
M A N N I N G

Monsur Hossain
FOREWORD BY Eric Bidelman

Creating and consuming cross-origin APIs

www.allitebooks.com

http://www.allitebooks.org

CORS in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CORS in Action
Creating and consuming

cross-origin APIs

MONSUR HOSSAIN

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Cynthia Kane, Monique Bos
20 Baldwin Road Technical development editor Deepak Vohra
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Konstantin Yakushev
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291821
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 For Haroun and Annisa
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 INTRODUCING CORS..1

1 ■ The Core of CORS 3

2 ■ Making CORS requests 12

PART 2 CORS ON THE SERVER ..37

3 ■ Handling CORS requests 39

4 ■ Handling preflight requests 63

5 ■ Cookies and response headers 94

6 ■ Best practices 112

PART 3 DEBUGGING CORS REQUESTS...................................149

7 ■ Debugging CORS requests 151
vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
author online xxv
about the author xxvi
about the cover illustration xxvii

PART 1 INTRODUCING CORS ..1

1 The Core of CORS 3
1.1 What is CORS? 4
1.2 CORS by example 5

Setting up the request 7 ■ Sending the request 7
Processing the response 7

1.3 Benefits of CORS 9
Wider audience 9 ■ Servers stay in charge 9
Flexibility 10 ■ Easy for developers 10
Reduced maintenance overhead 10

1.4 Summary 10
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 Making CORS requests 12
2.1 What is a cross-origin request? 13
2.2 Browser support for CORS 14
2.3 Using the XMLHttpRequest object 15

Sending an HTTP request 17 ■ Handling the HTTP
response 20 ■ Including cookies on cross-origin requests 27

2.4 XDomainRequest object in Internet Explorer 8 and 9 28
Differences between XDomainRequest and XMLHttpRequest 30

2.5 Canvas and cross-origin images 32
2.6 CORS requests from jQuery 34
2.7 Summary 36

PART 2 CORS ON THE SERVER37

3 Handling CORS requests 39
3.1 Setting up the sample code 40

Setting up the sample API 40 ■ Setting up the sample client 42
Running the sample app 44

3.2 Making a CORS request 45
3.3 Anatomy of a CORS request 47

The players in a CORS request 48 ■ Lifecycle of
a CORS request 49

3.4 Making a request with the Origin header 51
Viewing the Origin header 51 ■ What is an origin? 52
Setting the Origin header 55

3.5 Responding to a CORS request 55
The Access-Control-Allow-Origin header 55
Access-Control-Allow-Origin with a wildcard (*) value 56
Access-Control-Allow-Origin with an origin value 59
Rejecting CORS requests 59

3.6 Summary 62

4 Handling preflight requests 63
4.1 What is a preflight request? 64

Lifecycle of a preflight request 64 ■ Why does the preflight
request exist? 64

CONTENTS xi
4.2 Triggering a preflight request 67
When is a preflight request sent? 71

4.3 Identifying a preflight request 72
Origin header 72 ■ HTTP OPTIONS method 73
Access-Control-Request-Method header 74 ■ Putting it
all together 75

4.4 Responding to a preflight request 75
Supporting HTTP methods with Access-Control-Allow-Methods 76
Supporting request headers with Access-Control-Allow-Headers 78
Sending the actual request 83 ■ Rejecting a preflight request 83

4.5 Recapping preflights 85
4.6 Preflight result cache 90
4.7 Summary 93

5 Cookies and response headers 94
5.1 Supporting cookies in CORS requests 95

Setting cookies with a login page 95 ■ Reading the cookie on
the server 97 ■ Including cookies in CORS requests 99
How withCredentials and Access-Control-Allow-Credentials
interact 102 ■ Caveats to cookie support 104

5.2 Exposing response headers to the client 107
Reading a response header 108 ■ Adding response
header support 108

5.3 Summary 111

6 Best practices 112
6.1 Refactoring the sample code 113
6.2 Before you begin 114
6.3 Setting the Access-Control-Allow-Origin header 114

Allowing cross-origin access for everyone 115 ■ Limiting CORS
requests to a set of origins 116 ■ CORS and proxy servers 121
Null origin 123 ■ Origin header on same-origin requests 124

6.4 Security 126
Including cookies on requests 128 ■ Authorizing requests
using OAuth2 132

6.5 Handling preflight requests 135
Whitelisting request methods and headers 135

CONTENTSxii
6.6 Reducing preflight requests 139
Maximizing the preflight cache 139 ■ Changing your site to
reduce preflight requests 141

6.7 Exposing response headers 142
6.8 CORS and redirects 144
6.9 Summary 147

PART 3 DEBUGGING CORS REQUESTS149

7 Debugging CORS requests 151
7.1 Solving CORS errors 152
7.2 Using the browser’s developer tools 153

Using the console 155 ■ Using the Network tab 155

7.3 Monitoring network traffic 158
Using Wireshark 159 ■ Using Fiddler 161

7.4 Using curl to simulate CORS requests 165
Making CORS requests using curl 165 ■ Making preflight
requests using curl 167 ■ Why use curl? 168

7.5 Sending requests using test-cors.org 169
Sending requests to a remote server 169 ■ Sending requests to
the local server 171 ■ Understanding how the client works 173

7.6 Tips for mobile debugging 174
Log requests on the server 175 ■ Use test-cors.org 175
Use remote debugging tools 175 ■ Use a mobile simulator 175

7.7 Getting help 176
7.8 Summary 177

APPENDIXES ..178

A CORS reference 178
A.1 HTTP headers 178

Request headers 178 ■ Response headers 178

A.2 Other terms used in CORS 180
Simple method 180 ■ Simple header 180
Simple response header 181

CONTENTS xiii
B Configuring your environment 182
B.1 Setting up for the sample application 182

Node.js and NPM 182 ■ Express 186

B.2 Debugging tools 187
Wireshark 187 ■ Fiddler 189 ■ Curl 189

B.3 Resources 190

C What is CSRF? 191
C.1 What is CSRF? 191
C.2 Implementing CSRF protection for same-origin

requests 195

D Other cross-origin techniques 199
D.1 JSONP 199
D.2 Flash 201
D.3 postMessage and easyXDM 203
D.4 Server-side request 204

 index 206

foreword
No one can argue that AJAX was an important advancement in the evolution of the
web. In a few short years, a single technology (XMLHttpRequest) revolutionized how
users interacted with our content. Instead of loading entire pages, portions of the
page could refresh with minimal distraction to the user. In a time when broadband
wasn’t the norm, this change was amazingly powerful.

 The web grew up during that time. The birth of AJAX catalyzed the transformation
of “web pages” into “web apps,” but it also paved the way for modern client-side devel-
opment. Today’s JavaScript frameworks, which launched single page apps (SPAs), were
a result of this early paradigm shift. But as more code moved off the server and into
the client, it was clear XMLHttpRequest wasn’t keeping up. JavaScript’s single-origin
policy suffocated our creative potential. Web developers like you and I developed
clever techniques (JSONP and proxy servers) to wiggle around the restrictions, but
ultimately, all our cleverness was just a bandage. Gone were the days of the mashup.
Web services were becoming a ubiquitous “back end” for web applications. True
dependencies in our applications are critical to making web services tick. However, for
services to be accessible from JavaScript meant a better tool was needed for dealing
with remote resources. Enter cross-origin resource sharing, better known as CORs.

 CORs is a powerful addition in the evolution of XMLHttpRequest and the advance-
ment of web apps. By definition, CORs creates a standard way for JavaScript to securely
communicate with cross-domain resources. Practically speaking, it opens up a whole
new world for front-end developers. CORs brings back flexibility to JavaScript develop-
ers and allows them to access APIs and services from anywhere on web. For example,
xv

FOREWORDxvi
organizations can publish read/write JSON APIs or make their entire data sets accessi-
ble to the world of JavaScript.

 Monsur Hossain is fellow Googler and expert in cross-domain JavaScript communi-
cation. He and I first crossed paths working on Google’s XML-based Data APIs and
later as engineers on Google’s JavaScript client library. Over the years, Monsur lead
many facets of the client library, including its OAuth authentication flow and adding
CORS support for APIs like YouTube and Google Drive.

 CORs in Action is a well-rounded resource for developers wanting to learn the
entire spectrum of CORs. Monsur does an excellent job of covering the basics. He
highlights important sections with figures and provides excellent code snippets to
teach by example.

 I particularly like how often Monsur references the browser DevTools. It’s a critical
tool for gaining insight into the browser’s network stack. His use of real-world APIs like
Google Calendar and Flickr also give readers practical hands-on experience. I have no
doubt you’ll walk away learning a great deal from CORs in Action.

ERIC BIDELMAN

STAFF DEVELOPER RELATIONS ENGINEER

GOOGLE

preface
I first encountered cross-origin requests around 2006, when I joined Google and
became the owner of the GData JavaScript Client. The GData JavaScript Client was a
library that gave developers access to various Google APIs from JavaScript. The library
itself was written in JavaScript, and the code was pretty straightforward...except for this
little corner of code that made cross-origin requests to Google’s servers. This was
before CORS existed, so this little corner jumped though crazy hoops to load data
from Google’s APIs. From the developer’s perspective, the code simply worked. But
between the request and the response was a dark and convoluted maze of code that
was difficult to understand and debug.

 So you can imagine my happiness when I discovered CORS. Here was a clean, sim-
ple, and standard way for making cross-origin requests. Instead of code that’s difficult
to understand, I could have simple HTTP response headers. Instead of code that’s dif-
ficult to debug, I could have a single standard that worked across all browsers. I
quickly set out to add support for CORS to Google’s APIs.

 And that’s when the real fun started. While CORS uses HTTP headers to enable
cross-origin requests, there are many subtle ways in which these headers can interact.
It’s not as simple as adding an HTTP header to your server and calling it a day. And
because CORS was such a new feature, there weren’t a lot of resources to guide me.
Armed with the CORS spec, Wireshark, and a lot of patience, I spent the next few
weeks building a flexible and configurable CORS library that could work for various
types of requests. Based on that experience, I started contributing CORS knowledge to
xvii

PREFACExviii
the community by participating in Stack Overflow and writing an article about CORS
for HTML5Rocks.com.

 That was almost three years ago, and in the years since, CORS has grown from a
specification to a feature supported by most major APIs. You can find CORS support in
APIs from Amazon, Dropbox, Facebook, Flickr, Google, and GitHub (to name just a
few). This book distills those three years of experience into an easy and illuminating
resource for learning CORS. My hope is that this book helps make CORS a little less
daunting, and encourages you to add CORS support to your own systems. Open access
to information is a cornerstone of the web, and CORS is one of the ways to enable this.
The more developers become comfortable with CORS, the more it will become a part
of the everyday vocabulary of the web.

HTML5Rocks.com

acknowledgments
This book would have never come together were it not for the generous support from
many individuals. I’d like to take a moment to acknowledge them here.

 Thank you to all the Googlers who helped guide my own understanding of CORS,
including Eric Bidelman, Jad Boutros, Antonio Fuentes, Joe Gregorio, Jason Hall
(whose prompting led me to investigate CORS in the first place), Yaniv Inbar, Sven
Mawson, Eduardo Vela Nava, Jeffrey Posnick, Louis Ryan, Benjamin Carl Wiley Sittler,
and Mark Stahl. And special thanks to Eric for contributing the foreword to the book.

 Thank you to Anne van Kesteren for authoring the CORS spec that made this
book possible, to Evan Hahn and Will Stranathan for their insights on particularly
thorny areas of this book, and to Nicholas Zakas, whose blog post was my first intro-
duction to CORS. Michael Hausenblas, thank you for starting enable-cors.org, and
passing the torch to me.

 Thank you to everyone at Manning for their support and guidance during the
crafting of this book. To my editors Cynthia Kane and Monique Bos, thank you for the
readings and rereadings that elevated the chapters to the next level. To Konstantin
Yakushev, thank you for your in-depth technical review across multiple platforms.
Thank you also to Michael Stephens, Kevin Sullivan, Jodie Allen, Deepak Vohra,
Elizabeth Martin, and Chuck Larson.

 Thank you to the reviewers who took time to read the manuscript at various stages
of its development and who provided invaluable feedback: Christopher Haupt, Cristian
Antonioli, Jeroen Benckhuijsen, Joshua Frederic, Margriet Bruggeman, Nickie Buckner,
Nikander Bruggeman, Roger Keizer, Roger Le, and Tom Rutka.
xix

www.allitebooks.com

enable-cors.org
http://www.allitebooks.org

ACKNOWLEDGMENTSxx
 Thank you to Amma, Abba, Mom, Dad, Irene, Marvin, Seema Apa, and Jav Bhai
for your enthusiasm and support. And finally, thank you to my wife, Suraiya, whose
patience, advice, understanding, and love were necessary ingredients for writing
this book.

about this book
The idea behind CORS is simple: allow one site to make a request to another. It’s a
fairly trivial thing to do from most programming languages. So why does there need
to be a book about it?

 Hidden behind this simple idea are a lot of complex concepts. While other pro-
gramming languages have no restrictions on HTTP requests, things are different in a
browser, where the browser’s same-origin policy prevents requests from different sites.
CORS must balance the need to enable cross-origin requests while preserving the
same-origin policy for sites that don’t use CORS.

 Also, CORS has both a client- and a server-side component. For a cross-origin
request to succeed, the client and the server must be in agreement. This is different
from other web technologies. For example, CSS lives solely in the client-side code;
there is no server-side component.

 This book serves as an introduction to CORS and attempts to demystify the issues
that make CORS complicated.

What this book will give you
Here is an overview of the topics this book will cover:

■ CORS from the client—This book starts by looking at how to make CORS requests
from JavaScript code. It introduces the XMLHttpRequest object, which can be
used to make CORS requests. While the XMLHttpRequest object may be familiar
to JavaScript developers, the book focuses on what is unique about CORS. The
xxi

ABOUT THIS BOOKxxii
book also covers alternative mechanisms for making CORS requests, such as
images in canvas elements, media uploads, and using JQuery.

■ CORS from the server—The server uses HTTP headers to control CORS behavior.
HTTP headers can be used to indicate things like which HTTP methods are
allowed, whether cookies can be included on requests, and whether cross-origin
requests are allowed at all. This book takes an in-depth look at what these head-
ers are and how they’re used.

■ Debugging CORS requests—Because CORS has client and server components, it
can sometimes be difficult to debug CORS issues when things go wrong. This
book ends with a look at how to debug issues with CORS requests. It introduces
such tools as the browser’s debugging tools, Wireshark, and Fiddler.

What this book won’t give you
This book isn’t an introduction to JavaScript or the web. This doesn’t mean you need
to be a JavaScript expert. It assumes that you have a basic understanding of how the
web, HTTP requests, and JavaScript work.

 Although this book uses Node.js and Express for the sample code, you won’t find
fully programmed CORS solutions for your specific language or platform (unless, of
course, you happen to be using Node.js and Express). The core concepts of CORS are
the same regardless of what web platform or programming language you use. The
goal of this book is to give you the foundation for understanding CORS, so that you
can then go off and implement it on your own platform.

How to read this book
Because this book is an overview of CORS, you can approach it from different
perspectives:

■ API owners—Whether you maintain an existing API or are building a new API
from scratch, CORS is a great way to extend your API’s reach.

■ API consumers—Building dynamic sites on top of APIs can sometimes be diffi-
cult. CORS can make this easier by giving developers a pure JavaScript mecha-
nism for making API requests.

■ JavaScript developers—Even if you aren’t making CORS requests, JavaScript devel-
opers can benefit from understanding the basics of how XMLHttpRequest and
CORS work. Most modern web pages are built on top of asynchronous HTTP
requests (AJAX), and it’s useful to have CORS as another tool in your toolbox.

Roadmap
This book is divided into three parts. The first part looks at how to make CORS
requests from the browser. The second part looks at how to add CORS support to a
server. The third part looks at how to debug CORS requests.

ABOUT THIS BOOK xxiii
PART 1: INTRODUCTION TO CORS

Chapter 1 begins by giving an overview of what CORS requests are and how they
work. It then dives into CORS with an example that makes cross-origin requests to
the Flickr API.

 Chapter 2 introduces the XMLHttpRequest object, which can be used to make
cross-origin requests. Next, it covers the XDomainRequest object, which is used to
make CORS requests from Internet Explorer 8 and 9. Then it covers other places
where CORS shows up, such as canvas images. Finally, it looks at how to make CORS
requests using JQuery.

PART 2: IMPLEMENTING CORS

Chapter 3 switches gears to see how a server can be configured to support CORS. It
takes a closer look at the role that the client code, the browser, and the server play in
the lifecycle of a cross-origin request. It introduces the Access-Control-Allow-Origin
header, which is how a server indicates that it allows cross-origin requests.

 Chapter 4 introduces the concept of a preflight request, which is a small request that
asks the server for permission to make the actual CORS request. It covers how the pre-
flight request fits into the CORS lifecycle, and introduces a new set of HTTP headers
for controlling the response.

 Chapter 5 looks at how to include user credentials such as cookies on the request.
It also shows how the server can grant permission to the client to read certain
response headers.

 The preceding chapters set the foundation for using CORS from the server. Chap-
ter 6 expands on these ideas by providing a set of best practices for implementing
CORS on your own server.

PART 3: CORS IN PRACTICE

Chapter 7 looks at how to debug CORS requests when something goes wrong. It intro-
duces tools like the browser’s debugging tools, Wireshark, and Fiddler, which can be
used to monitor and diagnose CORS issues.

APPENDIXES

Appendix A provides a reference for all the CORS-related headers. Appendix B looks
at how to set up Node.js and Express, which are used throughout the book for the
sample code. Appendix C takes a closer look at CSRF issues, and how they relate to
CORS. Appendix D looks at other cross-origin request techniques.

Online resources
This book provides a general introduction to CORS. If you’d like more information,
here are a few resources you can turn to:

■ The sample code for this book is hosted at GitHub (https://github.com/monsur/
CORSinAction). You can either follow along with the book and type the code
out, or download and run the code from here.

https://github.com/monsur/CORSinAction
https://github.com/monsur/CORSinAction

ABOUT THIS BOOKxxiv
■ enable-cors.org is a site I maintain that has pointers to various server-side CORS
implementations. If you’re looking to add CORS support to a particular program-
ming framework (for example, Java Tomcat), here’s where you should turn.

■ The CORS spec (www.w3.org/TR/cors/) defines exactly how CORS works.
■ Stack Overflow (http://stackoverflow.com/) is a great resource for getting help

on CORS-related questions. I hang out there as well, and often answer questions
tagged with #cors.

Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional infor-
mation about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation carefully.

 Code examples appear throughout this book. Longer listings appear under clear
listing headers, whereas shorter listings appear between lines of text.

 Source code for all the working examples is available from www.manning.com/
CORS in Action or www.manning.com/hossain. Sample code is also available at https://
github.com/monsur/CORSinAction.

http://www.w3.org/TR/cors/
http://stackoverflow.com/
http://www.manning.com/
http://www.manning.com/hossain
https://github.com/monsur/CORSinAction
https://github.com/monsur/CORSinAction

author online
Purchase of CORS in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/CORSinAction. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum. It also provides links to the
source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It is
not a commitment to any specific amount of participation on the part of the author,
whose contribution to the Author Online forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
xxv

www.manning.com/CORSinAction

about the author
Monsur Hossain is a software engineer at Google, where he has worked on various API
related projects, including the Google APIs JavaScript Client and the Google APIs Dis-
covery Service. He is also responsible for adding CORS support to Google APIs. He main-
tains the site enable-cors.org. Monsur lives in Chicago with his wife and two children.
xxvi

http://enable-cors.org/

about the cover illustration
The figure on the cover of CORS in Action is captioned “A Rabbit-skin Seller.” The illus-
tration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs published in France. Each illustration is finely
drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just a little over 200
years ago. Isolated from each other, people spoke different dialects and languages; in
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxvii

Part 1

Introducing CORS

Cross-Origin Resource Sharing (CORS) enables web clients to make HTTP
requests to servers hosted on different origins. CORS is a unique web technology
in that it has both a server-side and a client-side component. The server-side
component configures which types of cross-origin requests are allowed, while
the client-side component controls how cross-origin requests are made.

 Part 1 focuses on the client-side component of CORS. Chapter 1 is an intro-
duction to CORS, how it works, and its benefits. It also gives a taste of what CORS
looks like by introducing a sample application that makes CORS requests to the
Flickr API.

 Chapter 2 dives deeper into this sample application to show how the client-
side component of CORS works. It starts by looking at how the browser’s
XMLHttpRequest object (which is already familiar to any developer making same-
origin requests) can be used to make cross-origin requests. Then, it turns to
Internet Explorer 8 and Internet Explorer 9, which support a subset of CORS via
the XDomainRequest object. Next, it looks at other places where CORS requests
turn up, such as the canvas element. The chapter concludes by looking at how
CORS requests can be made from jQuery.
www.allitebooks.com

http://www.allitebooks.org

The Core of CORS
Suppose you’re building a web mashup to load photos from the New York Public
Library’s (NYPL) Flickr page and display them on your own page. What would the
code look like? You could start with an HTML page to display the photos, add
JavaScript code to load the photos from the Flickr page, and display them on the
page. Pretty straightforward, right?

 But if you were to run this code in the browser, it wouldn’t work because the
browser’s same-origin policy limits client code from making HTTP requests to dif-
ferent origins. This means that a web page running from your desktop or web
server can’t make an HTTP request to Flickr.com.

 Cross-Origin Resource Sharing, or CORS, was built to help solve this issue. Before
CORS, developers would need to go to great lengths to access APIs from JavaScript
clients in the browser. CORS enables cross-origin requests in a safe, standard
manner. From a client’s perspective, CORS is awesome because it opens up a new
world of APIs that previously wasn’t available to browser JavaScript. From a server’s

This chapter covers
■ Which issues CORS solves
■ How a CORS request works
■ The benefits of CORS
3

4 CHAPTER 1 The Core of CORS
perspective, CORS is awesome because it allows the server to open up its APIs to a new
world of users.

 This chapter gives an overview of what CORS is and how it’s used. It begins by review-
ing CORS’s features and benefits. It then walks through the code to make a CORS request.

1.1 What is CORS?
CORS is simply a way of making HTTP requests from one place to another. This is a
trivial thing in other programming languages. But it’s difficult to do in client-side
JavaScript, because for years the browser’s same-origin policy has explicitly prevented
these types of requests.

 This may make CORS sound like a contradiction. How can CORS allow cross-origin
requests if the same-origin policy explicitly forbids them? The key is that CORS puts
servers firmly in charge of who can make requests, and what type of requests are
allowed. A server has the choice to open up its API to all clients, open it up to a small
number of clients, or prevent access to all clients.

 So if browsers enforce a same-origin policy, how does CORS work? The secret lies in
the request and response headers. The browser and the server use HTTP headers to
communicate how cross-origin requests behave. Using the response headers, the
server can indicate which clients can access the API, which HTTP methods or HTTP
headers are allowed, and whether cookies are allowed in the request.

 Figure 1.1 shows what an end-to-end CORS request to the Flickr API looks like.

var xhr =

new XMLHTTPRequest();

xhr.open(method,url);

xhr.onload = function()

{

};

xhr.send();

Browser

JavaScript code

Flickr server

1 Client code

initiates

request to

Flickr.

4 Browser inspects headers; if they’re

valid, it gives response to client.

2 Browser adds

headers and sends

request to Flickr.

3 Flickr responds

with special

CORS-specific

HTTP headers.

Figure 1.1 End-to-end CORS request flow

5CORS by example
Here is a simplified look at the steps to making a CORS request (there are a few more
nuances to some CORS requests, which we’ll cover in later chapters):

b The CORS request is initiated by the JavaScript client code.

c The browser includes additional HTTP headers on the request before sending
the request to the server.

d The server includes HTTP headers in the response that indicate whether the
request is allowed.

e If the request is allowed, the browser sends the response to the client code.

If the headers returned by the server don’t exist, or aren’t what the browser expects,
the response is rejected and the client can’t view the response. In this way, browsers
can still enforce the same-origin policy on servers that don’t allow cross-origin
requests. Now that you have a sense of what CORS is, let’s turn our attention to making
a CORS request.

1.2 CORS by example
Let’s demonstrate how CORS works by building a Flickr sample app. Figure 1.2 shows
the app, which loads photos from the NYPL’s Flickr site and displays them on the page.

 The following listing shows the code behind this sample.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';

Listing 1.1 Making a CORS request

Request to
Flickr API

Makes sure browser
supports CORS

6 CHAPTER 1 The Core of CORS
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

NOTE If you’d like to run this sample in your browser, you’ll need to obtain
an API key from Flickr and substitute it for the <YOUR API KEY HERE> string in
the code. You can obtain an API key at www.flickr.com/services/apps/create/.

Figure 1.2 Loading photos
from Flickr using CORS

Displays photos
on page

www.flickr.com/services/apps/create/

7CORS by example
If you save this code to an HTML file (and set the API key as mentioned in the pre-
ceding note) and then open that file in your browser, you should see a bunch of
photos. The key thing to note about this example is that although the web page is run-
ning from your local filesystem, it’s making a request to the server at api.flickr.com.
Let’s walk through the code to get a better understanding of what each section
is doing.

1.2.1 Setting up the request

The code starts by creating a new XMLHttpRequest object:

var xhr = new XMLHttpRequest();
if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
}
xhr.open(method, url);

The first and last lines are the same for same-origin and cross-origin requests. The first
line creates the XMLHttpRequest object, the last sets the HTTP method and URL.

 The three middle lines highlight the difference between a same-origin-capable
browser and a cross-origin-capable browser. If the browser fully supports CORS, the
XMLHttpRequest object will contain a withCredentials property. You can use this
property to check if the browser supports CORS. The preceding code alerts you if the
browser doesn’t support CORS.

1.2.2 Sending the request

Once the request is set up, you send the request to the server using the send method:

xhr.send();

This method initiates the HTTP request to the server. Chrome’s Network tab gives you
a better understanding of what the request looks like, as shown in figure 1.3. The fig-
ure shows the fact that even though the request originates from the filesystem b, the
destination server is in fact flickr.com c.

 Notice how the response has a header set to Access-Control-Allow-Origin: * d.
The Access-Control-Allow-Origin header is the magic behind CORS. The server uses
this header to indicate that cross-origin requests are allowed. The Access-Control-
Allow-Origin header must always be present on a CORS response, but it’s just one of
many headers that can be used to configure CORS behavior. Part 2 of this book will
cover these headers in greater detail.

1.2.3 Processing the response

Once the browser receives the response, it checks the response headers to verify that
the cross-origin request is valid. If the request isn’t valid, the browser will log an error

8 CHAPTER 1 The Core of CORS
to the console, then fire the XMLHttpRequest’s onerror event. But because the response
here is valid, the browser fires the XMLHttpRequest’s onload event:

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);

1 Request originates from local file system.

2 Request ends up

at api.flickr.com.

3 Access-Control-Allow-Origin header

is what enables CORS.

Figure 1.3 Details on the HTTP request and response from the Flickr API

9Benefits of CORS
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

This code parses the response text into a JavaScript Serialized Object Notation (JSON)
object, grabs the images from the object, and displays them on the page. In addition
to the response text, the XMLHttpRequest object also has properties for the HTTP sta-
tus, HTTP status text, and methods that retrieve response headers.

1.3 Benefits of CORS
The example from the previous section gave you a sense of power of CORS. Now let’s
turn our attention to some of the benefits CORS provides.

1.3.1 Wider audience

If you’re building a public API, you want to open up access to as wide an audience as
possible. Developers in other languages can easily use native libraries to make API
requests. For example, a Python developer can use the httplib2 library to make HTTP
requests to any server, regardless of where the request originates. The following snip-
pet shows what a Python request to Flickr looks like. The httplib2 library doesn’t care
whether the server is CORS-enabled; it indiscriminately makes the request and pro-
cesses the response, as this sample code shows:

import httplib2
h = httplib2.Http(".cache")
resp, content = h.request("http://www.flickr.com/photos/nypl/", "GET")

JavaScript developers don’t have that advantage because the browser’s same-origin
policy limits HTTP requests to a single domain. CORS enables JavaScript developers to
use an API the same way a developer in another language could.

1.3.2 Servers stay in charge

Safety is an important factor when making cross-domain requests. Any cross-domain
mechanism needs to be careful not to break the browser’s same-origin policy and
inadvertently send requests to an unsuspecting server.

 CORS achieves this safety by allowing servers to opt-in to CORS. For the request to
succeed, the server must use response headers to explicitly acknowledge that the request

10 CHAPTER 1 The Core of CORS
is allowed. That way, if a CORS request is made to a server that doesn’t support CORS
or doesn’t have the right CORS headers, the request fails.

1.3.3 Flexibility

CORS gives servers the flexibility to configure cross-origin access in a variety of ways.
The server can specify various features:

■ Which domains are allowed to make requests
■ Which HTTP methods are allowed (for example, GET/PUT/POST/DELETE)
■ Which headers are allowed on the HTTP request
■ Whether or not requests may include cookie data
■ Which response headers the client can read

These rich settings put the server firmly in control of how the CORS request works.

1.3.4 Easy for developers

Because CORS is a standardized specification, it works in a consistent manner across
sites. Developers need only learn about CORS once; then they can use the same tech-
niques across all sites that support CORS.

 While CORS requires new configuration on the server side, the client-side devel-
oper experience remains largely unchanged. JavaScript’s XMLHttpRequest object has
been available in browsers for over 10 years. Developers make CORS requests using
the same XMLHttpRequest object they are familiar with. There isn’t any new code for
the developer to learn. From the developer’s perspective, same-origin and cross-origin
requests look mostly the same. (There are some slight differences, which we’ll cover
in chapter 2.)

1.3.5 Reduced maintenance overhead

There are ways to make cross-origin requests without using CORS (appendix D covers
some of these techniques). But these techniques require custom code, custom servers,
or additional documentation. This leads to an additional maintenance burden for the
server developer.

 Conversely, CORS only requires a few additional response headers. This reduced
maintenance means that API owners can focus their attention on other things, rather
than worrying about reinventing and maintaining new cross-domain mechanisms.
Because CORS is a published specification with broad browser support, site owners can
rest assured that their implementation is stable and that details won’t change.

1.4 Summary
CORS allows client code to make cross-origin requests to remote servers. CORS is nec-
essary because the browser’s same-origin policy traditionally disallows cross-origin
requests, which makes it difficult to load data from other sites. Here are some benefits
of CORS:

11Summary
■ Opens an API to a wider audience
■ Puts servers in charge of how CORS behaves
■ Allows flexible configuration options
■ Makes it easy for client developers to use
■ Reduces maintenance overhead for server developers

The next chapter will dive into the details of how to make CORS requests from the
browser.
www.allitebooks.com

http://www.allitebooks.org

Making CORS requests
A CORS request consists of two sides: the client making the request, and the server
receiving the request. On the client side, the developer writes JavaScript code to
send the request to the server. The server responds to the request by setting special
CORS-specific headers to indicate that the cross-origin request is allowed. Without
both the client’s and the server’s participation, the CORS request will fail.

 This chapter focuses on how to make CORS requests from JavaScript. It assumes
you have an existing CORS-enabled API (such as the Flickr API, the GitHub API, or your
own API) to make requests to (if you don’t have an existing CORS-enabled API, don’t
worry. Part 2 looks at how to set one up). The chapter starts by defining what a cross-
origin request is and which browsers support it. It then covers the main ways to make

This chapter covers
■ Which browsers support CORS
■ How to use the XMLHttpRequest object to

make CORS requests
■ How to use the XDomainRequest object in

Internet Explorer 8 and 9
■ How to load cross-origin images in

a canvas element
■ How to make CORS requests from jQuery
12

13What is a cross-origin request?
CORS requests, including the XMLHttpRequest and XDomainRequest objects. Next it
looks at how the HTML5 <canvas> element uses CORS to load images. It ends with a look
at jQuery support for CORS. The server-side details of CORS will be covered in chapter 3.

2.1 What is a cross-origin request?
Before learning how to make a cross-origin request, let’s define what a cross-origin
request is. Think of a website as a house, and each page on the website as an inhabit-
ant of that house. Suppose there are houses located at 742 Evergreen Terrace and 744
Evergreen Terrace, and each house has two residents: Homer and Bart at 742 Ever-
green Terrace, and Ned and Rod at 744 Evergreen Terrace (as shown in figure 2.1).

 An HTTP request is a conversation between two people. When Homer talks to Bart,
the conversation takes place solely within the confines of the house. This is called a
same-origin request. If Homer calls Ned, the conversation crosses the boundaries of the
house. This is called a cross-origin request. Figure 2.2 shows the distinction between a
same-origin and a cross-origin request.

Homer Bart

742 Evergreen Terrace

Ned Rod

744 Evergreen Terrace

Figure 2.1 Two houses with two people in each. Each house represents a website, and the people in
the house are web pages.

Same-origin request =

people talking inside

a house Cross-origin request =

calling from one house

to another

Homer Bart

742 Evergreen Terrace

Ned Rod

744 Evergreen Terrace

Figure 2.2 Illustrating the difference between a same-origin and a cross-origin request

14 CHAPTER 2 Making CORS requests
Now let’s apply this analogy to the Flickr example from chapter 1. In that example,
there is JavaScript code running in the browser, which initiates a request to the Flickr
API, as shown in figure 2.3. This request is a cross-origin request because the Java-
Script code making the request and the API server receiving the request live on two
different websites.

 There are a lot of different pieces to making a successful cross-origin request.
The client and the server must work together to ensure that the request succeeds.
This chapter focuses on the first part of this process: how the client initiates a
request to the server b. Let’s start by taking a look at which browsers do and don’t
support CORS.

2.2 Browser support for CORS
Browser support for CORS can be divided into three tiers: full support, partial support,
and no support. If you’re developing with CORS, it’s helpful to know which browsers
your users are using, so you know which of these three tiers you need to focus on.

 CORS is fully supported in the following desktop browsers:

■ Chrome 3+
■ Firefox 3.5+
■ Safari 4+

<html>

<body onload="loadPhotos();">

<div id="photos"></div>

<script>

function loadPhotos() {

...

var xhr = new XMLHttpRequest();

xhr.open(method, url);

xhr.onerror = function() {

...

};

xhr.onload = function() {

...

xhr.send();

}

</script>

</body></html>

Flickr API server

HTTP request

1 JavaScript code

running in browser.

2 Flickr API server

receives API request.

Figure 2.3 Making a request from the browser to the Flickr API

15Using the XMLHttpRequest object
■ Internet Explorer 10+
■ Opera 12+

In addition to desktop browsers, CORS is fully supported in most mobile browsers,
including iOS 3.2+ and Android 2.1+. Mobile devices tend to have up-to-date software,
so if you’re developing for mobile browsers, you can be comfortable knowing your
users have CORS support.

 Internet Explorer 8 and 9 support a limited version of CORS using something called
the XDomainRequest object, which is limited to only certain types of CORS requests. If
cross-origin requests in Internet Explorer 8 or Internet Explorer 9 are important to your
application, you’ll want to learn about the limitations in XDomainRequest.

 If the browser’s version is older than the ones mentioned here, it probably doesn’t
support CORS. If you need to support cross-origin requests in an older browser, there
are still options. As we’ll cover in appendix D, there are other mechanisms available
for making cross-origin requests in older browsers. But you won’t be able to use the
techniques described here.

 Table 2.1 breaks down the landscape of CORS support in browsers. As of mid-2014,
approximately 83% of the browsers out there have full support for CORS, and another
6% have partial support.

The next two sections look at how to work with CORS in tier 1 and tier 2 browsers. Tier 1
browsers use the XMLHttpRequest object to make cross-origin requests, while tier 2 brows-
ers use the XDomainRequest object. Let’s start by looking at the XMLHttpRequest object.

2.3 Using the XMLHttpRequest object
JavaScript code can make HTTP requests with the XMLHttpRequest object. Listing 1.1
showed you how the XMLHttpRequest object can be used for a CORS request to the
Flickr API. The following listing shows the code from listing 1.1 and highlights the indi-
vidual pieces of the request.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">

Table 2.1 CORS support in browsers

Tier CORS support Browsers

1 Full CORS support Chrome 3+, Firefox 3.5+, Safari 4+, Internet Explorer 10+, Opera 12+

2 Partial CORS support Internet Explorer 8, Internet Explorer 9

3 No CORS support Chrome 2 and below, Firefox 3 and below, Safari 3 and below,
Internet Explorer 7 and below, Opera 11 and below

(Source: http://caniuse.com/#search=cors.)

Listing 2.1 Making a CORS request to the Flickr API

http://caniuse.com/#search=cors

16 CHAPTER 2 Making CORS requests
<div id="photos">loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

There are three parts to making an HTTP request:

■ Sets up request parameters.
■ Sends request.
■ Processes response. (The code to process the response is defined before the

request is actually sent, which is why xhr.onload comes before xhr.send.)

The rest of this section will examine how to use the XMLHttpRequest object during these
three phases of the HTTP lifecycle. While the XMLHttpRequest object can be used to
make either same-origin or cross-origin requests, this section will pay special attention
to any CORS-specific behavior. Even if you have worked with the XMLHttpRequest object

Sets up request
parameters

Sends
request

Processes
response

17Using the XMLHttpRequest object
before, some of this information may still be new, because the XMLHttpRequest
object underwent a revision around 2010. The latest version has new properties that
help enable CORS. The older version of XMLHttpRequest works in older tier 3 browsers,
but because it doesn’t support CORS, it isn’t covered here.

2.3.1 Sending an HTTP request

The first step in making an HTTP request is setting up a new XMLHttpRequest object.
The following listing highlights the code that sets up the request.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}

Listing 2.2 Setting up an HTTP request to the Flickr API

Defines HTTP
method and URL

Creates new
XMLHttpRequest
object

Assigns HTTP method and
URL to XMLHttpRequest
object

18 CHAPTER 2 Making CORS requests
</script>
</body>
</html>

It starts by defining the HTTP method and URL to the API. In the case of a cross-origin
request, the URL is the full URL to the resource. There is no other special informa-
tion that needs to be set to delineate a request as cross-origin. The browser does the
work of parsing the URL and determining if the request is a same-origin or a cross-
origin request.

 The code then creates a new XMLHttpRequest object, and verifies that it supports
CORS by checking that the XMLHttpRequest object has a withCredentials property.
The withCredentials property will be covered in more detail later in this chapter. For
now, all you need to know is that if the XMLHttpRequest object has a withCredentials
property, then it supports CORS.

 The open method is called to set the values of the HTTP method and URL. The
open method also does some basic validation to ensure that the HTTP method and
URL are valid. For example, if the HTTP method contains a space, calling open will
throw a syntax error.

ADDING HTTP HEADERS

The setRequestHeader method lets you add HTTP headers to the request. This method
accepts a header key and header value, and includes the header on the request. The fol-
lowing code snippet, which should be included after the open method, shows an example
of using the setRequestHeader method to set the X-Requested-With request header:

xhr.setRequestHeader('X-Requested-With', 'CORS in Action');

There are some headers that are set by the browser that can’t be set by the user (see the
following sidebar for the complete list). As you’ll see in the next chapter, the browser
sets an Origin header on cross-origin requests. If you try to override this header in your
code, the browser will ignore your value. This is a security measure that helps prevent
user code from overriding trusted header values. The server can trust these values
because it knows the user hasn’t accidentally (or maliciously) tainted the value.

The server has to give its permission for the client to include custom request headers
on a cross-origin request. This behavior is unique to cross-origin requests; same-origin

Setting request headers
Here is the list of headers that cannot be set by the setRequestHeader method:
Accept-Charset, Accept-Encoding, Access-Control-Request-Headers, Access-Control-
Request-Method, Connection, Content-Length, Cookie, Cookie2, Date, DNT, Expect,
Host, Keep-Alive, Origin, Referer, TE, Trailer, Transfer-Encoding, Upgrade, User-Agent,
Via, and any headers starting with ‘Proxy-’ or ‘Sec-’.

These headers have special meaning and can only be set by the browser. There is no
error if the code tries to set the header. The value is just ignored.

19Using the XMLHttpRequest object
requests can include any custom request header. If the server doesn’t whitelist the
request headers, the request will fail. We’ll dive into more details on how a server does
this in chapter 4.

MAKING THE REQUEST

Once the request is set up, calling the send method will send the HTTP request to the
server, as shown in the following listing.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

Listing 2.3 Calling the send method to initiate the HTTP request

The send method initiates
the HTTP request.

20 CHAPTER 2 Making CORS requests
If the HTTP request has a request body, the body can be passed in as a parameter to
the send method as follows:

xhr.send('request body goes here');

Once the send method is called, the HTTP request is sent to the server. Even though
the request has been sent, there are still a couple of ways to cancel the request. First, the
timeout property can be used to ensure that the request doesn’t exceed a certain
number of milliseconds. Setting the timeout property to 10000 will kill the request
after 10 seconds. The default value for the timeout property is 0, which means there is
no timeout, and the request will continue until the server responds. Second, the client
can manually kill the request by using the abort method. Calling the abort method
will abort the request immediately. Figure 2.4 shows how to use the timeout property
and the abort method.

 When the server receives a cross-origin request, it determines whether or not the
request is allowed, and replies accordingly. Chapter 3 will cover how the server replies
to cross-origin requests. But for now, let’s assume there is a successful HTTP response,
and look at how to handle it.

2.3.2 Handling the HTTP response

The XMLHttpRequest object handles the server’s response through a set of events.
Events are functions that are invoked at specific moments in the lifecycle of an HTTP

xhr.timeout = 10000;

xhr.send(); xhr.send();

(10 seconds later)

Request times out.

xhr.abort();

Request is aborted.

Figure 2.4 Canceling a request that
is still in progress using the timeout
property and abort method

21Using the XMLHttpRequest object
request. Events aren’t unique to the XMLHttpRequest object; when a user clicks a link
on an HTML page, the browser fires a click event.

The functions that handle these events are called event handlers. Table 2.2 gives an
overview of all event handlers supported by the XMLHttpRequest object.

Figure 2.5 shows when these events are fired during the lifecycle of an HTTP request.
Some events, such as onloadstart and onloadend, are always fired once per request.
Others may be fired multiple times, such as onreadystatechange and onprogress.
Some event handlers may not fire at all, depending on the status of the request; these
include onload, onerror, ontimeout, and onabort.

Asynchronous versus synchronous requests
By default, the XMLHttpRequest object makes asynchronous requests. This means
that the send method makes the request in the background, and fires events when
the status of the request changes. The XMLHttpRequest object can also make syn-
chronous requests. In a synchronous request, the send method will wait until the
response is received (or an error is encountered).

Client code can trigger a synchronous request by setting the third parameter to the
open method to false. For example: xhr.open('GET', 'http://', false). Syn-
chronous requests don’t fire any events. Instead the code waits until the request is
finished. This can cause the entire page to become unresponsive until the request
returns. In general, you should avoid synchronous requests and stick with the default
asynchronous requests.

