
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Clojure	Web	Development	Essentials

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Clojure	Web	Development	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	Luminus

Leiningen

Using	Leiningen

Generating	the	application

Getting	help

Dependencies	of	the	app

Luminus	file	structure

util.clj

session_manager.clj

layout.clj

www.allitebooks.com

http://www.allitebooks.org

middleware.clj

routes/home.clj

handler.clj

repl.clj

Summary

2.	Ring	and	the	Ring	Server

Understanding	Ring	in	Clojure

Request	maps

Response	maps

Handlers

Middleware

Adapters

What	is	the	Ring	Server?

hipstr.handler

Initialization	hooks

Shutdown	hooks

App	routes

The	application	handler

hipstr.repl

Start-server

Stop-server

Get-handler

Configuring	and	running	the	Ring	Server

Summary

3.	Logging

What	is	Timbre?

What	is	an	appender?

Configuring	a	Timbre	appender

Timbre	log	levels

Appender	configuration	keys

Appender	map

www.allitebooks.com

http://www.allitebooks.org

Shared	appender	configuration

Logging	with	Timbre

Adding	an	appender

Adding	the	rolling	appender

Summary

4.	URL	Routing	and	Template	Rendering

What	is	Compojure?

Creating	a	Compojure	route

Using	defroutes

Anatomy	of	a	route

Defining	the	method

Defining	the	URL

Parameter	destructuring

Destructuring	the	request

Destructuring	unbound	parameters

Constructing	the	response

Generating	complex	responses

What	is	Selmer?

Creating	your	first	page

Rendering	a	page

Variables

Filters

Filter	parameters

Tags

Template	inheritance

Editing	the	home	page

Serving	the	signup	form

Creating	the	signup	page

Summary

5.	Handling	Form	Input

Handling	the	form	POST

www.allitebooks.com

http://www.allitebooks.org

Validating	the	form	POST

The	noir.validation	namespace

The	Validateur	library

Adding	the	Validateur	dependency

Creating	the	user	validation	namespace

Validating	required	fields

Validating	the	format

Validating	length	of	values

Validation	predicates

Making	reusable	validators

Reporting	errors	to	the	user

Summary

6.	Testing	in	Clojure

The	necessity	of	testing

Anatomy	of	a	test

Writing	and	running	our	first	test

Running	tests

Running	tests	automatically

Refactoring	tests

Writing	a	high-level	integration	test

Using	ring.mock.request

Summary

7.	Getting	Started	with	the	Database

Creating	the	database	schema

Maintaining	the	database	schema

Migratus

Getting	Migratus

Configuring	Migratus

Creating	the	user	table

Dropping	the	user	table

Running	the	down	scripts

www.allitebooks.com

http://www.allitebooks.org

Migrating	the	database

Running	all	migration	scripts	from	Leiningen

Running	migrations	programatically

Adding	migrations	to	the	hipstr	initialization

Adding	data	to	the	database

What	is	YeSQL?

Getting	YeSQL

Adding	a	user	to	the	database

Inserting	a	user	using	SQL

Inserting	a	user	using	Clojure

Bringing	it	all	together

Adjusting	the	route

Encrypting	the	password

Summary

8.	Reading	Data	from	the	Database

Creating	the	catalog

Creating	the	artists	table

Seeding	the	artists	table

Creating	the	albums	table

Fetching	albums	from	the	database

Writing	the	SQL	query

Creating	the	albums	model

Refactoring	the	connection

Creating	the	recently	added	route

Rendering	the	results

An	exercise!

Summary

9.	Database	Transactions

Introduction	to	Database	Transactions

The	ACID	properties

Importance	of	database	transactions

www.allitebooks.com

http://www.allitebooks.org

Implementing	a	transaction

Transactions	in	Clojure

Transactions	in	YeSQL

Extending	the	application	requirements	in	brief

Creating	the	add	artist/album	form

Creating	the	form

Abstracting	the	form

Creating	the	add	artist/album	endpoint

Creating	the	Compojure	route

Creating	the	route	helper	function

Validating	the	add	artist/album	form

Expanding	the	album	model

Wrapping	the	whole	thing	in	a	transaction

Using	a	transaction	outside	of	this	scope

Summary

10.	Sessions	and	Cookies

Sessions

Setting	up	sessions

Interacting	with	the	session

Restricted	routes

Restricting	route	access

Accessing	a	restricted	route

Access	rule	as	a	function

Access	rule	as	a	map

Cookies

Getting	a	cookie’s	value

Setting	a	cookie’s	value

Setting	the	cookie	as	a	map

Securing	a	cookie

Deleting	a	cookie

Extending	the	application:	brief	requirements

www.allitebooks.com

http://www.allitebooks.org

Creating	the	login	form

Restricting	the	recently-added	route

Restricting	the	route

Checking	if	the	user	is	authenticated

Defining	the	access	rule

Authenticating	the	user

Validating	the	credentials

Handling	the	form	POST

Writing	the	“Remember	Me”	cookie

Creating	the	logout	route

Summary

11.	Environment	Configuration	and	Deployment

Environ

Using	environ

Variable	translations

Setting	and	resolving	environment	configurations

Resolving	environment	configuration

Adjusting	the	database	connection

Creating	the	profiles.clj	file

Modifying	the	hipstr.models.connection	namespace

Deploying	the	hipstr	application

When	to	use	an	uberjar

When	to	use	an	uberwar

Deploying	as	a	standalone

Running	the	application	behind	Nginx

Load	balancing	behind	Nginx

Summary

A.	Using	Korma	–	a	Clojure	DSL	for	SQL

Getting	Korma

The	Quick	Korma	Crash	Course

Define	the	database	specification

www.allitebooks.com

http://www.allitebooks.org

Korma	entities

Defining	the	primary	key

Defining	relationships	between	entities

Constructing	SELECT	queries

Constructing	INSERT	queries

Constructing	UPDATE	queries

Constructing	DELETE	queries

Using	raw	SQL

Using	transactions

Port	the	models	from	YeSQL	to	Korma

Porting	hisptr.models.connection

Porting	hisptr.models.user-model

Porting	hipstr.models.album-model

Index

Clojure	Web	Development	Essentials

Clojure	Web	Development	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1180215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-222-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ryan	Baldwin

Reviewers

Eduardo	Díaz

Shu	Wang

Nate	West

Daniel	Ziltener

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Neha	Nagwekar

Content	Development	Editor

Rohit	Kumar	Singh

Technical	Editors

Prajakta	Mhatre

Rohith	Rajan

Copy	Editors

Pranjali	Chury

Veena	Mukundan

Vikrant	Phadke

Project	Coordinator

Mary	Alex

Proofreaders

Ting	Baker

Maria	Gould

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Ryan	Baldwin	is	a	theatre	major	turned	computer	science	geek.	Hailing	from	the	prairies
of	Western	Canada,	Ryan	has	been	developing	software	on	a	wide	array	of	platforms	and
technologies	since	2001.	Once,	he	wrote	a	crazy	system	application	that	compiled	XSD
Schema	Docs	into	XAML	forms	that	performed	two-way	binding	with	underlying	XML
documents	in	.NET	WPF.	Why?	Because	it	had	to	be	done.	Another	time,	he	worked	on	a
project	that	mashed	many	social	networks	into	one	gigantic	thing	that	essentially	allowed
users	to	find	out	all	of	their	indirect	connections.	It	was	eventually	shelved.

In	2012,	he	relocated	to	Toronto,	where	he	works	with	the	University	Health	Network,
developing	systems	and	tools	that	facilitate	patient	information	exchange.	You	can	often
find	him	wearing	headphones	and	jittering	in	coffee	shops.

I’d	like	to	thank	Packt	for	giving	me	this	opportunity	and	Dmitri	Sotnikov	for	pushing	me
to	do	it.	Without	either	of	you,	I	probably	would	have	gotten	a	lot	more	sleep	and	a	lot	less
experience	out	of	life.	I’d	also	like	to	thank	Chris	Kay	Fraser,	without	whose	support	and
vegan	brownies	I	would	have	never	had	the	confidence	to	pursue	such	a	project.	I’d	finally
like	to	thank	my	family,	friends,	colleagues,	and	anybody	else	who	interacted	with	me
over	these	past	several	months;	I’ll	buy	you	a	“thank	you”	beer	for	putting	up	with	me.	All
my	reviewers	who	took	the	time	to	read,	recheck,	and	provide	essential	feedback,	I	owe	all
of	you	at	least	a	pitcher	of	beer	(hit	me	up	next	time	you’re	in	Toronto).	And,	of	course,
I’d	like	to	thank	you,	dear	readers;	without	you,	none	of	this	would	have	happened.	I	am
both	humbled	and	terrified	of	you.

www.allitebooks.com

http://www.allitebooks.org

About	the	Reviewers
Eduardo	Díaz	is	a	Java	developer,	with	experience	particularly	in	web	development.	He
has	been	interested	in	finding	new	programming	paradigms	and	languages	since	he	started
developing	software.

Clojure	(and	functional	programming	with	Clojure)	caught	Eduardo’s	attention	as	an
excellent	mixture	of	a	very	unique	paradigm	and	a	pragmatic	approach	to	programming.
He	has	used	it	to	build	a	data	collection	platform	for	several	high-traffic	sites,	similar	to
Google	Analytics.	Clojure	was	an	excellent	choice	for	him,	because	it	minimized	errors
and	development	time.

Writing	this	book	was	an	incredible	idea!	More	developers	need	to	know	the	power	of
Clojure	and	how	it	can	make	their	lives	better.	Thank	you	Ryan	Baldwin	and	everyone
involved	in	making	this	book	happen!

Nate	West	is	a	polyglot	web	developer	based	in	Nashville,	Tennessee.	While	he	has	yet	to
meet	a	language	he	doesn’t	like,	he	found	his	home	in	the	land	of	Lisp.	As	a	developer	at
Blue	Box,	he	gets	paid	to	write	in	Ruby.	When	not	learning	new	languages,	he	enjoys
hanging	out	with	his	wife,	playing	with	his	dog,	philosophizing	over	a	cup	of	coffee,	and
mentoring	at	Nashville	Software	School.

Daniel	Ziltener	was	born	in	the	canton	of	Bern	in	Switzerland.	He	started	programming	at
the	age	of	10	and	acquired	broad	general	knowledge	about	programming	and	software
engineering,	including	desktop	and	web	development	and	the	programming	languages
such	as	Java,	C++,	Scala,	Clojure,	and	Scheme.	He	started	his	studies	in	computer	science
at	the	University	of	Bern	in	2012.	Since	then,	he	has	worked	as	a	Clojure	software
developer	at	the	university’s	historical	institute.

I’d	like	to	thank	the	awesome	Clojure	community	for	all	the	great	libraries	and	their
support,	especially	in	#Clojure,	while	I	was	learning	Clojure	a	few	years	ago—it’s	been
since	1.3!	I’d	also	like	to	thank	my	employer	for	regularly	giving	me	time	off	to	review
this	book.	You	all	really	enabled	me	to	become	a	Clojure	pro.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Clojure	is	a	beautiful,	concise	language,	and	its	adoption	for	web	applications	is	ready	and
about	to	explode.	In	Clojure	Web	Development	Essentials,	you	will	learn	how	to	build	a
Clojure	web	application	from	scratch	using	the	Leiningen	build	tool	and	the	Luminus
application	template.	We’ll	start	by	creating	a	simple	example	application	in	the	first	few
pages	of	the	first	chapter,	and	build	on	that	application	with	each	subsequent	chapter.
We’ll	cover	URL	routing,	template	rendering,	database	connectivity,	form	validation,	and
everything	else	we	need	to	build	a	typical	web	app.	By	the	end	of	this	book,	you’ll	have
the	knowledge	required	to	venture	into	the	world	of	web	development,	and	you’ll	be	able
to	use	your	skills	for	the	betterment	of	the	Internet.

What	this	book	covers
Chapter	1,	Getting	Started	with	Luminus,	guides	you	through	creating	a	new	project	using
the	Luminus	application	template.	We’ll	then	dive	into	what	was	generated,	what	the	out-
of-the-box	project	dependencies	are,	and	the	general	file	structure	of	a	Luminus	web	app.

Chapter	2,	Ring	and	the	Ring	Server,	describes	the	core	technologies	driving	our
application,	and	shows	you	how	to	use	the	development	web	server.

Chapter	3,	Logging,	demonstrates	configuration	of	some	basic	logging	and	the	Clojure
logging	library,	Timbre.

Chapter	4,	URL	Routing	and	Template	Rendering,	starts	to	dive	into	the	important	part	of
web	applications.	It	shows	you	how	to	handle	incoming	requests	using	Compojure,	and
how	to	render	web	pages	using	the	Selmer	templating	engine.	We’ll	also	create	a	sign-up
form	for	our	application.

Chapter	5,	Handling	Form	Input,	teaches	you	how	to	validate	form	data	and	report	form
validation	errors	back	to	the	user.

Chapter	6,	Testing	in	Clojure,	is	a	quick	tour	of	automated	testing	and	its	use	in	Clojure.

Chapter	7,	Getting	Started	with	the	Database,	is	the	first	of	three	chapters	covering
database	management	and	interactivity.	We’ll	set	up	our	application’s	database,	and	you
will	learn	how	to	manage	your	database	schema	using	the	Migratus	Leiningen	plug.	Then
we	will	store	the	form	input	created	in	the	fifth	chapter	using	YeSQL.

Chapter	8,	Reading	Data	from	the	Database,	continues	exploring	database	interactivity	by
teaching	you	how	to	retrieve	data	from	the	database	using	YeSQL.	We’ll	then	create	a
couple	of	new	web	pages	that	list	the	most	recently	added	items	in	our	database.

Chapter	9,	Database	Transactions,	gives	us	a	brief	overview	of	what	database	transactions
are.	We’ll	then	create	a	form	that	transactionally	inserts	data	into	multiple	tables.

Chapter	10,	Sessions	and	Cookies,	demonstrates	how	sessions	and	cookies	are	managed
and	maintained	in	Noir.	We’ll	then	create	an	authentication	form	for	our	application,	and
save	a	cookie	in	the	user’s	browser	to	remember	their	username	the	next	time	they	log	in.

Chapter	11,	Environment	Configuration	and	Deployment,	guides	us	through	abstracting
our	environment	configuration	(such	as	database	connectivity)	and	describes	a	few
common	ways	by	which	we	can	deploy	our	application.

Appendix,	Using	Korma	–	a	Clojure	DSL	for	SQL,	covers	the	modification	of	the	YeSQL
model	layers	to	use	Korma,	a	native	Clojure	Domain	Specific	Language	that	can	be	used
to	interact	with	the	database	if	you’re	not	keen	on	using	raw	SQL.

www.allitebooks.com

http://www.allitebooks.org

What	you	need	for	this	book
First	and	foremost,	you	must	be	familiar	with	the	Clojure	programming	language.	You’ll
also	need	to	install	the	Leiningen	build	tool.	Familiarity	with	basic	web	technology	is	also
valuable.

Who	this	book	is	for
This	book	targets	software	developers	who	are	already	using	Clojure	but	want	to	use	their
skill	set	for	web	applications.	Very	little	of	this	book	does	any	fancy	frontend
development,	and	most	of	it	focuses	on	server-side	development.	If	you’re	primarily	a
frontend	developer,	or	have	never	heard	of	Clojure,	this	book	is	precisely	not	what	you	are
looking	for.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	explanations	of	their
meanings.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

		:dependencies	[[org.clojure/clojure	"1.6.0"]

																[lib-noir	"0.9.4"]

																[ring-server	"0.3.1"]

																[selmer	"0.7.2"]

																[com.taoensso/timbre	"3.3.1"]

																[com.taoensso/tower	"3.0.2"]

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

:ring	{:handler	hipstr.handler/app

		:init	hipstr.handler/init

		:destroy		hipstr.handler/destroy

		:open-browser?	false}

Any	command-line	input	or	output	is	written	as	follows:

#	lein	ring	server-headless

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“clicking	the	Next	button
moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book’s	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.allitebooks.com

http://www.allitebooks.org

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Luminus
Ah,	getting	started!	This	chapter	introduces	you	to	the	foundations	of	Clojure	web
development	using	Luminus,	a	popular	web	application	template	for	Leiningen.	In	this
chapter,	you	will:

Generate	a	new	web	application	using	the	Luminus	Leiningen	template
Get	an	introduction	to	the	popular	libraries,	which	Luminus	uses	to	handle	the
various	aspects	of	a	web	application,	and	what	those	libraries	do
Get	an	overview	of	the	directory	structure	generated	by	Luminus
Learn	how	to	fire	up	the	web	application	on	your	development	machine

In	this	chapter,	we’ll	create	a	new	web	application	called	hipstr,	an	application	that	will
help	us	track	our	vinyl	collection	and	endow	us	with	obscure	credibility.	We’ll	build	this
application	with	each	subsequent	chapter	by	creating	our	own	route	handlers,	interacting
with	a	database,	authenticating	users,	validating	form	input,	and	reading/writing	cookies.
By	the	end	of	this	book,	we’ll	know	the	Clojure	web	basics	well	enough	that	we’ll	be
wearing	plaid	shirts	and	sipping	bourbon	aged	in	casks	from	a	place	nobody’s	ever	heard
of.

Leiningen
Our	project	will	rely	heavily	on	Leiningen,	a	build	and	task	tool	for	Clojure.	Leiningen
allows	us	to	easily	maintain	our	application’s	dependencies,	assists	us	in	common	tasks
such	as	database	migrations,	running	tests,	producing	binaries	(jars	and	wars),	and	a
plethora	of	other	things.	Leiningen	is	akin	to	Java’s	build	tool	Maven
(http://maven.apache.org),	and	Ruby’s	Rake	(http://github.com/jimweirich/rake).	As
Leiningen’s	web	page	(http://leiningen.org)	concisely	puts	it:	for	automating	Clojure
projects	without	setting	your	hair	on	fire.

If	you	haven’t	already	installed	Leiningen	2.x,	head	over	to	http://leiningen.org/#install
and	follow	the	four	simple	instructions.	It	will	take	just	60	seconds,	and	the	world	of
Clojure	will	become	your	oyster.

Note
After	you’ve	installed	Leiningen,	you’ll	have	access	to	a	new	command	in	your	terminal,
lein.	Invoking	this	command	will	invoke	Leiningen.

http://maven.apache.org
http://github.com/jimweirich/rake
http://leiningen.org
http://leiningen.org/#install

Using	Leiningen
The	basic	makeup	of	a	Leiningen	task	can	be	summarized	as	follows:

#	lein	$TASK	$TASK_ARGUMENTS

In	the	preceding	shell	pseudo-command,	we	invoke	Leiningen	using	its	binary.	The	lein
$TASK	argument	is	the	Leiningen	task	we	want	to	execute	(such	as	install,	jar,	etc.),	and
$TASK_ARGUMENTS	is	any	information	required	for	that	task	to	do	its	job,	including
additional	subtasks	and	the	arguments	for	a	given	subtask.	You	can	see	a	full	list	of	the
available	tasks	in	Leiningen	by	executing	the	following	command:

#	lein	--help

You	can	also	view	the	help	content	for	a	specific	Leiningen	task	by	executing	the
following	command:

#	lein	help	$TASK

You	can	use	these	commands	whenever	you	need	to	know	how	to	do	something	in
Leiningen.

Generating	the	application
Leiningen	can	generate	an	application	skeleton	(or	scaffolding)	from	a	plethora	of
different	templates.	There’s	a	template	for	nearly	everything	such	as	clojurescript
projects,	web	applications	(of	course),	and	much	more.

To	generate	a	new	application,	we	use	the	new	Leiningen	task	whose	basic	syntax	is	as
follows:

#	lein	new	[$TEMPLATE_NAME]	$PROJECT_NAME

The	new	task	expects,	at	a	minimum,	a	name	for	the	project	($PROJECT_NAME).	Optionally,
we	can	provide	a	specific	template	to	use	($TEMPLATE_NAME).	If	we	don’t	specify	a
template,	then	lein	will	use	the	default	template,	which	is	a	general	template	for
developing	libraries.

For	our	project	we’ll	use	the	Luminus	template,	an	excellent	template	for	web
applications.	Luminus	generates	a	project	and	wires	in	the	libraries	to	support	pretty	much
every	aspect	of	web	development	including	sessions,	cookies,	route	handling,	and
template	rendering.

Tip
At	the	time	of	this	writing,	the	Luminus	template	was	at	version	1.16.7.	To	ensure	the
code	examples	in	this	book	work,	you	can	force	Leiningen	to	use	a	specific	version	of
Luminus	by	modifying	Leiningen’s	profiles.clj	file	(typically	found	in	your	home
directory,	in	a	folder	called	.lein)	to	include	the	specific	version	of	Luminus.	For
example:

:user	{:plugins	[[luminus/lein-template	"1.16.7"]]}

This	modification	will	ensure	that	version	1.16.7	of	the	Luminus	template	is	used	when
generating	a	Luminus-based	application.

Just	try	the	following	command:

#	lein	new	luminus	hipstr

>>	Generating	a	lovely	new	luminus	project	named	hipstr…

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.PacktPub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.PacktPub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	preceding	command	will	generate	a	fully	runnable	application	in	a	directory	called
hipstr.	You	can	run	the	application	by	using	cd	hipstr	to	enter	into	the	hipstr	directory
and	then	execute	the	following	command:

#	lein	ring	server

http://www.PacktPub.com
http://www.PacktPub.com/support

>>(Retrieving	im/chit/cronj/1.0.1/cronj-1.0.1.pom	from	clojars)

>>…a	whole	bunch	of	Retrieving…

>>…and	other	output…

>>Started	server	on	port	3000

In	the	preceding	command	line,	the	lein	ring	server	command	updates	our	class	path
with	the	dependencies	required	to	compile	and	run	the	app.	It	then	launches	the
development	server	(an	embedded	Jetty	server)	and	starts	serving	on	port	3000.	Lastly,	it
launches	our	default	web	browser	and	navigates	to	the	root	page.

Note
In	the	preceding	example,	ring	is	the	Leiningen	task,	and	server	is	the	ring	subtask.	You
can	view	a	full	list	of	ring	subtasks	by	entering	the	lein	help	ring	command	in	your
terminal.

The	subsequent	output	of	lein	ring	server	is	a	series	of	debug	statements	that	lets	us
know	what	the	heck	is	going	on	during	the	startup	process.	Any	generated	exceptions	or
problems	that	occur	while	attempting	to	launch	the	application	will	be	emitted	as	part	of
this	output.

www.allitebooks.com

http://www.allitebooks.org

Getting	help
If	anything	doesn’t	go	as	planned,	or	you’re	stumped	and	confused,	feel	free	to	check	the
Luminus	documentation	at	http://www.luminusweb.net.	You	can	also	get	some	help	from
people	in	the	Luminus	community	(https://groups.google.com/forum/?
fromgroups#!forum/luminusweb)	or	the	Ring	community
(https://groups.google.com/forum/?fromgroups#!forum/ring-clojure).	Of	course,	there’s
always	the	Clojure	group	on	Google	Groups	(https://groups.google.com/forum/).

http://www.luminusweb.net
https://groups.google.com/forum/?fromgroups#!forum/luminusweb
https://groups.google.com/forum/?fromgroups#!forum/ring-clojure
https://groups.google.com/forum/

Dependencies	of	the	app
The	Luminus	template	provides	good	starting	defaults	for	a	typical	web	application	by
using	popular	libraries.	It	also	configures	common	tasks	(such	as	logging)	and	provides	a
few	default	route	handlers	(URL	handlers).

Taking	a	peek	at	the	generated	project.clj	file,	we	see	all	the	dependencies	included	by	the
luminus	template.	At	the	time	of	writing,	the	project.clj	file	produced	the	following
dependencies:

		:dependencies	[[org.clojure/clojure	"1.6.0"]

																[lib-noir	"0.9.4"]

																[ring-server	"0.3.1"]

																[selmer	"0.7.2"]

																[com.taoensso/timbre	"3.3.1"]

																[com.taoensso/tower	"3.0.2"]

																[markdown-clj	"0.9.55"

																		:exclusions	[com.keminglabs/cljx]]

																[environ	"1.0.0"]

																[im.chit/cronj	"1.4.2"]

																[noir-exception	"0.2.2"]

																[prone	"0.6.0"]]

Note
Luminus	is	a	popular	and	active	project,	and	is	constantly	getting	better.	Between	now	and
the	time	this	book	goes	to	press	and	you	purchasing	one	for	each	of	your	friends	and
yourself,	it’s	possible	that	the	template	will	have	changed.	At	the	time	of	writing,	version
1.16.7	of	the	luminus	template	was	used.	If	you	used	a	more	recent	version	your	results
may	vary.

The	first	dependency	should	look	familiar	(if	not,	then	this	book	isn’t	for	you…	yet).	The
rest,	however,	might	appear	to	be	a	mystery.	I’ll	spare	you	the	effort	of	searching	it	online
and	break	it	down	for	you.

lib-noir:	This	contains	a	slough	of	useful	utilities	to	create	web	applications	using
the	Ring	framework,	such	as	routing,	redirections,	static	resources,	password	hashing,
file	uploads,	sessions	and	cookies,	and	so	on.	It’s	the	work	horse	for	much	of	the
plumbing	common	to	all	web	applications.	Visit	the	following	website:
https://github.com/noir-clojure/lib-noir.
ring-server:	This	is	a	bit	of	an	omnibus	library,	encompassing	several	other	Ring-
related	libraries.	Ring	is	a	web	application	library,	which	acts	as	an	abstraction
between	our	web	application	(hipstr)	and	the	underlying	web	server	or	servlet
container.	You	can	think	of	it	as	something	akin	to	Java’s	Servlet	API	(which	Ring
fulfills),	Python’s	WSGI,	or	Ruby’s	Rack.	Ring	Server,	by	contrast,	is	a	library	that
starts	a	web	server	capable	of	serving	a	Ring	handler.	We’ll	get	into	more	detail	in
Chapter	2,	Ring	and	the	Ring	Server.	To	get	more	information	about	Ring	Server,
visit:	https://github.com/weavejester/ring-server
selmer:	This	is	an	HTML	template	rendering	a	library	modeled	after	the	ubiquitous

https://github.com/noir-clojure/lib-noir
https://github.com/weavejester/ring-server

Django	framework.	Selmer	allows	us	to	generate	dynamic	pages,	script	loops	and
conditional	rendering,	extend	other	Selmer	templates,	and	so	on.	We’ll	talk	more
about	Selmer	in	Chapter	4,	URL	Routing	and	Template	Rendering.	To	get	more
information	on	selmer,	visit:	https://github.com/yogthos/Selmer
timbre:	Timbre	is	a	pure	Clojure	logging	library.	It’s	pretty	much	like	every	other
logging	library	on	the	planet,	complete	with	somewhat	confusing	configuration.
We’ll	cover	Logging	in	Chapter	3,	Logging.	You	can	also	visit
https://github.com/ptaoussanis/timbre,	to	get	more	information	on	Timbre.
tower:	This	is	similar	to	its	sibling	timbre,	and	is	a	pure	Clojure	library	that	provides
support	for	internationalization	and	localization.	You	can	refer	to
https://github.com/ptaoussanis/tower.
markdown-clj:	This	is	a	simple	library	that	allows	us	to	compile	markdown	to	html.
For	more	information,	you	can	visit	https://github.com/yogthos/markdown-clj.
environ:	This	allows	us	to	create	different	application	configurations	for	different
environments	(think	development	versus	production).	We’ll	work	with	environ	in
Chapter	11,	Environment	Configuration	and	Deployment.
cronj:	This	is	a	simple,	straightforward	library	for	creating	cron-like	scheduled	tasks.
To	know	more	about	cronj,	visit	https://github.com/zcaudate/cronj.
noir-exception:	This	provides	prettified,	rendered,	exception	stacks	in	the	browser
as	well	as	to	log	files.	The	noir-exception	library	highlights	your	application’s
namespaces	in	their	own	color,	easily	separating	your	called	code	from	the	rest	of	the
first	and	third	party	Clojure	libs.
prone:	This	produces	the	most	amazing	exception	reporting	output	you	might	have
ever	seen.	(https://github.com/magnars/prone).

https://github.com/yogthos/Selmer
https://github.com/ptaoussanis/timbre
https://github.com/ptaoussanis/tower
https://github.com/yogthos/markdown-clj
https://github.com/zcaudate/cronj
https://github.com/magnars/prone

Luminus	file	structure
The	luminus	template	generates	web	applications	using	a	fairly	typical	directory	structure.
However,	it	also	produces	a	number	of	Clojure	namespaces	that	can	cause	a	bit	of
confusion	if	you’re	brand	new	to	Clojure	web	development.	You	can	either	open	the
project	using	your	favorite	Clojure	editor,	or	do	the	following	from	the	terminal:

#	find	.	-print	|	sed	-e	's;[^/]*/;|____;g;s;____|;	|;g'

Note
The	preceding	command	line	is	a	nasty	thing	to	eyeball	and	type.	You	can	copy	and	paste
the	preceding	command	from	http://bit.ly/1F3TmdJ.

In	either	case,	you	should	see	output	similar	to	the	following:

Luminus	generates	three	directories	at	the	root	of	the	application	directory:	resources,
src,	and	test.

The	resources	directory	contains	the	files	that	will	compose	the	front	end	of	our

http://bit.ly/1F3TmdJ

applications.	The	public	folder	contains	resources	publicly	available	to	the	client,	such	as
our	JavaScript,	CSS,	and	images.	By	contrast,	the	templates	directory	contains	our
Selmer	templates	used	for	the	heavy	rendering	of	HTML	parts.	All	of	these	files	will	be
made	available	on	our	class	path;	however,	only	those	in	the	public	folder	will	be	actually
available	to	the	client.

The	src	directory	contains	all	of	the	necessary	namespaces	for	running	our	application,
and	the	test	directory	contains	all	the	necessary	namespaces	for	testing	our	src.

In	addition	to	the	directories,	however,	Luminus	also	generated	some	files	in	the	src
directory.	These	files	are	the	bare	minimum	requirement	to	successfully	run	our
application,	and	each	one	handles	specific	functionality.	Let’s	take	a	brief	look	at	the	base
functionality	contained	in	each	file.

util.clj
The	hipstr.util	namespace	is	a	simple	namespace	where	you	can	put	various	helper
functions	you	find	yourself	frequently	using	during	the	development	of	your	application.
Out	of	the	box,	Luminus	generates	a	hipstr.util	namespace	with	a	single	function,	md-
>html,	which	converts	markdown	into	HTML.	Typically,	I	try	to	avoid	namespaces	such
as	util.clj	because	they	eventually	turn	into	the	junk	drawer	in	your	kitchen,	but	they
can	be	useful	on	smaller	projects	if	things	don’t	get	too	crowded.	The	following	block	of
code	shows	the	hipstr.util	namespace:

(ns	hipstr.util

		(:require	[noir.io	:as	io]

												[markdown.core	:as	md]))

(defn	md->html

		"reads	a	markdown	file	from	public/md	and	returns	an	HTML

			string"

		[filename]

		(md/md-to-html-string	(io/slurp-resource	filename)))

session_manager.clj
One	of	lib-noir’s	exposed	functionalities	is	session	management	(which	we’ll	discuss	in
detail	in	Chapter	10,	Sessions	and	Cookies).	The	default	session	pool	in	Luminus	is	an	in-
memory	session	pool,	a	shortcoming	of	which	is	that	expired	sessions	are	only	removed
from	memory	when	the	server	handles	a	request	associated	with	an	expired	session.	As	a
result,	old	stale	sessions	can	linger	in	memory	indefinitely,	straining	memory	resources	on
the	server.	Luminus	boilerplates	a	cronj	job	in	the	hipstr.sessions-manager
namespace,	which	occasionally	removes	stale,	unused	sessions.	By	default,	the	job	runs
every	30	minutes.	Take	a	look	at	the	following	lines	of	code:

(ns	hipstr.session-manager

		(:require	[noir.session	:refer	[clear-expired-sessions]]

												[cronj.core	:refer	[cronj]]))

(def	cleanup-job

		(cronj

				:entries

				[{:id	"session-cleanup"

						:handler	(fn	[_	_]	(clear-expired-sessions))

						:schedule	"*	/30	*	*	*	*	*"

						:opts	{}}]))

layout.clj
The	hipstr.layout	namespace	houses	the	functions	that	are	used	to	render	the	HTTP
response	body.	By	default,	Luminus	creates	a	single	function,	render,	which	will	render
any	Selmer	template	onto	the	HTTP	response.The	following	lines	of	code	is	for	the
hipstr.layout	namespace:

(ns	hipstr.layout

		(:require	[selmer.parser	:as	parser]

												[clojure.string	:as	s]

												[ring.util.response	:refer	[content-type	response]]

												[compojure.response	:refer	[Renderable]]

												[environ.core	:refer	[env]]))

(def	template-path	"templates/")

(deftype	RenderableTemplate	[template	params]

		Renderable

		(render	[this	request]

				(content-type

						(->>	(assoc	params

								(keyword

								(s/replace	template	#".html"	"-selected"))"active"

										:dev	(env	:dev)

												:servlet-context

														(if-let	[context	(:servlet-context	request)]

														;;	If	we're	not	inside	a	serlvet	environment

														;;	(for	example	when	using	mock	requests),	then

														;;	.getContextPath	might	not	exist

														(try	(.getContextPath	context)

																(catch	IllegalArgumentException	_	

																context))))

												(parser/render-file	(str	template-path	template))

											response)

										"text/html;	charset=utf-8")))

(defn	render	[template	&	[params]]

(RenderableTemplate.	template	params))

The	key	to	the	hipstr.layout	namespace	is	that	it	remains	high	level	and	generic.	You
should	avoid	writing	functions	with	domain	knowledge	in	this	namespace,	and	instead
focus	on	generating	response	bodies.	If	you	put	an	explicit	URL	or	filename	in	this
namespace,	you’re	probably	doing	it	wrong.

www.allitebooks.com

http://www.allitebooks.org

middleware.clj
Middleware,	for	the	unfamiliar,	is	a	function	that	can	work	with	an	incoming	request	prior
to	the	request	being	handled	by	the	main	application	(that	is	our	proverbial	business	logic).
Its	function	is	similar	to	how	a	car	moves	through	an	assembly	line;	each	employee
working	the	line	is	responsible	for	interacting	with	the	car	in	some	specific	way.	Much
like	how	at	the	end	of	the	assembly	line	the	car	is	in	its	final	state	and	ready	for
consumption,	so	is	the	request	in	its	final	state	and	ready	for	processing	by	the	main
application.	The	following	code	is	for	the	hipstr.middleware	namespace:

(ns	hipstr.middleware

		(:require	[taoensso.timbre	:as	timbre]

												[selmer.parser	:as	parser]

												[environ.core	:refer	[env]]

												[selmer.middleware	:refer	[wrap-error-page]]

												[prone.middleware	:refer	[wrap-exceptions]]

												[noir-exception.core	:refer	[wrap-internal-error]]))

(defn	log-request	[handler]

		(fn	[req]

				(timbre/debug	req)

				(handler	req)))

(def	development-middleware

		[wrap-error-page

			wrap-exceptions])

(def	production-middleware

		[#(wrap-internal-error	%	:log	(fn	[e]	(timbre/error	e)))])

(defn	load-middleware	[]

		(concat	(when	(env	:dev)	development-middleware)

										production-middleware))

The	hipstr.middleware	namespace	has	two	primary	responsibilities.	The	first	is	that	it
ties	together	all	the	different	middleware	we	want	across	any	of	our	runtime	environments.
The	second	is	that	it	gives	us	a	place	to	add	additional	middleware,	if	desired.	Of	course,
there’s	nothing	prohibiting	us	from	writing	our	middleware	in	a	new	namespace,	but	for
the	sake	of	simplicity	and	for	this	book,	we’ll	simply	create	additional	middleware	in	the
hipstr.middleware	namespace.

routes/home.clj
One	of	the	directories	that	Luminus	generated	was	a	route	folder.	Routes	are	what	tie	a
request	to	a	specific	handler	(or,	in	layman’s	terms,	a	chunk	of	code	to	be	executed	based
on	the	URL	the	request	is	sent	to).	Luminus	generates	2	routes	for	us:

A	/	route,	which	renders	the	result	of	calling	the	home-page	function,	which
ultimately	renders	the	home	page	you	see	at	startup
A	/about	route,	which	renders	the	result	of	the	about-page	function,	responsible	for
rendering	the	about.html	page

Take	a	look	at	the	following	lines	of	code:

(ns	hipstr.routes.home

		(:require	[compojure.core	:refer	:all]

												[hipstr.layout	:as	layout]

												[hipstr.util	:as	util]))

(defn	home-page	[]

		(layout/render

				"home.html"	{:content	(util/md->html	"/md/docs.md")}))

(defn	about-page	[]

		(layout/render	"about.html"))

(defroutes	home-routes

		(GET	"/"	[]	(home-page))

		(GET	"/about"	[]	(about-page)))

We	will	create	a	couple	of	our	own	routing	namespaces	over	the	course	of	this	book.	The
routes	we’ll	create	in	those	namespaces	will	follow	the	same	pattern	demonstrated	in	the
preceding	hipster.routes.home	namespace.	We’ll	talk	a	bit	more	about	routes	in	Chapter
4,	URL	Routing	and	Template	Rendering.

handler.clj
Everything	we’ve	seen	in	this	chapter	is	brought	together	into	a	single,	harmonious,
running	application	in	the	hipstr.handler	namespace,	explained	in	the	following	lines	of
code.	Opening	the	file	for	a	cursory	scan	reveals	our	cron	job	to	clean	up	expired	sessions,
the	home-routes	from	the	hipstr.routes.home	namespace,	the	configuration	of	our
Timbre	logging,	and	so	on.

(ns	hipstr.handler

		(:require	[compojure.core	:refer	[defroutes]]

				;	...	snipped	for	brevity	…

				[cronj.core	:as	cronj]))

(defroutes	base-routes

		(route/resources	"/")

		(route/not-found	"Not	Found"))

(defn	init

		"init	will	be	called	once	when

				app	is	deployed	as	a	servlet	on

				an	app	server	such	as	Tomcat

				put	any	initialization	code	here"

		[]

		;…	snipped	for	brevity	…)

(defn	destroy

		"destroy	will	be	called	when	your	application

			shuts	down,	put	any	clean	up	code	here"

		[]

		;	...	snipped	for	brevity…)

;;	timeout	sessions	after	30	minutes

(def	session-defaults

		{:timeout	(*	60	30)

			:timeout-response	(redirect	"/")})

(defn-	mk-defaults

							"set	to	true	to	enable	XSS	protection"

							[xss-protection?]

							;...	snipped	for	brevity…

)

(def	app	(app-handler

												;;	add	your	application	routes	here

												[home-routes	base-routes]

												;;	add	custom	middleware	here

												:middleware	(load-middleware)

												:ring-defaults	(mk-defaults	false)

												;;	add	access	rules	here

												:access-rules	[]

												;;	serialize/deserialize	the	following	data	formats

												;;	available	formats:

												;;	:json	:json-kw	:yaml	:yaml-kw	:edn	:yaml-in-html

												:formats	[:json-kw	:edn	:transit-json]))

We’ll	get	into	detail	about	what	all	is	happening,	and	when,	in	Chapter	2,	Ring	and	the
Ring	Server.

repl.clj
The	last	Luminus	generated	namespace,	hipstr.repl,	is	one	that	often	confuses	beginners
because	it’s	strikingly	similar	to	hipster.handler.	The	hipstr.repl	namespace	has	a
start-server	and	stop-server	function,	much	like	hipster.handler.	However,
hipstr.repl	allows	us	to	start	and	stop	our	development	server	from	the	Clojure	REPL.
This	might	seem	like	a	weird	thing	to	do,	but	by	running	our	server	from	the	REPL	we	can
modify	our	running	system	and	the	changes	will	be	“automagically”	reloaded	in	our
server.	No	need	for	the	time	consuming	and	frustrating	“compile-deploy-restart-grab-a-
coffee-and-twiddle-your-thumbs	cycle!”

(ns	hipstr.repl

		(:use	hipstr.handler

								ring.server.standalone

								[ring.middleware	file-info	file]))

(defonce	server	(atom	nil))

(defn	get-handler	[]

		;;	#'app	expands	to	(var	app)	so	that	when	we	reload	our	code,

		;;	the	server	is	forced	to	re-resolve	the	symbol	in	the	var

		;;	rather	than	having	its	own	copy.	When	the	root	binding

		;;	changes,	the	server	picks	it	up	without	having	to	restart.

		;	...	snipped	for	brevity…

)

(defn	start-server

		"used	for	starting	the	server	in	development	mode	from	REPL"

		[&	[port]]

		;	...	snipped	for	brevity…

)

(defn	stop-server	[]

		;…	snipped	for	brevity	…

)

Incorporating	the	REPL	into	your	development	workflow	is	a	wonderful	thing	to	do.	You
can	load	your	namespace	into	the	REPL	while	you	work	on	it	and	test	the	code	while
you’re	developing	right	then	and	there.	In	fact,	some	IDEs	such	as	LightTable	take	this	a
step	further,	and	will	“live-evaluate”	your	code	as	you	type.	The	ability	of	running	the	dev
server	from	the	REPL	completes	the	circle.

Note
If	you’re	not	currently	using	a	decent	IDE	for	Clojure	development,	I	strongly	encourage
you	to	give	LightTable	a	try.	It’s	free,	open	source,	lightweight,	and	very	different	than
anything	you’re	used	to.	It’s	quite	good.	Check	it	out	at	http://www.lighttable.com.

http://www.lighttable.com

Summary
In	this	chapter,	you	learned	how	to	generate	a	new	Clojure-based	web	application	using
Leiningen	and	the	Luminus	template.	We	also	got	a	high-level	understanding	of	each
dependency,	and	how	Luminus	structures	its	projects.	In	the	next	chapter	we’ll	take	a
detailed	look	at	the	Ring	and	Ring	Server	libraries,	and	what	they’re	responsible	for.	It
sounds	a	little	dry,	I	know,	but	I	recommend	that	you	read	it.	There	will	be	cake	and	punch
at	the	end,	but	without	all	the	calories	of	cake	and	punch.

Chapter	2.	Ring	and	the	Ring	Server
In	the	last	chapter,	we	generated	a	new	web	application	using	the	Luminus	template.
However,	before	we	get	too	deep	into	the	development	of	our	app	and	playing	with	all	the
toys,	it’s	important	for	us	to	get	a	high-level	understanding	of	two	technologies	that	will
support	everything	we	build	and	do,	and	that’s	Ring	and	the	Ring	Server.

Understanding	Ring	in	Clojure
	
“Ring	is	a	Clojure	web	applications	library	inspired	by	Python’s	WSGI	and	Ruby’s	Rack.	By	abstracting	the	details
of	HTTP	into	a	simple,	unified	API,	Ring	allows	web	applications	to	be	constructed	of	modular	components	that	can
be	shared	among	a	variety	of	applications,	web	servers,	and	web	frameworks.”

	

	 —-	James	Reeves

James	Reeves	is	also	known	as	Weavejester;	he	is	the	creator	and	maintainer	of	Ring	and
about	a	billion	other	Clojure-based	technologies	(https://github.com/ring-
clojure/ring/blob/master/README.md).

In	simple	terms,	Ring	handles	all	the	nitty	gritty	HTTP	implementation	details,	such	as
HTTP	request/response,	parameters,	cookies,	and	so	on.	It	abstracts	the	underlying
implementations	away	from	our	code,	allowing	us	to	focus	on	writing	our	application
instead	of	low-level	HTTP	crud.	This	abstraction,	coupled	with	the	fact	that	Ring	is	built
on	top	of	the	HTTP	Servlet	specification,	enables	us	to	package	our	application	and	host	it
in	a	variety	of	servlet	containers,	such	as	GlassFish	(https://glassfish.java.net),	Tomcat
(http://tomcat.apache.org),	and	Jetty	(http://eclipse.org/jetty).

We	can	even	run	our	application	as	a	standalone,	which	is	actually	the	easiest	and	most
popular	way	of	running	a	web	application	written	in	Clojure	and	using	Ring.	This	is	made
possible	thanks	to	the	embedded	Jetty	server,	which	if	we	wanted	could	also	be	swapped
out	for	http-kit	(http://http-kit.org),	a	highly	efficient	HTTP	client/server	for	Clojure.

At	a	high	level,	Ring	is	composed	of	5	components:	request	maps,	response	maps,
handlers,	middleware,	and	adapters.

www.allitebooks.com

https://github.com/ring-clojure/ring/blob/master/README.md
https://glassfish.java.net
http://tomcat.apache.org
http://eclipse.org/jetty
http://http-kit.org
http://www.allitebooks.org

Request	maps
Ring	represents	HTTP	requests	as	simple	Clojure	maps,	whose	keys	are	drawn	from	the
Java	Servlet	API	and	the	official	documentation	RFC2616	–	Hypertext	Transfer	Protocol	-
HTTP/1.1	(http://www.w3.org/Protocols/rfc2616/rfc2616.html).	Practically	speaking,	the
request	map	contains	the	following	keys:

:server-port:	This	is	the	port	on	which	the	request	is	being	handled.
:server-name:	This	is	the	resolved	name	or	IP	address	of	the	server	handling	the
request.
:remote-addr:	This	is	the	IP	address	of	the	client,	which	is	making	the	request.
:uri:	This	is	the	part	of	the	address	after	the	domain	name.	For	example,	for	the
address	http://ryans.io/some/beautiful/uri,	the	request	map’s	:uri	would	be
/some/beautiful/uri.
:query-string:	This	is	the	HTTP	query	string	of	the	request,	if	one	exists.	For
example,	for	the	address	http://ryans.io/some/beautiful/uri?
color=blue&favPrime=7,	the	request	map’s	:query-string	would	be
color=blue&favPrime=7.
:scheme:	This	is	the	protocol	used	to	make	the	request	as	a	keyword;	:http	for	HTTP
request,	and	:https	for	Secure	HTTP.
:request-method:	This	is	the	HTTP	method	used	to	make	the	request	as	a	keyword,
so	it	will	be	one	of	:get,	:post,	:put,	:delete,	:head,	or	:options	keys.
:headers:	This	is	a	map	of	the	header	names	(as	lowercased	string)	to	header	values
(also	as	string).	Here’s	a	sample	code:

{:headers	{"content-type"	"text/html"

		"content-length"	"500"

		"pragma"	"no-cache"}}

:body:	This	is	a	string	of	any	contents	in	the	request	body	itself	(such	as	the	contents
of	an	HTTP	POST	request).

