 9. CSS Stylesheets and CSS Rules
	9.1 CSS Stylesheet Overview
	9.2 Accessing All Stylesheets (i.e., CSSStylesheet Objects) in the
 DOM
	9.3 CSSStyleSheet Properties and Methods
	9.4 CSSStyleRule Overview
	9.5 CSSStyleRule Properties and Methods
	9.6 Using cssRules to Get a List of CSS Rules in a
 Stylesheet
	9.7 Using insertRule() and deleteRule() to Insert and Delete CSS
 Rules in a Stylesheet
	9.8 Using the .style Property to Edit the Value of a
 CSSStyleRule
	9.9 Creating a New Inline CSS Stylesheet
	9.10 Programmatically Adding External Stylesheets to an HTML
 Document
	9.11 Using the .disabled Property to Disable/Enable
 Stylesheets

	Chapter 10. JavaScript in the DOM
	10.1 Inserting and Executing JavaScript Overview
	10.2 JavaScript Is Parsed Synchronously by Default
	10.3 Using defer to Defer the Downloading and Execution of External
 JavaScript
	10.4 Using async to Asynchronously Download and Execute External
 JavaScript Files
	10.5 Using Dynamic <script> Elements to Force Asynchronous
 Downloading and Parsing of External JavaScript
	10.6 Using the onload Callback for Asynchronous <script>s so
 That We Know When They’re Loaded
	10.7 Be Mindful of <script>s Placement in HTML for DOM
 Manipulation
	10.8 Getting a List of <script>s in the DOM

	Chapter 11. DOM Events
	11.1 DOM Events Overview
	11.2 DOM Event Types
	11.3 The Event Flow
	11.4 Adding Event Listeners to Element Nodes, the window Object,
 and the document Object
	11.5 Removing Event Listeners
	11.6 Getting Event Properties from the Event Object
	11.7 The Value of this When Using addEventListener()
	11.8 Referencing the target of an Event and Not the Node or Object
 on Which the Event Is Invoked
	11.9 Using preventDefault() to Cancel Default Browser
 Events
	11.10 Using stopPropagation() to Stop the Event Flow
	11.11 Using stopImmediatePropagation() to Stop the Event Flow As
 Well As Other Like Events on the Same Target
	11.12 Custom Events
	11.13 Simulating/Triggering Mouse Events
	11.14 Event Delegation

	Chapter 12. Creating dom.js: A Wishful jQuery-Inspired DOM Library for Modern Browsers
	12.1 dom.js Overview
	12.2 Creating a Unique Scope
	12.3 Creating dom() and GetOrMakeDom(), Globally Exposing dom() and
 GetOrMakeDom.prototype
	12.4 Creating an Optional Context Parameter Passed to dom()
	12.5 Populating an Object with DOM Node References Based on params
 and a Return Object
	12.6 Creating an each() Method and Making It a Chainable
 Method
	12.7 Creating html(), append(), and text() Methods
	12.8 Taking dom.js for a Spin
	12.9 Summary and Continuing with dom.js

	About the Author