Table 2.2 Event handlers exposed by the XMLHttpRequest object

Event handler Description

onloadstart Fires when the request starts.

onprogress Fires when sending and loading data.

onabort Fires when the request has been aborted by calling the abort method.

onerror Fires when the request has failed.

onload Fires when the request has successfully completed.

ontimeout Fires when the timeout has been exceeded (if the client code specified a
timeout value).

onloadend Fires when the request has completed, regardless of whether there was
an error or not.

onreadystatechange Legacy handler from the previous version of XMLHttpRequest; fires
when legacy readyState property changes. It is superseded by other
events and is only useful for non-tier 1 browsers.
www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 2 Making CORS requests
The user can assign a function to each of these event handers to process the particular
event. If you need to always run some code at the end of the request (regardless of
whether or not there was an error), you’d assign a method to the onloadend event
handler. The code isn’t required to handle each of those events; if an event handler is
unassigned, nothing happens when that event is fired. Let’s take a closer look at some
of the more important event handlers.

HANDLING A SUCCESSFUL RESPONSE WITH THE ONLOAD EVENT HANDLER

The onload event handler fires when the request is successful. In the Flickr example,
the onload handler is responsible for displaying the photos on the page, as shown in the
following listing.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

Listing 2.4 Assigning a function to the XMLHttpRequest’s onload event handler

onreadystatechange

onload

onloadstart

ontimeout

onerror

onloadend

onabort

onprogress

Figure 2.5 Which event handlers fire
during the course of an HTTP request

23Using the XMLHttpRequest object
 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

When processing the HTTP response, the code has access to various response vari-
ables, such as the HTTP status code, the HTTP status text, the response body, and the
response HTTP headers. For example, the code in listing 2.4 uses the responseText
property to grab the body of the response. Table 2.3 gives an overview of the proper-
ties that are available on the response.

Table 2.3 Response properties on the XMLHttpRequest object

Response property Description

status The HTTP status code (for example, 200 for a successful request).

statusText The response string returned by the server (for example, OK for a successful
request).

response The body of the response, in the format defined by responseType. If the client
indicated that the response type is json, the response will be a JSON object
parsed from the response body.

responseText The body of the response as a string. Can only be used if responseType was
not set or was set as text.

responseXML The body of the response as a DOM element (XML is here for historical reasons).
Can only be used if responseType was not set or was set as document.

Assigns a method
to onload event
handler

24 CHAPTER 2 Making CORS requests
The getResponseHeader and getAllResponseHeaders methods can be used to read the
HTTP headers on the response. getResponseHeader returns the value of a given response
header, while getAllResponseHeaders returns all the response headers as a single
string. There is one caveat to reading response headers on a cross-origin request. By
default, CORS only allows the client code to read the following response headers:

■ Cache-Control
■ Content-Language
■ Content-Type
■ Expires
■ Last-Modified
■ Pragma

If the server sets any additional response headers that aren’t in this list, the client
won’t be able to see them. But the server can also override this behavior by specifically
indicating that these additional response headers should be visible to the client code.
The details of how to do this are covered in chapter 5.

 To understand when the onload handler fires, it’s important to distinguish a suc-
cessful response from a successful response status code. HTTP responses have an asso-
ciated status code. A successful response usually has a status code of 200, although any
status code in the 200 range signals a success. Status codes in the 300 range signal
that the request is being redirected, while status codes of 400 or above signal an
error (the 400 range is reserved for client errors while the 500 range is reserved for
server errors).

 Regardless of the underlying response status code, if the response makes it back to
the browser, the onload event handler will fire. So although a request may fail due to a
file not found (status code 404) or an internal server error (status code 500), the onload
event handler will still fire. Figure 2.6 shows the relationship between the response and
the response status code.

 If the request fails for some other reason, the onerror event handler will fire.
These are errors where the server doesn’t send a valid response to the browser, or the
server doesn’t support CORS. The next section takes a look at how to use the onerror
event handler.

HANDLING AN ERROR USING THE ONERROR HANDLER

The onerror event handler will fire if there is an issue with the request. This can hap-
pen if, for example, the servers powering the Flickr API are down and not responding.
But the onerror event is particularly relevant to CORS because it fires if the server
rejects the CORS request. If the Flickr API didn’t support CORS, the onerror event
handler would fire.

 As we’ll cover in the next part of this book, the server has many reasons to reject a
CORS request. The server may allow cross-origin GET and POST requests, but not PUT or
DELETE requests. In this case, if a client attempts a PUT request, the onerror handler
will fire instead of the onload handler.

25Using the XMLHttpRequest object
Listing 2.5 shows how to add an onerror handler to the sample code. Note that while
the onerror event signals that something went wrong with the cross-origin request, it
doesn’t tell you what went wrong. The statusText property will be empty, and the
status will be 0. The code will only know that a request failed, and nothing more.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 var xhr = new XMLHttpRequest();
 if (!('withCredentials' in xhr)) {
 alert('Browser does not support CORS.');

Listing 2.5 Handling a CORS error using the onerror event handler

Response

status code

100

200

300

400

500

100–199 = Informational

200–299 = Success

300–399 = Redirect

400–499 = Client error

500–599 = Server error

All valid server responses.

onload event handler will fire.

Figure 2.6 Distinction
between the response
and response status
code. The status code
may have an error, but
the onload event
handler will still fire.

26 CHAPTER 2 Making CORS requests
 return;
 }
 xhr.open(method, url);

 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

If you’re curious to understand why a cross-origin request failed, some browsers (such
as Chrome) will display the reason in the console log. This message will give more
context to a human who is able to read the message, but there is no way to read this
message from JavaScript. Chapter 7 will go into more detail on how to debug and fix a
failing CORS request.

OTHER EVENT HANDLERS

Together, the onload and onerror event handlers will handle most of your needs. But
the XMLHttpRequest object exposes a few more event handlers that you can hook into,
as shown in table 2.4.

Table 2.4 XMLHttpRequest event handlers

Event handler Function

onloadstart Fires when the request is successfully initiated asynchronously.

onloadend Similar to onloadstart, onloadend always fires when the request
ends. This event handler is useful if you want to execute some piece of
code at the very end of the request, regardless of whether or not the
request is successful.

onabort Fires if the client aborts the request by calling the abort method. If
onabort fires, the onload and onerror event handlers will not fire.

Assigns a method
to onerror event
handler

27Using the XMLHttpRequest object
When the XMLHttpRequest spec was first devised, onreadystate was the only event
handler available. Now that there are much finer-grained events available, you’re bet-
ter off using them.

2.3.3 Including cookies on cross-origin requests

Many websites need a way of identifying the user visiting the page. If you check your
email using Gmail, Gmail needs some way of knowing who you are so that it can load
your emails.

 Websites can identify users through user credentials, a general term for any bit of
information that can identify a user. The most popular form of user credentials is the
cookie. Servers will use cookies to store a unique ID that identifies the user. The
browser then includes this cookie on every request to the server.

NOTE Same-origin HTTP requests will always contain the cookie in the
request. In contrast, cross-origin requests don’t include cookies by default.

Cookies can be included on cross-origin requests by setting the XMLHttpRequest’s
withCredentials property to true. Setting the withCredentials property to true indi-
cates that user credentials such as cookies, basic authentication information, or client-
side Secure Sockets Layer (SSL) certificates should be included on cross-origin requests.
The following code snippet shows an example of setting the withCredentials property
to true:

xhr.withCredentials = true;

ontimeout Fires if the code set a timeout value, and that timeout has been exceeded.
If your code sets a timeout of 10,000 milliseconds (10 seconds), this
event handler will fire if the response hasn’t been received after 10 sec-
onds. If ontimeout fires, the onload and onerror event handlers
will not fire.

onprogress Monitors progress of a request or response. It’s most helpful in the
context of uploading or downloading binary data, such as an image. If
you’re uploading an image to a website, onprogress can be used
to create a progress indicator showing how much of the image has
been uploaded.

onreadystatechange Fires when the request changes states. The XMLHttpRequest spec
defines five states a request can be in: unset, opened, headers received,
loading, and done. The value of the ready state is stored in the
XMLHttpRequest object’s readyState property. For example, when
a request goes from loading to done, its readyState changes from 3 to
4 (the numeric values for loading and done, respectively), and
onreadystatechange fires.

Table 2.4 XMLHttpRequest event handlers (continued)

Event handler Function

28 CHAPTER 2 Making CORS requests
If you were to run this code in a web browser, it would fail because setting the with-
Credentials property to true isn’t enough to complete the request. The server must
also indicate that it allows cookies for the request to succeed. Chapter 5 will delve
deeper into how the server can enable cookies on requests.

NOTE The withCredentials property doesn’t work with synchronous requests.

This section covered the basics of using the XMLHttpRequest object in the context of
cross-origin requests. You can use the techniques from this section to make cross-origin
requests to a CORS-enabled server. If you’d like to learn more about how the XMLHttp-
Request object works, you can turn to Ajax in Practice by Dave Crane et al. (Manning,
2007), or go directly to the XMLHttpRequest spec at http://xhr.spec.whatwg.org/.

 While the XMLHttpRequest object allows you to make cross-origin requests from
most browsers, Internet Explorer 8 and Internet Explorer 9 support a limited set of
cross-origin requests. These browsers use a different object, called XDomainRequest, to
make these requests. The next section looks into how the XDomainRequest works and
how it’s different from the XMLHttpRequest object.

2.4 XDomainRequest object in Internet Explorer 8 and 9
Internet Explorer 8 and Internet Explorer 9 support cross-origin requests, but in a
different way. These browsers still have an XMLHttpRequest object for making same-
origin requests, but they also have a different XDomainRequest object specifically for
making cross-origin requests. This XDomainRequest object is only relevant to Internet
Explorer 8 and Internet Explorer 9. Internet Explorer 10 and above support the regu-
lar XMLHttpRequest object for both same-origin and cross-origin requests. If CORS
support for Internet Explorer 8 and Internet Explorer 9 is important to you, you’ll
want to learn the details of how the XDomainRequest object works.

 Listing 2.6 changes the Flickr API example to use the XDomainRequest object. The
XDomainRequest object looks a lot like an XMLHttpRequest object. If you compare this list-
ing to the original code, there is only a one-line difference when creating a new XDomain-
Request object b. Once you have a new XDomainRequest object, you can use it in the
same way you use the XMLHttpRequest object. You can use the send method to send the
request, and then use the onload and onerror event handlers to process the response.

<!DOCTYPE html>
<html>
<body onload="loadPhotos();">
<div id="photos">Loading photos...</div>
<script>
function loadPhotos() {
 var method = 'GET';
 var url = 'http://s3.amazonaws.com/corsinaction/flickr.json';
 var xhr = new XDomainRequest();
 xhr.open(method, url);

Listing 2.6 Using the XDomainRequest object to make a request to the Flickr API

 b

http://xhr.spec.whatwg.org/

29XDomainRequest object in Internet Explorer 8 and 9
 xhr.onerror = function() {
 alert('There was an error.');
 };

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 if (data.stat == 'ok') {
 var photosDiv = document.getElementById('photos');
 photosDiv.innerHTML = '';
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 photosDiv.appendChild(img);
 }
 } else {
 alert(data.message);
 }
 };

 xhr.send();
}
</script>
</body>
</html>

NOTE You may have noticed that the request URL changed from a Flickr URL
to an Amazon one. This is because the Flickr API only supports HTTPS, and
the XDomainRequest object can’t make requests to HTTPS origins from non-
HTTPS origins. The URL in listing 2.6 is a copy of the Flickr response that is
served from an Amazon S3 server via HTTP. Additionally, since the XDomain-
Request object does not support local files, you can find a version of this sam-
ple hosted at http://corsinaction.s3.amazonaws.com/flickr.html.

If you’re writing client-side JavaScript code to make cross-origin requests, it
can be annoying to write two different sets of code for Internet Explorer 8
and Internet Explorer 9 and other browsers. Luckily, the following listing
(which is from the blog at www.nczonline.net/blog/2010/05/25/cross-domain-
ajax-with-cross-origin-resource-sharing/) provides a simple function for choos-
ing the correct cross-origin request object.

function createCORSRequest(method, url){
 var xhr = new XMLHttpRequest();
 if ("withCredentials" in xhr){
 xhr.open(method, url, true);
 } else if (typeof XDomainRequest != "undefined"){
 xhr = new XDomainRequest();
 xhr.open(method, url);
 } else {
 xhr = null;
 }
 return xhr;
}

Listing 2.7 Creating the correct CORS request object across browsers

If browser supports CORS,
returns XMLHttpRequest
object.

If browser has an
XDomainRequest
object, uses that.

Otherwise, browser
doesn’t support
CORS; returns null.

www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/
http://corsinaction.s3.amazonaws.com/flickr.html
www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/

30 CHAPTER 2 Making CORS requests
This code runs in all browsers, and does one of the following:

■ If the browser has an XMLHttpRequest object and it supports CORS, it returns a
new XMLHttpRequest object.

■ If the browser supports XDomainRequest, it returns a new XDomainRequest object.
■ If the browser doesn’t support either of those objects, it doesn’t support CORS.

It returns null to indicate that CORS isn’t supported.

While the XDomainRequest object looks similar to its XMLHttpRequest object, there
are many differences between the two. The next section takes a closer look at these
differences.

2.4.1 Differences between XDomainRequest and XMLHttpRequest

Although the XDomainRequest and XMLHttpRequest objects let you make cross-origin
requests, there are many differences between the two objects. The XDomainRequest
object is very limited in the types of cross-origin requests it can make. Table 2.5 com-
pares and contrasts the XMLHttpRequest object to the XDomainRequest object.

Table 2.5 Comparison of XMLHttpRequest and XDomainRequest

Supported feature XMLHttpRequest XDomainRequest

HTTP methods All GET
POST

HTTP schemes All HTTP
HTTPS

Request content type All text/plain

Synchronous requests Yes No

Custom request headers Yes No

User credentials (such as cookies) Yes No

Event handlers onloadstart
onload
onerror
onabort
ontimeout
onprogress
onreadystatechange
onloadend

onload
onerror
ontimeout
onprogress

Response properties status
statusText
responseType
response
responseText
responseXML
getResponseHeader
getAllResponseHeaders

responseText
contentType

31XDomainRequest object in Internet Explorer 8 and 9
The reason for this difference is historical. Internet Explorer 8 was released in 2009,
when the CORS spec was still young. The Internet Explorer developers wanted to
ensure that cross-origin requests were done in a safe manner, so they limited how
cross-origin requests could be made. As the CORS spec has evolved, the kinks have
been worked out to the point where Internet Explorer 10 and above have support for
all CORS functionality. But Internet Explorer 8 and Internet Explorer 9 represent a
large proportion of the browsers still in use, so they can’t be ignored. Here is a look at
how the XDomainRequest object is different from XMLHttpRequest.

GET AND POST ONLY

The XDomainRequest object can only make HTTP requests using GET or POST. Other
HTTP methods such as HEAD, PUT, or DELETE aren’t allowed.

LIMITED SCHEME SUPPORT

XDomainRequest only supports CORS from the http:// or https:// schemes. This means
that opening a file on your computer won’t work, because this uses the file:// scheme.
Furthermore, HTTP pages can only make CORS requests to other HTTP pages, and
HTTPS pages can only make CORS requests to other HTTPS pages.

CONTENT-TYPE TEXT/PLAIN ONLY FOR REQUESTS

The XDomainRequest object can only make requests with the text/plain Content-
Type. Content-Type identifies the data type of the HTTP body. It’s an HTTP header
that can be present on both HTTP requests and HTTP responses. When visiting a
web page, for example, the HTML file has a Content-Type of text/html, and a JPEG
image has a Content-Type of image/jpeg. The Content-Type serves as a hint to brows-
ers and servers about what data type to expect. If your server expects a different
content type on requests, it will have to be modified to also allow the text/plain
Content-Type.

ASYNCHRONOUS REQUESTS ONLY

The XDomainRequest object supports only asynchronous requests; there is no way to
use it to make synchronous requests. But this is a feature that won’t be missed. The
blocking nature of synchronous requests can lead to a frustrating user experience,
because the user can’t interact with the page until the request completes.

NO CUSTOM REQUEST HEADERS

Earlier I showed how the XMLHttpRequest object uses the setRequestHeader method
to include custom request headers on the request. The XDomainRequest object
doesn’t have a setRequestHeader function, and doesn’t allow custom request headers
on requests.

NO COOKIES OR USER CREDENTIALS

The XDomainRequest object never includes cookies or other user credentials in
requests. Furthermore, there is no withCredentials property to override behavior.
Cookies are the main mechanism for identifying visitors to a website, which means the
XDomainRequest object is best suited for making requests to public data that doesn’t
serve any user-specific information.
www.allitebooks.com

http://www.allitebooks.org

32 CHAPTER 2 Making CORS requests
FEWER EVENT HANDLERS

The XDomainRequest object only has four event handlers: onload, onerror, onprogress,
and ontimeout. These behave the same as their XMLHttpRequest counterparts. There
is no onabort method, because there is no corresponding abort method to abort the
request, and there aren’t onloadstart and onloadend methods to mark the begin-
ning and end of the request.

 HMLHttpRequest’s onloadend handler is useful for ensuring a piece of code always
executes, regardless of whether the request was a success or a failure. For example, the
onloadend handler could be used to hide a status message at the end of the request. If
you need to execute a piece of code at the end of a request, be sure to put it in the
onload, onerror, and ontimeout methods.

LESS RESPONSE INFORMATION

Once the server sends an HTTP response, the XDomainRequest object only gives the
JavaScript code access to the response body and response content type. There is no
way to access the HTTP status code or status text, or any of the response headers.

 The XMLHttpRequest and XDomainRequest objects allow HTTP requests to be made
from JavaScript. But these aren’t the only way the browser uses CORS. The next sec-
tion covers how the HTML5 <canvas> element uses CORS to load images.

2.5 Canvas and cross-origin images
HTTP requests from JavaScript are the most common way to use CORS, but they aren’t
the only way. The HTML <canvas> element also relies on CORS when loading images
from different origins. Canvas was introduced in HTML5 as a way to draw shapes and
images from JavaScript. The following listing shows how to use JavaScript and a canvas
to draw a solid rectangle. Figure 2.7 shows what this canvas looks like in the browser.

<canvas id="myCanvas"></canvas>
<script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.fillStyle = '#888';
myContext.fillRect(0,0,240,150);
</script>

In addition to drawing shapes, a canvas can also display images. These images can live
either on the same server as the page, or on a different server. The canvas can display
all images, regardless of whether or not the image comes from the same origin. The
difference is that cross-origin images can taint the canvas.

 Tainting a canvas means that data can no longer be extracted from the canvas. The
<canvas> element exposes three methods for extracting data: toBlob, toDataURL, and
getImageData. All three methods return the binary image data. When these methods are
called on a canvas with a same-origin image, they work just fine. But when they are called
on a canvas with a cross-origin image, the browser throws an error, as shown in figure 2.8.

Listing 2.8 Drawing a rectangle on a canvas

33Canvas and cross-origin images
To get around this error, the image must be labeled as “cross-origin.” This is as simple
as setting the image’s crossOrigin attribute, as shown in the following listing.

<canvas id="myCanvas"></canvas>
<script>
var myCanvas = document.getElementById("myCanvas");
var myContext = myCanvas.getContext('2d');

var img = new Image();
img.crossOrigin = 'anonymous';
img.onload = function() {
 myCanvas.width = img.width;
 myCanvas.height = img.height;
 myContext.drawImage(img, 0, 0);
 console.log(myCanvas.toDataURL("image/png"));
};
img.src = 'http://www.html5rocks.com/static/images/mastheads/h5r-shadow.png';

</script>

Listing 2.9 Setting an image’s crossOrigin attribute

Figure 2.7 Example of drawing
a rectangle on a canvas

Figure 2.8 The error when trying to extract data from a tainted canvas

Setting image’s
crossOrigin attribute.

Calling toDataURL works,
even when the image is
on a different origin.

34 CHAPTER 2 Making CORS requests
The crossOrigin attribute has two possible values: anonymous and user-credentials.
If crossOrigin is set to user-credentials, any user credentials for that origin are
included in the request. For example, if the origin has cookies, the cookies will be
included with the image request. This is similar to setting the withCredentials prop-
erty on the XMLHttpRequest object. Setting the crossOrigin attribute to anonymous
will still make the request, but there won’t be any cookies attached to the request. It’s
best to always use the anonymous value, unless you absolutely need the user's cookies
to load the image.

 Once the image’s cross-origin property is set and the request is successful, the
image can be manipulated in the same way as a same-origin image. That means that
the toBlob, toDataURL, and getImageData methods will work on a canvas with a
cross-origin image.

 Note that the crossOrigin attribute alone isn’t enough to avoid tainting the can-
vas. As with most of the other CORS features we’ve covered in this chapter, the server
must indicate that cross-origin access to the image is allowed. If the server doesn’t
allow it, the image will still be displayed in the canvas, but none of the data extraction
methods will work.

2.6 CORS requests from jQuery
JQuery is a popular JavaScript framework that powers many JavaScript apps. JQuery
has a function named ajax for making HTTP requests. Under the hood, the ajax
method uses the XMLHttpRequest object to make HTTP requests. The following listing
modifies the Flickr API to use jQuery.

<!DOCTYPE html>
<html>
<body>
<div id="photos">Loading photos...</div>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/

jquery.min.js"></script>
<script>
function loadPhotos() {
 var api_key = '<YOUR API KEY HERE>';
 var method = 'GET';
 var url = 'https://api.flickr.com/services/rest/?' +
 'method=flickr.people.getPublicPhotos&' +
 'user_id=32951986%40N05&' +
 'extras=url_q&format=json&nojsoncallback=1&' +
 'api_key=' + api_key;

 $.ajax(url, {
 type: method,
 dataType: 'json',
 success: function(data, textStatus, jqXHR) {
 if (data.stat == 'ok') {
 $('#photos').empty();

Listing 2.10 Using jQuery to make a cross-origin request

$.ajax method both
initializes and sends
an HTTP request.

json data type
indicates that
response should
be parsed as JSON.

success property is
used instead of onload.

35CORS requests from jQuery
 $.each(data.photos.photo, function(i, photo) {
 var img = $('').attr('src', photo.url_q);
 $('#photos').append(img);
 });
 } else {
 alert(data.message);
 }
 },
 error: function(jqXHR, textStatus, errorThrown) {
 alert('There was an error.');
 }});
}

$(document).ready(loadPhotos);
</script>
</body>
</html>

The jQuery version looks similar to the original example, but the syntax varies slightly.
Instead of distinct open, send, and onload methods, all the functionality is contained
within the ajax method, and the HTTP request is made immediately when the ajax
method is called.

 JQuery’s dataType property indicates that the response should be parsed as JSON.
This saves the developer the additional step of using JSON.parse to parse the
response text into a JSON object. The XMLHttpRequest object can do this as well by set-
ting the responseType property to 'json'. As of this writing, the responseType prop-
erty isn’t fully supported in all browsers. These are minor cosmetic differences; the
functionality between the original sample and the jQuery version is the same.

 While jQuery has full support for CORS, there are a few things to be aware of when
using jQuery.

 First, jQuery doesn’t support synchronous cross-origin requests.
 Second, the ajax method only supports XMLHttpRequest, and doesn’t support

XDomainRequest. This means if you’re using jQuery and need support for CORS in
Internet Explorer 8 or Internet Explorer 9, you’ll need to write code to fall back on
the XDomainRequest object, or use a jQuery plugin that supports XDomainRequests,
such as the one at https://github.com/jaubourg/ajaxHooks/blob/master/src/xdr.js.

 Third, if you need to set the withCredentials property, you’ll need to use the
xhrFields property, as shown in the following code snippet. The xhrFields property
lets you set arbitrary fields on the XMLHttpRequest object:

$.ajax(url, {
 xhrFields: {
 withCredentials: true
 }
});

Fourth, jQuery doesn’t set the X-Requested-With request header on cross-origin
requests. JQuery traditionally sets the X-Requested-With header on HTTP requests.

error property is used
instead of onerror.

https://github.com/jaubourg/ajaxHooks/blob/master/src/xdr.js

36 CHAPTER 2 Making CORS requests
This header is used by clients to indicate that a request is coming from an XMLHttp-
Request object. The server receiving the request can look for the X-Requested-With
header to determine where the request is coming from. JQuery always sets this header
when making same-origin requests, but removes it from cross-origin requests. The reason
is that setting custom request headers requires an additional server configuration step.
Rather than force developers to make changes to their server, jQuery chose to drop this
header. The following code snippet shows how to reenable the X-Requested-With header
on cross-domain requests:

$.ajax(url, {
 headers: {'X-Requested-With': 'XMLHttpRequest'}
});

Note that if you add this header, you’ll also need to update your server to allow this
header on cross-origin requests. Chapter 4 shows how to add server-side support for
this and other request headers.

2.7 Summary
This chapter explored ways to make cross-origin requests from the browser. Browsers
can be divided into three tiers of CORS support:

■ Tier 1—Browsers that fully support CORS
■ Tier 2—Browsers that partially support CORS
■ Tier 3—Browsers that don’t support CORS

The browsers in tier 1 all use the XMLHttpRequest object to make cross-origin requests,
while the browsers in tier 2 (Internet Explorer 8 and Internet Explorer 9) use the
XDomainRequest object. JQuery can also be used to make cross-origin requests in tier
1 browsers.

 In addition to these objects, the browser also uses CORS when loading cross-origin
images in the <canvas> element. By default, a cross-origin image will taint a canvas,
which prevents data from being extracted from the canvas. Setting the image’s cross-
Origin property to anonymous (or in some cases user-credentials) will allow data to
be extracted.

 This chapter gives you the foundation for issuing cross-origin requests from the
browser. But it has glossed over the details of how the server responds to cross-origin
requests. For a cross-origin request to succeed, the server must give its permission to
make cross-origin requests. The next part will cover how to configure a server to support
CORS. We’ll start by learning how to identify and respond to simple CORS requests.

Part 2

CORS on the server

Part 1 looked at CORS from the perspective of a client making cross-origin
requests. Part 2 examines CORS from the perspective of a server receiving a
cross-origin request.

 Chapter 3 takes a look at how to handle a simple CORS request. It begins by
setting up a sample application that will be used throughout the rest of the
book. Next, it covers the roles of that the client, the browser, and the server play
in a cross-origin request. It then applies this knowledge back to the sample appli-
cation, and shows how the server uses HTTP response headers to configure CORS
behavior. In particular, chapter 3 introduces two key headers used by CORS: the
Origin request header and the Access-Control-Allow-Origin response header.

 Chapter 4 introduces the notion of a preflight request, which allows clients to
ask permission before sending a cross-origin request. The preflight request
ensures that servers aren’t caught off-guard by unexpected requests. The server
can give permissions to allow certain HTTP methods (via the Access-Control-
Allow-Methods response header) and certain HTTP request headers (via the
Access-Control-Allow-Headers response header). Finally, the chapter covers
the preflight cache, which allows preflight requests to be cached for a certain
period of time.

 Chapter 5 rounds out your understanding of CORS by covering two remain-
ing features: including user credentials such as cookies on cross-origin requests,
and giving the client permission to view certain response headers.

 Chapter 6 takes the knowledge from the previous three chapters and turns it
into practical guidance for your own CORS implementation. It starts by looking
at the different ways you can allow access to your API, from opening up to the

38 PART 2 CORS on the server
public or limiting it to a certain subset of origins. This chapter also looks at common
security issues, such as how to protect your API against CSRF attacks, and how you can
use OAuth2 to give third-party services access to your API. Next, it looks at how to
improve performance by minimizing preflight requests. Finally, it examines how CORS
requests interact with HTTP redirects.

Handling CORS requests
Suppose you’re the owner of a blog that you programmed yourself. To keep the site
scalable, you’ve separated the blog data from the HTML code by introducing an
API. The blog page queries the API to load the blog posts, then displays those posts
on the page.

 As your site becomes more popular, some of your more tech-savvy readers ask if
they can use your data to create JavaScript mashups, or embed some of your data
on their site by creating a JavaScript widget. They can do this now by screen-scraping
the data from your site, but they would be a lot happier if they could plug into the
same API you use to load the data for the site.

 You love your readers, and think this is a great idea. But when you share your API
code with them, it doesn’t work. This is because the browser’s same-origin policy pre-
vents the API request from running from anywhere but your own web application.

This chapter covers
■ How to set up the book’s sample application
■ What a CORS request looks like from a server’s

perspective
■ What an origin is
■ How to respond to CORS requests using the

Access-Control-Allow-Origin header
39

40 CHAPTER 3 Handling CORS requests
 CORS offers a way around this restriction by letting your server specify which kinds
of requests are allowed. CORS gives you control over who can access which pieces of
your API.

 This chapter will take a closer look at how to handle CORS requests from the
server’s perspective. We’ll start by setting up sample code for your blogging app. I’ll
then introduce the major players in CORS and you’ll learn how they interact. You’ll
also learn about the basic building blocks of a CORS request and response.

3.1 Setting up the sample code
This section introduces the sample code that will be used throughout the rest of this
book. You’ll add new functionality to it as you learn more about how CORS works. The
sample you’ll be developing is a blogging app that displays a set of blog posts to the
user. The app consists of a server that exposes two pieces of functionality:

1 An API endpoint that returns all the blog posts in JSON format
2 An HTML page that queries the API for the posts and then displays them on

the page

Figure 3.1 shows what the blogging app will look like once you’re done setting up the
code in this section.

 Appendix B explains how to set up the prerequisites for this sample. If you haven’t
already, take a moment to visit those requirements. After setting up the prerequisites,
your development environment should have the following:

■ Node.js
■ Express
■ A web browser that supports CORS

Once you’ve set up these prerequisites, you’re ready to write code.

3.1.1 Setting up the sample API

Let’s turn our attention to how to set up each piece of code. You’ll start by building
the API portion of the server, as highlighted in figure 3.2.

 Add the JavaScript code in listing 3.1 to a file named app.js. This code creates a
new server running on port 9999 of your computer. The code starts by creating a few

<html>

<body>

<style>

...

</style>

...

</body>

</html>

{

"1":{"post":

"..."},

"2":{"post":

"..."},

"3":{"post":

"..."},

}

/client.html

HTML page

/api/posts

JSON API

Figure 3.1 The sample blogging app
consists of two parts: an API with
blog data, and an HTML page to
display the blog data.

41Setting up the sample code

Se
static

from
s

direc
as a

S
se

r
blog posts (these are just made-up sample posts for the app; a real blog would load
these posts from a database). It then creates a new Express web server and adds the
express.static() middleware. The express.static() middleware configures the web
server to read files from your computer and serve them through the web server (this
will come into play in the next section, where you’ll add a client.html file).

 Next, the code sets up the actual API. The API lives at the endpoint /api/posts.
Requests to /api/posts will return a JSON object containing the sample blog posts.
Now that the code has configured how the server behaves, it starts the server on port
9999. Finally, the code prints out a friendly startup message to verify that everything
is working.

var express = require('express');

var POSTS = {
 '1': {'post': 'This is the first blog post.'},
 '2': {'post': 'This is the second blog post.'},
 '3': {'post': 'This is the third blog post.'}
};

var SERVER_PORT = 9999;
var serverapp = express();
serverapp.use(express.static(__dirname));
serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});
serverapp.listen(SERVER_PORT, function() {
 console.log('Started server at http://127.0.0.1:' + SERVER_PORT);
});

NOTE If you are using Linux, you may have to invoke Node.js by typing
nodejs rather than node.

You can run the server by opening a terminal window, navigating to the directory
where your code lives, and typing node app.js. You should see the output in figure 3.3.
You can stop the server by pressing Ctrl-C. Every time you make changes to the code
in app.js, you’ll need to stop and then start the server.

Listing 3.1 Sample server code

<html>

<body>

<style>

...

</style>

...

</body>

</html>

{

"1":{"post":

"..."},

"2":{"post":

"..."},

"3":{"post":

"..."},

}

/client.html

HTML page

/api/posts

JSON API
Figure 3.2 The location of the API
endpoint within the sample app

Made-up blog
posts for app

Creates a new Express-
powered web server

rves
 files
 the
ame
tory
pp.js

Adds API endpoint
to retrieve sample
poststarts

rver

Displays a
startup
message
once serve
is started
www.allitebooks.com

http://www.allitebooks.org

42 CHAPTER 3 Handling CORS requests
Here is an overview of how to perform these tasks:

■ Stop the server. If the server is running, press Ctrl-C in the terminal window to
stop it.

■ Start the server. If the server isn’t running, type node app.js in the terminal win-
dow to start it.

■ Restart the server. Stop the server, then start the server (that is, press Ctrl-C fol-
lowed by typing node app.js).

You can verify that the server is working by visiting http://127.0.0.1:9999/api/posts in a
browser. You should see a JSON response similar to figure 3.4. If you don’t see this
response or you receive an error, review the preceding steps to make sure everything is
in order.

 Now that you have a working API, let’s build the page that uses this API.

3.1.2 Setting up the sample client

With the API in place, you’re ready to add the client.html page that consumes the API,
as highlighted in figure 3.5.

 Copy the contents of listing 3.2 into a new file named client.html, and save it in the
same directory as app.js. Client.html is the web page that reads the data from the API
and displays it in the browser.

 Chapter 2 covered the basics of how the client makes CORS requests, but here is a
recap of the code in listing 3.2. The main functionality of client.html takes place in
the getBlogPost function. The function starts by creating a new XMLHttpRequest
object. XMLHttpRequest is the standard mechanism for making HTTP requests in

Figure 3.3 Output from running
the API server

Figure 3.4 The response from
a working server

http://127.0.0.1:9999/api/posts

43Setting up the sample code

est
JavaScript, and will be used to load the posts from the API. Next, the code defines an
onload function that executes when the HTTP response is received. This particular
function parses the blog posts into a JSON object, then displays the posts on the page.
After the request behavior is configured, the actual request is sent to the server. The
getBlogPost function is called when the page loads, so that the posts are automati-
cally displayed when the user visits the page. If there is an error when making the
HTTP request, the page displays the word 'ERROR' on the page to let you know that
something is wrong.

<!DOCTYPE html>
<html><body onload="getBlogPosts();">
<style>
.post {margin-bottom: 20px;}
</style>
<div id="output"></div>
<script>
var createXhr = function(method, url) {
 var xhr = new XMLHttpRequest();
 xhr.onerror = function() {
 document.getElementById('output').innerHTML = 'ERROR';
 };
 xhr.open(method, url, true);
 return xhr;
};

var getBlogPosts = function() {
 var xhr = createXhr('GET', 'http://127.0.0.1:9999/api/posts');
 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 var elem = document.getElementById('output');
 for (var postId in data) {
 var postText = data[postId]['post'];
 var div = document.createElement('div');
 div.className = 'post';
 div.appendChild(document.createTextNode(postText));
 elem.appendChild(div);
 }
 };

Listing 3.2 Sample client code

<html>

<body>

<style>

...

</style>

...

</body>

</html>

/client.html

HTML page

{

"1":{"post":

"..."},

"2":{"post":

"..."},

"3":{"post":

"..."},

}

/api/posts

JSON API

Figure 3.5 Location of the
client web page within the
sample app

Gets posts when
page loads

Displays an error
if request fails

Creates a new
XMLHttpRequ
object

Displays
posts on
page

44 CHAPTER 3 Handling CORS requests
 xhr.send();
};
 </script>
</body></html>

When making changes to the app.js server code, you’ll need to reload the client.html
page. This means clicking the browser’s Reload button, or pressing Ctrl-R (Cmd-R on
Macs) in the browser. Reloading the page ensures that the client page picks up the lat-
est changes made on the server.

3.1.3 Running the sample app
Now that the server and client code are ready, let’s fire up the sample app. Start the
server by typing node app.js in the terminal window (or restart it if it’s already run-
ning). Because the server also serves the client.html page, the server must be running
for the client.html page to load. (If you encounter “file not found” errors on cli-
ent.html, be sure to first check that the server is running.) Next, switch over to your
web browser and visit the page at http://127.0.0.1:9999/client.html. You should see
the blog posts as shown in figure 3.6.

 The client.html page displays the sample posts defined in app.js. To do this, the cli-
ent.html page sends an HTTP request to /api/posts. You can view this HTTP request
and response (or any errors) by using the browser’s JavaScript console. I’ll be using
Chrome for the screenshots throughout this book. You can open Chrome’s JavaScript
Console by pressing the keyboard shortcut Ctrl-Shift-J on Windows (Cmd-Option-J on
Mac). You can also find it by navigating to the Tools > JavaScript Console menu option
on Windows (or the View > Developer > JavaScript Console menu option on Mac). If
you aren’t using Chrome, don’t worry. Most browsers have a built-in JavaScript Con-
sole that will give you the same information. Chapter 7 demonstrates how to open the
JavaScript console in most major browsers.

 You can view the details of the HTTP request by opening the JavaScript console,
clicking the Network tab, and refreshing the client.html page. You should see two
HTTP requests in the Network tab: one for client.html, the other for /api/posts. If you

Makes HTTP
request

Figure 3.6 Client page
with a successful request

http://127.0.0.1:9999/client.html
http://127.0.0.1:9999/client.html

45Making a CORS request
click the /api/posts request, then the Headers tab, you can see all the details of the
request and response, as shown in figure 3.7.

 The remainder of this book will make incremental updates to this sample code to
demonstrate how the features of CORS work. You’ll switch back and forth between the
terminal and the browser depending on which part of the code we’re looking at. Now
that the sample app is up and running, let’s introduce CORS to the mix.

3.2 Making a CORS request
The previous section created a sample app running on a single server at 127.0.0.1:9999.
This sample app makes a same-origin HTTP request to load the blog data from the
/api/posts endpoint. Now that the sample app is set up, let’s modify it to make a cross-
origin request.

 You can make a cross-origin request by introducing a new server that sends requests
to the API on 127.0.0.1:9999. Listing 3.3 modifies app.js to introduce a second server

Figure 3.7 Viewing the HTTP request and response to the API

46 CHAPTER 3 Handling CORS requests
running at localhost:1111. Requests from 127.0.0.1:9999 to localhost:1111 are cross-
origin requests, because 127.0.0.1:9999 and localhost:1111 are different. Figure 3.8
shows what this new server configuration looks like.

serverapp.listen(SERVER_PORT, function() {
 console.log('Started server at http://127.0.0.1:' + SERVER_PORT);
});

var CLIENT_PORT = 1111;
var clientapp = express();
clientapp.use(express.static(__dirname));
clientapp.listen(CLIENT_PORT, function(){
 console.log('Started client at http://localhost:' + CLIENT_PORT);
});

If you restart the server, then visit the page at http://localhost:1111/client.html, you’ll
receive an error in the browser as well as the JavaScript console, as shown in figure 3.9.
Contrast this to the page at http://127.0.0.1:9999/client.html, which still works. Both
pages are using the same client.html code, so what’s the difference?

Listing 3.3 Update app.js to add a new server running on localhost:1111

<html>

<body>

<style>

...

</style>

...

</body>

</html>

/client.html

127.0.0.1:9999

HTML page

{

"1":{"post":

"..."},

"2":{"post":

"..."},

"3":{"post":

"..."},

}

/api/posts

Success

Error (needs

CORS support)

JSON API

<html>

<body>

<style>

...

</style>

...

</body>

</html>

/client.html

localhost:1111

HTML page
Figure 3.8 Topology of sample
app with new server

Code for second
server begins here

http://127.0.0.1:9999/client.html
http://localhost:1111/client.html

47Anatomy of a CORS request
NOTE If you are using Internet Explorer 10 or above, you need to add http://
localhost to your Trusted Sites for the sample to work. You do this by navigat-
ing to Trusted Sites (located under Internet Options > Security > Trusted Sites
> Sites) and adding http://localhost.

The difference is that the request from http://127.0.0.1:9999/client.html is a same-
origin request, while the request from http://localhost:1111/client.html is a cross-
origin request. The request from http://127.0.0.1:9999/client.html succeeds because the
request comes from the same location as the server (127.0.0.1:9999). The request
from http://localhost:1111/client.html fails because it crosses server boundaries, and
you haven’t yet configured the server to accept these requests.

 The rest of this chapter will work toward fixing that error. To do that, let’s first dis-
cuss what happens behind the scenes when you make a CORS request.

3.3 Anatomy of a CORS request
Think about what happens when you want to withdraw money from an ATM. You
walk up to the machine, swipe your card, enter your PIN, and a few seconds later
you walk away with money in your wallet. Figure 3.10 shows each of the players in
this transaction.

Figure 3.9 Error when making a cross-origin request

You ATM Bank account

$ $

$ $

$

Figure 3.10 A bank withdrawal
consists of you, the ATM, and
your bank account

http://localhost
http://localhost
http://localhost
http://127.0.0.1:9999/client.html
http://localhost:1111/client.html
http://127.0.0.1:9999/client.html
http://localhost:1111/client.html

48 CHAPTER 3 Handling CORS requests
The ATM acts as a trusted intermediary between you and the bank by verifying each
step of the transaction. It checks things like whether you entered the correct PIN, or
whether your bank account has enough money. Imagine if instead of an ATM there
was a stack of money and the bank trusted everyone to take the right amount. That
bank wouldn’t be in business long!

 Like this ATM transaction, a CORS request has its own group of players with similar
functionality. The players in a CORS request are the client, the browser, and the server.

3.3.1 The players in a CORS request

The key players in a CORS request are the client, the browser, and the server. The cli-
ent wants some piece of data from the server, such as a JSON API response or the con-
tents of a web page. The browser acts as the trusted intermediary to verify that the
client can access the data from the server. Table 3.1 shows how these players fit with
the ATM analogy.

CLIENT

In the same way that you want money from your bank account, the client wants data
from the server. The client is a snippet of JavaScript code running on a website, and
it’s responsible for initiating the CORS request. It’s served from a particular domain
and usually consists of an XMLHttpRequest to a remote server. The following code
snippet highlights the portion from the sample’s client.html file that is responsible for
making the CORS request:

var xhr = createXhr('GET', 'http://127.0.0.1:9999/api/posts');
xhr.onload = function() {
 …
};
xhr.send();

Table 3.1 A CORS request consists of the client, the browser, and the server

CORS player ATM analogy Description

Client You Wants data from the server

Browser ATM Manages the communication between the client and the server

Server Bank account Serves the data the client wants

Client versus user
Sometimes the words client and user are used interchangeably, but they are different
in the context of CORS. A user is a person visiting a website, while a client is the
actual code served by that website. Multiple users can visit the same website and be
served the same JavaScript client code, as shown in figure 3.11. For the purposes
of understanding CORS, we’ll focus on the client and not on the user.

49Anatomy of a CORS request
BROWSER

The client code runs inside a web browser. The CORS spec calls the web browser a user
agent, but we’ll refer to it as the web browser. Just like the ATM, the browser is a
trusted intermediary, and plays an active role in a CORS request in two ways:

■ The browser adds additional information to the request so that the server can
identify the client.

■ The browser interprets the server’s response and decides whether to send the
request to the client or to return an error.

If the browser didn’t do these things, a client could send any request to the server, and
the protection introduced by the browser’s same-origin policy would be broken. The
browser ensures that both the client and the server play by the rules of CORS.