The	request	maps,	however,	are	not	restricted	to	this	information,	and	often	contain
additional	keys.	Middleware,	as	we’ll	see	later,	can	mutate	the	request	map	by	adding
additional	keys.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Response	maps
Similar	to	request	maps,	Ring	represents	an	HTTP	response	as	a	simple	Clojure	map.	The
response	map	contains	only	three	keys:

:status:	This	is	the	HTTP	status	code	of	the	response	as	an	integer,	such	as	200	or
403.	A	full	list	of	HTTP	status	codes	is	made	available	as	part	of	the	RFC2616,	and
can	be	viewed	at	http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.	I	urge
you	to	take	a	read—it’s	surprisingly	interesting!
:headers:	Similar	to	the	one	of	request	map,	:headers	contains	a	map	of	header
names	(string)	to	header	values.
:body:	This	is	the	body	of	the	response.	This	can	be	one	of	the	following	four	types,
and	the	behavior	will	change	for	each:

When	a	String,	the	body	is	sent	directly	to	the	client	as	is
When	an	ISeq,	each	element	of	the	sequence	is	sent	to	the	client	as	a	String
When	a	File,	the	contents	of	the	file	will	be	sent	to	the	client
When	an	InputStream,	the	contents	of	the	stream	are	sent	to	the	client,	after
which	the	stream	is	closed

An	example	of	a	simple	Hello	World!	response	map	can	look	like	this:

{:status	200

		:headers	{"Content-Type"	"text/html"}

		:body	"<html><body><h1>Hello,	World!</h1></body></html>"}

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Handlers
A	handler	is	a	Clojure	function	that	accepts	a	request	map	and	returns	a	response	map,
that	is,	process	the	incoming	request	and	return	a	response.	Here’s	an	example	code:

(defn	hello-world

		"Simply	produces	a	Hello	World	Response	Map	for	some	mythical,

				useless	application."

		[request]

		{:status	200

				:headers	{"Content-Type"	"text/html"}

				:body	"<html><body><h1>Hello,	World!</h1></body></html>"})

Handlers	are	the	core	of	our	application.	Typically	our	URLs	will	map	one-to-one	with	a
handler.

Let’s	create	our	own	handler,	and	remap	one	of	our	routes	to	use	it	instead	of	the	default
Luminus	generated	one.	Don’t	fret	if	this	doesn’t	make	complete	sense	to	you	right	now—
it	will	within	a	couple	of	chapters.	Perform	the	following	steps	(assume	that	all	paths	are
from	the	root	of	the	Luminus-generated	hipstr	application):

1.	 Open	the	src/hipstr/routes/home.clj	file.
2.	 Above	the	call	to	defroutes,	add	the	following	handler:

(defn	foo-response	[]

		{:status	200

				:headers	{"Content-Type"	"text/html"}

				:body	"<html><body><h1>Hello	World!</h1></body>

		</html>"})

3.	 Modify	the	/about	route	(the	last	line	in	the	file)	to	use	the	foo-response	handler
instead	of	the	home-page	handler:

(GET	"/about"	[]	(foo-response))

4.	 Open	your	browser	and	navigate	to	http://localhost:3000/about.	You’ll	now	see
a	simple	Hello	World!	instead	of	the	default	Luminus	About	page:

Note
Remember	to	keep	your	server	running	while	reading	this	book,	as	we’ll	be	doing
boatloads	of	examples.	Boatloads!	You	can	start	the	development	server	by	executing
the	following	command	from	the	root	of	your	hipstr	source	directory:

#	lein	ring	server

Congrats!	You	just	wrote	your	first	handler!	Pretty	simple,	right?	Don’t	worry	if	this	didn’t
make	a	whole	lot	of	sense,	we’ll	go	into	more	detail	in	Chapter	4,	URL	Routing	and
Template	Rendering.

Middleware
Middleware,	as	described	in	Chapter	1,	Getting	Started	With	Luminus,	are	functions	that
sit	between	the	adapter	and	the	handler.	A	middleware	function	accepts	a	handler	and
returns	a	new	handler	function.	Middleware	functions	have	complete	access	to	the	request
map	and/or	response	map.	As	such,	middleware	functions	can	perform	some	type	of	action
on	the	map	(such	as	adding	a	key,	or	logging	the	map	to	file)	before	passing	it	on	to	the
handler.

As	an	example,	let’s	write	a	middleware	function	that	adds	a	completely	meaningless	yet
excitable	key	to	the	request	map,	:go-bowling?,	and	then	consume	this	key	in	the	handler
we	just	created:

1.	 Open	the	src/hisptr/middleware.clj	file.
2.	 Right	after	the	namespace	declaration,	add	the	following	function,	which	takes	a

handler,	and	returns	a	new	handler	function	(which	in	turn	adds	a	new	key	to	the
request	map	and	calls	the	next	handler	in	the	chain):

(defn	go-bowling?	[handler]

		(fn	[request]

				(let	[request	(assoc	request	:go-bowling?	"YES!	NOW!")]

						(handler	request))))

3.	 In	the	development-middleware	definition,	add	our	new	go-bowling	middleware:

(def	development-middleware

		[go-bowling?

				wrap-error-page

				wrap-exceptions])

4.	 Back	in	the	src/hipstr/routes/home.clj,	adjust	the	:body	value	in	our	foo-
response	handler	to	emit	the	:go-bowling?	key	on	the	request	map.	Don’t	forget	to
adjust	the	handler’s	parameters	to	accept	the	request	map:

(defn	foo-response	[request]

		{:status	200

				:headers	{"Content-Type"	"text/html"}

				:body	(str	"<html><body><dt>Go	bowling?</dt>""<dd>"(:go-bowling?	

request)"</dd></body></html>")})

5.	 Lastly,	change	the	/about	route	to	make	use	of	the	request	map:

(GET	"/about"	request	(foo-response	request))

6.	 Finally,	refresh	your	page	at	http://localhost:3000/about	and	see	our	middleware
in	action!

You	just	became	a	middleware	wizard!	If	you’d	like	more	information	about	middleware
and	how	it’s	natively	used	in	Ring,	check	out	https://github.com/ring-
clojure/ring/wiki/Concepts#middleware.

https://github.com/ring-clojure/ring/wiki/Concepts#middleware

Adapters
Adapters	are	the	glue	between	the	underlying	HTTP	and	our	handlers.	The	Ring	library
comes	with	a	Jetty	adapter	([ring/ring-jetty-adapter	"1.3.0"]),	which	sits	between	a
Jetty	servlet	container	and	the	rest	of	the	application	stack.	At	a	high	level,	an	adapter	will
convert	the	incoming	HTTP	request	into	a	request	map,	pass	the	map	off	to	a	handler,	and
then	convert	the	returned	response	map	into	the	appropriate	servlet	HTTP	response	to	send
back	to	the	client.

Knowing	how	to	write	adapters	is	beyond	the	scope	of	this	book,	and	is	something	you	do
not	need	to	know	in	order	to	build	a	web	application	using	Clojure.

What	is	the	Ring	Server?
The	first	thing	to	know	is	that	Ring	and	the	Ring	Server	are	not,	I	repeat,	are	not	the	same
thing.	Whereas	Ring	provides	a	suite	of	libraries	which	abstract	the	underlying
implementation	details,	the	Ring	Server	library	provides	the	ability	to	start	an	actual	web
server	to	serve	a	Ring	handler.

Whenever	we	use	lein	ring	server	from	the	command	line,	we	start	the	Ring	Server
(there	are	other	ways,	but	we’ll	get	to	those	later	in	this	chapter,	and	in	Chapter	11,
Environment	Configuration	and	Deployment).	At	startup,	the	Ring	Server	will	execute	any
registered	application	initialization	hooks,	and	then	start	an	embedded	Jetty	server,	which
serves	our	application	handler.	Incoming	requests	are	then	processed	by	Ring,	as
described	in	the	previous	section,	until	we	shut	down	our	app.	On	shutdown,	Ring	stops
the	embedded	Jetty	server	and	executes	any	registered	shutdown	hooks.

We	can	see	this	in	the	interaction	between	our	hipstr.handler	and	hipstr.repl
namespaces.	Let’s	examine	the	hipstr.handler	namespace,	and	then	we’ll	see	how	the
hipstr.repl	namespace	uses	it.

hipstr.handler
The	hipstr.handler	namespace	is	the	bootstrap	to	our	application.	In	this,	we	define	an
initialization	hook,	a	shutdown	hook,	a	couple	of	application	routes,	and	the	application
handler.

Initialization	hooks
The	hipstr.handler/init	defines	the	initialization	hook	to	be	invoke	immediately	before
starting	the	embedded	Jetty	server.	Typically,	we	add	any	kind	of	application	runtime
configuration	and	invoke	any	other	components	required	for	the	duration	of	the
application.	For	example,	our	application	configures	various	Timbre	logging	appenders
and	initiates	the	session	manager.

(defn	init

		"init	will	be	called	once	when	app	is	deployed	as	a	servlet	on	an	app	

server	such	as	Tomcat

		put	any	initialization	code	here"

		[]

		;…snipped	for	brevity…

)

This	initialization	hook	is	configured	for	use	either	in	the	project	configuration	or	through
the	REPL	(discussed	later).

Shutdown	hooks
The	hipstr.handler/destroy	defines	the	shutdown	hook	to	invoke	immediately	before
exiting.	The	application	shutdown	hook	is	a	function	that	performs	anything	our
application	needs	to	do	before	it	permanently	exits,	such	as	stopping	the	session	manager,
or	emitting	a	log	statement	stating	the	application	is	shutting	down:

(defn	destroy

		"destroy	will	be	called	when	your	application

		shuts	down,	put	any	clean	up	code	here"

		[]

		;…snipped	for	brevity…)

The	shutdown	hook	is	configured	for	use	either	in	the	project	configuration,	or	through	the
REPL	(again,	which	we’ll	discuss	shortly).

App	routes
Routes	are	what	tie	a	request	to	a	specific	Ring	handler,	that	is,	which	URL	should	execute
which	chunk	of	code.	The	Compojure	library	provides	us	the	tools	to	tie	these	two	things
together.	We’ve	already	played	with	these	earlier	in	the	chapter,	when	we	fooled	around
with	the	/About	route	to	execute	the	foo-response	handler.

The	hipstr.handler/app-routes	defines	two	special	defroutes:	route/resources	and
route/not-found.

(defroutes	app-routes

		(route/resources	"/")

		(route/not-found	"Not	Found"))

The	(route/resources	"/")	route	defines	the	URL	from	which	our	static	resources	will
be	served	(found	in	the	hipstr/resources/public	directory).	For	example,	the	URL	to
our	hipstr/resources/public/css/screen.css	file	would	simply	be	/css/screen.css.
If	we	changed	our	resources	route	to	(route/resources	"/artifacts/"),	then	the	URL
to	the	same	screen.css	file	would	be	/artifacts/css/screen.css.

The	(route/not-found	"Not	Found")	defines	what	should	be	emitted	for	a	404	Not
Found	HTTP	response.	The	luminus	template	simply	defaults	to	Not	Found	(in	practice,
you’ll	likely	want	to	have	a	handler	that	renders	something	a	little	more	pretty).	Ring	will
take	the	"Not	Found"	parameter	and	insert	it	into	the	<body>	element	of	an	HTML
document	on	our	behalf.

Tip
True	story:	Ring	puts	anything	that	isn’t	a	Clojure	map	inside	the	<body>	element,	whereas
a	map	will	be	treated	as	a	Ring	response.

The	application	handler
The	real	meat	of	the	hipstr.handler	namespace	is	the	application	handler.	This	is	where
we	package	together	the	various	routes	and	middleware,	define	how	we	want	our	sessions
to	behave,	any	access	rules	to	protected	routes	(for	example,	authenticated-only	pages),
and	which	formats	should	be	serialized/deserialized	to	/from	EDN	in	the
requests/responses.	Let’s	define	the	application	handler:

(def	app	(app-handler

		;;	add	your	application	routes	here

		[home-routes	app-routes]

		;;	add	custom	middleware	here

		:middleware	(load-middleware)

		;;	timeout	sessions	after	30	minutes

		:session-options	{:timeout	(*	60	30)

		:timeout-response	(redirect	"/")}

		;;	add	access	rules	here

		:access-rules	[]

		;;	serialize/deserialize	the	following	data	formats

		;;	available	formats:

		;;	:json	:json-kw	:yaml	:yaml-kw	:edn	:yaml-in-html

		:formats	[:json-kw	:edn]))

The	app	handler	packages	our	entire	application,	which	will	receive	the	request	maps
from	Ring,	and	return	response	maps.	As	we	build	on	our	hipstr	example,	we	will	be
modifying	this	function	to	include	our	own	routes,	access	rules,	and	so	on.

hipstr.repl
The	hipstr.handler	namespace	defines	what	and	how	our	application	works,	whereas
the	hipstr.repl	namespace	actually	consumes	it	and	makes	it	all	run	through	the	Clojure
REPL.	The	hipstr.repl	namespace	is	considerably	more	simple	than	the
hipstr.handler	namespace;	it	merely	consists	of	an	atom	(to	store	a	Jetty	server	instance
returned	from	the	Ring	Server	library),	a	start-server	function,	a	stop-server	function,
and	a	get-handler	function.

Start-server
The	hipstr.repl/start-server	function	attempts	to	start	the	Ring	Server	on	a	given
port,	defaulting	to	port	3000.	It	also	forwards	the	application	handler	(returned	from	get-
handler)	along	with	any	runtime	options,	to	the	underlying	Jetty	server	(a	full	list	of
which	is	defined	at	https://github.com/weavejester/ring-server#usage).	Here	is	the	code	for
starting	the	Ring	Server:

;…	Snipped	for	brevity

(defonce	server	(atom	nil))

;…

(defn	start-server

		"used	for	starting	the	server	in	development	mode	from	REPL"

		[&	[port]]

		(let	[port	(if	port	(Integer/parseInt	port)	3000)]

				(reset!	server

						(serve	(get-handler)

								{:port	port

								:init	init																																;#1

								:auto-reload?	true

								:destroy	destroy																										;#2

								:join?	false}))																											;#3

								(println	(str	"You	can	view	the	site	at	http://localhost:"	port))))

The	:init	and	:destroy	keys	at	#1	and	#2	configure	the	initialization	and	shutdown
hooks,	respectively.	The	:join?	option	at	#3	will	determine	if	the	thread	will	wait	until	the
underlying	Jetty	instance	stops.	When	set	to	false,	the	Ring	Server	will	return	the	actual
Jetty	instance,	which	we	keep	a	reference	to	in	the	server	atom.	When	running	the	server
through	the	REPL,	it’s	best	to	keep	this	option	set	to	false,	thereby	allowing	us	to	stop
the	server	without	having	to	kill	our	REPL	session.

Stop-server
The	stop-server	function	simply	stops	the	retained	Jetty	instance,	and	then	destroys	it.

(defn	stop-server	[]

		(.stop	@server)

		(reset!	server	nil))

The	server	is	now	magically	stopped.

Get-handler

https://github.com/weavejester/ring-server#usage

The	get-handler	function	returns	our	hipstr.handler/app	handler,	exposes	the	static
resources	directory,	and	wraps	the	handler	with	one	last	bit	of	middleware,	which	adds	a
couple	more	headers	to	the	response.	The	added	middleware	also	returns	a	304	Not
Modified	response	if	it	detects	the	document	being	served	hasn’t	been	modified	since	the
previous	request:

(defn	get-handler	[]

		;;	#'app	expands	to	(var	app)	so	that	when	we	reload	our	code,

		;;	the	server	is	forced	to	re-resolve	the	symbol	in	the	var

		;;	rather	than	having	its	own	copy.	When	the	root	binding

		;;	changes,	the	server	picks	it	up	without	having	to	restart.

		(->	#'app

				;	Makes	static	assets	in

				;	$PROJECT_DIR/resources/public/	available.

				(wrap-file	"resources")

				;	Content-Type,	Content-Length,	and	Last	Modified	headers

				;	for	files	in	body

				(wrap-file-info)))

Configuring	and	running	the	Ring	Server
There	are	two	ways	you	can	run	the	Ring	Server.	The	first	is	by	loading	the	hipstr.repl
namespace	into	a	REPL	and	calling	start-server.	The	second	is	from	the	command	line
(which	we’ve	seen	earlier):

#	lein	ring	server

In	either	case,	an	embedded	Jetty	server	will	be	spun	up	to	serve	our	application	handler,
and	a	browser	will	pop	open.	If	you	don’t	want	the	browser	to	open,	you	can	run	the
server	in	the	headless	mode:

#	lein	ring	server-headless

How	we	start	the	server	determines	how	we	configure	the	server.	We’ve	already	seen	how
to	configure	the	server	when	running	through	the	REPL	(by	adjusting	the	options	map
that’s	passed	as	part	of	the	call	to	ring.server.standalone/serve),	but	how	do	we
configure	the	server	if	running	from	the	command	line?

The	lein	ring	command	is	made	available	through	the	lein-ring	plugin.	Luminus
includes	this	plugin	when	generating	the	project	for	us.	In	our	project	dependencies	file
(project.clj),	you’ll	see	the	following	lines	of	code:

:plugins	[[lein-ring	"0.8.13"]

		[lein-environ	"1.0.0"]

		[lein-ancient	"0.5.5"]]

The	plugin	offers	a	few	useful	subtasks,	but	the	immediately	beneficial	ones	are	the
server	and	server-headless	subtasks.

Both	of	these	subtasks	will	use	the	same	configuration,	configured	in	our	project.clj,
immediately	following	the	plugins	section:

:ring	{:handler	hipstr.handler/app

		:init				hipstr.handler/init

		:destroy	hipstr.handler/destroy}

The	options	map	should	look	familiar,	as	it’s	nearly	identical	to	the	options	map	we	pass
into	the	call	to	ring.server.standalone/serve	in	the	hipstr.repl	namespace.	The
main	difference	is	the	:handler	option,	which	points	to	our	hipstr.handler/app
application	handler,	whereas	in	the	hipstr.repl	namespace	we	pass	the	handler	directly.
In	essence,	running	the	Ring	Server	from	the	command	line	does	what	we	do	in
hipstr.repl/start-server.

You	can	play	around	starting	the	Ring	Server	from	the	command	line	and	specifying	some
additional	options	as	defined	at	https://github.com/weavejester/ring-server#usage.	For
example,	try	setting	the	:open-browser?	option	to	false.

:ring	{:handler	hipstr.handler/app

		:init	hipstr.handler/init

		:destroy		hipstr.handler/destroy

:open-browser?	false}

https://github.com/weavejester/ring-server#usage

With	:open-browser?	set	to	false	our	lein	ring	server	will	no	longer	open	a	browser,
much	like	lein	ring	server-headless.

Summary
Congratulations	on	successfully	making	it	through	the	driest	chapter	in	the	book!	A	cruel
but	necessary	exercise.	In	this	chapter,	you	learned	the	difference	between	Ring	and	the
Ring	Server.	We	got	a	taste	of	how	to	modify	route	behavior	by	creating	a	new	route
handler,	and	played	around	with	a	bit	of	middleware.	Finally,	you	learned	how	to	start	and
stop	the	Ring	Server	from	both	the	REPL	and	the	command	line,	and	how	to	configure
each,	respectively.	In	the	next	chapter,	we’re	going	to	take	a	look	at	a	developer’s	best	and
only	set	of	binoculars—logging.

Chapter	3.	Logging
We’ve	read	patiently	and	slugged	our	way	through	Chapter	2,	Ring	and	the	Ring	Server,
learning	the	technicalities	about	request	and	response	maps,	handlers,	middleware,	and
adapters.	The	time	has	come	for	us	to	start	getting	our	hands	dirty.

Logging	is	a	wonderful	tool	in	development,	and	is	essential	for	successfully	debugging	a
system	that’s	gone	completely	haywire.	Logging	is	the	eyes,	ears,	and	mouth	of	our
system.	It	is	our	saving	grace.	However,	logging	traditionally	has	a	dark	side.	If	you’ve
ever	used	Java	or	.NET,	you’ll	be	well	versed	in	log4j	and	log4net,	and	all	the
excruciatingly	painful	configurations	that	go	along	with	it.	While	logging	is	extremely
useful,	setting	it	up	correctly	is	nothing	short	of	a	clinic	in	patience.

In	this	chapter,	you	will	learn:

How	to	configure	Timbre	for	logging
How	to	reconfigure	one	of	the	appenders	configured	by	Luminus
How	to	configure	a	new	appender	from	scratch
How	to	emit	logging	statements

What	is	Timbre?
Timbre	is	a	full	Clojure	library	for	logging.	It’s	fast,	has	low	overhead,	and	has	many
interesting	appenders	out	of	the	box.	Most	importantly,	setting	it	up	is	relatively	easy	and
straightforward	compared	to	other	logging	libraries.

What	is	an	appender?
An	appender	is	the	term	used	for	anything	that	emits	a	logging	statement	to	a	destination.
For	example,	a	logger	that	writes	logging	statements	to	a	file	is	referred	to	as	a	file
appender,	and	a	logger	that	writes	to	a	MongoDB	database	is	a	MongoDB	appender
(which	natively	exists	in	Timbre).	Basically,	appender	is	a	fancy	pants	term	for	“writer”.
In	the	world	of	Timbre,	an	appender	is,	technically,	just	a	map	of	options,	one	of	which	is
the	appender	function	responsible	for	performing	the	actual	logging.

Configuring	a	Timbre	appender
An	appender’s	configuration	is	managed	by	a	single	function,	timbre/set-config!,
which	accepts	a	list	of	keys	identifying	the	type	of	appender,	and	the	appender	map,	which
is	the	actual	configuration	for	the	appender.

Taking	a	look	at	the	init	function	in	hipstr.handler,	the	first	thing	we	see	is	a	call	to
configure	Timbre:

(timbre/set-config!

		[:appenders	:rotor]

		{:min-level	:info

				:enabled?	true

				:async?	false	;	should	be	always	false	for	rotor

				:max-message-per-msecs	nil

				:fn	rotor/appender-fn})

The	preceding	snippet	configures	the	rotor	appender,	a	type	of	file	appender	that	creates	a
new	log	file	after	the	current	log	file	exceeds	a	specific	size.	Timbre’s	set-config!	has	a
similar	signature	and	behavior	to	Clojure’s	assoc-in
(https://clojuredocs.org/clojure.core/assoc-in)	function,	but	without	having	to	define	the
target	map	to	mutate.

Note
To	see	all	the	different	appenders	that	Timbre	ships	with	and	to	see	how	to	configure	each
of	them,	take	a	look	at	the	appenders’	source	at
https://github.com/ptaoussanis/timbre/tree/master/src/taoensso/timbre/appenders.

https://clojuredocs.org/clojure.core/assoc-in
https://github.com/ptaoussanis/timbre/tree/master/src/taoensso/timbre/appenders

Timbre	log	levels
A	log	level	is	the	severity	of	a	log	message.	In	order,	from	lowest	to	highest,	the	seven
Timbre	log	levels	are	:trace,	:debug,	:info,	:warn,	:error,	:fatal,	and	:report.	We
can	configure	which	appenders	listen	to	which	log	levels	by	either	setting	a	global	log
level	using	Timbre’s	set-level!,	or	on	a	case-by-case	basis	when	configuring	an
appender	using	:min-level,	as	we	did	in	our	preceding	example	snippet.

Note
There	are	other	ways	to	set	global	or	thread-level	minimum	log	levels,	but	they’re	not	as
convenient	or	useful.	You	can	read	more	about	those	in	the	configuration	section	of	the
Timbre	documentation.	To	see	all	the	different	appenders	that	Timbre	ships	with,	take	a
look	at	the	appenders’	source	at
https://github.com/ptaoussanis/timbre/tree/master/src/taoensso/timbre/appenders.

We	can	configure	multiple	appenders	with	multiple	calls	to	set-config!,	and	each
appender	can	respond	to	a	different	minimum	logging	level.	For	example,	perhaps	you’ll
want	to	use	a	file	appender	for	the	:info	level	and	above,	but	for	anything	fatal,	you’ll
want	to	also	use	an	email	appender	(also	included	as	part	of	the	Timbre	library,	called	a
postal	appender).	This	can	be	done	by	either	explicitly	setting	:min-level	on	each
appender’s	configuration,	or	by	setting	the	global	minimum	log	level	to	be	:info	using
Timbre’s	set-level!	setting	and	overriding	it	on	any	appender	that	requires	a	different
minimum	level.	Take	a	look	at	the	following	code	sample:

(require	‘[taoensso.timbre	:as	timbre]

									‘[taoensso.timbre.appenders.postal	:as	postal])

(timbre/set-level!	:info)

(timbre/set-config!	[:appenders	:postal]	

								(postal/make-postal-appender

										{:minlevel	:fatal}

										;...snipped	for	brevity…

))

In	the	preceding	snippet,	we	set	a	global	minimum	log	level	of	:info	using	set-level!.
However,	we	override	the	global	level	in	our	:postal	appender	such	that	the	appender
only	fires	off	emails	for	any	log	statements	that	are	at	least	:fatal.

https://github.com/ptaoussanis/timbre/tree/master/src/taoensso/timbre/appenders

Appender	configuration	keys
As	timbre/set-config!	is	modeled	after	Clojure’s	assoc-in	call,	the	keys	we	pass	must
map	to	Timbre’s	internal,	nested	configuration	map.	The	appender’s	configuration	keys
typically	match	the	name	of	the	appender’s	namespace,	so	the	configuration	of	the
taoensso.timbre.appenders.rotor	key	is	[:appenders	:rotor],	the	configuration	of
the	taoensso.timbre.appenders.mongo	key	is	[:appenders	:mongo],	and	so	on.
However,	it’s	always	best	to	take	a	quick	peek	at	the	code	on	GitHub	to	ensure	that	you’re
using	the	correct	keys.

Appender	map
The	appender	map,	like	the	appender	configuration	keys,	is	specific	to	the	appender	you’re
configuring.	Each	appender	will	have	its	own	set	of	options	defining	it	how	it	should
behave	(such	as	:path	for	the	rotor	appender).	However,	there	is	a	set	of	configuration
keys	that	are	common	to	all	appenders:

:min-level:	This	is	an	optional	key	and	the	minimum	emitted	log	level	required	to
actually	append	to	the	target.	By	default	it	is	set	to	all	levels.
:enabled?:	This	is	an	optional	key	and	it	has	a	true/false	value,	which
enables/disables	the	appender.	By	default	it	is	set	to	false.
:async?:	This	is	an	optional	key	and	it	also	has	a	true/false	value,	which	when	true,
will	call	the	appender	asynchronously	(good	for	slower	appenders,	such	as	a	database
appender	or	a	socket	appender).	By	default	it	is	set	to	false.
:rate-limit:	This	is	an	optional	key	and	limits	the	number	of	appender	calls	per
millisecond.	By	default	it	is	set	to	no	limit.
:fn:	This	is	a	required	key	and	the	function	for	the	appender	in	question.

There	are	a	few	other	more	advanced	options	but	you’ll	rarely,	if	ever,	need	to	use	them.
You	can	read	the	full	list	of	available	appender	configuration	options	at
https://github.com/ptaoussanis/timbre#configuration.

https://github.com/ptaoussanis/timbre#configuration

Shared	appender	configuration
The	next	thing	we	notice	in	the	hipstr.handler	namespace,	after	the	configuration	of	the
rotor	appender,	is	the	shared	configuration.

		(timbre/set-config!

				[:shared-appender-config	:rotor]

				{:path	"hipstr.log"	:max-size	(*	512	1024)	:backlog	10})

The	:shared-appender-config	is	a	configuration	shared	across	all	appenders,	despite
each	appender	having	its	own	section	within	the	shared	configuration.	It’s	shared	in	the
sense	that	it’s	blindly	sent	to	each	appender	at	runtime,	and	each	appender	knows	which
section	to	interrogate	to	get	its	settings.	It’s	like	having	a	shared	cheese	plate	that	you	pass
around	to	dinner	guests,	but	each	piece	of	cheese	is	different	and	is	labeled	with	a	specific
guest’s	name.	It’s	that	kind	of	“share”.

The	rotor	appender	uses	[:shared-appender-config	:rotor]	for	some	of	its	values.	We
know	this	by	checking	the	docstring	in	the	taoensso.timbre.appenders.rotor
namespace,	as	follows:

(def	rotor-appender

		{:doc	(str	"Simple	Rotating	File	Appender.\n"

													"Needs	:rotor	config	map	in	:shared-appender-config,		 				

e.g.:

													{:path	\"logs/app.log\"

														:max-size	(*	512	1024)

														:backlog	5}")

You	will	often	need	to	add	an	additional	configuration	to	:shared-appender-config	for
the	appender	you	want	to	use.	This	is	one	of	those	weird	idiosyncratic	“gotchas!”	that
often	appear	when	it	comes	to	logging.

Logging	with	Timbre
We	can	emit	a	log	statement	using	Timbre’s	log	function,	which	accepts—at	a	minimum
—the	log	level	and	a	message	to	emit.	The	following	code	shows	an	example	of	an	log
function.

(require	'[taoensso.timbre	:as	timbre])

(timbre/log	:info	"This	is	an	info	message.")

>>	2014-Nov-24	14:35:24	-0500	computer.local	INFO	[hipstr.handler]	-	This	

is	an	info	message.

Alternatively,	Timbre	makes	available	a	function	for	each	logging	level,	thus	relieving	us
from	having	to	specify	the	log	level	with	each	call,	as	shown	in	the	following	code:

(timbre/info	"This	is	an	info	message.")

Timbre’s	log	functions	are	similar	to	Clojure’s	str	and	println	functions,	as	we	can	pass
multiple	strings	to	produce	a	single	long	string:

(timbre/info	"This"	"is"	"an"	"info"	"message.")

No	logging	framework	would	be	complete	without	the	ability	to	log	exceptions.	Here	is	an
example	of	appending	an	Exception:

(timbre/error	(Exception.	"Aw	snap!")	"Something	bad	happened."	"It's	

really	awful.")

Appenders	will	only	emit	messages	that	are	emitted	at	a	log	level	equal	or	higher	to	their
minimum	log	level.	As	such,	the	following	will	not	actually	emit	anything.

(timbre/set-level!	:warn)

(timbre/debug	"You	will	never	see	this.")

As	:debug	is	a	lower	log	level	than	:warn,	the	preceding	debug	message	will	not	be
emitted.

Adding	an	appender
Luminus	generates	our	application	to	use	the	rotor	appender.	I	prefer	using	a	rolling
appender	instead	of	a	rotor	appender.	A	rolling	appender	is	a	file	appender,	like	the	rotor
appender,	however,	it	doesn’t	create	a	new	log	file	when	a	predetermined	maximum	size	is
hit.	Instead,	a	new	log	file	is	created	either	daily,	weekly,	or	monthly.	I	find	rolling
appenders	more	useful	in	production	environments	because	they	help	when	diagnosing
problems	that	have	happened	sometime	in	the	past	(you	have	a	better	idea	which	log	files
to	check).

In	this	section,	we’re	going	to	configure	a	rolling	appender	for	our	hipstr	application.

Adding	the	rolling	appender
We	can	put	our	rolling	logs	in	their	own	directory,	called	logs.	Unfortunately,	Timbre
doesn’t	create	directories	for	us,	so	we’ll	have	to	create	the	directory	first.	From	the
terminal,	add	a	logs	directory	in	the	hipstr	source	root:

#	mkdir	logs

Next,	in	our	hipstr.handler	namespace,	we’ll	want	to	refer	to	the
taoensso.timbre.appenders.rolling	namespace.	In	the	:require	block,	add	the
following	lines	of	code	below	the	rotor	import:

(:require	;...snipped	for	brevity…

		[taoensso.timbre.appenders.rotor	:as	rotor]

		[taoensso.timbre.appenders.rolling	:as	rolling]

		...)

To	add	a	rolling	appender,	we	will	use	the	assistance	of	the	rolling/make-rolling-
appender	function,	which	returns	a	rolling	appender	map	with	some	defaults	set
(:enabled?	true,	:min-level	nil,	:pattern	:daily).	However,	we	can	also	override
these	defaults	by	passing	in	an	override	map	when	we	make	the	call,	as	shown	in	the
following	code	snippet.	Add	the	following	block	of	code	to	the	start	of	the
hipstr.handler/init	function:

(timbre/set-config!	

	[:appenders	:rolling]

	(rolling/make-rolling-appender	{:min-level	:info}))

Next,	configure	the	location	where	the	log	files	should	be	emitted.	We	specify	this	in	the
same	place	as	we	did	for	the	rotor	appender,	as	part	of:shared-appender-config	using
following	lines	of	code:

(timbre/set-config!

	[:shared-appender-config	:rolling	:path]	"logs/hipstr.log")

Finally,	we	remove	the	two	calls	to	timbre/set-config!	that	deal	with	the	rotor
appender,	thus	removing	any	logging	to	the	original	hipstr.log	file	in	the	hipstr	root.	The
final	logging	configuration	in	hipstr.handler/init	is	now	simply	this:

(timbre/set-config!

	[:appenders	:rolling]

	(rolling/make-rolling-appender	{:min-level	:info}))

(timbre/set-config!

	[:shared-appender-config	:rolling	:path]	"logs/hipstr.log")

With	the	preceding	logging	configurations	intact,	any	log	statements	with	a	log	level	of
:info	or	above	will	be	logged	to	the	logs/hipstr.log	file.	In	addition,	the
logs/hipstr.log	file	will	always	be	the	current	day’s	log	file,	and	log	files	from	previous
days	will	be	found	in	the	logs	directory	with	the	pattern	hipstr.log.[year][month]
[day].

Summary
It	is	always	confounding	to	configure	logging	libraries.	In	this	chapter,	you	learned	that	it
doesn’t	have	to	be	impossible	when	using	Timbre.	You	learned	how	to	configure	existing
appenders,	as	well	as	adding	new	ones,	and	you	learned	the	value	of	always	reading	the
friendly	manual…	even	if	the	manual	is	docstrings	in	the	source	code.	You	can	use	your
new	found	knowledge	and	love	for	Timbre	if	you	need	to	debug	anything	in	the	next
chapter,	wherein	we	will	discuss	Compojure	route	handlers,	Selmer	templates,	and	we’ll
finally	create	our	first	page.

Chapter	4.	URL	Routing	and	Template
Rendering
So	far,	we’ve	looked	at	the	basics	of	getting	our	codebase	into	a	state	where	we	can	start
developing	some	of	the	meat	of	our	application.	It	hasn’t	been	very	exciting,	I	know.	In
this	chapter,	however,	we	will	start	building	our	application,	creating	actual	endpoints	that
process	HTTP	requests,	which	return	something	we	can	look	at.	In	this	chapter,	we	will:

Learn	what	the	Compojure	routing	library	is	and	how	it	works
Build	our	own	Compojure	routes	to	handle	an	incoming	request
Learn	what	the	Selmer	rendering	library	is	and	how	it	works
Create	our	own	Selmer	HTML	template

Note
What	this	chapter	won’t	cover,	however,	is	making	any	of	our	HTML	pretty,	client-
side	frameworks,	or	JavaScript.	Our	goal	is	to	understand	the	server-side/Clojure
components	and	get	up	and	running	as	quickly	as	possible.	As	a	result,	our	templates
are	going	to	look	pretty	basic,	if	not	downright	embarrassing.

What	is	Compojure?
Compojure	is	a	small,	simple	library	that	allows	us	to	create	specific	request	handlers	for
specific	URLs	and	HTTP	methods.	In	other	words,	“HTTP	Method	A	requesting	URL	B
will	execute	Clojure	function	C“.	By	allowing	us	to	do	this,	we	can	create	our	application
in	a	sane	way	(URL-driven),	and	thus	architect	our	code	in	some	meaningful	way.

Note
For	the	studious	among	us,	the	Compojure	docs	can	be	found	at
https://github.com/weavejester/compojure/wiki.

https://github.com/weavejester/compojure/wiki

Creating	a	Compojure	route
Let’s	do	an	example	that	will	allow	the	awful	sounding	tech	jargon	to	make	sense.	We	will
create	an	extremely	basic	route,	which	will	simply	print	out	the	original	request	map	to	the
screen.	Let’s	perform	the	following	steps:

1.	 Open	the	home.clj	file.
2.	 Alter	the	home-routes	defroute	such	that	it	looks	like	this:

(defroutes	home-routes

		(GET	"/"	[]	(home-page))

		(GET	"/about"	[]	(about-page))

		(ANY	"/req"	request	(str	request)))

3.	 Start	the	Ring	Server	if	it’s	not	already	started.
4.	 Navigate	to	http://localhost:3000/req.

Note
It’s	possible	that	your	Ring	Server	will	be	serving	off	a	port	other	than	3000.	Check
the	output	on	lein	ring	server	for	the	serving	port	if	you’re	unable	to	connect	to
the	URL	listed	in	step	4.

You	should	see	something	like	this:

Using	defroutes
Before	we	dive	too	much	into	the	anatomy	of	the	routes,	we	should	speak	briefly	about
what	defroutes	is.	The	defroutes	macro	packages	up	all	of	the	routes	and	creates	one
big	Ring	handler	out	of	them.	Of	course,	you	don’t	need	to	define	all	the	routes	for	an
application	under	a	single	defroutes	macro.	You	can,	and	should,	spread	them	out	across
various	namespaces	and	then	incorporate	them	into	the	app	in	Luminus’	handler
namespace.	Before	we	start	making	a	bunch	of	example	routes,	let’s	move	the	route	we’ve
already	created	to	its	own	namespace:

1.	 Create	a	new	namespace	hipstr.routes.test-routes
(/hipstr/routes/test_routes.clj)	.	Ensure	that	the	namespace	makes	use	of	the
Compojure	library:

(ns	hipstr.routes.test-routes

		(:require	[compojure.core	:refer	:all]))

2.	 Next,	use	the	defroutes	macro	and	create	a	new	set	of	routes,	and	move	the	/req
route	we	created	in	the	hipstr.routes.home	namespace	under	it:

(defroutes	test-routes

		(ANY	"/req"	request	(str	request)))

3.	 Incorporate	the	new	test-routes	route	into	our	application	handler.	In
hipstr.handler,	perform	the	following	steps:

1.	 Add	a	requirement	to	the	hipstr.routes.test-routes	namespace:

(:require	[compojure.core	:refer	[defroutes]]

		[hipstr.routes.home	:refer	[home-routes]]

		[hipstr.routes.test-routes	:refer	[test-routes]]

		…)

2.	 Finally,	add	the	test-routes	to	the	list	of	routes	in	the	call	to	app-handler:

(def	app	(app-handler

		;;	add	your	application	routes	here

		[home-routes	test-routes	base-routes]

We’ve	now	created	and	incorporated	a	new	routing	namespace.	It’s	with	this	namespace
where	we	will	create	the	rest	of	the	routing	examples.

Anatomy	of	a	route
So	what	exactly	did	we	just	create?	We	created	a	Compojure	route,	which	responds	to	any
HTTP	method	at	/req	and	returns	the	result	of	a	called	function,	in	our	case	a	string
representation	of	the	original	request	map.

Defining	the	method
The	first	component	of	the	route	defines	which	HTTP	method	the	route	will	respond	to;
our	route	uses	the	ANY	macro,	which	means	our	route	will	respond	to	any	HTTP	method.
Alternatively,	we	could	have	restricted	which	HTTP	methods	the	route	responds	to	by
specifying	a	method-specific	macro.	The	compojure.core	namespace	provides	macros	for
GET,	POST,	PUT,	DELETE,	HEAD,	OPTIONS,	and	PATCH.

Let’s	change	our	route	to	respond	only	to	requests	made	using	the	GET	method:

(GET	"/req"	request	(str	request))

When	you	refresh	your	browser,	the	entire	request	map	is	printed	to	the	screen,	as	we’d
expect.	However,	if	the	URL	and	the	method	used	to	make	the	request	don’t	match	those
defined	in	our	route,	the	not-found	route	in	hipstr.handler/base-routes	is	used.	We
can	see	this	in	action	by	changing	our	route	to	listen	only	to	the	POST	methods:

(POST	"/req"	request	(str	request))

If	you	try	and	refresh	the	browser	again,	you’ll	notice	we	don’t	get	anything	back.	In	fact,
an	“HTTP	404:	Page	Not	Found”	response	is	returned	to	the	client.	If	we	POST	to	the
URL	from	the	terminal	using	curl,	we’ll	get	the	following	expected	response:

#	curl	-d	{}	http://localhost:3000/req

{:ssl-client-cert	nil,	:go-bowling?	"YES!	NOW!",	:cookies	{},	:remote-addr	

"0:0:0:0:0:0:0:1",	:params	{},	:flash	nil,	:route-params	{},	:headers	

{"user-agent"	"curl/7.37.1",	"content-type"	"application/x-www-form-

urlencoded",	"content-length"	"2",	"accept"	"*/*",	"host"	

"localhost:3000"},	:server-port	3000,	:content-length	2,	:form-params	{},	

:session/key	nil,	:query-params	{},	:content-type	"application/x-www-form-

urlencoded",	:character-encoding	nil,	:uri	"/req",	:server-name	

"localhost",	:query-string	nil,	:body	#<HttpInput	

org.eclipse.jetty.server.HttpInput@38dea1>,	:multipart-params	{},	:scheme	

:http,	:request-method	:post,	:session	{}}

Defining	the	URL
The	second	component	of	the	route	is	the	URL	on	which	the	route	is	served.	This	can	be
anything	we	want	and	as	long	as	the	request	to	the	URL	matches	exactly,	the	route	will	be
invoked.	There	are,	however,	two	caveats	we	need	to	be	aware	of:

Routes	are	tested	in	order	of	their	declaration,	so	order	matters.
The	trailing	slash	isn’t	handled	well.	Compojure	will	always	strip	the	trailing	slash
from	the	incoming	request	but	won’t	redirect	the	user	to	the	URL	without	the	trailing
slash.	As	a	result	an	HTTP	404:	Page	Not	Found	response	is	returned.	So	never	base
anything	off	a	trailing	slash,	lest	ye	peril	in	an	ocean	of	confusion.

Parameter	destructuring
In	our	previous	example	we	directly	refer	to	the	implicit	incoming	request	and	pass	that
request	to	the	function	constructing	the	response.	This	works,	but	it’s	nasty.	Nobody	ever
said,	I	love	passing	around	requests	and	maintaining	meaningless	code	and	not	leveraging
URLs,	and	if	anybody	ever	did,	we	don’t	want	to	work	with	them.	Thankfully,	Compojure
has	a	rather	elegant	destructuring	syntax.

Let’s	create	a	second	route	that	allows	us	to	define	a	request	map	key	in	the	URL,	then
simply	prints	that	value	in	the	response:

(GET	"/req/:val"	[val]	(str	val))

Compojure’s	destructuring	syntax	binds	HTTP	request	parameters	to	variables	of	the	same
name.	In	the	previous	syntax,	the	key	:val	will	be	in	the	request’s	:params	map.
Compojure	will	automatically	map	the	value	of	{:params	{:val…}}	to	the	symbol	val	in
[val].	In	the	end,	you’ll	get	the	following	output	for	the	URL
http://localhost:3000/req/holy-moly-molly:

That’s	pretty	slick	but	what	if	there	is	a	query	string?	For	example,
http://localhost:3000/req/holy-moly-molly!?more=ThatsAHotTomalle.	We	can
simply	add	the	query	parameter	more	to	the	vector,	and	Compojure	will	automatically
bring	it	in:

(GET	"/req/:val"	[val	more]	(str	val	"
"	more))

Destructuring	the	request

What	happens	if	we	still	need	access	to	the	entire	request?	It’s	natural	to	think	we	could	do
this:

(GET	"/req/:val"	[val	request]	(str	val	"
"	request))

However,	request	will	always	be	nil	because	it	doesn’t	map	back	to	a	parameter	key	of
the	same	name.	In	Compojure,	we	can	use	the	magical	:as	key:

(GET	"/req/:val"	[val	:as	request]	(str	val	"
"	request))

This	will	now	result	in	request	being	assigned	the	entire	request	map,	as	shown	in	the
following	screenshot:

Destructuring	unbound	parameters

Finally,	we	can	bind	any	remaining	unbound	parameters	into	another	map	using	&.	Take	a
look	at	the	following	example	code:

(GET	"/req/:val/:another-val/:and-another"

		[val	&	remainders]	(str	val	"
"	remainders))

Saving	the	file	and	navigating	to	http://localhost:3000/req/holy-moly-molly!/what-
about/susie-q	will	render	both	val	and	the	map	with	the	remaining	unbound	keys
:another-val	and	:and-another,	as	seen	in	the	following	screenshot:

Constructing	the	response
The	last	component	in	the	route	is	the	construction	of	the	response.	Whatever	the	third
argument	resolves	to	will	be	the	body	of	our	response.	For	example,	in	the	following
route:

(GET	"/req/:val"	[val]	(str	val))

The	third	component,	(str	val),	will	echo	whatever	the	value	passed	in	on	the	URL	is.

So	far,	we’ve	simply	been	making	calls	to	Clojure’s	str	but	we	can	just	as	easily	call	one
of	our	own	functions.	Let’s	add	another	route	to	our	hipstr.routes.test-routes,	and
write	the	following	function	to	construct	its	response:

(defn	render-request-val	[request-map	&	[request-key]]

		"Simply	returns	the	value	of	request-key	in	request-map,

		if	request-key	is	provided;	Otherwise	return	the	request-map.

		If	request-key	is	provided,	but	not	found	in	the	request-map,

		a	message	indicating	as	such	will	be	returned."

(str	(if	request-key

								(if-let	[result	((keyword	request-key)	request-map)]

										result

										(str	request-key	"	is	not	a	valid	key."))

								request-map)))

(defroutes	test-routes

		(POST	"/req"	request	(render-request-val	request))

		;no	access	to	the	full	request	map

		(GET	"/req/:val"	[val]	(str	val))

		;use	:as	to	get	access	to	full	request	map

		(GET	"/req/:val"	[val	:as	full-req]	(str	val	"
"	full-req))

		;use	&	to	get	access	to	the	remainder	of	unbound	symbols

		(GET	"/req/:val/:another-val/:and-another"	[val	&	remainders]

				(str	val	"
"	remainders))

		;use	:as	to	get	access	to	unbound	params,	and	call	our	route

		;handler	function

		(GET	"/req/:key"	[key	:as	request]

				(render-request-val	request	key)))

Now	when	we	navigate	to	http://localhost:3000/req/server-port,	we’ll	see	the
value	of	the	:server-port	key	in	the	request	map…	or	wait…	we	should…	what’s
wrong?