SERVER

The server is the destination of the CORS request. It’s the bank account in the ATM
analogy. The server stores the data that the client wants, and it has the final say as to
whether the CORS request is allowed or not.

 Now that you know who is involved in a CORS request, let’s take a look at how they
all work together.

3.3.2 Lifecycle of a CORS request

A full end-to-end CORS request flow is shown in figure 3.12. Although technically the
client code runs inside the browser, figure 3.12 separates the client from the browser
to make it easier to envision the flow. The steps in a CORS request, illustrated in the
figure, are:

Users

var xhr =

new XMLHTTPRequest();

xhr.open(method,url);

xhr.onload = function()

{

};

xhr.send();

Client
Figure 3.11 Multiple users
interacting with a website’s
client code

50 CHAPTER 3 Handling CORS requests
b The client initiates the request.

c The browser adds additional information to the request and forwards it to
the server.

d The server decides how to respond to the request, and sends the response to
the browser.

e The browser decides whether the client should have access to the response, and
either passes the response to the client or returns an error.

Like an ATM interacting with a bank account, the browser and the server “talk” to each
other to determine whether the client can access the server’s data. A hypothetical con-
versation between the browser and the server might go something like figure 3.13.

 The browser and the server talk to each other through HTTP headers. HTTP head-
ers carry the details of the CORS request, including whether or not the CORS request
is allowed. Let’s take another look at the conversation in figure 3.13, this time mapped
onto a set of HTTP requests and responses. The bolded items show how the parts of
the conversation map to the HTTP headers.

Client ServerBrowser

1 Client initiates request.

4 Browser decides whether

client should have access

to response.

3 Server decides how

to respond to request

and sends response

to browser.

2 Browser adds additional

information to request and

forwards it to server.

Figure 3.12 Lifecycle of a CORS request

ServerBrowser

Hi server

127.0.0.1:9999!

Please give me the data at

/api/posts and let me know if

the client at localhost:1111

can access it.
Here’s the

data. And, yup, any

client can have

access.

Figure 3.13 Conversation
between a browser and a
server regarding CORS

51Making a request with the Origin header
This conversation represents the simplest dialogue that can take place between a
browser and a server during a CORS request. As you’ll see in subsequent chapters, this
conversation grows richer and new headers are added based on the client’s needs.

 CORS is built around many headers, but the two most important are:

■ The Origin request header
■ The Access-Control-Allow-Origin response header

These headers must be present on every successful CORS request. Without one or
the other, the CORS request will fail. Let’s dig deeper into the vocabulary of these
two headers.

3.4 Making a request with the Origin header
The Origin header is central to CORS. The client identifies itself to the server by using
the Origin header. Think of it as the client’s calling card.

 A CORS request must have an Origin header. There is no way around that. If there
is no Origin header it isn’t CORS. With that in mind, let’s revisit the sample app and
take a look at the actual Origin header.

3.4.1 Viewing the Origin header

The browser’s Network tab lets you view the HTTP headers included on the request,
including the Origin header. View this header by opening the Network tab in the
browser’s JavaScript console and reloading the page at http://localhost:1111/client.html.

 After the page finishes loading, choose the request to /api/posts in the Network
tab. This is the actual CORS request from localhost:1111 to the API server on
127.0.0.1:9999. On the right are the HTTP headers for the request (if there are no
headers be sure the Headers tab is selected). You should see the Origin header in the
list of headers, as shown in figure 3.14.

 Notice how the console only shows the request headers, and no response headers.
Because the CORS request is failing, the browser hides the response information from
the console. Once the server is configured to support CORS, the response information
will appear here as well.

 Also notice that while the Origin header is present on the request, the code in cli-
ent.html never added it to the request. The Origin header is silently added to the
request by the browser. Next let’s take a look at what the Origin header is and how it
appears in the request.

Browser: Hi server 127.0.0.1:9999! Please
give me the data at /api/posts and let me
know if the client at localhost:1111 can
access it.

GET /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111

Server: Here is the data. And, yup, any client
can have access.

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

http://localhost:1111/client .html

52 CHAPTER 3 Handling CORS requests
3.4.2 What is an origin?

The origin defines where the client resource lives. The origin for the page at http://
localhost:1111/client.html is http://localhost:1111. In other words, the origin is every-
thing in the URL up until the path. In more formal terms, the origin is the scheme,
host, and port of a URL, as shown in figure 3.15.

 Table 3.2 shows the origins for various URLs (note that these are example URLs,
and some won’t actually work in your browser).

The string null can also be a valid value for the origin, even though it doesn’t follow
the scheme/host/port pattern. Browsers use the value null when the origin of the cli-
ent can’t be determined. An example of this is opening a file in your browser. The file

Table 3.2 Origin values for various example URLs

URL Origin

http://localhost:1111 http://localhost:1111

http://localhost:1111/client.html http://localhost:1111

https://localhost:1111/client.html https://localhost:1111

http://localhost/client.html http://localhost

file:///Users/hossain/ch02/client.html null

Figure 3.14 The Origin header on the HTTP request

http://localhost:1111/client.html

Scheme PortHost

Origin
Figure 3.15 The origin consists of
the scheme, host, and port.

http://localhost:1111/client.html
http://localhost:1111/client.html
http://localhost:1111
http://localhost:1111
http://localhost:1111/client.html
https://localhost:1111/client.html
http://localhost/client.html
http://localhost:1111
http://localhost:1111
https://localhost:1111
http://localhost

53Making a request with the Origin header
exists on your local filesystem and isn’t loaded from a remote server. Therefore it
doesn’t have an origin. You can see this in action by double-clicking the client.html
file to open it in your browser. Looking in the Network tab, you’ll see the Origin
header set to null, as shown in figure 3.16. It’s important to be aware of null origin
values and respond to them appropriately. We’ll cover this in more detail in chapter 6.

 The term origin may be misleading in the context of CORS because it can be inter-
preted as the origin of the request. Origin has nothing to do with HTTP requests/
responses in this case; it’s only a property of a URL. Any URL can have an origin. When
an origin refers to the client making the request, we call it the client origin. When an

Loading a file in web browser.

Origin is null.

Figure 3.16 Request with null origin

54 CHAPTER 3 Handling CORS requests
origin refers to the URL receiving the request, we call it the server origin. Table 3.3 shows
the client and server origins for the sample app.

There isn’t anything inherently special about an origin. It’s merely what a browser
uses to group content together. Servers use the origin to determine where a request is
coming from. Browsers use the origin to define whether a request is same-origin or
cross-origin, and exhibits different behavior for each.

SAME-ORIGIN VERSUS CROSS-ORIGIN REQUESTS

With the definition of origin in place, I can provide a more formal definition for
same-origin and cross-origin requests. A request is a same-origin request when the cli-
ent origin and the server origin are exactly the same. Otherwise the request is a cross-
origin request.

 This distinction between same-origin and cross-origin requests lies at the heart of
CORS. When the client initiates the request, the browser extracts the server origin
from the URL of the request. It then compares the server origin against the client ori-
gin to determine if the request is same-origin or cross-origin. Browsers allow clients to
make same-origin requests without any restrictions. But if the request is cross-origin,
the browser uses CORS to determine how to handle the request.

 In the sample app, the origin of the page at http://127.0.0.1:9999/client.html is
http://127.0.0.1:9999. This matches the origin of the API endpoint at http://
127.0.0.1:9999/api/posts. Therefore the request is same-origin. On the other hand,
the origin for the page at http://localhost:1111/client.html is http://localhost:1111,
which doesn’t match the origin http://127.0.0.1:9999. Table 3.4 shows example
requests along with whether they are same-origin requests.

The last example in table 3.4 might come as a surprise. The IP address for localhost is
traditionally 127.0.0.1, so you’d expect http://localhost:9999 and http://127.0.0.1:9999

Table 3.3 Client and server origins for the sample app

URL Origin

Client http://localhost:1111/client.html http://localhost:1111

Server http://127.0.0.1:9999/api/posts http://127.0.0.1:9999

Table 3.4 Same-origin versus cross-origin requests

Client origin Server origin Same-origin request

http://127.0.0.1:9999 http://127.0.0.1:9999 Yes

http://127.0.0.1:9999 https://127.0.0.1:9999 No (different schemes)

http://localhost:1111 http://localhost:9999 No (different ports)

http://localhost:9999/ http://127.0.0.1:9999 No (different hosts)

http://127.0.0.1:9999/client.html
http://127.0.0.1:9999
http://127.0.0.1:9999/api/posts
http://127.0.0.1:9999/api/posts
http://localhost:1111/client.html
http://localhost:1111
http://127.0.0.1:9999
http://localhost:9999
http://127.0.0.1:9999
http://localhost:1111/client.html
http://127.0.0.1:9999/api/posts
http://localhost:1111
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://127.0.0.1:9999
http://localhost:1111
http://localhost:9999/
https://127.0.0.1:9999
http://localhost:9999

55Responding to a CORS request
to be the same origin. But remember that the origin comparison only compares the
string values of the scheme, host, and port, and knows nothing about what host an IP
address maps to. In this example, “localhost” and “127.0.0.1” are different strings, and
therefore the request isn’t a same-origin request. Now that you know what an origin is,
let’s look at how the browser sets the Origin header on requests.

3.4.3 Setting the Origin header

The browser adds the Origin header to the HTTP request before sending the request to
the server. The browser is solely responsible for setting the Origin header. The Origin
header is always present on cross-origin requests, and the client has no way of setting or
overriding the value. This is a requirement from a security standpoint: if the client could
change the Origin header, they could pretend to be someone they aren’t. Figure 3.17
shows how the browser adds the Origin header before sending the request to the server.

 Same-origin requests may sometimes have an Origin header as well. Chrome and
Safari include an Origin header on same-origin non-GET requests. In these cases, the
Origin header has the same value as the server’s origin value. This is important to
keep in mind. When identifying CORS requests, it’s not enough to check that the Ori-
gin header exists. You should also check that the origin value is different from your
server’s origin value.

 In this section you learned what an Origin header is, where you can find it, and
how it can be used to identify a CORS request. Next, let’s update the server to respond
to the CORS request by using the Access-Control-Allow-Origin response header.

3.5 Responding to a CORS request
Look back at the conversation between the browser and the server in figure 3.13. The
Origin header got you to the first part of the conversation, where the browser identifies
the client. Now let’s turn our attention to the second part of the conversation, where the
server responds to the browser. The server does this by adding the Access-Control-Allow-
Origin header to the response. Let’s take a look at how this header works.

3.5.1 The Access-Control-Allow-Origin header

The server uses the Access-Control-Allow-Origin response header to approve the
request. This header must be present on every successful CORS response. It completes

Client ServerBrowser

HTTP /api/postsGET

Origin: http://localhost:1111HTTP /api/postsGET

Figure 3.17 The browser adds the Origin header before sending the request to the server.

56 CHAPTER 3 Handling CORS requests
the conversation by saying “Yup, that client can have access.” If this header isn’t pres-
ent, the CORS request will fail.

 The Access-Control-Allow-Origin header is an additional response header layered
onto the response. It shouldn’t affect any other response parameters. If the resource
can’t be found and returns a 404 error, it should continue returning a 404, even with
the Access-Control-Allow-Origin header. Figure 3.18 shows how a server can use the
Access-Control-Allow-Origin header to respond to a CORS request.

 The value of the Access-Control-Allow-Origin header can be either a wildcard or
an origin value. The wildcard value says that clients from any origin can access the
resource, while the origin value only gives access to a specific client. Here is an exam-
ple of both header values.

Access-Control-Allow-Origin: *
Access-Control-Allow-Origin: http://localhost:1111

Let’s look at how to use these header values.

3.5.2 Access-Control-Allow-Origin with a wildcard (*) value

An Access-Control-Allow-Origin header with the value * indicates that any client can
access this resource. In fact, the simplest way to add CORS support to a server is to add
Access-Control-Allow-Origin: * to every response. Let’s modify the sample to do
just that.

 Listing 3.4 introduces a new piece of middleware to the server named handleCors.
All CORS-related functionality will go in this middleware. The handleCors function
adds an Access-Control-Allow-Origin header to the response, then calls next() to con-
tinue processing the request. (Calling next() is a standard pattern that all Express
middleware components must follow to continue processing the request.) Finally, you
attach the handleCors middleware to the server processing pipeline.

 When you restart the server and reload the client at http://localhost:1111/
client.html, you should see the blog posts loaded on the page. If you examine the
request in the Network tab, you’ll now see both the HTTP request and response, with
the Origin header in the request and the Access-Control-Allow-Origin header in the
response, as shown in figure 3.19. Congratulations—with that one line of code, you’ve
added CORS support to the server!

Client ServerBrowser

HTTP /api/postsGET

Origin: http://localhost:1111

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

HTTP /api/postsGET

Figure 3.18 Responding to a CORS request using the Access-Control-Allow-Origin header

http://localhost:1111/client .html
http://localhost:1111/client .html

57Responding to a CORS request
var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', '*');
 next();
};

var SERVER_PORT = 9999;
var serverapp = express();
serverapp.use(express.static(__dirname));
serverapp.use(handleCors);
serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});

Listing 3.4 Adding wildcard CORS support to the server

Origin request

header

Access-Control-Allow-Origin

response header

Figure 3.19 Adding wildcard CORS support to the server

Introduces new
handleCors middleware

Adds Access-Control-Allow-
Origin response header

Adds handleCors
middleware to server

58 CHAPTER 3 Handling CORS requests
The wildcard value is ideal for situations where anyone can access the data, regardless
of the client. A good example is the HTML5Rocks.com website. The website itself is a
public resource, accessible from any browser, without any authentication. If you make
a request to HTML5rocks.com and examine the response in the console, you’ll see the
Access-Control-Allow-Origin header as shown in figure 3.20.

 Note that although a resource has an Access-Control-Allow-Origin: * header, it
doesn’t necessarily mean that it’s publicly accessible. There may be additional forms
of authentication on the resource, as you’ll see in chapter 6.

 The wildcard is just one way to respond to CORS requests. Now let’s look at using
actual origin values in the Access-Control-Allow-Origin header.

Access-Control-Allow-Origin header

on HTML5rocks.com

Figure 3.20 html5rocks.com always adds the Access-Control-Allow-Origin: * header to responses.

59Responding to a CORS request
3.5.3 Access-Control-Allow-Origin with an origin value

The Access-Control-Allow-Origin header can also have an actual origin as a value.
For example:

Access-Control-Allow-Origin: http://localhost:1111

This header indicates that only clients from http://localhost:1111 can access the
resource. Clients from other origins will be rejected.

 Let’s modify the example to respond with an origin value rather than a wildcard.
This is pretty easy to do; simply replace the * value with http://localhost:1111, like
in the following code snippet.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 next();
};

Restart the server and reload the client at http://localhost:1111/client.html; you
should still see the blog posts, with a successful response in the console.

 The Access-Control-Allow-Origin header can have only a single origin value. You
cannot specify multiple origins in the same header. If your server supports clients
from different origins, the Access-Control-Allow-Origin header will have to contain
only the origin for the specific client making the request.

 Using the origin value is useful when you have a subset of servers, and you only want
to allow CORS requests from those servers. For example, a mobile app may host its app
on http://mobile.foo.com, but store its private API on http://api.foo.com. In this case a
header with Access-Control-Allow-Origin: http://mobile.foo.com could be used to
limit CORS requests to the http://mobile.foo.com origin only, as shown in figure 3.21.

 You’ve learned of two ways to enable CORS on a server: using a wildcard value, or
specifying a specific origin. But what if you want to prevent clients from certain locations
from making CORS requests? The next section looks at how to reject CORS requests.

3.5.4 Rejecting CORS requests

So far we’ve covered what to do if you want to accept a CORS request. But what if you
only want to allow CORS requests from certain origins and reject the others? CORS is
strict in the sense that the Access-Control-Allow-Origin value must either be * or an
exact match of the Origin header. Regular expressions or multiple origins aren’t
allowed; the Access-Control-Allow-Origin can only grant permissions to one origin at a
time. If the Access-Control-Allow-Origin isn’t * or an exact match of the Origin
header, the browser rejects the request.

 Table 3.5 summarizes the behavior for Origin and Access-Control-Allow-Origin
header combinations. Rejecting a CORS request is as simple as:

■ Sending an Access-Control-Allow-Origin header that doesn’t match the Ori-
gin header

■ Removing the Access-Control-Allow-Origin header entirely

http://localhost:1111
http://localhost:1111/client.html
http://mobile.foo.com
http://api.foo.com
http://mobile.foo.com

60 CHAPTER 3 Handling CORS requests
When you last modified the sample app, you updated the Access-Control-Allow-Origin
header to only allow cross-origin requests from http://localhost:1111. Requests from
any other origin will be rejected.

Table 3.5 How the browser reacts to server responses

Client request Server response Browser behavior

Origin: http://
localhost:1111

None Error. No Access-Control-
Allow-Origin header.

Origin: http://
localhost:1111

Access-Control-Allow-Origin: * Success.

http://api. comfoo.

Origin: http://www.bar.com

Origin: http://www. .commobile.foo

Origin: http://www. .combaz

Access-Control-Allow-Origin:

http://mobile.foo.com

Figure 3.21 The Access-Control-Allow-Origin only allows access from
http://mobile.foo.com.

http://mobile.foo.com
http://localhost:1111

61Responding to a CORS request
What does it mean for the browser to reject the request? It means that the browser
doesn’t forward any of the response information to the client. The client only knows
that an error occurred, but it doesn’t receive any additional information about what
the error was. This can be frustrating when debugging CORS requests, because it’s
hard to programmatically infer when a request fails due to CORS rather than some
other reason. Chapter 7 delves more into how to debug failing CORS requests.

 When the browser rejects the CORS request, it doesn’t send the response to the cli-
ent. But the actual HTTP request is still made to the server, and the server still sends
back an HTTP response. It may seem a little odd for the browser to make an HTTP
request only to have it rejected. But this must be done because the browser has no way
of knowing whether or not CORS is supported without first asking the server by mak-
ing the request. Figure 3.22 shows the CORS flow when the server rejects the CORS
request. The request is still sent to the server b. When the browser notices that there
is no Access-Control-Allow-Origin header (or the header doesn’t match the origin), it
triggers an error on the client, and doesn’t forward the response details c.

 Note that this mechanism for rejecting CORS requests also protects servers that
know nothing about CORS. Any server that was operational before CORS was intro-
duced needs to be protected from unauthorized CORS requests. If a server knows
nothing about CORS, but it receives a CORS request, the server’s response will not
have an Access-Control-Allow-Origin header, and the request will be rejected. The
CORS request will succeed only if the server explicitly opts-in to the request.

Origin: http://
localhost:1111

Access-Control-Allow-Origin:
http://localhost:1111

Success.

Origin: http://
localhost:1111

Access-Control-Allow-Origin:
http://othersite.com

Error. Access-Control-Allow-
Origin header doesn’t match
Origin header.

Table 3.5 How the browser reacts to server responses (continued)

Client request Server response Browser behavior

Client ServerBrowser

2 Because there is no

Access-Control-Allow-Origin

header, browser doesn’t

send response to client.

3

1 Browser sends

request to server.

Figure 3.22 CORS flow for a rejected CORS request

62 CHAPTER 3 Handling CORS requests
There are a number of strategies for accepting and rejecting CORS requests, depend-
ing on how open or closed you’d like your server to be. We cover these strategies in
chapter 6.

3.6 Summary
This chapter provided an overview of how CORS works from the server’s perspective. I
started by defining the players in a CORS request:

■ The client, which initiates the cross-origin request
■ The browser, which manages the communication between the client and the server
■ The server, which serves data that the client wants

Next, I covered the HTTP headers needed for a basic CORS request:

■ The browser sends the Origin header to indicate where a request is coming from.
■ An origin is defined as the scheme, host, and port portion of a URL.
■ The server responds with the Access-Control-Allow-Origin header if the request

is valid.

Finally, you learned that the Access-Control-Allow-Origin header supports two values:

■ Setting the Access-Control-Allow-Origin header to * allows cross-origin requests
from any client.

■ Setting the Access-Control-Allow-Origin header to a specific origin value only
allows cross-origin requests from that specific client.

The techniques described in this chapter should give you a good understanding of
how CORS works, and how to add simple CORS support to a server. But not all requests
can be handled with only the Access-Control-Allow-Origin header. More complex
HTTP requests, like PUT or DELETE, or requests with custom HTTP headers, will still
fail. Any cross-origin request beyond the simplest request needs additional processing
to succeed. We’ll cover these new processing techniques in the next chapter.

Handling preflight requests
The previous chapter showed how to respond to CORS requests by using the Access-
Control-Allow-Origin header. While this header is required on all valid CORS
responses, there are some cases where the Access-Control-Allow-Origin header
alone isn’t enough. Certain types of requests, such as DELETE or PUT, need to go a
step further and ask for the server’s permission before making the actual request.

 The browser asks for permissions by using what is called a preflight request. A
preflight request is a small request that is sent by the browser before the actual
request. It contains information like which HTTP method is used, as well as if any
custom HTTP headers are present. The preflight gives the server a chance to exam-
ine what the actual request will look like before it’s made. The server can then indi-
cate whether the browser should send the actual request, or return an error to the
client without sending the request.

 This chapter will examine what a preflight request is and when it’s used. Next
it will introduce headers the server can use to respond to a preflight. It will then

This chapter covers
■ What a CORS preflight is
■ How to respond to a CORS preflight
■ How the preflight cache works
63

64 CHAPTER 4 Handling preflight requests
introduce the preflight cache, which is a browser optimization that helps limit the num-
ber of preflight requests that are made.

4.1 What is a preflight request?
Let’s think about a preflight request in the context of the ATM example from chapter 3.
Banks sometimes put their ATMs inside a room behind a locked door. The door can
only be unlocked by swiping your ATM card (or if a kind person lets you in, but let’s
ignore that for now). Once you’re inside, you can walk up to the ATM and withdraw
money. The simple act of swiping your card to unlock the door doesn’t automatically
give you money, but it’s a quick check to verify that you have permission to use the ATM.

 In a similar fashion, a preflight request asks for the server’s permission to send the
request. The preflight isn’t the request itself. Instead, it contains metadata about it,
such as which HTTP method is used and if the client added additional request head-
ers. The server inspects this metadata to decide whether the browser is allowed to
send the request.

 By asking for permission before making the request, the preflight introduces an
additional processing step to CORS. Let’s dig deeper into how this new step fits into
your existing understanding of CORS.

4.1.1 Lifecycle of a preflight request

Chapter 3 framed CORS requests in the context of a conversation between the browser
and the server. The preflight augments this conversation with additional dialogue, as
shown in figure 4.1. This conversation is a bit longer than the conversation from chap-
ter 3. It adds the first two lines, where the browser asks the server for permission to use
the DELETE method. These two lines are the preflight request, while the last two lines
are the CORS request.

 Figure 4.2 expands figure 3.12 in chapter 3 to show how the preflight request fits
into the lifecycle of a CORS request. The browser uses the server’s response to the pre-
flight to determine if the request can be made. If the server grants the right permis-
sions on the preflight response, the browser sends the request to the server. The
server can also decide not to approve the request, in which case the browser will
return an error to the client, and the request will never be sent.

 Now that you have a sense of what a preflight request is, let’s discuss why it exists in
the first place.

4.1.2 Why does the preflight request exist?

The concept of a preflight was introduced to allow cross-origin requests to be made
without breaking existing servers that depend on the browser’s same-origin policy. If
the preflight hits a server that is CORS-enabled, the server knows what a preflight
request is and can respond appropriately. But if the preflight hits a server that doesn’t
know or doesn’t care about CORS, the server won’t send the correct preflight response,
and the actual request will never be sent. The preflight protects unsuspecting servers
from receiving cross-origin requests they may not want.

65What is a preflight request?
This is best conveyed by a story. Imagine it is is 2004. The web is still young, the term
Web 2.0 was only recently coined, and you’re the administrator of a small news site.
Much like the sample app, this site uses XMLHttpRequests to load news data from an

ServerBrowser

Preflight request

Actual request

Hi server

127.0.0.1:9999! I have

client localhost:1111 here, and

she wants to DELETE the

blog post at /api/posts/1.

Is that ok?
Yup, I

accept DELETE

requests, send the

request along.

Great, here’s

the DELETE request

for /api/posts/1.
Thank

you! I’ve deleted

that post.

Figure 4.1 Preflight versus actual request

Client ServerBrowser

Client initiates request to

server through browser

Browser sends

preflight request

Browser sends

actual request

Server sends

actual response

Server sends

preflight response

Client receives

actual response

Figure 4.2 Lifecycle of a CORS request (with preflight)

66 CHAPTER 4 Handling preflight requests
API, as shown in figure 4.3. Because your site lives under the same origin as your API, it
can make any type of HTTP request to the API.

 Not only does this API fetch news stories, but it also lets you, the owner, edit and
delete news items. While you have basic security measures in place, your code never
checks which origin a request is coming from, because why should it? All browsers
enforce the same-origin policy. There is no such thing as CORS (remember this is
2004), so there is no way for clients from other origins to access your API.

 Now fast-forward to 2009. Your news site has become much more popular, and it’s
still humming along nicely, thanks to the clean architectural separation between your
frontend and the API. But then late one night you read that Chrome 4.0 will be
released soon, and it supports this new feature called Cross-Origin Resource Sharing
that allows cross-origin requests.

 You find this a bit troubling, and that night you have nightmares of your server
being deluged with all sorts of requests from servers across the web, as shown in fig-
ure 4.4. You wake in a cold sweat wondering how you’ll protect your server from these
cross-origin requests. Will users suddenly be able to send DELETE requests without your
permission? Why would browsers suddenly break the same-origin policy you have
come to rely on?

 Luckily, CORS answers these questions. The arrival of CORS didn’t cause thousands
of server administrators to wake in a cold sweat. In fact, browser support for CORS was
a fairly painless rollout because when the CORS spec was being drafted, the spec
authors recognized that CORS needed to be introduced in a way that was compatible
with existing servers.

 The answer to preserving backward compatibility was to introduce the preflight
request. The preflight request is a way for the browser to ask the server if it’s okay to send
a cross-origin request before sending the actual request. The same-origin policy is still

Your server

All requests allowed

DELETE

POST

GET

APIHomepage

Figure 4.3 Your server, circa 2004. CORS doesn’t yet exist, but your site and your API
live under the same origin, so they can communicate.

67Triggering a preflight request
preserved, because the request is never made unless the server grants permission. An
existing server that knows nothing about CORS can safely ignore the preflight request,
and the browser will not forward the actual request to the server, as shown in figure 4.5.

 To return to the story, after learning about the CORS preflight request, you rest a
little easier that night, knowing that your server won’t receive any unauthorized requests
from other people’s servers.

 This story demonstrates why the preflight was introduced: it allows cross-origin
requests to be introduced to the web in a way that doesn’t adversely affect existing
servers. Now that you know why the preflight request exists, let’s modify the sample
code to trigger a preflight request.

4.2 Triggering a preflight request
Chapter 3 introduced a sample blogging app that loads blog posts using CORS. Let’s
modify that to let the user delete blog posts. The standard method for deleting data in
a REST API is to use the HTTP DELETE method, so we’ll use that here.

 Listing 4.1 modifies client.html to display a Delete link next to each blog post.
Clicking the link calls the deletePost JavaScript function. The deletePost function
deletes a blog post by sending a DELETE request to the URL /api/posts/{ID}, where {ID}
is the blog post’s ID. For example, a request to /api/posts/1 would delete the blog post
with an ID of 1. If the delete is successful, the post is removed from the page.

Your server

DELETE

DELETE DELETE

POST

GET

APIHomepage

badsite.com badsite2.com

Figure 4.4 A CORS nightmare scenario. Cross-origin requests are made without any
permission from the server. Thankfully this isn’t how CORS is implemented.

68 CHAPTER 4 Handling preflight requests
var getBlogPosts = function() {
 var xhr = createXhr('GET', 'http://127.0.0.1:9999/api/posts');
 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 var elem = document.getElementById('output');
 for (var postId in data) {
 var postText = data[postId]['post'];
 var div = document.createElement('div');
 div.className = 'post';
 div.id = 'postId' + postId;
 div.appendChild(document.createTextNode(postText));

 var a = document.createElement('a');
 a.innerHTML = 'Delete post #' + postId;
 a.href = '#';
 a.onclick = function(postId) {
 return function() {
 deletePost(postId);
 };
 }(postId);
 div.appendChild(document.createTextNode(' '));
 div.appendChild(a);

Listing 4.1 Adding a function to delete posts

Your server

DELETE

OPTIONS OPTIONS

POST

GET

APIHomepage

badsite.com badsite2.com

Figure 4.5 The CORS preflight request prevents unauthorized API requests from ever
reaching your server.

Adds a Delete link
next to blog post

69Triggering a preflight request

D

 elem.appendChild(div);
 }
 };
 xhr.send();
};

var deletePost = function(postId) {
 var url = 'http://127.0.0.1:9999/api/posts/' + postId;
 var xhr = createXhr('DELETE', url);
 xhr.onload = function() {
 if (xhr.status == 204) {
 var element = document.getElementById('postId' + postId);
 element.parentNode.removeChild(element);
 }
 };
 xhr.send();
};

This listing modifies the client code. Now let’s turn our attention to the server code to
respond to the DELETE request. Listing 4.2 modifies the app.js server code to handle
the incoming DELETE request. It listens for DELETE requests on the /api/posts/{ID}
URL. When it receives a DELETE request, the code deletes the post with the corre-
sponding ID and returns the HTTP 204 status code. HTTP 204 means that the request
was successful, but the body has no content; it’s the traditional response code used for
DELETE requests in REST APIs.

serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});
serverapp.delete('/api/posts/:id', function(req, res) {
 delete POSTS[req.params.id];
 res.status(204).end();
});
serverapp.listen(SERVER_PORT, function() {
 console.log('Started server at http://localhost:' + SERVER_PORT);
});

After making the changes in listings 4.1 and 4.2, restart the server and reload the
client.html page. You should see a Delete link next to each blog post, as shown in
figure 4.6.

 The code looks like it should work, because you added CORS support to your
server in the previous chapter. But if you click a Delete link, you’ll see the error mes-
sage shown in figure 4.7. What is going on here?

 Looking at the error in figure 4.7, one inconsistency should stand out: although
the code is making a DELETE request b, the error is on an OPTIONS request c. The
browser never sends the DELETE request. This certainly looks weird, but this isn’t a
bug. What you’re seeing is the preflight request.

Listing 4.2 Adding server support for deleting posts

Processes
delete request

Listens for delete
requests on
/api/posts/{ID}

eletes
blog
post

Returns
HTTP 204

70 CHAPTER 4 Handling preflight requests
Seeing the preflight on the DELETE request may lead you to ask, why didn’t the GET
request to load posts also have a preflight? The preflight request is only sent some of
the time. The next section looks at when a preflight request is sent.

Figure 4.6 Adding a Delete link
next to each blog post

1 The error is on a DELETE request.

2 The browser made an OPTIONS request.

Figure 4.7 Error message when trying to delete a post

71Triggering a preflight request
4.2.1 When is a preflight request sent?

Even with the same-origin policy in place, there are ways to make some types of cross-
origin requests from the browser. Appendix D goes into more details about these tech-
niques, but here are two ways the client can circumvent the same-origin policy:

■ A web page can easily make GET requests to another origin. Every <script> tag or
 tag issues a GET request.

■ A web page can make POST requests via the <form> tag. The <form> tag also allows
the Content-Type header to be set to application/x-www-form-urlencoded,
multipart/form-data, or text/plain.

The following listing shows the code that can be used to make these cross-origin requests.
(You don’t need to download or run this listing, it’s only meant as an example.)

<html><body>

<form enctype="text/plain" method="post" action="http://example.com/
form_submit" id="myform">

 <input type="submit" value="Submit" />
</form>

<script>

var img = document.createElement('img');
img.src = 'http://example.com/image.jpg';

var myform = document.getElementById('myform');
myform.submit();

</script>
</body></html>

These techniques existed long before the concept of CORS and preflights. Because
the browser can make these requests without CORS, the preflight doesn’t provide any
additional value. For example, if there were a preflight on a GET request, the client
could always use a script tag to get around the preflight. The browser skips the pre-
flight in cases where the client can already make the cross-origin request through
other means.

 This gives a general overview of when a preflight is used. To state it more con-
cretely, a preflight request is issued when a request meets any of the following criteria:

■ It uses an HTTP method other than GET, POST, or HEAD
■ It sets the Content-Type request header with values other than

a application/x-www-form-urlencoded

b multipart/form-data

c text/plain

Listing 4.3 Making cross-origin requests without CORS

Using HTML to make GET
request for an image

Using HTML to make POST request
with a Content-Type header

Using JavaScript to make
GET request for an image

Using JavaScript to make POST
request with a Content-Type header

72 CHAPTER 4 Handling preflight requests
■ It sets additional request headers that are not

a Accept
b Accept-Language
c Content-Language

■ The XMLHttpRequest contains upload events (section 4.5 shows an example
using upload events)

The CORS spec collectively refers to these HTTP methods as simple methods, and the
HTTP headers as simple headers. If these rules seem like a bit of a hodgepodge, it’s
because they are. There isn’t any rhyme or reason as to why those rules are defined that
way. It’s a result of how the web has evolved over the past 20 years. But how these rules
were defined isn’t as important as identifying and responding to preflight requests. The
next section modifies the sample app to respond to the preflight for the DELETE request.

4.3 Identifying a preflight request
In the context of the CORS lifecycle diagram, the preflight request is the first request
sent from the browser to the server, as shown in figure 4.8. If a preflight request is just
another HTTP request, how do you distinguish it from actual requests? The first thing
you need to do is figure out what a preflight request looks like.

 There are three characteristics of a preflight request, as shown in figure 4.9 it uses
the HTTP OPTIONS method b, it has an Origin request header c, and it has an
Access-Control-Request-Method header d.

 Figure 4.9 shows the preflight request from the sample with each of these three
characteristics highlighted. All three characteristics must exist on the request for it to
be a preflight request. If any one of these pieces is missing, the request isn’t a pre-
flight. Let’s dig deeper into what each of these pieces is.

4.3.1 Origin header

In chapter 3 you learned that every CORS request must have an Origin header. The
preflight is no different. Without the Origin header, the request isn’t a CORS request,
and therefore it can’t be a preflight request.

Client ServerBrowser

Brower sends

preflight request

Figure 4.8 Preflight request

73Identifying a preflight request
The Origin header tells you where the request is coming from. The value of the Ori-
gin header on a preflight request is the same value as the Origin header on the actual
request. So if you’re making a CORS request from http://localhost:1111, the Origin
header on the preflight request will also have the value http://localhost:1111.

4.3.2 HTTP OPTIONS method

A preflight request must be made via the HTTP OPTIONS method, which is defined by
the HTTP spec and isn’t specific to CORS. The HTTP spec (RFC2616) defines an
OPTIONS request as “a request for information about the communication options
available on the request/response chain.” This means that even before CORS, clients
could use the OPTIONS method to learn more about an endpoint. When used out-
side of CORS, the OPTIONS method traditionally conveys which HTTP methods are
supported on a particular URL. Table 4.1 shows an example of a non-CORS OPTIONS
request to a server. The Allow response header is used to indicate which HTTP meth-
ods are supported at the /api/posts endpoint, without triggering an actual request to
the /api/posts endpoint.

1 HTTP OPTIONS method 3 Access-Control-Request-Method header

2 Origin header

Figure 4.9 The pieces of a preflight request

http://localhost:1111
http://localhost:1111

74 CHAPTER 4 Handling preflight requests
NOTE You may have noticed that the preflight request itself is a cross-origin
request. This was deemed acceptable by the CORS spec authors, because the
preflight request is used in the way OPTIONS requests are intended.

An OPTIONS request with an Origin header is not necessarily a preflight request. To
distinguish a regular OPTIONS request from a preflight OPTIONS request, a preflight
request will always contain an Access-Control-Request-Method header, as discussed next.

4.3.3 Access-Control-Request-Method header

The Access-Control-Request-Method request header asks the server for permission to
make a request using a particular HTTP method. The preceding example of deleting a
post uses the HTTP DELETE method. Therefore, the Access-Control-Request-Method
header would be set to DELETE:

Access-Control-Request-Method: DELETE

The Access-Control-Request-Method header is always set to the value of the HTTP
method for the actual request, as shown in table 4.2. Because an HTTP request must
have an HTTP method, a preflight request must have an Access-Control-Request-
Method header.

To recap, a preflight request must have an HTTP OPTIONS method, and it must con-
tain an Origin and Access-Control-Request-Method header. Now that you know
what comprises a preflight request, let’s modify the sample code to detect these
three characteristics.

Table 4.1 What an HTTP OPTIONS request and response might look like in a pre-CORS world

HTTP request HTTP response

OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*

HTTP/1.1 200 OK
Allow: GET, POST

Table 4.2 Mapping the actual request method to the preflight

Preflight request Actual request

OPTIONS /data HTTP/1.1
User-Agent: Chrome
Host: localhost:10009
Accept: */*
Origin: http://localhost:10007
Access-Control-Request-Method: DELETE

DELETE /data HTTP/1.1
User-Agent: Chrome
Host: localhost:10009
Accept: */*
Origin: http://localhost:10007

http://localhost:10007
http://localhost:10007

75Responding to a preflight request

he
st
n

r?

Do
r
h
A

C
Re
M
h

4.3.4 Putting it all together
Listing 4.4 adds an isPreflight method to the sample app that detects whether an
incoming request is a preflight request. The isPreflight method checks three things:

■ Is the request an HTTP OPTIONS request?
■ Does the request have an Origin header?
■ Does the request have an Access-Control-Request-Method header?

var isPreflight = function(req) {
 var isHttpOptions = req.method === 'OPTIONS';
 var hasOriginHeader = req.headers['origin'];
 var hasRequestMethod = req.headers['access-control-request-method'];
 return isHttpOptions && hasOriginHeader && hasRequestMethod;
};

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 if (isPreflight(req)) {
 console.log('Received a preflight request!');
 res.status(204).end();
 return;
 }
 next();
};

If all three criteria are true, the request is a preflight. If you reload the sample and
click a Delete link, you should see the text “Received a preflight request!” in the
server’s terminal window, as shown in figure 4.10.

This verifies that the server has detected a preflight request. But the request still fails
because you aren’t responding to the preflight. Next you’ll learn how to respond to
the preflight.

4.4 Responding to a preflight request
Now that you have detected the preflight request, the server needs to respond so that
the browser can make the actual request. The server’s preflight response, shown in fig-
ure 4.11, grants permissions to make the HTTP request. These permissions are
granted by setting HTTP headers on the response. This section will show which HTTP
headers the server needs to set to respond to a preflight, and how to reject a preflight
if the request isn’t allowed.

Listing 4.4 Checking if the request is a preflight

Is the request an HTTP
OPTIONS request?

Does t
reque
have a
Origin
heade

es the
equest
ave an
ccess-

ontrol-
quest-
ethod

eader?

If request is a preflight,
stops processing it and
displays a message.

Figure 4.10 The server successfully
received a preflight request.

76 CHAPTER 4 Handling preflight requests
4.4.1 Supporting HTTP methods with Access-Control-Allow-Methods

Thinking back to the conversation between the browser and the server in figure 4.1,
responding to a preflight involves telling the browser that the server accepts DELETE
requests from different origins. The server does this by setting the Access-Control-
Allow-Methods response header as follows:

Access-Control-Allow-Methods: DELETE

This header indicates that the server grants permissions to the client to make a DELETE
request to that URL. The Access-Control-Allow-Methods header may look a lot like the
Access-Control-Request-Method header, but they’re quite different. The Access-Control-
Request-Method is a single value that asks permission to use a specific HTTP method.
The Access-Control-Allow-Methods header grants permissions to use one or more
HTTP methods, and it can have multiple values. If you wanted to open your API end-
point to all HTTP methods, you can put the following values in the Access-Control-
Allow-Methods header:

Access-Control-Allow-Methods: HEAD, GET, POST, PUT, DELETE

Let’s turn back to the sample code and update it to respond to the preflight request.

UPDATING THE SAMPLE TO SUPPORT DELETE
The following listing modifies the sample code to respond to the preflight request. If
the request is a preflight, the code adds an Access-Control-Allow-Methods header to
the response.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET, DELETE');
 res.status(204).end();
 return;
 }

Listing 4.5 Modifying handleCors to respond to a preflight

Client ServerBrowser

Server sends

preflight response

Figure 4.11 After receiving a preflight request, the server sends a preflight response that may grant
permissions to make the actual HTTP request.

Adds Access-Control-
Allow-Methods
response header

77Responding to a preflight request
 next();
};

Now, finally, if you restart the server, reload the page, and click a Delete link, the blog
post will be deleted. The deleted post will disappear from the page as a confirmation
that the delete was successful. Figure 4.12 shows the two HTTP requests being made to
delete the post.

NOTE If this were a real app, the corresponding blog post would be perma-
nently deleted from the database. Because the sample doesn’t have a data-
base, the deleted posts will reappear when you restart the web server.

2 Actual DELETE request

1 Preflight request

Figure 4.12 The preflight followed by the DELETE request

78 CHAPTER 4 Handling preflight requests
In addition to the Access-Control-Allow-Methods header, the preflight response should
have the following characteristics:

■ The HTTP response status should be in the 200 range. This is defined by the CORS
spec (although some browsers still process the response correctly if the status
isn’t in the 200 range). The sample code uses response code 204, which indi-
cates the response is valid, but contains no body.

■ The response shouldn’t have a body. There isn’t anything in the CORS spec regard-
ing the body of the preflight response, but having a body could cause confusion
for the developer, because he or she then must know how to parse and interpret
the body. It’s better to keep things simple and stick to the CORS headers only.

■ If a method is a simple method, it doesn’t need to be listed in the Access-Control-Allow-
Methods header. (Recall from section 4.2 that the CORS spec defines simple
methods as GET, POST, and HEAD.) If the client sends an Access-Control-
Request-Method: GET request header, the server doesn’t need to include the
Access-Control-Allow-Methods header in the response. But this can be confus-
ing. For consistency, the rest of the samples in this chapter will always include
the Access-Control-Allow-Methods header, even for simple HTTP methods.

With the changes done so far, the server can now support CORS for various HTTP
methods. But we aren’t done with the preflight quite yet. A preflight request is also
sent when the client adds additional headers to a request. The next section covers
how to respond to those requests.

4.4.2 Supporting request headers with Access-Control-Allow-Headers

The previous section taught you how the server can respond to a preflight request to
grant permissions to use HTTP methods. But this isn’t the only type of preflight a
server can receive. A browser may also send a preflight if the request contains addi-
tional HTTP headers from the client. The modified browser/server conversation is
shown in figure 4.13.

TRIGGERING A PREFLIGHT FOR REQUEST HEADERS

To see this in action, let’s modify the getBlogPost method to include a couple of
additional headers when loading the blog posts. It really doesn’t matter what the
headers are, so let’s make some up:

■ Timezone-Offset—The user’s time zone offset in minutes. This can be calculated
from JavaScript.