If	this	doesn’t	seem	right,	it’s	because	it	isn’t.	Why	is	our	/req/:val	route	getting
executed?	As	stated	earlier,	the	order	of	routes	is	important.	Because	/req/:val	with	the
GET	method	is	declared	earlier,	it’s	the	first	route	to	match	our	request,	regardless	of
whether	or	not	:val	is	in	the	HTTP	request	map’s	parameters.	Routes	are	matched	on
URL	structure,	not	on	parameters	keys.	As	it	stands	right	now,	our	/req/:key	will	never
get	matched.	We’ll	have	to	change	it	as	follows:

;use	&	to	get	access	to	unbound	params,	and	call	our	route	handler

function

(GET	"/req/:val/:another-val/:and-another"	[val	&	remainders]

(str	val	"
"	remainders))

;giving	the	route	a	different	URL	from	/req/:val	will	ensure	its

execution

(GET	"/req/key/:key"	[key	:as	request]	(render-request-val

request	key)))

Now	that	our	/req/key/:key	route	is	logically	unique,	it	will	be	matched	appropriately
and	render	the	server-port	value	to	screen.	Let’s	try	and	navigate	to
http://localhost:3000/req/key/server-port	again:

Generating	complex	responses
What	if	we	want	to	create	more	complex	responses?	How	might	we	go	about	doing	that?
The	last	thing	we	want	to	do	is	hardcode	a	whole	bunch	of	HTML	into	a	function,	it’s	not
1995	anymore,	after	all.	This	is	where	the	Selmer	library	comes	to	the	rescue.

What	is	Selmer?
Selmer	is	a	pure	Clojure	template	system.	Taking	big	inspiration	from	Django,	Selmer
provides	a	familiar	syntax	to	one	of	the	leading	template	systems	in	the	world.	With
simple	syntax,	Selmer	allows	us	to	create	text	files	and	bind	values	within	those	files	to
symbols	you	define	in	Clojure.	Additionally,	Selmer	provides	syntax	to	perform
conditional	rendering,	looping,	template	inheritance,	and	so	on.

Note
Instead	of	covering	Selmer	in	its	entirety,	we	will	only	cover	that	which	we	need,	and	at
the	time	when	we	need	it.	For	a	more	comprehensive	overview	of	Selmer,	I	encourage	you
to	visit	https://github.com/yogthos/selmer.

https://github.com/yogthos/selmer

Creating	your	first	page
This	is	a	tad	misleading.	Instead	of	creating	a	brand	new	page,	we’re	going	to	modify	the
existing	home	page	and	cover	a	couple	of	things	about	Selmer	along	the	way.	But	first,	we
need	to	determine	where	the	HTML	is	for	the	home	page.

Recall	that	our	hipstr.handler/app	uses	three	Ring	handlers:	home-routes,	base-
routes,	and	test-routes.	We	know	that	test-routes	doesn’t	handle	the	home	page
because	we	just	created	it,	and	we	can	see	that	base-routes	is	defined	in	hipstr.handler
and	is	responsible	for	handling	“HTTP	404:	Page	Not	Found”	responses	and	requests	to
our	static	resources.	This	leaves	the	home-routes,	which	in	hindsight,	is	pretty	obvious
given	the	name.

The	home-routes	handler	is	defined	in	the	hipstr.routes.home	namespace
(/src/hipstr/routes/home.clj).	The	namespace	defines	two	routes	and	two	functions
responsible	for	rendering	each	respective	route’s	response.	Notably,	we	see	the	following
code	right	near	the	bottom:

(GET	"/"	[]	(home-page))

This	route	serves	hipstr’s	root	page,	whose	content	is	generated	by	the	home-page
function.

Rendering	a	page
The	home-page	function	isn’t	doing	much.	In	fact,	all	it	does	is	call
hipstr.layout/render,	and	provide	the	template	name	and	a	context	map	of	values:

(defn	home-page	[]

		(layout/render

		"home.html"	{:content	(util/md->html	"/md/docs.md")}))

Note
The	preceding	code	shines	a	golden	nugget	about	Luminus:	it	supports	rendering
Markdown	out	of	the	box.	This	book	will	not	get	into	Markdown,	however,	you	can	read
about	its	splendid	syntax	at	http://daringfireball.net/projects/markdown/syntax.

The	home.html	template	in	/resources/templates/home.html	is	where	the	visual	meat
of	this	route	lives.	Ultimately,	it’s	just	an	HTML	file	with	some	Selmer	markup.	Let’s
discuss	a	few	basic	things	about	Selmer	markup	before	we	start	tearing	away	at	the
template,	specifically	variables,	tags,	and	filters.

Variables
A	templating	system	wouldn’t	be	very	useful	if	it	didn’t	have	the	notion	of	variables.	If	we
didn’t	have	variables,	then	we’d	never	be	able	to	get	dynamic	data	into	our	template	and
then	all	the	puppies	in	the	world	would	suddenly	be	very,	very	sad.

Variables	in	Selmer	are	denoted	using	double	curly	braces,	such	as	{{variable-name}}.
The	value	of	the	variable	is	determined	by	a	matching	key	in	the	context	map	passed	to	the
template	via	the	layout/render	function.	In	the	home-route	function,	explained
previously,	we	passed	a	context	map	with	a	single	key:

{:content	(util/md->html	"/md/docs.md")}

That	key	is	now	available	as	a	Selmer	variable	called	content,	and	we	can	render	its
HTML	escaped	value	to	the	browser	by	sticking	it	between	two	curlies:

{{content}}

This	is	exactly	what	is	happening	in	the	/resources/templates/home.html	file:

<div	class="row-fluid">

		<div	class="span8">

				{{content|safe}}

		</div>

</div>

Assuming	a	context	map	of	{:content	"Hello	World!"},	the	preceding	fragment	would
actually	be	rendered	as	this:

<div	class="row-fluid">

		<div	class="span8">

				Hello	World!

		</div>

</div>

http://daringfireball.net/projects/markdown/syntax

Note
What’s	up	with	that	|safe	bit?	We’ll	get	to	that	in	a	bit.	For	now,	just	assume	that	it	means
you	are	blindly	trusting	that	the	content	is	nothing	malicious.

Variables	don’t	have	to	be	flat,	however,	they	can	also	be	structured.	For	example,	pretend
we	had	the	following	context	map:

{:person	{:first-name	"Ryan"

														:last-name	"Baldwin"

														:favourite-animal	"Elephant"}}

This	would	resolve	to	a	structured	Selmer	variable	that	we	could	dig	into	using	dot-
notation.

<div	class="row-fluid">

		<div	class="span8">

				Hello	{{person.first-name}}	{{person.last-name}}!

				I	see	your	favourite	animal	is	the

				{{person.favourite-animal}}.	How	exciting!

		</div>

</div>

However,	what	happens	if	we	try	and	pull	the	value	of	a	variable	that’s	not	defined	in	the
context	map?	For	example,	what	if	we	changed	the	preceding	code	to	read:

I	see	you	prefer	your	{{person.favourite-animal}}	to	be	{{person.favorite-

color}}.	How	odd.

Since	our	context	map	did	not	define	a	favorite-color	key,	{{person.favorite-
color}}	will	simply	resolve	to	an	empty	string.

Filters
Filters	are	basically	functions	that	operate	over	a	variable’s	value.	In	our	previous
discussion	about	variables,	we	saw	the	following	code:

{{content|safe}}

Here,	we	apply	the	safe	filter	to	the	value	of	content	or,	put	another	way,	we	are	passing
the	value	of	content	into	the	function	that	sits	behind	the	safe	filter.	The	result	of	the
filter	is	what’s	subsequently	rendered.	In	our	example,	safe	restricts	HTML	escaping	the
value	of	content.	So,	if	the	value	of	content	was	something	like	<h1>Hello	World!</h1>,
applying	the	safe	filter	would	render	that	value	into	the	DOM	verbatim,	instead	of	HTML
escaping	it	to	<h1>Hello	World!</h1>.

Filter	parameters
Some	filters	require	arguments	above	and	beyond	the	value	we’re	applying	the	filter	to,
such	as	the	default	filter.	The	default	filter	allows	us	to	define	a	default	value	to	use—
other	than	an	empty	string—if	the	variable’s	value	has	not	been	set.	As	such,	we	need	to
provide	the	default	filter	with	what	we	want	that	value	to	be.	We	do	this	using	a	colon:

{{content|default:"This	is	some	default	crud."}}

This	will	render	the	value	of	content,	or	if	content	is	not	set,	render	This	is	some
default	crud.

Note
You	can	read	a	complete	list	of	Selmer’s	built-in	filters	at
https://github.com/yogthos/Selmer#built-in-filters-1.

Tags
Whereas	variables	live	inside	{{	}},	tags	live	inside	{%	%}.	Selmer	tags	are	something
like	commands	or	instructions.	Some	of	them	are	a	simple	one	line	statement	called	inline
tags,	such	as	include.	Others	contain	a	content	body	(which	I’ll	refer	to	as	content	tags,
for	the	purpose	of	avoiding	ambiguity),	such	as	if	and	block.	All	of	them,	however,
contain	some	kind	of	expression	with	varying	complexity,	respective	to	the	tag.

For	example,	the	include	tag’s	expression	is	the	absolute	path	to	the	file	we	want	to
include	at	that	location	in	the	page:

{%	include	"templates/some-other-template.html"	%}

Comparatively,	the	if	tag	requires	an	expression	of	truthiness	and	a	content	block:

{%	if	5	>	4	%}

		<h2>Newsflash!</h2>

		<p>Five	is	always	bigger	than	4.</p>

{%	endif	%}

In	this	scenario,	the	content	block	(HTML	fragment)	will	only	be	rendered	if	the
expression	in	the	if	tag	evaluates	to	true	(which	it	always	is	in	our	case).

Note
Selmer	has	just	over	a	dozen	different	tags	available	at	your	disposal,	which	you	can	read
at	https://github.com/yogthos/Selmer#built-in-tags-1.

https://github.com/yogthos/Selmer#built-in-filters-1
https://github.com/yogthos/Selmer#built-in-tags-1

Template	inheritance
Like	many	templating	libraries,	Selmer	allows	a	form	of	template	inheritance.	Templates
can	extend	other	templates	through	the	use	of	block	tags,	which	define	a	content	body	that
can	be	overwritten	by	child	templates.	If	we	open	the	base.html	template
(/resources/templates/base.html),	we	see	the	following	snippet	near	the	middle	of
page:

<div	class="container">

		{%	block	content	%}

		{%	endblock	%}

</div>

Here,	we’ve	defined	a	block	called	content,	but	without	any	copy.	The	idea	being	that	any
template	that	inherits	this	template	can	populate	this	block’s	copy	by	defining	block	with
the	same	name	in	the	child.	For	example,	say	we	had	the	following	lines	of	code:

<!--	parent.html	-->

<div	class="example">

{%	block	example-content	%}

{%	endblock	%}

</div>

<!--	child.html	-->

{%	extends	"parent.html"	%}

{%	block	example-content	%}

Press	the	button	to	get	the	party	started.	<button>Start	Party</button>

{%	endblock	%}

If	we	were	to	render	child.html,	the	actual	output	would	be:

<div	class="example">

Press	the	button	to	get	the	party	started	<button>Start	Party</button>

</div>

However,	if	we	were	to	render	parent.html,	the	content	would	be	empty:

<div	class="example">

</div>

Editing	the	home	page
For	our	app,	we	don’t	want	to	have	links	back	to	the	Luminus	home	page.	We	are	going	to
modify	the	home	page	such	that	it	behaves	as	a	simple	launch	pad	to	either	a	sign	up	form
or	a	login	form.	Open	the	resources/templates/home.html	file	and	change	it	so	that	it
looks	like	this:

{%	extends	"templates/base.html"	%}

{%	block	content	%}

		<div	class="jumbotron">

				<h1>Welcome	to	hipstr</h1>

				<p>Obscurely	building	your	vinyl	cred	since,	like,	now.</p>

				<p><a	class="btn	btn-success	btn-lg"	href="{{servlet-

context}}/signup">Sign	Up

				or

				<a	class="btn	btn-primary	btn-lg"	href="{{servlet-

context}}/login">Login</p>

		</div>

{%	endblock	%}

Note
We	see	{{servlet-context}}	in	the	preceding	code.	Java	application	containers	(such	as
Glassfish	or	Tomcat)	typically	deploy	applications	at	a	location	other	than	root,	for
example	/hipstr-application.	By	prefixing	our	href	sources	with	{{servlet-
context}},	Luminus	will	handle	the	servlet	context	URI	for	us.

Save	the	file,	refresh	the	screen,	and	be	amazed	at	the	beauty.	You	should	see	something
like	the	following:

However,	clicking	on	either	of	those	buttons	will	give	a	404	error.	So	let’s	create	a	route

that	can	serve	the	sign	up	form.

Serving	the	signup	form
For	now,	we’ll	just	use	the	existing	src/hipstr/routes/home.clj	file	to	house	our	route
to	the	sign	up	form.	Our	sign	up	form	will	use	the	POST	method	to	send	the	data	to	a
different	URL,	so	the	route	to	the	sign	up	form	itself	needs	to	be	GET.	Adjust
hipstr.routes.home/home-routes	to	look	like	this:

(defroutes	home-routes

		(GET	"/"	[]	(home-page))

		(GET	"/about"	[]	(about-page))

		(GET	"/signup"	[]	"Hey	there,	welcome	to	the	signup	page!"))

Now	when	you	save	this	and	click	the	sign	up	button,	we	get	a	cute	but	completely	useless
salutation.	So,	let’s	get	a	little	creative	and	create	the	actual	sign	up	page.

Creating	the	signup	page
We	are	programmers,	and	therefore,	we	are	lazy.	As	such,	we’re	going	to	create	a	new
template	at	resources/templates/signup.html	and	have	it	extend	our	base	template.
This	way,	all	we	need	to	worry	about	is	the	content	of	the	actual	login	form	and	a	heading.
This	is	the	beauty	of	template	inheritance:

{%	extends	"templates/base.html"	%}

{%	block	content	%}

<h1>Sign	Up	Nobody	will	ever	know.</h1>

<div	class="row">

		<div	class="col-md-6">

				<form	role="form">

				<div	class="form-group">

						<label	for="username">Username</label>

						<input	type="input"	class="form-control"	name="username"	

placeholder="AtticusButch">

				</div>

				<div	class="form-group">

						<label	for="email">Email	address</label>

						<input	type="email"	class="form-control"	name="email"	

placeholder="so1999@hotmail.com">

				</div>

				<div	class="form-group">

						<label	for="password">Password</label>

						<input	type="password"	class="form-control"	name="password"	

placeholder="security-through-obscurity">

				</div>

				<button	type="submit"	class="btn	btn-default">Submit</button>

				</form>

		</div>

</div>

{%	endblock	%}

If	you	save	and	refresh	http://localhost:300/signup,	you’ll	notice	we	still	see	the
goofy	salutation.	That’s	because	we	haven’t	adjusted	our	sign	up	route	to	render	the
template.

Back	in	the	hipstr.routes.home	namespace,	add	a	new	function,	signup-page,	which	is
responsible	for	rendering	the	sign	up	page.	We	can	use	the	hipstr.layout/render
function	to	handle	it	for	us:

(defn	signup-page	[]

		(layout/render	"signup.html"))

Finally,	get	rid	of	that	goofy	salutation	in	the	sign	up	route	and	replace	it	with	a	call	to
signup-page:

(GET	"/signup"	[]	(signup-page))

Now	when	you	save	and	refresh,	you’ll	see	your	new	form:

Summary
In	this	chapter,	you	learned	how	to	route	incoming	requests,	extract	their	parameters,	and
pass	them	to	Clojure	functions	using	Compojure.	You	also	learned	how	to	create,	render,
and	serve	an	HTML	template	using	Selmer.	We	created	a	couple	of	fancy	buttons	and	a
pretty	bare	bones	HTML	form.	However,	currently	that	form	doesn’t	do	a	whole	lot.	In	the
next	chapter,	you’ll	learn	how	to	accept	and	validate	form	input.	Wow!	Talk	about	a
chapter!	Am	I	right?!

Chapter	5.	Handling	Form	Input
In	the	previous	chapter,	we	created	a	route	handler	to	serve	a	sign	up	form.	We	also
created	the	Selmer	HTML	template	for	this	form,	and	as	of	now,	it	renders	and	looks
pretty	when	we	hit	http://localhost:3000/signup.	In	this	chapter,	we’re	going	to	take
it	a	bit	further	by:

Creating	an	endpoint	to	which	the	form	will	POST
Validating	the	form	input
Reporting	any	form	validation	errors	back	to	the	user
Rendering	a	success	template	upon	successful	signup

Handling	the	form	POST
There	are	typically	three	things	we	need	to	do	when	handling	form	input:	validate	the
input,	show	an	error	message	if	the	input	is	invalid,	and	show	a	success	message	when	the
input	is	valid	and	accepted.

In	order	for	us	to	validate	the	form	input,	we	need	to	create	a	route	where	the	form	will
POST.	We	made	a	number	of	these	in	the	previous	chapter,	so	we’ll	draw	on	that
experience	and	pattern.

Let’s	create	a	new	route	for	the	same	URL,	/signup,	but	this	time	we’ll	ensure	that	it
accepts	a	POST	request	instead	of	a	GET	request.	We’ll	put	it	along	with	the	existing
/signup	GET	route	in	our	hipstr.routes.home	namespace:

(defroutes	home-routes

		(GET			"/"								[]							(home-page))

		(GET			"/about"			[]							(about-page))

		(GET			"/signup"		[]							(signup-page))

		(POST		"/signup"		[&	form]	(str	"nice	job"))

We	now	have	two	routes	for	the	same	URL,	one	that	will	handle	the	GET	request,	and
another	that	will	handle	the	POST	request.	You’ll	notice	that	GET	doesn’t	care	about	any
parameters,	however,	POST	uses	Compojure’s	get	the	rest	of	the	request	map	parameters
destructuring	syntax.	This	is	just	a	bit	of	semantic	sugar	so	that	it’s	clear	that	we’re
working	with	just	the	values	posted	from	the	form	instead	of	the	entire	request	map.

That	being	said,	the	POST	route	doesn’t	do	a	whole	lot	for	us	at	this	point	other	than	giving
us	a	slightly	sarcastic	“nice	job”.	Let’s	create	a	function	similar	to	the	existing
hipstr.routes.home/signup-page	function	to	handle	the	POST	/signup	response.

First,	we	need	to	make	use	of	the	ring.util.response	namespace,	as	it	has	a	function	to
issue	a	response	redirect,	which	we	can	use	to	redirect	the	user	to	a	sign	up	success	page.
Add	the	following	to	the	hipster.routes.home	namespace’s	:require	key:

[ring.util.response	:as	response]

Next,	we’ll	write	the	function	to	determine	the	appropriate	response:

(defn	signup-page-submit	[user]

		#_(let	[errors	(signup/validate-signup	user)]

				(if	(empty?	errors)

						(response/redirect	"/signup-success")

						(layout/render	"signup.html"	(assoc	user	:errors	errors)))))

In	the	preceding	function,	we	validate	the	form	using	the	hipstr.signup	namespace
(which	we’ll	create	next)	and	then,	if	successful,	redirect	the	user	to	a	sign	up	success
page;	otherwise,	we	repopulate	the	form	and	display	the	validation	errors.

Note
For	now	we’ve	commented	out	the	let	form,	so	that	we	can	compile	and	refresh	our	pages
as	often	as	we	like	until	the	signup	namespace	is	implemented.

Before	we	create	the	hipstr.signup	namespace,	let’s	quickly	change	our	route	handler	to
make	use	of	the	signup-page-submit	function	and	add	a	route	for	the	success	page:

(defroutes	home-routes

		(GET			"/"								[]							(home-page))

		(GET			"/about"			[]							(about-page))

		(GET			"/signup"		[]							(signup-page))

		(POST		"/signup"		[&	form]	(signup-page-submit	form))

		(GET	"/signup-success"	[]	"Success!"))

Validating	the	form	POST
We	might	write	perfect	code	but,	unfortunately,	our	users	are	mere	mortals	and	thus	are
prone	to	giving	us	cruddy	data	by	mistake.	If	you	recall,	in	Chapter	1,	Getting	Started	with
Luminus,	we	used	the	Luminus	template	to	generate	the	hipstr	application,	which	includes
the	lib-noir	library	for	us.	One	of	the	helper	namespaces	provided	by	lib-noir	is	a
noir.validation	namespace.

The	noir.validation	namespace
The	noir.validation	namespace	provides	methods	to	validate	data	in	a	variety	of	ways.
It	includes	functions	to	check	whether	or	not	an	input	is	nil,	is	an	e-mail,	is	of	a	certain
minimum	length,	and	so	on.	This	is	excellent	because	I	hate	writing	validation	code,	and
I’m	sure	you	do,	too.

However,	while	noir.validation	has	a	lot	of	functions	that	can	be	used	to	validate	data,
its	actual	validation	framework	makes	some	unfortunate	assumptions	as	to	how	it	will	be
used.	It	is	also	stateful,	which	makes	it	difficult	to	test	and,	frankly,	is	pretty	unnecessary
for	a	validation	framework.

Instead	of	depending	on	the	framework	of	noir.validation	and	its	way	of	doing	things,
we’re	going	to	use	some	of	its	validation	functions	in	conjunction	with	Validateur.

The	Validateur	library
The	Validateur	library	is	an	alternative	validation	library	to	noir.validation.	Using
Validateur,	we	can	define	a	collection	of	validators	as	a	single	function,	which	you	can
then	apply	against	a	map	of	key/values	to	be	validated.	The	function	will	then	return	a
map	of	all	keys	in	the	map	that	failed	the	validation	and	for	each	invalid	key,	a	set	of
messages	detailing	why	the	validation	failed	(which	is	slightly	similar	to
noir.validation	but	without	all	the	evils	of	maintaining	the	state).	The	validators	that
we’ll	construct	with	Validateur	are	easily	reusable	and	composable	with	other	validators.

Note
The	website	of	Validateur	will	provide	a	lot	of	information	to	you.	The	library	is	well
documented	and	available	for	your	perusal	at	http://clojurevalidations.info/.

Adding	the	Validateur	dependency
The	first	thing	that	we	need	to	do,	as	is	the	case	with	any	third-party	library	we	want	to
use,	is	import	the	library	in	our	project.clj	file	as	a	dependency	of	the	app.	Adjust	the
project’s	dependencies	vector	so	it	is	similar	to	this:

(defproject…

		:dependencies	[[org.clojure/clojure	"1.6.0]

																										;...snipped	for	brevity

																										[com.november/validateur	"2.3.1"]]

		;...rest	of	our	project…

Creating	the	user	validation	namespace
It	can	sometimes	be	difficult	to	determine	where	exactly	one	should	write	the	validation
code.	Because	one	of	the	strengths	of	Validateur	is	that	validators	can	be	created,	reused,
and	composed	together	to	create	more	complex	validators,	it	makes	sense	for	us	to	create
the	validators	in	appropriate	namespaces.

In	our	case,	the	sign	up	form	has	three	fields	that	require	validation:	:username,	:email,
and	:password.	However,	if	we	were	to	further	extend	this	application	to	have	something
like	a	password	reset	form,	then	the	e-mail	and	username	validators	would	come	in	handy.
As	such,	let’s	create	a	new	namespace	called	hipstr.validators.user	and	put	our
validators	in	it.

Create	a	new	directory	in	our	/src/hipstr	directory	called	validators:

#	mkdir	validators

Create	a	new	hipstr.validators.user-validator	namespace	and	ensure	that	it	uses	the
validateur.validation	namespace:

(ns	hipstr.validators.user-validator

		(:require	[validateur.validation	:refer	:all]))

The	key	function	in	validateur.validation	is	the	validation-set.	The	validation-
set	function	can	be	thought	of	as	a	factory	responsible	for	creating	and	returning	the

http://clojurevalidations.info/

actual	validator	to	be	applied	to	a	map.	The	validation-set	function	accepts	a	list	of
rules,	which	will	ultimately	be	used	to	validate	a	map.	The	validator	returns	a	set	of	error
messages	for	any	key	whose	value	is	invalid,	otherwise	it	returns	an	empty	map.

Validating	required	fields
We	can	create	a	simple	validator	that	checks	for	required	fields	using	the	presence-of
function	rule:

	(defn	validate-signup	[signup]

		"Validates	the	incoming	map	of	values	from	our	signup	form,

			and	returns	a	set	of	error	messages	for	any	invalid	key.

			Expects	signup	to	have	:username,	:email,	and	:password."

		(let	[v	(validation-set																											;#1

				(presence-of	#{:username	:email	:password}))]			;#2

				(v	signup)))

In	the	preceding	code,	we	created	our	own	little	validate-signup	function,	which	will
take	the	parameters	map	from	our	POST/signup	up	route.	At	#1,	we	construct	our
validator	by	calling	validation-set,	and	we	pass	it	to	our	first	rule,	presence-of	(as
shown	on	#2),	which	itself	accepts	the	set	of	keys	that	must	be	present,	and	truthy,	in	the
map	to	be	deemed	valid	(in	our	case,	the	sign-up	map).

Ultimately,	presence-of	returns	a	function	(as	do	all	the	rules	we	pass	to	validation-set),
which	will	be	used	by	validation-set	during	validation.	These	functions	accept	a	map	to
be	validated	and	perform	their	task	against	that	map.	We	can	take	a	peek	into	this	at	the
REPL:

#	lein	repl

hipstr.repl=>	(require	'[validateur.validation	:refer	:all])

nil

hipstr.repl	=>	(let	[presence-of-fn	(presence-of

															#=>			#{:username	:email	:password})]

															#=>			(presence-of-fn	{:username	"TheDude"}))

[false	{:password	#{"can't	be	blank"},	:email	#{"can't	be	blank"}}]

In	the	preceding	REPL	code,	we	load	the	validateur.validation	namespace	and	assign
the	result	of	presence-of	to	our	own	function	presence-of-fn.	We	call	presence-of-fn
and	pass	it	the	map	to	be	validated.	The	validation	fails	because	:password	and	:email	are
not	provided.

It’s	easy	to	see	how	validation-set	simply	iterates	blindly	over	all	of	its	validators,
forwarding	the	map	to	each	validator	in	question.	Its	simplicity	is	beautiful	and	elegant.

If	we	were	to	call	validate-signup	from	the	REPL	with	an	invalid	map,	we’d	see	the
following:

hipstr.repl=>	(use	'[hipstr.validators.user-validator])

nil

hipstr.repl=>	(validate-signup	{:username	"TheDude"})

{:email	#{"can't	be	blank"},	:password	#{"can't	be	blank"}}

hipstr.repl=>	(validate-signup	{:username	"TheDude"	:email	

"thedude@bides.net"	:password	"12345678"})

{}

The	default	error	message	for	presence-of	is	“can't	be	blank“,	however,	we	can
provide	our	own	message	by	passing	the	:message	keyword	argument.	Adjust	the
presence-of‘s	arguments	to	look	like	the	following:

(presence-of	#{:username	:email	:password}

		:message	"is	a	required	field")

If	we	re-execute	from	the	REPL,	we’ll	now	see	a	different	error	message:

hipstr.repl=>	(use	'hipstr.validators.user-validator	:reload)

nil

hipstr.repl=>	(validate-signup	{:username	"TheDude"})

{:email	#{"is	a	required	field."},	:password	#{"is	a	required	field."}}

Validating	the	format
Of	course,	checking	for	required	fields	isn’t	the	only	thing	we	need	to	ensure.	We	also
need	to	ensure	whatever	values	are	supplied	are	in	the	correct	format.	I’m	making	the
executive	decision	that	our	application	will	only	allow	a	limited	set	of	characters	for
usernames,	because	I’m	old	and	grumbly.

We	can	use	the	format-of	rule	to	ensure	that	a	given	value	is	appropriately	formatted.
Because	the	validator	returned	by	validation-set	chains	all	the	validation	rules	together,
we	can	add	the	format-of	rule	after	the	presence-of	rule.	Adjust	validate-signup	to	be
similar	to	the	following:

;…snipped	for	brevity…

(let	[v	(validation-set	

												(presence-of	#{:username	:email	:password)

																																:message	"is	a	required	field.")

												(format-of	:username	

																													:format	#"^[a-zA-Z0-9_]*$"

															:message	"Only	letters,	numbers,	and	underscores	

allowed."))])

The	format-of	rule	accepts	the	key	whose	value’s	format	is	to	be	validated	(:username),	a
regex	pattern	to	which	the	value	must	conform,	and	an	optional	message	if	we	don’t	want
to	use	the	default	one	provided	(which	in	the	case	of	format-of	is	"has	incorrect
format").

Note
Many	of	these	functions	take	additional,	optional	parameters	but	for	the	sake	of	brevity,
we	aren’t	covering	the	entire	suite.	You	can,	as	always,	check	out	the	docs	at
http://reference.clojurevalidations.info/validateur.validation.html#var-compose-sets.

At	this	point,	if	we	try	to	validate	our	test	data	from	the	last	example,	we’ll	get	the
following	response:

hipstr.repl=>	(validate-signup	{:username	"The	Dude"	:email	

http://reference.clojurevalidations.info/validateur.validation.html#var-compose-sets

"thedude@bides.net"	:password	"12345678"})	{:username	#{"Only	letters,	

numbers,	and	underscores	allowed."}}

Excellent!	So	our	format	validator	is	working,	but	what	happens	if	we	don’t	pass
:username	at	all:

hipstr.repl=>	(validate-signup

		{:email	"thedude@bides.net"	:password	"12345678"})

=>	{:username	#{"is	a	required	field"	"can't	be	blank."}}

Huh,	now	that’s	interesting.	Why	did	we	get	multiple	required/blank	validation	messages
for	:username?	Our	first	validator,	presence-of,	failed,	so	the	message	we	provided	was
added	to	the	error	set	for	:username.	In	addition,	format-of	also	does	a	check	to	ensure
that	the	value	is	provided	and	adds	its	own	validation	message	to	the	error	set,	can't	be
blank.	Considering	format-of	already	has	its	own	check	for	existence,	we	may	as	well
remove	:username	from	presence-of,	and	change	the	default	message	for	blank	value
validation	in	format-of:

;...snipped	for	brevity…

(let	[v	(validation-set

										(presence-of	#{:email	:password}

																						:message	"is	a	required	field.")

										(format-of	:username

																				:format	#"^[a-zA-Z0-9_]*$"

																				:message	"Only	letters,	numbers,	and	

																																					underscores	allowed."

																				:blank-message	"is	a	required	field"))])

Next	up,	we’ll	verify	the	password.

Validating	length	of	values
At	this	point,	you	might	be	starting	to	see	a	pattern,	and	it	might	come	as	no	surprise	that
along	with	presence-of	and	format-of,	there	also	exists	length-of.	The	length-of	rule
can	either	check	for	an	exact	length	or	a	range.	Because	we	are	software	developers	and
know	the	importance	of	good	passwords,	we’ll	want	a	minimum	length	and	a	rather	large
maximum	length.	Let’s	add	the	length-of	rule	to	the	list	of	rules	in	the	validation-set:

;…snipped	for	brevity…

(length-of	:password	

										:within	(range	8	101)

										:message-fn	

												(fn	[type	m	attribute	&	args]

														(if	(=	type	:blank)

																"is	a	required	field"

																"Passwords	must	be	between	8	

																	and	100	characters	long.")))

In	length-of	we	provided	:within,	which	accepts	a	range.	Alternatively,	we	could	have
specified	an	exact	value	using	:is.	The	major	difference	between	length-of	and	the	other
rules	we’ve	used	so	far	is	the	:message-fn	argument.	Because	length-of	can	fail	for
multiple	reasons—it	could	fall	outside	our	range,	or	not	meet	the	exact	value	(if	we	had
provided	one),	or	be	altogether	blank—we	can	pass	a	function	that	determines	the

appropriate	error	message	to	return.	From	the	docs:

:message-fn	(default	nil):	function	to	retrieve	message	with	signature	(fn	[type	m	attribute
&	args]).	type	will	be	:length:is	or	:length:within,	args	will	be	the	applied	number	or
range

Unfortunately,	the	docs	are	slightly	misleading,	as	type	can	also	have	the	value	:blank.
Hence,	our	:message-fn	function	will	return	a	“is	a	required	field”	message	if	the	type	is
:blank,	otherwise	it	will	return	a	message	that	covers	the	rest	the	validation	cases
appropriately.

Lastly,	we’ll	take	a	look	at	one	more	rule	function	to	help	us	validate	the	format	of	our	e-
mail	address.

Validation	predicates
E-mail	addresses	are	hard	to	validate.	Their	regular	expressions	are	difficult	to	maintain,
ugly,	and	I’d	rather	let	some	other	underlying	library	validate	the	e-mail	address	for	me.
Thankfully,	one	of	the	rules	we	can	use	is	validate-with-predicate.

The	validate-with-predicate	rule	takes	a	predicate	and	returns	whatever	the	predicate
returns.	We	can	leverage	this	in	conjunction	with	the	noir.validation/is-email?
function	to	validate	the	e-mail.

First,	add	the	noir.validation	requirement	to	the	namespace:

(ns	hipstr.validators.user

		(:require	[validateur.validation	:refer	:all]

		[noir.validation	:as	v]))

Next,	add	the	validate-with-predicate	rule	to	validation-set,	which	will	determine
whether	the	e-mail	is	in	the	correct	format:

	;...snipped	for	brevity…

			(validate-with-predicate	:email

#(v/is-email?	(:email	%))												;#1

:message-fn																													;#2

		(fn	[validation-map]

				(if	(v/has-value?	(:email	validation-map))

						"The	email's	format	is	incorrect"

						"is	a	required	field")))

At	#1,	we	define	the	predicate	that	will	be	used	for	this	rule,	which	is	just	an	anonymous
function	that	passes	the	sign	up	map	to	the	noir.validation/is-email?	function.	The
interesting	bit	takes	place	at	#2.	Because	validate-with-predicate	has	no	idea	how	the
passed	map	is	being	validated,	or	why	validation	failed,	we	provide	a	:message-fn
funtion,	which	takes	the	entire	map.	We	can	then	use	the	map	to	determine	why	the
validation	failed,	and	thus	return	an	appropriate	message.	In	our	case,	we	know	the	e-
mail’s	format	is	incorrect	if	a	value	was	provided,	otherwise	we	know	it’s	blank.	Our
:message-fn	will	simply	return	an	appropriate	message	for	the	two	cases.

At	this	point,	the	validate-signup	function	should	look	like	this:

(defn	validate-signup	[signup]

	"Validates	the	incoming	map	of	values	from	our	signup	form,	

		and	returns	a	set	of	error	messages	for	any	invalid	key.

		Expects	signup	to	have	:username,	:email,	and	:password."

	(let	[v	(validation-set

										(presence-of	#{:email	:password}

																							:message	"is	a	required	field.")

										(format-of	:username

																					:format	#"^[a-zA-Z0-9_]*$"

																					:message	"Only	letters,	numbers,	and	

																															underscores	allowed."

																					:blank-message	"is	a	required	field")

										(length-of	:password

																					:within	(range	8	101)

																					:message-fn	(fn	[type	m	attribute	&	args]

																																			(if	(=	type	:blank)

																																				"is	a	required	field"

																																				"Password	must	be	between	8	

																																																	and	100	characters	

long.")))

										(validate-with-predicate	:email

												#(v/is-email?	(:email	%))

												:message-fn	(fn	[validation-map]

																												(if	(v/has-value?	

																																(:email	validation-map))

																												"the	email's	format	is	incorrect"

																												"is	a	required	field"))))]

			(v	signup)))

Note
Sometimes	code	formatting	in	a	book	is	difficult	to	read.	Here’s	a	link	to	a	gist	to	give
your	eyes	a	break:	http://bit.ly/1rHZB0E

“But	hold	on!	At	the	start	of	this	section,	you	said	that	using	Validateur	allows	us	to
compose	reusable	validators!	This	validate-signup	can’t	be	reused	by	anything	but	the
signup	form!”	you	may	say.	You	are	correct	and	we	can	fix	this.

Making	reusable	validators
So	far,	we’ve	created	one	big	validator	using	the	validateur.validation/validation-
set	function.	It	works,	but	it’s	monolithic	and	can’t	be	used	by	anything	other	than	the
signup	form,	which	is	unfortunate.

To	open	this	up,	we	can	use	validateur.validation/compose-sets,	which	instead	of
taking	a	collection	of	validator	rules,	takes	a	collection	of	validators	returned	by
validateur.validation/validation-set.	This	allows	us	to	extract	each	of	the	validator
rules	in	the	validate-signup	function	into	its	own	validator	using	validation-set,	thus
allowing	us	to	reuse	a	single	validator	wherever	we	want.

First,	let’s	extract	each	rule	in	the	validate-signup	function	into	its	own	validator,	such
that	our	code	looks	like	this:

(ns	hipstr.validators.user

	(:require	[validateur.validation	:refer	:all]

http://bit.ly/1rHZB0E

											[noir.validation	:as	v]))

(def	email-validator

	(validation-set

		(validate-with-predicate	:email	

				#(v/is-email?	(:email	%))

				:message-fn	

						(fn	[validation-map]

								(if	(v/has-value?	(:email	validation-map))

										"The	email's	format	is	incorrect"

										"is	a	required	field")))))

(def	username-validator

		(validation-set

				(format-of	:username

													:format	#"^[a-zA-Z0-9_]*$"

													:blank-message	"is	a	required	field"

													:message	"Only	letters,	numbers,	and	

																														underscores	allowed.")))

(def	password-validator

		(validation-set

				(length-of	:password

													:within	(range	8	101)

													:blank-message	"is	a	required	field."

													:message-fn	(fn	[type	m	attribute	&	args]

																											(if	(=	type	:blank)

																													"is	a	required	field"

																													"Passwords	must	be	between	8	

																														and	100	characters	long.")))))

(defn	validate-signup	[signup]

	"Validates	the	incoming	signup	map	and	returns	a	set	of	error

		messages	for	any	invalid	field."

		(let	[v	(validation-set)]

				(v	signup)))

In	the	previous	code	snippet,	we	created	a	single	validator	for	each	of	our	rules.	Each	of
these	validators	can	now	be	used	by	anything	we	want.	Of	course,	now	our	validate-
signup	doesn’t	really	do	anything.	However,	we	can	change	this	by	swapping	out
validation-set	with	compose-sets,	passing	each	of	the	previously	defined	validators
and	then	immediately	invoking	it.

(defn	validate-signup	[signup]

		"Validates	the	incoming	signup	map	and	returns	a	set	of	error

		messages	for	any	invalid	field."

		((compose-sets	email-validator	username-validator	password-validator)	

signup))

Note
A	gist	of	the	entire	refactored	namespace	is	available	at	http://bit.ly/1CsSrrd.

Our	individual	validators	are	now	reusable	and	we	can	compose	complex	validators	from
them.	Now,	we	just	have	to	report	errors	to	the	user	for	any	of	the	failed	validations,	or
redirect	them	to	the	success	page.

http://bit.ly/1CsSrrd

Reporting	errors	to	the	user
We	already	set	up	our	route	handler	at	the	start	of	this	chapter,	such	that,	if	there	were	any
errors,	we	would	re-render	the	signup.html	page	with	the	user’s	submitted	data	along
with	the	errors.	Since	we’re	using	Selmer	to	render	our	templates,	and	because	Selmer
gracefully	handles	nil	to	be	an	empty	string,	we	can	safely	treat	user’s	data	and	reported
errors	as	though	they	were	present.

Adjust	the	signup.html	page	such	that	it	looks	like	this:

{%	extends	"templates/base.html"	%}

{%	block	content	%}

<h1>Sign	Up	Nobody	will	ever	know.</h1>

<div	class="row">

		<div	class="col-md-6">

				<form	role="form"	method="post">

						<div	class="form-group">

								<label	for="username">Username</label>

										<ul	class="errors">

												{%	for	e	in	errors.username	%}						<!--	#1	-->

														{{e}}

												{%	endfor	%}

										

										<input	type="input"	name="username"	class="form-control"	

id="username"	placeholder="AtticusButch"

								value="{{username}}">

						</div>

						<div	class="form-group">

								<label	for="email">Email	address</label>

								<ul	class="errors">

										{%	for	e	in	errors.email	%}

										{{e}}

										{%	endfor	%}

								

						<input	type="email"	name="email"	class="form-control"	id="email"	

placeholder="so1999@hotmail.com"	value="{{email}}">

						</div>

						<div	class="form-group">

								<label	for="password">Password</label>

								<ul	class="errors">

										{%	for	e	in	errors.password	%}

										{{e}}

										{%	endfor	%}

								

								<input	type="password"	name="password"	class="form-control"	

id="password"	placeholder="security-through-obscurity">

						</div>

						<button	type="submit"	class="btn	btn-default">Submit

						</button>

				</form>

		</div>

</div>

{%	endblock	%}

We	are	using	Selmer’s	cycle	tag	(as	shown	at	#1)—which	is	actually	a	for	loop—to	loop

through	any	errors	that	exist	for	a	given	field	and	render	out	a	fragment	of	HTML.	We	can
do	this	because	the	validator	that	we	created	returns	a	set	of	error	messages	for	any	key
whose	validation	failed;	otherwise	an	empty	map	is	returned,	which	Selmer	can	gracefully
handle.	We	also	were	able	to	render	out	each	respective	input’s	value,	if	the	user	had
already	submitted	one	(so	that	they	don’t	have	to	fill	it	in	again,	which	would	lead	to	them
raging).

Finally,	let’s	modify	the	hipstr.routes.home	namespace	and	the	signup-page-submit
route	handler	we	created,	to	make	use	of	this	validator.

First,	add	our	user-validator	to	the	list	of	requirements	as	follows:

(:require	;...snipped	for	brevity…

				[hipstr.validators.user-validator	:as	v])

Then	uncomment	the	let	form	in	our	signup-page-submit,	and	change	the	signup	alias
to	be	v	instead:

(defn	signup-page-submit	[user]

		(let	[errors	(v/validate-signup	user)]

				(if	(empty?	errors)

						(response/redirect	"/signup-success")

						(layout/render	"signup.html"	(assoc	user	:errors	errors)))))

The	preceding	Selmer	template	will	now	render	the	following	page	when	any	validation
errors	are	present:

Finally,	let’s	add	a	Cascade	Style	Sheet	(CSS)	style	so	that	our	error	messages	are	a
deeply	foreboding	red.	CSS	styles	are	stored	in	the	/resources/public/css	folder.	Out	of
the	box,	Luminus	generates	a	screen.css	file	for	us,	prewired	and	ready	to	go.	We’ll	add
our	style	to	it:

.errors	{

		padding-left:	20px;

		color:	red;

}

Save	the	file	and	refresh,	and	you’ll	have	some	urgent	looking	messages.

Finally,	once	we	provide	a	valid	username,	e-mail,	and	password,	we’ll	be	redirected	to
the	/signup-success	route,	and	our	simple	little	message	will	be	displayed:

Summary
In	this	chapter,	you	learned	how	to	accept	and	validate,	submitted	input	from	a	user	using
Validateur.	You	also	learned	how	to	create	reusable	validators,	thus	reducing	the	amount
of	code	you’d	have	to	write	in	the	future.	Finally,	we	adjusted	our	signup.html	template
to	use	a	new	Selmer	tag—the	cycle	tag—to	loop	through	our	errors	and	render	each	one
out	appropriately.	However,	we	lived	a	little	dangerously:	we	did	some	refactoring,	but
had	no	way	of	ensuring	that	what	we	refactored	worked	until	we	tested	it	in	the	browser.
In	the	next	chapter,	we’ll	take	a	look	at	how	we	could	have	written	some	tests	to	validate
this	for	us.

Chapter	6.	Testing	in	Clojure
Testing	is	quite	possibly	the	most	controversial	topic	in	software	development	I’ve	ever
seen.	Some	developers	are	passionate	about	the	merits	of	automated	testing,	what	should
be	tested,	and	how.	Conversely,	some	developers	are	dead	set	against	automated	testing.
This	can	be	especially	so	in	languages	that	come	with	a	REPL.	That	being	said,	Clojure
still	ships	with	a	clojure.test	namespace.	As	such,	this	chapter	will	focus	primarily	on
how	we	can	use	clojure.test	to	write	tests	for	our	hipstr.validators.user
namespace.	In	this	chapter,	we	will:

Explore	the	necessity	of	automated	testing	in	Clojure	(hint:	I	believe	there	is	always
room	for	testing)
Discuss	how	to	write	assertions	and	tests,	and	how	to	run	them

Tip
What	this	chapter	won’t	cover,	however,	is	extensive	philosophy,	patterns,	and	so	on.
Automated	testing	is	a	huge	topic,	one	that	I’ve	studied	for	over	ten	years,	and	still
have	an	enormous	amount	to	learn.	The	purpose	of	this	chapter	is	to	show	you
enough	to	get	going:	to	provide	you	with	a	starting	point	from	which	you	may	branch
out.

Buckle	up,	this	chapter	will	likely	produce	some	disagreements.

Note
There	are	more	testing	frameworks	for	Clojure	than	you	can	possibly	imagine.	While	this
chapter	will	focus	on	the	clojure.test	namespace	that	ships	with	Clojure,	you	might
want	something	a	little	more	fancy.	You	can	see	a	high-level	overview	of	various	Clojure
testing	libraries	at	https://clojure-libraries.appspot.com/cat/Testing.

https://clojure-libraries.appspot.com/cat/Testing

The	necessity	of	testing
I	will	fully	admit	that,	for	the	bulk	of	my	career,	I’ve	used	automated	testing	in	some
capacity	on	almost	every	project	I’ve	worked	on.	For	nearly	a	decade,	I’ve	employed	the
practice	of	test-driven	development	(TDD)	to	some	degree.

While	working	on	applications	using	Java	or	.NET,	I	often	write	tests	to	help	me	explore
ideas	and	assist	in	the	design	and	implementation	of	those	ideas.	I	follow	the	TDD
“Red/Green/Refactor”	(http://en.wikipedia.org/wiki/Test-
driven_development#Development_style)	with	discipline,	and	what	I	produce	often
works,	is	extensible,	and	is	in	the	style	of	those	languages	(for	better	or	for	worse).	I	also
have	a	safety	net,	which	validates	whether	the	system	does	what	it	is	supposed	to	do;	this
comes	in	handy	as	the	system	grows,	changes,	and	gets	refactored	over	time.

The	Red/Green/Refactor	methodology	dictates	that	you	write	a	failing	test	first,	then
implement	the	least	amount	of	code	to	get	that	test	to	pass,	and	then	refactor	your	code
(both	the	code	that	you’re	testing,	as	well	as	the	test	itself).	The	following	diagram
illustrates	this	process:

This	methodology	works	well	for	Java	and	.NET	applications,	as	well	as	any	application
that	has	a	compiling	step	in	the	build	process,	which	prohibits	us	from	being	able	to	test
the	function	inline	while	we	develop	it.

http://en.wikipedia.org/wiki/Test-driven_development#Development_style

However,	when	working	with	languages	such	as	Python,	JavaScript,	or	Clojure,	wherein	a
shell/console/REPL	exists	and	is	at	my	disposal,	my	practice	changes.	In	Clojure,	I	will
start	writing	the	function	first,	and	will	use	the	REPL	to	validate	the	results	of	the
function.	Once	I’m	satisfied	with	the	result	of	the	function,	I	then	write	the	tests.
Sometimes,	I’ll	toggle	back	and	forth	between	the	REPL	and	the	test,	writing	the	test	for
each	scenario	I	attempt	in	the	REPL.	I’ll	repeat	this	process	for	any	refactors	I	make	to	the
function	under	test,	as	well.	The	following	diagram	illustrates	this	somewhat	more
streamlined	process:

This	process	works	particularly	well	if	you’re	using	an	editor	such	as	Light	Table.	One	of
the	great	features	in	Light	Table	is	called	InstaREPL,	wherein	you	can	convert	any	Clojure
file	you’re	working	on	into	a	REPL	and	get	live	feedback	on	everything	happening	in	the
module	while	you	type.	Function	results,	variable	values,	and	exceptions	appear	inline
with	your	code.	The	result	is	an	incredibly	immersive	development	experience	and	the
turnaround	time	on	feedback	is	approximately	zero.