■ Sample-Source—The name of this book, CORS in Action.

The following listing adds these headers to the sample code. Again, the actual values
of these headers aren’t important; they are needed only to see how CORS behaves.

var getBlogPosts = function() {
 var xhr = createXhr('GET', 'http://127.0.0.1:9999/api/posts');

Listing 4.6 Adding headers to the request

79Responding to a preflight request
 xhr.setRequestHeader('Timezone-Offset',
 new Date().getTimezoneOffset());
 xhr.setRequestHeader('Sample-Source',
 'CORS in Action');
 xhr.onload = function() {
 ...

When you reload the client page, none of the posts will load, and you’ll see an error
message similar to the one you saw with the DELETE method, as shown in figure 4.14.
Only this time the error is about the new headers and not the HTTP method. If you
inspect the request in the Network tab as shown in figure 4.15, you can see that the
preflight request has a new Access-Control-Request-Headers header with the additional
header values.

Browser Server

Preflight request

Hi server

127.0.0.1:9999! I have client

localhost:1111 here, and she wants

to GET the blog posts at /api/posts.

She also wants to send the

Timezone-Offset and

Sample-Source headers.

Is that ok?

Yup, I

accept GET requests

as well as the Timezone-Offset

and Sample-Source request

headers. Send the

request along.

Figure 4.13 Conversation between browser and server for additional headers

Figure 4.14 Error when trying to
add additional headers to a request

80 CHAPTER 4 Handling preflight requests
NOTE It may be surprising to see that the preflight request is sent even
though the request is a GET request. After all, didn’t we add support for GET
requests in chapter 3? Adding custom headers to a cross-origin request is a
new functionality that wasn’t possible before CORS. Therefore, it needs a pre-
flight, even if the HTTP method wouldn’t normally trigger a preflight.

In the same way that the Access-Control-Request-Method header asks permission to
use a particular HTTP method, the Access-Control-Request-Headers header asks per-
mission to send additional headers to the server. Table 4.3 shows how the request
maps onto the Access-Control-Request-Headers header.

The Access-Control-Request-Headers header serves a similar purpose as its Access-Control-
Request-Method counterpart, but there are differences. While the Access-Control-Request-
Method header can have only one value, the Access-Control-Request-Headers header

Table 4.3 Mapping the actual request headers to the preflight

Preflight request Actual request

OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111
Access-Control-Request-Method: GET
Access-Control-Request-Headers: Timezone-
Offset, Sample-Source

GET /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://
localhost:1111
Timezone-Offset: 300
Sample-Source: Cors in Action

Access-Control-Request-Headers header

Figure 4.15 Preflight request has a new Access-Control-Request-Headers header

http://localhost:1111
http://localhost:1111
http://localhost:1111

81Responding to a preflight request
can have multiple values separated by a comma. And while a preflight request will always
have an Access-Control-Request-Method header, the Access-Control-Request-Headers
header is optional, and is only present if the client adds headers to the request.

ALLOWING CUSTOM HEADERS ON THE REQUEST

The server responds to the preflight request by adding the Access-Control-Allow-
Headers header. The Access-Control-Allow-Headers header contains a list of headers
that are allowed in requests. The following response header indicates that the client has
permission to include the Timezone-Offset and the Sample-Source headers on requests:

Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

If all the values in the Access-Control-Request-Headers request header match the val-
ues in the Access-Control-Allow-Headers response header, the browser is granted per-
mission to make the request. If the browser requested a header, and that header isn’t
present in the Access-Control-Allow-Headers header, the request is rejected. Table 4.4
shows an example of a valid and an invalid Access-Control-Allow-Headers header.

Listing 4.7 recaps how the browser translates additional headers from code into the
preflight request, and how these headers flow from preflight request to preflight
response to actual request. The preflight starts in the developer’s JavaScript code,
which adds new headers to the XMLHttpRequest b. The browser notices that there
are additional headers and puts them in the Access-Control-Request-Headers header
in the preflight c. The server responds by including those same headers in the Access-
Control-Allow-Headers response d. Finally, the browser validates that the headers
match those requested by the developer, and sends the request to the server e.

JavaScript code:
var xhr = new XMLHttpRequest();
xhr.setRequestHeader('Timezone-Offset');
xhr.setRequestHeader('Sample-Source');

Table 4.4 Responding to Access-Control-Request-Headers by using Access-Control-Allow-Headers. All
requested headers must also be in the response for the CORS request to succeed.

Response header Preflight request status

Access-Control-Allow-Headers:
Timezone-Offset, Sample-Source

Accepted. Timezone-Offset and Sample-Source were requested,
and both are present in the Access-Control-Allow-Headers header.

Access-Control-Allow-Headers:
Timezone-Offset, Sample-Source,
Anything-Else

Accepted. Same as the previous case. Even though the Anything-
Else header is not present in the request, it’s okay to specify addi-
tional values in the Access-Control-Allow-Headers header.

Access-Control-Allow-Headers:
Timezone-Offset

Rejected. Both Timezone-Offset and Sample-Source were
requested, but only Timezone-Offset is present in the Access-
Control-Allow-Headers header.

Listing 4.7 Flow of additional headers on CORS requests

 b

82 CHAPTER 4 Handling preflight requests

r

Preflight request:
OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111
Access-Control-Request-Method: GET
Access-Control-Request-Headers: Timezone-Offset, Sample-Source

Preflight response:
HTTP/1.1 204 No Content
Access-Control-Allow-Origin: http://localhost:1111
Access-Control-Allow-Methods: GET, DELETE
Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

Actual request:
GET /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111
Timezone-Offset: 300
Sample-Source: Cors in Action

NOTE If the requested header is a simple header, it’s not required to be
included in the Access-Control-Allow-Headers response header. But I recom-
mend including simple headers to avoid confusion.

Listing 4.8 modifies the sample code to respond to the Access-Control-Request-Headers
header. The code sets the Access-Control-Allow-Headers header to the value of the
headers you support. It also adds the GET method to the list of allowed HTTP methods,
because the custom headers are sent on a GET request. The sample will work fine even
without adding GET to the Access-Control-Allow-Methods header (because GET is a
simple method), but I like to include it to avoid confusion. Restart the server and
reload the page, and the blog posts should reappear.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET, DELETE');
 res.set('Access-Control-Allow-Headers',
 'Timezone-Offset, Sample-Source');
 res.status(204).end();
 return;
 }
 next();
};

After the server responds to the preflight request, the browser inspects the preflight
response and verifies that the server is granting the appropriate permissions. If the
preflight response checks out, the browser sends the actual request to the server.

Listing 4.8 Responding to Access-Control-Request-Headers

 c

 d

 e

Adds GET to the
Access-Control-
Allow-Methods
response heade

Adds Access-Control-Allow-
Headers to preflight response

83Responding to a preflight request

w-
er is
th
d

4.4.3 Sending the actual request

Once the browser receives a successful preflight response, it sends the actual request
to the server, as shown in figure 4.16.

 In the blogging app, once the browser receives the preflight response, it sends the
HTTP DELETE request to delete the blog post. The DELETE request can be handled using
the same technique you learned in chapter 3: add an Access-Control-Allow-Origin header.

 The following listing highlights the code that adds the Access-Control-Allow-
Origin header to the response. This code is from chapter 3. You don’t need to write
any new code—the Access-Control-Allow-Origin header is added to both preflight
and actual responses.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET, DELETE');
 res.set('Access-Control-Allow-Headers',
 'Timezone-Offset, Sample-Source');
 res.status(204).end();
 return;
 }
 next();
};

We’ve spent a lot of time talking about how to successfully respond to a preflight
request. But there may be times when you don’t want a request to be made. Next, let’s
turn our attention to rejecting a preflight request.

4.4.4 Rejecting a preflight request

We’ve explored how to successfully respond to a preflight request. But there may also
be times when you want to reject a CORS request. Perhaps your server doesn’t support
the DELETE method at a particular endpoint. How do you tell the browser that the
request isn’t allowed?

Listing 4.9 Adding the Access-Control-Allow-Origin header to all CORS responses

Client ServerBrowser

Actual request

Figure 4.16 Sending the actual request

The Access-
Control-Allo
Origin head
added to bo
preflight an
actual CORS
requests.

84 CHAPTER 4 Handling preflight requests
Rejecting a CORS request “short-circuits” the request, as shown in figure 4.17. The
browser makes the preflight request to the server, and when the server rejects the
request, the browser notifies the client code that the request was rejected. The cli-
ent code doesn’t receive the actual preflight response, nor does it receive any
additional data about why the request failed (even though the console log shows
this information).

 As mentioned in chapter 1, servers must opt-in to CORS. That means if a server’s
response doesn’t exactly match what the browser expects, the browser plays it safe and
rejects the request. With that in mind, there are many ways for a server to reject a pre-
flight request, including:

■ Leave out the Access-Control-Allow-Origin header (if the requested method is
not a simple method).

■ Return a value in Access-Control-Allow-Methods that doesn’t match the Access-
Control-Request-Method header.

■ If the preflight request has an Access-Control-Request-Headers header:

– Leave out the Access-Control-Allow-Headers header.
– Return a value in the Access-Control-Allow-Headers header that doesn’t

match the Access-Control-Request-Headers header.

Returning a non-200 HTTP response code as the preflight response will not reject the
request in some browsers. This may sound surprising, because a non-200 status code is
used to signal that something isn’t right. But in this case, even though the CORS spec
explicitly states that the preflight response should be in the 200 range, some browsers
still allow non-200 responses. It’s still a good idea to stick to the HTTP 200 or 204 status
code, because it adheres to the spec, which won’t change.

 Table 4.5 shows ways to reject the preflight request. Suppose someone tries to send
a request header named Shady-Status to the sample app. You don’t want your server
to receive this header, so the server code should reject the preflight.

Client ServerBrowser
Server sends

preflight response

Browser sends

preflight request

Browser notifies client

that there is an error

Client initiates

request to server

Figure 4.17 If the server rejects a preflight request, the browser returns an error to the client
without ever sending the actual request.

85Recapping preflights
OPTIONS /api/posts HTTP/1.1
Origin: http://localhost:1111
Access-Control-Request-Method: DELETE
Access-Control-Request-Headers: Shady-Status

As you can see, there are a lot of ways to reject a preflight request. Which one should
you choose? Chapter 6 provides guidance for rejecting CORS requests.

 The last few sections threw a lot of information your way. The next section takes a
step back and reviews what you’ve learned so far.

4.5 Recapping preflights
The first thing you may have noticed is that there are a lot of different headers involved
when working with preflights. Table 4.6 recaps these headers and what they mean.

Table 4.5 Various ways to reject a CORS preflight request

Response Reason

HTTP/1.1 200 OK No Access-Control-Allow-Origin header

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

No Access-Control-Allow-Methods header

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: DELETE

No Access-Control-Allow-Headers header

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: DELETE
Access-Control-Allow-Headers: Foo

Access-Control-Allow-Headers doesn’t match

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET
Access-Control-Allow-Headers: Shady-
Status

Access-Control-Allow-Methods doesn’t match

Table 4.6 Preflight request headers and their corresponding response headers

Request header Details Response header Details

Access-Control-
Request-Method

Indicates the HTTP method
for the actual request

Access-Control-
Allow-Methods

Indicates which HTTP meth-
ods are supported at that
endpoint
Can contain multiple values

Access-Control-
Request-Headers

Indicates additional head-
ers on the request
Can contain multiple values
Optional

Access-Control-
Allow-Headers

Indicates which HTTP head-
ers are supported at that
endpoint
Can contain multiple values

86 CHAPTER 4 Handling preflight requests
A simple way to distinguish these headers is to remember that any header starting with
“Access-Control-Request-” is a request header added by the browser asking the server
for permissions, and any header starting with “Access-Control-Allow-” is a response
header sent by the server that grants permissions.

 Figure 4.18 revisits the end-to-end flow from figure 4.2, except this time it includes
the header and code that is exchanged among the client, browser, and server. The

Client ServerBrowser

1

1 Client initiates request to

server through browser

2

2 Browser sends

preflight request

4

4
Browser sends

actual request

5

5 Server sends

actual response

6

6 Client receives

actual response

3

3 Server sends

preflight response

var xhr = createXhr('GET',

'http://127.0.0.1:9999/api/posts');

xhr.setRequestHeader('Timezone-Offset',

new Date().getTimezoneOffset());

xhr.setRequestHeader('Sample-Source',

'CORS in Action');

xhr.send();

xhr.onload = function() {

var data = JSON.parse(xhr.responseText);

// Process the response here.

};

OPTIONS /api/posts HTTP/1.1

User-Agent: Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Access-Control-Request-Method: GET

Access-Control-Request-Headers:

Timezone-Offset, X-Sample-Source

HTTP 204

Access-Control-Allow-Origin: http:

//localhost:1111

Access-Control-Allow-Methods: GET

Access-Control-Allow-Headers:

Timezone-Offset, X-Sample-Source

HTTP 200

Access-Control-Allow-Origin:

http://localhost:1111

{

“1”: {“post”, “...”},

“2”: {“post”, “...”},

“3”: {“post”, “...”}

}

GET /api/posts HTTP/1.1

User-Agent: Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Timezone-Offset: 300

Sample-Source: CORS in Action

Figure 4.18 End-to-end CORS request flow (with preflight)

87Recapping preflights
JavaScript code initiates the request by calling the XMLHttpRequest’s send method b.
The browser intercepts the request and initiates a preflight request c. If the server
provides a valid preflight response d, the browser follows up by sending the actual
request e. The server responds to the actual request f. This actual request is then
sent to the calling JavaScript code for further processing g.

 Let’s wrap up our discussion on preflights by looking at a few things to keep in
mind about preflight requests.

SUCCESSFUL PREFLIGHT != SUCCESSFUL REQUEST

The preflight response doesn’t provide any insight into the success or failure of the
actual request. A preflight could be successful, but the request could still fail for many
reasons, such as a file not found, an authorization error, or a server issue. The pre-
flight only ensures that the browser can make a cross-origin request to the server, and
nothing more. The server is still free to reject the request for other reasons.

 Think of an HTTP request as a set of Russian nesting dolls. Each doll contains a set
of request headers that define the request behavior. Figure 4.19 shows how an HTTP
request maps to this Russian nesting doll analogy.

 The outermost doll is the CORS doll, and it contains the Origin header. The inner
dolls can contain a variety of information, such as a cookie validating the user (cookie
support in CORS will be covered in the next chapter). Even if the outermost CORS
layer succeeds, the request may still fail while processing through one of the inner lay-
ers (for example, the cookie may have expired).

JAVASCRIPT CODE AND PREFLIGHTS

The preflight takes place solely between the browser and the server. There is no way
for the JavaScript code to intercept the preflight response or get updates on its status.
From the client code’s perspective, the preflight is invisible. A failing preflight is akin
to the actual request failing, even though the actual request is never made.

 This is a useful feature, because it hides the complexity of preflight requests from
the developer writing the client code. Figure 4.20 shows how both the client and the
server view a CORS request with a preflight. There is complexity in answering a preflight

Origin: http://localhost:1111

CORS doll

CORS

successful

Cookie check

failed!

Original request

GET /api/posts HTTP/1.1

User-Agent: Chrome

Host: 127.0.0.1:9999

Accept: */*

Origin: http://localhost:1111

Cookie: owner

HTTP response

HTTP 401 Unauthorized

Cookie doll

Cookie: owner

Figure 4.19 An HTTP request as a set of Russian dolls. Requests may fail for various reasons, and a
successful preflight doesn’t imply a successful request.

88 CHAPTER 4 Handling preflight requests
request, but only the server developer needs to worry about this complexity. From the cli-
ent developer’s perspective, a cross-origin request looks the same as any HTTP request.

PREFLIGHTS ARE STATELESS

Both the preflight and the actual request are stateless. This means that there is no
additional information connecting the actual request back to the preflight request
that preceded it. To get a sense of what this means, table 4.7 compares a preflight
request with its partner request.

Table 4.7 The actual request has no information about the preflight request

Request type HTTP request

Preflight OPTIONS /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111
Access-Control-Request-Method: GET
Access-Control-Request-Headers: Timezone-Offset, Sample-Source

Actual GET /api/posts HTTP/1.1
User-Agent: Chrome
Host: 127.0.0.1:9999
Accept: */*
Origin: http://localhost:1111
Timezone-Offset: 300
Sample-Source: Cors in Action

ServerClient

ServerBrowser

HTTP request

HTTP response

Preflight

Actual request

CORS from the client’s perspective

CORS from the server’s perspective

Figure 4.20 A CORS request (with
preflight) looks like a regular HTTP
request from the client’s perspective.

89Recapping preflights
Looking at the actual request, there is no information that connects it to the original
preflight request. This can be confusing because we think of the preflight plus the
actual request as occurring in tandem. If your server receives the actual request, you
have to trust that the browser did the right thing and sent the preflight request before
it. This highlights how crucial the browser is when making a CORS request.

 Because the preflight request is stateless, it’s important that all CORS responses
include the Access-Control-Allow-Origin header. It’s not enough to include the Access-
Control-Allow-Origin header on just the preflight response. Both the preflight response
and the actual response need the Access-Control-Allow-Origin header, as shown in
table 4.8.

If neither the preflight response nor the actual response has an Access-Control-Allow-
Origin header, the CORS request will be rejected.

PREFLIGHT REQUESTS AND UPLOAD EVENTS

The discussion in this chapter has been focused on making HTTP requests, but a pre-
flight request can also be issued on upload events. Upload events provide progress
information about an upload. The following code shows how to use upload events to
show a status message for an upload:

function uploadFile(file) {
 var xhr = new XMLHttpRequest();
 xhr.open('POST', '/upload', true);

 xhr.upload.onprogress = function(e) {
 console.log('Upload progress: ' ((e.loaded / e.total) * 100));
 };

 xhr.send(file);
}

The request needs to have a preflight because upload events are a new concept.
Before upload support in XMLHttpRequests existed, the traditional way of doing an
upload was through a form. While the form would upload a file, it couldn’t provide
additional information, such as how far the upload has progressed. The upload event

Table 4.8 Both the preflight response and the actual response need the Access-Control-Allow-Origin
header.

Response type HTTP response

Preflight HTTP/1.1 204 No Content
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, DELETE
Access-Control-Allow-Headers: Timezone-Offset, Sample-Source

Actual HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

90 CHAPTER 4 Handling preflight requests
introduces a functionality that wasn’t available before CORS; therefore it requires a
preflight request.

 Upload events are a purely client-side feature: the browser fires the event, and
doesn’t need to make a server request for more information. But the upload request
still requires a preflight because it’s introducing functionality that didn’t exist before
CORS. On the other hand, if you upload a file using XMLHttpRequest, but without
using upload events, the request doesn’t need a preflight (again, this makes sense,
because without upload events, the upload behaves the same as a form upload).
Table 4.9 shows the distinction between the two types of uploads.

While this section has done its best to catalog all the cases where a preflight request is
made, there may be new types of requests in the future that issue a preflight. But as long
as your server is armed with the Access-Control-Allow-Methods and Access-Control-Allow-
Headers headers, you’ll be prepared to answer any preflight request that comes your way.

4.6 Preflight result cache
One downside of the preflight request is that it issues two HTTP requests, one for the
preflight and a second for the actual request. This can be a performance concern
because HTTP requests are expensive, especially on resource-constrained devices like
smartphones. To help reduce the number of preflight requests, preflight responses
can be cached in a preflight result cache.

 The preflight result cache stores the responses to a preflight request for a particu-
lar URL. If a request is made to the same URL, the browser first checks the preflight
result cache to see if there is already a response. If the browser finds a response in the
cache, it skips the preflight request and goes straight to the actual request. If there is
no response in the cache, the browser sends the preflight, and then stores the
response of that preflight in the cache. Figure 4.21 shows how responses flow through
the preflight result cache.

Table 4.9 Uploading with and without upload events. Uploading without upload events doesn’t need a
preflight.

JavaScript code Preflight status

var xhr = new XMLHttpRequest();
xhr.open('POST', '/upload', true);

xhr.upload.onprogress = function(e) {
 console.log('Upload progress: ' ((e.loaded / e.total)
* 100));
};

xhr.send(file);

Uses upload events;
requires a preflight

var xhr = new XMLHttpRequest();
xhr.open('POST', '/upload', true);
xhr.send(file);

Doesn’t use upload
events; no preflight
necessary

91Preflight result cache
You can see the preflight cache in action by reloading the page a few times. The first
time you reload the page, you’ll see the preflight OPTIONS request in Chrome’s Net-
work tab. But subsequent reloads will skip the preflight request and go straight to the
actual request. Figure 4.22 shows three GET requests fired one after the other, with
only one preflight request. The preflight is sent for the first request only; the other
two requests take advantage of the preflight result cache.

NOTE To isolate just the CORS requests in figure 4.22, I selected the Preserve
Log Upon Navigation option, which is the fifth icon from the left along the
bottom of the console log. I also selected only to show XHR requests, so the
requests to client.html are filtered out.

The cache stores entries by URL plus origin. Requests from different origins to the
same URL all have different cache entries. Likewise, requests from the same origin to
different URLs all have different cache entries. Because the preflight result cache can
only store entries based on origin and URL, you can’t take shortcuts and specify a pre-
flight response for an entire domain. Each URL in your domain that supports CORS
will need to be able to respond to a preflight request.

Preflight result cache

Server

Actual request

Browser

First request
Browser sends

preflight to server

Browser stores preflight response

in preflight result cache

Preflight result cache

Server

Actual request

Browser

Second request
Browser checks preflight result

cache and finds a result

Browser processes preflight immediately

without making a preflight request to server

Figure 4.21 Using the preflight cache. The first request sends a preflight to the server, but the
second request grabs the preflight response from the preflight cache.

92 CHAPTER 4 Handling preflight requests
While you can examine network traffic to see whether a preflight request was sent,
there is no way to view the contents of the preflight request cache. The cache is a
black box that is maintained internally by the browser. But you can have some control
over how long items stay in the cache by using the Access-Control-Max-Age header.

SETTING THE CACHE TIME WITH ACCESS-CONTROL-MAX-AGE

CORS gives servers some control over how long a preflight response is cached through
the Access-Control-Max-Age response header. The Access-Control-Max-Age header
indicates how long, in seconds, a response can stay in the cache.

 The following listing modifies the sample app to cache preflight requests for two
minutes. This means that after the first preflight response is cached, the browser will
check the cache before every request to the same URL for the next two minutes. After
those two minutes are up, the browser will send a preflight request again.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET, DELETE');
 res.set('Access-Control-Allow-Headers',
 'Timezone-Offset, Sample-Source');
 res.set('Access-Control-Max-Age', '120');
 res.status(204).end();
 return;
 }
 next();
};

The Access-Control-Max-Age value is only a suggestion for how long an item should
be cached. Browsers may cache for a shorter amount of time. Firefox doesn’t allow

Listing 4.10 Adding the Access-Control-Max-Age response header

Figure 4.22 Multiple GET requests to the same URL using the preflight result cache

Setting cache
expiration to
two minutes

93Summary
items to be cached for longer than 24 hours, while Chrome, Opera, and Safari cache
items for a maximum of five minutes. If the Access-Control-Max-Age header isn’t
specified, Firefox doesn’t cache the preflight, while Chrome, Opera, and Safari cache
the preflight for five seconds.

NOTE The preceding browser-specific numbers were pulled from looking at
the browser’s source code, and this behavior may change in the future. It’s
not clear how Internet Explorer’s preflight cache behaves, because it isn’t
documented and Internet Explorer’s code is not open source.

4.7 Summary
This chapter introduced the concept of a CORS preflight request:

■ The browser sends a preflight request to ask the server for permission to make
the actual request.

■ The preflight request protects servers from receiving unexpected requests.
■ The preflight request asks permissions to make requests with certain HTTP

methods and/or add custom HTTP headers to the request.
■ The preflight request takes the form of an HTTP OPTIONS method with an Ori-

gin and Access-Control-Request-Method header.
■ The server can grant permissions to use certain HTTP methods by using the

Access-Control-Allow-Methods header. The server can also grant permission to
use certain HTTP headers by using the Access-Control-Allow-Headers header.

■ The preflight result cache is a performance optimization that helps reduce the
number of preflight requests made to a particular endpoint.

The previous chapter and this one introduced you to the headers to handle most
types of CORS requests. But there are still some features, such as cookie support, that
are not covered by the headers in this chapter. Chapter 5 takes a look at how to sup-
port these remaining features on CORS requests.

Cookies and
response headers
Chapter 4 introduced the concept of preflight requests. Preflight requests enable
the browser to ask for the server’s permission before making requests with certain
HTTP methods and headers. This permissions model puts the server in charge of
how cross-origin requests behave.

 In the same way, there are additional features that also require special permis-
sions in CORS. The first is user credential support. By default, CORS doesn’t attach
user credentials, such as cookies, on requests. The second is response headers sup-
port. The browser doesn’t reveal all response headers to the client code. If your
server responds with an X-Powered-By response header, the JavaScript client code
won’t be able to read its value without permission.

 Luckily CORS has ways to support these features. As with all the other CORS fea-
tures you’ve learned about, the server is in charge of enabling them, and it does so
by using HTTP headers. This chapter will introduce two new response headers:

This chapter covers
■ Including cookies with requests
■ Understanding how client and server settings

interact to control cookie behavior
■ Exposing response headers to clients
94

95Supporting cookies in CORS requests
Access-Control-Allow-Credentials, which indicates that cookies may be included with
requests, and Access-Control-Expose-Headers, which indicates which response head-
ers are visible to the client.

 We’ll start by having you add a login page to the sample blogging app. The login
page will include a cookie that needs to be validated in order to delete blog posts.
Next, you’ll modify the sample to display a response header on the page. By setting
the Access-Control-Allow-Credentials and Access-Control-Expose-Headers headers on
the response, the sample app will enable support for each of these features.

5.1 Supporting cookies in CORS requests
The sample app has a pretty glaring security hole: anyone visiting the site can delete a
blog post! The server code doesn’t verify whether the user deleting the post has permis-
sion to do so. Regardless of whether you’re the blog author or a casual reader, clicking
the Delete link will delete a post. This is obviously something that needs to be fixed.

 The app needs a way to identify the user, and the standard way of identifying a
user on the web is to use cookies. Cookies are small bits of information exchanged
between the server and the browser. For example, when a user logs in to Facebook,
the Facebook server sets a cookie with a unique user ID. As the user browses the site,
each request to the server contains the cookie. The server can read the cookie from the
request and load user-specific data, such as the user’s timeline.

NOTE The CORS spec uses the term user credentials to describe any bits of
information the browser sets on a request to identify the user. This includes
cookies, basic HTTP authentication, and client-side SSL. While the techniques
described in this section apply to all of these types of user credentials, the text
will focus only on cookies to keep things simple.

As you can see from this example, using cookies revolves around two actions: setting
the cookie and reading it. A login page can be used to validate the user and set the
appropriate cookie. Once the cookie is set, any user-specific activity should first read
the cookie and validate the user. Let’s modify the sample app to support these two
actions. We’ll start with the login page.

5.1.1 Setting cookies with a login page

The sample app currently only has one page, client.html, where users can view blog
posts. In this section you’ll add a second page called login.html. This login page will
collect the user’s username and password and set a cookie on his or her behalf.

NOTE This code is only meant as an example. It’s not a best practice for
implementing security for your own site.

Figure 5.1 shows how the login page integrates with the rest of the app. The login page
lives on 127.0.0.1:9999, along with the API. Because the login page lives on 127.0.0.1:9999,
the cookie will be set on that domain as well.

96 CHAPTER 5 Cookies and response headers
Listing 5.1 shows the code for the login page. Save this code to a file called login.html
in the same directory as the sample app. The login page displays a form asking for the
user’s username and password. When the user clicks Login, the page sets a cookie
identifying the user, then redirects to the main blog at client.html. The value of the
cookie is set to the username. (Of course, a real app should verify the username and
password against a database, and set the cookie to an ID rather than the username.)

<html><body>
<form onsubmit="handleLogin(); return false;">
 Username: <input type="text" id="username"></input>
 Password: <input type="password" id="password"></input>
 <input type="submit" id="btnSubmit" value="Login"></input>
</form>
<script>
var handleLogin = function() {
 var username = document.getElementById('username').value;
 document.cookie = 'username=' + username;
 window.location = 'http://localhost:1111/client.html';
}
</script>
</body></html>

You can test the login page by restarting the server and visiting the page at http://
127.0.0.1:9999/login.html. Enter owner as the username, any value for the password

Listing 5.1 Adding a login page to the sample app

127.0.0.1:9999

localhost:1111

Login page

/login.html

API

/api/posts

Blog site

/client.html

cookie

Figure 5.1 Topology of
the sample app

Shows login
form

Sets cookie

Redirects to
blog site

http://127.0.0.1:9999/login.html
http://127.0.0.1:9999/login.html

97Supporting cookies in CORS requests
(because we aren’t validating the password, any password will do), and click the Login
button. Once you’ve logged in, you can see the cookie being passed to the API by visit-
ing http://127.0.0.1:9999/api/posts. If you view this request in the Network tab, you’ll
see the Cookie header included as part of the request, as shown in figure 5.2.

 Now that the cookie is set, let’s turn our attention to reading the cookie on the server.

5.1.2 Reading the cookie on the server
Let’s update the server to delete the post only if the blog owner is making the request.
Express provides a useful piece of middleware to manage cookies called cookie-parser.
The cookie-parser middleware parses all of a site’s cookies into an easy-to-use JavaScript
object. We’ll use cookie-parser to handle the minutiae of parsing cookies so that you
can focus on CORS.

Cookie header

Figure 5.2 Request headers for a request to the API

http://127.0.0.1:9999/api/posts

98 CHAPTER 5 Cookies and response headers
 Listing 5.2 modifies the server code to only delete posts if the username is owner.
First you’ll add the cookie-parser middleware to the server. When the server receives a
delete request, the username is pulled from the cookie and compared against the string
owner. If the values match, the post is deleted. Otherwise, the server returns a 403 error
(indicating that a user doesn’t have permission to perform an action).

var express = require('express');
var cookieParser = require('cookie-parser');

var SERVER_PORT = 9999;
var serverapp = express();
serverapp.use(cookieParser);
serverapp.use(express.static(__dirname));
serverapp.use(handleCors);
serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});
serverapp.delete('/api/posts/:id', function(req, res) {
 if (req.cookies['username'] === 'owner') {
 delete POSTS[req.params.id];
 res.status(204).end();
 } else {
 res.status(403).end();
 }
});
serverapp.listen(SERVER_PORT);

NOTE You may also have to install the cookie-parser middleware for this sam-
ple to work. You can do so by running npm install cookie-parser.

With this code in place, restart the web server and visit http://127.0.0.1:9999/login.html.
Enter the username owner and any password (remember you aren’t validating pass-
words because this is a sample), and click the Login button. Once you’re redirected to
the blog, click a Delete link.

NOTE The login page resides at 127.0.0.1:9999 and not localhost:1111. The
login page from localhost:1111 will not set the correct cookie.

After clicking the Delete link, you’d expect the request to succeed. The previous sec-
tion verified that cookies are included on API requests, but the sample will once again
fail with the error shown in figure 5.3. Switching over to the Network tab as shown in
figure 5.4 reveals that the cookie isn’t included in the request.

 Where is the cookie you just set? This is once again a distinction between same-
origin and cross-origin requests. Cookies are always included with same-origin requests,
but they aren’t included on cross-origin requests by default. Because clicking the
Delete link triggers a cross-origin request, the request goes through but the cookies
don’t. Luckily CORS offers a solution for including cookies with requests.

Listing 5.2 Modifying the server code to read the cookie

Adds cookie-parser
middleware to server

Checks username to
see if it’s the owner

If user is valid,
deletes post

…otherwise, returns
a 403 forbidden error

http://127.0.0.1:9999/login.html

99Supporting cookies in CORS requests
5.1.3 Including cookies in CORS requests

Like all other CORS features, the server uses an HTTP response header to define cookie
behavior. But unlike other CORS features, there is a client-side component to cookie
support. Cookies will only work when both the client and the server are in agreement.

Figure 5.3 Server returns a 403 forbidden error when deleting a post

Figure 5.4 No Cookie header on the request

100 CHAPTER 5 Cookies and response headers
SERVER-SIDE COOKIE SUPPORT

The server indicates that it can receive cookies on CORS requests by setting the Access-
Control-Allow-Credentials response header. Setting that header to true means that
the server allows cookies on the CORS request.

 If the request includes a preflight request, the Access-Control-Allow-Credentials
header must be present on both the preflight and the actual request. But the cookie
will only be sent on the actual request; the preflight request will never have a cookie.

 The following listing modifies the server code to enable cookie support by adding
the Access-Control-Allow-Credentials header.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 res.set('Access-Control-Allow-Credentials', 'true');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET, DELETE');
 res.set('Access-Control-Allow-Headers',
 'Timezone-Offset, Sample-Source');
 res.set('Access-Control-Max-Age', '120');
 res.status(204).end();
 return;
 }
 next();
};

But even with this server-side support, the delete request still fails. This is because the
client needs to be configured to send cookies with the request. Let’s update the client
to do that.

CLIENT-SIDE COOKIE SUPPORT

In addition to setting a server-side response header, you have to set a property in the cli-
ent’s JavaScript code to include the cookie with the request. Chapter 2 introduced the
withCredentials property, which controls cookie behavior. The default value for this
property is false, which indicates that cookies aren’t included on requests. Setting the
withCredentials property to true includes cookies on cross-origin requests (this prop-
erty has no effect on same-origin requests, which always include cookies). The following
listing updates the client code to set the withCredentials property to true.

var deletePost = function(postId) {
 var url = 'http://127.0.0.1:9999/api/posts/' + postId;
 var xhr = createXhr('DELETE', url);
 xhr.withCredentials = true;
 xhr.onload = function() {
 if (xhr.status == 204) {
 var element = document.getElementById('postId' + postId);
 element.parentNode.removeChild(element);
 }

Listing 5.3 Adding the Access-Control-Allow-Credentials header

Listing 5.4 Setting withCredentials to true in the client code

Sets Access-Control-
Allow-Credentials
header on both the
preflight and actual
request

Indicates that cookies are
included with the request

101Supporting cookies in CORS requests
 };
 xhr.send();
};

After these updates to the client code, you’re finally ready to process cookies on CORS
requests! Reload the client.html page, and try clicking a Delete link. Figure 5.5 shows
the page after the user clicks the Delete link. The cookie is now included with the
request, and the post is deleted.

 Having two different settings with two different Boolean values leads to four com-
binations for the withCredentials property and Access-Control-Allow-Credentials
header. These combinations can get confusing, so the next section explores how a
request behaves when these properties are set to different values.

Cookie request header

Figure 5.5 Cookie header is now included in the request

102 CHAPTER 5 Cookies and response headers
5.1.4 How withCredentials and Access-Control-Allow-Credentials interact

Supporting user credentials requires that the withCredentials property work in
tandem with the Access-Control-Allow-Credentials header. Each can either be set
to true or false (or the property can’t be set at all, which is the same as setting it to
false). This leads to four combinations of properties. This can get confusing, and it
may not be clear what a particular combination means. Table 5.1 summarizes how
the values interact.

As you can see, only one combination leads to a rejection. But the other combinations
lead to subtly different behavior, as indicated by the Caveats column in the table.

 Let’s examine these four combinations in more detail in the following tables.

If withCredentials and Access-Control-Allow-Credentials aren’t set, cookies aren’t
included on the request. You’ve seen how CORS requests behave when these properties

Why do cookies need a client-side property?
Why do user credentials require a client-side component while all other CORS fea-
tures don’t? The answer is, again, safety. Because user credentials are often used
to perform sensitive actions (such as identify a user or update a user’s personal
data), the CORS spec needs to be absolutely certain that credentials should be
included in the request. Having the client opt-in along with the server adds another
layer of caution when adding sensitive data such as user credentials.

Table 5.1 Behavior for various values of the withCredentials property and Access-Control-Allow-
Credentials header

withCredentials
Access-Control-

Allow-Credentials
Status Caveats

false false Allowed Cookies aren’t included in the request

true true Allowed Cookies are included in the request

false true Allowed Cookies aren’t included in the request

true false Rejected Invalid because cookies are sent on the
request, but the server doesn’t allow them

Table 5.2 Client code and server HTTP response when withCredentials and Access-Control-Allow-
Credentials aren’t set

Client code Server HTTP response

var xhr = new XMLHttpRequest();
xhr.open('GET',
 'http://127.0.0.1:9999/api/posts');
xhr.send();

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
 http://localhost:1111

103Supporting cookies in CORS requests
aren’t set. All the examples from chapters 3 and 4 behave this way. Because those exam-
ples didn’t set any cookies, withCredentials and Access-Control-Allow-Credentials
weren’t necessary.

This section already covered what happens when both withCredentials and Access-
Control-Allow-Credentials are true. There is really not much more to say here: if a
cookie exists, it will be included with the CORS request. But things get a little more
interesting for the next two cases, where one property is set and the other isn’t.

In this case, the server sets the Access-Control-Allow-Credentials header to true, even
though the client doesn’t set the withCredentials property. Although the values of
the two don’t match, the request still succeeds.

 Here is how this combination works. When the server responds with an Access-
Control-Allow-Credentials: true header, it’s saying that it’s okay to send cookies
with the request. But because the withCredentials property isn’t set, the CORS request
doesn’t include the cookie. From the server’s perspective, the request looks like a nor-
mal CORS request without any cookies. The Access-Control-Allow-Credentials header
isn’t saying that cookies must be included in the request. It’s merely suggesting that
cookies can be included in the request. The client, armed with the withCredentials
property, has the final say in whether or not cookies are included.

 Setting withCredentials to true without an Access-Control-Allow-Credentials
header is the only combination that returns an error (table 5.5). Because with-
Credentials is set to true, the cookies will be included with the request. But because
Access-Control-Allow-Credentials isn’t set, the server declares that cookies aren’t
allowed on the request. There is a conflict in expectations, and the request is rejected.

Table 5.3 Client code and server HTTP response when withCredentials and Access-Control-Allow-
Credentials are both true

Client code Server HTTP response

var xhr = new XMLHttpRequest();
xhr.open('GET',
'http://127.0.0.1:9999/api/posts');
xhr.withCredentials = true;
xhr.send();

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
 http://localhost:1111
Access-Control-Allow-Credentials:
true

Table 5.4 Client code and server HTTP response when withCredentials isn’t set but Access-Control-
Allow-Credentials is true

Client code Server HTTP response

var xhr = new XMLHttpRequest();
xhr.open('GET',
'http://127.0.0.1:9999/api/
posts');
xhr.send();

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
 http://localhost:1111
Access-Control-Allow-Credentials:
true

104 CHAPTER 5 Cookies and response headers
As you can see, there is a lot of subtlety involved when setting the values for the with-
Credentials and Access-Control-Allow-Credentials. As a rule, it’s best not to set these
values unless you need the cookie on cross-origin requests. Requests without cookies are
safer and easier to debug, because they don’t contain any user-specific information.

 This section took a comprehensive look at the withCredentials property and
Access-Control-Allow-Credentials header. But there are still a few more caveats to be
aware of when using these settings, which we’ll cover next.

5.1.5 Caveats to cookie support

While the Access-Control-Allow-Credentials header allows cookies to be set on CORS
requests, there are still a few caveats to how they are used.

COOKIES ON THE CLIENT

JavaScript’s document.cookie property allows programmatic access to a site’s cookies.
Using document.cookie, JavaScript code can read and write the value of a cookie, as
shown in the following code snippet. You can print the value of the cookie to the con-
sole using

console.log(document.cookie);

and you can set the cookie value using

document.cookie = 'newcookie=1';

But the preceding code will not work with cross-origin cookies. The document.cookie
property can’t read or write the value from another origin. Calling document.cookie
from the client will return only the client’s own cookies, not the cross-origin cookies.

 This is because cookies themselves have a same-origin policy similar to the same-
origin policy for HTTP requests. Each cookie has a path and a domain, and only
pages from that path and domain can read the cookie. So while the cookie is included
in the CORS request, the browser still honors the cookie’s same-origin policy, and
keeps the cookie hidden from client code.

COOKIES WHEN THERE IS NO PREFLIGHT REQUEST

Based on the previous discussion, you may think that if a server doesn’t want cookies,
all it needs to do is omit the Access-Control-Allow-Credentials header. However this
isn’t quite true. Cookies may still be sent to the server in the case where the request

Table 5.5 Client code and server HTTP response when withCredentials is true but Access-Control-
Allow-Credentials isn’t set

Client code Server HTTP response

var xhr = new XMLHttpRequest();
xhr.open('GET',
 'http://127.0.0.1:9999/api/posts');
xhr.withCredentials = true;
xhr.send();

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
 http://localhost:1111

105Supporting cookies in CORS requests
doesn’t have a preflight. To understand why, look at how cookies behave with and
without a preflight.

 Figure 5.6 shows how cookie processing differs on a preflight request versus an
actual request. Preflight requests never include the cookie. When the browser makes
the preflight request, it doesn’t include the cookie in the preflight, even though the

OPTIONS /api/posts

Origin: http://localhost:1111

Preflight response

Preflight request

CORS request with preflight

/api/posts

Server

xhr.withCredentials

= true;

Browser

GET /api/posts

Origin: http://localhost:1111

Cookie: username=owner

Actual response

Actual request

CORS request without preflight

/api/posts

Server

xhr.withCredentials

= true;

Browser

Figure 5.6 Differences in cookie behavior for requests with and without preflights. The preflight
request will never include the cookie, but a request without a preflight might. This is true even if the
server doesn’t include the Access-Control-Allow-Credentials header and the request is rejected (as
indicated with the X).

106 CHAPTER 5 Cookies and response headers
browser may have a cookie connected to that server. If the server rejects the request,
the browser never sends the actual request with the cookie, and the cookie never
reaches the server.

 But things are different if there is no preflight. If the client has withCredentials
set to true, and there isn’t a preflight, the cookie will be sent to the server. This is
because the browser has no way of predicting what the value of the Access-Control-
Allow-Credentials header will be before sending the actual request. When the browser
sees that the Access-Control-Allow-Credentials header isn’t set, it will throw an error in
the client. But because the client set the withCredentials property, the cookie was
already sent to the server in the request.

 So you can have situations where the server explicitly states that it doesn’t want
cookies, but the browser sends them anyway. This may sound unintuitive and a bit
scary, until you remember that this is already how requests behave, even without
CORS. If a client makes a JSON-P request to a server, and the browser has a cookie for
that server, the cookie will be included as part of the JSON-P request.

 This behavior isn’t new to the web. There is a whole class of attacks that can arise
from this request-plus-cookie combination called cross-site request forgery (CSRF),
and CORS isn’t immune to them. Therefore, standard security precautions such as
CSRF prevention should be used when making CORS requests. The next chapter will
look at what CSRF is and how to prevent it.