The	following	is	a	screenshot	of	Light	Table’s	InstaREPL	in	action	while	developing	the
hipstr.validators.user-validator	namespace	in	Chapter	5,	Handling	Form	Input.

Some	developers	argue	that	using	the	REPL	is	the	only	thing	required	when	developing	in
Clojure,	as	it	allows	them	to	validate	the	results	of	their	function	and	proceed	after	they
get	what	they	want.	However,	this	does	not	address	the	ongoing	maintenance,	especially	in
teams	where	more	than	one	person	is	working	on	the	code	base	or	in	an	environment
employing	continuous	integration,	where	running	tests	is	typically	a	step	in	the	build
process.

Anatomy	of	a	test
There	are	three	macros	in	the	clojure.test	namespace,	which	are	the	trifecta	of	testing	in
Clojure:	deftest,	is,	and	testing.	These	three	macros	are	explained	as	follows:

deftest:	This	is	similar	to	def	or	defn	and	defines	our	test	function.	Tests	may	call
other	tests,	however,	this	is	a	practice	that	I	consider	dangerous,	as	it	can	result	in
fragile	tests	that	are,	by	their	nature,	rather	difficult	to	debug.

Usage:	(deftest	name	&	body)

is:	This	is	used	to	make	an	assertion	in	our	test.	The	predicate	we	pass	to	is	should
return	a	Boolean.	We	can	also	optionally	provide	a	message,	which	will	be	attached
to	the	assertion	and	displayed	as	part	of	the	failure	written	to	stdout.

Usage:	(is	form)

(is	form	message)

is	also	allows	the	following	two	special	forms	that	can	be	used	to	check	for
exceptions:

thrown?:	This	is	used	to	ensure	that	an	exception	of	a	specific	type	is	thrown,
and	if	not,	fails	the	test.

Usage:	(thrown?	e	form)

Here’s	an	example	of	this	form:

(is	(thrown?	InvocationTargetException

																		(an-unsound-function)))

thrown-with-msg?:	This	does	the	same	as	thrown,	but	additionally	asserts	that
the	exception’s	message	matches	a	regular	expression.

Usage:	(thrown-with-msg?	e	regex	form)

Here’s	an	example	of	this	form:

(is	(thrown-with-msg?	InvocationTargetException

		#"StackOverflowError"	(an-unsound-function)))

testing:	This	allows	us	to	provide	an	additional	context	to	the	list	of	testing	contexts
within	a	test	function.	Testing	contexts	can	be	nested,	but	the	root	testing	context
must	reside	inside	deftest.

Usage:	(testing	string	&	body)

Here’s	an	example	of	this	form:

(deftest	some-cool-tests

		(testing	"a	testing	context:"

				(testing	"a	nested	testing	context"

						(let	[some-val	6]

								(is	(some	#{some-val}	(range	1	10)))))))

Tip
Note	that	the	clojure.test	namespace	is	by	no	means	limited	to	just	these	three
macros.	For	a	comprehensive	list	of	functionalities	of	clojure.test,	refer	to	the	docs
at	https://clojure.github.io/clojure/clojure.test-api.html.

While	the	preceding	macros	allow	you	to	create	a	range	of	tests	and	save	you	some	typing,
ultimately,	I	think	they	produce	poor	output.	When	a	test	fails,	we	don’t	want	to	have	to
think	“Huh,	I	wonder	what	went	wrong?”	We	should,	ideally,	know	exactly	what	went
wrong.	If	we	change	the	value	of	some-val	from	6	to	10,	the	test	will	fail,	producing	the
following	output:

This	is	somewhat	useful.	However,	I	prefer	each	test	to	assert	something	specific,	and	for
the	test	name	to	be	a	statement	of	fact.	There’s	nothing	worse	than	seeing	a	failing	test
where	the	output	message	is	FAIL	in	(test-service).	What	failed	in	the	service?	What
were	we	actually	testing?	The	“statement-of-fact”	as	a	test	name	tends	to:

Keep	our	tests	focused
Produce	output	that	makes	a	bit	more	sense

Let’s	change	our	preceding	example	test	to	not	use	any	testing	contexts,	and	instead	use	a
simple	deftest	with	a	statement	of	fact,	but	keep	the	value	at	10	so	that	the	test	fails:

(deftest	test-value-must-fall-between-1-and-9

		(let	[some-val	10]

				(is	(some	#{some-val}	(range	1	10)))))

This	test	will	now	produce	the	following	output	when	it	fails:

https://clojure.github.io/clojure/clojure.test-api.html

Of	course,	you	can	name	and	write	your	tests	however	you	want,	I	do	not	judge.	I’ve
found	in	my	experience,	however,	that	the	“statement-of-fact-test-name”	convention,
despite	creating	lengthy	test	names,	tends	to	produce	focused	tests,	resulting	in	less
confusion	and	frustration	when	a	test	inevitably	fails.

Writing	and	running	our	first	test
We’re	going	to	create	a	few	tests	for	the	validators	we	created	in	Chapter	5,	Handling
Form	Input.	In	our	directory	structure,	we	have	the	src	and	test	directories.	I’ll	give	you
two	seconds	to	determine	under	which	directory	our	tests	should	go…	got	it?	If	you	said
src,	then	I	have	failed	to	achieve	the	modest	task	that	was	my	charge.	We	will	be	storing
our	tests	in	the	test	directory	using	the	following	steps:

1.	 Create	a	directory	in	the	/test/hisptr/test	directory	called	validators.
2.	 Create	a	file	in	the	/text/hipstr/test/validators	directory	called

user_validator_test.clj.
3.	 In	user_validator_test.clj,	define	our	namespace	and	include	the	clojure.test

namespace	and	the	namespace	we	wish	to	test—in	our	case,	the
hipstr.validators.user-validator	namespace:

(ns	hipstr.test.validators.user-validator-test

		(:require	[hipstr.validators.user-validator	:as	uv])

		(:use	clojure.test))

4.	 Next,	let’s	add	a	test	that	ensures	only	one	error	message	is	returned	in	the	errors	map
when	an	e-mail	address	is	blank:

(deftest	only-1-error-message-returned-when-email-is-blank

		(let	[result	(:email	(uv/email-validator	{:email	""}))]

				(is	(=	1	(count	result)))))

Save	the	file,	open	the	terminal,	and	we’ll	run	the	test.

Running	tests
Running	tests	is	dead	easy	using	the	Leiningen	test	task.	The	lein	test	task,	when	run
by	itself,	will	run	all	tests	under	the	hipstr.test	namespace.	Alternatively,	we	can
provide	one	or	more	namespaces	that	we	wish	to	isolate	test	execution	to,	which,	for	now,
we	will	use.	Open	your	terminal,	navigate	to	the	root	of	your	source	tree,	and	tell
Leiningen	to	run	all	the	tests	in	the	hipstr.test.validators.user-validator-test
namespace:

The	output	indicates	that	it	ran	one	test	containing	a	single	assertion,	and	that	it	passed.
This	is	great,	as	this	is	the	test	and	assertion	that	we	wrote.	Manually	running	tests	can
become	cumbersome	over	time.	Thankfully,	there	are	plugins	to	automate	this	for	us.

Running	tests	automatically
While	using	lein	test	gets	the	job	done,	it	has	some	drawbacks,	most	notably	you	have
to	manually	run	the	tests	(which	becomes	annoying)	and	it	has	a	slow	start	up	time.
Instead	of	being	a	prisoner	of	our	own	development,	we	can	break	the	shackles	of
keystrokes	using	the	lein	quickie	plugin.

The	lein	quickie	plugin	will	watch	our	code,	and	anytime	it	detects	a	change	(save),	all
the	tests	in	our	classpath	whose	namespaces	include	our	project	name	and	end	in	test,
will	be	re-evaluated.	It	even	produces	a	green	or	red	bar	indicating	whether	our	tests
successfully	passed	or	failed.

To	install	and	use	the	lein	quickie	plugin,	perform	the	following	steps:

1.	 Add	the	plugin	to	the	project.clj	file’s	:plugins	list,	as	follows:

:plugins	[[lein-ring	"0.8.13"]

		[lein-environ	"1.0.0"]

		[lein-ancient	"0.5.5"]

		[quickie	"0.3.6"]]

2.	 In	the	terminal,	refresh	your	dependencies	by	doing	a	lein	deps.
3.	 Still	in	the	terminal,	run	lein	quickie.	The	plugin	will	scan	for	all	your	tests,	run

them,	and	start	watching	for	changes.

If	you	make	a	quick	change	to	the	user-validators-test	namespace	(say,	insert	a	space
and	hit	save),	the	lein	quickie	plugin	will	automatically	detect	the	change	and	re-run	the
tests.

Finally,	you	can	quit	lein	quickie	session	at	anytime	by	hitting	Ctrl	+	C.

Note
There	are	more	options	you	can	incorporate	to	run	tests	with	lein	quickie,	such	as
limiting	the	scope	of	which	tests	are	validated.	Take	a	look	at	the	lein	quickie	docs	at
https://github.com/jakepearson/quickie.

https://github.com/jakepearson/quickie

Refactoring	tests
Let’s	write	another	test,	which	ensures	that	the	sole	message	returned	indicates	that	the	e-
mail	is	a	required	field.	Full	caveat:	I	don’t	typically	like	writing	tests,	which	test	copy
(content)	because	copy	tends	to	change	almost	every	day.	Testing	for	copy	is	one	of	the
biggest	testing	pain	points	I’ve	seen	on	teams	over	the	years,	and	I	don’t	believe	that	its
value	outweighs	manual	testing	(in	fact,	I	think	it	has	an	overall	negative	value	due	to	the
maintenance	overhead).	However,	because	our	e-mail	validator	can	return	different
messages	depending	on	what	went	wrong,	we	should	ensure	that	it	returns	the	correct
message.	Add	the	following	test,	which	ensures	that	the	appropriate	message	is	returned
when	an	e-mail	is	not	provided:

(deftest	blank-email-returns-email-is-required-message

		(let	[result	(:email	(uv/email-validator	{:email	""}))]

				(is	(=	"is	a	required	field"	(first	result)))))

If	you	save	and	run	this	test	(or	just	save,	if	you’re	using	lein	quickie),	you’ll	see	that	it
passes.	That’s	great.	What	isn’t	so	great	is	that	we	have	the	same	code	written	in	each	test,
and	code	we’ll	likely	need	to	use	for	subsequent	e-mail	validation	tests,	that	sets	up	the
result	value.	Let’s	create	a	simple	function	that	validates	an	e-mail	address	for	us,	and	then
returns	the	:email	errors	in	the	validator	result	map,	as	follows:

(defn	validate-email	[email]

		"Validates	the	provided	email	for	us,	and	returns	the

			set	of	validation	messages	for	the	email,	if	any."

		(:email	(email-validator	{:email	email})))

With	the	validate-email	function,	we	can	now	change	the	let	form	in	each	of	our	tests
to	be	as	follows:

(let	[result	(validate-email	"")])

The	test	is	now	a	bit	easier	to	read.	We	can	do	one	more	refactoring	before	moving	on.
Because	the	two	tests	are	so	similar	(we	are	only	expecting	one	message	back,	and	that
message	is	expected	to	have	a	certain	value),	we	can	move	the	two	assertions	into	the
same	test.	Move	the	assertion	in	only-1-error-message-returned-when-email-is-
blank	into	blank-email-returns-email-is-required-message,	and	then	delete	the
only-1-error	test:

(deftest	blank-email-returns-email-is-required-message

		(let	[result	(validate-email	"")]

				(is	(=	1	(count	result)))

				(is	(=	"is	a	required	field"	(first	result)))))

While	we	typically	want	to	keep	our	tests	focused	and	avoid	issuing	a	lot	of	assertions,
moving	the	two	assertions	into	a	single	deftest,	in	this	case,	works	because	asserting	a
single	error	message	exists	is	a	precursor	to	asserting	the	actual	message	itself.

At	this	point,	you	should	have	the	hang	of	it.	There’s	no	real	magic	to	writing	unit	tests	in
Clojure.	We	will	leave	the	validator	tests	for	now	and	move	on	to	how	we	can	do
integration	tests	using	clojure.test	and	Ring.

Tip
View	the	entire	hipstr.test.validators.user-validator-test	namespace	at
http://bit.ly/11FI8PX,	as	well	as	its	impact	on	refactoring	the	hipstr.validators.user-
validator	namespace	at	http://bit.ly/1Cvui3n.

http://bit.ly/11FI8PX
http://bit.ly/1Cvui3n

Writing	a	high-level	integration	test
I’ve	always	been	weary	of	writing	integration	tests	in	the	manner	of	unit	tests	because
when	they	fail	they’re	difficult	to	diagnose.	All	that	a	failed	unit-style	integration	test	tells
us	is	that	something,	somewhere,	broke	down.	In	an	ideal	world,	you	would	also	have	a
unit	test,	which	when	an	integration	test	fails,	will	also	fail.	However,	rare	is	the	team
filled	with	unit	test	passion	such	that	a	beautiful	pairing	of	failures	exist.	So,	while	we	will
see	how	we	can	use	James	Reeves’	ring-mock	to	do	a	full-fledged	integration	test,	we
must	also	keep	in	mind	that	integration	tests	on	their	own	are	not	enough.

For	this	example,	we	are	going	to	add	an	additional	test	to	the	hipstr.test.handler
namespace	that	was	generated	by	Luminus	when	we	generated	our	project.	You’ll	see
something	like	this:

(ns	hipstr.test.handler

		(:use	clojure.test

											ring.mock.request

											hipstr.handler))

(deftest	test-app

		(testing	"main	route"

				(let	[response	(app	(request	:get	"/"))]

						(is	(=	200	(:status	response)))))

		(testing	"not-found	route"

				(let	[response	(app	(request	:get	"/invalid"))]

						(is	(=	404	(:status	response))))))

We’ve	not	executed	any	of	the	tests	from	this	namespace	yet,	but	if	you	recall,	simply
running	the	lein	test,	without	specifying	any	namespaces	will	run	all	tests	under	the
hipstr.test	namespace.	Alternatively,	if	you	change	the	namespace	to	end	in	test,	the
lein	quickie	plugin	will	also	execute	it.

Using	ring.mock.request
The	only	real	difference	between	how	we	construct	the	integration	tests	and	the	unit	tests
is	that	we	use	the	ring.mock.request	function.	This	function	will	actually	construct	a
valid	request	map	for	the	given	HTTP	method	and	URI,	and	any	parameters	we	want	to
provide	to	the	endpoint.	Afterwards,	the	ring.mock.request	function	runs	that	request
map	through	our	stack,	executing	everything	along	the	matching	route	handler.

In	that	spirit,	we	can	test	and	ensure	that	our	/signup	POST	route,	will	not	return	a	302
redirect	to	the	/signup-success	GET	route	unless	all	of	the	parameters	(:email,
:username,	and	:password)	are	valid.	We’ll	construct	another	test	context,	and	create	the
first	assertion—that	a	missing	e-mail	returns	a	200	response	OK	instead	of	a	302	redirect.
Use	following	lines	of	code	to	do	this:

(deftest	missing-email-address-redisplays-the-form

		(let	[response	(app	(request	:post	"/signup"

				{:username	"TheDude"	:password	"123456789"}))]

				(is	(=	200	(:status	response)))))

This	test	will	actually	invoke	our	/signup	POST	route	in	our	home-routes,	and	drill	all	the
way	through	the	plumbing,	including	rendering	the	response.	Note	that	integration	tests
will	also	interact	with	any	external,	dependent	systems,	such	as	the	database.	As	such,	it’s
important	that	you	pay	pay	close	attention	to	what	your	integration	test	interacts	with;	if	it
mutates	any	data,	you	must	reset	that	data	prior	to	running	the	next	test.	For	this	reason,
we	will	not	test	for	a	successful	302	redirect	because	this	would	ultimately	pollute	our
database.

Note
Unit	testing	is	an	academic	pursuit	well	beyond	the	means	of	this	book.	If	you	are
interested	in	getting	deep	into	unit	testing,	I	highly	recommend	that	you	read	Gerard
Meszaros’	xUnit	Test	Patterns,	a	book	with	an	incredible	wealth	of	knowledge	when	it
comes	to	writing	sustainable	automated	tests.

Summary
That’s	about	as	quick	of	a	whirlwind	tour	as	one	can	get	when	it	comes	to	testing.	You
learned	the	basics	of	how	to	write	unit	and	integration	tests,	as	well	as	some	decent	high-
level	guidance	about	what	we	should	and	should	not	test.	In	the	next	chapter,	we’ll	finally
start	looking	at	how	we	can	interact	with	the	database	so	we	can	finally	create	the	user
account.

Chapter	7.	Getting	Started	with	the
Database
In	my	first	year	of	computer	science	education,	I	tried	to	avoid	databases	as	much	as
possible.	I	naively	said,	“Why	do	I	need	to	learn	about	databases?	I	have	no	desire	to	be	a
DBA!”	It	didn’t	take	long	until	I	realized	you	can’t	do	anything	interesting	and	ongoing	if
you	don’t	know	how	to	interact	with	a	database.	So	far,	we’ve	created	a	fair	bit	of
plumbing	in	our	hipstr	application,	but	we	have	yet	to	actually	save	anything	to	the
database.	This	chapter	is	going	to	change	all	of	this.	In	this	chapter,	we	will	cover	the
following	topics:

Set	up	the	database	schema	using	PostgreSQL
Learn	how	to	maintain	and	migrate	database	schemas	using	the	Migratus	Leiningen
plugin
Insert	data	from	the	Sign	Up	form	(built	in	Chapter	5,	Handling	Form	Input)	into	the
database	using	the	brilliantly	simple	SQL	library	YeSQL

This,	and	the	following	three	chapters,	will	cover	basic	database	interactions.	This	chapter
provides	the	foundation	of	the	meat	of	our	application.	I	hope	you’re	hungry.

Creating	the	database	schema
Before	we	interact	with	a	database,	we’ll	need	to	actually	create	a	database	schema,	go
figure,	as	you	can’t	harvest	eggs	without	the	chicken.	In	this	section,	we’re	going	set	up
the	database	schema	for	our	hipstr	application,	using	PostgreSQL.

Note
This	section	assumes	you	already	have	the	PostgreSQL	database	server	installed	on	your
machine,	and	thus,	will	not	guide	you	through	that	process.	You	can	download
PostgreSQL	at	http://www.postgresql.org/download/.	This	book	was	written	using
PostgreSQL	9.3.5	OS	X	application	on	Mac	OS	X	Yosemite.

You	may	be	asking,	“Why	a	database	schema	instead	of	a	new	database?”	You	can	do
either,	really.	The	advantage	of	creating	a	new	database	schema	over	a	database,	however,
comes	in	the	form	of	role	and	user	management,	which	for	the	most	part,	we	won’t	get
into	except	to	create	the	user	for	the	hipstr	application.	Let’s	do	this	now.

Perform	the	following	steps	as	either	a	super	user	(if	you	already	have	a	PostgreSQL	super
user	set	up)	or	the	default	postgres	user.	This	example	will	use	the	built-in	postgres	user:

1.	 From	the	terminal,	launch	psql:

#	psql	-U	postgres	-d	postgres	-h	localhost

The	preceding	command	basically	says,	“Hey,	launch	psql	as	the	Postgresql	user	(-U)
postgres,	connect	to	the	database	(-d)	postgres,	on	the	host	(-h)	localhost.”

Tip
Note	that	how	you	installed	PostgreSQL	will	determine	how	you	launch	the	psql
tool.	In	this	chapter,	we	will	use	the	preceding	command,	however,	your	setup	might
be	different.	For	example,	you	might	need	to	use	sudo:

#	sudo	su—postgres;	psql

If	you	installed	the	PostgreSQL	app	for	OS	X,	you	can	launch	psql	by	choosing	the
Open	psql	option	from	the	PostgreSQL	menu	item.	However,	all	instructions
involving	psql	assume	we’re	connecting	to	the	default	PostgreSQL	database.	To	use
psql	and	connect	to	the	postgres	database,	do	the	following:	#
/Applications/Postgres.app/Contents/Versions/9.3/bin/psql	-d	postgres

2.	 Create	the	hipstr	database	role	and	give	it	the	ability	to	connect	to	the	database	as
though	it	were	a	user:

postgres=#	CREATE	ROLE	hipstr	LOGIN;

3.	 We	should	give	the	new	hipstr	role	a	password.	Something	really	secure,	like
p455w0rd.	We	can	do	this	using	the	\password	command.

postgres=#	\password	hipstr;

4.	 Now	that	we	have	a	role,	with	which	we	can	use	to	log	in	to	the	database,	we	should

http://www.postgresql.org/download/

create	the	hipstr	schema	and	assign	our	hipstr	role	to	be	a	pompous	overlord	of	that
schema:

postgres=#	CREATE	SCHEMA	AUTHORIZATION	hipstr;

postgres=#	GRANT	ALL	ON	SCHEMA	hipstr	TO	hipstr;

postgres=#	GRANT	ALL	ON	ALL	TABLES	IN	SCHEMA	hipstr	TO	hipstr;

The	first	line	in	the	preceding	code	is	shorthand	for	saying,	“Hey,	create	me	a	schema
for	the	user	hipstr,	and	also	give	that	schema	a	name	of	hipstr.”	In	the	next	line,	we
grant	all	permissions	in	the	hipstr	schema	to	our	hipstr	role,	and	finally	we	give	the
hipstr	role	dominion	over	all	the	tables	in	the	hipstr	schema.

Note
Yes,	in	the	real	world,	this	method	isn’t	exactly	the	most	secure	but	it’s	not	entirely
terrible	either.	You	can	always	partition	access	to	your	database	using	different	roles
with	different	permissions	and	whatnot,	but	that’s	an	overkill	for	our	little
application.	In	reality,	your	cloud	provider,	hosting	provider,	database	administrator,
or	somebody	will	likely	give	you	a	more	secure	user	than	what	we’re	creating	here.

5.	 We	can	limit	the	scope	of	what	the	hipstr	role	sees	by	defining	its	search	path.	We	can
do	this	by	doing	the	following:

postgres=#	ALTER	USER	hipstr	SET	search_path	=	'hipstr';

6.	 Finally,	exit	the	PostgreSQL	shell.

postgres=#	\q

Assuming	all	the	preceding	commands	are	executed	without	error,	the	whole	process
should	look	something	like	the	following:

After	disconnecting	from	the	PostgreSQL	shell,	we	can	test	out	our	new	user	by	logging	in
to	the	default	database	using	the	hipstr	role.

Back	at	the	terminal,	relaunch	psql,	but	this	time	using	the	hisptr	role	we	created:

#	psql	-U	hipstr	-d	postgres	-h	localhost

You	might	be	asking,	“Why	are	we	still	connecting	to	the	“postgres”	database?”
Remember,	in	step	4,	we	didn’t	create	a	new	database,	rather,	we	created	a	new	schema	in
the	“postgres”	database.

You	should	be	able	to	successfully	connect	to	the	postgres	database	using	your	hipstr
user.	If	you	receive	an	error	message	about	how	the	hipstr	user	cannot	login,	ensure	that
you	included	LOGIN	in	step	2.

Next,	we	can	issue	a	couple	of	psql	commands,	\conninfo	and	\dn	to	ensure	that	we’re	all
set	up.	The	following	is	the	output	of	those	two	commands:

The	\conninfo	and	\dn	commands	perform	the	following	actions:

\conninfo:	This	lists	which	database	we	are	connecting	to,	on	which	port,	and	under
which	user
\dn:	This	displays	a	list	of	schemas	and	who	owns	each	of	those	schemas

If	what	you	see	on	your	own	screen	is	what	we	see	in	the	preceding	screenshots,	then	we
should	be	ready	to	rock	with	the	rest	of	this	chapter.

Note
If	you’re	still	having	problems	connecting,	you	may	need	to	adjust	the	host-based
authentication	in	the	pg_hba.conf	file	to	allow	for	local	connections.	The	pg_hba.conf
file	itself	has	decent	documentation.	A	gist	of	what	you’ll	be	looking	to	adjust	is	at	the
bottom	of	the	file	where	various	authentication	schemes	are	defined	(socket	connections,
IPv4	local	connections,	and	so	on).	My	pg_hba.conf	file	for	the	default	database	is
located	in	/opt/local/var/db/postgresql93/defaultdb/pg_hba.conf,	though	your
mileage	may	vary.

Finally,	the	last	thing	we	need	to	do	is	to	add	the	PostgreSQL	JDBC	driver	to	our
application.	Add	the	following	dependency	to	your	project.clj	file’s	:dependencies
vector:

[postgresql/postgresql	"9.3-1102.jdbc41"]

Note
Note	that	your	version	of	the	postgresql	driver	may	be	different	if	you	did	not	install
Version	9.3	of	PostgreSQL.

Maintaining	the	database	schema
A	pain	point	common	in	nearly	every	team-based	project	I’ve	ever	worked	on	is	how	to
manage	the	database.	More	often	than	not,	teams	decide	to	have	a	central	development
database,	and	all	the	developers	use	that	central	development	database	as	their	backing	DB
while	making	changes.	This	invariably	results	in	somebody	breaking	somebody	else’s
application	under	development	because	the	database	schema	gets	changed	in	some	way,	or
test	data	gets	removed	or	modified,	and	so	on.	Having	a	single	monolithic	development
database	can	be	real	nasty,	and	is	something	that	I	try	to	avoid.

I’m	a	firm	believer	that	a	developer	should	be	able	to	check	out	the	source	code,	and
within	a	few	keystrokes,	be	able	to	successfully	build	and	run	the	application.	This	is
difficult,	if	not	impossible,	to	do	without	having	some	kind	of	automated	tool	to	build	a
database	on	the	developer’s	own	local	machine.	Thankfully,	some	kind	souls	on	the
Internet	share	my	ideals	and	have	created	various	tools	to	try	and	help	with	this	whole
thing.	One	of	the	better	Leiningen	plugins	that	I’ve	used	to	accomplish	this	is	Migratus.

Migratus
Migratus	is	an	API	and	plugin	for	Leiningen	that	automatically	migrates,	and	rolls	back,
our	database.	In	a	nutshell,	it	allows	us	to	create	a	series	of	SQL	scripts,	which	will	be
executed	in	order	(based	on	filename)	against	our	database.	We	can	migrate	a	defined	set
of	scripts,	or	all	scripts.	Conversely,	we	can	roll	back	a	defined	set	of	scripts	(however,
there	does	not	exist	an	option	to	rollback	the	whole	lot).

The	beauty	of	Migratus	is	we	can	commit	our	SQL	files	in	version	control	and	other
developers	will	receive	them	when	they	perform	an	update	(or	if	we	get	a	new	machine,	or
want	to	sync	between	a	desktop	and	laptop,	and	the	like).	All	they	have	to	do	to	migrate
their	database	after	a	git	pull	command,	for	example,	is	run	lein	migratus	from	their
project	root.	Migratus	will	then	run	any	migration	files	against	a	target	database	that	have
not	yet	been	run.	Done.

The	remainder	of	this	book	will	use	Migratus	to	manage	our	database	schema	changes.	As
such,	it	might	be	useful	to	know	how	to	actually	get	it.

Note
You	can	view	the	full	documentation	for	Migratus	at	https://github.com/pjstadig/migratus.

https://github.com/pjstadig/migratus

Getting	Migratus
Migratus	comes	in	two	forms:	an	API	(which	is	useful	for	having	migration	scripts	run	as
part	of	a	start-up	process	if	you’re	deploying)	and	a	plugin	for	Leiningen.

To	get	the	API,	add	it	to	the	list	of	:dependencies	in	your	project.clj	file:

[migratus	"0.7.0"]

To	get	the	Leiningen	plugin	(which	we	will	be	using),	add	the	following	code	to	the	list	of
:plugins	in	the	hipstr	project.clj	file:

[migratus-lein	"0.1.0"]

Running	a	simple	lein	deps	command	from	the	command	line	will	download	the	new
dependencies.

Configuring	Migratus
Now	that	we’ve	added	the	Migratus	plugin,	we	also	need	to	configure	it.	After	all,
Migratus	is	not	magical;	it	doesn’t	just	work	without	a	bit	of	guidance.	Migratus’
configuration,	like	most	configurations,	is	thrown	in	hipstr’s	project.clj	file	under	the
keyword	:migratus.	The	configuration	contains	three	key	pieces	of	information:	what
we’re	migrating	(the	:store—in	our	case,	a	database),	where	the	migration	scripts	are
kept	(:migration-dir),	and	any	configuration	settings	for	the	store	in	question.	Add	the
following	code	to	the	hipstr	project.clj	file:

;…

:migratus	{

		:store									:database

		:migration-dir	"migrations"

		:migration-table-name	"_migrations"

		:db												{:classname			"org.postgresql.Driver"

				:subprotocol	"postgresql"

				:subname					"//localhost/postgres"

				:user								"hipstr"

				:password				"p455w0rd"}}

;…

Let’s	take	a	look	at	the	Migratus	configuration	keys	from	the	preceding	code:

:store:	This	defines	the	target	object	we	are	migrating.	In	our	case,	we’re	migrating
a	database,	so	we	use	the	:database	key.	Supposedly,	Migratus	is	a	generic
migrations	library,	but	I’ve	not	seen	it	officially	support	anything	other	than
databases.
:migration-dir:	This	defines	the	directory	on	the	classpath	where	our	SQL
migration	scripts	are	stored.	We’ll	create	a	directory	called	migrations	under	our	src
directory.
:migration-table-name:	This	is	an	optional	configuration	key,	but	useful	when
using	schemas	instead	of	standalone	databases.	Migratus	uses	an	underlying	table	to
track	which	migrations	have	been	run	and	which	have	not.	We	can	specify	the	name
of	this	table.	This	table	name	defaults	to	schema_migrations,	however	I’ve	found
that	it	can,	for	whatever	reason,	be	somewhat	buggy	when	using	schemas.
:db:	The	meat	of	the	configuration,	this	tells	the	Migratus	plugin	how	to	connect	to
the	database.	The	value	map	in	our	configuration	should	look	familiar,	as	it	leverages
what	we’ve	done	in	the	preceding	sections	of	this	chapter.

Tip
You’ll	need	to	modify	the	:db	:subname	value	to	point	to	the	appropriate	database,	if
you	have	not	created	the	hipstr	schema	in	the	default	postgres	database.	In	OS	X,
for	example,	my	default	database	is	//localhost/ryanbaldwin.

We	can	test	this	configuration	by	running	the	Migratus	plugin.	Type	the	following	in	your
terminal	from	the	root	of	your	hipstr	directory:

#	lein	migratus	migrate

This	will	migrate	any	yet-to-be-run	migration	script	inside	our	migrations	directory,	and
emit	information	about	the	status	of	each	migration.	In	our	case,	because	we	haven’t
written	any	migrations	yet,	we	should	see	something	similar	to	the	following:

In	the	preceding	output,	we	can	see	that	Migratus	created	the	_migrations	table	we
configured	to	keep	track	of	migrations.	We’re	informed	that	no	migrations	were	found.
Let’s	fix	this!

Creating	the	user	table
To	create	the	database	tables	for	our	hipstr	application,	we’ll	write	good	old	fashioned
SQL	scripts.	For	each	table,	we’ll	create	an	up	script,	which	Migratus	executes	while
migrating	our	database,	and	a	down	script,	which	Migratus	executes	when	rolling	back.

Note
Migratus	is	very	particular	about	the	naming	of	scripts.	It	expects	a	14-digit	number	as	the
script’s	prefix,	paired	with	any	combination	of	characters,	and	finally	suffixed	with	a
.up.sql	or	.down.sql,	respectively.	The	rational	for	this	design	decision	was	so	that	each
migration	script	would	have	a	date/time	prefix,	which	supposedly	helps	in	a	distributed
version	control	system	such	as	Git,	where	multiple	branches	and	such	may	exist.	In	our
case,	however,	that’s	overkill,	so	we’ll	just	use	incremental	version	numbers.

Create	a	migrations	directory	at	src/migrations.	Next,	create	your	first	Migratus	script,
and	call	it	00000000000100-users.up.sql,	and	save	it	in	the	src/migrations	directory
(all	subsequent	Migratus	scripts	that	we	write	will	go	in	this	directory).

The	content	of	the	Migratus	script	is	just	SQL.	We’ll	create	a	simple	user	table	that
captures	the	data	from	our	signup	form,	along	with	a	couple	of	timestamps.	Add	the
following	SQL	to	the	users.up.sql	script:

CREATE	TABLE	users

(user_id					SERIAL						NOT	NULL	PRIMARY	KEY,

	username				VARCHAR(30)	NOT	NULL,

	email							VARCHAR(60),

	password				VARCHAR(100),

	created_at	TIMESTAMP			NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'),

	updated_at	TIMESTAMP			NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'));

--;;—create	a	function	which	simply	sets	the	update_date	column	to	the—

current	date/time.

CREATE	OR	REPLACE	FUNCTION	update_updated_at()

RETURNS	TRIGGER	AS	$$

BEGIN

		NEW.updated_at	=	now()	AT	TIME	ZONE	'utc';

		RETURN	NEW;

END

$$	language	'plpgsql';

--;;—create	an	update	trigger	which	updates	our	updated_at	column	by—

calling	the	above	function

CREATE	TRIGGER	update_user_updated_at	BEFORE	UPDATE

ON	users	FOR	EACH	ROW	EXECUTE	PROCEDURE

update_updated_at();

There	are	three	statements	in	this	script,	each	of	which	are	separated	using	the	special	--
;;	delimiter,	which	Migratus	uses	to	split	statements.	The	first	statement	creates	the	users
table;	the	second	statement	creates	a	function	responsible	for	keeping	the	updated_at
column	current;	the	third	statement	creates	a	BEFORE	UPDATE	trigger	to	ensure	that	the
current	date	is	set	on	the	update_at	column.

We	can	test	the	script	by	heading	back	over	to	our	terminal	and	executing	another	lein
migratus	migrate	command.	You	should	see	output	similar	to	the	following	screenshot:

By	all	accounts,	the	migration	appears	to	have	completed	successfully.	Let’s	fire	up	the
PostgreSQL	management	shell	again	and	take	a	look	at	what	was	created.

From	the	terminal,	launch	the	psql	tool	the	same	way	we	did	earlier	in	this	chapter	in	the
Creating	the	Database	Schema	section:

#	psql	-U	hipstr	-d	postgres	-h	localhost

Type	the	command	\dt,	which	lists	all	the	tables	in	the	current	schema:

postgres=>	\dt

You	should	see	something	like	the	following:

There	you	go!	Our	users	table	is	in	the	hipstr	schema!	You	can	also	issue	a	\d	users
command,	to	describe	the	table.

Dropping	the	user	table
In	the	previous	section,	we	created	an	up	migration	script.	The	up	scripts	are	executed
whenever	we	perform	a	lein	migratus	migrate	or	lein	migratus	up	command.
However,	we	should	also	create	a	down	script,	which	is	used	when	we	want	to	roll	back	the
database.

Create	another	migration	script	with	the	same	name	as	the	users.up	script,	but	this	time
call	it	00000000000100-users.down.sql.	Migratus	looks	for	the	down	portion	of	the
filename	when	deciding	which	scripts	to	execute	when	rolling	back,	so	don’t	forget	this!

In	the	users.up	script,	we	created	a	table,	a	function,	and	a	trigger.	In	the	down	script,
we’ll	want	to	remove	these	objects,	but	in	the	reverse	order	(lest	we	produce	ill-fated	SQL
errors	as	a	result	of	attempting	to	drop	objects	that	are	depended	upon).	This	is	achieved
using	the	following	code:

DROP	TRIGGER	update_user_updated_at	ON	users;

--;;

DROP	FUNCTION	update_updated_at();

--;;

DROP	TABLE	users;

The	preceding	code	drops	the	three	objects	we	created	in	the	appropriate	order.

Running	the	down	scripts
We	can	run	the	down	scripts	by	running	lein	migratus	down	[list	of	migration
script	ids].	For	example:

#	lein	migratus	down	100

Migratus	will	attempt	to	execute	each	down	script	matching	the	list	of	IDs.	Much	like	lein
migratus	migrate,	Migratus	will	emit	output	informing	us	of	the	status	of	each	rollback,
similar	to	the	following	screenshot:

There	currently	does	not	exist	an	equivalent	to	Migratus’	lein	migratus	migrate	for
running	all	down	scripts,	and	thus	we	are	forced	to	specify	the	ID	of	each	down	script	we
wish	to	execute.	This	is	an	unfortunate	limitation,	however	Migratus	is	open	source,	so

perhaps	some	generous	Clojure	whiz	will	be	kind	enough	to	write	a	lein	migratus	down
all	*cough*thanks*cough*.

Migrating	the	database
Before	we	move	forward	and	start	actually	interacting	with	the	database	from	code,	it
would	be	worth	considering	how	to	migrate	and	roll	back	the	database,	both	using
Leiningen	as	well	as	programatically.

Running	all	migration	scripts	from	Leiningen
The	commands	to	run	migration	scripts	are	as	follows:

lein	migratus	migrate:	This	runs	all	up	migration	scripts	that	are	yet	to	be	run.
Migratus	checks	the	migrations	table,	which	consists	of	a	single	column	of	migration
script	IDs	and	runs	any	migrations	that	have	not	already	been	run	(that	is,	any
migration	scripts	whose	ID	is	not	already	in	the	migrations	table).
lein	migratus	up	[IDs]:	This	migrates	one	or	more	up	migration	scripts	by
specifying	their	ID.	Each	migration	script	is	run	in	the	order	specified.	If	the
migration	script	has	already	been	run,	it	will	be	skipped.

lein	migratus	up	100	200	300

lein	migratus	down	[IDs]:	This	runs	the	down	script	for	each	ID	specified,	in	the
order	of	the	IDs	specified,	for	example:

lein	migratus	down	300	200	100

Running	migrations	programatically
This	is	quite	possibly	one	of	my	favorite	features	of	Migratus.	I’ve	spent	far	too	many	late
nights	deploying	software,	and	botching	SQL	scripts.	I’m	a	fan	of	single-click	deployment
or,	at	the	very	least,	minimizing	the	amount	of	effort	it	takes	to	get	a	piece	of	software
deployed.	One	of	the	things	I	like	to	do—either	because	I’m	clever	or	stupid—is	to	tap
into	the	Migratus	API	at	startup	(such	as	in	the	hipstr.handler/init)	and	run	any
migration	that	may	be	required.	This	frees	up	our	effort	when	deploying	our	app	for	the
first	time,	or	on	subsequent	upgrades.	As	long	as	we	have	the	proper	database	connection,
the	app	will	take	care	of	the	rest.

The	Migratus	API	follows	the	same	options	as	its	Leiningen	plugin	counterpart,	and	has
the	following	functions:

migratus.core/migrate:	This	runs	all	up	migration	scripts	that	are	yet	to	be	run.
migratus.core/up	[IDs]:	This	migrates	one	or	more	up	scripts	by	specifying	their
ID,	in	the	defined	order.	Again,	this	skips	any	up	script	that’s	already	been	run.
migratus.core/down	[IDs]:	This	runs	one	or	more	down	scripts	by	specifying	their
ID,	in	the	defined	order.

That’s	it—a	tiny	API	that	can	make	the	deployment	story	a	lot	easier.	For	fun,	let’s	add
automatic	migrations	in	our	hipstr.handler	namespace.

Adding	migrations	to	the	hipstr	initialization
Adding	migrations	to	the	hisptr	application	is	easy.	We	can	have	Migratus	run	any

required	migrations	upon	application	startup	by	adding	the	appropriate	call	in	our
hipstr.handler/init	location.	Let’s	do	it	now:

1.	 Add	a	Migratus	config	to	our	hipstr.handler	namespace	(we	will	refactor	this	later,
I	promise).	For	now,	just	copy	and	paste	the	:migratus	value	from	the	project.clj
file:

(def	migratus-config

		{:store	:database

			:migration-dir	"migrations"

			:migration-table-name	"_migrations"

			:db	{:classname	"org.postgresql.Driver"

								:subprotocol	"postgresql"

								:subname	"//localhost/postgres"

								:user	"hipstr"

								:password	"p455w0rd"}})

2.	 Next,	add	the	function	that	will	perform	the	actual	migration	using
migratus.core/migrate,	marked	as	#1.	We’ll	wrap	it	in	a	try/catch	function	and
emit	any	errors	in	case	the	migration	fails:

(defn	migrate-db	[]

		(timbre/info	"checking	migrations")

		(try

				(migratus.core/migrate	migratus-config)	;#1

				(catch	Exception	e

						(timbre/error	"Failed	to	migrate"	e)))

		(timbre/info	"finished	migrations"))

3.	 Lastly,	add	a	call	to	migrate-db	in	the	hipstr.handler/init	function,	right	before
we	call	session-manager/cleanup-job:

;...snipped	for	brevity

(migrate-db)

(cronj/start!	session-manager/cleanup-job)

That’s	it!	Now	start	the	app	with	a	lein	ring	server	command	(or	restart	it	if	you
already	have	it	running)	and	watch	the	output.	You	should	see	something	similar	to	the
following:

In	the	preceding	image,	you	can	see	that	Migratus	ran	any	required	migrations	as	part	of
the	hipstr	initialization.

Adding	data	to	the	database
There	are	a	thousand	and	one	ways	to	get	data	into,	and	out	of,	a	database.	I	confess	that	I
am	not	a	fan	of	ORMs	such	as	Hibernate	because	over	the	long	term,	I	think	they’re	far
more	costly	than	writing	your	own	SQL.	ORMs	are	convenient	during	development,	and
they	keep	the	code	consistent,	but	they	abstract	SQL	so	far	away	that	it	can	be	difficult	to
diagnose	what’s	happening	when	your	data	access	isn’t	performing	how	you	expect	it	to
(whether	it	be	performance,	incorrect	data	retrieval,	or	something	more	sinister).	Of
course,	ORMs	have	their	value	in	the	sense	that	they’re	(mostly)	database	agnostic,	but
never	once	in	my	career	have	I	worked	on	anything	wherein	the	backend	database	was	a
variable.

This	being	said,	I	also	loath	SQL	strings	in	my	code.	They’re	ugly,	they’re	hard	to	read,
they	remove	much	of	the	built-in	SQL	highlighting	and	support	of	many	modern	IDEs,
they	force	you	to	create	weird	classes	with	nothing	but	SQL	templates	in	them,	and	they
just	feel	wrong.

For	the	most	part,	those	two	options	have	been	our	only	options:	either	write	your	own
SQL	inside	your	Java/Clojure/C#/Python/Whatever	code,	or	have	some	library
mysteriously	generate	it	for	you.	The	risk/reward	is	six	of	one	and	a	half	dozen	of	the
other.

It’s	for	these	reasons	why	I	was	so	strongly	attracted	to	YeSQL.

What	is	YeSQL?
YeSQL	is	a	tiny	Clojure	library,	which	generates	functions	out	of	your	own	SQL.	That’s
right.	You	write	your	own	SQL	code	in	a	separate	.sql	file,	and	at	runtime	YeSQL	pulls	it
in	and	turns	it	into	a	function.	You	then	call	that	function,	passing	it	an	argument	map,	and
voila!	Data!

This	allows	you	to	keep	your	SQL	separate	from	the	rest	of	your	Clojure	code,	but	more
importantly,	it	allows	you	to	treat	your	SQL	as	SQL.

For	example,	pretend	we	have	the	following	query	in	a	file	called	foobars.sql:

SELECT	*

FROM	foo

WHERE

		severity	=	'BAR'

YeSQL	can	pull	this	query	in	and	wrap	it	in	a	Clojure	function	in	two	brain	dead	steps:

1.	 Annotate	the	query	with	a	name	and	optional	doc	string:

--	name:	get-foobars—Gets	all	the	really	bad	foos.	All	of	them.

SELECT	*

FROM	foo

WHERE

		severity='BAR'

2.	 In	your	namespace,	slurp	in	the	SQL	file:

(require	'[yesql.core	:refer	[defqueries])

(defqueries	"foobars.sql"	[some	database	connection	stuff])

That’s	it.	Now	our	namespace	will	have	access	to	a	function	that	matches	the	name
annotation	we	set	on	the	query,	in	our	case,	get-foobars.	We	call	that	query	the	same	way
we	call	any	other	function	in	Clojure.	Not	only	this,	but	any	extra	documentation	we
added	to	the	query	also	gets	pulled	in	as	a	docstring.	Nifty!

The	rest	of	this	book	will	use	YeSQL	for	all	interactions	with	the	database.

Note
You	can	find	the	docs	for	YeSQL	0.5.0-beta2	at
https://github.com/krisajenkins/yesql/tree/v0.5.0-beta2.

https://github.com/krisajenkins/yesql/tree/v0.5.0-beta2

Getting	YeSQL
As	with	everything	else	Leiningen	based,	grabbing	the	YeSQL	library	is	a	one-step
process.	In	our	project.clj,	add	the	following	to	the	:dependencies	list:

[yesql	"0.5.0-beta2"]

That’s	all	we	have	to	do.	There	is	no	additional	configuration	or	setup.

YeSQL	0.5.0-beta2	is	a	bit	of	a	departure	from	0.4.0,	and	is	not	backwards	compatible.
YeSQL	0.4.0	used	positional	arguments	for	all	the	generated	functions,	which	were
difficult	to	maintain	after	the	fact	(think	about	insert	statements!	Craziness!).	0.5.x	does
away	with	positional	arguments	and	uses	map	arguments.	This	makes	the	code	much
cleaner	and	easier	to	use.	We	will	be	using	YeSQL	0.5.x	because,	with	luck,	it	will	be
stable	by	the	time	this	book	comes	to	light.

Adding	a	user	to	the	database
The	easiest	way	to	get	started	with	YeSQL	is	for	us	to	complete	our	User	Signup	form.	To
get	started,	do	the	following:

1.	 Create	a	new	directory,	src/hipstr/models,	where	we’ll	put	our	.sql	files	and	other
database	like	code.

2.	 Create	a	new	SQL	file	in	the	models	directory	called	users.sql.	This	is	where	we
will	put	our	SQL	for	inserting	and	getting	a	user.

Create	a	new	Clojure	file	alongside	users.sql,	called	user_model.clj.	This	will	be	a
(very)	thin	wrapper	around	the	YeSQL	generated	query	functions.

Inserting	a	user	using	SQL
Our	users	table	is	a	simple	one,	which	only	requires	three	values	from	us	at	the	time	of
inserting:	username,	email,	and	password	(the	others,	created_at,	updated_at,	and
user_id	are	autogenerated	for	us).	As	such,	the	SQL	is	straight	forward.	Open	the
users.sql	file	and	enter	the	following:

--	name:	insert-user<!—Inserts	a	new	user	into	the	Users	table—Expects	

:username,	:email,	and	:password

INSERT	INTO	users	(username,	email,	password)

VALUES	(:username,	:email,	:password)

The	preceding	code	looks	pretty	standard.	We’re	inserting	a	new	row	into	the	users	table,
and	are	providing	each	the	username,	email,	and	password	columns	a	value.	In	the	VALUES
clause,	we	are	specifying	a	:username,	:email,	and	:password	key,	each	of	which	will	be
bound	to	the	map	passed	to	the	generated	function.

SQL	aside,	we	also	used	the	name:	annotation,	which	YeSQL	uses	for	the	name	of	the
generated	function,	and	a	docstring,	which	YeSQL	also	uses	to	document	the	generated
function.	However,	there’s	another	interesting	syntax,	and	that’s	the	<!	suffix	we	gave	the
name.

There	are	two	special	suffixes	we	can	use	in	the	names	of	our	YeSQL	queries.	These
suffixes	tell	YeSQL	to	return	an	appropriate	result	when	mutable	queries	(that	is,	queries
that	insert/update/delete/alter	the	database)	are	executed.	These	suffixes	are	as	follows:

<!:	Query	names	ending	in	<!	will	return	either	the	primary	key,	or	the	entire	altered
row,	depending	on	the	database	driver.	Using	PostgreSQL,	the	entire	row	will	be
returned.	Take	a	look	at	the	following	example:

(insert-user<!	{:username	"TheDude"

																:email	"thedude@bides.net"

																:password	"abc123"})

=>	{:update_date	#inst	"2014-09-27T19:02:25.206296000-00:00"

				:create_date	#inst	"2014-09-27T19:02:25.206296000-00:00"

				:pass	"abc123"	:email	"thedude@bides.net"

				:username	"TheDude",	:user_id	13}

!:	Query	names	ending	in	!	will	return	the	number	of	rows	affected	by	the	query.	For
example,	if	we	changed	our	insert-user<!	to	just	insert-user!,	our	code	would
produce	the	following:

(insert-user!	{:username	"TheDude"

															:email	"thedude@bides.net"

															:password	"abc123"})

=>	1

These	two	special	characters	are	convenient	when	we	want	to	report	appropriate	outcomes
to	the	client.

Inserting	a	user	using	Clojure
Now	that	we	have	the	SQL	file	with	the	insert	statement,	we	need	to	give	our
user_model.clj	file	some	meat.	Open	up	the	user_model.clj	file	and	add	the	following
code:

(ns	hipstr.models.user-model

		(:require	[yesql.core	:refer	[defqueries]]))

(def	db-spec	{:classname	"org.postgresql.Driver"		;#1

														:subprotocol	"postgresql"

														:subname					"//localhost/postgres"

														:user								"hipstr"

														:password				"p455w0rd"})

(defqueries	"hipstr/models/users.sql"

												{:connection	db-spec})				;	#2

The	preceding	code	is	all	we	need	for	YeSQL	to	generate	a	series	of	functions	out	of	all
the	SQL	we	write	in	the	users.sql	file.	At	#1	we	are	defining	our	database	connection.
This	should	look	pretty	familiar	to	the	JDBC	connection	maps	that	one	provides	when
using	vanilla	clojure.jdbc	(which	is	what	YeSQL	uses	under	the	hood—there’s	no	magic
there).

Code	at	#2	is,	however,	where	the	magic	happens.	At	#2	we	tell	YeSQL,”	Hey,	go	look	at
the	users.sql	file	and	generate	a	function	for	each	query,	and	for	each	query	use	this
database	connection.”	In	essence,	our	SQL	becomes	our	data	model,	and	the	user_model
namespace	is	a	thin	shim	connecting	our	business	to	the	data	model.

Passing	the	connection	to	defqueries	is	a	convenience	and	not	necessary.	If	we	left	it	out,
however,	we	would	have	to	provide	the	connection	anytime	we	called	the	generated
function,	for	example	(insert-user<!	{:username…}	{db-spec}).	This	gets	annoying,
and	it	creates	unnecessary	clutter	in	our	code.

Note
The	database	connection	doesn’t	have	to	be	defined	as	part	of	the	user_model	namespace,
and	indeed,	it	shouldn’t,	as	all	our	models	will	connect	to	the	same	database.	We	will
refactor	this	as	part	of	Chapter	11,	Environment	Configurations	and	Deployment.

We	can	do	a	sanity	check	using	the	REPL	to	ensure	that	the	preceding	code	actually

works:

#	lein	repl

hipstr.repl=>	(load	"models/user_model")

hipstr.repl=>	(ns	hipstr.models.user-model)

hipstr.repl=>	(:doc	(meta	insert-user<!))

>>	"Inserts	a	new	user	into	the	Users	table\nExpects	:username,	:email,	and	

:password"

hipstr.repl=>	(insert-user<!	{:username	"test"	:email	"test@foo.bar"	

:password	"abc123"})

>>	{:updated_at	#inst	"2014-12-03T07:48:53…."	:created_at	#inst	"2014-12-

03T07:48:53…"	:password	"abc123"	:email	"test@foo.bar"	:username	"test"	

:user_id	1}

With	the	knowledge	that	it	works,	we	can	complete	our	Signup	process.

Bringing	it	all	together
So	far,	we’ve	created	a	users	table,	a	SQL	query	for	inserting	a	user	record,	and	a	thin
shim	that	generates	Clojure	functions	from	our	SQL	queries.	It’s	time	we	bring	these	into
our	Signup	workflow	and	get	the	user	in	the	database.

Adjusting	the	route
As	it	stands,	the	only	thing	we	actually	have	to	do	is	adjust	our	/signup	POST	route.	Open
the	hipstr.routes.home	namespace	and	perform	the	following	steps:

1.	 Adjust	the	:require	form	to	make	use	of	our	new	user-model	namespace:

(:require	[compojure.core	:refer	:all]

		…

		[hipstr.models.user-model	:as	u]))

2.	 Adjust	our	signup-page-submit	function	such	that	we’ll	add	the	new	user	to	the
database	if	all	validations	pass:

(defn	signup-page-submit	[user]

		(let	[errors	(v/validate-signup	user)]

				(if	(empty?	errors)

						(do

								(u/insert-user<!	user)

								(response/redirect	"/signup-success"))

						(layout/render	"signup.html"

																					(assoc	user	:errors	errors)))))

That’s	all	we	need	to	do.	We	simply	pass	our	user	map	to	the	function	generated	by
YeSQL	and	our	newly	signed-up	user	is	saved	to	the	database.	This	works	because	our
user	form’s	field	names	map	perfectly	to	the	keys	expected	by	the	generated	insert-
user<!	function.	However,	there	is	one	more	thing	we’ll	want	to	do	with	our	data	before
we	save	it.

Encrypting	the	password
We	are	good	developers.	We	care	(somewhat)	about	security	(I	hope).	As	such,	we’ll	want
to	encrypt	the	password	before	we	store	it	in	the	database.	This	is	not	something	we	want
to	worry	about	every	time	we	add	a	new	user,	so	we’ll	add	a	small	function	in	our
hipstr.models.user-model	namespace,	which	will	encrypt	the	password	before	we
throw	it	in	the	database.

The	easiest	way	to	encrypt	a	password	is	to	use	crypto-password,	a	tiny	encryption	library
written	by	James	Reeves	(yep,	him	again).	To	encrypt	our	user’s	password,	do	the
following:

1.	 Add	the	crypto-password	dependency	by	adding	the	following	code	to	our
project.clj	dependencies:

[crypto-password	"0.1.3"]

2.	 Add	crypto-password	as	a	requirement	in	our	hisptr.models.user-model
namespace.	The	crypto-password	lib	supports	3	encryption	schemes:	PBKDF2,
bcrypt,	and	scrypt.	For	the	purpose	of	this	exercise,	we	will	use	bcrypt:

(ns	hipstr.models.user-model

		(:require	[yesql.core	:refer	[defqueries]]

				[crypto.password.bcrypt	:as	password]))

3.	 Create	a	small	function,	add-user!,	which	our	/signup	POST	route	will	call.	This
function	will	simply	encrypt	the	:password	key	on	the	incoming	user	map	before
passing	it	off	to	the	insert-user<!	function	generated	by	YeSQL.

(defn	add-user!

		"Saves	a	user	to	the	database."

		[user]

		(let	[new-user	(->>	(password/encrypt	(:password	user))

																						(assoc	user	:password)

																							insert-user<!)]

																						(dissoc	new-user	:pass)))

4.	 Finally,	adjust	the	/signup	POST	route	back	in	our	hipstr.routes.home	namespace
to	use	the	new	hipstr.models.user-model/add-user!	function	instead	of	directly
calling	the	insert-user<!	function:

…

(do

		(u/add-user!	user)

		(response/redirect	"/signup-success"))))

We	are	now	storing	a	fully	encrypted	password	in	our	database,	and	we	barely	had	to	do	a
thing.	Go	ahead	and	restart	hipstr,	and	start	accepting	billions	of	users.

Summary
We	came	a	long	way	in	this	chapter.	We	shared	a	few	laughs,	and	we	learned	some
valuable	life	lessons	along	the	way.	You	learned	how	you	can	sanely	manage	your
database	schema	using	Migratus,	as	well	as	how	you	can	use	SQL	without	cluttering	your
Clojure	code	using	YeSQL.	The	Migratus/YeSQL	combination	allows	you	to	quickly
develop	and	maintain	your	database	without	giving	up	the	power,	flexibility,	and	visibility
of	raw	SQL,	something	we	typically	sacrifice	when	using	an	ORM.	In	the	next	chapter,
we’ll	continue	using	YeSQL	as	we	create	the	login	form	for	our	application.

Chapter	8.	Reading	Data	from	the
Database
In	Chapter	7,	Getting	Started	with	the	Database,	we	covered	a	lot	of	ground:	We	created	a
database	schema	and	granted	our	application	access,	we	were	introduced	to	Migratus	and
started	using	it	to	create	our	first	table,	and	we	were	introduced	to	YeSQL	for	inserting
data	into	the	DB	without	the	use	of	any	ORM	sorcery.	In	this	chapter,	we	will	continue	our
example	by	fetching	data	from	the	database.	We	will	be:

Creating	two	new	tables:	albums	and	artists
Seeding	our	new	tables	with	example	data
Creating	a	new	page	that	displays	the	recently	added	albums
Creating	a	new	artist	page
Linking	the	Recently	Added	page	to	the	artist	page

Much	of	this	chapter	should	appear	obvious	after	everything	we’ve	done	so	far.	So	let’s
get	to	work!

Creating	the	catalog
At	this	point,	we	want	to	lay	the	foundation	of	allowing	our	user	to	catalog	and	view	their
record	collection.	We	will	create	a	simple	Recently	Added	album	page,	and	a	simple	Show
me	all	the	albums	for	this	artist	page	(which	I’ll	just	call	“the	artist	page”).	The	first	thing
to	do	in	order	to	facilitate	this	incredible	functionality	is	to	create	the	artists	table	and	the
albums	table.

Creating	the	artists	table
We	will	use	Migratus	to	create	the	artists	table.	As	such,	we	need	to	create	another	SQL
migration	file.	So	let’s	do	the	following:

1.	 In	the	src/migrations	folder,	create	a	new	migration	script	called	00000000000200-
artists.up.sql.

2.	 For	our	hipstr	app,	the	artists	table	is	going	to	be	extremely	simple.	We’ll	have	an
artist_id	that	uniquely	identifies	the	artist,	a	name	(go	figure),	and	two	timestamps,
created_at	and	updated_at,	for	keeping	track	of	when	the	artist	was	created	and
last	updated.	Add	the	following	SQL:

CREATE	TABLE	artists																																	—#1

(artist_id	SERIAL	NOT	NULL	PRIMARY	KEY,

		name	VARCHAR(255)	NOT	NULL,

		created_at	TIMESTAMP	NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'),

		updated_at	TIMESTAMP	NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'),

		CONSTRAINT	artist_name	UNIQUE(name));

--;;—create	an	update	trigger	which	updates	our	updated_at	—column	by	

calling	the	above	function

CREATE	TRIGGER	update_artist_updated_at	BEFORE	UPDATE		--#2

ON	artists	FOR	EACH	ROW	EXECUTE	PROCEDURE

update_updated_at();

In	the	artists	migrations	script,	we	wrote	a	CREATE	TABLE	statement	(#1),	which	should
look	familiar	(it’s	very	similar	to	our	users	table).	Similar	to	the	user’s	table,	we	put	a
BEFORE	UPDATE	trigger	(#2),	which	allows	our	database	to	manage	the	updated_at	field
and	not	rely	on	us	to	maintain	it	every	time	we	update	the	record.	The	update_updated_at
function	is	created	as	part	of	the	00000000000100-users.up.sql	migration.

We	can	ensure	that	the	previous	script	works	by	first	using	Migratus,	and	then	use	psql	to
ensure	that	the	table	was	created.	Do	the	following:

1.	 From	the	command	line,	migrate	the	database	to	include	the	artists	table	by	using
migratus:

#	lein	migratus	migrate

2.	 Connect	to	the	database	using	the	psql	tool:

#	psql	-U	hipstr	-d	postgres	-h	localhost

3.	 Use	the	\dt	command	to	list	all	the	tables	available	to	the	current	role:

postgres=>	\dt

If	everything	succeeds	as	it	should,	you	will	see	something	similar	to	the	following:

Of	course,	we	can’t	have	an	up	migration	without	a	down	migration,	as	that’s	just	not	going
to	fly	when	we’re	developing	and	we	want	to	reset	the	universe.	So	let’s	create	the	down
migration	for	the	artists	table	by	doing	the	following:

1.	 In	the	src/migrations	folder,	create	a	new	migration	script	called	00000000000200-
artists.down.sql.

2.	 Write	an	SQL	statement	that	destroys	the	artists	table:

DROP	TABLE	artists;

(Again,	we	can	ensure	that	our	script	works	by	rolling	back	just	the	artists	table	using	lein
migratus	down,	and	then	psql‘ing	to	the	database	and	running	the	same	\dt	command):

1.	 From	the	command	line,	roll	back	the	artists	table:

#	lein	migratus	down	200

2.	 Connect	to	the	database	using	psql:

#	psql	-U	hipstr	-d	localhost	-h	localhost

3.	 Use	the	psql	command	to	list	all	the	tables,	which	will	magically	no	longer	list	our
artists	table:

postgres=>	\dt

Again,	if	everything	succeeds,	we	will	see	something	similar	to	the	following:

However,	since	this	chapter	is	mostly	focusing	on	reading	data	and	not	adding	data
(because	I’m	a	crazy	Canuck	like	that),	we	are	going	to	need	some	data	to	work	with.

Seeding	the	artists	table
Migratus	is	a	dumb	migration	tool	in	that	it	doesn’t	know	what	it’s	executing;	it	just	knows
it’s	executing	something.	So	there’s	nothing	stopping	us	from	seeding	our	artists	table
with	data.	This	might	seem	like	a	weird	thing	to	do.	However,	in	a	team	environment	–	or
even	in	your	own	development	environment	–	this	is	a	great	way	to	easily	seed	the
database.	Let’s	add	the	following	few	insert	statements	to	the	bottom	of	our	artists
migration	script	so	that	we	can	seed	it:

--;;

INSERT	INTO	artists	(name)	VALUES	('The	Arthur	Digby	Sellers	Band')

--;;

INSERT	INTO	artists	(name)	VALUES	('Fort	Knox	Harrington')

--;;

INSERT	INTO	artists	(name)	VALUES	('Hungus')

--;;

INSERT	INTO	artists	(name)	VALUES	('Smokey	Fouler')

--;;

INSERT	INTO	artists	(name)	VALUES	('Brant')

All	we	need	to	create	a	new	artist	in	our	artists	table	at	this	point	is	the	artist	name,
because	all	the	other	fields	are	calculated.

Note
Remember	that	we	can	have	multiple	statements	in	a	migration	file,	so	long	as	we	separate
each	statement	with	a	--;;.	Also	note	that	you	can’t	have	any	blank	lines	between	each

statement,	otherwise	Migratus	gets	confused.	And	when	Migratus	gets	confused,	you’ll
get	confused.

You	can	run	lein	migratus	migrate	to	re-create	the	artists	table	and	insert	the	seed
data.	If	you’d	like	to	ensure	the	table	was	properly	seeded,	you	can	use	psql	to	run	a	query
and	ensure	that	the	output	is	what	we	expect,	as	shown	as	follows:

Now	that	we	have	the	artists	table	up	and	running,	it’s	time	we	create	the	albums	table.

Creating	the	albums	table
For	the	sake	of	simplicity,	this	section	will	assume	that	an	album	can	have	a	single	artist.
There’s	nothing	stopping	you	from	normalizing	the	database,	such	that	you	can	create	an
artists_albums	table	that	allows	for	a	many	artists	to	many	albums	approach.	For	this
example,	we’ll	assume	a	single	album	has	a	single	artist,	though	an	artist	will	have	many
albums.

As	with	users	and	artists,	we	will	create	up	and	down	migration	scripts.	We’ll	be	doing
both	of	these	as	follows:

1.	 Create	a	new	file	in	src/migrations	location	called	00000000000210-
albums.up.sql.

2.	 Add	the	following	SQL	to	the	albums	migration	file:

CREATE	TABLE	albums

(album_id					SERIAL						NOT	NULL	PRIMARY	KEY,

	artist_id				BIGINT	NOT	NULL	REFERENCES	artists	(artist_id),

	name									VARCHAR(255)	NOT	NULL,

	release_date	DATE	NOT	NULL,

	created_at		TIMESTAMP			NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'),

	updated_at		TIMESTAMP			NOT	NULL	DEFAULT	(now()	AT	TIME	ZONE	'utc'),

	CONSTRAINT	arist_album_name	UNIQUE	(artist_id,	name));

--;;—create	an	update	trigger	which	updates	our	update_date	column	by	

calling	the	above	function

CREATE	TRIGGER	update_album_updated_at	BEFORE	UPDATE

ON	albums	FOR	EACH	ROW	EXECUTE	PROCEDURE

update_updated_at();

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'My	Iron	Lung',	'1978-11-24'

		FROM	artists	a

		WHERE	a.name	=	'The	Arthur	Digby	Sellers	Band'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'American	History	Fail',	'2000-04-18'

		FROM	artists	a

		WHERE	a.name	=	'The	Arthur	Digby	Sellers	Band'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'Giggles	and	Mustaches',	'1992-11-29'

		FROM	artists	a

		WHERE	a.name	=	'Fort	Knox	Harrington'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'20	Tons	of	Video	Gold',	'1990-10-09'

		FROM	artists	a

		WHERE	a.name	=	'Fort	Knox	Harrington'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'Fixing	the	Cable',	'1989-06-02'

		FROM	artists	a

		WHERE	a.name	=	'Hungus'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'Over	the	Line',	'1998-08-08'

		FROM	artists	a

		WHERE	a.name	=	'Smokey	Fouler'

--;;

INSERT	INTO	albums	(artist_id,	name,	release_date)

		SELECT	a.artist_id,	'Petulant	Suckup',	'1995-05-21'

		FROM	artists	a

		WHERE	a.name	=	'Brant'

Similar	to	previous	up	migration	scripts,	we	are	creating	a	new	table	and	employing	the
use	of	a	BEFORE	UPDATE	trigger	to	manage	the	updated_at	field.

We	also	seed	the	table	with	some	example	data	using	INSERT	SELECT	statements.	INSERT
SELECT	statements	allow	us	to	populate	the	artist_id	field	without	hardcoding	the	actual
value	of	the	artist_id	field.	Instead,	we	fetch	the	artist_id	value	just	in	time.

As	with	the	artists	table,	we	can	create	our	albums	table	by	running	lein	migratus
migrate,	and	then	use	psql	to	verify	that	our	albums	table	was	properly	created	and
seeded	with	data.	You	should	see	something	similar	to	the	screenshot	shown	as	follows:

Also,	let’s	not	forget	the	down	script.	We	can	create	it	by	following	the	same	pattern	as	the

artists.down	script:

1.	 In	the	src/migrations	folder,	create	a	new	migration	script	called	00000000000210-
albums.down.sql.

2.	 Write	a	SQL	statement	that	destroys	the	albums	table:

DROP	TABLE	albums;

Ensure	the	script	works	by	rolling	back	just	the	albums	table	using	lein	migratus	down,
and	then	psql‘ing	to	the	database	and	running	the	\dt	command

1.	 From	the	command	line,	roll	back	the	artists	table:

#	lein	migratus	down	210

2.	 Connect	to	the	database	using	psql:

#	psql	-U	hipstr	-d	localhost	-h	localhost

3.	 Use	the	\dt	command	to	list	all	the	tables	that	will	no	longer	list	the	albums	table:

postgres=>	\dt

If	everything	succeeds,	you	will	see	something	similar	to	the	following:

Before	moving	on,	run	lein	migratus	migrate	to	re-create	and	reseed	the	albums	table,
because	now	we’re	going	to	make	use	of	it.

Fetching	albums	from	the	database
In	Chapter	7,	Getting	Started	with	the	Database,	we	were	introduced	to	YeSQL	for
interacting	with	our	database.	We	used	YeSQL	to	create	an	INSERT	statement	which	added
our	new	users	to	the	database.	Similarly,	we	can	use	YeSQL	to	SELECT	records	from	the
database.	If	you	can	do	it	in	SQL,	you	can	do	it	with	YeSQL.	And	that’s	the	beauty	of
YeSQL:	it’s	just	SQL.	This	allows	us	to	open	an	SQL	tool	of	our	choice	and	experiment
with	our	query	until	we	get	it	right.

Writing	the	SQL	query
For	this	next	bit,	we’ll	use	the	psql	tool	to	verify	our	SQL.	But	you’re	free	to	use
whatever	SQL	editor	you	have	at	your	disposal.	Take	the	following	steps:

1.	 Launch	psql	and	connect	to	our	database:

#	psql	-U	hipstr	-d	postgres	-h	localhost

2.	 We	can	write	our	query	at	the	PostgreSQL	prompt.	Any	valid	SQL	is	accepted	at	the
prompt;	we	just	need	to	terminate	it	with	a	semi-colon	(;).	Our	feature	wants	to	show
a	list	of	albums,	the	artist/s,	and	the	release	dates	of	those	albums,	all	ordered	by	the
date	on	which	it	was	added	within	hipstr.	The	corresponding	query	will	look	like	the
following:

SELECT	art.name	as	artist,	alb.album_id,	alb.name	as	album_name,	

alb.release_date,	alb.created_at

FROM	artists	art

INNER	JOIN	albums	alb	ON	art.artist_id	=	alb.artist_id

ORDER	BY	alb.created_at	DESC

LIMIT	10;

Type	the	preceding	script	into	the	PostgreSQL	prompt	in	psql.	You	should	see	something
like	the	following:

You	can	adjust	and	play	with	the	query	as	you	want	in	psql,	but	we’ll	use	the	one	we
wrote	above.

Next,	we’ll	create	a	new	albums.sql	file,	where	we’ll	define	our	YeSQL	database
function.	We’ll	create	this	file	alongside	our	existing	users.sql	file.

1.	 Create	a	new	file	in	the	hipstr/models	directory	and	call	it	albums.sql.

2.	 Add	the	SQL	we	created	in	psql,	and	give	it	the	name	get-recently-added	using
the	YeSQL	naming	annotation:

--	name:	get-recently-added—Gets	the	10	most	recently	added	albums	in	

the	db.

SELECT	art.name	as	artist,	alb.album_id,	alb.name	as	album_name,	

alb.release_date,	alb.created_at

FROM	artists	art

INNER	JOIN	albums	alb	ON	art.artist_id	=	alb.artist_id

ORDER	BY	alb.created_at	DESC

LIMIT	10;

That’s	it!	As	far	as	the	query	is	concerned,	we’re	done.	However,	as	you’ll	recall,	we	still
need	a	Clojure	namespace	to	invoke	YeSQL	and	have	it	parse	our	SQL	file	to	generate	the
appropriate	functions.

Creating	the	albums	model
In	our	example,	YeSQL	will	generate	a	function	called	get-recently-added,	which
returns	the	10	most	recent-added	albums	added	to	hipstr.

To	do	this,	we’ll	continue	the	same	pattern	we	used	for	user-model	and	create	an	album-
model	namespace:

1.	 Alongside	the	albums.sql	file,	create	a	new	Clojure	file	called	album_model.clj.
2.	 Create	the	hipstr.models.album-model	namespace,	and	load	up	the	YeSQL	library:

(ns	hipstr.models.album-model

		(:require	[yesql.core	:refer	[defqueries]]))

3.	 Again,	we’ll	need	to	define	our	connection	(don’t	worry,	we’re	going	to	refactor	it):

(def	db-spec	{:classname			"org.postgresql.Driver"

														:subprotocol	"postgresql"

														:subname					"//localhost/postgres"

														:user								"hipstr"

														:password				"p455w0rd"})

4.	 Finally,	we’ll	generate	the	annotated	SQL	functions	using	YeSQL’s	defqueries:

(defqueries	"hipstr/models/albums.sql"	{:connection	db-spec})

At	this	point,	our	albums	model	is	complete.	Any	other	album-based	data	we	want	to
retrieve	from	the	database	can	be	added	as	a	YeSQL-generated	function	in	the	albums.sql
file.	However,	there’s	one	glaring,	disgusting	thing	about	this	namespace	that	made	me
shudder	and,	hopefully,	made	you	shudder	as	well	–	and	that’s	the	duplicate	defined	db-
spec.

Refactoring	the	connection
Don’t	Repeat	Yourself	(DRY).	It’s	not	just	a	good	thing	to	do,	and	it	should	be	your
mantra	as	often	as	it	makes	sense.	If	we	were	to	grow	our	hipstr	application	into	a	multi-
billion	dollar	product	with	millions	of	users	and	hundreds	of	features,	the	last	thing	we’d
want	to	do	is	define	our	database	connection	in	every	model.	Let’s	refactor	it	by
abstracting	db-spec	into	its	own	namespace	called	connection:

1.	 In	the	same	hipstr/models	directory	as	the	rest	of	our	database-connectivity	models
and	stuff,	create	another	file	called	connection.clj	and	add	the	following:

(ns	hipstr.models.connection)

2.	 Move	db-spec	from	the	hipstr.models.album-model	namespace	into	the
hisptr.models.connection	namespace:

(def	db-spec	{:classname			"org.postgresql.Driver"

														:subprotocol	"postgresql"

														:subname					"//localhost/postgres"

														:user								"hipstr"

														:password				"p455w0rd"})

3.	 Back	in	the	hipstr.models.album-model	namespace,	add	a	reference	to	our	new
hipstr.models.connection	namespace,	and	refer	to	db-spec:

(:require	[yesql.core	:refer	[defqueries]]

												[hipstr.models.connection	:refer	[db-spec]]))

4.	 Remove	the	db-spec	def	and	repeat	step	3	in	the	hipstr.models.user-model
namespace.

So	far,	we’ve	created	the	Migratus	migration	scripts	to	create	our	artists	and	albums
tables	and	seed	each	with	example	data.	We’ve	also	created	a	model	layer	using	YeSQL
that	fetches	data	from	those	tables.	We	then	refactored	the	common	component,	db-spec,
out	of	the	user-model	and	album-model	and	into	its	own	namespace.	Next	up,	we’ll	create
a	new	Compojure	route	for	serving	the	recently-added	page.

Creating	the	recently	added	route
Before	we	can	view	a	page,	we	have	to	be	able	to	serve	it.	We’ll	be	creating	a	couple	of
album-related	pages	in	hipstr.	So	let’s	create	a	new	hipstr.routes.albums	namespace,
and	also	create	a	route	to	serve	up	a	page	for	the	/albums/recently-added	URL:

1.	 Create	a	new	hipstr.routes.albums	namespace	in	the	hipstr/routes	directory.	As
with	our	other	route	namespaces,	we’ll	be	making	use	of	Compojure	for	creating	the
route,	as	well	as	album-model	to	retrieve	the	recently	added	albums	from	the
database:

(ns	hipstr.routes.albums

		(:require	[compojure.core	:refer	:all]

												[hipstr.layout	:as	layout]

												[hipstr.models.album-model	:as	album]))

2.	 Next,	we’ll	define	a	new	album-routes	defroute	that	will	encapsulate	all	our	albums-
related	routes	for	hipstr:

(defroutes	album-routes

		(GET	"/albums/recently-added"	[]	(album/get-recently-added)))

3.	 Finally,	we	have	to	add	the	new	album-routes	to	the	hipstr	app-handler:

1.	 Open	the	hipstr/handler.clj	file	and	add	a	reference	to	the
hipstr.routes.albums	namespace	we	just	created:

(:require	[compojure.core	:refer	[defroutes]]

										[hipstr.routes.albums	:refer	[album-routes]]

…)

2.	 Add	album-routes	to	the	list	of	routes	in	app-handler:

(def	app	(app-handler

				;;	add	your	application	routes	here

				[home-routes	album-routes	base-routes	test-routes]

				…))

At	this	point,	we	have	enough	plumbing	to	render	the	new	route.	Open	your	browser	and
navigate	to	http://localhost:3000/albums/recently-added,	You	should	see	the
following	as	a	result	(or	else,	something	similar,	depending	on	how	your	browser	renders
straight	JSON):

Hooray!	Fortune	is	smiling	upon	us!	Our	new	route	is	responding	to	requests,	and	is	also
making	use	of	the	album-model	we	created,	which	in	turn	uses	YeSQL	to	fetch	the	10
most	recently	added	albums	from	the	albums	table	(ordered	by	create_date	desc).	All
the	plumbing	is	there.	The	only	thing	we	have	left	to	do	is	represent	this	data	in	something
a	bit	more	palatable	than	straight	up	JSON.

Rendering	the	results
We’ll	be	using	Selmer	to	render	the	Recently	Added	albums.	We’ll	then	display	the
rendered	results	instead	of	the	crazy	raw	JSON.

Selmer	templates,	to	refresh	your	memory,	are	stored	in	the	resources/templates
directory.	As	you	may	have	guessed	by	now,	I	appreciate	a	nicely	organized	tree	structure.
So	instead	of	throwing	the	recently-added	template	in	with	the	rest	of	our	templates,
we’ll	create	a	new	albums	directory	and	house	our	album-related	templates	there:

1.	 Create	a	new	directory,	albums,	in	resources/templates.
2.	 Create	a	new	Selmer	template	for	our	recently	added	albums,

resource/templates/albums/recently-added.html,	with	the	following	content:

{%	extends	"templates/base.html"	%}							<!--	1	-->

{%	block	content	%}																							<!--	2	-->

<h1>Recently	Added</h1>

<ol	class="albums">

				{%	for	a	in	albums	%}																	<!--	3	-->

				

								<div	class="artist">{{a.artist}}

</div>

								<div	class="album-name">{{a.album_name}}</div>

								<div	class="release-date">{{a.release_date}}</div>

				

				{%	endfor	%}

{%	endblock	%}

The	Selmer	template	we	created	is	pretty	basic.	We’re	simply	extending	our	base.html
template	(1),	and	providing	content	for	the	content	block	(2).	For	the	actual	content,	we’re
using	the	Selmer	for	iterator	(3)	to	render	a	list-item	for	each	of	the	recently	added
albums,	and	then	rendering	the	values	of	the	various	fields	in	each	album.

Note
Consult	Chapter	4,	URL	Routing	and	Template	Rendering,	if	you	need	a	little	refresher	on
the	basics	of	Selmer	templates.

If	you	refresh	the	/albums/recently-added	route	in	your	browser,	you’ll	find	that	it’s…
still	JSON.	That’s	because	we’re	not	yet	rendering	the	previous	template.	Let’s	do	that
now:

1.	 Back	in	the	hipstr.routes.albums	namespace,	create	the	following	function	(which
invokes	the	Selmer	rendering	engine	on	our	new	template):

(defn	recently-added-page

		"Renders	out	the	recently-added	page."

		[]

		(layout/render	"albums/recently-added.html"

					{:albums	(album/get-recently-added)}))

2.	 Adjust	our	/albums/recently-added	route	to	use	the	recently-added-page
function,	instead	of	the	(album/get-recently-added)	form:

(GET	"/albums/recently-added"	[]	(recently-added-page))

Now	refresh	the	/albums/recently-added	route	in	your	browser.	You’ll	see	the	following
gorgeous	bit	of	HTML	design	genius:

An	exercise!
So	far,	this	chapter	has	been	me	giving	you	step-by-step	lists	of	things	to	do.	So	if	you’re
getting	bored,	I	don’t	blame	you.	As	such,	I’m	going	to	assign	you	some	homework.	You
may	have	noticed	that	our	recently	added	albums	have	a	hyperlink	for	the	band	name.

Your	task,	if	you	choose	to	accept	it	(you	should,	it’s	super	rad),	is	to	create	a	second	page.
This	page	will	be	an	artist’s	discography	page.	It	will	show	all	the	albums	by	the	artist	that
the	user	clicked.	To	accomplish	this	task	you	must	perform	the	following	steps:

1.	 Create	the	route	to	serve	the	artist	page.
2.	 Create	the	YeSQL	script	to	select	all	the	albums	for	a	given	artist	by	name.
3.	 Create	the	template	to	render	the	list	of	albums	for	a	given	artist.

For	example,	clicking	the	Fort	Knox	Harrington	link	should	produce	the	following:

Tip
In	order	to	complete	this	task,	you	must	use	Compojure’s	parameter	destructuring	–	See
Chapter	4,	URL	Routing	and	Template	Rendering,	specifically	the	section	on	–	surprise!	–
Parameter	destructuring.

Try	and	give	this	a	go.	If	you	get	stuck,	you	may	consult	the	source	code	for	this	chapter.
However,	everything	we’ve	covered	in	this	book	up	to	this	point	is	sufficient	for	you	to
create	this	page.	Give	it	a	whirl!

Summary
In	this	chapter,	we	continued	using	Migratus	to	create	additional	tables	in	our	database,	as
well	as	seed	those	tables	with	example	data.	We	also	used	YeSQL	to	pull	data	from	the
database.	We	then	created	a	couple	of	Selmer	templates	(assuming	that	you	finished	your
homework)	to	display	the	albums	and	artists.	In	the	next	chapter,	we	will	create	forms	for
adding	artists	and	albums	to	the	database,	and	also	learn	how	to	do	it	safely	inside	a
transaction.

Chapter	9.	Database	Transactions
In	the	previous	chapter,	we	continued	our	use	of	Migratus	migration	scripts	to	create	the
bleeding-edge	hipstr	catalog	(the	artists	and	albums	tables).	We	also	created	some	YeSQL
functions	that	pulled	the	catalog	data	from	the	database,	and	rendered	it	to	the	screen	with
such	beauty	and	poise	that	I	wouldn’t	be	surprised	if	we	got	a	job	tomorrow	at	a	rather
massive	Silicon	Valley	company.

This	chapter	will	continue	along	the	same	vein	as	the	previous:	more	coding,	fewer	fun
ogre	boring	things.	In	this	chapter	we	will	cover	the	following	topics:

Learning	what	a	database	transaction	is,	and	why	it’s	important
How	database	transactions	look	in	Clojure,	and	how	they	can	be	applied	when	using
YeSQL
Creating	a	form	that	accepts	an	artist	name,	album	name,	and	release	date,	and	how
to	store	it	in	the	database	using	a	transaction

This	chapter	will	use	everything	we’ve	learned	so	far	in	the	book,	including	validations
using	Validateur,	routes	using	Compojure,	and	YeSQL	for	more	goodness.	But	before	we
get	started	we	should	probably	review	what	a	database	transaction	is.

Introduction	to	Database	Transactions
Sometimes	I	like	to	see	what	the	internet	says	about	a	particular	topic,	and	then	spend	a
few	hours	trying	to	make	sense	of	it.	Let’s	take	a	look	at	what	Wikipedia	says	about
database	transactions:

	
“A	transaction	comprises	a	unit	of	work	performed	within	a	database	management	system	(or	similar	system)
against	a	database,	and	treated	in	a	coherent	and	reliable	way	independent	of	other	transactions…	A	database
transaction,	by	definition,	must	be	atomic,	consistent,	isolated	and	durable.”

	

	 —http://en.wikipedia.org/wiki/Database_transaction

I’m	not	going	to	lie.	I	hate	computer	jargon.	It’s	always	a	mouthful,	and,	more	often	than
not,	leaves	me	confused.	The	essence	of	the	preceding	quote	can	be	put	simply	thus:	A
database	transaction	is	a	bunch	of	work	which	is	either	completed	in	its	entirety	or	isn’t
performed	at	all,	and,	in	the	process,	doesn’t	screw	anything	else	up.	It’s	all-or-nothing,
while	respecting	its	neighbors.	That’s	the	easy	version.	Read	on	for	the	more	in-depth
version.

http://en.wikipedia.org/wiki/Database_transaction

The	ACID	properties
The	official	definition	of	the	set	of	properties	governing	database	transactions	is
mentioned	as	Atomic,	Consistent,	Isolated,	and	Durable	(known	as	ACID).	These	are
the	four	tenants	of	a	database	transaction.	Broken	down,	they	mean	the	following:

Atomic:	All	work	that	must	be	performed	by	the	database	inside	a	transaction	–	that
is,	reading	data,	deleting	data,	updating	data,	and/or	inserting	data	–	is	treated	as	a
single	unit	of	work.	It’s	literally	all-or-nothing.	If	anything	fails,	then	it	all	fails,	and
you	revert	back	to	the	way	the	universe	was	before	you’d	gone	and	mucked	it	all	up.
Consistent	–	This	is	basically	The	Principle	of	Least	Astonishment;	that	is,	there	are
no	surprises,	and	everything	is	as	you	expect	it	to	be.	Foreign	keys	and	other
constraints	are	respected,	the	state	of	the	data	prior	to	the	transaction	is	used	within
the	transaction,	etc.	In	short	a	transaction	should	never,	ever	leave	you	with	the
thought,	Huh,	how	did	that	happen?!
Isolated:	It	determines	just	how	much	of	your	transaction	you	want	other	users	of	the
database	to	see,	and	when.	For	example,	perhaps	you	still	want	to	give	others	read
access	to	the	data	while	you	manipulate	it,	or	maybe	you	want	exclusive	access	to	it
until	you’re	done.	There’s	a	trade-off	for	each.	Basically,	isolation	is	to	database
transactions	what	window	curtains	are	to	you	when	walking	around	your	apartment
naked.
Durable:	This	means	that	when	the	transaction	is	complete	and	committed,	the	state
of	that	data	is	there	to	stay.	It’s	permanent.	Even	if	you’ve	screwed	it	up.	So	don’t
screw	it	up.

Ultimately,	ACID	can	be	boiled	down	to	a	very	simple	concept:	Guaranteed	to	work,	or
nothing	at	all.

Importance	of	database	transactions
If	you	were	writing	a	tiny	app	for	yourself	that	only	you	were	using,	it’s	arguable	that
database	transactions	are	a	needless	overhead.	However,	in	an	environment	such	as	the
Web,	where	multiple	users	are	likely	accessing	the	same	data	at	the	same	time	while	data
manipulations	are	occurring,	database	transactions	are	a	good	thing.	You	want	your	data	to
be	consistent	and	valid.	For	without	database	transactions,	a	system	under	heavy	use
would	lose	all	data	integrity	before	you	finished	reading	this	sentence.	I	may	or	may	not
know	this	first	hand.

Implementing	a	transaction
Implementing	a	transaction	in	Clojure,	while	using	YeSQL,	is	about	as	trivial	a	thing	as
picking	lint	out	of	your	belly	button.	Pretend,	for	instance,	that	we	had	the	following
database	table	called	fun_ogres	(hint:	you	can	follow	along	using	your	own	psql	instance
if	you	so	desire):

We	could	create	a	YeSQL	function	such	as	the	following:

--	name:	insert-ogre<!—Adds	a	new	fun-ogre	to	our	database.

INSERT	INTO	fun_ogres	(ogre_id,	name,	specialty)

VALUES	(:ogre_id,	:name,	:specialty)

Of	course,	as	you’ve	seen,	you	could	then	call	the	preceding	YeSQL-generated	function
from	a	Clojure	namespace	by	simply	doing	the	following:

(require	'[yesql.core	:refer	[defquery]])

(def	some-db-spec	{…})

(defqueries	"some/path/fun_ogres.sql"	{:connection	some-db-spec})

(insert-ogre<!	{:ogre_id	1	:name	"Debby	Downer"

		:specialty	"Never	laughs	at	jokes.	Ever."})

We’ve	seen	this	pattern	about	a	half-dozen	times	now,	as	we’ve	done	it	for	all	of	our	data
so	far.	It	works,	and	it	works	fine.	However,	pretend	we	were	importing	a	few	fun_ogres,
such	as	the	following:

(def	ogres-to-import

		[{:ogre_id	1	:name	"Debby	Downer"

				:specialty	"Never	laughs	at	jokes.	Ever."}

			{:ogre_id	2	:name	"Droopy	David"

				:specialty	"He	loves	to	sulk	in	public."}

			{:ogre_id	3	:name	"Crabby	Colin"

				:specialty	"Constantly	complaining	about	everything."}])

(doseq	[ogre	ogres-to-import]

		(insert-ogre<!	ogre))

Let’s	say,	for	whatever	reason	(perhaps	a	network	hiccup	or	a	zombie	attack),	that	our
insert	fails	between	Droopy	David	and	Crabby	Colin.	At	this	point,	our	application	fails.
And	the	next	time	we	try	and	import	the	ogres,	our	doseq	is	going	to	fail	immediately	on
the	first	insert	due	to	a	primary	key	violation.	This	is	because	we	successfully	inserted	the

first	two	fun	ogres,	and	then	they	lived	up	to	their	name,	and	we	failed	to	insert	the	third
one.	This	is	because	we	weren’t	running	our	inserts	in	a	transaction,	and	thus,	atomicity
was	not	guaranteed.

Transactions	in	Clojure
Creating	a	transaction	in	Clojure	is	simple;	we	just	use	the	native
clojure.java.jdbc/with-db-transaction	macro.	We	pass	it	our	connection	settings,
and	then	we	get	a	handle	to	a	transaction	–	similar	to	the	following:

(require	'[clojure.java.jdbc	:as	jdbc])

(jdbc/with-db-transaction	[tx	some-db-spec]

		;	perform	a	bunch	of	stuff	inside	a	transaction

)	;	commit

If	all	the	code	inside	the	with-db-transaction	form	completes	successfully,	the
transaction	will	be	automatically	committed	for	us.	If	anything	fails,	it	will	rollback	and	an
exception	will	be	raised.	This	is	about	as	straightforward	as	you	can	get.	However,	how	do
we	tell	YeSQL	to	make	use	of	the	transaction?

Transactions	in	YeSQL
If	you	recall,	in	Chapter	7,	Getting	Started	with	the	Database,	we	very	briefly	discussed
that	there	were	2	ways	we	could	define	a	connection	with	YeSQL:

Define	the	connection	options	as	part	of	the	call	to	the	defqueries	function,	and/or
Pass	the	connection	when	making	the	actual	call	to	the	YeSQL	function

So	far	in	this	book,	we’ve	been	utilizing	the	first	option.	However,	if	we	want	to	use	a
transaction	within	YeSQL,	we	have	to	make	use	of	the	second	option.	To	facilitate	this,	we
have	to	use	with-db-transaction	to	create	a	transaction	context,	and	then	pass	that
transaction	context	into	the	call	to	insert-ogre<!.	Our	fancy	import,	then,	would	be
slightly	modified	to	the	following:

(require	'[yesql.core	:refer	[defquery]]

									'[clojure.java.jdbc	:as	jdbc])																						;#1

(def	ogres-to-import

		[{:ogre_id	1	:name	"Debby	Downer"

				:specialty	"Never	laughs	at	jokes.	Ever."}

			{:ogre_id	2	:name	"Droopy	David"

				:specialty	"He	loves	to	sulk	in	public."}

			{:ogre_id	3	:name	"Crabby	Colin"

				:specialty	"Constantly	complaining	about	everything."}])

(jdbc/with-db-transaction	[tx	some-db-spec]																		;#2

		(doseq	[ogre	ogres-to-import]

				(insert-ogre<!	ogre	{:connection	tx})))																		;#3

The	only	changes	we	made	were	the	following:

#1:	This	imports	the	clojure.java.jdbc	namespace	so	we	can	use	it
#2:	This	wraps	our	doseq	within	the	context	of	a	transaction
#3:	This	passes	the	transaction	handle	tx	into	the	YeSQL-generated	function	insert-
ogre<!	as	the	final	argument

Now,	if	anything	inside	the	transaction	context	fails	for	any	reason,	the	transaction	will	be
rolled	back	and	none	of	the	fun	ogres	will	be	inserted.

That	is	literally	(almost)	all	there	is	to	using	transactions	in	Clojure	and	YeSQL.	The	rest
of	this	chapter	will	mostly	be	code,	extending	our	hipstr	application	such	that	we	can
submit	a	new	artist	and	album,	as	well	as	create	those	entries	on	demand	if	necessary,	all
within	the	context	of	a	transaction.

Note
You	can	read	more	about	JDBC	transactions	in	Clojure	by	checking	out	the	rather	useful
documentation	at:	http://clojure.github.io/java.jdbc/

http://clojure.github.io/java.jdbc/

Extending	the	application	requirements	in
brief
Our	pointy-haired	marketing	wizard	(me)	has	decided	that	our	hipstr	application	requires
the	ability	to	add	a	new	artist	and	album	(with	a	release	date).	The	form	should	be
validated,	ensuring	that	all	of	the	data	is	appropriate,	before	sending	it	off	to	the	database.
If,	for	whatever	reason,	the	inserts	into	the	database	fail,	then	nothing	should	be	changed.
Also,	if	there	are	any	validation	errors	with	the	form,	we	want	to	show	an	appropriate
message	to	the	user.	Finally,	I	want	to	be	able	to	use	this	form	anywhere	in	the	site	with
minimal	modifications	and	maximum	code	reuse.	(Say	whaaaaaaat?!)