USER CREDENTIALS AND ACCESS-CONTROL-ALLOW-ORIGIN

If the Access-Control-Allow-Credentials header is set to true, the * value can’t be used
in the Access-Control-Allow-Origin header. Recall that the value * in the Access-Control-
Allow-Origin header indicates that any origin can make a cross-origin request.

 If the Access-Control-Allow-Credentials header is set to true, the server must pro-
vide an actual origin value in the Access-Control-Allow-Origin header. If the browser
sees the header Access-Control-Allow-Origin: * used in conjunction with Access-
Control-Allow-Credentials: true, it will reject the request. Table 5.6 compares the
valid and invalid header combinations.

Allowing cookies to be sent on all requests is insecure and can lead to CSRF vulnerabil-
ities. The CORS spec authors wisely chose to avoid the security risk entirely by disallow-
ing this header combination.

Table 5.6 Valid and invalid combinations for the Access-Control-Allow-Origin and Access-Control-Allow-
Credentials headers

Valid Invalid

Access-Control-Allow-Origin: http://
localhost:1111
Access-Control-Allow-Credentials:
true

Access-Control-Allow-Origin: *
Access-Control-Allow-
Credentials: true

107Exposing response headers to the client
SETTING THE COOKIE FROM CORS
The rules described in this section also apply to setting the cookie from the server. If
the withCredentials property and Access-Control-Allow-Credentials header are both
true, the server can set a cookie on the client. This cookie still can’t be read from
JavaScript code, but it will be included on subsequent requests to the server.

 This section introduced a lot of new code to both the server and the client. Here is
a recap:

1 The login.html page sets a cookie identifying the user.
2 The client sets the withCredentials property to indicate it would like to send

cookies on CORS requests.
3 The server validates the user in the cookie before deleting a post.
4 The server sets the Access-Control-Allow-Credentials header to indicate that

cookies are okay on CORS requests.

By including both a client- and server-side component, the developer has a lot of flex-
ibility and control over when cookies are included in requests.

5.2 Exposing response headers to the client
All the CORS-specific headers introduced so far handle how an incoming request
behaves. The Access-Control-Allow-Methods header specifies the valid request meth-
ods, while the Access-Control-Allow-Headers header specifies the valid request head-
ers. Now we’ll turn our attention to the HTTP response behavior. Specifically, you’ll
learn how client JavaScript code can access the response headers.

 By now you may be discerning a pattern to how CORS works: for the client to do
anything, the server must first give its permission. This behavior extends to the head-
ers in the HTTP response. Response headers are the headers the server sends back to
the client. Figure 5.7 shows a request from the sample’s client.html page to the API.
The response headers are the headers from the API back to the client.

GET /api/posts HTTP/1.1

Origin: http://localhost:1111

Sample-Source:CORS in Action

Timezone-Offset:360

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://localhost:1111

Access-Control-Allow-Credentials: true

X-Powered-By: Express

/client.html /api/posts

Request headers from

client.html to /api/posts

Response headers from

/api/posts to client.html

Figure 5.7 The distinction between request and response headers

108 CHAPTER 5 Cookies and response headers
The XMLHttpRequest object exposes two methods for reading the response headers:
getResponseHeader and getAllResponseHeaders. Same-origin requests can use these
methods to read headers from the response. But cross-origin requests have limitations
on which response headers can be viewed by the client. By default, only a few response
headers are visible to clients on cross-origin requests (these are called simple response
headers; see the sidebar “Simple response headers” later in the chapter for more
details). The server must give its permission to read any of the other response head-
ers. Let’s modify the sample app to read one of these headers.

5.2.1 Reading a response header

The X-Powered-By header is often used by servers to highlight the underlying tech-
nology that powers the server. Values for this header could be ASP.NET (for a server
running on ASP.NET) or PHP/5.2.4 (for a server running on PHP). By default,
Express sets the X-Powered-By header to Express. Figure 5.8 shows where to find
the X-Powered-By header in the API response.

 Because the X-Powered-By header exists on every response, let’s display it in the
sample app. The following listing reads the header using XMLHttpRequest’s get-
ResponseHeader method. If the header exists, it’s displayed on the page.

 xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
 var elem = document.getElementById('output');

 var xPoweredBy = xhr.getResponseHeader('X-Powered-By');
 if (xPoweredBy) {
 var xpbDiv = document.createElement('div');
 xpbDiv.className = 'post';
 xpbDiv.innerHTML = 'X-Powered-By: ' + xPoweredBy;
 elem.appendChild(xpbDiv);
 }

 for (var postId in data) {

If you reload the page, you’d expect to see the X-Powered-By header displayed on the
page. Since this is a cross-origin request, the header comes up empty. (Some browsers
such as Chrome even display a helpful error message in the console log: Refused to
get unsafe header "X-Powered-By"). So let’s update the server to give you access to
that header.

5.2.2 Adding response header support

The server needs to specify that it’s okay for the client to read the X-Powered-By
header. The server does this by using the Access-Control-Expose-Headers header. The
Access-Control-Expose-Headers header contains a list of headers that the client code
can read.

 This shouldn’t be confused with the Access-Control-Allow-Headers header that was
covered in chapter 4. While they are similar, there is no connection between the two.

Listing 5.5 Reading the X-Powered-By response header

Reads X-Powered-
By header from
HTTP response

Displays header
on page

109Exposing response headers to the client
The Access-Control-Allow-Headers header is used by the preflight to indicate which
headers are allowed on the request. The Access-Control-Expose-Headers header is used
by the actual response to indicate which response headers are visible to the client.

 The following listing adds the Access-Control-Expose-Headers header to the
server. Once this is included in the response, the X-Powered-By header will be visible
to the getResponseHeader method.

var handleCors = function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');

Listing 5.6 Adding the Access-Control-Expose-Headers header

X-Powered-By response header

Figure 5.8 X-Powered-By response header

110 CHAPTER 5 Cookies and response headers

-
r
 res.set('Access-Control-Allow-Credentials', 'true');
 if (isPreflight(req)) {
 . . .
 } else {
 res.set('Access-Control-Expose-Headers', 'X-Powered-By');
 }

NOTE The Access-Control-Expose-Headers header need only be included if
the request isn’t a preflight request. This is because the header only takes
effect on the actual request. It doesn’t hurt to put it on the preflight, but it
doesn’t provide any benefit either.

After making the changes in listing 5.6 and reloading the sample, the X-Powered-By
header should be displayed on the page, as shown in figure 5.9.

Simple response headers
Not all response headers need the Access-Control-Expose-Headers header. Some
response headers are always visible to the client, regardless of whether or not the
Access-Control-Expose-Headers header is present. These headers are called simple
response headers. There isn’t any documented reason why these specific headers
are special; they are just the result of the evolution of the web over many years. The
simple response headers are defined as:

■ Cache-Control
■ Content-Language
■ Content-Type
■ Expires
■ Last-Modified
■ Pragma

The server doesn’t need to do anything for the client to view these headers. The client
can always read these response headers.

Sets Access-
Control-Expose
Headers heade
on the actual
response

Figure 5.9 Displaying the X-Powered-By
response header on the page

111Summary
It may seem like overkill for the server to weigh in on response headers. After all, what
harm can the X-Powered-By header do? But like the other CORS headers, the Access-
Control-Expose-Headers header exists to protect the server’s data from unexpected
access. Accessing response headers is a new capability introduced by CORS. Before
CORS existed, clients had no way of reading the response headers. Because a server
may depend on this behavior, CORS needs to be careful not to break this assumption.
The Access-Control-Expose-Headers header ensures that the client code can only read
the response headers intended by the server.

5.3 Summary
This chapter rounded out your understanding of CORS by introducing a few addi-
tional features:

■ The Access-Control-Allow-Credentials header can be used in conjunction with
XMLHttpRequest’s withCredentials property to include cookies on cross-origin
requests.

■ The Access-Control-Expose-Headers header can be used to expose response
headers to the client.

These features are the tools in your CORS toolbox. But the tools alone aren’t enough;
you also need to know how to use them. The flexibility offered in CORS means that
there are a lot of ways of configuring a server, and there sometimes isn’t any clear
guidance on which way is preferred. The next chapter offers guidance and best prac-
tices for using CORS on your own server.

Best practices
The previous chapters showed how Access-Control prefixed HTTP headers can dic-
tate the behavior of CORS requests. There are six CORS-specific response headers,
each with its own set of valid values. This can lead to myriad ways in which the
server response can be configured. While the previous chapters explained what
these HTTP headers do, they didn’t offer a lot of guidance on how to best use these
headers. How should you configure your server if you want to whitelist certain cli-
ents? How can your server accept cookies while still remaining secure?

 This chapter will answer these questions and show you how to configure these
headers in a way that makes sense for your server needs. If HTTP headers are the
language of CORS, this chapter aims to improve your CORS grammar.

This chapter covers
■ Opening up your API to public CORS requests
■ Limiting CORS requests to a whitelisted set

of origins
■ Ensuring your CORS responses are properly

handled by proxy servers
■ Protecting against cross-site request forgery

(CSRF) vulnerabilities
■ Configuring and minimizing preflight requests
112

113Refactoring the sample code

De

co
r

op
obje

be
la

cha
 The chapter starts by refactoring the sample code from chapter 5 to be more config-
urable. It then takes a closer look at each of the CORS response headers and offers prac-
tical guidance on how to use them. By the end of this chapter, the sample code will
become something you can incorporate into your own server to handle CORS requests.

6.1 Refactoring the sample code
The sample code from the previous three chapters did a good job of covering various
CORS topics. But it falls far short of being a general-purpose CORS library. The code
has hard-coded values geared toward explaining particular concepts, and isn’t flexible
or configurable. Concepts like the Timezone-Offset and Sample-Source request head-
ers were made up to demonstrate CORS. If you were to copy and paste the sample
code into your own server, it wouldn’t match up with your own needs.

 The goal of this chapter is to build a flexible CORS server that can be used with a vari-
ety of configurations. To do this, we’ll first refactor the sample code so that it can be
configured in different ways. The configuration options will allow the code to be used in
various circumstances. The following listing shows the result of this refactoring.

var corsOptions = {};

var handleCors = function(options) {
 return function(req, res, next) {
 res.set('Access-Control-Allow-Origin', 'http://localhost:1111');
 res.set('Access-Control-Allow-Credentials', 'true');
 if (isPreflight(req)) {
 res.set('Access-Control-Allow-Methods', 'GET', 'DELETE');
 res.set('Access-Control-Allow-Headers',
 'Timezone-Offset, Sample-Source');
 res.set('Access-Control-Max-Age', '120');
 res.status(204).end();
 return;
 } else {
 res.set('Access-Control-Expose-Headers', 'X-Powered-By');
 }
 next();
 }
};

var SERVER_PORT = 9999;
var serverapp = express();
serverapp.use(cookieParser());
serverapp.use(express.static (__dirname));
serverapp.use(handleCors(corsOptions));
serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});

The listing starts by declaring the corsOptions variable which will store the configura-
tion options we’ll add throughout this chapter. This variable will grow as you learn

Listing 6.1 Modifying the handleCors method to accept configuration options

clares
new

nfigu-
ation
tions
ct (to
 used
ter in
pter)

handleCors returns a new middleware
function based off configuration options.

Adds new middleware
to server.

114 CHAPTER 6 Best practices
ways to configure CORS requests. The handleCors method is updated to accept an
options object, and returns a new middleware object. The corsOptions variable is
passed to the handleCors method, and you receive a fully configured middleware.

 Now that the sample code framework is in place, you can focus on tips for setting
each individual header in the CORS pipeline. But before doing that, let’s take a few
moments to think about your own server configuration.

6.2 Before you begin
Before writing a single line of code, take a step back and think about what you’re try-
ing to achieve by adding CORS support to your server. Here are a few questions you
should consider:

■ Why are you adding support for cross-origin requests?
■ Are you adding CORS support to a new service or an existing server?
■ Which clients should have access to the site?
■ What devices/browsers will they be accessing the site from?
■ Which HTTP methods and headers will your server support?
■ Should the API support user-specific data? If so, will cookies be used to authenti-

cate the user?

The answers will guide you through the rest of this chapter. For example, an API that
needs Internet Explorer 8 or Internet Explorer 9 support will need to be built differ-
ently from an API that only needs to be supported on mobile devices. An API that is
open to the public will have different needs than an API built for internal use. Here
are some common server configurations that may benefit from CORS support:

■ Providing a public API that users can access from JavaScript. Most Google APIs sup-
port CORS, including the popular Drive API and YouTube API.

■ Unifying various properties behind a single API. If you own a mobile, tablet, and web-
site, and each is hosted under a different origin, they can all talk to the same
underlying API using CORS.

By having an understanding of what you’re trying to achieve with CORS, you can make
better choices on how to configure CORS for your server. Now that you have a sense of
how your own CORS implementation should behave, let’s turn our attention to the
most important CORS header: Access-Control-Allow-Origin.

6.3 Setting the Access-Control-Allow-Origin header
The Access-Control-Allow-Origin header indicates which origins can access a resource
via a cross-origin request. This header can either use the * value to give access to every-
one, or it can set a specific origin value to give access to a specific client. Table 6.1 gives
an overview of the valid values for the Access-Control-Allow-Origin header. The rest of
this chapter delves deeper into these values, and explores different use cases.

115Setting the Access-Control-Allow-Origin header
6.3.1 Allowing cross-origin access for everyone

If you want to allow cross-origin requests to the widest audience, use the * value for
the Access-Control-Allow-Origin header. The * value indicates that any client can make
a cross-origin request to this resource.

 An example of a site that sets the * value is the HTML5Rocks.com website. This
website contains a wealth of articles and tutorials for using HTML5. HTML5Rocks.com
sets the Access-Control-Allow-Origin: * header on every page. This allows other
JavaScript developers to use CORS to consume and parse any page on the HTML5Rocks
.com site.

 The * value works best in the cases where

■ The resource should be accessible to as wide a range of users as possible.
■ You don’t know ahead of time which origins and clients will access the resource.
■ No authentication or individualization is required.

Turning to the sample code, it’s easy to enable the * value on all pages, as shown in
the following code:

var handleCors = function(options) {
 return function(req, res, next) {
 res.set('Access-Control-Allow-Origin', '*');

Note that just because the * value is enabled, it doesn’t mean that the request will be
successful. The request may fail for other reasons, such as a 404 Not Found or a 500
Internal Server Error. The * value only indicates that a client can make cross-origin
requests, and nothing more.

BE CAREFUL WITH CONTENT BEHIND A FIREWALL

Setting the * value comes with a caveat: you should be careful when setting it on con-
tent behind a firewall. A firewall is set up specifically to allow access to a certain set of
users. For example, your company may maintain a firewall so that only employees can
access certain pages on the intranet. The * value can be used to bypass these restric-
tions and broadcast the data to unintended users.

 Figure 6.1 illustrates the dangers of allowing all origins over a VPN. Suppose there
are some private internal documents on your company’s intranet, which happens to
have the Access-Control-Allow-Origin: * header set. As an employee, because you’re

Table 6.1 Valid values for the Access-Control-Allow-Origin header

Access-Control-Allow-Origin value Effect on the response

<no header> CORS isn’t supported for any origins

* CORS is supported for all origins

null CORS is supported for unknown origins (such as accessing from a
file rather than a website)

<origin value> CORS is supported on a specific origin

116 CHAPTER 6 Best practices
able to connect to the firewall, you’re able to access these documents using CORS. Now
suppose some malicious hacker would like to access this document as well. He knows
the URL, but he can’t make a request to the document because he isn’t on the firewall.

 But he can create a special HTML file that makes a CORS request to grab the con-
tents of the document, and then uploads the contents to the hacker’s own server.
Even though he has this specially crafted HTML file, the hacker still can’t use it
because he isn’t connected to the firewall. But if he can somehow trick an employee to
visit the web page while the employee is connected to the intranet, the CORS request
will succeed and the hacker will get the contents of the document.

 This example contains a lot of steps, but a determined hacker will use any tools at
his disposal to get at the information he wants. If a document or API needs to be acces-
sible to a group of users, it’s best to limit the set of origins. The next section looks at
how to do this.

6.3.2 Limiting CORS requests to a set of origins

Suppose you’re in the early days of building your blogging service. While you know
you’d like the mobile, tablet, and web versions of the site to be driven by the same API,
you aren’t yet comfortable exposing the API to external users. In this case, the * value

Company’s

private server

Hacker’s

page

But if the employee logs the VPN andinto

visits a malicious site, it could broadcast

documents back to the hacker.

Employee

VPN

Hacker

Company’s

private server

Hacker can’t access documents in the VPN.

Employee

VPN

Hacker

Figure 6.1 An example of how a hacker could take advantage of an Access-Control-
Allow-Origin: * response over a VPN

117Setting the Access-Control-Allow-Origin header
for the Access-Control-Allow-Origin header isn’t quite right because this could open
up your API to unexpected requests.

 If you’d like to limit which clients can access your server, the Access-Control-Allow-
Origin header also accepts a client origin value. Building off the preceding example,
suppose your API is at http://127.0.0.1:9999, and you’d like to allow access to the API
from your website at http://localhost:1111, your mobile site at http://localhost:2222,
and your tablet site at http://localhost:3333, as shown in figure 6.2.

 Chapter 3 showed you how to set the Access-Control-Allow-Origin header to a sin-
gle origin value. For example, to allow access from a desktop client, the header would
be set as

Access-Control-Allow-Origin: http://localhost:1111

This is fine if you only want to give access to a single origin. But what if instead of only
http://localhost:1111, you’d like to give access to a range of origins? Suppose you have
mobile, tablet, and web versions of the same website, and you’d like to give them all
access to your API. In this case, using a single origin value isn’t enough, and the Access-
Control-Allow-Origin header doesn’t support more than one value. You’ll need to write
code to process the incoming origin value against a whitelist.

USING A WHITELIST TO SPECIFY THE ORIGIN

A whitelist is a list of origins that are allowed to make requests to the server. In the
example from figure 6.2, the whitelist would include the origins http://localhost:1111,
http://localhost:2222, and http://localhost:3333. If the origin of the incoming request
matches one of these values, then the client is allowed access to the resource.

 The code in the following listing creates a function to validate an origin value
against a whitelist.

http://localhost:1111

http://invalidorigin.com

http://localhost:2222 http://localhost:3333

API server

http://127.0.0.1:9999

Figure 6.2 Accepting requests from specific origins

http://127.0.0.1:9999
http://localhost:1111
http://localhost:2222
http://localhost:3333
http://localhost:1111
http://localhost:1111
http://localhost:2222
http://localhost:3333

118 CHAPTER 6 Best practices
var createWhitelistValidator = function(whitelist) {
 return function(val) {
 for (var i = 0; i < whitelist.length; i++) {
 if (val === whitelist[i]) {
 return true;
 }
 }
 return false;
 }
};

The createWhitelistValidator function returns a function that validates an origin
value against a whitelist of acceptable origins. The createWhitelistValidator func-
tion doesn’t do the validation itself; it only creates a function that can be used to do
the validation later on, when the client sends a request. The validation function loops
through each value in the whitelist. If there is a match, the function returns true. If
the function loops through all the whitelist values without finding a match, it returns
false. Figure 6.3 provides a visualization of what the whitelist check looks like.

 Armed with the createWhitelistValidator function, let’s validate the origin
against the whitelist values. The following listing updates the sample code to validate
origins against a whitelist.

var originWhitelist = [
 'http://localhost:1111'
];

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist)
};

var handleCors = function(options) {
 return function(req, res, next) {

Listing 6.2 Creating a whiltelist validator function in app.js

Listing 6.3 Using the whitelist validator

Request header:

Origin: http://localhost:2222

Response header:

Access-Control-Allow-Origin: http://localhost:2222

Match found = true

Whitelist:

http://localhost:1111

http://localhost:2222

http://localhost:3333

Request header:

Origin: http://invalidorigin.com

No response header

Match found = false

Whitelist:

http://localhost:1111

http://localhost:2222

http://localhost:3333

Figure 6.3 Example of using a whitelist to find a valid and an invalid Origin header

Defines valid origin
values in whitelist

Creates a new
function to
validate origin

119Setting the Access-Control-Allow-Origin header
 if (options.allowOrigin) {
 var origin = req.headers['origin'];
 if (options.allowOrigin(origin)) {
 res.set('Access-Control-Allow-Origin', origin);
 }
 } else {
 res.set('Access-Control-Allow-Origin', '*');
 }
 …
};

The code starts by creating an array of valid client origins. Because the sample code
accepts cross-origin requests only from http://localhost:1111, this is the only value in
the whitelist. The code then defines a new allowOrigin option which uses the create-
WhitelistValidator function to create a function to validate the origin.

 Now that you’ve created the allowOrigin option, you need to read that value from
your middleware. The code starts by checking if the allowOrigin option exists. If it
doesn’t, the code sets the Access-Control-Allow-Origin header to *, as it did originally.
But if the allowOrigin does exist, the code runs the validator function against the
value of the origin header. If there is a match, the origin is allowed to make cross-
origin requests, and you can set the Access-Control-Allow-Origin header to the value
of the Origin header. Otherwise, the client isn’t allowed to make cross-origin requests,
and the Access-Control-Allow-Origin header is never set.

 A whitelist is an easy way to manage cross-origin access to your server. You can eas-
ily add values to the originWhitelist array to give access to more servers. But it also
requires constant management to make sure it’s up-to-date.

OTHER WAYS TO VALIDATE THE ORIGIN

A whitelist is not the only way you can validate client origin values. You can also modify
listing 6.3 to use a regular expression or issue a database call to validate the origin. Sup-
pose instead of just three clients you want to allow any client from http://localhost,
regardless of port, to access your API. You could use a regular expression to validate
this origin, as follows:

var createRegexpValidator = function(re) {
 return function(origin) {
 return re.test(origin);
 }
};

var corsOptions = {
 allowOrigin: createRegexpValidator(
 /^http:\/\/localhost(:\d+)?$/i)
};

This code snippet introduces a new createRegexpValidator function. The create-
RegexpValidator function works in the same way as the createWhitelistValidator
function from listing 6.2, except instead of a whitelist check, this function runs a regu-
lar expression. Any client of the form http://localhost:PORT (where PORT is the port

Checks
if allow-

Origin
option
exists

Runs allowOrigin function
against origin header

Sets Access-Control-
Allow-Origin header
if origin is valid

If allowOrigin option
isn’t specified, allows
all origins

createRegexpValidator creates a
function to validate an origin
using a regular expression.

This regular expression matches a
request to any port on http://localhost.

http://localhost:1111
http://localhost
http://localhost:PORT
http://localhost

120 CHAPTER 6 Best practices
number) can access the API. If you had hundreds of clients, each living on a different
port, you can see how a single regular expression would be easier to manage than a
whitelist with hundreds of entries, as shown in figure 6.4.

 A regular expression is just one example of using a custom function to validate
the origin. Table 6.2 shows more ways to validate the origin, along with the pros and
cons of each.

Table 6.2 Pros and cons of validation techniques

Validation technique Description Pros Cons

Whitelist Maintains a list of
valid origins

Clearly indicates which ori-
gins are allowed
Works well for small lists
of origins

Difficult to maintain as the
list grows larger

Regular expression Writes a regular
expression that
matches all the
valid origins

Works well for a range of ori-
gins that follow a pattern

Need to verify that the reg-
ular expression doesn’t
accidentally match an
invalid origin

Database query Stores the list of
valid origins in a
database

Provides a central location
for storing origin information
Works well for a large num-
ber of origins without any
common pattern
Good for maintaining a con-
sistent CORS policy across
different servers

Database calls can be
slow (may need a caching
layer to speed up things)

Blacklist The opposite of a
whitelist: maintains
a list of origins that
aren’t valid

Easier to maintain if you’d
like to allow all but a
few origins

Easy for clients to bypass
(just pick a new origin that
isn’t in the blacklist)

A single regular expression:

var re = /^http:\/\/localhost(:\d+)?$/i;

Matches all these whitelist values:

var originWhitelist = [

“http://localhost”,

“http://localhost:1”,

“http://localhost:10”,

“http://localhost:100”,

“http://localhost:200”,

“http://localhost:300”,

“http://localhost:400”,

“http://localhost:1000”,

“http://localhost:1111”,

“http://localhost:2000”,

// And on and on and on...

;]

Figure 6.4 Regular expression versus a whitelist

121Setting the Access-Control-Allow-Origin header
Regardless of which technique you choose to validate the origin, the steps of the vali-
dation are the same:

1 Grab the value from the Origin header.
2 Validate the origin value using your chosen technique.
3 If the origin is valid, set the Access-Control-Allow-Origin header.

6.3.3 CORS and proxy servers

One side effect of validating origins against a whitelist is that the value of the Access-
Control-Allow-Origin header can vary between requests. For example, a request from
the origin http://localhost:1111 will return the header Access-Control-Allow-Origin:
http://localhost:1111, but a request from http://localhost:2222 to the same server
will return the header Access-Control-Allow-Origin: http://localhost:2222. These
different response headers from the same servers can sometimes cause caching issues.
If your server can return different Access-Control-Allow-Origin headers to different
clients, you should also set the Vary HTTP response header to Origin, like so:

Vary: Origin

Without the Vary header, proxy servers may cache responses for one client and send
them as responses to a different client. This issue is notoriously difficult to debug, because
it may not be reproducible from clients who aren’t behind the same proxy servers.

 A proxy server is a server that sits between the client and the destination server. The
proxy server forwards the request from the client to the server. Along the way, it may
also provide additional functionality, such as caching data to speed up response time.
Figure 6.5 shows two separate requests passing through a proxy server; the first
request hits the destination server, while the second request is cached.

 It’s this caching functionality that is relevant to CORS. Proxy servers use some, but
not all, of the HTTP request headers when deciding whether or not to cache a
response. Because the Origin header is a fairly new HTTP header, not all proxy servers
take the Origin header into account when deciding whether to cache a response.

 Suppose it’s Monday morning and coworkers Bob and Alice are at work catching
up on the highlights from yesterday’s game. They both get the scores from ESPN, but

Client ServerProxy

server

Server receives the first request.

Proxy server caches the

response to the first request.

Second request receives cached

response from proxy server.

Figure 6.5 Example of a proxy server making two requests

http://localhost:1111
http://localhost:2222

122 CHAPTER 6 Best practices
Bob is using his iPhone and visits http://mobile.espn.com, while Alice is using her tab-
let and visits http://tablet.espn.com. Because both Alice and Bob are at work, their
requests flow through the company’s proxy server.

 When Alice makes the first request to http://tablet.espn.com, the tablet site makes
a CORS request to load the scores from http://api.espn.com. The API responds with
the header Access-Control-Allow-Origin: http://tablet.espn.com, and the proxy
server caches the response.

 Next, Bob makes his request to http://mobile.espn.com, and the mobile site grabs
the scores from the same API. The proxy server notices that the request is to the same
server that the tablet requested, and so it returns the cached response. Unfortunately, the
cached response has the Access-Control-Allow-Origin: http://tablet.espn.com
header set. This header causes a request from http://mobile.espn.com to fail, because
the Origin header doesn’t match the Access-Control-Allow-Origin header (figure 6.6).

 Luckily, there is a way to fix this. The Vary header tells the proxy server that the
Origin header should be taken into account when deciding whether or not to send
cached content. With the Vary: Origin header in place, the proxy server will treat a
request with Origin: http://mobile.espn.com differently from a request with Origin:
http://tablet.espn.com.

Client

Alice’s request from http://tablet.espn.com

Origin:

http://tablet.espn.com

ServerProxy

server

Client

Bob’s request from http://mobile.espn.com

Origin: http://mobile.espn.com

Access-Control-Allow-Origin:

http://tablet.espn.com
ServerProxy

server

Access-Control-Allow-Origin:

http://tablet.espn.com

Figure 6.6 Example of how a proxy server could mix up Access-Control-Allow-Origin headers
through caching

http://mobile.espn.com
http://tablet.espn.com
http://tablet.espn.com
http://api.espn.com
http://mobile.espn.com
http://mobile.espn.com

123Setting the Access-Control-Allow-Origin header
 The following listing shows a simple one-line change for adding the Vary header to
the sample.

 if (options.allowOrigin) {
 var origin = req.headers['origin'];
 if (options.allowOrigin(origin)) {
 res.set('Access-Control-Allow-Origin', origin);
 }
 res.set('Vary', 'Origin');
 } else {
 res.set('Access-Control-Allow-Origin', '*');
 }
 };

The Vary header is only necessary when the Origin header causes changes in the
response. You don’t need it when you return Access-Control-Allow-Origin: *,
because the * value is the same regardless of what the value of the Origin header is.
The Vary header should also be present even if the Access-Control-Allow-Origin
header isn’t in the response. If a request’s origin is http://example.com, the response
will not have an Access-Control-Allow-Origin header, because http://example.com
isn’t in the list of whitelisted headers. But the response should still contain a Vary
header, because the response can change, based on the Origin header value.

6.3.4 Null origin

So far we’ve only discussed origins in terms of URLs with a scheme, host, and port. But
when configuring the acceptable origin values, it’s important to keep in mind that
null is also a valid origin value. A null origin value typically indicates that the request
is coming from a file on a user’s computer, rather than from a website. It can also
mean the request came from a redirect (which we’ll cover in more detail later).

 Making requests from a file on your computer (which I’ll refer to as a local file) is
useful if you want to test CORS requests without uploading files to a live server. It can
be a lot easier to test locally than to upload new code every time you’d like to test a
request. Testing code is an iterative process: the developer writes code, tests the
results, and writes more code based on the results. When working with a local file, a
developer can iterate very quickly: trying new code is as easy as saving a file and
refreshing the web browser.

 In contrast, if CORS requests required an actual origin for every request, the devel-
oper velocity would be much slower. Each change would need to be uploaded to a web
server, which can be slow (at least when compared with saving a file locally). The
developer would also need a separate test server to test changes on, because upload-
ing to the live server could break other users. Even if you don’t anticipate using this
technique to test your own API, opening up your API to null origins can make it easier
for your users to test their code against your API.

Listing 6.4 Listing 6.4 Setting the Vary response header

Setting Vary:
Origin header

http://example.com
http://example.com

124 CHAPTER 6 Best practices
 The * value allows all origins to make cross-origin requests, including the null ori-
gin. If your server returns *, there is nothing more you need to do to support local
files. If you’re using the whitelist method, be sure to add the null value to your
whitelist, as follows:

var originWhitelist = [
 'null',
 'http://localhost:1111'
];

Adding null to the whitelist means that the server will return the following header in
the response:

Access-Control-Allow-Origin: null

Along with the * and origin value, null is a valid value for the Access-Control-Allow-
Origin response header.

6.3.5 Origin header on same-origin requests

Up until this point we’ve only discussed the Origin header in the context of cross-origin
requests. But it turns out that some browsers will include the Origin header on same-
origin requests as well. Chrome and Safari include the Origin header on same-origin
POST, PUT, and DELETE requests. Firefox, Internet Explorer, and Opera don’t include
the Origin header on same-origin requests.

 The good news is that although Chrome and Safari sometimes include the Origin
header, they don’t require any CORS-specific headers on the response. Same-origin
requests will always work (figure 6.7), regardless of whether or not they have an Access-
Control-Allow-Origin header. You don’t need to explicitly whitelist your same-origin
requests (although it won’t hurt to do so).

 You usually won’t need to worry about this distinction between same-origin and
cross-origin requests. If you’re building an API for external users, you probably won’t
expect same-origin requests. And even if your API accepts both same-origin and cross-
origin requests, as long as your API behaves exactly the same for both request types,
you won’t have to distinguish between the two.

Allows Origin: null to make
cross-origin requests

Same-origin client

Origin: http://127.0.0.1:9999

Server

http://127.0.0.1:9999

Cross-origin client

Origin: http://localhost:1111

Success

Failure

Figure 6.7 Response status when the server responds without an Access-Control-Allow-Origin header.
The same-origin request succeeds, even though it has an Origin header. The cross-origin request fails.

125Setting the Access-Control-Allow-Origin header
But if same-origin requests behave differently from cross-origin requests, the distinc-
tion between the two becomes relevant. Suppose you have an API that accepts requests
from your own web page (a same-origin request) as well as requests from other clients
(a cross-origin request). The request from your own web page receives additional
debug information, which you don’t want to share with cross-origin clients, as shown
in figure 6.8. In this case, you want to differentiate between same-origin and cross-
origin requests; otherwise cross-origin requests could receive data they aren’t sup-
posed to see.

 In these cases, you can compare the Origin header against the Host header to see
if they match. The Host header is an HTTP request header that contains the host and
port of the server receiving the request. Because the Origin header contains the
scheme, host, and port of the client sending the request, if the Origin and the Host
headers match, the request is a same-origin request.

 The following code snippet shows a function for detecting whether the request is a
same-origin request. The isSameOrigin function returns true if the request is a same-
origin request, and false otherwise.

var isSameOrigin = function(req) {
 var host = req.protocol + '://' + req.headers['host'];
 var origin = req.headers['origin'];
 return host === origin || !origin;
};

The isSameOrigin function extracts the client origin from the Origin header and
compares it to the server’s origin, which is derived from the Host header. Note that
the Host header doesn’t include any scheme information, so it’s up to you to decide
which scheme to use. The preceding code snippet uses the req.protocol property to

{

‘1’: {‘post’: ‘This is… ’},

…

‘secret debug data’: {...}

}

{

‘1’: {‘post’: ‘This is… ’},

…

}

API server

http://127.0.0.1:9999

Same-origin request

from http://127.0.0.1:9999

Cross-origin request

from http://localhost1111

Secret debug data in the response. No secret debug data in the response.

Figure 6.8 Different data is sent to same-origin and cross-origin requests

126 CHAPTER 6 Best practices
figure out the scheme of the request. Calling req.protocol returns either http or
https, and calculating the scheme is as easy as appending :// to the protocol (for
example, if the URL’s protocol is “http”, the scheme is “http://”). This protocol prop-
erty is only available in Express. If you use Node without Express, you may need to
find some other way of getting the request’s scheme.

 A better alternative to the Host header method is to separate same-origin traffic
from cross-origin traffic (figure 6.9). If your same-origin and cross-origin traffic all
funnels through www.yoursite.com, consider separating API requests into two different
servers: www.yoursite.com for same-origin traffic, and http://api.yoursite.com for
cross-origin traffic. You don’t have to implement two completely different APIs, you
just need to channel the requests differently. It’s like having two doors to enter a bank:
one door is for the public, and the second is for employees only.

 Hopefully this section has given you a more comprehensive understanding of how
to use the Access-Control-Allow-Origin header to manage cross-origin requests to your
API. Although the Access-Control-Allow-Origin header helps dictate who gets access to
your server, it shouldn’t be the sole security mechanism for your API. The next section
looks at the security issues related to CORS.

6.4 Security
The previous section presented strategies for accessing a server from different origins.
At one end of the spectrum, any client can make cross-origin requests by setting the
Access-Control-Allow-Origin: * header. At the other end of the spectrum, a server
administrator can limit cross-origin requests to specific clients only. But regardless of
which strategy you choose, there is one thing to always keep in mind: CORS isn’t security.

API

API before partitioning

www.yoursite.com

(with debug info)

Same-origin

request

Cross-origin

request

API

API after partitioning

www.yoursite.com api.yoursite.com

(with debug info)

Same-origin

request

Cross-origin

request

Figure 6.9 Splitting an API into same-origin and cross-origin components

http://api.yoursite.com
www.yoursite.com
www.yoursite.com

127Security
This is an important enough point to state again: CORS isn’t security. The Access-
Control-Allow-Origin header only indicates which clients are allowed to make cross-
origin requests. It shouldn’t also be used to protect a site’s content.

 Figure 6.10 shows some questions that CORS does and doesn’t answer. Don’t be dis-
heartened if you see a question that you’d like answered. Just because CORS doesn’t
answer a particular question doesn’t mean it can’t be answered at all. There are other
mechanisms to answer these questions, which this section will explore.

 To demonstrate why CORS shouldn’t be used for security, consider that it’s possible
to use tools to spoof the Origin header. The following curl command shows how to
send a request to your API with the Origin header set to somerandomorigin.com (if
you don’t know what curl is, don’t worry; it will be covered in the next chapter).

curl -H "Origin: somerandomsite.com" http://127.0.0.1:9999/api/posts

This request is obviously not coming from somerandomsite.com, and your server
shouldn’t trust only the Origin header. This is why the Access-Control-Allow-Origin
header should only be used to specify the cross-origin policy.

Spoofing CORS requests
The preceding curl request may have set off a red flag: What is the point of CORS if
an Origin header can be spoofed? To answer this, it’s important to keep in mind that
users can use tools like curl to make an HTTP request to any server, regardless of
whether or not the server has CORS enabled. CORS doesn’t introduce any new secu-
rity holes; it only ensures that cross-origin requests from a browser are performed in
a safe manner.

What CORS answers

Can this origin make

cross-origin requests to

this server?

What CORS does not answer

Can this origin

be trusted?

Who is the user of

this request?

Can I send protected

data in the response?

Figure 6.10 Questions CORS
does and doesn’t answer

128 CHAPTER 6 Best practices
So if CORS shouldn’t be used for security, how can you protect the content on your
site when enabling cross-origin requests? The rest of this section explores ways to keep
your site secure while still using CORS.

6.4.1 Including cookies on requests

Cookies aren’t included on CORS requests by default, but they can be enabled by set-
ting the Access-Control-Allow-Credentials header to true. If you’re thinking about
enabling cookies on your API, you should really consider whether you need cookie
support. Cookies make requests harder to debug, and expose a new attack vector. So if
you don’t need cookies, don’t enable them.

 Cookies work best in situations where

■ You want to authorize users within your own ecosystem of clients and servers.
■ You know exactly which clients will be accessing your server.

This means that you control both the clients and the servers, and you don’t accept
CORS requests from external clients. The web/tablet/mobile scenario shown in fig-
ure 6.11 is a good example. In this scenario, CORS access is limited to a select few
whitelisted origins. Because you’re in charge of both the server and the clients, you
have control over where the requests are coming from.

 The following listing shows how to configure the sample code to allow cookies.

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true
};

Listing 6.5 Enabling cookies on requests

http://localhost:1111

http://invalidorigin.com

http://localhost:2222 http://localhost:3333

API server

http://127.0.0.1:9999

Figure 6.11 Whitelisted requests from a desktop, mobile, and tablet client

Sets allowCredentials
option to true

129Security

ls
var handleCors = function(options) {
 return function(req, res, next) {
 …
 if (options.allowCredentials) {
 res.set('Access-Control-Allow-Credentials', 'true');
 }
 …
};

The code introduces a new allowCredentials option. Setting this value to true
means that cookies are allowed on requests.

 If you allow credentials on requests, the Access-Control-Allow-Origin header must
be set to an actual origin value. The * value isn’t valid when using credentials, and the
browser will reject any response that has Access-Control-Allow-Credentials set to true
but Access-Control-Allow-Origin set to *.

 Using similar code as the previous section, you could write code to always echo the
Origin header value when allowCredentials is set to true. This would allow any cli-
ent (internal or external) to include cookies on requests. But while this is technically
possible, it’s not advisable. By enabling cookies to be always included on requests, you
open your server up to a class of vulnerabilities called cross-site request forgery (CSRF).
Appendix C goes into more details on CSRF. The rest of this section explores how to
protect against CSRF vulnerabilities.

VALIDATING THE ORIGIN

The simplest way to protect against CSRF is to return an error if the origin is invalid.
This ensures that only valid origins are allowed, and that the request stops processing
if the origin is invalid. The previous section showed you how to use a whitelist to vali-
date the origin, but it continued to process the request even when it encountered an
invalid origin. The following listing repeats the origin validation code from the previ-
ous section.

var originWhitelist = [
 'null',
 'http://localhost:1111'
];

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true
};

var handleCors = function(options) {
 return function(req, res, next) {

 if (options.allowOrigin) {
 var origin = req.headers['origin'];
 if (options.allowOrigin(origin)) {
 res.set('Access-Control-Allow-Origin', origin);
 }

Listing 6.6 Only whitelisted origins can make CORS requests

Reads allowCredentia
option to set Access-
Control-Allow-
Credentials header

Nothing happens if
origin is invalid, and
request continues
processing.

130 CHAPTER 6 Best practices
 res.set('Vary', 'Origin');
 } else {
 res.set('Access-Control-Allow-Origin', '*');
 }

Even though the code in the listing checks if the origin is valid, there is no else block
to define how the request behaves with an invalid origin. Without defining this behav-
ior, the code continues processing the request, even if the request is from an unau-
thorized origin. This means that even if the origin is invalid, the request’s action, such
as returning the user’s blog posts, will go through.

 What you really want to do is short-circuit the request in the CORS handler and
return an error to the user. By stopping the request at the CORS-level, you prevent any
other request code from running. The following listing introduces a new option to
short-circuit the request.

var originWhitelist = [
 'null',
 'http://localhost:1111'
];

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true,
 shortCircuit: true
};

var handleCors = function(options) {
 return function(req, res, next) {

 if (options.allowOrigin) {
 var origin = req.headers['origin'];
 if (options.allowOrigin(origin)) {
 res.set('Access-Control-Allow-Origin', origin);
 } else if (options.shortCircuit) {
 res.status(403).end();
 return;
 }
 res.set('Vary', 'Origin');
 } else {
 res.set('Access-Control-Allow-Origin', '*');
 }

The code begins by introducing a new shortCircuit option that controls this new
behavior. Next, the code returns an HTTP 403 status if the origin is invalid, and stops
processing the request.

ADDITIONAL CSRF PROTECTION

Validating the origin is a nice way to verify that the request meets your expectations
and for most use cases, this should be a sufficient form of CSRF protection. However, it

Listing 6.7 Short-circuiting the request on invalid origins.

Introduces a new
shortCircuit option.

If origin is invalid, stops
processing request and
returns an HTTP 403 response.

131Security
is not foolproof. As we saw earlier, tools like curl could be used to spoof the origin of a
request. If you want stronger protection, you will need a CSRF token.

 A simple definition is that a CSRF token is an unguessable secret shared between
the client and the server. If a CSRF token is invalid, the request fails. Appendix C goes
into more details about CSRF tokens and how they are used.

 There are many packages available for adding CSRF token support to same-origin
requests. Appendix C also includes an example that uses the CSURF middleware pack-
age to add CSRF token support to a sample server. This is easier to do on same-origin
requests, where the client and server are the same machine, or share the same code.

 Implementing CSRF token support is a bit trickier for cross-origin requests because
in order for CSRF tokens to work, the server and client must agree upon a CSRF token
format. A cross-origin request’s client and server may live on separate servers and have
separate codebases, which makes it hard to sync secrets. Another issue is that the CSRF
token usually has embedded user information, such as a user ID or session ID. On
same-origin requests, the user info can be derived from the cookie. On cross-origin
requests, the client doesn’t have access to the server’s cookies.

 These issues make it difficult to add CSRF protection to CORS requests. One possi-
ble way to do this is to have the client embed an iframe from the server. The server can
place the CSRF token in this iframe, and then give it to the client via postMessage.

 Security is very difficult to get right. If you need CSRF protection on CORS requests,
here are a few things to keep in mind:

■ Consider whether you need CSRF protection. CSRF protection is only needed if you
are requesting protected data that includes the cookie.

■ Validate the Origin header. This is a good form of CSRF protection, and it may be
sufficient for your needs. While tools such as curl can spoof the Origin header,
spoofing along with the cookie is harder (curl wouldn’t have access to the cookie).
Older browsers that allow the Origin header to be set don’t support CORS.

■ Consider same-origin requests instead. If you have a particular feature that requires
CSRF protection, such as posting a new weblog, consider making it a same-ori-
gin feature instead. Same origin requests have proven mechanisms for protect-
ing against CSRF. Part of using CORS successfully is understanding its limits, and
you may save yourself a headache or two by using same-origin requests in this
particular case.

■ Use something other than a cookie to validate the user. If you’re building a public API,
or need to provide authorized access to all origins, an authorization mechanism
like OAuth2 might be a better fit for your needs.

The next section explores the last bullet point in-depth by looking at what OAuth2 is
and how it works.

132 CHAPTER 6 Best practices
6.4.2 Authorizing requests using OAuth2

Suppose you store all your calendar data in Google Calendar. One day you discover a
cool new startup app that uses your calendar data to determine when is the best time
to schedule a massage. This is a revolutionary idea! No longer do you need to worry
about scheduling your own massages—this new app will do it for you.

 There is only one problem. This hot new startup app needs your Google Calendar
data in order to work. How can the startup get data from a different company such as
Google? Well, you could give your Google password to this startup app, and the
startup app could then log into your Google account and read your calendar data.

 Of course sharing your password is a horrible, horrible idea. Your password is the
key not only to your calendar data, but to any data you store in Google. By giving your
password to a third-party startup, you trust that third party not to do anything bad with
your data (like accidentally delete your calendar entries). And even if you do trust
them, their systems could be hacked and your password could land in the hands of a
hacker. Passwords are just too valuable to share.

 So if you can’t share your password, how can the startup app gain access to your
data? OAuth2 can save the day. OAuth2 is an open authorization standard. It’s a
popular authorization mechanism for APIs. APIs from Dropbox, Facebook, GitHub,
and Google (to name a few) all use OAuth2. The goal of OAuth2 is to allow a site to
get user data from a different site without asking for the user’s password. This keeps
the user’s password safe, and puts the user in control of when and how his or her
data is used.

 If the startup app implements OAuth2, instead of asking for your password, it will
redirect you to a special page hosted on Google. Figure 6.12 shows an example of
what this authorization page looks like.

 Google then asks you if it’s okay to share your data with this hot new startup. If you
click Accept, Google gives a token to the hot new startup app. The startup app can
then include this token in the request to load Google Calendar data. No passwords
need to be shared to make this work.

 This token method is a much better option than sharing your password. The token
is “scoped,” meaning that it can only be used to load calendar data, and can’t change
or delete calendar data. And if you, the user, decide you don’t want the startup app to
access your data after all, you have the power to revoke the token. Revoking the token
prevents the startup app from using the token to access your data.

 Once the third-party app has a token, it can use the token to make requests to the
Google Calendar API for a particular user’s data. When making a request for data,
the token is included in the Authorization header of the request, as shown in figure 6.13.
Because the Authorization header is added to the request by the client (rather than
passively included on requests like cookies), a malicious user can’t trigger a cross-site
request forgery attack.

 If you’re using OAuth2 with CORS, it’s important to remember to whitelist the
Authorization header on preflight requests. Because the Authorization header isn’t a

133Security
simple request header, it will always require a preflight request, even on GET and
POST requests. Table 6.3 shows an example of making a request with an Authorization
header. The Authorization header carries the token in the request. The request requires
a preflight request because Authorization is a custom header.

 Adding support for OAuth2 is beyond the scope of this book. It can be a difficult
technology to work with, but luckily there are libraries for most major server languages.

Figure 6.12 Example of a Google authorization page asking for your permission
to share your calendar data with a third-party app

GET /calendar/v3/users/me/calendarList

Host: www.googleapis.com

Authorization: Bearer TOKEN

HTTP 200 OK

Content-Type: application/json

{

// Calendar data

}

Massage app

from startup

Google

Calendar

Figure 6.13 Making an authorized request to the Google Calendar API

134 CHAPTER 6 Best practices
The node-oauth project has a popular OAuth2 implementation; it can be found at
https://github.com/ciaranj/node-oauth. The OAuth2 website at http://oauth.net/2/
has more information on how OAuth2 works, as well as pointers to various server imple-
mentations. Getting Started with OAuth2 by Ryan Boyd (O’Reilly Media, 2012) is also a
great resource for learning how OAuth2 works.

 This section introduced a lot of different security concepts. Here is a recap of each
of these concepts, and how they’re used:

■ Origin header—Identifies where the client’s request originates. Should only be
used to verify that cross-origin requests from the origin are allowed.

■ Authorization cookies—Can be used to identify the user making the request to the
server. Cookies are always included on same-origin requests, and must be opted
into by both the server and the client on cross-origin requests. But once opted
in to, cookies can be vulnerable to CSRF attacks.

■ CSRF token—Guards against CSRF attacks. Ensures that a request is coming
from the user, not from a different page that is trying to trick the user into
making a request.

■ Authorization header—Used to add OAuth2 authorization information to the
request. Authorizes a client to use a third-party API on behalf of a user, without
the user giving their third-party username and password to the client.

Next, let’s turn our attention to best practices for handling preflight requests.

Table 6.3 Making a CORS request with an OAuth2 token.

Preflight request Preflight response

OPTIONS /api/posts HTTP/1.1
Host: 127.0.0.1:9999
Origin: http://localhost:1111
Access-Control-Request-Method: GET
Access-Control-Request-Headers:
Authorization

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: http://
localhost:1111
Access-Control-Allow-Methods: GET,
POST, PUT, DELETE
Access-Control-Allow-Headers:
Authorization

Actual request Actual response

GET /api/posts HTTP/1.1
Host: 127.0.0.1:9999
Origin: http://localhost:1111
Authorization: Bearer <OAUTH2
TOKEN>

HTTP/1.1 200 OK
Date: Sat, 05 Apr 2014 20:28:05 GMT
Content-type: application/json;
charset=UTF-8
Content-length: 123

{
 "data": "..."
}

https://github.com/ciaranj/node-oauth
http://oauth.net/2/ has
http://oauth.net/2/ has

135Handling preflight requests
6.5 Handling preflight requests
In the beginning of the chapter we talked about simple CORS requests. But if your
server handles anything beyond simple GETs or POSTs, you also need to respond to pre-
flight requests. Chapter 4 introduced the basics of handling preflight requests. As cov-
ered in that chapter, preflight requests are a necessary part of the CORS flow, and help
protect servers from unsupported requests. But a preflight request can be a perfor-
mance hit, because it requires two HTTP requests. This can especially be an issue on
resource-constrained systems, like mobile phones. This section investigates strategies
for both handling and reducing preflight requests.

6.5.1 Whitelisting request methods and headers
The preflight request is issued to verify that the server allows certain HTTP methods
and headers. In the blogging sample, a preflight request is issued before a post can be
deleted to ensure that HTTP DELETE requests are allowed.

 Earlier in this chapter we used a whitelist to validate the origin header. You can use
a similar whitelist to specify valid HTTP methods and headers. The code in the follow-
ing listing updates the blogging sample application in app.js with two new options for
configuring preflight requests, called allowMethods and allowHeaders.

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true,
 shortCircuit: true,
 allowMethods: ['GET', 'DELETE'],
 allowHeaders: ['Timezone-Offset', 'Sample-Source']
};

var handleCors = function(options) {
 return function(req, res, next) {
 ...
 if (isPreflight(req)) {
 if (options.allowMethods) {
 res.set('Access-Control-Allow-Methods',
 options.allowMethods.join(','));
 }
 if (options.allowHeaders) {
 res.set('Access-Control-Allow-Headers',
 options.allowHeaders.join(','));
 }

The allowMethods and allowHeaders options contain the whitelisted HTTP methods
and headers that are allowed by the server. The server uses these values to set the cor-
responding preflight headers on the response. Now that the code is configured to set
the preflight headers, the far more interesting question is: what values do you choose
for the whitelist?

Listing 6.8 Allowing HTTP methods and headers

Configuration options
for allowed HTTP
methods and headers

Sets preflight-specific
headers to
configuration values

136 CHAPTER 6 Best practices
ALLOWING HTTP METHODS

When it comes to the HTTP method, there are only a handful of acceptable values, the
most common of which are HEAD, OPTIONS, GET, POST, PUT, PATCH, and DELETE. If you’d
like to allow all types of cross-origin requests, you can set the Access-Control-Allow-
Methods header to all of these values, as follows:

var corsOptions = {
 allowMethods: ['HEAD', 'OPTIONS', 'GET', 'POST',
 'PUT', 'PATCH', 'DELETE']
};

A better approach is to consider which types of requests your server allows, and only
accept those types of requests. If your server only allows GET and DELETE requests, you
should only set those values on the preflight:

var corsOptions = {
 allowMethods: [GET', DELETE']
};

Accurate preflight headers protect your server from unexpected requests, and serve as
useful documentation for your clients. If your server doesn’t allow PUT requests, there
is no reason to accept them in the first place, only to have them fail on the actual
request. From the client’s perspective, if they try to make a PUT request and it fails on
the preflight, the developer can look at the error message and clearly understand
why the request is failing, as shown in figure 6.14. If the PUT request is accepted by the
preflight request but then fails on the actual request, the developer may be misled
into thinking that the PUT request is failing for some other reason.

 Unlike HTTP methods, which have a small set of acceptable values, clients can send
any HTTP header. Let’s look at how to configure custom request headers.

ALLOWING HTTP HEADERS

It can be a bit tougher to know which HTTP headers to allow on requests because
there are so many different request headers. If you have control over both the server
and the client, you can control exactly which headers are included on requests.
Because you control the server code, it’s easy to add a new header to the allow-
Headers whitelist.

 If you’re building an API for external clients, it can be harder to know which head-
ers to allow. JavaScript libraries and frameworks may add their own custom headers to
requests. Table 6.4 lists a few common HTTP request headers.

Figure 6.14 Example of a failing PUT
request. The error message clearly
indicates why the request is failing.

137Handling preflight requests
Some of these headers are tied to certain features. For example, the If-Match and
If-None-Match headers are tied to ETag support, so those headers need only be
allowed if your server supports ETags. Table 6.4 is a good place to start if you’re trying
to decide which HTTP headers to support.

 It’s not easy to configure HTTP headers because there can literally be an infinite
number of custom response headers. As a server administrator, you don’t want to con-
tinually update your server configuration every time a client sends a new header. If
you find yourself in this situation, the next section shares code to allow all request
headers through.

ALLOWING ALL REQUEST HEADERS

As a server administrator, it can be overwhelming to manage all the headers a client
may send. You may not even care about which headers a client includes on the
request. In these cases, it would be helpful if the Access-Control-Allow-Headers header
supported a * value that let all request headers through. The CORS spec doesn’t
define a * value for the Access-Control-Allow-Headers header, but you can mimic this
behavior through the code in the following listing.

Table 6.4 Common HTTP request headers

Request header Description

Authorization The credentials for making an authenticated request. If the server uses OAuth2
to authorize users, the token would be set in this header.

Content-Type The MIME type of the request body. The MIME type indicates the data type of the
body. If the body were JSON, the MIME type would be application/json.

If-Match The ETag value of the corresponding resource. Used during updates to ensure
that the update doesn’t conflict with a different update. Also used for requests
with the Range header to make sure the new part matched the previously down-
loaded parts.

If-Modified-Since Similar to the If-None-Match header, but with a date instead of ETag. The server
only returns a response body if the resource has been modified since the date
in this header. Otherwise, the server returns an HTTP 304 Not Modified status.

If-None-Match The ETag value of the corresponding resource. Used when retrieving a resource.
If the resource’s ETag matches the request ETag, the resource hasn’t changed
since the previous retrieval, and the server returns an HTTP 304 Not Modified
status (without a response body).

If-Unmodifed-Since Similar to If-Match. Used during updates to ensure that the update doesn’t con-
flict with a different update and to check if a Range request makes sense. Uses
date instead of ETag.

Range Specifies a range of bytes to download from the server (rather than the
entire response). Used during resumable downloads to specify where to
start the downloading.

X-Requested-With Indicates where an AJAX request originates. Set by many JavaScript clients
(although JQuery disables this header when making CORS requests).

138 CHAPTER 6 Best practices
var corsOptions = {
 allowHeaders: function(req) {
 return req.headers['access-control-request-headers'];
 }
};

var handleCors = function(options) {
 return function(req, res, next) {
 ...
 if (isPreflight(req)) {
 ...
 if (typeof(options.allowHeaders) === 'function') {
 var headers = options.allowHeaders(req);
 if (headers) {
 res.set('Access-Control-Allow-Headers', headers);
 }
 } else if (options.allowHeaders) {
 res.set('Access-Control-Allow-Headers',
 options.allowHeaders.join(','));
 }
 }

The previous listing introduces an option that lets users define a function for setting
the Access-Control-Allow-Headers header. The header is set to whatever value is
returned by the function. This allows the user to customize the Access-Control-Allow-
Headers header in any way (if the allowHeaders option isn’t a function but an array,
the code falls back on the original behavior of setting the header to the array).

 In listing 6.9, the function in the allowHeaders option just returns the value of
the Access-Control-Request-Headers header. This means that any header that is
requested will be allowed. While the code itself is simple, the consequences are power-
ful. Any header the client sets on a request will be sent to your server. If you use this
technique, you should be absolutely sure that your server is prepared to handle all
incoming request headers.

 Because the allowHeaders option can be a function, the developer isn’t limited
to allowing all request headers, and can define any type of behavior. For example,
the function in the following listing will allow only those header values prefixed
with X-.

 allowHeaders: function(req) {
 var reqHeaders = req.headers['access-control-request-headers'];
 if (!reqHeaders) {
 return null;
 }
 reqHeaders = reqHeaders.split(',');
 resHeaders = [];
 for (var i = 0; i < reqHeaders.length; i++) {
 var header = reqHeaders[i].trim();

Listing 6.9 Adding all requested headers on preflight

Listing 6.10 Only allowing request headers prefixed with X-

Sets allowHeaders
option to a function

Sets value of Access-
Control-Request-
Headers header

139Reducing preflight requests
 if (header.toLowerCase().indexOf('x-') === 0) {
 resHeaders.push(header);
 }
 }
 return resHeaders.join(',');
 }

This function is different from the one before because it actually parses and looks at
the values in the Access-Control-Request-Headers header. It only returns those requested
header values that start with an X-. For example, if the client sends the following
request header:

Access-Control-Request-Headers: X-One, Two, Three, X-Four

the server will reply with the following response header:

Access-Control-Allow-Headers: X-One, X-Four

X-One and X-Four are allowed because they begin with X-, while header values Two
and Three don’t. If a developer inspects the preflight request and response, he or she
can easily see which header values were requested and which were allowed.

 This is just one example of the nuanced ways you can control the Access-Control-
Allow-Headers header. If your own server has different request header requirements,
you can tailor it any way you see fit.

6.6 Reducing preflight requests
While preflight requests are an important form of server protection, the additional
HTTP request can be a performance hit. This is especially true for resource-constrained
environments where HTTP requests are expensive, such as mobile devices. Therefore,
it’s useful to try to limit the number of preflight requests a client has to make. Now
that your server is configured to respond to all types of preflight requests, let’s look at
ways to reduce the number of preflight requests.

NOTE Some of these suggestions are also useful for supporting CORS on
Internet Explorer 8 and Internet Explorer 9. If you’ll recall from chapter 2,
Internet Explorer 8 and Internet Explorer 9 use a special XDomainRequest
object to make limited CORS requests.

6.6.1 Maximizing the preflight cache

The simplest way to avoid preflight requests is to take advantage of the preflight result
cache. The cache exists for the specific purpose of avoiding multiple preflight requests
to the same URL. You can increase the cache time by using the Access-Control-Max-Age
header, as shown in the following listing.

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),

Listing 6.11 Configuring the Access-Control-Max-Age header

140 CHAPTER 6 Best practices
 allowCredentials: true,
 shortCircuit: true,
 allowMethods: ['GET', 'DELETE'],
 allowHeaders: ['Timezone-Offset', 'Sample-Source'],
 maxAge: 120
};

var handleCors = function(options) {
 return function(req, res, next) {
 ...
 if (isPreflight(req)) {
 ...
 if (options.maxAge) {
 res.set('Access-Control-Max-Age', options.maxAge);
 }
 ...
 };

The Access-Control-Max-Age indicates the maximum number of seconds to cache a
preflight request. For example, setting the header to a value of 120 will wait two min-
utes before issuing a new preflight request to the URL.

 It’s tempting to set the Access-Control-Max-Age value to something really high, like
604800 (the number of seconds in a week). But the Access-Control-Max-Age value is
more of a suggestion, because browsers have their own caps on how long a preflight
request can be cached for. Chrome, Safari, and Opera cache preflight requests for up
to five minutes, while Firefox caches preflight requests for up to 24 hours.

 The client origin and the server URL are part of the unique cache key used to
determine if a preflight request has been cached. Because the cache key takes both
the URL and origin into account, the cache can’t be used to set blanket caching rules
across sites. For example, because the cache applies to a specific URL, there is no way
to specify a caching policy for an entire domain. Each URL under a domain has its
own cache value. At the same time, there is no way to specify caching rules for a URL
across all origins. If you make a request to a URL from origin http://foo.com, and
then make a request to that same URL from http://bar.com, you’ll have to issue a new
preflight. Table 6.5 summarizes the cases where preflight requests are cached.

Table 6.5 Various requests and whether their preflight requests are cached

Request URL Request origin Is preflight cached? Why?

/api/posts http://localhost:1111 No First request, there is nothing in
the cache

/api/posts http://localhost:1111 Yes Preflight request was cached from
the previous request

/api/posts/1 http://localhost:1111 No Request sent to a different URL

/api/posts http://localhost:2222 No Request is from a different origin

Introduces new maxAge
configuration option

If maxAge option exists,
sets Access-Control-
Max-Age header

http://localhost:1111
http://localhost:1111
http://localhost:1111
http://localhost:2222
http://foo.com
http://bar.com

141Reducing preflight requests
Because the criteria for caching a preflight request are so limited, the preflight result
cache provides narrow value. The preflight result cache is only useful for multiple
requests to the same URL from the same origin, within a five-minute span. Most requests
to an API will probably fall outside of this window. Luckily, there are still changes you
can make to your API to reduce preflight requests.

6.6.2 Changing your site to reduce preflight requests

The key to reducing preflight requests is to reduce the conditions that result in pre-
flight requests. Recall from chapter 4, a preflight is issued in cases where:

■ The request method is something other than GET or POST.
■ The request contains custom HTTP headers.

Eliminating these conditions will eliminate the need for a preflight. The following sec-
tion looks at ways in which you can do this. Note that some of these suggestions fly in
the face of what is considered good API design. You should weigh your need to elimi-
nate preflight requests against the need to have a sane, structured RESTful API before
implementing these suggestions.

REDUCING CUSTOM HEADERS

If your API includes custom headers on requests, eliminating or moving these headers
can remove the need for a preflight. The Content-Type request header indicates what
data type is in the body of a request. If you have a JSON API, it’s tempting to set the value
of the Content-Type request header to application/json. In fact, there are some
libraries that will automatically set this value for you. But setting the Content-Type to
application/json triggers a preflight, because the only allowed values for Content-
Type are application/x-www-form-urlencoded, multipart/form-data, or text/plain.
By removing this header from the request, you avoid the need to issue a preflight.

 If you need the information from a particular header, you could consider moving
the value from a header to a query parameter. The sample code in chapter 4 intro-
duced the Timezone-Offset and Sample-Source custom headers to demonstrate how
preflight requests work. Instead of custom headers, you could use query parameters to
convey the same information. Table 6.6 shows two ways to convey the time zone and
sample source data introduced in chapter 4.

Table 6.6 Moving custom headers into the query parameter. Eliminating the custom headers eliminates
the need for a preflight request.

Original request
(requires a preflight request due to custom headers)

New request
(no custom headers, so no preflight request)

GET /api/posts HTTP/1.1
Host: 127.0.0.1:9999
Origin: http://localhost:1111
Timezone-Offset: 300
Sample-Source: CORSInAction

GET /api/posts?
 timezoneOffset=300&
 sampleSource=CORSInAction
 HTTP/1.1
Host: 127.0.0.1:9999
Origin: http://localhost:1111

142 CHAPTER 6 Best practices
The server-side code that reads these values would also have to change to read from
the query parameter rather than the request headers.

REDUCING HTTP METHODS

Another way to reduce preflight requests is to reduce the types of HTTP methods
used. If your API supports PUT or DELETE requests, these requests must have a preflight
request. There is no way to work around a preflight on PUT and DELETE requests.

 But if the request were a POST instead of a PUT, it wouldn’t need a preflight request
(so long as it didn’t also have custom headers). Certain protocols, such as JSON-RPC,
are built entirely around GET and POST requests only. (JSON-RPC also gives excellent
preflight caching because all requests are made to a single endpoint.) If avoiding pre-
flight requests is important, you may want to investigate an alternative protocol.

 This section covered strategies for handling preflight requests. It started by discuss-
ing common methods and headers that should be whitelisted. It then described a
technique to give more fine-grained control over what types of request headers are
allowed (a technique that can be expanded to allow any request header).

 Next it discussed strategies for reducing preflight requests. Because preflight
requests issue an additional HTTP request, reducing them can lead to performance
gains, especially on resource-constrained devices such as mobile. A preflight request is
issued whenever a request uses methods other than GET or POST, or when it uses cus-
tom headers. Reducing the need for either reduces the need for preflight requests.

 This discussion of preflight requests rounds out the basic building blocks of a
CORS server. But there are still a few more odds and ends to CORS requests. The next
sections look into exposing headers to clients, and handling HTTP redirects.

6.7 Exposing response headers
The last remaining CORS feature is the ability to expose response headers to the cli-
ent. Chapter 5 described how the Access-Control-Expose-Headers header could be
used to indicate which, if any, response headers are visible to the client. It’s not a criti-
cal CORS header in that the request will still succeed if this header isn’t present, but
it’s useful if clients need to read response headers. If the server wants to give the client
the ability to read the X-Powered-By response header, it would set the following
header on the response:

Access-Control-Expose-Headers: X-Powered-By

Using the technique similar to the Access-Control-Allow-Headers header, the sample
code in the following listing adds an option to set the Access-Control-Expose-
Headers header.

var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true,
 shortCircuit: true,

Listing 6.12 Exposing response headers to the client

143Exposing response headers
 allowMethods: ['GET', 'DELETE'],
 allowHeaders: ['Timezone-Offset', 'Sample-Source'],
 maxAge: 120,
 exposeHeaders: ['X-Powered-By']
};

var handleCors = function(options) {
 return function(req, res, next) {
 ...
 if (isPreflight(req)) {
 ...
 res.status(204).end();
 return;
 } else if (options.exposeHeaders) {
 res.set('Access-Control-Expose-Headers',
 options.exposeHeaders.join(','));
 }

The exposeHeaders option specifies the response headers that should be exposed to
the client. If the exposeHeaders property exists and the request isn’t a preflight
request, the Access-Control-Expose-Headers header is set to the values in the expose-
Headers array.

 Table 6.7 summarizes common response headers that may be useful to clients. If
your server sets one of the headers listed in the table, it may be useful to expose these
to clients.

It would be convenient to support a * value for the exposeHeaders option (similar to
how you did for the allowHeaders option). A * value would mean that all response
headers should be exposed to the client. To do this, the code needs to keep track of
all the headers in the response. Unfortunately, NodeJS and Express don’t provide con-
venient mechanisms for reading the response headers before the response is sent to
the client. Other platforms, such as Java servlets, provide a mechanism for doing this.
If you’re using a language that supports this feature, you can use it to configure the
Access-Control-Expose-Headers header.

Table 6.7 Common response headers

Response header Description

Content-Length The number of bytes in the response body.

Date The date the server sent the response.

ETag A unique identifier that identifies a particular version of a resource. Used in con-
junction with the If-Match and If-None-Match request headers to determine
whether a resource has changed.

Expires The date after which the resource is considered stale. Can be used in conjunc-
tion with the ETag or Date header to retrieve fresh content from the server.

Last-Modified The date the resource was last modified.

New exposeHeaders option
specifies which headers to expose

Sets Access-Control-
Expose-Headers on
nonpreflight responses

144 CHAPTER 6 Best practices
6.8 CORS and redirects
When performing an HTTP redirect, both the server initiating the redirect and the
server receiving the redirect must have the correct CORS headers. If either server
doesn’t have the correct CORS configuration, or doesn’t support CORS at all, the
request will fail.

 As an API evolves, it may have the need to use HTTP redirects. While we like to think
that our API design is perfect from the beginning, the truth is that APIs change based on
user’s needs and feedback, and it’s sometimes necessary to create a whole new URL end-
point. In these cases, HTTP redirects give the server a mechanism for connecting the old
URL to the new URL. Visitors to the old URL are seamlessly redirected to the new one.
This ensures that old URLs will continue to work even as an API evolves.

 Suppose you want to introduce a new API version living at /api/v2/posts. After a
lot of testing and bug fixes, you decide that the API is ready for everyone to use,
including users of the previous version. So you set up an HTTP redirect from /api/
posts (the old endpoint) to /api/v2/posts (the new endpoint). Figure 6.15 shows
what your new API would look like.

 The following snippet shows the code that implements a redirect which consists of
two parts: the HTTP status code and the Location header. The status code indicates
that the response is a redirect. There are two valid status codes for redirects: 301,
which indicates that a resource has permanently moved to a new URL, and 302, which
indicates a temporary move. (An example of a temporary redirect is if a server is down
and you want to redirect the visitor to a status page for the duration of the outage.)
The Location header indicates where the new resource lives. The Location header
can point to a resource on the same server, or on a completely different server.

serverapp.get('/api/posts', function(req, res) {
 res.redirect(301, '/api/v2/posts');
});

/api/posts

Request

Original request flow:

request and response

are served through

/api/posts.

Redirected

request flow:

request arrives

at /api/posts.

/api/posts redirects

to /api/v2/posts, which

serves response.

Origin request flow

/api/posts /api/v2/posts

(HTTP redirect)

Request

Redirected request flow

Figure 6.15 Sample server before and after introducing a redirect

145CORS and redirects
serverapp.get('/api/v2/posts', function(req, res) {
 res.json(POSTS);
});

This code sets the HTTP status to 301 (because you want to permanently redirect
users), and sets the Location header to your new resource at /api/v2/posts. In addi-
tion to this code, any xhr.setRequestHeader code in client.html should be deleted.
This prevents the client from initiating a preflight request (you’ll see why this is
important in a moment).

 If you restart the server and visit client.html, you’ll see two HTTP requests in your
Network tab, as shown in figure 6.16. The first request hits /api/posts. This first
request is then redirected to /api/v2/posts.

 There are a couple of other caveats when handling a redirect with CORS. First, if
the client is redirected to a resource on a different server, the Origin header will be
set to null. So far we’ve only encountered null Origin values when working with local
files, but this is an example of a null origin in a different context. The next listing
shows what would happen if instead of redirecting to your own server, you redirected
requests from /api/posts to www.HTML5Rocks.com/en/.

First request:
GET /api/posts HTTP/1.1
Host: 127.0.0.1:9999
Origin: http://localhost:1111
Accept: */*
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cache-Control: no-cache
Connection: keep-alive
Referer: http://localhost:1111/client.html

HTTP/1.1 301 Moved Permanently
Location: http://www.html5rocks.com/en/
Access-Control-Allow-Credentials: true
Access-Control-Allow-Origin: http://localhost:1111
Access-Control-Expose-Headers: X-Powered-By
Connection: keep-alive
Content-Length: 63
Content-Type: text/plain
Date: Sat, 05 Apr 2014 18:35:31 GMT
Vary: Origin
X-Powered-By: Express

Redirected request:
GET /en HTTP 1.1
Accept: */*
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Connection: keep-alive
Host: www.html5rocks.com

Listing 6.13 Redirecting a CORS request to a server at a different origin.

CORS request is sent to
http://127.0.0.1:9999/api/posts with
Origin set to http://localhost:1111.

/api/posts redirects to
www.HTML5Rocks.com/en/.

Redirect also includes
valid CORS headers.

http://l127.0.0.1:9999/api/posts
www.HTML5Rocks.com/en/
www.HTML5Rocks.com/en
http://localhost:1111

146 CHAPTER 6 Best practices
Origin: null
Referer: http://localhost:1111/client.html

HTTP 1.1 200 OK
Access-Control-Allow-Origin: *
Cache-Control: no-cache
Content-Encoding: gzip
Content-Length: 4291
Content-Type: text/html; charset=utf-8
Date: Sat, 05 Apr 2014 18:35:32 GMT

The Origin header is set to null because the browser doesn’t want to leak the origin
value to the new server. Remember that redirects are followed automatically, so the cli-
ent has no way to intervene before following the redirect. This could lead to a case
where the client is redirected to a site that they didn’t expect or want. In this case, hid-
ing the Origin header value by setting it to null is a safety precaution.

 The other caveat is that CORS preflight requests will never follow redirects. If
you’re making a CORS request that has a preflight, and the server tries to redirect you,

Second request is made to
www.HTML5Rocks.com/en/,
with the Origin set to null.

HTML5Rocks.com responds
with valid CORS headers.

/api/v2/posts receives the redirect and returns an HTTP 200 response.

Original request to /post/api is redirected using a 301 redirect.

Figure 6.16 Viewing the HTTP redirect in Chrome’s Network tab

www.HTML5Rocks.com/en/

147Summary
the request will fail. Figure 6.17 shows the error message you’ll see in Chrome if you
try to redirect a request that requires a preflight.

 In this case, you’ll need to manually inspect the response’s Location header to figure
out where the server is trying to redirect you, then send your request directly to that URL.

 Here is a recap of how CORS works with redirects:

■ Simple CORS requests will follow redirects.
■ Preflight requests will not follow redirects.
■ If the redirect is to the same server as the original request, the Origin header

will stay the same. Otherwise, the Origin header will be set to null.

You probably won’t run into redirects often, but it’s still useful to understand how they
work so you can build your API appropriately.

6.9 Summary
This chapter opened with questions you should ask yourself about your own CORS
needs. After answering those questions, you should have a better idea of how you want
to configure your server. The chapter then took a closer look at how to configure the
various CORS-specific headers for your own needs. Here is a recap of each header:

■ Access-Control-Allow-Origin:
– Use the * value to allow requests from all origins.
– Use a whitelist to allow only certain origins.

■ Access-Control-Allow-Credentials:
– Setting the value to true allows cookies on requests.
– Enable cookies only if you’re sure you need them.
– If your server does support cookies, be sure to also validate the origin and

implement CSRF protection.

Figure 6.17 Error when redirecting a request with a preflight

148 CHAPTER 6 Best practices
■ Access-Control-Allow-Methods:
– This header only needs to be present on preflight responses.
– It indicates which HTTP methods are allowed on a URL.
– Common values include HEAD, OPTIONS, GET, POST, PUT, PATCH, and DELETE.

■ Access-Control-Allow-Headers:
– This header only needs to be present on preflight responses.
– It indicates which HTTP headers are allowed on a URL.
– Echo the Access-Control-Request-Headers value to get full header support.

■ Access-Control-Max-Age:
– This header only needs to be present on preflight responses.
– It indicates how many seconds to cache preflight requests for.
– Browsers may have their own maxAge caps.

■ Access-Control-Expose-Headers:
– This header indicates which response headers to expose to clients.
– It’s an optional header that isn’t required for a successful CORS request.

The chapter also took a look at the security of CORS. It’s important to remember that
CORS in and of itself doesn’t also serve as a mechanism for securing a server. If you
need to serve protected content, consider some other authorization mechanism, such
as cookies or OAuth2. If your CORS implementation allows cookies, it’s also important
to have CSRF protection in place.

 Finally, this chapter examined how to minimize preflight requests by reducing the
circumstances that lead to preflights. Reducing preflight requests is desirable because
it eliminates an extra HTTP request, which can be expensive on resource-constrained
devices such as mobile phones.

Part 3

Debugging
CORS requests

The previous two parts of this book focused on how CORS works from both
the client’s and the server’s perspective. Because there is both a client- and
server-side component to CORS, there are many places where things can go
wrong, and debugging these issues can be difficult.

 Chapter 7 provides details on how to debug CORS requests. It starts by intro-
ducing you to the browser’s developer tools. These developer tools provide a lot
of insightful information about CORS requests, including any CORS-related errors,
and a view into the request and response headers. If the developer tools aren’t suf-
ficient, the chapter looks at Wireshark, which is a tool that analyzes network traffic.
Wireshark can help shed some light on why CORS requests are failing.

 Next, the chapter looks at other tools that can be useful for debugging CORS
requests, such as curl and test-cors.org. Then the chapter moves on to tips for
debugging requests from mobile devices. Finally, the chapter covers where to go
to get help on CORS-related issues.

Debugging CORS requests
Suppose that, using the guidance from the previous chapters, you now have a work-
ing CORS server with a web page that makes CORS requests. You fire up your server,
visit your web page...and nothing happens. Now what?

 Up until this point, we’ve focused on how to build a working CORS server imple-
mentation. But what happens when things go wrong? Over the course of develop-
ing any application, things inevitably go wrong and need to be debugged. You may
be building a CORS server, and find that requests aren’t going through. Or you
may be coding a client that talks to a CORS server, and find that the request is fail-
ing. Either way, you need to know how to figure out what is going wrong.

 This chapter introduces tools that can be used to debug CORS requests. It starts
by introducing features of the Chrome Debugger Tool. Next it looks at how to
monitor request and response headers using Wireshark. Then it turns to using curl

This chapter covers
■ Using network sniffers like Wireshark to view

network traffic
■ Using curl to make an HTTP request
■ Debugging requests from mobile devices
■ Getting more help on CORS-related questions
151

152 CHAPTER 7 Debugging CORS requests
and test-cors.org to make CORS requests. It ends with resources where you can find
answers to your CORS questions.

7.1 Solving CORS errors
With all the platforms, libraries, and frameworks out there, it can be daunting to know
where to start debugging CORS requests. But regardless of whether you’re using
ASP.NET running on Mono or Tomcat running on Linux, debugging CORS comes
down to one thing: isolating and analyzing the HTTP headers. The server and client
communicate using HTTP headers, and most CORS errors indicate a mismatch
between the client request headers and the server response headers.

 Regardless of what tools you use to solve the issue, the steps to solving CORS errors
are the same (see figure 7.1):

1 Capture a snapshot of the request and response headers
2 Compare the headers to see if and where there is a mismatch
3 Fix the issue by either

a Updating the client to send the correct headers
b Updating the server to allow the client headers

The rest of this chapter will explore tools you can use to capture and view the HTTP
headers. But first, let’s create a request you can test against. To understand how to
debug broken requests, you need to break a request. The code from chapter 6 intro-
duced configuration options that can be used to configure how a CORS-enabled server
behaves. The following listing modifies the configuration options in a way that breaks
the client.

var originWhitelist = [
 'null',
 'http://localhost:1111'
];

Listing 7.1 Configuring the CORS server to only allow the Timezone-Offset header

Capture Compare Fix

Figure 7.1 Three steps to fixing CORS errors

153Using the browser’s developer tools
var corsOptions = {
 allowOrigin: createWhitelistValidator(originWhitelist),
 allowCredentials: true,
 shortCircuit: true,
 allowMethods: ['GET', 'DELETE'],
 allowHeaders: ['Timezone-Offset'],
 maxAge: 120,
 exposeHeaders: ['X-Powered-By']
};

...

serverapp.get('/api/posts', function(req, res) {
 res.json(POSTS);
});

These configuration options are essentially the same as those from the previous chap-
ter, but with one critical difference. This code only allows the Timezone-Offset request
header, even though the client is configured to send both the Timezone-Offset and
the Sample-Source request headers. This means that the preflight request will fail,
because the Access-Control-Allow-Headers response header won’t match the Access-
Control-Request-Headers request header (figure 7.2).

The fix to this error is as easy as adding the Sample-Source header to the allowHeaders
array. But even though you know how to fix this, set this knowledge aside and forget
about it for a while. The rest of this chapter will approach this sample as if you were
debugging an unknown error, and will walk through the tools that can be used to
debug the request.

7.2 Using the browser’s developer tools
If you restart the sample server and visit the client page, you’ll be greeted with the
error page rather than the blog posts. To figure out what went wrong, let’s start by
inspecting the error using your browser’s developer tools.

 All modern browsers have a suite of developer tools, which are in-browser panels
that can help a web developer catch and diagnose issues with a site. The following
sidebar explains how to find the developer tools in various browsers.

Allows Timezone-Offset
request header, but not
Sample-Source header

Removes redirect
from chapter 6

Access-Control-Request-Headers: Timezone-Offset, Sample-Source

≠
Access-Control-Allow-Headers: Timezone-Offset

Figure 7.2 The CORS request fails because the Access-Control-
Request-Headers doesn’t match the Access-Control-Allow-Headers
header.

154 CHAPTER 7 Debugging CORS requests
The developer tools contain many different features, including:

■ Console—Logs errors and other useful messages, and enables developers to
interactively execute JavaScript on a page.

■ JavaScript debugger—Allows the developer to set breakpoints and trace through
JavaScript code.

■ Network monitor—Logs the request and responses for all network traffic. Can be
filtered by resource type.

■ DOM inspector—Enables the developer to view the DOM associated with elements
on the page.

■ Profiler—Tracks the performance of actions on the site, and enables the devel-
oper to uncover performance bottlenecks.

When debugging CORS requests, we’ll focus on two features in particular: the console
and the network monitor. The examples from the rest of this chapter will use Chrome,
but the developer tools from any browser can perform the same functions. Let’s see
how you can use these tools to debug CORS requests.

Finding your browser’s developer tools
All modern browsers contain a suite of developer tools. While all developer tools
perform the same functions, they can be found in different places depending on
which browser you use. Here is a breakdown of how to find the developer tools in
each browser.

■ Chrome—Choose the Chrome menu at the top-right of your browser window,
then choose Tools > Developer Tools. Or press F12 or Ctrl + Shift + I (or Cmd +
Opt + I on a Mac). For more information, see https://developers.google.com/
chrome-developer-tools/.

■ Firefox—Choose the Tools menu, then choose Web Developer > Toggle Tools.
Or press F12 or Ctrl + Shift + I (or Cmd + Opt + I on a Mac). For more information,
see https://developer.mozilla.org/en-US/docs/Tools.

■ Internet Explorer—Internet Explorer’s developer suite is called F12 because
you can launch the developer tools by pressing F12. For more information, see
http://msdn.microsoft.com/library/ie/bg182326(v=vs.85).

■ Opera—Opera’s developer suite is called Dragonfly and it can be found by
choosing the Tools menu, then Advanced > Opera Dragonfly. Or press Ctrl +
Shift + I (Cmd + Opt + I on a Mac). For more information, see http://www.opera
.com/dragonfly/.

■ Safari—To use Safari’s developer tools, you must first enable the feature by
clicking Show Develop Menu in the Menu Bar found in Safari’s preferences
under the Advanced pane. This will show a Develop menu in the toolbar. Next,
choose Develop > Show Web Inspector. Or press Cmd + Opt + I after enabling
the Develop menu. For more information, see https://developer.apple.com/
safari/tools/.

https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/
https://developer.mozilla.org/en-US/docs/Tools
http://www.opera.com/dragonfly/
http://msdn.microsoft.com/library/ie/bg182326(v=vs.85)
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
http://www.opera.com/dragonfly/

155Using the browser’s developer tools
7.2.1 Using the console

The console can be found in the developer tools and under the Console tab (if it isn’t
already selected). The console serves two purposes:

■ It logs any messages or errors that occur while a site loads and runs.
■ It allows you to enter JavaScript commands that can be run against the page.

The console is the first place to check when something on the page goes wrong. With
that in mind, if you reload the sample client, the error from figure 7.3 should appear.

 The text of the error message may differ from browser to browser. Chrome and
Safari happen to give very detailed error messages for CORS errors. In the message
from figure 7.3, you can see exactly what is wrong: “Request header field Sample-
Source isn’t allowed by Access-Control-Allow-Headers.”

 The console also lets you run JavaScript commands from the page. If you made
changes to the server, you could reissue the CORS request without reloading the page
by calling the getBlogPosts function directly. To do this, type getBlogPosts() in the
console window and press Enter. Because the request will still fail, you’ll see the same
error message as in figure 7.3.

 So, the console tells you what the error is, but not much more. To debug this
request further, you need to look at the HTTP request itself. This can be done from
the Network tab.

7.2.2 Using the Network tab

The Network tab shows the HTTP requests and responses from a page, as shown in fig-
ure 7.4. This includes requests for CSS style sheets, JavaScript files, images, fonts, Web-
Sockets, and any HTTP requests triggered from XMLHttpRequests.

 The Network tab for the sample shows two requests:

■ The client.html page itself
■ The CORS request to load the blog posts

The request to load the blog posts, shown in the bottom row, is a failing request.
 The Network tab also provides additional information about the request, also

shown in figure 7.4. This includes information such as the HTTP method, the HTTP
status, the content type of the request, the location on the page that initiated the
request, the size of the response, and the time it takes to load the response.

Figure 7.3 Error message from the missing request header

156 CHAPTER 7 Debugging CORS requests
Right clicking a column can configure the view to show and hide additional bits of
information. There are two additional columns that are hidden by default, but can be
useful when debugging CORS requests. The Remote Address column indicates the
server the request is going to, and can be useful for identifying cross-origin requests;
the Vary column indicates the value of the Vary header (as you learned in chapter 6, the
Vary header indicates which header values should be taken into account when calcu-
lating caching resources).

 Clicking the request reveals even more detailed information, such as the request
and response headers, as shown in figure 7.5. When debugging CORS requests, it’s
important to pay special attention to any CORS-specific headers, such as the Origin
header and any header prefixed with Access-Control.

 The Network tab provides more insight into why the request is failing. The HTTP
method is OPTIONS, which means that the preflight request is failing. Because the pre-
flight request fails, the actual request is never issued. This is verified by the fact that
you don’t see a second GET request to load the blog posts. By inspecting the HTTP
headers, you can see that although the request has an Access-Control-Request-
Headers: timezone-offset, sample-source header, the server responds with Access-
Control-Allow-Headers: Timezone-Offset, and is missing the Sample-Source header.

 Now that we’ve diagnosed the root cause of this issue, there are a few ways to
proceed. If the request header is expected and valid, the server configuration can
be updated to allow the request header. But this only works if you have control over
the server configuration (as you do in this sample). If you’re making requests against
a server you don’t have control over (for example, if you’re querying a third-party API
built by a different company), your options are more limited. You can remove the
Sample-Source header from the client. That is easy in this particular case, because
the Sample-Source header doesn’t do anything. But if the request header is important
to the request, you may need to reach out to the server owner and ask them to allow
your particular header. Table 7.1 explores ways to fix this issue.