Creating	the	add	artist/album	form
Let’s	brainstorm	what	this	magical	and	revolutionary	piece	of	functionality	should	look
like.	Based	on	what	currently	exists,	the	following	idea	should	suffice:

This	seems	pretty	doable,	and	it	satisfies	all	of	our	requirements.	First	things	first	though:
Let’s	create	the	HTML	for	the	form.

Creating	the	form
We’ll	assume	that	the	expected	data	structure	against	which	this	form	will	be	bound	is	the
following:

{:form	{:error	""	;	For	reporting	any	error	that's	not	a

																			;	validation	error

										:validation-errors	{	:artist_name	#{}

																															:album_name	#{}

																															:release_date	#{}

										:new	{:artist_name	""	:album_name	""	:release_date	""}

For	now,	we	just	want	to	extend	our	existing	recently-added.html	template.	That’s	the
quickest	entry	point.	Open	the	resources/templates/albums/recently-added.html
template,	and	add	the	additional,	bolded	HTML	shown	as	follows:

{%	extends	"templates/base.html"	%}

{%	block	content	%}

<h1>Recently	Added</h1>

<div	class="row">

<div	class="col-sm-6	col-md-4">

		<ol	class="albums">

				{%	for	a	in	albums	%}

				

						<div	class="artist">{{a.artist}}

</div>

						<div	class="album-name">{{a.album_name}}</div>

						<div	class="release-date">{{a.release_date}}</div>

				

				{%	endfor	%}

				

		

</div>

<div	class="col-sm-6	col-md-4">

		{%	if	form.error	%}																										<!--	#1	-->

		<p	class="bg-danger">{{form.error}}</p>

		{%	endif	%}

		<form	role="form"	method="post"	class="add-album">

				<div	class="form-group">

						<label	for="artist_name">Artist</label>

						<ul	class="errors">

								{%	for	e	in	form.validation-errors.artist_name	%}

								{{e}}

								{%	endfor	%}

						

						<input	type="input"	name="artist_name"	class="form-control"	

id="artist_name"	value="{{	form.new.artist_name	}}">

				</div>

				<div	class="form-group">

						<label	for="album_name">Album</label>

						<ul	class="errors">

								{%	for	e	in	form.validation-errors.album_name	%}

								{{e}}

								{%	endfor	%}

						

						<input	type="input"	name="album_name"	class="form-control"	

id="album_name"	value="{{	form.new.album_name	}}">

				</div>

				<div	class="form-group">

						<label	for="release_date">Release	Date</label>

						<ul	class="errors">

								{%	for	e	in	form.validation-errors.release_date	%}

								{{e}}

								{%	endfor	%}

						

						<input	type="date"	name="release_date"	class="form-control"	

id="release_date"	value="{{	form.new.release_date	}}">

						<p	class="help-block">yyyy-mm-dd</p>

				</div>

				<div	class="form-group	submit">

						<button	type="submit"	class="btn	btn-primary">Add</button>

				</div>

		</form>

</div>

{%	endblock	%}

Everything	in	here	looks	pretty	familiar.	We	simply	extended	our	Selmer	template	to
include	the	form.	The	only	interesting	part	is	at	#1,	where	we	make	use	of	the	{%	if	%}
tag.	Anything	inside	the	{%	if	[condition]	%}{%	endif	%}	block	is	only	rendered	if	the
[condition]	evaluates	to	something	truthy	(that	is,	not	nil,	or	an	actual	true	Boolean
value).	Other	than	that,	this	seems	very	similar	to	our	User	Sign	Up	form;	we	have	a	list	of
potential	errors	for	each	field,	and	we	are	binding	the	value	for	each	of	our	inputs	to	the
values	in	the	form.new	context	map.

Save	the	file	and	navigate	to	http://localhost:3000/albums/recently-added,	then
pick	your	jaw	up	off	the	floor	after	you	feast	your	eyes	on	the	wondrous	marvel	that	is	the
following:

Tip
You	can	get	the	right-alignment	of	the	Add	button	by	including	the	following	CSS	in	the
resources/public/css/screen.css	file:

.submit{	text-align:	right;	}

This	looks	strikingly	like	the	mock-up	we	came	up	with.	Meaning:	Success!	However,
there’s	a	catch.

Abstracting	the	form
One	of	the	requirements	that	got	snuck	in	was	the	following:	Finally,	I	want	to	be	able	to
use	this	form	anywhere	in	the	site	with	minimal	modifications	and	maximum	code	reuse.

Hmmm.	If	that’s	the	case,	then	the	HTML	code	we	created	isn’t	up	to	snuff.	It’s	possible
we’ll	want	to	have	the	add	artist/album	form	on	other	pages,	but	we’re	unlikely	to	want	to
copy	and	paste	the	form	code	every	time.	That’s	gross.	Thankfully,	Selmer	provides	a

couple	of	tags	that	we	can	use	in	conjunction	with	each	other	to	abstract	the	form	and	load
it	wherever	we	want.	Those	tags	are	with	and	include.	They	are	explained	as	follows:

with:	The	with	block	allows	us	to	define	scope.	Any	keys	we	define	in	the	with	tag
will	be	available	to	anything	inside	the	with	block.
include:	The	include	block	allows	us	to	dynamically	compile	and	inject	external
templates.

With	the	preceding	tags	in	mind,	we	can	actually	abstract	our	form	into	its	own	separate
Selmer	template.	Let’s	do	that	now:

1.	 Create	a	new	Selmer	template	alongside	our	recently-added	HTML	template,
resources/templates/albums/add-album.html

2.	 Move	the	DOM	inside	the	second	<div	class="col-sm-6	col-md-4">	code,	from
the	recently-added.html	template,	into	the	add-album.html	template	so	that	add-
album.html	looks	like	the	following:

{%	if	form.error	%}

<p	class="bg-danger	error">{{form.error}}</p>

{%	endif	%}

<form	role="form"	method="post"	class="add-album">

		<!--	snipped	for	brevity	-->

</form>

3.	 Inside	the	now	empty	div	tag,	use	the	include	tag	to	load	our	add-album.html,	and
wrap	it	inside	a	with	block:

<div	class="col-sm-6	col-md-4">

		{%	with	form=form	%}

		{%	include	"templates/albums/add-album.html"	%}

		{%	endwith	%}

</div>

The	include	function	tells	Selmer,	“Hey,	compile	the	templates/albums/add-
album.html	template	and	load	its	contents	here.”	The	with	block	passes	the	context	to	the
included	template;	in	this	case,	the	expected	:form	data	structure	we	outlined	at	the	start
of	creating	the	form.

When	we	refresh	the	page	we	should	see	absolutely	no	visual	difference.

Creating	the	add	artist/album	endpoint
Now	that	we	have	the	form	in	place,	we	need	to	set	up	the	route	against	which	the	form
will	POST.	Since	we	don’t	currently	have	a	target	attribute	on	the	form,	the	form	will
simply	POST	to	whatever	the	current	URL	is.	For	the	purpose	of	this	exercise,	we’ll	allow
that.	As	such,	we’ll	need	to	define	a	Compojure	route	for	/albums/recently-added	that
will	accept	the	form	input,	validate	it,	add	the	data	to	the	database,	and	then	re-render	the
page.	Of	course,	we’ll	break	all	this	up	across	multiple	namespaces,	because	we’re	good
developers	like	that,	and	because	we	fear	the	wrath	of	our	cubicle	mates.

Creating	the	Compojure	route
Let’s	create	the	Compojure	route.	In	the	hipstr.routes.albums	namespace,	add	the
following	to	our	album-routes:

(POST	"/albums/recently-added"	[&	album-form]

		(recently-added-submit	album-form))

As	the	route	alludes,	we	next	want	to	create	a	function	for	handling	the	actual	POSTed
data	–	hence	the	need	to	create	a	recently-added-submit	function.

Creating	the	route	helper	function
The	recently-added-submit	function	will	validate	the	information	submitted	by	the	user,
and	then	render	the	recently-added.html	template.	It	will	also	take	into	account	the
form’s	expected	data	structure,	as	well	as	the	data	required	for	generating	the	recently-
added-albums	list:

(defn	recently-added-submit

		"Handles	the	add-album	form	on	the	recently-added	page.

			In	the	case	of	validation	errors	or	other	unexpected	errors,

			the	:new	key	in	the	context	will	be	set	to	the	album

			information	submitted	by	the	user."

		[album]

		(let	[errors	(v/validate-new-album	album)																		;#1

								form-ctx	(if	(not-empty	errors)

																			{:validation-errors	errors	:new	album}				;#2

																			(try

																					(album/add-album!	album)																;#3

																					{:new	{}	:success	true}

																					(catch	Exception	e

																							(timbre/error	e)

																							{:new	album

																								:error	"Oh	snap!	We	lost	the	album.	Try	it	

again?"})))																							;#3.1

								ctx	(merge	{:form	form-ctx}

														{:albums	(album/get-recently-added)})]							;#4

						(layout/render	"albums/recently-added.html"	ctx))				;#5

We’ll	also	need	to	adjust	the	required	libraries	in	our	namespace	definition.	Add	the
following	to	the	:require	in	our	namespace	definition:

(:require…

										[hipstr.validators.album-validator	:as	v]

										[taoensso.timbre	:as	timbre])

In	the	preceding	code	we’ve	taken	the	strategy	of	constructing	the	context	that	we’ll	pass
to	the	template	being	rendered.	The	very	last	thing	we	do	is	actually	render	the	template.
The	basic	algorithm	for	the	preceding	code	is	as	follows:

1.	 Validate	the	input	for	errors.
2.	 If	the	input	fails	to	validate,	set	those	validation	errors	on	the	context,	along	with	the

user	submitted	data	(this	way	they	don’t	have	to	re-type	their	data,	and	they	can	see
what	was	actually	invalid).

3.	 Otherwise,	attempt	to	add	the	album,	and	provide	a	success	flag	on	the	context	when
successful.

If	adding	the	album	fails	for	any	reason,	include	the	submitted	data	on	the
context,	as	well	as	a	simple	error	message

4.	 Add	the	recently	added	albums	to	the	context.
5.	 Render	the	template.

There	are	a	thousand	ways	we	could	have	done	this.	Feel	free	to	try	your	own	ideas!	But
for	now,	this	algorithm	and	implementation	seem	pretty	sound.	There’s	one	thing	we	may
want	to	consider	however,	and	that’s	the	fact	that	our	hipstr.routes.albums	namespace
now	has	2	calls	to	render	the	same	template	in	2	different	locations.	Kind	of	yucky.	Let’s
abstract	that	out	to	its	own	function,	render-recently-added-html,	which	accepts	the
context:

(defn	render-recently-added-html

		"Simply	renders	the	recently	added	page	with	the	given	context."

		[ctx]

		(layout/render	"albums/recently-added.html"	ctx))

(defn	recently-added-page

		"Renders	out	the	recently-added	page."

		[]

		(render-recently-added-html	{:albums	(album/get-recently-added)}))

(defn	recently-added-submit

		;…	snipped	for	brevity…

					(render-recently-added-html	ctx)))

We	could	probably	employ	further	patterns	to	reduce	things	like	the	call	to	album/get-
recently-added,	but	for	now	this	seems	pretty	good.	What	we	absolutely	must	do	in
order	for	this	to	work,	however,	is	the	following:

1.	 Write	the	validate-new-album	validator	(v/validate-new-album).
2.	 Include	the	album	validator	as	a	requirement.
3.	 Write	the	function	to	add	the	actual	album	to	the	database	(album/add-album!).

Validating	the	add	artist/album	form

In	Chapter	5,	Handling	Form	Input,	we	were	introduced	to	Validateur,	a	simple	library
that	allows	us	to	validate	user	input,	as	well	as	provide	specific	error	messages	for	input
that	is	invalid.	In	this	section,	we’ll	use	Validateur	again	to	write	some	validations	for	new
albums.

Create	the	new	namespace,	hipstr.validators.album,	and	add	to	that	file	the	following
code:

(ns	hipstr.validators.album

		(:require	[validateur.validation	:refer	:all]

												[noir.validation	:as	v]

												[clj-time.core	:as	t]

												[clj-time.format	:as	f]))

Note
The	clj-time	library	provides	us	a	sane	way	of	working	with	dates.	At	a	high	level,	it
wraps	the	Joda-Time	library.	The	clj-time	library	is	already	on	our	classpath	as	it’s	a
dependency	of	im.chit/cronj	included	with	Luminus	projects.	You	can	read	more	about
clj-time	at	https://github.com/clj-time/clj-time	and	Joda-Time	at	http://www.joda.org/joda-
time/.

The	artist	and	album	fields	on	our	form	are	mandatory,	but	will	allow	any	character.
However,	our	database	schema	does	have	a	255	character	limit	on	both	the	artist	and	the
album	columns.

If	you	can’t	remember	the	schema	definition	for	a	table	in	PostgreSQL,	you	can	run	\d
[table-name]	inside	psql	and	it	will	show	you	a	(reasonably)	formatted	description	of	the
tables:

With	that	in	mind,	let’s	write	the	artist	validation	first,	ensuring	that	the	artist	name	is	an
acceptable	specific	length:

(def	artist-name-validations

		"Returns	a	validation	set,	ensuring	an	artist	name	is	valid."

		(validation-set

			(length-of	:artist_name	:within	(range	1	256)

https://github.com/clj-time/clj-time
http://www.joda.org/joda-time/

														:message-fn	(fn	[type	m	attributes	&	args]

																												(if	(=	type	:blank)

																														"Artist	name	is	required."

																														"Artist	name	must	be	less	than	255

																															characters	long.")))))

The	preceding	code	should	look	familiar	as	it’s	very	similar	to	the	username	validation	in
the	hipstr.validators.user-validator	namespace.	The	artist-name-validations	def
returns	a	validation	set	that	implicitly	ensures	that	something	other	than	blank	values
makes	up	the	artist	name	(the	default	behavior	for	length-of),	and	that	the	name	length	is
a	maximum	of	255	characters	long.	We’ll	add	the	same	for	the	album	name:

(def	album-name-validations

		(validation-set

			(length-of	:album_name	:within	(range	1	256)

														:message-fn	(fn	[type	m	attributes	&	args]

																												(if	(=	type	:blank)

																														"Album	name	is	required."

																														"Album	name	must	be	less	than	255

															characters	long.")))))

The	release	date	validator	is	slightly	more	complex.	Not	only	must	the	release	date	meet	a
specific	format	(year-month-day),	it	must	also	be	a	real	date	(there’s	no	13th	month	or
32nd	day	in	July,	for	example).	Ensuring	the	format	of	the	data	is	easy,	since	we	can	use
the	format-of	validator	and	a	simple	regular	expression:

(def	release-date-format-message

		"The	release	date's	format	is	incorrect.	Must	be	yyyy-mm-dd.")

(def	release-date-invalid-message

		"The	release	date	is	not	a	valid	date.")

(def	release-date-format-validator

		"Returns	a	validator	function	which	ensures	the	format	of	the

			date-string	is	correct."

		(format-of	:release_date

													:format	#"^\d{4}-\d{2}-\d{2}$"

													:blank-message	release-date-format-message

													:message	release-date-format-message))

Again,	this	should	look	somewhat	familiar,	as	we	also	used	the	format-of	validator	to
ensure	that	a	submitted	username	is	of	the	proper	format.

Ensuring	a	date	is	valid,	however,	requires	a	bit	more	thought.	Firstly,	there’s	no	point	in
validating	the	release	date	if	the	format	of	the	date	string	is	invalid.	Secondly,	we	need	to
ensure	the	date	is	parseable	and	valid.	To	do	this,	we’ll	use	some	of	Clojure’s	date/time
libraries,	as	well	as	Validateurs’s	validate-when	predicate.

The	validate-when	function	returns	a	function	that	will	run	a	validator	if,	and	only	if,	a
provided	predicate	returns	true.	You	can	think	of	validate-when	as	Validateur’s	“if
predicate	true,	then	do	such	and	such”.	In	our	case,	we	only	want	to	validate	the	release
date	when	it’s	in	the	correct	format.	As	such,	we	can	leverage	our	release-date-format-
validator	to	be	the	predicate	for	validate-when:

(def	release-date-formatter

		(f/formatter	"yyyy-mm-dd"))

(defn	parse-date

		"Returns	a	date/time	object	if	the	provided	date-string	is

			valid;	otherwise	nil."

		[date]

		(try

				(f/parse	release-date-formatter	date)

				(catch	Exception	e)))

(def	release-date-validator

		"Returns	a	validator	function	which	ensures	the	provided

			date-string	is	a	valid	date."

		(validate-when	#(valid?	(validation-set

																			release-date-format-validator)	%)

																	(validate-with-predicate	:release_date	#(v/not-nil?	

(parse-date	(:release_date	%)))

																			:message	release-date-invalid-message)))

In	the	preceding	code,	the	validateur.validation.valid?	is	our	test	condition,	and,
only	when	its	result	is	true,	will	our	validate-with-predicate	actually	be	executed.	The
validate-with-predicate	validator	ensures	that	parse-date	returns	something	other
than	nil,	which	will	only	occur	if	parse-date	fails	to	parse	the	date	string	(a	result	of	the
date	string	either	not	being	in	the	expected	format	or	not	being	a	real	date).

Finally,	we	can	wrap	these	up	into	a	simple,	easy-to-use	validation	set:

(def	release-date-validations

		"Returns	a	validator	which,	when	the	format	of	the	date-string

			is	correct,	ensures	the	date	itself	is	valid."

		(validation-set	release-date-format-validator

																					release-date-validator))

The	last	thing	to	do,	now	that	we	have	all	this	wonderfully	modular	code,	is	to	create	the
validate-new-album	validation	set	which	will	be	used	from	the
hipstr.routes.album/recently-added-submit	function:

(def	validate-new-album

		"Returns	a	validator	that	knows	how	to	validate	all	the	fields

			for	a	new	album."

		(compose-sets	artist-name-validations	album-name-validations

								release-date-validations))

Phew!	Data	validation…Always	the	most	tedious	thing.	Users	should	just	know,	shouldn’t
they?	Either	way,	we’re	done!	The	last	thing	we	need	to	do	is	expand	our
hipstr.models.album-model	to	include	the	add-album!	function.

Expanding	the	album	model
Currently,	our	hipstr.models.album-model	namespace	defers	everything	to	the	YeSQL-
generated	queries	from	the	hipstr/models/albums.sql	file.	This	is	fine,	as	we	will
leverage	it	to	add	a	couple	new	functions.	However,	because	our	constraints	are	such	that
album.artist_id	is	a	foreign	key	to	artist.artist_id,	we	must	have	the	means	of
inserting	a	new	artist.	As	such,	we’ll	create	a	new	SQL	file,	hipstr/models/artists.sql.

The	first	function	we’ll	define	in	the	artists.sql	file	is	the	insert-artist<!	function:

--	name:	insert-artist<!—Inserts	a	new	artist	into	the	database.—Expects	

:name.

INSERT	INTO	artists(name)

VALUES	(:artist_name);

The	artist	name	is	the	only	value	we	need	to	provide	because	everything	else	in	the
artists	table	is	generated	for	us	by	PostgresSQL.	The	create_at	and	update_at	field
values	are	handled	by	our	trigger,	and	artist_id	is	handled	by	Postgres	because	we
defined	it	to	be	SERIAL	(that	is,	an	auto-incrementing	integer).	Great!	However,	you	may
be	wondering	(and	possibly	groaning),	“Do	we	need	to	create	a	hipstr.modesl.artist-
model	now?”	To	which	I	reply,	“No.”

There	is	nothing	prohibiting	us	from	making	multiple	calls	to	YeSQL’s	defqueries
function	and	passing	it	a	different	SQL	file	each	time.	In	this	spirit,	we	can	generate
multiple	functions	across	multiple	tables	in	the	current	namespace.	As	such,	the	only	thing
we	need	to	do	in	order	to	make	use	of	our	shiny	new	insert-artist<!	function	is	tell
YeSQL	to	make	use	of	it.	Add	the	following	to	the	hipstr.models.album-model
namespace:

(defqueries	"hipstr/models/albums.sql"	{:connection	db-spec})

(defqueries	"hipstr/models/artists.sql"	{:connection	db-spec})

YeSQL	will	generate	functions	for	both	SQL	files	and	load	them	into	the	current
namespace,	and	by	default	run	any	SQL	queries	using	the	same	database	specification
(db-spec).	With	that	in	mind,	let’s	add	the	insert-album<!	function	to	the
hipstr/models/albums.sql	file	as	well.	Add	the	following:

--	name:	insert-album<!—Adds	the	album	for	the	given	artist	to	the	database

—EXPECTS	:artist_id,	:album_name,	and	:release_date

INSERT	INTO	albums	(artist_id,	name,	release_date)

VALUES	(:artist_id,	:album_name,	date(:release_date));

Again,	this	is	a	pretty	straightforward	insert	statement.	Life	is	easy	in	these	parts	of	the
woods.	Now	that	we	have	those	queries	available	for	generation,	let’s	make	use	of	them.

Back	in	the	hipstr.models.album	namespace,	add	a	new	(and	dare	I	say,	first!)	function,
add-album!,	which	will	accept	the	same	information	posted	from	our	Add	artist/album
form;	that	is	{:artist_name	:album_name	:release_date}.	The	first	iteration	of	this
function	will	blindly	add	the	artist	and	album	to	our	database:

(defn	add-album!

		"Adds	a	new	album	to	the	database."

		[album]

			(let	[artist-info	(insert-artist<!

										{:artist_name	(:artist_name	album)})]

					(insert-album<!	(assoc	album	:artist_id

																							(:artist_id	artist-info)))))

The	preceding	code	is	pretty	simple.	Add	the	artist,	associate	the	new	artist_id	with	the
album,	and	then	insert	the	album.	This	works	like	gravy	on	potatoes	until	you	try	to	add	a
second	album	by	the	same	artist	(our	UNIQUE	INDEX	constraint	on	the	artists.name
column	will	make	sure	of	that).	The	same	thing	will	happen	if	we	try	to	add	an	album	of
the	same	name	by	the	same	artist,	as	we	have	a	UNIQUE	INDEX	spanning	the
albums.artist_id	and	albums.name	columns.

The	requirements	don’t	state	to	throw	an	exception	if	the	artist	or	album	already	exists.
And	frankly,	I	don’t	see	the	point.	Let’s	not	be	wasteful	and	just	make	use	of	the	already
existing	artist/album,	if	that’s	the	case.	This	implies,	of	course,	that	we	have	a	way	of
getting	the	artist	or	album,	by	name,	from	the	database.	No	sweat!	Let’s	add	a	get-
artists-by-name	to	our	artists.sql	file:

--	name:	get-artists-by-name—Retrieves	an	artist	from	the	database	by	name.

—Expects	:artist_name

SELECT	*

FROM	artists

WHERE	name=:artist_name;

Similarly,	let’s	add	the	get-albums-by-name	query	to	our	albums.sql	file:

--	name:	get-albums-by-name—Fetches	the	specific	album	from	the	database	

for	a	particular—artist.—Expects	:artist_id	and	:album_name.

SELECT	*

FROM	albums

WHERE

		artist_id	=	:artist_id	and

		name	=	:album_name;

Again,	not	a	whole	lot	of	surprises	here.	We	include	an	artist_id	in	the	WHERE	clause	so
we	can	limit	the	scope	of	the	albums	returned.

Lets	get	back	to	our	hisptr.models.album-model/add-album!	function.	Now	that	we
have	a	couple	more	queries,	let’s	make	use	of	them	to	avoid	the	pitfalls	of	duplicate
artist/albums.	Adjust	the	function	so	that	it	resembles	the	following:

(defn	add-album!

		"Adds	a	new	album	to	the	database."

		[album]

		(let	[artist-info	{:artist_name	(:artist_name	album)}

									;	fetch	or	insert	the	artist	record

									artist	(or	(first	(get-artists-by-name	artist-info))		;#1

																				(insert-artist<!	artist-info))

									album-info	(assoc	album	:artist_id	(:artist_id	artist))]

					(or	(first	(get-album-by-name	album-info))																;#2

									(insert-album<!	album-info))))

In	the	preceding	code,	we’re	now	checking	that	an	artist	or	album	exists	and,	if	not,	we
add	them.	The	only	thing	that	might	stump	us	is	the	call	to	first	at	#1	and	#2.	Despite	the
logic	of	the	query	and	the	schema	guaranteeing	only	1	or	zero	returned	rows,	we’ll	still
need	to	make	a	call	to	first	because	query	results	are	always	returned	as	a	sequence.
Remember,	YeSQL	isn’t	intelligent;	it’s	not	examining	the	schema	or	query	and	making
necessary	adjustments,	it’s	merely	generating	Clojure	functions	which	map	back	to	the
SQL	for	us.

We	now	have	a	model	function	which	makes	use	of	an	already	existing	artist/album	and
inserts	only	when	required.	However,	there’s	one	glaring	hole:	it’s	not	in	a	transaction.
The	function	could,	in	theory,	successfully	insert	an	artist,	and	then	fail	when	inserting	the
album,	which	isn’t	what	we	would	expect	from	such	a	form.	Let’s	ensure	that	doesn’t
happen.

Wrapping	the	whole	thing	in	a	transaction
At	the	start	of	this	chapter,	we	learned	that	wrapping	YeSQL	functions	inside	a	transaction
is	trivial.	Every	YeSQL-generated	function	takes,	as	its	second	(optional)	argument,	an
alternate	connection,	which	can	be	a	handle	to	an	existing	transaction.	We	can	pass	a
transaction	context,	generated	by	clojure.java.jdbc/with-db-transaction,	as	the
second	parameter.

First,	add	a	reference	to	the	clojure.java.jdbc	library	at	the	top	in	our	:require:

(:require	[clojure.java.jdbc	:as	jdbc]

		…)

Secondly,	wrap	the	body	of	add-album!	inside	the	call	to	with-db-transaction:

(defn	add-album!

		"Adds	a	new	album	to	the	database."

		[album]

		(jdbc/with-db-transaction	[tx	db-spec]																						;#1

				(let	[artist-info	{:artist_name	(:artist_name	album)}

										txn	{:connection	tx}																																;#2

										;	fetch	or	insert	the	artist	record

										artist	(or	(first	(get-artist-by-name	artist-info	txn))

																					(insert-artist<!	artist-info	txn))

										album-info	(assoc	album	:artist_id	(:artist_id	artist))]

						(or	(first	(get-albums-by-name	album-info	txn))

										(insert-album<!	album-info	txn)))))

At	#1,	in	the	preceding	code,	we	get	a	new	transaction	handle,	tx,	from	the	jdbc	library;
and	then,	at	#2,	we	create	a	connection	map	to	use	the	tx	transaction	handle.	All	of	our
subsequent	calls	to	YeSQL	then	use	the	txn	connection	map.	And	that’s	it!	The	add-
album!	is	now	fully	wrapped	inside	a	transaction.	Go	ahead	and	fail,	world!	But	there	is
one,	single,	tiny	improvement	we	can	make.

Using	a	transaction	outside	of	this	scope
A	downfall	to	our	preceding	transaction	code	is	that	it	will	never	allow	any	transaction
other	than	its	own.	We	are	good	programming	citizens,	cognizant	of	the	needs	of	others.

And	it’s	quite	possible	there	will	be	cases	wherein	add-album!	will	be	part	of	a	larger
transaction.	We	can	support	this	by	making	use	of	arity	overloading.	Modify	the	add-
album!	function	such	that	it	accepts	multiple	arities:	one	that	accepts	only	an	album,	and
another	that	accepts	an	album	and	a	connection:

(defn	add-album!

		"Adds	a	new	album	to	the	database."

		([album]

					(jdbc/with-db-transaction	[tx	db-spec]

							(add-album!	album	tx)))

		([album	tx]																																																;	#1

			(let	[artist-info	{:artist_name	(:artist_name	album)}

									txn	{:connection	tx}

									;	fetch	or	insert	the	artist	record

									artist	(or	(first	(get-artist-by-name	artist-info	txn))

																				(insert-artist<!	artist-info	txn))

									album-info	(assoc	album	:artist_id	(:artist_id	artist))]

					(or	(first	(get-album-by-name	album-info	txn))

									(insert-album<!	album-info	txn)))))

The	preceding	code	extracts	the	meat	of	the	add-album!	function	into	its	own	arity	(#1),
which	accepts	the	album	to	be	inserted	and	a	second,	alternate	connection.	The	downside
of	this	pattern	is	that	the	connection	parameter	(tx)	doesn’t	have	to	be	a	transaction.	Thus,
clients	of	this	code	now	have	the	ability	to	add	an	album	in	a	non-transaction	state.	But
that’s	okay,	sometimes	you	need	to	give	somebody	the	power	to	shoot	themselves	in	the
foot	in	order	for	them	to	learn.

Summary
This	was	a	fairly	comprehensive	chapter.	We	learned	what	a	database	transaction	is,	the
core	tenants	of	a	database	transaction	(ACID),	and	how	you	can	use	transactions	in
Clojure	and	YeSQL.	We	utilized	everything	we’ve	covered	in	the	book	so	far.	It	was
intense.	We	will	continue	the	comprehensive	example	style	into	the	next	chapter,	where
we	will	(finally)	authenticate	and	authorize	users.

Chapter	10.	Sessions	and	Cookies
In	the	last	chapter,	we	conquered	database	transactions.	We	extended	our	hipstr
application	to	use	them,	and	it	worked,	and	it	was	good.	If	you’ve	been	paying	attention
(and	I’m	sure	you	have	because	it’s	Chapter	10	and	we’re	almost	done),	you’ll	have
noticed	that	we’ve	yet	to	actually	authenticate	our	user,	create	a	session,	or	write	any
cookies.	Well,	I’ve	got	news	for	you:	In	this	chapter,	we’re	going	to	do	all	three	of	those
things!	That	is,	we’re	going	to	cover	the	following	topics	in	this	chapter:

Learn	about	sessions	and	how	they’re	maintained	in	Luminus	and	Noir
Build	a	form	to	authenticate	our	user
Create	a	cookie	that	remembers	the	username	for	the	next	time	a	user	wants	to	login

We’ll	start	off	with	a	bit	of	how	these	things	are	accomplished	in	Luminus	(and	the
underlying	lib-noir	library),	and	then	extend	our	hipstr	application	to	embrace	these
missing	components.

Sessions
HTTP,	the	foundation	of	the	web	as	we	know	it,	is	stateless.	This	means	that	every	request
is	independent	of	any	previous	request.	In	the	world	of	HTTP,	each	request	has	a	matching
response.	We	see	independent	requests	everywhere	in	HTTP;	requesting	a	static	resource,
a	web	page,	or	an	AJAX	request	are	all	examples	of	the	stateless	protocol	in	action.

That	being	said,	we	still	require	the	ability	to	track	users	across	requests.	Without	some
type	of	unique	tracking	of	the	person	or	system	sending	the	request,	we	wouldn’t	be	able
to	have	authenticated-only	pages,	partition	user	data,	or	a	zillion	other	things.	Sessions
allow	us	to	track	information	about	the	sender	between	each	request.

In	our	hipstr	app,	this	is	tied	together	by	a	cookie	called,	ring-session.	You	can	view	the
cookie	by	navigating	to	the	hipstr	app	on	your	machine	(http://localhost:3000,	by
default).	You	can	then	open	the	development	tools	in	your	browser	and,	typically,	view	the
resources	for	the	page.	Typically,	there’s	a	Cookies	section	in	there,	and	you	can	view
which	cookies	for	the	current	site	exist	in	your	browser.	In	Safari,	you’ll	see	the	following
screenshot:

Likewise,	in	Chrome,	you’ll	see	something	like	the	following	screenshot:

In	Internet	Explorer…well,	honestly,	I’ve	not	used	it	in	almost	a	decade.	But	I	think	you
can	hit	Ctrl	+	F12	and	do	an	Irish	jig	or	something,	and	it’ll	tell	you	what	you	need	to
know.

The	ring-session	cookie	is	written	out	on	the	first	request	and	lasts	for	the	lifetime	of
the	browser.	The	writing	of	the	cookie	is	handled	for	us	automatically	–	in	fact,	all	of	the
session	setup	and	management	is	handled	for	us	automatically.	In	Chapter	2,	Ring	and	the
Ring	Server,	we	talked	about	the	Luminus-generated	hipstr.handler	namespace,	in
which	there	is	a	call	to	app-handler	that	is	used	to	package	up	the	hipstr	application
handler.	On	the	surface,	the	app-handler	seems	like	a	fairly	simple	thing.	Behind	the
scenes,	however,	it’s	tying	together	a	lot	of	different	middlewares	(both	lib-noir	and
Ring	middlewares)	and	functionality,	including	session	and	cookie	management.

Note
For	the	curious:	The	ring-defaults	library,	way	deep	under	the	hood,	has	quite	the
middleware.	You	can	take	a	peak	at	it	here:	https://github.com/ring-clojure/ring-
defaults/blob/master/src/ring/middleware/defaults.clj

https://github.com/ring-clojure/ring-defaults/blob/master/src/ring/middleware/defaults.clj

Setting	up	sessions
By	default,	Luminus	generates	our	app	to	use	an	in-memory	session	store	with	adequate
defaults.	The	session	default	settings	are	specified	in	the	hipstr.handler/session-
defaults:

;;	timeout	sessions	after	30	minutes	

(def	session-defaults

{:timeout	(*	60	30)

	 :timeout-response	(redirect	"/")})

The	preceding	code	sets	default	session-timeout	to	30	minutes,	at	which	point	the	user	will
be	redirected	to	root	(/).

In	addition	to	the	:timeout	and	:timeout-response	options,	we	can	also	define	the
following:

:cookie-name	[string]:	This	is	the	name	for	the	session	cookie	(which	defaults	to
ring-session)
:cookie-attrs	[map]:	This	is	a	map	of	standard	cookie	options	to	be	applied	to	the
session	cookie.	See	Setting	the	cookie	as	a	map	section	later	in	this	chapter	for	more
details
:store:	This	allows	us	to	define	an	alternate	store	to	the	default	in-memory	session
store.	Setting	up	an	alternative	to	the	in-memory	session	store	is	beyond	the	scope	of
this	book.

Note
Note:	If	you’re	curious	about	setting	up	an	alternative	to	the	in-memory	session	store,
I	strongly	recommend	using	Redis	(an	incredible,	open	source	data	structure	server	-
http://www.redis.io).	You	can	use	Redis	as	a	session	store	by	using	Carmine	(which	is
an	open	source	Clojure	client	library	for	Redis	-
https://github.com/ptaoussanis/carmine).

For	the	purpose	of	our	example	application,	the	in-memory	session	store	will	more	than
suffice.	But	how	do	we	use	it?

http://www.redis.io
https://github.com/ptaoussanis/carmine

Interacting	with	the	session
Fetching	and	retrieving	information	to	and	from	the	session	in	noir	is	easy.	The
noir.session	namespace	is	our	main	interface,	which	mostly	contains	functions	to	store
and	retrieve	data	in	the	session,	as	well	as	some	wrappers	and	cleanup	functions.	Initially,
a	noir	session	is	just	an	empty	map.

We	can	store	data	in	the	current	session	by	entering	the	following:

(require	'[noir.session	:as	session])

(session/put!	:foo	"baaaaaaaarrrrrrr!")

>>	{:foo	"baaaaaaaarrrrrrr"}

We	can	then	retrieve	a	value	from	the	session	using	get,	as	in	the	following:

(session/get	:foo)

>>	"baaaaaaaarrrrrrr"

We	can	also	use	assoc-in!	to	associate	a	nested	key/value	pair,	and	any	level	that	doesn’t
exist	will	be	initialized	as	an	empty	map	on	our	behalf:

(session/assoc-in!	[:some	:nested]	"hey	there,	I	need	some	air	down	here.")

>>	{:foo	"baaaaaaaarrrrrrr"	:some	{:nested	"hey	there,	I	need	some	air	down	

here."}}

Likewise,	we	can	retrieve	the	nested	structure	by	using	get-in	and	passing	it	a	vector	of
keys:

(session/get-in	[:some	:nested])

>>	"hey	there,	I	need	some	air	down	here."

We	can	also	blow	away	all	the	data	in	our	session	by	using	clear!	function:

(session/clear!)

>>	{}

These	are	the	basics	of	interacting	with	the	session,	and,	for	the	purpose	of	hipstr,	are	all
we	require.	However,	there	is	much	more	functionality	provided	by	the	noir.session
namespace.	You	can	get	a	comprehensive	list	of	noir.session	functionality	by	viewing
the	source	code	at	https://github.com/noir-clojure/lib-noir/blob/master/src/noir/session.clj.
Don’t	be	afraid,	it’s	actually	quite	well	documented	and	pretty	straightforward.

https://github.com/noir-clojure/lib-noir/blob/master/src/noir/session.clj

Restricted	routes
Restricting	access	to	a	specific	web	page	or	some	functionality	is	a	cornerstone	of	today’s
web	apps.	Without	restricting	resources	or	functionality,	the	applications	that	power	the
Internet	would	be	in	complete	anarchy.	Anybody	could	post	as	anybody	on	Twitter;
Facebook	would	suddenly	have	1	single	user	representing	1/7th	of	the	world’s	population;
YouTube	would	become	even	more	dominated	by	cats.	Hence,	restricting	access	is	a	good
thing	–	even	if	you	wish	YouTube	was	dominated	(even	more	so)	by	cats.

Restricting	routes	in	a	Luminus	application	is	a	two	pronged	approach.	First,	we	must
mark	a	route	as	restricted.	Secondly,	we	must	define	what	governs	access	to	the	restricted
route.

Restricting	route	access
There	are	two	ways	we	can	restrict	route	access	in	a	Luminus	app.	The	first	is	by	using	the
noir.util.route/restricted	macro	on	the	route	in	question.	For	example,	pretend	we
had	the	following	route:

(GET	"/just-for-you"	[]	(render-private-page))

That’s	something	we’ve	seen	no	fewer	than	a	dozen	times.	In	its	current	incarnation,
anybody	and	everybody	can	view	/just-for-you	as	it	has	no	restrictions.	It’s	wide	open
and	public.	It	is	the	exact	opposite	of	just-for-you.	We	can	lock	this	down	by	applying	the
restricted	macro,	as	seen	here:

(require	'[noir.util.route	:refer	[restricted]])

(GET	"/just-for'you"	[]	(restricted	(render-private-page)))

Alternatively,	we	can	restrict	access	to	multiple	routes	by	using	the	def-restricted-
routes	macro.	The	def-restricted-routes	macro	is	exactly	like	the	defroutes	macro
we’ve	been	using	in	the	various	hipstr.routes.*	namespaces,	with	the	exception	that	it
will	mark	all	defined	routes	as	restricted	on	our	behalf.	For	example,	instead	of	doing
something	like	this:

(defroutes	;everything	here	will	be	public,

											;unless	marked	otherwise

		(GET	"/"	[]	(render-home-page))

		(GET	"/protected	[]	(restricted	(render-protected-page)))

		(GET	"/another-public"	[]	(render-another-public-page)))

We	can	separate	our	protected	from	our	public	routes:

(defroutes	;everything	here	will	be	public

		(GET	"/"	[]	(render-home-page))

		(GET	"/another-public"	[]	(render-another-public-page)))

(def-restricted-routes	;these	are	all	protected,	obviously

		(GET	"/protected	[]	(render-protected-page)))

There	are	pros	and	cons	to	each,	but	mostly	from	a	route	management	perspective.	If	your
application	is	small	and	you	only	have	a	handful	of	routes,	or	if	all	of	your	protected
routes	are	under	a	specific	URI,	then	it	probably	makes	sense	to	just	use	the	restricted
macro	directly.	However,	if	you	have	dozens	or	hundreds	of	routes	spread	about	several
pages,	then	it	may	make	sense	to	make	use	of	the	def-protected-routes	macro;
however,	that	also	comes	at	the	cost	of	doubling	the	number	of	routes	you	have	to	import
in	your	handler.	It’s	give	and	take.	Frankly,	I’ve	never	worked	on	a	project	that’s	grown
quite	so	large	wherein	we	didn’t	have	to	refactor	our	routes	at	least	once,	so	whichever
strategy	you	choose	may	change	over	time.

So	we	now	know	how	to	restrict	routes,	but	how	do	we	access	them?	How	does	Luminus
know	that	the	requester	of	the	route	is	okay	to	access	the	route?

Accessing	a	restricted	route
Rules	governing	restricted	routes	are	subjective.	Every	application,	and	in	fact	many
routes	within	the	same	application,	may	have	different	rules	governing	access.	Luminus
allows	us	to	define	each	of	these	rules	to	varying	layers	of	granularity	by	using	the
:access-rules	key	of	the	app-handler,	which	hipstr	makes	use	of	when	defining
hipstr.handler/app:

(def	app	(app-handler

		;...snipped	for	brevity

		;;	add	access	rules	here

		:access-rules	[]

		;…snipped	for	brevity

)

By	default,	the	:access-rules	are	empty.	An	empty	:access-rules	is	basically	a
skeleton	key,	unlocking	every	restricted	door	in	the	house.	In	our	just-for-you	example,
the	restricted	macro	won’t	actually	do	anything	because	we’ve	yet	to	define	an	access
rule.	There	are	two	ways	we	can	define	an	access	rule,	either	as	a	function,	or	as	a	map.

Access	rule	as	a	function
Access	rule	functions	accept	a	request	map	and	return	a	value.	If	the	returned	value	is
truthy,	then	access	will	be	granted,	otherwise	the	user	will	be	redirected	to	/.	With	that	in
mind,	we	could	create	a	simple	and	completely	useless	access	rule	such	as	the	following:

:access-rules	[#(->	(java.util.UUID/randomUUID)	str	keyword	%)]

In	the	preceding	code,	we’re	generating	a	random	UUID,	getting	its	string	representation,
turning	it	into	a	keyword,	and,	finally,	checking	to	see	if	that	keyword	is	in	the	request
map	(which	it	won’t	be	because	UUIDs	are,	by	definition,	guaranteed	to	be	universally
unique).	Since	the	access	rule	always	returns	false,	and	it’s	the	only	access	rule	we’ve
defined,	all	requests	to	a	route	marked	as	restricted	will	redirect	the	user	to	/.

If	we	changed	the	rule	to	return	true	under	certain	circumstances,	say,	if	a	particular	value
is	in	the	session,	then	the	the	request	will	be	granted	access	to	any	restricted	route.

Access	rules	as	a	function	don’t	provide	us	with	many	options,	as	it’s	basically	a	one-ring-
to-rule-them-all	approach;	we	can’t	even	define	where	to	redirect	the	user	if	access	is	not
granted.	This	may	be	fine	if	you’re	designing	a	REST	API	that	requires	an	authentication
token.	However,	for	a	web	application	with	human	interaction,	it’s	not	the	best.	For	this
reason,	it’s	likely	that	you’ll	define	access	rules	as	a	map.

Access	rule	as	a	map
Defining	an	access	rule	as	a	map	opens	the	door	for	customization.	While	a	rule	as	a	map
still	requires	us	to	write	at	least	1	rule	function,	we	can	also	define	different	rules	for
different	routes,	redirect	to	different	URIs,	and	define	what	to	do	in	case	of	a	failed
attempt	(instead	of	just	redirecting	the	user	–	such	as	returning	a	403	response	in	a	REST
API	instead	of	a	302	Redirect).	We	can	even	have	multiple	rule	functions	for	a	single
access	rule	and	state	whether	we	want	any	or	all	of	the	rules	to	pass	in	order	for	access	to

be	granted.

The	map	equivalent	of	our	access-rule-as-a-function	example	would	look	like	the
following:

:access-rules	[{:rule

		#(->	(java.util.UUID/randomUUID)	str	keyword	%)}]

This	looks	roughly	the	same,	but	with	a	bit	more	noise,	thus	calling	into	question	why	we
would	define	it	as	such.	However,	we	could	do	something	like	the	following:

:access-rules	[{:uri	"/just-for-you"

																:rule	#(->(java.utiul.UUID/randomUUID)																str	

keyword	%)

																:redirect	"/access-denied"}]

Ah,	now	we’re	getting	somewhere.	Instead	of	redirecting	the	user	to	/	(the	default),	the
preceding	access	rule	will	redirect	the	user	to	/access-denied	because	we	defined	a	value
for	:redirect.	Also,	by	specifying	the	:uri	keyword,	the	rule	will	only	be	applied	to	that
URI	instead	of	all	URIs.	Alternatively,	we	can	use	:uris	to	define	multiple	URIs	against
which	the	:rule	will	be	applied:

:access-rules	[{:uris	["/just-for-you"	"/and-maybe-you"]…}]

However,	in	the	preceding	case,	the	route	will	still	always	redirect	the	user	to	/access-
denied	because	our	rule	will	always	return	false.	We	can,	however,	provide	multiple	rules
and	specify	if	any	of	them	match	to	grant	access:

:access-rules	[{:rules	{:any	[

																	#(->(java.utiul.UUID/randomUUID)	str	keyword	%)

																	#(=	(:username	%)	"TheDude")]}…}]

In	the	preceding	example,	the	access	rule	will	grant	access	if	either	the	first	UUID
function	returns	true	(which	it	never	will,)	or	if	the	request	map	has	the	:username	of
TheDude.	Alternatively,	by	using	:all	instead	of	:any,	all	of	the	rules	would	have	to	return
truthy	in	order	for	the	access	rule	to	be	satisfied.

Tip
Please	note,	dear	reader,	that	this	is	just	a	trivial	example	to	understand	what	we	can	do.
Your	access	rules	will	likely	(please?)	be	more	complex	and	secure	than	something	so
easily	spoofable.	But	you	knew	that	already.

Finally,	if	we	didn’t	want	to	return	a	302	redirect	to	some	URI	on	failure,	we	can	use	the
:on-fail	key	to	specify	what	to	do	as	a	response.	For	example,	we	could,	instead,	render
a	basic	403	Unauthorized	page:

(require	‘[noir.util.response	:as	response])

:access-rules	[{:on-fail	(fn	[req]

																	(response/status

																			(response/response	"Unauthorized")	403))…}]

Defining	access	rules	as	maps	provides	granularity	and	flexibility	for	authorization	within
our	application,	while	keeping	the	syntax	relatively	low.	It’s	easy	to	get	our	head	around	it

all,	and	simple	to	expand.

Cookies
Show	me	a	website	without	any	cookies,	and	I’ll	show	you	a	pamphlet.	At	some	point,
you’re	going	to	need	to	write	a	cookie.	Indeed,	we’ve	already	seen	that	Ring	writes	out	a
cookie	for	us	right	out	of	the	box	for	session	tracking.

We	can	interact	with	cookies	using	the	noir.cookies	namespace.	At	its	most	basic,
noir.cookies	provides	two	functions:	get	and	put!.

Getting	a	cookie’s	value
We	can	get	a	cookie’s	value	by	calling	noir.cookies/get	and	providing	either	a	string	or
a	keyword	for	the	name	of	the	cookie	to	retrieve.	We	can	see	this	in	action	by	creating	a
trivial	route	that	simply	renders	out	the	value	of	the	ring-session	cookie:

(require	'[compojure.core	:refer	:all]

									'[noir.cookies	:as	cookies])

(defroutes	some-route

		(GET	"/ring-session"	[]	(cookies/get	"ring-session"))			;#1

The	call	to	cookies/get	retrieves	the	value	of	the	cookie	in	question	–	if	one	exists	–
otherwise	nil.	In	our	case,	the	preceding	code	would	render	something	similar	to	the
following:

Setting	a	cookie’s	value
Knowing	how	to	read	a	cookie’s	value	is	all	fine	and	dandy,	but	it’s	about	as	useless	as
wearing	a	raincoat	indoors	if	we	don’t	know	how	to	write	a	value	to	a	cookie	in	the	first
place.	We	accomplish	this	by	calling	noir.cookies/put!,	and,	similar	to	get,	pass	it
either	as	a	string	or	a	keyword	for	the	name	of	the	cookie.	You	can	write	the	cookie	from
any	code	that’s	executed	during	the	processing	of	the	route,	though	I	typically	write	out
my	cookies	as	close	to	the	route	def	as	possible.	For	example:

(require	'[noir.cookies	:as	cookies])

(defn	write-cookie-page

		"Just	writes	a	cookie	and	a	friendly	message	to	the	browser."

		[]

		(cookies/put!	:my-cookie	"om	nom	nom	nom!")

		"Hey	there,	buddy	ol'	chap!")

(defroutes	some-routes

		(GET	"/write-cookie"	[]	(write-cookie-page)))

The	preceding	code	simply	writes	out	a	cookie,	called	my-cookie,	with	the	value	of	"om
nom	nom	nom!".	All	the	other	settings	are	left	with	their	default	values.

Similar	to	access	rules,	if	we	only	provide	a	string	as	the	value	of	a	cookie,	then	a
reasonable	set	of	defaults	will	be	used	for	the	cookie	(such	as	max-age,	expires,	path,
domain,	and	so	on).	If	we	want	to	be	specific	about	the	cookie	attributes	however,	we	can
set	the	cookie’s	value	as	a	map.

Setting	the	cookie	as	a	map
Setting	the	cookie	as	a	map,	as	opposed	to	a	string	value,	provides	us	with	more
granularity	of	how	the	cookie	behaves.	The	cookie-as-a-map	representation	of	the
preceding	example	would	be	the	following:

(cookies/put!	:my-cookie	{:value	"om	nom	nom	nom!"})

Other	values	we	can	specify	in	the	map	are:

:path	(string):	This	is	the	URI	on	which	the	cookie	is	valid.	Defaults	to	/
:domain	(string):	This	is	the	domain	on	which	the	cookie	is	valid.	Defaults	to	the
current	domain
:port	(int):	This	is	the	port	on	which	the	cookie	is	valid.
:max-age	(int):	This	is	the	number	of	seconds	the	cookie	is	valid	for,	after	which,	it
expires
:expires	(string):	Instead	of	the	number	seconds,	a	date-time	string	explicitly	stating
when	the	cookie	will	expire
:secure	(Boolean):	A	true/false	value	which,	when	true,	states	that	the	cookie
requires	HTTPS	access
:http-only	(Boolean):	A	true/false	value	which,	when	true,	prohibits	JavaScript
from	accessing	the	cookie

I	will	fully	admit	that	I’ve	never	used	the	:domain	or	:port	options,	and	I	rarely	use
:expires	because	I	almost	never	have	a	need	to	specify	a	specific	date	(the	number	of

seconds	usually	suffices,	and	it’s	easier	to	set	than	messing	around	with	date	math).	But	I
digress…

If	we	wanted	to	set	up	the	precedingly	mentioned	cookie	such	that	it	was	only	available	on
our	login	page,	and	only	over	HTTPS,	and	not	available	to	JavaScript,	we	could	adjust	it
to	the	following:

(cookies/put!	:my-cookie

																					{:value	"om	nom	nom	nom!"

																						:path	"/login"

																						:secure	true

																						:http-only	true})

Securing	a	cookie
In	addition	to	the	standard	get/put!	functions	for	reading	and	writing	a	cookie,	we	can
also	use	two	other	functions	that	will	securely	read	and	write	a	cookie:	get-signed	and
put-signed!:

put-signed!:	This	writes	a	second	cookie	alongside	the	original	cookie,	containing	a
signature	for	the	cookie.	The	signature	cookie’s	name	is	the	same	as	the	original
cookie,	but	with	the	suffix	__s.
get-signed:	This	validates	the	signature	of	the	cookie	that	was	created	using	put-
signed!

Note	that	put-signed!	doesn’t	encrypt	the	cookie;	rather,	it	writes	a	second	cookie
containing	a	signature	for	the	first.	As	such,	you	can	write	a	cookie	using	put-signed!,
but	can	still	read	it	using	get.	The	validation	of	the	cookie’s	signature	is	only	performed
when	reading	the	cookie	using	get-signed,	which,	if	invalid,	nil	will	be	returned	instead
of	the	cookie’s	value.

Tip
Beware!	If	you	use	put-signed!	to	write	a	cookie,	and	then	later	change	the	cookie’s
value	using	just	put!,	the	signature	cookie	will	not	be	updated;	thus	any	subsequent	get-
signed	will	fail	to	validate	the	cookie.

Deleting	a	cookie
This	is	probably	the	most	commonly	asked	question	on	the	Internet	when	it	comes	to
cookies,	so	I	figured	I	would	include	it	here.	In	short,	there	is	no	way	to	delete	a	cookie.
The	best	way	to	delete	a	cookie	is	to	overwrite	the	cookie	with	an	empty	value,	and	then
set	its	:max-age	to	-1	(one	second	in	the	past).

We	could	delete	our	:my-cookie	cookie	then	by	overwriting	it	with	the	following	code:

(cookies/put!	:my-cookie	{:value	""	:max-age	-1})

Note,	however,	that	this	only	deletes	the	:my-cookie	cookie	and	not	its	accompanying
signature	cookie,	:my-cookie__s,	which	will	also	need	to	be	overwritten	if	you	wish	to
delete	it.

Extending	the	application:	brief
requirements
With	that,	it’s	time	to	put	it	all	in	practice	and	extend	our	application.	The	requirements	for
this	extension	are	simple.	We	want	to:

1.	 Restrict	the	/albums/recently-added	routes	(both	the	GET	and	POST)	to	only
authenticated	users.

2.	 We	want	to	give	the	user	the	option	for	us	to	remember	their	username	for	future
authentications.

3.	 We	want	to	have	a	logout	link	that	kills	the	user’s	session,	and	then	prohibits	them
from	gaining	access	to	restricted	routes	until	they	re-authenticate.

If	we	break	this	down,	there	are	a	few	work	items	for	us.	We	need	to	create	a	login	form
that	we’ll	use	to	get	the	user’s	credentials	to	authenticate,	which	should	take	the	place	of
item	1.	We	can	also	satisfy	item	2	by	putting	a	classic	Remember	my	username	checkbox
on	the	authentication	form	as	well.	Finally,	we’ll	need	to	put	a	logout	link	somewhere	on
our	site.	No	problemo!	Let’s	get	cracking!

Creating	the	login	form
We’re	going	to	build	the	login	form	first	because,	hey,	we	need	to	get	the	credentials
somehow	and	a	phone	call	isn’t	going	to	cut	it.	For	now,	it’s	probably	easiest	if	we	just
create	the	login	Selmer	template	next	to	the	signup	form	template	we	created	in	Chapter	7,
Getting	Started	with	the	Database.	We	can	do	the	following:

1.	 Create	a	new	file,	resources/templates/login.html.
2.	 Fill	the	file	with	the	following:

{%	extends	"templates/base.html"	%}		<!--	1	-->

{%	block	content	%}

<h1>Login.	That	last	session	was	so	lame.

</h1>

<div	class="row">

		<div	class="col-md-6">

				{%	if	invalid-credentials?	%}		<!--	2	-->

				<p	class="errors">The	provided	username	and/or	password	are	

incorrect.

				</p>

				{%	endif	%}

				<form	role="form"	method="POST"	action="/login">

						<div	class="form-group">

								<label	for="username">Username</label>

								<input	type="text"	name="username"

										class="form-control"	id="username"

										placeholder="AtticusButch">

						</div>

						<div	class="form-group">

								<label	for="password">Password</label>

								<input	type="password"	name="password"

										class="form-control"	id="password">

						</div>

						<div	class="form-group">

						</div>

						<button	type="submit"

								class="btn	btn-default">Submit</button>

				</form>

		</div>

</div>

{%	endblock	%}

The	form	looks	pretty	similar	to	our	signup	form.	We’re	extending	our	base	template	(at
<!--	1	-->),	and	we	have	a	username	and	password	field	that	we’ll	be	POSTing	to
/login.	The	last	thing	we’re	doing	is	conditionally	rendering	a	Wrong	username/password
message	if	the	:invalid-credentials?	key	is	on	the	context	(<!--	2	-->).

Of	course	we	need	to	be	able	to	render	this	form,	so	let’s	create	a	new	route	for	the	/login
URI.	The	/signup	route	is	handled	in	the	hipstr.routes.home	namespace,	so	we’ll	put
the	/login	route	there	as	well.	In	the	hipstr.routes.home	namespace,	do	the	following:

1.	 Add	a	route	to	the	home-routes	that	manages	the	GET	method	for	/login:

(GET	"/login"	[]	(login-page))

2.	 Add	the	hipstr.routes.home/login-page	route	helper	function.	This	will	simply
render	the	login	page:

(defn	login-page

		"Renders	the	login	form."

		[]

		(layout/render	"login.html"))

That	should	be	all	there	is	to	it.	We	can	now	fire	up	a	browser	and	navigate	to
http://localhost:3000/login,	and	we	should	see	something	similar	to	the	following:

Next,	let’s	lock	down	the	/albums/recently-added	routes.

Restricting	the	recently-added	route
As	we	saw	earlier	in	the	chapter,	restricting	access	to	routes	is	a	two-step	process.	We
need	to	A,	mark	the	route	as	restricted,	and	B,	tell	Luminus	how	to	grant	a	access	to	the
restricted	route.	Let’s	first	restrict	the	route.

Restricting	the	route
In	the	hipstr.routes.albums	namespace,	add	the	following	requirement:

(:require	…

										[noir.util.route	:refer	[restricted]])

This	imports	the	restricted	macro	that	we’ll	use	to	restrict	access	to	the	2	routes	in
question.	To	do	this,	we’ll	modify	the	GET	and	POST	routes	for	/albums/recently-
added	as	restricted:

(defroutes	album-routes

		(GET	"/albums/recently-added"	[]	(restricted	(recently-added-page)))

		(POST	"/albums/recently-added"	[&	album-form]

				(restricted	(recently-added-submit	album-form)))

		…

That’s	all	there	is	to	restricting	access	to	a	route,	as	far	as	the	route	is	concerned.	However,
now	we	have	to	tell	Luminus	when	not	to	restrict	access	to	the	route.	And	for	that,	we’ll
need	to	create	a	new	access	rule	in	our	app	handler.

Checking	if	the	user	is	authenticated
I	typically	like	to	keep	things	partitioned	a	bit.	We	need	to	put	some	code	somewhere	that
checks	if	a	user	is	authenticated.	For	now	the	most	natural	place	for	that	is	in	our
hipstr.models.user-model	namespace	(or	someplace	else,	if	you	prefer).

Let’s	create	the	hipstr.models.user-model/is-authed?	function	first,	to	check	if	a
request	is	authenticated.	This	function	will	simply	check	if	there’s	a	:user_id	in	the
session	for	the	current	request.

First,	bring	the	noir.session	into	the	hipstr.models.user-model	namespace:

…

(:require	…

														[noir.session	:as	session]

…)

Secondly,	add	the	following	function	to	hipstr.models.user-model:

(defn	is-authed?

		"Returns	false	if	the	current	request	is	anonymous;	otherwise

		true."

		[_]	;#1

		(not	(nil?	(session/get	:user_id))))

The	substance	of	this	function	is	simple.	The	only	thing	to	note	is	that	we	don’t	care	about
the	parameter	(#1).	Every	access	rule	is	passed	the	request	map,	but	we’re	more	concerned

about	the	session,	so	we	just	ignore	it.

Defining	the	access	rule
The	last	thing	we	need	to	do	is	define	the	access	rule.	We	know	that,	if	our	application
were	to	grow	big	and	strong,	we	may	define	several	access	rules	governing	various	routes.
So,	instead	of	cluttering	up	the	hipstr.handler	namespace,	we’ll	create	a	new
hipstr.routes.access	namespace	and	define	our	rules	there.

1.	 Create	a	new	namespace,	hipstr.routes.access,	and	give	it	access	to	our	new	is-
authed?	function:

(ns	hipstr.routes.access

		(:require	[hipstr.models.user-model	:refer	[is-authed?]])

2.	 Create	a	def	called	rules	that	returns	a	vector	of	access-rule	maps.	Our	vector	will
only	contain	a	single	rule,	which	defers	validation	to	the	is-authed?	function:

(def	rules

		"The	rules	for	accessing	various	routes	in	our	application."

		[{:redirect	"/login"	:rule	is-authed?}])

3.	 Finally,	in	our	hipstr.handler/app	application	handler,	set	our	:access-rules	to
the	rules	vector	we	just	defined:

(def	app	(app-handler

										…

									:access-rules	access/rules

									…))

Tip
Don’t	forget	to	:require	the	hipstr.access	namespace	at	the	top!

With	that,	any	anonymous	request	to	a	restricted	route	will	automatically	be	redirected	to
the	/login	route,	where	our	gorgeous	login	form	will	be	presented	to	the	user.	We	can	test
our	route	restriction	by	trying	to	navigate	directly	to
http://localhost:3000/albums/recently-added,	which	should	automatically	redirect
us	to	/login.

Note
If	the	access	rule	fails	to	redirect	you,	try	restarting	the	Ring	Server	and	then	hitting	the
restricted	route	again.

Now	that	we	have	a	restricted	route	and	a	login	form,	let’s	move	on	to	authenticating	the
user.

Authenticating	the	user
The	form	POST	will	do	3	things.	First,	it	will	try	and	validate	the	user’s	credentials.
There’s	no	need	for	us	to	validate	the	format	of	the	credentials	coming	up	the	pipe,
because	we	already	ensured	they’re	in	the	appropriate	format	when	we	put	them	in	the
database	as	part	of	our	Signup	page.	So	the	credentials	on	the	login	form	will	either	match
something	in	the	database	or	they	won’t.	Secondly,	if	the	set	of	credentials	fail	to	validate,
then	we’ll	re-render	the	login	page	and	tell	the	user	that	their	username/password	was
incorrect	(that	is,	make	use	of	that	invalid-credentials	context	value	the	form	is
currently	expecting).	Finally,	if	the	credentials	successfully	validate,	we’ll	redirect	the	user
to	the	/albums/recently-added	route	we	had	previously	locked	down.

Validating	the	credentials
Since	our	hipstr.models.user-model	has	the	is-authed?	function,	it	makes	sense	to	put
an	auth-user	function	beside	it.	The	function	will	grab	a	user	from	the	database	matching
the	provided	username	and,	if	it	exists,	will	check	if	the	passwords	match.	However,	you’ll
recall	in	Chapter	7,	Getting	Started	with	the	Database	that	we	store	a	hashed	version	of
the	password,	so	we’ll	need	to	make	use	of	the	crypto.password.bcrypt	namespace	(the
same	namespace	we	used	to	originally	hash	the	password	for	storage).	If	the	username	and
password	match,	we’ll	return	the	user	map	from	the	database;	otherwise	we’ll	return	nil
(including	if	a	user	with	the	provided	username	does	not	exist).

First,	we’ll	need	to	create	a	simple	SQL	query	that	fetches	a	user	by	username.	Add	the
following	in	our	users.sql	file:

--	name:	get-user-by-username—Fetches	a	user	from	the	DB	based	on	username.

SELECT	*

FROM	users

WHERE	username=:username

The	preceding	query	will	be	processed	by	YeSQL	at	runtime,	resulting	in	a	get-user-by-
username	function	in	our	namespace.	Next,	add	the	following	function	to	the
hipstr.models.user-model:

(defn	auth-user

		"Validates	a	username/password	and,	if	they	match,	adds	the	user_id	to	

the	session	and	returns	the	user	map	from	the	database.	Otherwise	nil."

		[username	password]

		(let	[user	(first	(get-user-by-username

																				{:username	username}))]														;#1

				(when	(and	user	(password/check	password

																				(:password	user)))																			;#2

						(session/put!	:user_id	(:user_id	user))										;#3

						(dissoc	user		:password))))																										;#4

The	auth-user	function	makes	use	of	the	YeSQL-generated	get-user-by-username
function	(#1),	which,	if	successful,	will	return	a	map	of	matching	users.	Since	our
users.username	database	field	has	a	unique	index	constraint	on	it,	we	know	that	only	0	or
1	result	will	be	returned	in	the	vector,	hence	the	call	to	first.	We	then	make	use	of	the

crypto.password.bcrypt/check	function	(#2),	which	returns	true	if	the	hashed	password
matches	an	unhashed	password.	If	the	user	exists	and	the	passwords	match,	we	then	stuff
the	:user_id	into	the	session	(#3),	and	then	return	the	user	map	–	but	without	the
password	(#4),	as	there’s	no	need	to	proliferate	that	throughout	our	app.

If	all	is	happy,	then	the	:user_id	will	be	added	to	the	user’s	session,	which	is	what	our
access	rule	checks	for	all	restricted	routes.	The	last	thing	we	need	to	do	to	authenticate	the
user	is	to	handle	that	pesky	form	POST.

Handling	the	form	POST
We’ll	overload	the	hipstr.routes.home/login-page	to	accept	a	different	arity	of
arguments,	specifically	the	login	form’s	value	map.	Extend	it	to	the	following:

(defn	login-page

		([]

				(layout/render	"login.html"	{:username	(cookies/remember-me)}))

		([credentials]

				(if	(apply	u/auth-user	(map	credentials	[:username	:password]))

						(response/redirect	"/albums/recently-added"))

						(layout/render	"login.html"	{:invalid-credentials?	true}))))

The	overloaded	function	is	pretty	simple:	If	the	user	successfully	authenticates	with	the
username	and	password,	then	redirect	them	to	the	restricted	route	/albums/recently-
added.	Otherwise,	re-render	the	login	form	with	the	invalid-credentials	set	to	true.
The	last	thing	to	do	before	we	try	out	the	login	form	is	to	create	the	POST	/login	route.
Add	the	following	to	the	home-routes:

(POST	"/login"	[&	login-form]	(login-page	login-form))

Try	it	out	for	yourself!	If	we	provide	an	incorrect	username	or	password,	our	login	form	is
re-rendered	with	a	foreboding	blood-red	error	message:

And	when	we	provide	a	valid	username/password,	we’re	redirected	to	the
/albums/recently-added	page:

But	typing	in	our	username	is	so	boring!	I	have	a	thousand	websites	and	a	thousand
usernames,	so	let’s	take	care	of	action	item	number	2	in	our	requirements	and	add	that
remember	me	cookie.

Writing	the	“Remember	Me”	cookie
Over	the	years,	I’ve	become	rather	disdainful	of	random	cookie	code	littered	throughout	a
web	application.	I	prefer	to	keep	cookies	in	a	rather	central	location.	That	way,	when	we
want	to	change	the	way	a	cookie	behaves	we	only	have	to	do	it	once	instead	of	a	gazillion
times.	For	that	reason,	create	another	namespace,	hipstr.cookies,	and	throw	the
following	in	there:

(ns	hipstr.cookies

		(:require	[noir.cookies	:as	c]))

(defn	remember-me

		([]

				"Gets	the	username	in	the	remember-me	cookie."

				(c/get	:remember-me))

		([username]

				"Sets	a	remember-me	cookie	to	the	user's	browser	with	the

	 user's	username."

				(if	username

				(c/put!	:remember-me	{:value	username

																										:path	"/"

																										:max-age	(*	60	60	24	365)})

				(c/put!	:remember-me	{:value	""	:path	"/"	:max-age	-1}))))

The	hisptr.cookies	acts	as	a	kind	of	business	wrapper	to	the	noir.cookies	namespace.
In	this	namespace,	we	put	an	overloaded	remember-me	function,	which	will	either	get	or
set	the	value	of	the	remember-me	cookie,	depending	on	whether	or	not	it’s	called	with	a
value.	You’ll	notice	in	the	overloaded	function	that,	if	we	call	remember-me	with	a	falsey
value	(nil	or	"")	that	we’ll	basically	delete	the	cookie.

To	make	use	of	the	remember-me	cookie,	let’s	extend	our	login	form	to	include	a	simple
checkbox.	Back	in	the	resources/templates/login.html,	add	the	following	between
the	password	field	and	the	submit	button:

<div	class="form-group">

		<label	for="password">Password</label>

		<input	type="password"	name="password"	class="form-control"	

id="password">

</div>

<div	class="form-group">

		<input	type="checkbox"	name="remember-me"

		{%	if	username	%}	checked{%	endif	%}>

		Remember	me	on	this	computer

</div>

<button	type="submit"	class="btn	btn-default">Submit</button>

All	we	did	here	was	add	a	simple	HTML	checkbox.	Yep.	Living	on	the	edge!	The
checkbox	will	now	be	marked	checked	if	there’s	a	username	on	the	context	map.	Let’s
also	set	the	value	of	the	username	text	field	to	the	username	context	value:

<input	type="text"	name="username"	class="form-control"	id="username"	

placeholder="AtticusButch"	value="{{	username	}}">

Next	we’ll	modify	our	hipstr.routes.home/login-page	to	take	the	remember-me	cookie
and	checkbox	into	account.	First,	import	the	hipstr.cookies	namespace:

(:require	…

										[hipstr.cookies	:as	cookies]

										…)

Next,	we’ll	set	the	username	context	value	when	rendering	the	login	page:

([]

(layout/render	"login.html"	{:username	(cookies/remember-me)})

Finally,	if	the	user	has	checked	the	remember-me	checkbox,	and	they	successfully
authenticate	on	POST,	we’ll	write	their	username	to	the	remember-me	cookie,	otherwise
we’ll	set	the	cookie	to	nil	(essentially	deleting	it):

(if	(apply	u/auth-user	(map	credentials	[:username	:password]))

		(do	(if	(:remember-me	credentials)

								(cookies/remember-me	(:username	credentials))

								(cookies/remember-me	""))

						(response/redirect	"/albums/recently-added")))

With	all	that,	we	should	now	see	a	checkbox	on	the	login	form.	The	first	time	we	view	it,
it	will	be	unchecked.	However,	if	we	check	it	and	successfully	authenticate,	and	then	go
back	to	the	login	form,	you’ll	notice	that	it	will	be	checked	and	our	username	will	be	pre-
populated	in	the	username	text	field,	shown	as	follows:

Finally,	the	last	thing	we	need	to	do	is	create	the	logout	route	and	link	to	it.

Creating	the	logout	route
Our	logout	link	will	be	simple.	Any	form	of	navigation	(GET,	POST,	etc.)	to	/logout	will
invalidate	the	user’s	authenticated	status	and	redirect	back	to	/.	Since	our	is-authed?	and
auth-user	functions	are	in	hisptr.models.user-model,	we	will	add	a	third	method
alongside	them,	called	invalidate-auth:

(defn	invalidate-auth

		"Invalidates	a	user's	current	authenticated	state."

		[]

		(session/clear!))

That’s	it.	We’ll	just	blow	away	anything	in	the	session	because,	hey,	why	not!	Technically,
if	all	we	wanted	to	do	was	prohibit	the	user	from	accessing	restricted	routes,	we	could
have	simply	called	(session/remove!	:user_id),	and	that	would	have	sufficed.	But	for
now,	there	are	no	business	rules	keeping	us	from	blowing	everything	away	–	also,	it	frees
up	some	memory.

Next,	we’ll	add	the	route	and	the	helper	function.	Add	the	following	function	and	route	to
our	hipstr.routes.home	namespace:

(defn	logout	[]

		"Logs	the	user	out	of	this	session."

		(u/invalidate-auth)

		(response/redirect	"/"))

(defroutes	home-routes

		…

		(ANY	"/logout"	[]	(logout))

		…)

Finally,	we	need	to	get	a	Logout	link	in	there.	Since	we’re	extending	base.html	for	all	of
our	templates,	that	seems	like	the	best	place	to	put	it.	This	allows	us	to	put	the	logout	link
in	the	top-right	corner	of	every	page.	Open	the	templates/base.html	file	and	append	the
following	highlighted	markup	(roughly	line	19):

<div	class="navbar-collapse	collapse	">

		<ul	class="nav	navbar-nav">

				<li	class="{{home-selected}}">

						Home

				<li	class="{{about-selected}}">

				About

		

		<ul	class="nav	navbar-nav	navbar-right">

				Logout

		

</div>

Save	the	file	and	refresh	your	browser,	and	you’ll	now	see	a	Logout	link	in	the	top-right
corner	of	your	browser:

There’s	only	one	problem	though:	A	link	saying	Logout	doesn’t	make	a	lot	of	sense	if
you’re	not	already	authenticated.	so	change	the	code	to	the	following:

<ul	class="nav	navbar-nav	navbar-right">

		{%	if	is-authed?	%}

				Logout

		{%	else	%}

				Login

		{%	endif	%}

We	will	now	render	the	appropriate	link	if	the	is-authed?	context	value	is	true.	But	where
is	that	value	coming	from?	We	need	to	set	it	on	the	context.	Considering	that	this	link	will
be	on	every	single	one	of	our	pages,	it	makes	sense	for	us	to	adjust	the
hipstr.layout/render	function.	This	is	the	function	we	call	every	time	we	render	an
HTML	template.	We	can	associate	the	:is-authed?	context	value	with	the	parameter	map
coming	in:

1.	 First,	include	the	hipstr.models.user-model	in	hipstr.layout	namespace:

(:require	…

									[hipstr.models.user-model	:as	user]

										…)

2.	 Adjust	the	render	function	to	associate	the	is-authed?	key	with	the	value	returned
by	hipstr.models.user-model/is-authed?:

(defn	render	[template	&	[params]]

		(let	[params	(->	(or	params	{})

																			(assoc	:is-authed?	(user/is-authed?	nil)))]

		(RenderableTemplate.	template	params)))

The	base.html	template	will	now	show	the	appropriate	Login/Logout	link,	depending	on
the	user’s	current	authenticated	status.

Summary
This	chapter	covered	some	of	the	fundamentals	that	nearly	every	web	application	requires.
We	learned	how	to	interact	with	the	session,	as	well	as	some	basic	session	setup.	We	also
learned	how	to	read,	write,	and	delete	cookies,	and	how	to	create	access	rules	to	restrict
access	to	routes.	And	with	that,	the	functionality	of	our	hipstr	application	is	complete.	In
the	next	chapter,	we’ll	learn	how	to	manage	configuration	files,	as	well	as	how	to	deploy
our	application	in	a	few	standard	ways.

Chapter	11.	Environment	Configuration
and	Deployment
So	far,	we’ve	built	a	simple	but	fairly	well-rounded	application,	hipstr,	which	performs
many	of	the	every-day	tasks	required	by	web	applications.	This	chapter	will	focus	on	a
couple	different	ways	one	can	deploy	a	Clojure-based	web	application,	as	well	as	how	to
abstract	the	environment	configurations	that	will	differ	from	deployment	to	deployment.
In	this	chapter,	we	will	cover	the	following	topics:

environ,	a	library	for	reading	environment	configurations
How	to	pass	environment	variables	to	our	application	outside	our	development
environment
How	to	deploy	our	application	to	a	few	common	setups

By	the	end	of	this	chapter,	you’ll	know	the	basics	of	how	to	abstract	the	application’s
environment	configuration,	and	how	to	get	this	thing	up	and	running	outside	the	Leiningen
Ring	Server	plugin.	We’re	almost	there.	Can	you	taste	it?

Environ
Luminus-generated	applications	make	use	of	the	environ	library,	which	was	written	by
James	Reeves,	the	essential	Godfather	of	Clojure	web	development	(remember,	this	guy
wrote	Ring,	the	Ring	Server,	and	about	every	other	underpinning	library	we’ve	used	in
this	book).	The	environ	library	allows	applications	to	read	environment	variables	set	from
outside	the	scope	of	any	internalized	configuration.	This	is	important	to	remember:
environ	accepts	environment	configurations	only	from	outside	the	application,	thus
adhering	to	the	third	tenant	(Configuration)	of	the	12	Factor-Application	Pattern.

Note
You	can	read	more	about	the	12	Factor-Application	Pattern	at	http://12factor.net.	While
not	necessary	for	this	chapter,	it’s	something	I	encourage	any	software	developer	to	read,
as	the	practices	contained	within	are	beneficial	for	any	software	you’re	writing.

http://12factor.net

Using	environ
Consuming	environment	configuration	through	environ	is	trivial.	Let’s	assume	we	have
an	environment	variable	called	DB_USER	with	the	value	bunny.	We	can	get	the	value	of	this
environment	variable	by	doing	the	following:

(require	'[environ.core	:refer	[env]])

(env	:db-user)

>>	bunny

Well,	that	was	easy.	But	why	did	we	get	the	environment	variable	using	the	:db-user
instead	of	DB_USER?	Good	question!

Variable	translations
The	environ	library	is	smart	enough	–	and	kind	enough	–	to	take	into	account	typical
Clojure	naming	conventions,	as	well	as	the	naming	conventions	of	traditional	environment
variables	and	Java	system	properties.	As	such,	environ	will	translate	the	names	of	the
variables	to	a	more	Clojure-friendly	convention.	The	specifics	are	as	follows:

Underscores	and	periods	will	be	converted	to	hyphens
Variable	names	will	be	lower-cased
Variable	names	will	be	turned	into	keywords

That’s	why	the	value	of	our	environment	variable,	DB_USER,	was	retrieved	using	the
keyword	:db-user.	Likewise,	specifying	a	Java	system	property	at	the	command	line,
such	as	-Ddb.user=bunny,	will	also	be	translated	into	:db-user.

Setting	and	resolving	environment
configurations
We’ve	already	alluded	to	the	fact	that	you	can	set	configuration	for	environ	to	consume
from	either	environment	variables	or	from	Java	system	properties.	This	covers	about
100%	of	real-world	usage.	However,	during	development,	we	can	also	set	environment
configuration	using	the	lein-environ	plugin	(which	is	also	packaged	as	part	of	a
Luminus-generated	application).

When	running	the	development	server	using	lein	ring	server,	the	lein-environ	plugin
will	fetch	environment	configuration	from	the	Leiningen	project	map,	as	well	as	an
optional	profiles.clj	file,	and	merge	the	two	together	into	the	.lein-env	file.	This
.lein-env	file	is	the	first	go-to	place	for	environment	settings,	but	only	when	running	the
development	server.

Note
It	is	recommended	that	the	profiles.clj	and	.lein-env	files	not	be	committed	into	your
version	control,	as	every	developer’s	environment	is	likely	to	be	somewhat	different.	Plus,
despite	the	fact	that	.lein-env	supports	fetching	configuration	from
~/.lein/profiles.clj,	I	consider	that	a	nasty	practice;	an	application’s	configuration
changes	from	environment	to	environment,	and	configurable	requirements	change	from
application	to	application.	So,	setting	what	amounts	to	a	global	developer	configuration
for	all	applications	has	a	pretty	bad	smell	to	it.

In	the	case	of	our	:db-user	example,	we	could	put	the	following	in	a	profiles.clj	file
located	in	hipstr’s	project	folder:

{:dev	{:env	{:db-user	"bunny"}}}

We	aren’t	restricted	to	defining	a	single	environment	in	the	profiles.clj	file.	We	can
define	multiple	environments	by	doing	the	following:

{:dev	{:env	{:db-user	"bunny"}}

	:test	{:env	{:db-user	"test-bunny"}}}

We	tell	our	development	server	which	profile	to	use	when	we	launch	the	development
server,	using	the	with-profile	argument:

#	lein	with-profile	dev	ring	server

The	lein	ring	server	command	defaults	to	:dev	if	no	with-profile	is	declared.	Hence,
consider	the	following	code:

#	lein	with-profile	test	ring	server

On	executing	the	above	code,	our	(env	:db-user)	would	resolve	to	test-bunny.

Resolving	environment	configuration
The	environ	library	will	check	three	different	places	for	a	matching	configuration	key:

The	.lein-env	file
Exported	environment	variables
Java	system	properties

If	the	requested	configuration	key	isn’t	found	in	.lein-env,	then	environ	will	check	any
exported	environment	variables,	and,	if	still	not	found,	it	will	check	the	Java	system
properties.	If	the	configuration	key	is	not	found,	environ	will	ultimately	return	nil.

Adjusting	the	database	connection
In	essence,	the	Configuration	principle	of	the	12	Factor-Application	Pattern	states	that	an
application’s	configuration	and	an	application’s	code	should	be	completely	independent	of
each	other.	Our	hipstr	application	currently	violates	this	principle	in	a	key	area:	the
database	connection.	This,	however,	is	easily	resolved.

Creating	the	profiles.clj	file
For	our	development	server,	we	will	create	profiles.clj	and	have	the	lein-env	plugin
generate	the	.lein-env	file.	Currently,	our	hipstr.models.connection/db-spec	expects
5	settings:	:classname,	:subprotocol,	:subname,	:user,	and	:password.

Theoretically,	we	could	transfer	the	entire	db-spec	map	into	the	profiles.clj	file,	such
as	shown	below:

{:dev	{:env	{:db-spec	{:classname			"org.postgresql.Driver"

																							:subprotocol	"postgresql"

																							:subname					"//localhost/postgres"

																							:user								"hipstr"

																							:password				"p455w0rd})

We	could	then	modify	hipstr.models.connection/db-spec	to	just	the	following:

(ns	hipstr.models.connection	

		(:require	[environ.core	:refer	[env]]))

(def	db-spec	(env	:db-spec))

However,	this	would	prove	to	be	our	fall	from	grace	during	deployment	outside	the
development	server,	because	environ	does	not	support	embedded	configuration	maps	for
environment	variables	or	Java	system	properties.	As	such,	we	need	to	flatten	our	settings.
So	do	the	following	steps:

1.	 Create	a	new	profiles.clj	file	alongside	our	project.clj	file	in	the	hipstr	project
folder.

2.	 Add	the	following	map:

{:dev	{:env	{:dev?	true

							:db-classname		"org.postgresql.Driver"

							:db-subprotocol	"postgresql"

							:db-subname					"//localhost/postgres"

							:db-user													"hipstr"

							:db-password					"p455w0rd"}}}

The	next	time	you	run	lein	ring	server,	the	.lein-env	file	will	be	generated	and	the
above	profiles.clj	map	will	be	included,	thus	allowing	environ	to	find	the	settings
when	called	upon.

Modifying	the	hipstr.models.connection	namespace
Next,	we	need	to	modify	our	hipstr.models.connection	namespace	to	make	use	of	the
environ	library:

1.	 Adjust	the	hipstr.models.connection	namespace	to	include	environ:

(ns	hipstr.models.connection

		(:require	[environ.core	:refer	[env]]))

2.	 Next,	simply	replace	each	hardcoded	database	configuration	value	with	the	environ
equivalent:

(def	db-spec	{:classname				(env	:db-classname)

														:subprotocol		(env	:db-subprotocol)

														:subname						(env	:db-subname)

														:user									(env	:db-user)

														:password					(env	:db-password)})

That’s	all	we	have	to	do!	Our	database	connection	can	now	read	configuration	from
anywhere	environ	resolves	the	key!

Before	we	restart	our	development	server	however,	let’s	adjust	the	migratus-config	in
the	hipstr.handler	namespace.	In	the	hipstr.handler	namespace,	perform	the
following	steps:

1.	 Add	a	reference	to	our	hipstr.models.connection/db-spec	in	the	:require:

(ns	hipstr.handler

		(:require	[compojure.core	:refer	[defroutes]]

																[hipstr.models.connection	:refer	[db-spec]]

												...)

2.	 Remove	the	hardcoded	:db	map	in	our	migratus-config,	and	instead	use	the
referred	db-spec:

(def	migratus-config

		{:store	:database

			:migration-dir	"migrations"

			:migration-table-name	"_migrations"

			:db	db-spec})

That’s	it!	All	of	our	database	references	are	now	using	an	external	configuration.	Restart
your	development	server	and	create	a	new	user,	and	you’ll	find	that	everything	behaves
the	same	way.

Deploying	the	hipstr	application
The	lein-ring	plugin	can	create	2	different	types	of	packages	for	deployment:	an
uberjar	or	an	uberwar.	These	are	created	using	lein	ring	uberjar	or	lein	ring
uberwar	respectively:

uberjar:	Creates	an	executable	.jar	file	containing	all	dependencies,	including	an
embedded	Jetty	server
uberwar:	Creates	a	standard	.war	file	containing	all	dependencies,	which	can	be
deployed	to	any	Java	web	application	server	(such	as	Tomcat	or	GlassFish)

Note
Check	out	the	official	lein-ring	documentation	to	get	more	details	about	the	various
options	available	for	ring	uberwar/uberjar	at	https://github.com/weavejester/lein-
ring.

How	you’re	going	to	deploy	your	application	determines	how	you’re	going	to	package
your	application.

https://github.com/weavejester/lein-ring

When	to	use	an	uberjar
Because	Ring	applications	have	an	embedded	Jetty	server,	we	have	the	option	of	creating
a	self-contained,	fully	independent	uberjar,	which	contains	all	the	required	dependencies
and	can	run	on	its	own.	The	advantage	of	this	is	that	deployment	becomes	dead	simple	–
you	simply	copy	the	uberjar	to	a	server	and	run	it	as	you	would	any	other	Java	application
(we’ll	do	this	later	in	the	chapter).	If	we	want	another	instance	of	our	app,	we	can	simply
fire	it	up	like	any	other	Java	app	–	Ring	will	automatically	determine	which	port	to	serve
on	(starting	at	3000	and	going	up	from	there).

Running	as	an	uberjar	has	some	drawbacks	though:	You	don’t	get	a	fancy	administrative
console	like	you	do	with	a	Java	application	server,	which	means	that	you’ll	be	rolling	a	lot
of	configuration	by	hand.	The	standalone	uberjar	is	pretty	barebones,	but	in	the	world	of
web	applications,	rarely	have	I	worked	on	anything	that	actually	required	all	the
functionality	that’s	embedded	inside	an	application	server.

When	to	use	an	uberwar
If	you	plan	on	deploying	to	an	application	server,	then	you’ll	need	to	package	the
application	as	an	uberwar.

Application	servers	provide	a	whole	truckload	of	features,	such	as	queuing,	configuration
management,	clustering	(though	we	can	use	Nginx	and	multiple	instances	of	a	standalone
server	to	accomplish	this),	and	so	on.	Most	application	servers	allow	you	to	configure
their	features	through	a	UI	(though	in	my	experience	these	are	often	clunky).	Some
application	servers,	such	as	GlassFish,	are	free	and	open	source.	Others,	however,	such	as
WebSphere	and	WebLogic,	cost	an	arm	and	a	leg.

The	downsides	of	application	servers	are	cost	and,	often	times,	bloated.	They	can	be	fairly
resource	intensive,	expensive,	and	complicated.	Also,	chances	are	you	aren’t	going	to	need
an	application	server;	in	the	world	of	Clojure	web	application	development,	I’ve	yet	to
write	anything	that	requires	the	golden	handcuffs	of	an	application	server.	Most	Clojure
web	applications	are	deployed	as	a	standalone	application.

Deploying	as	a	standalone
The	easiest	way	to	deploy	a	Ring	application	is	as	a	standalone	application,	and	just	use
the	embedded	Jetty	server.	This	is	the	killer	feature	as	far	as	I’m	concerned.	To	create	a
standalone	hipstr	application,	perform	the	following	steps:

1.	 In	a	terminal,	and	from	the	project	root	folder,	run	lein	ring	uberjar.	This
produces	2	jars:

./target/hipstr-0.1.0-SNAPSHOT.jar:	Contains	all	our	hipstr	application
code	and	dependencies.
./target/hipstr-0.1.0-SNAPSHOT-standalone.jar:	An	executable,
standalone	version	which	includes	an	embedded	Jetty	server	and	all
dependencies.	This	is	entirely	self-contained.

2.	 Fire	up	the	hipstr	application	by	doing	the	following	in	the	./target	directory
(keeping	in	mind	that	we	can	use	Java	system	properties	to	set	the	environment
configuration,	such	as	the	-D	Java	system	properties	below):

#	java	-jar	-Ddb.classname=org.postgresql.Driver	-

Ddb.subprotocol=postgresql	-Ddb.subname=//localhost/postgres	-

Ddb.user=hipstr	-Ddb.password=p455w0rd	hipstr-0.1.0-SNAPSHOT-

standalone.jar

Tip
If	you	get	an	error	about	“could	not	find	users.sql“,	ensure	the	[:uberjar	:omit-
source]	in	project.clj	file	is	set	to	false.	If	set	to	true,	then	lein	ring	uberjar
will	remove	our	.sql	files	from	the	packaged	jar.

As	is	the	case	with	the	development	server,	the	above	command	will	serve	on	port	3000.
Also	like	the	development	server,	the	above	command	will	execute	in	the	foreground,
which	you	can	stop	by	hitting	Ctrl	+	C,	or	by	shutting	down	the	terminal.	However,	in	a
non-dev/local	environment	you’ll	want	to	run	the	application	in	the	background,	which
can	be	done	by	using	nohup:

#	nohup	java	-jar	-Ddb.classname=org.postgresql.Driver	-

Ddb.subprotocol=postgresql	-Ddb.subname=//localhost/postgres	-

Ddb.user=hipstr	-Ddb.password=p455w0rd	hipstr-0.1.0-SNAPSHOT-standalone.jar	

&

This	will	persist	the	application	after	you	close	down	the	terminal.	To	stop	the	application,
you	first	get	the	process	ID	using	ps	-ef,	and	then	kill	-15	that	process:

#	ps	-ef	|	grep	hipstr

>>	501	68443	58530			0		6:07pm	ttys000	0:09.00	/usr/bin/java	-jar…

#	kill	-15	68443

Keep	in	mind	that	you	can	export	environment	variables	(using	“_"	instead	of	“.“,	such	as
using	DB_CLASSNAME	instead	of	db.classname)	if	you	don’t	want	to	use	Java	system
properties.	However,	this	will	force	every	instance	of	the	hisptr	application	on	that

machine	to	have	the	same	database	connection.	You’ll	have	to	decide	which	makes	more
sense.

Running	the	application	behind	Nginx
Nginx	is	quickly	becoming	a	popular	web-server/reverse-proxy.	Its	configuration	is
relatively	simple	and	clean	compared	to	the	now-dated	Apache.	And	it’s	fast.	Blisteringly
fast.	Scary	fast!

We	can	use	Nginx	to	reverse-proxy	port	80	to	our	hipstr	application’s	port	3000	by
performing	the	following	steps:

1.	 Download	and	install	Nginx	for	your	platform.	You	can	download	Nginx	from
http://wiki.nginx.org/Install.

2.	 Deploy	and	run	a	standalone	hipstr,	as	outlined	in	the	Deploying	as	a	standalone
section	earlier	in	this	chapter.

3.	 Back	up	the	Nginx	default	site	configuration	(note	that	your	location	may	differ):

#	mv	/etc/nginx/sites-available/default	/etc/nginx/sites-

available/default.bak

4.	 Create	a	new	default	site	configuration	file	with	whatever	your	favorite	tool	is	(I	tend
to	use	nano	because	I’ve	never	bothered	to	learn	vi.	Blasphemy,	I	know):

#	nano	/etc/nginx/sites-available/default

5.	 Add	the	following	configuration	to	the	new	default	configuration	file,	specifying
values	for	anything	[inside	square	brackets],	except	the	[::]	wildcard:

server	{

				#	listen	on	port	80,	but	apply	this	explicitly	to	

				#	only	the	default	server

							listen	80	default_server;

				#	only	allow	IPv6	socket	to	process	

				#	IPv6	connections

						listen	[::]	80	default_server	ipv6only=on;

				#	specify	a	"catch-all";	any	host	name	on	port	80	

				#	will	be	affected.

				server_name	_;

				#	log	files

							access_log	/var/log/hipstr_access.log;

							error_log	/var/log/hipstr_error.log;

				#	proxy	settings

							location	/	{

										#	proxies	all	requests	under	"/"	to	

										#	our	hipstr	standalone	instance

										proxy_pass	http://localhost:3000/;

										#	forwards	the	original	Host	header

										proxy_set_header	Host	$http_host;

										#	forwards	the	X-Forwarded-For	client	

										#	request	header,	if	it	exist,

http://wiki.nginx.org/Install

										#	as	well	as	the	client's	remote	

										#	address	(IP),	separated	by	a	comma.

										proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;

										#	forwards	the	original	protocol	

										#	(eg.	https	or	http)

										#	in	the	real	world	you'd	likely	want

										#	to	do	SSL	termination,	and	setup	

										#	whatever's	hosting	the	hipstr	

										#	standalone	to	only	trust	incoming	

										#	traffic	from	the	fronting	nginx's	

										#	IP.

										proxy_set_header	X-Forwarded-Proto	$scheme;

										#	cancel	the	effect	of	all	

										#	proxy_redirect	directives

										proxy_redirect	off;

										}

}

6.	 Reload	Nginx.

#	nginx	-s	reload;

Now	whenever	you	hit	up	port	80,	instead	of	explicitly	stating	port	3000,	you’ll	get	our
hipstr	application.

Load	balancing	behind	Nginx
Using	Nginx,	we	can	easily	proxy	multiple	hipstr	applications	by	employing	a	round-robin
approach	between	all	of	them:

1.	 Open	/etc/nginx/sites-available/default	to	edit	it.
2.	 Before	the	server	{...}	block,	add	the	following:

upstream	hipstr	{

				server	localhost:3000;

				server	localhost:3001;

				server	localhost:3002;

}

3.	 Lastly,	adjust	proxy_pass	in	the	location	/	configuration	section	of	the	server
block	so	that	it	looks	like	the	following:

location	/	{

				#	proxies	all	requests	under	"/"	to	

				#	our	hipstr	standalone	instance

							proxy_pass	http://hipstr;

4.	 Save	and	close	the	configuration	file,	then	reload	Nginx:

#	nginx	-s	reload

5.	 Now	fire	up	a	couple	more	instances	of	the	hipstr	application	using	the	nohup
command.

That’s	all	there	is	to	it!	You	are	now	running	a	round-robin	balanced	cluster	of	hipstr
applications!	How	easy	was	that!