 The console log message coupled with inspecting and comparing the HTTP
request and response headers is usually sufficient to diagnose most CORS issues. But
there are times when the developer tools don’t tell the whole story. If you issue a simple

Figure 7.4 The Network tab in Chrome’s developer tools

157Using the browser’s developer tools
cross-origin GET request that fails, Chrome’s developer tools will hide the response
headers. The response headers are hidden because of the browser’s policy of hiding
any information that the server hasn’t opted in to. This also makes it hard to debug

Table 7.1 CORS issue can either be fixed in the client code or the server code

In the client code In the server code

xhr.setRequestHeader(
 'Timezone-Offset',
 new Date().getTimezoneOffset());
xhr.setRequestHeader(
 'Sample-Source',
 'CORS in Action');

var corsOptions = {
 ...
 allowHeaders: [
 'Timezone-Offset',
 'Sample-Source']
};

Remove the disallowed header from the request Add the failing header to the allowHeaders
whitelist (only works if you can change the
server code)

Figure 7.5 Viewing the request and response headers for the failing request

158 CHAPTER 7 Debugging CORS requests

ne-
e-
cross-origin requests. The next section looks at how to use a network sniffer like Wire-
shark to view the HTTP request and response headers.

7.3 Monitoring network traffic
Sometimes Chrome developer tools won’t show all the HTTP header information. To
see this in action, let’s once again break the sample code, but in a different way. The
following code snippet removes the Timezone-Offset and Sample-Source custom request
headers from the client.html file:

var xhr = createXhr('GET', 'http://127.0.0.1:9999/api/posts');
xhr.onload = function() {
 var data = JSON.parse(xhr.responseText);
...

Next, the app.js server code is updated to remove the client http://localhost:1111
from the whitelist:

var originWhitelist = [
 'null'
];

This essentially means that the client won’t be able to make requests, because there
won’t be an Access-Control-Allow-Origin header in the response. If you restart the
sample and reload the page, you’ll once again see an error, but there will be some
slight differences.

 Figure 7.6 shows the Console and Network tabs for the request to /api/posts. The
request still fails, but this time the failure is on the actual GET request, because there
is no preflight request. (Remember there is no preflight request because you
removed the custom request headers from the request.) The HTTP status is labeled as
(canceled). Clicking the request itself shows that while you can see the request
headers, the response headers are missing and there is an error that says “CAUTION:
Provisional headers are shown.” This error means that the response headers are
unavailable. In this particular case, because the CORS request fails, the browser follows
the conservative route and hides any response information, even though an HTTP
response was sent to the server.

 Even though Chrome won’t display the response headers, there are other options
available. You could always try a different browser. Browsers such as Internet Explorer
and Firefox will display the response headers (although it’s possible that they could
change this behavior in the future).

 Another option is to use a packet analyzer, such as Wireshark or Fiddler. Packet
analyzers show all the network traffic flowing through your system, including the
cross-origin request from the browser. The rest of this section explores how to use
Wireshark or Fiddler to capture and view network traffic.

Removes Timezo
Offset and Sampl
Source request
headers from
client.html

Removes http://localhost:1111
from whitelist in app.js

http://localhost:1111
http://localhost:1111

159Monitoring network traffic
7.3.1 Using Wireshark

Wireshark is a tool that monitors and logs all network traffic passing through your
computer. The network traffic isn’t limited to HTTP requests, but it includes all net-
work traffic, including TCP and UDP traffic. Wireshark fits under the general category
of tools called packet analyzers. But what makes it appealing is that it’s an open source
tool that runs on most platforms (including Windows, Mac, and Linux). Wireshark
can be downloaded from http://wireshark.org. Appendix B goes into more details on
how to download and install Wireshark.

NOTE While this section focuses on Wireshark, you don’t need to use it to
obtain network data. Any packet analyzer will do. Other popular tools with
network monitoring support include Fiddler and Charles.

Wireshark is a rich app with many features, so we’ll focus on the features you can use
to debug CORS requests. When you first fire up Wireshark, you’re greeted with a start-
ing page similar to figure 7.7.

Console error
message.

Failing request
in Network tab.

Response headers
aren’t shown.

Figure 7.6 Console and Network tabs for a failing request to /api/posts

http://wireshark.org

160 CHAPTER 7 Debugging CORS requests
TIP It might be a good idea to close all open tabs and any other sources of
network traffic while Wireshark is running. This will make it easier to find
your CORS requests among all the other network chatter.

This screen offers a lot of choices, but we’re going to focus on starting a network cap-
ture. To initiate a network capture, choose your network interface and click Start. The
network interface is the interface through which network requests are made. Choos-
ing the right network interface can be tricky. If you’re making requests to the outside
world, you should choose the interface you’re connected with, such as Wi-Fi. But if
you’re following along with the sample code, you should select the “loopback” inter-
face, because the sample is making a request from your computer to your computer.

NOTE Windows users may have issues with this step. If you’re on Windows,
you can skip ahead to the next section, which covers Fiddler, a packet ana-
lyzer for Windows.

Once the network capture has started, Wireshark switches to the view in figure 7.8.
Wireshark is now monitoring and logging all the network traffic passing through your
computer. Each line in the log is a network request or response. Don’t worry about
making sense of this output at the moment; you’ll learn how to filter the data to find
what you’re looking for.

 Now that the network capture has started, you need to trigger a CORS request so that it
can be logged. You can do this by reloading the page at http://localhost:1111/client.html.

Figure 7.7 Wireshark startup screen

http://localhost:1111/client.html

161Monitoring network traffic
Reloading the page will trigger an HTTP request to your server. Once the page has
reloaded, you can stop the capture in Wireshark by clicking Stop.

 The CORS request is logged somewhere in the network capture log, but finding it
can be like spotting a needle in a haystack. Luckily Wireshark provides a rich filtering
language to help narrow down the entries in the log. A simple way to find the CORS
request is to filter the network log by HTTP requests. This is as simple as typing http in
the filter box. Figure 7.9 shows the results of filtering by HTTP requests. You can clearly
see both the request and response for the client.html page and the /api/posts pages.

 Notice that unlike in Chrome’s developer tools, you can see the response to the
/api/posts request. Clicking each log item will show more details about the request,
including the headers. If you click the response to the /api/posts requests, you can
see that although the request has an Origin header, the response doesn’t have an
Access-Control-Allow-Origin header, and therefore the request fails. Figure 7.10 shows
the discrepancy in the headers.

 Wireshark is useful for digging into HTTP requests when the browser doesn’t pro-
vide the information you need. This is often the case when making simple GET or POST
requests that don’t have a preflight request.

7.3.2 Using Fiddler

Fiddler is another packet analyzer. It is easier to use than Wireshark, but it’s available
only on Windows. In addition to network analysis, Fiddler supports a lot of other fea-
tures, such as web debugging, web session manipulation, performance testing, and

Figure 7.8 Wireshark capturing network traffic

162 CHAPTER 7 Debugging CORS requests
security testing. But for the purposes of debugging CORS requests, we’ll focus on the
network analysis.

 Fiddler is a free tool, and it can be downloaded from www.telerik.com/fiddler. If
you’d like to follow along with this example, install and run Fiddler (see appendix B
for installation details).

NOTE When opening Fiddler, Windows 8 users may see a popup referring to
AppContainer. It’s safe to ignore this message. Go ahead and click either No
or Cancel.

From the moment you open Fiddler it starts recording network traffic. If you go back to
your browser and navigate to http://localhost:1111/client.html, you’ll see the requests
appear in Fiddler, as shown in figure 7.11.

Filter box helps

narrow down the log

Only HTTP requests and

responses are shown in the log

Response headers (which

weren’t visible in Chrome)

Figure 7.9 Filtering Wireshark’s display to only show HTTP requests and responses

http://localhost:1111/client.html
www.telerik.com/fiddler.

163Monitoring network traffic
Origin header in request CORS-specific headers in response;
note the Access-Control-Allow-Origin

header is missing

Figure 7.10 CORS request and response to /api/posts

Request details,

including HTTP headersNetwork requests

Figure 7.11 Viewing network traffic in Fiddler

164 CHAPTER 7 Debugging CORS requests
The left pane records each request, and includes such details as the protocol, response
status, host, and URL. You should see the requests to both client.html and /api/posts
in the left pane. Selecting the /api/posts request opens up more details in the right
pane, such as the request headers, response headers, response body, and cookie details.
Selecting the Inspector tab, followed by the Headers tabs (there should be two Headers
tabs, one for requests and one for responses), will show you the request and response
headers. In figure 7.11, you can see that while the request has an Origin header, the
response doesn’t have the corresponding Access-Control-Allow-Origin header.

 If you have other browser windows open, you may notice the left pane fills up with
requests pretty quickly. Fiddler allows you to filter requests so you can only focus on
those requests that matter to you. Figure 7.12 shows how to use the Filter tab to limit
requests to only those from localhost or 127.0.0.1. As you can see from the figure,
there are myriad other ways to filter requests.

 This section only scratches the surface of what Fiddler can do. If you’re using Win-
dows, Fiddler is a simple, yet powerful tool for analyzing network traffic. This section
covered tools for monitoring network traffic. But when testing CORS requests, it can
also be useful to trigger various types of requests. Next, let’s look at how to initiate
CORS requests using curl.

Filtering options

are contained under

the Filter tab.

Shows only requests

from 127.0.0.1

or localhost.

Figure 7.12 Filtering requests in Fiddler

165Using curl to simulate CORS requests
7.4 Using curl to simulate CORS requests
When building a new CORS implementation, it’s often useful to craft HTTP requests
to the server and observe the results. One way to do this is to create a web page with
an XMLHttpRequest that performs exactly the request you need. While this works, it
can grow tedious to edit an HTML page, refresh it in the browser, then check the
results in the developer tools. Curl is a command-line tool that lets you craft HTTP
requests to the server and view the results. Let’s look at how you can use curl to
make requests to the sample server.

7.4.1 Making CORS requests using curl

Curl comes preinstalled on most Linux and Mac systems, but you’ll have to download
it for Windows (appendix B goes into detail on how to install curl). You can see if you
have curl installed on your computer by typing curl --version. If this returns an
error, you’ll need to install curl from http://curl.haxx.se/.

NOTE Some versions of Window’s Powershell already have an alias to curl that
points to the Invoke-Webrequest cmdlet. If typing curl --version returns an
error about “Bad Gateway,” you’re using the wrong curl. You can work around
this issue by installing and using the curl tool from http://curl.haxx.se/.

Curl can be used to send HTTP requests to servers. Let’s start with a simple example.
The following command can be used to send an HTTP request to Google:

curl http://www.google.com

If you type in this command, it will return the HTML response from Google.com.
Next, let’s turn this curl request on the sample server. The following command hits
the sample blogging API:

curl http://127.0.0.1:9999/api/posts

If you run this command, you’ll receive the response Forbidden. While the request
was sent to the server, this message doesn’t shed any insight into what is wrong, espe-
cially because there aren’t HTTP headers in the response. Curl’s --verbose option
can be used to display the request and response headers. To view the HTTP headers,
add the --verbose option to the curl request:

curl --verbose http://127.0.0.1:9999/api/posts

This command will not only print Forbidden, but also the request and response head-
ers, as shown in figure 7.13.

 The request headers are prefixed with >, while the response headers are prefixed
with <. Looking at the response headers, you can clearly see that the Access-Control-
Allow-Origin header is missing.

 If you look closely at the request headers, you can also see that the Origin header is
missing. The browser automatically adds the Origin header. When using curl, you
need to manually add the Origin header. You can set headers on curl requests by

http://curl.haxx.se/
http://curl.haxx.se/

166 CHAPTER 7 Debugging CORS requests
using the -H flag, as shown in the following code snippet. If you wanted to mimic a
request from the sample client, you could set the Origin as follows:

curl --verbose -H "Origin: http://localhost:1111" http://127.0.0.1:9999/api/
posts

Setting the Origin header is useful when you want to test an Origin but don’t want to
host a page on that origin. For example, the preceding command tested a request
from http://localhost:1111 without having to upload and run code on the actual
http://localhost:1111 site. The following command changes the Origin to a null
value to mimic a request from a file:

curl --verbose -H "Origin: null" http://127.0.0.1:9999/api/posts

If you run this command, you’ll see an Access-Control-Allow-Origin header in the
response. This is because the null value is in the origin whitelist. The -H command
can be used to add any request header. If you want to mimic a request from Firefox,
you could add Firefox’s User-Agent header to the request.

 Debugging CORS requests is all about comparing the request headers to the
response headers. The actual body of the response isn’t too important, and it can get
in the way of the header information (especially when a response has a ton of text that

Curl command

HTTP request
headers

HTTP response
headers

Figure 7.13 Request and response headers from the curl command

http://localhost:1111
http://localhost:1111

167Using curl to simulate CORS requests
pushes the headers off the screen). The response body can be hidden by redirecting it
to a different location. The command to do this on Windows is

curl --verbose -H "Origin: null" http://127.0.0.1:9999/api/posts > NUL

The same command on Mac/Linux looks like this:

curl --verbose -H "Origin: null" http://127.0.0.1:9999/api/posts > /dev/null

Using this syntax makes the output easier to read. Now that you have a basic under-
standing of how curl works, let’s take a look at how to use curl to mimic a preflight
request.

7.4.2 Making preflight requests using curl

Curl can also be used to send preflight requests. Figure 7.14 (introduced in chapter 4
as figure 4.9) highlights the characteristics of a preflight request.

 A preflight request will have an OPTIONS HTTP method b, an Origin header c,
and an Access-Control-Request-Method header d. To mimic a preflight request using
curl, you need to mimic these three characteristics.

2 Origin header

1 OPTIONS HTTP

method

3 Access-Control-Request-

Method header

Figure 7.14 The pieces of a preflight request

168 CHAPTER 7 Debugging CORS requests
 The previous section showed you how to add an Origin header to the curl request.
The -H flag can also be used to add an Access-Control-Request-Method header to the
request. Finally, the -X flag can be used to set the HTTP method. The final curl request
looks like this:

curl --verbose -H "Origin: null" -H "Access-Control-Request-Method: GET"
-X OPTIONS http://127.0.0.1:9999/api/posts

After running this command, the server will reply with the preflight response.

7.4.3 Why use curl?

There are reasons why using curl can be advantageous over making requests from a
web page, including:

■ Developer velocity
■ Request flexibility
■ Ease-of-use
■ Isolation

Let’s delve further into what each of these items mean.

DEVELOPER VELOCITY

Developer velocity is the speed at which you can iterate and develop your app. Tools with
high developer velocity enable you to work faster.

 The traditional development process for CORS is to edit code, reload the web
page, and view the headers in either the developer tools or Wireshark. Curl can speed
up this process because making a curl request and viewing the headers can all be done
in the same window.

 If you have a complicated web app, there may be additional pieces of the page that
need to load, or you may need to click a button to trigger the CORS request. Another
way in which curl speeds development is that it focuses solely on the HTTP request,
and doesn’t need to load any of those extraneous pieces.

REQUEST FLEXIBILITY

Curl is flexible enough to craft any type of HTTP request you can imagine. You can do
things with curl that you can’t do from a web page.

 Suppose you want to test your server’s behavior with requests from different ori-
gins. To do this from a browser, you’d need to upload your client code to each site that
you want to test, which is cumbersome. With curl, you have the flexibility to set the
Origin header (and any other header) to any value you need.

EASE-OF-USE

Curl’s ease-of-use was demonstrated earlier when you learned how to trigger a pre-
flight request from CORS. Triggering the same preflight request from JavaScript code
can be a little more difficult, because you have to build the actual request, then rely
on the browser to send the correct preflight. In curl, you don’t need to jump through
hoops to trigger a preflight.

169Sending requests using test-cors.org
NOTE Chrome and Firefox’s Network tab include a Copy as cURL option
when you right-click a request. This allows you to copy a request from the
browser as a curl command you can run from the command line. This makes
curl even easier to use.

ISOLATION

Perhaps most importantly, curl provides isolation. When you make a request from
JavaScript code, there are places where things can go wrong. The developer’s Java-
Script code may have a bug in it, or your assumptions of which headers the browser is
adding may be different from what the browser is doing.

 With curl, what you see on the command line is exactly what is sent to the server. If
you have an error in your code, but the curl request works just fine, you know there is
something wrong in your code. If you have an error in your code and the curl request
fails, you know the issue is somewhere on your server.

7.5 Sending requests using test-cors.org
Full disclosure: I am the creator and maintainer of test-cors.org. I built the site
because I found it difficult to find information on how CORS requests behave in actual
browsers. The test-cors.org site offers four features for testing CORS requests:

■ A curl-like interface to send CORS requests to a remote server. This can be use-
ful for testing actual CORS requests from a browser against your server.

■ A mechanism for configuring a server’s response, then testing a request against
this response. This can be useful if you want to learn how server and client set-
tings interact.

■ A mechanism to view events in an XMLHttpRequest’s lifecycle.
■ A mechanism to get the JavaScript code for the request you’re testing. These

last two features are useful for client-side CORS users as well.

When you first visit test-cors.org, you’re greeted with the page in figure 7.15.
 The page is divided into three parts: the client panel, the server panel, and the

results panel. Let’s dig deeper into how these panels interact by exploring the various
features of test-cors.org.

7.5.1 Sending requests to a remote server

The first way to use test-cors.org is to send cross-origin requests to a remote server.
This is similar to how curl works, but it makes its request from the browser using an
XMLHttpRequest object, rather than the command line. This can be helpful because it
makes an HTTP request the same way you’d expect a client. For example, curl will let
you add a Host header to the request. But the Host header can’t be set from test-
cors.org, because the browser controls this header.

 To use test-cors.org to send a request to your sample server, begin by recreating the
request to /api/posts in the client panel. This is a GET request that includes cookies
and has the Timezone-Offset and Sample-Source headers set. Next, choose the Remote

170 CHAPTER 7 Debugging CORS requests
tab in the response panel (if it’s not already selected) and enter http://127.0.0.1:9999/
api/posts in the Remote URL textbox.

NOTE You’ll also need to whitelist the origin http://client.cors-api.appspot.com
in your server app.

If you click the Send Request button, it will send the request to your test server. Fig-
ure 7.16 shows an example of what the page should look like.

 It may seem odd that the test-cors.org website, which lives on a different server, can
access your local server at 127.0.0.1:9999. But remember that test-cors.org makes
requests from the browser, so the test-cors.org server itself isn’t involved in the
request. Since the JavaScript code is running on your computer, it can make requests
to localhost.

 Another convenient feature of test-cors.org is that you don’t need a working CORS
implementation to use it. The site also allows requests to be made to its own local
server. The next section takes a look at how to do this, and why it’s useful.

Figure 7.15 The test-cors.org landing page

http://127.0.0.1:9999/api/posts
http://127.0.0.1:9999/api/posts
http://client.cors-api.appspot.com

171Sending requests using test-cors.org
7.5.2 Sending requests to the local server

In addition to sending cross-origin requests, test-cors.org can send requests to its own
local server. This local server can be configured using the parameters in the response
panel, which control how the server responds to CORS requests.

 Let’s configure the local server to respond to the same GET request configured in
the previous section. Choose the Local tab in the response panel. This shows the
options that can be configured in the local server. If you click Send Request, you’ll see
that the error event handler will fire. This code throws an error because you haven’t
configured the local server to support cookies and custom headers.

 Each box under the Local tab corresponds to a particular CORS header. You can
add support for cookies and custom headers by first clicking the Allow Credentials

Request URL is to the sample

server at http://localhost:9999/api/posts

Results of

request

Making a

GET request

with cookies and

custom headers

Figure 7.16 Making a request to the sample server

172 CHAPTER 7 Debugging CORS requests
checkbox, then typing Timezone-Offset, Sample-Source in the Allow Headers check-
box. After making these changes and clicking Send Request, the request should suc-
ceed, as shown in figure 7.17.

The successful response

Setting up the

request parameters

Setting up the

response parameters

Figure 7.17 Recreating the request to /api/posts on the test-cors.org server

173Sending requests using test-cors.org
This particular feature was intended as a playground for exploring how CORS works.
CORS can be a difficult feature to learn because it requires both a server and a client.
This feature gives you both a server and a client that you can customize and play
around with. Hopefully it can be a useful tool for answering your CORS questions.

7.5.3 Understanding how the client works

Test-cors.org can also be used to get a better handle on how the client behaves when
making cross-origin requests. The log panel displays the following bits of information
(see figure 7.18):

■ All the client-side event handlers that fire during the course of the request. This
can be useful to view things like when and in what order the events fire.

■ The status code and status text associated with the response.
■ Any response headers visible to the client. This can help verify which headers

are exposed through the Access-Control-Expose-Headers header.

In addition, the site gives you the JavaScript code associated with the request. Choos-
ing the Code tab will show the JavaScript code used to send the request, as shown in
figure 7.19.

XMLHttpRequest

events

HTTP status

code and text

Exposed response

headers

Figure 7.18 Test-cors.org results panel

174 CHAPTER 7 Debugging CORS requests
The code in figure 7.19 creates an XMLHttpRequest that uses the GET method, sets with-
Credentials to true, and sets the Timezone-Offset and Sample-Source request head-
ers. You can copy and paste this code into your own page to recreate the same request.

 The tools and techniques described here work great for debugging from a com-
puter. It can be a bit harder to debug requests from mobile devices. For example,
there is no way to run Wireshark on your iPhone. The next section looks at tips for
debugging requests from mobile devices.

7.6 Tips for mobile debugging
Debugging requests from mobile phones can be a challenge because the tools
described in this chapter aren’t available on a mobile phone. But if you’re debugging
requests from a mobile phone, there are still techniques you can use to capture the
HTTP headers.

Figure 7.19 JavaScript code used to make the HTTP request

175Tips for mobile debugging
7.6.1 Log requests on the server

If you’re in charge of the server that receives the request, you could configure it to
log HTTP headers. The following code will log the request headers to a Node.js
server’s output:

console.log(req.headers);

The headers can be logged to the output, to the server logs, or to anywhere that is
convenient for you. The exact configuration of where to log the headers depends on
your server and logging framework.

7.6.2 Use test-cors.org

We covered test-cors.org in the previous section. Because test-cors.org is a web tool, it
can be accessed from any browser, including mobile browsers. If you visit test-cors.org
from your mobile phone, you can send a series of test requests to your own server or
to the test-cors.org server and view the response.

7.6.3 Use remote debugging tools

There are remote debugging tools available for mobile phones and they all work in the
same way. You connect your phone to your computer, and the computer logs request
and response information from the phone. Here are a few remote debugging options:

■ Chrome has built-in remote debugging options for Android phones. More
details can be found at https://developer.chrome.com/devtools/docs/remote-
debugging.

■ Safari supports remote debugging for iPhones and iOS devices, but only from
a Mac. More details can be found at http://webdesign.tutsplus.com/articles/
quick-tip-using-web-inspector-to-debug-mobile-safari--webdesign-8787.

■ Fiddler is a tool that allows you to proxy mobile requests through your com-
puter, and logs the request and response details. Fiddler can be used with both
iOS and Android, but it only runs on Windows. You can learn more about Fid-
dler at www.telerik.com/fiddler.

7.6.4 Use a mobile simulator

Google, Apple, and Microsoft all provide mobile simulators to test their respective
mobile platforms. These simulators are programs that run in your computer, but
mimic a mobile phone interface. Figure 7.20 shows an example of Apple’s iOS simula-
tor running on a Mac.

 Using a simulator will give you a good idea of how a request will behave on a
mobile device. It’s also handy when you want to test a device you may not have access
to (for example, if you own an Android phone, but want to test an iPhone).

 So far I’ve covered techniques for testing and debugging CORS requests. But what
if you’ve tried all these techniques and you’re still stuck? The next section looks into
some options for getting help with CORS questions.

https://developer.chrome.com/devtools/docs/remote-debugging
http://webdesign.tutsplus.com/articles/quick-tip-using-web-inspector-to-debug-mobile-safari--webdesign-8787
http://webdesign.tutsplus.com/articles/quick-tip-using-web-inspector-to-debug-mobile-safari--webdesign-8787
https://developer.chrome.com/devtools/docs/remote-debugging
www.telerik.com/fiddler.

176 CHAPTER 7 Debugging CORS requests
7.7 Getting help
If you’re stuck on some CORS issues, here are a few resources you can consult to get
some help. The first is the site enable-cors.org (full disclosure: I maintain this site as
well). The site seeks to catalog how to enable CORS in all the programming languages
and platforms. The examples in this book are built around Node.js, but if you’re using
a different platform, such as Tomcat, you can turn to enable-cors.org to learn more
about configuring CORS in Tomcat.

 Enable-cors.org catalogs over 10 different platforms. It also contains pointers to
learning more about CORS, as well as links to other CORS-enabled APIs. The site is also
open source and hosted at GitHub at https://github.com/monsur/enable-cors.org, so
you can contribute your own edits or content.

 Stack Overflow (http://stackoverflow.com) is a good place to ask CORS-related ques-
tions. It is a popular, community-driven, question-and-answer site for programming-
related issues. Each question can be categorized with a set of tags, and you can find
CORS questions tagged with a “cors.” If you post a question here, including the
request and response headers from your code (using either Chrome developer tools
or Wireshark, as described previously) can go a long way toward helping others to
answer your question.

Figure 7.20 Apple’s iOS simulator

https://github.com/monsur/enable-cors.org
http://stackoverflow.com

177Summary
7.8 Summary
This chapter presented tools you can use to debug issues with CORS requests. When
faced with a broken CORS request, the steps to solve it are always the same:

1 Grab a snapshot of the request and response headers.
2 Compare the headers to see if and where there is a mismatch.
3 Fix the issue by either

a Updating the client to send the correct headers.
b Updating the server to allow the client headers.

This chapter also covered the following tools and resources, which can aid in debug-
ging CORS requests:

■ Developer tools—Can be used to show errors, network traffic, and request/
response headers

■ Wireshark—Can be used to monitor network traffic
■ Curl—Can be used to send HTTP requests
■ Test-cors.org—Can be used to test cross-origin requests in the browser
■ Enable-cors.org—Can show how to configure CORS in your own platform
■ Stackoverflow.com—Where you can ask CORS-related questions

While CORS can be a powerful tool for enabling open APIs, it can sometimes prove chal-
lenging to work with. I hope this chapter and this book help you to successfully imple-
ment CORS on your own servers, and tackle any CORS-related issues that come your way.
The web has always been driven forward by a vision of simplicity and openness. By sup-
porting and using CORS, you’re doing your part to help promote this vision.

appendix A
CORS reference

Clients and servers using CORS “talk” to each other through request and response
headers. This appendix documents headers and other terms used when making
CORS requests. It’s based on the latest version of the CORS spec at the time of writ-
ing (W3C Recommendation, January 16, 2014, which can be found at www.w3.org/
TR/2014/REC-cors-20140116/).

A.1 HTTP headers
This section documents HTTP headers used by CORS. Headers can be categorized
in different ways: they can either be present on the request from the browser, or on
the response from the server; or they can be present on the preflight request, the
actual request, or both (although it doesn’t hurt if preflight request headers are
also on the actual request).

Request headers

The browser is responsible for setting the CORS request headers, and these headers
can’t be overridden by the client code. Table A.1 documents the headers that may
be present on CORS requests.

Response headers

The server is responsible for setting the CORS response headers. Using these
response headers, the server can control how cross-origin requests behave. Table A.2
documents the headers that may be present on all CORS responses (preflight and
actual responses).
178

http://www.w3.org/TR/2014/REC-cors-20140116/
http://www.w3.org/TR/2014/REC-cors-20140116/

179HTTP headers
Table A.1 Request headers on all CORS requests

Header
Included on preflight

request, actual
request, or both?

Details

Origin Both The client’s origin.
For example, for a request from http://www.example.com/
sample/path, the Origin header value would be
http://www.example.com.
Required on all CORS requests (preflight and actual).
Some browsers may add the Origin header on same-
origin PUT, POST, and DELETE requests.
The origin is defined in RFC6454 “The Web Origin Con-
cept” (http://tools.ietf.org/html/rfc6454). This spec is
separate from the CORS spec.

Access-Control-
Request-Headers

Preflight A comma-separated list of headers the client would like
to send on the actual request.
Used during a preflight request to ask the server’s per-
mission to send certain request headers.
Simple headers (defined in A.2.2) may not be included in
this header.

Access-Control-
Request-Method

Preflight The HTTP method the client would like to use for the
actual request.
This header is required on all preflight requests, even if
the value is a simple method (defined in A.2.1).

Table A.1 Response headers on all CORS responses

Header
Included on preflight

response, actual
response, or both?

Details

Access-Control-
Allow-Credentials

Both The header has only one valid value: true.
This header is optional. Its presence with true value
indicates that the server allows user credentials such as
cookies on cross-origin requests.
If the client would like to include user credentials on
cross-origin requests, they must also set the XMLHttp-
Request’s withCredentials property to true.
If the server doesn’t allow user credentials on cross-ori-
gin requests, this header should be omitted.

Access-Control-
Allow-Headers

Preflight A comma-separated list of headers that the server allows
on cross-origin requests.
If a value is a simple header (defined in A.2.2), it doesn’t
need to be included in this header. Adding headers in the
list causes no harm.

Access-Control-
Allow-Methods

Preflight A comma-separated list of HTTP methods that the server
allows on cross-origin requests.
If the value is a simple method (defined in A.2.1), it
doesn’t need to be included in this header.

http://www.example.com/sample/path
http://www.example.com/sample/path
http://www.example.com/sample/path
http://tools.ietf.org/html/rfc6454

180 APPENDIX A CORS reference
A.2 Other terms used in CORS
In addition to the headers just noted, there are a few other important terms used by CORS.

Simple method

A simple method is an HTTP method that won’t trigger a preflight request. The simple
methods are defined as:

■ GET

■ HEAD

■ POST

Note that requests with a simple method may still trigger a preflight request if they
contain nonsimple headers. The next section covers simple headers.

Simple header

A simple header is an HTTP request header that won’t trigger a preflight request. The
client doesn’t need the server’s permission (via a preflight) to make requests with only
these headers. The simple headers are defined as:

■ Accept
■ Accept-Language
■ Content-Language
■ Content-Type, but only if the value is one of the following:

– application/x-form-urlencoded

– multipart/form-data

– text/plain

Access-Control-
Allow-Origin

Both Gives permission to make a cross-origin request.
Valid values include: *, null, or the client’s actual
origin value (for example, http://www.example.com).
Required on all CORS responses.

Access-Control-
Expose-Headers

Actual A comma-separated list of HTTP headers.
Indicates which response headers a client can read from
the server’s response.
If a header is a simple response header (defined
in A.2.3), it doesn’t need to be included in this list.

Access-Control-
Max-Age

Preflight The number of seconds the preflight request cache
should store the preflight response.
Browsers may cap this value. Chrome won’t cache pre-
flight responses for more than 5 minutes, while Firefox
won’t cache preflight responses for more than 24 hours.

Table A.1 Response headers on all CORS responses (continued)

Header
Included on preflight

response, actual
response, or both?

Details

http://www.example.com

181Other terms used in CORS
Simple response header

During a same-origin request, the client JavaScript code can access the HTTP response
headers using the getResponseHeader or getAllResponseHeaders methods on the
XMLHttpRequest object. But cross-origin requests are limited in which response head-
ers are visible to the client. Simple response headers are those that are visible to the
client by default. All other headers need permission from the server to be viewed on
the client; the server gives permission by using the Access-Control-Expose-Headers
header. The simple response headers are defined as:

■ Cache-Control
■ Content-Language
■ Content-Type
■ Expires
■ Last-Modified
■ Pragma

appendix B
Configuring your

environment

This appendix shows you how to install and configure tools used throughout this
book. Some of these tools make extensive use of the command line. For a crash
course on how to use the command line, visit http://learnpythonthehardway.org/
book/appendixa.html.

B.1 Setting up for the sample application
Chapter 3 introduced a sample application that’s used throughout the book. The
prerequisites for running the sample are

■ Node.js
■ NPM
■ Express

The rest of this section explains what these prerequisites are and how to set them
up. Note that these instructions may change in the future. If you’re having trouble
installing these tools, you can always visit their respective websites to get the latest
installation instructions.

B.1.1 Node.js and NPM

The sample runs in Node.js, a development platform for writing server apps.
Node.js apps can be written in JavaScript, which is convenient because the client
code is also written in JavaScript. Node.js can be downloaded and installed from
http://nodejs.org. This page has a giant Install button right on the front that you
can click to download the Node.js installer, as shown in figure B.1.

 The following subsections look at installing Node.js on different operating sys-
tems. In addition to installing Node.js, the installer will install the Node Package
182

http://learnpythonthehardway.org/book/appendixa.html
http://nodejs.org
http://learnpythonthehardway.org/book/appendixa.html

183Setting up for the sample application
Manager (NPM), which is a helper app used to download and install Node.js libraries.
You’ll use NPM later on to download and install Express and other modules.

INSTALLING NODE.JS ON WINDOWS

Windows will download a MSI installer file. Double-click this file to begin the installa-
tion process. Feel free to accept the default values for the options presented during
the installation.

 There are a few things to note when installing Node.js on Windows. First, you may be
presented with a security dialog during the installation process, as shown in figure B.2

Figure B.1 Node.js homepage with an Install button.

Figure B.2 Security warning when
installing Node.js on Windows. Click
Yes to continue.

184 APPENDIX B Configuring your environment
(in fact, you may see this security dialog for all apps you install on Windows). It’s safe to
click Yes to continue.

 Second, Node.js comes with its own command prompt which is preconfigured with
all the proper variables for running Node.js. You can find this command prompt by
searching for “Node.js command prompt” in the Start menu, as shown in figure B.3.

 Throughout the rest of the samples in this book, when the instructions ask you to
use a terminal window, use the Node.js command prompt.

INSTALLING NODE.JS ON MAC OS X
The Mac installer comes as a PKG file. Double-click this file to begin the installation
process. As you walk through the installation, use the default values for all the options.

 The final step of the installation process asks you to “Make sure /usr/local/bin is
in your $PATH”, as shown in figure B.4.

 You can easily verify this by opening a terminal window and typing echo $PATH.
This command will print output similar to figure B.5; you should see /usr/local/bin
somewhere in that path.

 If for some reason that path doesn’t have that value, you can manually add it with
the following command:

export PATH=$PATH:/usr/local/bin

Figure B.3 Finding and running the Node.js command prompt

185Setting up for the sample application
INSTALLING NODE.JS ON LINUX

The Node.js website has a .tar.gz file with compiled binaries for Linux. If you have the
.tar.gz file, you can install Node.js with the following commands:

> tar xzf node-v0.10.29-linux-x64.tar.gz
> ./configure
> make
> sudo make install

NOTE The .tar.gz filename may differ slightly depending on which version of
Node.js you downloaded.

An easier way to install Node.js on Linux is to use the package manager. Most Linux
distributions have a package manager for installing tools. This can make it a little eas-
ier to install Node.js, but the downside is that the version of Node.js is sometimes a little
behind the latest version. But the samples in this book should work, even for slightly
older versions of Node.js.

 Type the following commands into a command prompt to install Node.js from the
command line (if you are not using a Debian-based distro the commands may be a little
bit different):

> sudo apt-get update
> sudo apt-get install nodejs npm

Figure B.4 Installation message about $PATH

Figure B.5 Displaying the
$PATH environment variable

186 APPENDIX B Configuring your environment
After typing these commands and following the prompts, Node.js will be installed.

VERIFYING THE INSTALLATION

You can verify that Node.js and NPM are installed correctly by typing the following
two commands:

> node --version
> npm --version

You should see a version number for each tool. The samples in this book were run
using Node.js version 0.10.29 and NPM version 1.4.14.

NOTE Some Linux versions have a program called node. If you type node
--version and nothing happens, you’re probably running into this con-
flict. In this case, Node.js should be mapped to nodejs. Try typing nodejs
--version instead.

If there is an issue with your install, visit the support at the Node.js homepage at
http://nodejs.org. You can also learn more about installing Node.js on various platforms
at https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager.

B.1.2 Express

The sample server is implemented using a web application framework called Express.
Express simplifies the process of building web servers on Node.js by providing middle-
ware that handles common web server operations. Middleware is a term used to
describe functions inserted into the web server–processing pipeline that can act on
the HTTP request or HTTP response. These functions are termed middleware because
they sit in the middle of the incoming request and the actual code that processes the
request. For example, Express has middleware pieces to handle common web server
functionality such as authentication, compression, and cookie sessions. Figure B.6
shows how a request passes through pieces of middleware in Express.

 You certainly don’t have to use Express (or any web application framework for that
matter), but it makes things easier by taking care of the grunt work of setting up a web
server. This allows you to focus on the details of adding CORS support to the server.
You can learn more about Express at http://expressjs.com.

 You can use NPM (which was installed previously) to install Express. The installa-
tion instructions are the same for all OSes. To install Express, open up a terminal
window in the location you wish to install to and type npm install express. That
should be all you have to do! You can verify that Node.js and Express are installed

Express middleware

HTTP request
Cookie
session

Request
handler

CompressionAuthentication

Figure B.6 An Express server with three middleware components

http://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://expressjs.com

187Debugging tools
properly by opening up a terminal window and typing node, followed by pressing the
Return key. This brings you into the Node.js development environment, where you
can type in JavaScript code and have it immediately interpreted by Node.js. For exam-
ple, type var e = require('express'); and press the Return key. If Node.js and
Express are installed properly, you shouldn’t see any errors (though you may see the
word undefined; that’s okay). Figure B.7 shows what the result of these two commands
looks like.

 The samples in this book were built using Express version 4.6.1, but any version
greater than 4 should work. Note that Express 4 introduced breaking changes, so if
you’re using Express 3 or earlier, the sample code won’t work. Now that you’ve
installed all the tools, you can return to chapter 3 and continue with the sample code.

B.2 Debugging tools
Chapter 7 introduced tools to help debug CORS requests. This section covers how to
install these tools.

B.2.1 Wireshark

Wireshark (www.wireshark.org) is a packet analyzer that can help view CORS request
and response headers. You can download the tool from www.wireshark.org/down-
load.html. When you visit the Wireshark download page, the correct installer for your
system will be highlighted. Download and run the installer to begin the process.

INSTALLING WIRESHARK ON WINDOWS

As mentioned in chapter 7, Wireshark has issues with debugging the sample on Win-
dows because Windows has trouble capturing traffic over localhost (learn more about
this issue at http://wiki.wireshark.org/CaptureSetup/Loopback). Windows users should
use Fiddler to debug the sample app. Installing Fiddler is covered in the next section.

 But Wireshark can still be installed on Windows to debug traffic to servers outside
your local computer. To install Wireshark, just run the Wireshark installer and follow
the instructions. During the installation process, you’ll be asked to install WinPcap
(if you don’t have WinPcap installed already). WinPcap offers an API for capturing
network traffic for Windows. After the WinPcap installer runs and finishes, you’ll
be taken back to the Wireshark installation process. Learn more about WinPcap at
www.winpcap.org/.

INSTALLING WIRESHARK ON MAC OS X
Installing Wireshark on OS X requires that you first install XQuartz, a version of X
server, which is a windowing system common in Unix systems. Think of X server (com-
monly called X11) as the thing that displays the Wireshark UI.

Figure B.7 Working installation
of Node.js and Express

http://www.wireshark.org
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html
http://wiki.wireshark.org/CaptureSetup/Loopback
http://www.winpcap.org/

188 APPENDIX B Configuring your environment
The XQuartz installer can be downloaded from http://xquartz.macosforge.org/.
Download and run the installer. After XQuartz is installed, it’s a good idea to reboot
your system. (I was unable to get Wireshark to work without a reboot.)

 Once XQuartz is installed, you can download and run the Wireshark installer.
When you first run Wireshark, you may be greeted with the dialog box shown in fig-
ure B.8.

 This dialog is asking for the location of XQuartz. You can find XQuartz by selecting
Browse..., navigating to the Application > Utilities > XQuartz app, and then clicking
Choose. Wireshark should ask you this only the first time it runs; after that, Wireshark
should start right up. Note that the first time Wireshark runs, it may take a long time
to appear while it refreshes its fonts.

INSTALLING WIRESHARK ON LINUX

Wireshark can be installed on Debian-based Linux simply by running

> sudo apt-get install wireshark

Once this finishes running, Wireshark will be installed. To be able to run Wireshark
without it requiring root permissions, you need to run the following commands:

> sudo dpkg-reconfigure wireshark-common
> sudo adduser $USER wireshark

Figure B.8 Wireshark asks where XQuartz is installed the first time it runs.

http://xquartz.macosforge.org/

189Debugging tools
These commands will give your user account the proper permissions for running
Wireshark. Once that is done, you’ll need to restart your system. After the restart, you
can run Wireshark simply by typing wireshark.

B.2.2 Fiddler

Fiddler is a Windows-only app with a ton of networking-related features, including
capturing network traffic. Fiddler can be downloaded from www.telerik.com/fiddler.
The download page allows you to choose between Fiddler4 and Fiddler2. If you
know you have .NET 4 installed or have Windows 8+, choose Fiddler4, otherwise
choose Fiddler2.

 Installing Fiddler is as simple as running the installer and following the instructions.

NOTE There is also a relatively new port of Fiddler for Mac OS X and Linux.
You can find it at http://fiddler.wikidot.com/mono.

B.2.3 Curl

The curl website is at http://curl.haxx.se/. To help you download the correct version
of curl for your OS, there is also a handy download wizard at http://curl.haxx.se/
dlwiz/?type=bin.

INSTALLING CURL ON WINDOWS

Some versions of PowerShell already have a tool called “curl”. But this tool is not
the curl you’re looking for. You can check which curl you have by running curl
--version. If you receive an error like that shown in figure B.9, you don’t have the
correct curl tool.

 You can use the curl download wizard to download the curl installer for Windows.
I recommend using an MSI file, which can be downloaded at www.confusedby-
code.com/curl/#downloads. Run the installer to install curl. The installer installs curl
to the C:\Program Files\cURL\bin directory.

 You can verify that curl is installed properly simply by typing curl --version. If
curl still doesn’t work, it could be that Windows doesn’t know where to find the tool.

Figure B.9 PowerShell’s curl tool

http://www.telerik.com/fiddler
http://fiddler.wikidot.com/mono
http://curl.haxx.se/
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin
http://www.confusedbycode.com/curl/#downloads
http://www.confusedbycode.com/curl/#downloads

190 APPENDIX B Configuring your environment
This can be fixed by adding the curl directory to your $PATH variable. You can do that
with the following steps:

1 Right-click your computer and choose Properties to enter the System Properties
dialog. (If you don’t see a window with tabs, click Advanced System Settings.)

2 Choose the Advanced tab.
3 Choose the Environment Variables button.
4 In the User Variables window, select the PATH variable and click the Edit button.