Summary
In	this	chapter,	we	learned	how	easy	it	is	to	abstract	our	application’s	configuration	away
from	our	application	code.	We	then	demonstrated	how	we	can	serve	our	application	as	a
standalone	app,	using	the	embedded	Jetty	server.	We	also	learned	how	to	package	an
uberwar	in	case	we	wanted	to	deploy	to	a	Java	application	server,	such	as	GlassFish.

At	this	point,	you	have	enough	knowledge	to	be	able	to	start	writing	web	applications
using	Clojure.	Did	we	cover	everything?	No,	but	that’s	why	the	book	isn’t	700	pages.
However,	what	we	did	cover	are	the	essentials,	and,	anything	else	from	this	point	forward
you	should	be	able	to	learn	while	hitting	a	pint	of	beer	and	flicking	through	web	pages	on
your	phone.	So	go	out	and	write,	my	friend,	and	bring	peace	and	joy	into	this	world!

Appendix	A.	Using	Korma	–	a	Clojure
DSL	for	SQL
In	this	book,	we	exclusively	made	use	of	YeSQL,	a	library	that	generates	Clojure
functions	from	native	SQL.	For	an	example	application	as	small	and	simple	as	hipstr,
YeSQL	might	be	a	tad	overkill	–	its	real	beauty	and	elegance	comes	to	light	in	larger
projects	that	make	use	of	large	queries	or	lots	of	underlying	database	functionality.
Furthermore,	YeSQL	does	a	decent	job	of	abstracting	away	the	underlying	data	model
from	the	Clojure	code.

That	being	said,	there	are	many	people	who	prefer	using	a	domain	specific	language	to
interact	with	the	database.	This	appendix	will	introduce	you	to	Korma,	a	pure-Clojure
DSL	for	SQL.	This	appendix	will	not	cover	Korma	in	its	entirety	(it’s	pretty	full-fledged).
Instead,	this	appendix	will	cover	the	following:

How	to	tie	object	models	back	to	database	tables
A	light	overview	of	selecting	and	inserting	data	using	Korma
Port	the	connection,	album-model,	and	user-model	namespaces	from	YeSQL	to
Korma

Getting	Korma
Add	the	following	code	to	the	Leiningen	:dependencies	in	the	hipstr	project	file:

[korma	"0.4.0"]

At	the	time	of	writing	this	book,	Version	0.4.0	is	the	most	recent	stable	build	of	Korma,
and	it	was	released	around	late	August	of	2014.	You	may	want	to	check	if	there’s	a	newer
version	at	https://github.com/korma/Korma/.

https://github.com/korma/Korma/

The	Quick	Korma	Crash	Course
This	is	the	ultra	quick	and	dirty	guide	to	Korma.	We’ll	use	the	existing	artists	and	albums
tables	in	the	hipstr	database,	between	which	a	simple	1-artist-to-many-albums	relationship
exists:

We’ll	gloss	over	just	enough	to	make	use	of	Korma	for	these	two	tables	and	how	they
relate	to	one	another	in	the	database.	You	can	get	a	far	more	detailed	and	richer	overview
of	everything	Korma	provides	by	visiting	the	official	site	at
http://www.sqlkorma.com/docs.

http://www.sqlkorma.com/docs

Define	the	database	specification
You	define	the	database	Korma	will	use	by	using	the	korma.db/defdb	macro.	The	defdb
macro	accepts	a	standard	JDBC	database	map,	similar	to	the	one	we	created	in	the
hipstr.models.connection	namespace:

(defdb	hipstr-db	{:classname			"org.postgresql.Driver"

																		:subprotocol	"postgresql"

																		:subname					"//localhost/postgres"

																		:user								"hipstr"

																		:password				"p455w0rd"}

This	defines	the	database	specification	for	our	local	hipstr	database.	By	default,	all	Korma
entities,	unless	otherwise	stated,	will	use	the	most	recently	defined	defdb.

Korma	entities
An	entity	is	a	Korma	representation	of	a	database	table.	Each	database	table	we	want	to
interact	with	will	be	done	so	through	an	entity.	Picture	an	entity	as	being	an	object	version
of	a	database	table.

An	entity	is	defined	by	using	the	defentity	macro.	By	default,	the	name	of	the	entity
maps	to	the	table.	So,	in	our	case,	the	artists	and	albums	tables	would	each	have	the
following	defentity	declarations:

(use	'korma.core)

(defentity	artists)

(defentity	albums)

The	preceding	explanation	is	the	most	basic	definition	of	entities,	and	it	makes	some
assumptions,	which	we’ll	override	later	on.

Defining	the	primary	key
Korma	assumes	that	the	primary	key	for	the	entity	is	mapped	to	either	an	id	or
[entityname]_id	column	on	the	table.	However,	our	tables	do	not	conform	to	that
assumption,	as	our	primary	keys	are	artists.artist_id	and	albums.album_id
respectively.	We	can	override	the	default	primary	keys	using	korma.core‘s	pk	function:

(defentity	artists

		(pk	:artist_id))

(defentity	albums

		(pk	:album_id))

Defining	relationships	between	entities
Korma	allows	us	to	define	the	one-to-many	relationship	between	artists	and	albums.	We
do	this	by	using	the	has-many	function	on	the	artists	table,	and	the	belongs-to	function
on	the	albums	table:

(defentity	artists

		(pk	:artist_id)

		(has-many	albums))

(defentity	albums

		(pk	:album_id)

		(belongs-to	artists	{:fk	:artist_id}))																			;#1

Notice	at	the	#1,	that	we	have	to	define	the	foreign	key.	This	is	because	the	foreign	key
doesn’t	conform	to	Korma’s	assumptions	of	id	or	[entityname]_id.	Defining	these
relationships	provides	Korma	with	join	information	for	the	generated	SQL.

Constructing	SELECT	queries
Select	queries	are	made	using	the	select	function,	followed	by	an	entity,	and	an	optional
body	of	forms.	At	its	simplest,	we	can	select	all	the	records	in	a	table	by	doing	the
following:

(select	artists)

This	will	return	all	the	columns	of	all	the	artists	in	our	artists	table.

Alternatively,	we	can	restrict	which	fields	to	retrieve	using	the	fields	function:

(select	artists

		(fields	:artist_id	:name))

This	will	return	only	the	artist_id	and	name	columns	of	all	the	artists	in	the	table.

We	can	provide	a	where	clause	for	filtering	results	by	using	the	where	function,	which
accepts	a	map	of	key/value	pairs:

(select	artists

		(fields	:artist_id	:name)

		(where	{:name	"Brant"	:artist_id	10}))

The	preceding	code	will	select	all	the	artists	with	the	name	Brant	and	an	artist_id	that	is
10	(admittedly,	kind	of	a	useless	query).	If	we	wanted	to	select	all	the	artists	with	the	name
Brant	or	the	name	Smokey	Fouler,	we	could	provide	a	series	of	maps	tied	together	using
the	or	function:

(select	artists

								(fields	:artist_id	:name)

								(where	(or	{:name	"Brant"}

																			{:name	"Smokey	Fouler"})))

Conversely,	we	can	make	multiple	calls	to	where,	which	will	“and”	all	the	clauses
together:

(select	artists

								(fields	:artist_id	:name)

								(where	(or	{:name	"Brant"}

																			{:name	"Smokey	Fouler"}))

								(where	(not	(=	:updated_at	:created_at))))

On	our	recently-added	albums	page,	we	return	the	ten	most	recent	albums.	We	do	this	by
using	Korma’s	limit	and	order	functions:

(select	albums

								(order	:created_at	:DESC)

								(limit	10))

Additionally,	we	can	join	the	albums	table	back	to	the	artists	table	and	restrict	which
artists’	albums	are	returned	by	using	a	combination	of	Korma’s	join	and	where	functions:

(select	albums

		(join	artists)

		(where	{:artists.name	"Brant"}))

This	will	return	all	the	columns	with	only	Brant’s	albums.	Additionally,	we	can	return
some	artist	information	along	with	each	album	by	using	Korma’s	with	function:

(select	albums

		(with	artists)

		(where	{:artists.name	"Brant"}))

The	preceding	script	will	return	all	the	columns	for	the	artist	named	Brant,	and	all	of
Brant’s	albums.	This	is	equivalent	to	the	following	SQL:

SELECT	albums.*,	artists.*

FROM	albums

LEFT	JOIN	artists	ON	artists.artist_id=albums.artist_id

WHERE	artists.name	=	'Brant'

However,	this	can	pose	a	problem	because	both	the	artists	and	albums	tables	have
similarly	named	fields,	such	as	created_at,	updated_at,	and	name.	The	fields	function
not	only	allows	us	to	specify	which	fields	we	want	returned	from	the	database,	but	also
any	aliases	we	want	to	give	those	fields:

(select	albums

								(fields	:album_id	[:name	:album_name]

																[:created_at	:album_created_at]

																[:updated_at	:album_updated_at])

								(with	artists

														(fields	[:name	:artist_name]

																						[:created_at	:artist_created_at]

																						[:updated_at	:artist_updated_at]))

								(where	{:artists.name	"Brant"}))

This	will	alias	the	albums.name	column	to	albums.album_name,	albums.created_at	to
albums.album_created_at,	and	so	on.

Constructing	INSERT	queries
Inserting	records	using	Korma	is	relatively	trivial.	Just	call	Korma’s	insert	function	and
pass	it	the	entity	and	a	map	of	values:

(insert	artists	(values	{:name	"Maude	Squad"}))

Be	careful	however,	as	Korma	will	generate	an	insert	statement	to	include	every	key	in	the
map.	For	example,	the	following	insert	query	fails	because	the	:fake_column	key	doesn’t
map	to	any	column	on	the	artists	table:

(insert	artists	(values	{:name	"Maude	Squad"

																									:fake_column	"Will	destroy	you."}))

Constructing	UPDATE	queries
You	can	update	a	record	using	Korma’s	update	and	set-fields	functions:

(update	artists

		(set-fields	{:name	"Carlos	Hungus"})

		(where	{:name	"Hungus"}))

The	preceding	script	will	update	all	the	artist	names	to	Carlos	Hungus	where	the	artist
name	is	currently	Hungus.	Much	like	insert	however,	Korma	will	blindly	try	to	update	any
column	name	that	you	give	it.

Constructing	DELETE	queries
You	can	delete	records	using	Korma’s	delete	function.	For	example,	we	could	blow	away
all	of	our	artists	by	executing	the	following:

(delete	artists)

The	preceding	script	is	something	you’re	unlikely	to	want	to	use.	Instead,	to	delete	records
for	a	particular	artist,	we	could	do	something	like	the	following:

(delete	artists

		(where	{:name	"Carlos	Hungus"}))

We	can	use	the	where	function,	as	shown	in	the	preceding	code,	to	restrict	which	records
get	deleted.

Using	raw	SQL
If	you	find	yourself	in	a	position	where	Korma	doesn’t	support	what	you	want	to	do,	or
where	using	Korma	produces	more	complexity	than	the	query	itself	(a	more	likely
situation),	you	can	use	Korma’s	exec-raw	function	to	execute	an	SQL	string.	For	example:

(exec-raw	["SELECT	art.name,	count(*)

											FROM	artists	art

											INNER	JOIN	albums	alb	on	art.artist_id	=	alb.artist_id

											GROUP	BY	art.name

											HAVING	count(*)	>	?"	[1]]	:results)

Using	transactions
You	can	wrap	any	number	of	Korma	actions	inside	a	korma.db/transaction	form	to
perform	a	transaction.	If	anything	fails	inside	the	transaction	block,	then	the	actions	will
automatically	be	rolled	back.	Otherwise,	if	everything	executes	successfully,	the
transaction	will	be	committed:

(transaction

		(delete	artists	(where	{:name	"Carlos	Hungus"}))

		(update	artists	(set-fields	{:name	"Marjory	Marjoram"})

				(where	{:artist_id	100})))

The	preceding	transaction	will	execute	successfully.	Thus,	any	changes	performed	inside
the	transaction	will	be	committed.	However,	consider	the	following	code:

(transaction

		(delete	artists	(where	{:name	"Carlos	Hungus"}))

		(update	artists	(set-fields	{:name	"Marjory	Marjoram"})

				(where	{:fake_id	100})))

Here,	the	update	action	will	fail	because	:fake_id	is	not	a	valid	column	on	the	artists
table.	As	such,	the	transaction	will	roll	back.

Tip
For	a	complete	list	of	Korma	examples,	take	a	look	at	the	detailed	examples	at
http://sqlkorma.com/docs.

http://sqlkorma.com/docs

Port	the	models	from	YeSQL	to	Korma
The	following	pages	are	what	our	hipstr.models.connection,	hipstr.models.artist-
model,	and	hipstr.models.album-model	will	be	when	ported	from	YeSQL	to	Korma.
Note	that	the	interfaces	for	each	ported	function	are	kept	the	same	as	YeSQL’s	generated
functions,	meaning	that	the	ported	functions	will	accept	maps	instead	of	explicit	literals.	If
we	were	to	design	the	model	layer	with	Korma	first	and	foremost	in	mind,	our	interfaces
would	have	been	simpler.	The	goal	of	this	port	is	to	illustrate	how	we	can	write	the
YeSQL-generated	functions	using	Korma,	and	still	have	it	work	without	having	to	modify
the	rest	of	the	application.

Porting	hisptr.models.connection
Porting	the	connection	is	done	by	simply	adding	a	call	to	the	korma.db/defdb	macro:

(ns	hipstr.models.connection

		(:require	[environ.core	:refer	[env]])

		(:use	korma.db))

(def	db-spec	{:classname			(env	:db-classname)

														:subprotocol	(env	:db-subprotocol)

														:subname					(env	:db-subname)

														:user								(env	:db-user)

														:password				(env	:db-password)})

;	Declares	the	hipstr-db	Korma	database	connection,

;	which	leverages	our	already	existing	db-spec

(defdb	hipstr-db	db-spec)

Porting	hisptr.models.user-model
To	port	hipstr.models.user-model	to	use	Korma	instead	of	YeSQL,	we	will	re-write	the
YeSQL-generated	functions.	We’ll	keep	the	function	signatures	the	same	as	the	YeSQL-
generated	functions.

First,	include	a	reference	to	korma.core	and	comment	out	the	reference	to	yesql.core
(but	we’ll	leave	it	in,	in	case	you	want	to	more	easily	switch	back	and	forth):

(ns	hipstr.models.user-model

		(:require	;[yesql.core	:refer	[defqueries]]

												[crypto.password.bcrypt	:as	password]

												[hipstr.models.connection	:refer	[db-spec]]

												[noir.session	:as	session])

		(:use	[korma.core]))

Since	we’re	not	using	YeSQL,	we	can	also	comment	out	the	call	to	defqueries:

;(defqueries	"hipstr/models/users.sql"	{:connection	db-spec})

Finally,	we	declare	our	users	table	as	a	Korma	entity,	and	then	port	the	two	YeSQL-
generated	functions,	get-user-by-name	and	insert-user<!:

;	declare	our	users	table,	which	in	our	hipstr	application

;	is	pretty	straight	forward.

;	For	Korma,	however,	we	have	to	define	the	primary	key	because

;	the	name	of	the	primary	key	is	neither	'id'	or	'users_id'

;	([tablename]_id)

(defentity	users

		(pk	:user_id))

;—name:	get-user-by-username

;—Fetches	a	user	from	the	DB	based	on	username.

;	SELECT	*

;	FROM	users

;	WHERE	username=:username

	(defn	get-user-by-username

		"Fetches	a	user	from	the	DB	based	on	username."

		[username]

		(select	users	(where	username)))

;—name:	insert-user<!

;—Inserts	a	new	user	into	the	Users	table

;—Expects	:username,	:email,	and	:password

;	INSERT	INTO	users	(username,	email,	pass)

;	VALUES	(:username,	:email,	:password)

(defn	insert-user<!

		"Inserts	a	new	user	into	the	Users	table.	Expects	:username,	:email,	and	

:password"

		[user]

		(insert	users	(values	user)))

By	keeping	the	interfaces	of	the	ported	functions	the	same	as	the	YeSQL-generated	ones,
we	don’t	have	to	adjust	any	of	the	calling	code	in	the	application.	At	this	point,	you	can
restart	your	dev	server	and	use	the	signup	form	to	create	a	new	user.

Porting	hipstr.models.album-model
Porting	the	albums-model	is	a	little	bit	more	involved,	but	the	principles	are	the	same.	We
want	to	remove	the	dependencies	on	YeSQL,	and	then	write	new	functions	using	Korma
that	match	the	interfaces	of	the	generated	YeSQL	equivalents:

(ns	hipstr.models.album-model

		(:require	;[yesql.core	:refer	[defqueries]]

												[clojure.java.jdbc	:as	jdbc]

												[taoensso.timbre	:as	timbre]

												[hipstr.models.connection	:refer	[hipstr-db]])

		(:use	[korma.core]

								[korma.db]))

;(defqueries	"hipstr/models/albums.sql"	{:connection	db-spec})

;(defqueries	"hipstr/models/artists.sql"	{:connection	db-spec})

(declare	artists	albums)

;	define	our	artists	entity.

;	by	default	korma	assumes	the	entity	and	table	name	map

(defentity	artists

		;	We	must	define	the	primary	key	because	it	does	not

		;	adhere	to	the	korma	defaults.

		(pk	:artist_id)

		;	define	the	relationship	between	artists	and	albums

		(has-many	albums))

;	define	the	albums	entity

(defentity	albums

		;	again,	we	have	to	map	the	primary	key	to	our	korma	definition.

		(pk	:album_id)

		;	We	can	define	the	foreign	key	relationship	of	the	albums	back

		;	to	the	artists	table

		(belongs-to	artists	{:fk	:artist_id}))

;—name:	get-recently-added

;—Gets	the	10	most	recently	added	albums	in	the	db.

;	SELECT	art.name	as	artist,	alb.album_id,	alb.name	as	album_name,

;								alb.release_date,	alb.create_date

;	FROM	artists	art

;	INNER	JOIN	albums	alb	ON	art.artist_id	=	alb.artist_id

;	ORDER	BY	alb.create_date	DESC

;	LIMIT	10

(defn	get-recently-added

		"Gets	the	10	most	recently	added	albums	in	the	db."

		[]

		(select	albums

				(fields	:album_id

					[:name	:album_name]	:release_date	:created_at)

				(with	artists	(fields	[:name	:artist]))

				(order	:created_at	:DESC)

				(limit	10)))

;—name:	get-by-artist

;—Gets	the	discography	for	a	given	artist.

;	SELECT	alb.album_id,	alb.name,	alb.release_date

;	FROM	albums	alb

;	INNER	JOIN	artists	art	on	alb.artist_id	=	art.artist_id

;	WHERE

;			art.name	=	:artist

;	ORDER	BY	alb.release_date	DESC

(defn	get-by-artist

		"Gets	the	discography	for	a	given	artist."

		;	for	backwards	compatibility	it	is	expected	that	the

		;	artist	param	is	a	map,	{:artist	[value]}

		[artist]

		(select	albums

				(join	artists)

				;	for	backwards	compatibility	we	need	to	rename	the	:albums.name

;	field	to	:album_name

				(fields	:albums.album_id	[:albums.name	:album_name]

											:albums.release_date)

				(where	{:artists.name	(:artist	artist)})

				(order	:release_date	:DESC)))

;--	name:	insert-album<!

;--	Adds	the	album	for	the	given	artist	to	the	database

;INSERT	INTO	albums	(artist_id,	name,	release_date)

;VALUES	(:artist_id,	:album_name,	date(:release_date))

(defn	insert-album<!

		"Adds	the	album	for	the	given	artist	to	the	database."

		;	for	backwards	compatibility	it	is	expected	that	the

		;	album	param	is	a	map,

		;	{:artist_id	:release_date	:album_name	:artist_name}

		;	As	such	we'll	have	to	rename	the	:album_name	key	and	remove

		;	the	:artist_name.This	is	because	korma	will	attempt	to	use	all

		;	keys	in	the	map	when	inserting,	and	:artist_name	will	destroy

		;	us	with	rabid	vitriol.

		[album]

		(let	[album	(->	(clojure.set/rename-keys	album	{:album_name	:name})

																		(dissoc	:artist_name)

																		(assoc	:release_date

																		(sqlfn	date	(:release_date	album))))]

				(insert	albums	(values	album))))

;—name:	get-album-by-name

;—Fetches	the	specific	album	from	the	database	for	a	particular

;—artist.

;	SELECT	a.*

;	FROM	albums	a

;	WHERE

;			artist_id	=	:artist_id	and

;			name	=	:album_name

(defn	get-album-by-name

		"Fetches	the	specific	album	from	the	database	for	a	particular

			artist."

		;	for	backwards	compatibility	it	is	expected	that	the

		;	album	param	is	{:artist_id	:artist_name}

		[album]

		(first

			(select	albums

										(where	{:artist_id	(:artist_id	album)

																		:name	(:artist_name	album)}))))

;—name:	insert-artist<!

;—Inserts	a	new	artist	into	the	database.

;	INSERT	INTO	artists(name)

;	VALUES	(:artist_name)

(defn	insert-artist<!

		"Inserts	a	new	artist	into	the	database."

		;	for	backwards	compatibility	it	is	expected	that	the

		;	artist	param	is	{:artist_name}

		[artist]

		(let	[artist	(clojure.set/rename-keys

																artist	{:artist_name	:name})]

				(insert	artists	(values	artist))))

;—name:	get-artist-by-name

;—Retrieves	an	artist	from	the	database	by	name.

;	SELECT	*

;	FROM	artists

;	WHERE	name=:artist_name

(defn	get-artist-by-name

		"Retrieves	an	artist	from	the	database	by	name."

		;for	backwards	compatibility	it	is	expected	that	the

		;	artist_name	param	is	{:artist_name}

		[artist_name]

		(first

			(select	artists

											(where	{:name	(:artist_name	artist_name)}))))

Finally,	we	have	to	port	the	add-album!	function,	because	the	way	Korma	wraps
transactions	is	different	than	YeSQL’s.	In	YeSQL,	we	have	to	get	a	symbol	to	a	transaction
and	pass	that	to	all	our	methods,	whereas,	in	Korma,	we	merely	have	to	wrap	everything
in	a	transaction	form:

(defn	add-album!

		"Adds	a	new	album	to	the	database."

		[album]

		(transaction

			(let	[artist-info	{:artist_name	(:artist_name	album)}

									;	fetch	or	insert	the	artist	record

									artist	(or	(get-artist-by-name	artist-info)

																				(insert-artist<!	artist-info))

									album-info	(assoc	album	:artist_id	(:artist_id	artist))]

					(or	(get-album-by-name	album-info)

									(insert-album<!	album-info)))))

If	you	restart	your	dev	server,	you’ll	find	that	the	recently-added	albums,	as	well	as	the
artist	and	albums	pages,	behave	as	they	did	before.

Index
A

ACID	properties
Atomic	/	The	ACID	properties
Isolated	/	The	ACID	properties
Durable	/	The	ACID	properties

adapters
about	/	Adapters

add	artist/album	endpoint,	transaction
creating	/	Creating	the	add	artist/album	endpoint
Compojure	route,	creating	/	Creating	the	Compojure	route
route	helper	function,	creating	/	Creating	the	route	helper	function

add	artist/album	form,	transaction
creating	/	Creating	the	add	artist/album	form,	Creating	the	form
abstracting	/	Abstracting	the	form
abstracting,	with	tag	used	/	Abstracting	the	form
abstracting,	include	tag	used	/	Abstracting	the	form
validating	/	Validating	the	add	artist/album	form

Album	model,	transaction
expanding	/	Expanding	the	album	model
transaction	context,	wrapping	/	Wrapping	the	whole	thing	in	a	transaction
using,	outside	scope	/	Using	a	transaction	outside	of	this	scope

appender
about	/	What	is	an	appender?
configuring	/	Configuring	a	Timbre	appender
URL	/	Configuring	a	Timbre	appender,	Timbre	log	levels
adding	/	Adding	an	appender
rolling	appender,	adding	/	Adding	the	rolling	appender

appender	configuration	keys
about	/	Appender	configuration	keys
*min-level	/	Appender	map
*enabled?	/	Appender	map
*async?	/	Appender	map
*rate-limit	/	Appender	map
*fn	/	Appender	map
URL	/	Appender	map

appender	map
about	/	Appender	map

assoc-in	function
URL	/	Configuring	a	Timbre	appender

B
built-in	filters,	Selmer

URL	/	Filter	parameters

C
Carmine

URL	/	Setting	up	sessions
Cascade	Style	Sheet	(CSS)

about	/	Reporting	errors	to	the	user
catalog

creating	/	Creating	the	catalog
artists	table,	creating	/	Creating	the	artists	table
artists	table,	seeding	/	Seeding	the	artists	table
albums	table,	creating	/	Creating	the	albums	table

clj-time	library
about	/	Validating	the	add	artist/album	form
URL	/	Validating	the	add	artist/album	form

Clojure
used,	for	inserting	user	to	database	/	Inserting	a	user	using	Clojure
transaction,	creating	/	Transactions	in	Clojure

clojure.test	namespace
about	/	Anatomy	of	a	test
deftest	/	Anatomy	of	a	test
is	/	Anatomy	of	a	test
testing	/	Anatomy	of	a	test
URL	/	Anatomy	of	a	test

Compojure
about	/	What	is	Compojure?
URL	/	What	is	Compojure?
route,	creating	/	Creating	a	Compojure	route

cookies
about	/	Sessions,	Cookies
value,	getting	/	Getting	a	cookie’s	value
value,	setting	/	Setting	a	cookie’s	value
setting,	as	map	/	Setting	the	cookie	as	a	map
securing	/	Securing	a	cookie
securing,	with	put-signed!	function	/	Securing	a	cookie
securing,	with	get-signed	function	/	Securing	a	cookie
deleting	/	Deleting	a	cookie

cookies	as	map,	values
about	/	Setting	the	cookie	as	a	map
-path	(string)	/	Setting	the	cookie	as	a	map
-domain	(string)	/	Setting	the	cookie	as	a	map
-port	(int)	/	Setting	the	cookie	as	a	map
-max-age	(int)	/	Setting	the	cookie	as	a	map
-expires	(string)	/	Setting	the	cookie	as	a	map
-secure	(Boolean)	/	Setting	the	cookie	as	a	map

-http-only	(Boolean)	/	Setting	the	cookie	as	a	map
cronj	library

about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

cycle	tag,	Selmer
about	/	Reporting	errors	to	the	user

D
database

data,	adding	/	Adding	data	to	the	database
data	adding,	YeSQL	used	/	What	is	YeSQL?
user	adding,	YeSQL	used	/	Adding	a	user	to	the	database
user	inserting,	SQL	used	/	Inserting	a	user	using	SQL
user	inserting,	Clojure	used	/	Inserting	a	user	using	Clojure
route,	adjusting	/	Adjusting	the	route
password,	encrypting	/	Encrypting	the	password

database	connection
adjusting	/	Adjusting	the	database	connection
profiles.clj	file,	creating	/	Creating	the	profiles.clj	file
hipstr.models.connection	namespace,	modifying	/	Modifying	the
hipstr.models.connection	namespace

database	schema
creating	/	Creating	the	database	schema
maintaining,	with	Migratus	/	Maintaining	the	database	schema
user	table,	creating	/	Creating	the	user	table
user	table,	dropping	/	Dropping	the	user	table
down	scripts,	executing	/	Running	the	down	scripts
database	migrating,	Leiningen	used	/	Migrating	the	database
migration	scripts,	running	from	Leiningen	/	Running	all	migration	scripts	from
Leiningen
migrations,	running	programatically	/	Running	migrations	programatically
migrations,	adding	to	hipstr	initialization	/	Adding	migrations	to	the	hipstr
initialization

database	transactions
about	/	Introduction	to	Database	Transactions
reference	link	/	Introduction	to	Database	Transactions
ACID	properties	/	The	ACID	properties
importance	/	Importance	of	database	transactions

defroutes
using	/	Using	defroutes

dependencies,	web	application
about	/	Dependencies	of	the	app
lib-noir	library	/	Dependencies	of	the	app
ring-server	library	/	Dependencies	of	the	app
selmer	library	/	Dependencies	of	the	app
timbre	library	/	Dependencies	of	the	app
tower	library	/	Dependencies	of	the	app
markdown-clj	library	/	Dependencies	of	the	app
environ	library	/	Dependencies	of	the	app
cronj	library	/	Dependencies	of	the	app

noir-exception	library	/	Dependencies	of	the	app
prone	library	/	Dependencies	of	the	app

Django	framework
about	/	Dependencies	of	the	app

E
entity,	Korma

about	/	Korma	entities
environ	library

about	/	Dependencies	of	the	app,	Environ
using	/	Using	environ
variable	translations	/	Variable	translations

environment	configurations
setting	/	Setting	and	resolving	environment	configurations
resolving	/	Resolving	environment	configuration

F
12	Factor-Application	Pattern

reference	link	/	Environ
file	structure,	Luminus

about	/	Luminus	file	structure
util.clj	/	util.clj
session_manager.clj	/	session_manager.clj
layout.clj	/	layout.clj
middleware.clj	/	middleware.clj
routes/home.clj	/	routes/home.clj
handler.clj	/	handler.clj
repl.clj	/	repl.clj

filters
about	/	Filters
with	parameters	/	Filter	parameters

format-of	rule
using	/	Validating	the	format

form	POST
handling	/	Handling	the	form	POST
validating	/	Validating	the	form	POST
validating,	with	noir.validation	namespace	/	The	noir.validation	namespace
validating,	with	Validateur	library	/	The	Validateur	library
errors,	reporting	to	users	/	Reporting	errors	to	the	user

G
get-handler	function

about	/	Get-handler
GlassFish

URL	/	Understanding	Ring	in	Clojure
Glassfish

about	/	Deploying	the	hipstr	application

H
handler.clj

about	/	handler.clj
handlers

about	/	Handlers
hipstr.handler

about	/	hipstr.handler
initialization	hook,	defining	/	Initialization	hooks
shutdown	hook,	defining	/	Shutdown	hooks
app	routes	/	App	routes
application	handler	/	The	application	handler

hipstr.repl
about	/	hipstr.repl
start-server	function	/	Start-server
stop-server	function	/	Stop-server
get-handler	function	/	Get-handler

hipstr.test.validators.user-validator-test	namespace
URL	/	Refactoring	tests

hipstr.validators.user-validator	namespace
URL	/	Refactoring	tests

hipstr	application
extending	/	Extending	the	application:	brief	requirements
login	form,	creating	/	Creating	the	login	form
recently-added	route,	restricting	/	Restricting	the	recently-added	route
user,	authenticating	/	Authenticating	the	user
“Remember	Me”	cookie,	writing	/	Writing	the	“Remember	Me”	cookie
logout	route,	creating	/	Creating	the	logout	route
deploying	/	Deploying	the	hipstr	application
deploying,	with	uberjar	/	When	to	use	an	uberjar
deploying,	with	uberwar	/	When	to	use	an	uberwar
deploying,	as	standalone	/	Deploying	as	a	standalone
deploying,	behind	Nginx	/	Running	the	application	behind	Nginx
load	balancing,	behind	Nginx	/	Load	balancing	behind	Nginx

home	page
creating	/	Creating	your	first	page
rendering	/	Rendering	a	page
editing	/	Editing	the	home	page

http-kit
URL	/	Understanding	Ring	in	Clojure

I
InstaREPL

about	/	The	necessity	of	testing
integration	test

writing	/	Writing	a	high-level	integration	test
ring.mock.request	function,	using	/	Using	ring.mock.request

J
Jetty

URL	/	Understanding	Ring	in	Clojure
Joda-Time

URL	/	Validating	the	add	artist/album	form

K
Korma

obtaining	/	Getting	Korma,	The	Quick	Korma	Crash	Course
URL	/	Getting	Korma
reference	link	/	The	Quick	Korma	Crash	Course
database	specification,	defining	/	Define	the	database	specification
entity	/	Korma	entities
primary	key,	defining	/	Defining	the	primary	key
relationships,	defining	between	entities	/	Defining	relationships	between	entities
SELECT	queries,	constructing	/	Constructing	SELECT	queries
INSERT	queries,	constructing	/	Constructing	INSERT	queries
UPDATE	queries,	constructing	/	Constructing	UPDATE	queries
DELETE	queries,	constructing	/	Constructing	DELETE	queries
exec-raw	function,	using	/	Using	raw	SQL
transactions,	using	/	Using	transactions

Korma	examples
reference	link	/	Using	transactions

L
layout.clj

about	/	layout.clj
lein-ring	plugin

about	/	Deploying	the	hipstr	application
uberjar	/	Deploying	the	hipstr	application
uberwar	/	Deploying	the	hipstr	application
reference	link	/	Deploying	the	hipstr	application

Leiningen
about	/	Leiningen
URL	/	Leiningen
URL,	for	installation	/	Leiningen
installing	/	Leiningen
using	/	Using	Leiningen
web	application,	generating	/	Generating	the	application
help,	obtaining	from	Luminus	community	/	Getting	help

Leiningen,	commands
lein	migratus	migrate	/	Running	all	migration	scripts	from	Leiningen
lein	migratus	up	[IDs]	/	Running	all	migration	scripts	from	Leiningen
lein	migratus	down	[IDs]	/	Running	all	migration	scripts	from	Leiningen

lein	quickie
URL	/	Running	tests	automatically

length-of	rule
about	/	Validating	length	of	values

lib-noir	library
about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

LightTable
about	/	repl.clj
URL	/	repl.clj

log	function
using	/	Logging	with	Timbre

log	level,	Timbre
about	/	Timbre	log	levels

Luminus
URL,	for	documentation	/	Getting	help
file	structure	/	Luminus	file	structure

Luminus	community
URL	/	Getting	help

M
Markdown

URL	/	Rendering	a	page
markdown-clj	library

about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

Maven
URL	/	Leiningen

middleware
about	/	Middleware
URL	/	Middleware

middleware.clj
about	/	middleware.clj

Migratus
about	/	Maintaining	the	database	schema
URL,	for	documentation	/	Migratus
getting	/	Getting	Migratus
configuring	/	Configuring	Migratus
filenames	/	Creating	the	user	table

Migratus,	functions
migratus.core/migrate	/	Running	migrations	programatically
migratus.core/up	[IDs]	/	Running	migrations	programatically
migratus.core/down	/	Running	migrations	programatically

models
porting	/	Port	the	models	from	YeSQL	to	Korma
hisptr.models.connection,	porting	/	Porting	hisptr.models.connection
hisptr.models.user-model,	porting	/	Porting	hisptr.models.user-model
hipstr.models.album-model,	porting	/	Porting	hipstr.models.album-model

N
Nginx

about	/	When	to	use	an	uberwar
hipstr	application,	deploying	/	Running	the	application	behind	Nginx
URL,	for	downloading	/	Running	the	application	behind	Nginx
used,	for	load	balancing	hipstr	application	/	Load	balancing	behind	Nginx

noir-exception	library
about	/	Dependencies	of	the	app

noir.session	functionality
URL	/	Interacting	with	the	session

noir.validation	namespace
used,	for	validating	form	POST	/	The	noir.validation	namespace

P
PostgreSQL

URL,	for	downloading	/	Creating	the	database	schema
presence-of	rule

about	/	Validating	the	format
prone	library

about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

R
Rack

about	/	Dependencies	of	the	app
Rake

URL	/	Leiningen
recently	added	Albums,	fetching	from	database

SQL	query,	writing	/	Writing	the	SQL	query
Albums	model,	creating	/	Creating	the	albums	model
connection,	refactoring	/	Refactoring	the	connection

recently	added	route
creating	/	Creating	the	recently	added	route

Redis
URL	/	Setting	up	sessions

repl.clj
about	/	repl.clj

request	maps
about	/	Request	maps
*server-port	/	Request	maps
*server-name	/	Request	maps
*remote-addr	/	Request	maps
*uri	/	Request	maps
*query-string	/	Request	maps
*scheme	/	Request	maps
*request-method	/	Request	maps
*headers	/	Request	maps
*body	/	Request	maps

resources	directory
about	/	Luminus	file	structure

response	maps
about	/	Response	maps
*status	/	Response	maps
*headers	/	Response	maps
*body	/	Response	maps

restricted	routes
about	/	Restricted	routes
route	access,	restricting	/	Restricting	route	access
accessing	/	Accessing	a	restricted	route
access	rule,	defining	as	functions	/	Access	rule	as	a	function
access	rule,	defining	as	map	/	Access	rule	as	a	map

RFC2616
URL	/	Request	maps

Ring
about	/	Understanding	Ring	in	Clojure

request	maps	/	Request	maps
response	maps	/	Response	maps
handlers	/	Handlers
middleware	/	Middleware
adapters	/	Adapters

ring-defaults	library
about	/	Sessions
URL	/	Sessions

ring-server	library
about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

ring-session
about	/	Sessions

ring.mock.request	function
used,	for	integration	test	/	Using	ring.mock.request

Ring	Server
about	/	What	is	the	Ring	Server?
hipstr.handler	/	hipstr.handler
hipstr.repl	/	hipstr.repl
URL	/	Start-server,	Configuring	and	running	the	Ring	Server
configuring	/	Configuring	and	running	the	Ring	Server
executing	/	Configuring	and	running	the	Ring	Server

rolling	appender
adding	/	Adding	the	rolling	appender

route,	Compojure
creating	/	Creating	a	Compojure	route
defroutes,	using	/	Using	defroutes
anatomy	/	Anatomy	of	a	route
HTTP	method,	defining	/	Defining	the	method
URL,	defining	/	Defining	the	URL
parameter,	destructuring	/	Parameter	destructuring
request,	destructuring	/	Destructuring	the	request
unbound	parameters,	destructuring	/	Destructuring	unbound	parameters
response,	constructing	/	Constructing	the	response
complex	responses,	generating	/	Generating	complex	responses

route,	hipstr	application
restricting	/	Restricting	the	route
user	authentication,	checking	/	Checking	if	the	user	is	authenticated
access	rule,	defining	/	Defining	the	access	rule

routes/home.clj
about	/	routes/home.clj

S
Selmer

about	/	What	is	Selmer?
URL	/	What	is	Selmer?
home	page,	creating	/	Creating	your	first	page
variables	/	Variables
filters	/	Filters
tags	/	Tags
template	inheritance	/	Template	inheritance
sign	up	form,	serving	/	Serving	the	signup	form
sign	up	form,	creating	/	Creating	the	signup	page

selmer	library
about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

Selmer	templates
creating,	for	rendering	recently	added	albums	/	Rendering	the	results

Servlet	API
about	/	Dependencies	of	the	app

sessions
about	/	Sessions
setting	up	/	Setting	up	sessions
interacting	with	/	Interacting	with	the	session

session_manager.clj
about	/	session_manager.clj

shared	appender	configuration
about	/	Shared	appender	configuration

sign	up	form
serving	/	Serving	the	signup	form
creating	/	Creating	the	signup	page

SQL
used,	for	inserting	user	to	database	/	Inserting	a	user	using	SQL

src	directory
about	/	Luminus	file	structure

start-server	function
about	/	Start-server

stop-server	function
about	/	Stop-server

T
tags

about	/	Tags
URL	/	Tags

template	inheritance
about	/	Template	inheritance

test
anatomy	/	Anatomy	of	a	test
writing	/	Writing	and	running	our	first	test
running	/	Running	tests
running,	automatically	/	Running	tests	automatically
refactoring	/	Refactoring	tests

test-driven	development	(TDD)
about	/	The	necessity	of	testing
reference	link	/	The	necessity	of	testing

test	directory
about	/	Luminus	file	structure

testing
necessity	/	The	necessity	of	testing

Timbre
about	/	What	is	Timbre?
appender	/	What	is	an	appender?
appender,	configuring	/	Configuring	a	Timbre	appender
log	level	/	Timbre	log	levels
appender	configuration	keys	/	Appender	configuration	keys
appender	map	/	Appender	map
shared	appender	configuration	/	Shared	appender	configuration
log	function,	using	/	Logging	with	Timbre

timbre	library
about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

Tomcat
URL	/	Understanding	Ring	in	Clojure
about	/	Deploying	the	hipstr	application

tower	library
about	/	Dependencies	of	the	app
URL	/	Dependencies	of	the	app

transaction
implementing	/	Implementing	a	transaction
creating,	in	Clojure	/	Transactions	in	Clojure
creating,	in	YeSQL	/	Transactions	in	YeSQL,	Extending	the	application
requirements	in	brief
add	artist/album	form,	creating	/	Creating	the	add	artist/album	form

add	artist/album	endpoint,	creating	/	Creating	the	add	artist/album	endpoint
Album	model,	expanding	/	Expanding	the	album	model

U
uberjar

about	/	Deploying	the	hipstr	application
used,	for	deploying	hipstr	application	/	When	to	use	an	uberjar

uberwar
about	/	Deploying	the	hipstr	application
used,	for	deploying	hipstr	application	/	When	to	use	an	uberwar

user	authentication,	hipstr	application
about	/	Authenticating	the	user
credentials,	validating	/	Validating	the	credentials
form	POST,	handling	/	Handling	the	form	POST

util.clj
about	/	util.clj

V
validate-with-predicate	rule

about	/	Validation	predicates
Validateur	library

used,	for	validating	form	POST	/	The	Validateur	library
URL	/	The	Validateur	library
dependency,	adding	/	Adding	the	Validateur	dependency
required	fields,	validating	/	Validating	required	fields
format	of	values,	validating	/	Validating	the	format
URL,	for	functions	/	Validating	the	format
length	of	values,	validating	/	Validating	length	of	values
validation	predicates	/	Validation	predicates
reusable	validators,	creating	/	Making	reusable	validators

variables
about	/	Variables

W
web	application

generating	/	Generating	the	application
dependencies	/	Dependencies	of	the	app

WSGI
about	/	Dependencies	of	the	app

Y
YeSQL

about	/	What	is	YeSQL?
getting	/	Getting	YeSQL
used,	for	adding	user	to	database	/	Adding	a	user	to	the	database
transaction,	creating	in	/	Transactions	in	YeSQL,	Extending	the	application
requirements	in	brief

YeSQL	0.5.0-beta2
URL	/	What	is	YeSQL?

	Clojure Web Development Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Luminus
	Leiningen
	Using Leiningen
	Generating the application
	Getting help
	Dependencies of the app
	Luminus file structure
	util.clj
	session_manager.clj
	layout.clj
	middleware.clj
	routes/home.clj
	handler.clj
	repl.clj
	Summary
	2. Ring and the Ring Server
	Understanding Ring in Clojure
	Request maps
	Response maps
	Handlers
	Middleware
	Adapters
	What is the Ring Server?
	hipstr.handler
	Initialization hooks
	Shutdown hooks
	App routes
	The application handler
	hipstr.repl
	Start-server
	Stop-server
	Get-handler
	Configuring and running the Ring Server
	Summary
	3. Logging
	What is Timbre?
	What is an appender?
	Configuring a Timbre appender
	Timbre log levels
	Appender configuration keys
	Appender map
	Shared appender configuration
	Logging with Timbre
	Adding an appender
	Adding the rolling appender
	Summary
	4. URL Routing and Template Rendering
	What is Compojure?
	Creating a Compojure route
	Using defroutes
	Anatomy of a route
	Defining the method
	Defining the URL
	Parameter destructuring
	Destructuring the request
	Destructuring unbound parameters
	Constructing the response
	Generating complex responses
	What is Selmer?
	Creating your first page
	Rendering a page
	Variables
	Filters
	Filter parameters
	Tags
	Template inheritance
	Editing the home page
	Serving the signup form
	Creating the signup page
	Summary
	5. Handling Form Input
	Handling the form POST
	Validating the form POST
	The noir.validation namespace
	The Validateur library
	Adding the Validateur dependency
	Creating the user validation namespace
	Validating required fields
	Validating the format
	Validating length of values
	Validation predicates
	Making reusable validators
	Reporting errors to the user
	Summary
	6. Testing in Clojure
	The necessity of testing
	Anatomy of a test
	Writing and running our first test
	Running tests
	Running tests automatically
	Refactoring tests
	Writing a high-level integration test
	Using ring.mock.request
	Summary
	7. Getting Started with the Database
	Creating the database schema
	Maintaining the database schema
	Migratus
	Getting Migratus
	Configuring Migratus
	Creating the user table
	Dropping the user table
	Running the down scripts
	Migrating the database
	Running all migration scripts from Leiningen
	Running migrations programatically
	Adding migrations to the hipstr initialization
	Adding data to the database
	What is YeSQL?
	Getting YeSQL
	Adding a user to the database
	Inserting a user using SQL
	Inserting a user using Clojure
	Bringing it all together
	Adjusting the route
	Encrypting the password
	Summary
	8. Reading Data from the Database
	Creating the catalog
	Creating the artists table
	Seeding the artists table
	Creating the albums table
	Fetching albums from the database
	Writing the SQL query
	Creating the albums model
	Refactoring the connection
	Creating the recently added route
	Rendering the results
	An exercise!
	Summary
	9. Database Transactions
	Introduction to Database Transactions
	The ACID properties
	Importance of database transactions
	Implementing a transaction
	Transactions in Clojure
	Transactions in YeSQL
	Extending the application requirements in brief
	Creating the add artist/album form
	Creating the form
	Abstracting the form
	Creating the add artist/album endpoint
	Creating the Compojure route
	Creating the route helper function
	Validating the add artist/album form
	Expanding the album model
	Wrapping the whole thing in a transaction
	Using a transaction outside of this scope
	Summary
	10. Sessions and Cookies
	Sessions
	Setting up sessions
	Interacting with the session
	Restricted routes
	Restricting route access
	Accessing a restricted route
	Access rule as a function
	Access rule as a map
	Cookies
	Getting a cookie's value
	Setting a cookie's value
	Setting the cookie as a map
	Securing a cookie
	Deleting a cookie
	Extending the application: brief requirements
	Creating the login form
	Restricting the recently-added route
	Restricting the route
	Checking if the user is authenticated
	Defining the access rule
	Authenticating the user
	Validating the credentials
	Handling the form POST
	Writing the "Remember Me" cookie
	Creating the logout route
	Summary
	11. Environment Configuration and Deployment
	Environ
	Using environ
	Variable translations
	Setting and resolving environment configurations
	Resolving environment configuration
	Adjusting the database connection
	Creating the profiles.clj file
	Modifying the hipstr.models.connection namespace
	Deploying the hipstr application
	When to use an uberjar
	When to use an uberwar
	Deploying as a standalone
	Running the application behind Nginx
	Load balancing behind Nginx
	Summary
	A. Using Korma – a Clojure DSL for SQL
	Getting Korma
	The Quick Korma Crash Course
	Define the database specification
	Korma entities
	Defining the primary key
	Defining relationships between entities
	Constructing SELECT queries
	Constructing INSERT queries
	Constructing UPDATE queries
	Constructing DELETE queries
	Using raw SQL
	Using transactions
	Port the models from YeSQL to Korma
	Porting hisptr.models.connection
	Porting hisptr.models.user-model
	Porting hipstr.models.album-model
	Index