If there’s no such variable, add it using the New… button.
5 Add the value "C:\Program Files\cURL\bin" (including the quotes) to the

path. If there is already a value in this box, you can add a new one by adding a
semicolon followed by the path.

After doing this, curl should work from the command line (although you may have to
reopen your command prompt for the changes to take effect).

INSTALLING CURL ON MAC OS X
Curl comes preinstalled on OS X, so you shouldn’t need to install it. If curl isn’t avail-
able on your system, you can download and install it from the curl download wizard.

INSTALLING CURL ON LINUX

Curl may be preinstalled on some Linux systems; you can check by typing curl --version.
If curl is not installed, you can install it by typing sudo apt-get install curl.

B.3 Resources
This appendix introduces a lot of tools. If you’d like to learn more about any of these
tools, here are pointers to their websites:

■ Node.js/NPM, http://nodejs.org
■ Express, http://expressjs.com
■ Wireshark, http://wireshark.org
■ Fiddler, www.telerik.com/fiddler
■ Curl, http://curl.haxx.se/

In addition, here are a couple books that dive into more details about Node.js and
Express:

■ Node.js in Action (Cantelon et al., Manning, 2013)
■ Express.js in Action by Evan Hahn, to be published by Manning (http://manning

.com/hahn/).

http://nodejs.org
http://expressjs.com
http://wireshark.org
http://www.telerik.com/fiddler
http://curl.haxx.se/
http://manning.com/hahn/
http://manning.com/hahn/

appendix C
What is CSRF?

Chapter 6 introduced the concept of cross-site request forgery (CSRF). This appen-
dix takes a closer look at CSRF.

C.1 What is CSRF?
Let’s step out of the CORS mindset for a bit and talk about regular, old same-origin
requests. Cookies are always included on same-origin requests, regardless of how
that request was initiated. If you’re logged in to www.twitter.com, any time your
browser navigates to a www.twitter.com site, the cookies will be included in the request.
It doesn’t matter where the request originates: you can visit www.twitter.com directly
or click a link to go to www.twitter.com. Even if a page merely links to an image
hosted on www.twitter.com, the request for that image will include your cookies.
You have no control over this behavior. If your browser has cookies associated with
a site, they’re always included on the request.

 Suppose a hacker creates a page that adds a new tweet to Twitter. Whenever
someone visits this site, it sends a request to Twitter to create a tweet that says, “I
have hacked your site!” (see figure C.1). If the hacker can somehow trick you into
visiting his page, the tweet will be added to your own Twitter feed!

 This is at the heart of CSRF: an unauthorized site makes a request on your
behalf using your cookies.

NOTE We often think of hacking in terms of a hacker gaining access to
your data. But in the case of CSRF, the hacker can do damage without ever
reading your data. Actions with side effects such as adding a tweet or
changing a password can have devastating consequences, without ever
compromising your data.

Of course, Twitter has taken steps to guard against this issue. Figure C.2 shows an
actual request to Twitter to create a new tweet.
191

http://www.twitter.com
http://www.twitter.com
http://www.twitter.com
http://www.twitter.com
http://www.twitter.com

192 APPENDIX C What is CSRF?
Along with things like the text of the tweet, the request includes an authenticity
_token. This token is an encrypted string that Twitter uses to verify that the request
is coming from Twitter’s own servers, and not from someone else. If Twitter receives
a request without this authenticity_token (or with an invalid token), the request
will fail.

 Twitter’s authenticity_token is an example of a CSRF token. A CSRF token is a
server-generated, cryptographically secure token that’s included on requests to verify
that the request comes from a trusted server. It’s similar to the origin header in that it
helps validate where the request originates from, but because the CSRF token is cryp-
tographically secure, it can’t be generated by anyone but Twitter. This ensures that a
request to create a new tweet comes only from Twitter’s own web page.

 Figure C.3 shows the lifecycle of Twitter’s authenticity_token. When you first
make a request to Twitter, its server generates a unique authenticity_token and
includes it as a hidden form field in the HTML response. Next, when you compose
a new tweet and click the Tweet button, the text of the new tweet and the

POST /i/tweet/create HTTP/1.1

Host: twitter.com

Cookie: pid=12345

Status=This is a new tweet!

POST /i/tweet/create HTTP/1.1

Host: twitter.com

Cookie: pid=12345

Status=I have hacked your site!

Twitter’s website

Twitter’s server

Hacker’s website

Figure C.1 CSRF exists because cookies are always included on requests, regardless of where
the request comes from Luckily Twitter protects itself from CSRF with an authenticity_token..

193What is CSRF?
authenticity_token are sent to Twitter’s servers. Finally, Twitter’s servers compare
the authenticity_token against the expected value. If they match, the new tweet is
created; otherwise, the request is rejected.

 CSRF protection works because it introduces an “active” form of protection (the
CSRF token) to a “passive” form of protection (the cookie). By passive, I mean that

Request data, including

authenticity_token

Figure C.2 Sending a new tweet request to Twitter. The authenticity_token guards against CSRF.

Twitter’s server

<html><body>

<form>

<input type="hidden"

name="authenticity_token"

value="abcde" />

<input type="text"

name="status" />

</form>

</body></html>

POST /i/tweet/create HTTP/1.1

Host: twitter.com

Origin: http://twitter.com

status=new tweet!&

authenticity_token=abcde

Twitter’s servers set

authenticity_token value in HTML

as a hidden form field.

authenticity_token is included

in POST request to create a new tweet.

Figure C.3 How Twitter uses the authenticity_token field to guard against CSRF

194 APPENDIX C What is CSRF?
the browser will always include the cookie on requests, without looking at where the
request comes from. The CSRF token fills this hole by serving as a marker that indi-
cates where the request is coming from. It’s active because the client making the
request must manually add the token to the request. There is no way for the browser
to automatically add the CSRF token to the request, or to even know what the value of
the CSRF token is.

What is in a CSRF token?
We’ve talked about validating the CSRF token in abstract terms, but what exactly
is inside the CSRF token that needs to be validated? Different servers implement
CSRF tokens differently. The CSRF token in Express (from the CSURF package from
https://github.com/expressjs/csurf) looks like this:

CSRF token = salt + crypto(salt + secret)

Here is what each of those pieces means:

■ Secret—The secret is a per-server secret value. This can be set by the user in
the session (which is important for coordinating secrets across servers, as you’ll
see later on), otherwise it will be randomly generated.

■ Salt—The salt is another random value. But unlike the secret, the user cannot
choose its value. The salt also has a fixed number of characters; at the time of
this writing, Express’s salt has 10 characters (the number of characters in the
salt comes into play when validating the token).

■ Crypto—The crypto function hashes the salt plus the secret using SHA1, and
then base64 encodes the result. Hashing is a one-way operation that can’t be
reversed or decrypted.

Finally, the unencrypted salt value is prepended to the encrypted token value, and the
sum is the CSRF token.

Let’s look at an example of how to calculate the CSRF token. Suppose the server’s
secret is SECRET, and the salt is 0123456789. The first step is to hash the value
0123456789SECRET (the secret plus the salt). Suppose the result of this hash is
ABCDEF (the hash value will look completely different from the secret and the salt).
Finally, the salt is added to the hashed value, which is 0123456789ABCEDF. This is
the CSRF token.

When validating the token, the server doesn’t decrypt the token and look at each
part. (In fact, it can’t decrypt the token, because hashing the token is a one-way oper-
ation that can’t be reversed.) Instead, it looks at the incoming request CSRF token
and grabs the first 10 characters. This is the salt value for this token. It then com-
bines the salt value with the server secret to generate another token (using the same
equation just noted). If the newly generated token matches the request CSRF token,
the request is valid.

Turning again to the example, when the server receives the CSRF token
0123456789ABCEDF, it first strips off the first 10 characters to get the salt, which is
0123456789. Next, it runs the salt through the same equation. If this new value
matches the CSRF token from the request, the request is valid.

https://github.com/expressjs/csurf

195Implementing CSRF protection for same-origin requests
Based on this explanation, the CSRF token may sound very similar to the Origin
header. After all, they both describe where a request originates. However, there are
some key differences, as summarized in table C.1. These differences make it a good
idea to use a CSRF token even if an Origin header is available. CSRF protection is espe-
cially important for simple requests, where there is no preflight to protect the server
from invalid requests.

The next section looks at how to implement CSRF protection for same-origin requests.
The techniques here don’t apply to CORS, but they’re useful for getting an under-
standing of how CSRF protection works.

C.2 Implementing CSRF protection for same-origin requests
It may be easier to understand CSRF tokens by looking at a new example that isolates
the core concepts of CSRF. Listing C.1 shows a simple web server that implements a
CSRF token. Note that this is new server code, so you should put this in a new app.js
file (but running it is the same as before—just run node app.js). The Express frame-
work has middleware support for CSRF tokens. You can install this middleware (and its
dependencies) by running the following command:

npm install express body-parser cookie-parser express-session csurf

var express = require('express');
var bodyParser = require('body-parser');
var cookieParser = require('cookie-parser');
var session = require('express-session');
var csrf = require('csurf');

var app = express();
app.use(bodyParser.urlencoded({
 extended: true
}));
app.use(cookieParser());
app.use(session({
 secret: 'CORSInAction',
 saveUninitialized: true,
 resave: true}));
app.use(csrf());

Table C.1 Differences between the Origin header and CSRF token

Origin header CSRF token

Set by the browser Set by the server

Value is in plain text Value is encrypted

Can be guessed (and spoofed using tools like curl) Cannot be guessed or spoofed

Only present on cross-origin requests (although some browsers,
such as Chrome and Safari, include Origin headers on some
same-origin requests)

Present on cross-origin and same-
origin requests

Listing C.1 Example of implementing CSRF protection

Creates new
server and adds
middleware
components

196 APPENDIX C What is CSRF?

func
to pro

t

app.get('/csrftest', function(req, res) {
 var form = '<html><body><form action="/csrftest" method="post">\r\n';
 form += '<input type="text" name="_csrf" \r\n';
 form += '\tvalue="' + req.csrfToken() + '" />\r\n';
 form += '<input type="submit" value="Submit" />\r\n';
 form += '</form></body></html>';
 res.send(form);
});
app.post('/csrftest', function(req, res) {
 res.send('Successfully received CSRF token!');
});

app.use(function(err, req, res, next) {
 res.status(403).send('ERROR parsing CSRF token!');
});

app.listen(2468);

Once the code is set up and run-
ning, you can visit the page at
http://localhost:2468/csrftest. This
page displays an input box contain-
ing the CSRF token itself, along
with a Submit button, as shown in
figure C.4.

 The HTML source of this page is
shown in figure C.5. The page is a
simple web form with a text box
and submit box. The text box is
named _csrf, and contains the
value of the CSRF token.

 Clicking the Submit button will
send a POST request to the server
with the CSRF token in the POST

Adds
tions
cess

CSRF
oken

Adds function to handle
an invalid CSRF token

Figure C.4 CSRF token test page

Figure C.5 HTML source
for the CSRF sample

http://localhost:2468/csrftest

197Implementing CSRF protection for same-origin requests
body. In this sample, the CSRF token is included as part of the POST body, but it can be
included anywhere in the request, including in the request URL or as a request header.
The server reads the value of the CRSF token from the _csrf field, and checks that it’s a
valid value. If the token is valid, the server responds with a successful message.

 Figure C.6 shows the lifecycle of the CSRF token. First, the server generates the
CSRF token which is embedded somewhere in the client’s HTML. When the user per-
forms an action, such as clicking the Submit button, the request includes the CSRF
token. Finally, the server reads the CSRF token and checks whether or not it’s valid.

 The sample also lets you change the value of the CSRF token by typing in the text
box. If you navigate back to the form, edit the CSRF token to something new, and click

Client

The server embeds the

CSRF token in the client’s

HTML code.

Server

Server generates

a CSRF token.

The user initiates some action,

such as clicking the Submit

button. The CSRF token is

included in the request.
The server reads and

validates the CSRF token.

Figure C.6 Lifecycle
of a CSRF token

Figure C.7 Sample app with valid (left) and invalid (right) CSRF tokens

198 APPENDIX C What is CSRF?
the Submit button again, you should see an error message with an HTTP status 403.
Figure C.7 shows both the success and error messages.

 As you can see from this example, the Express middleware takes care of the details
of implementing the CSRF token.

appendix D
Other cross-origin

techniques

This appendix covers alternatives to CORS. Before CORS, the techniques described
here could be used to make cross-origin requests. While CORS is the standard for
modern web applications, these alternative techniques are useful for making cross-
origin requests from older browsers.

 Each technique follows a similar pattern, as illustrated in figure D.1. The cli-
ent wants to make a request to a server that lives at a different origin. In between
there is a proxy mechanism that processes the request from the client and sends
it to the server.

 Figure D.1 will reappear in each section that follows to help highlight how each
technique operates.

D.1 JSONP
JSONP, which stands for JSON with padding, uses the browser’s own script tag to
send cross-origin requests, as shown in figure D.2.

Client

Client initiates request to a

server on a different origin

Proxy

Proxy receives request from

client and forwards it to server

Server

Server receives request

and sends response back to

proxy, which sends it to client

Figure D.1 All cross-origin techniques follow a similar pattern.
199

200 APPENDIX D Other cross-origin techniques
The following listing shows how to use JSONP to recreate the Flickr example from
chapter 1.

<!DOCTYPE html>
<html>
<body>
<div id="photos"></div>
<script>
function loadPhotos(data) {
 if (data.stat == 'ok') {
 var photos = data.photos.photo;
 for (var i = 0; i < photos.length; i++) {
 var img = document.createElement('img');
 img.src = photos[i].url_q;
 document.getElementById('photos').appendChild(img);
 }
 } else {
 alert(data.message);
 }
};
</script>
<script src="https://api.flickr.com/services/rest/

?method=flickr.people.getPublicPhotos&user_id=32951986%40N05&extras=url_
q&format=json&jsoncallback=loadPhotos&api_key=<YOUR API KEY HERE>"></
script>

</body>
</html>

In this listing, the XMLHttpRequest is replaced with a <script> tag that initiates a
request to the Flickr API server. The <script> tag can be created either by embedding
a <script> tag in the HTML, or by dynamically creating it with JavaScript (by using
document.createElement('script')). A <script> tag traditionally points to a file
that contains JavaScript code. But in this case, the Flickr API server responds with code
that wraps the API response in a JavaScript function. When the browser receives the
response, it executes the JavaScript code, which in turn executes the callback func-
tion. Figure D.3 shows what a typical JSONP flow looks like.

 The key to a successful JSONP request is the callback function. When initiating a
JSONP request, the <script> tag has a parameter set to the name of the callback func-
tion. In figure D.3, the callback function is named loadPhotos. When sending a
response back to the client, the server first pads the response with the name of the

Listing D.1 Using JSONP to access Flickr

Client <script> HTML tag Server

Figure D.2 JSONP uses a <script> tag to send cross-origin requests.

Callback function that
handles response.

Request is made via a
<script> tag.

201Flash
callback function (this is where the word padding in JSON with padding comes from).
For example, if the API response looks like this:

{ "photos": { "page": 1, "photo": [...] } }

JSONP would wrap the response in a callback, like this:

loadPhotos({ "photos": { "page": 1, "photo": [...] } });

Finally, when the browser receives the server’s response, it actually calls the callback
function with the data provided by the server. In this example, the loadPhotos func-
tion defined by the client gets called with the API response data.

 JSONP is one of the oldest cross-origin techniques out there, and it enjoys wide
browser support. But because it uses a <script> tag, JSONP can only support GET
requests. There is no way to make a POST, PUT, or DELETE request using JSONP. If the
browser has any cookies from the server, those cookies will be included on the
request. This can open up the API to cross-site forgery requests.

 JSONP is ideal for sharing publicly available data. The preceding Flickr example is
a perfect use case for JSONP: the images are publicly available, and the sample is only
displaying the images on the page. Due to the cross-site forgery concerns, JSONP
shouldn’t be used to make updates to data, or to share sensitive user data. Finally,
because the server is essentially executing arbitrary JavaScript in the user’s browser, it’s
important that the client fully trust the response from the server.

D.2 Flash
Adobe’s Flash is a software platform that brings rich, interactive applications to the
browser. Flash applications are written in a language called ActionScript, which can
make cross-origin requests to a remote server, as shown in figure D.4.

 Similar to CORS, Flash requires the server to grant permission to clients making
cross-origin requests. Except instead of HTTP headers, Flash uses an XML file that lives

<script src=" https://api.flickr.

com/…&jsoncallback= >loadPhotos"

<script>

function (data) {loadPhotos

if (data.stat == 'ok') {

var photos = data.photos.photo;

...

} else {

alert(data.message);

}

};

</script>

Flickr API server

loadPhotos({"photos":{"page":1,…}});

Figure D.3 Making a cross-origin request using JSONP

202 APPENDIX D Other cross-origin techniques
on the server. This XML file is named crossdomain.xml, and it specifies rules such as
which origins are allowed to make cross-origin requests, and which headers are
allowed. The following code shows an example of the crossdomain.xml file from the
Flickr API server.

<cross-domain-policy>
<allow-access-from domain="*" secure="false"/>
<allow-http-request-headers-from domain="*" headers="Authorization"/>
<site-control permitted-cross-domain-policies="master-only"/>
</cross-domain-policy>

The file in the preceding code indicates that any origin can make cross-origin requests
(domain="*"), regardless of whether or not the origin supports SSL (secure="false").
The Authorization request header is allowed (headers="Authorization") from
all origins (domain="*"). A full specification of crossdomain.xml is available at
www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

 Figure D.5 shows the flow of a cross-origin request from Flash. Before issuing a
cross-origin request, Flash first reads the crossdomain.xml file b. If the policy maps to
the client issuing the request, Flash sends the request to the server c.

 Flash works best in cases where you need rich HTTP support, but you also need
deep browser support. Like JSONP, Flash has been around for a long time, and it
enjoys wide support across desktop browsers. It’s more powerful than JSONP because

Client Flash (ActionScript) Server

Figure D.4 Flash applications have native support for cross-origin requests.

Flash app

(making a cross-origin

request)

Flickr API server

1 Flash app first

makes a request for

crossdomain.xml file

2 If permissions check

out, sends actual request

Figure D.5 Making a cross-origin request using Flash

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.htm

203postMessage and easyXDM
it allows different HTTP methods. And like CORS, Flash puts the servers in charge of
how cross-origin requests behave by using the crossdomain.xml file.

 Using Flash requires that developers learn and use ActionScript. And while Flash
enjoys strong desktop support, it has limited support on mobile devices (while some
Android phones support Flash, all iPhones and iPads do not).

D.3 postMessage and easyXDM
HTML5’s Web Messaging API defines the postMessage method, which allows docu-
ments from different origins to communicate with each other, as shown in figure D.6.
Using postMessage, a page can send an HTTP request to an <iframe> HTML tag
embedded on the page, and the <iframe> tag can make an XMLHttpRequest to its
own server.

 Because the <iframe> code and the server are from the same origin, the XMLHttp-
Request is a same-origin request. Figure D.7 shows the request flow when using
postMessage.

 The postMessage spec was implemented before the CORS spec, so for a brief time
period there were browsers that supported postMessage but didn’t support CORS.
Internet Explorer 8, Internet Explorer 9, Firefox 3.0, and Opera versions less than 12

Client postMessage Server

Figure D.6 postMessage allows two <iframe> tags from different origins to
communicate.

iFrame

(from the remote origin)

Flickr API server

Client uses

postMessage to

send request data

to <iframe>

<iframe> uses

postMessage to

send response data

back to client

<iframe>makes a

same-origin request

Figure D.7 Making a cross-origin request using postMessage

204 APPENDIX D Other cross-origin techniques
don’t fully support CORS but do support <iframe>-to-<iframe> communication via
postMessage. As you saw in chapter 2, Internet Explorer 8 and Internet Explorer 9
have limited support for CORS, so if those browsers are important to you, the post-
Message technique may be a good alternative.

 An alternative option is the easyXDM library, which can be found at http://
easyxdm.net/. The easyXDM library provides a consistent interface for making cross-
origin requests across all browsers. The library uses the postMessage technique for
browsers that support postMessage, and falls back on other techniques (such as
Flash) for browsers that don’t support postMessage. The easyXDM library handles the
complex details of making a cross-origin request so you don’t have to.

D.4 Server-side request
Unlike JavaScript code running in a browser, code running on a server isn’t con-
strained by the same-origin policy. If none of the other techniques work for your cross-
origin needs, you can always write server-side code to make a cross-origin request, as
shown in figure D.8.

 Server code can make a request to any web page, regardless of whether that web
page has CORS headers or not. Figure D.9 shows what a request flow looks like when
using a server to make cross-origin requests:

1 The client initiates the request by making an XMLHttpRequest to the client’s
own web server. This is different from CORS, where the XMLHttpRequest was
made directly to the remote server b.

2 The client’s server makes a request to the API server and receives the response c.
3 The client’s server forwards the response back down to the client’s JavaScript

code. Because the request from the client’s JavaScript code to the client’s server
all takes place on the same origin, there is no need for CORS headers on the
response d.

Making server-side requests can enable almost any type of cross-origin request. Because
this is such a powerful technique, remote servers may not look too kindly on this
technique, and may even take steps to block clients from making these types of
requests. If you make cross-origin requests from the server, be sure to get the remote
server’s permission to do so. The one thing server-side requests can’t do is include
cookies from the remote origin. If the remote origin saved any cookies in the user’s
browser, there is no way for the client JavaScript code to read those cookies and
include them on the request.

Client Intermediate server Server

Figure D.8 Server-side code isn’t constrained by the browser’s same-origin policy.

http://easyxdm.net/
http://easyxdm.net/

205Server-side request
Client’s server

Flickr API server

1 Client code initiates

a same-origin request

to its server

3 Client’s server forwards

response back to client’s

JavaScript code

2 Client’s server makes

a request to API and

receives response

Figure D.9 Making a cross-origin request using a server-side proxy

 index
A

abort method 20
Accept header 180
Accept-Charset header 18
Accept-Encoding header 18
Accept-Language header 180
Access-Control-Allow-Credentials header 100,

102–104, 179
Access-Control-Allow-Headers header 78–82, 179
Access-Control-Allow-Methods header 76–78,

179
Access-Control-Allow-Origin header 7, 180

allowing access for everyone 115
cookies and 106
firewalls and 115–116
null origin 123–124
Origin header and 124–126
with origin value 59
overview 55
proxy servers and 121–123
specifying origins allowed access

overview 116–117
using regular expression 119–121
using whitelist 117–119

valid values for 114–115
with wildcard (*) value 56

Access-Control-Expose-Headers header 108, 110,
142, 180–181

Access-Control-Max-Age header 92–93, 139, 180
Access-Control-Request-Headers header 18, 179
Access-Control-Request-Method header 18, 74,

179
ActionScript 201
Adobe Flash 201

Ajax (asynchronous JavaScript and XML) 137
ajax method 34
alternatives to CORS

easyXDM library 204
Flash 201–203
JSONP 199–201
overview 199–204
postMessage method 203–204
server-side request 204

Android 175
application/json Content-Type 141
application/x-www-form-urlencoded Content-

Type 71
asynchronous JavaScript and XML. See Ajax
asynchronous requests 21, 31
ATM analogy 47, 64
audience, obtaining wider 9
authenticity_token 192
authorization

cookies and 95
OAuth2 132–134

Authorization header 137

B

Basic authentication 95
blacklisting origins 120
browsers

cross-origin request support 14–15
developer tools

console 155
Network tab 155–158
overview 153–155

monitoring network traffic 158–159
requests and 49
206

INDEX 207
C

cache
reducing preflight requests 139–141
response caching 90–93

Cache-Control header 181
canvas 32–34
Charles 159
Chrome 14–15

Copy as cURL option 169
developer tools 154
JavaScript Console 44
Origin header 124
preflight cache in 93
remote debugging for Android phones 175

clients
cookie support 100–101
cross-origin cookies and 104
requests and 48
sample code setup 42
user vs. 48

command line 182
Connection header 18
console 154–155
Content-Language header 180–181
Content-Length header 18, 143
Content-Type header 31, 71, 137, 180–181
Cookie header 18
Cookie2 header 18
cookieParser() middleware 97
cookies

Access-Control-Allow-Credentials header
and 102–104

Access-Control-Allow-Origin header and 106
cross-origin cookies and client 104
including in requests 100–101
including on request 128–129
preflight request and 104–106
purpose of 95
reading 97–98
setting 95–97
setting from CORS 107
using XMLHttpRequest object 27–28
withCredentials property and 102–104
XDomainRequest object and 31

CORS (Cross-Origin Resource Sharing)
advantages of

easy for developers 10
flexibility 10
reduced maintenance overhead 10–11
security 9–10
wider audience 9

alternatives to
easyXDM library 204
Flash 201–203

JSONP 199–201
overview 199–204
postMessage method 203–204
server-side request 204

defined 4–5
example using Flickr

overview 5–7
processing response 7–9
sending request 7
setting up request 7

planning for support of 114
redirects and 144–148
security and 126–128

crossOrigin attribute 33
Cross-Origin Resource Sharing. See CORS
crypto function 194
CSRF (cross-site request forgery) 106,

129
overview 191–195
protecting against 195–198

CSURF package 194
curl

advantages of using 168–169
installing 189–190
making CORS requests 165–167
making preflight requests 167–168

custom headers 81

D

database queries to validate origins 120
dataType property 35
Date header 18, 143
debugging

additional help 176–177
browser developer tools

console 155
Network tab 155–158
overview 153–155

curl 189–190
Fiddler 189
mobile 175
monitoring network traffic

in browser 158–159
using Fiddler 161–164
using Wireshark 159–161

process overview 152–153
sending requests using test-cors.org

client data in 173–174
to local server 171–173
to remote server 169–170

simulating requests using curl
advantages of using curl 168–169
making CORS requests 165–167
making preflight requests 167–168

INDEX208
debugging (continued)
Wireshark

installing on Linux 188–189
installing on Mac OS X 187–188
installing on Windows 187

DELETE method 67, 74, 76
developer tools, browser

console 155
Network tab 155–158
overview 153–155

DNT header 18
document.cookie property 104
DOM inspector 154
Dropbox 132

E

easyXDM library 204
enable-cors.org 176
environment

curl 189–190
Express framework 186–187
Fiddler 189
Node.js

installing on Linux 185–186
installing on Mac OS X 184
installing on Windows 183–184
overview 182–183
verifying installation 186

resources 190
Wireshark

installing on Linux 188–189
installing on Mac OS X 187–188
installing on Windows 187

error response 24–26
ETag header 143
ETags 137
event handlers

using XDomainRequest object 32
using XMLHttpRequest object 26–27

Expect header 18
Expires header 143, 181
Express framework 41, 126, 186–187, 195
Express.js in Action 190

F

Facebook 95, 132
Fiddler 161–164, 189
Firefox 14–15

Copy as cURL option 169
developer tools 154
Origin header 124
preflight cache in 93

firewalls 115–116

Flash 201–203
Flickr API example

overview 5–7
processing response 7–9
sending request 7
setting up request 7

G

GET method 31, 71, 180
getAllResponseHeaders method 24, 108, 181
getImageData method 32
getResponseHeader method 24, 108–109, 181
GitHub 132
Google 132
Google Calendar API 132
Google Chrome. See Chrome
Google Drive API 114

H

handleCors function 56
HEAD method 180
headers, HTTP

CORS and 4
request 178–179

allowing all 137–139
reducing preflight requests 141–142
whitelisting 136–137

response 178–180
adding support for 108–111
overview 107–108
reading 108

simple 180
simple response 110, 181
using XMLHttpRequest object 18–19

help 176–177
Host header 18
HTML5 (Hypertext Markup Language 5)

203–204
HTML5Rocks.com website 58, 115, 145
HTTP methods

reducing preflight requests 142
whitelisting 136

HTTP OPTIONS method 73–74
httplib2 library 9
Hypertext Markup Language 5. See HTML5

I

If-Match header 137
If-Modified-Since header 137
If-None-Match header 137
iframe element 203
If-Unmodifed-Since header 137

INDEX 209
images, canvas 32–34
 tags 71
installing

curl 189–190
Node.js

on Linux 185–186
on Mac OS X 184
on Windows 183–184
verifying installation 186

Wireshark
on Linux 188–189
on Mac OS X 187–188
on Windows 187

Internet Explorer 15
developer tools 154
Origin header 124
planning for version support 114
preflight cache and 93
version 8/9 36

Invoke-Webrequest cmdlet 165
iOS 175

J

JavaScript Console 44
jQuery 34–36
JSON (JavaScript Object Notation) 9
JSONP (JSON with padding) 199–201

K

Keep-Alive header 18

L

Last-Modified header 143, 181
lifecycle

of preflight requests 64
of requests 49

Linux
installing curl 190
installing Node.js 185–186
installing Wireshark 188–189

logging requests 175

M

Mac OS X
installing curl 190
installing Node.js 184
installing Wireshark 187–188

middleware 186
mobile debugging 175
multipart/form-data Content-Type 71

N

Network tab, Chrome 155–158
network traffic

in browser 158–159
using Fiddler 161–164
using Wireshark 159–161

Node Package Manager. See NPM
Node.js

installing on Linux 185–186
installing on Mac OS X 184
installing on Windows 183–184
overview 182–183
verifying installation 186

Node.js in Action 190
node-oauth project 134
NPM (Node Package Manager) 183
null origin 123–124, 145–146

O

OAuth2 132–134
onabort event 21, 26
onerror event 8, 21, 24–26, 32
onload event 8, 20–24, 32, 43
onloadend event 21, 26
onloadstart event 21, 26
onprogress event 21, 27, 32
onreadystatechange event 21, 27
ontimeout event 21, 27, 32
Opera 15

developer tools 154
Origin header 124
preflight cache in 93

OPTIONS method, HTTP 73–74
Origin header 179

defining origin 52
preflight requests and 72–73
same-origin requests and 124–126
same-origin vs. cross-origin requests 54
setRequestHeader method and 18
setting 55
viewing 51

origins
including cookies on requests 129
specifying allowed

overview 116–117
using regular expression 119–121
using whitelist 117–119

P

packet analyzers 159
POST method 31, 180
postMessage method 203–204

INDEX210
Powershell 165
Pragma header 181
preflight requests

Access-Control-Request-Method header 74
ATM analogy 64
caching responses 90–93
client code and 87–88
cookies and 104–106
HTTP OPTIONS method 73–74
identifying at server 75
lifecycle of 64
Origin header 72–73
overview 72, 85–87
purpose of 64–67
reducing

overview 139
reducing custom headers 141–142
reducing HTTP methods 142
using cache 139–141

request headers
allowing all 137–139
whitelisting 136–137

responding to
Access-Control-Allow-Headers header 78–82
Access-Control-Allow-Methods header

76–78
rejecting preflight request 83–85
sending actual request 83

simulating using curl 167–168
stateless requests 88–89
successful preflight and actual request

success 87
for upload events 89–90
when to use 71–72
whitelisting HTTP methods 136

Profiler 154
protocol property 126
proxy servers 121–123

R

Range header 137
readyState property 21, 27
redirects 144–148
reducing preflight requests

overview 139
reducing custom headers 141–142
reducing HTTP methods 142
using cache 139–141

Referer header 18
regular expressions 119–121
rejecting preflight request 83–85
rejecting requests 59
remote debugging tools 175
req.protocol property 125

requests
anatomy of 47
browser support 14–15
canvas and 32–34
cross-origin explained 13–14
headers in

allowing all 137–139
reducing preflight requests 141–142
reference table of 178–179
whitelisting 136–137

including cookies 128–129
involvement with

browser 49
client 48
server 49

from jQuery 34–36
lifecycle of 49
making 45
Origin header

defining origin 52
same-origin vs. cross-origin requests 54
setting 55
viewing 51

responding to
Access-Control-Allow-Origin header 55
Access-Control-Allow-Origin header with ori-

gin value 59
Access-Control-Allow-Origin header with wild-

card (*) value 56
rejecting requests 59

sample code setup
API 40
client 42
running app 44

sending 7
sending using test-cors.org

client data in 173–174
sending requests to local server 171–173
sending requests to remote server 169–170

setting up 7
simulating using curl 165–167
spoofing 127
XDomainRequest object

asynchronous requests only 31
Content-Type text/plain only 31
cookies and 31
custom request headers and 31
event handlers 32
GET and POST requests only 31
limited scheme support 31
overview 28–30
response from 32

XMLHttpRequest object
error response 24–26
event handlers 26–27

INDEX 211
requests (continued)
HTTP headers 18–19
including cookies 27–28
overview 15–17
sending request 19–20
setting up request 17–18
successful response 20–24

response property 23
responses

Access-Control-Allow-Origin header
overview 55
with origin value 59
with wildcard (*) value 56–58

caching 90–93
headers in

adding support for 108–111
exposing to client 142–143
overview 107–108
reading 108
reference table of 178–180
simple response 181

to preflight requests
Access-Control-Allow-Headers header

78–82
Access-Control-Allow-Methods header

76–78
rejecting preflight request 83–85
sending actual request 83

processing 7–9
rejecting requests 59–62
using XDomainRequest object 32
using XMLHttpRequest object

error 24–26
success 20–24

responseText property 23
responseXML property 23

S

Safari 14–15
developer tools 154
Origin header 124
preflight cache in 93
remote debugging for iOS devices 175

salt 194
same-origin policy 4, 9
same-origin requests

cross-origin requests vs. 54–55
Origin header and 124–126

sample code setup
API 40–42
client 42–44
running app 44–45

<script> tags 71

Secure Sockets Layer. See SSL
security

advantages of CORS 9–10
authorizing requests using OAuth2

132–134
cookies included on request 128–129
CORS and 126–128

send() method 7, 87
sending requests 19–20
servers

configuring flexibility in 113
cookies support 100
CORS and 9
logging requests 175
requests and 49

server-side requests 204
setRequestHeader method 18
simple headers 72, 180
simple methods 72, 180
simple response headers 110, 181
simulating requests using curl

advantages of using curl 168–169
making CORS requests 165–167
making preflight requests 167–168

spoofing CORS requests 127
SSL (Secure Sockets Layer) 27, 95
Stack Overflow 176
stateless requests 88–89
status property 23, 25
statusText property 23, 25
successful response 20–24
support 176–177

T

TE header 18
terminology 180–181
test-cors.org

mobile debugging 175
sending requests using

client data in 173–174
sending requests to local server

171–173
sending requests to remote server

169–170
text/plain Content-Type 71
timeout property 20
toBlob method 32
toDataURL method 32
token, CSRF 192, 194
Tomcat 176
Trailer header 18
Transfer-Encoding header 18
Trusted Sites 47

INDEX212
U

Upgrade header 18
upload events 89–90
URLs (Uniform Resource Locators) 52
user credentials 94–95
user vs. client 48
User-Agent header 18

V

Via header 18
VPN (virtual private network) 115

W

whitelisting
HTTP methods 136
request headers 136–137
specifying allowed origins 117–119

wildcard (*) value 56–58
Windows

installing curl 189–190
installing Node.js 183–184
installing Wireshark 187

Windows Powershell 165
WinPcap 187
Wireshark 159–161

installing on Linux 188–189
installing on Mac OS X 187–188
installing on Windows 187

withCredentials property 7, 18, 27, 100,
102–104

X

XDomainRequest object
asynchronous requests only 31
Content-Type text/plain only 31
cookies and 31
custom request headers and 31
event handlers 32
GET and POST requests only 31
limited scheme support 31
overview 28–30
response from 32
XMLHttpRequest object vs. 30–31

XMLHttpRequest object 7, 10
client involvement 48
error response 24–26
event handlers 26–27
HTTP headers 18–19
including cookies 27–28
overview 15–17
reading response headers 108
sending request 19–20
setting up request 17–18
successful response 20–24
upload events and 72
XDomainRequest object vs. 30–32

X-Powered-By header 108, 142
XQuartz 187
X-Requested-With header 137

Y

YouTube API 114

Monsur Hossain

S
uppose you need to share some JSON data with another
application or service. If everything is hosted on one
domain, it’s a snap. But if the data is on another domain,

the browser’s “same-origin” policy stops you cold. Cross-Origin
Resource Sharing (CORS) is a new web standard that enables
safe cross-domain access without complex server-side code.
Mastering CORS makes it possible for web and mobile appli-
cations to share data simply and securely.

CORS in Action introduces Cross-Origin Resource Sharing from
both the server and the client perspective. It starts with making
and enabling CORS requests and then explores performance,
debugging, and security. You’ll learn to build apps that can
take advantage of APIs hosted anywhere and how to write APIs
that expand your products to a wider range of users.

What’s Inside
● CORS from the ground up
● Serving and consuming cross-domain data
● Best practices for building CORS APIs
● When to use CORS alternatives like JSON-P and proxies

For web developers comfortable with JavaScript. No experience
with CORS is assumed.

Monsur Hossain is an engineer at Google who has worked on
API-related projects such as the Google JavaScript Client, the
APIs Discovery Service, and CORS support for Google APIs.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/CORSinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

CORS IN ACTION

WEB DEVELOPMENT

M A N N I N G

“A well-rounded resource
for developers wanting

to learn the entire
 spectrum of CORS.”

—From the Foreword by
 Eric Bidelman, Google

“All you need to know
 about CORS in one

 well-explained book.”—Roger Keizer, HUSS B.V.

“The right balance of
 application and theory.”

—Roger Le, Coder Vox

“Stop getting cross-eyed
from cross-domain

 problems.”—Christopher Haupt
Mobirobo, Inc.

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	What this book will give you
	What this book won’t give you
	How to read this book
	Roadmap
	Online resources
	Code conventions and downloads

	author online
	about the author
	about the cover illustration
	Part 1—Introducing CORS
	1 The Core of CORS
	1.1 What is CORS?
	1.2 CORS by example
	1.2.1 Setting up the request
	1.2.2 Sending the request
	1.2.3 Processing the response

	1.3 Benefits of CORS
	1.3.1 Wider audience
	1.3.2 Servers stay in charge
	1.3.3 Flexibility
	1.3.4 Easy for developers
	1.3.5 Reduced maintenance overhead

	1.4 Summary

	2 Making CORS requests
	2.1 What is a cross-origin request?
	2.2 Browser support for CORS
	2.3 Using the XMLHttpRequest object
	2.3.1 Sending an HTTP request
	2.3.2 Handling the HTTP response
	2.3.3 Including cookies on cross-origin requests

	2.4 XDomainRequest object in Internet Explorer 8 and 9
	2.4.1 Differences between XDomainRequest and XMLHttpRequest

	2.5 Canvas and cross-origin images
	2.6 CORS requests from jQuery
	2.7 Summary

	Part 2—CORS on the server
	3 Handling CORS requests
	3.1 Setting up the sample code
	3.1.1 Setting up the sample API
	3.1.2 Setting up the sample client
	3.1.3 Running the sample app

	3.2 Making a CORS request
	3.3 Anatomy of a CORS request
	3.3.1 The players in a CORS request
	3.3.2 Lifecycle of a CORS request

	3.4 Making a request with the Origin header
	3.4.1 Viewing the Origin header
	3.4.2 What is an origin?
	3.4.3 Setting the Origin header

	3.5 Responding to a CORS request
	3.5.1 The Access-Control-Allow-Origin header
	3.5.2 Access-Control-Allow-Origin with a wildcard (*) value
	3.5.3 Access-Control-Allow-Origin with an origin value
	3.5.4 Rejecting CORS requests

	3.6 Summary

	4 Handling preflight requests
	4.1 What is a preflight request?
	4.1.1 Lifecycle of a preflight request
	4.1.2 Why does the preflight request exist?

	4.2 Triggering a preflight request
	4.2.1 When is a preflight request sent?

	4.3 Identifying a preflight request
	4.3.1 Origin header
	4.3.2 HTTP OPTIONS method
	4.3.3 Access-Control-Request-Method header
	4.3.4 Putting it all together

	4.4 Responding to a preflight request
	4.4.1 Supporting HTTP methods with Access-Control-Allow-Methods
	4.4.2 Supporting request headers with Access-Control-Allow-Headers
	4.4.3 Sending the actual request
	4.4.4 Rejecting a preflight request

	4.5 Recapping preflights
	4.6 Preflight result cache
	4.7 Summary

	5 Cookies and response headers
	5.1 Supporting cookies in CORS requests
	5.1.1 Setting cookies with a login page
	5.1.2 Reading the cookie on the server
	5.1.3 Including cookies in CORS requests
	5.1.4 How withCredentials and Access-Control-Allow-Credentials interact
	5.1.5 Caveats to cookie support

	5.2 Exposing response headers to the client
	5.2.1 Reading a response header
	5.2.2 Adding response header support

	5.3 Summary

	6 Best practices
	6.1 Refactoring the sample code
	6.2 Before you begin
	6.3 Setting the Access-Control-Allow-Origin header
	6.3.1 Allowing cross-origin access for everyone
	6.3.2 Limiting CORS requests to a set of origins
	6.3.3 CORS and proxy servers
	6.3.4 Null origin
	6.3.5 Origin header on same-origin requests

	6.4 Security
	6.4.1 Including cookies on requests
	6.4.2 Authorizing requests using OAuth2

	6.5 Handling preflight requests
	6.5.1 Whitelisting request methods and headers

	6.6 Reducing preflight requests
	6.6.1 Maximizing the preflight cache
	6.6.2 Changing your site to reduce preflight requests

	6.7 Exposing response headers
	6.8 CORS and redirects
	6.9 Summary

	Part 3—Debugging CORS requests
	7 Debugging CORS requests
	7.1 Solving CORS errors
	7.2 Using the browser’s developer tools
	7.2.1 Using the console
	7.2.2 Using the Network tab

	7.3 Monitoring network traffic
	7.3.1 Using Wireshark
	7.3.2 Using Fiddler

	7.4 Using curl to simulate CORS requests
	7.4.1 Making CORS requests using curl
	7.4.2 Making preflight requests using curl
	7.4.3 Why use curl?

	7.5 Sending requests using test-cors.org
	7.5.1 Sending requests to a remote server
	7.5.2 Sending requests to the local server
	7.5.3 Understanding how the client works

	7.6 Tips for mobile debugging
	7.6.1 Log requests on the server
	7.6.2 Use test-cors.org
	7.6.3 Use remote debugging tools
	7.6.4 Use a mobile simulator

	7.7 Getting help
	7.8 Summary

	Appendix A—CORS reference
	A.1 HTTP headers
	Request headers
	Response headers

	A.2 Other terms used in CORS
	Simple method
	Simple header
	Simple response header

	Appendix B—Configuring your environment
	B.1 Setting up for the sample application
	B.1.1 Node.js and NPM
	B.1.2 Express

	B.2 Debugging tools
	B.2.1 Wireshark
	B.2.2 Fiddler
	B.2.3 Curl

	B.3 Resources

	Appendix C—What is CSRF?
	C.1 What is CSRF?
	C.2 Implementing CSRF protection for same-origin requests

	Appendix D—Other cross-origin techniques
	D.1 JSONP
	D.2 Flash
	D.3 postMessage and easyXDM
	D.4 Server-side request

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

